1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "export.h" 32 #include "transaction.h" 33 #include "btrfs_inode.h" 34 #include "print-tree.h" 35 #include "volumes.h" 36 #include "locking.h" 37 #include "inode-map.h" 38 #include "backref.h" 39 #include "rcu-string.h" 40 #include "send.h" 41 #include "dev-replace.h" 42 #include "props.h" 43 #include "sysfs.h" 44 #include "qgroup.h" 45 #include "tree-log.h" 46 #include "compression.h" 47 #include "space-info.h" 48 #include "delalloc-space.h" 49 #include "block-group.h" 50 51 #ifdef CONFIG_64BIT 52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 53 * structures are incorrect, as the timespec structure from userspace 54 * is 4 bytes too small. We define these alternatives here to teach 55 * the kernel about the 32-bit struct packing. 56 */ 57 struct btrfs_ioctl_timespec_32 { 58 __u64 sec; 59 __u32 nsec; 60 } __attribute__ ((__packed__)); 61 62 struct btrfs_ioctl_received_subvol_args_32 { 63 char uuid[BTRFS_UUID_SIZE]; /* in */ 64 __u64 stransid; /* in */ 65 __u64 rtransid; /* out */ 66 struct btrfs_ioctl_timespec_32 stime; /* in */ 67 struct btrfs_ioctl_timespec_32 rtime; /* out */ 68 __u64 flags; /* in */ 69 __u64 reserved[16]; /* in */ 70 } __attribute__ ((__packed__)); 71 72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 73 struct btrfs_ioctl_received_subvol_args_32) 74 #endif 75 76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 77 struct btrfs_ioctl_send_args_32 { 78 __s64 send_fd; /* in */ 79 __u64 clone_sources_count; /* in */ 80 compat_uptr_t clone_sources; /* in */ 81 __u64 parent_root; /* in */ 82 __u64 flags; /* in */ 83 __u64 reserved[4]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 87 struct btrfs_ioctl_send_args_32) 88 #endif 89 90 /* Mask out flags that are inappropriate for the given type of inode. */ 91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 92 unsigned int flags) 93 { 94 if (S_ISDIR(inode->i_mode)) 95 return flags; 96 else if (S_ISREG(inode->i_mode)) 97 return flags & ~FS_DIRSYNC_FL; 98 else 99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 100 } 101 102 /* 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 104 * ioctl. 105 */ 106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 107 { 108 unsigned int iflags = 0; 109 110 if (flags & BTRFS_INODE_SYNC) 111 iflags |= FS_SYNC_FL; 112 if (flags & BTRFS_INODE_IMMUTABLE) 113 iflags |= FS_IMMUTABLE_FL; 114 if (flags & BTRFS_INODE_APPEND) 115 iflags |= FS_APPEND_FL; 116 if (flags & BTRFS_INODE_NODUMP) 117 iflags |= FS_NODUMP_FL; 118 if (flags & BTRFS_INODE_NOATIME) 119 iflags |= FS_NOATIME_FL; 120 if (flags & BTRFS_INODE_DIRSYNC) 121 iflags |= FS_DIRSYNC_FL; 122 if (flags & BTRFS_INODE_NODATACOW) 123 iflags |= FS_NOCOW_FL; 124 125 if (flags & BTRFS_INODE_NOCOMPRESS) 126 iflags |= FS_NOCOMP_FL; 127 else if (flags & BTRFS_INODE_COMPRESS) 128 iflags |= FS_COMPR_FL; 129 130 return iflags; 131 } 132 133 /* 134 * Update inode->i_flags based on the btrfs internal flags. 135 */ 136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 137 { 138 struct btrfs_inode *binode = BTRFS_I(inode); 139 unsigned int new_fl = 0; 140 141 if (binode->flags & BTRFS_INODE_SYNC) 142 new_fl |= S_SYNC; 143 if (binode->flags & BTRFS_INODE_IMMUTABLE) 144 new_fl |= S_IMMUTABLE; 145 if (binode->flags & BTRFS_INODE_APPEND) 146 new_fl |= S_APPEND; 147 if (binode->flags & BTRFS_INODE_NOATIME) 148 new_fl |= S_NOATIME; 149 if (binode->flags & BTRFS_INODE_DIRSYNC) 150 new_fl |= S_DIRSYNC; 151 152 set_mask_bits(&inode->i_flags, 153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 154 new_fl); 155 } 156 157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 158 { 159 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 161 162 if (copy_to_user(arg, &flags, sizeof(flags))) 163 return -EFAULT; 164 return 0; 165 } 166 167 /* 168 * Check if @flags are a supported and valid set of FS_*_FL flags and that 169 * the old and new flags are not conflicting 170 */ 171 static int check_fsflags(unsigned int old_flags, unsigned int flags) 172 { 173 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 174 FS_NOATIME_FL | FS_NODUMP_FL | \ 175 FS_SYNC_FL | FS_DIRSYNC_FL | \ 176 FS_NOCOMP_FL | FS_COMPR_FL | 177 FS_NOCOW_FL)) 178 return -EOPNOTSUPP; 179 180 /* COMPR and NOCOMP on new/old are valid */ 181 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 182 return -EINVAL; 183 184 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 185 return -EINVAL; 186 187 /* NOCOW and compression options are mutually exclusive */ 188 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 189 return -EINVAL; 190 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 191 return -EINVAL; 192 193 return 0; 194 } 195 196 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 197 { 198 struct inode *inode = file_inode(file); 199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 200 struct btrfs_inode *binode = BTRFS_I(inode); 201 struct btrfs_root *root = binode->root; 202 struct btrfs_trans_handle *trans; 203 unsigned int fsflags, old_fsflags; 204 int ret; 205 const char *comp = NULL; 206 u32 binode_flags; 207 208 if (!inode_owner_or_capable(inode)) 209 return -EPERM; 210 211 if (btrfs_root_readonly(root)) 212 return -EROFS; 213 214 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 215 return -EFAULT; 216 217 ret = mnt_want_write_file(file); 218 if (ret) 219 return ret; 220 221 inode_lock(inode); 222 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 223 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 224 225 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 226 if (ret) 227 goto out_unlock; 228 229 ret = check_fsflags(old_fsflags, fsflags); 230 if (ret) 231 goto out_unlock; 232 233 binode_flags = binode->flags; 234 if (fsflags & FS_SYNC_FL) 235 binode_flags |= BTRFS_INODE_SYNC; 236 else 237 binode_flags &= ~BTRFS_INODE_SYNC; 238 if (fsflags & FS_IMMUTABLE_FL) 239 binode_flags |= BTRFS_INODE_IMMUTABLE; 240 else 241 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 242 if (fsflags & FS_APPEND_FL) 243 binode_flags |= BTRFS_INODE_APPEND; 244 else 245 binode_flags &= ~BTRFS_INODE_APPEND; 246 if (fsflags & FS_NODUMP_FL) 247 binode_flags |= BTRFS_INODE_NODUMP; 248 else 249 binode_flags &= ~BTRFS_INODE_NODUMP; 250 if (fsflags & FS_NOATIME_FL) 251 binode_flags |= BTRFS_INODE_NOATIME; 252 else 253 binode_flags &= ~BTRFS_INODE_NOATIME; 254 if (fsflags & FS_DIRSYNC_FL) 255 binode_flags |= BTRFS_INODE_DIRSYNC; 256 else 257 binode_flags &= ~BTRFS_INODE_DIRSYNC; 258 if (fsflags & FS_NOCOW_FL) { 259 if (S_ISREG(inode->i_mode)) { 260 /* 261 * It's safe to turn csums off here, no extents exist. 262 * Otherwise we want the flag to reflect the real COW 263 * status of the file and will not set it. 264 */ 265 if (inode->i_size == 0) 266 binode_flags |= BTRFS_INODE_NODATACOW | 267 BTRFS_INODE_NODATASUM; 268 } else { 269 binode_flags |= BTRFS_INODE_NODATACOW; 270 } 271 } else { 272 /* 273 * Revert back under same assumptions as above 274 */ 275 if (S_ISREG(inode->i_mode)) { 276 if (inode->i_size == 0) 277 binode_flags &= ~(BTRFS_INODE_NODATACOW | 278 BTRFS_INODE_NODATASUM); 279 } else { 280 binode_flags &= ~BTRFS_INODE_NODATACOW; 281 } 282 } 283 284 /* 285 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 286 * flag may be changed automatically if compression code won't make 287 * things smaller. 288 */ 289 if (fsflags & FS_NOCOMP_FL) { 290 binode_flags &= ~BTRFS_INODE_COMPRESS; 291 binode_flags |= BTRFS_INODE_NOCOMPRESS; 292 } else if (fsflags & FS_COMPR_FL) { 293 294 if (IS_SWAPFILE(inode)) { 295 ret = -ETXTBSY; 296 goto out_unlock; 297 } 298 299 binode_flags |= BTRFS_INODE_COMPRESS; 300 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 301 302 comp = btrfs_compress_type2str(fs_info->compress_type); 303 if (!comp || comp[0] == 0) 304 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 305 } else { 306 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 307 } 308 309 /* 310 * 1 for inode item 311 * 2 for properties 312 */ 313 trans = btrfs_start_transaction(root, 3); 314 if (IS_ERR(trans)) { 315 ret = PTR_ERR(trans); 316 goto out_unlock; 317 } 318 319 if (comp) { 320 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 321 strlen(comp), 0); 322 if (ret) { 323 btrfs_abort_transaction(trans, ret); 324 goto out_end_trans; 325 } 326 } else { 327 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 328 0, 0); 329 if (ret && ret != -ENODATA) { 330 btrfs_abort_transaction(trans, ret); 331 goto out_end_trans; 332 } 333 } 334 335 binode->flags = binode_flags; 336 btrfs_sync_inode_flags_to_i_flags(inode); 337 inode_inc_iversion(inode); 338 inode->i_ctime = current_time(inode); 339 ret = btrfs_update_inode(trans, root, inode); 340 341 out_end_trans: 342 btrfs_end_transaction(trans); 343 out_unlock: 344 inode_unlock(inode); 345 mnt_drop_write_file(file); 346 return ret; 347 } 348 349 /* 350 * Translate btrfs internal inode flags to xflags as expected by the 351 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 352 * silently dropped. 353 */ 354 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 355 { 356 unsigned int xflags = 0; 357 358 if (flags & BTRFS_INODE_APPEND) 359 xflags |= FS_XFLAG_APPEND; 360 if (flags & BTRFS_INODE_IMMUTABLE) 361 xflags |= FS_XFLAG_IMMUTABLE; 362 if (flags & BTRFS_INODE_NOATIME) 363 xflags |= FS_XFLAG_NOATIME; 364 if (flags & BTRFS_INODE_NODUMP) 365 xflags |= FS_XFLAG_NODUMP; 366 if (flags & BTRFS_INODE_SYNC) 367 xflags |= FS_XFLAG_SYNC; 368 369 return xflags; 370 } 371 372 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 373 static int check_xflags(unsigned int flags) 374 { 375 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 376 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 377 return -EOPNOTSUPP; 378 return 0; 379 } 380 381 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 382 enum btrfs_exclusive_operation type) 383 { 384 return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type); 385 } 386 387 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 388 { 389 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 390 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 391 } 392 393 /* 394 * Set the xflags from the internal inode flags. The remaining items of fsxattr 395 * are zeroed. 396 */ 397 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 398 { 399 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 400 struct fsxattr fa; 401 402 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags)); 403 if (copy_to_user(arg, &fa, sizeof(fa))) 404 return -EFAULT; 405 406 return 0; 407 } 408 409 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 410 { 411 struct inode *inode = file_inode(file); 412 struct btrfs_inode *binode = BTRFS_I(inode); 413 struct btrfs_root *root = binode->root; 414 struct btrfs_trans_handle *trans; 415 struct fsxattr fa, old_fa; 416 unsigned old_flags; 417 unsigned old_i_flags; 418 int ret = 0; 419 420 if (!inode_owner_or_capable(inode)) 421 return -EPERM; 422 423 if (btrfs_root_readonly(root)) 424 return -EROFS; 425 426 if (copy_from_user(&fa, arg, sizeof(fa))) 427 return -EFAULT; 428 429 ret = check_xflags(fa.fsx_xflags); 430 if (ret) 431 return ret; 432 433 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 434 return -EOPNOTSUPP; 435 436 ret = mnt_want_write_file(file); 437 if (ret) 438 return ret; 439 440 inode_lock(inode); 441 442 old_flags = binode->flags; 443 old_i_flags = inode->i_flags; 444 445 simple_fill_fsxattr(&old_fa, 446 btrfs_inode_flags_to_xflags(binode->flags)); 447 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 448 if (ret) 449 goto out_unlock; 450 451 if (fa.fsx_xflags & FS_XFLAG_SYNC) 452 binode->flags |= BTRFS_INODE_SYNC; 453 else 454 binode->flags &= ~BTRFS_INODE_SYNC; 455 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 456 binode->flags |= BTRFS_INODE_IMMUTABLE; 457 else 458 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 459 if (fa.fsx_xflags & FS_XFLAG_APPEND) 460 binode->flags |= BTRFS_INODE_APPEND; 461 else 462 binode->flags &= ~BTRFS_INODE_APPEND; 463 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 464 binode->flags |= BTRFS_INODE_NODUMP; 465 else 466 binode->flags &= ~BTRFS_INODE_NODUMP; 467 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 468 binode->flags |= BTRFS_INODE_NOATIME; 469 else 470 binode->flags &= ~BTRFS_INODE_NOATIME; 471 472 /* 1 item for the inode */ 473 trans = btrfs_start_transaction(root, 1); 474 if (IS_ERR(trans)) { 475 ret = PTR_ERR(trans); 476 goto out_unlock; 477 } 478 479 btrfs_sync_inode_flags_to_i_flags(inode); 480 inode_inc_iversion(inode); 481 inode->i_ctime = current_time(inode); 482 ret = btrfs_update_inode(trans, root, inode); 483 484 btrfs_end_transaction(trans); 485 486 out_unlock: 487 if (ret) { 488 binode->flags = old_flags; 489 inode->i_flags = old_i_flags; 490 } 491 492 inode_unlock(inode); 493 mnt_drop_write_file(file); 494 495 return ret; 496 } 497 498 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 499 { 500 struct inode *inode = file_inode(file); 501 502 return put_user(inode->i_generation, arg); 503 } 504 505 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 506 void __user *arg) 507 { 508 struct btrfs_device *device; 509 struct request_queue *q; 510 struct fstrim_range range; 511 u64 minlen = ULLONG_MAX; 512 u64 num_devices = 0; 513 int ret; 514 515 if (!capable(CAP_SYS_ADMIN)) 516 return -EPERM; 517 518 /* 519 * If the fs is mounted with nologreplay, which requires it to be 520 * mounted in RO mode as well, we can not allow discard on free space 521 * inside block groups, because log trees refer to extents that are not 522 * pinned in a block group's free space cache (pinning the extents is 523 * precisely the first phase of replaying a log tree). 524 */ 525 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 526 return -EROFS; 527 528 rcu_read_lock(); 529 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 530 dev_list) { 531 if (!device->bdev) 532 continue; 533 q = bdev_get_queue(device->bdev); 534 if (blk_queue_discard(q)) { 535 num_devices++; 536 minlen = min_t(u64, q->limits.discard_granularity, 537 minlen); 538 } 539 } 540 rcu_read_unlock(); 541 542 if (!num_devices) 543 return -EOPNOTSUPP; 544 if (copy_from_user(&range, arg, sizeof(range))) 545 return -EFAULT; 546 547 /* 548 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 549 * block group is in the logical address space, which can be any 550 * sectorsize aligned bytenr in the range [0, U64_MAX]. 551 */ 552 if (range.len < fs_info->sb->s_blocksize) 553 return -EINVAL; 554 555 range.minlen = max(range.minlen, minlen); 556 ret = btrfs_trim_fs(fs_info, &range); 557 if (ret < 0) 558 return ret; 559 560 if (copy_to_user(arg, &range, sizeof(range))) 561 return -EFAULT; 562 563 return 0; 564 } 565 566 int __pure btrfs_is_empty_uuid(u8 *uuid) 567 { 568 int i; 569 570 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 571 if (uuid[i]) 572 return 0; 573 } 574 return 1; 575 } 576 577 static noinline int create_subvol(struct inode *dir, 578 struct dentry *dentry, 579 const char *name, int namelen, 580 struct btrfs_qgroup_inherit *inherit) 581 { 582 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 583 struct btrfs_trans_handle *trans; 584 struct btrfs_key key; 585 struct btrfs_root_item *root_item; 586 struct btrfs_inode_item *inode_item; 587 struct extent_buffer *leaf; 588 struct btrfs_root *root = BTRFS_I(dir)->root; 589 struct btrfs_root *new_root; 590 struct btrfs_block_rsv block_rsv; 591 struct timespec64 cur_time = current_time(dir); 592 struct inode *inode; 593 int ret; 594 int err; 595 dev_t anon_dev = 0; 596 u64 objectid; 597 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 598 u64 index = 0; 599 600 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 601 if (!root_item) 602 return -ENOMEM; 603 604 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 605 if (ret) 606 goto fail_free; 607 608 ret = get_anon_bdev(&anon_dev); 609 if (ret < 0) 610 goto fail_free; 611 612 /* 613 * Don't create subvolume whose level is not zero. Or qgroup will be 614 * screwed up since it assumes subvolume qgroup's level to be 0. 615 */ 616 if (btrfs_qgroup_level(objectid)) { 617 ret = -ENOSPC; 618 goto fail_free; 619 } 620 621 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 622 /* 623 * The same as the snapshot creation, please see the comment 624 * of create_snapshot(). 625 */ 626 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 627 if (ret) 628 goto fail_free; 629 630 trans = btrfs_start_transaction(root, 0); 631 if (IS_ERR(trans)) { 632 ret = PTR_ERR(trans); 633 btrfs_subvolume_release_metadata(root, &block_rsv); 634 goto fail_free; 635 } 636 trans->block_rsv = &block_rsv; 637 trans->bytes_reserved = block_rsv.size; 638 639 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 640 if (ret) 641 goto fail; 642 643 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 644 BTRFS_NESTING_NORMAL); 645 if (IS_ERR(leaf)) { 646 ret = PTR_ERR(leaf); 647 goto fail; 648 } 649 650 btrfs_mark_buffer_dirty(leaf); 651 652 inode_item = &root_item->inode; 653 btrfs_set_stack_inode_generation(inode_item, 1); 654 btrfs_set_stack_inode_size(inode_item, 3); 655 btrfs_set_stack_inode_nlink(inode_item, 1); 656 btrfs_set_stack_inode_nbytes(inode_item, 657 fs_info->nodesize); 658 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 659 660 btrfs_set_root_flags(root_item, 0); 661 btrfs_set_root_limit(root_item, 0); 662 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 663 664 btrfs_set_root_bytenr(root_item, leaf->start); 665 btrfs_set_root_generation(root_item, trans->transid); 666 btrfs_set_root_level(root_item, 0); 667 btrfs_set_root_refs(root_item, 1); 668 btrfs_set_root_used(root_item, leaf->len); 669 btrfs_set_root_last_snapshot(root_item, 0); 670 671 btrfs_set_root_generation_v2(root_item, 672 btrfs_root_generation(root_item)); 673 generate_random_guid(root_item->uuid); 674 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 675 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 676 root_item->ctime = root_item->otime; 677 btrfs_set_root_ctransid(root_item, trans->transid); 678 btrfs_set_root_otransid(root_item, trans->transid); 679 680 btrfs_tree_unlock(leaf); 681 free_extent_buffer(leaf); 682 leaf = NULL; 683 684 btrfs_set_root_dirid(root_item, new_dirid); 685 686 key.objectid = objectid; 687 key.offset = 0; 688 key.type = BTRFS_ROOT_ITEM_KEY; 689 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 690 root_item); 691 if (ret) 692 goto fail; 693 694 key.offset = (u64)-1; 695 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 696 if (IS_ERR(new_root)) { 697 free_anon_bdev(anon_dev); 698 ret = PTR_ERR(new_root); 699 btrfs_abort_transaction(trans, ret); 700 goto fail; 701 } 702 /* Freeing will be done in btrfs_put_root() of new_root */ 703 anon_dev = 0; 704 705 btrfs_record_root_in_trans(trans, new_root); 706 707 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 708 btrfs_put_root(new_root); 709 if (ret) { 710 /* We potentially lose an unused inode item here */ 711 btrfs_abort_transaction(trans, ret); 712 goto fail; 713 } 714 715 mutex_lock(&new_root->objectid_mutex); 716 new_root->highest_objectid = new_dirid; 717 mutex_unlock(&new_root->objectid_mutex); 718 719 /* 720 * insert the directory item 721 */ 722 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 723 if (ret) { 724 btrfs_abort_transaction(trans, ret); 725 goto fail; 726 } 727 728 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 729 BTRFS_FT_DIR, index); 730 if (ret) { 731 btrfs_abort_transaction(trans, ret); 732 goto fail; 733 } 734 735 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 736 ret = btrfs_update_inode(trans, root, dir); 737 if (ret) { 738 btrfs_abort_transaction(trans, ret); 739 goto fail; 740 } 741 742 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 743 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 744 if (ret) { 745 btrfs_abort_transaction(trans, ret); 746 goto fail; 747 } 748 749 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 750 BTRFS_UUID_KEY_SUBVOL, objectid); 751 if (ret) 752 btrfs_abort_transaction(trans, ret); 753 754 fail: 755 kfree(root_item); 756 trans->block_rsv = NULL; 757 trans->bytes_reserved = 0; 758 btrfs_subvolume_release_metadata(root, &block_rsv); 759 760 err = btrfs_commit_transaction(trans); 761 if (err && !ret) 762 ret = err; 763 764 if (!ret) { 765 inode = btrfs_lookup_dentry(dir, dentry); 766 if (IS_ERR(inode)) 767 return PTR_ERR(inode); 768 d_instantiate(dentry, inode); 769 } 770 return ret; 771 772 fail_free: 773 if (anon_dev) 774 free_anon_bdev(anon_dev); 775 kfree(root_item); 776 return ret; 777 } 778 779 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 780 struct dentry *dentry, bool readonly, 781 struct btrfs_qgroup_inherit *inherit) 782 { 783 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 784 struct inode *inode; 785 struct btrfs_pending_snapshot *pending_snapshot; 786 struct btrfs_trans_handle *trans; 787 int ret; 788 789 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 790 return -EINVAL; 791 792 if (atomic_read(&root->nr_swapfiles)) { 793 btrfs_warn(fs_info, 794 "cannot snapshot subvolume with active swapfile"); 795 return -ETXTBSY; 796 } 797 798 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 799 if (!pending_snapshot) 800 return -ENOMEM; 801 802 ret = get_anon_bdev(&pending_snapshot->anon_dev); 803 if (ret < 0) 804 goto free_pending; 805 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 806 GFP_KERNEL); 807 pending_snapshot->path = btrfs_alloc_path(); 808 if (!pending_snapshot->root_item || !pending_snapshot->path) { 809 ret = -ENOMEM; 810 goto free_pending; 811 } 812 813 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 814 BTRFS_BLOCK_RSV_TEMP); 815 /* 816 * 1 - parent dir inode 817 * 2 - dir entries 818 * 1 - root item 819 * 2 - root ref/backref 820 * 1 - root of snapshot 821 * 1 - UUID item 822 */ 823 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 824 &pending_snapshot->block_rsv, 8, 825 false); 826 if (ret) 827 goto free_pending; 828 829 pending_snapshot->dentry = dentry; 830 pending_snapshot->root = root; 831 pending_snapshot->readonly = readonly; 832 pending_snapshot->dir = dir; 833 pending_snapshot->inherit = inherit; 834 835 trans = btrfs_start_transaction(root, 0); 836 if (IS_ERR(trans)) { 837 ret = PTR_ERR(trans); 838 goto fail; 839 } 840 841 spin_lock(&fs_info->trans_lock); 842 list_add(&pending_snapshot->list, 843 &trans->transaction->pending_snapshots); 844 spin_unlock(&fs_info->trans_lock); 845 846 ret = btrfs_commit_transaction(trans); 847 if (ret) 848 goto fail; 849 850 ret = pending_snapshot->error; 851 if (ret) 852 goto fail; 853 854 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 855 if (ret) 856 goto fail; 857 858 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 859 if (IS_ERR(inode)) { 860 ret = PTR_ERR(inode); 861 goto fail; 862 } 863 864 d_instantiate(dentry, inode); 865 ret = 0; 866 pending_snapshot->anon_dev = 0; 867 fail: 868 /* Prevent double freeing of anon_dev */ 869 if (ret && pending_snapshot->snap) 870 pending_snapshot->snap->anon_dev = 0; 871 btrfs_put_root(pending_snapshot->snap); 872 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 873 free_pending: 874 if (pending_snapshot->anon_dev) 875 free_anon_bdev(pending_snapshot->anon_dev); 876 kfree(pending_snapshot->root_item); 877 btrfs_free_path(pending_snapshot->path); 878 kfree(pending_snapshot); 879 880 return ret; 881 } 882 883 /* copy of may_delete in fs/namei.c() 884 * Check whether we can remove a link victim from directory dir, check 885 * whether the type of victim is right. 886 * 1. We can't do it if dir is read-only (done in permission()) 887 * 2. We should have write and exec permissions on dir 888 * 3. We can't remove anything from append-only dir 889 * 4. We can't do anything with immutable dir (done in permission()) 890 * 5. If the sticky bit on dir is set we should either 891 * a. be owner of dir, or 892 * b. be owner of victim, or 893 * c. have CAP_FOWNER capability 894 * 6. If the victim is append-only or immutable we can't do anything with 895 * links pointing to it. 896 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 897 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 898 * 9. We can't remove a root or mountpoint. 899 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 900 * nfs_async_unlink(). 901 */ 902 903 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 904 { 905 int error; 906 907 if (d_really_is_negative(victim)) 908 return -ENOENT; 909 910 BUG_ON(d_inode(victim->d_parent) != dir); 911 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 912 913 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 914 if (error) 915 return error; 916 if (IS_APPEND(dir)) 917 return -EPERM; 918 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 919 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 920 return -EPERM; 921 if (isdir) { 922 if (!d_is_dir(victim)) 923 return -ENOTDIR; 924 if (IS_ROOT(victim)) 925 return -EBUSY; 926 } else if (d_is_dir(victim)) 927 return -EISDIR; 928 if (IS_DEADDIR(dir)) 929 return -ENOENT; 930 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 931 return -EBUSY; 932 return 0; 933 } 934 935 /* copy of may_create in fs/namei.c() */ 936 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 937 { 938 if (d_really_is_positive(child)) 939 return -EEXIST; 940 if (IS_DEADDIR(dir)) 941 return -ENOENT; 942 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 943 } 944 945 /* 946 * Create a new subvolume below @parent. This is largely modeled after 947 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 948 * inside this filesystem so it's quite a bit simpler. 949 */ 950 static noinline int btrfs_mksubvol(const struct path *parent, 951 const char *name, int namelen, 952 struct btrfs_root *snap_src, 953 bool readonly, 954 struct btrfs_qgroup_inherit *inherit) 955 { 956 struct inode *dir = d_inode(parent->dentry); 957 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 958 struct dentry *dentry; 959 int error; 960 961 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 962 if (error == -EINTR) 963 return error; 964 965 dentry = lookup_one_len(name, parent->dentry, namelen); 966 error = PTR_ERR(dentry); 967 if (IS_ERR(dentry)) 968 goto out_unlock; 969 970 error = btrfs_may_create(dir, dentry); 971 if (error) 972 goto out_dput; 973 974 /* 975 * even if this name doesn't exist, we may get hash collisions. 976 * check for them now when we can safely fail 977 */ 978 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 979 dir->i_ino, name, 980 namelen); 981 if (error) 982 goto out_dput; 983 984 down_read(&fs_info->subvol_sem); 985 986 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 987 goto out_up_read; 988 989 if (snap_src) 990 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 991 else 992 error = create_subvol(dir, dentry, name, namelen, inherit); 993 994 if (!error) 995 fsnotify_mkdir(dir, dentry); 996 out_up_read: 997 up_read(&fs_info->subvol_sem); 998 out_dput: 999 dput(dentry); 1000 out_unlock: 1001 inode_unlock(dir); 1002 return error; 1003 } 1004 1005 static noinline int btrfs_mksnapshot(const struct path *parent, 1006 const char *name, int namelen, 1007 struct btrfs_root *root, 1008 bool readonly, 1009 struct btrfs_qgroup_inherit *inherit) 1010 { 1011 int ret; 1012 bool snapshot_force_cow = false; 1013 1014 /* 1015 * Force new buffered writes to reserve space even when NOCOW is 1016 * possible. This is to avoid later writeback (running dealloc) to 1017 * fallback to COW mode and unexpectedly fail with ENOSPC. 1018 */ 1019 btrfs_drew_read_lock(&root->snapshot_lock); 1020 1021 ret = btrfs_start_delalloc_snapshot(root); 1022 if (ret) 1023 goto out; 1024 1025 /* 1026 * All previous writes have started writeback in NOCOW mode, so now 1027 * we force future writes to fallback to COW mode during snapshot 1028 * creation. 1029 */ 1030 atomic_inc(&root->snapshot_force_cow); 1031 snapshot_force_cow = true; 1032 1033 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1034 1035 ret = btrfs_mksubvol(parent, name, namelen, 1036 root, readonly, inherit); 1037 out: 1038 if (snapshot_force_cow) 1039 atomic_dec(&root->snapshot_force_cow); 1040 btrfs_drew_read_unlock(&root->snapshot_lock); 1041 return ret; 1042 } 1043 1044 /* 1045 * When we're defragging a range, we don't want to kick it off again 1046 * if it is really just waiting for delalloc to send it down. 1047 * If we find a nice big extent or delalloc range for the bytes in the 1048 * file you want to defrag, we return 0 to let you know to skip this 1049 * part of the file 1050 */ 1051 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1052 { 1053 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1054 struct extent_map *em = NULL; 1055 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1056 u64 end; 1057 1058 read_lock(&em_tree->lock); 1059 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1060 read_unlock(&em_tree->lock); 1061 1062 if (em) { 1063 end = extent_map_end(em); 1064 free_extent_map(em); 1065 if (end - offset > thresh) 1066 return 0; 1067 } 1068 /* if we already have a nice delalloc here, just stop */ 1069 thresh /= 2; 1070 end = count_range_bits(io_tree, &offset, offset + thresh, 1071 thresh, EXTENT_DELALLOC, 1); 1072 if (end >= thresh) 1073 return 0; 1074 return 1; 1075 } 1076 1077 /* 1078 * helper function to walk through a file and find extents 1079 * newer than a specific transid, and smaller than thresh. 1080 * 1081 * This is used by the defragging code to find new and small 1082 * extents 1083 */ 1084 static int find_new_extents(struct btrfs_root *root, 1085 struct inode *inode, u64 newer_than, 1086 u64 *off, u32 thresh) 1087 { 1088 struct btrfs_path *path; 1089 struct btrfs_key min_key; 1090 struct extent_buffer *leaf; 1091 struct btrfs_file_extent_item *extent; 1092 int type; 1093 int ret; 1094 u64 ino = btrfs_ino(BTRFS_I(inode)); 1095 1096 path = btrfs_alloc_path(); 1097 if (!path) 1098 return -ENOMEM; 1099 1100 min_key.objectid = ino; 1101 min_key.type = BTRFS_EXTENT_DATA_KEY; 1102 min_key.offset = *off; 1103 1104 while (1) { 1105 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1106 if (ret != 0) 1107 goto none; 1108 process_slot: 1109 if (min_key.objectid != ino) 1110 goto none; 1111 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1112 goto none; 1113 1114 leaf = path->nodes[0]; 1115 extent = btrfs_item_ptr(leaf, path->slots[0], 1116 struct btrfs_file_extent_item); 1117 1118 type = btrfs_file_extent_type(leaf, extent); 1119 if (type == BTRFS_FILE_EXTENT_REG && 1120 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1121 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1122 *off = min_key.offset; 1123 btrfs_free_path(path); 1124 return 0; 1125 } 1126 1127 path->slots[0]++; 1128 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1129 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1130 goto process_slot; 1131 } 1132 1133 if (min_key.offset == (u64)-1) 1134 goto none; 1135 1136 min_key.offset++; 1137 btrfs_release_path(path); 1138 } 1139 none: 1140 btrfs_free_path(path); 1141 return -ENOENT; 1142 } 1143 1144 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1145 { 1146 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1147 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1148 struct extent_map *em; 1149 u64 len = PAGE_SIZE; 1150 1151 /* 1152 * hopefully we have this extent in the tree already, try without 1153 * the full extent lock 1154 */ 1155 read_lock(&em_tree->lock); 1156 em = lookup_extent_mapping(em_tree, start, len); 1157 read_unlock(&em_tree->lock); 1158 1159 if (!em) { 1160 struct extent_state *cached = NULL; 1161 u64 end = start + len - 1; 1162 1163 /* get the big lock and read metadata off disk */ 1164 lock_extent_bits(io_tree, start, end, &cached); 1165 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 1166 unlock_extent_cached(io_tree, start, end, &cached); 1167 1168 if (IS_ERR(em)) 1169 return NULL; 1170 } 1171 1172 return em; 1173 } 1174 1175 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1176 { 1177 struct extent_map *next; 1178 bool ret = true; 1179 1180 /* this is the last extent */ 1181 if (em->start + em->len >= i_size_read(inode)) 1182 return false; 1183 1184 next = defrag_lookup_extent(inode, em->start + em->len); 1185 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1186 ret = false; 1187 else if ((em->block_start + em->block_len == next->block_start) && 1188 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1189 ret = false; 1190 1191 free_extent_map(next); 1192 return ret; 1193 } 1194 1195 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1196 u64 *last_len, u64 *skip, u64 *defrag_end, 1197 int compress) 1198 { 1199 struct extent_map *em; 1200 int ret = 1; 1201 bool next_mergeable = true; 1202 bool prev_mergeable = true; 1203 1204 /* 1205 * make sure that once we start defragging an extent, we keep on 1206 * defragging it 1207 */ 1208 if (start < *defrag_end) 1209 return 1; 1210 1211 *skip = 0; 1212 1213 em = defrag_lookup_extent(inode, start); 1214 if (!em) 1215 return 0; 1216 1217 /* this will cover holes, and inline extents */ 1218 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1219 ret = 0; 1220 goto out; 1221 } 1222 1223 if (!*defrag_end) 1224 prev_mergeable = false; 1225 1226 next_mergeable = defrag_check_next_extent(inode, em); 1227 /* 1228 * we hit a real extent, if it is big or the next extent is not a 1229 * real extent, don't bother defragging it 1230 */ 1231 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1232 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1233 ret = 0; 1234 out: 1235 /* 1236 * last_len ends up being a counter of how many bytes we've defragged. 1237 * every time we choose not to defrag an extent, we reset *last_len 1238 * so that the next tiny extent will force a defrag. 1239 * 1240 * The end result of this is that tiny extents before a single big 1241 * extent will force at least part of that big extent to be defragged. 1242 */ 1243 if (ret) { 1244 *defrag_end = extent_map_end(em); 1245 } else { 1246 *last_len = 0; 1247 *skip = extent_map_end(em); 1248 *defrag_end = 0; 1249 } 1250 1251 free_extent_map(em); 1252 return ret; 1253 } 1254 1255 /* 1256 * it doesn't do much good to defrag one or two pages 1257 * at a time. This pulls in a nice chunk of pages 1258 * to COW and defrag. 1259 * 1260 * It also makes sure the delalloc code has enough 1261 * dirty data to avoid making new small extents as part 1262 * of the defrag 1263 * 1264 * It's a good idea to start RA on this range 1265 * before calling this. 1266 */ 1267 static int cluster_pages_for_defrag(struct inode *inode, 1268 struct page **pages, 1269 unsigned long start_index, 1270 unsigned long num_pages) 1271 { 1272 unsigned long file_end; 1273 u64 isize = i_size_read(inode); 1274 u64 page_start; 1275 u64 page_end; 1276 u64 page_cnt; 1277 int ret; 1278 int i; 1279 int i_done; 1280 struct btrfs_ordered_extent *ordered; 1281 struct extent_state *cached_state = NULL; 1282 struct extent_io_tree *tree; 1283 struct extent_changeset *data_reserved = NULL; 1284 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1285 1286 file_end = (isize - 1) >> PAGE_SHIFT; 1287 if (!isize || start_index > file_end) 1288 return 0; 1289 1290 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1291 1292 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1293 start_index << PAGE_SHIFT, 1294 page_cnt << PAGE_SHIFT); 1295 if (ret) 1296 return ret; 1297 i_done = 0; 1298 tree = &BTRFS_I(inode)->io_tree; 1299 1300 /* step one, lock all the pages */ 1301 for (i = 0; i < page_cnt; i++) { 1302 struct page *page; 1303 again: 1304 page = find_or_create_page(inode->i_mapping, 1305 start_index + i, mask); 1306 if (!page) 1307 break; 1308 1309 page_start = page_offset(page); 1310 page_end = page_start + PAGE_SIZE - 1; 1311 while (1) { 1312 lock_extent_bits(tree, page_start, page_end, 1313 &cached_state); 1314 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), 1315 page_start); 1316 unlock_extent_cached(tree, page_start, page_end, 1317 &cached_state); 1318 if (!ordered) 1319 break; 1320 1321 unlock_page(page); 1322 btrfs_start_ordered_extent(ordered, 1); 1323 btrfs_put_ordered_extent(ordered); 1324 lock_page(page); 1325 /* 1326 * we unlocked the page above, so we need check if 1327 * it was released or not. 1328 */ 1329 if (page->mapping != inode->i_mapping) { 1330 unlock_page(page); 1331 put_page(page); 1332 goto again; 1333 } 1334 } 1335 1336 if (!PageUptodate(page)) { 1337 btrfs_readpage(NULL, page); 1338 lock_page(page); 1339 if (!PageUptodate(page)) { 1340 unlock_page(page); 1341 put_page(page); 1342 ret = -EIO; 1343 break; 1344 } 1345 } 1346 1347 if (page->mapping != inode->i_mapping) { 1348 unlock_page(page); 1349 put_page(page); 1350 goto again; 1351 } 1352 1353 pages[i] = page; 1354 i_done++; 1355 } 1356 if (!i_done || ret) 1357 goto out; 1358 1359 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1360 goto out; 1361 1362 /* 1363 * so now we have a nice long stream of locked 1364 * and up to date pages, lets wait on them 1365 */ 1366 for (i = 0; i < i_done; i++) 1367 wait_on_page_writeback(pages[i]); 1368 1369 page_start = page_offset(pages[0]); 1370 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1371 1372 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1373 page_start, page_end - 1, &cached_state); 1374 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1375 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1376 EXTENT_DEFRAG, 0, 0, &cached_state); 1377 1378 if (i_done != page_cnt) { 1379 spin_lock(&BTRFS_I(inode)->lock); 1380 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1381 spin_unlock(&BTRFS_I(inode)->lock); 1382 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1383 start_index << PAGE_SHIFT, 1384 (page_cnt - i_done) << PAGE_SHIFT, true); 1385 } 1386 1387 1388 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1389 &cached_state); 1390 1391 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1392 page_start, page_end - 1, &cached_state); 1393 1394 for (i = 0; i < i_done; i++) { 1395 clear_page_dirty_for_io(pages[i]); 1396 ClearPageChecked(pages[i]); 1397 set_page_extent_mapped(pages[i]); 1398 set_page_dirty(pages[i]); 1399 unlock_page(pages[i]); 1400 put_page(pages[i]); 1401 } 1402 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1403 extent_changeset_free(data_reserved); 1404 return i_done; 1405 out: 1406 for (i = 0; i < i_done; i++) { 1407 unlock_page(pages[i]); 1408 put_page(pages[i]); 1409 } 1410 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1411 start_index << PAGE_SHIFT, 1412 page_cnt << PAGE_SHIFT, true); 1413 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1414 extent_changeset_free(data_reserved); 1415 return ret; 1416 1417 } 1418 1419 int btrfs_defrag_file(struct inode *inode, struct file *file, 1420 struct btrfs_ioctl_defrag_range_args *range, 1421 u64 newer_than, unsigned long max_to_defrag) 1422 { 1423 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1424 struct btrfs_root *root = BTRFS_I(inode)->root; 1425 struct file_ra_state *ra = NULL; 1426 unsigned long last_index; 1427 u64 isize = i_size_read(inode); 1428 u64 last_len = 0; 1429 u64 skip = 0; 1430 u64 defrag_end = 0; 1431 u64 newer_off = range->start; 1432 unsigned long i; 1433 unsigned long ra_index = 0; 1434 int ret; 1435 int defrag_count = 0; 1436 int compress_type = BTRFS_COMPRESS_ZLIB; 1437 u32 extent_thresh = range->extent_thresh; 1438 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1439 unsigned long cluster = max_cluster; 1440 u64 new_align = ~((u64)SZ_128K - 1); 1441 struct page **pages = NULL; 1442 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1443 1444 if (isize == 0) 1445 return 0; 1446 1447 if (range->start >= isize) 1448 return -EINVAL; 1449 1450 if (do_compress) { 1451 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1452 return -EINVAL; 1453 if (range->compress_type) 1454 compress_type = range->compress_type; 1455 } 1456 1457 if (extent_thresh == 0) 1458 extent_thresh = SZ_256K; 1459 1460 /* 1461 * If we were not given a file, allocate a readahead context. As 1462 * readahead is just an optimization, defrag will work without it so 1463 * we don't error out. 1464 */ 1465 if (!file) { 1466 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1467 if (ra) 1468 file_ra_state_init(ra, inode->i_mapping); 1469 } else { 1470 ra = &file->f_ra; 1471 } 1472 1473 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1474 if (!pages) { 1475 ret = -ENOMEM; 1476 goto out_ra; 1477 } 1478 1479 /* find the last page to defrag */ 1480 if (range->start + range->len > range->start) { 1481 last_index = min_t(u64, isize - 1, 1482 range->start + range->len - 1) >> PAGE_SHIFT; 1483 } else { 1484 last_index = (isize - 1) >> PAGE_SHIFT; 1485 } 1486 1487 if (newer_than) { 1488 ret = find_new_extents(root, inode, newer_than, 1489 &newer_off, SZ_64K); 1490 if (!ret) { 1491 range->start = newer_off; 1492 /* 1493 * we always align our defrag to help keep 1494 * the extents in the file evenly spaced 1495 */ 1496 i = (newer_off & new_align) >> PAGE_SHIFT; 1497 } else 1498 goto out_ra; 1499 } else { 1500 i = range->start >> PAGE_SHIFT; 1501 } 1502 if (!max_to_defrag) 1503 max_to_defrag = last_index - i + 1; 1504 1505 /* 1506 * make writeback starts from i, so the defrag range can be 1507 * written sequentially. 1508 */ 1509 if (i < inode->i_mapping->writeback_index) 1510 inode->i_mapping->writeback_index = i; 1511 1512 while (i <= last_index && defrag_count < max_to_defrag && 1513 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1514 /* 1515 * make sure we stop running if someone unmounts 1516 * the FS 1517 */ 1518 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1519 break; 1520 1521 if (btrfs_defrag_cancelled(fs_info)) { 1522 btrfs_debug(fs_info, "defrag_file cancelled"); 1523 ret = -EAGAIN; 1524 break; 1525 } 1526 1527 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1528 extent_thresh, &last_len, &skip, 1529 &defrag_end, do_compress)){ 1530 unsigned long next; 1531 /* 1532 * the should_defrag function tells us how much to skip 1533 * bump our counter by the suggested amount 1534 */ 1535 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1536 i = max(i + 1, next); 1537 continue; 1538 } 1539 1540 if (!newer_than) { 1541 cluster = (PAGE_ALIGN(defrag_end) >> 1542 PAGE_SHIFT) - i; 1543 cluster = min(cluster, max_cluster); 1544 } else { 1545 cluster = max_cluster; 1546 } 1547 1548 if (i + cluster > ra_index) { 1549 ra_index = max(i, ra_index); 1550 if (ra) 1551 page_cache_sync_readahead(inode->i_mapping, ra, 1552 file, ra_index, cluster); 1553 ra_index += cluster; 1554 } 1555 1556 inode_lock(inode); 1557 if (IS_SWAPFILE(inode)) { 1558 ret = -ETXTBSY; 1559 } else { 1560 if (do_compress) 1561 BTRFS_I(inode)->defrag_compress = compress_type; 1562 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1563 } 1564 if (ret < 0) { 1565 inode_unlock(inode); 1566 goto out_ra; 1567 } 1568 1569 defrag_count += ret; 1570 balance_dirty_pages_ratelimited(inode->i_mapping); 1571 inode_unlock(inode); 1572 1573 if (newer_than) { 1574 if (newer_off == (u64)-1) 1575 break; 1576 1577 if (ret > 0) 1578 i += ret; 1579 1580 newer_off = max(newer_off + 1, 1581 (u64)i << PAGE_SHIFT); 1582 1583 ret = find_new_extents(root, inode, newer_than, 1584 &newer_off, SZ_64K); 1585 if (!ret) { 1586 range->start = newer_off; 1587 i = (newer_off & new_align) >> PAGE_SHIFT; 1588 } else { 1589 break; 1590 } 1591 } else { 1592 if (ret > 0) { 1593 i += ret; 1594 last_len += ret << PAGE_SHIFT; 1595 } else { 1596 i++; 1597 last_len = 0; 1598 } 1599 } 1600 } 1601 1602 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1603 filemap_flush(inode->i_mapping); 1604 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1605 &BTRFS_I(inode)->runtime_flags)) 1606 filemap_flush(inode->i_mapping); 1607 } 1608 1609 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1610 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1611 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1612 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1613 } 1614 1615 ret = defrag_count; 1616 1617 out_ra: 1618 if (do_compress) { 1619 inode_lock(inode); 1620 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1621 inode_unlock(inode); 1622 } 1623 if (!file) 1624 kfree(ra); 1625 kfree(pages); 1626 return ret; 1627 } 1628 1629 static noinline int btrfs_ioctl_resize(struct file *file, 1630 void __user *arg) 1631 { 1632 struct inode *inode = file_inode(file); 1633 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1634 u64 new_size; 1635 u64 old_size; 1636 u64 devid = 1; 1637 struct btrfs_root *root = BTRFS_I(inode)->root; 1638 struct btrfs_ioctl_vol_args *vol_args; 1639 struct btrfs_trans_handle *trans; 1640 struct btrfs_device *device = NULL; 1641 char *sizestr; 1642 char *retptr; 1643 char *devstr = NULL; 1644 int ret = 0; 1645 int mod = 0; 1646 1647 if (!capable(CAP_SYS_ADMIN)) 1648 return -EPERM; 1649 1650 ret = mnt_want_write_file(file); 1651 if (ret) 1652 return ret; 1653 1654 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) { 1655 mnt_drop_write_file(file); 1656 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1657 } 1658 1659 vol_args = memdup_user(arg, sizeof(*vol_args)); 1660 if (IS_ERR(vol_args)) { 1661 ret = PTR_ERR(vol_args); 1662 goto out; 1663 } 1664 1665 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1666 1667 sizestr = vol_args->name; 1668 devstr = strchr(sizestr, ':'); 1669 if (devstr) { 1670 sizestr = devstr + 1; 1671 *devstr = '\0'; 1672 devstr = vol_args->name; 1673 ret = kstrtoull(devstr, 10, &devid); 1674 if (ret) 1675 goto out_free; 1676 if (!devid) { 1677 ret = -EINVAL; 1678 goto out_free; 1679 } 1680 btrfs_info(fs_info, "resizing devid %llu", devid); 1681 } 1682 1683 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 1684 if (!device) { 1685 btrfs_info(fs_info, "resizer unable to find device %llu", 1686 devid); 1687 ret = -ENODEV; 1688 goto out_free; 1689 } 1690 1691 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1692 btrfs_info(fs_info, 1693 "resizer unable to apply on readonly device %llu", 1694 devid); 1695 ret = -EPERM; 1696 goto out_free; 1697 } 1698 1699 if (!strcmp(sizestr, "max")) 1700 new_size = device->bdev->bd_inode->i_size; 1701 else { 1702 if (sizestr[0] == '-') { 1703 mod = -1; 1704 sizestr++; 1705 } else if (sizestr[0] == '+') { 1706 mod = 1; 1707 sizestr++; 1708 } 1709 new_size = memparse(sizestr, &retptr); 1710 if (*retptr != '\0' || new_size == 0) { 1711 ret = -EINVAL; 1712 goto out_free; 1713 } 1714 } 1715 1716 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1717 ret = -EPERM; 1718 goto out_free; 1719 } 1720 1721 old_size = btrfs_device_get_total_bytes(device); 1722 1723 if (mod < 0) { 1724 if (new_size > old_size) { 1725 ret = -EINVAL; 1726 goto out_free; 1727 } 1728 new_size = old_size - new_size; 1729 } else if (mod > 0) { 1730 if (new_size > ULLONG_MAX - old_size) { 1731 ret = -ERANGE; 1732 goto out_free; 1733 } 1734 new_size = old_size + new_size; 1735 } 1736 1737 if (new_size < SZ_256M) { 1738 ret = -EINVAL; 1739 goto out_free; 1740 } 1741 if (new_size > device->bdev->bd_inode->i_size) { 1742 ret = -EFBIG; 1743 goto out_free; 1744 } 1745 1746 new_size = round_down(new_size, fs_info->sectorsize); 1747 1748 if (new_size > old_size) { 1749 trans = btrfs_start_transaction(root, 0); 1750 if (IS_ERR(trans)) { 1751 ret = PTR_ERR(trans); 1752 goto out_free; 1753 } 1754 ret = btrfs_grow_device(trans, device, new_size); 1755 btrfs_commit_transaction(trans); 1756 } else if (new_size < old_size) { 1757 ret = btrfs_shrink_device(device, new_size); 1758 } /* equal, nothing need to do */ 1759 1760 if (ret == 0 && new_size != old_size) 1761 btrfs_info_in_rcu(fs_info, 1762 "resize device %s (devid %llu) from %llu to %llu", 1763 rcu_str_deref(device->name), device->devid, 1764 old_size, new_size); 1765 out_free: 1766 kfree(vol_args); 1767 out: 1768 btrfs_exclop_finish(fs_info); 1769 mnt_drop_write_file(file); 1770 return ret; 1771 } 1772 1773 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1774 const char *name, unsigned long fd, int subvol, 1775 bool readonly, 1776 struct btrfs_qgroup_inherit *inherit) 1777 { 1778 int namelen; 1779 int ret = 0; 1780 1781 if (!S_ISDIR(file_inode(file)->i_mode)) 1782 return -ENOTDIR; 1783 1784 ret = mnt_want_write_file(file); 1785 if (ret) 1786 goto out; 1787 1788 namelen = strlen(name); 1789 if (strchr(name, '/')) { 1790 ret = -EINVAL; 1791 goto out_drop_write; 1792 } 1793 1794 if (name[0] == '.' && 1795 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1796 ret = -EEXIST; 1797 goto out_drop_write; 1798 } 1799 1800 if (subvol) { 1801 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1802 NULL, readonly, inherit); 1803 } else { 1804 struct fd src = fdget(fd); 1805 struct inode *src_inode; 1806 if (!src.file) { 1807 ret = -EINVAL; 1808 goto out_drop_write; 1809 } 1810 1811 src_inode = file_inode(src.file); 1812 if (src_inode->i_sb != file_inode(file)->i_sb) { 1813 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1814 "Snapshot src from another FS"); 1815 ret = -EXDEV; 1816 } else if (!inode_owner_or_capable(src_inode)) { 1817 /* 1818 * Subvolume creation is not restricted, but snapshots 1819 * are limited to own subvolumes only 1820 */ 1821 ret = -EPERM; 1822 } else { 1823 ret = btrfs_mksnapshot(&file->f_path, name, namelen, 1824 BTRFS_I(src_inode)->root, 1825 readonly, inherit); 1826 } 1827 fdput(src); 1828 } 1829 out_drop_write: 1830 mnt_drop_write_file(file); 1831 out: 1832 return ret; 1833 } 1834 1835 static noinline int btrfs_ioctl_snap_create(struct file *file, 1836 void __user *arg, int subvol) 1837 { 1838 struct btrfs_ioctl_vol_args *vol_args; 1839 int ret; 1840 1841 if (!S_ISDIR(file_inode(file)->i_mode)) 1842 return -ENOTDIR; 1843 1844 vol_args = memdup_user(arg, sizeof(*vol_args)); 1845 if (IS_ERR(vol_args)) 1846 return PTR_ERR(vol_args); 1847 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1848 1849 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1850 subvol, false, NULL); 1851 1852 kfree(vol_args); 1853 return ret; 1854 } 1855 1856 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1857 void __user *arg, int subvol) 1858 { 1859 struct btrfs_ioctl_vol_args_v2 *vol_args; 1860 int ret; 1861 bool readonly = false; 1862 struct btrfs_qgroup_inherit *inherit = NULL; 1863 1864 if (!S_ISDIR(file_inode(file)->i_mode)) 1865 return -ENOTDIR; 1866 1867 vol_args = memdup_user(arg, sizeof(*vol_args)); 1868 if (IS_ERR(vol_args)) 1869 return PTR_ERR(vol_args); 1870 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1871 1872 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1873 ret = -EOPNOTSUPP; 1874 goto free_args; 1875 } 1876 1877 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1878 readonly = true; 1879 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1880 if (vol_args->size > PAGE_SIZE) { 1881 ret = -EINVAL; 1882 goto free_args; 1883 } 1884 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1885 if (IS_ERR(inherit)) { 1886 ret = PTR_ERR(inherit); 1887 goto free_args; 1888 } 1889 } 1890 1891 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1892 subvol, readonly, inherit); 1893 if (ret) 1894 goto free_inherit; 1895 free_inherit: 1896 kfree(inherit); 1897 free_args: 1898 kfree(vol_args); 1899 return ret; 1900 } 1901 1902 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1903 void __user *arg) 1904 { 1905 struct inode *inode = file_inode(file); 1906 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1907 struct btrfs_root *root = BTRFS_I(inode)->root; 1908 int ret = 0; 1909 u64 flags = 0; 1910 1911 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1912 return -EINVAL; 1913 1914 down_read(&fs_info->subvol_sem); 1915 if (btrfs_root_readonly(root)) 1916 flags |= BTRFS_SUBVOL_RDONLY; 1917 up_read(&fs_info->subvol_sem); 1918 1919 if (copy_to_user(arg, &flags, sizeof(flags))) 1920 ret = -EFAULT; 1921 1922 return ret; 1923 } 1924 1925 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1926 void __user *arg) 1927 { 1928 struct inode *inode = file_inode(file); 1929 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1930 struct btrfs_root *root = BTRFS_I(inode)->root; 1931 struct btrfs_trans_handle *trans; 1932 u64 root_flags; 1933 u64 flags; 1934 int ret = 0; 1935 1936 if (!inode_owner_or_capable(inode)) 1937 return -EPERM; 1938 1939 ret = mnt_want_write_file(file); 1940 if (ret) 1941 goto out; 1942 1943 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1944 ret = -EINVAL; 1945 goto out_drop_write; 1946 } 1947 1948 if (copy_from_user(&flags, arg, sizeof(flags))) { 1949 ret = -EFAULT; 1950 goto out_drop_write; 1951 } 1952 1953 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1954 ret = -EOPNOTSUPP; 1955 goto out_drop_write; 1956 } 1957 1958 down_write(&fs_info->subvol_sem); 1959 1960 /* nothing to do */ 1961 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1962 goto out_drop_sem; 1963 1964 root_flags = btrfs_root_flags(&root->root_item); 1965 if (flags & BTRFS_SUBVOL_RDONLY) { 1966 btrfs_set_root_flags(&root->root_item, 1967 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1968 } else { 1969 /* 1970 * Block RO -> RW transition if this subvolume is involved in 1971 * send 1972 */ 1973 spin_lock(&root->root_item_lock); 1974 if (root->send_in_progress == 0) { 1975 btrfs_set_root_flags(&root->root_item, 1976 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1977 spin_unlock(&root->root_item_lock); 1978 } else { 1979 spin_unlock(&root->root_item_lock); 1980 btrfs_warn(fs_info, 1981 "Attempt to set subvolume %llu read-write during send", 1982 root->root_key.objectid); 1983 ret = -EPERM; 1984 goto out_drop_sem; 1985 } 1986 } 1987 1988 trans = btrfs_start_transaction(root, 1); 1989 if (IS_ERR(trans)) { 1990 ret = PTR_ERR(trans); 1991 goto out_reset; 1992 } 1993 1994 ret = btrfs_update_root(trans, fs_info->tree_root, 1995 &root->root_key, &root->root_item); 1996 if (ret < 0) { 1997 btrfs_end_transaction(trans); 1998 goto out_reset; 1999 } 2000 2001 ret = btrfs_commit_transaction(trans); 2002 2003 out_reset: 2004 if (ret) 2005 btrfs_set_root_flags(&root->root_item, root_flags); 2006 out_drop_sem: 2007 up_write(&fs_info->subvol_sem); 2008 out_drop_write: 2009 mnt_drop_write_file(file); 2010 out: 2011 return ret; 2012 } 2013 2014 static noinline int key_in_sk(struct btrfs_key *key, 2015 struct btrfs_ioctl_search_key *sk) 2016 { 2017 struct btrfs_key test; 2018 int ret; 2019 2020 test.objectid = sk->min_objectid; 2021 test.type = sk->min_type; 2022 test.offset = sk->min_offset; 2023 2024 ret = btrfs_comp_cpu_keys(key, &test); 2025 if (ret < 0) 2026 return 0; 2027 2028 test.objectid = sk->max_objectid; 2029 test.type = sk->max_type; 2030 test.offset = sk->max_offset; 2031 2032 ret = btrfs_comp_cpu_keys(key, &test); 2033 if (ret > 0) 2034 return 0; 2035 return 1; 2036 } 2037 2038 static noinline int copy_to_sk(struct btrfs_path *path, 2039 struct btrfs_key *key, 2040 struct btrfs_ioctl_search_key *sk, 2041 size_t *buf_size, 2042 char __user *ubuf, 2043 unsigned long *sk_offset, 2044 int *num_found) 2045 { 2046 u64 found_transid; 2047 struct extent_buffer *leaf; 2048 struct btrfs_ioctl_search_header sh; 2049 struct btrfs_key test; 2050 unsigned long item_off; 2051 unsigned long item_len; 2052 int nritems; 2053 int i; 2054 int slot; 2055 int ret = 0; 2056 2057 leaf = path->nodes[0]; 2058 slot = path->slots[0]; 2059 nritems = btrfs_header_nritems(leaf); 2060 2061 if (btrfs_header_generation(leaf) > sk->max_transid) { 2062 i = nritems; 2063 goto advance_key; 2064 } 2065 found_transid = btrfs_header_generation(leaf); 2066 2067 for (i = slot; i < nritems; i++) { 2068 item_off = btrfs_item_ptr_offset(leaf, i); 2069 item_len = btrfs_item_size_nr(leaf, i); 2070 2071 btrfs_item_key_to_cpu(leaf, key, i); 2072 if (!key_in_sk(key, sk)) 2073 continue; 2074 2075 if (sizeof(sh) + item_len > *buf_size) { 2076 if (*num_found) { 2077 ret = 1; 2078 goto out; 2079 } 2080 2081 /* 2082 * return one empty item back for v1, which does not 2083 * handle -EOVERFLOW 2084 */ 2085 2086 *buf_size = sizeof(sh) + item_len; 2087 item_len = 0; 2088 ret = -EOVERFLOW; 2089 } 2090 2091 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2092 ret = 1; 2093 goto out; 2094 } 2095 2096 sh.objectid = key->objectid; 2097 sh.offset = key->offset; 2098 sh.type = key->type; 2099 sh.len = item_len; 2100 sh.transid = found_transid; 2101 2102 /* 2103 * Copy search result header. If we fault then loop again so we 2104 * can fault in the pages and -EFAULT there if there's a 2105 * problem. Otherwise we'll fault and then copy the buffer in 2106 * properly this next time through 2107 */ 2108 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2109 ret = 0; 2110 goto out; 2111 } 2112 2113 *sk_offset += sizeof(sh); 2114 2115 if (item_len) { 2116 char __user *up = ubuf + *sk_offset; 2117 /* 2118 * Copy the item, same behavior as above, but reset the 2119 * * sk_offset so we copy the full thing again. 2120 */ 2121 if (read_extent_buffer_to_user_nofault(leaf, up, 2122 item_off, item_len)) { 2123 ret = 0; 2124 *sk_offset -= sizeof(sh); 2125 goto out; 2126 } 2127 2128 *sk_offset += item_len; 2129 } 2130 (*num_found)++; 2131 2132 if (ret) /* -EOVERFLOW from above */ 2133 goto out; 2134 2135 if (*num_found >= sk->nr_items) { 2136 ret = 1; 2137 goto out; 2138 } 2139 } 2140 advance_key: 2141 ret = 0; 2142 test.objectid = sk->max_objectid; 2143 test.type = sk->max_type; 2144 test.offset = sk->max_offset; 2145 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2146 ret = 1; 2147 else if (key->offset < (u64)-1) 2148 key->offset++; 2149 else if (key->type < (u8)-1) { 2150 key->offset = 0; 2151 key->type++; 2152 } else if (key->objectid < (u64)-1) { 2153 key->offset = 0; 2154 key->type = 0; 2155 key->objectid++; 2156 } else 2157 ret = 1; 2158 out: 2159 /* 2160 * 0: all items from this leaf copied, continue with next 2161 * 1: * more items can be copied, but unused buffer is too small 2162 * * all items were found 2163 * Either way, it will stops the loop which iterates to the next 2164 * leaf 2165 * -EOVERFLOW: item was to large for buffer 2166 * -EFAULT: could not copy extent buffer back to userspace 2167 */ 2168 return ret; 2169 } 2170 2171 static noinline int search_ioctl(struct inode *inode, 2172 struct btrfs_ioctl_search_key *sk, 2173 size_t *buf_size, 2174 char __user *ubuf) 2175 { 2176 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2177 struct btrfs_root *root; 2178 struct btrfs_key key; 2179 struct btrfs_path *path; 2180 int ret; 2181 int num_found = 0; 2182 unsigned long sk_offset = 0; 2183 2184 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2185 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2186 return -EOVERFLOW; 2187 } 2188 2189 path = btrfs_alloc_path(); 2190 if (!path) 2191 return -ENOMEM; 2192 2193 if (sk->tree_id == 0) { 2194 /* search the root of the inode that was passed */ 2195 root = btrfs_grab_root(BTRFS_I(inode)->root); 2196 } else { 2197 root = btrfs_get_fs_root(info, sk->tree_id, true); 2198 if (IS_ERR(root)) { 2199 btrfs_free_path(path); 2200 return PTR_ERR(root); 2201 } 2202 } 2203 2204 key.objectid = sk->min_objectid; 2205 key.type = sk->min_type; 2206 key.offset = sk->min_offset; 2207 2208 while (1) { 2209 ret = fault_in_pages_writeable(ubuf + sk_offset, 2210 *buf_size - sk_offset); 2211 if (ret) 2212 break; 2213 2214 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2215 if (ret != 0) { 2216 if (ret > 0) 2217 ret = 0; 2218 goto err; 2219 } 2220 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2221 &sk_offset, &num_found); 2222 btrfs_release_path(path); 2223 if (ret) 2224 break; 2225 2226 } 2227 if (ret > 0) 2228 ret = 0; 2229 err: 2230 sk->nr_items = num_found; 2231 btrfs_put_root(root); 2232 btrfs_free_path(path); 2233 return ret; 2234 } 2235 2236 static noinline int btrfs_ioctl_tree_search(struct file *file, 2237 void __user *argp) 2238 { 2239 struct btrfs_ioctl_search_args __user *uargs; 2240 struct btrfs_ioctl_search_key sk; 2241 struct inode *inode; 2242 int ret; 2243 size_t buf_size; 2244 2245 if (!capable(CAP_SYS_ADMIN)) 2246 return -EPERM; 2247 2248 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2249 2250 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2251 return -EFAULT; 2252 2253 buf_size = sizeof(uargs->buf); 2254 2255 inode = file_inode(file); 2256 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2257 2258 /* 2259 * In the origin implementation an overflow is handled by returning a 2260 * search header with a len of zero, so reset ret. 2261 */ 2262 if (ret == -EOVERFLOW) 2263 ret = 0; 2264 2265 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2266 ret = -EFAULT; 2267 return ret; 2268 } 2269 2270 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2271 void __user *argp) 2272 { 2273 struct btrfs_ioctl_search_args_v2 __user *uarg; 2274 struct btrfs_ioctl_search_args_v2 args; 2275 struct inode *inode; 2276 int ret; 2277 size_t buf_size; 2278 const size_t buf_limit = SZ_16M; 2279 2280 if (!capable(CAP_SYS_ADMIN)) 2281 return -EPERM; 2282 2283 /* copy search header and buffer size */ 2284 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2285 if (copy_from_user(&args, uarg, sizeof(args))) 2286 return -EFAULT; 2287 2288 buf_size = args.buf_size; 2289 2290 /* limit result size to 16MB */ 2291 if (buf_size > buf_limit) 2292 buf_size = buf_limit; 2293 2294 inode = file_inode(file); 2295 ret = search_ioctl(inode, &args.key, &buf_size, 2296 (char __user *)(&uarg->buf[0])); 2297 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2298 ret = -EFAULT; 2299 else if (ret == -EOVERFLOW && 2300 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2301 ret = -EFAULT; 2302 2303 return ret; 2304 } 2305 2306 /* 2307 * Search INODE_REFs to identify path name of 'dirid' directory 2308 * in a 'tree_id' tree. and sets path name to 'name'. 2309 */ 2310 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2311 u64 tree_id, u64 dirid, char *name) 2312 { 2313 struct btrfs_root *root; 2314 struct btrfs_key key; 2315 char *ptr; 2316 int ret = -1; 2317 int slot; 2318 int len; 2319 int total_len = 0; 2320 struct btrfs_inode_ref *iref; 2321 struct extent_buffer *l; 2322 struct btrfs_path *path; 2323 2324 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2325 name[0]='\0'; 2326 return 0; 2327 } 2328 2329 path = btrfs_alloc_path(); 2330 if (!path) 2331 return -ENOMEM; 2332 2333 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2334 2335 root = btrfs_get_fs_root(info, tree_id, true); 2336 if (IS_ERR(root)) { 2337 ret = PTR_ERR(root); 2338 root = NULL; 2339 goto out; 2340 } 2341 2342 key.objectid = dirid; 2343 key.type = BTRFS_INODE_REF_KEY; 2344 key.offset = (u64)-1; 2345 2346 while (1) { 2347 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2348 if (ret < 0) 2349 goto out; 2350 else if (ret > 0) { 2351 ret = btrfs_previous_item(root, path, dirid, 2352 BTRFS_INODE_REF_KEY); 2353 if (ret < 0) 2354 goto out; 2355 else if (ret > 0) { 2356 ret = -ENOENT; 2357 goto out; 2358 } 2359 } 2360 2361 l = path->nodes[0]; 2362 slot = path->slots[0]; 2363 btrfs_item_key_to_cpu(l, &key, slot); 2364 2365 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2366 len = btrfs_inode_ref_name_len(l, iref); 2367 ptr -= len + 1; 2368 total_len += len + 1; 2369 if (ptr < name) { 2370 ret = -ENAMETOOLONG; 2371 goto out; 2372 } 2373 2374 *(ptr + len) = '/'; 2375 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2376 2377 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2378 break; 2379 2380 btrfs_release_path(path); 2381 key.objectid = key.offset; 2382 key.offset = (u64)-1; 2383 dirid = key.objectid; 2384 } 2385 memmove(name, ptr, total_len); 2386 name[total_len] = '\0'; 2387 ret = 0; 2388 out: 2389 btrfs_put_root(root); 2390 btrfs_free_path(path); 2391 return ret; 2392 } 2393 2394 static int btrfs_search_path_in_tree_user(struct inode *inode, 2395 struct btrfs_ioctl_ino_lookup_user_args *args) 2396 { 2397 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2398 struct super_block *sb = inode->i_sb; 2399 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2400 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2401 u64 dirid = args->dirid; 2402 unsigned long item_off; 2403 unsigned long item_len; 2404 struct btrfs_inode_ref *iref; 2405 struct btrfs_root_ref *rref; 2406 struct btrfs_root *root = NULL; 2407 struct btrfs_path *path; 2408 struct btrfs_key key, key2; 2409 struct extent_buffer *leaf; 2410 struct inode *temp_inode; 2411 char *ptr; 2412 int slot; 2413 int len; 2414 int total_len = 0; 2415 int ret; 2416 2417 path = btrfs_alloc_path(); 2418 if (!path) 2419 return -ENOMEM; 2420 2421 /* 2422 * If the bottom subvolume does not exist directly under upper_limit, 2423 * construct the path in from the bottom up. 2424 */ 2425 if (dirid != upper_limit.objectid) { 2426 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2427 2428 root = btrfs_get_fs_root(fs_info, treeid, true); 2429 if (IS_ERR(root)) { 2430 ret = PTR_ERR(root); 2431 goto out; 2432 } 2433 2434 key.objectid = dirid; 2435 key.type = BTRFS_INODE_REF_KEY; 2436 key.offset = (u64)-1; 2437 while (1) { 2438 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2439 if (ret < 0) { 2440 goto out_put; 2441 } else if (ret > 0) { 2442 ret = btrfs_previous_item(root, path, dirid, 2443 BTRFS_INODE_REF_KEY); 2444 if (ret < 0) { 2445 goto out_put; 2446 } else if (ret > 0) { 2447 ret = -ENOENT; 2448 goto out_put; 2449 } 2450 } 2451 2452 leaf = path->nodes[0]; 2453 slot = path->slots[0]; 2454 btrfs_item_key_to_cpu(leaf, &key, slot); 2455 2456 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2457 len = btrfs_inode_ref_name_len(leaf, iref); 2458 ptr -= len + 1; 2459 total_len += len + 1; 2460 if (ptr < args->path) { 2461 ret = -ENAMETOOLONG; 2462 goto out_put; 2463 } 2464 2465 *(ptr + len) = '/'; 2466 read_extent_buffer(leaf, ptr, 2467 (unsigned long)(iref + 1), len); 2468 2469 /* Check the read+exec permission of this directory */ 2470 ret = btrfs_previous_item(root, path, dirid, 2471 BTRFS_INODE_ITEM_KEY); 2472 if (ret < 0) { 2473 goto out_put; 2474 } else if (ret > 0) { 2475 ret = -ENOENT; 2476 goto out_put; 2477 } 2478 2479 leaf = path->nodes[0]; 2480 slot = path->slots[0]; 2481 btrfs_item_key_to_cpu(leaf, &key2, slot); 2482 if (key2.objectid != dirid) { 2483 ret = -ENOENT; 2484 goto out_put; 2485 } 2486 2487 temp_inode = btrfs_iget(sb, key2.objectid, root); 2488 if (IS_ERR(temp_inode)) { 2489 ret = PTR_ERR(temp_inode); 2490 goto out_put; 2491 } 2492 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2493 iput(temp_inode); 2494 if (ret) { 2495 ret = -EACCES; 2496 goto out_put; 2497 } 2498 2499 if (key.offset == upper_limit.objectid) 2500 break; 2501 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2502 ret = -EACCES; 2503 goto out_put; 2504 } 2505 2506 btrfs_release_path(path); 2507 key.objectid = key.offset; 2508 key.offset = (u64)-1; 2509 dirid = key.objectid; 2510 } 2511 2512 memmove(args->path, ptr, total_len); 2513 args->path[total_len] = '\0'; 2514 btrfs_put_root(root); 2515 root = NULL; 2516 btrfs_release_path(path); 2517 } 2518 2519 /* Get the bottom subvolume's name from ROOT_REF */ 2520 key.objectid = treeid; 2521 key.type = BTRFS_ROOT_REF_KEY; 2522 key.offset = args->treeid; 2523 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2524 if (ret < 0) { 2525 goto out; 2526 } else if (ret > 0) { 2527 ret = -ENOENT; 2528 goto out; 2529 } 2530 2531 leaf = path->nodes[0]; 2532 slot = path->slots[0]; 2533 btrfs_item_key_to_cpu(leaf, &key, slot); 2534 2535 item_off = btrfs_item_ptr_offset(leaf, slot); 2536 item_len = btrfs_item_size_nr(leaf, slot); 2537 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2538 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2539 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2540 ret = -EINVAL; 2541 goto out; 2542 } 2543 2544 /* Copy subvolume's name */ 2545 item_off += sizeof(struct btrfs_root_ref); 2546 item_len -= sizeof(struct btrfs_root_ref); 2547 read_extent_buffer(leaf, args->name, item_off, item_len); 2548 args->name[item_len] = 0; 2549 2550 out_put: 2551 btrfs_put_root(root); 2552 out: 2553 btrfs_free_path(path); 2554 return ret; 2555 } 2556 2557 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2558 void __user *argp) 2559 { 2560 struct btrfs_ioctl_ino_lookup_args *args; 2561 struct inode *inode; 2562 int ret = 0; 2563 2564 args = memdup_user(argp, sizeof(*args)); 2565 if (IS_ERR(args)) 2566 return PTR_ERR(args); 2567 2568 inode = file_inode(file); 2569 2570 /* 2571 * Unprivileged query to obtain the containing subvolume root id. The 2572 * path is reset so it's consistent with btrfs_search_path_in_tree. 2573 */ 2574 if (args->treeid == 0) 2575 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2576 2577 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2578 args->name[0] = 0; 2579 goto out; 2580 } 2581 2582 if (!capable(CAP_SYS_ADMIN)) { 2583 ret = -EPERM; 2584 goto out; 2585 } 2586 2587 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2588 args->treeid, args->objectid, 2589 args->name); 2590 2591 out: 2592 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2593 ret = -EFAULT; 2594 2595 kfree(args); 2596 return ret; 2597 } 2598 2599 /* 2600 * Version of ino_lookup ioctl (unprivileged) 2601 * 2602 * The main differences from ino_lookup ioctl are: 2603 * 2604 * 1. Read + Exec permission will be checked using inode_permission() during 2605 * path construction. -EACCES will be returned in case of failure. 2606 * 2. Path construction will be stopped at the inode number which corresponds 2607 * to the fd with which this ioctl is called. If constructed path does not 2608 * exist under fd's inode, -EACCES will be returned. 2609 * 3. The name of bottom subvolume is also searched and filled. 2610 */ 2611 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2612 { 2613 struct btrfs_ioctl_ino_lookup_user_args *args; 2614 struct inode *inode; 2615 int ret; 2616 2617 args = memdup_user(argp, sizeof(*args)); 2618 if (IS_ERR(args)) 2619 return PTR_ERR(args); 2620 2621 inode = file_inode(file); 2622 2623 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2624 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2625 /* 2626 * The subvolume does not exist under fd with which this is 2627 * called 2628 */ 2629 kfree(args); 2630 return -EACCES; 2631 } 2632 2633 ret = btrfs_search_path_in_tree_user(inode, args); 2634 2635 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2636 ret = -EFAULT; 2637 2638 kfree(args); 2639 return ret; 2640 } 2641 2642 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2643 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2644 { 2645 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2646 struct btrfs_fs_info *fs_info; 2647 struct btrfs_root *root; 2648 struct btrfs_path *path; 2649 struct btrfs_key key; 2650 struct btrfs_root_item *root_item; 2651 struct btrfs_root_ref *rref; 2652 struct extent_buffer *leaf; 2653 unsigned long item_off; 2654 unsigned long item_len; 2655 struct inode *inode; 2656 int slot; 2657 int ret = 0; 2658 2659 path = btrfs_alloc_path(); 2660 if (!path) 2661 return -ENOMEM; 2662 2663 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2664 if (!subvol_info) { 2665 btrfs_free_path(path); 2666 return -ENOMEM; 2667 } 2668 2669 inode = file_inode(file); 2670 fs_info = BTRFS_I(inode)->root->fs_info; 2671 2672 /* Get root_item of inode's subvolume */ 2673 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2674 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2675 if (IS_ERR(root)) { 2676 ret = PTR_ERR(root); 2677 goto out_free; 2678 } 2679 root_item = &root->root_item; 2680 2681 subvol_info->treeid = key.objectid; 2682 2683 subvol_info->generation = btrfs_root_generation(root_item); 2684 subvol_info->flags = btrfs_root_flags(root_item); 2685 2686 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2687 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2688 BTRFS_UUID_SIZE); 2689 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2690 BTRFS_UUID_SIZE); 2691 2692 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2693 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2694 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2695 2696 subvol_info->otransid = btrfs_root_otransid(root_item); 2697 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2698 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2699 2700 subvol_info->stransid = btrfs_root_stransid(root_item); 2701 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2702 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2703 2704 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2705 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2706 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2707 2708 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2709 /* Search root tree for ROOT_BACKREF of this subvolume */ 2710 key.type = BTRFS_ROOT_BACKREF_KEY; 2711 key.offset = 0; 2712 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2713 if (ret < 0) { 2714 goto out; 2715 } else if (path->slots[0] >= 2716 btrfs_header_nritems(path->nodes[0])) { 2717 ret = btrfs_next_leaf(fs_info->tree_root, path); 2718 if (ret < 0) { 2719 goto out; 2720 } else if (ret > 0) { 2721 ret = -EUCLEAN; 2722 goto out; 2723 } 2724 } 2725 2726 leaf = path->nodes[0]; 2727 slot = path->slots[0]; 2728 btrfs_item_key_to_cpu(leaf, &key, slot); 2729 if (key.objectid == subvol_info->treeid && 2730 key.type == BTRFS_ROOT_BACKREF_KEY) { 2731 subvol_info->parent_id = key.offset; 2732 2733 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2734 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2735 2736 item_off = btrfs_item_ptr_offset(leaf, slot) 2737 + sizeof(struct btrfs_root_ref); 2738 item_len = btrfs_item_size_nr(leaf, slot) 2739 - sizeof(struct btrfs_root_ref); 2740 read_extent_buffer(leaf, subvol_info->name, 2741 item_off, item_len); 2742 } else { 2743 ret = -ENOENT; 2744 goto out; 2745 } 2746 } 2747 2748 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2749 ret = -EFAULT; 2750 2751 out: 2752 btrfs_put_root(root); 2753 out_free: 2754 btrfs_free_path(path); 2755 kfree(subvol_info); 2756 return ret; 2757 } 2758 2759 /* 2760 * Return ROOT_REF information of the subvolume containing this inode 2761 * except the subvolume name. 2762 */ 2763 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2764 { 2765 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2766 struct btrfs_root_ref *rref; 2767 struct btrfs_root *root; 2768 struct btrfs_path *path; 2769 struct btrfs_key key; 2770 struct extent_buffer *leaf; 2771 struct inode *inode; 2772 u64 objectid; 2773 int slot; 2774 int ret; 2775 u8 found; 2776 2777 path = btrfs_alloc_path(); 2778 if (!path) 2779 return -ENOMEM; 2780 2781 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2782 if (IS_ERR(rootrefs)) { 2783 btrfs_free_path(path); 2784 return PTR_ERR(rootrefs); 2785 } 2786 2787 inode = file_inode(file); 2788 root = BTRFS_I(inode)->root->fs_info->tree_root; 2789 objectid = BTRFS_I(inode)->root->root_key.objectid; 2790 2791 key.objectid = objectid; 2792 key.type = BTRFS_ROOT_REF_KEY; 2793 key.offset = rootrefs->min_treeid; 2794 found = 0; 2795 2796 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2797 if (ret < 0) { 2798 goto out; 2799 } else if (path->slots[0] >= 2800 btrfs_header_nritems(path->nodes[0])) { 2801 ret = btrfs_next_leaf(root, path); 2802 if (ret < 0) { 2803 goto out; 2804 } else if (ret > 0) { 2805 ret = -EUCLEAN; 2806 goto out; 2807 } 2808 } 2809 while (1) { 2810 leaf = path->nodes[0]; 2811 slot = path->slots[0]; 2812 2813 btrfs_item_key_to_cpu(leaf, &key, slot); 2814 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2815 ret = 0; 2816 goto out; 2817 } 2818 2819 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2820 ret = -EOVERFLOW; 2821 goto out; 2822 } 2823 2824 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2825 rootrefs->rootref[found].treeid = key.offset; 2826 rootrefs->rootref[found].dirid = 2827 btrfs_root_ref_dirid(leaf, rref); 2828 found++; 2829 2830 ret = btrfs_next_item(root, path); 2831 if (ret < 0) { 2832 goto out; 2833 } else if (ret > 0) { 2834 ret = -EUCLEAN; 2835 goto out; 2836 } 2837 } 2838 2839 out: 2840 if (!ret || ret == -EOVERFLOW) { 2841 rootrefs->num_items = found; 2842 /* update min_treeid for next search */ 2843 if (found) 2844 rootrefs->min_treeid = 2845 rootrefs->rootref[found - 1].treeid + 1; 2846 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2847 ret = -EFAULT; 2848 } 2849 2850 kfree(rootrefs); 2851 btrfs_free_path(path); 2852 2853 return ret; 2854 } 2855 2856 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2857 void __user *arg, 2858 bool destroy_v2) 2859 { 2860 struct dentry *parent = file->f_path.dentry; 2861 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2862 struct dentry *dentry; 2863 struct inode *dir = d_inode(parent); 2864 struct inode *inode; 2865 struct btrfs_root *root = BTRFS_I(dir)->root; 2866 struct btrfs_root *dest = NULL; 2867 struct btrfs_ioctl_vol_args *vol_args = NULL; 2868 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2869 char *subvol_name, *subvol_name_ptr = NULL; 2870 int subvol_namelen; 2871 int err = 0; 2872 bool destroy_parent = false; 2873 2874 if (destroy_v2) { 2875 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2876 if (IS_ERR(vol_args2)) 2877 return PTR_ERR(vol_args2); 2878 2879 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2880 err = -EOPNOTSUPP; 2881 goto out; 2882 } 2883 2884 /* 2885 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2886 * name, same as v1 currently does. 2887 */ 2888 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2889 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2890 subvol_name = vol_args2->name; 2891 2892 err = mnt_want_write_file(file); 2893 if (err) 2894 goto out; 2895 } else { 2896 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2897 err = -EINVAL; 2898 goto out; 2899 } 2900 2901 err = mnt_want_write_file(file); 2902 if (err) 2903 goto out; 2904 2905 dentry = btrfs_get_dentry(fs_info->sb, 2906 BTRFS_FIRST_FREE_OBJECTID, 2907 vol_args2->subvolid, 0, 0); 2908 if (IS_ERR(dentry)) { 2909 err = PTR_ERR(dentry); 2910 goto out_drop_write; 2911 } 2912 2913 /* 2914 * Change the default parent since the subvolume being 2915 * deleted can be outside of the current mount point. 2916 */ 2917 parent = btrfs_get_parent(dentry); 2918 2919 /* 2920 * At this point dentry->d_name can point to '/' if the 2921 * subvolume we want to destroy is outsite of the 2922 * current mount point, so we need to release the 2923 * current dentry and execute the lookup to return a new 2924 * one with ->d_name pointing to the 2925 * <mount point>/subvol_name. 2926 */ 2927 dput(dentry); 2928 if (IS_ERR(parent)) { 2929 err = PTR_ERR(parent); 2930 goto out_drop_write; 2931 } 2932 dir = d_inode(parent); 2933 2934 /* 2935 * If v2 was used with SPEC_BY_ID, a new parent was 2936 * allocated since the subvolume can be outside of the 2937 * current mount point. Later on we need to release this 2938 * new parent dentry. 2939 */ 2940 destroy_parent = true; 2941 2942 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2943 fs_info, vol_args2->subvolid); 2944 if (IS_ERR(subvol_name_ptr)) { 2945 err = PTR_ERR(subvol_name_ptr); 2946 goto free_parent; 2947 } 2948 /* subvol_name_ptr is already NULL termined */ 2949 subvol_name = (char *)kbasename(subvol_name_ptr); 2950 } 2951 } else { 2952 vol_args = memdup_user(arg, sizeof(*vol_args)); 2953 if (IS_ERR(vol_args)) 2954 return PTR_ERR(vol_args); 2955 2956 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2957 subvol_name = vol_args->name; 2958 2959 err = mnt_want_write_file(file); 2960 if (err) 2961 goto out; 2962 } 2963 2964 subvol_namelen = strlen(subvol_name); 2965 2966 if (strchr(subvol_name, '/') || 2967 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2968 err = -EINVAL; 2969 goto free_subvol_name; 2970 } 2971 2972 if (!S_ISDIR(dir->i_mode)) { 2973 err = -ENOTDIR; 2974 goto free_subvol_name; 2975 } 2976 2977 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2978 if (err == -EINTR) 2979 goto free_subvol_name; 2980 dentry = lookup_one_len(subvol_name, parent, subvol_namelen); 2981 if (IS_ERR(dentry)) { 2982 err = PTR_ERR(dentry); 2983 goto out_unlock_dir; 2984 } 2985 2986 if (d_really_is_negative(dentry)) { 2987 err = -ENOENT; 2988 goto out_dput; 2989 } 2990 2991 inode = d_inode(dentry); 2992 dest = BTRFS_I(inode)->root; 2993 if (!capable(CAP_SYS_ADMIN)) { 2994 /* 2995 * Regular user. Only allow this with a special mount 2996 * option, when the user has write+exec access to the 2997 * subvol root, and when rmdir(2) would have been 2998 * allowed. 2999 * 3000 * Note that this is _not_ check that the subvol is 3001 * empty or doesn't contain data that we wouldn't 3002 * otherwise be able to delete. 3003 * 3004 * Users who want to delete empty subvols should try 3005 * rmdir(2). 3006 */ 3007 err = -EPERM; 3008 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3009 goto out_dput; 3010 3011 /* 3012 * Do not allow deletion if the parent dir is the same 3013 * as the dir to be deleted. That means the ioctl 3014 * must be called on the dentry referencing the root 3015 * of the subvol, not a random directory contained 3016 * within it. 3017 */ 3018 err = -EINVAL; 3019 if (root == dest) 3020 goto out_dput; 3021 3022 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 3023 if (err) 3024 goto out_dput; 3025 } 3026 3027 /* check if subvolume may be deleted by a user */ 3028 err = btrfs_may_delete(dir, dentry, 1); 3029 if (err) 3030 goto out_dput; 3031 3032 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3033 err = -EINVAL; 3034 goto out_dput; 3035 } 3036 3037 inode_lock(inode); 3038 err = btrfs_delete_subvolume(dir, dentry); 3039 inode_unlock(inode); 3040 if (!err) { 3041 fsnotify_rmdir(dir, dentry); 3042 d_delete(dentry); 3043 } 3044 3045 out_dput: 3046 dput(dentry); 3047 out_unlock_dir: 3048 inode_unlock(dir); 3049 free_subvol_name: 3050 kfree(subvol_name_ptr); 3051 free_parent: 3052 if (destroy_parent) 3053 dput(parent); 3054 out_drop_write: 3055 mnt_drop_write_file(file); 3056 out: 3057 kfree(vol_args2); 3058 kfree(vol_args); 3059 return err; 3060 } 3061 3062 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3063 { 3064 struct inode *inode = file_inode(file); 3065 struct btrfs_root *root = BTRFS_I(inode)->root; 3066 struct btrfs_ioctl_defrag_range_args *range; 3067 int ret; 3068 3069 ret = mnt_want_write_file(file); 3070 if (ret) 3071 return ret; 3072 3073 if (btrfs_root_readonly(root)) { 3074 ret = -EROFS; 3075 goto out; 3076 } 3077 3078 switch (inode->i_mode & S_IFMT) { 3079 case S_IFDIR: 3080 if (!capable(CAP_SYS_ADMIN)) { 3081 ret = -EPERM; 3082 goto out; 3083 } 3084 ret = btrfs_defrag_root(root); 3085 break; 3086 case S_IFREG: 3087 /* 3088 * Note that this does not check the file descriptor for write 3089 * access. This prevents defragmenting executables that are 3090 * running and allows defrag on files open in read-only mode. 3091 */ 3092 if (!capable(CAP_SYS_ADMIN) && 3093 inode_permission(inode, MAY_WRITE)) { 3094 ret = -EPERM; 3095 goto out; 3096 } 3097 3098 range = kzalloc(sizeof(*range), GFP_KERNEL); 3099 if (!range) { 3100 ret = -ENOMEM; 3101 goto out; 3102 } 3103 3104 if (argp) { 3105 if (copy_from_user(range, argp, 3106 sizeof(*range))) { 3107 ret = -EFAULT; 3108 kfree(range); 3109 goto out; 3110 } 3111 /* compression requires us to start the IO */ 3112 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3113 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 3114 range->extent_thresh = (u32)-1; 3115 } 3116 } else { 3117 /* the rest are all set to zero by kzalloc */ 3118 range->len = (u64)-1; 3119 } 3120 ret = btrfs_defrag_file(file_inode(file), file, 3121 range, BTRFS_OLDEST_GENERATION, 0); 3122 if (ret > 0) 3123 ret = 0; 3124 kfree(range); 3125 break; 3126 default: 3127 ret = -EINVAL; 3128 } 3129 out: 3130 mnt_drop_write_file(file); 3131 return ret; 3132 } 3133 3134 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3135 { 3136 struct btrfs_ioctl_vol_args *vol_args; 3137 int ret; 3138 3139 if (!capable(CAP_SYS_ADMIN)) 3140 return -EPERM; 3141 3142 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3143 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3144 3145 vol_args = memdup_user(arg, sizeof(*vol_args)); 3146 if (IS_ERR(vol_args)) { 3147 ret = PTR_ERR(vol_args); 3148 goto out; 3149 } 3150 3151 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3152 ret = btrfs_init_new_device(fs_info, vol_args->name); 3153 3154 if (!ret) 3155 btrfs_info(fs_info, "disk added %s", vol_args->name); 3156 3157 kfree(vol_args); 3158 out: 3159 btrfs_exclop_finish(fs_info); 3160 return ret; 3161 } 3162 3163 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3164 { 3165 struct inode *inode = file_inode(file); 3166 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3167 struct btrfs_ioctl_vol_args_v2 *vol_args; 3168 int ret; 3169 3170 if (!capable(CAP_SYS_ADMIN)) 3171 return -EPERM; 3172 3173 ret = mnt_want_write_file(file); 3174 if (ret) 3175 return ret; 3176 3177 vol_args = memdup_user(arg, sizeof(*vol_args)); 3178 if (IS_ERR(vol_args)) { 3179 ret = PTR_ERR(vol_args); 3180 goto err_drop; 3181 } 3182 3183 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3184 ret = -EOPNOTSUPP; 3185 goto out; 3186 } 3187 3188 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3189 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3190 goto out; 3191 } 3192 3193 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3194 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3195 } else { 3196 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3197 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3198 } 3199 btrfs_exclop_finish(fs_info); 3200 3201 if (!ret) { 3202 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3203 btrfs_info(fs_info, "device deleted: id %llu", 3204 vol_args->devid); 3205 else 3206 btrfs_info(fs_info, "device deleted: %s", 3207 vol_args->name); 3208 } 3209 out: 3210 kfree(vol_args); 3211 err_drop: 3212 mnt_drop_write_file(file); 3213 return ret; 3214 } 3215 3216 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3217 { 3218 struct inode *inode = file_inode(file); 3219 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3220 struct btrfs_ioctl_vol_args *vol_args; 3221 int ret; 3222 3223 if (!capable(CAP_SYS_ADMIN)) 3224 return -EPERM; 3225 3226 ret = mnt_want_write_file(file); 3227 if (ret) 3228 return ret; 3229 3230 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3231 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3232 goto out_drop_write; 3233 } 3234 3235 vol_args = memdup_user(arg, sizeof(*vol_args)); 3236 if (IS_ERR(vol_args)) { 3237 ret = PTR_ERR(vol_args); 3238 goto out; 3239 } 3240 3241 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3242 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3243 3244 if (!ret) 3245 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3246 kfree(vol_args); 3247 out: 3248 btrfs_exclop_finish(fs_info); 3249 out_drop_write: 3250 mnt_drop_write_file(file); 3251 3252 return ret; 3253 } 3254 3255 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3256 void __user *arg) 3257 { 3258 struct btrfs_ioctl_fs_info_args *fi_args; 3259 struct btrfs_device *device; 3260 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3261 u64 flags_in; 3262 int ret = 0; 3263 3264 fi_args = memdup_user(arg, sizeof(*fi_args)); 3265 if (IS_ERR(fi_args)) 3266 return PTR_ERR(fi_args); 3267 3268 flags_in = fi_args->flags; 3269 memset(fi_args, 0, sizeof(*fi_args)); 3270 3271 rcu_read_lock(); 3272 fi_args->num_devices = fs_devices->num_devices; 3273 3274 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3275 if (device->devid > fi_args->max_id) 3276 fi_args->max_id = device->devid; 3277 } 3278 rcu_read_unlock(); 3279 3280 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3281 fi_args->nodesize = fs_info->nodesize; 3282 fi_args->sectorsize = fs_info->sectorsize; 3283 fi_args->clone_alignment = fs_info->sectorsize; 3284 3285 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3286 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3287 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3288 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3289 } 3290 3291 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3292 fi_args->generation = fs_info->generation; 3293 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3294 } 3295 3296 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3297 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3298 sizeof(fi_args->metadata_uuid)); 3299 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3300 } 3301 3302 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3303 ret = -EFAULT; 3304 3305 kfree(fi_args); 3306 return ret; 3307 } 3308 3309 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3310 void __user *arg) 3311 { 3312 struct btrfs_ioctl_dev_info_args *di_args; 3313 struct btrfs_device *dev; 3314 int ret = 0; 3315 char *s_uuid = NULL; 3316 3317 di_args = memdup_user(arg, sizeof(*di_args)); 3318 if (IS_ERR(di_args)) 3319 return PTR_ERR(di_args); 3320 3321 if (!btrfs_is_empty_uuid(di_args->uuid)) 3322 s_uuid = di_args->uuid; 3323 3324 rcu_read_lock(); 3325 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3326 NULL, true); 3327 3328 if (!dev) { 3329 ret = -ENODEV; 3330 goto out; 3331 } 3332 3333 di_args->devid = dev->devid; 3334 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3335 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3336 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3337 if (dev->name) { 3338 strncpy(di_args->path, rcu_str_deref(dev->name), 3339 sizeof(di_args->path) - 1); 3340 di_args->path[sizeof(di_args->path) - 1] = 0; 3341 } else { 3342 di_args->path[0] = '\0'; 3343 } 3344 3345 out: 3346 rcu_read_unlock(); 3347 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3348 ret = -EFAULT; 3349 3350 kfree(di_args); 3351 return ret; 3352 } 3353 3354 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3355 { 3356 struct inode *inode = file_inode(file); 3357 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3358 struct btrfs_root *root = BTRFS_I(inode)->root; 3359 struct btrfs_root *new_root; 3360 struct btrfs_dir_item *di; 3361 struct btrfs_trans_handle *trans; 3362 struct btrfs_path *path = NULL; 3363 struct btrfs_disk_key disk_key; 3364 u64 objectid = 0; 3365 u64 dir_id; 3366 int ret; 3367 3368 if (!capable(CAP_SYS_ADMIN)) 3369 return -EPERM; 3370 3371 ret = mnt_want_write_file(file); 3372 if (ret) 3373 return ret; 3374 3375 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3376 ret = -EFAULT; 3377 goto out; 3378 } 3379 3380 if (!objectid) 3381 objectid = BTRFS_FS_TREE_OBJECTID; 3382 3383 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3384 if (IS_ERR(new_root)) { 3385 ret = PTR_ERR(new_root); 3386 goto out; 3387 } 3388 if (!is_fstree(new_root->root_key.objectid)) { 3389 ret = -ENOENT; 3390 goto out_free; 3391 } 3392 3393 path = btrfs_alloc_path(); 3394 if (!path) { 3395 ret = -ENOMEM; 3396 goto out_free; 3397 } 3398 path->leave_spinning = 1; 3399 3400 trans = btrfs_start_transaction(root, 1); 3401 if (IS_ERR(trans)) { 3402 ret = PTR_ERR(trans); 3403 goto out_free; 3404 } 3405 3406 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3407 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3408 dir_id, "default", 7, 1); 3409 if (IS_ERR_OR_NULL(di)) { 3410 btrfs_release_path(path); 3411 btrfs_end_transaction(trans); 3412 btrfs_err(fs_info, 3413 "Umm, you don't have the default diritem, this isn't going to work"); 3414 ret = -ENOENT; 3415 goto out_free; 3416 } 3417 3418 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3419 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3420 btrfs_mark_buffer_dirty(path->nodes[0]); 3421 btrfs_release_path(path); 3422 3423 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3424 btrfs_end_transaction(trans); 3425 out_free: 3426 btrfs_put_root(new_root); 3427 btrfs_free_path(path); 3428 out: 3429 mnt_drop_write_file(file); 3430 return ret; 3431 } 3432 3433 static void get_block_group_info(struct list_head *groups_list, 3434 struct btrfs_ioctl_space_info *space) 3435 { 3436 struct btrfs_block_group *block_group; 3437 3438 space->total_bytes = 0; 3439 space->used_bytes = 0; 3440 space->flags = 0; 3441 list_for_each_entry(block_group, groups_list, list) { 3442 space->flags = block_group->flags; 3443 space->total_bytes += block_group->length; 3444 space->used_bytes += block_group->used; 3445 } 3446 } 3447 3448 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3449 void __user *arg) 3450 { 3451 struct btrfs_ioctl_space_args space_args; 3452 struct btrfs_ioctl_space_info space; 3453 struct btrfs_ioctl_space_info *dest; 3454 struct btrfs_ioctl_space_info *dest_orig; 3455 struct btrfs_ioctl_space_info __user *user_dest; 3456 struct btrfs_space_info *info; 3457 static const u64 types[] = { 3458 BTRFS_BLOCK_GROUP_DATA, 3459 BTRFS_BLOCK_GROUP_SYSTEM, 3460 BTRFS_BLOCK_GROUP_METADATA, 3461 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3462 }; 3463 int num_types = 4; 3464 int alloc_size; 3465 int ret = 0; 3466 u64 slot_count = 0; 3467 int i, c; 3468 3469 if (copy_from_user(&space_args, 3470 (struct btrfs_ioctl_space_args __user *)arg, 3471 sizeof(space_args))) 3472 return -EFAULT; 3473 3474 for (i = 0; i < num_types; i++) { 3475 struct btrfs_space_info *tmp; 3476 3477 info = NULL; 3478 list_for_each_entry(tmp, &fs_info->space_info, list) { 3479 if (tmp->flags == types[i]) { 3480 info = tmp; 3481 break; 3482 } 3483 } 3484 3485 if (!info) 3486 continue; 3487 3488 down_read(&info->groups_sem); 3489 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3490 if (!list_empty(&info->block_groups[c])) 3491 slot_count++; 3492 } 3493 up_read(&info->groups_sem); 3494 } 3495 3496 /* 3497 * Global block reserve, exported as a space_info 3498 */ 3499 slot_count++; 3500 3501 /* space_slots == 0 means they are asking for a count */ 3502 if (space_args.space_slots == 0) { 3503 space_args.total_spaces = slot_count; 3504 goto out; 3505 } 3506 3507 slot_count = min_t(u64, space_args.space_slots, slot_count); 3508 3509 alloc_size = sizeof(*dest) * slot_count; 3510 3511 /* we generally have at most 6 or so space infos, one for each raid 3512 * level. So, a whole page should be more than enough for everyone 3513 */ 3514 if (alloc_size > PAGE_SIZE) 3515 return -ENOMEM; 3516 3517 space_args.total_spaces = 0; 3518 dest = kmalloc(alloc_size, GFP_KERNEL); 3519 if (!dest) 3520 return -ENOMEM; 3521 dest_orig = dest; 3522 3523 /* now we have a buffer to copy into */ 3524 for (i = 0; i < num_types; i++) { 3525 struct btrfs_space_info *tmp; 3526 3527 if (!slot_count) 3528 break; 3529 3530 info = NULL; 3531 list_for_each_entry(tmp, &fs_info->space_info, list) { 3532 if (tmp->flags == types[i]) { 3533 info = tmp; 3534 break; 3535 } 3536 } 3537 3538 if (!info) 3539 continue; 3540 down_read(&info->groups_sem); 3541 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3542 if (!list_empty(&info->block_groups[c])) { 3543 get_block_group_info(&info->block_groups[c], 3544 &space); 3545 memcpy(dest, &space, sizeof(space)); 3546 dest++; 3547 space_args.total_spaces++; 3548 slot_count--; 3549 } 3550 if (!slot_count) 3551 break; 3552 } 3553 up_read(&info->groups_sem); 3554 } 3555 3556 /* 3557 * Add global block reserve 3558 */ 3559 if (slot_count) { 3560 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3561 3562 spin_lock(&block_rsv->lock); 3563 space.total_bytes = block_rsv->size; 3564 space.used_bytes = block_rsv->size - block_rsv->reserved; 3565 spin_unlock(&block_rsv->lock); 3566 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3567 memcpy(dest, &space, sizeof(space)); 3568 space_args.total_spaces++; 3569 } 3570 3571 user_dest = (struct btrfs_ioctl_space_info __user *) 3572 (arg + sizeof(struct btrfs_ioctl_space_args)); 3573 3574 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3575 ret = -EFAULT; 3576 3577 kfree(dest_orig); 3578 out: 3579 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3580 ret = -EFAULT; 3581 3582 return ret; 3583 } 3584 3585 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3586 void __user *argp) 3587 { 3588 struct btrfs_trans_handle *trans; 3589 u64 transid; 3590 int ret; 3591 3592 trans = btrfs_attach_transaction_barrier(root); 3593 if (IS_ERR(trans)) { 3594 if (PTR_ERR(trans) != -ENOENT) 3595 return PTR_ERR(trans); 3596 3597 /* No running transaction, don't bother */ 3598 transid = root->fs_info->last_trans_committed; 3599 goto out; 3600 } 3601 transid = trans->transid; 3602 ret = btrfs_commit_transaction_async(trans, 0); 3603 if (ret) { 3604 btrfs_end_transaction(trans); 3605 return ret; 3606 } 3607 out: 3608 if (argp) 3609 if (copy_to_user(argp, &transid, sizeof(transid))) 3610 return -EFAULT; 3611 return 0; 3612 } 3613 3614 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3615 void __user *argp) 3616 { 3617 u64 transid; 3618 3619 if (argp) { 3620 if (copy_from_user(&transid, argp, sizeof(transid))) 3621 return -EFAULT; 3622 } else { 3623 transid = 0; /* current trans */ 3624 } 3625 return btrfs_wait_for_commit(fs_info, transid); 3626 } 3627 3628 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3629 { 3630 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3631 struct btrfs_ioctl_scrub_args *sa; 3632 int ret; 3633 3634 if (!capable(CAP_SYS_ADMIN)) 3635 return -EPERM; 3636 3637 sa = memdup_user(arg, sizeof(*sa)); 3638 if (IS_ERR(sa)) 3639 return PTR_ERR(sa); 3640 3641 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3642 ret = mnt_want_write_file(file); 3643 if (ret) 3644 goto out; 3645 } 3646 3647 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3648 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3649 0); 3650 3651 /* 3652 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3653 * error. This is important as it allows user space to know how much 3654 * progress scrub has done. For example, if scrub is canceled we get 3655 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3656 * space. Later user space can inspect the progress from the structure 3657 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3658 * previously (btrfs-progs does this). 3659 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3660 * then return -EFAULT to signal the structure was not copied or it may 3661 * be corrupt and unreliable due to a partial copy. 3662 */ 3663 if (copy_to_user(arg, sa, sizeof(*sa))) 3664 ret = -EFAULT; 3665 3666 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3667 mnt_drop_write_file(file); 3668 out: 3669 kfree(sa); 3670 return ret; 3671 } 3672 3673 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3674 { 3675 if (!capable(CAP_SYS_ADMIN)) 3676 return -EPERM; 3677 3678 return btrfs_scrub_cancel(fs_info); 3679 } 3680 3681 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3682 void __user *arg) 3683 { 3684 struct btrfs_ioctl_scrub_args *sa; 3685 int ret; 3686 3687 if (!capable(CAP_SYS_ADMIN)) 3688 return -EPERM; 3689 3690 sa = memdup_user(arg, sizeof(*sa)); 3691 if (IS_ERR(sa)) 3692 return PTR_ERR(sa); 3693 3694 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3695 3696 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3697 ret = -EFAULT; 3698 3699 kfree(sa); 3700 return ret; 3701 } 3702 3703 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3704 void __user *arg) 3705 { 3706 struct btrfs_ioctl_get_dev_stats *sa; 3707 int ret; 3708 3709 sa = memdup_user(arg, sizeof(*sa)); 3710 if (IS_ERR(sa)) 3711 return PTR_ERR(sa); 3712 3713 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3714 kfree(sa); 3715 return -EPERM; 3716 } 3717 3718 ret = btrfs_get_dev_stats(fs_info, sa); 3719 3720 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3721 ret = -EFAULT; 3722 3723 kfree(sa); 3724 return ret; 3725 } 3726 3727 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3728 void __user *arg) 3729 { 3730 struct btrfs_ioctl_dev_replace_args *p; 3731 int ret; 3732 3733 if (!capable(CAP_SYS_ADMIN)) 3734 return -EPERM; 3735 3736 p = memdup_user(arg, sizeof(*p)); 3737 if (IS_ERR(p)) 3738 return PTR_ERR(p); 3739 3740 switch (p->cmd) { 3741 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3742 if (sb_rdonly(fs_info->sb)) { 3743 ret = -EROFS; 3744 goto out; 3745 } 3746 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3747 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3748 } else { 3749 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3750 btrfs_exclop_finish(fs_info); 3751 } 3752 break; 3753 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3754 btrfs_dev_replace_status(fs_info, p); 3755 ret = 0; 3756 break; 3757 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3758 p->result = btrfs_dev_replace_cancel(fs_info); 3759 ret = 0; 3760 break; 3761 default: 3762 ret = -EINVAL; 3763 break; 3764 } 3765 3766 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3767 ret = -EFAULT; 3768 out: 3769 kfree(p); 3770 return ret; 3771 } 3772 3773 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3774 { 3775 int ret = 0; 3776 int i; 3777 u64 rel_ptr; 3778 int size; 3779 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3780 struct inode_fs_paths *ipath = NULL; 3781 struct btrfs_path *path; 3782 3783 if (!capable(CAP_DAC_READ_SEARCH)) 3784 return -EPERM; 3785 3786 path = btrfs_alloc_path(); 3787 if (!path) { 3788 ret = -ENOMEM; 3789 goto out; 3790 } 3791 3792 ipa = memdup_user(arg, sizeof(*ipa)); 3793 if (IS_ERR(ipa)) { 3794 ret = PTR_ERR(ipa); 3795 ipa = NULL; 3796 goto out; 3797 } 3798 3799 size = min_t(u32, ipa->size, 4096); 3800 ipath = init_ipath(size, root, path); 3801 if (IS_ERR(ipath)) { 3802 ret = PTR_ERR(ipath); 3803 ipath = NULL; 3804 goto out; 3805 } 3806 3807 ret = paths_from_inode(ipa->inum, ipath); 3808 if (ret < 0) 3809 goto out; 3810 3811 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3812 rel_ptr = ipath->fspath->val[i] - 3813 (u64)(unsigned long)ipath->fspath->val; 3814 ipath->fspath->val[i] = rel_ptr; 3815 } 3816 3817 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3818 ipath->fspath, size); 3819 if (ret) { 3820 ret = -EFAULT; 3821 goto out; 3822 } 3823 3824 out: 3825 btrfs_free_path(path); 3826 free_ipath(ipath); 3827 kfree(ipa); 3828 3829 return ret; 3830 } 3831 3832 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3833 { 3834 struct btrfs_data_container *inodes = ctx; 3835 const size_t c = 3 * sizeof(u64); 3836 3837 if (inodes->bytes_left >= c) { 3838 inodes->bytes_left -= c; 3839 inodes->val[inodes->elem_cnt] = inum; 3840 inodes->val[inodes->elem_cnt + 1] = offset; 3841 inodes->val[inodes->elem_cnt + 2] = root; 3842 inodes->elem_cnt += 3; 3843 } else { 3844 inodes->bytes_missing += c - inodes->bytes_left; 3845 inodes->bytes_left = 0; 3846 inodes->elem_missed += 3; 3847 } 3848 3849 return 0; 3850 } 3851 3852 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3853 void __user *arg, int version) 3854 { 3855 int ret = 0; 3856 int size; 3857 struct btrfs_ioctl_logical_ino_args *loi; 3858 struct btrfs_data_container *inodes = NULL; 3859 struct btrfs_path *path = NULL; 3860 bool ignore_offset; 3861 3862 if (!capable(CAP_SYS_ADMIN)) 3863 return -EPERM; 3864 3865 loi = memdup_user(arg, sizeof(*loi)); 3866 if (IS_ERR(loi)) 3867 return PTR_ERR(loi); 3868 3869 if (version == 1) { 3870 ignore_offset = false; 3871 size = min_t(u32, loi->size, SZ_64K); 3872 } else { 3873 /* All reserved bits must be 0 for now */ 3874 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3875 ret = -EINVAL; 3876 goto out_loi; 3877 } 3878 /* Only accept flags we have defined so far */ 3879 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3880 ret = -EINVAL; 3881 goto out_loi; 3882 } 3883 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3884 size = min_t(u32, loi->size, SZ_16M); 3885 } 3886 3887 path = btrfs_alloc_path(); 3888 if (!path) { 3889 ret = -ENOMEM; 3890 goto out; 3891 } 3892 3893 inodes = init_data_container(size); 3894 if (IS_ERR(inodes)) { 3895 ret = PTR_ERR(inodes); 3896 inodes = NULL; 3897 goto out; 3898 } 3899 3900 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3901 build_ino_list, inodes, ignore_offset); 3902 if (ret == -EINVAL) 3903 ret = -ENOENT; 3904 if (ret < 0) 3905 goto out; 3906 3907 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3908 size); 3909 if (ret) 3910 ret = -EFAULT; 3911 3912 out: 3913 btrfs_free_path(path); 3914 kvfree(inodes); 3915 out_loi: 3916 kfree(loi); 3917 3918 return ret; 3919 } 3920 3921 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3922 struct btrfs_ioctl_balance_args *bargs) 3923 { 3924 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3925 3926 bargs->flags = bctl->flags; 3927 3928 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3929 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3930 if (atomic_read(&fs_info->balance_pause_req)) 3931 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3932 if (atomic_read(&fs_info->balance_cancel_req)) 3933 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3934 3935 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3936 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3937 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3938 3939 spin_lock(&fs_info->balance_lock); 3940 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3941 spin_unlock(&fs_info->balance_lock); 3942 } 3943 3944 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3945 { 3946 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3947 struct btrfs_fs_info *fs_info = root->fs_info; 3948 struct btrfs_ioctl_balance_args *bargs; 3949 struct btrfs_balance_control *bctl; 3950 bool need_unlock; /* for mut. excl. ops lock */ 3951 int ret; 3952 3953 if (!capable(CAP_SYS_ADMIN)) 3954 return -EPERM; 3955 3956 ret = mnt_want_write_file(file); 3957 if (ret) 3958 return ret; 3959 3960 again: 3961 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3962 mutex_lock(&fs_info->balance_mutex); 3963 need_unlock = true; 3964 goto locked; 3965 } 3966 3967 /* 3968 * mut. excl. ops lock is locked. Three possibilities: 3969 * (1) some other op is running 3970 * (2) balance is running 3971 * (3) balance is paused -- special case (think resume) 3972 */ 3973 mutex_lock(&fs_info->balance_mutex); 3974 if (fs_info->balance_ctl) { 3975 /* this is either (2) or (3) */ 3976 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3977 mutex_unlock(&fs_info->balance_mutex); 3978 /* 3979 * Lock released to allow other waiters to continue, 3980 * we'll reexamine the status again. 3981 */ 3982 mutex_lock(&fs_info->balance_mutex); 3983 3984 if (fs_info->balance_ctl && 3985 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3986 /* this is (3) */ 3987 need_unlock = false; 3988 goto locked; 3989 } 3990 3991 mutex_unlock(&fs_info->balance_mutex); 3992 goto again; 3993 } else { 3994 /* this is (2) */ 3995 mutex_unlock(&fs_info->balance_mutex); 3996 ret = -EINPROGRESS; 3997 goto out; 3998 } 3999 } else { 4000 /* this is (1) */ 4001 mutex_unlock(&fs_info->balance_mutex); 4002 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4003 goto out; 4004 } 4005 4006 locked: 4007 4008 if (arg) { 4009 bargs = memdup_user(arg, sizeof(*bargs)); 4010 if (IS_ERR(bargs)) { 4011 ret = PTR_ERR(bargs); 4012 goto out_unlock; 4013 } 4014 4015 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4016 if (!fs_info->balance_ctl) { 4017 ret = -ENOTCONN; 4018 goto out_bargs; 4019 } 4020 4021 bctl = fs_info->balance_ctl; 4022 spin_lock(&fs_info->balance_lock); 4023 bctl->flags |= BTRFS_BALANCE_RESUME; 4024 spin_unlock(&fs_info->balance_lock); 4025 4026 goto do_balance; 4027 } 4028 } else { 4029 bargs = NULL; 4030 } 4031 4032 if (fs_info->balance_ctl) { 4033 ret = -EINPROGRESS; 4034 goto out_bargs; 4035 } 4036 4037 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4038 if (!bctl) { 4039 ret = -ENOMEM; 4040 goto out_bargs; 4041 } 4042 4043 if (arg) { 4044 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4045 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4046 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4047 4048 bctl->flags = bargs->flags; 4049 } else { 4050 /* balance everything - no filters */ 4051 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4052 } 4053 4054 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4055 ret = -EINVAL; 4056 goto out_bctl; 4057 } 4058 4059 do_balance: 4060 /* 4061 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4062 * bctl is freed in reset_balance_state, or, if restriper was paused 4063 * all the way until unmount, in free_fs_info. The flag should be 4064 * cleared after reset_balance_state. 4065 */ 4066 need_unlock = false; 4067 4068 ret = btrfs_balance(fs_info, bctl, bargs); 4069 bctl = NULL; 4070 4071 if ((ret == 0 || ret == -ECANCELED) && arg) { 4072 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4073 ret = -EFAULT; 4074 } 4075 4076 out_bctl: 4077 kfree(bctl); 4078 out_bargs: 4079 kfree(bargs); 4080 out_unlock: 4081 mutex_unlock(&fs_info->balance_mutex); 4082 if (need_unlock) 4083 btrfs_exclop_finish(fs_info); 4084 out: 4085 mnt_drop_write_file(file); 4086 return ret; 4087 } 4088 4089 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4090 { 4091 if (!capable(CAP_SYS_ADMIN)) 4092 return -EPERM; 4093 4094 switch (cmd) { 4095 case BTRFS_BALANCE_CTL_PAUSE: 4096 return btrfs_pause_balance(fs_info); 4097 case BTRFS_BALANCE_CTL_CANCEL: 4098 return btrfs_cancel_balance(fs_info); 4099 } 4100 4101 return -EINVAL; 4102 } 4103 4104 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4105 void __user *arg) 4106 { 4107 struct btrfs_ioctl_balance_args *bargs; 4108 int ret = 0; 4109 4110 if (!capable(CAP_SYS_ADMIN)) 4111 return -EPERM; 4112 4113 mutex_lock(&fs_info->balance_mutex); 4114 if (!fs_info->balance_ctl) { 4115 ret = -ENOTCONN; 4116 goto out; 4117 } 4118 4119 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4120 if (!bargs) { 4121 ret = -ENOMEM; 4122 goto out; 4123 } 4124 4125 btrfs_update_ioctl_balance_args(fs_info, bargs); 4126 4127 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4128 ret = -EFAULT; 4129 4130 kfree(bargs); 4131 out: 4132 mutex_unlock(&fs_info->balance_mutex); 4133 return ret; 4134 } 4135 4136 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4137 { 4138 struct inode *inode = file_inode(file); 4139 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4140 struct btrfs_ioctl_quota_ctl_args *sa; 4141 int ret; 4142 4143 if (!capable(CAP_SYS_ADMIN)) 4144 return -EPERM; 4145 4146 ret = mnt_want_write_file(file); 4147 if (ret) 4148 return ret; 4149 4150 sa = memdup_user(arg, sizeof(*sa)); 4151 if (IS_ERR(sa)) { 4152 ret = PTR_ERR(sa); 4153 goto drop_write; 4154 } 4155 4156 down_write(&fs_info->subvol_sem); 4157 4158 switch (sa->cmd) { 4159 case BTRFS_QUOTA_CTL_ENABLE: 4160 ret = btrfs_quota_enable(fs_info); 4161 break; 4162 case BTRFS_QUOTA_CTL_DISABLE: 4163 ret = btrfs_quota_disable(fs_info); 4164 break; 4165 default: 4166 ret = -EINVAL; 4167 break; 4168 } 4169 4170 kfree(sa); 4171 up_write(&fs_info->subvol_sem); 4172 drop_write: 4173 mnt_drop_write_file(file); 4174 return ret; 4175 } 4176 4177 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4178 { 4179 struct inode *inode = file_inode(file); 4180 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4181 struct btrfs_root *root = BTRFS_I(inode)->root; 4182 struct btrfs_ioctl_qgroup_assign_args *sa; 4183 struct btrfs_trans_handle *trans; 4184 int ret; 4185 int err; 4186 4187 if (!capable(CAP_SYS_ADMIN)) 4188 return -EPERM; 4189 4190 ret = mnt_want_write_file(file); 4191 if (ret) 4192 return ret; 4193 4194 sa = memdup_user(arg, sizeof(*sa)); 4195 if (IS_ERR(sa)) { 4196 ret = PTR_ERR(sa); 4197 goto drop_write; 4198 } 4199 4200 trans = btrfs_join_transaction(root); 4201 if (IS_ERR(trans)) { 4202 ret = PTR_ERR(trans); 4203 goto out; 4204 } 4205 4206 if (sa->assign) { 4207 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4208 } else { 4209 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4210 } 4211 4212 /* update qgroup status and info */ 4213 err = btrfs_run_qgroups(trans); 4214 if (err < 0) 4215 btrfs_handle_fs_error(fs_info, err, 4216 "failed to update qgroup status and info"); 4217 err = btrfs_end_transaction(trans); 4218 if (err && !ret) 4219 ret = err; 4220 4221 out: 4222 kfree(sa); 4223 drop_write: 4224 mnt_drop_write_file(file); 4225 return ret; 4226 } 4227 4228 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4229 { 4230 struct inode *inode = file_inode(file); 4231 struct btrfs_root *root = BTRFS_I(inode)->root; 4232 struct btrfs_ioctl_qgroup_create_args *sa; 4233 struct btrfs_trans_handle *trans; 4234 int ret; 4235 int err; 4236 4237 if (!capable(CAP_SYS_ADMIN)) 4238 return -EPERM; 4239 4240 ret = mnt_want_write_file(file); 4241 if (ret) 4242 return ret; 4243 4244 sa = memdup_user(arg, sizeof(*sa)); 4245 if (IS_ERR(sa)) { 4246 ret = PTR_ERR(sa); 4247 goto drop_write; 4248 } 4249 4250 if (!sa->qgroupid) { 4251 ret = -EINVAL; 4252 goto out; 4253 } 4254 4255 trans = btrfs_join_transaction(root); 4256 if (IS_ERR(trans)) { 4257 ret = PTR_ERR(trans); 4258 goto out; 4259 } 4260 4261 if (sa->create) { 4262 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4263 } else { 4264 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4265 } 4266 4267 err = btrfs_end_transaction(trans); 4268 if (err && !ret) 4269 ret = err; 4270 4271 out: 4272 kfree(sa); 4273 drop_write: 4274 mnt_drop_write_file(file); 4275 return ret; 4276 } 4277 4278 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4279 { 4280 struct inode *inode = file_inode(file); 4281 struct btrfs_root *root = BTRFS_I(inode)->root; 4282 struct btrfs_ioctl_qgroup_limit_args *sa; 4283 struct btrfs_trans_handle *trans; 4284 int ret; 4285 int err; 4286 u64 qgroupid; 4287 4288 if (!capable(CAP_SYS_ADMIN)) 4289 return -EPERM; 4290 4291 ret = mnt_want_write_file(file); 4292 if (ret) 4293 return ret; 4294 4295 sa = memdup_user(arg, sizeof(*sa)); 4296 if (IS_ERR(sa)) { 4297 ret = PTR_ERR(sa); 4298 goto drop_write; 4299 } 4300 4301 trans = btrfs_join_transaction(root); 4302 if (IS_ERR(trans)) { 4303 ret = PTR_ERR(trans); 4304 goto out; 4305 } 4306 4307 qgroupid = sa->qgroupid; 4308 if (!qgroupid) { 4309 /* take the current subvol as qgroup */ 4310 qgroupid = root->root_key.objectid; 4311 } 4312 4313 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4314 4315 err = btrfs_end_transaction(trans); 4316 if (err && !ret) 4317 ret = err; 4318 4319 out: 4320 kfree(sa); 4321 drop_write: 4322 mnt_drop_write_file(file); 4323 return ret; 4324 } 4325 4326 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4327 { 4328 struct inode *inode = file_inode(file); 4329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4330 struct btrfs_ioctl_quota_rescan_args *qsa; 4331 int ret; 4332 4333 if (!capable(CAP_SYS_ADMIN)) 4334 return -EPERM; 4335 4336 ret = mnt_want_write_file(file); 4337 if (ret) 4338 return ret; 4339 4340 qsa = memdup_user(arg, sizeof(*qsa)); 4341 if (IS_ERR(qsa)) { 4342 ret = PTR_ERR(qsa); 4343 goto drop_write; 4344 } 4345 4346 if (qsa->flags) { 4347 ret = -EINVAL; 4348 goto out; 4349 } 4350 4351 ret = btrfs_qgroup_rescan(fs_info); 4352 4353 out: 4354 kfree(qsa); 4355 drop_write: 4356 mnt_drop_write_file(file); 4357 return ret; 4358 } 4359 4360 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4361 void __user *arg) 4362 { 4363 struct btrfs_ioctl_quota_rescan_args *qsa; 4364 int ret = 0; 4365 4366 if (!capable(CAP_SYS_ADMIN)) 4367 return -EPERM; 4368 4369 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4370 if (!qsa) 4371 return -ENOMEM; 4372 4373 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4374 qsa->flags = 1; 4375 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4376 } 4377 4378 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4379 ret = -EFAULT; 4380 4381 kfree(qsa); 4382 return ret; 4383 } 4384 4385 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4386 void __user *arg) 4387 { 4388 if (!capable(CAP_SYS_ADMIN)) 4389 return -EPERM; 4390 4391 return btrfs_qgroup_wait_for_completion(fs_info, true); 4392 } 4393 4394 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4395 struct btrfs_ioctl_received_subvol_args *sa) 4396 { 4397 struct inode *inode = file_inode(file); 4398 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4399 struct btrfs_root *root = BTRFS_I(inode)->root; 4400 struct btrfs_root_item *root_item = &root->root_item; 4401 struct btrfs_trans_handle *trans; 4402 struct timespec64 ct = current_time(inode); 4403 int ret = 0; 4404 int received_uuid_changed; 4405 4406 if (!inode_owner_or_capable(inode)) 4407 return -EPERM; 4408 4409 ret = mnt_want_write_file(file); 4410 if (ret < 0) 4411 return ret; 4412 4413 down_write(&fs_info->subvol_sem); 4414 4415 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4416 ret = -EINVAL; 4417 goto out; 4418 } 4419 4420 if (btrfs_root_readonly(root)) { 4421 ret = -EROFS; 4422 goto out; 4423 } 4424 4425 /* 4426 * 1 - root item 4427 * 2 - uuid items (received uuid + subvol uuid) 4428 */ 4429 trans = btrfs_start_transaction(root, 3); 4430 if (IS_ERR(trans)) { 4431 ret = PTR_ERR(trans); 4432 trans = NULL; 4433 goto out; 4434 } 4435 4436 sa->rtransid = trans->transid; 4437 sa->rtime.sec = ct.tv_sec; 4438 sa->rtime.nsec = ct.tv_nsec; 4439 4440 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4441 BTRFS_UUID_SIZE); 4442 if (received_uuid_changed && 4443 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4444 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4445 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4446 root->root_key.objectid); 4447 if (ret && ret != -ENOENT) { 4448 btrfs_abort_transaction(trans, ret); 4449 btrfs_end_transaction(trans); 4450 goto out; 4451 } 4452 } 4453 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4454 btrfs_set_root_stransid(root_item, sa->stransid); 4455 btrfs_set_root_rtransid(root_item, sa->rtransid); 4456 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4457 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4458 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4459 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4460 4461 ret = btrfs_update_root(trans, fs_info->tree_root, 4462 &root->root_key, &root->root_item); 4463 if (ret < 0) { 4464 btrfs_end_transaction(trans); 4465 goto out; 4466 } 4467 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4468 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4469 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4470 root->root_key.objectid); 4471 if (ret < 0 && ret != -EEXIST) { 4472 btrfs_abort_transaction(trans, ret); 4473 btrfs_end_transaction(trans); 4474 goto out; 4475 } 4476 } 4477 ret = btrfs_commit_transaction(trans); 4478 out: 4479 up_write(&fs_info->subvol_sem); 4480 mnt_drop_write_file(file); 4481 return ret; 4482 } 4483 4484 #ifdef CONFIG_64BIT 4485 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4486 void __user *arg) 4487 { 4488 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4489 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4490 int ret = 0; 4491 4492 args32 = memdup_user(arg, sizeof(*args32)); 4493 if (IS_ERR(args32)) 4494 return PTR_ERR(args32); 4495 4496 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4497 if (!args64) { 4498 ret = -ENOMEM; 4499 goto out; 4500 } 4501 4502 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4503 args64->stransid = args32->stransid; 4504 args64->rtransid = args32->rtransid; 4505 args64->stime.sec = args32->stime.sec; 4506 args64->stime.nsec = args32->stime.nsec; 4507 args64->rtime.sec = args32->rtime.sec; 4508 args64->rtime.nsec = args32->rtime.nsec; 4509 args64->flags = args32->flags; 4510 4511 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4512 if (ret) 4513 goto out; 4514 4515 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4516 args32->stransid = args64->stransid; 4517 args32->rtransid = args64->rtransid; 4518 args32->stime.sec = args64->stime.sec; 4519 args32->stime.nsec = args64->stime.nsec; 4520 args32->rtime.sec = args64->rtime.sec; 4521 args32->rtime.nsec = args64->rtime.nsec; 4522 args32->flags = args64->flags; 4523 4524 ret = copy_to_user(arg, args32, sizeof(*args32)); 4525 if (ret) 4526 ret = -EFAULT; 4527 4528 out: 4529 kfree(args32); 4530 kfree(args64); 4531 return ret; 4532 } 4533 #endif 4534 4535 static long btrfs_ioctl_set_received_subvol(struct file *file, 4536 void __user *arg) 4537 { 4538 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4539 int ret = 0; 4540 4541 sa = memdup_user(arg, sizeof(*sa)); 4542 if (IS_ERR(sa)) 4543 return PTR_ERR(sa); 4544 4545 ret = _btrfs_ioctl_set_received_subvol(file, sa); 4546 4547 if (ret) 4548 goto out; 4549 4550 ret = copy_to_user(arg, sa, sizeof(*sa)); 4551 if (ret) 4552 ret = -EFAULT; 4553 4554 out: 4555 kfree(sa); 4556 return ret; 4557 } 4558 4559 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4560 void __user *arg) 4561 { 4562 size_t len; 4563 int ret; 4564 char label[BTRFS_LABEL_SIZE]; 4565 4566 spin_lock(&fs_info->super_lock); 4567 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4568 spin_unlock(&fs_info->super_lock); 4569 4570 len = strnlen(label, BTRFS_LABEL_SIZE); 4571 4572 if (len == BTRFS_LABEL_SIZE) { 4573 btrfs_warn(fs_info, 4574 "label is too long, return the first %zu bytes", 4575 --len); 4576 } 4577 4578 ret = copy_to_user(arg, label, len); 4579 4580 return ret ? -EFAULT : 0; 4581 } 4582 4583 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4584 { 4585 struct inode *inode = file_inode(file); 4586 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4587 struct btrfs_root *root = BTRFS_I(inode)->root; 4588 struct btrfs_super_block *super_block = fs_info->super_copy; 4589 struct btrfs_trans_handle *trans; 4590 char label[BTRFS_LABEL_SIZE]; 4591 int ret; 4592 4593 if (!capable(CAP_SYS_ADMIN)) 4594 return -EPERM; 4595 4596 if (copy_from_user(label, arg, sizeof(label))) 4597 return -EFAULT; 4598 4599 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4600 btrfs_err(fs_info, 4601 "unable to set label with more than %d bytes", 4602 BTRFS_LABEL_SIZE - 1); 4603 return -EINVAL; 4604 } 4605 4606 ret = mnt_want_write_file(file); 4607 if (ret) 4608 return ret; 4609 4610 trans = btrfs_start_transaction(root, 0); 4611 if (IS_ERR(trans)) { 4612 ret = PTR_ERR(trans); 4613 goto out_unlock; 4614 } 4615 4616 spin_lock(&fs_info->super_lock); 4617 strcpy(super_block->label, label); 4618 spin_unlock(&fs_info->super_lock); 4619 ret = btrfs_commit_transaction(trans); 4620 4621 out_unlock: 4622 mnt_drop_write_file(file); 4623 return ret; 4624 } 4625 4626 #define INIT_FEATURE_FLAGS(suffix) \ 4627 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4628 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4629 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4630 4631 int btrfs_ioctl_get_supported_features(void __user *arg) 4632 { 4633 static const struct btrfs_ioctl_feature_flags features[3] = { 4634 INIT_FEATURE_FLAGS(SUPP), 4635 INIT_FEATURE_FLAGS(SAFE_SET), 4636 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4637 }; 4638 4639 if (copy_to_user(arg, &features, sizeof(features))) 4640 return -EFAULT; 4641 4642 return 0; 4643 } 4644 4645 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4646 void __user *arg) 4647 { 4648 struct btrfs_super_block *super_block = fs_info->super_copy; 4649 struct btrfs_ioctl_feature_flags features; 4650 4651 features.compat_flags = btrfs_super_compat_flags(super_block); 4652 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4653 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4654 4655 if (copy_to_user(arg, &features, sizeof(features))) 4656 return -EFAULT; 4657 4658 return 0; 4659 } 4660 4661 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4662 enum btrfs_feature_set set, 4663 u64 change_mask, u64 flags, u64 supported_flags, 4664 u64 safe_set, u64 safe_clear) 4665 { 4666 const char *type = btrfs_feature_set_name(set); 4667 char *names; 4668 u64 disallowed, unsupported; 4669 u64 set_mask = flags & change_mask; 4670 u64 clear_mask = ~flags & change_mask; 4671 4672 unsupported = set_mask & ~supported_flags; 4673 if (unsupported) { 4674 names = btrfs_printable_features(set, unsupported); 4675 if (names) { 4676 btrfs_warn(fs_info, 4677 "this kernel does not support the %s feature bit%s", 4678 names, strchr(names, ',') ? "s" : ""); 4679 kfree(names); 4680 } else 4681 btrfs_warn(fs_info, 4682 "this kernel does not support %s bits 0x%llx", 4683 type, unsupported); 4684 return -EOPNOTSUPP; 4685 } 4686 4687 disallowed = set_mask & ~safe_set; 4688 if (disallowed) { 4689 names = btrfs_printable_features(set, disallowed); 4690 if (names) { 4691 btrfs_warn(fs_info, 4692 "can't set the %s feature bit%s while mounted", 4693 names, strchr(names, ',') ? "s" : ""); 4694 kfree(names); 4695 } else 4696 btrfs_warn(fs_info, 4697 "can't set %s bits 0x%llx while mounted", 4698 type, disallowed); 4699 return -EPERM; 4700 } 4701 4702 disallowed = clear_mask & ~safe_clear; 4703 if (disallowed) { 4704 names = btrfs_printable_features(set, disallowed); 4705 if (names) { 4706 btrfs_warn(fs_info, 4707 "can't clear the %s feature bit%s while mounted", 4708 names, strchr(names, ',') ? "s" : ""); 4709 kfree(names); 4710 } else 4711 btrfs_warn(fs_info, 4712 "can't clear %s bits 0x%llx while mounted", 4713 type, disallowed); 4714 return -EPERM; 4715 } 4716 4717 return 0; 4718 } 4719 4720 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4721 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4722 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4723 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4724 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4725 4726 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4727 { 4728 struct inode *inode = file_inode(file); 4729 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4730 struct btrfs_root *root = BTRFS_I(inode)->root; 4731 struct btrfs_super_block *super_block = fs_info->super_copy; 4732 struct btrfs_ioctl_feature_flags flags[2]; 4733 struct btrfs_trans_handle *trans; 4734 u64 newflags; 4735 int ret; 4736 4737 if (!capable(CAP_SYS_ADMIN)) 4738 return -EPERM; 4739 4740 if (copy_from_user(flags, arg, sizeof(flags))) 4741 return -EFAULT; 4742 4743 /* Nothing to do */ 4744 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4745 !flags[0].incompat_flags) 4746 return 0; 4747 4748 ret = check_feature(fs_info, flags[0].compat_flags, 4749 flags[1].compat_flags, COMPAT); 4750 if (ret) 4751 return ret; 4752 4753 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4754 flags[1].compat_ro_flags, COMPAT_RO); 4755 if (ret) 4756 return ret; 4757 4758 ret = check_feature(fs_info, flags[0].incompat_flags, 4759 flags[1].incompat_flags, INCOMPAT); 4760 if (ret) 4761 return ret; 4762 4763 ret = mnt_want_write_file(file); 4764 if (ret) 4765 return ret; 4766 4767 trans = btrfs_start_transaction(root, 0); 4768 if (IS_ERR(trans)) { 4769 ret = PTR_ERR(trans); 4770 goto out_drop_write; 4771 } 4772 4773 spin_lock(&fs_info->super_lock); 4774 newflags = btrfs_super_compat_flags(super_block); 4775 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4776 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4777 btrfs_set_super_compat_flags(super_block, newflags); 4778 4779 newflags = btrfs_super_compat_ro_flags(super_block); 4780 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4781 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4782 btrfs_set_super_compat_ro_flags(super_block, newflags); 4783 4784 newflags = btrfs_super_incompat_flags(super_block); 4785 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4786 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4787 btrfs_set_super_incompat_flags(super_block, newflags); 4788 spin_unlock(&fs_info->super_lock); 4789 4790 ret = btrfs_commit_transaction(trans); 4791 out_drop_write: 4792 mnt_drop_write_file(file); 4793 4794 return ret; 4795 } 4796 4797 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4798 { 4799 struct btrfs_ioctl_send_args *arg; 4800 int ret; 4801 4802 if (compat) { 4803 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4804 struct btrfs_ioctl_send_args_32 args32; 4805 4806 ret = copy_from_user(&args32, argp, sizeof(args32)); 4807 if (ret) 4808 return -EFAULT; 4809 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4810 if (!arg) 4811 return -ENOMEM; 4812 arg->send_fd = args32.send_fd; 4813 arg->clone_sources_count = args32.clone_sources_count; 4814 arg->clone_sources = compat_ptr(args32.clone_sources); 4815 arg->parent_root = args32.parent_root; 4816 arg->flags = args32.flags; 4817 memcpy(arg->reserved, args32.reserved, 4818 sizeof(args32.reserved)); 4819 #else 4820 return -ENOTTY; 4821 #endif 4822 } else { 4823 arg = memdup_user(argp, sizeof(*arg)); 4824 if (IS_ERR(arg)) 4825 return PTR_ERR(arg); 4826 } 4827 ret = btrfs_ioctl_send(file, arg); 4828 kfree(arg); 4829 return ret; 4830 } 4831 4832 long btrfs_ioctl(struct file *file, unsigned int 4833 cmd, unsigned long arg) 4834 { 4835 struct inode *inode = file_inode(file); 4836 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4837 struct btrfs_root *root = BTRFS_I(inode)->root; 4838 void __user *argp = (void __user *)arg; 4839 4840 switch (cmd) { 4841 case FS_IOC_GETFLAGS: 4842 return btrfs_ioctl_getflags(file, argp); 4843 case FS_IOC_SETFLAGS: 4844 return btrfs_ioctl_setflags(file, argp); 4845 case FS_IOC_GETVERSION: 4846 return btrfs_ioctl_getversion(file, argp); 4847 case FS_IOC_GETFSLABEL: 4848 return btrfs_ioctl_get_fslabel(fs_info, argp); 4849 case FS_IOC_SETFSLABEL: 4850 return btrfs_ioctl_set_fslabel(file, argp); 4851 case FITRIM: 4852 return btrfs_ioctl_fitrim(fs_info, argp); 4853 case BTRFS_IOC_SNAP_CREATE: 4854 return btrfs_ioctl_snap_create(file, argp, 0); 4855 case BTRFS_IOC_SNAP_CREATE_V2: 4856 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4857 case BTRFS_IOC_SUBVOL_CREATE: 4858 return btrfs_ioctl_snap_create(file, argp, 1); 4859 case BTRFS_IOC_SUBVOL_CREATE_V2: 4860 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4861 case BTRFS_IOC_SNAP_DESTROY: 4862 return btrfs_ioctl_snap_destroy(file, argp, false); 4863 case BTRFS_IOC_SNAP_DESTROY_V2: 4864 return btrfs_ioctl_snap_destroy(file, argp, true); 4865 case BTRFS_IOC_SUBVOL_GETFLAGS: 4866 return btrfs_ioctl_subvol_getflags(file, argp); 4867 case BTRFS_IOC_SUBVOL_SETFLAGS: 4868 return btrfs_ioctl_subvol_setflags(file, argp); 4869 case BTRFS_IOC_DEFAULT_SUBVOL: 4870 return btrfs_ioctl_default_subvol(file, argp); 4871 case BTRFS_IOC_DEFRAG: 4872 return btrfs_ioctl_defrag(file, NULL); 4873 case BTRFS_IOC_DEFRAG_RANGE: 4874 return btrfs_ioctl_defrag(file, argp); 4875 case BTRFS_IOC_RESIZE: 4876 return btrfs_ioctl_resize(file, argp); 4877 case BTRFS_IOC_ADD_DEV: 4878 return btrfs_ioctl_add_dev(fs_info, argp); 4879 case BTRFS_IOC_RM_DEV: 4880 return btrfs_ioctl_rm_dev(file, argp); 4881 case BTRFS_IOC_RM_DEV_V2: 4882 return btrfs_ioctl_rm_dev_v2(file, argp); 4883 case BTRFS_IOC_FS_INFO: 4884 return btrfs_ioctl_fs_info(fs_info, argp); 4885 case BTRFS_IOC_DEV_INFO: 4886 return btrfs_ioctl_dev_info(fs_info, argp); 4887 case BTRFS_IOC_BALANCE: 4888 return btrfs_ioctl_balance(file, NULL); 4889 case BTRFS_IOC_TREE_SEARCH: 4890 return btrfs_ioctl_tree_search(file, argp); 4891 case BTRFS_IOC_TREE_SEARCH_V2: 4892 return btrfs_ioctl_tree_search_v2(file, argp); 4893 case BTRFS_IOC_INO_LOOKUP: 4894 return btrfs_ioctl_ino_lookup(file, argp); 4895 case BTRFS_IOC_INO_PATHS: 4896 return btrfs_ioctl_ino_to_path(root, argp); 4897 case BTRFS_IOC_LOGICAL_INO: 4898 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4899 case BTRFS_IOC_LOGICAL_INO_V2: 4900 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4901 case BTRFS_IOC_SPACE_INFO: 4902 return btrfs_ioctl_space_info(fs_info, argp); 4903 case BTRFS_IOC_SYNC: { 4904 int ret; 4905 4906 ret = btrfs_start_delalloc_roots(fs_info, U64_MAX); 4907 if (ret) 4908 return ret; 4909 ret = btrfs_sync_fs(inode->i_sb, 1); 4910 /* 4911 * The transaction thread may want to do more work, 4912 * namely it pokes the cleaner kthread that will start 4913 * processing uncleaned subvols. 4914 */ 4915 wake_up_process(fs_info->transaction_kthread); 4916 return ret; 4917 } 4918 case BTRFS_IOC_START_SYNC: 4919 return btrfs_ioctl_start_sync(root, argp); 4920 case BTRFS_IOC_WAIT_SYNC: 4921 return btrfs_ioctl_wait_sync(fs_info, argp); 4922 case BTRFS_IOC_SCRUB: 4923 return btrfs_ioctl_scrub(file, argp); 4924 case BTRFS_IOC_SCRUB_CANCEL: 4925 return btrfs_ioctl_scrub_cancel(fs_info); 4926 case BTRFS_IOC_SCRUB_PROGRESS: 4927 return btrfs_ioctl_scrub_progress(fs_info, argp); 4928 case BTRFS_IOC_BALANCE_V2: 4929 return btrfs_ioctl_balance(file, argp); 4930 case BTRFS_IOC_BALANCE_CTL: 4931 return btrfs_ioctl_balance_ctl(fs_info, arg); 4932 case BTRFS_IOC_BALANCE_PROGRESS: 4933 return btrfs_ioctl_balance_progress(fs_info, argp); 4934 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4935 return btrfs_ioctl_set_received_subvol(file, argp); 4936 #ifdef CONFIG_64BIT 4937 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4938 return btrfs_ioctl_set_received_subvol_32(file, argp); 4939 #endif 4940 case BTRFS_IOC_SEND: 4941 return _btrfs_ioctl_send(file, argp, false); 4942 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4943 case BTRFS_IOC_SEND_32: 4944 return _btrfs_ioctl_send(file, argp, true); 4945 #endif 4946 case BTRFS_IOC_GET_DEV_STATS: 4947 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4948 case BTRFS_IOC_QUOTA_CTL: 4949 return btrfs_ioctl_quota_ctl(file, argp); 4950 case BTRFS_IOC_QGROUP_ASSIGN: 4951 return btrfs_ioctl_qgroup_assign(file, argp); 4952 case BTRFS_IOC_QGROUP_CREATE: 4953 return btrfs_ioctl_qgroup_create(file, argp); 4954 case BTRFS_IOC_QGROUP_LIMIT: 4955 return btrfs_ioctl_qgroup_limit(file, argp); 4956 case BTRFS_IOC_QUOTA_RESCAN: 4957 return btrfs_ioctl_quota_rescan(file, argp); 4958 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4959 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4960 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4961 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4962 case BTRFS_IOC_DEV_REPLACE: 4963 return btrfs_ioctl_dev_replace(fs_info, argp); 4964 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4965 return btrfs_ioctl_get_supported_features(argp); 4966 case BTRFS_IOC_GET_FEATURES: 4967 return btrfs_ioctl_get_features(fs_info, argp); 4968 case BTRFS_IOC_SET_FEATURES: 4969 return btrfs_ioctl_set_features(file, argp); 4970 case FS_IOC_FSGETXATTR: 4971 return btrfs_ioctl_fsgetxattr(file, argp); 4972 case FS_IOC_FSSETXATTR: 4973 return btrfs_ioctl_fssetxattr(file, argp); 4974 case BTRFS_IOC_GET_SUBVOL_INFO: 4975 return btrfs_ioctl_get_subvol_info(file, argp); 4976 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4977 return btrfs_ioctl_get_subvol_rootref(file, argp); 4978 case BTRFS_IOC_INO_LOOKUP_USER: 4979 return btrfs_ioctl_ino_lookup_user(file, argp); 4980 } 4981 4982 return -ENOTTY; 4983 } 4984 4985 #ifdef CONFIG_COMPAT 4986 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4987 { 4988 /* 4989 * These all access 32-bit values anyway so no further 4990 * handling is necessary. 4991 */ 4992 switch (cmd) { 4993 case FS_IOC32_GETFLAGS: 4994 cmd = FS_IOC_GETFLAGS; 4995 break; 4996 case FS_IOC32_SETFLAGS: 4997 cmd = FS_IOC_SETFLAGS; 4998 break; 4999 case FS_IOC32_GETVERSION: 5000 cmd = FS_IOC_GETVERSION; 5001 break; 5002 } 5003 5004 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5005 } 5006 #endif 5007