1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 #include "delalloc-space.h" 24 #include "block-group.h" 25 #include "backref.h" 26 #include "misc.h" 27 #include "subpage.h" 28 29 /* 30 * Relocation overview 31 * 32 * [What does relocation do] 33 * 34 * The objective of relocation is to relocate all extents of the target block 35 * group to other block groups. 36 * This is utilized by resize (shrink only), profile converting, compacting 37 * space, or balance routine to spread chunks over devices. 38 * 39 * Before | After 40 * ------------------------------------------------------------------ 41 * BG A: 10 data extents | BG A: deleted 42 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 43 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 44 * 45 * [How does relocation work] 46 * 47 * 1. Mark the target block group read-only 48 * New extents won't be allocated from the target block group. 49 * 50 * 2.1 Record each extent in the target block group 51 * To build a proper map of extents to be relocated. 52 * 53 * 2.2 Build data reloc tree and reloc trees 54 * Data reloc tree will contain an inode, recording all newly relocated 55 * data extents. 56 * There will be only one data reloc tree for one data block group. 57 * 58 * Reloc tree will be a special snapshot of its source tree, containing 59 * relocated tree blocks. 60 * Each tree referring to a tree block in target block group will get its 61 * reloc tree built. 62 * 63 * 2.3 Swap source tree with its corresponding reloc tree 64 * Each involved tree only refers to new extents after swap. 65 * 66 * 3. Cleanup reloc trees and data reloc tree. 67 * As old extents in the target block group are still referenced by reloc 68 * trees, we need to clean them up before really freeing the target block 69 * group. 70 * 71 * The main complexity is in steps 2.2 and 2.3. 72 * 73 * The entry point of relocation is relocate_block_group() function. 74 */ 75 76 #define RELOCATION_RESERVED_NODES 256 77 /* 78 * map address of tree root to tree 79 */ 80 struct mapping_node { 81 struct { 82 struct rb_node rb_node; 83 u64 bytenr; 84 }; /* Use rb_simle_node for search/insert */ 85 void *data; 86 }; 87 88 struct mapping_tree { 89 struct rb_root rb_root; 90 spinlock_t lock; 91 }; 92 93 /* 94 * present a tree block to process 95 */ 96 struct tree_block { 97 struct { 98 struct rb_node rb_node; 99 u64 bytenr; 100 }; /* Use rb_simple_node for search/insert */ 101 u64 owner; 102 struct btrfs_key key; 103 unsigned int level:8; 104 unsigned int key_ready:1; 105 }; 106 107 #define MAX_EXTENTS 128 108 109 struct file_extent_cluster { 110 u64 start; 111 u64 end; 112 u64 boundary[MAX_EXTENTS]; 113 unsigned int nr; 114 }; 115 116 struct reloc_control { 117 /* block group to relocate */ 118 struct btrfs_block_group *block_group; 119 /* extent tree */ 120 struct btrfs_root *extent_root; 121 /* inode for moving data */ 122 struct inode *data_inode; 123 124 struct btrfs_block_rsv *block_rsv; 125 126 struct btrfs_backref_cache backref_cache; 127 128 struct file_extent_cluster cluster; 129 /* tree blocks have been processed */ 130 struct extent_io_tree processed_blocks; 131 /* map start of tree root to corresponding reloc tree */ 132 struct mapping_tree reloc_root_tree; 133 /* list of reloc trees */ 134 struct list_head reloc_roots; 135 /* list of subvolume trees that get relocated */ 136 struct list_head dirty_subvol_roots; 137 /* size of metadata reservation for merging reloc trees */ 138 u64 merging_rsv_size; 139 /* size of relocated tree nodes */ 140 u64 nodes_relocated; 141 /* reserved size for block group relocation*/ 142 u64 reserved_bytes; 143 144 u64 search_start; 145 u64 extents_found; 146 147 unsigned int stage:8; 148 unsigned int create_reloc_tree:1; 149 unsigned int merge_reloc_tree:1; 150 unsigned int found_file_extent:1; 151 }; 152 153 /* stages of data relocation */ 154 #define MOVE_DATA_EXTENTS 0 155 #define UPDATE_DATA_PTRS 1 156 157 static void mark_block_processed(struct reloc_control *rc, 158 struct btrfs_backref_node *node) 159 { 160 u32 blocksize; 161 162 if (node->level == 0 || 163 in_range(node->bytenr, rc->block_group->start, 164 rc->block_group->length)) { 165 blocksize = rc->extent_root->fs_info->nodesize; 166 set_extent_bits(&rc->processed_blocks, node->bytenr, 167 node->bytenr + blocksize - 1, EXTENT_DIRTY); 168 } 169 node->processed = 1; 170 } 171 172 173 static void mapping_tree_init(struct mapping_tree *tree) 174 { 175 tree->rb_root = RB_ROOT; 176 spin_lock_init(&tree->lock); 177 } 178 179 /* 180 * walk up backref nodes until reach node presents tree root 181 */ 182 static struct btrfs_backref_node *walk_up_backref( 183 struct btrfs_backref_node *node, 184 struct btrfs_backref_edge *edges[], int *index) 185 { 186 struct btrfs_backref_edge *edge; 187 int idx = *index; 188 189 while (!list_empty(&node->upper)) { 190 edge = list_entry(node->upper.next, 191 struct btrfs_backref_edge, list[LOWER]); 192 edges[idx++] = edge; 193 node = edge->node[UPPER]; 194 } 195 BUG_ON(node->detached); 196 *index = idx; 197 return node; 198 } 199 200 /* 201 * walk down backref nodes to find start of next reference path 202 */ 203 static struct btrfs_backref_node *walk_down_backref( 204 struct btrfs_backref_edge *edges[], int *index) 205 { 206 struct btrfs_backref_edge *edge; 207 struct btrfs_backref_node *lower; 208 int idx = *index; 209 210 while (idx > 0) { 211 edge = edges[idx - 1]; 212 lower = edge->node[LOWER]; 213 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 214 idx--; 215 continue; 216 } 217 edge = list_entry(edge->list[LOWER].next, 218 struct btrfs_backref_edge, list[LOWER]); 219 edges[idx - 1] = edge; 220 *index = idx; 221 return edge->node[UPPER]; 222 } 223 *index = 0; 224 return NULL; 225 } 226 227 static void update_backref_node(struct btrfs_backref_cache *cache, 228 struct btrfs_backref_node *node, u64 bytenr) 229 { 230 struct rb_node *rb_node; 231 rb_erase(&node->rb_node, &cache->rb_root); 232 node->bytenr = bytenr; 233 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 234 if (rb_node) 235 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 236 } 237 238 /* 239 * update backref cache after a transaction commit 240 */ 241 static int update_backref_cache(struct btrfs_trans_handle *trans, 242 struct btrfs_backref_cache *cache) 243 { 244 struct btrfs_backref_node *node; 245 int level = 0; 246 247 if (cache->last_trans == 0) { 248 cache->last_trans = trans->transid; 249 return 0; 250 } 251 252 if (cache->last_trans == trans->transid) 253 return 0; 254 255 /* 256 * detached nodes are used to avoid unnecessary backref 257 * lookup. transaction commit changes the extent tree. 258 * so the detached nodes are no longer useful. 259 */ 260 while (!list_empty(&cache->detached)) { 261 node = list_entry(cache->detached.next, 262 struct btrfs_backref_node, list); 263 btrfs_backref_cleanup_node(cache, node); 264 } 265 266 while (!list_empty(&cache->changed)) { 267 node = list_entry(cache->changed.next, 268 struct btrfs_backref_node, list); 269 list_del_init(&node->list); 270 BUG_ON(node->pending); 271 update_backref_node(cache, node, node->new_bytenr); 272 } 273 274 /* 275 * some nodes can be left in the pending list if there were 276 * errors during processing the pending nodes. 277 */ 278 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 279 list_for_each_entry(node, &cache->pending[level], list) { 280 BUG_ON(!node->pending); 281 if (node->bytenr == node->new_bytenr) 282 continue; 283 update_backref_node(cache, node, node->new_bytenr); 284 } 285 } 286 287 cache->last_trans = 0; 288 return 1; 289 } 290 291 static bool reloc_root_is_dead(struct btrfs_root *root) 292 { 293 /* 294 * Pair with set_bit/clear_bit in clean_dirty_subvols and 295 * btrfs_update_reloc_root. We need to see the updated bit before 296 * trying to access reloc_root 297 */ 298 smp_rmb(); 299 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 300 return true; 301 return false; 302 } 303 304 /* 305 * Check if this subvolume tree has valid reloc tree. 306 * 307 * Reloc tree after swap is considered dead, thus not considered as valid. 308 * This is enough for most callers, as they don't distinguish dead reloc root 309 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 310 * special case. 311 */ 312 static bool have_reloc_root(struct btrfs_root *root) 313 { 314 if (reloc_root_is_dead(root)) 315 return false; 316 if (!root->reloc_root) 317 return false; 318 return true; 319 } 320 321 int btrfs_should_ignore_reloc_root(struct btrfs_root *root) 322 { 323 struct btrfs_root *reloc_root; 324 325 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 326 return 0; 327 328 /* This root has been merged with its reloc tree, we can ignore it */ 329 if (reloc_root_is_dead(root)) 330 return 1; 331 332 reloc_root = root->reloc_root; 333 if (!reloc_root) 334 return 0; 335 336 if (btrfs_header_generation(reloc_root->commit_root) == 337 root->fs_info->running_transaction->transid) 338 return 0; 339 /* 340 * if there is reloc tree and it was created in previous 341 * transaction backref lookup can find the reloc tree, 342 * so backref node for the fs tree root is useless for 343 * relocation. 344 */ 345 return 1; 346 } 347 348 /* 349 * find reloc tree by address of tree root 350 */ 351 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 352 { 353 struct reloc_control *rc = fs_info->reloc_ctl; 354 struct rb_node *rb_node; 355 struct mapping_node *node; 356 struct btrfs_root *root = NULL; 357 358 ASSERT(rc); 359 spin_lock(&rc->reloc_root_tree.lock); 360 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 361 if (rb_node) { 362 node = rb_entry(rb_node, struct mapping_node, rb_node); 363 root = (struct btrfs_root *)node->data; 364 } 365 spin_unlock(&rc->reloc_root_tree.lock); 366 return btrfs_grab_root(root); 367 } 368 369 /* 370 * For useless nodes, do two major clean ups: 371 * 372 * - Cleanup the children edges and nodes 373 * If child node is also orphan (no parent) during cleanup, then the child 374 * node will also be cleaned up. 375 * 376 * - Freeing up leaves (level 0), keeps nodes detached 377 * For nodes, the node is still cached as "detached" 378 * 379 * Return false if @node is not in the @useless_nodes list. 380 * Return true if @node is in the @useless_nodes list. 381 */ 382 static bool handle_useless_nodes(struct reloc_control *rc, 383 struct btrfs_backref_node *node) 384 { 385 struct btrfs_backref_cache *cache = &rc->backref_cache; 386 struct list_head *useless_node = &cache->useless_node; 387 bool ret = false; 388 389 while (!list_empty(useless_node)) { 390 struct btrfs_backref_node *cur; 391 392 cur = list_first_entry(useless_node, struct btrfs_backref_node, 393 list); 394 list_del_init(&cur->list); 395 396 /* Only tree root nodes can be added to @useless_nodes */ 397 ASSERT(list_empty(&cur->upper)); 398 399 if (cur == node) 400 ret = true; 401 402 /* The node is the lowest node */ 403 if (cur->lowest) { 404 list_del_init(&cur->lower); 405 cur->lowest = 0; 406 } 407 408 /* Cleanup the lower edges */ 409 while (!list_empty(&cur->lower)) { 410 struct btrfs_backref_edge *edge; 411 struct btrfs_backref_node *lower; 412 413 edge = list_entry(cur->lower.next, 414 struct btrfs_backref_edge, list[UPPER]); 415 list_del(&edge->list[UPPER]); 416 list_del(&edge->list[LOWER]); 417 lower = edge->node[LOWER]; 418 btrfs_backref_free_edge(cache, edge); 419 420 /* Child node is also orphan, queue for cleanup */ 421 if (list_empty(&lower->upper)) 422 list_add(&lower->list, useless_node); 423 } 424 /* Mark this block processed for relocation */ 425 mark_block_processed(rc, cur); 426 427 /* 428 * Backref nodes for tree leaves are deleted from the cache. 429 * Backref nodes for upper level tree blocks are left in the 430 * cache to avoid unnecessary backref lookup. 431 */ 432 if (cur->level > 0) { 433 list_add(&cur->list, &cache->detached); 434 cur->detached = 1; 435 } else { 436 rb_erase(&cur->rb_node, &cache->rb_root); 437 btrfs_backref_free_node(cache, cur); 438 } 439 } 440 return ret; 441 } 442 443 /* 444 * Build backref tree for a given tree block. Root of the backref tree 445 * corresponds the tree block, leaves of the backref tree correspond roots of 446 * b-trees that reference the tree block. 447 * 448 * The basic idea of this function is check backrefs of a given block to find 449 * upper level blocks that reference the block, and then check backrefs of 450 * these upper level blocks recursively. The recursion stops when tree root is 451 * reached or backrefs for the block is cached. 452 * 453 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 454 * all upper level blocks that directly/indirectly reference the block are also 455 * cached. 456 */ 457 static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 458 struct reloc_control *rc, struct btrfs_key *node_key, 459 int level, u64 bytenr) 460 { 461 struct btrfs_backref_iter *iter; 462 struct btrfs_backref_cache *cache = &rc->backref_cache; 463 /* For searching parent of TREE_BLOCK_REF */ 464 struct btrfs_path *path; 465 struct btrfs_backref_node *cur; 466 struct btrfs_backref_node *node = NULL; 467 struct btrfs_backref_edge *edge; 468 int ret; 469 int err = 0; 470 471 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS); 472 if (!iter) 473 return ERR_PTR(-ENOMEM); 474 path = btrfs_alloc_path(); 475 if (!path) { 476 err = -ENOMEM; 477 goto out; 478 } 479 480 node = btrfs_backref_alloc_node(cache, bytenr, level); 481 if (!node) { 482 err = -ENOMEM; 483 goto out; 484 } 485 486 node->lowest = 1; 487 cur = node; 488 489 /* Breadth-first search to build backref cache */ 490 do { 491 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key, 492 cur); 493 if (ret < 0) { 494 err = ret; 495 goto out; 496 } 497 edge = list_first_entry_or_null(&cache->pending_edge, 498 struct btrfs_backref_edge, list[UPPER]); 499 /* 500 * The pending list isn't empty, take the first block to 501 * process 502 */ 503 if (edge) { 504 list_del_init(&edge->list[UPPER]); 505 cur = edge->node[UPPER]; 506 } 507 } while (edge); 508 509 /* Finish the upper linkage of newly added edges/nodes */ 510 ret = btrfs_backref_finish_upper_links(cache, node); 511 if (ret < 0) { 512 err = ret; 513 goto out; 514 } 515 516 if (handle_useless_nodes(rc, node)) 517 node = NULL; 518 out: 519 btrfs_backref_iter_free(iter); 520 btrfs_free_path(path); 521 if (err) { 522 btrfs_backref_error_cleanup(cache, node); 523 return ERR_PTR(err); 524 } 525 ASSERT(!node || !node->detached); 526 ASSERT(list_empty(&cache->useless_node) && 527 list_empty(&cache->pending_edge)); 528 return node; 529 } 530 531 /* 532 * helper to add backref node for the newly created snapshot. 533 * the backref node is created by cloning backref node that 534 * corresponds to root of source tree 535 */ 536 static int clone_backref_node(struct btrfs_trans_handle *trans, 537 struct reloc_control *rc, 538 struct btrfs_root *src, 539 struct btrfs_root *dest) 540 { 541 struct btrfs_root *reloc_root = src->reloc_root; 542 struct btrfs_backref_cache *cache = &rc->backref_cache; 543 struct btrfs_backref_node *node = NULL; 544 struct btrfs_backref_node *new_node; 545 struct btrfs_backref_edge *edge; 546 struct btrfs_backref_edge *new_edge; 547 struct rb_node *rb_node; 548 549 if (cache->last_trans > 0) 550 update_backref_cache(trans, cache); 551 552 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 553 if (rb_node) { 554 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 555 if (node->detached) 556 node = NULL; 557 else 558 BUG_ON(node->new_bytenr != reloc_root->node->start); 559 } 560 561 if (!node) { 562 rb_node = rb_simple_search(&cache->rb_root, 563 reloc_root->commit_root->start); 564 if (rb_node) { 565 node = rb_entry(rb_node, struct btrfs_backref_node, 566 rb_node); 567 BUG_ON(node->detached); 568 } 569 } 570 571 if (!node) 572 return 0; 573 574 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 575 node->level); 576 if (!new_node) 577 return -ENOMEM; 578 579 new_node->lowest = node->lowest; 580 new_node->checked = 1; 581 new_node->root = btrfs_grab_root(dest); 582 ASSERT(new_node->root); 583 584 if (!node->lowest) { 585 list_for_each_entry(edge, &node->lower, list[UPPER]) { 586 new_edge = btrfs_backref_alloc_edge(cache); 587 if (!new_edge) 588 goto fail; 589 590 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 591 new_node, LINK_UPPER); 592 } 593 } else { 594 list_add_tail(&new_node->lower, &cache->leaves); 595 } 596 597 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 598 &new_node->rb_node); 599 if (rb_node) 600 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 601 602 if (!new_node->lowest) { 603 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 604 list_add_tail(&new_edge->list[LOWER], 605 &new_edge->node[LOWER]->upper); 606 } 607 } 608 return 0; 609 fail: 610 while (!list_empty(&new_node->lower)) { 611 new_edge = list_entry(new_node->lower.next, 612 struct btrfs_backref_edge, list[UPPER]); 613 list_del(&new_edge->list[UPPER]); 614 btrfs_backref_free_edge(cache, new_edge); 615 } 616 btrfs_backref_free_node(cache, new_node); 617 return -ENOMEM; 618 } 619 620 /* 621 * helper to add 'address of tree root -> reloc tree' mapping 622 */ 623 static int __must_check __add_reloc_root(struct btrfs_root *root) 624 { 625 struct btrfs_fs_info *fs_info = root->fs_info; 626 struct rb_node *rb_node; 627 struct mapping_node *node; 628 struct reloc_control *rc = fs_info->reloc_ctl; 629 630 node = kmalloc(sizeof(*node), GFP_NOFS); 631 if (!node) 632 return -ENOMEM; 633 634 node->bytenr = root->commit_root->start; 635 node->data = root; 636 637 spin_lock(&rc->reloc_root_tree.lock); 638 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 639 node->bytenr, &node->rb_node); 640 spin_unlock(&rc->reloc_root_tree.lock); 641 if (rb_node) { 642 btrfs_err(fs_info, 643 "Duplicate root found for start=%llu while inserting into relocation tree", 644 node->bytenr); 645 return -EEXIST; 646 } 647 648 list_add_tail(&root->root_list, &rc->reloc_roots); 649 return 0; 650 } 651 652 /* 653 * helper to delete the 'address of tree root -> reloc tree' 654 * mapping 655 */ 656 static void __del_reloc_root(struct btrfs_root *root) 657 { 658 struct btrfs_fs_info *fs_info = root->fs_info; 659 struct rb_node *rb_node; 660 struct mapping_node *node = NULL; 661 struct reloc_control *rc = fs_info->reloc_ctl; 662 bool put_ref = false; 663 664 if (rc && root->node) { 665 spin_lock(&rc->reloc_root_tree.lock); 666 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 667 root->commit_root->start); 668 if (rb_node) { 669 node = rb_entry(rb_node, struct mapping_node, rb_node); 670 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 671 RB_CLEAR_NODE(&node->rb_node); 672 } 673 spin_unlock(&rc->reloc_root_tree.lock); 674 ASSERT(!node || (struct btrfs_root *)node->data == root); 675 } 676 677 /* 678 * We only put the reloc root here if it's on the list. There's a lot 679 * of places where the pattern is to splice the rc->reloc_roots, process 680 * the reloc roots, and then add the reloc root back onto 681 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 682 * list we don't want the reference being dropped, because the guy 683 * messing with the list is in charge of the reference. 684 */ 685 spin_lock(&fs_info->trans_lock); 686 if (!list_empty(&root->root_list)) { 687 put_ref = true; 688 list_del_init(&root->root_list); 689 } 690 spin_unlock(&fs_info->trans_lock); 691 if (put_ref) 692 btrfs_put_root(root); 693 kfree(node); 694 } 695 696 /* 697 * helper to update the 'address of tree root -> reloc tree' 698 * mapping 699 */ 700 static int __update_reloc_root(struct btrfs_root *root) 701 { 702 struct btrfs_fs_info *fs_info = root->fs_info; 703 struct rb_node *rb_node; 704 struct mapping_node *node = NULL; 705 struct reloc_control *rc = fs_info->reloc_ctl; 706 707 spin_lock(&rc->reloc_root_tree.lock); 708 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 709 root->commit_root->start); 710 if (rb_node) { 711 node = rb_entry(rb_node, struct mapping_node, rb_node); 712 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 713 } 714 spin_unlock(&rc->reloc_root_tree.lock); 715 716 if (!node) 717 return 0; 718 BUG_ON((struct btrfs_root *)node->data != root); 719 720 spin_lock(&rc->reloc_root_tree.lock); 721 node->bytenr = root->node->start; 722 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 723 node->bytenr, &node->rb_node); 724 spin_unlock(&rc->reloc_root_tree.lock); 725 if (rb_node) 726 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 727 return 0; 728 } 729 730 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 731 struct btrfs_root *root, u64 objectid) 732 { 733 struct btrfs_fs_info *fs_info = root->fs_info; 734 struct btrfs_root *reloc_root; 735 struct extent_buffer *eb; 736 struct btrfs_root_item *root_item; 737 struct btrfs_key root_key; 738 int ret = 0; 739 bool must_abort = false; 740 741 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 742 if (!root_item) 743 return ERR_PTR(-ENOMEM); 744 745 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 746 root_key.type = BTRFS_ROOT_ITEM_KEY; 747 root_key.offset = objectid; 748 749 if (root->root_key.objectid == objectid) { 750 u64 commit_root_gen; 751 752 /* called by btrfs_init_reloc_root */ 753 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 754 BTRFS_TREE_RELOC_OBJECTID); 755 if (ret) 756 goto fail; 757 758 /* 759 * Set the last_snapshot field to the generation of the commit 760 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 761 * correctly (returns true) when the relocation root is created 762 * either inside the critical section of a transaction commit 763 * (through transaction.c:qgroup_account_snapshot()) and when 764 * it's created before the transaction commit is started. 765 */ 766 commit_root_gen = btrfs_header_generation(root->commit_root); 767 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 768 } else { 769 /* 770 * called by btrfs_reloc_post_snapshot_hook. 771 * the source tree is a reloc tree, all tree blocks 772 * modified after it was created have RELOC flag 773 * set in their headers. so it's OK to not update 774 * the 'last_snapshot'. 775 */ 776 ret = btrfs_copy_root(trans, root, root->node, &eb, 777 BTRFS_TREE_RELOC_OBJECTID); 778 if (ret) 779 goto fail; 780 } 781 782 /* 783 * We have changed references at this point, we must abort the 784 * transaction if anything fails. 785 */ 786 must_abort = true; 787 788 memcpy(root_item, &root->root_item, sizeof(*root_item)); 789 btrfs_set_root_bytenr(root_item, eb->start); 790 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 791 btrfs_set_root_generation(root_item, trans->transid); 792 793 if (root->root_key.objectid == objectid) { 794 btrfs_set_root_refs(root_item, 0); 795 memset(&root_item->drop_progress, 0, 796 sizeof(struct btrfs_disk_key)); 797 btrfs_set_root_drop_level(root_item, 0); 798 } 799 800 btrfs_tree_unlock(eb); 801 free_extent_buffer(eb); 802 803 ret = btrfs_insert_root(trans, fs_info->tree_root, 804 &root_key, root_item); 805 if (ret) 806 goto fail; 807 808 kfree(root_item); 809 810 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 811 if (IS_ERR(reloc_root)) { 812 ret = PTR_ERR(reloc_root); 813 goto abort; 814 } 815 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 816 reloc_root->last_trans = trans->transid; 817 return reloc_root; 818 fail: 819 kfree(root_item); 820 abort: 821 if (must_abort) 822 btrfs_abort_transaction(trans, ret); 823 return ERR_PTR(ret); 824 } 825 826 /* 827 * create reloc tree for a given fs tree. reloc tree is just a 828 * snapshot of the fs tree with special root objectid. 829 * 830 * The reloc_root comes out of here with two references, one for 831 * root->reloc_root, and another for being on the rc->reloc_roots list. 832 */ 833 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 834 struct btrfs_root *root) 835 { 836 struct btrfs_fs_info *fs_info = root->fs_info; 837 struct btrfs_root *reloc_root; 838 struct reloc_control *rc = fs_info->reloc_ctl; 839 struct btrfs_block_rsv *rsv; 840 int clear_rsv = 0; 841 int ret; 842 843 if (!rc) 844 return 0; 845 846 /* 847 * The subvolume has reloc tree but the swap is finished, no need to 848 * create/update the dead reloc tree 849 */ 850 if (reloc_root_is_dead(root)) 851 return 0; 852 853 /* 854 * This is subtle but important. We do not do 855 * record_root_in_transaction for reloc roots, instead we record their 856 * corresponding fs root, and then here we update the last trans for the 857 * reloc root. This means that we have to do this for the entire life 858 * of the reloc root, regardless of which stage of the relocation we are 859 * in. 860 */ 861 if (root->reloc_root) { 862 reloc_root = root->reloc_root; 863 reloc_root->last_trans = trans->transid; 864 return 0; 865 } 866 867 /* 868 * We are merging reloc roots, we do not need new reloc trees. Also 869 * reloc trees never need their own reloc tree. 870 */ 871 if (!rc->create_reloc_tree || 872 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 873 return 0; 874 875 if (!trans->reloc_reserved) { 876 rsv = trans->block_rsv; 877 trans->block_rsv = rc->block_rsv; 878 clear_rsv = 1; 879 } 880 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 881 if (clear_rsv) 882 trans->block_rsv = rsv; 883 if (IS_ERR(reloc_root)) 884 return PTR_ERR(reloc_root); 885 886 ret = __add_reloc_root(reloc_root); 887 ASSERT(ret != -EEXIST); 888 if (ret) { 889 /* Pairs with create_reloc_root */ 890 btrfs_put_root(reloc_root); 891 return ret; 892 } 893 root->reloc_root = btrfs_grab_root(reloc_root); 894 return 0; 895 } 896 897 /* 898 * update root item of reloc tree 899 */ 900 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 901 struct btrfs_root *root) 902 { 903 struct btrfs_fs_info *fs_info = root->fs_info; 904 struct btrfs_root *reloc_root; 905 struct btrfs_root_item *root_item; 906 int ret; 907 908 if (!have_reloc_root(root)) 909 return 0; 910 911 reloc_root = root->reloc_root; 912 root_item = &reloc_root->root_item; 913 914 /* 915 * We are probably ok here, but __del_reloc_root() will drop its ref of 916 * the root. We have the ref for root->reloc_root, but just in case 917 * hold it while we update the reloc root. 918 */ 919 btrfs_grab_root(reloc_root); 920 921 /* root->reloc_root will stay until current relocation finished */ 922 if (fs_info->reloc_ctl->merge_reloc_tree && 923 btrfs_root_refs(root_item) == 0) { 924 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 925 /* 926 * Mark the tree as dead before we change reloc_root so 927 * have_reloc_root will not touch it from now on. 928 */ 929 smp_wmb(); 930 __del_reloc_root(reloc_root); 931 } 932 933 if (reloc_root->commit_root != reloc_root->node) { 934 __update_reloc_root(reloc_root); 935 btrfs_set_root_node(root_item, reloc_root->node); 936 free_extent_buffer(reloc_root->commit_root); 937 reloc_root->commit_root = btrfs_root_node(reloc_root); 938 } 939 940 ret = btrfs_update_root(trans, fs_info->tree_root, 941 &reloc_root->root_key, root_item); 942 btrfs_put_root(reloc_root); 943 return ret; 944 } 945 946 /* 947 * helper to find first cached inode with inode number >= objectid 948 * in a subvolume 949 */ 950 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 951 { 952 struct rb_node *node; 953 struct rb_node *prev; 954 struct btrfs_inode *entry; 955 struct inode *inode; 956 957 spin_lock(&root->inode_lock); 958 again: 959 node = root->inode_tree.rb_node; 960 prev = NULL; 961 while (node) { 962 prev = node; 963 entry = rb_entry(node, struct btrfs_inode, rb_node); 964 965 if (objectid < btrfs_ino(entry)) 966 node = node->rb_left; 967 else if (objectid > btrfs_ino(entry)) 968 node = node->rb_right; 969 else 970 break; 971 } 972 if (!node) { 973 while (prev) { 974 entry = rb_entry(prev, struct btrfs_inode, rb_node); 975 if (objectid <= btrfs_ino(entry)) { 976 node = prev; 977 break; 978 } 979 prev = rb_next(prev); 980 } 981 } 982 while (node) { 983 entry = rb_entry(node, struct btrfs_inode, rb_node); 984 inode = igrab(&entry->vfs_inode); 985 if (inode) { 986 spin_unlock(&root->inode_lock); 987 return inode; 988 } 989 990 objectid = btrfs_ino(entry) + 1; 991 if (cond_resched_lock(&root->inode_lock)) 992 goto again; 993 994 node = rb_next(node); 995 } 996 spin_unlock(&root->inode_lock); 997 return NULL; 998 } 999 1000 /* 1001 * get new location of data 1002 */ 1003 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1004 u64 bytenr, u64 num_bytes) 1005 { 1006 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1007 struct btrfs_path *path; 1008 struct btrfs_file_extent_item *fi; 1009 struct extent_buffer *leaf; 1010 int ret; 1011 1012 path = btrfs_alloc_path(); 1013 if (!path) 1014 return -ENOMEM; 1015 1016 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1017 ret = btrfs_lookup_file_extent(NULL, root, path, 1018 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1019 if (ret < 0) 1020 goto out; 1021 if (ret > 0) { 1022 ret = -ENOENT; 1023 goto out; 1024 } 1025 1026 leaf = path->nodes[0]; 1027 fi = btrfs_item_ptr(leaf, path->slots[0], 1028 struct btrfs_file_extent_item); 1029 1030 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1031 btrfs_file_extent_compression(leaf, fi) || 1032 btrfs_file_extent_encryption(leaf, fi) || 1033 btrfs_file_extent_other_encoding(leaf, fi)); 1034 1035 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1036 ret = -EINVAL; 1037 goto out; 1038 } 1039 1040 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1041 ret = 0; 1042 out: 1043 btrfs_free_path(path); 1044 return ret; 1045 } 1046 1047 /* 1048 * update file extent items in the tree leaf to point to 1049 * the new locations. 1050 */ 1051 static noinline_for_stack 1052 int replace_file_extents(struct btrfs_trans_handle *trans, 1053 struct reloc_control *rc, 1054 struct btrfs_root *root, 1055 struct extent_buffer *leaf) 1056 { 1057 struct btrfs_fs_info *fs_info = root->fs_info; 1058 struct btrfs_key key; 1059 struct btrfs_file_extent_item *fi; 1060 struct inode *inode = NULL; 1061 u64 parent; 1062 u64 bytenr; 1063 u64 new_bytenr = 0; 1064 u64 num_bytes; 1065 u64 end; 1066 u32 nritems; 1067 u32 i; 1068 int ret = 0; 1069 int first = 1; 1070 int dirty = 0; 1071 1072 if (rc->stage != UPDATE_DATA_PTRS) 1073 return 0; 1074 1075 /* reloc trees always use full backref */ 1076 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1077 parent = leaf->start; 1078 else 1079 parent = 0; 1080 1081 nritems = btrfs_header_nritems(leaf); 1082 for (i = 0; i < nritems; i++) { 1083 struct btrfs_ref ref = { 0 }; 1084 1085 cond_resched(); 1086 btrfs_item_key_to_cpu(leaf, &key, i); 1087 if (key.type != BTRFS_EXTENT_DATA_KEY) 1088 continue; 1089 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1090 if (btrfs_file_extent_type(leaf, fi) == 1091 BTRFS_FILE_EXTENT_INLINE) 1092 continue; 1093 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1094 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1095 if (bytenr == 0) 1096 continue; 1097 if (!in_range(bytenr, rc->block_group->start, 1098 rc->block_group->length)) 1099 continue; 1100 1101 /* 1102 * if we are modifying block in fs tree, wait for readpage 1103 * to complete and drop the extent cache 1104 */ 1105 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1106 if (first) { 1107 inode = find_next_inode(root, key.objectid); 1108 first = 0; 1109 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1110 btrfs_add_delayed_iput(inode); 1111 inode = find_next_inode(root, key.objectid); 1112 } 1113 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1114 end = key.offset + 1115 btrfs_file_extent_num_bytes(leaf, fi); 1116 WARN_ON(!IS_ALIGNED(key.offset, 1117 fs_info->sectorsize)); 1118 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1119 end--; 1120 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1121 key.offset, end); 1122 if (!ret) 1123 continue; 1124 1125 btrfs_drop_extent_cache(BTRFS_I(inode), 1126 key.offset, end, 1); 1127 unlock_extent(&BTRFS_I(inode)->io_tree, 1128 key.offset, end); 1129 } 1130 } 1131 1132 ret = get_new_location(rc->data_inode, &new_bytenr, 1133 bytenr, num_bytes); 1134 if (ret) { 1135 /* 1136 * Don't have to abort since we've not changed anything 1137 * in the file extent yet. 1138 */ 1139 break; 1140 } 1141 1142 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1143 dirty = 1; 1144 1145 key.offset -= btrfs_file_extent_offset(leaf, fi); 1146 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1147 num_bytes, parent); 1148 ref.real_root = root->root_key.objectid; 1149 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1150 key.objectid, key.offset); 1151 ret = btrfs_inc_extent_ref(trans, &ref); 1152 if (ret) { 1153 btrfs_abort_transaction(trans, ret); 1154 break; 1155 } 1156 1157 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1158 num_bytes, parent); 1159 ref.real_root = root->root_key.objectid; 1160 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1161 key.objectid, key.offset); 1162 ret = btrfs_free_extent(trans, &ref); 1163 if (ret) { 1164 btrfs_abort_transaction(trans, ret); 1165 break; 1166 } 1167 } 1168 if (dirty) 1169 btrfs_mark_buffer_dirty(leaf); 1170 if (inode) 1171 btrfs_add_delayed_iput(inode); 1172 return ret; 1173 } 1174 1175 static noinline_for_stack 1176 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1177 struct btrfs_path *path, int level) 1178 { 1179 struct btrfs_disk_key key1; 1180 struct btrfs_disk_key key2; 1181 btrfs_node_key(eb, &key1, slot); 1182 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1183 return memcmp(&key1, &key2, sizeof(key1)); 1184 } 1185 1186 /* 1187 * try to replace tree blocks in fs tree with the new blocks 1188 * in reloc tree. tree blocks haven't been modified since the 1189 * reloc tree was create can be replaced. 1190 * 1191 * if a block was replaced, level of the block + 1 is returned. 1192 * if no block got replaced, 0 is returned. if there are other 1193 * errors, a negative error number is returned. 1194 */ 1195 static noinline_for_stack 1196 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1197 struct btrfs_root *dest, struct btrfs_root *src, 1198 struct btrfs_path *path, struct btrfs_key *next_key, 1199 int lowest_level, int max_level) 1200 { 1201 struct btrfs_fs_info *fs_info = dest->fs_info; 1202 struct extent_buffer *eb; 1203 struct extent_buffer *parent; 1204 struct btrfs_ref ref = { 0 }; 1205 struct btrfs_key key; 1206 u64 old_bytenr; 1207 u64 new_bytenr; 1208 u64 old_ptr_gen; 1209 u64 new_ptr_gen; 1210 u64 last_snapshot; 1211 u32 blocksize; 1212 int cow = 0; 1213 int level; 1214 int ret; 1215 int slot; 1216 1217 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1218 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1219 1220 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1221 again: 1222 slot = path->slots[lowest_level]; 1223 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1224 1225 eb = btrfs_lock_root_node(dest); 1226 level = btrfs_header_level(eb); 1227 1228 if (level < lowest_level) { 1229 btrfs_tree_unlock(eb); 1230 free_extent_buffer(eb); 1231 return 0; 1232 } 1233 1234 if (cow) { 1235 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, 1236 BTRFS_NESTING_COW); 1237 if (ret) { 1238 btrfs_tree_unlock(eb); 1239 free_extent_buffer(eb); 1240 return ret; 1241 } 1242 } 1243 1244 if (next_key) { 1245 next_key->objectid = (u64)-1; 1246 next_key->type = (u8)-1; 1247 next_key->offset = (u64)-1; 1248 } 1249 1250 parent = eb; 1251 while (1) { 1252 level = btrfs_header_level(parent); 1253 ASSERT(level >= lowest_level); 1254 1255 ret = btrfs_bin_search(parent, &key, &slot); 1256 if (ret < 0) 1257 break; 1258 if (ret && slot > 0) 1259 slot--; 1260 1261 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1262 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1263 1264 old_bytenr = btrfs_node_blockptr(parent, slot); 1265 blocksize = fs_info->nodesize; 1266 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1267 1268 if (level <= max_level) { 1269 eb = path->nodes[level]; 1270 new_bytenr = btrfs_node_blockptr(eb, 1271 path->slots[level]); 1272 new_ptr_gen = btrfs_node_ptr_generation(eb, 1273 path->slots[level]); 1274 } else { 1275 new_bytenr = 0; 1276 new_ptr_gen = 0; 1277 } 1278 1279 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1280 ret = level; 1281 break; 1282 } 1283 1284 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1285 memcmp_node_keys(parent, slot, path, level)) { 1286 if (level <= lowest_level) { 1287 ret = 0; 1288 break; 1289 } 1290 1291 eb = btrfs_read_node_slot(parent, slot); 1292 if (IS_ERR(eb)) { 1293 ret = PTR_ERR(eb); 1294 break; 1295 } 1296 btrfs_tree_lock(eb); 1297 if (cow) { 1298 ret = btrfs_cow_block(trans, dest, eb, parent, 1299 slot, &eb, 1300 BTRFS_NESTING_COW); 1301 if (ret) { 1302 btrfs_tree_unlock(eb); 1303 free_extent_buffer(eb); 1304 break; 1305 } 1306 } 1307 1308 btrfs_tree_unlock(parent); 1309 free_extent_buffer(parent); 1310 1311 parent = eb; 1312 continue; 1313 } 1314 1315 if (!cow) { 1316 btrfs_tree_unlock(parent); 1317 free_extent_buffer(parent); 1318 cow = 1; 1319 goto again; 1320 } 1321 1322 btrfs_node_key_to_cpu(path->nodes[level], &key, 1323 path->slots[level]); 1324 btrfs_release_path(path); 1325 1326 path->lowest_level = level; 1327 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1328 path->lowest_level = 0; 1329 if (ret) { 1330 if (ret > 0) 1331 ret = -ENOENT; 1332 break; 1333 } 1334 1335 /* 1336 * Info qgroup to trace both subtrees. 1337 * 1338 * We must trace both trees. 1339 * 1) Tree reloc subtree 1340 * If not traced, we will leak data numbers 1341 * 2) Fs subtree 1342 * If not traced, we will double count old data 1343 * 1344 * We don't scan the subtree right now, but only record 1345 * the swapped tree blocks. 1346 * The real subtree rescan is delayed until we have new 1347 * CoW on the subtree root node before transaction commit. 1348 */ 1349 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1350 rc->block_group, parent, slot, 1351 path->nodes[level], path->slots[level], 1352 last_snapshot); 1353 if (ret < 0) 1354 break; 1355 /* 1356 * swap blocks in fs tree and reloc tree. 1357 */ 1358 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1359 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1360 btrfs_mark_buffer_dirty(parent); 1361 1362 btrfs_set_node_blockptr(path->nodes[level], 1363 path->slots[level], old_bytenr); 1364 btrfs_set_node_ptr_generation(path->nodes[level], 1365 path->slots[level], old_ptr_gen); 1366 btrfs_mark_buffer_dirty(path->nodes[level]); 1367 1368 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1369 blocksize, path->nodes[level]->start); 1370 ref.skip_qgroup = true; 1371 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1372 ret = btrfs_inc_extent_ref(trans, &ref); 1373 if (ret) { 1374 btrfs_abort_transaction(trans, ret); 1375 break; 1376 } 1377 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1378 blocksize, 0); 1379 ref.skip_qgroup = true; 1380 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1381 ret = btrfs_inc_extent_ref(trans, &ref); 1382 if (ret) { 1383 btrfs_abort_transaction(trans, ret); 1384 break; 1385 } 1386 1387 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1388 blocksize, path->nodes[level]->start); 1389 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1390 ref.skip_qgroup = true; 1391 ret = btrfs_free_extent(trans, &ref); 1392 if (ret) { 1393 btrfs_abort_transaction(trans, ret); 1394 break; 1395 } 1396 1397 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1398 blocksize, 0); 1399 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1400 ref.skip_qgroup = true; 1401 ret = btrfs_free_extent(trans, &ref); 1402 if (ret) { 1403 btrfs_abort_transaction(trans, ret); 1404 break; 1405 } 1406 1407 btrfs_unlock_up_safe(path, 0); 1408 1409 ret = level; 1410 break; 1411 } 1412 btrfs_tree_unlock(parent); 1413 free_extent_buffer(parent); 1414 return ret; 1415 } 1416 1417 /* 1418 * helper to find next relocated block in reloc tree 1419 */ 1420 static noinline_for_stack 1421 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1422 int *level) 1423 { 1424 struct extent_buffer *eb; 1425 int i; 1426 u64 last_snapshot; 1427 u32 nritems; 1428 1429 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1430 1431 for (i = 0; i < *level; i++) { 1432 free_extent_buffer(path->nodes[i]); 1433 path->nodes[i] = NULL; 1434 } 1435 1436 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1437 eb = path->nodes[i]; 1438 nritems = btrfs_header_nritems(eb); 1439 while (path->slots[i] + 1 < nritems) { 1440 path->slots[i]++; 1441 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1442 last_snapshot) 1443 continue; 1444 1445 *level = i; 1446 return 0; 1447 } 1448 free_extent_buffer(path->nodes[i]); 1449 path->nodes[i] = NULL; 1450 } 1451 return 1; 1452 } 1453 1454 /* 1455 * walk down reloc tree to find relocated block of lowest level 1456 */ 1457 static noinline_for_stack 1458 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1459 int *level) 1460 { 1461 struct extent_buffer *eb = NULL; 1462 int i; 1463 u64 ptr_gen = 0; 1464 u64 last_snapshot; 1465 u32 nritems; 1466 1467 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1468 1469 for (i = *level; i > 0; i--) { 1470 eb = path->nodes[i]; 1471 nritems = btrfs_header_nritems(eb); 1472 while (path->slots[i] < nritems) { 1473 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1474 if (ptr_gen > last_snapshot) 1475 break; 1476 path->slots[i]++; 1477 } 1478 if (path->slots[i] >= nritems) { 1479 if (i == *level) 1480 break; 1481 *level = i + 1; 1482 return 0; 1483 } 1484 if (i == 1) { 1485 *level = i; 1486 return 0; 1487 } 1488 1489 eb = btrfs_read_node_slot(eb, path->slots[i]); 1490 if (IS_ERR(eb)) 1491 return PTR_ERR(eb); 1492 BUG_ON(btrfs_header_level(eb) != i - 1); 1493 path->nodes[i - 1] = eb; 1494 path->slots[i - 1] = 0; 1495 } 1496 return 1; 1497 } 1498 1499 /* 1500 * invalidate extent cache for file extents whose key in range of 1501 * [min_key, max_key) 1502 */ 1503 static int invalidate_extent_cache(struct btrfs_root *root, 1504 struct btrfs_key *min_key, 1505 struct btrfs_key *max_key) 1506 { 1507 struct btrfs_fs_info *fs_info = root->fs_info; 1508 struct inode *inode = NULL; 1509 u64 objectid; 1510 u64 start, end; 1511 u64 ino; 1512 1513 objectid = min_key->objectid; 1514 while (1) { 1515 cond_resched(); 1516 iput(inode); 1517 1518 if (objectid > max_key->objectid) 1519 break; 1520 1521 inode = find_next_inode(root, objectid); 1522 if (!inode) 1523 break; 1524 ino = btrfs_ino(BTRFS_I(inode)); 1525 1526 if (ino > max_key->objectid) { 1527 iput(inode); 1528 break; 1529 } 1530 1531 objectid = ino + 1; 1532 if (!S_ISREG(inode->i_mode)) 1533 continue; 1534 1535 if (unlikely(min_key->objectid == ino)) { 1536 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1537 continue; 1538 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1539 start = 0; 1540 else { 1541 start = min_key->offset; 1542 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1543 } 1544 } else { 1545 start = 0; 1546 } 1547 1548 if (unlikely(max_key->objectid == ino)) { 1549 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1550 continue; 1551 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1552 end = (u64)-1; 1553 } else { 1554 if (max_key->offset == 0) 1555 continue; 1556 end = max_key->offset; 1557 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1558 end--; 1559 } 1560 } else { 1561 end = (u64)-1; 1562 } 1563 1564 /* the lock_extent waits for readpage to complete */ 1565 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 1566 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 1567 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1568 } 1569 return 0; 1570 } 1571 1572 static int find_next_key(struct btrfs_path *path, int level, 1573 struct btrfs_key *key) 1574 1575 { 1576 while (level < BTRFS_MAX_LEVEL) { 1577 if (!path->nodes[level]) 1578 break; 1579 if (path->slots[level] + 1 < 1580 btrfs_header_nritems(path->nodes[level])) { 1581 btrfs_node_key_to_cpu(path->nodes[level], key, 1582 path->slots[level] + 1); 1583 return 0; 1584 } 1585 level++; 1586 } 1587 return 1; 1588 } 1589 1590 /* 1591 * Insert current subvolume into reloc_control::dirty_subvol_roots 1592 */ 1593 static int insert_dirty_subvol(struct btrfs_trans_handle *trans, 1594 struct reloc_control *rc, 1595 struct btrfs_root *root) 1596 { 1597 struct btrfs_root *reloc_root = root->reloc_root; 1598 struct btrfs_root_item *reloc_root_item; 1599 int ret; 1600 1601 /* @root must be a subvolume tree root with a valid reloc tree */ 1602 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1603 ASSERT(reloc_root); 1604 1605 reloc_root_item = &reloc_root->root_item; 1606 memset(&reloc_root_item->drop_progress, 0, 1607 sizeof(reloc_root_item->drop_progress)); 1608 btrfs_set_root_drop_level(reloc_root_item, 0); 1609 btrfs_set_root_refs(reloc_root_item, 0); 1610 ret = btrfs_update_reloc_root(trans, root); 1611 if (ret) 1612 return ret; 1613 1614 if (list_empty(&root->reloc_dirty_list)) { 1615 btrfs_grab_root(root); 1616 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1617 } 1618 1619 return 0; 1620 } 1621 1622 static int clean_dirty_subvols(struct reloc_control *rc) 1623 { 1624 struct btrfs_root *root; 1625 struct btrfs_root *next; 1626 int ret = 0; 1627 int ret2; 1628 1629 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1630 reloc_dirty_list) { 1631 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1632 /* Merged subvolume, cleanup its reloc root */ 1633 struct btrfs_root *reloc_root = root->reloc_root; 1634 1635 list_del_init(&root->reloc_dirty_list); 1636 root->reloc_root = NULL; 1637 /* 1638 * Need barrier to ensure clear_bit() only happens after 1639 * root->reloc_root = NULL. Pairs with have_reloc_root. 1640 */ 1641 smp_wmb(); 1642 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1643 if (reloc_root) { 1644 /* 1645 * btrfs_drop_snapshot drops our ref we hold for 1646 * ->reloc_root. If it fails however we must 1647 * drop the ref ourselves. 1648 */ 1649 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1650 if (ret2 < 0) { 1651 btrfs_put_root(reloc_root); 1652 if (!ret) 1653 ret = ret2; 1654 } 1655 } 1656 btrfs_put_root(root); 1657 } else { 1658 /* Orphan reloc tree, just clean it up */ 1659 ret2 = btrfs_drop_snapshot(root, 0, 1); 1660 if (ret2 < 0) { 1661 btrfs_put_root(root); 1662 if (!ret) 1663 ret = ret2; 1664 } 1665 } 1666 } 1667 return ret; 1668 } 1669 1670 /* 1671 * merge the relocated tree blocks in reloc tree with corresponding 1672 * fs tree. 1673 */ 1674 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1675 struct btrfs_root *root) 1676 { 1677 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1678 struct btrfs_key key; 1679 struct btrfs_key next_key; 1680 struct btrfs_trans_handle *trans = NULL; 1681 struct btrfs_root *reloc_root; 1682 struct btrfs_root_item *root_item; 1683 struct btrfs_path *path; 1684 struct extent_buffer *leaf; 1685 int reserve_level; 1686 int level; 1687 int max_level; 1688 int replaced = 0; 1689 int ret = 0; 1690 u32 min_reserved; 1691 1692 path = btrfs_alloc_path(); 1693 if (!path) 1694 return -ENOMEM; 1695 path->reada = READA_FORWARD; 1696 1697 reloc_root = root->reloc_root; 1698 root_item = &reloc_root->root_item; 1699 1700 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1701 level = btrfs_root_level(root_item); 1702 atomic_inc(&reloc_root->node->refs); 1703 path->nodes[level] = reloc_root->node; 1704 path->slots[level] = 0; 1705 } else { 1706 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1707 1708 level = btrfs_root_drop_level(root_item); 1709 BUG_ON(level == 0); 1710 path->lowest_level = level; 1711 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1712 path->lowest_level = 0; 1713 if (ret < 0) { 1714 btrfs_free_path(path); 1715 return ret; 1716 } 1717 1718 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1719 path->slots[level]); 1720 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1721 1722 btrfs_unlock_up_safe(path, 0); 1723 } 1724 1725 /* 1726 * In merge_reloc_root(), we modify the upper level pointer to swap the 1727 * tree blocks between reloc tree and subvolume tree. Thus for tree 1728 * block COW, we COW at most from level 1 to root level for each tree. 1729 * 1730 * Thus the needed metadata size is at most root_level * nodesize, 1731 * and * 2 since we have two trees to COW. 1732 */ 1733 reserve_level = max_t(int, 1, btrfs_root_level(root_item)); 1734 min_reserved = fs_info->nodesize * reserve_level * 2; 1735 memset(&next_key, 0, sizeof(next_key)); 1736 1737 while (1) { 1738 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 1739 BTRFS_RESERVE_FLUSH_LIMIT); 1740 if (ret) 1741 goto out; 1742 trans = btrfs_start_transaction(root, 0); 1743 if (IS_ERR(trans)) { 1744 ret = PTR_ERR(trans); 1745 trans = NULL; 1746 goto out; 1747 } 1748 1749 /* 1750 * At this point we no longer have a reloc_control, so we can't 1751 * depend on btrfs_init_reloc_root to update our last_trans. 1752 * 1753 * But that's ok, we started the trans handle on our 1754 * corresponding fs_root, which means it's been added to the 1755 * dirty list. At commit time we'll still call 1756 * btrfs_update_reloc_root() and update our root item 1757 * appropriately. 1758 */ 1759 reloc_root->last_trans = trans->transid; 1760 trans->block_rsv = rc->block_rsv; 1761 1762 replaced = 0; 1763 max_level = level; 1764 1765 ret = walk_down_reloc_tree(reloc_root, path, &level); 1766 if (ret < 0) 1767 goto out; 1768 if (ret > 0) 1769 break; 1770 1771 if (!find_next_key(path, level, &key) && 1772 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1773 ret = 0; 1774 } else { 1775 ret = replace_path(trans, rc, root, reloc_root, path, 1776 &next_key, level, max_level); 1777 } 1778 if (ret < 0) 1779 goto out; 1780 if (ret > 0) { 1781 level = ret; 1782 btrfs_node_key_to_cpu(path->nodes[level], &key, 1783 path->slots[level]); 1784 replaced = 1; 1785 } 1786 1787 ret = walk_up_reloc_tree(reloc_root, path, &level); 1788 if (ret > 0) 1789 break; 1790 1791 BUG_ON(level == 0); 1792 /* 1793 * save the merging progress in the drop_progress. 1794 * this is OK since root refs == 1 in this case. 1795 */ 1796 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1797 path->slots[level]); 1798 btrfs_set_root_drop_level(root_item, level); 1799 1800 btrfs_end_transaction_throttle(trans); 1801 trans = NULL; 1802 1803 btrfs_btree_balance_dirty(fs_info); 1804 1805 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1806 invalidate_extent_cache(root, &key, &next_key); 1807 } 1808 1809 /* 1810 * handle the case only one block in the fs tree need to be 1811 * relocated and the block is tree root. 1812 */ 1813 leaf = btrfs_lock_root_node(root); 1814 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, 1815 BTRFS_NESTING_COW); 1816 btrfs_tree_unlock(leaf); 1817 free_extent_buffer(leaf); 1818 out: 1819 btrfs_free_path(path); 1820 1821 if (ret == 0) { 1822 ret = insert_dirty_subvol(trans, rc, root); 1823 if (ret) 1824 btrfs_abort_transaction(trans, ret); 1825 } 1826 1827 if (trans) 1828 btrfs_end_transaction_throttle(trans); 1829 1830 btrfs_btree_balance_dirty(fs_info); 1831 1832 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1833 invalidate_extent_cache(root, &key, &next_key); 1834 1835 return ret; 1836 } 1837 1838 static noinline_for_stack 1839 int prepare_to_merge(struct reloc_control *rc, int err) 1840 { 1841 struct btrfs_root *root = rc->extent_root; 1842 struct btrfs_fs_info *fs_info = root->fs_info; 1843 struct btrfs_root *reloc_root; 1844 struct btrfs_trans_handle *trans; 1845 LIST_HEAD(reloc_roots); 1846 u64 num_bytes = 0; 1847 int ret; 1848 1849 mutex_lock(&fs_info->reloc_mutex); 1850 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1851 rc->merging_rsv_size += rc->nodes_relocated * 2; 1852 mutex_unlock(&fs_info->reloc_mutex); 1853 1854 again: 1855 if (!err) { 1856 num_bytes = rc->merging_rsv_size; 1857 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 1858 BTRFS_RESERVE_FLUSH_ALL); 1859 if (ret) 1860 err = ret; 1861 } 1862 1863 trans = btrfs_join_transaction(rc->extent_root); 1864 if (IS_ERR(trans)) { 1865 if (!err) 1866 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1867 num_bytes, NULL); 1868 return PTR_ERR(trans); 1869 } 1870 1871 if (!err) { 1872 if (num_bytes != rc->merging_rsv_size) { 1873 btrfs_end_transaction(trans); 1874 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1875 num_bytes, NULL); 1876 goto again; 1877 } 1878 } 1879 1880 rc->merge_reloc_tree = 1; 1881 1882 while (!list_empty(&rc->reloc_roots)) { 1883 reloc_root = list_entry(rc->reloc_roots.next, 1884 struct btrfs_root, root_list); 1885 list_del_init(&reloc_root->root_list); 1886 1887 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1888 false); 1889 if (IS_ERR(root)) { 1890 /* 1891 * Even if we have an error we need this reloc root 1892 * back on our list so we can clean up properly. 1893 */ 1894 list_add(&reloc_root->root_list, &reloc_roots); 1895 btrfs_abort_transaction(trans, (int)PTR_ERR(root)); 1896 if (!err) 1897 err = PTR_ERR(root); 1898 break; 1899 } 1900 ASSERT(root->reloc_root == reloc_root); 1901 1902 /* 1903 * set reference count to 1, so btrfs_recover_relocation 1904 * knows it should resumes merging 1905 */ 1906 if (!err) 1907 btrfs_set_root_refs(&reloc_root->root_item, 1); 1908 ret = btrfs_update_reloc_root(trans, root); 1909 1910 /* 1911 * Even if we have an error we need this reloc root back on our 1912 * list so we can clean up properly. 1913 */ 1914 list_add(&reloc_root->root_list, &reloc_roots); 1915 btrfs_put_root(root); 1916 1917 if (ret) { 1918 btrfs_abort_transaction(trans, ret); 1919 if (!err) 1920 err = ret; 1921 break; 1922 } 1923 } 1924 1925 list_splice(&reloc_roots, &rc->reloc_roots); 1926 1927 if (!err) 1928 err = btrfs_commit_transaction(trans); 1929 else 1930 btrfs_end_transaction(trans); 1931 return err; 1932 } 1933 1934 static noinline_for_stack 1935 void free_reloc_roots(struct list_head *list) 1936 { 1937 struct btrfs_root *reloc_root, *tmp; 1938 1939 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1940 __del_reloc_root(reloc_root); 1941 } 1942 1943 static noinline_for_stack 1944 void merge_reloc_roots(struct reloc_control *rc) 1945 { 1946 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1947 struct btrfs_root *root; 1948 struct btrfs_root *reloc_root; 1949 LIST_HEAD(reloc_roots); 1950 int found = 0; 1951 int ret = 0; 1952 again: 1953 root = rc->extent_root; 1954 1955 /* 1956 * this serializes us with btrfs_record_root_in_transaction, 1957 * we have to make sure nobody is in the middle of 1958 * adding their roots to the list while we are 1959 * doing this splice 1960 */ 1961 mutex_lock(&fs_info->reloc_mutex); 1962 list_splice_init(&rc->reloc_roots, &reloc_roots); 1963 mutex_unlock(&fs_info->reloc_mutex); 1964 1965 while (!list_empty(&reloc_roots)) { 1966 found = 1; 1967 reloc_root = list_entry(reloc_roots.next, 1968 struct btrfs_root, root_list); 1969 1970 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1971 false); 1972 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 1973 if (IS_ERR(root)) { 1974 /* 1975 * For recovery we read the fs roots on mount, 1976 * and if we didn't find the root then we marked 1977 * the reloc root as a garbage root. For normal 1978 * relocation obviously the root should exist in 1979 * memory. However there's no reason we can't 1980 * handle the error properly here just in case. 1981 */ 1982 ASSERT(0); 1983 ret = PTR_ERR(root); 1984 goto out; 1985 } 1986 if (root->reloc_root != reloc_root) { 1987 /* 1988 * This is actually impossible without something 1989 * going really wrong (like weird race condition 1990 * or cosmic rays). 1991 */ 1992 ASSERT(0); 1993 ret = -EINVAL; 1994 goto out; 1995 } 1996 ret = merge_reloc_root(rc, root); 1997 btrfs_put_root(root); 1998 if (ret) { 1999 if (list_empty(&reloc_root->root_list)) 2000 list_add_tail(&reloc_root->root_list, 2001 &reloc_roots); 2002 goto out; 2003 } 2004 } else { 2005 if (!IS_ERR(root)) { 2006 if (root->reloc_root == reloc_root) { 2007 root->reloc_root = NULL; 2008 btrfs_put_root(reloc_root); 2009 } 2010 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 2011 &root->state); 2012 btrfs_put_root(root); 2013 } 2014 2015 list_del_init(&reloc_root->root_list); 2016 /* Don't forget to queue this reloc root for cleanup */ 2017 list_add_tail(&reloc_root->reloc_dirty_list, 2018 &rc->dirty_subvol_roots); 2019 } 2020 } 2021 2022 if (found) { 2023 found = 0; 2024 goto again; 2025 } 2026 out: 2027 if (ret) { 2028 btrfs_handle_fs_error(fs_info, ret, NULL); 2029 free_reloc_roots(&reloc_roots); 2030 2031 /* new reloc root may be added */ 2032 mutex_lock(&fs_info->reloc_mutex); 2033 list_splice_init(&rc->reloc_roots, &reloc_roots); 2034 mutex_unlock(&fs_info->reloc_mutex); 2035 free_reloc_roots(&reloc_roots); 2036 } 2037 2038 /* 2039 * We used to have 2040 * 2041 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2042 * 2043 * here, but it's wrong. If we fail to start the transaction in 2044 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 2045 * have actually been removed from the reloc_root_tree rb tree. This is 2046 * fine because we're bailing here, and we hold a reference on the root 2047 * for the list that holds it, so these roots will be cleaned up when we 2048 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 2049 * will be cleaned up on unmount. 2050 * 2051 * The remaining nodes will be cleaned up by free_reloc_control. 2052 */ 2053 } 2054 2055 static void free_block_list(struct rb_root *blocks) 2056 { 2057 struct tree_block *block; 2058 struct rb_node *rb_node; 2059 while ((rb_node = rb_first(blocks))) { 2060 block = rb_entry(rb_node, struct tree_block, rb_node); 2061 rb_erase(rb_node, blocks); 2062 kfree(block); 2063 } 2064 } 2065 2066 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2067 struct btrfs_root *reloc_root) 2068 { 2069 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2070 struct btrfs_root *root; 2071 int ret; 2072 2073 if (reloc_root->last_trans == trans->transid) 2074 return 0; 2075 2076 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 2077 2078 /* 2079 * This should succeed, since we can't have a reloc root without having 2080 * already looked up the actual root and created the reloc root for this 2081 * root. 2082 * 2083 * However if there's some sort of corruption where we have a ref to a 2084 * reloc root without a corresponding root this could return ENOENT. 2085 */ 2086 if (IS_ERR(root)) { 2087 ASSERT(0); 2088 return PTR_ERR(root); 2089 } 2090 if (root->reloc_root != reloc_root) { 2091 ASSERT(0); 2092 btrfs_err(fs_info, 2093 "root %llu has two reloc roots associated with it", 2094 reloc_root->root_key.offset); 2095 btrfs_put_root(root); 2096 return -EUCLEAN; 2097 } 2098 ret = btrfs_record_root_in_trans(trans, root); 2099 btrfs_put_root(root); 2100 2101 return ret; 2102 } 2103 2104 static noinline_for_stack 2105 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2106 struct reloc_control *rc, 2107 struct btrfs_backref_node *node, 2108 struct btrfs_backref_edge *edges[]) 2109 { 2110 struct btrfs_backref_node *next; 2111 struct btrfs_root *root; 2112 int index = 0; 2113 int ret; 2114 2115 next = node; 2116 while (1) { 2117 cond_resched(); 2118 next = walk_up_backref(next, edges, &index); 2119 root = next->root; 2120 2121 /* 2122 * If there is no root, then our references for this block are 2123 * incomplete, as we should be able to walk all the way up to a 2124 * block that is owned by a root. 2125 * 2126 * This path is only for SHAREABLE roots, so if we come upon a 2127 * non-SHAREABLE root then we have backrefs that resolve 2128 * improperly. 2129 * 2130 * Both of these cases indicate file system corruption, or a bug 2131 * in the backref walking code. 2132 */ 2133 if (!root) { 2134 ASSERT(0); 2135 btrfs_err(trans->fs_info, 2136 "bytenr %llu doesn't have a backref path ending in a root", 2137 node->bytenr); 2138 return ERR_PTR(-EUCLEAN); 2139 } 2140 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2141 ASSERT(0); 2142 btrfs_err(trans->fs_info, 2143 "bytenr %llu has multiple refs with one ending in a non-shareable root", 2144 node->bytenr); 2145 return ERR_PTR(-EUCLEAN); 2146 } 2147 2148 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2149 ret = record_reloc_root_in_trans(trans, root); 2150 if (ret) 2151 return ERR_PTR(ret); 2152 break; 2153 } 2154 2155 ret = btrfs_record_root_in_trans(trans, root); 2156 if (ret) 2157 return ERR_PTR(ret); 2158 root = root->reloc_root; 2159 2160 /* 2161 * We could have raced with another thread which failed, so 2162 * root->reloc_root may not be set, return ENOENT in this case. 2163 */ 2164 if (!root) 2165 return ERR_PTR(-ENOENT); 2166 2167 if (next->new_bytenr != root->node->start) { 2168 /* 2169 * We just created the reloc root, so we shouldn't have 2170 * ->new_bytenr set and this shouldn't be in the changed 2171 * list. If it is then we have multiple roots pointing 2172 * at the same bytenr which indicates corruption, or 2173 * we've made a mistake in the backref walking code. 2174 */ 2175 ASSERT(next->new_bytenr == 0); 2176 ASSERT(list_empty(&next->list)); 2177 if (next->new_bytenr || !list_empty(&next->list)) { 2178 btrfs_err(trans->fs_info, 2179 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu", 2180 node->bytenr, next->bytenr); 2181 return ERR_PTR(-EUCLEAN); 2182 } 2183 2184 next->new_bytenr = root->node->start; 2185 btrfs_put_root(next->root); 2186 next->root = btrfs_grab_root(root); 2187 ASSERT(next->root); 2188 list_add_tail(&next->list, 2189 &rc->backref_cache.changed); 2190 mark_block_processed(rc, next); 2191 break; 2192 } 2193 2194 WARN_ON(1); 2195 root = NULL; 2196 next = walk_down_backref(edges, &index); 2197 if (!next || next->level <= node->level) 2198 break; 2199 } 2200 if (!root) { 2201 /* 2202 * This can happen if there's fs corruption or if there's a bug 2203 * in the backref lookup code. 2204 */ 2205 ASSERT(0); 2206 return ERR_PTR(-ENOENT); 2207 } 2208 2209 next = node; 2210 /* setup backref node path for btrfs_reloc_cow_block */ 2211 while (1) { 2212 rc->backref_cache.path[next->level] = next; 2213 if (--index < 0) 2214 break; 2215 next = edges[index]->node[UPPER]; 2216 } 2217 return root; 2218 } 2219 2220 /* 2221 * Select a tree root for relocation. 2222 * 2223 * Return NULL if the block is not shareable. We should use do_relocation() in 2224 * this case. 2225 * 2226 * Return a tree root pointer if the block is shareable. 2227 * Return -ENOENT if the block is root of reloc tree. 2228 */ 2229 static noinline_for_stack 2230 struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2231 { 2232 struct btrfs_backref_node *next; 2233 struct btrfs_root *root; 2234 struct btrfs_root *fs_root = NULL; 2235 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2236 int index = 0; 2237 2238 next = node; 2239 while (1) { 2240 cond_resched(); 2241 next = walk_up_backref(next, edges, &index); 2242 root = next->root; 2243 2244 /* 2245 * This can occur if we have incomplete extent refs leading all 2246 * the way up a particular path, in this case return -EUCLEAN. 2247 */ 2248 if (!root) 2249 return ERR_PTR(-EUCLEAN); 2250 2251 /* No other choice for non-shareable tree */ 2252 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2253 return root; 2254 2255 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2256 fs_root = root; 2257 2258 if (next != node) 2259 return NULL; 2260 2261 next = walk_down_backref(edges, &index); 2262 if (!next || next->level <= node->level) 2263 break; 2264 } 2265 2266 if (!fs_root) 2267 return ERR_PTR(-ENOENT); 2268 return fs_root; 2269 } 2270 2271 static noinline_for_stack 2272 u64 calcu_metadata_size(struct reloc_control *rc, 2273 struct btrfs_backref_node *node, int reserve) 2274 { 2275 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2276 struct btrfs_backref_node *next = node; 2277 struct btrfs_backref_edge *edge; 2278 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2279 u64 num_bytes = 0; 2280 int index = 0; 2281 2282 BUG_ON(reserve && node->processed); 2283 2284 while (next) { 2285 cond_resched(); 2286 while (1) { 2287 if (next->processed && (reserve || next != node)) 2288 break; 2289 2290 num_bytes += fs_info->nodesize; 2291 2292 if (list_empty(&next->upper)) 2293 break; 2294 2295 edge = list_entry(next->upper.next, 2296 struct btrfs_backref_edge, list[LOWER]); 2297 edges[index++] = edge; 2298 next = edge->node[UPPER]; 2299 } 2300 next = walk_down_backref(edges, &index); 2301 } 2302 return num_bytes; 2303 } 2304 2305 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2306 struct reloc_control *rc, 2307 struct btrfs_backref_node *node) 2308 { 2309 struct btrfs_root *root = rc->extent_root; 2310 struct btrfs_fs_info *fs_info = root->fs_info; 2311 u64 num_bytes; 2312 int ret; 2313 u64 tmp; 2314 2315 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2316 2317 trans->block_rsv = rc->block_rsv; 2318 rc->reserved_bytes += num_bytes; 2319 2320 /* 2321 * We are under a transaction here so we can only do limited flushing. 2322 * If we get an enospc just kick back -EAGAIN so we know to drop the 2323 * transaction and try to refill when we can flush all the things. 2324 */ 2325 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2326 BTRFS_RESERVE_FLUSH_LIMIT); 2327 if (ret) { 2328 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2329 while (tmp <= rc->reserved_bytes) 2330 tmp <<= 1; 2331 /* 2332 * only one thread can access block_rsv at this point, 2333 * so we don't need hold lock to protect block_rsv. 2334 * we expand more reservation size here to allow enough 2335 * space for relocation and we will return earlier in 2336 * enospc case. 2337 */ 2338 rc->block_rsv->size = tmp + fs_info->nodesize * 2339 RELOCATION_RESERVED_NODES; 2340 return -EAGAIN; 2341 } 2342 2343 return 0; 2344 } 2345 2346 /* 2347 * relocate a block tree, and then update pointers in upper level 2348 * blocks that reference the block to point to the new location. 2349 * 2350 * if called by link_to_upper, the block has already been relocated. 2351 * in that case this function just updates pointers. 2352 */ 2353 static int do_relocation(struct btrfs_trans_handle *trans, 2354 struct reloc_control *rc, 2355 struct btrfs_backref_node *node, 2356 struct btrfs_key *key, 2357 struct btrfs_path *path, int lowest) 2358 { 2359 struct btrfs_backref_node *upper; 2360 struct btrfs_backref_edge *edge; 2361 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2362 struct btrfs_root *root; 2363 struct extent_buffer *eb; 2364 u32 blocksize; 2365 u64 bytenr; 2366 int slot; 2367 int ret = 0; 2368 2369 /* 2370 * If we are lowest then this is the first time we're processing this 2371 * block, and thus shouldn't have an eb associated with it yet. 2372 */ 2373 ASSERT(!lowest || !node->eb); 2374 2375 path->lowest_level = node->level + 1; 2376 rc->backref_cache.path[node->level] = node; 2377 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2378 struct btrfs_ref ref = { 0 }; 2379 2380 cond_resched(); 2381 2382 upper = edge->node[UPPER]; 2383 root = select_reloc_root(trans, rc, upper, edges); 2384 if (IS_ERR(root)) { 2385 ret = PTR_ERR(root); 2386 goto next; 2387 } 2388 2389 if (upper->eb && !upper->locked) { 2390 if (!lowest) { 2391 ret = btrfs_bin_search(upper->eb, key, &slot); 2392 if (ret < 0) 2393 goto next; 2394 BUG_ON(ret); 2395 bytenr = btrfs_node_blockptr(upper->eb, slot); 2396 if (node->eb->start == bytenr) 2397 goto next; 2398 } 2399 btrfs_backref_drop_node_buffer(upper); 2400 } 2401 2402 if (!upper->eb) { 2403 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2404 if (ret) { 2405 if (ret > 0) 2406 ret = -ENOENT; 2407 2408 btrfs_release_path(path); 2409 break; 2410 } 2411 2412 if (!upper->eb) { 2413 upper->eb = path->nodes[upper->level]; 2414 path->nodes[upper->level] = NULL; 2415 } else { 2416 BUG_ON(upper->eb != path->nodes[upper->level]); 2417 } 2418 2419 upper->locked = 1; 2420 path->locks[upper->level] = 0; 2421 2422 slot = path->slots[upper->level]; 2423 btrfs_release_path(path); 2424 } else { 2425 ret = btrfs_bin_search(upper->eb, key, &slot); 2426 if (ret < 0) 2427 goto next; 2428 BUG_ON(ret); 2429 } 2430 2431 bytenr = btrfs_node_blockptr(upper->eb, slot); 2432 if (lowest) { 2433 if (bytenr != node->bytenr) { 2434 btrfs_err(root->fs_info, 2435 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2436 bytenr, node->bytenr, slot, 2437 upper->eb->start); 2438 ret = -EIO; 2439 goto next; 2440 } 2441 } else { 2442 if (node->eb->start == bytenr) 2443 goto next; 2444 } 2445 2446 blocksize = root->fs_info->nodesize; 2447 eb = btrfs_read_node_slot(upper->eb, slot); 2448 if (IS_ERR(eb)) { 2449 ret = PTR_ERR(eb); 2450 goto next; 2451 } 2452 btrfs_tree_lock(eb); 2453 2454 if (!node->eb) { 2455 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2456 slot, &eb, BTRFS_NESTING_COW); 2457 btrfs_tree_unlock(eb); 2458 free_extent_buffer(eb); 2459 if (ret < 0) 2460 goto next; 2461 /* 2462 * We've just COWed this block, it should have updated 2463 * the correct backref node entry. 2464 */ 2465 ASSERT(node->eb == eb); 2466 } else { 2467 btrfs_set_node_blockptr(upper->eb, slot, 2468 node->eb->start); 2469 btrfs_set_node_ptr_generation(upper->eb, slot, 2470 trans->transid); 2471 btrfs_mark_buffer_dirty(upper->eb); 2472 2473 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2474 node->eb->start, blocksize, 2475 upper->eb->start); 2476 ref.real_root = root->root_key.objectid; 2477 btrfs_init_tree_ref(&ref, node->level, 2478 btrfs_header_owner(upper->eb)); 2479 ret = btrfs_inc_extent_ref(trans, &ref); 2480 if (!ret) 2481 ret = btrfs_drop_subtree(trans, root, eb, 2482 upper->eb); 2483 if (ret) 2484 btrfs_abort_transaction(trans, ret); 2485 } 2486 next: 2487 if (!upper->pending) 2488 btrfs_backref_drop_node_buffer(upper); 2489 else 2490 btrfs_backref_unlock_node_buffer(upper); 2491 if (ret) 2492 break; 2493 } 2494 2495 if (!ret && node->pending) { 2496 btrfs_backref_drop_node_buffer(node); 2497 list_move_tail(&node->list, &rc->backref_cache.changed); 2498 node->pending = 0; 2499 } 2500 2501 path->lowest_level = 0; 2502 2503 /* 2504 * We should have allocated all of our space in the block rsv and thus 2505 * shouldn't ENOSPC. 2506 */ 2507 ASSERT(ret != -ENOSPC); 2508 return ret; 2509 } 2510 2511 static int link_to_upper(struct btrfs_trans_handle *trans, 2512 struct reloc_control *rc, 2513 struct btrfs_backref_node *node, 2514 struct btrfs_path *path) 2515 { 2516 struct btrfs_key key; 2517 2518 btrfs_node_key_to_cpu(node->eb, &key, 0); 2519 return do_relocation(trans, rc, node, &key, path, 0); 2520 } 2521 2522 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2523 struct reloc_control *rc, 2524 struct btrfs_path *path, int err) 2525 { 2526 LIST_HEAD(list); 2527 struct btrfs_backref_cache *cache = &rc->backref_cache; 2528 struct btrfs_backref_node *node; 2529 int level; 2530 int ret; 2531 2532 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2533 while (!list_empty(&cache->pending[level])) { 2534 node = list_entry(cache->pending[level].next, 2535 struct btrfs_backref_node, list); 2536 list_move_tail(&node->list, &list); 2537 BUG_ON(!node->pending); 2538 2539 if (!err) { 2540 ret = link_to_upper(trans, rc, node, path); 2541 if (ret < 0) 2542 err = ret; 2543 } 2544 } 2545 list_splice_init(&list, &cache->pending[level]); 2546 } 2547 return err; 2548 } 2549 2550 /* 2551 * mark a block and all blocks directly/indirectly reference the block 2552 * as processed. 2553 */ 2554 static void update_processed_blocks(struct reloc_control *rc, 2555 struct btrfs_backref_node *node) 2556 { 2557 struct btrfs_backref_node *next = node; 2558 struct btrfs_backref_edge *edge; 2559 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2560 int index = 0; 2561 2562 while (next) { 2563 cond_resched(); 2564 while (1) { 2565 if (next->processed) 2566 break; 2567 2568 mark_block_processed(rc, next); 2569 2570 if (list_empty(&next->upper)) 2571 break; 2572 2573 edge = list_entry(next->upper.next, 2574 struct btrfs_backref_edge, list[LOWER]); 2575 edges[index++] = edge; 2576 next = edge->node[UPPER]; 2577 } 2578 next = walk_down_backref(edges, &index); 2579 } 2580 } 2581 2582 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2583 { 2584 u32 blocksize = rc->extent_root->fs_info->nodesize; 2585 2586 if (test_range_bit(&rc->processed_blocks, bytenr, 2587 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2588 return 1; 2589 return 0; 2590 } 2591 2592 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2593 struct tree_block *block) 2594 { 2595 struct extent_buffer *eb; 2596 2597 eb = read_tree_block(fs_info, block->bytenr, block->owner, 2598 block->key.offset, block->level, NULL); 2599 if (IS_ERR(eb)) { 2600 return PTR_ERR(eb); 2601 } else if (!extent_buffer_uptodate(eb)) { 2602 free_extent_buffer(eb); 2603 return -EIO; 2604 } 2605 if (block->level == 0) 2606 btrfs_item_key_to_cpu(eb, &block->key, 0); 2607 else 2608 btrfs_node_key_to_cpu(eb, &block->key, 0); 2609 free_extent_buffer(eb); 2610 block->key_ready = 1; 2611 return 0; 2612 } 2613 2614 /* 2615 * helper function to relocate a tree block 2616 */ 2617 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2618 struct reloc_control *rc, 2619 struct btrfs_backref_node *node, 2620 struct btrfs_key *key, 2621 struct btrfs_path *path) 2622 { 2623 struct btrfs_root *root; 2624 int ret = 0; 2625 2626 if (!node) 2627 return 0; 2628 2629 /* 2630 * If we fail here we want to drop our backref_node because we are going 2631 * to start over and regenerate the tree for it. 2632 */ 2633 ret = reserve_metadata_space(trans, rc, node); 2634 if (ret) 2635 goto out; 2636 2637 BUG_ON(node->processed); 2638 root = select_one_root(node); 2639 if (IS_ERR(root)) { 2640 ret = PTR_ERR(root); 2641 2642 /* See explanation in select_one_root for the -EUCLEAN case. */ 2643 ASSERT(ret == -ENOENT); 2644 if (ret == -ENOENT) { 2645 ret = 0; 2646 update_processed_blocks(rc, node); 2647 } 2648 goto out; 2649 } 2650 2651 if (root) { 2652 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2653 /* 2654 * This block was the root block of a root, and this is 2655 * the first time we're processing the block and thus it 2656 * should not have had the ->new_bytenr modified and 2657 * should have not been included on the changed list. 2658 * 2659 * However in the case of corruption we could have 2660 * multiple refs pointing to the same block improperly, 2661 * and thus we would trip over these checks. ASSERT() 2662 * for the developer case, because it could indicate a 2663 * bug in the backref code, however error out for a 2664 * normal user in the case of corruption. 2665 */ 2666 ASSERT(node->new_bytenr == 0); 2667 ASSERT(list_empty(&node->list)); 2668 if (node->new_bytenr || !list_empty(&node->list)) { 2669 btrfs_err(root->fs_info, 2670 "bytenr %llu has improper references to it", 2671 node->bytenr); 2672 ret = -EUCLEAN; 2673 goto out; 2674 } 2675 ret = btrfs_record_root_in_trans(trans, root); 2676 if (ret) 2677 goto out; 2678 /* 2679 * Another thread could have failed, need to check if we 2680 * have reloc_root actually set. 2681 */ 2682 if (!root->reloc_root) { 2683 ret = -ENOENT; 2684 goto out; 2685 } 2686 root = root->reloc_root; 2687 node->new_bytenr = root->node->start; 2688 btrfs_put_root(node->root); 2689 node->root = btrfs_grab_root(root); 2690 ASSERT(node->root); 2691 list_add_tail(&node->list, &rc->backref_cache.changed); 2692 } else { 2693 path->lowest_level = node->level; 2694 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2695 btrfs_release_path(path); 2696 if (ret > 0) 2697 ret = 0; 2698 } 2699 if (!ret) 2700 update_processed_blocks(rc, node); 2701 } else { 2702 ret = do_relocation(trans, rc, node, key, path, 1); 2703 } 2704 out: 2705 if (ret || node->level == 0 || node->cowonly) 2706 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2707 return ret; 2708 } 2709 2710 /* 2711 * relocate a list of blocks 2712 */ 2713 static noinline_for_stack 2714 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2715 struct reloc_control *rc, struct rb_root *blocks) 2716 { 2717 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2718 struct btrfs_backref_node *node; 2719 struct btrfs_path *path; 2720 struct tree_block *block; 2721 struct tree_block *next; 2722 int ret; 2723 int err = 0; 2724 2725 path = btrfs_alloc_path(); 2726 if (!path) { 2727 err = -ENOMEM; 2728 goto out_free_blocks; 2729 } 2730 2731 /* Kick in readahead for tree blocks with missing keys */ 2732 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2733 if (!block->key_ready) 2734 btrfs_readahead_tree_block(fs_info, block->bytenr, 2735 block->owner, 0, 2736 block->level); 2737 } 2738 2739 /* Get first keys */ 2740 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2741 if (!block->key_ready) { 2742 err = get_tree_block_key(fs_info, block); 2743 if (err) 2744 goto out_free_path; 2745 } 2746 } 2747 2748 /* Do tree relocation */ 2749 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2750 node = build_backref_tree(rc, &block->key, 2751 block->level, block->bytenr); 2752 if (IS_ERR(node)) { 2753 err = PTR_ERR(node); 2754 goto out; 2755 } 2756 2757 ret = relocate_tree_block(trans, rc, node, &block->key, 2758 path); 2759 if (ret < 0) { 2760 err = ret; 2761 break; 2762 } 2763 } 2764 out: 2765 err = finish_pending_nodes(trans, rc, path, err); 2766 2767 out_free_path: 2768 btrfs_free_path(path); 2769 out_free_blocks: 2770 free_block_list(blocks); 2771 return err; 2772 } 2773 2774 static noinline_for_stack int prealloc_file_extent_cluster( 2775 struct btrfs_inode *inode, 2776 struct file_extent_cluster *cluster) 2777 { 2778 u64 alloc_hint = 0; 2779 u64 start; 2780 u64 end; 2781 u64 offset = inode->index_cnt; 2782 u64 num_bytes; 2783 int nr; 2784 int ret = 0; 2785 u64 i_size = i_size_read(&inode->vfs_inode); 2786 u64 prealloc_start = cluster->start - offset; 2787 u64 prealloc_end = cluster->end - offset; 2788 u64 cur_offset = prealloc_start; 2789 2790 /* 2791 * For subpage case, previous i_size may not be aligned to PAGE_SIZE. 2792 * This means the range [i_size, PAGE_END + 1) is filled with zeros by 2793 * btrfs_do_readpage() call of previously relocated file cluster. 2794 * 2795 * If the current cluster starts in the above range, btrfs_do_readpage() 2796 * will skip the read, and relocate_one_page() will later writeback 2797 * the padding zeros as new data, causing data corruption. 2798 * 2799 * Here we have to manually invalidate the range (i_size, PAGE_END + 1). 2800 */ 2801 if (!IS_ALIGNED(i_size, PAGE_SIZE)) { 2802 struct address_space *mapping = inode->vfs_inode.i_mapping; 2803 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2804 const u32 sectorsize = fs_info->sectorsize; 2805 struct page *page; 2806 2807 ASSERT(sectorsize < PAGE_SIZE); 2808 ASSERT(IS_ALIGNED(i_size, sectorsize)); 2809 2810 /* 2811 * Subpage can't handle page with DIRTY but without UPTODATE 2812 * bit as it can lead to the following deadlock: 2813 * 2814 * btrfs_readpage() 2815 * | Page already *locked* 2816 * |- btrfs_lock_and_flush_ordered_range() 2817 * |- btrfs_start_ordered_extent() 2818 * |- extent_write_cache_pages() 2819 * |- lock_page() 2820 * We try to lock the page we already hold. 2821 * 2822 * Here we just writeback the whole data reloc inode, so that 2823 * we will be ensured to have no dirty range in the page, and 2824 * are safe to clear the uptodate bits. 2825 * 2826 * This shouldn't cause too much overhead, as we need to write 2827 * the data back anyway. 2828 */ 2829 ret = filemap_write_and_wait(mapping); 2830 if (ret < 0) 2831 return ret; 2832 2833 clear_extent_bits(&inode->io_tree, i_size, 2834 round_up(i_size, PAGE_SIZE) - 1, 2835 EXTENT_UPTODATE); 2836 page = find_lock_page(mapping, i_size >> PAGE_SHIFT); 2837 /* 2838 * If page is freed we don't need to do anything then, as we 2839 * will re-read the whole page anyway. 2840 */ 2841 if (page) { 2842 btrfs_subpage_clear_uptodate(fs_info, page, i_size, 2843 round_up(i_size, PAGE_SIZE) - i_size); 2844 unlock_page(page); 2845 put_page(page); 2846 } 2847 } 2848 2849 BUG_ON(cluster->start != cluster->boundary[0]); 2850 ret = btrfs_alloc_data_chunk_ondemand(inode, 2851 prealloc_end + 1 - prealloc_start); 2852 if (ret) 2853 return ret; 2854 2855 /* 2856 * On a zoned filesystem, we cannot preallocate the file region. 2857 * Instead, we dirty and fiemap_write the region. 2858 */ 2859 if (btrfs_is_zoned(inode->root->fs_info)) { 2860 struct btrfs_root *root = inode->root; 2861 struct btrfs_trans_handle *trans; 2862 2863 end = cluster->end - offset + 1; 2864 trans = btrfs_start_transaction(root, 1); 2865 if (IS_ERR(trans)) 2866 return PTR_ERR(trans); 2867 2868 inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 2869 i_size_write(&inode->vfs_inode, end); 2870 ret = btrfs_update_inode(trans, root, inode); 2871 if (ret) { 2872 btrfs_abort_transaction(trans, ret); 2873 btrfs_end_transaction(trans); 2874 return ret; 2875 } 2876 2877 return btrfs_end_transaction(trans); 2878 } 2879 2880 btrfs_inode_lock(&inode->vfs_inode, 0); 2881 for (nr = 0; nr < cluster->nr; nr++) { 2882 start = cluster->boundary[nr] - offset; 2883 if (nr + 1 < cluster->nr) 2884 end = cluster->boundary[nr + 1] - 1 - offset; 2885 else 2886 end = cluster->end - offset; 2887 2888 lock_extent(&inode->io_tree, start, end); 2889 num_bytes = end + 1 - start; 2890 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2891 num_bytes, num_bytes, 2892 end + 1, &alloc_hint); 2893 cur_offset = end + 1; 2894 unlock_extent(&inode->io_tree, start, end); 2895 if (ret) 2896 break; 2897 } 2898 btrfs_inode_unlock(&inode->vfs_inode, 0); 2899 2900 if (cur_offset < prealloc_end) 2901 btrfs_free_reserved_data_space_noquota(inode->root->fs_info, 2902 prealloc_end + 1 - cur_offset); 2903 return ret; 2904 } 2905 2906 static noinline_for_stack 2907 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 2908 u64 block_start) 2909 { 2910 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2911 struct extent_map *em; 2912 int ret = 0; 2913 2914 em = alloc_extent_map(); 2915 if (!em) 2916 return -ENOMEM; 2917 2918 em->start = start; 2919 em->len = end + 1 - start; 2920 em->block_len = em->len; 2921 em->block_start = block_start; 2922 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2923 2924 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2925 while (1) { 2926 write_lock(&em_tree->lock); 2927 ret = add_extent_mapping(em_tree, em, 0); 2928 write_unlock(&em_tree->lock); 2929 if (ret != -EEXIST) { 2930 free_extent_map(em); 2931 break; 2932 } 2933 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 2934 } 2935 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2936 return ret; 2937 } 2938 2939 /* 2940 * Allow error injection to test balance/relocation cancellation 2941 */ 2942 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info) 2943 { 2944 return atomic_read(&fs_info->balance_cancel_req) || 2945 atomic_read(&fs_info->reloc_cancel_req) || 2946 fatal_signal_pending(current); 2947 } 2948 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2949 2950 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster, 2951 int cluster_nr) 2952 { 2953 /* Last extent, use cluster end directly */ 2954 if (cluster_nr >= cluster->nr - 1) 2955 return cluster->end; 2956 2957 /* Use next boundary start*/ 2958 return cluster->boundary[cluster_nr + 1] - 1; 2959 } 2960 2961 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra, 2962 struct file_extent_cluster *cluster, 2963 int *cluster_nr, unsigned long page_index) 2964 { 2965 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2966 u64 offset = BTRFS_I(inode)->index_cnt; 2967 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT; 2968 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2969 struct page *page; 2970 u64 page_start; 2971 u64 page_end; 2972 u64 cur; 2973 int ret; 2974 2975 ASSERT(page_index <= last_index); 2976 page = find_lock_page(inode->i_mapping, page_index); 2977 if (!page) { 2978 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 2979 page_index, last_index + 1 - page_index); 2980 page = find_or_create_page(inode->i_mapping, page_index, mask); 2981 if (!page) 2982 return -ENOMEM; 2983 } 2984 ret = set_page_extent_mapped(page); 2985 if (ret < 0) 2986 goto release_page; 2987 2988 if (PageReadahead(page)) 2989 page_cache_async_readahead(inode->i_mapping, ra, NULL, page, 2990 page_index, last_index + 1 - page_index); 2991 2992 if (!PageUptodate(page)) { 2993 btrfs_readpage(NULL, page); 2994 lock_page(page); 2995 if (!PageUptodate(page)) { 2996 ret = -EIO; 2997 goto release_page; 2998 } 2999 } 3000 3001 page_start = page_offset(page); 3002 page_end = page_start + PAGE_SIZE - 1; 3003 3004 /* 3005 * Start from the cluster, as for subpage case, the cluster can start 3006 * inside the page. 3007 */ 3008 cur = max(page_start, cluster->boundary[*cluster_nr] - offset); 3009 while (cur <= page_end) { 3010 u64 extent_start = cluster->boundary[*cluster_nr] - offset; 3011 u64 extent_end = get_cluster_boundary_end(cluster, 3012 *cluster_nr) - offset; 3013 u64 clamped_start = max(page_start, extent_start); 3014 u64 clamped_end = min(page_end, extent_end); 3015 u32 clamped_len = clamped_end + 1 - clamped_start; 3016 3017 /* Reserve metadata for this range */ 3018 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3019 clamped_len); 3020 if (ret) 3021 goto release_page; 3022 3023 /* Mark the range delalloc and dirty for later writeback */ 3024 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end); 3025 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start, 3026 clamped_end, 0, NULL); 3027 if (ret) { 3028 clear_extent_bits(&BTRFS_I(inode)->io_tree, 3029 clamped_start, clamped_end, 3030 EXTENT_LOCKED | EXTENT_BOUNDARY); 3031 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3032 clamped_len, true); 3033 btrfs_delalloc_release_extents(BTRFS_I(inode), 3034 clamped_len); 3035 goto release_page; 3036 } 3037 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len); 3038 3039 /* 3040 * Set the boundary if it's inside the page. 3041 * Data relocation requires the destination extents to have the 3042 * same size as the source. 3043 * EXTENT_BOUNDARY bit prevents current extent from being merged 3044 * with previous extent. 3045 */ 3046 if (in_range(cluster->boundary[*cluster_nr] - offset, 3047 page_start, PAGE_SIZE)) { 3048 u64 boundary_start = cluster->boundary[*cluster_nr] - 3049 offset; 3050 u64 boundary_end = boundary_start + 3051 fs_info->sectorsize - 1; 3052 3053 set_extent_bits(&BTRFS_I(inode)->io_tree, 3054 boundary_start, boundary_end, 3055 EXTENT_BOUNDARY); 3056 } 3057 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end); 3058 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len); 3059 cur += clamped_len; 3060 3061 /* Crossed extent end, go to next extent */ 3062 if (cur >= extent_end) { 3063 (*cluster_nr)++; 3064 /* Just finished the last extent of the cluster, exit. */ 3065 if (*cluster_nr >= cluster->nr) 3066 break; 3067 } 3068 } 3069 unlock_page(page); 3070 put_page(page); 3071 3072 balance_dirty_pages_ratelimited(inode->i_mapping); 3073 btrfs_throttle(fs_info); 3074 if (btrfs_should_cancel_balance(fs_info)) 3075 ret = -ECANCELED; 3076 return ret; 3077 3078 release_page: 3079 unlock_page(page); 3080 put_page(page); 3081 return ret; 3082 } 3083 3084 static int relocate_file_extent_cluster(struct inode *inode, 3085 struct file_extent_cluster *cluster) 3086 { 3087 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3088 u64 offset = BTRFS_I(inode)->index_cnt; 3089 unsigned long index; 3090 unsigned long last_index; 3091 struct file_ra_state *ra; 3092 int cluster_nr = 0; 3093 int ret = 0; 3094 3095 if (!cluster->nr) 3096 return 0; 3097 3098 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3099 if (!ra) 3100 return -ENOMEM; 3101 3102 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster); 3103 if (ret) 3104 goto out; 3105 3106 file_ra_state_init(ra, inode->i_mapping); 3107 3108 ret = setup_extent_mapping(inode, cluster->start - offset, 3109 cluster->end - offset, cluster->start); 3110 if (ret) 3111 goto out; 3112 3113 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3114 for (index = (cluster->start - offset) >> PAGE_SHIFT; 3115 index <= last_index && !ret; index++) 3116 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index); 3117 if (btrfs_is_zoned(fs_info) && !ret) 3118 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 3119 if (ret == 0) 3120 WARN_ON(cluster_nr != cluster->nr); 3121 out: 3122 kfree(ra); 3123 return ret; 3124 } 3125 3126 static noinline_for_stack 3127 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3128 struct file_extent_cluster *cluster) 3129 { 3130 int ret; 3131 3132 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3133 ret = relocate_file_extent_cluster(inode, cluster); 3134 if (ret) 3135 return ret; 3136 cluster->nr = 0; 3137 } 3138 3139 if (!cluster->nr) 3140 cluster->start = extent_key->objectid; 3141 else 3142 BUG_ON(cluster->nr >= MAX_EXTENTS); 3143 cluster->end = extent_key->objectid + extent_key->offset - 1; 3144 cluster->boundary[cluster->nr] = extent_key->objectid; 3145 cluster->nr++; 3146 3147 if (cluster->nr >= MAX_EXTENTS) { 3148 ret = relocate_file_extent_cluster(inode, cluster); 3149 if (ret) 3150 return ret; 3151 cluster->nr = 0; 3152 } 3153 return 0; 3154 } 3155 3156 /* 3157 * helper to add a tree block to the list. 3158 * the major work is getting the generation and level of the block 3159 */ 3160 static int add_tree_block(struct reloc_control *rc, 3161 struct btrfs_key *extent_key, 3162 struct btrfs_path *path, 3163 struct rb_root *blocks) 3164 { 3165 struct extent_buffer *eb; 3166 struct btrfs_extent_item *ei; 3167 struct btrfs_tree_block_info *bi; 3168 struct tree_block *block; 3169 struct rb_node *rb_node; 3170 u32 item_size; 3171 int level = -1; 3172 u64 generation; 3173 u64 owner = 0; 3174 3175 eb = path->nodes[0]; 3176 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3177 3178 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3179 item_size >= sizeof(*ei) + sizeof(*bi)) { 3180 unsigned long ptr = 0, end; 3181 3182 ei = btrfs_item_ptr(eb, path->slots[0], 3183 struct btrfs_extent_item); 3184 end = (unsigned long)ei + item_size; 3185 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3186 bi = (struct btrfs_tree_block_info *)(ei + 1); 3187 level = btrfs_tree_block_level(eb, bi); 3188 ptr = (unsigned long)(bi + 1); 3189 } else { 3190 level = (int)extent_key->offset; 3191 ptr = (unsigned long)(ei + 1); 3192 } 3193 generation = btrfs_extent_generation(eb, ei); 3194 3195 /* 3196 * We're reading random blocks without knowing their owner ahead 3197 * of time. This is ok most of the time, as all reloc roots and 3198 * fs roots have the same lock type. However normal trees do 3199 * not, and the only way to know ahead of time is to read the 3200 * inline ref offset. We know it's an fs root if 3201 * 3202 * 1. There's more than one ref. 3203 * 2. There's a SHARED_DATA_REF_KEY set. 3204 * 3. FULL_BACKREF is set on the flags. 3205 * 3206 * Otherwise it's safe to assume that the ref offset == the 3207 * owner of this block, so we can use that when calling 3208 * read_tree_block. 3209 */ 3210 if (btrfs_extent_refs(eb, ei) == 1 && 3211 !(btrfs_extent_flags(eb, ei) & 3212 BTRFS_BLOCK_FLAG_FULL_BACKREF) && 3213 ptr < end) { 3214 struct btrfs_extent_inline_ref *iref; 3215 int type; 3216 3217 iref = (struct btrfs_extent_inline_ref *)ptr; 3218 type = btrfs_get_extent_inline_ref_type(eb, iref, 3219 BTRFS_REF_TYPE_BLOCK); 3220 if (type == BTRFS_REF_TYPE_INVALID) 3221 return -EINVAL; 3222 if (type == BTRFS_TREE_BLOCK_REF_KEY) 3223 owner = btrfs_extent_inline_ref_offset(eb, iref); 3224 } 3225 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3226 btrfs_print_v0_err(eb->fs_info); 3227 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3228 return -EINVAL; 3229 } else { 3230 BUG(); 3231 } 3232 3233 btrfs_release_path(path); 3234 3235 BUG_ON(level == -1); 3236 3237 block = kmalloc(sizeof(*block), GFP_NOFS); 3238 if (!block) 3239 return -ENOMEM; 3240 3241 block->bytenr = extent_key->objectid; 3242 block->key.objectid = rc->extent_root->fs_info->nodesize; 3243 block->key.offset = generation; 3244 block->level = level; 3245 block->key_ready = 0; 3246 block->owner = owner; 3247 3248 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 3249 if (rb_node) 3250 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 3251 -EEXIST); 3252 3253 return 0; 3254 } 3255 3256 /* 3257 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3258 */ 3259 static int __add_tree_block(struct reloc_control *rc, 3260 u64 bytenr, u32 blocksize, 3261 struct rb_root *blocks) 3262 { 3263 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3264 struct btrfs_path *path; 3265 struct btrfs_key key; 3266 int ret; 3267 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3268 3269 if (tree_block_processed(bytenr, rc)) 3270 return 0; 3271 3272 if (rb_simple_search(blocks, bytenr)) 3273 return 0; 3274 3275 path = btrfs_alloc_path(); 3276 if (!path) 3277 return -ENOMEM; 3278 again: 3279 key.objectid = bytenr; 3280 if (skinny) { 3281 key.type = BTRFS_METADATA_ITEM_KEY; 3282 key.offset = (u64)-1; 3283 } else { 3284 key.type = BTRFS_EXTENT_ITEM_KEY; 3285 key.offset = blocksize; 3286 } 3287 3288 path->search_commit_root = 1; 3289 path->skip_locking = 1; 3290 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3291 if (ret < 0) 3292 goto out; 3293 3294 if (ret > 0 && skinny) { 3295 if (path->slots[0]) { 3296 path->slots[0]--; 3297 btrfs_item_key_to_cpu(path->nodes[0], &key, 3298 path->slots[0]); 3299 if (key.objectid == bytenr && 3300 (key.type == BTRFS_METADATA_ITEM_KEY || 3301 (key.type == BTRFS_EXTENT_ITEM_KEY && 3302 key.offset == blocksize))) 3303 ret = 0; 3304 } 3305 3306 if (ret) { 3307 skinny = false; 3308 btrfs_release_path(path); 3309 goto again; 3310 } 3311 } 3312 if (ret) { 3313 ASSERT(ret == 1); 3314 btrfs_print_leaf(path->nodes[0]); 3315 btrfs_err(fs_info, 3316 "tree block extent item (%llu) is not found in extent tree", 3317 bytenr); 3318 WARN_ON(1); 3319 ret = -EINVAL; 3320 goto out; 3321 } 3322 3323 ret = add_tree_block(rc, &key, path, blocks); 3324 out: 3325 btrfs_free_path(path); 3326 return ret; 3327 } 3328 3329 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3330 struct btrfs_block_group *block_group, 3331 struct inode *inode, 3332 u64 ino) 3333 { 3334 struct btrfs_root *root = fs_info->tree_root; 3335 struct btrfs_trans_handle *trans; 3336 int ret = 0; 3337 3338 if (inode) 3339 goto truncate; 3340 3341 inode = btrfs_iget(fs_info->sb, ino, root); 3342 if (IS_ERR(inode)) 3343 return -ENOENT; 3344 3345 truncate: 3346 ret = btrfs_check_trunc_cache_free_space(fs_info, 3347 &fs_info->global_block_rsv); 3348 if (ret) 3349 goto out; 3350 3351 trans = btrfs_join_transaction(root); 3352 if (IS_ERR(trans)) { 3353 ret = PTR_ERR(trans); 3354 goto out; 3355 } 3356 3357 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3358 3359 btrfs_end_transaction(trans); 3360 btrfs_btree_balance_dirty(fs_info); 3361 out: 3362 iput(inode); 3363 return ret; 3364 } 3365 3366 /* 3367 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3368 * cache inode, to avoid free space cache data extent blocking data relocation. 3369 */ 3370 static int delete_v1_space_cache(struct extent_buffer *leaf, 3371 struct btrfs_block_group *block_group, 3372 u64 data_bytenr) 3373 { 3374 u64 space_cache_ino; 3375 struct btrfs_file_extent_item *ei; 3376 struct btrfs_key key; 3377 bool found = false; 3378 int i; 3379 int ret; 3380 3381 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3382 return 0; 3383 3384 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3385 u8 type; 3386 3387 btrfs_item_key_to_cpu(leaf, &key, i); 3388 if (key.type != BTRFS_EXTENT_DATA_KEY) 3389 continue; 3390 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3391 type = btrfs_file_extent_type(leaf, ei); 3392 3393 if ((type == BTRFS_FILE_EXTENT_REG || 3394 type == BTRFS_FILE_EXTENT_PREALLOC) && 3395 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3396 found = true; 3397 space_cache_ino = key.objectid; 3398 break; 3399 } 3400 } 3401 if (!found) 3402 return -ENOENT; 3403 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3404 space_cache_ino); 3405 return ret; 3406 } 3407 3408 /* 3409 * helper to find all tree blocks that reference a given data extent 3410 */ 3411 static noinline_for_stack 3412 int add_data_references(struct reloc_control *rc, 3413 struct btrfs_key *extent_key, 3414 struct btrfs_path *path, 3415 struct rb_root *blocks) 3416 { 3417 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3418 struct ulist *leaves = NULL; 3419 struct ulist_iterator leaf_uiter; 3420 struct ulist_node *ref_node = NULL; 3421 const u32 blocksize = fs_info->nodesize; 3422 int ret = 0; 3423 3424 btrfs_release_path(path); 3425 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid, 3426 0, &leaves, NULL, true); 3427 if (ret < 0) 3428 return ret; 3429 3430 ULIST_ITER_INIT(&leaf_uiter); 3431 while ((ref_node = ulist_next(leaves, &leaf_uiter))) { 3432 struct extent_buffer *eb; 3433 3434 eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL); 3435 if (IS_ERR(eb)) { 3436 ret = PTR_ERR(eb); 3437 break; 3438 } 3439 ret = delete_v1_space_cache(eb, rc->block_group, 3440 extent_key->objectid); 3441 free_extent_buffer(eb); 3442 if (ret < 0) 3443 break; 3444 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3445 if (ret < 0) 3446 break; 3447 } 3448 if (ret < 0) 3449 free_block_list(blocks); 3450 ulist_free(leaves); 3451 return ret; 3452 } 3453 3454 /* 3455 * helper to find next unprocessed extent 3456 */ 3457 static noinline_for_stack 3458 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3459 struct btrfs_key *extent_key) 3460 { 3461 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3462 struct btrfs_key key; 3463 struct extent_buffer *leaf; 3464 u64 start, end, last; 3465 int ret; 3466 3467 last = rc->block_group->start + rc->block_group->length; 3468 while (1) { 3469 cond_resched(); 3470 if (rc->search_start >= last) { 3471 ret = 1; 3472 break; 3473 } 3474 3475 key.objectid = rc->search_start; 3476 key.type = BTRFS_EXTENT_ITEM_KEY; 3477 key.offset = 0; 3478 3479 path->search_commit_root = 1; 3480 path->skip_locking = 1; 3481 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3482 0, 0); 3483 if (ret < 0) 3484 break; 3485 next: 3486 leaf = path->nodes[0]; 3487 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3488 ret = btrfs_next_leaf(rc->extent_root, path); 3489 if (ret != 0) 3490 break; 3491 leaf = path->nodes[0]; 3492 } 3493 3494 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3495 if (key.objectid >= last) { 3496 ret = 1; 3497 break; 3498 } 3499 3500 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3501 key.type != BTRFS_METADATA_ITEM_KEY) { 3502 path->slots[0]++; 3503 goto next; 3504 } 3505 3506 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3507 key.objectid + key.offset <= rc->search_start) { 3508 path->slots[0]++; 3509 goto next; 3510 } 3511 3512 if (key.type == BTRFS_METADATA_ITEM_KEY && 3513 key.objectid + fs_info->nodesize <= 3514 rc->search_start) { 3515 path->slots[0]++; 3516 goto next; 3517 } 3518 3519 ret = find_first_extent_bit(&rc->processed_blocks, 3520 key.objectid, &start, &end, 3521 EXTENT_DIRTY, NULL); 3522 3523 if (ret == 0 && start <= key.objectid) { 3524 btrfs_release_path(path); 3525 rc->search_start = end + 1; 3526 } else { 3527 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3528 rc->search_start = key.objectid + key.offset; 3529 else 3530 rc->search_start = key.objectid + 3531 fs_info->nodesize; 3532 memcpy(extent_key, &key, sizeof(key)); 3533 return 0; 3534 } 3535 } 3536 btrfs_release_path(path); 3537 return ret; 3538 } 3539 3540 static void set_reloc_control(struct reloc_control *rc) 3541 { 3542 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3543 3544 mutex_lock(&fs_info->reloc_mutex); 3545 fs_info->reloc_ctl = rc; 3546 mutex_unlock(&fs_info->reloc_mutex); 3547 } 3548 3549 static void unset_reloc_control(struct reloc_control *rc) 3550 { 3551 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3552 3553 mutex_lock(&fs_info->reloc_mutex); 3554 fs_info->reloc_ctl = NULL; 3555 mutex_unlock(&fs_info->reloc_mutex); 3556 } 3557 3558 static noinline_for_stack 3559 int prepare_to_relocate(struct reloc_control *rc) 3560 { 3561 struct btrfs_trans_handle *trans; 3562 int ret; 3563 3564 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3565 BTRFS_BLOCK_RSV_TEMP); 3566 if (!rc->block_rsv) 3567 return -ENOMEM; 3568 3569 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3570 rc->search_start = rc->block_group->start; 3571 rc->extents_found = 0; 3572 rc->nodes_relocated = 0; 3573 rc->merging_rsv_size = 0; 3574 rc->reserved_bytes = 0; 3575 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3576 RELOCATION_RESERVED_NODES; 3577 ret = btrfs_block_rsv_refill(rc->extent_root, 3578 rc->block_rsv, rc->block_rsv->size, 3579 BTRFS_RESERVE_FLUSH_ALL); 3580 if (ret) 3581 return ret; 3582 3583 rc->create_reloc_tree = 1; 3584 set_reloc_control(rc); 3585 3586 trans = btrfs_join_transaction(rc->extent_root); 3587 if (IS_ERR(trans)) { 3588 unset_reloc_control(rc); 3589 /* 3590 * extent tree is not a ref_cow tree and has no reloc_root to 3591 * cleanup. And callers are responsible to free the above 3592 * block rsv. 3593 */ 3594 return PTR_ERR(trans); 3595 } 3596 return btrfs_commit_transaction(trans); 3597 } 3598 3599 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3600 { 3601 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3602 struct rb_root blocks = RB_ROOT; 3603 struct btrfs_key key; 3604 struct btrfs_trans_handle *trans = NULL; 3605 struct btrfs_path *path; 3606 struct btrfs_extent_item *ei; 3607 u64 flags; 3608 int ret; 3609 int err = 0; 3610 int progress = 0; 3611 3612 path = btrfs_alloc_path(); 3613 if (!path) 3614 return -ENOMEM; 3615 path->reada = READA_FORWARD; 3616 3617 ret = prepare_to_relocate(rc); 3618 if (ret) { 3619 err = ret; 3620 goto out_free; 3621 } 3622 3623 while (1) { 3624 rc->reserved_bytes = 0; 3625 ret = btrfs_block_rsv_refill(rc->extent_root, 3626 rc->block_rsv, rc->block_rsv->size, 3627 BTRFS_RESERVE_FLUSH_ALL); 3628 if (ret) { 3629 err = ret; 3630 break; 3631 } 3632 progress++; 3633 trans = btrfs_start_transaction(rc->extent_root, 0); 3634 if (IS_ERR(trans)) { 3635 err = PTR_ERR(trans); 3636 trans = NULL; 3637 break; 3638 } 3639 restart: 3640 if (update_backref_cache(trans, &rc->backref_cache)) { 3641 btrfs_end_transaction(trans); 3642 trans = NULL; 3643 continue; 3644 } 3645 3646 ret = find_next_extent(rc, path, &key); 3647 if (ret < 0) 3648 err = ret; 3649 if (ret != 0) 3650 break; 3651 3652 rc->extents_found++; 3653 3654 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3655 struct btrfs_extent_item); 3656 flags = btrfs_extent_flags(path->nodes[0], ei); 3657 3658 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3659 ret = add_tree_block(rc, &key, path, &blocks); 3660 } else if (rc->stage == UPDATE_DATA_PTRS && 3661 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3662 ret = add_data_references(rc, &key, path, &blocks); 3663 } else { 3664 btrfs_release_path(path); 3665 ret = 0; 3666 } 3667 if (ret < 0) { 3668 err = ret; 3669 break; 3670 } 3671 3672 if (!RB_EMPTY_ROOT(&blocks)) { 3673 ret = relocate_tree_blocks(trans, rc, &blocks); 3674 if (ret < 0) { 3675 if (ret != -EAGAIN) { 3676 err = ret; 3677 break; 3678 } 3679 rc->extents_found--; 3680 rc->search_start = key.objectid; 3681 } 3682 } 3683 3684 btrfs_end_transaction_throttle(trans); 3685 btrfs_btree_balance_dirty(fs_info); 3686 trans = NULL; 3687 3688 if (rc->stage == MOVE_DATA_EXTENTS && 3689 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3690 rc->found_file_extent = 1; 3691 ret = relocate_data_extent(rc->data_inode, 3692 &key, &rc->cluster); 3693 if (ret < 0) { 3694 err = ret; 3695 break; 3696 } 3697 } 3698 if (btrfs_should_cancel_balance(fs_info)) { 3699 err = -ECANCELED; 3700 break; 3701 } 3702 } 3703 if (trans && progress && err == -ENOSPC) { 3704 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3705 if (ret == 1) { 3706 err = 0; 3707 progress = 0; 3708 goto restart; 3709 } 3710 } 3711 3712 btrfs_release_path(path); 3713 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3714 3715 if (trans) { 3716 btrfs_end_transaction_throttle(trans); 3717 btrfs_btree_balance_dirty(fs_info); 3718 } 3719 3720 if (!err) { 3721 ret = relocate_file_extent_cluster(rc->data_inode, 3722 &rc->cluster); 3723 if (ret < 0) 3724 err = ret; 3725 } 3726 3727 rc->create_reloc_tree = 0; 3728 set_reloc_control(rc); 3729 3730 btrfs_backref_release_cache(&rc->backref_cache); 3731 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3732 3733 /* 3734 * Even in the case when the relocation is cancelled, we should all go 3735 * through prepare_to_merge() and merge_reloc_roots(). 3736 * 3737 * For error (including cancelled balance), prepare_to_merge() will 3738 * mark all reloc trees orphan, then queue them for cleanup in 3739 * merge_reloc_roots() 3740 */ 3741 err = prepare_to_merge(rc, err); 3742 3743 merge_reloc_roots(rc); 3744 3745 rc->merge_reloc_tree = 0; 3746 unset_reloc_control(rc); 3747 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3748 3749 /* get rid of pinned extents */ 3750 trans = btrfs_join_transaction(rc->extent_root); 3751 if (IS_ERR(trans)) { 3752 err = PTR_ERR(trans); 3753 goto out_free; 3754 } 3755 ret = btrfs_commit_transaction(trans); 3756 if (ret && !err) 3757 err = ret; 3758 out_free: 3759 ret = clean_dirty_subvols(rc); 3760 if (ret < 0 && !err) 3761 err = ret; 3762 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3763 btrfs_free_path(path); 3764 return err; 3765 } 3766 3767 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3768 struct btrfs_root *root, u64 objectid) 3769 { 3770 struct btrfs_path *path; 3771 struct btrfs_inode_item *item; 3772 struct extent_buffer *leaf; 3773 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 3774 int ret; 3775 3776 if (btrfs_is_zoned(trans->fs_info)) 3777 flags &= ~BTRFS_INODE_PREALLOC; 3778 3779 path = btrfs_alloc_path(); 3780 if (!path) 3781 return -ENOMEM; 3782 3783 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3784 if (ret) 3785 goto out; 3786 3787 leaf = path->nodes[0]; 3788 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3789 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3790 btrfs_set_inode_generation(leaf, item, 1); 3791 btrfs_set_inode_size(leaf, item, 0); 3792 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3793 btrfs_set_inode_flags(leaf, item, flags); 3794 btrfs_mark_buffer_dirty(leaf); 3795 out: 3796 btrfs_free_path(path); 3797 return ret; 3798 } 3799 3800 static void delete_orphan_inode(struct btrfs_trans_handle *trans, 3801 struct btrfs_root *root, u64 objectid) 3802 { 3803 struct btrfs_path *path; 3804 struct btrfs_key key; 3805 int ret = 0; 3806 3807 path = btrfs_alloc_path(); 3808 if (!path) { 3809 ret = -ENOMEM; 3810 goto out; 3811 } 3812 3813 key.objectid = objectid; 3814 key.type = BTRFS_INODE_ITEM_KEY; 3815 key.offset = 0; 3816 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3817 if (ret) { 3818 if (ret > 0) 3819 ret = -ENOENT; 3820 goto out; 3821 } 3822 ret = btrfs_del_item(trans, root, path); 3823 out: 3824 if (ret) 3825 btrfs_abort_transaction(trans, ret); 3826 btrfs_free_path(path); 3827 } 3828 3829 /* 3830 * helper to create inode for data relocation. 3831 * the inode is in data relocation tree and its link count is 0 3832 */ 3833 static noinline_for_stack 3834 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3835 struct btrfs_block_group *group) 3836 { 3837 struct inode *inode = NULL; 3838 struct btrfs_trans_handle *trans; 3839 struct btrfs_root *root; 3840 u64 objectid; 3841 int err = 0; 3842 3843 root = btrfs_grab_root(fs_info->data_reloc_root); 3844 trans = btrfs_start_transaction(root, 6); 3845 if (IS_ERR(trans)) { 3846 btrfs_put_root(root); 3847 return ERR_CAST(trans); 3848 } 3849 3850 err = btrfs_get_free_objectid(root, &objectid); 3851 if (err) 3852 goto out; 3853 3854 err = __insert_orphan_inode(trans, root, objectid); 3855 if (err) 3856 goto out; 3857 3858 inode = btrfs_iget(fs_info->sb, objectid, root); 3859 if (IS_ERR(inode)) { 3860 delete_orphan_inode(trans, root, objectid); 3861 err = PTR_ERR(inode); 3862 inode = NULL; 3863 goto out; 3864 } 3865 BTRFS_I(inode)->index_cnt = group->start; 3866 3867 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3868 out: 3869 btrfs_put_root(root); 3870 btrfs_end_transaction(trans); 3871 btrfs_btree_balance_dirty(fs_info); 3872 if (err) { 3873 if (inode) 3874 iput(inode); 3875 inode = ERR_PTR(err); 3876 } 3877 return inode; 3878 } 3879 3880 /* 3881 * Mark start of chunk relocation that is cancellable. Check if the cancellation 3882 * has been requested meanwhile and don't start in that case. 3883 * 3884 * Return: 3885 * 0 success 3886 * -EINPROGRESS operation is already in progress, that's probably a bug 3887 * -ECANCELED cancellation request was set before the operation started 3888 * -EAGAIN can not start because there are ongoing send operations 3889 */ 3890 static int reloc_chunk_start(struct btrfs_fs_info *fs_info) 3891 { 3892 spin_lock(&fs_info->send_reloc_lock); 3893 if (fs_info->send_in_progress) { 3894 btrfs_warn_rl(fs_info, 3895 "cannot run relocation while send operations are in progress (%d in progress)", 3896 fs_info->send_in_progress); 3897 spin_unlock(&fs_info->send_reloc_lock); 3898 return -EAGAIN; 3899 } 3900 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) { 3901 /* This should not happen */ 3902 spin_unlock(&fs_info->send_reloc_lock); 3903 btrfs_err(fs_info, "reloc already running, cannot start"); 3904 return -EINPROGRESS; 3905 } 3906 spin_unlock(&fs_info->send_reloc_lock); 3907 3908 if (atomic_read(&fs_info->reloc_cancel_req) > 0) { 3909 btrfs_info(fs_info, "chunk relocation canceled on start"); 3910 /* 3911 * On cancel, clear all requests but let the caller mark 3912 * the end after cleanup operations. 3913 */ 3914 atomic_set(&fs_info->reloc_cancel_req, 0); 3915 return -ECANCELED; 3916 } 3917 return 0; 3918 } 3919 3920 /* 3921 * Mark end of chunk relocation that is cancellable and wake any waiters. 3922 */ 3923 static void reloc_chunk_end(struct btrfs_fs_info *fs_info) 3924 { 3925 /* Requested after start, clear bit first so any waiters can continue */ 3926 if (atomic_read(&fs_info->reloc_cancel_req) > 0) 3927 btrfs_info(fs_info, "chunk relocation canceled during operation"); 3928 spin_lock(&fs_info->send_reloc_lock); 3929 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags); 3930 spin_unlock(&fs_info->send_reloc_lock); 3931 atomic_set(&fs_info->reloc_cancel_req, 0); 3932 } 3933 3934 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 3935 { 3936 struct reloc_control *rc; 3937 3938 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3939 if (!rc) 3940 return NULL; 3941 3942 INIT_LIST_HEAD(&rc->reloc_roots); 3943 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 3944 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1); 3945 mapping_tree_init(&rc->reloc_root_tree); 3946 extent_io_tree_init(fs_info, &rc->processed_blocks, 3947 IO_TREE_RELOC_BLOCKS, NULL); 3948 return rc; 3949 } 3950 3951 static void free_reloc_control(struct reloc_control *rc) 3952 { 3953 struct mapping_node *node, *tmp; 3954 3955 free_reloc_roots(&rc->reloc_roots); 3956 rbtree_postorder_for_each_entry_safe(node, tmp, 3957 &rc->reloc_root_tree.rb_root, rb_node) 3958 kfree(node); 3959 3960 kfree(rc); 3961 } 3962 3963 /* 3964 * Print the block group being relocated 3965 */ 3966 static void describe_relocation(struct btrfs_fs_info *fs_info, 3967 struct btrfs_block_group *block_group) 3968 { 3969 char buf[128] = {'\0'}; 3970 3971 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 3972 3973 btrfs_info(fs_info, 3974 "relocating block group %llu flags %s", 3975 block_group->start, buf); 3976 } 3977 3978 static const char *stage_to_string(int stage) 3979 { 3980 if (stage == MOVE_DATA_EXTENTS) 3981 return "move data extents"; 3982 if (stage == UPDATE_DATA_PTRS) 3983 return "update data pointers"; 3984 return "unknown"; 3985 } 3986 3987 /* 3988 * function to relocate all extents in a block group. 3989 */ 3990 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 3991 { 3992 struct btrfs_block_group *bg; 3993 struct btrfs_root *extent_root = fs_info->extent_root; 3994 struct reloc_control *rc; 3995 struct inode *inode; 3996 struct btrfs_path *path; 3997 int ret; 3998 int rw = 0; 3999 int err = 0; 4000 4001 bg = btrfs_lookup_block_group(fs_info, group_start); 4002 if (!bg) 4003 return -ENOENT; 4004 4005 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 4006 btrfs_put_block_group(bg); 4007 return -ETXTBSY; 4008 } 4009 4010 rc = alloc_reloc_control(fs_info); 4011 if (!rc) { 4012 btrfs_put_block_group(bg); 4013 return -ENOMEM; 4014 } 4015 4016 ret = reloc_chunk_start(fs_info); 4017 if (ret < 0) { 4018 err = ret; 4019 goto out_put_bg; 4020 } 4021 4022 rc->extent_root = extent_root; 4023 rc->block_group = bg; 4024 4025 ret = btrfs_inc_block_group_ro(rc->block_group, true); 4026 if (ret) { 4027 err = ret; 4028 goto out; 4029 } 4030 rw = 1; 4031 4032 path = btrfs_alloc_path(); 4033 if (!path) { 4034 err = -ENOMEM; 4035 goto out; 4036 } 4037 4038 inode = lookup_free_space_inode(rc->block_group, path); 4039 btrfs_free_path(path); 4040 4041 if (!IS_ERR(inode)) 4042 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4043 else 4044 ret = PTR_ERR(inode); 4045 4046 if (ret && ret != -ENOENT) { 4047 err = ret; 4048 goto out; 4049 } 4050 4051 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4052 if (IS_ERR(rc->data_inode)) { 4053 err = PTR_ERR(rc->data_inode); 4054 rc->data_inode = NULL; 4055 goto out; 4056 } 4057 4058 describe_relocation(fs_info, rc->block_group); 4059 4060 btrfs_wait_block_group_reservations(rc->block_group); 4061 btrfs_wait_nocow_writers(rc->block_group); 4062 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4063 rc->block_group->start, 4064 rc->block_group->length); 4065 4066 while (1) { 4067 int finishes_stage; 4068 4069 mutex_lock(&fs_info->cleaner_mutex); 4070 ret = relocate_block_group(rc); 4071 mutex_unlock(&fs_info->cleaner_mutex); 4072 if (ret < 0) 4073 err = ret; 4074 4075 finishes_stage = rc->stage; 4076 /* 4077 * We may have gotten ENOSPC after we already dirtied some 4078 * extents. If writeout happens while we're relocating a 4079 * different block group we could end up hitting the 4080 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 4081 * btrfs_reloc_cow_block. Make sure we write everything out 4082 * properly so we don't trip over this problem, and then break 4083 * out of the loop if we hit an error. 4084 */ 4085 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4086 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4087 (u64)-1); 4088 if (ret) 4089 err = ret; 4090 invalidate_mapping_pages(rc->data_inode->i_mapping, 4091 0, -1); 4092 rc->stage = UPDATE_DATA_PTRS; 4093 } 4094 4095 if (err < 0) 4096 goto out; 4097 4098 if (rc->extents_found == 0) 4099 break; 4100 4101 btrfs_info(fs_info, "found %llu extents, stage: %s", 4102 rc->extents_found, stage_to_string(finishes_stage)); 4103 } 4104 4105 WARN_ON(rc->block_group->pinned > 0); 4106 WARN_ON(rc->block_group->reserved > 0); 4107 WARN_ON(rc->block_group->used > 0); 4108 out: 4109 if (err && rw) 4110 btrfs_dec_block_group_ro(rc->block_group); 4111 iput(rc->data_inode); 4112 out_put_bg: 4113 btrfs_put_block_group(bg); 4114 reloc_chunk_end(fs_info); 4115 free_reloc_control(rc); 4116 return err; 4117 } 4118 4119 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4120 { 4121 struct btrfs_fs_info *fs_info = root->fs_info; 4122 struct btrfs_trans_handle *trans; 4123 int ret, err; 4124 4125 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4126 if (IS_ERR(trans)) 4127 return PTR_ERR(trans); 4128 4129 memset(&root->root_item.drop_progress, 0, 4130 sizeof(root->root_item.drop_progress)); 4131 btrfs_set_root_drop_level(&root->root_item, 0); 4132 btrfs_set_root_refs(&root->root_item, 0); 4133 ret = btrfs_update_root(trans, fs_info->tree_root, 4134 &root->root_key, &root->root_item); 4135 4136 err = btrfs_end_transaction(trans); 4137 if (err) 4138 return err; 4139 return ret; 4140 } 4141 4142 /* 4143 * recover relocation interrupted by system crash. 4144 * 4145 * this function resumes merging reloc trees with corresponding fs trees. 4146 * this is important for keeping the sharing of tree blocks 4147 */ 4148 int btrfs_recover_relocation(struct btrfs_root *root) 4149 { 4150 struct btrfs_fs_info *fs_info = root->fs_info; 4151 LIST_HEAD(reloc_roots); 4152 struct btrfs_key key; 4153 struct btrfs_root *fs_root; 4154 struct btrfs_root *reloc_root; 4155 struct btrfs_path *path; 4156 struct extent_buffer *leaf; 4157 struct reloc_control *rc = NULL; 4158 struct btrfs_trans_handle *trans; 4159 int ret; 4160 int err = 0; 4161 4162 path = btrfs_alloc_path(); 4163 if (!path) 4164 return -ENOMEM; 4165 path->reada = READA_BACK; 4166 4167 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4168 key.type = BTRFS_ROOT_ITEM_KEY; 4169 key.offset = (u64)-1; 4170 4171 while (1) { 4172 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4173 path, 0, 0); 4174 if (ret < 0) { 4175 err = ret; 4176 goto out; 4177 } 4178 if (ret > 0) { 4179 if (path->slots[0] == 0) 4180 break; 4181 path->slots[0]--; 4182 } 4183 leaf = path->nodes[0]; 4184 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4185 btrfs_release_path(path); 4186 4187 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4188 key.type != BTRFS_ROOT_ITEM_KEY) 4189 break; 4190 4191 reloc_root = btrfs_read_tree_root(root, &key); 4192 if (IS_ERR(reloc_root)) { 4193 err = PTR_ERR(reloc_root); 4194 goto out; 4195 } 4196 4197 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 4198 list_add(&reloc_root->root_list, &reloc_roots); 4199 4200 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4201 fs_root = btrfs_get_fs_root(fs_info, 4202 reloc_root->root_key.offset, false); 4203 if (IS_ERR(fs_root)) { 4204 ret = PTR_ERR(fs_root); 4205 if (ret != -ENOENT) { 4206 err = ret; 4207 goto out; 4208 } 4209 ret = mark_garbage_root(reloc_root); 4210 if (ret < 0) { 4211 err = ret; 4212 goto out; 4213 } 4214 } else { 4215 btrfs_put_root(fs_root); 4216 } 4217 } 4218 4219 if (key.offset == 0) 4220 break; 4221 4222 key.offset--; 4223 } 4224 btrfs_release_path(path); 4225 4226 if (list_empty(&reloc_roots)) 4227 goto out; 4228 4229 rc = alloc_reloc_control(fs_info); 4230 if (!rc) { 4231 err = -ENOMEM; 4232 goto out; 4233 } 4234 4235 ret = reloc_chunk_start(fs_info); 4236 if (ret < 0) { 4237 err = ret; 4238 goto out_end; 4239 } 4240 4241 rc->extent_root = fs_info->extent_root; 4242 4243 set_reloc_control(rc); 4244 4245 trans = btrfs_join_transaction(rc->extent_root); 4246 if (IS_ERR(trans)) { 4247 err = PTR_ERR(trans); 4248 goto out_unset; 4249 } 4250 4251 rc->merge_reloc_tree = 1; 4252 4253 while (!list_empty(&reloc_roots)) { 4254 reloc_root = list_entry(reloc_roots.next, 4255 struct btrfs_root, root_list); 4256 list_del(&reloc_root->root_list); 4257 4258 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4259 list_add_tail(&reloc_root->root_list, 4260 &rc->reloc_roots); 4261 continue; 4262 } 4263 4264 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 4265 false); 4266 if (IS_ERR(fs_root)) { 4267 err = PTR_ERR(fs_root); 4268 list_add_tail(&reloc_root->root_list, &reloc_roots); 4269 btrfs_end_transaction(trans); 4270 goto out_unset; 4271 } 4272 4273 err = __add_reloc_root(reloc_root); 4274 ASSERT(err != -EEXIST); 4275 if (err) { 4276 list_add_tail(&reloc_root->root_list, &reloc_roots); 4277 btrfs_put_root(fs_root); 4278 btrfs_end_transaction(trans); 4279 goto out_unset; 4280 } 4281 fs_root->reloc_root = btrfs_grab_root(reloc_root); 4282 btrfs_put_root(fs_root); 4283 } 4284 4285 err = btrfs_commit_transaction(trans); 4286 if (err) 4287 goto out_unset; 4288 4289 merge_reloc_roots(rc); 4290 4291 unset_reloc_control(rc); 4292 4293 trans = btrfs_join_transaction(rc->extent_root); 4294 if (IS_ERR(trans)) { 4295 err = PTR_ERR(trans); 4296 goto out_clean; 4297 } 4298 err = btrfs_commit_transaction(trans); 4299 out_clean: 4300 ret = clean_dirty_subvols(rc); 4301 if (ret < 0 && !err) 4302 err = ret; 4303 out_unset: 4304 unset_reloc_control(rc); 4305 out_end: 4306 reloc_chunk_end(fs_info); 4307 free_reloc_control(rc); 4308 out: 4309 free_reloc_roots(&reloc_roots); 4310 4311 btrfs_free_path(path); 4312 4313 if (err == 0) { 4314 /* cleanup orphan inode in data relocation tree */ 4315 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 4316 ASSERT(fs_root); 4317 err = btrfs_orphan_cleanup(fs_root); 4318 btrfs_put_root(fs_root); 4319 } 4320 return err; 4321 } 4322 4323 /* 4324 * helper to add ordered checksum for data relocation. 4325 * 4326 * cloning checksum properly handles the nodatasum extents. 4327 * it also saves CPU time to re-calculate the checksum. 4328 */ 4329 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len) 4330 { 4331 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4332 struct btrfs_ordered_sum *sums; 4333 struct btrfs_ordered_extent *ordered; 4334 int ret; 4335 u64 disk_bytenr; 4336 u64 new_bytenr; 4337 LIST_HEAD(list); 4338 4339 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4340 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len); 4341 4342 disk_bytenr = file_pos + inode->index_cnt; 4343 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 4344 disk_bytenr + len - 1, &list, 0); 4345 if (ret) 4346 goto out; 4347 4348 while (!list_empty(&list)) { 4349 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4350 list_del_init(&sums->list); 4351 4352 /* 4353 * We need to offset the new_bytenr based on where the csum is. 4354 * We need to do this because we will read in entire prealloc 4355 * extents but we may have written to say the middle of the 4356 * prealloc extent, so we need to make sure the csum goes with 4357 * the right disk offset. 4358 * 4359 * We can do this because the data reloc inode refers strictly 4360 * to the on disk bytes, so we don't have to worry about 4361 * disk_len vs real len like with real inodes since it's all 4362 * disk length. 4363 */ 4364 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr; 4365 sums->bytenr = new_bytenr; 4366 4367 btrfs_add_ordered_sum(ordered, sums); 4368 } 4369 out: 4370 btrfs_put_ordered_extent(ordered); 4371 return ret; 4372 } 4373 4374 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4375 struct btrfs_root *root, struct extent_buffer *buf, 4376 struct extent_buffer *cow) 4377 { 4378 struct btrfs_fs_info *fs_info = root->fs_info; 4379 struct reloc_control *rc; 4380 struct btrfs_backref_node *node; 4381 int first_cow = 0; 4382 int level; 4383 int ret = 0; 4384 4385 rc = fs_info->reloc_ctl; 4386 if (!rc) 4387 return 0; 4388 4389 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4390 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4391 4392 level = btrfs_header_level(buf); 4393 if (btrfs_header_generation(buf) <= 4394 btrfs_root_last_snapshot(&root->root_item)) 4395 first_cow = 1; 4396 4397 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4398 rc->create_reloc_tree) { 4399 WARN_ON(!first_cow && level == 0); 4400 4401 node = rc->backref_cache.path[level]; 4402 BUG_ON(node->bytenr != buf->start && 4403 node->new_bytenr != buf->start); 4404 4405 btrfs_backref_drop_node_buffer(node); 4406 atomic_inc(&cow->refs); 4407 node->eb = cow; 4408 node->new_bytenr = cow->start; 4409 4410 if (!node->pending) { 4411 list_move_tail(&node->list, 4412 &rc->backref_cache.pending[level]); 4413 node->pending = 1; 4414 } 4415 4416 if (first_cow) 4417 mark_block_processed(rc, node); 4418 4419 if (first_cow && level > 0) 4420 rc->nodes_relocated += buf->len; 4421 } 4422 4423 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4424 ret = replace_file_extents(trans, rc, root, cow); 4425 return ret; 4426 } 4427 4428 /* 4429 * called before creating snapshot. it calculates metadata reservation 4430 * required for relocating tree blocks in the snapshot 4431 */ 4432 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4433 u64 *bytes_to_reserve) 4434 { 4435 struct btrfs_root *root = pending->root; 4436 struct reloc_control *rc = root->fs_info->reloc_ctl; 4437 4438 if (!rc || !have_reloc_root(root)) 4439 return; 4440 4441 if (!rc->merge_reloc_tree) 4442 return; 4443 4444 root = root->reloc_root; 4445 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4446 /* 4447 * relocation is in the stage of merging trees. the space 4448 * used by merging a reloc tree is twice the size of 4449 * relocated tree nodes in the worst case. half for cowing 4450 * the reloc tree, half for cowing the fs tree. the space 4451 * used by cowing the reloc tree will be freed after the 4452 * tree is dropped. if we create snapshot, cowing the fs 4453 * tree may use more space than it frees. so we need 4454 * reserve extra space. 4455 */ 4456 *bytes_to_reserve += rc->nodes_relocated; 4457 } 4458 4459 /* 4460 * called after snapshot is created. migrate block reservation 4461 * and create reloc root for the newly created snapshot 4462 * 4463 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4464 * references held on the reloc_root, one for root->reloc_root and one for 4465 * rc->reloc_roots. 4466 */ 4467 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4468 struct btrfs_pending_snapshot *pending) 4469 { 4470 struct btrfs_root *root = pending->root; 4471 struct btrfs_root *reloc_root; 4472 struct btrfs_root *new_root; 4473 struct reloc_control *rc = root->fs_info->reloc_ctl; 4474 int ret; 4475 4476 if (!rc || !have_reloc_root(root)) 4477 return 0; 4478 4479 rc = root->fs_info->reloc_ctl; 4480 rc->merging_rsv_size += rc->nodes_relocated; 4481 4482 if (rc->merge_reloc_tree) { 4483 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4484 rc->block_rsv, 4485 rc->nodes_relocated, true); 4486 if (ret) 4487 return ret; 4488 } 4489 4490 new_root = pending->snap; 4491 reloc_root = create_reloc_root(trans, root->reloc_root, 4492 new_root->root_key.objectid); 4493 if (IS_ERR(reloc_root)) 4494 return PTR_ERR(reloc_root); 4495 4496 ret = __add_reloc_root(reloc_root); 4497 ASSERT(ret != -EEXIST); 4498 if (ret) { 4499 /* Pairs with create_reloc_root */ 4500 btrfs_put_root(reloc_root); 4501 return ret; 4502 } 4503 new_root->reloc_root = btrfs_grab_root(reloc_root); 4504 4505 if (rc->create_reloc_tree) 4506 ret = clone_backref_node(trans, rc, root, reloc_root); 4507 return ret; 4508 } 4509