1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "export.h" 32 #include "transaction.h" 33 #include "btrfs_inode.h" 34 #include "print-tree.h" 35 #include "volumes.h" 36 #include "locking.h" 37 #include "inode-map.h" 38 #include "backref.h" 39 #include "rcu-string.h" 40 #include "send.h" 41 #include "dev-replace.h" 42 #include "props.h" 43 #include "sysfs.h" 44 #include "qgroup.h" 45 #include "tree-log.h" 46 #include "compression.h" 47 #include "space-info.h" 48 #include "delalloc-space.h" 49 #include "block-group.h" 50 51 #ifdef CONFIG_64BIT 52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 53 * structures are incorrect, as the timespec structure from userspace 54 * is 4 bytes too small. We define these alternatives here to teach 55 * the kernel about the 32-bit struct packing. 56 */ 57 struct btrfs_ioctl_timespec_32 { 58 __u64 sec; 59 __u32 nsec; 60 } __attribute__ ((__packed__)); 61 62 struct btrfs_ioctl_received_subvol_args_32 { 63 char uuid[BTRFS_UUID_SIZE]; /* in */ 64 __u64 stransid; /* in */ 65 __u64 rtransid; /* out */ 66 struct btrfs_ioctl_timespec_32 stime; /* in */ 67 struct btrfs_ioctl_timespec_32 rtime; /* out */ 68 __u64 flags; /* in */ 69 __u64 reserved[16]; /* in */ 70 } __attribute__ ((__packed__)); 71 72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 73 struct btrfs_ioctl_received_subvol_args_32) 74 #endif 75 76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 77 struct btrfs_ioctl_send_args_32 { 78 __s64 send_fd; /* in */ 79 __u64 clone_sources_count; /* in */ 80 compat_uptr_t clone_sources; /* in */ 81 __u64 parent_root; /* in */ 82 __u64 flags; /* in */ 83 __u64 reserved[4]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 87 struct btrfs_ioctl_send_args_32) 88 #endif 89 90 /* Mask out flags that are inappropriate for the given type of inode. */ 91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 92 unsigned int flags) 93 { 94 if (S_ISDIR(inode->i_mode)) 95 return flags; 96 else if (S_ISREG(inode->i_mode)) 97 return flags & ~FS_DIRSYNC_FL; 98 else 99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 100 } 101 102 /* 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 104 * ioctl. 105 */ 106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 107 { 108 unsigned int iflags = 0; 109 110 if (flags & BTRFS_INODE_SYNC) 111 iflags |= FS_SYNC_FL; 112 if (flags & BTRFS_INODE_IMMUTABLE) 113 iflags |= FS_IMMUTABLE_FL; 114 if (flags & BTRFS_INODE_APPEND) 115 iflags |= FS_APPEND_FL; 116 if (flags & BTRFS_INODE_NODUMP) 117 iflags |= FS_NODUMP_FL; 118 if (flags & BTRFS_INODE_NOATIME) 119 iflags |= FS_NOATIME_FL; 120 if (flags & BTRFS_INODE_DIRSYNC) 121 iflags |= FS_DIRSYNC_FL; 122 if (flags & BTRFS_INODE_NODATACOW) 123 iflags |= FS_NOCOW_FL; 124 125 if (flags & BTRFS_INODE_NOCOMPRESS) 126 iflags |= FS_NOCOMP_FL; 127 else if (flags & BTRFS_INODE_COMPRESS) 128 iflags |= FS_COMPR_FL; 129 130 return iflags; 131 } 132 133 /* 134 * Update inode->i_flags based on the btrfs internal flags. 135 */ 136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 137 { 138 struct btrfs_inode *binode = BTRFS_I(inode); 139 unsigned int new_fl = 0; 140 141 if (binode->flags & BTRFS_INODE_SYNC) 142 new_fl |= S_SYNC; 143 if (binode->flags & BTRFS_INODE_IMMUTABLE) 144 new_fl |= S_IMMUTABLE; 145 if (binode->flags & BTRFS_INODE_APPEND) 146 new_fl |= S_APPEND; 147 if (binode->flags & BTRFS_INODE_NOATIME) 148 new_fl |= S_NOATIME; 149 if (binode->flags & BTRFS_INODE_DIRSYNC) 150 new_fl |= S_DIRSYNC; 151 152 set_mask_bits(&inode->i_flags, 153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 154 new_fl); 155 } 156 157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 158 { 159 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 161 162 if (copy_to_user(arg, &flags, sizeof(flags))) 163 return -EFAULT; 164 return 0; 165 } 166 167 /* 168 * Check if @flags are a supported and valid set of FS_*_FL flags and that 169 * the old and new flags are not conflicting 170 */ 171 static int check_fsflags(unsigned int old_flags, unsigned int flags) 172 { 173 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 174 FS_NOATIME_FL | FS_NODUMP_FL | \ 175 FS_SYNC_FL | FS_DIRSYNC_FL | \ 176 FS_NOCOMP_FL | FS_COMPR_FL | 177 FS_NOCOW_FL)) 178 return -EOPNOTSUPP; 179 180 /* COMPR and NOCOMP on new/old are valid */ 181 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 182 return -EINVAL; 183 184 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 185 return -EINVAL; 186 187 /* NOCOW and compression options are mutually exclusive */ 188 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 189 return -EINVAL; 190 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 191 return -EINVAL; 192 193 return 0; 194 } 195 196 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 197 { 198 struct inode *inode = file_inode(file); 199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 200 struct btrfs_inode *binode = BTRFS_I(inode); 201 struct btrfs_root *root = binode->root; 202 struct btrfs_trans_handle *trans; 203 unsigned int fsflags, old_fsflags; 204 int ret; 205 const char *comp = NULL; 206 u32 binode_flags; 207 208 if (!inode_owner_or_capable(inode)) 209 return -EPERM; 210 211 if (btrfs_root_readonly(root)) 212 return -EROFS; 213 214 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 215 return -EFAULT; 216 217 ret = mnt_want_write_file(file); 218 if (ret) 219 return ret; 220 221 inode_lock(inode); 222 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 223 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 224 225 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 226 if (ret) 227 goto out_unlock; 228 229 ret = check_fsflags(old_fsflags, fsflags); 230 if (ret) 231 goto out_unlock; 232 233 binode_flags = binode->flags; 234 if (fsflags & FS_SYNC_FL) 235 binode_flags |= BTRFS_INODE_SYNC; 236 else 237 binode_flags &= ~BTRFS_INODE_SYNC; 238 if (fsflags & FS_IMMUTABLE_FL) 239 binode_flags |= BTRFS_INODE_IMMUTABLE; 240 else 241 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 242 if (fsflags & FS_APPEND_FL) 243 binode_flags |= BTRFS_INODE_APPEND; 244 else 245 binode_flags &= ~BTRFS_INODE_APPEND; 246 if (fsflags & FS_NODUMP_FL) 247 binode_flags |= BTRFS_INODE_NODUMP; 248 else 249 binode_flags &= ~BTRFS_INODE_NODUMP; 250 if (fsflags & FS_NOATIME_FL) 251 binode_flags |= BTRFS_INODE_NOATIME; 252 else 253 binode_flags &= ~BTRFS_INODE_NOATIME; 254 if (fsflags & FS_DIRSYNC_FL) 255 binode_flags |= BTRFS_INODE_DIRSYNC; 256 else 257 binode_flags &= ~BTRFS_INODE_DIRSYNC; 258 if (fsflags & FS_NOCOW_FL) { 259 if (S_ISREG(inode->i_mode)) { 260 /* 261 * It's safe to turn csums off here, no extents exist. 262 * Otherwise we want the flag to reflect the real COW 263 * status of the file and will not set it. 264 */ 265 if (inode->i_size == 0) 266 binode_flags |= BTRFS_INODE_NODATACOW | 267 BTRFS_INODE_NODATASUM; 268 } else { 269 binode_flags |= BTRFS_INODE_NODATACOW; 270 } 271 } else { 272 /* 273 * Revert back under same assumptions as above 274 */ 275 if (S_ISREG(inode->i_mode)) { 276 if (inode->i_size == 0) 277 binode_flags &= ~(BTRFS_INODE_NODATACOW | 278 BTRFS_INODE_NODATASUM); 279 } else { 280 binode_flags &= ~BTRFS_INODE_NODATACOW; 281 } 282 } 283 284 /* 285 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 286 * flag may be changed automatically if compression code won't make 287 * things smaller. 288 */ 289 if (fsflags & FS_NOCOMP_FL) { 290 binode_flags &= ~BTRFS_INODE_COMPRESS; 291 binode_flags |= BTRFS_INODE_NOCOMPRESS; 292 } else if (fsflags & FS_COMPR_FL) { 293 294 if (IS_SWAPFILE(inode)) { 295 ret = -ETXTBSY; 296 goto out_unlock; 297 } 298 299 binode_flags |= BTRFS_INODE_COMPRESS; 300 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 301 302 comp = btrfs_compress_type2str(fs_info->compress_type); 303 if (!comp || comp[0] == 0) 304 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 305 } else { 306 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 307 } 308 309 /* 310 * 1 for inode item 311 * 2 for properties 312 */ 313 trans = btrfs_start_transaction(root, 3); 314 if (IS_ERR(trans)) { 315 ret = PTR_ERR(trans); 316 goto out_unlock; 317 } 318 319 if (comp) { 320 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 321 strlen(comp), 0); 322 if (ret) { 323 btrfs_abort_transaction(trans, ret); 324 goto out_end_trans; 325 } 326 } else { 327 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 328 0, 0); 329 if (ret && ret != -ENODATA) { 330 btrfs_abort_transaction(trans, ret); 331 goto out_end_trans; 332 } 333 } 334 335 binode->flags = binode_flags; 336 btrfs_sync_inode_flags_to_i_flags(inode); 337 inode_inc_iversion(inode); 338 inode->i_ctime = current_time(inode); 339 ret = btrfs_update_inode(trans, root, inode); 340 341 out_end_trans: 342 btrfs_end_transaction(trans); 343 out_unlock: 344 inode_unlock(inode); 345 mnt_drop_write_file(file); 346 return ret; 347 } 348 349 /* 350 * Translate btrfs internal inode flags to xflags as expected by the 351 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 352 * silently dropped. 353 */ 354 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 355 { 356 unsigned int xflags = 0; 357 358 if (flags & BTRFS_INODE_APPEND) 359 xflags |= FS_XFLAG_APPEND; 360 if (flags & BTRFS_INODE_IMMUTABLE) 361 xflags |= FS_XFLAG_IMMUTABLE; 362 if (flags & BTRFS_INODE_NOATIME) 363 xflags |= FS_XFLAG_NOATIME; 364 if (flags & BTRFS_INODE_NODUMP) 365 xflags |= FS_XFLAG_NODUMP; 366 if (flags & BTRFS_INODE_SYNC) 367 xflags |= FS_XFLAG_SYNC; 368 369 return xflags; 370 } 371 372 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 373 static int check_xflags(unsigned int flags) 374 { 375 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 376 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 377 return -EOPNOTSUPP; 378 return 0; 379 } 380 381 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 382 enum btrfs_exclusive_operation type) 383 { 384 return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type); 385 } 386 387 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 388 { 389 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 390 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 391 } 392 393 /* 394 * Set the xflags from the internal inode flags. The remaining items of fsxattr 395 * are zeroed. 396 */ 397 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 398 { 399 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 400 struct fsxattr fa; 401 402 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags)); 403 if (copy_to_user(arg, &fa, sizeof(fa))) 404 return -EFAULT; 405 406 return 0; 407 } 408 409 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 410 { 411 struct inode *inode = file_inode(file); 412 struct btrfs_inode *binode = BTRFS_I(inode); 413 struct btrfs_root *root = binode->root; 414 struct btrfs_trans_handle *trans; 415 struct fsxattr fa, old_fa; 416 unsigned old_flags; 417 unsigned old_i_flags; 418 int ret = 0; 419 420 if (!inode_owner_or_capable(inode)) 421 return -EPERM; 422 423 if (btrfs_root_readonly(root)) 424 return -EROFS; 425 426 if (copy_from_user(&fa, arg, sizeof(fa))) 427 return -EFAULT; 428 429 ret = check_xflags(fa.fsx_xflags); 430 if (ret) 431 return ret; 432 433 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 434 return -EOPNOTSUPP; 435 436 ret = mnt_want_write_file(file); 437 if (ret) 438 return ret; 439 440 inode_lock(inode); 441 442 old_flags = binode->flags; 443 old_i_flags = inode->i_flags; 444 445 simple_fill_fsxattr(&old_fa, 446 btrfs_inode_flags_to_xflags(binode->flags)); 447 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 448 if (ret) 449 goto out_unlock; 450 451 if (fa.fsx_xflags & FS_XFLAG_SYNC) 452 binode->flags |= BTRFS_INODE_SYNC; 453 else 454 binode->flags &= ~BTRFS_INODE_SYNC; 455 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 456 binode->flags |= BTRFS_INODE_IMMUTABLE; 457 else 458 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 459 if (fa.fsx_xflags & FS_XFLAG_APPEND) 460 binode->flags |= BTRFS_INODE_APPEND; 461 else 462 binode->flags &= ~BTRFS_INODE_APPEND; 463 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 464 binode->flags |= BTRFS_INODE_NODUMP; 465 else 466 binode->flags &= ~BTRFS_INODE_NODUMP; 467 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 468 binode->flags |= BTRFS_INODE_NOATIME; 469 else 470 binode->flags &= ~BTRFS_INODE_NOATIME; 471 472 /* 1 item for the inode */ 473 trans = btrfs_start_transaction(root, 1); 474 if (IS_ERR(trans)) { 475 ret = PTR_ERR(trans); 476 goto out_unlock; 477 } 478 479 btrfs_sync_inode_flags_to_i_flags(inode); 480 inode_inc_iversion(inode); 481 inode->i_ctime = current_time(inode); 482 ret = btrfs_update_inode(trans, root, inode); 483 484 btrfs_end_transaction(trans); 485 486 out_unlock: 487 if (ret) { 488 binode->flags = old_flags; 489 inode->i_flags = old_i_flags; 490 } 491 492 inode_unlock(inode); 493 mnt_drop_write_file(file); 494 495 return ret; 496 } 497 498 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 499 { 500 struct inode *inode = file_inode(file); 501 502 return put_user(inode->i_generation, arg); 503 } 504 505 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 506 void __user *arg) 507 { 508 struct btrfs_device *device; 509 struct request_queue *q; 510 struct fstrim_range range; 511 u64 minlen = ULLONG_MAX; 512 u64 num_devices = 0; 513 int ret; 514 515 if (!capable(CAP_SYS_ADMIN)) 516 return -EPERM; 517 518 /* 519 * If the fs is mounted with nologreplay, which requires it to be 520 * mounted in RO mode as well, we can not allow discard on free space 521 * inside block groups, because log trees refer to extents that are not 522 * pinned in a block group's free space cache (pinning the extents is 523 * precisely the first phase of replaying a log tree). 524 */ 525 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 526 return -EROFS; 527 528 rcu_read_lock(); 529 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 530 dev_list) { 531 if (!device->bdev) 532 continue; 533 q = bdev_get_queue(device->bdev); 534 if (blk_queue_discard(q)) { 535 num_devices++; 536 minlen = min_t(u64, q->limits.discard_granularity, 537 minlen); 538 } 539 } 540 rcu_read_unlock(); 541 542 if (!num_devices) 543 return -EOPNOTSUPP; 544 if (copy_from_user(&range, arg, sizeof(range))) 545 return -EFAULT; 546 547 /* 548 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 549 * block group is in the logical address space, which can be any 550 * sectorsize aligned bytenr in the range [0, U64_MAX]. 551 */ 552 if (range.len < fs_info->sb->s_blocksize) 553 return -EINVAL; 554 555 range.minlen = max(range.minlen, minlen); 556 ret = btrfs_trim_fs(fs_info, &range); 557 if (ret < 0) 558 return ret; 559 560 if (copy_to_user(arg, &range, sizeof(range))) 561 return -EFAULT; 562 563 return 0; 564 } 565 566 int __pure btrfs_is_empty_uuid(u8 *uuid) 567 { 568 int i; 569 570 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 571 if (uuid[i]) 572 return 0; 573 } 574 return 1; 575 } 576 577 static noinline int create_subvol(struct inode *dir, 578 struct dentry *dentry, 579 const char *name, int namelen, 580 struct btrfs_qgroup_inherit *inherit) 581 { 582 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 583 struct btrfs_trans_handle *trans; 584 struct btrfs_key key; 585 struct btrfs_root_item *root_item; 586 struct btrfs_inode_item *inode_item; 587 struct extent_buffer *leaf; 588 struct btrfs_root *root = BTRFS_I(dir)->root; 589 struct btrfs_root *new_root; 590 struct btrfs_block_rsv block_rsv; 591 struct timespec64 cur_time = current_time(dir); 592 struct inode *inode; 593 int ret; 594 int err; 595 dev_t anon_dev = 0; 596 u64 objectid; 597 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 598 u64 index = 0; 599 600 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 601 if (!root_item) 602 return -ENOMEM; 603 604 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 605 if (ret) 606 goto fail_free; 607 608 ret = get_anon_bdev(&anon_dev); 609 if (ret < 0) 610 goto fail_free; 611 612 /* 613 * Don't create subvolume whose level is not zero. Or qgroup will be 614 * screwed up since it assumes subvolume qgroup's level to be 0. 615 */ 616 if (btrfs_qgroup_level(objectid)) { 617 ret = -ENOSPC; 618 goto fail_free; 619 } 620 621 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 622 /* 623 * The same as the snapshot creation, please see the comment 624 * of create_snapshot(). 625 */ 626 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 627 if (ret) 628 goto fail_free; 629 630 trans = btrfs_start_transaction(root, 0); 631 if (IS_ERR(trans)) { 632 ret = PTR_ERR(trans); 633 btrfs_subvolume_release_metadata(root, &block_rsv); 634 goto fail_free; 635 } 636 trans->block_rsv = &block_rsv; 637 trans->bytes_reserved = block_rsv.size; 638 639 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 640 if (ret) 641 goto fail; 642 643 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 644 BTRFS_NESTING_NORMAL); 645 if (IS_ERR(leaf)) { 646 ret = PTR_ERR(leaf); 647 goto fail; 648 } 649 650 btrfs_mark_buffer_dirty(leaf); 651 652 inode_item = &root_item->inode; 653 btrfs_set_stack_inode_generation(inode_item, 1); 654 btrfs_set_stack_inode_size(inode_item, 3); 655 btrfs_set_stack_inode_nlink(inode_item, 1); 656 btrfs_set_stack_inode_nbytes(inode_item, 657 fs_info->nodesize); 658 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 659 660 btrfs_set_root_flags(root_item, 0); 661 btrfs_set_root_limit(root_item, 0); 662 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 663 664 btrfs_set_root_bytenr(root_item, leaf->start); 665 btrfs_set_root_generation(root_item, trans->transid); 666 btrfs_set_root_level(root_item, 0); 667 btrfs_set_root_refs(root_item, 1); 668 btrfs_set_root_used(root_item, leaf->len); 669 btrfs_set_root_last_snapshot(root_item, 0); 670 671 btrfs_set_root_generation_v2(root_item, 672 btrfs_root_generation(root_item)); 673 generate_random_guid(root_item->uuid); 674 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 675 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 676 root_item->ctime = root_item->otime; 677 btrfs_set_root_ctransid(root_item, trans->transid); 678 btrfs_set_root_otransid(root_item, trans->transid); 679 680 btrfs_tree_unlock(leaf); 681 free_extent_buffer(leaf); 682 leaf = NULL; 683 684 btrfs_set_root_dirid(root_item, new_dirid); 685 686 key.objectid = objectid; 687 key.offset = 0; 688 key.type = BTRFS_ROOT_ITEM_KEY; 689 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 690 root_item); 691 if (ret) 692 goto fail; 693 694 key.offset = (u64)-1; 695 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 696 if (IS_ERR(new_root)) { 697 free_anon_bdev(anon_dev); 698 ret = PTR_ERR(new_root); 699 btrfs_abort_transaction(trans, ret); 700 goto fail; 701 } 702 /* Freeing will be done in btrfs_put_root() of new_root */ 703 anon_dev = 0; 704 705 btrfs_record_root_in_trans(trans, new_root); 706 707 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 708 btrfs_put_root(new_root); 709 if (ret) { 710 /* We potentially lose an unused inode item here */ 711 btrfs_abort_transaction(trans, ret); 712 goto fail; 713 } 714 715 mutex_lock(&new_root->objectid_mutex); 716 new_root->highest_objectid = new_dirid; 717 mutex_unlock(&new_root->objectid_mutex); 718 719 /* 720 * insert the directory item 721 */ 722 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 723 if (ret) { 724 btrfs_abort_transaction(trans, ret); 725 goto fail; 726 } 727 728 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 729 BTRFS_FT_DIR, index); 730 if (ret) { 731 btrfs_abort_transaction(trans, ret); 732 goto fail; 733 } 734 735 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 736 ret = btrfs_update_inode(trans, root, dir); 737 if (ret) { 738 btrfs_abort_transaction(trans, ret); 739 goto fail; 740 } 741 742 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 743 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 744 if (ret) { 745 btrfs_abort_transaction(trans, ret); 746 goto fail; 747 } 748 749 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 750 BTRFS_UUID_KEY_SUBVOL, objectid); 751 if (ret) 752 btrfs_abort_transaction(trans, ret); 753 754 fail: 755 kfree(root_item); 756 trans->block_rsv = NULL; 757 trans->bytes_reserved = 0; 758 btrfs_subvolume_release_metadata(root, &block_rsv); 759 760 err = btrfs_commit_transaction(trans); 761 if (err && !ret) 762 ret = err; 763 764 if (!ret) { 765 inode = btrfs_lookup_dentry(dir, dentry); 766 if (IS_ERR(inode)) 767 return PTR_ERR(inode); 768 d_instantiate(dentry, inode); 769 } 770 return ret; 771 772 fail_free: 773 if (anon_dev) 774 free_anon_bdev(anon_dev); 775 kfree(root_item); 776 return ret; 777 } 778 779 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 780 struct dentry *dentry, bool readonly, 781 struct btrfs_qgroup_inherit *inherit) 782 { 783 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 784 struct inode *inode; 785 struct btrfs_pending_snapshot *pending_snapshot; 786 struct btrfs_trans_handle *trans; 787 int ret; 788 789 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 790 return -EINVAL; 791 792 if (atomic_read(&root->nr_swapfiles)) { 793 btrfs_warn(fs_info, 794 "cannot snapshot subvolume with active swapfile"); 795 return -ETXTBSY; 796 } 797 798 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 799 if (!pending_snapshot) 800 return -ENOMEM; 801 802 ret = get_anon_bdev(&pending_snapshot->anon_dev); 803 if (ret < 0) 804 goto free_pending; 805 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 806 GFP_KERNEL); 807 pending_snapshot->path = btrfs_alloc_path(); 808 if (!pending_snapshot->root_item || !pending_snapshot->path) { 809 ret = -ENOMEM; 810 goto free_pending; 811 } 812 813 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 814 BTRFS_BLOCK_RSV_TEMP); 815 /* 816 * 1 - parent dir inode 817 * 2 - dir entries 818 * 1 - root item 819 * 2 - root ref/backref 820 * 1 - root of snapshot 821 * 1 - UUID item 822 */ 823 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 824 &pending_snapshot->block_rsv, 8, 825 false); 826 if (ret) 827 goto free_pending; 828 829 pending_snapshot->dentry = dentry; 830 pending_snapshot->root = root; 831 pending_snapshot->readonly = readonly; 832 pending_snapshot->dir = dir; 833 pending_snapshot->inherit = inherit; 834 835 trans = btrfs_start_transaction(root, 0); 836 if (IS_ERR(trans)) { 837 ret = PTR_ERR(trans); 838 goto fail; 839 } 840 841 spin_lock(&fs_info->trans_lock); 842 list_add(&pending_snapshot->list, 843 &trans->transaction->pending_snapshots); 844 spin_unlock(&fs_info->trans_lock); 845 846 ret = btrfs_commit_transaction(trans); 847 if (ret) 848 goto fail; 849 850 ret = pending_snapshot->error; 851 if (ret) 852 goto fail; 853 854 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 855 if (ret) 856 goto fail; 857 858 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 859 if (IS_ERR(inode)) { 860 ret = PTR_ERR(inode); 861 goto fail; 862 } 863 864 d_instantiate(dentry, inode); 865 ret = 0; 866 pending_snapshot->anon_dev = 0; 867 fail: 868 /* Prevent double freeing of anon_dev */ 869 if (ret && pending_snapshot->snap) 870 pending_snapshot->snap->anon_dev = 0; 871 btrfs_put_root(pending_snapshot->snap); 872 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 873 free_pending: 874 if (pending_snapshot->anon_dev) 875 free_anon_bdev(pending_snapshot->anon_dev); 876 kfree(pending_snapshot->root_item); 877 btrfs_free_path(pending_snapshot->path); 878 kfree(pending_snapshot); 879 880 return ret; 881 } 882 883 /* copy of may_delete in fs/namei.c() 884 * Check whether we can remove a link victim from directory dir, check 885 * whether the type of victim is right. 886 * 1. We can't do it if dir is read-only (done in permission()) 887 * 2. We should have write and exec permissions on dir 888 * 3. We can't remove anything from append-only dir 889 * 4. We can't do anything with immutable dir (done in permission()) 890 * 5. If the sticky bit on dir is set we should either 891 * a. be owner of dir, or 892 * b. be owner of victim, or 893 * c. have CAP_FOWNER capability 894 * 6. If the victim is append-only or immutable we can't do anything with 895 * links pointing to it. 896 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 897 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 898 * 9. We can't remove a root or mountpoint. 899 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 900 * nfs_async_unlink(). 901 */ 902 903 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 904 { 905 int error; 906 907 if (d_really_is_negative(victim)) 908 return -ENOENT; 909 910 BUG_ON(d_inode(victim->d_parent) != dir); 911 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 912 913 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 914 if (error) 915 return error; 916 if (IS_APPEND(dir)) 917 return -EPERM; 918 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 919 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 920 return -EPERM; 921 if (isdir) { 922 if (!d_is_dir(victim)) 923 return -ENOTDIR; 924 if (IS_ROOT(victim)) 925 return -EBUSY; 926 } else if (d_is_dir(victim)) 927 return -EISDIR; 928 if (IS_DEADDIR(dir)) 929 return -ENOENT; 930 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 931 return -EBUSY; 932 return 0; 933 } 934 935 /* copy of may_create in fs/namei.c() */ 936 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 937 { 938 if (d_really_is_positive(child)) 939 return -EEXIST; 940 if (IS_DEADDIR(dir)) 941 return -ENOENT; 942 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 943 } 944 945 /* 946 * Create a new subvolume below @parent. This is largely modeled after 947 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 948 * inside this filesystem so it's quite a bit simpler. 949 */ 950 static noinline int btrfs_mksubvol(const struct path *parent, 951 const char *name, int namelen, 952 struct btrfs_root *snap_src, 953 bool readonly, 954 struct btrfs_qgroup_inherit *inherit) 955 { 956 struct inode *dir = d_inode(parent->dentry); 957 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 958 struct dentry *dentry; 959 int error; 960 961 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 962 if (error == -EINTR) 963 return error; 964 965 dentry = lookup_one_len(name, parent->dentry, namelen); 966 error = PTR_ERR(dentry); 967 if (IS_ERR(dentry)) 968 goto out_unlock; 969 970 error = btrfs_may_create(dir, dentry); 971 if (error) 972 goto out_dput; 973 974 /* 975 * even if this name doesn't exist, we may get hash collisions. 976 * check for them now when we can safely fail 977 */ 978 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 979 dir->i_ino, name, 980 namelen); 981 if (error) 982 goto out_dput; 983 984 down_read(&fs_info->subvol_sem); 985 986 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 987 goto out_up_read; 988 989 if (snap_src) 990 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 991 else 992 error = create_subvol(dir, dentry, name, namelen, inherit); 993 994 if (!error) 995 fsnotify_mkdir(dir, dentry); 996 out_up_read: 997 up_read(&fs_info->subvol_sem); 998 out_dput: 999 dput(dentry); 1000 out_unlock: 1001 inode_unlock(dir); 1002 return error; 1003 } 1004 1005 static noinline int btrfs_mksnapshot(const struct path *parent, 1006 const char *name, int namelen, 1007 struct btrfs_root *root, 1008 bool readonly, 1009 struct btrfs_qgroup_inherit *inherit) 1010 { 1011 int ret; 1012 bool snapshot_force_cow = false; 1013 1014 /* 1015 * Force new buffered writes to reserve space even when NOCOW is 1016 * possible. This is to avoid later writeback (running dealloc) to 1017 * fallback to COW mode and unexpectedly fail with ENOSPC. 1018 */ 1019 btrfs_drew_read_lock(&root->snapshot_lock); 1020 1021 ret = btrfs_start_delalloc_snapshot(root); 1022 if (ret) 1023 goto out; 1024 1025 /* 1026 * All previous writes have started writeback in NOCOW mode, so now 1027 * we force future writes to fallback to COW mode during snapshot 1028 * creation. 1029 */ 1030 atomic_inc(&root->snapshot_force_cow); 1031 snapshot_force_cow = true; 1032 1033 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1034 1035 ret = btrfs_mksubvol(parent, name, namelen, 1036 root, readonly, inherit); 1037 out: 1038 if (snapshot_force_cow) 1039 atomic_dec(&root->snapshot_force_cow); 1040 btrfs_drew_read_unlock(&root->snapshot_lock); 1041 return ret; 1042 } 1043 1044 /* 1045 * When we're defragging a range, we don't want to kick it off again 1046 * if it is really just waiting for delalloc to send it down. 1047 * If we find a nice big extent or delalloc range for the bytes in the 1048 * file you want to defrag, we return 0 to let you know to skip this 1049 * part of the file 1050 */ 1051 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1052 { 1053 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1054 struct extent_map *em = NULL; 1055 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1056 u64 end; 1057 1058 read_lock(&em_tree->lock); 1059 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1060 read_unlock(&em_tree->lock); 1061 1062 if (em) { 1063 end = extent_map_end(em); 1064 free_extent_map(em); 1065 if (end - offset > thresh) 1066 return 0; 1067 } 1068 /* if we already have a nice delalloc here, just stop */ 1069 thresh /= 2; 1070 end = count_range_bits(io_tree, &offset, offset + thresh, 1071 thresh, EXTENT_DELALLOC, 1); 1072 if (end >= thresh) 1073 return 0; 1074 return 1; 1075 } 1076 1077 /* 1078 * helper function to walk through a file and find extents 1079 * newer than a specific transid, and smaller than thresh. 1080 * 1081 * This is used by the defragging code to find new and small 1082 * extents 1083 */ 1084 static int find_new_extents(struct btrfs_root *root, 1085 struct inode *inode, u64 newer_than, 1086 u64 *off, u32 thresh) 1087 { 1088 struct btrfs_path *path; 1089 struct btrfs_key min_key; 1090 struct extent_buffer *leaf; 1091 struct btrfs_file_extent_item *extent; 1092 int type; 1093 int ret; 1094 u64 ino = btrfs_ino(BTRFS_I(inode)); 1095 1096 path = btrfs_alloc_path(); 1097 if (!path) 1098 return -ENOMEM; 1099 1100 min_key.objectid = ino; 1101 min_key.type = BTRFS_EXTENT_DATA_KEY; 1102 min_key.offset = *off; 1103 1104 while (1) { 1105 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1106 if (ret != 0) 1107 goto none; 1108 process_slot: 1109 if (min_key.objectid != ino) 1110 goto none; 1111 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1112 goto none; 1113 1114 leaf = path->nodes[0]; 1115 extent = btrfs_item_ptr(leaf, path->slots[0], 1116 struct btrfs_file_extent_item); 1117 1118 type = btrfs_file_extent_type(leaf, extent); 1119 if (type == BTRFS_FILE_EXTENT_REG && 1120 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1121 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1122 *off = min_key.offset; 1123 btrfs_free_path(path); 1124 return 0; 1125 } 1126 1127 path->slots[0]++; 1128 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1129 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1130 goto process_slot; 1131 } 1132 1133 if (min_key.offset == (u64)-1) 1134 goto none; 1135 1136 min_key.offset++; 1137 btrfs_release_path(path); 1138 } 1139 none: 1140 btrfs_free_path(path); 1141 return -ENOENT; 1142 } 1143 1144 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1145 { 1146 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1147 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1148 struct extent_map *em; 1149 u64 len = PAGE_SIZE; 1150 1151 /* 1152 * hopefully we have this extent in the tree already, try without 1153 * the full extent lock 1154 */ 1155 read_lock(&em_tree->lock); 1156 em = lookup_extent_mapping(em_tree, start, len); 1157 read_unlock(&em_tree->lock); 1158 1159 if (!em) { 1160 struct extent_state *cached = NULL; 1161 u64 end = start + len - 1; 1162 1163 /* get the big lock and read metadata off disk */ 1164 lock_extent_bits(io_tree, start, end, &cached); 1165 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 1166 unlock_extent_cached(io_tree, start, end, &cached); 1167 1168 if (IS_ERR(em)) 1169 return NULL; 1170 } 1171 1172 return em; 1173 } 1174 1175 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1176 { 1177 struct extent_map *next; 1178 bool ret = true; 1179 1180 /* this is the last extent */ 1181 if (em->start + em->len >= i_size_read(inode)) 1182 return false; 1183 1184 next = defrag_lookup_extent(inode, em->start + em->len); 1185 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1186 ret = false; 1187 else if ((em->block_start + em->block_len == next->block_start) && 1188 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1189 ret = false; 1190 1191 free_extent_map(next); 1192 return ret; 1193 } 1194 1195 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1196 u64 *last_len, u64 *skip, u64 *defrag_end, 1197 int compress) 1198 { 1199 struct extent_map *em; 1200 int ret = 1; 1201 bool next_mergeable = true; 1202 bool prev_mergeable = true; 1203 1204 /* 1205 * make sure that once we start defragging an extent, we keep on 1206 * defragging it 1207 */ 1208 if (start < *defrag_end) 1209 return 1; 1210 1211 *skip = 0; 1212 1213 em = defrag_lookup_extent(inode, start); 1214 if (!em) 1215 return 0; 1216 1217 /* this will cover holes, and inline extents */ 1218 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1219 ret = 0; 1220 goto out; 1221 } 1222 1223 if (!*defrag_end) 1224 prev_mergeable = false; 1225 1226 next_mergeable = defrag_check_next_extent(inode, em); 1227 /* 1228 * we hit a real extent, if it is big or the next extent is not a 1229 * real extent, don't bother defragging it 1230 */ 1231 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1232 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1233 ret = 0; 1234 out: 1235 /* 1236 * last_len ends up being a counter of how many bytes we've defragged. 1237 * every time we choose not to defrag an extent, we reset *last_len 1238 * so that the next tiny extent will force a defrag. 1239 * 1240 * The end result of this is that tiny extents before a single big 1241 * extent will force at least part of that big extent to be defragged. 1242 */ 1243 if (ret) { 1244 *defrag_end = extent_map_end(em); 1245 } else { 1246 *last_len = 0; 1247 *skip = extent_map_end(em); 1248 *defrag_end = 0; 1249 } 1250 1251 free_extent_map(em); 1252 return ret; 1253 } 1254 1255 /* 1256 * it doesn't do much good to defrag one or two pages 1257 * at a time. This pulls in a nice chunk of pages 1258 * to COW and defrag. 1259 * 1260 * It also makes sure the delalloc code has enough 1261 * dirty data to avoid making new small extents as part 1262 * of the defrag 1263 * 1264 * It's a good idea to start RA on this range 1265 * before calling this. 1266 */ 1267 static int cluster_pages_for_defrag(struct inode *inode, 1268 struct page **pages, 1269 unsigned long start_index, 1270 unsigned long num_pages) 1271 { 1272 unsigned long file_end; 1273 u64 isize = i_size_read(inode); 1274 u64 page_start; 1275 u64 page_end; 1276 u64 page_cnt; 1277 u64 start = (u64)start_index << PAGE_SHIFT; 1278 int ret; 1279 int i; 1280 int i_done; 1281 struct btrfs_ordered_extent *ordered; 1282 struct extent_state *cached_state = NULL; 1283 struct extent_io_tree *tree; 1284 struct extent_changeset *data_reserved = NULL; 1285 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1286 1287 file_end = (isize - 1) >> PAGE_SHIFT; 1288 if (!isize || start_index > file_end) 1289 return 0; 1290 1291 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1292 1293 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1294 start, page_cnt << PAGE_SHIFT); 1295 if (ret) 1296 return ret; 1297 i_done = 0; 1298 tree = &BTRFS_I(inode)->io_tree; 1299 1300 /* step one, lock all the pages */ 1301 for (i = 0; i < page_cnt; i++) { 1302 struct page *page; 1303 again: 1304 page = find_or_create_page(inode->i_mapping, 1305 start_index + i, mask); 1306 if (!page) 1307 break; 1308 1309 page_start = page_offset(page); 1310 page_end = page_start + PAGE_SIZE - 1; 1311 while (1) { 1312 lock_extent_bits(tree, page_start, page_end, 1313 &cached_state); 1314 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), 1315 page_start); 1316 unlock_extent_cached(tree, page_start, page_end, 1317 &cached_state); 1318 if (!ordered) 1319 break; 1320 1321 unlock_page(page); 1322 btrfs_start_ordered_extent(ordered, 1); 1323 btrfs_put_ordered_extent(ordered); 1324 lock_page(page); 1325 /* 1326 * we unlocked the page above, so we need check if 1327 * it was released or not. 1328 */ 1329 if (page->mapping != inode->i_mapping) { 1330 unlock_page(page); 1331 put_page(page); 1332 goto again; 1333 } 1334 } 1335 1336 if (!PageUptodate(page)) { 1337 btrfs_readpage(NULL, page); 1338 lock_page(page); 1339 if (!PageUptodate(page)) { 1340 unlock_page(page); 1341 put_page(page); 1342 ret = -EIO; 1343 break; 1344 } 1345 } 1346 1347 if (page->mapping != inode->i_mapping) { 1348 unlock_page(page); 1349 put_page(page); 1350 goto again; 1351 } 1352 1353 pages[i] = page; 1354 i_done++; 1355 } 1356 if (!i_done || ret) 1357 goto out; 1358 1359 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1360 goto out; 1361 1362 /* 1363 * so now we have a nice long stream of locked 1364 * and up to date pages, lets wait on them 1365 */ 1366 for (i = 0; i < i_done; i++) 1367 wait_on_page_writeback(pages[i]); 1368 1369 page_start = page_offset(pages[0]); 1370 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1371 1372 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1373 page_start, page_end - 1, &cached_state); 1374 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1375 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1376 EXTENT_DEFRAG, 0, 0, &cached_state); 1377 1378 if (i_done != page_cnt) { 1379 spin_lock(&BTRFS_I(inode)->lock); 1380 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1381 spin_unlock(&BTRFS_I(inode)->lock); 1382 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1383 start, (page_cnt - i_done) << PAGE_SHIFT, true); 1384 } 1385 1386 1387 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1388 &cached_state); 1389 1390 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1391 page_start, page_end - 1, &cached_state); 1392 1393 for (i = 0; i < i_done; i++) { 1394 clear_page_dirty_for_io(pages[i]); 1395 ClearPageChecked(pages[i]); 1396 set_page_extent_mapped(pages[i]); 1397 set_page_dirty(pages[i]); 1398 unlock_page(pages[i]); 1399 put_page(pages[i]); 1400 } 1401 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1402 extent_changeset_free(data_reserved); 1403 return i_done; 1404 out: 1405 for (i = 0; i < i_done; i++) { 1406 unlock_page(pages[i]); 1407 put_page(pages[i]); 1408 } 1409 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1410 start, page_cnt << PAGE_SHIFT, true); 1411 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1412 extent_changeset_free(data_reserved); 1413 return ret; 1414 1415 } 1416 1417 int btrfs_defrag_file(struct inode *inode, struct file *file, 1418 struct btrfs_ioctl_defrag_range_args *range, 1419 u64 newer_than, unsigned long max_to_defrag) 1420 { 1421 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1422 struct btrfs_root *root = BTRFS_I(inode)->root; 1423 struct file_ra_state *ra = NULL; 1424 unsigned long last_index; 1425 u64 isize = i_size_read(inode); 1426 u64 last_len = 0; 1427 u64 skip = 0; 1428 u64 defrag_end = 0; 1429 u64 newer_off = range->start; 1430 unsigned long i; 1431 unsigned long ra_index = 0; 1432 int ret; 1433 int defrag_count = 0; 1434 int compress_type = BTRFS_COMPRESS_ZLIB; 1435 u32 extent_thresh = range->extent_thresh; 1436 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1437 unsigned long cluster = max_cluster; 1438 u64 new_align = ~((u64)SZ_128K - 1); 1439 struct page **pages = NULL; 1440 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1441 1442 if (isize == 0) 1443 return 0; 1444 1445 if (range->start >= isize) 1446 return -EINVAL; 1447 1448 if (do_compress) { 1449 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1450 return -EINVAL; 1451 if (range->compress_type) 1452 compress_type = range->compress_type; 1453 } 1454 1455 if (extent_thresh == 0) 1456 extent_thresh = SZ_256K; 1457 1458 /* 1459 * If we were not given a file, allocate a readahead context. As 1460 * readahead is just an optimization, defrag will work without it so 1461 * we don't error out. 1462 */ 1463 if (!file) { 1464 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1465 if (ra) 1466 file_ra_state_init(ra, inode->i_mapping); 1467 } else { 1468 ra = &file->f_ra; 1469 } 1470 1471 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1472 if (!pages) { 1473 ret = -ENOMEM; 1474 goto out_ra; 1475 } 1476 1477 /* find the last page to defrag */ 1478 if (range->start + range->len > range->start) { 1479 last_index = min_t(u64, isize - 1, 1480 range->start + range->len - 1) >> PAGE_SHIFT; 1481 } else { 1482 last_index = (isize - 1) >> PAGE_SHIFT; 1483 } 1484 1485 if (newer_than) { 1486 ret = find_new_extents(root, inode, newer_than, 1487 &newer_off, SZ_64K); 1488 if (!ret) { 1489 range->start = newer_off; 1490 /* 1491 * we always align our defrag to help keep 1492 * the extents in the file evenly spaced 1493 */ 1494 i = (newer_off & new_align) >> PAGE_SHIFT; 1495 } else 1496 goto out_ra; 1497 } else { 1498 i = range->start >> PAGE_SHIFT; 1499 } 1500 if (!max_to_defrag) 1501 max_to_defrag = last_index - i + 1; 1502 1503 /* 1504 * make writeback starts from i, so the defrag range can be 1505 * written sequentially. 1506 */ 1507 if (i < inode->i_mapping->writeback_index) 1508 inode->i_mapping->writeback_index = i; 1509 1510 while (i <= last_index && defrag_count < max_to_defrag && 1511 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1512 /* 1513 * make sure we stop running if someone unmounts 1514 * the FS 1515 */ 1516 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1517 break; 1518 1519 if (btrfs_defrag_cancelled(fs_info)) { 1520 btrfs_debug(fs_info, "defrag_file cancelled"); 1521 ret = -EAGAIN; 1522 break; 1523 } 1524 1525 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1526 extent_thresh, &last_len, &skip, 1527 &defrag_end, do_compress)){ 1528 unsigned long next; 1529 /* 1530 * the should_defrag function tells us how much to skip 1531 * bump our counter by the suggested amount 1532 */ 1533 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1534 i = max(i + 1, next); 1535 continue; 1536 } 1537 1538 if (!newer_than) { 1539 cluster = (PAGE_ALIGN(defrag_end) >> 1540 PAGE_SHIFT) - i; 1541 cluster = min(cluster, max_cluster); 1542 } else { 1543 cluster = max_cluster; 1544 } 1545 1546 if (i + cluster > ra_index) { 1547 ra_index = max(i, ra_index); 1548 if (ra) 1549 page_cache_sync_readahead(inode->i_mapping, ra, 1550 file, ra_index, cluster); 1551 ra_index += cluster; 1552 } 1553 1554 inode_lock(inode); 1555 if (IS_SWAPFILE(inode)) { 1556 ret = -ETXTBSY; 1557 } else { 1558 if (do_compress) 1559 BTRFS_I(inode)->defrag_compress = compress_type; 1560 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1561 } 1562 if (ret < 0) { 1563 inode_unlock(inode); 1564 goto out_ra; 1565 } 1566 1567 defrag_count += ret; 1568 balance_dirty_pages_ratelimited(inode->i_mapping); 1569 inode_unlock(inode); 1570 1571 if (newer_than) { 1572 if (newer_off == (u64)-1) 1573 break; 1574 1575 if (ret > 0) 1576 i += ret; 1577 1578 newer_off = max(newer_off + 1, 1579 (u64)i << PAGE_SHIFT); 1580 1581 ret = find_new_extents(root, inode, newer_than, 1582 &newer_off, SZ_64K); 1583 if (!ret) { 1584 range->start = newer_off; 1585 i = (newer_off & new_align) >> PAGE_SHIFT; 1586 } else { 1587 break; 1588 } 1589 } else { 1590 if (ret > 0) { 1591 i += ret; 1592 last_len += ret << PAGE_SHIFT; 1593 } else { 1594 i++; 1595 last_len = 0; 1596 } 1597 } 1598 } 1599 1600 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1601 filemap_flush(inode->i_mapping); 1602 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1603 &BTRFS_I(inode)->runtime_flags)) 1604 filemap_flush(inode->i_mapping); 1605 } 1606 1607 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1608 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1609 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1610 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1611 } 1612 1613 ret = defrag_count; 1614 1615 out_ra: 1616 if (do_compress) { 1617 inode_lock(inode); 1618 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1619 inode_unlock(inode); 1620 } 1621 if (!file) 1622 kfree(ra); 1623 kfree(pages); 1624 return ret; 1625 } 1626 1627 static noinline int btrfs_ioctl_resize(struct file *file, 1628 void __user *arg) 1629 { 1630 struct inode *inode = file_inode(file); 1631 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1632 u64 new_size; 1633 u64 old_size; 1634 u64 devid = 1; 1635 struct btrfs_root *root = BTRFS_I(inode)->root; 1636 struct btrfs_ioctl_vol_args *vol_args; 1637 struct btrfs_trans_handle *trans; 1638 struct btrfs_device *device = NULL; 1639 char *sizestr; 1640 char *retptr; 1641 char *devstr = NULL; 1642 int ret = 0; 1643 int mod = 0; 1644 1645 if (!capable(CAP_SYS_ADMIN)) 1646 return -EPERM; 1647 1648 ret = mnt_want_write_file(file); 1649 if (ret) 1650 return ret; 1651 1652 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) { 1653 mnt_drop_write_file(file); 1654 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1655 } 1656 1657 vol_args = memdup_user(arg, sizeof(*vol_args)); 1658 if (IS_ERR(vol_args)) { 1659 ret = PTR_ERR(vol_args); 1660 goto out; 1661 } 1662 1663 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1664 1665 sizestr = vol_args->name; 1666 devstr = strchr(sizestr, ':'); 1667 if (devstr) { 1668 sizestr = devstr + 1; 1669 *devstr = '\0'; 1670 devstr = vol_args->name; 1671 ret = kstrtoull(devstr, 10, &devid); 1672 if (ret) 1673 goto out_free; 1674 if (!devid) { 1675 ret = -EINVAL; 1676 goto out_free; 1677 } 1678 btrfs_info(fs_info, "resizing devid %llu", devid); 1679 } 1680 1681 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 1682 if (!device) { 1683 btrfs_info(fs_info, "resizer unable to find device %llu", 1684 devid); 1685 ret = -ENODEV; 1686 goto out_free; 1687 } 1688 1689 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1690 btrfs_info(fs_info, 1691 "resizer unable to apply on readonly device %llu", 1692 devid); 1693 ret = -EPERM; 1694 goto out_free; 1695 } 1696 1697 if (!strcmp(sizestr, "max")) 1698 new_size = device->bdev->bd_inode->i_size; 1699 else { 1700 if (sizestr[0] == '-') { 1701 mod = -1; 1702 sizestr++; 1703 } else if (sizestr[0] == '+') { 1704 mod = 1; 1705 sizestr++; 1706 } 1707 new_size = memparse(sizestr, &retptr); 1708 if (*retptr != '\0' || new_size == 0) { 1709 ret = -EINVAL; 1710 goto out_free; 1711 } 1712 } 1713 1714 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1715 ret = -EPERM; 1716 goto out_free; 1717 } 1718 1719 old_size = btrfs_device_get_total_bytes(device); 1720 1721 if (mod < 0) { 1722 if (new_size > old_size) { 1723 ret = -EINVAL; 1724 goto out_free; 1725 } 1726 new_size = old_size - new_size; 1727 } else if (mod > 0) { 1728 if (new_size > ULLONG_MAX - old_size) { 1729 ret = -ERANGE; 1730 goto out_free; 1731 } 1732 new_size = old_size + new_size; 1733 } 1734 1735 if (new_size < SZ_256M) { 1736 ret = -EINVAL; 1737 goto out_free; 1738 } 1739 if (new_size > device->bdev->bd_inode->i_size) { 1740 ret = -EFBIG; 1741 goto out_free; 1742 } 1743 1744 new_size = round_down(new_size, fs_info->sectorsize); 1745 1746 if (new_size > old_size) { 1747 trans = btrfs_start_transaction(root, 0); 1748 if (IS_ERR(trans)) { 1749 ret = PTR_ERR(trans); 1750 goto out_free; 1751 } 1752 ret = btrfs_grow_device(trans, device, new_size); 1753 btrfs_commit_transaction(trans); 1754 } else if (new_size < old_size) { 1755 ret = btrfs_shrink_device(device, new_size); 1756 } /* equal, nothing need to do */ 1757 1758 if (ret == 0 && new_size != old_size) 1759 btrfs_info_in_rcu(fs_info, 1760 "resize device %s (devid %llu) from %llu to %llu", 1761 rcu_str_deref(device->name), device->devid, 1762 old_size, new_size); 1763 out_free: 1764 kfree(vol_args); 1765 out: 1766 btrfs_exclop_finish(fs_info); 1767 mnt_drop_write_file(file); 1768 return ret; 1769 } 1770 1771 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1772 const char *name, unsigned long fd, int subvol, 1773 bool readonly, 1774 struct btrfs_qgroup_inherit *inherit) 1775 { 1776 int namelen; 1777 int ret = 0; 1778 1779 if (!S_ISDIR(file_inode(file)->i_mode)) 1780 return -ENOTDIR; 1781 1782 ret = mnt_want_write_file(file); 1783 if (ret) 1784 goto out; 1785 1786 namelen = strlen(name); 1787 if (strchr(name, '/')) { 1788 ret = -EINVAL; 1789 goto out_drop_write; 1790 } 1791 1792 if (name[0] == '.' && 1793 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1794 ret = -EEXIST; 1795 goto out_drop_write; 1796 } 1797 1798 if (subvol) { 1799 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1800 NULL, readonly, inherit); 1801 } else { 1802 struct fd src = fdget(fd); 1803 struct inode *src_inode; 1804 if (!src.file) { 1805 ret = -EINVAL; 1806 goto out_drop_write; 1807 } 1808 1809 src_inode = file_inode(src.file); 1810 if (src_inode->i_sb != file_inode(file)->i_sb) { 1811 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1812 "Snapshot src from another FS"); 1813 ret = -EXDEV; 1814 } else if (!inode_owner_or_capable(src_inode)) { 1815 /* 1816 * Subvolume creation is not restricted, but snapshots 1817 * are limited to own subvolumes only 1818 */ 1819 ret = -EPERM; 1820 } else { 1821 ret = btrfs_mksnapshot(&file->f_path, name, namelen, 1822 BTRFS_I(src_inode)->root, 1823 readonly, inherit); 1824 } 1825 fdput(src); 1826 } 1827 out_drop_write: 1828 mnt_drop_write_file(file); 1829 out: 1830 return ret; 1831 } 1832 1833 static noinline int btrfs_ioctl_snap_create(struct file *file, 1834 void __user *arg, int subvol) 1835 { 1836 struct btrfs_ioctl_vol_args *vol_args; 1837 int ret; 1838 1839 if (!S_ISDIR(file_inode(file)->i_mode)) 1840 return -ENOTDIR; 1841 1842 vol_args = memdup_user(arg, sizeof(*vol_args)); 1843 if (IS_ERR(vol_args)) 1844 return PTR_ERR(vol_args); 1845 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1846 1847 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1848 subvol, false, NULL); 1849 1850 kfree(vol_args); 1851 return ret; 1852 } 1853 1854 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1855 void __user *arg, int subvol) 1856 { 1857 struct btrfs_ioctl_vol_args_v2 *vol_args; 1858 int ret; 1859 bool readonly = false; 1860 struct btrfs_qgroup_inherit *inherit = NULL; 1861 1862 if (!S_ISDIR(file_inode(file)->i_mode)) 1863 return -ENOTDIR; 1864 1865 vol_args = memdup_user(arg, sizeof(*vol_args)); 1866 if (IS_ERR(vol_args)) 1867 return PTR_ERR(vol_args); 1868 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1869 1870 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1871 ret = -EOPNOTSUPP; 1872 goto free_args; 1873 } 1874 1875 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1876 readonly = true; 1877 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1878 if (vol_args->size > PAGE_SIZE) { 1879 ret = -EINVAL; 1880 goto free_args; 1881 } 1882 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1883 if (IS_ERR(inherit)) { 1884 ret = PTR_ERR(inherit); 1885 goto free_args; 1886 } 1887 } 1888 1889 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1890 subvol, readonly, inherit); 1891 if (ret) 1892 goto free_inherit; 1893 free_inherit: 1894 kfree(inherit); 1895 free_args: 1896 kfree(vol_args); 1897 return ret; 1898 } 1899 1900 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1901 void __user *arg) 1902 { 1903 struct inode *inode = file_inode(file); 1904 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1905 struct btrfs_root *root = BTRFS_I(inode)->root; 1906 int ret = 0; 1907 u64 flags = 0; 1908 1909 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1910 return -EINVAL; 1911 1912 down_read(&fs_info->subvol_sem); 1913 if (btrfs_root_readonly(root)) 1914 flags |= BTRFS_SUBVOL_RDONLY; 1915 up_read(&fs_info->subvol_sem); 1916 1917 if (copy_to_user(arg, &flags, sizeof(flags))) 1918 ret = -EFAULT; 1919 1920 return ret; 1921 } 1922 1923 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1924 void __user *arg) 1925 { 1926 struct inode *inode = file_inode(file); 1927 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1928 struct btrfs_root *root = BTRFS_I(inode)->root; 1929 struct btrfs_trans_handle *trans; 1930 u64 root_flags; 1931 u64 flags; 1932 int ret = 0; 1933 1934 if (!inode_owner_or_capable(inode)) 1935 return -EPERM; 1936 1937 ret = mnt_want_write_file(file); 1938 if (ret) 1939 goto out; 1940 1941 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1942 ret = -EINVAL; 1943 goto out_drop_write; 1944 } 1945 1946 if (copy_from_user(&flags, arg, sizeof(flags))) { 1947 ret = -EFAULT; 1948 goto out_drop_write; 1949 } 1950 1951 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1952 ret = -EOPNOTSUPP; 1953 goto out_drop_write; 1954 } 1955 1956 down_write(&fs_info->subvol_sem); 1957 1958 /* nothing to do */ 1959 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1960 goto out_drop_sem; 1961 1962 root_flags = btrfs_root_flags(&root->root_item); 1963 if (flags & BTRFS_SUBVOL_RDONLY) { 1964 btrfs_set_root_flags(&root->root_item, 1965 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1966 } else { 1967 /* 1968 * Block RO -> RW transition if this subvolume is involved in 1969 * send 1970 */ 1971 spin_lock(&root->root_item_lock); 1972 if (root->send_in_progress == 0) { 1973 btrfs_set_root_flags(&root->root_item, 1974 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1975 spin_unlock(&root->root_item_lock); 1976 } else { 1977 spin_unlock(&root->root_item_lock); 1978 btrfs_warn(fs_info, 1979 "Attempt to set subvolume %llu read-write during send", 1980 root->root_key.objectid); 1981 ret = -EPERM; 1982 goto out_drop_sem; 1983 } 1984 } 1985 1986 trans = btrfs_start_transaction(root, 1); 1987 if (IS_ERR(trans)) { 1988 ret = PTR_ERR(trans); 1989 goto out_reset; 1990 } 1991 1992 ret = btrfs_update_root(trans, fs_info->tree_root, 1993 &root->root_key, &root->root_item); 1994 if (ret < 0) { 1995 btrfs_end_transaction(trans); 1996 goto out_reset; 1997 } 1998 1999 ret = btrfs_commit_transaction(trans); 2000 2001 out_reset: 2002 if (ret) 2003 btrfs_set_root_flags(&root->root_item, root_flags); 2004 out_drop_sem: 2005 up_write(&fs_info->subvol_sem); 2006 out_drop_write: 2007 mnt_drop_write_file(file); 2008 out: 2009 return ret; 2010 } 2011 2012 static noinline int key_in_sk(struct btrfs_key *key, 2013 struct btrfs_ioctl_search_key *sk) 2014 { 2015 struct btrfs_key test; 2016 int ret; 2017 2018 test.objectid = sk->min_objectid; 2019 test.type = sk->min_type; 2020 test.offset = sk->min_offset; 2021 2022 ret = btrfs_comp_cpu_keys(key, &test); 2023 if (ret < 0) 2024 return 0; 2025 2026 test.objectid = sk->max_objectid; 2027 test.type = sk->max_type; 2028 test.offset = sk->max_offset; 2029 2030 ret = btrfs_comp_cpu_keys(key, &test); 2031 if (ret > 0) 2032 return 0; 2033 return 1; 2034 } 2035 2036 static noinline int copy_to_sk(struct btrfs_path *path, 2037 struct btrfs_key *key, 2038 struct btrfs_ioctl_search_key *sk, 2039 size_t *buf_size, 2040 char __user *ubuf, 2041 unsigned long *sk_offset, 2042 int *num_found) 2043 { 2044 u64 found_transid; 2045 struct extent_buffer *leaf; 2046 struct btrfs_ioctl_search_header sh; 2047 struct btrfs_key test; 2048 unsigned long item_off; 2049 unsigned long item_len; 2050 int nritems; 2051 int i; 2052 int slot; 2053 int ret = 0; 2054 2055 leaf = path->nodes[0]; 2056 slot = path->slots[0]; 2057 nritems = btrfs_header_nritems(leaf); 2058 2059 if (btrfs_header_generation(leaf) > sk->max_transid) { 2060 i = nritems; 2061 goto advance_key; 2062 } 2063 found_transid = btrfs_header_generation(leaf); 2064 2065 for (i = slot; i < nritems; i++) { 2066 item_off = btrfs_item_ptr_offset(leaf, i); 2067 item_len = btrfs_item_size_nr(leaf, i); 2068 2069 btrfs_item_key_to_cpu(leaf, key, i); 2070 if (!key_in_sk(key, sk)) 2071 continue; 2072 2073 if (sizeof(sh) + item_len > *buf_size) { 2074 if (*num_found) { 2075 ret = 1; 2076 goto out; 2077 } 2078 2079 /* 2080 * return one empty item back for v1, which does not 2081 * handle -EOVERFLOW 2082 */ 2083 2084 *buf_size = sizeof(sh) + item_len; 2085 item_len = 0; 2086 ret = -EOVERFLOW; 2087 } 2088 2089 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2090 ret = 1; 2091 goto out; 2092 } 2093 2094 sh.objectid = key->objectid; 2095 sh.offset = key->offset; 2096 sh.type = key->type; 2097 sh.len = item_len; 2098 sh.transid = found_transid; 2099 2100 /* 2101 * Copy search result header. If we fault then loop again so we 2102 * can fault in the pages and -EFAULT there if there's a 2103 * problem. Otherwise we'll fault and then copy the buffer in 2104 * properly this next time through 2105 */ 2106 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2107 ret = 0; 2108 goto out; 2109 } 2110 2111 *sk_offset += sizeof(sh); 2112 2113 if (item_len) { 2114 char __user *up = ubuf + *sk_offset; 2115 /* 2116 * Copy the item, same behavior as above, but reset the 2117 * * sk_offset so we copy the full thing again. 2118 */ 2119 if (read_extent_buffer_to_user_nofault(leaf, up, 2120 item_off, item_len)) { 2121 ret = 0; 2122 *sk_offset -= sizeof(sh); 2123 goto out; 2124 } 2125 2126 *sk_offset += item_len; 2127 } 2128 (*num_found)++; 2129 2130 if (ret) /* -EOVERFLOW from above */ 2131 goto out; 2132 2133 if (*num_found >= sk->nr_items) { 2134 ret = 1; 2135 goto out; 2136 } 2137 } 2138 advance_key: 2139 ret = 0; 2140 test.objectid = sk->max_objectid; 2141 test.type = sk->max_type; 2142 test.offset = sk->max_offset; 2143 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2144 ret = 1; 2145 else if (key->offset < (u64)-1) 2146 key->offset++; 2147 else if (key->type < (u8)-1) { 2148 key->offset = 0; 2149 key->type++; 2150 } else if (key->objectid < (u64)-1) { 2151 key->offset = 0; 2152 key->type = 0; 2153 key->objectid++; 2154 } else 2155 ret = 1; 2156 out: 2157 /* 2158 * 0: all items from this leaf copied, continue with next 2159 * 1: * more items can be copied, but unused buffer is too small 2160 * * all items were found 2161 * Either way, it will stops the loop which iterates to the next 2162 * leaf 2163 * -EOVERFLOW: item was to large for buffer 2164 * -EFAULT: could not copy extent buffer back to userspace 2165 */ 2166 return ret; 2167 } 2168 2169 static noinline int search_ioctl(struct inode *inode, 2170 struct btrfs_ioctl_search_key *sk, 2171 size_t *buf_size, 2172 char __user *ubuf) 2173 { 2174 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2175 struct btrfs_root *root; 2176 struct btrfs_key key; 2177 struct btrfs_path *path; 2178 int ret; 2179 int num_found = 0; 2180 unsigned long sk_offset = 0; 2181 2182 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2183 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2184 return -EOVERFLOW; 2185 } 2186 2187 path = btrfs_alloc_path(); 2188 if (!path) 2189 return -ENOMEM; 2190 2191 if (sk->tree_id == 0) { 2192 /* search the root of the inode that was passed */ 2193 root = btrfs_grab_root(BTRFS_I(inode)->root); 2194 } else { 2195 root = btrfs_get_fs_root(info, sk->tree_id, true); 2196 if (IS_ERR(root)) { 2197 btrfs_free_path(path); 2198 return PTR_ERR(root); 2199 } 2200 } 2201 2202 key.objectid = sk->min_objectid; 2203 key.type = sk->min_type; 2204 key.offset = sk->min_offset; 2205 2206 while (1) { 2207 ret = fault_in_pages_writeable(ubuf + sk_offset, 2208 *buf_size - sk_offset); 2209 if (ret) 2210 break; 2211 2212 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2213 if (ret != 0) { 2214 if (ret > 0) 2215 ret = 0; 2216 goto err; 2217 } 2218 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2219 &sk_offset, &num_found); 2220 btrfs_release_path(path); 2221 if (ret) 2222 break; 2223 2224 } 2225 if (ret > 0) 2226 ret = 0; 2227 err: 2228 sk->nr_items = num_found; 2229 btrfs_put_root(root); 2230 btrfs_free_path(path); 2231 return ret; 2232 } 2233 2234 static noinline int btrfs_ioctl_tree_search(struct file *file, 2235 void __user *argp) 2236 { 2237 struct btrfs_ioctl_search_args __user *uargs; 2238 struct btrfs_ioctl_search_key sk; 2239 struct inode *inode; 2240 int ret; 2241 size_t buf_size; 2242 2243 if (!capable(CAP_SYS_ADMIN)) 2244 return -EPERM; 2245 2246 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2247 2248 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2249 return -EFAULT; 2250 2251 buf_size = sizeof(uargs->buf); 2252 2253 inode = file_inode(file); 2254 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2255 2256 /* 2257 * In the origin implementation an overflow is handled by returning a 2258 * search header with a len of zero, so reset ret. 2259 */ 2260 if (ret == -EOVERFLOW) 2261 ret = 0; 2262 2263 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2264 ret = -EFAULT; 2265 return ret; 2266 } 2267 2268 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2269 void __user *argp) 2270 { 2271 struct btrfs_ioctl_search_args_v2 __user *uarg; 2272 struct btrfs_ioctl_search_args_v2 args; 2273 struct inode *inode; 2274 int ret; 2275 size_t buf_size; 2276 const size_t buf_limit = SZ_16M; 2277 2278 if (!capable(CAP_SYS_ADMIN)) 2279 return -EPERM; 2280 2281 /* copy search header and buffer size */ 2282 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2283 if (copy_from_user(&args, uarg, sizeof(args))) 2284 return -EFAULT; 2285 2286 buf_size = args.buf_size; 2287 2288 /* limit result size to 16MB */ 2289 if (buf_size > buf_limit) 2290 buf_size = buf_limit; 2291 2292 inode = file_inode(file); 2293 ret = search_ioctl(inode, &args.key, &buf_size, 2294 (char __user *)(&uarg->buf[0])); 2295 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2296 ret = -EFAULT; 2297 else if (ret == -EOVERFLOW && 2298 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2299 ret = -EFAULT; 2300 2301 return ret; 2302 } 2303 2304 /* 2305 * Search INODE_REFs to identify path name of 'dirid' directory 2306 * in a 'tree_id' tree. and sets path name to 'name'. 2307 */ 2308 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2309 u64 tree_id, u64 dirid, char *name) 2310 { 2311 struct btrfs_root *root; 2312 struct btrfs_key key; 2313 char *ptr; 2314 int ret = -1; 2315 int slot; 2316 int len; 2317 int total_len = 0; 2318 struct btrfs_inode_ref *iref; 2319 struct extent_buffer *l; 2320 struct btrfs_path *path; 2321 2322 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2323 name[0]='\0'; 2324 return 0; 2325 } 2326 2327 path = btrfs_alloc_path(); 2328 if (!path) 2329 return -ENOMEM; 2330 2331 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2332 2333 root = btrfs_get_fs_root(info, tree_id, true); 2334 if (IS_ERR(root)) { 2335 ret = PTR_ERR(root); 2336 root = NULL; 2337 goto out; 2338 } 2339 2340 key.objectid = dirid; 2341 key.type = BTRFS_INODE_REF_KEY; 2342 key.offset = (u64)-1; 2343 2344 while (1) { 2345 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2346 if (ret < 0) 2347 goto out; 2348 else if (ret > 0) { 2349 ret = btrfs_previous_item(root, path, dirid, 2350 BTRFS_INODE_REF_KEY); 2351 if (ret < 0) 2352 goto out; 2353 else if (ret > 0) { 2354 ret = -ENOENT; 2355 goto out; 2356 } 2357 } 2358 2359 l = path->nodes[0]; 2360 slot = path->slots[0]; 2361 btrfs_item_key_to_cpu(l, &key, slot); 2362 2363 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2364 len = btrfs_inode_ref_name_len(l, iref); 2365 ptr -= len + 1; 2366 total_len += len + 1; 2367 if (ptr < name) { 2368 ret = -ENAMETOOLONG; 2369 goto out; 2370 } 2371 2372 *(ptr + len) = '/'; 2373 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2374 2375 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2376 break; 2377 2378 btrfs_release_path(path); 2379 key.objectid = key.offset; 2380 key.offset = (u64)-1; 2381 dirid = key.objectid; 2382 } 2383 memmove(name, ptr, total_len); 2384 name[total_len] = '\0'; 2385 ret = 0; 2386 out: 2387 btrfs_put_root(root); 2388 btrfs_free_path(path); 2389 return ret; 2390 } 2391 2392 static int btrfs_search_path_in_tree_user(struct inode *inode, 2393 struct btrfs_ioctl_ino_lookup_user_args *args) 2394 { 2395 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2396 struct super_block *sb = inode->i_sb; 2397 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2398 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2399 u64 dirid = args->dirid; 2400 unsigned long item_off; 2401 unsigned long item_len; 2402 struct btrfs_inode_ref *iref; 2403 struct btrfs_root_ref *rref; 2404 struct btrfs_root *root = NULL; 2405 struct btrfs_path *path; 2406 struct btrfs_key key, key2; 2407 struct extent_buffer *leaf; 2408 struct inode *temp_inode; 2409 char *ptr; 2410 int slot; 2411 int len; 2412 int total_len = 0; 2413 int ret; 2414 2415 path = btrfs_alloc_path(); 2416 if (!path) 2417 return -ENOMEM; 2418 2419 /* 2420 * If the bottom subvolume does not exist directly under upper_limit, 2421 * construct the path in from the bottom up. 2422 */ 2423 if (dirid != upper_limit.objectid) { 2424 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2425 2426 root = btrfs_get_fs_root(fs_info, treeid, true); 2427 if (IS_ERR(root)) { 2428 ret = PTR_ERR(root); 2429 goto out; 2430 } 2431 2432 key.objectid = dirid; 2433 key.type = BTRFS_INODE_REF_KEY; 2434 key.offset = (u64)-1; 2435 while (1) { 2436 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2437 if (ret < 0) { 2438 goto out_put; 2439 } else if (ret > 0) { 2440 ret = btrfs_previous_item(root, path, dirid, 2441 BTRFS_INODE_REF_KEY); 2442 if (ret < 0) { 2443 goto out_put; 2444 } else if (ret > 0) { 2445 ret = -ENOENT; 2446 goto out_put; 2447 } 2448 } 2449 2450 leaf = path->nodes[0]; 2451 slot = path->slots[0]; 2452 btrfs_item_key_to_cpu(leaf, &key, slot); 2453 2454 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2455 len = btrfs_inode_ref_name_len(leaf, iref); 2456 ptr -= len + 1; 2457 total_len += len + 1; 2458 if (ptr < args->path) { 2459 ret = -ENAMETOOLONG; 2460 goto out_put; 2461 } 2462 2463 *(ptr + len) = '/'; 2464 read_extent_buffer(leaf, ptr, 2465 (unsigned long)(iref + 1), len); 2466 2467 /* Check the read+exec permission of this directory */ 2468 ret = btrfs_previous_item(root, path, dirid, 2469 BTRFS_INODE_ITEM_KEY); 2470 if (ret < 0) { 2471 goto out_put; 2472 } else if (ret > 0) { 2473 ret = -ENOENT; 2474 goto out_put; 2475 } 2476 2477 leaf = path->nodes[0]; 2478 slot = path->slots[0]; 2479 btrfs_item_key_to_cpu(leaf, &key2, slot); 2480 if (key2.objectid != dirid) { 2481 ret = -ENOENT; 2482 goto out_put; 2483 } 2484 2485 temp_inode = btrfs_iget(sb, key2.objectid, root); 2486 if (IS_ERR(temp_inode)) { 2487 ret = PTR_ERR(temp_inode); 2488 goto out_put; 2489 } 2490 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2491 iput(temp_inode); 2492 if (ret) { 2493 ret = -EACCES; 2494 goto out_put; 2495 } 2496 2497 if (key.offset == upper_limit.objectid) 2498 break; 2499 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2500 ret = -EACCES; 2501 goto out_put; 2502 } 2503 2504 btrfs_release_path(path); 2505 key.objectid = key.offset; 2506 key.offset = (u64)-1; 2507 dirid = key.objectid; 2508 } 2509 2510 memmove(args->path, ptr, total_len); 2511 args->path[total_len] = '\0'; 2512 btrfs_put_root(root); 2513 root = NULL; 2514 btrfs_release_path(path); 2515 } 2516 2517 /* Get the bottom subvolume's name from ROOT_REF */ 2518 key.objectid = treeid; 2519 key.type = BTRFS_ROOT_REF_KEY; 2520 key.offset = args->treeid; 2521 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2522 if (ret < 0) { 2523 goto out; 2524 } else if (ret > 0) { 2525 ret = -ENOENT; 2526 goto out; 2527 } 2528 2529 leaf = path->nodes[0]; 2530 slot = path->slots[0]; 2531 btrfs_item_key_to_cpu(leaf, &key, slot); 2532 2533 item_off = btrfs_item_ptr_offset(leaf, slot); 2534 item_len = btrfs_item_size_nr(leaf, slot); 2535 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2536 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2537 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2538 ret = -EINVAL; 2539 goto out; 2540 } 2541 2542 /* Copy subvolume's name */ 2543 item_off += sizeof(struct btrfs_root_ref); 2544 item_len -= sizeof(struct btrfs_root_ref); 2545 read_extent_buffer(leaf, args->name, item_off, item_len); 2546 args->name[item_len] = 0; 2547 2548 out_put: 2549 btrfs_put_root(root); 2550 out: 2551 btrfs_free_path(path); 2552 return ret; 2553 } 2554 2555 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2556 void __user *argp) 2557 { 2558 struct btrfs_ioctl_ino_lookup_args *args; 2559 struct inode *inode; 2560 int ret = 0; 2561 2562 args = memdup_user(argp, sizeof(*args)); 2563 if (IS_ERR(args)) 2564 return PTR_ERR(args); 2565 2566 inode = file_inode(file); 2567 2568 /* 2569 * Unprivileged query to obtain the containing subvolume root id. The 2570 * path is reset so it's consistent with btrfs_search_path_in_tree. 2571 */ 2572 if (args->treeid == 0) 2573 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2574 2575 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2576 args->name[0] = 0; 2577 goto out; 2578 } 2579 2580 if (!capable(CAP_SYS_ADMIN)) { 2581 ret = -EPERM; 2582 goto out; 2583 } 2584 2585 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2586 args->treeid, args->objectid, 2587 args->name); 2588 2589 out: 2590 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2591 ret = -EFAULT; 2592 2593 kfree(args); 2594 return ret; 2595 } 2596 2597 /* 2598 * Version of ino_lookup ioctl (unprivileged) 2599 * 2600 * The main differences from ino_lookup ioctl are: 2601 * 2602 * 1. Read + Exec permission will be checked using inode_permission() during 2603 * path construction. -EACCES will be returned in case of failure. 2604 * 2. Path construction will be stopped at the inode number which corresponds 2605 * to the fd with which this ioctl is called. If constructed path does not 2606 * exist under fd's inode, -EACCES will be returned. 2607 * 3. The name of bottom subvolume is also searched and filled. 2608 */ 2609 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2610 { 2611 struct btrfs_ioctl_ino_lookup_user_args *args; 2612 struct inode *inode; 2613 int ret; 2614 2615 args = memdup_user(argp, sizeof(*args)); 2616 if (IS_ERR(args)) 2617 return PTR_ERR(args); 2618 2619 inode = file_inode(file); 2620 2621 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2622 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2623 /* 2624 * The subvolume does not exist under fd with which this is 2625 * called 2626 */ 2627 kfree(args); 2628 return -EACCES; 2629 } 2630 2631 ret = btrfs_search_path_in_tree_user(inode, args); 2632 2633 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2634 ret = -EFAULT; 2635 2636 kfree(args); 2637 return ret; 2638 } 2639 2640 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2641 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2642 { 2643 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2644 struct btrfs_fs_info *fs_info; 2645 struct btrfs_root *root; 2646 struct btrfs_path *path; 2647 struct btrfs_key key; 2648 struct btrfs_root_item *root_item; 2649 struct btrfs_root_ref *rref; 2650 struct extent_buffer *leaf; 2651 unsigned long item_off; 2652 unsigned long item_len; 2653 struct inode *inode; 2654 int slot; 2655 int ret = 0; 2656 2657 path = btrfs_alloc_path(); 2658 if (!path) 2659 return -ENOMEM; 2660 2661 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2662 if (!subvol_info) { 2663 btrfs_free_path(path); 2664 return -ENOMEM; 2665 } 2666 2667 inode = file_inode(file); 2668 fs_info = BTRFS_I(inode)->root->fs_info; 2669 2670 /* Get root_item of inode's subvolume */ 2671 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2672 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2673 if (IS_ERR(root)) { 2674 ret = PTR_ERR(root); 2675 goto out_free; 2676 } 2677 root_item = &root->root_item; 2678 2679 subvol_info->treeid = key.objectid; 2680 2681 subvol_info->generation = btrfs_root_generation(root_item); 2682 subvol_info->flags = btrfs_root_flags(root_item); 2683 2684 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2685 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2686 BTRFS_UUID_SIZE); 2687 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2688 BTRFS_UUID_SIZE); 2689 2690 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2691 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2692 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2693 2694 subvol_info->otransid = btrfs_root_otransid(root_item); 2695 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2696 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2697 2698 subvol_info->stransid = btrfs_root_stransid(root_item); 2699 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2700 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2701 2702 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2703 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2704 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2705 2706 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2707 /* Search root tree for ROOT_BACKREF of this subvolume */ 2708 key.type = BTRFS_ROOT_BACKREF_KEY; 2709 key.offset = 0; 2710 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2711 if (ret < 0) { 2712 goto out; 2713 } else if (path->slots[0] >= 2714 btrfs_header_nritems(path->nodes[0])) { 2715 ret = btrfs_next_leaf(fs_info->tree_root, path); 2716 if (ret < 0) { 2717 goto out; 2718 } else if (ret > 0) { 2719 ret = -EUCLEAN; 2720 goto out; 2721 } 2722 } 2723 2724 leaf = path->nodes[0]; 2725 slot = path->slots[0]; 2726 btrfs_item_key_to_cpu(leaf, &key, slot); 2727 if (key.objectid == subvol_info->treeid && 2728 key.type == BTRFS_ROOT_BACKREF_KEY) { 2729 subvol_info->parent_id = key.offset; 2730 2731 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2732 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2733 2734 item_off = btrfs_item_ptr_offset(leaf, slot) 2735 + sizeof(struct btrfs_root_ref); 2736 item_len = btrfs_item_size_nr(leaf, slot) 2737 - sizeof(struct btrfs_root_ref); 2738 read_extent_buffer(leaf, subvol_info->name, 2739 item_off, item_len); 2740 } else { 2741 ret = -ENOENT; 2742 goto out; 2743 } 2744 } 2745 2746 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2747 ret = -EFAULT; 2748 2749 out: 2750 btrfs_put_root(root); 2751 out_free: 2752 btrfs_free_path(path); 2753 kfree(subvol_info); 2754 return ret; 2755 } 2756 2757 /* 2758 * Return ROOT_REF information of the subvolume containing this inode 2759 * except the subvolume name. 2760 */ 2761 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2762 { 2763 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2764 struct btrfs_root_ref *rref; 2765 struct btrfs_root *root; 2766 struct btrfs_path *path; 2767 struct btrfs_key key; 2768 struct extent_buffer *leaf; 2769 struct inode *inode; 2770 u64 objectid; 2771 int slot; 2772 int ret; 2773 u8 found; 2774 2775 path = btrfs_alloc_path(); 2776 if (!path) 2777 return -ENOMEM; 2778 2779 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2780 if (IS_ERR(rootrefs)) { 2781 btrfs_free_path(path); 2782 return PTR_ERR(rootrefs); 2783 } 2784 2785 inode = file_inode(file); 2786 root = BTRFS_I(inode)->root->fs_info->tree_root; 2787 objectid = BTRFS_I(inode)->root->root_key.objectid; 2788 2789 key.objectid = objectid; 2790 key.type = BTRFS_ROOT_REF_KEY; 2791 key.offset = rootrefs->min_treeid; 2792 found = 0; 2793 2794 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2795 if (ret < 0) { 2796 goto out; 2797 } else if (path->slots[0] >= 2798 btrfs_header_nritems(path->nodes[0])) { 2799 ret = btrfs_next_leaf(root, path); 2800 if (ret < 0) { 2801 goto out; 2802 } else if (ret > 0) { 2803 ret = -EUCLEAN; 2804 goto out; 2805 } 2806 } 2807 while (1) { 2808 leaf = path->nodes[0]; 2809 slot = path->slots[0]; 2810 2811 btrfs_item_key_to_cpu(leaf, &key, slot); 2812 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2813 ret = 0; 2814 goto out; 2815 } 2816 2817 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2818 ret = -EOVERFLOW; 2819 goto out; 2820 } 2821 2822 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2823 rootrefs->rootref[found].treeid = key.offset; 2824 rootrefs->rootref[found].dirid = 2825 btrfs_root_ref_dirid(leaf, rref); 2826 found++; 2827 2828 ret = btrfs_next_item(root, path); 2829 if (ret < 0) { 2830 goto out; 2831 } else if (ret > 0) { 2832 ret = -EUCLEAN; 2833 goto out; 2834 } 2835 } 2836 2837 out: 2838 if (!ret || ret == -EOVERFLOW) { 2839 rootrefs->num_items = found; 2840 /* update min_treeid for next search */ 2841 if (found) 2842 rootrefs->min_treeid = 2843 rootrefs->rootref[found - 1].treeid + 1; 2844 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2845 ret = -EFAULT; 2846 } 2847 2848 kfree(rootrefs); 2849 btrfs_free_path(path); 2850 2851 return ret; 2852 } 2853 2854 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2855 void __user *arg, 2856 bool destroy_v2) 2857 { 2858 struct dentry *parent = file->f_path.dentry; 2859 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2860 struct dentry *dentry; 2861 struct inode *dir = d_inode(parent); 2862 struct inode *inode; 2863 struct btrfs_root *root = BTRFS_I(dir)->root; 2864 struct btrfs_root *dest = NULL; 2865 struct btrfs_ioctl_vol_args *vol_args = NULL; 2866 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2867 char *subvol_name, *subvol_name_ptr = NULL; 2868 int subvol_namelen; 2869 int err = 0; 2870 bool destroy_parent = false; 2871 2872 if (destroy_v2) { 2873 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2874 if (IS_ERR(vol_args2)) 2875 return PTR_ERR(vol_args2); 2876 2877 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2878 err = -EOPNOTSUPP; 2879 goto out; 2880 } 2881 2882 /* 2883 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2884 * name, same as v1 currently does. 2885 */ 2886 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2887 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2888 subvol_name = vol_args2->name; 2889 2890 err = mnt_want_write_file(file); 2891 if (err) 2892 goto out; 2893 } else { 2894 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2895 err = -EINVAL; 2896 goto out; 2897 } 2898 2899 err = mnt_want_write_file(file); 2900 if (err) 2901 goto out; 2902 2903 dentry = btrfs_get_dentry(fs_info->sb, 2904 BTRFS_FIRST_FREE_OBJECTID, 2905 vol_args2->subvolid, 0, 0); 2906 if (IS_ERR(dentry)) { 2907 err = PTR_ERR(dentry); 2908 goto out_drop_write; 2909 } 2910 2911 /* 2912 * Change the default parent since the subvolume being 2913 * deleted can be outside of the current mount point. 2914 */ 2915 parent = btrfs_get_parent(dentry); 2916 2917 /* 2918 * At this point dentry->d_name can point to '/' if the 2919 * subvolume we want to destroy is outsite of the 2920 * current mount point, so we need to release the 2921 * current dentry and execute the lookup to return a new 2922 * one with ->d_name pointing to the 2923 * <mount point>/subvol_name. 2924 */ 2925 dput(dentry); 2926 if (IS_ERR(parent)) { 2927 err = PTR_ERR(parent); 2928 goto out_drop_write; 2929 } 2930 dir = d_inode(parent); 2931 2932 /* 2933 * If v2 was used with SPEC_BY_ID, a new parent was 2934 * allocated since the subvolume can be outside of the 2935 * current mount point. Later on we need to release this 2936 * new parent dentry. 2937 */ 2938 destroy_parent = true; 2939 2940 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2941 fs_info, vol_args2->subvolid); 2942 if (IS_ERR(subvol_name_ptr)) { 2943 err = PTR_ERR(subvol_name_ptr); 2944 goto free_parent; 2945 } 2946 /* subvol_name_ptr is already NULL termined */ 2947 subvol_name = (char *)kbasename(subvol_name_ptr); 2948 } 2949 } else { 2950 vol_args = memdup_user(arg, sizeof(*vol_args)); 2951 if (IS_ERR(vol_args)) 2952 return PTR_ERR(vol_args); 2953 2954 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2955 subvol_name = vol_args->name; 2956 2957 err = mnt_want_write_file(file); 2958 if (err) 2959 goto out; 2960 } 2961 2962 subvol_namelen = strlen(subvol_name); 2963 2964 if (strchr(subvol_name, '/') || 2965 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2966 err = -EINVAL; 2967 goto free_subvol_name; 2968 } 2969 2970 if (!S_ISDIR(dir->i_mode)) { 2971 err = -ENOTDIR; 2972 goto free_subvol_name; 2973 } 2974 2975 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2976 if (err == -EINTR) 2977 goto free_subvol_name; 2978 dentry = lookup_one_len(subvol_name, parent, subvol_namelen); 2979 if (IS_ERR(dentry)) { 2980 err = PTR_ERR(dentry); 2981 goto out_unlock_dir; 2982 } 2983 2984 if (d_really_is_negative(dentry)) { 2985 err = -ENOENT; 2986 goto out_dput; 2987 } 2988 2989 inode = d_inode(dentry); 2990 dest = BTRFS_I(inode)->root; 2991 if (!capable(CAP_SYS_ADMIN)) { 2992 /* 2993 * Regular user. Only allow this with a special mount 2994 * option, when the user has write+exec access to the 2995 * subvol root, and when rmdir(2) would have been 2996 * allowed. 2997 * 2998 * Note that this is _not_ check that the subvol is 2999 * empty or doesn't contain data that we wouldn't 3000 * otherwise be able to delete. 3001 * 3002 * Users who want to delete empty subvols should try 3003 * rmdir(2). 3004 */ 3005 err = -EPERM; 3006 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3007 goto out_dput; 3008 3009 /* 3010 * Do not allow deletion if the parent dir is the same 3011 * as the dir to be deleted. That means the ioctl 3012 * must be called on the dentry referencing the root 3013 * of the subvol, not a random directory contained 3014 * within it. 3015 */ 3016 err = -EINVAL; 3017 if (root == dest) 3018 goto out_dput; 3019 3020 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 3021 if (err) 3022 goto out_dput; 3023 } 3024 3025 /* check if subvolume may be deleted by a user */ 3026 err = btrfs_may_delete(dir, dentry, 1); 3027 if (err) 3028 goto out_dput; 3029 3030 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3031 err = -EINVAL; 3032 goto out_dput; 3033 } 3034 3035 inode_lock(inode); 3036 err = btrfs_delete_subvolume(dir, dentry); 3037 inode_unlock(inode); 3038 if (!err) { 3039 fsnotify_rmdir(dir, dentry); 3040 d_delete(dentry); 3041 } 3042 3043 out_dput: 3044 dput(dentry); 3045 out_unlock_dir: 3046 inode_unlock(dir); 3047 free_subvol_name: 3048 kfree(subvol_name_ptr); 3049 free_parent: 3050 if (destroy_parent) 3051 dput(parent); 3052 out_drop_write: 3053 mnt_drop_write_file(file); 3054 out: 3055 kfree(vol_args2); 3056 kfree(vol_args); 3057 return err; 3058 } 3059 3060 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3061 { 3062 struct inode *inode = file_inode(file); 3063 struct btrfs_root *root = BTRFS_I(inode)->root; 3064 struct btrfs_ioctl_defrag_range_args *range; 3065 int ret; 3066 3067 ret = mnt_want_write_file(file); 3068 if (ret) 3069 return ret; 3070 3071 if (btrfs_root_readonly(root)) { 3072 ret = -EROFS; 3073 goto out; 3074 } 3075 3076 switch (inode->i_mode & S_IFMT) { 3077 case S_IFDIR: 3078 if (!capable(CAP_SYS_ADMIN)) { 3079 ret = -EPERM; 3080 goto out; 3081 } 3082 ret = btrfs_defrag_root(root); 3083 break; 3084 case S_IFREG: 3085 /* 3086 * Note that this does not check the file descriptor for write 3087 * access. This prevents defragmenting executables that are 3088 * running and allows defrag on files open in read-only mode. 3089 */ 3090 if (!capable(CAP_SYS_ADMIN) && 3091 inode_permission(inode, MAY_WRITE)) { 3092 ret = -EPERM; 3093 goto out; 3094 } 3095 3096 range = kzalloc(sizeof(*range), GFP_KERNEL); 3097 if (!range) { 3098 ret = -ENOMEM; 3099 goto out; 3100 } 3101 3102 if (argp) { 3103 if (copy_from_user(range, argp, 3104 sizeof(*range))) { 3105 ret = -EFAULT; 3106 kfree(range); 3107 goto out; 3108 } 3109 /* compression requires us to start the IO */ 3110 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3111 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 3112 range->extent_thresh = (u32)-1; 3113 } 3114 } else { 3115 /* the rest are all set to zero by kzalloc */ 3116 range->len = (u64)-1; 3117 } 3118 ret = btrfs_defrag_file(file_inode(file), file, 3119 range, BTRFS_OLDEST_GENERATION, 0); 3120 if (ret > 0) 3121 ret = 0; 3122 kfree(range); 3123 break; 3124 default: 3125 ret = -EINVAL; 3126 } 3127 out: 3128 mnt_drop_write_file(file); 3129 return ret; 3130 } 3131 3132 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3133 { 3134 struct btrfs_ioctl_vol_args *vol_args; 3135 int ret; 3136 3137 if (!capable(CAP_SYS_ADMIN)) 3138 return -EPERM; 3139 3140 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3141 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3142 3143 vol_args = memdup_user(arg, sizeof(*vol_args)); 3144 if (IS_ERR(vol_args)) { 3145 ret = PTR_ERR(vol_args); 3146 goto out; 3147 } 3148 3149 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3150 ret = btrfs_init_new_device(fs_info, vol_args->name); 3151 3152 if (!ret) 3153 btrfs_info(fs_info, "disk added %s", vol_args->name); 3154 3155 kfree(vol_args); 3156 out: 3157 btrfs_exclop_finish(fs_info); 3158 return ret; 3159 } 3160 3161 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3162 { 3163 struct inode *inode = file_inode(file); 3164 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3165 struct btrfs_ioctl_vol_args_v2 *vol_args; 3166 int ret; 3167 3168 if (!capable(CAP_SYS_ADMIN)) 3169 return -EPERM; 3170 3171 ret = mnt_want_write_file(file); 3172 if (ret) 3173 return ret; 3174 3175 vol_args = memdup_user(arg, sizeof(*vol_args)); 3176 if (IS_ERR(vol_args)) { 3177 ret = PTR_ERR(vol_args); 3178 goto err_drop; 3179 } 3180 3181 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3182 ret = -EOPNOTSUPP; 3183 goto out; 3184 } 3185 3186 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3187 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3188 goto out; 3189 } 3190 3191 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3192 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3193 } else { 3194 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3195 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3196 } 3197 btrfs_exclop_finish(fs_info); 3198 3199 if (!ret) { 3200 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3201 btrfs_info(fs_info, "device deleted: id %llu", 3202 vol_args->devid); 3203 else 3204 btrfs_info(fs_info, "device deleted: %s", 3205 vol_args->name); 3206 } 3207 out: 3208 kfree(vol_args); 3209 err_drop: 3210 mnt_drop_write_file(file); 3211 return ret; 3212 } 3213 3214 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3215 { 3216 struct inode *inode = file_inode(file); 3217 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3218 struct btrfs_ioctl_vol_args *vol_args; 3219 int ret; 3220 3221 if (!capable(CAP_SYS_ADMIN)) 3222 return -EPERM; 3223 3224 ret = mnt_want_write_file(file); 3225 if (ret) 3226 return ret; 3227 3228 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3229 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3230 goto out_drop_write; 3231 } 3232 3233 vol_args = memdup_user(arg, sizeof(*vol_args)); 3234 if (IS_ERR(vol_args)) { 3235 ret = PTR_ERR(vol_args); 3236 goto out; 3237 } 3238 3239 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3240 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3241 3242 if (!ret) 3243 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3244 kfree(vol_args); 3245 out: 3246 btrfs_exclop_finish(fs_info); 3247 out_drop_write: 3248 mnt_drop_write_file(file); 3249 3250 return ret; 3251 } 3252 3253 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3254 void __user *arg) 3255 { 3256 struct btrfs_ioctl_fs_info_args *fi_args; 3257 struct btrfs_device *device; 3258 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3259 u64 flags_in; 3260 int ret = 0; 3261 3262 fi_args = memdup_user(arg, sizeof(*fi_args)); 3263 if (IS_ERR(fi_args)) 3264 return PTR_ERR(fi_args); 3265 3266 flags_in = fi_args->flags; 3267 memset(fi_args, 0, sizeof(*fi_args)); 3268 3269 rcu_read_lock(); 3270 fi_args->num_devices = fs_devices->num_devices; 3271 3272 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3273 if (device->devid > fi_args->max_id) 3274 fi_args->max_id = device->devid; 3275 } 3276 rcu_read_unlock(); 3277 3278 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3279 fi_args->nodesize = fs_info->nodesize; 3280 fi_args->sectorsize = fs_info->sectorsize; 3281 fi_args->clone_alignment = fs_info->sectorsize; 3282 3283 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3284 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3285 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3286 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3287 } 3288 3289 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3290 fi_args->generation = fs_info->generation; 3291 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3292 } 3293 3294 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3295 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3296 sizeof(fi_args->metadata_uuid)); 3297 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3298 } 3299 3300 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3301 ret = -EFAULT; 3302 3303 kfree(fi_args); 3304 return ret; 3305 } 3306 3307 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3308 void __user *arg) 3309 { 3310 struct btrfs_ioctl_dev_info_args *di_args; 3311 struct btrfs_device *dev; 3312 int ret = 0; 3313 char *s_uuid = NULL; 3314 3315 di_args = memdup_user(arg, sizeof(*di_args)); 3316 if (IS_ERR(di_args)) 3317 return PTR_ERR(di_args); 3318 3319 if (!btrfs_is_empty_uuid(di_args->uuid)) 3320 s_uuid = di_args->uuid; 3321 3322 rcu_read_lock(); 3323 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3324 NULL, true); 3325 3326 if (!dev) { 3327 ret = -ENODEV; 3328 goto out; 3329 } 3330 3331 di_args->devid = dev->devid; 3332 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3333 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3334 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3335 if (dev->name) { 3336 strncpy(di_args->path, rcu_str_deref(dev->name), 3337 sizeof(di_args->path) - 1); 3338 di_args->path[sizeof(di_args->path) - 1] = 0; 3339 } else { 3340 di_args->path[0] = '\0'; 3341 } 3342 3343 out: 3344 rcu_read_unlock(); 3345 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3346 ret = -EFAULT; 3347 3348 kfree(di_args); 3349 return ret; 3350 } 3351 3352 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3353 { 3354 struct inode *inode = file_inode(file); 3355 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3356 struct btrfs_root *root = BTRFS_I(inode)->root; 3357 struct btrfs_root *new_root; 3358 struct btrfs_dir_item *di; 3359 struct btrfs_trans_handle *trans; 3360 struct btrfs_path *path = NULL; 3361 struct btrfs_disk_key disk_key; 3362 u64 objectid = 0; 3363 u64 dir_id; 3364 int ret; 3365 3366 if (!capable(CAP_SYS_ADMIN)) 3367 return -EPERM; 3368 3369 ret = mnt_want_write_file(file); 3370 if (ret) 3371 return ret; 3372 3373 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3374 ret = -EFAULT; 3375 goto out; 3376 } 3377 3378 if (!objectid) 3379 objectid = BTRFS_FS_TREE_OBJECTID; 3380 3381 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3382 if (IS_ERR(new_root)) { 3383 ret = PTR_ERR(new_root); 3384 goto out; 3385 } 3386 if (!is_fstree(new_root->root_key.objectid)) { 3387 ret = -ENOENT; 3388 goto out_free; 3389 } 3390 3391 path = btrfs_alloc_path(); 3392 if (!path) { 3393 ret = -ENOMEM; 3394 goto out_free; 3395 } 3396 path->leave_spinning = 1; 3397 3398 trans = btrfs_start_transaction(root, 1); 3399 if (IS_ERR(trans)) { 3400 ret = PTR_ERR(trans); 3401 goto out_free; 3402 } 3403 3404 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3405 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3406 dir_id, "default", 7, 1); 3407 if (IS_ERR_OR_NULL(di)) { 3408 btrfs_release_path(path); 3409 btrfs_end_transaction(trans); 3410 btrfs_err(fs_info, 3411 "Umm, you don't have the default diritem, this isn't going to work"); 3412 ret = -ENOENT; 3413 goto out_free; 3414 } 3415 3416 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3417 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3418 btrfs_mark_buffer_dirty(path->nodes[0]); 3419 btrfs_release_path(path); 3420 3421 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3422 btrfs_end_transaction(trans); 3423 out_free: 3424 btrfs_put_root(new_root); 3425 btrfs_free_path(path); 3426 out: 3427 mnt_drop_write_file(file); 3428 return ret; 3429 } 3430 3431 static void get_block_group_info(struct list_head *groups_list, 3432 struct btrfs_ioctl_space_info *space) 3433 { 3434 struct btrfs_block_group *block_group; 3435 3436 space->total_bytes = 0; 3437 space->used_bytes = 0; 3438 space->flags = 0; 3439 list_for_each_entry(block_group, groups_list, list) { 3440 space->flags = block_group->flags; 3441 space->total_bytes += block_group->length; 3442 space->used_bytes += block_group->used; 3443 } 3444 } 3445 3446 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3447 void __user *arg) 3448 { 3449 struct btrfs_ioctl_space_args space_args; 3450 struct btrfs_ioctl_space_info space; 3451 struct btrfs_ioctl_space_info *dest; 3452 struct btrfs_ioctl_space_info *dest_orig; 3453 struct btrfs_ioctl_space_info __user *user_dest; 3454 struct btrfs_space_info *info; 3455 static const u64 types[] = { 3456 BTRFS_BLOCK_GROUP_DATA, 3457 BTRFS_BLOCK_GROUP_SYSTEM, 3458 BTRFS_BLOCK_GROUP_METADATA, 3459 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3460 }; 3461 int num_types = 4; 3462 int alloc_size; 3463 int ret = 0; 3464 u64 slot_count = 0; 3465 int i, c; 3466 3467 if (copy_from_user(&space_args, 3468 (struct btrfs_ioctl_space_args __user *)arg, 3469 sizeof(space_args))) 3470 return -EFAULT; 3471 3472 for (i = 0; i < num_types; i++) { 3473 struct btrfs_space_info *tmp; 3474 3475 info = NULL; 3476 list_for_each_entry(tmp, &fs_info->space_info, list) { 3477 if (tmp->flags == types[i]) { 3478 info = tmp; 3479 break; 3480 } 3481 } 3482 3483 if (!info) 3484 continue; 3485 3486 down_read(&info->groups_sem); 3487 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3488 if (!list_empty(&info->block_groups[c])) 3489 slot_count++; 3490 } 3491 up_read(&info->groups_sem); 3492 } 3493 3494 /* 3495 * Global block reserve, exported as a space_info 3496 */ 3497 slot_count++; 3498 3499 /* space_slots == 0 means they are asking for a count */ 3500 if (space_args.space_slots == 0) { 3501 space_args.total_spaces = slot_count; 3502 goto out; 3503 } 3504 3505 slot_count = min_t(u64, space_args.space_slots, slot_count); 3506 3507 alloc_size = sizeof(*dest) * slot_count; 3508 3509 /* we generally have at most 6 or so space infos, one for each raid 3510 * level. So, a whole page should be more than enough for everyone 3511 */ 3512 if (alloc_size > PAGE_SIZE) 3513 return -ENOMEM; 3514 3515 space_args.total_spaces = 0; 3516 dest = kmalloc(alloc_size, GFP_KERNEL); 3517 if (!dest) 3518 return -ENOMEM; 3519 dest_orig = dest; 3520 3521 /* now we have a buffer to copy into */ 3522 for (i = 0; i < num_types; i++) { 3523 struct btrfs_space_info *tmp; 3524 3525 if (!slot_count) 3526 break; 3527 3528 info = NULL; 3529 list_for_each_entry(tmp, &fs_info->space_info, list) { 3530 if (tmp->flags == types[i]) { 3531 info = tmp; 3532 break; 3533 } 3534 } 3535 3536 if (!info) 3537 continue; 3538 down_read(&info->groups_sem); 3539 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3540 if (!list_empty(&info->block_groups[c])) { 3541 get_block_group_info(&info->block_groups[c], 3542 &space); 3543 memcpy(dest, &space, sizeof(space)); 3544 dest++; 3545 space_args.total_spaces++; 3546 slot_count--; 3547 } 3548 if (!slot_count) 3549 break; 3550 } 3551 up_read(&info->groups_sem); 3552 } 3553 3554 /* 3555 * Add global block reserve 3556 */ 3557 if (slot_count) { 3558 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3559 3560 spin_lock(&block_rsv->lock); 3561 space.total_bytes = block_rsv->size; 3562 space.used_bytes = block_rsv->size - block_rsv->reserved; 3563 spin_unlock(&block_rsv->lock); 3564 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3565 memcpy(dest, &space, sizeof(space)); 3566 space_args.total_spaces++; 3567 } 3568 3569 user_dest = (struct btrfs_ioctl_space_info __user *) 3570 (arg + sizeof(struct btrfs_ioctl_space_args)); 3571 3572 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3573 ret = -EFAULT; 3574 3575 kfree(dest_orig); 3576 out: 3577 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3578 ret = -EFAULT; 3579 3580 return ret; 3581 } 3582 3583 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3584 void __user *argp) 3585 { 3586 struct btrfs_trans_handle *trans; 3587 u64 transid; 3588 int ret; 3589 3590 trans = btrfs_attach_transaction_barrier(root); 3591 if (IS_ERR(trans)) { 3592 if (PTR_ERR(trans) != -ENOENT) 3593 return PTR_ERR(trans); 3594 3595 /* No running transaction, don't bother */ 3596 transid = root->fs_info->last_trans_committed; 3597 goto out; 3598 } 3599 transid = trans->transid; 3600 ret = btrfs_commit_transaction_async(trans, 0); 3601 if (ret) { 3602 btrfs_end_transaction(trans); 3603 return ret; 3604 } 3605 out: 3606 if (argp) 3607 if (copy_to_user(argp, &transid, sizeof(transid))) 3608 return -EFAULT; 3609 return 0; 3610 } 3611 3612 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3613 void __user *argp) 3614 { 3615 u64 transid; 3616 3617 if (argp) { 3618 if (copy_from_user(&transid, argp, sizeof(transid))) 3619 return -EFAULT; 3620 } else { 3621 transid = 0; /* current trans */ 3622 } 3623 return btrfs_wait_for_commit(fs_info, transid); 3624 } 3625 3626 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3627 { 3628 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3629 struct btrfs_ioctl_scrub_args *sa; 3630 int ret; 3631 3632 if (!capable(CAP_SYS_ADMIN)) 3633 return -EPERM; 3634 3635 sa = memdup_user(arg, sizeof(*sa)); 3636 if (IS_ERR(sa)) 3637 return PTR_ERR(sa); 3638 3639 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3640 ret = mnt_want_write_file(file); 3641 if (ret) 3642 goto out; 3643 } 3644 3645 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3646 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3647 0); 3648 3649 /* 3650 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3651 * error. This is important as it allows user space to know how much 3652 * progress scrub has done. For example, if scrub is canceled we get 3653 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3654 * space. Later user space can inspect the progress from the structure 3655 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3656 * previously (btrfs-progs does this). 3657 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3658 * then return -EFAULT to signal the structure was not copied or it may 3659 * be corrupt and unreliable due to a partial copy. 3660 */ 3661 if (copy_to_user(arg, sa, sizeof(*sa))) 3662 ret = -EFAULT; 3663 3664 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3665 mnt_drop_write_file(file); 3666 out: 3667 kfree(sa); 3668 return ret; 3669 } 3670 3671 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3672 { 3673 if (!capable(CAP_SYS_ADMIN)) 3674 return -EPERM; 3675 3676 return btrfs_scrub_cancel(fs_info); 3677 } 3678 3679 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3680 void __user *arg) 3681 { 3682 struct btrfs_ioctl_scrub_args *sa; 3683 int ret; 3684 3685 if (!capable(CAP_SYS_ADMIN)) 3686 return -EPERM; 3687 3688 sa = memdup_user(arg, sizeof(*sa)); 3689 if (IS_ERR(sa)) 3690 return PTR_ERR(sa); 3691 3692 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3693 3694 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3695 ret = -EFAULT; 3696 3697 kfree(sa); 3698 return ret; 3699 } 3700 3701 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3702 void __user *arg) 3703 { 3704 struct btrfs_ioctl_get_dev_stats *sa; 3705 int ret; 3706 3707 sa = memdup_user(arg, sizeof(*sa)); 3708 if (IS_ERR(sa)) 3709 return PTR_ERR(sa); 3710 3711 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3712 kfree(sa); 3713 return -EPERM; 3714 } 3715 3716 ret = btrfs_get_dev_stats(fs_info, sa); 3717 3718 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3719 ret = -EFAULT; 3720 3721 kfree(sa); 3722 return ret; 3723 } 3724 3725 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3726 void __user *arg) 3727 { 3728 struct btrfs_ioctl_dev_replace_args *p; 3729 int ret; 3730 3731 if (!capable(CAP_SYS_ADMIN)) 3732 return -EPERM; 3733 3734 p = memdup_user(arg, sizeof(*p)); 3735 if (IS_ERR(p)) 3736 return PTR_ERR(p); 3737 3738 switch (p->cmd) { 3739 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3740 if (sb_rdonly(fs_info->sb)) { 3741 ret = -EROFS; 3742 goto out; 3743 } 3744 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3745 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3746 } else { 3747 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3748 btrfs_exclop_finish(fs_info); 3749 } 3750 break; 3751 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3752 btrfs_dev_replace_status(fs_info, p); 3753 ret = 0; 3754 break; 3755 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3756 p->result = btrfs_dev_replace_cancel(fs_info); 3757 ret = 0; 3758 break; 3759 default: 3760 ret = -EINVAL; 3761 break; 3762 } 3763 3764 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3765 ret = -EFAULT; 3766 out: 3767 kfree(p); 3768 return ret; 3769 } 3770 3771 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3772 { 3773 int ret = 0; 3774 int i; 3775 u64 rel_ptr; 3776 int size; 3777 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3778 struct inode_fs_paths *ipath = NULL; 3779 struct btrfs_path *path; 3780 3781 if (!capable(CAP_DAC_READ_SEARCH)) 3782 return -EPERM; 3783 3784 path = btrfs_alloc_path(); 3785 if (!path) { 3786 ret = -ENOMEM; 3787 goto out; 3788 } 3789 3790 ipa = memdup_user(arg, sizeof(*ipa)); 3791 if (IS_ERR(ipa)) { 3792 ret = PTR_ERR(ipa); 3793 ipa = NULL; 3794 goto out; 3795 } 3796 3797 size = min_t(u32, ipa->size, 4096); 3798 ipath = init_ipath(size, root, path); 3799 if (IS_ERR(ipath)) { 3800 ret = PTR_ERR(ipath); 3801 ipath = NULL; 3802 goto out; 3803 } 3804 3805 ret = paths_from_inode(ipa->inum, ipath); 3806 if (ret < 0) 3807 goto out; 3808 3809 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3810 rel_ptr = ipath->fspath->val[i] - 3811 (u64)(unsigned long)ipath->fspath->val; 3812 ipath->fspath->val[i] = rel_ptr; 3813 } 3814 3815 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3816 ipath->fspath, size); 3817 if (ret) { 3818 ret = -EFAULT; 3819 goto out; 3820 } 3821 3822 out: 3823 btrfs_free_path(path); 3824 free_ipath(ipath); 3825 kfree(ipa); 3826 3827 return ret; 3828 } 3829 3830 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3831 { 3832 struct btrfs_data_container *inodes = ctx; 3833 const size_t c = 3 * sizeof(u64); 3834 3835 if (inodes->bytes_left >= c) { 3836 inodes->bytes_left -= c; 3837 inodes->val[inodes->elem_cnt] = inum; 3838 inodes->val[inodes->elem_cnt + 1] = offset; 3839 inodes->val[inodes->elem_cnt + 2] = root; 3840 inodes->elem_cnt += 3; 3841 } else { 3842 inodes->bytes_missing += c - inodes->bytes_left; 3843 inodes->bytes_left = 0; 3844 inodes->elem_missed += 3; 3845 } 3846 3847 return 0; 3848 } 3849 3850 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3851 void __user *arg, int version) 3852 { 3853 int ret = 0; 3854 int size; 3855 struct btrfs_ioctl_logical_ino_args *loi; 3856 struct btrfs_data_container *inodes = NULL; 3857 struct btrfs_path *path = NULL; 3858 bool ignore_offset; 3859 3860 if (!capable(CAP_SYS_ADMIN)) 3861 return -EPERM; 3862 3863 loi = memdup_user(arg, sizeof(*loi)); 3864 if (IS_ERR(loi)) 3865 return PTR_ERR(loi); 3866 3867 if (version == 1) { 3868 ignore_offset = false; 3869 size = min_t(u32, loi->size, SZ_64K); 3870 } else { 3871 /* All reserved bits must be 0 for now */ 3872 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3873 ret = -EINVAL; 3874 goto out_loi; 3875 } 3876 /* Only accept flags we have defined so far */ 3877 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3878 ret = -EINVAL; 3879 goto out_loi; 3880 } 3881 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3882 size = min_t(u32, loi->size, SZ_16M); 3883 } 3884 3885 path = btrfs_alloc_path(); 3886 if (!path) { 3887 ret = -ENOMEM; 3888 goto out; 3889 } 3890 3891 inodes = init_data_container(size); 3892 if (IS_ERR(inodes)) { 3893 ret = PTR_ERR(inodes); 3894 inodes = NULL; 3895 goto out; 3896 } 3897 3898 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3899 build_ino_list, inodes, ignore_offset); 3900 if (ret == -EINVAL) 3901 ret = -ENOENT; 3902 if (ret < 0) 3903 goto out; 3904 3905 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3906 size); 3907 if (ret) 3908 ret = -EFAULT; 3909 3910 out: 3911 btrfs_free_path(path); 3912 kvfree(inodes); 3913 out_loi: 3914 kfree(loi); 3915 3916 return ret; 3917 } 3918 3919 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3920 struct btrfs_ioctl_balance_args *bargs) 3921 { 3922 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3923 3924 bargs->flags = bctl->flags; 3925 3926 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3927 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3928 if (atomic_read(&fs_info->balance_pause_req)) 3929 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3930 if (atomic_read(&fs_info->balance_cancel_req)) 3931 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3932 3933 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3934 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3935 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3936 3937 spin_lock(&fs_info->balance_lock); 3938 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3939 spin_unlock(&fs_info->balance_lock); 3940 } 3941 3942 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3943 { 3944 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3945 struct btrfs_fs_info *fs_info = root->fs_info; 3946 struct btrfs_ioctl_balance_args *bargs; 3947 struct btrfs_balance_control *bctl; 3948 bool need_unlock; /* for mut. excl. ops lock */ 3949 int ret; 3950 3951 if (!capable(CAP_SYS_ADMIN)) 3952 return -EPERM; 3953 3954 ret = mnt_want_write_file(file); 3955 if (ret) 3956 return ret; 3957 3958 again: 3959 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3960 mutex_lock(&fs_info->balance_mutex); 3961 need_unlock = true; 3962 goto locked; 3963 } 3964 3965 /* 3966 * mut. excl. ops lock is locked. Three possibilities: 3967 * (1) some other op is running 3968 * (2) balance is running 3969 * (3) balance is paused -- special case (think resume) 3970 */ 3971 mutex_lock(&fs_info->balance_mutex); 3972 if (fs_info->balance_ctl) { 3973 /* this is either (2) or (3) */ 3974 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3975 mutex_unlock(&fs_info->balance_mutex); 3976 /* 3977 * Lock released to allow other waiters to continue, 3978 * we'll reexamine the status again. 3979 */ 3980 mutex_lock(&fs_info->balance_mutex); 3981 3982 if (fs_info->balance_ctl && 3983 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3984 /* this is (3) */ 3985 need_unlock = false; 3986 goto locked; 3987 } 3988 3989 mutex_unlock(&fs_info->balance_mutex); 3990 goto again; 3991 } else { 3992 /* this is (2) */ 3993 mutex_unlock(&fs_info->balance_mutex); 3994 ret = -EINPROGRESS; 3995 goto out; 3996 } 3997 } else { 3998 /* this is (1) */ 3999 mutex_unlock(&fs_info->balance_mutex); 4000 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4001 goto out; 4002 } 4003 4004 locked: 4005 4006 if (arg) { 4007 bargs = memdup_user(arg, sizeof(*bargs)); 4008 if (IS_ERR(bargs)) { 4009 ret = PTR_ERR(bargs); 4010 goto out_unlock; 4011 } 4012 4013 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4014 if (!fs_info->balance_ctl) { 4015 ret = -ENOTCONN; 4016 goto out_bargs; 4017 } 4018 4019 bctl = fs_info->balance_ctl; 4020 spin_lock(&fs_info->balance_lock); 4021 bctl->flags |= BTRFS_BALANCE_RESUME; 4022 spin_unlock(&fs_info->balance_lock); 4023 4024 goto do_balance; 4025 } 4026 } else { 4027 bargs = NULL; 4028 } 4029 4030 if (fs_info->balance_ctl) { 4031 ret = -EINPROGRESS; 4032 goto out_bargs; 4033 } 4034 4035 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4036 if (!bctl) { 4037 ret = -ENOMEM; 4038 goto out_bargs; 4039 } 4040 4041 if (arg) { 4042 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4043 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4044 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4045 4046 bctl->flags = bargs->flags; 4047 } else { 4048 /* balance everything - no filters */ 4049 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4050 } 4051 4052 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4053 ret = -EINVAL; 4054 goto out_bctl; 4055 } 4056 4057 do_balance: 4058 /* 4059 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4060 * bctl is freed in reset_balance_state, or, if restriper was paused 4061 * all the way until unmount, in free_fs_info. The flag should be 4062 * cleared after reset_balance_state. 4063 */ 4064 need_unlock = false; 4065 4066 ret = btrfs_balance(fs_info, bctl, bargs); 4067 bctl = NULL; 4068 4069 if ((ret == 0 || ret == -ECANCELED) && arg) { 4070 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4071 ret = -EFAULT; 4072 } 4073 4074 out_bctl: 4075 kfree(bctl); 4076 out_bargs: 4077 kfree(bargs); 4078 out_unlock: 4079 mutex_unlock(&fs_info->balance_mutex); 4080 if (need_unlock) 4081 btrfs_exclop_finish(fs_info); 4082 out: 4083 mnt_drop_write_file(file); 4084 return ret; 4085 } 4086 4087 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4088 { 4089 if (!capable(CAP_SYS_ADMIN)) 4090 return -EPERM; 4091 4092 switch (cmd) { 4093 case BTRFS_BALANCE_CTL_PAUSE: 4094 return btrfs_pause_balance(fs_info); 4095 case BTRFS_BALANCE_CTL_CANCEL: 4096 return btrfs_cancel_balance(fs_info); 4097 } 4098 4099 return -EINVAL; 4100 } 4101 4102 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4103 void __user *arg) 4104 { 4105 struct btrfs_ioctl_balance_args *bargs; 4106 int ret = 0; 4107 4108 if (!capable(CAP_SYS_ADMIN)) 4109 return -EPERM; 4110 4111 mutex_lock(&fs_info->balance_mutex); 4112 if (!fs_info->balance_ctl) { 4113 ret = -ENOTCONN; 4114 goto out; 4115 } 4116 4117 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4118 if (!bargs) { 4119 ret = -ENOMEM; 4120 goto out; 4121 } 4122 4123 btrfs_update_ioctl_balance_args(fs_info, bargs); 4124 4125 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4126 ret = -EFAULT; 4127 4128 kfree(bargs); 4129 out: 4130 mutex_unlock(&fs_info->balance_mutex); 4131 return ret; 4132 } 4133 4134 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4135 { 4136 struct inode *inode = file_inode(file); 4137 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4138 struct btrfs_ioctl_quota_ctl_args *sa; 4139 int ret; 4140 4141 if (!capable(CAP_SYS_ADMIN)) 4142 return -EPERM; 4143 4144 ret = mnt_want_write_file(file); 4145 if (ret) 4146 return ret; 4147 4148 sa = memdup_user(arg, sizeof(*sa)); 4149 if (IS_ERR(sa)) { 4150 ret = PTR_ERR(sa); 4151 goto drop_write; 4152 } 4153 4154 down_write(&fs_info->subvol_sem); 4155 4156 switch (sa->cmd) { 4157 case BTRFS_QUOTA_CTL_ENABLE: 4158 ret = btrfs_quota_enable(fs_info); 4159 break; 4160 case BTRFS_QUOTA_CTL_DISABLE: 4161 ret = btrfs_quota_disable(fs_info); 4162 break; 4163 default: 4164 ret = -EINVAL; 4165 break; 4166 } 4167 4168 kfree(sa); 4169 up_write(&fs_info->subvol_sem); 4170 drop_write: 4171 mnt_drop_write_file(file); 4172 return ret; 4173 } 4174 4175 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4176 { 4177 struct inode *inode = file_inode(file); 4178 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4179 struct btrfs_root *root = BTRFS_I(inode)->root; 4180 struct btrfs_ioctl_qgroup_assign_args *sa; 4181 struct btrfs_trans_handle *trans; 4182 int ret; 4183 int err; 4184 4185 if (!capable(CAP_SYS_ADMIN)) 4186 return -EPERM; 4187 4188 ret = mnt_want_write_file(file); 4189 if (ret) 4190 return ret; 4191 4192 sa = memdup_user(arg, sizeof(*sa)); 4193 if (IS_ERR(sa)) { 4194 ret = PTR_ERR(sa); 4195 goto drop_write; 4196 } 4197 4198 trans = btrfs_join_transaction(root); 4199 if (IS_ERR(trans)) { 4200 ret = PTR_ERR(trans); 4201 goto out; 4202 } 4203 4204 if (sa->assign) { 4205 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4206 } else { 4207 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4208 } 4209 4210 /* update qgroup status and info */ 4211 err = btrfs_run_qgroups(trans); 4212 if (err < 0) 4213 btrfs_handle_fs_error(fs_info, err, 4214 "failed to update qgroup status and info"); 4215 err = btrfs_end_transaction(trans); 4216 if (err && !ret) 4217 ret = err; 4218 4219 out: 4220 kfree(sa); 4221 drop_write: 4222 mnt_drop_write_file(file); 4223 return ret; 4224 } 4225 4226 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4227 { 4228 struct inode *inode = file_inode(file); 4229 struct btrfs_root *root = BTRFS_I(inode)->root; 4230 struct btrfs_ioctl_qgroup_create_args *sa; 4231 struct btrfs_trans_handle *trans; 4232 int ret; 4233 int err; 4234 4235 if (!capable(CAP_SYS_ADMIN)) 4236 return -EPERM; 4237 4238 ret = mnt_want_write_file(file); 4239 if (ret) 4240 return ret; 4241 4242 sa = memdup_user(arg, sizeof(*sa)); 4243 if (IS_ERR(sa)) { 4244 ret = PTR_ERR(sa); 4245 goto drop_write; 4246 } 4247 4248 if (!sa->qgroupid) { 4249 ret = -EINVAL; 4250 goto out; 4251 } 4252 4253 trans = btrfs_join_transaction(root); 4254 if (IS_ERR(trans)) { 4255 ret = PTR_ERR(trans); 4256 goto out; 4257 } 4258 4259 if (sa->create) { 4260 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4261 } else { 4262 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4263 } 4264 4265 err = btrfs_end_transaction(trans); 4266 if (err && !ret) 4267 ret = err; 4268 4269 out: 4270 kfree(sa); 4271 drop_write: 4272 mnt_drop_write_file(file); 4273 return ret; 4274 } 4275 4276 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4277 { 4278 struct inode *inode = file_inode(file); 4279 struct btrfs_root *root = BTRFS_I(inode)->root; 4280 struct btrfs_ioctl_qgroup_limit_args *sa; 4281 struct btrfs_trans_handle *trans; 4282 int ret; 4283 int err; 4284 u64 qgroupid; 4285 4286 if (!capable(CAP_SYS_ADMIN)) 4287 return -EPERM; 4288 4289 ret = mnt_want_write_file(file); 4290 if (ret) 4291 return ret; 4292 4293 sa = memdup_user(arg, sizeof(*sa)); 4294 if (IS_ERR(sa)) { 4295 ret = PTR_ERR(sa); 4296 goto drop_write; 4297 } 4298 4299 trans = btrfs_join_transaction(root); 4300 if (IS_ERR(trans)) { 4301 ret = PTR_ERR(trans); 4302 goto out; 4303 } 4304 4305 qgroupid = sa->qgroupid; 4306 if (!qgroupid) { 4307 /* take the current subvol as qgroup */ 4308 qgroupid = root->root_key.objectid; 4309 } 4310 4311 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4312 4313 err = btrfs_end_transaction(trans); 4314 if (err && !ret) 4315 ret = err; 4316 4317 out: 4318 kfree(sa); 4319 drop_write: 4320 mnt_drop_write_file(file); 4321 return ret; 4322 } 4323 4324 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4325 { 4326 struct inode *inode = file_inode(file); 4327 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4328 struct btrfs_ioctl_quota_rescan_args *qsa; 4329 int ret; 4330 4331 if (!capable(CAP_SYS_ADMIN)) 4332 return -EPERM; 4333 4334 ret = mnt_want_write_file(file); 4335 if (ret) 4336 return ret; 4337 4338 qsa = memdup_user(arg, sizeof(*qsa)); 4339 if (IS_ERR(qsa)) { 4340 ret = PTR_ERR(qsa); 4341 goto drop_write; 4342 } 4343 4344 if (qsa->flags) { 4345 ret = -EINVAL; 4346 goto out; 4347 } 4348 4349 ret = btrfs_qgroup_rescan(fs_info); 4350 4351 out: 4352 kfree(qsa); 4353 drop_write: 4354 mnt_drop_write_file(file); 4355 return ret; 4356 } 4357 4358 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4359 void __user *arg) 4360 { 4361 struct btrfs_ioctl_quota_rescan_args *qsa; 4362 int ret = 0; 4363 4364 if (!capable(CAP_SYS_ADMIN)) 4365 return -EPERM; 4366 4367 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4368 if (!qsa) 4369 return -ENOMEM; 4370 4371 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4372 qsa->flags = 1; 4373 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4374 } 4375 4376 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4377 ret = -EFAULT; 4378 4379 kfree(qsa); 4380 return ret; 4381 } 4382 4383 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4384 void __user *arg) 4385 { 4386 if (!capable(CAP_SYS_ADMIN)) 4387 return -EPERM; 4388 4389 return btrfs_qgroup_wait_for_completion(fs_info, true); 4390 } 4391 4392 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4393 struct btrfs_ioctl_received_subvol_args *sa) 4394 { 4395 struct inode *inode = file_inode(file); 4396 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4397 struct btrfs_root *root = BTRFS_I(inode)->root; 4398 struct btrfs_root_item *root_item = &root->root_item; 4399 struct btrfs_trans_handle *trans; 4400 struct timespec64 ct = current_time(inode); 4401 int ret = 0; 4402 int received_uuid_changed; 4403 4404 if (!inode_owner_or_capable(inode)) 4405 return -EPERM; 4406 4407 ret = mnt_want_write_file(file); 4408 if (ret < 0) 4409 return ret; 4410 4411 down_write(&fs_info->subvol_sem); 4412 4413 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4414 ret = -EINVAL; 4415 goto out; 4416 } 4417 4418 if (btrfs_root_readonly(root)) { 4419 ret = -EROFS; 4420 goto out; 4421 } 4422 4423 /* 4424 * 1 - root item 4425 * 2 - uuid items (received uuid + subvol uuid) 4426 */ 4427 trans = btrfs_start_transaction(root, 3); 4428 if (IS_ERR(trans)) { 4429 ret = PTR_ERR(trans); 4430 trans = NULL; 4431 goto out; 4432 } 4433 4434 sa->rtransid = trans->transid; 4435 sa->rtime.sec = ct.tv_sec; 4436 sa->rtime.nsec = ct.tv_nsec; 4437 4438 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4439 BTRFS_UUID_SIZE); 4440 if (received_uuid_changed && 4441 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4442 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4443 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4444 root->root_key.objectid); 4445 if (ret && ret != -ENOENT) { 4446 btrfs_abort_transaction(trans, ret); 4447 btrfs_end_transaction(trans); 4448 goto out; 4449 } 4450 } 4451 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4452 btrfs_set_root_stransid(root_item, sa->stransid); 4453 btrfs_set_root_rtransid(root_item, sa->rtransid); 4454 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4455 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4456 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4457 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4458 4459 ret = btrfs_update_root(trans, fs_info->tree_root, 4460 &root->root_key, &root->root_item); 4461 if (ret < 0) { 4462 btrfs_end_transaction(trans); 4463 goto out; 4464 } 4465 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4466 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4467 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4468 root->root_key.objectid); 4469 if (ret < 0 && ret != -EEXIST) { 4470 btrfs_abort_transaction(trans, ret); 4471 btrfs_end_transaction(trans); 4472 goto out; 4473 } 4474 } 4475 ret = btrfs_commit_transaction(trans); 4476 out: 4477 up_write(&fs_info->subvol_sem); 4478 mnt_drop_write_file(file); 4479 return ret; 4480 } 4481 4482 #ifdef CONFIG_64BIT 4483 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4484 void __user *arg) 4485 { 4486 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4487 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4488 int ret = 0; 4489 4490 args32 = memdup_user(arg, sizeof(*args32)); 4491 if (IS_ERR(args32)) 4492 return PTR_ERR(args32); 4493 4494 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4495 if (!args64) { 4496 ret = -ENOMEM; 4497 goto out; 4498 } 4499 4500 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4501 args64->stransid = args32->stransid; 4502 args64->rtransid = args32->rtransid; 4503 args64->stime.sec = args32->stime.sec; 4504 args64->stime.nsec = args32->stime.nsec; 4505 args64->rtime.sec = args32->rtime.sec; 4506 args64->rtime.nsec = args32->rtime.nsec; 4507 args64->flags = args32->flags; 4508 4509 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4510 if (ret) 4511 goto out; 4512 4513 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4514 args32->stransid = args64->stransid; 4515 args32->rtransid = args64->rtransid; 4516 args32->stime.sec = args64->stime.sec; 4517 args32->stime.nsec = args64->stime.nsec; 4518 args32->rtime.sec = args64->rtime.sec; 4519 args32->rtime.nsec = args64->rtime.nsec; 4520 args32->flags = args64->flags; 4521 4522 ret = copy_to_user(arg, args32, sizeof(*args32)); 4523 if (ret) 4524 ret = -EFAULT; 4525 4526 out: 4527 kfree(args32); 4528 kfree(args64); 4529 return ret; 4530 } 4531 #endif 4532 4533 static long btrfs_ioctl_set_received_subvol(struct file *file, 4534 void __user *arg) 4535 { 4536 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4537 int ret = 0; 4538 4539 sa = memdup_user(arg, sizeof(*sa)); 4540 if (IS_ERR(sa)) 4541 return PTR_ERR(sa); 4542 4543 ret = _btrfs_ioctl_set_received_subvol(file, sa); 4544 4545 if (ret) 4546 goto out; 4547 4548 ret = copy_to_user(arg, sa, sizeof(*sa)); 4549 if (ret) 4550 ret = -EFAULT; 4551 4552 out: 4553 kfree(sa); 4554 return ret; 4555 } 4556 4557 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4558 void __user *arg) 4559 { 4560 size_t len; 4561 int ret; 4562 char label[BTRFS_LABEL_SIZE]; 4563 4564 spin_lock(&fs_info->super_lock); 4565 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4566 spin_unlock(&fs_info->super_lock); 4567 4568 len = strnlen(label, BTRFS_LABEL_SIZE); 4569 4570 if (len == BTRFS_LABEL_SIZE) { 4571 btrfs_warn(fs_info, 4572 "label is too long, return the first %zu bytes", 4573 --len); 4574 } 4575 4576 ret = copy_to_user(arg, label, len); 4577 4578 return ret ? -EFAULT : 0; 4579 } 4580 4581 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4582 { 4583 struct inode *inode = file_inode(file); 4584 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4585 struct btrfs_root *root = BTRFS_I(inode)->root; 4586 struct btrfs_super_block *super_block = fs_info->super_copy; 4587 struct btrfs_trans_handle *trans; 4588 char label[BTRFS_LABEL_SIZE]; 4589 int ret; 4590 4591 if (!capable(CAP_SYS_ADMIN)) 4592 return -EPERM; 4593 4594 if (copy_from_user(label, arg, sizeof(label))) 4595 return -EFAULT; 4596 4597 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4598 btrfs_err(fs_info, 4599 "unable to set label with more than %d bytes", 4600 BTRFS_LABEL_SIZE - 1); 4601 return -EINVAL; 4602 } 4603 4604 ret = mnt_want_write_file(file); 4605 if (ret) 4606 return ret; 4607 4608 trans = btrfs_start_transaction(root, 0); 4609 if (IS_ERR(trans)) { 4610 ret = PTR_ERR(trans); 4611 goto out_unlock; 4612 } 4613 4614 spin_lock(&fs_info->super_lock); 4615 strcpy(super_block->label, label); 4616 spin_unlock(&fs_info->super_lock); 4617 ret = btrfs_commit_transaction(trans); 4618 4619 out_unlock: 4620 mnt_drop_write_file(file); 4621 return ret; 4622 } 4623 4624 #define INIT_FEATURE_FLAGS(suffix) \ 4625 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4626 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4627 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4628 4629 int btrfs_ioctl_get_supported_features(void __user *arg) 4630 { 4631 static const struct btrfs_ioctl_feature_flags features[3] = { 4632 INIT_FEATURE_FLAGS(SUPP), 4633 INIT_FEATURE_FLAGS(SAFE_SET), 4634 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4635 }; 4636 4637 if (copy_to_user(arg, &features, sizeof(features))) 4638 return -EFAULT; 4639 4640 return 0; 4641 } 4642 4643 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4644 void __user *arg) 4645 { 4646 struct btrfs_super_block *super_block = fs_info->super_copy; 4647 struct btrfs_ioctl_feature_flags features; 4648 4649 features.compat_flags = btrfs_super_compat_flags(super_block); 4650 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4651 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4652 4653 if (copy_to_user(arg, &features, sizeof(features))) 4654 return -EFAULT; 4655 4656 return 0; 4657 } 4658 4659 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4660 enum btrfs_feature_set set, 4661 u64 change_mask, u64 flags, u64 supported_flags, 4662 u64 safe_set, u64 safe_clear) 4663 { 4664 const char *type = btrfs_feature_set_name(set); 4665 char *names; 4666 u64 disallowed, unsupported; 4667 u64 set_mask = flags & change_mask; 4668 u64 clear_mask = ~flags & change_mask; 4669 4670 unsupported = set_mask & ~supported_flags; 4671 if (unsupported) { 4672 names = btrfs_printable_features(set, unsupported); 4673 if (names) { 4674 btrfs_warn(fs_info, 4675 "this kernel does not support the %s feature bit%s", 4676 names, strchr(names, ',') ? "s" : ""); 4677 kfree(names); 4678 } else 4679 btrfs_warn(fs_info, 4680 "this kernel does not support %s bits 0x%llx", 4681 type, unsupported); 4682 return -EOPNOTSUPP; 4683 } 4684 4685 disallowed = set_mask & ~safe_set; 4686 if (disallowed) { 4687 names = btrfs_printable_features(set, disallowed); 4688 if (names) { 4689 btrfs_warn(fs_info, 4690 "can't set the %s feature bit%s while mounted", 4691 names, strchr(names, ',') ? "s" : ""); 4692 kfree(names); 4693 } else 4694 btrfs_warn(fs_info, 4695 "can't set %s bits 0x%llx while mounted", 4696 type, disallowed); 4697 return -EPERM; 4698 } 4699 4700 disallowed = clear_mask & ~safe_clear; 4701 if (disallowed) { 4702 names = btrfs_printable_features(set, disallowed); 4703 if (names) { 4704 btrfs_warn(fs_info, 4705 "can't clear the %s feature bit%s while mounted", 4706 names, strchr(names, ',') ? "s" : ""); 4707 kfree(names); 4708 } else 4709 btrfs_warn(fs_info, 4710 "can't clear %s bits 0x%llx while mounted", 4711 type, disallowed); 4712 return -EPERM; 4713 } 4714 4715 return 0; 4716 } 4717 4718 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4719 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4720 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4721 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4722 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4723 4724 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4725 { 4726 struct inode *inode = file_inode(file); 4727 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4728 struct btrfs_root *root = BTRFS_I(inode)->root; 4729 struct btrfs_super_block *super_block = fs_info->super_copy; 4730 struct btrfs_ioctl_feature_flags flags[2]; 4731 struct btrfs_trans_handle *trans; 4732 u64 newflags; 4733 int ret; 4734 4735 if (!capable(CAP_SYS_ADMIN)) 4736 return -EPERM; 4737 4738 if (copy_from_user(flags, arg, sizeof(flags))) 4739 return -EFAULT; 4740 4741 /* Nothing to do */ 4742 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4743 !flags[0].incompat_flags) 4744 return 0; 4745 4746 ret = check_feature(fs_info, flags[0].compat_flags, 4747 flags[1].compat_flags, COMPAT); 4748 if (ret) 4749 return ret; 4750 4751 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4752 flags[1].compat_ro_flags, COMPAT_RO); 4753 if (ret) 4754 return ret; 4755 4756 ret = check_feature(fs_info, flags[0].incompat_flags, 4757 flags[1].incompat_flags, INCOMPAT); 4758 if (ret) 4759 return ret; 4760 4761 ret = mnt_want_write_file(file); 4762 if (ret) 4763 return ret; 4764 4765 trans = btrfs_start_transaction(root, 0); 4766 if (IS_ERR(trans)) { 4767 ret = PTR_ERR(trans); 4768 goto out_drop_write; 4769 } 4770 4771 spin_lock(&fs_info->super_lock); 4772 newflags = btrfs_super_compat_flags(super_block); 4773 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4774 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4775 btrfs_set_super_compat_flags(super_block, newflags); 4776 4777 newflags = btrfs_super_compat_ro_flags(super_block); 4778 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4779 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4780 btrfs_set_super_compat_ro_flags(super_block, newflags); 4781 4782 newflags = btrfs_super_incompat_flags(super_block); 4783 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4784 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4785 btrfs_set_super_incompat_flags(super_block, newflags); 4786 spin_unlock(&fs_info->super_lock); 4787 4788 ret = btrfs_commit_transaction(trans); 4789 out_drop_write: 4790 mnt_drop_write_file(file); 4791 4792 return ret; 4793 } 4794 4795 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4796 { 4797 struct btrfs_ioctl_send_args *arg; 4798 int ret; 4799 4800 if (compat) { 4801 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4802 struct btrfs_ioctl_send_args_32 args32; 4803 4804 ret = copy_from_user(&args32, argp, sizeof(args32)); 4805 if (ret) 4806 return -EFAULT; 4807 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4808 if (!arg) 4809 return -ENOMEM; 4810 arg->send_fd = args32.send_fd; 4811 arg->clone_sources_count = args32.clone_sources_count; 4812 arg->clone_sources = compat_ptr(args32.clone_sources); 4813 arg->parent_root = args32.parent_root; 4814 arg->flags = args32.flags; 4815 memcpy(arg->reserved, args32.reserved, 4816 sizeof(args32.reserved)); 4817 #else 4818 return -ENOTTY; 4819 #endif 4820 } else { 4821 arg = memdup_user(argp, sizeof(*arg)); 4822 if (IS_ERR(arg)) 4823 return PTR_ERR(arg); 4824 } 4825 ret = btrfs_ioctl_send(file, arg); 4826 kfree(arg); 4827 return ret; 4828 } 4829 4830 long btrfs_ioctl(struct file *file, unsigned int 4831 cmd, unsigned long arg) 4832 { 4833 struct inode *inode = file_inode(file); 4834 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4835 struct btrfs_root *root = BTRFS_I(inode)->root; 4836 void __user *argp = (void __user *)arg; 4837 4838 switch (cmd) { 4839 case FS_IOC_GETFLAGS: 4840 return btrfs_ioctl_getflags(file, argp); 4841 case FS_IOC_SETFLAGS: 4842 return btrfs_ioctl_setflags(file, argp); 4843 case FS_IOC_GETVERSION: 4844 return btrfs_ioctl_getversion(file, argp); 4845 case FS_IOC_GETFSLABEL: 4846 return btrfs_ioctl_get_fslabel(fs_info, argp); 4847 case FS_IOC_SETFSLABEL: 4848 return btrfs_ioctl_set_fslabel(file, argp); 4849 case FITRIM: 4850 return btrfs_ioctl_fitrim(fs_info, argp); 4851 case BTRFS_IOC_SNAP_CREATE: 4852 return btrfs_ioctl_snap_create(file, argp, 0); 4853 case BTRFS_IOC_SNAP_CREATE_V2: 4854 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4855 case BTRFS_IOC_SUBVOL_CREATE: 4856 return btrfs_ioctl_snap_create(file, argp, 1); 4857 case BTRFS_IOC_SUBVOL_CREATE_V2: 4858 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4859 case BTRFS_IOC_SNAP_DESTROY: 4860 return btrfs_ioctl_snap_destroy(file, argp, false); 4861 case BTRFS_IOC_SNAP_DESTROY_V2: 4862 return btrfs_ioctl_snap_destroy(file, argp, true); 4863 case BTRFS_IOC_SUBVOL_GETFLAGS: 4864 return btrfs_ioctl_subvol_getflags(file, argp); 4865 case BTRFS_IOC_SUBVOL_SETFLAGS: 4866 return btrfs_ioctl_subvol_setflags(file, argp); 4867 case BTRFS_IOC_DEFAULT_SUBVOL: 4868 return btrfs_ioctl_default_subvol(file, argp); 4869 case BTRFS_IOC_DEFRAG: 4870 return btrfs_ioctl_defrag(file, NULL); 4871 case BTRFS_IOC_DEFRAG_RANGE: 4872 return btrfs_ioctl_defrag(file, argp); 4873 case BTRFS_IOC_RESIZE: 4874 return btrfs_ioctl_resize(file, argp); 4875 case BTRFS_IOC_ADD_DEV: 4876 return btrfs_ioctl_add_dev(fs_info, argp); 4877 case BTRFS_IOC_RM_DEV: 4878 return btrfs_ioctl_rm_dev(file, argp); 4879 case BTRFS_IOC_RM_DEV_V2: 4880 return btrfs_ioctl_rm_dev_v2(file, argp); 4881 case BTRFS_IOC_FS_INFO: 4882 return btrfs_ioctl_fs_info(fs_info, argp); 4883 case BTRFS_IOC_DEV_INFO: 4884 return btrfs_ioctl_dev_info(fs_info, argp); 4885 case BTRFS_IOC_BALANCE: 4886 return btrfs_ioctl_balance(file, NULL); 4887 case BTRFS_IOC_TREE_SEARCH: 4888 return btrfs_ioctl_tree_search(file, argp); 4889 case BTRFS_IOC_TREE_SEARCH_V2: 4890 return btrfs_ioctl_tree_search_v2(file, argp); 4891 case BTRFS_IOC_INO_LOOKUP: 4892 return btrfs_ioctl_ino_lookup(file, argp); 4893 case BTRFS_IOC_INO_PATHS: 4894 return btrfs_ioctl_ino_to_path(root, argp); 4895 case BTRFS_IOC_LOGICAL_INO: 4896 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4897 case BTRFS_IOC_LOGICAL_INO_V2: 4898 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4899 case BTRFS_IOC_SPACE_INFO: 4900 return btrfs_ioctl_space_info(fs_info, argp); 4901 case BTRFS_IOC_SYNC: { 4902 int ret; 4903 4904 ret = btrfs_start_delalloc_roots(fs_info, U64_MAX); 4905 if (ret) 4906 return ret; 4907 ret = btrfs_sync_fs(inode->i_sb, 1); 4908 /* 4909 * The transaction thread may want to do more work, 4910 * namely it pokes the cleaner kthread that will start 4911 * processing uncleaned subvols. 4912 */ 4913 wake_up_process(fs_info->transaction_kthread); 4914 return ret; 4915 } 4916 case BTRFS_IOC_START_SYNC: 4917 return btrfs_ioctl_start_sync(root, argp); 4918 case BTRFS_IOC_WAIT_SYNC: 4919 return btrfs_ioctl_wait_sync(fs_info, argp); 4920 case BTRFS_IOC_SCRUB: 4921 return btrfs_ioctl_scrub(file, argp); 4922 case BTRFS_IOC_SCRUB_CANCEL: 4923 return btrfs_ioctl_scrub_cancel(fs_info); 4924 case BTRFS_IOC_SCRUB_PROGRESS: 4925 return btrfs_ioctl_scrub_progress(fs_info, argp); 4926 case BTRFS_IOC_BALANCE_V2: 4927 return btrfs_ioctl_balance(file, argp); 4928 case BTRFS_IOC_BALANCE_CTL: 4929 return btrfs_ioctl_balance_ctl(fs_info, arg); 4930 case BTRFS_IOC_BALANCE_PROGRESS: 4931 return btrfs_ioctl_balance_progress(fs_info, argp); 4932 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4933 return btrfs_ioctl_set_received_subvol(file, argp); 4934 #ifdef CONFIG_64BIT 4935 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4936 return btrfs_ioctl_set_received_subvol_32(file, argp); 4937 #endif 4938 case BTRFS_IOC_SEND: 4939 return _btrfs_ioctl_send(file, argp, false); 4940 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4941 case BTRFS_IOC_SEND_32: 4942 return _btrfs_ioctl_send(file, argp, true); 4943 #endif 4944 case BTRFS_IOC_GET_DEV_STATS: 4945 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4946 case BTRFS_IOC_QUOTA_CTL: 4947 return btrfs_ioctl_quota_ctl(file, argp); 4948 case BTRFS_IOC_QGROUP_ASSIGN: 4949 return btrfs_ioctl_qgroup_assign(file, argp); 4950 case BTRFS_IOC_QGROUP_CREATE: 4951 return btrfs_ioctl_qgroup_create(file, argp); 4952 case BTRFS_IOC_QGROUP_LIMIT: 4953 return btrfs_ioctl_qgroup_limit(file, argp); 4954 case BTRFS_IOC_QUOTA_RESCAN: 4955 return btrfs_ioctl_quota_rescan(file, argp); 4956 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4957 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4958 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4959 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4960 case BTRFS_IOC_DEV_REPLACE: 4961 return btrfs_ioctl_dev_replace(fs_info, argp); 4962 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4963 return btrfs_ioctl_get_supported_features(argp); 4964 case BTRFS_IOC_GET_FEATURES: 4965 return btrfs_ioctl_get_features(fs_info, argp); 4966 case BTRFS_IOC_SET_FEATURES: 4967 return btrfs_ioctl_set_features(file, argp); 4968 case FS_IOC_FSGETXATTR: 4969 return btrfs_ioctl_fsgetxattr(file, argp); 4970 case FS_IOC_FSSETXATTR: 4971 return btrfs_ioctl_fssetxattr(file, argp); 4972 case BTRFS_IOC_GET_SUBVOL_INFO: 4973 return btrfs_ioctl_get_subvol_info(file, argp); 4974 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4975 return btrfs_ioctl_get_subvol_rootref(file, argp); 4976 case BTRFS_IOC_INO_LOOKUP_USER: 4977 return btrfs_ioctl_ino_lookup_user(file, argp); 4978 } 4979 4980 return -ENOTTY; 4981 } 4982 4983 #ifdef CONFIG_COMPAT 4984 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4985 { 4986 /* 4987 * These all access 32-bit values anyway so no further 4988 * handling is necessary. 4989 */ 4990 switch (cmd) { 4991 case FS_IOC32_GETFLAGS: 4992 cmd = FS_IOC_GETFLAGS; 4993 break; 4994 case FS_IOC32_SETFLAGS: 4995 cmd = FS_IOC_SETFLAGS; 4996 break; 4997 case FS_IOC32_GETVERSION: 4998 cmd = FS_IOC_GETVERSION; 4999 break; 5000 } 5001 5002 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5003 } 5004 #endif 5005