xref: /openbmc/linux/fs/btrfs/relocation.c (revision 05d7ce50)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39 
40 /*
41  * Relocation overview
42  *
43  * [What does relocation do]
44  *
45  * The objective of relocation is to relocate all extents of the target block
46  * group to other block groups.
47  * This is utilized by resize (shrink only), profile converting, compacting
48  * space, or balance routine to spread chunks over devices.
49  *
50  * 		Before		|		After
51  * ------------------------------------------------------------------
52  *  BG A: 10 data extents	| BG A: deleted
53  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
54  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
55  *
56  * [How does relocation work]
57  *
58  * 1.   Mark the target block group read-only
59  *      New extents won't be allocated from the target block group.
60  *
61  * 2.1  Record each extent in the target block group
62  *      To build a proper map of extents to be relocated.
63  *
64  * 2.2  Build data reloc tree and reloc trees
65  *      Data reloc tree will contain an inode, recording all newly relocated
66  *      data extents.
67  *      There will be only one data reloc tree for one data block group.
68  *
69  *      Reloc tree will be a special snapshot of its source tree, containing
70  *      relocated tree blocks.
71  *      Each tree referring to a tree block in target block group will get its
72  *      reloc tree built.
73  *
74  * 2.3  Swap source tree with its corresponding reloc tree
75  *      Each involved tree only refers to new extents after swap.
76  *
77  * 3.   Cleanup reloc trees and data reloc tree.
78  *      As old extents in the target block group are still referenced by reloc
79  *      trees, we need to clean them up before really freeing the target block
80  *      group.
81  *
82  * The main complexity is in steps 2.2 and 2.3.
83  *
84  * The entry point of relocation is relocate_block_group() function.
85  */
86 
87 #define RELOCATION_RESERVED_NODES	256
88 /*
89  * map address of tree root to tree
90  */
91 struct mapping_node {
92 	struct {
93 		struct rb_node rb_node;
94 		u64 bytenr;
95 	}; /* Use rb_simle_node for search/insert */
96 	void *data;
97 };
98 
99 struct mapping_tree {
100 	struct rb_root rb_root;
101 	spinlock_t lock;
102 };
103 
104 /*
105  * present a tree block to process
106  */
107 struct tree_block {
108 	struct {
109 		struct rb_node rb_node;
110 		u64 bytenr;
111 	}; /* Use rb_simple_node for search/insert */
112 	u64 owner;
113 	struct btrfs_key key;
114 	unsigned int level:8;
115 	unsigned int key_ready:1;
116 };
117 
118 #define MAX_EXTENTS 128
119 
120 struct file_extent_cluster {
121 	u64 start;
122 	u64 end;
123 	u64 boundary[MAX_EXTENTS];
124 	unsigned int nr;
125 };
126 
127 struct reloc_control {
128 	/* block group to relocate */
129 	struct btrfs_block_group *block_group;
130 	/* extent tree */
131 	struct btrfs_root *extent_root;
132 	/* inode for moving data */
133 	struct inode *data_inode;
134 
135 	struct btrfs_block_rsv *block_rsv;
136 
137 	struct btrfs_backref_cache backref_cache;
138 
139 	struct file_extent_cluster cluster;
140 	/* tree blocks have been processed */
141 	struct extent_io_tree processed_blocks;
142 	/* map start of tree root to corresponding reloc tree */
143 	struct mapping_tree reloc_root_tree;
144 	/* list of reloc trees */
145 	struct list_head reloc_roots;
146 	/* list of subvolume trees that get relocated */
147 	struct list_head dirty_subvol_roots;
148 	/* size of metadata reservation for merging reloc trees */
149 	u64 merging_rsv_size;
150 	/* size of relocated tree nodes */
151 	u64 nodes_relocated;
152 	/* reserved size for block group relocation*/
153 	u64 reserved_bytes;
154 
155 	u64 search_start;
156 	u64 extents_found;
157 
158 	unsigned int stage:8;
159 	unsigned int create_reloc_tree:1;
160 	unsigned int merge_reloc_tree:1;
161 	unsigned int found_file_extent:1;
162 };
163 
164 /* stages of data relocation */
165 #define MOVE_DATA_EXTENTS	0
166 #define UPDATE_DATA_PTRS	1
167 
168 static void mark_block_processed(struct reloc_control *rc,
169 				 struct btrfs_backref_node *node)
170 {
171 	u32 blocksize;
172 
173 	if (node->level == 0 ||
174 	    in_range(node->bytenr, rc->block_group->start,
175 		     rc->block_group->length)) {
176 		blocksize = rc->extent_root->fs_info->nodesize;
177 		set_extent_bit(&rc->processed_blocks, node->bytenr,
178 			       node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
179 	}
180 	node->processed = 1;
181 }
182 
183 
184 static void mapping_tree_init(struct mapping_tree *tree)
185 {
186 	tree->rb_root = RB_ROOT;
187 	spin_lock_init(&tree->lock);
188 }
189 
190 /*
191  * walk up backref nodes until reach node presents tree root
192  */
193 static struct btrfs_backref_node *walk_up_backref(
194 		struct btrfs_backref_node *node,
195 		struct btrfs_backref_edge *edges[], int *index)
196 {
197 	struct btrfs_backref_edge *edge;
198 	int idx = *index;
199 
200 	while (!list_empty(&node->upper)) {
201 		edge = list_entry(node->upper.next,
202 				  struct btrfs_backref_edge, list[LOWER]);
203 		edges[idx++] = edge;
204 		node = edge->node[UPPER];
205 	}
206 	BUG_ON(node->detached);
207 	*index = idx;
208 	return node;
209 }
210 
211 /*
212  * walk down backref nodes to find start of next reference path
213  */
214 static struct btrfs_backref_node *walk_down_backref(
215 		struct btrfs_backref_edge *edges[], int *index)
216 {
217 	struct btrfs_backref_edge *edge;
218 	struct btrfs_backref_node *lower;
219 	int idx = *index;
220 
221 	while (idx > 0) {
222 		edge = edges[idx - 1];
223 		lower = edge->node[LOWER];
224 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
225 			idx--;
226 			continue;
227 		}
228 		edge = list_entry(edge->list[LOWER].next,
229 				  struct btrfs_backref_edge, list[LOWER]);
230 		edges[idx - 1] = edge;
231 		*index = idx;
232 		return edge->node[UPPER];
233 	}
234 	*index = 0;
235 	return NULL;
236 }
237 
238 static void update_backref_node(struct btrfs_backref_cache *cache,
239 				struct btrfs_backref_node *node, u64 bytenr)
240 {
241 	struct rb_node *rb_node;
242 	rb_erase(&node->rb_node, &cache->rb_root);
243 	node->bytenr = bytenr;
244 	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
245 	if (rb_node)
246 		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
247 }
248 
249 /*
250  * update backref cache after a transaction commit
251  */
252 static int update_backref_cache(struct btrfs_trans_handle *trans,
253 				struct btrfs_backref_cache *cache)
254 {
255 	struct btrfs_backref_node *node;
256 	int level = 0;
257 
258 	if (cache->last_trans == 0) {
259 		cache->last_trans = trans->transid;
260 		return 0;
261 	}
262 
263 	if (cache->last_trans == trans->transid)
264 		return 0;
265 
266 	/*
267 	 * detached nodes are used to avoid unnecessary backref
268 	 * lookup. transaction commit changes the extent tree.
269 	 * so the detached nodes are no longer useful.
270 	 */
271 	while (!list_empty(&cache->detached)) {
272 		node = list_entry(cache->detached.next,
273 				  struct btrfs_backref_node, list);
274 		btrfs_backref_cleanup_node(cache, node);
275 	}
276 
277 	while (!list_empty(&cache->changed)) {
278 		node = list_entry(cache->changed.next,
279 				  struct btrfs_backref_node, list);
280 		list_del_init(&node->list);
281 		BUG_ON(node->pending);
282 		update_backref_node(cache, node, node->new_bytenr);
283 	}
284 
285 	/*
286 	 * some nodes can be left in the pending list if there were
287 	 * errors during processing the pending nodes.
288 	 */
289 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
290 		list_for_each_entry(node, &cache->pending[level], list) {
291 			BUG_ON(!node->pending);
292 			if (node->bytenr == node->new_bytenr)
293 				continue;
294 			update_backref_node(cache, node, node->new_bytenr);
295 		}
296 	}
297 
298 	cache->last_trans = 0;
299 	return 1;
300 }
301 
302 static bool reloc_root_is_dead(struct btrfs_root *root)
303 {
304 	/*
305 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
306 	 * btrfs_update_reloc_root. We need to see the updated bit before
307 	 * trying to access reloc_root
308 	 */
309 	smp_rmb();
310 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
311 		return true;
312 	return false;
313 }
314 
315 /*
316  * Check if this subvolume tree has valid reloc tree.
317  *
318  * Reloc tree after swap is considered dead, thus not considered as valid.
319  * This is enough for most callers, as they don't distinguish dead reloc root
320  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
321  * special case.
322  */
323 static bool have_reloc_root(struct btrfs_root *root)
324 {
325 	if (reloc_root_is_dead(root))
326 		return false;
327 	if (!root->reloc_root)
328 		return false;
329 	return true;
330 }
331 
332 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
333 {
334 	struct btrfs_root *reloc_root;
335 
336 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
337 		return 0;
338 
339 	/* This root has been merged with its reloc tree, we can ignore it */
340 	if (reloc_root_is_dead(root))
341 		return 1;
342 
343 	reloc_root = root->reloc_root;
344 	if (!reloc_root)
345 		return 0;
346 
347 	if (btrfs_header_generation(reloc_root->commit_root) ==
348 	    root->fs_info->running_transaction->transid)
349 		return 0;
350 	/*
351 	 * if there is reloc tree and it was created in previous
352 	 * transaction backref lookup can find the reloc tree,
353 	 * so backref node for the fs tree root is useless for
354 	 * relocation.
355 	 */
356 	return 1;
357 }
358 
359 /*
360  * find reloc tree by address of tree root
361  */
362 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
363 {
364 	struct reloc_control *rc = fs_info->reloc_ctl;
365 	struct rb_node *rb_node;
366 	struct mapping_node *node;
367 	struct btrfs_root *root = NULL;
368 
369 	ASSERT(rc);
370 	spin_lock(&rc->reloc_root_tree.lock);
371 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
372 	if (rb_node) {
373 		node = rb_entry(rb_node, struct mapping_node, rb_node);
374 		root = node->data;
375 	}
376 	spin_unlock(&rc->reloc_root_tree.lock);
377 	return btrfs_grab_root(root);
378 }
379 
380 /*
381  * For useless nodes, do two major clean ups:
382  *
383  * - Cleanup the children edges and nodes
384  *   If child node is also orphan (no parent) during cleanup, then the child
385  *   node will also be cleaned up.
386  *
387  * - Freeing up leaves (level 0), keeps nodes detached
388  *   For nodes, the node is still cached as "detached"
389  *
390  * Return false if @node is not in the @useless_nodes list.
391  * Return true if @node is in the @useless_nodes list.
392  */
393 static bool handle_useless_nodes(struct reloc_control *rc,
394 				 struct btrfs_backref_node *node)
395 {
396 	struct btrfs_backref_cache *cache = &rc->backref_cache;
397 	struct list_head *useless_node = &cache->useless_node;
398 	bool ret = false;
399 
400 	while (!list_empty(useless_node)) {
401 		struct btrfs_backref_node *cur;
402 
403 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
404 				 list);
405 		list_del_init(&cur->list);
406 
407 		/* Only tree root nodes can be added to @useless_nodes */
408 		ASSERT(list_empty(&cur->upper));
409 
410 		if (cur == node)
411 			ret = true;
412 
413 		/* The node is the lowest node */
414 		if (cur->lowest) {
415 			list_del_init(&cur->lower);
416 			cur->lowest = 0;
417 		}
418 
419 		/* Cleanup the lower edges */
420 		while (!list_empty(&cur->lower)) {
421 			struct btrfs_backref_edge *edge;
422 			struct btrfs_backref_node *lower;
423 
424 			edge = list_entry(cur->lower.next,
425 					struct btrfs_backref_edge, list[UPPER]);
426 			list_del(&edge->list[UPPER]);
427 			list_del(&edge->list[LOWER]);
428 			lower = edge->node[LOWER];
429 			btrfs_backref_free_edge(cache, edge);
430 
431 			/* Child node is also orphan, queue for cleanup */
432 			if (list_empty(&lower->upper))
433 				list_add(&lower->list, useless_node);
434 		}
435 		/* Mark this block processed for relocation */
436 		mark_block_processed(rc, cur);
437 
438 		/*
439 		 * Backref nodes for tree leaves are deleted from the cache.
440 		 * Backref nodes for upper level tree blocks are left in the
441 		 * cache to avoid unnecessary backref lookup.
442 		 */
443 		if (cur->level > 0) {
444 			list_add(&cur->list, &cache->detached);
445 			cur->detached = 1;
446 		} else {
447 			rb_erase(&cur->rb_node, &cache->rb_root);
448 			btrfs_backref_free_node(cache, cur);
449 		}
450 	}
451 	return ret;
452 }
453 
454 /*
455  * Build backref tree for a given tree block. Root of the backref tree
456  * corresponds the tree block, leaves of the backref tree correspond roots of
457  * b-trees that reference the tree block.
458  *
459  * The basic idea of this function is check backrefs of a given block to find
460  * upper level blocks that reference the block, and then check backrefs of
461  * these upper level blocks recursively. The recursion stops when tree root is
462  * reached or backrefs for the block is cached.
463  *
464  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
465  * all upper level blocks that directly/indirectly reference the block are also
466  * cached.
467  */
468 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
469 			struct reloc_control *rc, struct btrfs_key *node_key,
470 			int level, u64 bytenr)
471 {
472 	struct btrfs_backref_iter *iter;
473 	struct btrfs_backref_cache *cache = &rc->backref_cache;
474 	/* For searching parent of TREE_BLOCK_REF */
475 	struct btrfs_path *path;
476 	struct btrfs_backref_node *cur;
477 	struct btrfs_backref_node *node = NULL;
478 	struct btrfs_backref_edge *edge;
479 	int ret;
480 	int err = 0;
481 
482 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
483 	if (!iter)
484 		return ERR_PTR(-ENOMEM);
485 	path = btrfs_alloc_path();
486 	if (!path) {
487 		err = -ENOMEM;
488 		goto out;
489 	}
490 
491 	node = btrfs_backref_alloc_node(cache, bytenr, level);
492 	if (!node) {
493 		err = -ENOMEM;
494 		goto out;
495 	}
496 
497 	node->lowest = 1;
498 	cur = node;
499 
500 	/* Breadth-first search to build backref cache */
501 	do {
502 		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
503 						  cur);
504 		if (ret < 0) {
505 			err = ret;
506 			goto out;
507 		}
508 		edge = list_first_entry_or_null(&cache->pending_edge,
509 				struct btrfs_backref_edge, list[UPPER]);
510 		/*
511 		 * The pending list isn't empty, take the first block to
512 		 * process
513 		 */
514 		if (edge) {
515 			list_del_init(&edge->list[UPPER]);
516 			cur = edge->node[UPPER];
517 		}
518 	} while (edge);
519 
520 	/* Finish the upper linkage of newly added edges/nodes */
521 	ret = btrfs_backref_finish_upper_links(cache, node);
522 	if (ret < 0) {
523 		err = ret;
524 		goto out;
525 	}
526 
527 	if (handle_useless_nodes(rc, node))
528 		node = NULL;
529 out:
530 	btrfs_backref_iter_free(iter);
531 	btrfs_free_path(path);
532 	if (err) {
533 		btrfs_backref_error_cleanup(cache, node);
534 		return ERR_PTR(err);
535 	}
536 	ASSERT(!node || !node->detached);
537 	ASSERT(list_empty(&cache->useless_node) &&
538 	       list_empty(&cache->pending_edge));
539 	return node;
540 }
541 
542 /*
543  * helper to add backref node for the newly created snapshot.
544  * the backref node is created by cloning backref node that
545  * corresponds to root of source tree
546  */
547 static int clone_backref_node(struct btrfs_trans_handle *trans,
548 			      struct reloc_control *rc,
549 			      struct btrfs_root *src,
550 			      struct btrfs_root *dest)
551 {
552 	struct btrfs_root *reloc_root = src->reloc_root;
553 	struct btrfs_backref_cache *cache = &rc->backref_cache;
554 	struct btrfs_backref_node *node = NULL;
555 	struct btrfs_backref_node *new_node;
556 	struct btrfs_backref_edge *edge;
557 	struct btrfs_backref_edge *new_edge;
558 	struct rb_node *rb_node;
559 
560 	if (cache->last_trans > 0)
561 		update_backref_cache(trans, cache);
562 
563 	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
564 	if (rb_node) {
565 		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
566 		if (node->detached)
567 			node = NULL;
568 		else
569 			BUG_ON(node->new_bytenr != reloc_root->node->start);
570 	}
571 
572 	if (!node) {
573 		rb_node = rb_simple_search(&cache->rb_root,
574 					   reloc_root->commit_root->start);
575 		if (rb_node) {
576 			node = rb_entry(rb_node, struct btrfs_backref_node,
577 					rb_node);
578 			BUG_ON(node->detached);
579 		}
580 	}
581 
582 	if (!node)
583 		return 0;
584 
585 	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
586 					    node->level);
587 	if (!new_node)
588 		return -ENOMEM;
589 
590 	new_node->lowest = node->lowest;
591 	new_node->checked = 1;
592 	new_node->root = btrfs_grab_root(dest);
593 	ASSERT(new_node->root);
594 
595 	if (!node->lowest) {
596 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
597 			new_edge = btrfs_backref_alloc_edge(cache);
598 			if (!new_edge)
599 				goto fail;
600 
601 			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
602 						new_node, LINK_UPPER);
603 		}
604 	} else {
605 		list_add_tail(&new_node->lower, &cache->leaves);
606 	}
607 
608 	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
609 				   &new_node->rb_node);
610 	if (rb_node)
611 		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
612 
613 	if (!new_node->lowest) {
614 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
615 			list_add_tail(&new_edge->list[LOWER],
616 				      &new_edge->node[LOWER]->upper);
617 		}
618 	}
619 	return 0;
620 fail:
621 	while (!list_empty(&new_node->lower)) {
622 		new_edge = list_entry(new_node->lower.next,
623 				      struct btrfs_backref_edge, list[UPPER]);
624 		list_del(&new_edge->list[UPPER]);
625 		btrfs_backref_free_edge(cache, new_edge);
626 	}
627 	btrfs_backref_free_node(cache, new_node);
628 	return -ENOMEM;
629 }
630 
631 /*
632  * helper to add 'address of tree root -> reloc tree' mapping
633  */
634 static int __must_check __add_reloc_root(struct btrfs_root *root)
635 {
636 	struct btrfs_fs_info *fs_info = root->fs_info;
637 	struct rb_node *rb_node;
638 	struct mapping_node *node;
639 	struct reloc_control *rc = fs_info->reloc_ctl;
640 
641 	node = kmalloc(sizeof(*node), GFP_NOFS);
642 	if (!node)
643 		return -ENOMEM;
644 
645 	node->bytenr = root->commit_root->start;
646 	node->data = root;
647 
648 	spin_lock(&rc->reloc_root_tree.lock);
649 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
650 				   node->bytenr, &node->rb_node);
651 	spin_unlock(&rc->reloc_root_tree.lock);
652 	if (rb_node) {
653 		btrfs_err(fs_info,
654 			    "Duplicate root found for start=%llu while inserting into relocation tree",
655 			    node->bytenr);
656 		return -EEXIST;
657 	}
658 
659 	list_add_tail(&root->root_list, &rc->reloc_roots);
660 	return 0;
661 }
662 
663 /*
664  * helper to delete the 'address of tree root -> reloc tree'
665  * mapping
666  */
667 static void __del_reloc_root(struct btrfs_root *root)
668 {
669 	struct btrfs_fs_info *fs_info = root->fs_info;
670 	struct rb_node *rb_node;
671 	struct mapping_node *node = NULL;
672 	struct reloc_control *rc = fs_info->reloc_ctl;
673 	bool put_ref = false;
674 
675 	if (rc && root->node) {
676 		spin_lock(&rc->reloc_root_tree.lock);
677 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
678 					   root->commit_root->start);
679 		if (rb_node) {
680 			node = rb_entry(rb_node, struct mapping_node, rb_node);
681 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
682 			RB_CLEAR_NODE(&node->rb_node);
683 		}
684 		spin_unlock(&rc->reloc_root_tree.lock);
685 		ASSERT(!node || (struct btrfs_root *)node->data == root);
686 	}
687 
688 	/*
689 	 * We only put the reloc root here if it's on the list.  There's a lot
690 	 * of places where the pattern is to splice the rc->reloc_roots, process
691 	 * the reloc roots, and then add the reloc root back onto
692 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
693 	 * list we don't want the reference being dropped, because the guy
694 	 * messing with the list is in charge of the reference.
695 	 */
696 	spin_lock(&fs_info->trans_lock);
697 	if (!list_empty(&root->root_list)) {
698 		put_ref = true;
699 		list_del_init(&root->root_list);
700 	}
701 	spin_unlock(&fs_info->trans_lock);
702 	if (put_ref)
703 		btrfs_put_root(root);
704 	kfree(node);
705 }
706 
707 /*
708  * helper to update the 'address of tree root -> reloc tree'
709  * mapping
710  */
711 static int __update_reloc_root(struct btrfs_root *root)
712 {
713 	struct btrfs_fs_info *fs_info = root->fs_info;
714 	struct rb_node *rb_node;
715 	struct mapping_node *node = NULL;
716 	struct reloc_control *rc = fs_info->reloc_ctl;
717 
718 	spin_lock(&rc->reloc_root_tree.lock);
719 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
720 				   root->commit_root->start);
721 	if (rb_node) {
722 		node = rb_entry(rb_node, struct mapping_node, rb_node);
723 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
724 	}
725 	spin_unlock(&rc->reloc_root_tree.lock);
726 
727 	if (!node)
728 		return 0;
729 	BUG_ON((struct btrfs_root *)node->data != root);
730 
731 	spin_lock(&rc->reloc_root_tree.lock);
732 	node->bytenr = root->node->start;
733 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
734 				   node->bytenr, &node->rb_node);
735 	spin_unlock(&rc->reloc_root_tree.lock);
736 	if (rb_node)
737 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
738 	return 0;
739 }
740 
741 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
742 					struct btrfs_root *root, u64 objectid)
743 {
744 	struct btrfs_fs_info *fs_info = root->fs_info;
745 	struct btrfs_root *reloc_root;
746 	struct extent_buffer *eb;
747 	struct btrfs_root_item *root_item;
748 	struct btrfs_key root_key;
749 	int ret = 0;
750 	bool must_abort = false;
751 
752 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
753 	if (!root_item)
754 		return ERR_PTR(-ENOMEM);
755 
756 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
757 	root_key.type = BTRFS_ROOT_ITEM_KEY;
758 	root_key.offset = objectid;
759 
760 	if (root->root_key.objectid == objectid) {
761 		u64 commit_root_gen;
762 
763 		/* called by btrfs_init_reloc_root */
764 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
765 				      BTRFS_TREE_RELOC_OBJECTID);
766 		if (ret)
767 			goto fail;
768 
769 		/*
770 		 * Set the last_snapshot field to the generation of the commit
771 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
772 		 * correctly (returns true) when the relocation root is created
773 		 * either inside the critical section of a transaction commit
774 		 * (through transaction.c:qgroup_account_snapshot()) and when
775 		 * it's created before the transaction commit is started.
776 		 */
777 		commit_root_gen = btrfs_header_generation(root->commit_root);
778 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
779 	} else {
780 		/*
781 		 * called by btrfs_reloc_post_snapshot_hook.
782 		 * the source tree is a reloc tree, all tree blocks
783 		 * modified after it was created have RELOC flag
784 		 * set in their headers. so it's OK to not update
785 		 * the 'last_snapshot'.
786 		 */
787 		ret = btrfs_copy_root(trans, root, root->node, &eb,
788 				      BTRFS_TREE_RELOC_OBJECTID);
789 		if (ret)
790 			goto fail;
791 	}
792 
793 	/*
794 	 * We have changed references at this point, we must abort the
795 	 * transaction if anything fails.
796 	 */
797 	must_abort = true;
798 
799 	memcpy(root_item, &root->root_item, sizeof(*root_item));
800 	btrfs_set_root_bytenr(root_item, eb->start);
801 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
802 	btrfs_set_root_generation(root_item, trans->transid);
803 
804 	if (root->root_key.objectid == objectid) {
805 		btrfs_set_root_refs(root_item, 0);
806 		memset(&root_item->drop_progress, 0,
807 		       sizeof(struct btrfs_disk_key));
808 		btrfs_set_root_drop_level(root_item, 0);
809 	}
810 
811 	btrfs_tree_unlock(eb);
812 	free_extent_buffer(eb);
813 
814 	ret = btrfs_insert_root(trans, fs_info->tree_root,
815 				&root_key, root_item);
816 	if (ret)
817 		goto fail;
818 
819 	kfree(root_item);
820 
821 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
822 	if (IS_ERR(reloc_root)) {
823 		ret = PTR_ERR(reloc_root);
824 		goto abort;
825 	}
826 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
827 	reloc_root->last_trans = trans->transid;
828 	return reloc_root;
829 fail:
830 	kfree(root_item);
831 abort:
832 	if (must_abort)
833 		btrfs_abort_transaction(trans, ret);
834 	return ERR_PTR(ret);
835 }
836 
837 /*
838  * create reloc tree for a given fs tree. reloc tree is just a
839  * snapshot of the fs tree with special root objectid.
840  *
841  * The reloc_root comes out of here with two references, one for
842  * root->reloc_root, and another for being on the rc->reloc_roots list.
843  */
844 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
845 			  struct btrfs_root *root)
846 {
847 	struct btrfs_fs_info *fs_info = root->fs_info;
848 	struct btrfs_root *reloc_root;
849 	struct reloc_control *rc = fs_info->reloc_ctl;
850 	struct btrfs_block_rsv *rsv;
851 	int clear_rsv = 0;
852 	int ret;
853 
854 	if (!rc)
855 		return 0;
856 
857 	/*
858 	 * The subvolume has reloc tree but the swap is finished, no need to
859 	 * create/update the dead reloc tree
860 	 */
861 	if (reloc_root_is_dead(root))
862 		return 0;
863 
864 	/*
865 	 * This is subtle but important.  We do not do
866 	 * record_root_in_transaction for reloc roots, instead we record their
867 	 * corresponding fs root, and then here we update the last trans for the
868 	 * reloc root.  This means that we have to do this for the entire life
869 	 * of the reloc root, regardless of which stage of the relocation we are
870 	 * in.
871 	 */
872 	if (root->reloc_root) {
873 		reloc_root = root->reloc_root;
874 		reloc_root->last_trans = trans->transid;
875 		return 0;
876 	}
877 
878 	/*
879 	 * We are merging reloc roots, we do not need new reloc trees.  Also
880 	 * reloc trees never need their own reloc tree.
881 	 */
882 	if (!rc->create_reloc_tree ||
883 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
884 		return 0;
885 
886 	if (!trans->reloc_reserved) {
887 		rsv = trans->block_rsv;
888 		trans->block_rsv = rc->block_rsv;
889 		clear_rsv = 1;
890 	}
891 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
892 	if (clear_rsv)
893 		trans->block_rsv = rsv;
894 	if (IS_ERR(reloc_root))
895 		return PTR_ERR(reloc_root);
896 
897 	ret = __add_reloc_root(reloc_root);
898 	ASSERT(ret != -EEXIST);
899 	if (ret) {
900 		/* Pairs with create_reloc_root */
901 		btrfs_put_root(reloc_root);
902 		return ret;
903 	}
904 	root->reloc_root = btrfs_grab_root(reloc_root);
905 	return 0;
906 }
907 
908 /*
909  * update root item of reloc tree
910  */
911 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
912 			    struct btrfs_root *root)
913 {
914 	struct btrfs_fs_info *fs_info = root->fs_info;
915 	struct btrfs_root *reloc_root;
916 	struct btrfs_root_item *root_item;
917 	int ret;
918 
919 	if (!have_reloc_root(root))
920 		return 0;
921 
922 	reloc_root = root->reloc_root;
923 	root_item = &reloc_root->root_item;
924 
925 	/*
926 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
927 	 * the root.  We have the ref for root->reloc_root, but just in case
928 	 * hold it while we update the reloc root.
929 	 */
930 	btrfs_grab_root(reloc_root);
931 
932 	/* root->reloc_root will stay until current relocation finished */
933 	if (fs_info->reloc_ctl->merge_reloc_tree &&
934 	    btrfs_root_refs(root_item) == 0) {
935 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
936 		/*
937 		 * Mark the tree as dead before we change reloc_root so
938 		 * have_reloc_root will not touch it from now on.
939 		 */
940 		smp_wmb();
941 		__del_reloc_root(reloc_root);
942 	}
943 
944 	if (reloc_root->commit_root != reloc_root->node) {
945 		__update_reloc_root(reloc_root);
946 		btrfs_set_root_node(root_item, reloc_root->node);
947 		free_extent_buffer(reloc_root->commit_root);
948 		reloc_root->commit_root = btrfs_root_node(reloc_root);
949 	}
950 
951 	ret = btrfs_update_root(trans, fs_info->tree_root,
952 				&reloc_root->root_key, root_item);
953 	btrfs_put_root(reloc_root);
954 	return ret;
955 }
956 
957 /*
958  * helper to find first cached inode with inode number >= objectid
959  * in a subvolume
960  */
961 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
962 {
963 	struct rb_node *node;
964 	struct rb_node *prev;
965 	struct btrfs_inode *entry;
966 	struct inode *inode;
967 
968 	spin_lock(&root->inode_lock);
969 again:
970 	node = root->inode_tree.rb_node;
971 	prev = NULL;
972 	while (node) {
973 		prev = node;
974 		entry = rb_entry(node, struct btrfs_inode, rb_node);
975 
976 		if (objectid < btrfs_ino(entry))
977 			node = node->rb_left;
978 		else if (objectid > btrfs_ino(entry))
979 			node = node->rb_right;
980 		else
981 			break;
982 	}
983 	if (!node) {
984 		while (prev) {
985 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
986 			if (objectid <= btrfs_ino(entry)) {
987 				node = prev;
988 				break;
989 			}
990 			prev = rb_next(prev);
991 		}
992 	}
993 	while (node) {
994 		entry = rb_entry(node, struct btrfs_inode, rb_node);
995 		inode = igrab(&entry->vfs_inode);
996 		if (inode) {
997 			spin_unlock(&root->inode_lock);
998 			return inode;
999 		}
1000 
1001 		objectid = btrfs_ino(entry) + 1;
1002 		if (cond_resched_lock(&root->inode_lock))
1003 			goto again;
1004 
1005 		node = rb_next(node);
1006 	}
1007 	spin_unlock(&root->inode_lock);
1008 	return NULL;
1009 }
1010 
1011 /*
1012  * get new location of data
1013  */
1014 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1015 			    u64 bytenr, u64 num_bytes)
1016 {
1017 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1018 	struct btrfs_path *path;
1019 	struct btrfs_file_extent_item *fi;
1020 	struct extent_buffer *leaf;
1021 	int ret;
1022 
1023 	path = btrfs_alloc_path();
1024 	if (!path)
1025 		return -ENOMEM;
1026 
1027 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1028 	ret = btrfs_lookup_file_extent(NULL, root, path,
1029 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1030 	if (ret < 0)
1031 		goto out;
1032 	if (ret > 0) {
1033 		ret = -ENOENT;
1034 		goto out;
1035 	}
1036 
1037 	leaf = path->nodes[0];
1038 	fi = btrfs_item_ptr(leaf, path->slots[0],
1039 			    struct btrfs_file_extent_item);
1040 
1041 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1042 	       btrfs_file_extent_compression(leaf, fi) ||
1043 	       btrfs_file_extent_encryption(leaf, fi) ||
1044 	       btrfs_file_extent_other_encoding(leaf, fi));
1045 
1046 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1047 		ret = -EINVAL;
1048 		goto out;
1049 	}
1050 
1051 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1052 	ret = 0;
1053 out:
1054 	btrfs_free_path(path);
1055 	return ret;
1056 }
1057 
1058 /*
1059  * update file extent items in the tree leaf to point to
1060  * the new locations.
1061  */
1062 static noinline_for_stack
1063 int replace_file_extents(struct btrfs_trans_handle *trans,
1064 			 struct reloc_control *rc,
1065 			 struct btrfs_root *root,
1066 			 struct extent_buffer *leaf)
1067 {
1068 	struct btrfs_fs_info *fs_info = root->fs_info;
1069 	struct btrfs_key key;
1070 	struct btrfs_file_extent_item *fi;
1071 	struct inode *inode = NULL;
1072 	u64 parent;
1073 	u64 bytenr;
1074 	u64 new_bytenr = 0;
1075 	u64 num_bytes;
1076 	u64 end;
1077 	u32 nritems;
1078 	u32 i;
1079 	int ret = 0;
1080 	int first = 1;
1081 	int dirty = 0;
1082 
1083 	if (rc->stage != UPDATE_DATA_PTRS)
1084 		return 0;
1085 
1086 	/* reloc trees always use full backref */
1087 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1088 		parent = leaf->start;
1089 	else
1090 		parent = 0;
1091 
1092 	nritems = btrfs_header_nritems(leaf);
1093 	for (i = 0; i < nritems; i++) {
1094 		struct btrfs_ref ref = { 0 };
1095 
1096 		cond_resched();
1097 		btrfs_item_key_to_cpu(leaf, &key, i);
1098 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1099 			continue;
1100 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1101 		if (btrfs_file_extent_type(leaf, fi) ==
1102 		    BTRFS_FILE_EXTENT_INLINE)
1103 			continue;
1104 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1105 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1106 		if (bytenr == 0)
1107 			continue;
1108 		if (!in_range(bytenr, rc->block_group->start,
1109 			      rc->block_group->length))
1110 			continue;
1111 
1112 		/*
1113 		 * if we are modifying block in fs tree, wait for read_folio
1114 		 * to complete and drop the extent cache
1115 		 */
1116 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1117 			if (first) {
1118 				inode = find_next_inode(root, key.objectid);
1119 				first = 0;
1120 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1121 				btrfs_add_delayed_iput(BTRFS_I(inode));
1122 				inode = find_next_inode(root, key.objectid);
1123 			}
1124 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1125 				struct extent_state *cached_state = NULL;
1126 
1127 				end = key.offset +
1128 				      btrfs_file_extent_num_bytes(leaf, fi);
1129 				WARN_ON(!IS_ALIGNED(key.offset,
1130 						    fs_info->sectorsize));
1131 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1132 				end--;
1133 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1134 						      key.offset, end,
1135 						      &cached_state);
1136 				if (!ret)
1137 					continue;
1138 
1139 				btrfs_drop_extent_map_range(BTRFS_I(inode),
1140 							    key.offset, end, true);
1141 				unlock_extent(&BTRFS_I(inode)->io_tree,
1142 					      key.offset, end, &cached_state);
1143 			}
1144 		}
1145 
1146 		ret = get_new_location(rc->data_inode, &new_bytenr,
1147 				       bytenr, num_bytes);
1148 		if (ret) {
1149 			/*
1150 			 * Don't have to abort since we've not changed anything
1151 			 * in the file extent yet.
1152 			 */
1153 			break;
1154 		}
1155 
1156 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1157 		dirty = 1;
1158 
1159 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1160 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1161 				       num_bytes, parent);
1162 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1163 				    key.objectid, key.offset,
1164 				    root->root_key.objectid, false);
1165 		ret = btrfs_inc_extent_ref(trans, &ref);
1166 		if (ret) {
1167 			btrfs_abort_transaction(trans, ret);
1168 			break;
1169 		}
1170 
1171 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1172 				       num_bytes, parent);
1173 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1174 				    key.objectid, key.offset,
1175 				    root->root_key.objectid, false);
1176 		ret = btrfs_free_extent(trans, &ref);
1177 		if (ret) {
1178 			btrfs_abort_transaction(trans, ret);
1179 			break;
1180 		}
1181 	}
1182 	if (dirty)
1183 		btrfs_mark_buffer_dirty(leaf);
1184 	if (inode)
1185 		btrfs_add_delayed_iput(BTRFS_I(inode));
1186 	return ret;
1187 }
1188 
1189 static noinline_for_stack
1190 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1191 		     struct btrfs_path *path, int level)
1192 {
1193 	struct btrfs_disk_key key1;
1194 	struct btrfs_disk_key key2;
1195 	btrfs_node_key(eb, &key1, slot);
1196 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1197 	return memcmp(&key1, &key2, sizeof(key1));
1198 }
1199 
1200 /*
1201  * try to replace tree blocks in fs tree with the new blocks
1202  * in reloc tree. tree blocks haven't been modified since the
1203  * reloc tree was create can be replaced.
1204  *
1205  * if a block was replaced, level of the block + 1 is returned.
1206  * if no block got replaced, 0 is returned. if there are other
1207  * errors, a negative error number is returned.
1208  */
1209 static noinline_for_stack
1210 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1211 		 struct btrfs_root *dest, struct btrfs_root *src,
1212 		 struct btrfs_path *path, struct btrfs_key *next_key,
1213 		 int lowest_level, int max_level)
1214 {
1215 	struct btrfs_fs_info *fs_info = dest->fs_info;
1216 	struct extent_buffer *eb;
1217 	struct extent_buffer *parent;
1218 	struct btrfs_ref ref = { 0 };
1219 	struct btrfs_key key;
1220 	u64 old_bytenr;
1221 	u64 new_bytenr;
1222 	u64 old_ptr_gen;
1223 	u64 new_ptr_gen;
1224 	u64 last_snapshot;
1225 	u32 blocksize;
1226 	int cow = 0;
1227 	int level;
1228 	int ret;
1229 	int slot;
1230 
1231 	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1232 	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1233 
1234 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1235 again:
1236 	slot = path->slots[lowest_level];
1237 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1238 
1239 	eb = btrfs_lock_root_node(dest);
1240 	level = btrfs_header_level(eb);
1241 
1242 	if (level < lowest_level) {
1243 		btrfs_tree_unlock(eb);
1244 		free_extent_buffer(eb);
1245 		return 0;
1246 	}
1247 
1248 	if (cow) {
1249 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1250 				      BTRFS_NESTING_COW);
1251 		if (ret) {
1252 			btrfs_tree_unlock(eb);
1253 			free_extent_buffer(eb);
1254 			return ret;
1255 		}
1256 	}
1257 
1258 	if (next_key) {
1259 		next_key->objectid = (u64)-1;
1260 		next_key->type = (u8)-1;
1261 		next_key->offset = (u64)-1;
1262 	}
1263 
1264 	parent = eb;
1265 	while (1) {
1266 		level = btrfs_header_level(parent);
1267 		ASSERT(level >= lowest_level);
1268 
1269 		ret = btrfs_bin_search(parent, 0, &key, &slot);
1270 		if (ret < 0)
1271 			break;
1272 		if (ret && slot > 0)
1273 			slot--;
1274 
1275 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1276 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1277 
1278 		old_bytenr = btrfs_node_blockptr(parent, slot);
1279 		blocksize = fs_info->nodesize;
1280 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1281 
1282 		if (level <= max_level) {
1283 			eb = path->nodes[level];
1284 			new_bytenr = btrfs_node_blockptr(eb,
1285 							path->slots[level]);
1286 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1287 							path->slots[level]);
1288 		} else {
1289 			new_bytenr = 0;
1290 			new_ptr_gen = 0;
1291 		}
1292 
1293 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1294 			ret = level;
1295 			break;
1296 		}
1297 
1298 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1299 		    memcmp_node_keys(parent, slot, path, level)) {
1300 			if (level <= lowest_level) {
1301 				ret = 0;
1302 				break;
1303 			}
1304 
1305 			eb = btrfs_read_node_slot(parent, slot);
1306 			if (IS_ERR(eb)) {
1307 				ret = PTR_ERR(eb);
1308 				break;
1309 			}
1310 			btrfs_tree_lock(eb);
1311 			if (cow) {
1312 				ret = btrfs_cow_block(trans, dest, eb, parent,
1313 						      slot, &eb,
1314 						      BTRFS_NESTING_COW);
1315 				if (ret) {
1316 					btrfs_tree_unlock(eb);
1317 					free_extent_buffer(eb);
1318 					break;
1319 				}
1320 			}
1321 
1322 			btrfs_tree_unlock(parent);
1323 			free_extent_buffer(parent);
1324 
1325 			parent = eb;
1326 			continue;
1327 		}
1328 
1329 		if (!cow) {
1330 			btrfs_tree_unlock(parent);
1331 			free_extent_buffer(parent);
1332 			cow = 1;
1333 			goto again;
1334 		}
1335 
1336 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1337 				      path->slots[level]);
1338 		btrfs_release_path(path);
1339 
1340 		path->lowest_level = level;
1341 		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1342 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1343 		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1344 		path->lowest_level = 0;
1345 		if (ret) {
1346 			if (ret > 0)
1347 				ret = -ENOENT;
1348 			break;
1349 		}
1350 
1351 		/*
1352 		 * Info qgroup to trace both subtrees.
1353 		 *
1354 		 * We must trace both trees.
1355 		 * 1) Tree reloc subtree
1356 		 *    If not traced, we will leak data numbers
1357 		 * 2) Fs subtree
1358 		 *    If not traced, we will double count old data
1359 		 *
1360 		 * We don't scan the subtree right now, but only record
1361 		 * the swapped tree blocks.
1362 		 * The real subtree rescan is delayed until we have new
1363 		 * CoW on the subtree root node before transaction commit.
1364 		 */
1365 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1366 				rc->block_group, parent, slot,
1367 				path->nodes[level], path->slots[level],
1368 				last_snapshot);
1369 		if (ret < 0)
1370 			break;
1371 		/*
1372 		 * swap blocks in fs tree and reloc tree.
1373 		 */
1374 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1375 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1376 		btrfs_mark_buffer_dirty(parent);
1377 
1378 		btrfs_set_node_blockptr(path->nodes[level],
1379 					path->slots[level], old_bytenr);
1380 		btrfs_set_node_ptr_generation(path->nodes[level],
1381 					      path->slots[level], old_ptr_gen);
1382 		btrfs_mark_buffer_dirty(path->nodes[level]);
1383 
1384 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1385 				       blocksize, path->nodes[level]->start);
1386 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1387 				    0, true);
1388 		ret = btrfs_inc_extent_ref(trans, &ref);
1389 		if (ret) {
1390 			btrfs_abort_transaction(trans, ret);
1391 			break;
1392 		}
1393 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1394 				       blocksize, 0);
1395 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1396 				    true);
1397 		ret = btrfs_inc_extent_ref(trans, &ref);
1398 		if (ret) {
1399 			btrfs_abort_transaction(trans, ret);
1400 			break;
1401 		}
1402 
1403 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1404 				       blocksize, path->nodes[level]->start);
1405 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1406 				    0, true);
1407 		ret = btrfs_free_extent(trans, &ref);
1408 		if (ret) {
1409 			btrfs_abort_transaction(trans, ret);
1410 			break;
1411 		}
1412 
1413 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1414 				       blocksize, 0);
1415 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1416 				    0, true);
1417 		ret = btrfs_free_extent(trans, &ref);
1418 		if (ret) {
1419 			btrfs_abort_transaction(trans, ret);
1420 			break;
1421 		}
1422 
1423 		btrfs_unlock_up_safe(path, 0);
1424 
1425 		ret = level;
1426 		break;
1427 	}
1428 	btrfs_tree_unlock(parent);
1429 	free_extent_buffer(parent);
1430 	return ret;
1431 }
1432 
1433 /*
1434  * helper to find next relocated block in reloc tree
1435  */
1436 static noinline_for_stack
1437 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1438 		       int *level)
1439 {
1440 	struct extent_buffer *eb;
1441 	int i;
1442 	u64 last_snapshot;
1443 	u32 nritems;
1444 
1445 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1446 
1447 	for (i = 0; i < *level; i++) {
1448 		free_extent_buffer(path->nodes[i]);
1449 		path->nodes[i] = NULL;
1450 	}
1451 
1452 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1453 		eb = path->nodes[i];
1454 		nritems = btrfs_header_nritems(eb);
1455 		while (path->slots[i] + 1 < nritems) {
1456 			path->slots[i]++;
1457 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1458 			    last_snapshot)
1459 				continue;
1460 
1461 			*level = i;
1462 			return 0;
1463 		}
1464 		free_extent_buffer(path->nodes[i]);
1465 		path->nodes[i] = NULL;
1466 	}
1467 	return 1;
1468 }
1469 
1470 /*
1471  * walk down reloc tree to find relocated block of lowest level
1472  */
1473 static noinline_for_stack
1474 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1475 			 int *level)
1476 {
1477 	struct extent_buffer *eb = NULL;
1478 	int i;
1479 	u64 ptr_gen = 0;
1480 	u64 last_snapshot;
1481 	u32 nritems;
1482 
1483 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1484 
1485 	for (i = *level; i > 0; i--) {
1486 		eb = path->nodes[i];
1487 		nritems = btrfs_header_nritems(eb);
1488 		while (path->slots[i] < nritems) {
1489 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1490 			if (ptr_gen > last_snapshot)
1491 				break;
1492 			path->slots[i]++;
1493 		}
1494 		if (path->slots[i] >= nritems) {
1495 			if (i == *level)
1496 				break;
1497 			*level = i + 1;
1498 			return 0;
1499 		}
1500 		if (i == 1) {
1501 			*level = i;
1502 			return 0;
1503 		}
1504 
1505 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1506 		if (IS_ERR(eb))
1507 			return PTR_ERR(eb);
1508 		BUG_ON(btrfs_header_level(eb) != i - 1);
1509 		path->nodes[i - 1] = eb;
1510 		path->slots[i - 1] = 0;
1511 	}
1512 	return 1;
1513 }
1514 
1515 /*
1516  * invalidate extent cache for file extents whose key in range of
1517  * [min_key, max_key)
1518  */
1519 static int invalidate_extent_cache(struct btrfs_root *root,
1520 				   struct btrfs_key *min_key,
1521 				   struct btrfs_key *max_key)
1522 {
1523 	struct btrfs_fs_info *fs_info = root->fs_info;
1524 	struct inode *inode = NULL;
1525 	u64 objectid;
1526 	u64 start, end;
1527 	u64 ino;
1528 
1529 	objectid = min_key->objectid;
1530 	while (1) {
1531 		struct extent_state *cached_state = NULL;
1532 
1533 		cond_resched();
1534 		iput(inode);
1535 
1536 		if (objectid > max_key->objectid)
1537 			break;
1538 
1539 		inode = find_next_inode(root, objectid);
1540 		if (!inode)
1541 			break;
1542 		ino = btrfs_ino(BTRFS_I(inode));
1543 
1544 		if (ino > max_key->objectid) {
1545 			iput(inode);
1546 			break;
1547 		}
1548 
1549 		objectid = ino + 1;
1550 		if (!S_ISREG(inode->i_mode))
1551 			continue;
1552 
1553 		if (unlikely(min_key->objectid == ino)) {
1554 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1555 				continue;
1556 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1557 				start = 0;
1558 			else {
1559 				start = min_key->offset;
1560 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1561 			}
1562 		} else {
1563 			start = 0;
1564 		}
1565 
1566 		if (unlikely(max_key->objectid == ino)) {
1567 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1568 				continue;
1569 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1570 				end = (u64)-1;
1571 			} else {
1572 				if (max_key->offset == 0)
1573 					continue;
1574 				end = max_key->offset;
1575 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1576 				end--;
1577 			}
1578 		} else {
1579 			end = (u64)-1;
1580 		}
1581 
1582 		/* the lock_extent waits for read_folio to complete */
1583 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1584 		btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1585 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1586 	}
1587 	return 0;
1588 }
1589 
1590 static int find_next_key(struct btrfs_path *path, int level,
1591 			 struct btrfs_key *key)
1592 
1593 {
1594 	while (level < BTRFS_MAX_LEVEL) {
1595 		if (!path->nodes[level])
1596 			break;
1597 		if (path->slots[level] + 1 <
1598 		    btrfs_header_nritems(path->nodes[level])) {
1599 			btrfs_node_key_to_cpu(path->nodes[level], key,
1600 					      path->slots[level] + 1);
1601 			return 0;
1602 		}
1603 		level++;
1604 	}
1605 	return 1;
1606 }
1607 
1608 /*
1609  * Insert current subvolume into reloc_control::dirty_subvol_roots
1610  */
1611 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1612 			       struct reloc_control *rc,
1613 			       struct btrfs_root *root)
1614 {
1615 	struct btrfs_root *reloc_root = root->reloc_root;
1616 	struct btrfs_root_item *reloc_root_item;
1617 	int ret;
1618 
1619 	/* @root must be a subvolume tree root with a valid reloc tree */
1620 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1621 	ASSERT(reloc_root);
1622 
1623 	reloc_root_item = &reloc_root->root_item;
1624 	memset(&reloc_root_item->drop_progress, 0,
1625 		sizeof(reloc_root_item->drop_progress));
1626 	btrfs_set_root_drop_level(reloc_root_item, 0);
1627 	btrfs_set_root_refs(reloc_root_item, 0);
1628 	ret = btrfs_update_reloc_root(trans, root);
1629 	if (ret)
1630 		return ret;
1631 
1632 	if (list_empty(&root->reloc_dirty_list)) {
1633 		btrfs_grab_root(root);
1634 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1635 	}
1636 
1637 	return 0;
1638 }
1639 
1640 static int clean_dirty_subvols(struct reloc_control *rc)
1641 {
1642 	struct btrfs_root *root;
1643 	struct btrfs_root *next;
1644 	int ret = 0;
1645 	int ret2;
1646 
1647 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1648 				 reloc_dirty_list) {
1649 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1650 			/* Merged subvolume, cleanup its reloc root */
1651 			struct btrfs_root *reloc_root = root->reloc_root;
1652 
1653 			list_del_init(&root->reloc_dirty_list);
1654 			root->reloc_root = NULL;
1655 			/*
1656 			 * Need barrier to ensure clear_bit() only happens after
1657 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1658 			 */
1659 			smp_wmb();
1660 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1661 			if (reloc_root) {
1662 				/*
1663 				 * btrfs_drop_snapshot drops our ref we hold for
1664 				 * ->reloc_root.  If it fails however we must
1665 				 * drop the ref ourselves.
1666 				 */
1667 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1668 				if (ret2 < 0) {
1669 					btrfs_put_root(reloc_root);
1670 					if (!ret)
1671 						ret = ret2;
1672 				}
1673 			}
1674 			btrfs_put_root(root);
1675 		} else {
1676 			/* Orphan reloc tree, just clean it up */
1677 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1678 			if (ret2 < 0) {
1679 				btrfs_put_root(root);
1680 				if (!ret)
1681 					ret = ret2;
1682 			}
1683 		}
1684 	}
1685 	return ret;
1686 }
1687 
1688 /*
1689  * merge the relocated tree blocks in reloc tree with corresponding
1690  * fs tree.
1691  */
1692 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1693 					       struct btrfs_root *root)
1694 {
1695 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1696 	struct btrfs_key key;
1697 	struct btrfs_key next_key;
1698 	struct btrfs_trans_handle *trans = NULL;
1699 	struct btrfs_root *reloc_root;
1700 	struct btrfs_root_item *root_item;
1701 	struct btrfs_path *path;
1702 	struct extent_buffer *leaf;
1703 	int reserve_level;
1704 	int level;
1705 	int max_level;
1706 	int replaced = 0;
1707 	int ret = 0;
1708 	u32 min_reserved;
1709 
1710 	path = btrfs_alloc_path();
1711 	if (!path)
1712 		return -ENOMEM;
1713 	path->reada = READA_FORWARD;
1714 
1715 	reloc_root = root->reloc_root;
1716 	root_item = &reloc_root->root_item;
1717 
1718 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1719 		level = btrfs_root_level(root_item);
1720 		atomic_inc(&reloc_root->node->refs);
1721 		path->nodes[level] = reloc_root->node;
1722 		path->slots[level] = 0;
1723 	} else {
1724 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1725 
1726 		level = btrfs_root_drop_level(root_item);
1727 		BUG_ON(level == 0);
1728 		path->lowest_level = level;
1729 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1730 		path->lowest_level = 0;
1731 		if (ret < 0) {
1732 			btrfs_free_path(path);
1733 			return ret;
1734 		}
1735 
1736 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1737 				      path->slots[level]);
1738 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1739 
1740 		btrfs_unlock_up_safe(path, 0);
1741 	}
1742 
1743 	/*
1744 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1745 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1746 	 * block COW, we COW at most from level 1 to root level for each tree.
1747 	 *
1748 	 * Thus the needed metadata size is at most root_level * nodesize,
1749 	 * and * 2 since we have two trees to COW.
1750 	 */
1751 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1752 	min_reserved = fs_info->nodesize * reserve_level * 2;
1753 	memset(&next_key, 0, sizeof(next_key));
1754 
1755 	while (1) {
1756 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1757 					     min_reserved,
1758 					     BTRFS_RESERVE_FLUSH_LIMIT);
1759 		if (ret)
1760 			goto out;
1761 		trans = btrfs_start_transaction(root, 0);
1762 		if (IS_ERR(trans)) {
1763 			ret = PTR_ERR(trans);
1764 			trans = NULL;
1765 			goto out;
1766 		}
1767 
1768 		/*
1769 		 * At this point we no longer have a reloc_control, so we can't
1770 		 * depend on btrfs_init_reloc_root to update our last_trans.
1771 		 *
1772 		 * But that's ok, we started the trans handle on our
1773 		 * corresponding fs_root, which means it's been added to the
1774 		 * dirty list.  At commit time we'll still call
1775 		 * btrfs_update_reloc_root() and update our root item
1776 		 * appropriately.
1777 		 */
1778 		reloc_root->last_trans = trans->transid;
1779 		trans->block_rsv = rc->block_rsv;
1780 
1781 		replaced = 0;
1782 		max_level = level;
1783 
1784 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1785 		if (ret < 0)
1786 			goto out;
1787 		if (ret > 0)
1788 			break;
1789 
1790 		if (!find_next_key(path, level, &key) &&
1791 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1792 			ret = 0;
1793 		} else {
1794 			ret = replace_path(trans, rc, root, reloc_root, path,
1795 					   &next_key, level, max_level);
1796 		}
1797 		if (ret < 0)
1798 			goto out;
1799 		if (ret > 0) {
1800 			level = ret;
1801 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1802 					      path->slots[level]);
1803 			replaced = 1;
1804 		}
1805 
1806 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1807 		if (ret > 0)
1808 			break;
1809 
1810 		BUG_ON(level == 0);
1811 		/*
1812 		 * save the merging progress in the drop_progress.
1813 		 * this is OK since root refs == 1 in this case.
1814 		 */
1815 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1816 			       path->slots[level]);
1817 		btrfs_set_root_drop_level(root_item, level);
1818 
1819 		btrfs_end_transaction_throttle(trans);
1820 		trans = NULL;
1821 
1822 		btrfs_btree_balance_dirty(fs_info);
1823 
1824 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1825 			invalidate_extent_cache(root, &key, &next_key);
1826 	}
1827 
1828 	/*
1829 	 * handle the case only one block in the fs tree need to be
1830 	 * relocated and the block is tree root.
1831 	 */
1832 	leaf = btrfs_lock_root_node(root);
1833 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1834 			      BTRFS_NESTING_COW);
1835 	btrfs_tree_unlock(leaf);
1836 	free_extent_buffer(leaf);
1837 out:
1838 	btrfs_free_path(path);
1839 
1840 	if (ret == 0) {
1841 		ret = insert_dirty_subvol(trans, rc, root);
1842 		if (ret)
1843 			btrfs_abort_transaction(trans, ret);
1844 	}
1845 
1846 	if (trans)
1847 		btrfs_end_transaction_throttle(trans);
1848 
1849 	btrfs_btree_balance_dirty(fs_info);
1850 
1851 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1852 		invalidate_extent_cache(root, &key, &next_key);
1853 
1854 	return ret;
1855 }
1856 
1857 static noinline_for_stack
1858 int prepare_to_merge(struct reloc_control *rc, int err)
1859 {
1860 	struct btrfs_root *root = rc->extent_root;
1861 	struct btrfs_fs_info *fs_info = root->fs_info;
1862 	struct btrfs_root *reloc_root;
1863 	struct btrfs_trans_handle *trans;
1864 	LIST_HEAD(reloc_roots);
1865 	u64 num_bytes = 0;
1866 	int ret;
1867 
1868 	mutex_lock(&fs_info->reloc_mutex);
1869 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1870 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1871 	mutex_unlock(&fs_info->reloc_mutex);
1872 
1873 again:
1874 	if (!err) {
1875 		num_bytes = rc->merging_rsv_size;
1876 		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1877 					  BTRFS_RESERVE_FLUSH_ALL);
1878 		if (ret)
1879 			err = ret;
1880 	}
1881 
1882 	trans = btrfs_join_transaction(rc->extent_root);
1883 	if (IS_ERR(trans)) {
1884 		if (!err)
1885 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1886 						num_bytes, NULL);
1887 		return PTR_ERR(trans);
1888 	}
1889 
1890 	if (!err) {
1891 		if (num_bytes != rc->merging_rsv_size) {
1892 			btrfs_end_transaction(trans);
1893 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1894 						num_bytes, NULL);
1895 			goto again;
1896 		}
1897 	}
1898 
1899 	rc->merge_reloc_tree = 1;
1900 
1901 	while (!list_empty(&rc->reloc_roots)) {
1902 		reloc_root = list_entry(rc->reloc_roots.next,
1903 					struct btrfs_root, root_list);
1904 		list_del_init(&reloc_root->root_list);
1905 
1906 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1907 				false);
1908 		if (IS_ERR(root)) {
1909 			/*
1910 			 * Even if we have an error we need this reloc root
1911 			 * back on our list so we can clean up properly.
1912 			 */
1913 			list_add(&reloc_root->root_list, &reloc_roots);
1914 			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1915 			if (!err)
1916 				err = PTR_ERR(root);
1917 			break;
1918 		}
1919 
1920 		if (unlikely(root->reloc_root != reloc_root)) {
1921 			if (root->reloc_root) {
1922 				btrfs_err(fs_info,
1923 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1924 					  root->root_key.objectid,
1925 					  root->reloc_root->root_key.objectid,
1926 					  root->reloc_root->root_key.type,
1927 					  root->reloc_root->root_key.offset,
1928 					  btrfs_root_generation(
1929 						  &root->reloc_root->root_item),
1930 					  reloc_root->root_key.objectid,
1931 					  reloc_root->root_key.type,
1932 					  reloc_root->root_key.offset,
1933 					  btrfs_root_generation(
1934 						  &reloc_root->root_item));
1935 			} else {
1936 				btrfs_err(fs_info,
1937 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1938 					  root->root_key.objectid,
1939 					  reloc_root->root_key.objectid,
1940 					  reloc_root->root_key.type,
1941 					  reloc_root->root_key.offset,
1942 					  btrfs_root_generation(
1943 						  &reloc_root->root_item));
1944 			}
1945 			list_add(&reloc_root->root_list, &reloc_roots);
1946 			btrfs_put_root(root);
1947 			btrfs_abort_transaction(trans, -EUCLEAN);
1948 			if (!err)
1949 				err = -EUCLEAN;
1950 			break;
1951 		}
1952 
1953 		/*
1954 		 * set reference count to 1, so btrfs_recover_relocation
1955 		 * knows it should resumes merging
1956 		 */
1957 		if (!err)
1958 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1959 		ret = btrfs_update_reloc_root(trans, root);
1960 
1961 		/*
1962 		 * Even if we have an error we need this reloc root back on our
1963 		 * list so we can clean up properly.
1964 		 */
1965 		list_add(&reloc_root->root_list, &reloc_roots);
1966 		btrfs_put_root(root);
1967 
1968 		if (ret) {
1969 			btrfs_abort_transaction(trans, ret);
1970 			if (!err)
1971 				err = ret;
1972 			break;
1973 		}
1974 	}
1975 
1976 	list_splice(&reloc_roots, &rc->reloc_roots);
1977 
1978 	if (!err)
1979 		err = btrfs_commit_transaction(trans);
1980 	else
1981 		btrfs_end_transaction(trans);
1982 	return err;
1983 }
1984 
1985 static noinline_for_stack
1986 void free_reloc_roots(struct list_head *list)
1987 {
1988 	struct btrfs_root *reloc_root, *tmp;
1989 
1990 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1991 		__del_reloc_root(reloc_root);
1992 }
1993 
1994 static noinline_for_stack
1995 void merge_reloc_roots(struct reloc_control *rc)
1996 {
1997 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1998 	struct btrfs_root *root;
1999 	struct btrfs_root *reloc_root;
2000 	LIST_HEAD(reloc_roots);
2001 	int found = 0;
2002 	int ret = 0;
2003 again:
2004 	root = rc->extent_root;
2005 
2006 	/*
2007 	 * this serializes us with btrfs_record_root_in_transaction,
2008 	 * we have to make sure nobody is in the middle of
2009 	 * adding their roots to the list while we are
2010 	 * doing this splice
2011 	 */
2012 	mutex_lock(&fs_info->reloc_mutex);
2013 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2014 	mutex_unlock(&fs_info->reloc_mutex);
2015 
2016 	while (!list_empty(&reloc_roots)) {
2017 		found = 1;
2018 		reloc_root = list_entry(reloc_roots.next,
2019 					struct btrfs_root, root_list);
2020 
2021 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
2022 					 false);
2023 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2024 			if (WARN_ON(IS_ERR(root))) {
2025 				/*
2026 				 * For recovery we read the fs roots on mount,
2027 				 * and if we didn't find the root then we marked
2028 				 * the reloc root as a garbage root.  For normal
2029 				 * relocation obviously the root should exist in
2030 				 * memory.  However there's no reason we can't
2031 				 * handle the error properly here just in case.
2032 				 */
2033 				ret = PTR_ERR(root);
2034 				goto out;
2035 			}
2036 			if (WARN_ON(root->reloc_root != reloc_root)) {
2037 				/*
2038 				 * This can happen if on-disk metadata has some
2039 				 * corruption, e.g. bad reloc tree key offset.
2040 				 */
2041 				ret = -EINVAL;
2042 				goto out;
2043 			}
2044 			ret = merge_reloc_root(rc, root);
2045 			btrfs_put_root(root);
2046 			if (ret) {
2047 				if (list_empty(&reloc_root->root_list))
2048 					list_add_tail(&reloc_root->root_list,
2049 						      &reloc_roots);
2050 				goto out;
2051 			}
2052 		} else {
2053 			if (!IS_ERR(root)) {
2054 				if (root->reloc_root == reloc_root) {
2055 					root->reloc_root = NULL;
2056 					btrfs_put_root(reloc_root);
2057 				}
2058 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2059 					  &root->state);
2060 				btrfs_put_root(root);
2061 			}
2062 
2063 			list_del_init(&reloc_root->root_list);
2064 			/* Don't forget to queue this reloc root for cleanup */
2065 			list_add_tail(&reloc_root->reloc_dirty_list,
2066 				      &rc->dirty_subvol_roots);
2067 		}
2068 	}
2069 
2070 	if (found) {
2071 		found = 0;
2072 		goto again;
2073 	}
2074 out:
2075 	if (ret) {
2076 		btrfs_handle_fs_error(fs_info, ret, NULL);
2077 		free_reloc_roots(&reloc_roots);
2078 
2079 		/* new reloc root may be added */
2080 		mutex_lock(&fs_info->reloc_mutex);
2081 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2082 		mutex_unlock(&fs_info->reloc_mutex);
2083 		free_reloc_roots(&reloc_roots);
2084 	}
2085 
2086 	/*
2087 	 * We used to have
2088 	 *
2089 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2090 	 *
2091 	 * here, but it's wrong.  If we fail to start the transaction in
2092 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2093 	 * have actually been removed from the reloc_root_tree rb tree.  This is
2094 	 * fine because we're bailing here, and we hold a reference on the root
2095 	 * for the list that holds it, so these roots will be cleaned up when we
2096 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2097 	 * will be cleaned up on unmount.
2098 	 *
2099 	 * The remaining nodes will be cleaned up by free_reloc_control.
2100 	 */
2101 }
2102 
2103 static void free_block_list(struct rb_root *blocks)
2104 {
2105 	struct tree_block *block;
2106 	struct rb_node *rb_node;
2107 	while ((rb_node = rb_first(blocks))) {
2108 		block = rb_entry(rb_node, struct tree_block, rb_node);
2109 		rb_erase(rb_node, blocks);
2110 		kfree(block);
2111 	}
2112 }
2113 
2114 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2115 				      struct btrfs_root *reloc_root)
2116 {
2117 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2118 	struct btrfs_root *root;
2119 	int ret;
2120 
2121 	if (reloc_root->last_trans == trans->transid)
2122 		return 0;
2123 
2124 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2125 
2126 	/*
2127 	 * This should succeed, since we can't have a reloc root without having
2128 	 * already looked up the actual root and created the reloc root for this
2129 	 * root.
2130 	 *
2131 	 * However if there's some sort of corruption where we have a ref to a
2132 	 * reloc root without a corresponding root this could return ENOENT.
2133 	 */
2134 	if (IS_ERR(root)) {
2135 		ASSERT(0);
2136 		return PTR_ERR(root);
2137 	}
2138 	if (root->reloc_root != reloc_root) {
2139 		ASSERT(0);
2140 		btrfs_err(fs_info,
2141 			  "root %llu has two reloc roots associated with it",
2142 			  reloc_root->root_key.offset);
2143 		btrfs_put_root(root);
2144 		return -EUCLEAN;
2145 	}
2146 	ret = btrfs_record_root_in_trans(trans, root);
2147 	btrfs_put_root(root);
2148 
2149 	return ret;
2150 }
2151 
2152 static noinline_for_stack
2153 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2154 				     struct reloc_control *rc,
2155 				     struct btrfs_backref_node *node,
2156 				     struct btrfs_backref_edge *edges[])
2157 {
2158 	struct btrfs_backref_node *next;
2159 	struct btrfs_root *root;
2160 	int index = 0;
2161 	int ret;
2162 
2163 	next = node;
2164 	while (1) {
2165 		cond_resched();
2166 		next = walk_up_backref(next, edges, &index);
2167 		root = next->root;
2168 
2169 		/*
2170 		 * If there is no root, then our references for this block are
2171 		 * incomplete, as we should be able to walk all the way up to a
2172 		 * block that is owned by a root.
2173 		 *
2174 		 * This path is only for SHAREABLE roots, so if we come upon a
2175 		 * non-SHAREABLE root then we have backrefs that resolve
2176 		 * improperly.
2177 		 *
2178 		 * Both of these cases indicate file system corruption, or a bug
2179 		 * in the backref walking code.
2180 		 */
2181 		if (!root) {
2182 			ASSERT(0);
2183 			btrfs_err(trans->fs_info,
2184 		"bytenr %llu doesn't have a backref path ending in a root",
2185 				  node->bytenr);
2186 			return ERR_PTR(-EUCLEAN);
2187 		}
2188 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2189 			ASSERT(0);
2190 			btrfs_err(trans->fs_info,
2191 	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2192 				  node->bytenr);
2193 			return ERR_PTR(-EUCLEAN);
2194 		}
2195 
2196 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2197 			ret = record_reloc_root_in_trans(trans, root);
2198 			if (ret)
2199 				return ERR_PTR(ret);
2200 			break;
2201 		}
2202 
2203 		ret = btrfs_record_root_in_trans(trans, root);
2204 		if (ret)
2205 			return ERR_PTR(ret);
2206 		root = root->reloc_root;
2207 
2208 		/*
2209 		 * We could have raced with another thread which failed, so
2210 		 * root->reloc_root may not be set, return ENOENT in this case.
2211 		 */
2212 		if (!root)
2213 			return ERR_PTR(-ENOENT);
2214 
2215 		if (next->new_bytenr != root->node->start) {
2216 			/*
2217 			 * We just created the reloc root, so we shouldn't have
2218 			 * ->new_bytenr set and this shouldn't be in the changed
2219 			 *  list.  If it is then we have multiple roots pointing
2220 			 *  at the same bytenr which indicates corruption, or
2221 			 *  we've made a mistake in the backref walking code.
2222 			 */
2223 			ASSERT(next->new_bytenr == 0);
2224 			ASSERT(list_empty(&next->list));
2225 			if (next->new_bytenr || !list_empty(&next->list)) {
2226 				btrfs_err(trans->fs_info,
2227 	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2228 					  node->bytenr, next->bytenr);
2229 				return ERR_PTR(-EUCLEAN);
2230 			}
2231 
2232 			next->new_bytenr = root->node->start;
2233 			btrfs_put_root(next->root);
2234 			next->root = btrfs_grab_root(root);
2235 			ASSERT(next->root);
2236 			list_add_tail(&next->list,
2237 				      &rc->backref_cache.changed);
2238 			mark_block_processed(rc, next);
2239 			break;
2240 		}
2241 
2242 		WARN_ON(1);
2243 		root = NULL;
2244 		next = walk_down_backref(edges, &index);
2245 		if (!next || next->level <= node->level)
2246 			break;
2247 	}
2248 	if (!root) {
2249 		/*
2250 		 * This can happen if there's fs corruption or if there's a bug
2251 		 * in the backref lookup code.
2252 		 */
2253 		ASSERT(0);
2254 		return ERR_PTR(-ENOENT);
2255 	}
2256 
2257 	next = node;
2258 	/* setup backref node path for btrfs_reloc_cow_block */
2259 	while (1) {
2260 		rc->backref_cache.path[next->level] = next;
2261 		if (--index < 0)
2262 			break;
2263 		next = edges[index]->node[UPPER];
2264 	}
2265 	return root;
2266 }
2267 
2268 /*
2269  * Select a tree root for relocation.
2270  *
2271  * Return NULL if the block is not shareable. We should use do_relocation() in
2272  * this case.
2273  *
2274  * Return a tree root pointer if the block is shareable.
2275  * Return -ENOENT if the block is root of reloc tree.
2276  */
2277 static noinline_for_stack
2278 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2279 {
2280 	struct btrfs_backref_node *next;
2281 	struct btrfs_root *root;
2282 	struct btrfs_root *fs_root = NULL;
2283 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2284 	int index = 0;
2285 
2286 	next = node;
2287 	while (1) {
2288 		cond_resched();
2289 		next = walk_up_backref(next, edges, &index);
2290 		root = next->root;
2291 
2292 		/*
2293 		 * This can occur if we have incomplete extent refs leading all
2294 		 * the way up a particular path, in this case return -EUCLEAN.
2295 		 */
2296 		if (!root)
2297 			return ERR_PTR(-EUCLEAN);
2298 
2299 		/* No other choice for non-shareable tree */
2300 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2301 			return root;
2302 
2303 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2304 			fs_root = root;
2305 
2306 		if (next != node)
2307 			return NULL;
2308 
2309 		next = walk_down_backref(edges, &index);
2310 		if (!next || next->level <= node->level)
2311 			break;
2312 	}
2313 
2314 	if (!fs_root)
2315 		return ERR_PTR(-ENOENT);
2316 	return fs_root;
2317 }
2318 
2319 static noinline_for_stack
2320 u64 calcu_metadata_size(struct reloc_control *rc,
2321 			struct btrfs_backref_node *node, int reserve)
2322 {
2323 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2324 	struct btrfs_backref_node *next = node;
2325 	struct btrfs_backref_edge *edge;
2326 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2327 	u64 num_bytes = 0;
2328 	int index = 0;
2329 
2330 	BUG_ON(reserve && node->processed);
2331 
2332 	while (next) {
2333 		cond_resched();
2334 		while (1) {
2335 			if (next->processed && (reserve || next != node))
2336 				break;
2337 
2338 			num_bytes += fs_info->nodesize;
2339 
2340 			if (list_empty(&next->upper))
2341 				break;
2342 
2343 			edge = list_entry(next->upper.next,
2344 					struct btrfs_backref_edge, list[LOWER]);
2345 			edges[index++] = edge;
2346 			next = edge->node[UPPER];
2347 		}
2348 		next = walk_down_backref(edges, &index);
2349 	}
2350 	return num_bytes;
2351 }
2352 
2353 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2354 				  struct reloc_control *rc,
2355 				  struct btrfs_backref_node *node)
2356 {
2357 	struct btrfs_root *root = rc->extent_root;
2358 	struct btrfs_fs_info *fs_info = root->fs_info;
2359 	u64 num_bytes;
2360 	int ret;
2361 	u64 tmp;
2362 
2363 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2364 
2365 	trans->block_rsv = rc->block_rsv;
2366 	rc->reserved_bytes += num_bytes;
2367 
2368 	/*
2369 	 * We are under a transaction here so we can only do limited flushing.
2370 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2371 	 * transaction and try to refill when we can flush all the things.
2372 	 */
2373 	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2374 				     BTRFS_RESERVE_FLUSH_LIMIT);
2375 	if (ret) {
2376 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2377 		while (tmp <= rc->reserved_bytes)
2378 			tmp <<= 1;
2379 		/*
2380 		 * only one thread can access block_rsv at this point,
2381 		 * so we don't need hold lock to protect block_rsv.
2382 		 * we expand more reservation size here to allow enough
2383 		 * space for relocation and we will return earlier in
2384 		 * enospc case.
2385 		 */
2386 		rc->block_rsv->size = tmp + fs_info->nodesize *
2387 				      RELOCATION_RESERVED_NODES;
2388 		return -EAGAIN;
2389 	}
2390 
2391 	return 0;
2392 }
2393 
2394 /*
2395  * relocate a block tree, and then update pointers in upper level
2396  * blocks that reference the block to point to the new location.
2397  *
2398  * if called by link_to_upper, the block has already been relocated.
2399  * in that case this function just updates pointers.
2400  */
2401 static int do_relocation(struct btrfs_trans_handle *trans,
2402 			 struct reloc_control *rc,
2403 			 struct btrfs_backref_node *node,
2404 			 struct btrfs_key *key,
2405 			 struct btrfs_path *path, int lowest)
2406 {
2407 	struct btrfs_backref_node *upper;
2408 	struct btrfs_backref_edge *edge;
2409 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2410 	struct btrfs_root *root;
2411 	struct extent_buffer *eb;
2412 	u32 blocksize;
2413 	u64 bytenr;
2414 	int slot;
2415 	int ret = 0;
2416 
2417 	/*
2418 	 * If we are lowest then this is the first time we're processing this
2419 	 * block, and thus shouldn't have an eb associated with it yet.
2420 	 */
2421 	ASSERT(!lowest || !node->eb);
2422 
2423 	path->lowest_level = node->level + 1;
2424 	rc->backref_cache.path[node->level] = node;
2425 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2426 		struct btrfs_ref ref = { 0 };
2427 
2428 		cond_resched();
2429 
2430 		upper = edge->node[UPPER];
2431 		root = select_reloc_root(trans, rc, upper, edges);
2432 		if (IS_ERR(root)) {
2433 			ret = PTR_ERR(root);
2434 			goto next;
2435 		}
2436 
2437 		if (upper->eb && !upper->locked) {
2438 			if (!lowest) {
2439 				ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2440 				if (ret < 0)
2441 					goto next;
2442 				BUG_ON(ret);
2443 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2444 				if (node->eb->start == bytenr)
2445 					goto next;
2446 			}
2447 			btrfs_backref_drop_node_buffer(upper);
2448 		}
2449 
2450 		if (!upper->eb) {
2451 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2452 			if (ret) {
2453 				if (ret > 0)
2454 					ret = -ENOENT;
2455 
2456 				btrfs_release_path(path);
2457 				break;
2458 			}
2459 
2460 			if (!upper->eb) {
2461 				upper->eb = path->nodes[upper->level];
2462 				path->nodes[upper->level] = NULL;
2463 			} else {
2464 				BUG_ON(upper->eb != path->nodes[upper->level]);
2465 			}
2466 
2467 			upper->locked = 1;
2468 			path->locks[upper->level] = 0;
2469 
2470 			slot = path->slots[upper->level];
2471 			btrfs_release_path(path);
2472 		} else {
2473 			ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2474 			if (ret < 0)
2475 				goto next;
2476 			BUG_ON(ret);
2477 		}
2478 
2479 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2480 		if (lowest) {
2481 			if (bytenr != node->bytenr) {
2482 				btrfs_err(root->fs_info,
2483 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2484 					  bytenr, node->bytenr, slot,
2485 					  upper->eb->start);
2486 				ret = -EIO;
2487 				goto next;
2488 			}
2489 		} else {
2490 			if (node->eb->start == bytenr)
2491 				goto next;
2492 		}
2493 
2494 		blocksize = root->fs_info->nodesize;
2495 		eb = btrfs_read_node_slot(upper->eb, slot);
2496 		if (IS_ERR(eb)) {
2497 			ret = PTR_ERR(eb);
2498 			goto next;
2499 		}
2500 		btrfs_tree_lock(eb);
2501 
2502 		if (!node->eb) {
2503 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2504 					      slot, &eb, BTRFS_NESTING_COW);
2505 			btrfs_tree_unlock(eb);
2506 			free_extent_buffer(eb);
2507 			if (ret < 0)
2508 				goto next;
2509 			/*
2510 			 * We've just COWed this block, it should have updated
2511 			 * the correct backref node entry.
2512 			 */
2513 			ASSERT(node->eb == eb);
2514 		} else {
2515 			btrfs_set_node_blockptr(upper->eb, slot,
2516 						node->eb->start);
2517 			btrfs_set_node_ptr_generation(upper->eb, slot,
2518 						      trans->transid);
2519 			btrfs_mark_buffer_dirty(upper->eb);
2520 
2521 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2522 					       node->eb->start, blocksize,
2523 					       upper->eb->start);
2524 			btrfs_init_tree_ref(&ref, node->level,
2525 					    btrfs_header_owner(upper->eb),
2526 					    root->root_key.objectid, false);
2527 			ret = btrfs_inc_extent_ref(trans, &ref);
2528 			if (!ret)
2529 				ret = btrfs_drop_subtree(trans, root, eb,
2530 							 upper->eb);
2531 			if (ret)
2532 				btrfs_abort_transaction(trans, ret);
2533 		}
2534 next:
2535 		if (!upper->pending)
2536 			btrfs_backref_drop_node_buffer(upper);
2537 		else
2538 			btrfs_backref_unlock_node_buffer(upper);
2539 		if (ret)
2540 			break;
2541 	}
2542 
2543 	if (!ret && node->pending) {
2544 		btrfs_backref_drop_node_buffer(node);
2545 		list_move_tail(&node->list, &rc->backref_cache.changed);
2546 		node->pending = 0;
2547 	}
2548 
2549 	path->lowest_level = 0;
2550 
2551 	/*
2552 	 * We should have allocated all of our space in the block rsv and thus
2553 	 * shouldn't ENOSPC.
2554 	 */
2555 	ASSERT(ret != -ENOSPC);
2556 	return ret;
2557 }
2558 
2559 static int link_to_upper(struct btrfs_trans_handle *trans,
2560 			 struct reloc_control *rc,
2561 			 struct btrfs_backref_node *node,
2562 			 struct btrfs_path *path)
2563 {
2564 	struct btrfs_key key;
2565 
2566 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2567 	return do_relocation(trans, rc, node, &key, path, 0);
2568 }
2569 
2570 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2571 				struct reloc_control *rc,
2572 				struct btrfs_path *path, int err)
2573 {
2574 	LIST_HEAD(list);
2575 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2576 	struct btrfs_backref_node *node;
2577 	int level;
2578 	int ret;
2579 
2580 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2581 		while (!list_empty(&cache->pending[level])) {
2582 			node = list_entry(cache->pending[level].next,
2583 					  struct btrfs_backref_node, list);
2584 			list_move_tail(&node->list, &list);
2585 			BUG_ON(!node->pending);
2586 
2587 			if (!err) {
2588 				ret = link_to_upper(trans, rc, node, path);
2589 				if (ret < 0)
2590 					err = ret;
2591 			}
2592 		}
2593 		list_splice_init(&list, &cache->pending[level]);
2594 	}
2595 	return err;
2596 }
2597 
2598 /*
2599  * mark a block and all blocks directly/indirectly reference the block
2600  * as processed.
2601  */
2602 static void update_processed_blocks(struct reloc_control *rc,
2603 				    struct btrfs_backref_node *node)
2604 {
2605 	struct btrfs_backref_node *next = node;
2606 	struct btrfs_backref_edge *edge;
2607 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2608 	int index = 0;
2609 
2610 	while (next) {
2611 		cond_resched();
2612 		while (1) {
2613 			if (next->processed)
2614 				break;
2615 
2616 			mark_block_processed(rc, next);
2617 
2618 			if (list_empty(&next->upper))
2619 				break;
2620 
2621 			edge = list_entry(next->upper.next,
2622 					struct btrfs_backref_edge, list[LOWER]);
2623 			edges[index++] = edge;
2624 			next = edge->node[UPPER];
2625 		}
2626 		next = walk_down_backref(edges, &index);
2627 	}
2628 }
2629 
2630 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2631 {
2632 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2633 
2634 	if (test_range_bit(&rc->processed_blocks, bytenr,
2635 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2636 		return 1;
2637 	return 0;
2638 }
2639 
2640 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2641 			      struct tree_block *block)
2642 {
2643 	struct btrfs_tree_parent_check check = {
2644 		.level = block->level,
2645 		.owner_root = block->owner,
2646 		.transid = block->key.offset
2647 	};
2648 	struct extent_buffer *eb;
2649 
2650 	eb = read_tree_block(fs_info, block->bytenr, &check);
2651 	if (IS_ERR(eb))
2652 		return PTR_ERR(eb);
2653 	if (!extent_buffer_uptodate(eb)) {
2654 		free_extent_buffer(eb);
2655 		return -EIO;
2656 	}
2657 	if (block->level == 0)
2658 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2659 	else
2660 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2661 	free_extent_buffer(eb);
2662 	block->key_ready = 1;
2663 	return 0;
2664 }
2665 
2666 /*
2667  * helper function to relocate a tree block
2668  */
2669 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2670 				struct reloc_control *rc,
2671 				struct btrfs_backref_node *node,
2672 				struct btrfs_key *key,
2673 				struct btrfs_path *path)
2674 {
2675 	struct btrfs_root *root;
2676 	int ret = 0;
2677 
2678 	if (!node)
2679 		return 0;
2680 
2681 	/*
2682 	 * If we fail here we want to drop our backref_node because we are going
2683 	 * to start over and regenerate the tree for it.
2684 	 */
2685 	ret = reserve_metadata_space(trans, rc, node);
2686 	if (ret)
2687 		goto out;
2688 
2689 	BUG_ON(node->processed);
2690 	root = select_one_root(node);
2691 	if (IS_ERR(root)) {
2692 		ret = PTR_ERR(root);
2693 
2694 		/* See explanation in select_one_root for the -EUCLEAN case. */
2695 		ASSERT(ret == -ENOENT);
2696 		if (ret == -ENOENT) {
2697 			ret = 0;
2698 			update_processed_blocks(rc, node);
2699 		}
2700 		goto out;
2701 	}
2702 
2703 	if (root) {
2704 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2705 			/*
2706 			 * This block was the root block of a root, and this is
2707 			 * the first time we're processing the block and thus it
2708 			 * should not have had the ->new_bytenr modified and
2709 			 * should have not been included on the changed list.
2710 			 *
2711 			 * However in the case of corruption we could have
2712 			 * multiple refs pointing to the same block improperly,
2713 			 * and thus we would trip over these checks.  ASSERT()
2714 			 * for the developer case, because it could indicate a
2715 			 * bug in the backref code, however error out for a
2716 			 * normal user in the case of corruption.
2717 			 */
2718 			ASSERT(node->new_bytenr == 0);
2719 			ASSERT(list_empty(&node->list));
2720 			if (node->new_bytenr || !list_empty(&node->list)) {
2721 				btrfs_err(root->fs_info,
2722 				  "bytenr %llu has improper references to it",
2723 					  node->bytenr);
2724 				ret = -EUCLEAN;
2725 				goto out;
2726 			}
2727 			ret = btrfs_record_root_in_trans(trans, root);
2728 			if (ret)
2729 				goto out;
2730 			/*
2731 			 * Another thread could have failed, need to check if we
2732 			 * have reloc_root actually set.
2733 			 */
2734 			if (!root->reloc_root) {
2735 				ret = -ENOENT;
2736 				goto out;
2737 			}
2738 			root = root->reloc_root;
2739 			node->new_bytenr = root->node->start;
2740 			btrfs_put_root(node->root);
2741 			node->root = btrfs_grab_root(root);
2742 			ASSERT(node->root);
2743 			list_add_tail(&node->list, &rc->backref_cache.changed);
2744 		} else {
2745 			path->lowest_level = node->level;
2746 			if (root == root->fs_info->chunk_root)
2747 				btrfs_reserve_chunk_metadata(trans, false);
2748 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2749 			btrfs_release_path(path);
2750 			if (root == root->fs_info->chunk_root)
2751 				btrfs_trans_release_chunk_metadata(trans);
2752 			if (ret > 0)
2753 				ret = 0;
2754 		}
2755 		if (!ret)
2756 			update_processed_blocks(rc, node);
2757 	} else {
2758 		ret = do_relocation(trans, rc, node, key, path, 1);
2759 	}
2760 out:
2761 	if (ret || node->level == 0 || node->cowonly)
2762 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2763 	return ret;
2764 }
2765 
2766 /*
2767  * relocate a list of blocks
2768  */
2769 static noinline_for_stack
2770 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2771 			 struct reloc_control *rc, struct rb_root *blocks)
2772 {
2773 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2774 	struct btrfs_backref_node *node;
2775 	struct btrfs_path *path;
2776 	struct tree_block *block;
2777 	struct tree_block *next;
2778 	int ret;
2779 	int err = 0;
2780 
2781 	path = btrfs_alloc_path();
2782 	if (!path) {
2783 		err = -ENOMEM;
2784 		goto out_free_blocks;
2785 	}
2786 
2787 	/* Kick in readahead for tree blocks with missing keys */
2788 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2789 		if (!block->key_ready)
2790 			btrfs_readahead_tree_block(fs_info, block->bytenr,
2791 						   block->owner, 0,
2792 						   block->level);
2793 	}
2794 
2795 	/* Get first keys */
2796 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2797 		if (!block->key_ready) {
2798 			err = get_tree_block_key(fs_info, block);
2799 			if (err)
2800 				goto out_free_path;
2801 		}
2802 	}
2803 
2804 	/* Do tree relocation */
2805 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2806 		node = build_backref_tree(rc, &block->key,
2807 					  block->level, block->bytenr);
2808 		if (IS_ERR(node)) {
2809 			err = PTR_ERR(node);
2810 			goto out;
2811 		}
2812 
2813 		ret = relocate_tree_block(trans, rc, node, &block->key,
2814 					  path);
2815 		if (ret < 0) {
2816 			err = ret;
2817 			break;
2818 		}
2819 	}
2820 out:
2821 	err = finish_pending_nodes(trans, rc, path, err);
2822 
2823 out_free_path:
2824 	btrfs_free_path(path);
2825 out_free_blocks:
2826 	free_block_list(blocks);
2827 	return err;
2828 }
2829 
2830 static noinline_for_stack int prealloc_file_extent_cluster(
2831 				struct btrfs_inode *inode,
2832 				struct file_extent_cluster *cluster)
2833 {
2834 	u64 alloc_hint = 0;
2835 	u64 start;
2836 	u64 end;
2837 	u64 offset = inode->index_cnt;
2838 	u64 num_bytes;
2839 	int nr;
2840 	int ret = 0;
2841 	u64 i_size = i_size_read(&inode->vfs_inode);
2842 	u64 prealloc_start = cluster->start - offset;
2843 	u64 prealloc_end = cluster->end - offset;
2844 	u64 cur_offset = prealloc_start;
2845 
2846 	/*
2847 	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2848 	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2849 	 * btrfs_do_readpage() call of previously relocated file cluster.
2850 	 *
2851 	 * If the current cluster starts in the above range, btrfs_do_readpage()
2852 	 * will skip the read, and relocate_one_page() will later writeback
2853 	 * the padding zeros as new data, causing data corruption.
2854 	 *
2855 	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2856 	 */
2857 	if (!PAGE_ALIGNED(i_size)) {
2858 		struct address_space *mapping = inode->vfs_inode.i_mapping;
2859 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2860 		const u32 sectorsize = fs_info->sectorsize;
2861 		struct page *page;
2862 
2863 		ASSERT(sectorsize < PAGE_SIZE);
2864 		ASSERT(IS_ALIGNED(i_size, sectorsize));
2865 
2866 		/*
2867 		 * Subpage can't handle page with DIRTY but without UPTODATE
2868 		 * bit as it can lead to the following deadlock:
2869 		 *
2870 		 * btrfs_read_folio()
2871 		 * | Page already *locked*
2872 		 * |- btrfs_lock_and_flush_ordered_range()
2873 		 *    |- btrfs_start_ordered_extent()
2874 		 *       |- extent_write_cache_pages()
2875 		 *          |- lock_page()
2876 		 *             We try to lock the page we already hold.
2877 		 *
2878 		 * Here we just writeback the whole data reloc inode, so that
2879 		 * we will be ensured to have no dirty range in the page, and
2880 		 * are safe to clear the uptodate bits.
2881 		 *
2882 		 * This shouldn't cause too much overhead, as we need to write
2883 		 * the data back anyway.
2884 		 */
2885 		ret = filemap_write_and_wait(mapping);
2886 		if (ret < 0)
2887 			return ret;
2888 
2889 		clear_extent_bits(&inode->io_tree, i_size,
2890 				  round_up(i_size, PAGE_SIZE) - 1,
2891 				  EXTENT_UPTODATE);
2892 		page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2893 		/*
2894 		 * If page is freed we don't need to do anything then, as we
2895 		 * will re-read the whole page anyway.
2896 		 */
2897 		if (page) {
2898 			btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2899 					round_up(i_size, PAGE_SIZE) - i_size);
2900 			unlock_page(page);
2901 			put_page(page);
2902 		}
2903 	}
2904 
2905 	BUG_ON(cluster->start != cluster->boundary[0]);
2906 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2907 					      prealloc_end + 1 - prealloc_start);
2908 	if (ret)
2909 		return ret;
2910 
2911 	btrfs_inode_lock(inode, 0);
2912 	for (nr = 0; nr < cluster->nr; nr++) {
2913 		struct extent_state *cached_state = NULL;
2914 
2915 		start = cluster->boundary[nr] - offset;
2916 		if (nr + 1 < cluster->nr)
2917 			end = cluster->boundary[nr + 1] - 1 - offset;
2918 		else
2919 			end = cluster->end - offset;
2920 
2921 		lock_extent(&inode->io_tree, start, end, &cached_state);
2922 		num_bytes = end + 1 - start;
2923 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2924 						num_bytes, num_bytes,
2925 						end + 1, &alloc_hint);
2926 		cur_offset = end + 1;
2927 		unlock_extent(&inode->io_tree, start, end, &cached_state);
2928 		if (ret)
2929 			break;
2930 	}
2931 	btrfs_inode_unlock(inode, 0);
2932 
2933 	if (cur_offset < prealloc_end)
2934 		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2935 					       prealloc_end + 1 - cur_offset);
2936 	return ret;
2937 }
2938 
2939 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2940 				u64 start, u64 end, u64 block_start)
2941 {
2942 	struct extent_map *em;
2943 	struct extent_state *cached_state = NULL;
2944 	int ret = 0;
2945 
2946 	em = alloc_extent_map();
2947 	if (!em)
2948 		return -ENOMEM;
2949 
2950 	em->start = start;
2951 	em->len = end + 1 - start;
2952 	em->block_len = em->len;
2953 	em->block_start = block_start;
2954 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2955 
2956 	lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2957 	ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2958 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2959 	free_extent_map(em);
2960 
2961 	return ret;
2962 }
2963 
2964 /*
2965  * Allow error injection to test balance/relocation cancellation
2966  */
2967 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2968 {
2969 	return atomic_read(&fs_info->balance_cancel_req) ||
2970 		atomic_read(&fs_info->reloc_cancel_req) ||
2971 		fatal_signal_pending(current);
2972 }
2973 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2974 
2975 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2976 				    int cluster_nr)
2977 {
2978 	/* Last extent, use cluster end directly */
2979 	if (cluster_nr >= cluster->nr - 1)
2980 		return cluster->end;
2981 
2982 	/* Use next boundary start*/
2983 	return cluster->boundary[cluster_nr + 1] - 1;
2984 }
2985 
2986 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2987 			     struct file_extent_cluster *cluster,
2988 			     int *cluster_nr, unsigned long page_index)
2989 {
2990 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2991 	u64 offset = BTRFS_I(inode)->index_cnt;
2992 	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2993 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2994 	struct page *page;
2995 	u64 page_start;
2996 	u64 page_end;
2997 	u64 cur;
2998 	int ret;
2999 
3000 	ASSERT(page_index <= last_index);
3001 	page = find_lock_page(inode->i_mapping, page_index);
3002 	if (!page) {
3003 		page_cache_sync_readahead(inode->i_mapping, ra, NULL,
3004 				page_index, last_index + 1 - page_index);
3005 		page = find_or_create_page(inode->i_mapping, page_index, mask);
3006 		if (!page)
3007 			return -ENOMEM;
3008 	}
3009 	ret = set_page_extent_mapped(page);
3010 	if (ret < 0)
3011 		goto release_page;
3012 
3013 	if (PageReadahead(page))
3014 		page_cache_async_readahead(inode->i_mapping, ra, NULL,
3015 				page_folio(page), page_index,
3016 				last_index + 1 - page_index);
3017 
3018 	if (!PageUptodate(page)) {
3019 		btrfs_read_folio(NULL, page_folio(page));
3020 		lock_page(page);
3021 		if (!PageUptodate(page)) {
3022 			ret = -EIO;
3023 			goto release_page;
3024 		}
3025 	}
3026 
3027 	page_start = page_offset(page);
3028 	page_end = page_start + PAGE_SIZE - 1;
3029 
3030 	/*
3031 	 * Start from the cluster, as for subpage case, the cluster can start
3032 	 * inside the page.
3033 	 */
3034 	cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3035 	while (cur <= page_end) {
3036 		struct extent_state *cached_state = NULL;
3037 		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3038 		u64 extent_end = get_cluster_boundary_end(cluster,
3039 						*cluster_nr) - offset;
3040 		u64 clamped_start = max(page_start, extent_start);
3041 		u64 clamped_end = min(page_end, extent_end);
3042 		u32 clamped_len = clamped_end + 1 - clamped_start;
3043 
3044 		/* Reserve metadata for this range */
3045 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3046 						      clamped_len, clamped_len,
3047 						      false);
3048 		if (ret)
3049 			goto release_page;
3050 
3051 		/* Mark the range delalloc and dirty for later writeback */
3052 		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3053 			    &cached_state);
3054 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3055 						clamped_end, 0, &cached_state);
3056 		if (ret) {
3057 			clear_extent_bit(&BTRFS_I(inode)->io_tree,
3058 					 clamped_start, clamped_end,
3059 					 EXTENT_LOCKED | EXTENT_BOUNDARY,
3060 					 &cached_state);
3061 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3062 							clamped_len, true);
3063 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3064 						       clamped_len);
3065 			goto release_page;
3066 		}
3067 		btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3068 
3069 		/*
3070 		 * Set the boundary if it's inside the page.
3071 		 * Data relocation requires the destination extents to have the
3072 		 * same size as the source.
3073 		 * EXTENT_BOUNDARY bit prevents current extent from being merged
3074 		 * with previous extent.
3075 		 */
3076 		if (in_range(cluster->boundary[*cluster_nr] - offset,
3077 			     page_start, PAGE_SIZE)) {
3078 			u64 boundary_start = cluster->boundary[*cluster_nr] -
3079 						offset;
3080 			u64 boundary_end = boundary_start +
3081 					   fs_info->sectorsize - 1;
3082 
3083 			set_extent_bit(&BTRFS_I(inode)->io_tree,
3084 				       boundary_start, boundary_end,
3085 				       EXTENT_BOUNDARY, NULL);
3086 		}
3087 		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3088 			      &cached_state);
3089 		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3090 		cur += clamped_len;
3091 
3092 		/* Crossed extent end, go to next extent */
3093 		if (cur >= extent_end) {
3094 			(*cluster_nr)++;
3095 			/* Just finished the last extent of the cluster, exit. */
3096 			if (*cluster_nr >= cluster->nr)
3097 				break;
3098 		}
3099 	}
3100 	unlock_page(page);
3101 	put_page(page);
3102 
3103 	balance_dirty_pages_ratelimited(inode->i_mapping);
3104 	btrfs_throttle(fs_info);
3105 	if (btrfs_should_cancel_balance(fs_info))
3106 		ret = -ECANCELED;
3107 	return ret;
3108 
3109 release_page:
3110 	unlock_page(page);
3111 	put_page(page);
3112 	return ret;
3113 }
3114 
3115 static int relocate_file_extent_cluster(struct inode *inode,
3116 					struct file_extent_cluster *cluster)
3117 {
3118 	u64 offset = BTRFS_I(inode)->index_cnt;
3119 	unsigned long index;
3120 	unsigned long last_index;
3121 	struct file_ra_state *ra;
3122 	int cluster_nr = 0;
3123 	int ret = 0;
3124 
3125 	if (!cluster->nr)
3126 		return 0;
3127 
3128 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3129 	if (!ra)
3130 		return -ENOMEM;
3131 
3132 	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3133 	if (ret)
3134 		goto out;
3135 
3136 	file_ra_state_init(ra, inode->i_mapping);
3137 
3138 	ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3139 				   cluster->end - offset, cluster->start);
3140 	if (ret)
3141 		goto out;
3142 
3143 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3144 	for (index = (cluster->start - offset) >> PAGE_SHIFT;
3145 	     index <= last_index && !ret; index++)
3146 		ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3147 	if (ret == 0)
3148 		WARN_ON(cluster_nr != cluster->nr);
3149 out:
3150 	kfree(ra);
3151 	return ret;
3152 }
3153 
3154 static noinline_for_stack
3155 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3156 			 struct file_extent_cluster *cluster)
3157 {
3158 	int ret;
3159 
3160 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3161 		ret = relocate_file_extent_cluster(inode, cluster);
3162 		if (ret)
3163 			return ret;
3164 		cluster->nr = 0;
3165 	}
3166 
3167 	if (!cluster->nr)
3168 		cluster->start = extent_key->objectid;
3169 	else
3170 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3171 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3172 	cluster->boundary[cluster->nr] = extent_key->objectid;
3173 	cluster->nr++;
3174 
3175 	if (cluster->nr >= MAX_EXTENTS) {
3176 		ret = relocate_file_extent_cluster(inode, cluster);
3177 		if (ret)
3178 			return ret;
3179 		cluster->nr = 0;
3180 	}
3181 	return 0;
3182 }
3183 
3184 /*
3185  * helper to add a tree block to the list.
3186  * the major work is getting the generation and level of the block
3187  */
3188 static int add_tree_block(struct reloc_control *rc,
3189 			  struct btrfs_key *extent_key,
3190 			  struct btrfs_path *path,
3191 			  struct rb_root *blocks)
3192 {
3193 	struct extent_buffer *eb;
3194 	struct btrfs_extent_item *ei;
3195 	struct btrfs_tree_block_info *bi;
3196 	struct tree_block *block;
3197 	struct rb_node *rb_node;
3198 	u32 item_size;
3199 	int level = -1;
3200 	u64 generation;
3201 	u64 owner = 0;
3202 
3203 	eb =  path->nodes[0];
3204 	item_size = btrfs_item_size(eb, path->slots[0]);
3205 
3206 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3207 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3208 		unsigned long ptr = 0, end;
3209 
3210 		ei = btrfs_item_ptr(eb, path->slots[0],
3211 				struct btrfs_extent_item);
3212 		end = (unsigned long)ei + item_size;
3213 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3214 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3215 			level = btrfs_tree_block_level(eb, bi);
3216 			ptr = (unsigned long)(bi + 1);
3217 		} else {
3218 			level = (int)extent_key->offset;
3219 			ptr = (unsigned long)(ei + 1);
3220 		}
3221 		generation = btrfs_extent_generation(eb, ei);
3222 
3223 		/*
3224 		 * We're reading random blocks without knowing their owner ahead
3225 		 * of time.  This is ok most of the time, as all reloc roots and
3226 		 * fs roots have the same lock type.  However normal trees do
3227 		 * not, and the only way to know ahead of time is to read the
3228 		 * inline ref offset.  We know it's an fs root if
3229 		 *
3230 		 * 1. There's more than one ref.
3231 		 * 2. There's a SHARED_DATA_REF_KEY set.
3232 		 * 3. FULL_BACKREF is set on the flags.
3233 		 *
3234 		 * Otherwise it's safe to assume that the ref offset == the
3235 		 * owner of this block, so we can use that when calling
3236 		 * read_tree_block.
3237 		 */
3238 		if (btrfs_extent_refs(eb, ei) == 1 &&
3239 		    !(btrfs_extent_flags(eb, ei) &
3240 		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3241 		    ptr < end) {
3242 			struct btrfs_extent_inline_ref *iref;
3243 			int type;
3244 
3245 			iref = (struct btrfs_extent_inline_ref *)ptr;
3246 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3247 							BTRFS_REF_TYPE_BLOCK);
3248 			if (type == BTRFS_REF_TYPE_INVALID)
3249 				return -EINVAL;
3250 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3251 				owner = btrfs_extent_inline_ref_offset(eb, iref);
3252 		}
3253 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3254 		btrfs_print_v0_err(eb->fs_info);
3255 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3256 		return -EINVAL;
3257 	} else {
3258 		BUG();
3259 	}
3260 
3261 	btrfs_release_path(path);
3262 
3263 	BUG_ON(level == -1);
3264 
3265 	block = kmalloc(sizeof(*block), GFP_NOFS);
3266 	if (!block)
3267 		return -ENOMEM;
3268 
3269 	block->bytenr = extent_key->objectid;
3270 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3271 	block->key.offset = generation;
3272 	block->level = level;
3273 	block->key_ready = 0;
3274 	block->owner = owner;
3275 
3276 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3277 	if (rb_node)
3278 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3279 				    -EEXIST);
3280 
3281 	return 0;
3282 }
3283 
3284 /*
3285  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3286  */
3287 static int __add_tree_block(struct reloc_control *rc,
3288 			    u64 bytenr, u32 blocksize,
3289 			    struct rb_root *blocks)
3290 {
3291 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3292 	struct btrfs_path *path;
3293 	struct btrfs_key key;
3294 	int ret;
3295 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3296 
3297 	if (tree_block_processed(bytenr, rc))
3298 		return 0;
3299 
3300 	if (rb_simple_search(blocks, bytenr))
3301 		return 0;
3302 
3303 	path = btrfs_alloc_path();
3304 	if (!path)
3305 		return -ENOMEM;
3306 again:
3307 	key.objectid = bytenr;
3308 	if (skinny) {
3309 		key.type = BTRFS_METADATA_ITEM_KEY;
3310 		key.offset = (u64)-1;
3311 	} else {
3312 		key.type = BTRFS_EXTENT_ITEM_KEY;
3313 		key.offset = blocksize;
3314 	}
3315 
3316 	path->search_commit_root = 1;
3317 	path->skip_locking = 1;
3318 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3319 	if (ret < 0)
3320 		goto out;
3321 
3322 	if (ret > 0 && skinny) {
3323 		if (path->slots[0]) {
3324 			path->slots[0]--;
3325 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3326 					      path->slots[0]);
3327 			if (key.objectid == bytenr &&
3328 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3329 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3330 			      key.offset == blocksize)))
3331 				ret = 0;
3332 		}
3333 
3334 		if (ret) {
3335 			skinny = false;
3336 			btrfs_release_path(path);
3337 			goto again;
3338 		}
3339 	}
3340 	if (ret) {
3341 		ASSERT(ret == 1);
3342 		btrfs_print_leaf(path->nodes[0]);
3343 		btrfs_err(fs_info,
3344 	     "tree block extent item (%llu) is not found in extent tree",
3345 		     bytenr);
3346 		WARN_ON(1);
3347 		ret = -EINVAL;
3348 		goto out;
3349 	}
3350 
3351 	ret = add_tree_block(rc, &key, path, blocks);
3352 out:
3353 	btrfs_free_path(path);
3354 	return ret;
3355 }
3356 
3357 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3358 				    struct btrfs_block_group *block_group,
3359 				    struct inode *inode,
3360 				    u64 ino)
3361 {
3362 	struct btrfs_root *root = fs_info->tree_root;
3363 	struct btrfs_trans_handle *trans;
3364 	int ret = 0;
3365 
3366 	if (inode)
3367 		goto truncate;
3368 
3369 	inode = btrfs_iget(fs_info->sb, ino, root);
3370 	if (IS_ERR(inode))
3371 		return -ENOENT;
3372 
3373 truncate:
3374 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3375 						 &fs_info->global_block_rsv);
3376 	if (ret)
3377 		goto out;
3378 
3379 	trans = btrfs_join_transaction(root);
3380 	if (IS_ERR(trans)) {
3381 		ret = PTR_ERR(trans);
3382 		goto out;
3383 	}
3384 
3385 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3386 
3387 	btrfs_end_transaction(trans);
3388 	btrfs_btree_balance_dirty(fs_info);
3389 out:
3390 	iput(inode);
3391 	return ret;
3392 }
3393 
3394 /*
3395  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3396  * cache inode, to avoid free space cache data extent blocking data relocation.
3397  */
3398 static int delete_v1_space_cache(struct extent_buffer *leaf,
3399 				 struct btrfs_block_group *block_group,
3400 				 u64 data_bytenr)
3401 {
3402 	u64 space_cache_ino;
3403 	struct btrfs_file_extent_item *ei;
3404 	struct btrfs_key key;
3405 	bool found = false;
3406 	int i;
3407 	int ret;
3408 
3409 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3410 		return 0;
3411 
3412 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3413 		u8 type;
3414 
3415 		btrfs_item_key_to_cpu(leaf, &key, i);
3416 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3417 			continue;
3418 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3419 		type = btrfs_file_extent_type(leaf, ei);
3420 
3421 		if ((type == BTRFS_FILE_EXTENT_REG ||
3422 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3423 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3424 			found = true;
3425 			space_cache_ino = key.objectid;
3426 			break;
3427 		}
3428 	}
3429 	if (!found)
3430 		return -ENOENT;
3431 	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3432 					space_cache_ino);
3433 	return ret;
3434 }
3435 
3436 /*
3437  * helper to find all tree blocks that reference a given data extent
3438  */
3439 static noinline_for_stack
3440 int add_data_references(struct reloc_control *rc,
3441 			struct btrfs_key *extent_key,
3442 			struct btrfs_path *path,
3443 			struct rb_root *blocks)
3444 {
3445 	struct btrfs_backref_walk_ctx ctx = { 0 };
3446 	struct ulist_iterator leaf_uiter;
3447 	struct ulist_node *ref_node = NULL;
3448 	const u32 blocksize = rc->extent_root->fs_info->nodesize;
3449 	int ret = 0;
3450 
3451 	btrfs_release_path(path);
3452 
3453 	ctx.bytenr = extent_key->objectid;
3454 	ctx.skip_inode_ref_list = true;
3455 	ctx.fs_info = rc->extent_root->fs_info;
3456 
3457 	ret = btrfs_find_all_leafs(&ctx);
3458 	if (ret < 0)
3459 		return ret;
3460 
3461 	ULIST_ITER_INIT(&leaf_uiter);
3462 	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3463 		struct btrfs_tree_parent_check check = { 0 };
3464 		struct extent_buffer *eb;
3465 
3466 		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3467 		if (IS_ERR(eb)) {
3468 			ret = PTR_ERR(eb);
3469 			break;
3470 		}
3471 		ret = delete_v1_space_cache(eb, rc->block_group,
3472 					    extent_key->objectid);
3473 		free_extent_buffer(eb);
3474 		if (ret < 0)
3475 			break;
3476 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3477 		if (ret < 0)
3478 			break;
3479 	}
3480 	if (ret < 0)
3481 		free_block_list(blocks);
3482 	ulist_free(ctx.refs);
3483 	return ret;
3484 }
3485 
3486 /*
3487  * helper to find next unprocessed extent
3488  */
3489 static noinline_for_stack
3490 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3491 		     struct btrfs_key *extent_key)
3492 {
3493 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3494 	struct btrfs_key key;
3495 	struct extent_buffer *leaf;
3496 	u64 start, end, last;
3497 	int ret;
3498 
3499 	last = rc->block_group->start + rc->block_group->length;
3500 	while (1) {
3501 		cond_resched();
3502 		if (rc->search_start >= last) {
3503 			ret = 1;
3504 			break;
3505 		}
3506 
3507 		key.objectid = rc->search_start;
3508 		key.type = BTRFS_EXTENT_ITEM_KEY;
3509 		key.offset = 0;
3510 
3511 		path->search_commit_root = 1;
3512 		path->skip_locking = 1;
3513 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3514 					0, 0);
3515 		if (ret < 0)
3516 			break;
3517 next:
3518 		leaf = path->nodes[0];
3519 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3520 			ret = btrfs_next_leaf(rc->extent_root, path);
3521 			if (ret != 0)
3522 				break;
3523 			leaf = path->nodes[0];
3524 		}
3525 
3526 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3527 		if (key.objectid >= last) {
3528 			ret = 1;
3529 			break;
3530 		}
3531 
3532 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3533 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3534 			path->slots[0]++;
3535 			goto next;
3536 		}
3537 
3538 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3539 		    key.objectid + key.offset <= rc->search_start) {
3540 			path->slots[0]++;
3541 			goto next;
3542 		}
3543 
3544 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3545 		    key.objectid + fs_info->nodesize <=
3546 		    rc->search_start) {
3547 			path->slots[0]++;
3548 			goto next;
3549 		}
3550 
3551 		ret = find_first_extent_bit(&rc->processed_blocks,
3552 					    key.objectid, &start, &end,
3553 					    EXTENT_DIRTY, NULL);
3554 
3555 		if (ret == 0 && start <= key.objectid) {
3556 			btrfs_release_path(path);
3557 			rc->search_start = end + 1;
3558 		} else {
3559 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3560 				rc->search_start = key.objectid + key.offset;
3561 			else
3562 				rc->search_start = key.objectid +
3563 					fs_info->nodesize;
3564 			memcpy(extent_key, &key, sizeof(key));
3565 			return 0;
3566 		}
3567 	}
3568 	btrfs_release_path(path);
3569 	return ret;
3570 }
3571 
3572 static void set_reloc_control(struct reloc_control *rc)
3573 {
3574 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3575 
3576 	mutex_lock(&fs_info->reloc_mutex);
3577 	fs_info->reloc_ctl = rc;
3578 	mutex_unlock(&fs_info->reloc_mutex);
3579 }
3580 
3581 static void unset_reloc_control(struct reloc_control *rc)
3582 {
3583 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3584 
3585 	mutex_lock(&fs_info->reloc_mutex);
3586 	fs_info->reloc_ctl = NULL;
3587 	mutex_unlock(&fs_info->reloc_mutex);
3588 }
3589 
3590 static noinline_for_stack
3591 int prepare_to_relocate(struct reloc_control *rc)
3592 {
3593 	struct btrfs_trans_handle *trans;
3594 	int ret;
3595 
3596 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3597 					      BTRFS_BLOCK_RSV_TEMP);
3598 	if (!rc->block_rsv)
3599 		return -ENOMEM;
3600 
3601 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3602 	rc->search_start = rc->block_group->start;
3603 	rc->extents_found = 0;
3604 	rc->nodes_relocated = 0;
3605 	rc->merging_rsv_size = 0;
3606 	rc->reserved_bytes = 0;
3607 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3608 			      RELOCATION_RESERVED_NODES;
3609 	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3610 				     rc->block_rsv, rc->block_rsv->size,
3611 				     BTRFS_RESERVE_FLUSH_ALL);
3612 	if (ret)
3613 		return ret;
3614 
3615 	rc->create_reloc_tree = 1;
3616 	set_reloc_control(rc);
3617 
3618 	trans = btrfs_join_transaction(rc->extent_root);
3619 	if (IS_ERR(trans)) {
3620 		unset_reloc_control(rc);
3621 		/*
3622 		 * extent tree is not a ref_cow tree and has no reloc_root to
3623 		 * cleanup.  And callers are responsible to free the above
3624 		 * block rsv.
3625 		 */
3626 		return PTR_ERR(trans);
3627 	}
3628 
3629 	ret = btrfs_commit_transaction(trans);
3630 	if (ret)
3631 		unset_reloc_control(rc);
3632 
3633 	return ret;
3634 }
3635 
3636 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3637 {
3638 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3639 	struct rb_root blocks = RB_ROOT;
3640 	struct btrfs_key key;
3641 	struct btrfs_trans_handle *trans = NULL;
3642 	struct btrfs_path *path;
3643 	struct btrfs_extent_item *ei;
3644 	u64 flags;
3645 	int ret;
3646 	int err = 0;
3647 	int progress = 0;
3648 
3649 	path = btrfs_alloc_path();
3650 	if (!path)
3651 		return -ENOMEM;
3652 	path->reada = READA_FORWARD;
3653 
3654 	ret = prepare_to_relocate(rc);
3655 	if (ret) {
3656 		err = ret;
3657 		goto out_free;
3658 	}
3659 
3660 	while (1) {
3661 		rc->reserved_bytes = 0;
3662 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3663 					     rc->block_rsv->size,
3664 					     BTRFS_RESERVE_FLUSH_ALL);
3665 		if (ret) {
3666 			err = ret;
3667 			break;
3668 		}
3669 		progress++;
3670 		trans = btrfs_start_transaction(rc->extent_root, 0);
3671 		if (IS_ERR(trans)) {
3672 			err = PTR_ERR(trans);
3673 			trans = NULL;
3674 			break;
3675 		}
3676 restart:
3677 		if (update_backref_cache(trans, &rc->backref_cache)) {
3678 			btrfs_end_transaction(trans);
3679 			trans = NULL;
3680 			continue;
3681 		}
3682 
3683 		ret = find_next_extent(rc, path, &key);
3684 		if (ret < 0)
3685 			err = ret;
3686 		if (ret != 0)
3687 			break;
3688 
3689 		rc->extents_found++;
3690 
3691 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3692 				    struct btrfs_extent_item);
3693 		flags = btrfs_extent_flags(path->nodes[0], ei);
3694 
3695 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3696 			ret = add_tree_block(rc, &key, path, &blocks);
3697 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3698 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3699 			ret = add_data_references(rc, &key, path, &blocks);
3700 		} else {
3701 			btrfs_release_path(path);
3702 			ret = 0;
3703 		}
3704 		if (ret < 0) {
3705 			err = ret;
3706 			break;
3707 		}
3708 
3709 		if (!RB_EMPTY_ROOT(&blocks)) {
3710 			ret = relocate_tree_blocks(trans, rc, &blocks);
3711 			if (ret < 0) {
3712 				if (ret != -EAGAIN) {
3713 					err = ret;
3714 					break;
3715 				}
3716 				rc->extents_found--;
3717 				rc->search_start = key.objectid;
3718 			}
3719 		}
3720 
3721 		btrfs_end_transaction_throttle(trans);
3722 		btrfs_btree_balance_dirty(fs_info);
3723 		trans = NULL;
3724 
3725 		if (rc->stage == MOVE_DATA_EXTENTS &&
3726 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3727 			rc->found_file_extent = 1;
3728 			ret = relocate_data_extent(rc->data_inode,
3729 						   &key, &rc->cluster);
3730 			if (ret < 0) {
3731 				err = ret;
3732 				break;
3733 			}
3734 		}
3735 		if (btrfs_should_cancel_balance(fs_info)) {
3736 			err = -ECANCELED;
3737 			break;
3738 		}
3739 	}
3740 	if (trans && progress && err == -ENOSPC) {
3741 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3742 		if (ret == 1) {
3743 			err = 0;
3744 			progress = 0;
3745 			goto restart;
3746 		}
3747 	}
3748 
3749 	btrfs_release_path(path);
3750 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3751 
3752 	if (trans) {
3753 		btrfs_end_transaction_throttle(trans);
3754 		btrfs_btree_balance_dirty(fs_info);
3755 	}
3756 
3757 	if (!err) {
3758 		ret = relocate_file_extent_cluster(rc->data_inode,
3759 						   &rc->cluster);
3760 		if (ret < 0)
3761 			err = ret;
3762 	}
3763 
3764 	rc->create_reloc_tree = 0;
3765 	set_reloc_control(rc);
3766 
3767 	btrfs_backref_release_cache(&rc->backref_cache);
3768 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3769 
3770 	/*
3771 	 * Even in the case when the relocation is cancelled, we should all go
3772 	 * through prepare_to_merge() and merge_reloc_roots().
3773 	 *
3774 	 * For error (including cancelled balance), prepare_to_merge() will
3775 	 * mark all reloc trees orphan, then queue them for cleanup in
3776 	 * merge_reloc_roots()
3777 	 */
3778 	err = prepare_to_merge(rc, err);
3779 
3780 	merge_reloc_roots(rc);
3781 
3782 	rc->merge_reloc_tree = 0;
3783 	unset_reloc_control(rc);
3784 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3785 
3786 	/* get rid of pinned extents */
3787 	trans = btrfs_join_transaction(rc->extent_root);
3788 	if (IS_ERR(trans)) {
3789 		err = PTR_ERR(trans);
3790 		goto out_free;
3791 	}
3792 	ret = btrfs_commit_transaction(trans);
3793 	if (ret && !err)
3794 		err = ret;
3795 out_free:
3796 	ret = clean_dirty_subvols(rc);
3797 	if (ret < 0 && !err)
3798 		err = ret;
3799 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3800 	btrfs_free_path(path);
3801 	return err;
3802 }
3803 
3804 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3805 				 struct btrfs_root *root, u64 objectid)
3806 {
3807 	struct btrfs_path *path;
3808 	struct btrfs_inode_item *item;
3809 	struct extent_buffer *leaf;
3810 	int ret;
3811 
3812 	path = btrfs_alloc_path();
3813 	if (!path)
3814 		return -ENOMEM;
3815 
3816 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3817 	if (ret)
3818 		goto out;
3819 
3820 	leaf = path->nodes[0];
3821 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3822 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3823 	btrfs_set_inode_generation(leaf, item, 1);
3824 	btrfs_set_inode_size(leaf, item, 0);
3825 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3826 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3827 					  BTRFS_INODE_PREALLOC);
3828 	btrfs_mark_buffer_dirty(leaf);
3829 out:
3830 	btrfs_free_path(path);
3831 	return ret;
3832 }
3833 
3834 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3835 				struct btrfs_root *root, u64 objectid)
3836 {
3837 	struct btrfs_path *path;
3838 	struct btrfs_key key;
3839 	int ret = 0;
3840 
3841 	path = btrfs_alloc_path();
3842 	if (!path) {
3843 		ret = -ENOMEM;
3844 		goto out;
3845 	}
3846 
3847 	key.objectid = objectid;
3848 	key.type = BTRFS_INODE_ITEM_KEY;
3849 	key.offset = 0;
3850 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3851 	if (ret) {
3852 		if (ret > 0)
3853 			ret = -ENOENT;
3854 		goto out;
3855 	}
3856 	ret = btrfs_del_item(trans, root, path);
3857 out:
3858 	if (ret)
3859 		btrfs_abort_transaction(trans, ret);
3860 	btrfs_free_path(path);
3861 }
3862 
3863 /*
3864  * helper to create inode for data relocation.
3865  * the inode is in data relocation tree and its link count is 0
3866  */
3867 static noinline_for_stack
3868 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3869 				 struct btrfs_block_group *group)
3870 {
3871 	struct inode *inode = NULL;
3872 	struct btrfs_trans_handle *trans;
3873 	struct btrfs_root *root;
3874 	u64 objectid;
3875 	int err = 0;
3876 
3877 	root = btrfs_grab_root(fs_info->data_reloc_root);
3878 	trans = btrfs_start_transaction(root, 6);
3879 	if (IS_ERR(trans)) {
3880 		btrfs_put_root(root);
3881 		return ERR_CAST(trans);
3882 	}
3883 
3884 	err = btrfs_get_free_objectid(root, &objectid);
3885 	if (err)
3886 		goto out;
3887 
3888 	err = __insert_orphan_inode(trans, root, objectid);
3889 	if (err)
3890 		goto out;
3891 
3892 	inode = btrfs_iget(fs_info->sb, objectid, root);
3893 	if (IS_ERR(inode)) {
3894 		delete_orphan_inode(trans, root, objectid);
3895 		err = PTR_ERR(inode);
3896 		inode = NULL;
3897 		goto out;
3898 	}
3899 	BTRFS_I(inode)->index_cnt = group->start;
3900 
3901 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3902 out:
3903 	btrfs_put_root(root);
3904 	btrfs_end_transaction(trans);
3905 	btrfs_btree_balance_dirty(fs_info);
3906 	if (err) {
3907 		iput(inode);
3908 		inode = ERR_PTR(err);
3909 	}
3910 	return inode;
3911 }
3912 
3913 /*
3914  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3915  * has been requested meanwhile and don't start in that case.
3916  *
3917  * Return:
3918  *   0             success
3919  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3920  *   -ECANCELED    cancellation request was set before the operation started
3921  */
3922 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3923 {
3924 	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3925 		/* This should not happen */
3926 		btrfs_err(fs_info, "reloc already running, cannot start");
3927 		return -EINPROGRESS;
3928 	}
3929 
3930 	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3931 		btrfs_info(fs_info, "chunk relocation canceled on start");
3932 		/*
3933 		 * On cancel, clear all requests but let the caller mark
3934 		 * the end after cleanup operations.
3935 		 */
3936 		atomic_set(&fs_info->reloc_cancel_req, 0);
3937 		return -ECANCELED;
3938 	}
3939 	return 0;
3940 }
3941 
3942 /*
3943  * Mark end of chunk relocation that is cancellable and wake any waiters.
3944  */
3945 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3946 {
3947 	/* Requested after start, clear bit first so any waiters can continue */
3948 	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3949 		btrfs_info(fs_info, "chunk relocation canceled during operation");
3950 	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3951 	atomic_set(&fs_info->reloc_cancel_req, 0);
3952 }
3953 
3954 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3955 {
3956 	struct reloc_control *rc;
3957 
3958 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3959 	if (!rc)
3960 		return NULL;
3961 
3962 	INIT_LIST_HEAD(&rc->reloc_roots);
3963 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3964 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3965 	mapping_tree_init(&rc->reloc_root_tree);
3966 	extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3967 	return rc;
3968 }
3969 
3970 static void free_reloc_control(struct reloc_control *rc)
3971 {
3972 	struct mapping_node *node, *tmp;
3973 
3974 	free_reloc_roots(&rc->reloc_roots);
3975 	rbtree_postorder_for_each_entry_safe(node, tmp,
3976 			&rc->reloc_root_tree.rb_root, rb_node)
3977 		kfree(node);
3978 
3979 	kfree(rc);
3980 }
3981 
3982 /*
3983  * Print the block group being relocated
3984  */
3985 static void describe_relocation(struct btrfs_fs_info *fs_info,
3986 				struct btrfs_block_group *block_group)
3987 {
3988 	char buf[128] = {'\0'};
3989 
3990 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3991 
3992 	btrfs_info(fs_info,
3993 		   "relocating block group %llu flags %s",
3994 		   block_group->start, buf);
3995 }
3996 
3997 static const char *stage_to_string(int stage)
3998 {
3999 	if (stage == MOVE_DATA_EXTENTS)
4000 		return "move data extents";
4001 	if (stage == UPDATE_DATA_PTRS)
4002 		return "update data pointers";
4003 	return "unknown";
4004 }
4005 
4006 /*
4007  * function to relocate all extents in a block group.
4008  */
4009 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4010 {
4011 	struct btrfs_block_group *bg;
4012 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
4013 	struct reloc_control *rc;
4014 	struct inode *inode;
4015 	struct btrfs_path *path;
4016 	int ret;
4017 	int rw = 0;
4018 	int err = 0;
4019 
4020 	/*
4021 	 * This only gets set if we had a half-deleted snapshot on mount.  We
4022 	 * cannot allow relocation to start while we're still trying to clean up
4023 	 * these pending deletions.
4024 	 */
4025 	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
4026 	if (ret)
4027 		return ret;
4028 
4029 	/* We may have been woken up by close_ctree, so bail if we're closing. */
4030 	if (btrfs_fs_closing(fs_info))
4031 		return -EINTR;
4032 
4033 	bg = btrfs_lookup_block_group(fs_info, group_start);
4034 	if (!bg)
4035 		return -ENOENT;
4036 
4037 	/*
4038 	 * Relocation of a data block group creates ordered extents.  Without
4039 	 * sb_start_write(), we can freeze the filesystem while unfinished
4040 	 * ordered extents are left. Such ordered extents can cause a deadlock
4041 	 * e.g. when syncfs() is waiting for their completion but they can't
4042 	 * finish because they block when joining a transaction, due to the
4043 	 * fact that the freeze locks are being held in write mode.
4044 	 */
4045 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4046 		ASSERT(sb_write_started(fs_info->sb));
4047 
4048 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4049 		btrfs_put_block_group(bg);
4050 		return -ETXTBSY;
4051 	}
4052 
4053 	rc = alloc_reloc_control(fs_info);
4054 	if (!rc) {
4055 		btrfs_put_block_group(bg);
4056 		return -ENOMEM;
4057 	}
4058 
4059 	ret = reloc_chunk_start(fs_info);
4060 	if (ret < 0) {
4061 		err = ret;
4062 		goto out_put_bg;
4063 	}
4064 
4065 	rc->extent_root = extent_root;
4066 	rc->block_group = bg;
4067 
4068 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
4069 	if (ret) {
4070 		err = ret;
4071 		goto out;
4072 	}
4073 	rw = 1;
4074 
4075 	path = btrfs_alloc_path();
4076 	if (!path) {
4077 		err = -ENOMEM;
4078 		goto out;
4079 	}
4080 
4081 	inode = lookup_free_space_inode(rc->block_group, path);
4082 	btrfs_free_path(path);
4083 
4084 	if (!IS_ERR(inode))
4085 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4086 	else
4087 		ret = PTR_ERR(inode);
4088 
4089 	if (ret && ret != -ENOENT) {
4090 		err = ret;
4091 		goto out;
4092 	}
4093 
4094 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4095 	if (IS_ERR(rc->data_inode)) {
4096 		err = PTR_ERR(rc->data_inode);
4097 		rc->data_inode = NULL;
4098 		goto out;
4099 	}
4100 
4101 	describe_relocation(fs_info, rc->block_group);
4102 
4103 	btrfs_wait_block_group_reservations(rc->block_group);
4104 	btrfs_wait_nocow_writers(rc->block_group);
4105 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4106 				 rc->block_group->start,
4107 				 rc->block_group->length);
4108 
4109 	ret = btrfs_zone_finish(rc->block_group);
4110 	WARN_ON(ret && ret != -EAGAIN);
4111 
4112 	while (1) {
4113 		int finishes_stage;
4114 
4115 		mutex_lock(&fs_info->cleaner_mutex);
4116 		ret = relocate_block_group(rc);
4117 		mutex_unlock(&fs_info->cleaner_mutex);
4118 		if (ret < 0)
4119 			err = ret;
4120 
4121 		finishes_stage = rc->stage;
4122 		/*
4123 		 * We may have gotten ENOSPC after we already dirtied some
4124 		 * extents.  If writeout happens while we're relocating a
4125 		 * different block group we could end up hitting the
4126 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4127 		 * btrfs_reloc_cow_block.  Make sure we write everything out
4128 		 * properly so we don't trip over this problem, and then break
4129 		 * out of the loop if we hit an error.
4130 		 */
4131 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4132 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4133 						       (u64)-1);
4134 			if (ret)
4135 				err = ret;
4136 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4137 						 0, -1);
4138 			rc->stage = UPDATE_DATA_PTRS;
4139 		}
4140 
4141 		if (err < 0)
4142 			goto out;
4143 
4144 		if (rc->extents_found == 0)
4145 			break;
4146 
4147 		btrfs_info(fs_info, "found %llu extents, stage: %s",
4148 			   rc->extents_found, stage_to_string(finishes_stage));
4149 	}
4150 
4151 	WARN_ON(rc->block_group->pinned > 0);
4152 	WARN_ON(rc->block_group->reserved > 0);
4153 	WARN_ON(rc->block_group->used > 0);
4154 out:
4155 	if (err && rw)
4156 		btrfs_dec_block_group_ro(rc->block_group);
4157 	iput(rc->data_inode);
4158 out_put_bg:
4159 	btrfs_put_block_group(bg);
4160 	reloc_chunk_end(fs_info);
4161 	free_reloc_control(rc);
4162 	return err;
4163 }
4164 
4165 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4166 {
4167 	struct btrfs_fs_info *fs_info = root->fs_info;
4168 	struct btrfs_trans_handle *trans;
4169 	int ret, err;
4170 
4171 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4172 	if (IS_ERR(trans))
4173 		return PTR_ERR(trans);
4174 
4175 	memset(&root->root_item.drop_progress, 0,
4176 		sizeof(root->root_item.drop_progress));
4177 	btrfs_set_root_drop_level(&root->root_item, 0);
4178 	btrfs_set_root_refs(&root->root_item, 0);
4179 	ret = btrfs_update_root(trans, fs_info->tree_root,
4180 				&root->root_key, &root->root_item);
4181 
4182 	err = btrfs_end_transaction(trans);
4183 	if (err)
4184 		return err;
4185 	return ret;
4186 }
4187 
4188 /*
4189  * recover relocation interrupted by system crash.
4190  *
4191  * this function resumes merging reloc trees with corresponding fs trees.
4192  * this is important for keeping the sharing of tree blocks
4193  */
4194 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4195 {
4196 	LIST_HEAD(reloc_roots);
4197 	struct btrfs_key key;
4198 	struct btrfs_root *fs_root;
4199 	struct btrfs_root *reloc_root;
4200 	struct btrfs_path *path;
4201 	struct extent_buffer *leaf;
4202 	struct reloc_control *rc = NULL;
4203 	struct btrfs_trans_handle *trans;
4204 	int ret;
4205 	int err = 0;
4206 
4207 	path = btrfs_alloc_path();
4208 	if (!path)
4209 		return -ENOMEM;
4210 	path->reada = READA_BACK;
4211 
4212 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4213 	key.type = BTRFS_ROOT_ITEM_KEY;
4214 	key.offset = (u64)-1;
4215 
4216 	while (1) {
4217 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4218 					path, 0, 0);
4219 		if (ret < 0) {
4220 			err = ret;
4221 			goto out;
4222 		}
4223 		if (ret > 0) {
4224 			if (path->slots[0] == 0)
4225 				break;
4226 			path->slots[0]--;
4227 		}
4228 		leaf = path->nodes[0];
4229 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4230 		btrfs_release_path(path);
4231 
4232 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4233 		    key.type != BTRFS_ROOT_ITEM_KEY)
4234 			break;
4235 
4236 		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4237 		if (IS_ERR(reloc_root)) {
4238 			err = PTR_ERR(reloc_root);
4239 			goto out;
4240 		}
4241 
4242 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4243 		list_add(&reloc_root->root_list, &reloc_roots);
4244 
4245 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4246 			fs_root = btrfs_get_fs_root(fs_info,
4247 					reloc_root->root_key.offset, false);
4248 			if (IS_ERR(fs_root)) {
4249 				ret = PTR_ERR(fs_root);
4250 				if (ret != -ENOENT) {
4251 					err = ret;
4252 					goto out;
4253 				}
4254 				ret = mark_garbage_root(reloc_root);
4255 				if (ret < 0) {
4256 					err = ret;
4257 					goto out;
4258 				}
4259 			} else {
4260 				btrfs_put_root(fs_root);
4261 			}
4262 		}
4263 
4264 		if (key.offset == 0)
4265 			break;
4266 
4267 		key.offset--;
4268 	}
4269 	btrfs_release_path(path);
4270 
4271 	if (list_empty(&reloc_roots))
4272 		goto out;
4273 
4274 	rc = alloc_reloc_control(fs_info);
4275 	if (!rc) {
4276 		err = -ENOMEM;
4277 		goto out;
4278 	}
4279 
4280 	ret = reloc_chunk_start(fs_info);
4281 	if (ret < 0) {
4282 		err = ret;
4283 		goto out_end;
4284 	}
4285 
4286 	rc->extent_root = btrfs_extent_root(fs_info, 0);
4287 
4288 	set_reloc_control(rc);
4289 
4290 	trans = btrfs_join_transaction(rc->extent_root);
4291 	if (IS_ERR(trans)) {
4292 		err = PTR_ERR(trans);
4293 		goto out_unset;
4294 	}
4295 
4296 	rc->merge_reloc_tree = 1;
4297 
4298 	while (!list_empty(&reloc_roots)) {
4299 		reloc_root = list_entry(reloc_roots.next,
4300 					struct btrfs_root, root_list);
4301 		list_del(&reloc_root->root_list);
4302 
4303 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4304 			list_add_tail(&reloc_root->root_list,
4305 				      &rc->reloc_roots);
4306 			continue;
4307 		}
4308 
4309 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4310 					    false);
4311 		if (IS_ERR(fs_root)) {
4312 			err = PTR_ERR(fs_root);
4313 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4314 			btrfs_end_transaction(trans);
4315 			goto out_unset;
4316 		}
4317 
4318 		err = __add_reloc_root(reloc_root);
4319 		ASSERT(err != -EEXIST);
4320 		if (err) {
4321 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4322 			btrfs_put_root(fs_root);
4323 			btrfs_end_transaction(trans);
4324 			goto out_unset;
4325 		}
4326 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4327 		btrfs_put_root(fs_root);
4328 	}
4329 
4330 	err = btrfs_commit_transaction(trans);
4331 	if (err)
4332 		goto out_unset;
4333 
4334 	merge_reloc_roots(rc);
4335 
4336 	unset_reloc_control(rc);
4337 
4338 	trans = btrfs_join_transaction(rc->extent_root);
4339 	if (IS_ERR(trans)) {
4340 		err = PTR_ERR(trans);
4341 		goto out_clean;
4342 	}
4343 	err = btrfs_commit_transaction(trans);
4344 out_clean:
4345 	ret = clean_dirty_subvols(rc);
4346 	if (ret < 0 && !err)
4347 		err = ret;
4348 out_unset:
4349 	unset_reloc_control(rc);
4350 out_end:
4351 	reloc_chunk_end(fs_info);
4352 	free_reloc_control(rc);
4353 out:
4354 	free_reloc_roots(&reloc_roots);
4355 
4356 	btrfs_free_path(path);
4357 
4358 	if (err == 0) {
4359 		/* cleanup orphan inode in data relocation tree */
4360 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4361 		ASSERT(fs_root);
4362 		err = btrfs_orphan_cleanup(fs_root);
4363 		btrfs_put_root(fs_root);
4364 	}
4365 	return err;
4366 }
4367 
4368 /*
4369  * helper to add ordered checksum for data relocation.
4370  *
4371  * cloning checksum properly handles the nodatasum extents.
4372  * it also saves CPU time to re-calculate the checksum.
4373  */
4374 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4375 {
4376 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
4377 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4378 	u64 disk_bytenr = ordered->file_offset + inode->index_cnt;
4379 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4380 	LIST_HEAD(list);
4381 	int ret;
4382 
4383 	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4384 				      disk_bytenr + ordered->num_bytes - 1,
4385 				      &list, 0, false);
4386 	if (ret)
4387 		return ret;
4388 
4389 	while (!list_empty(&list)) {
4390 		struct btrfs_ordered_sum *sums =
4391 			list_entry(list.next, struct btrfs_ordered_sum, list);
4392 
4393 		list_del_init(&sums->list);
4394 
4395 		/*
4396 		 * We need to offset the new_bytenr based on where the csum is.
4397 		 * We need to do this because we will read in entire prealloc
4398 		 * extents but we may have written to say the middle of the
4399 		 * prealloc extent, so we need to make sure the csum goes with
4400 		 * the right disk offset.
4401 		 *
4402 		 * We can do this because the data reloc inode refers strictly
4403 		 * to the on disk bytes, so we don't have to worry about
4404 		 * disk_len vs real len like with real inodes since it's all
4405 		 * disk length.
4406 		 */
4407 		sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4408 		btrfs_add_ordered_sum(ordered, sums);
4409 	}
4410 
4411 	return 0;
4412 }
4413 
4414 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4415 			  struct btrfs_root *root, struct extent_buffer *buf,
4416 			  struct extent_buffer *cow)
4417 {
4418 	struct btrfs_fs_info *fs_info = root->fs_info;
4419 	struct reloc_control *rc;
4420 	struct btrfs_backref_node *node;
4421 	int first_cow = 0;
4422 	int level;
4423 	int ret = 0;
4424 
4425 	rc = fs_info->reloc_ctl;
4426 	if (!rc)
4427 		return 0;
4428 
4429 	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4430 
4431 	level = btrfs_header_level(buf);
4432 	if (btrfs_header_generation(buf) <=
4433 	    btrfs_root_last_snapshot(&root->root_item))
4434 		first_cow = 1;
4435 
4436 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4437 	    rc->create_reloc_tree) {
4438 		WARN_ON(!first_cow && level == 0);
4439 
4440 		node = rc->backref_cache.path[level];
4441 		BUG_ON(node->bytenr != buf->start &&
4442 		       node->new_bytenr != buf->start);
4443 
4444 		btrfs_backref_drop_node_buffer(node);
4445 		atomic_inc(&cow->refs);
4446 		node->eb = cow;
4447 		node->new_bytenr = cow->start;
4448 
4449 		if (!node->pending) {
4450 			list_move_tail(&node->list,
4451 				       &rc->backref_cache.pending[level]);
4452 			node->pending = 1;
4453 		}
4454 
4455 		if (first_cow)
4456 			mark_block_processed(rc, node);
4457 
4458 		if (first_cow && level > 0)
4459 			rc->nodes_relocated += buf->len;
4460 	}
4461 
4462 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4463 		ret = replace_file_extents(trans, rc, root, cow);
4464 	return ret;
4465 }
4466 
4467 /*
4468  * called before creating snapshot. it calculates metadata reservation
4469  * required for relocating tree blocks in the snapshot
4470  */
4471 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4472 			      u64 *bytes_to_reserve)
4473 {
4474 	struct btrfs_root *root = pending->root;
4475 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4476 
4477 	if (!rc || !have_reloc_root(root))
4478 		return;
4479 
4480 	if (!rc->merge_reloc_tree)
4481 		return;
4482 
4483 	root = root->reloc_root;
4484 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4485 	/*
4486 	 * relocation is in the stage of merging trees. the space
4487 	 * used by merging a reloc tree is twice the size of
4488 	 * relocated tree nodes in the worst case. half for cowing
4489 	 * the reloc tree, half for cowing the fs tree. the space
4490 	 * used by cowing the reloc tree will be freed after the
4491 	 * tree is dropped. if we create snapshot, cowing the fs
4492 	 * tree may use more space than it frees. so we need
4493 	 * reserve extra space.
4494 	 */
4495 	*bytes_to_reserve += rc->nodes_relocated;
4496 }
4497 
4498 /*
4499  * called after snapshot is created. migrate block reservation
4500  * and create reloc root for the newly created snapshot
4501  *
4502  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4503  * references held on the reloc_root, one for root->reloc_root and one for
4504  * rc->reloc_roots.
4505  */
4506 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4507 			       struct btrfs_pending_snapshot *pending)
4508 {
4509 	struct btrfs_root *root = pending->root;
4510 	struct btrfs_root *reloc_root;
4511 	struct btrfs_root *new_root;
4512 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4513 	int ret;
4514 
4515 	if (!rc || !have_reloc_root(root))
4516 		return 0;
4517 
4518 	rc = root->fs_info->reloc_ctl;
4519 	rc->merging_rsv_size += rc->nodes_relocated;
4520 
4521 	if (rc->merge_reloc_tree) {
4522 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4523 					      rc->block_rsv,
4524 					      rc->nodes_relocated, true);
4525 		if (ret)
4526 			return ret;
4527 	}
4528 
4529 	new_root = pending->snap;
4530 	reloc_root = create_reloc_root(trans, root->reloc_root,
4531 				       new_root->root_key.objectid);
4532 	if (IS_ERR(reloc_root))
4533 		return PTR_ERR(reloc_root);
4534 
4535 	ret = __add_reloc_root(reloc_root);
4536 	ASSERT(ret != -EEXIST);
4537 	if (ret) {
4538 		/* Pairs with create_reloc_root */
4539 		btrfs_put_root(reloc_root);
4540 		return ret;
4541 	}
4542 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4543 
4544 	if (rc->create_reloc_tree)
4545 		ret = clone_backref_node(trans, rc, root, reloc_root);
4546 	return ret;
4547 }
4548 
4549 /*
4550  * Get the current bytenr for the block group which is being relocated.
4551  *
4552  * Return U64_MAX if no running relocation.
4553  */
4554 u64 btrfs_get_reloc_bg_bytenr(struct btrfs_fs_info *fs_info)
4555 {
4556 	u64 logical = U64_MAX;
4557 
4558 	lockdep_assert_held(&fs_info->reloc_mutex);
4559 
4560 	if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4561 		logical = fs_info->reloc_ctl->block_group->start;
4562 	return logical;
4563 }
4564