xref: /openbmc/linux/fs/btrfs/ioctl.c (revision f3a8b664)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 #include "tree-log.h"
63 #include "compression.h"
64 
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67  * structures are incorrect, as the timespec structure from userspace
68  * is 4 bytes too small. We define these alternatives here to teach
69  * the kernel about the 32-bit struct packing.
70  */
71 struct btrfs_ioctl_timespec_32 {
72 	__u64 sec;
73 	__u32 nsec;
74 } __attribute__ ((__packed__));
75 
76 struct btrfs_ioctl_received_subvol_args_32 {
77 	char	uuid[BTRFS_UUID_SIZE];	/* in */
78 	__u64	stransid;		/* in */
79 	__u64	rtransid;		/* out */
80 	struct btrfs_ioctl_timespec_32 stime; /* in */
81 	struct btrfs_ioctl_timespec_32 rtime; /* out */
82 	__u64	flags;			/* in */
83 	__u64	reserved[16];		/* in */
84 } __attribute__ ((__packed__));
85 
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 				struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89 
90 
91 static int btrfs_clone(struct inode *src, struct inode *inode,
92 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
93 		       int no_time_update);
94 
95 /* Mask out flags that are inappropriate for the given type of inode. */
96 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
97 {
98 	if (S_ISDIR(mode))
99 		return flags;
100 	else if (S_ISREG(mode))
101 		return flags & ~FS_DIRSYNC_FL;
102 	else
103 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
104 }
105 
106 /*
107  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108  */
109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
110 {
111 	unsigned int iflags = 0;
112 
113 	if (flags & BTRFS_INODE_SYNC)
114 		iflags |= FS_SYNC_FL;
115 	if (flags & BTRFS_INODE_IMMUTABLE)
116 		iflags |= FS_IMMUTABLE_FL;
117 	if (flags & BTRFS_INODE_APPEND)
118 		iflags |= FS_APPEND_FL;
119 	if (flags & BTRFS_INODE_NODUMP)
120 		iflags |= FS_NODUMP_FL;
121 	if (flags & BTRFS_INODE_NOATIME)
122 		iflags |= FS_NOATIME_FL;
123 	if (flags & BTRFS_INODE_DIRSYNC)
124 		iflags |= FS_DIRSYNC_FL;
125 	if (flags & BTRFS_INODE_NODATACOW)
126 		iflags |= FS_NOCOW_FL;
127 
128 	if (flags & BTRFS_INODE_NOCOMPRESS)
129 		iflags |= FS_NOCOMP_FL;
130 	else if (flags & BTRFS_INODE_COMPRESS)
131 		iflags |= FS_COMPR_FL;
132 
133 	return iflags;
134 }
135 
136 /*
137  * Update inode->i_flags based on the btrfs internal flags.
138  */
139 void btrfs_update_iflags(struct inode *inode)
140 {
141 	struct btrfs_inode *ip = BTRFS_I(inode);
142 	unsigned int new_fl = 0;
143 
144 	if (ip->flags & BTRFS_INODE_SYNC)
145 		new_fl |= S_SYNC;
146 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
147 		new_fl |= S_IMMUTABLE;
148 	if (ip->flags & BTRFS_INODE_APPEND)
149 		new_fl |= S_APPEND;
150 	if (ip->flags & BTRFS_INODE_NOATIME)
151 		new_fl |= S_NOATIME;
152 	if (ip->flags & BTRFS_INODE_DIRSYNC)
153 		new_fl |= S_DIRSYNC;
154 
155 	set_mask_bits(&inode->i_flags,
156 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 		      new_fl);
158 }
159 
160 /*
161  * Inherit flags from the parent inode.
162  *
163  * Currently only the compression flags and the cow flags are inherited.
164  */
165 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
166 {
167 	unsigned int flags;
168 
169 	if (!dir)
170 		return;
171 
172 	flags = BTRFS_I(dir)->flags;
173 
174 	if (flags & BTRFS_INODE_NOCOMPRESS) {
175 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
176 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
177 	} else if (flags & BTRFS_INODE_COMPRESS) {
178 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
179 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
180 	}
181 
182 	if (flags & BTRFS_INODE_NODATACOW) {
183 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
184 		if (S_ISREG(inode->i_mode))
185 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
186 	}
187 
188 	btrfs_update_iflags(inode);
189 }
190 
191 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
192 {
193 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
194 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
195 
196 	if (copy_to_user(arg, &flags, sizeof(flags)))
197 		return -EFAULT;
198 	return 0;
199 }
200 
201 static int check_flags(unsigned int flags)
202 {
203 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
204 		      FS_NOATIME_FL | FS_NODUMP_FL | \
205 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
206 		      FS_NOCOMP_FL | FS_COMPR_FL |
207 		      FS_NOCOW_FL))
208 		return -EOPNOTSUPP;
209 
210 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 		return -EINVAL;
212 
213 	return 0;
214 }
215 
216 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
217 {
218 	struct inode *inode = file_inode(file);
219 	struct btrfs_inode *ip = BTRFS_I(inode);
220 	struct btrfs_root *root = ip->root;
221 	struct btrfs_trans_handle *trans;
222 	unsigned int flags, oldflags;
223 	int ret;
224 	u64 ip_oldflags;
225 	unsigned int i_oldflags;
226 	umode_t mode;
227 
228 	if (!inode_owner_or_capable(inode))
229 		return -EPERM;
230 
231 	if (btrfs_root_readonly(root))
232 		return -EROFS;
233 
234 	if (copy_from_user(&flags, arg, sizeof(flags)))
235 		return -EFAULT;
236 
237 	ret = check_flags(flags);
238 	if (ret)
239 		return ret;
240 
241 	ret = mnt_want_write_file(file);
242 	if (ret)
243 		return ret;
244 
245 	inode_lock(inode);
246 
247 	ip_oldflags = ip->flags;
248 	i_oldflags = inode->i_flags;
249 	mode = inode->i_mode;
250 
251 	flags = btrfs_mask_flags(inode->i_mode, flags);
252 	oldflags = btrfs_flags_to_ioctl(ip->flags);
253 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254 		if (!capable(CAP_LINUX_IMMUTABLE)) {
255 			ret = -EPERM;
256 			goto out_unlock;
257 		}
258 	}
259 
260 	if (flags & FS_SYNC_FL)
261 		ip->flags |= BTRFS_INODE_SYNC;
262 	else
263 		ip->flags &= ~BTRFS_INODE_SYNC;
264 	if (flags & FS_IMMUTABLE_FL)
265 		ip->flags |= BTRFS_INODE_IMMUTABLE;
266 	else
267 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268 	if (flags & FS_APPEND_FL)
269 		ip->flags |= BTRFS_INODE_APPEND;
270 	else
271 		ip->flags &= ~BTRFS_INODE_APPEND;
272 	if (flags & FS_NODUMP_FL)
273 		ip->flags |= BTRFS_INODE_NODUMP;
274 	else
275 		ip->flags &= ~BTRFS_INODE_NODUMP;
276 	if (flags & FS_NOATIME_FL)
277 		ip->flags |= BTRFS_INODE_NOATIME;
278 	else
279 		ip->flags &= ~BTRFS_INODE_NOATIME;
280 	if (flags & FS_DIRSYNC_FL)
281 		ip->flags |= BTRFS_INODE_DIRSYNC;
282 	else
283 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
284 	if (flags & FS_NOCOW_FL) {
285 		if (S_ISREG(mode)) {
286 			/*
287 			 * It's safe to turn csums off here, no extents exist.
288 			 * Otherwise we want the flag to reflect the real COW
289 			 * status of the file and will not set it.
290 			 */
291 			if (inode->i_size == 0)
292 				ip->flags |= BTRFS_INODE_NODATACOW
293 					   | BTRFS_INODE_NODATASUM;
294 		} else {
295 			ip->flags |= BTRFS_INODE_NODATACOW;
296 		}
297 	} else {
298 		/*
299 		 * Revert back under same assumptions as above
300 		 */
301 		if (S_ISREG(mode)) {
302 			if (inode->i_size == 0)
303 				ip->flags &= ~(BTRFS_INODE_NODATACOW
304 				             | BTRFS_INODE_NODATASUM);
305 		} else {
306 			ip->flags &= ~BTRFS_INODE_NODATACOW;
307 		}
308 	}
309 
310 	/*
311 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 	 * flag may be changed automatically if compression code won't make
313 	 * things smaller.
314 	 */
315 	if (flags & FS_NOCOMP_FL) {
316 		ip->flags &= ~BTRFS_INODE_COMPRESS;
317 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
318 
319 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320 		if (ret && ret != -ENODATA)
321 			goto out_drop;
322 	} else if (flags & FS_COMPR_FL) {
323 		const char *comp;
324 
325 		ip->flags |= BTRFS_INODE_COMPRESS;
326 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
327 
328 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
329 			comp = "lzo";
330 		else
331 			comp = "zlib";
332 		ret = btrfs_set_prop(inode, "btrfs.compression",
333 				     comp, strlen(comp), 0);
334 		if (ret)
335 			goto out_drop;
336 
337 	} else {
338 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339 		if (ret && ret != -ENODATA)
340 			goto out_drop;
341 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
342 	}
343 
344 	trans = btrfs_start_transaction(root, 1);
345 	if (IS_ERR(trans)) {
346 		ret = PTR_ERR(trans);
347 		goto out_drop;
348 	}
349 
350 	btrfs_update_iflags(inode);
351 	inode_inc_iversion(inode);
352 	inode->i_ctime = current_time(inode);
353 	ret = btrfs_update_inode(trans, root, inode);
354 
355 	btrfs_end_transaction(trans, root);
356  out_drop:
357 	if (ret) {
358 		ip->flags = ip_oldflags;
359 		inode->i_flags = i_oldflags;
360 	}
361 
362  out_unlock:
363 	inode_unlock(inode);
364 	mnt_drop_write_file(file);
365 	return ret;
366 }
367 
368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
369 {
370 	struct inode *inode = file_inode(file);
371 
372 	return put_user(inode->i_generation, arg);
373 }
374 
375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
376 {
377 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
378 	struct btrfs_device *device;
379 	struct request_queue *q;
380 	struct fstrim_range range;
381 	u64 minlen = ULLONG_MAX;
382 	u64 num_devices = 0;
383 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
384 	int ret;
385 
386 	if (!capable(CAP_SYS_ADMIN))
387 		return -EPERM;
388 
389 	rcu_read_lock();
390 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
391 				dev_list) {
392 		if (!device->bdev)
393 			continue;
394 		q = bdev_get_queue(device->bdev);
395 		if (blk_queue_discard(q)) {
396 			num_devices++;
397 			minlen = min((u64)q->limits.discard_granularity,
398 				     minlen);
399 		}
400 	}
401 	rcu_read_unlock();
402 
403 	if (!num_devices)
404 		return -EOPNOTSUPP;
405 	if (copy_from_user(&range, arg, sizeof(range)))
406 		return -EFAULT;
407 	if (range.start > total_bytes ||
408 	    range.len < fs_info->sb->s_blocksize)
409 		return -EINVAL;
410 
411 	range.len = min(range.len, total_bytes - range.start);
412 	range.minlen = max(range.minlen, minlen);
413 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
414 	if (ret < 0)
415 		return ret;
416 
417 	if (copy_to_user(arg, &range, sizeof(range)))
418 		return -EFAULT;
419 
420 	return 0;
421 }
422 
423 int btrfs_is_empty_uuid(u8 *uuid)
424 {
425 	int i;
426 
427 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
428 		if (uuid[i])
429 			return 0;
430 	}
431 	return 1;
432 }
433 
434 static noinline int create_subvol(struct inode *dir,
435 				  struct dentry *dentry,
436 				  char *name, int namelen,
437 				  u64 *async_transid,
438 				  struct btrfs_qgroup_inherit *inherit)
439 {
440 	struct btrfs_trans_handle *trans;
441 	struct btrfs_key key;
442 	struct btrfs_root_item *root_item;
443 	struct btrfs_inode_item *inode_item;
444 	struct extent_buffer *leaf;
445 	struct btrfs_root *root = BTRFS_I(dir)->root;
446 	struct btrfs_root *new_root;
447 	struct btrfs_block_rsv block_rsv;
448 	struct timespec cur_time = current_time(dir);
449 	struct inode *inode;
450 	int ret;
451 	int err;
452 	u64 objectid;
453 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
454 	u64 index = 0;
455 	u64 qgroup_reserved;
456 	uuid_le new_uuid;
457 
458 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
459 	if (!root_item)
460 		return -ENOMEM;
461 
462 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
463 	if (ret)
464 		goto fail_free;
465 
466 	/*
467 	 * Don't create subvolume whose level is not zero. Or qgroup will be
468 	 * screwed up since it assumes subvolume qgroup's level to be 0.
469 	 */
470 	if (btrfs_qgroup_level(objectid)) {
471 		ret = -ENOSPC;
472 		goto fail_free;
473 	}
474 
475 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
476 	/*
477 	 * The same as the snapshot creation, please see the comment
478 	 * of create_snapshot().
479 	 */
480 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
481 					       8, &qgroup_reserved, false);
482 	if (ret)
483 		goto fail_free;
484 
485 	trans = btrfs_start_transaction(root, 0);
486 	if (IS_ERR(trans)) {
487 		ret = PTR_ERR(trans);
488 		btrfs_subvolume_release_metadata(root, &block_rsv,
489 						 qgroup_reserved);
490 		goto fail_free;
491 	}
492 	trans->block_rsv = &block_rsv;
493 	trans->bytes_reserved = block_rsv.size;
494 
495 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
496 	if (ret)
497 		goto fail;
498 
499 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
500 	if (IS_ERR(leaf)) {
501 		ret = PTR_ERR(leaf);
502 		goto fail;
503 	}
504 
505 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
506 	btrfs_set_header_bytenr(leaf, leaf->start);
507 	btrfs_set_header_generation(leaf, trans->transid);
508 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
509 	btrfs_set_header_owner(leaf, objectid);
510 
511 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
512 			    BTRFS_FSID_SIZE);
513 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
514 			    btrfs_header_chunk_tree_uuid(leaf),
515 			    BTRFS_UUID_SIZE);
516 	btrfs_mark_buffer_dirty(leaf);
517 
518 	inode_item = &root_item->inode;
519 	btrfs_set_stack_inode_generation(inode_item, 1);
520 	btrfs_set_stack_inode_size(inode_item, 3);
521 	btrfs_set_stack_inode_nlink(inode_item, 1);
522 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
523 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
524 
525 	btrfs_set_root_flags(root_item, 0);
526 	btrfs_set_root_limit(root_item, 0);
527 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
528 
529 	btrfs_set_root_bytenr(root_item, leaf->start);
530 	btrfs_set_root_generation(root_item, trans->transid);
531 	btrfs_set_root_level(root_item, 0);
532 	btrfs_set_root_refs(root_item, 1);
533 	btrfs_set_root_used(root_item, leaf->len);
534 	btrfs_set_root_last_snapshot(root_item, 0);
535 
536 	btrfs_set_root_generation_v2(root_item,
537 			btrfs_root_generation(root_item));
538 	uuid_le_gen(&new_uuid);
539 	memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
540 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
541 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
542 	root_item->ctime = root_item->otime;
543 	btrfs_set_root_ctransid(root_item, trans->transid);
544 	btrfs_set_root_otransid(root_item, trans->transid);
545 
546 	btrfs_tree_unlock(leaf);
547 	free_extent_buffer(leaf);
548 	leaf = NULL;
549 
550 	btrfs_set_root_dirid(root_item, new_dirid);
551 
552 	key.objectid = objectid;
553 	key.offset = 0;
554 	key.type = BTRFS_ROOT_ITEM_KEY;
555 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
556 				root_item);
557 	if (ret)
558 		goto fail;
559 
560 	key.offset = (u64)-1;
561 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
562 	if (IS_ERR(new_root)) {
563 		ret = PTR_ERR(new_root);
564 		btrfs_abort_transaction(trans, ret);
565 		goto fail;
566 	}
567 
568 	btrfs_record_root_in_trans(trans, new_root);
569 
570 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
571 	if (ret) {
572 		/* We potentially lose an unused inode item here */
573 		btrfs_abort_transaction(trans, ret);
574 		goto fail;
575 	}
576 
577 	mutex_lock(&new_root->objectid_mutex);
578 	new_root->highest_objectid = new_dirid;
579 	mutex_unlock(&new_root->objectid_mutex);
580 
581 	/*
582 	 * insert the directory item
583 	 */
584 	ret = btrfs_set_inode_index(dir, &index);
585 	if (ret) {
586 		btrfs_abort_transaction(trans, ret);
587 		goto fail;
588 	}
589 
590 	ret = btrfs_insert_dir_item(trans, root,
591 				    name, namelen, dir, &key,
592 				    BTRFS_FT_DIR, index);
593 	if (ret) {
594 		btrfs_abort_transaction(trans, ret);
595 		goto fail;
596 	}
597 
598 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
599 	ret = btrfs_update_inode(trans, root, dir);
600 	BUG_ON(ret);
601 
602 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
603 				 objectid, root->root_key.objectid,
604 				 btrfs_ino(dir), index, name, namelen);
605 	BUG_ON(ret);
606 
607 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
608 				  root_item->uuid, BTRFS_UUID_KEY_SUBVOL,
609 				  objectid);
610 	if (ret)
611 		btrfs_abort_transaction(trans, ret);
612 
613 fail:
614 	kfree(root_item);
615 	trans->block_rsv = NULL;
616 	trans->bytes_reserved = 0;
617 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
618 
619 	if (async_transid) {
620 		*async_transid = trans->transid;
621 		err = btrfs_commit_transaction_async(trans, root, 1);
622 		if (err)
623 			err = btrfs_commit_transaction(trans, root);
624 	} else {
625 		err = btrfs_commit_transaction(trans, root);
626 	}
627 	if (err && !ret)
628 		ret = err;
629 
630 	if (!ret) {
631 		inode = btrfs_lookup_dentry(dir, dentry);
632 		if (IS_ERR(inode))
633 			return PTR_ERR(inode);
634 		d_instantiate(dentry, inode);
635 	}
636 	return ret;
637 
638 fail_free:
639 	kfree(root_item);
640 	return ret;
641 }
642 
643 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
644 {
645 	s64 writers;
646 	DEFINE_WAIT(wait);
647 
648 	do {
649 		prepare_to_wait(&root->subv_writers->wait, &wait,
650 				TASK_UNINTERRUPTIBLE);
651 
652 		writers = percpu_counter_sum(&root->subv_writers->counter);
653 		if (writers)
654 			schedule();
655 
656 		finish_wait(&root->subv_writers->wait, &wait);
657 	} while (writers);
658 }
659 
660 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
661 			   struct dentry *dentry, char *name, int namelen,
662 			   u64 *async_transid, bool readonly,
663 			   struct btrfs_qgroup_inherit *inherit)
664 {
665 	struct inode *inode;
666 	struct btrfs_pending_snapshot *pending_snapshot;
667 	struct btrfs_trans_handle *trans;
668 	int ret;
669 
670 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
671 		return -EINVAL;
672 
673 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
674 	if (!pending_snapshot)
675 		return -ENOMEM;
676 
677 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
678 			GFP_NOFS);
679 	pending_snapshot->path = btrfs_alloc_path();
680 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
681 		ret = -ENOMEM;
682 		goto free_pending;
683 	}
684 
685 	atomic_inc(&root->will_be_snapshoted);
686 	smp_mb__after_atomic();
687 	btrfs_wait_for_no_snapshoting_writes(root);
688 
689 	ret = btrfs_start_delalloc_inodes(root, 0);
690 	if (ret)
691 		goto dec_and_free;
692 
693 	btrfs_wait_ordered_extents(root, -1, 0, (u64)-1);
694 
695 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
696 			     BTRFS_BLOCK_RSV_TEMP);
697 	/*
698 	 * 1 - parent dir inode
699 	 * 2 - dir entries
700 	 * 1 - root item
701 	 * 2 - root ref/backref
702 	 * 1 - root of snapshot
703 	 * 1 - UUID item
704 	 */
705 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
706 					&pending_snapshot->block_rsv, 8,
707 					&pending_snapshot->qgroup_reserved,
708 					false);
709 	if (ret)
710 		goto dec_and_free;
711 
712 	pending_snapshot->dentry = dentry;
713 	pending_snapshot->root = root;
714 	pending_snapshot->readonly = readonly;
715 	pending_snapshot->dir = dir;
716 	pending_snapshot->inherit = inherit;
717 
718 	trans = btrfs_start_transaction(root, 0);
719 	if (IS_ERR(trans)) {
720 		ret = PTR_ERR(trans);
721 		goto fail;
722 	}
723 
724 	spin_lock(&root->fs_info->trans_lock);
725 	list_add(&pending_snapshot->list,
726 		 &trans->transaction->pending_snapshots);
727 	spin_unlock(&root->fs_info->trans_lock);
728 	if (async_transid) {
729 		*async_transid = trans->transid;
730 		ret = btrfs_commit_transaction_async(trans,
731 				     root->fs_info->extent_root, 1);
732 		if (ret)
733 			ret = btrfs_commit_transaction(trans, root);
734 	} else {
735 		ret = btrfs_commit_transaction(trans,
736 					       root->fs_info->extent_root);
737 	}
738 	if (ret)
739 		goto fail;
740 
741 	ret = pending_snapshot->error;
742 	if (ret)
743 		goto fail;
744 
745 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
746 	if (ret)
747 		goto fail;
748 
749 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
750 	if (IS_ERR(inode)) {
751 		ret = PTR_ERR(inode);
752 		goto fail;
753 	}
754 
755 	d_instantiate(dentry, inode);
756 	ret = 0;
757 fail:
758 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
759 					 &pending_snapshot->block_rsv,
760 					 pending_snapshot->qgroup_reserved);
761 dec_and_free:
762 	if (atomic_dec_and_test(&root->will_be_snapshoted))
763 		wake_up_atomic_t(&root->will_be_snapshoted);
764 free_pending:
765 	kfree(pending_snapshot->root_item);
766 	btrfs_free_path(pending_snapshot->path);
767 	kfree(pending_snapshot);
768 
769 	return ret;
770 }
771 
772 /*  copy of may_delete in fs/namei.c()
773  *	Check whether we can remove a link victim from directory dir, check
774  *  whether the type of victim is right.
775  *  1. We can't do it if dir is read-only (done in permission())
776  *  2. We should have write and exec permissions on dir
777  *  3. We can't remove anything from append-only dir
778  *  4. We can't do anything with immutable dir (done in permission())
779  *  5. If the sticky bit on dir is set we should either
780  *	a. be owner of dir, or
781  *	b. be owner of victim, or
782  *	c. have CAP_FOWNER capability
783  *  6. If the victim is append-only or immutable we can't do anything with
784  *     links pointing to it.
785  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
786  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
787  *  9. We can't remove a root or mountpoint.
788  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
789  *     nfs_async_unlink().
790  */
791 
792 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
793 {
794 	int error;
795 
796 	if (d_really_is_negative(victim))
797 		return -ENOENT;
798 
799 	BUG_ON(d_inode(victim->d_parent) != dir);
800 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
801 
802 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
803 	if (error)
804 		return error;
805 	if (IS_APPEND(dir))
806 		return -EPERM;
807 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
808 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
809 		return -EPERM;
810 	if (isdir) {
811 		if (!d_is_dir(victim))
812 			return -ENOTDIR;
813 		if (IS_ROOT(victim))
814 			return -EBUSY;
815 	} else if (d_is_dir(victim))
816 		return -EISDIR;
817 	if (IS_DEADDIR(dir))
818 		return -ENOENT;
819 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
820 		return -EBUSY;
821 	return 0;
822 }
823 
824 /* copy of may_create in fs/namei.c() */
825 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
826 {
827 	if (d_really_is_positive(child))
828 		return -EEXIST;
829 	if (IS_DEADDIR(dir))
830 		return -ENOENT;
831 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
832 }
833 
834 /*
835  * Create a new subvolume below @parent.  This is largely modeled after
836  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
837  * inside this filesystem so it's quite a bit simpler.
838  */
839 static noinline int btrfs_mksubvol(struct path *parent,
840 				   char *name, int namelen,
841 				   struct btrfs_root *snap_src,
842 				   u64 *async_transid, bool readonly,
843 				   struct btrfs_qgroup_inherit *inherit)
844 {
845 	struct inode *dir  = d_inode(parent->dentry);
846 	struct dentry *dentry;
847 	int error;
848 
849 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
850 	if (error == -EINTR)
851 		return error;
852 
853 	dentry = lookup_one_len(name, parent->dentry, namelen);
854 	error = PTR_ERR(dentry);
855 	if (IS_ERR(dentry))
856 		goto out_unlock;
857 
858 	error = btrfs_may_create(dir, dentry);
859 	if (error)
860 		goto out_dput;
861 
862 	/*
863 	 * even if this name doesn't exist, we may get hash collisions.
864 	 * check for them now when we can safely fail
865 	 */
866 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
867 					       dir->i_ino, name,
868 					       namelen);
869 	if (error)
870 		goto out_dput;
871 
872 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
873 
874 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
875 		goto out_up_read;
876 
877 	if (snap_src) {
878 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
879 					async_transid, readonly, inherit);
880 	} else {
881 		error = create_subvol(dir, dentry, name, namelen,
882 				      async_transid, inherit);
883 	}
884 	if (!error)
885 		fsnotify_mkdir(dir, dentry);
886 out_up_read:
887 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
888 out_dput:
889 	dput(dentry);
890 out_unlock:
891 	inode_unlock(dir);
892 	return error;
893 }
894 
895 /*
896  * When we're defragging a range, we don't want to kick it off again
897  * if it is really just waiting for delalloc to send it down.
898  * If we find a nice big extent or delalloc range for the bytes in the
899  * file you want to defrag, we return 0 to let you know to skip this
900  * part of the file
901  */
902 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
903 {
904 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
905 	struct extent_map *em = NULL;
906 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
907 	u64 end;
908 
909 	read_lock(&em_tree->lock);
910 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
911 	read_unlock(&em_tree->lock);
912 
913 	if (em) {
914 		end = extent_map_end(em);
915 		free_extent_map(em);
916 		if (end - offset > thresh)
917 			return 0;
918 	}
919 	/* if we already have a nice delalloc here, just stop */
920 	thresh /= 2;
921 	end = count_range_bits(io_tree, &offset, offset + thresh,
922 			       thresh, EXTENT_DELALLOC, 1);
923 	if (end >= thresh)
924 		return 0;
925 	return 1;
926 }
927 
928 /*
929  * helper function to walk through a file and find extents
930  * newer than a specific transid, and smaller than thresh.
931  *
932  * This is used by the defragging code to find new and small
933  * extents
934  */
935 static int find_new_extents(struct btrfs_root *root,
936 			    struct inode *inode, u64 newer_than,
937 			    u64 *off, u32 thresh)
938 {
939 	struct btrfs_path *path;
940 	struct btrfs_key min_key;
941 	struct extent_buffer *leaf;
942 	struct btrfs_file_extent_item *extent;
943 	int type;
944 	int ret;
945 	u64 ino = btrfs_ino(inode);
946 
947 	path = btrfs_alloc_path();
948 	if (!path)
949 		return -ENOMEM;
950 
951 	min_key.objectid = ino;
952 	min_key.type = BTRFS_EXTENT_DATA_KEY;
953 	min_key.offset = *off;
954 
955 	while (1) {
956 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
957 		if (ret != 0)
958 			goto none;
959 process_slot:
960 		if (min_key.objectid != ino)
961 			goto none;
962 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
963 			goto none;
964 
965 		leaf = path->nodes[0];
966 		extent = btrfs_item_ptr(leaf, path->slots[0],
967 					struct btrfs_file_extent_item);
968 
969 		type = btrfs_file_extent_type(leaf, extent);
970 		if (type == BTRFS_FILE_EXTENT_REG &&
971 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
972 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
973 			*off = min_key.offset;
974 			btrfs_free_path(path);
975 			return 0;
976 		}
977 
978 		path->slots[0]++;
979 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
980 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
981 			goto process_slot;
982 		}
983 
984 		if (min_key.offset == (u64)-1)
985 			goto none;
986 
987 		min_key.offset++;
988 		btrfs_release_path(path);
989 	}
990 none:
991 	btrfs_free_path(path);
992 	return -ENOENT;
993 }
994 
995 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
996 {
997 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
998 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
999 	struct extent_map *em;
1000 	u64 len = PAGE_SIZE;
1001 
1002 	/*
1003 	 * hopefully we have this extent in the tree already, try without
1004 	 * the full extent lock
1005 	 */
1006 	read_lock(&em_tree->lock);
1007 	em = lookup_extent_mapping(em_tree, start, len);
1008 	read_unlock(&em_tree->lock);
1009 
1010 	if (!em) {
1011 		struct extent_state *cached = NULL;
1012 		u64 end = start + len - 1;
1013 
1014 		/* get the big lock and read metadata off disk */
1015 		lock_extent_bits(io_tree, start, end, &cached);
1016 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1017 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1018 
1019 		if (IS_ERR(em))
1020 			return NULL;
1021 	}
1022 
1023 	return em;
1024 }
1025 
1026 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1027 {
1028 	struct extent_map *next;
1029 	bool ret = true;
1030 
1031 	/* this is the last extent */
1032 	if (em->start + em->len >= i_size_read(inode))
1033 		return false;
1034 
1035 	next = defrag_lookup_extent(inode, em->start + em->len);
1036 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1037 		ret = false;
1038 	else if ((em->block_start + em->block_len == next->block_start) &&
1039 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1040 		ret = false;
1041 
1042 	free_extent_map(next);
1043 	return ret;
1044 }
1045 
1046 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1047 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1048 			       int compress)
1049 {
1050 	struct extent_map *em;
1051 	int ret = 1;
1052 	bool next_mergeable = true;
1053 	bool prev_mergeable = true;
1054 
1055 	/*
1056 	 * make sure that once we start defragging an extent, we keep on
1057 	 * defragging it
1058 	 */
1059 	if (start < *defrag_end)
1060 		return 1;
1061 
1062 	*skip = 0;
1063 
1064 	em = defrag_lookup_extent(inode, start);
1065 	if (!em)
1066 		return 0;
1067 
1068 	/* this will cover holes, and inline extents */
1069 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1070 		ret = 0;
1071 		goto out;
1072 	}
1073 
1074 	if (!*defrag_end)
1075 		prev_mergeable = false;
1076 
1077 	next_mergeable = defrag_check_next_extent(inode, em);
1078 	/*
1079 	 * we hit a real extent, if it is big or the next extent is not a
1080 	 * real extent, don't bother defragging it
1081 	 */
1082 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1083 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1084 		ret = 0;
1085 out:
1086 	/*
1087 	 * last_len ends up being a counter of how many bytes we've defragged.
1088 	 * every time we choose not to defrag an extent, we reset *last_len
1089 	 * so that the next tiny extent will force a defrag.
1090 	 *
1091 	 * The end result of this is that tiny extents before a single big
1092 	 * extent will force at least part of that big extent to be defragged.
1093 	 */
1094 	if (ret) {
1095 		*defrag_end = extent_map_end(em);
1096 	} else {
1097 		*last_len = 0;
1098 		*skip = extent_map_end(em);
1099 		*defrag_end = 0;
1100 	}
1101 
1102 	free_extent_map(em);
1103 	return ret;
1104 }
1105 
1106 /*
1107  * it doesn't do much good to defrag one or two pages
1108  * at a time.  This pulls in a nice chunk of pages
1109  * to COW and defrag.
1110  *
1111  * It also makes sure the delalloc code has enough
1112  * dirty data to avoid making new small extents as part
1113  * of the defrag
1114  *
1115  * It's a good idea to start RA on this range
1116  * before calling this.
1117  */
1118 static int cluster_pages_for_defrag(struct inode *inode,
1119 				    struct page **pages,
1120 				    unsigned long start_index,
1121 				    unsigned long num_pages)
1122 {
1123 	unsigned long file_end;
1124 	u64 isize = i_size_read(inode);
1125 	u64 page_start;
1126 	u64 page_end;
1127 	u64 page_cnt;
1128 	int ret;
1129 	int i;
1130 	int i_done;
1131 	struct btrfs_ordered_extent *ordered;
1132 	struct extent_state *cached_state = NULL;
1133 	struct extent_io_tree *tree;
1134 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1135 
1136 	file_end = (isize - 1) >> PAGE_SHIFT;
1137 	if (!isize || start_index > file_end)
1138 		return 0;
1139 
1140 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1141 
1142 	ret = btrfs_delalloc_reserve_space(inode,
1143 			start_index << PAGE_SHIFT,
1144 			page_cnt << PAGE_SHIFT);
1145 	if (ret)
1146 		return ret;
1147 	i_done = 0;
1148 	tree = &BTRFS_I(inode)->io_tree;
1149 
1150 	/* step one, lock all the pages */
1151 	for (i = 0; i < page_cnt; i++) {
1152 		struct page *page;
1153 again:
1154 		page = find_or_create_page(inode->i_mapping,
1155 					   start_index + i, mask);
1156 		if (!page)
1157 			break;
1158 
1159 		page_start = page_offset(page);
1160 		page_end = page_start + PAGE_SIZE - 1;
1161 		while (1) {
1162 			lock_extent_bits(tree, page_start, page_end,
1163 					 &cached_state);
1164 			ordered = btrfs_lookup_ordered_extent(inode,
1165 							      page_start);
1166 			unlock_extent_cached(tree, page_start, page_end,
1167 					     &cached_state, GFP_NOFS);
1168 			if (!ordered)
1169 				break;
1170 
1171 			unlock_page(page);
1172 			btrfs_start_ordered_extent(inode, ordered, 1);
1173 			btrfs_put_ordered_extent(ordered);
1174 			lock_page(page);
1175 			/*
1176 			 * we unlocked the page above, so we need check if
1177 			 * it was released or not.
1178 			 */
1179 			if (page->mapping != inode->i_mapping) {
1180 				unlock_page(page);
1181 				put_page(page);
1182 				goto again;
1183 			}
1184 		}
1185 
1186 		if (!PageUptodate(page)) {
1187 			btrfs_readpage(NULL, page);
1188 			lock_page(page);
1189 			if (!PageUptodate(page)) {
1190 				unlock_page(page);
1191 				put_page(page);
1192 				ret = -EIO;
1193 				break;
1194 			}
1195 		}
1196 
1197 		if (page->mapping != inode->i_mapping) {
1198 			unlock_page(page);
1199 			put_page(page);
1200 			goto again;
1201 		}
1202 
1203 		pages[i] = page;
1204 		i_done++;
1205 	}
1206 	if (!i_done || ret)
1207 		goto out;
1208 
1209 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1210 		goto out;
1211 
1212 	/*
1213 	 * so now we have a nice long stream of locked
1214 	 * and up to date pages, lets wait on them
1215 	 */
1216 	for (i = 0; i < i_done; i++)
1217 		wait_on_page_writeback(pages[i]);
1218 
1219 	page_start = page_offset(pages[0]);
1220 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1221 
1222 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1223 			 page_start, page_end - 1, &cached_state);
1224 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1225 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1226 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1227 			  &cached_state, GFP_NOFS);
1228 
1229 	if (i_done != page_cnt) {
1230 		spin_lock(&BTRFS_I(inode)->lock);
1231 		BTRFS_I(inode)->outstanding_extents++;
1232 		spin_unlock(&BTRFS_I(inode)->lock);
1233 		btrfs_delalloc_release_space(inode,
1234 				start_index << PAGE_SHIFT,
1235 				(page_cnt - i_done) << PAGE_SHIFT);
1236 	}
1237 
1238 
1239 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1240 			  &cached_state);
1241 
1242 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1243 			     page_start, page_end - 1, &cached_state,
1244 			     GFP_NOFS);
1245 
1246 	for (i = 0; i < i_done; i++) {
1247 		clear_page_dirty_for_io(pages[i]);
1248 		ClearPageChecked(pages[i]);
1249 		set_page_extent_mapped(pages[i]);
1250 		set_page_dirty(pages[i]);
1251 		unlock_page(pages[i]);
1252 		put_page(pages[i]);
1253 	}
1254 	return i_done;
1255 out:
1256 	for (i = 0; i < i_done; i++) {
1257 		unlock_page(pages[i]);
1258 		put_page(pages[i]);
1259 	}
1260 	btrfs_delalloc_release_space(inode,
1261 			start_index << PAGE_SHIFT,
1262 			page_cnt << PAGE_SHIFT);
1263 	return ret;
1264 
1265 }
1266 
1267 int btrfs_defrag_file(struct inode *inode, struct file *file,
1268 		      struct btrfs_ioctl_defrag_range_args *range,
1269 		      u64 newer_than, unsigned long max_to_defrag)
1270 {
1271 	struct btrfs_root *root = BTRFS_I(inode)->root;
1272 	struct file_ra_state *ra = NULL;
1273 	unsigned long last_index;
1274 	u64 isize = i_size_read(inode);
1275 	u64 last_len = 0;
1276 	u64 skip = 0;
1277 	u64 defrag_end = 0;
1278 	u64 newer_off = range->start;
1279 	unsigned long i;
1280 	unsigned long ra_index = 0;
1281 	int ret;
1282 	int defrag_count = 0;
1283 	int compress_type = BTRFS_COMPRESS_ZLIB;
1284 	u32 extent_thresh = range->extent_thresh;
1285 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1286 	unsigned long cluster = max_cluster;
1287 	u64 new_align = ~((u64)SZ_128K - 1);
1288 	struct page **pages = NULL;
1289 
1290 	if (isize == 0)
1291 		return 0;
1292 
1293 	if (range->start >= isize)
1294 		return -EINVAL;
1295 
1296 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1297 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1298 			return -EINVAL;
1299 		if (range->compress_type)
1300 			compress_type = range->compress_type;
1301 	}
1302 
1303 	if (extent_thresh == 0)
1304 		extent_thresh = SZ_256K;
1305 
1306 	/*
1307 	 * if we were not given a file, allocate a readahead
1308 	 * context
1309 	 */
1310 	if (!file) {
1311 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1312 		if (!ra)
1313 			return -ENOMEM;
1314 		file_ra_state_init(ra, inode->i_mapping);
1315 	} else {
1316 		ra = &file->f_ra;
1317 	}
1318 
1319 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1320 			GFP_NOFS);
1321 	if (!pages) {
1322 		ret = -ENOMEM;
1323 		goto out_ra;
1324 	}
1325 
1326 	/* find the last page to defrag */
1327 	if (range->start + range->len > range->start) {
1328 		last_index = min_t(u64, isize - 1,
1329 			 range->start + range->len - 1) >> PAGE_SHIFT;
1330 	} else {
1331 		last_index = (isize - 1) >> PAGE_SHIFT;
1332 	}
1333 
1334 	if (newer_than) {
1335 		ret = find_new_extents(root, inode, newer_than,
1336 				       &newer_off, SZ_64K);
1337 		if (!ret) {
1338 			range->start = newer_off;
1339 			/*
1340 			 * we always align our defrag to help keep
1341 			 * the extents in the file evenly spaced
1342 			 */
1343 			i = (newer_off & new_align) >> PAGE_SHIFT;
1344 		} else
1345 			goto out_ra;
1346 	} else {
1347 		i = range->start >> PAGE_SHIFT;
1348 	}
1349 	if (!max_to_defrag)
1350 		max_to_defrag = last_index - i + 1;
1351 
1352 	/*
1353 	 * make writeback starts from i, so the defrag range can be
1354 	 * written sequentially.
1355 	 */
1356 	if (i < inode->i_mapping->writeback_index)
1357 		inode->i_mapping->writeback_index = i;
1358 
1359 	while (i <= last_index && defrag_count < max_to_defrag &&
1360 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1361 		/*
1362 		 * make sure we stop running if someone unmounts
1363 		 * the FS
1364 		 */
1365 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1366 			break;
1367 
1368 		if (btrfs_defrag_cancelled(root->fs_info)) {
1369 			btrfs_debug(root->fs_info, "defrag_file cancelled");
1370 			ret = -EAGAIN;
1371 			break;
1372 		}
1373 
1374 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1375 					 extent_thresh, &last_len, &skip,
1376 					 &defrag_end, range->flags &
1377 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1378 			unsigned long next;
1379 			/*
1380 			 * the should_defrag function tells us how much to skip
1381 			 * bump our counter by the suggested amount
1382 			 */
1383 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1384 			i = max(i + 1, next);
1385 			continue;
1386 		}
1387 
1388 		if (!newer_than) {
1389 			cluster = (PAGE_ALIGN(defrag_end) >>
1390 				   PAGE_SHIFT) - i;
1391 			cluster = min(cluster, max_cluster);
1392 		} else {
1393 			cluster = max_cluster;
1394 		}
1395 
1396 		if (i + cluster > ra_index) {
1397 			ra_index = max(i, ra_index);
1398 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1399 				       cluster);
1400 			ra_index += cluster;
1401 		}
1402 
1403 		inode_lock(inode);
1404 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1405 			BTRFS_I(inode)->force_compress = compress_type;
1406 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1407 		if (ret < 0) {
1408 			inode_unlock(inode);
1409 			goto out_ra;
1410 		}
1411 
1412 		defrag_count += ret;
1413 		balance_dirty_pages_ratelimited(inode->i_mapping);
1414 		inode_unlock(inode);
1415 
1416 		if (newer_than) {
1417 			if (newer_off == (u64)-1)
1418 				break;
1419 
1420 			if (ret > 0)
1421 				i += ret;
1422 
1423 			newer_off = max(newer_off + 1,
1424 					(u64)i << PAGE_SHIFT);
1425 
1426 			ret = find_new_extents(root, inode, newer_than,
1427 					       &newer_off, SZ_64K);
1428 			if (!ret) {
1429 				range->start = newer_off;
1430 				i = (newer_off & new_align) >> PAGE_SHIFT;
1431 			} else {
1432 				break;
1433 			}
1434 		} else {
1435 			if (ret > 0) {
1436 				i += ret;
1437 				last_len += ret << PAGE_SHIFT;
1438 			} else {
1439 				i++;
1440 				last_len = 0;
1441 			}
1442 		}
1443 	}
1444 
1445 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1446 		filemap_flush(inode->i_mapping);
1447 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1448 			     &BTRFS_I(inode)->runtime_flags))
1449 			filemap_flush(inode->i_mapping);
1450 	}
1451 
1452 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1453 		/* the filemap_flush will queue IO into the worker threads, but
1454 		 * we have to make sure the IO is actually started and that
1455 		 * ordered extents get created before we return
1456 		 */
1457 		atomic_inc(&root->fs_info->async_submit_draining);
1458 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1459 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1460 			wait_event(root->fs_info->async_submit_wait,
1461 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1462 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1463 		}
1464 		atomic_dec(&root->fs_info->async_submit_draining);
1465 	}
1466 
1467 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1468 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1469 	}
1470 
1471 	ret = defrag_count;
1472 
1473 out_ra:
1474 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1475 		inode_lock(inode);
1476 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1477 		inode_unlock(inode);
1478 	}
1479 	if (!file)
1480 		kfree(ra);
1481 	kfree(pages);
1482 	return ret;
1483 }
1484 
1485 static noinline int btrfs_ioctl_resize(struct file *file,
1486 					void __user *arg)
1487 {
1488 	u64 new_size;
1489 	u64 old_size;
1490 	u64 devid = 1;
1491 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1492 	struct btrfs_ioctl_vol_args *vol_args;
1493 	struct btrfs_trans_handle *trans;
1494 	struct btrfs_device *device = NULL;
1495 	char *sizestr;
1496 	char *retptr;
1497 	char *devstr = NULL;
1498 	int ret = 0;
1499 	int mod = 0;
1500 
1501 	if (!capable(CAP_SYS_ADMIN))
1502 		return -EPERM;
1503 
1504 	ret = mnt_want_write_file(file);
1505 	if (ret)
1506 		return ret;
1507 
1508 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1509 			1)) {
1510 		mnt_drop_write_file(file);
1511 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1512 	}
1513 
1514 	mutex_lock(&root->fs_info->volume_mutex);
1515 	vol_args = memdup_user(arg, sizeof(*vol_args));
1516 	if (IS_ERR(vol_args)) {
1517 		ret = PTR_ERR(vol_args);
1518 		goto out;
1519 	}
1520 
1521 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1522 
1523 	sizestr = vol_args->name;
1524 	devstr = strchr(sizestr, ':');
1525 	if (devstr) {
1526 		sizestr = devstr + 1;
1527 		*devstr = '\0';
1528 		devstr = vol_args->name;
1529 		ret = kstrtoull(devstr, 10, &devid);
1530 		if (ret)
1531 			goto out_free;
1532 		if (!devid) {
1533 			ret = -EINVAL;
1534 			goto out_free;
1535 		}
1536 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1537 	}
1538 
1539 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1540 	if (!device) {
1541 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1542 		       devid);
1543 		ret = -ENODEV;
1544 		goto out_free;
1545 	}
1546 
1547 	if (!device->writeable) {
1548 		btrfs_info(root->fs_info,
1549 			   "resizer unable to apply on readonly device %llu",
1550 		       devid);
1551 		ret = -EPERM;
1552 		goto out_free;
1553 	}
1554 
1555 	if (!strcmp(sizestr, "max"))
1556 		new_size = device->bdev->bd_inode->i_size;
1557 	else {
1558 		if (sizestr[0] == '-') {
1559 			mod = -1;
1560 			sizestr++;
1561 		} else if (sizestr[0] == '+') {
1562 			mod = 1;
1563 			sizestr++;
1564 		}
1565 		new_size = memparse(sizestr, &retptr);
1566 		if (*retptr != '\0' || new_size == 0) {
1567 			ret = -EINVAL;
1568 			goto out_free;
1569 		}
1570 	}
1571 
1572 	if (device->is_tgtdev_for_dev_replace) {
1573 		ret = -EPERM;
1574 		goto out_free;
1575 	}
1576 
1577 	old_size = btrfs_device_get_total_bytes(device);
1578 
1579 	if (mod < 0) {
1580 		if (new_size > old_size) {
1581 			ret = -EINVAL;
1582 			goto out_free;
1583 		}
1584 		new_size = old_size - new_size;
1585 	} else if (mod > 0) {
1586 		if (new_size > ULLONG_MAX - old_size) {
1587 			ret = -ERANGE;
1588 			goto out_free;
1589 		}
1590 		new_size = old_size + new_size;
1591 	}
1592 
1593 	if (new_size < SZ_256M) {
1594 		ret = -EINVAL;
1595 		goto out_free;
1596 	}
1597 	if (new_size > device->bdev->bd_inode->i_size) {
1598 		ret = -EFBIG;
1599 		goto out_free;
1600 	}
1601 
1602 	new_size = div_u64(new_size, root->sectorsize);
1603 	new_size *= root->sectorsize;
1604 
1605 	btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1606 		      rcu_str_deref(device->name), new_size);
1607 
1608 	if (new_size > old_size) {
1609 		trans = btrfs_start_transaction(root, 0);
1610 		if (IS_ERR(trans)) {
1611 			ret = PTR_ERR(trans);
1612 			goto out_free;
1613 		}
1614 		ret = btrfs_grow_device(trans, device, new_size);
1615 		btrfs_commit_transaction(trans, root);
1616 	} else if (new_size < old_size) {
1617 		ret = btrfs_shrink_device(device, new_size);
1618 	} /* equal, nothing need to do */
1619 
1620 out_free:
1621 	kfree(vol_args);
1622 out:
1623 	mutex_unlock(&root->fs_info->volume_mutex);
1624 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1625 	mnt_drop_write_file(file);
1626 	return ret;
1627 }
1628 
1629 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1630 				char *name, unsigned long fd, int subvol,
1631 				u64 *transid, bool readonly,
1632 				struct btrfs_qgroup_inherit *inherit)
1633 {
1634 	int namelen;
1635 	int ret = 0;
1636 
1637 	if (!S_ISDIR(file_inode(file)->i_mode))
1638 		return -ENOTDIR;
1639 
1640 	ret = mnt_want_write_file(file);
1641 	if (ret)
1642 		goto out;
1643 
1644 	namelen = strlen(name);
1645 	if (strchr(name, '/')) {
1646 		ret = -EINVAL;
1647 		goto out_drop_write;
1648 	}
1649 
1650 	if (name[0] == '.' &&
1651 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1652 		ret = -EEXIST;
1653 		goto out_drop_write;
1654 	}
1655 
1656 	if (subvol) {
1657 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1658 				     NULL, transid, readonly, inherit);
1659 	} else {
1660 		struct fd src = fdget(fd);
1661 		struct inode *src_inode;
1662 		if (!src.file) {
1663 			ret = -EINVAL;
1664 			goto out_drop_write;
1665 		}
1666 
1667 		src_inode = file_inode(src.file);
1668 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1669 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1670 				   "Snapshot src from another FS");
1671 			ret = -EXDEV;
1672 		} else if (!inode_owner_or_capable(src_inode)) {
1673 			/*
1674 			 * Subvolume creation is not restricted, but snapshots
1675 			 * are limited to own subvolumes only
1676 			 */
1677 			ret = -EPERM;
1678 		} else {
1679 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1680 					     BTRFS_I(src_inode)->root,
1681 					     transid, readonly, inherit);
1682 		}
1683 		fdput(src);
1684 	}
1685 out_drop_write:
1686 	mnt_drop_write_file(file);
1687 out:
1688 	return ret;
1689 }
1690 
1691 static noinline int btrfs_ioctl_snap_create(struct file *file,
1692 					    void __user *arg, int subvol)
1693 {
1694 	struct btrfs_ioctl_vol_args *vol_args;
1695 	int ret;
1696 
1697 	if (!S_ISDIR(file_inode(file)->i_mode))
1698 		return -ENOTDIR;
1699 
1700 	vol_args = memdup_user(arg, sizeof(*vol_args));
1701 	if (IS_ERR(vol_args))
1702 		return PTR_ERR(vol_args);
1703 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1704 
1705 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1706 					      vol_args->fd, subvol,
1707 					      NULL, false, NULL);
1708 
1709 	kfree(vol_args);
1710 	return ret;
1711 }
1712 
1713 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1714 					       void __user *arg, int subvol)
1715 {
1716 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1717 	int ret;
1718 	u64 transid = 0;
1719 	u64 *ptr = NULL;
1720 	bool readonly = false;
1721 	struct btrfs_qgroup_inherit *inherit = NULL;
1722 
1723 	if (!S_ISDIR(file_inode(file)->i_mode))
1724 		return -ENOTDIR;
1725 
1726 	vol_args = memdup_user(arg, sizeof(*vol_args));
1727 	if (IS_ERR(vol_args))
1728 		return PTR_ERR(vol_args);
1729 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1730 
1731 	if (vol_args->flags &
1732 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1733 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1734 		ret = -EOPNOTSUPP;
1735 		goto free_args;
1736 	}
1737 
1738 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1739 		ptr = &transid;
1740 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1741 		readonly = true;
1742 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1743 		if (vol_args->size > PAGE_SIZE) {
1744 			ret = -EINVAL;
1745 			goto free_args;
1746 		}
1747 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1748 		if (IS_ERR(inherit)) {
1749 			ret = PTR_ERR(inherit);
1750 			goto free_args;
1751 		}
1752 	}
1753 
1754 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1755 					      vol_args->fd, subvol, ptr,
1756 					      readonly, inherit);
1757 	if (ret)
1758 		goto free_inherit;
1759 
1760 	if (ptr && copy_to_user(arg +
1761 				offsetof(struct btrfs_ioctl_vol_args_v2,
1762 					transid),
1763 				ptr, sizeof(*ptr)))
1764 		ret = -EFAULT;
1765 
1766 free_inherit:
1767 	kfree(inherit);
1768 free_args:
1769 	kfree(vol_args);
1770 	return ret;
1771 }
1772 
1773 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1774 						void __user *arg)
1775 {
1776 	struct inode *inode = file_inode(file);
1777 	struct btrfs_root *root = BTRFS_I(inode)->root;
1778 	int ret = 0;
1779 	u64 flags = 0;
1780 
1781 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1782 		return -EINVAL;
1783 
1784 	down_read(&root->fs_info->subvol_sem);
1785 	if (btrfs_root_readonly(root))
1786 		flags |= BTRFS_SUBVOL_RDONLY;
1787 	up_read(&root->fs_info->subvol_sem);
1788 
1789 	if (copy_to_user(arg, &flags, sizeof(flags)))
1790 		ret = -EFAULT;
1791 
1792 	return ret;
1793 }
1794 
1795 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1796 					      void __user *arg)
1797 {
1798 	struct inode *inode = file_inode(file);
1799 	struct btrfs_root *root = BTRFS_I(inode)->root;
1800 	struct btrfs_trans_handle *trans;
1801 	u64 root_flags;
1802 	u64 flags;
1803 	int ret = 0;
1804 
1805 	if (!inode_owner_or_capable(inode))
1806 		return -EPERM;
1807 
1808 	ret = mnt_want_write_file(file);
1809 	if (ret)
1810 		goto out;
1811 
1812 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1813 		ret = -EINVAL;
1814 		goto out_drop_write;
1815 	}
1816 
1817 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1818 		ret = -EFAULT;
1819 		goto out_drop_write;
1820 	}
1821 
1822 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1823 		ret = -EINVAL;
1824 		goto out_drop_write;
1825 	}
1826 
1827 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1828 		ret = -EOPNOTSUPP;
1829 		goto out_drop_write;
1830 	}
1831 
1832 	down_write(&root->fs_info->subvol_sem);
1833 
1834 	/* nothing to do */
1835 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1836 		goto out_drop_sem;
1837 
1838 	root_flags = btrfs_root_flags(&root->root_item);
1839 	if (flags & BTRFS_SUBVOL_RDONLY) {
1840 		btrfs_set_root_flags(&root->root_item,
1841 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1842 	} else {
1843 		/*
1844 		 * Block RO -> RW transition if this subvolume is involved in
1845 		 * send
1846 		 */
1847 		spin_lock(&root->root_item_lock);
1848 		if (root->send_in_progress == 0) {
1849 			btrfs_set_root_flags(&root->root_item,
1850 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1851 			spin_unlock(&root->root_item_lock);
1852 		} else {
1853 			spin_unlock(&root->root_item_lock);
1854 			btrfs_warn(root->fs_info,
1855 			"Attempt to set subvolume %llu read-write during send",
1856 					root->root_key.objectid);
1857 			ret = -EPERM;
1858 			goto out_drop_sem;
1859 		}
1860 	}
1861 
1862 	trans = btrfs_start_transaction(root, 1);
1863 	if (IS_ERR(trans)) {
1864 		ret = PTR_ERR(trans);
1865 		goto out_reset;
1866 	}
1867 
1868 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1869 				&root->root_key, &root->root_item);
1870 
1871 	btrfs_commit_transaction(trans, root);
1872 out_reset:
1873 	if (ret)
1874 		btrfs_set_root_flags(&root->root_item, root_flags);
1875 out_drop_sem:
1876 	up_write(&root->fs_info->subvol_sem);
1877 out_drop_write:
1878 	mnt_drop_write_file(file);
1879 out:
1880 	return ret;
1881 }
1882 
1883 /*
1884  * helper to check if the subvolume references other subvolumes
1885  */
1886 static noinline int may_destroy_subvol(struct btrfs_root *root)
1887 {
1888 	struct btrfs_path *path;
1889 	struct btrfs_dir_item *di;
1890 	struct btrfs_key key;
1891 	u64 dir_id;
1892 	int ret;
1893 
1894 	path = btrfs_alloc_path();
1895 	if (!path)
1896 		return -ENOMEM;
1897 
1898 	/* Make sure this root isn't set as the default subvol */
1899 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1900 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1901 				   dir_id, "default", 7, 0);
1902 	if (di && !IS_ERR(di)) {
1903 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1904 		if (key.objectid == root->root_key.objectid) {
1905 			ret = -EPERM;
1906 			btrfs_err(root->fs_info,
1907 				  "deleting default subvolume %llu is not allowed",
1908 				  key.objectid);
1909 			goto out;
1910 		}
1911 		btrfs_release_path(path);
1912 	}
1913 
1914 	key.objectid = root->root_key.objectid;
1915 	key.type = BTRFS_ROOT_REF_KEY;
1916 	key.offset = (u64)-1;
1917 
1918 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1919 				&key, path, 0, 0);
1920 	if (ret < 0)
1921 		goto out;
1922 	BUG_ON(ret == 0);
1923 
1924 	ret = 0;
1925 	if (path->slots[0] > 0) {
1926 		path->slots[0]--;
1927 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1928 		if (key.objectid == root->root_key.objectid &&
1929 		    key.type == BTRFS_ROOT_REF_KEY)
1930 			ret = -ENOTEMPTY;
1931 	}
1932 out:
1933 	btrfs_free_path(path);
1934 	return ret;
1935 }
1936 
1937 static noinline int key_in_sk(struct btrfs_key *key,
1938 			      struct btrfs_ioctl_search_key *sk)
1939 {
1940 	struct btrfs_key test;
1941 	int ret;
1942 
1943 	test.objectid = sk->min_objectid;
1944 	test.type = sk->min_type;
1945 	test.offset = sk->min_offset;
1946 
1947 	ret = btrfs_comp_cpu_keys(key, &test);
1948 	if (ret < 0)
1949 		return 0;
1950 
1951 	test.objectid = sk->max_objectid;
1952 	test.type = sk->max_type;
1953 	test.offset = sk->max_offset;
1954 
1955 	ret = btrfs_comp_cpu_keys(key, &test);
1956 	if (ret > 0)
1957 		return 0;
1958 	return 1;
1959 }
1960 
1961 static noinline int copy_to_sk(struct btrfs_path *path,
1962 			       struct btrfs_key *key,
1963 			       struct btrfs_ioctl_search_key *sk,
1964 			       size_t *buf_size,
1965 			       char __user *ubuf,
1966 			       unsigned long *sk_offset,
1967 			       int *num_found)
1968 {
1969 	u64 found_transid;
1970 	struct extent_buffer *leaf;
1971 	struct btrfs_ioctl_search_header sh;
1972 	struct btrfs_key test;
1973 	unsigned long item_off;
1974 	unsigned long item_len;
1975 	int nritems;
1976 	int i;
1977 	int slot;
1978 	int ret = 0;
1979 
1980 	leaf = path->nodes[0];
1981 	slot = path->slots[0];
1982 	nritems = btrfs_header_nritems(leaf);
1983 
1984 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1985 		i = nritems;
1986 		goto advance_key;
1987 	}
1988 	found_transid = btrfs_header_generation(leaf);
1989 
1990 	for (i = slot; i < nritems; i++) {
1991 		item_off = btrfs_item_ptr_offset(leaf, i);
1992 		item_len = btrfs_item_size_nr(leaf, i);
1993 
1994 		btrfs_item_key_to_cpu(leaf, key, i);
1995 		if (!key_in_sk(key, sk))
1996 			continue;
1997 
1998 		if (sizeof(sh) + item_len > *buf_size) {
1999 			if (*num_found) {
2000 				ret = 1;
2001 				goto out;
2002 			}
2003 
2004 			/*
2005 			 * return one empty item back for v1, which does not
2006 			 * handle -EOVERFLOW
2007 			 */
2008 
2009 			*buf_size = sizeof(sh) + item_len;
2010 			item_len = 0;
2011 			ret = -EOVERFLOW;
2012 		}
2013 
2014 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2015 			ret = 1;
2016 			goto out;
2017 		}
2018 
2019 		sh.objectid = key->objectid;
2020 		sh.offset = key->offset;
2021 		sh.type = key->type;
2022 		sh.len = item_len;
2023 		sh.transid = found_transid;
2024 
2025 		/* copy search result header */
2026 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2027 			ret = -EFAULT;
2028 			goto out;
2029 		}
2030 
2031 		*sk_offset += sizeof(sh);
2032 
2033 		if (item_len) {
2034 			char __user *up = ubuf + *sk_offset;
2035 			/* copy the item */
2036 			if (read_extent_buffer_to_user(leaf, up,
2037 						       item_off, item_len)) {
2038 				ret = -EFAULT;
2039 				goto out;
2040 			}
2041 
2042 			*sk_offset += item_len;
2043 		}
2044 		(*num_found)++;
2045 
2046 		if (ret) /* -EOVERFLOW from above */
2047 			goto out;
2048 
2049 		if (*num_found >= sk->nr_items) {
2050 			ret = 1;
2051 			goto out;
2052 		}
2053 	}
2054 advance_key:
2055 	ret = 0;
2056 	test.objectid = sk->max_objectid;
2057 	test.type = sk->max_type;
2058 	test.offset = sk->max_offset;
2059 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2060 		ret = 1;
2061 	else if (key->offset < (u64)-1)
2062 		key->offset++;
2063 	else if (key->type < (u8)-1) {
2064 		key->offset = 0;
2065 		key->type++;
2066 	} else if (key->objectid < (u64)-1) {
2067 		key->offset = 0;
2068 		key->type = 0;
2069 		key->objectid++;
2070 	} else
2071 		ret = 1;
2072 out:
2073 	/*
2074 	 *  0: all items from this leaf copied, continue with next
2075 	 *  1: * more items can be copied, but unused buffer is too small
2076 	 *     * all items were found
2077 	 *     Either way, it will stops the loop which iterates to the next
2078 	 *     leaf
2079 	 *  -EOVERFLOW: item was to large for buffer
2080 	 *  -EFAULT: could not copy extent buffer back to userspace
2081 	 */
2082 	return ret;
2083 }
2084 
2085 static noinline int search_ioctl(struct inode *inode,
2086 				 struct btrfs_ioctl_search_key *sk,
2087 				 size_t *buf_size,
2088 				 char __user *ubuf)
2089 {
2090 	struct btrfs_root *root;
2091 	struct btrfs_key key;
2092 	struct btrfs_path *path;
2093 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2094 	int ret;
2095 	int num_found = 0;
2096 	unsigned long sk_offset = 0;
2097 
2098 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2099 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2100 		return -EOVERFLOW;
2101 	}
2102 
2103 	path = btrfs_alloc_path();
2104 	if (!path)
2105 		return -ENOMEM;
2106 
2107 	if (sk->tree_id == 0) {
2108 		/* search the root of the inode that was passed */
2109 		root = BTRFS_I(inode)->root;
2110 	} else {
2111 		key.objectid = sk->tree_id;
2112 		key.type = BTRFS_ROOT_ITEM_KEY;
2113 		key.offset = (u64)-1;
2114 		root = btrfs_read_fs_root_no_name(info, &key);
2115 		if (IS_ERR(root)) {
2116 			btrfs_free_path(path);
2117 			return -ENOENT;
2118 		}
2119 	}
2120 
2121 	key.objectid = sk->min_objectid;
2122 	key.type = sk->min_type;
2123 	key.offset = sk->min_offset;
2124 
2125 	while (1) {
2126 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2127 		if (ret != 0) {
2128 			if (ret > 0)
2129 				ret = 0;
2130 			goto err;
2131 		}
2132 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2133 				 &sk_offset, &num_found);
2134 		btrfs_release_path(path);
2135 		if (ret)
2136 			break;
2137 
2138 	}
2139 	if (ret > 0)
2140 		ret = 0;
2141 err:
2142 	sk->nr_items = num_found;
2143 	btrfs_free_path(path);
2144 	return ret;
2145 }
2146 
2147 static noinline int btrfs_ioctl_tree_search(struct file *file,
2148 					   void __user *argp)
2149 {
2150 	struct btrfs_ioctl_search_args __user *uargs;
2151 	struct btrfs_ioctl_search_key sk;
2152 	struct inode *inode;
2153 	int ret;
2154 	size_t buf_size;
2155 
2156 	if (!capable(CAP_SYS_ADMIN))
2157 		return -EPERM;
2158 
2159 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2160 
2161 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2162 		return -EFAULT;
2163 
2164 	buf_size = sizeof(uargs->buf);
2165 
2166 	inode = file_inode(file);
2167 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2168 
2169 	/*
2170 	 * In the origin implementation an overflow is handled by returning a
2171 	 * search header with a len of zero, so reset ret.
2172 	 */
2173 	if (ret == -EOVERFLOW)
2174 		ret = 0;
2175 
2176 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2177 		ret = -EFAULT;
2178 	return ret;
2179 }
2180 
2181 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2182 					       void __user *argp)
2183 {
2184 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2185 	struct btrfs_ioctl_search_args_v2 args;
2186 	struct inode *inode;
2187 	int ret;
2188 	size_t buf_size;
2189 	const size_t buf_limit = SZ_16M;
2190 
2191 	if (!capable(CAP_SYS_ADMIN))
2192 		return -EPERM;
2193 
2194 	/* copy search header and buffer size */
2195 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2196 	if (copy_from_user(&args, uarg, sizeof(args)))
2197 		return -EFAULT;
2198 
2199 	buf_size = args.buf_size;
2200 
2201 	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2202 		return -EOVERFLOW;
2203 
2204 	/* limit result size to 16MB */
2205 	if (buf_size > buf_limit)
2206 		buf_size = buf_limit;
2207 
2208 	inode = file_inode(file);
2209 	ret = search_ioctl(inode, &args.key, &buf_size,
2210 			   (char *)(&uarg->buf[0]));
2211 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2212 		ret = -EFAULT;
2213 	else if (ret == -EOVERFLOW &&
2214 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2215 		ret = -EFAULT;
2216 
2217 	return ret;
2218 }
2219 
2220 /*
2221  * Search INODE_REFs to identify path name of 'dirid' directory
2222  * in a 'tree_id' tree. and sets path name to 'name'.
2223  */
2224 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2225 				u64 tree_id, u64 dirid, char *name)
2226 {
2227 	struct btrfs_root *root;
2228 	struct btrfs_key key;
2229 	char *ptr;
2230 	int ret = -1;
2231 	int slot;
2232 	int len;
2233 	int total_len = 0;
2234 	struct btrfs_inode_ref *iref;
2235 	struct extent_buffer *l;
2236 	struct btrfs_path *path;
2237 
2238 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2239 		name[0]='\0';
2240 		return 0;
2241 	}
2242 
2243 	path = btrfs_alloc_path();
2244 	if (!path)
2245 		return -ENOMEM;
2246 
2247 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2248 
2249 	key.objectid = tree_id;
2250 	key.type = BTRFS_ROOT_ITEM_KEY;
2251 	key.offset = (u64)-1;
2252 	root = btrfs_read_fs_root_no_name(info, &key);
2253 	if (IS_ERR(root)) {
2254 		btrfs_err(info, "could not find root %llu", tree_id);
2255 		ret = -ENOENT;
2256 		goto out;
2257 	}
2258 
2259 	key.objectid = dirid;
2260 	key.type = BTRFS_INODE_REF_KEY;
2261 	key.offset = (u64)-1;
2262 
2263 	while (1) {
2264 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2265 		if (ret < 0)
2266 			goto out;
2267 		else if (ret > 0) {
2268 			ret = btrfs_previous_item(root, path, dirid,
2269 						  BTRFS_INODE_REF_KEY);
2270 			if (ret < 0)
2271 				goto out;
2272 			else if (ret > 0) {
2273 				ret = -ENOENT;
2274 				goto out;
2275 			}
2276 		}
2277 
2278 		l = path->nodes[0];
2279 		slot = path->slots[0];
2280 		btrfs_item_key_to_cpu(l, &key, slot);
2281 
2282 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2283 		len = btrfs_inode_ref_name_len(l, iref);
2284 		ptr -= len + 1;
2285 		total_len += len + 1;
2286 		if (ptr < name) {
2287 			ret = -ENAMETOOLONG;
2288 			goto out;
2289 		}
2290 
2291 		*(ptr + len) = '/';
2292 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2293 
2294 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2295 			break;
2296 
2297 		btrfs_release_path(path);
2298 		key.objectid = key.offset;
2299 		key.offset = (u64)-1;
2300 		dirid = key.objectid;
2301 	}
2302 	memmove(name, ptr, total_len);
2303 	name[total_len] = '\0';
2304 	ret = 0;
2305 out:
2306 	btrfs_free_path(path);
2307 	return ret;
2308 }
2309 
2310 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2311 					   void __user *argp)
2312 {
2313 	 struct btrfs_ioctl_ino_lookup_args *args;
2314 	 struct inode *inode;
2315 	int ret = 0;
2316 
2317 	args = memdup_user(argp, sizeof(*args));
2318 	if (IS_ERR(args))
2319 		return PTR_ERR(args);
2320 
2321 	inode = file_inode(file);
2322 
2323 	/*
2324 	 * Unprivileged query to obtain the containing subvolume root id. The
2325 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2326 	 */
2327 	if (args->treeid == 0)
2328 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2329 
2330 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2331 		args->name[0] = 0;
2332 		goto out;
2333 	}
2334 
2335 	if (!capable(CAP_SYS_ADMIN)) {
2336 		ret = -EPERM;
2337 		goto out;
2338 	}
2339 
2340 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2341 					args->treeid, args->objectid,
2342 					args->name);
2343 
2344 out:
2345 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2346 		ret = -EFAULT;
2347 
2348 	kfree(args);
2349 	return ret;
2350 }
2351 
2352 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2353 					     void __user *arg)
2354 {
2355 	struct dentry *parent = file->f_path.dentry;
2356 	struct dentry *dentry;
2357 	struct inode *dir = d_inode(parent);
2358 	struct inode *inode;
2359 	struct btrfs_root *root = BTRFS_I(dir)->root;
2360 	struct btrfs_root *dest = NULL;
2361 	struct btrfs_ioctl_vol_args *vol_args;
2362 	struct btrfs_trans_handle *trans;
2363 	struct btrfs_block_rsv block_rsv;
2364 	u64 root_flags;
2365 	u64 qgroup_reserved;
2366 	int namelen;
2367 	int ret;
2368 	int err = 0;
2369 
2370 	if (!S_ISDIR(dir->i_mode))
2371 		return -ENOTDIR;
2372 
2373 	vol_args = memdup_user(arg, sizeof(*vol_args));
2374 	if (IS_ERR(vol_args))
2375 		return PTR_ERR(vol_args);
2376 
2377 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2378 	namelen = strlen(vol_args->name);
2379 	if (strchr(vol_args->name, '/') ||
2380 	    strncmp(vol_args->name, "..", namelen) == 0) {
2381 		err = -EINVAL;
2382 		goto out;
2383 	}
2384 
2385 	err = mnt_want_write_file(file);
2386 	if (err)
2387 		goto out;
2388 
2389 
2390 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2391 	if (err == -EINTR)
2392 		goto out_drop_write;
2393 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2394 	if (IS_ERR(dentry)) {
2395 		err = PTR_ERR(dentry);
2396 		goto out_unlock_dir;
2397 	}
2398 
2399 	if (d_really_is_negative(dentry)) {
2400 		err = -ENOENT;
2401 		goto out_dput;
2402 	}
2403 
2404 	inode = d_inode(dentry);
2405 	dest = BTRFS_I(inode)->root;
2406 	if (!capable(CAP_SYS_ADMIN)) {
2407 		/*
2408 		 * Regular user.  Only allow this with a special mount
2409 		 * option, when the user has write+exec access to the
2410 		 * subvol root, and when rmdir(2) would have been
2411 		 * allowed.
2412 		 *
2413 		 * Note that this is _not_ check that the subvol is
2414 		 * empty or doesn't contain data that we wouldn't
2415 		 * otherwise be able to delete.
2416 		 *
2417 		 * Users who want to delete empty subvols should try
2418 		 * rmdir(2).
2419 		 */
2420 		err = -EPERM;
2421 		if (!btrfs_test_opt(root->fs_info, USER_SUBVOL_RM_ALLOWED))
2422 			goto out_dput;
2423 
2424 		/*
2425 		 * Do not allow deletion if the parent dir is the same
2426 		 * as the dir to be deleted.  That means the ioctl
2427 		 * must be called on the dentry referencing the root
2428 		 * of the subvol, not a random directory contained
2429 		 * within it.
2430 		 */
2431 		err = -EINVAL;
2432 		if (root == dest)
2433 			goto out_dput;
2434 
2435 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2436 		if (err)
2437 			goto out_dput;
2438 	}
2439 
2440 	/* check if subvolume may be deleted by a user */
2441 	err = btrfs_may_delete(dir, dentry, 1);
2442 	if (err)
2443 		goto out_dput;
2444 
2445 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2446 		err = -EINVAL;
2447 		goto out_dput;
2448 	}
2449 
2450 	inode_lock(inode);
2451 
2452 	/*
2453 	 * Don't allow to delete a subvolume with send in progress. This is
2454 	 * inside the i_mutex so the error handling that has to drop the bit
2455 	 * again is not run concurrently.
2456 	 */
2457 	spin_lock(&dest->root_item_lock);
2458 	root_flags = btrfs_root_flags(&dest->root_item);
2459 	if (dest->send_in_progress == 0) {
2460 		btrfs_set_root_flags(&dest->root_item,
2461 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2462 		spin_unlock(&dest->root_item_lock);
2463 	} else {
2464 		spin_unlock(&dest->root_item_lock);
2465 		btrfs_warn(root->fs_info,
2466 			"Attempt to delete subvolume %llu during send",
2467 			dest->root_key.objectid);
2468 		err = -EPERM;
2469 		goto out_unlock_inode;
2470 	}
2471 
2472 	down_write(&root->fs_info->subvol_sem);
2473 
2474 	err = may_destroy_subvol(dest);
2475 	if (err)
2476 		goto out_up_write;
2477 
2478 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2479 	/*
2480 	 * One for dir inode, two for dir entries, two for root
2481 	 * ref/backref.
2482 	 */
2483 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2484 					       5, &qgroup_reserved, true);
2485 	if (err)
2486 		goto out_up_write;
2487 
2488 	trans = btrfs_start_transaction(root, 0);
2489 	if (IS_ERR(trans)) {
2490 		err = PTR_ERR(trans);
2491 		goto out_release;
2492 	}
2493 	trans->block_rsv = &block_rsv;
2494 	trans->bytes_reserved = block_rsv.size;
2495 
2496 	btrfs_record_snapshot_destroy(trans, dir);
2497 
2498 	ret = btrfs_unlink_subvol(trans, root, dir,
2499 				dest->root_key.objectid,
2500 				dentry->d_name.name,
2501 				dentry->d_name.len);
2502 	if (ret) {
2503 		err = ret;
2504 		btrfs_abort_transaction(trans, ret);
2505 		goto out_end_trans;
2506 	}
2507 
2508 	btrfs_record_root_in_trans(trans, dest);
2509 
2510 	memset(&dest->root_item.drop_progress, 0,
2511 		sizeof(dest->root_item.drop_progress));
2512 	dest->root_item.drop_level = 0;
2513 	btrfs_set_root_refs(&dest->root_item, 0);
2514 
2515 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2516 		ret = btrfs_insert_orphan_item(trans,
2517 					root->fs_info->tree_root,
2518 					dest->root_key.objectid);
2519 		if (ret) {
2520 			btrfs_abort_transaction(trans, ret);
2521 			err = ret;
2522 			goto out_end_trans;
2523 		}
2524 	}
2525 
2526 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2527 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2528 				  dest->root_key.objectid);
2529 	if (ret && ret != -ENOENT) {
2530 		btrfs_abort_transaction(trans, ret);
2531 		err = ret;
2532 		goto out_end_trans;
2533 	}
2534 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2535 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2536 					  dest->root_item.received_uuid,
2537 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2538 					  dest->root_key.objectid);
2539 		if (ret && ret != -ENOENT) {
2540 			btrfs_abort_transaction(trans, ret);
2541 			err = ret;
2542 			goto out_end_trans;
2543 		}
2544 	}
2545 
2546 out_end_trans:
2547 	trans->block_rsv = NULL;
2548 	trans->bytes_reserved = 0;
2549 	ret = btrfs_end_transaction(trans, root);
2550 	if (ret && !err)
2551 		err = ret;
2552 	inode->i_flags |= S_DEAD;
2553 out_release:
2554 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2555 out_up_write:
2556 	up_write(&root->fs_info->subvol_sem);
2557 	if (err) {
2558 		spin_lock(&dest->root_item_lock);
2559 		root_flags = btrfs_root_flags(&dest->root_item);
2560 		btrfs_set_root_flags(&dest->root_item,
2561 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2562 		spin_unlock(&dest->root_item_lock);
2563 	}
2564 out_unlock_inode:
2565 	inode_unlock(inode);
2566 	if (!err) {
2567 		d_invalidate(dentry);
2568 		btrfs_invalidate_inodes(dest);
2569 		d_delete(dentry);
2570 		ASSERT(dest->send_in_progress == 0);
2571 
2572 		/* the last ref */
2573 		if (dest->ino_cache_inode) {
2574 			iput(dest->ino_cache_inode);
2575 			dest->ino_cache_inode = NULL;
2576 		}
2577 	}
2578 out_dput:
2579 	dput(dentry);
2580 out_unlock_dir:
2581 	inode_unlock(dir);
2582 out_drop_write:
2583 	mnt_drop_write_file(file);
2584 out:
2585 	kfree(vol_args);
2586 	return err;
2587 }
2588 
2589 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2590 {
2591 	struct inode *inode = file_inode(file);
2592 	struct btrfs_root *root = BTRFS_I(inode)->root;
2593 	struct btrfs_ioctl_defrag_range_args *range;
2594 	int ret;
2595 
2596 	ret = mnt_want_write_file(file);
2597 	if (ret)
2598 		return ret;
2599 
2600 	if (btrfs_root_readonly(root)) {
2601 		ret = -EROFS;
2602 		goto out;
2603 	}
2604 
2605 	switch (inode->i_mode & S_IFMT) {
2606 	case S_IFDIR:
2607 		if (!capable(CAP_SYS_ADMIN)) {
2608 			ret = -EPERM;
2609 			goto out;
2610 		}
2611 		ret = btrfs_defrag_root(root);
2612 		if (ret)
2613 			goto out;
2614 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2615 		break;
2616 	case S_IFREG:
2617 		if (!(file->f_mode & FMODE_WRITE)) {
2618 			ret = -EINVAL;
2619 			goto out;
2620 		}
2621 
2622 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2623 		if (!range) {
2624 			ret = -ENOMEM;
2625 			goto out;
2626 		}
2627 
2628 		if (argp) {
2629 			if (copy_from_user(range, argp,
2630 					   sizeof(*range))) {
2631 				ret = -EFAULT;
2632 				kfree(range);
2633 				goto out;
2634 			}
2635 			/* compression requires us to start the IO */
2636 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2637 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2638 				range->extent_thresh = (u32)-1;
2639 			}
2640 		} else {
2641 			/* the rest are all set to zero by kzalloc */
2642 			range->len = (u64)-1;
2643 		}
2644 		ret = btrfs_defrag_file(file_inode(file), file,
2645 					range, 0, 0);
2646 		if (ret > 0)
2647 			ret = 0;
2648 		kfree(range);
2649 		break;
2650 	default:
2651 		ret = -EINVAL;
2652 	}
2653 out:
2654 	mnt_drop_write_file(file);
2655 	return ret;
2656 }
2657 
2658 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2659 {
2660 	struct btrfs_ioctl_vol_args *vol_args;
2661 	int ret;
2662 
2663 	if (!capable(CAP_SYS_ADMIN))
2664 		return -EPERM;
2665 
2666 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2667 			1)) {
2668 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2669 	}
2670 
2671 	mutex_lock(&root->fs_info->volume_mutex);
2672 	vol_args = memdup_user(arg, sizeof(*vol_args));
2673 	if (IS_ERR(vol_args)) {
2674 		ret = PTR_ERR(vol_args);
2675 		goto out;
2676 	}
2677 
2678 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2679 	ret = btrfs_init_new_device(root, vol_args->name);
2680 
2681 	if (!ret)
2682 		btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2683 
2684 	kfree(vol_args);
2685 out:
2686 	mutex_unlock(&root->fs_info->volume_mutex);
2687 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2688 	return ret;
2689 }
2690 
2691 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2692 {
2693 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2694 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2695 	int ret;
2696 
2697 	if (!capable(CAP_SYS_ADMIN))
2698 		return -EPERM;
2699 
2700 	ret = mnt_want_write_file(file);
2701 	if (ret)
2702 		return ret;
2703 
2704 	vol_args = memdup_user(arg, sizeof(*vol_args));
2705 	if (IS_ERR(vol_args)) {
2706 		ret = PTR_ERR(vol_args);
2707 		goto err_drop;
2708 	}
2709 
2710 	/* Check for compatibility reject unknown flags */
2711 	if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2712 		return -EOPNOTSUPP;
2713 
2714 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2715 			1)) {
2716 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2717 		goto out;
2718 	}
2719 
2720 	mutex_lock(&root->fs_info->volume_mutex);
2721 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2722 		ret = btrfs_rm_device(root, NULL, vol_args->devid);
2723 	} else {
2724 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2725 		ret = btrfs_rm_device(root, vol_args->name, 0);
2726 	}
2727 	mutex_unlock(&root->fs_info->volume_mutex);
2728 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2729 
2730 	if (!ret) {
2731 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2732 			btrfs_info(root->fs_info, "device deleted: id %llu",
2733 					vol_args->devid);
2734 		else
2735 			btrfs_info(root->fs_info, "device deleted: %s",
2736 					vol_args->name);
2737 	}
2738 out:
2739 	kfree(vol_args);
2740 err_drop:
2741 	mnt_drop_write_file(file);
2742 	return ret;
2743 }
2744 
2745 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2746 {
2747 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2748 	struct btrfs_ioctl_vol_args *vol_args;
2749 	int ret;
2750 
2751 	if (!capable(CAP_SYS_ADMIN))
2752 		return -EPERM;
2753 
2754 	ret = mnt_want_write_file(file);
2755 	if (ret)
2756 		return ret;
2757 
2758 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2759 			1)) {
2760 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2761 		goto out_drop_write;
2762 	}
2763 
2764 	vol_args = memdup_user(arg, sizeof(*vol_args));
2765 	if (IS_ERR(vol_args)) {
2766 		ret = PTR_ERR(vol_args);
2767 		goto out;
2768 	}
2769 
2770 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2771 	mutex_lock(&root->fs_info->volume_mutex);
2772 	ret = btrfs_rm_device(root, vol_args->name, 0);
2773 	mutex_unlock(&root->fs_info->volume_mutex);
2774 
2775 	if (!ret)
2776 		btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2777 	kfree(vol_args);
2778 out:
2779 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2780 out_drop_write:
2781 	mnt_drop_write_file(file);
2782 
2783 	return ret;
2784 }
2785 
2786 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2787 {
2788 	struct btrfs_ioctl_fs_info_args *fi_args;
2789 	struct btrfs_device *device;
2790 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2791 	int ret = 0;
2792 
2793 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2794 	if (!fi_args)
2795 		return -ENOMEM;
2796 
2797 	mutex_lock(&fs_devices->device_list_mutex);
2798 	fi_args->num_devices = fs_devices->num_devices;
2799 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2800 
2801 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2802 		if (device->devid > fi_args->max_id)
2803 			fi_args->max_id = device->devid;
2804 	}
2805 	mutex_unlock(&fs_devices->device_list_mutex);
2806 
2807 	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2808 	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2809 	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2810 
2811 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2812 		ret = -EFAULT;
2813 
2814 	kfree(fi_args);
2815 	return ret;
2816 }
2817 
2818 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2819 {
2820 	struct btrfs_ioctl_dev_info_args *di_args;
2821 	struct btrfs_device *dev;
2822 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2823 	int ret = 0;
2824 	char *s_uuid = NULL;
2825 
2826 	di_args = memdup_user(arg, sizeof(*di_args));
2827 	if (IS_ERR(di_args))
2828 		return PTR_ERR(di_args);
2829 
2830 	if (!btrfs_is_empty_uuid(di_args->uuid))
2831 		s_uuid = di_args->uuid;
2832 
2833 	mutex_lock(&fs_devices->device_list_mutex);
2834 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2835 
2836 	if (!dev) {
2837 		ret = -ENODEV;
2838 		goto out;
2839 	}
2840 
2841 	di_args->devid = dev->devid;
2842 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2843 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2844 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2845 	if (dev->name) {
2846 		struct rcu_string *name;
2847 
2848 		rcu_read_lock();
2849 		name = rcu_dereference(dev->name);
2850 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2851 		rcu_read_unlock();
2852 		di_args->path[sizeof(di_args->path) - 1] = 0;
2853 	} else {
2854 		di_args->path[0] = '\0';
2855 	}
2856 
2857 out:
2858 	mutex_unlock(&fs_devices->device_list_mutex);
2859 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2860 		ret = -EFAULT;
2861 
2862 	kfree(di_args);
2863 	return ret;
2864 }
2865 
2866 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2867 {
2868 	struct page *page;
2869 
2870 	page = grab_cache_page(inode->i_mapping, index);
2871 	if (!page)
2872 		return ERR_PTR(-ENOMEM);
2873 
2874 	if (!PageUptodate(page)) {
2875 		int ret;
2876 
2877 		ret = btrfs_readpage(NULL, page);
2878 		if (ret)
2879 			return ERR_PTR(ret);
2880 		lock_page(page);
2881 		if (!PageUptodate(page)) {
2882 			unlock_page(page);
2883 			put_page(page);
2884 			return ERR_PTR(-EIO);
2885 		}
2886 		if (page->mapping != inode->i_mapping) {
2887 			unlock_page(page);
2888 			put_page(page);
2889 			return ERR_PTR(-EAGAIN);
2890 		}
2891 	}
2892 
2893 	return page;
2894 }
2895 
2896 static int gather_extent_pages(struct inode *inode, struct page **pages,
2897 			       int num_pages, u64 off)
2898 {
2899 	int i;
2900 	pgoff_t index = off >> PAGE_SHIFT;
2901 
2902 	for (i = 0; i < num_pages; i++) {
2903 again:
2904 		pages[i] = extent_same_get_page(inode, index + i);
2905 		if (IS_ERR(pages[i])) {
2906 			int err = PTR_ERR(pages[i]);
2907 
2908 			if (err == -EAGAIN)
2909 				goto again;
2910 			pages[i] = NULL;
2911 			return err;
2912 		}
2913 	}
2914 	return 0;
2915 }
2916 
2917 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2918 			     bool retry_range_locking)
2919 {
2920 	/*
2921 	 * Do any pending delalloc/csum calculations on inode, one way or
2922 	 * another, and lock file content.
2923 	 * The locking order is:
2924 	 *
2925 	 *   1) pages
2926 	 *   2) range in the inode's io tree
2927 	 */
2928 	while (1) {
2929 		struct btrfs_ordered_extent *ordered;
2930 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2931 		ordered = btrfs_lookup_first_ordered_extent(inode,
2932 							    off + len - 1);
2933 		if ((!ordered ||
2934 		     ordered->file_offset + ordered->len <= off ||
2935 		     ordered->file_offset >= off + len) &&
2936 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2937 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2938 			if (ordered)
2939 				btrfs_put_ordered_extent(ordered);
2940 			break;
2941 		}
2942 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2943 		if (ordered)
2944 			btrfs_put_ordered_extent(ordered);
2945 		if (!retry_range_locking)
2946 			return -EAGAIN;
2947 		btrfs_wait_ordered_range(inode, off, len);
2948 	}
2949 	return 0;
2950 }
2951 
2952 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2953 {
2954 	inode_unlock(inode1);
2955 	inode_unlock(inode2);
2956 }
2957 
2958 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2959 {
2960 	if (inode1 < inode2)
2961 		swap(inode1, inode2);
2962 
2963 	inode_lock_nested(inode1, I_MUTEX_PARENT);
2964 	inode_lock_nested(inode2, I_MUTEX_CHILD);
2965 }
2966 
2967 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2968 				      struct inode *inode2, u64 loff2, u64 len)
2969 {
2970 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2971 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2972 }
2973 
2974 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2975 				    struct inode *inode2, u64 loff2, u64 len,
2976 				    bool retry_range_locking)
2977 {
2978 	int ret;
2979 
2980 	if (inode1 < inode2) {
2981 		swap(inode1, inode2);
2982 		swap(loff1, loff2);
2983 	}
2984 	ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2985 	if (ret)
2986 		return ret;
2987 	ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2988 	if (ret)
2989 		unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2990 			      loff1 + len - 1);
2991 	return ret;
2992 }
2993 
2994 struct cmp_pages {
2995 	int		num_pages;
2996 	struct page	**src_pages;
2997 	struct page	**dst_pages;
2998 };
2999 
3000 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
3001 {
3002 	int i;
3003 	struct page *pg;
3004 
3005 	for (i = 0; i < cmp->num_pages; i++) {
3006 		pg = cmp->src_pages[i];
3007 		if (pg) {
3008 			unlock_page(pg);
3009 			put_page(pg);
3010 		}
3011 		pg = cmp->dst_pages[i];
3012 		if (pg) {
3013 			unlock_page(pg);
3014 			put_page(pg);
3015 		}
3016 	}
3017 	kfree(cmp->src_pages);
3018 	kfree(cmp->dst_pages);
3019 }
3020 
3021 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3022 				  struct inode *dst, u64 dst_loff,
3023 				  u64 len, struct cmp_pages *cmp)
3024 {
3025 	int ret;
3026 	int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3027 	struct page **src_pgarr, **dst_pgarr;
3028 
3029 	/*
3030 	 * We must gather up all the pages before we initiate our
3031 	 * extent locking. We use an array for the page pointers. Size
3032 	 * of the array is bounded by len, which is in turn bounded by
3033 	 * BTRFS_MAX_DEDUPE_LEN.
3034 	 */
3035 	src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3036 	dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3037 	if (!src_pgarr || !dst_pgarr) {
3038 		kfree(src_pgarr);
3039 		kfree(dst_pgarr);
3040 		return -ENOMEM;
3041 	}
3042 	cmp->num_pages = num_pages;
3043 	cmp->src_pages = src_pgarr;
3044 	cmp->dst_pages = dst_pgarr;
3045 
3046 	ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
3047 	if (ret)
3048 		goto out;
3049 
3050 	ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
3051 
3052 out:
3053 	if (ret)
3054 		btrfs_cmp_data_free(cmp);
3055 	return 0;
3056 }
3057 
3058 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
3059 			  u64 dst_loff, u64 len, struct cmp_pages *cmp)
3060 {
3061 	int ret = 0;
3062 	int i;
3063 	struct page *src_page, *dst_page;
3064 	unsigned int cmp_len = PAGE_SIZE;
3065 	void *addr, *dst_addr;
3066 
3067 	i = 0;
3068 	while (len) {
3069 		if (len < PAGE_SIZE)
3070 			cmp_len = len;
3071 
3072 		BUG_ON(i >= cmp->num_pages);
3073 
3074 		src_page = cmp->src_pages[i];
3075 		dst_page = cmp->dst_pages[i];
3076 		ASSERT(PageLocked(src_page));
3077 		ASSERT(PageLocked(dst_page));
3078 
3079 		addr = kmap_atomic(src_page);
3080 		dst_addr = kmap_atomic(dst_page);
3081 
3082 		flush_dcache_page(src_page);
3083 		flush_dcache_page(dst_page);
3084 
3085 		if (memcmp(addr, dst_addr, cmp_len))
3086 			ret = -EBADE;
3087 
3088 		kunmap_atomic(addr);
3089 		kunmap_atomic(dst_addr);
3090 
3091 		if (ret)
3092 			break;
3093 
3094 		len -= cmp_len;
3095 		i++;
3096 	}
3097 
3098 	return ret;
3099 }
3100 
3101 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3102 				     u64 olen)
3103 {
3104 	u64 len = *plen;
3105 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3106 
3107 	if (off + olen > inode->i_size || off + olen < off)
3108 		return -EINVAL;
3109 
3110 	/* if we extend to eof, continue to block boundary */
3111 	if (off + len == inode->i_size)
3112 		*plen = len = ALIGN(inode->i_size, bs) - off;
3113 
3114 	/* Check that we are block aligned - btrfs_clone() requires this */
3115 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3116 		return -EINVAL;
3117 
3118 	return 0;
3119 }
3120 
3121 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3122 			     struct inode *dst, u64 dst_loff)
3123 {
3124 	int ret;
3125 	u64 len = olen;
3126 	struct cmp_pages cmp;
3127 	int same_inode = 0;
3128 	u64 same_lock_start = 0;
3129 	u64 same_lock_len = 0;
3130 
3131 	if (src == dst)
3132 		same_inode = 1;
3133 
3134 	if (len == 0)
3135 		return 0;
3136 
3137 	if (same_inode) {
3138 		inode_lock(src);
3139 
3140 		ret = extent_same_check_offsets(src, loff, &len, olen);
3141 		if (ret)
3142 			goto out_unlock;
3143 		ret = extent_same_check_offsets(src, dst_loff, &len, olen);
3144 		if (ret)
3145 			goto out_unlock;
3146 
3147 		/*
3148 		 * Single inode case wants the same checks, except we
3149 		 * don't want our length pushed out past i_size as
3150 		 * comparing that data range makes no sense.
3151 		 *
3152 		 * extent_same_check_offsets() will do this for an
3153 		 * unaligned length at i_size, so catch it here and
3154 		 * reject the request.
3155 		 *
3156 		 * This effectively means we require aligned extents
3157 		 * for the single-inode case, whereas the other cases
3158 		 * allow an unaligned length so long as it ends at
3159 		 * i_size.
3160 		 */
3161 		if (len != olen) {
3162 			ret = -EINVAL;
3163 			goto out_unlock;
3164 		}
3165 
3166 		/* Check for overlapping ranges */
3167 		if (dst_loff + len > loff && dst_loff < loff + len) {
3168 			ret = -EINVAL;
3169 			goto out_unlock;
3170 		}
3171 
3172 		same_lock_start = min_t(u64, loff, dst_loff);
3173 		same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3174 	} else {
3175 		btrfs_double_inode_lock(src, dst);
3176 
3177 		ret = extent_same_check_offsets(src, loff, &len, olen);
3178 		if (ret)
3179 			goto out_unlock;
3180 
3181 		ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3182 		if (ret)
3183 			goto out_unlock;
3184 	}
3185 
3186 	/* don't make the dst file partly checksummed */
3187 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3188 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3189 		ret = -EINVAL;
3190 		goto out_unlock;
3191 	}
3192 
3193 again:
3194 	ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3195 	if (ret)
3196 		goto out_unlock;
3197 
3198 	if (same_inode)
3199 		ret = lock_extent_range(src, same_lock_start, same_lock_len,
3200 					false);
3201 	else
3202 		ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3203 					       false);
3204 	/*
3205 	 * If one of the inodes has dirty pages in the respective range or
3206 	 * ordered extents, we need to flush dellaloc and wait for all ordered
3207 	 * extents in the range. We must unlock the pages and the ranges in the
3208 	 * io trees to avoid deadlocks when flushing delalloc (requires locking
3209 	 * pages) and when waiting for ordered extents to complete (they require
3210 	 * range locking).
3211 	 */
3212 	if (ret == -EAGAIN) {
3213 		/*
3214 		 * Ranges in the io trees already unlocked. Now unlock all
3215 		 * pages before waiting for all IO to complete.
3216 		 */
3217 		btrfs_cmp_data_free(&cmp);
3218 		if (same_inode) {
3219 			btrfs_wait_ordered_range(src, same_lock_start,
3220 						 same_lock_len);
3221 		} else {
3222 			btrfs_wait_ordered_range(src, loff, len);
3223 			btrfs_wait_ordered_range(dst, dst_loff, len);
3224 		}
3225 		goto again;
3226 	}
3227 	ASSERT(ret == 0);
3228 	if (WARN_ON(ret)) {
3229 		/* ranges in the io trees already unlocked */
3230 		btrfs_cmp_data_free(&cmp);
3231 		return ret;
3232 	}
3233 
3234 	/* pass original length for comparison so we stay within i_size */
3235 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3236 	if (ret == 0)
3237 		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3238 
3239 	if (same_inode)
3240 		unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3241 			      same_lock_start + same_lock_len - 1);
3242 	else
3243 		btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3244 
3245 	btrfs_cmp_data_free(&cmp);
3246 out_unlock:
3247 	if (same_inode)
3248 		inode_unlock(src);
3249 	else
3250 		btrfs_double_inode_unlock(src, dst);
3251 
3252 	return ret;
3253 }
3254 
3255 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3256 
3257 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3258 				struct file *dst_file, u64 dst_loff)
3259 {
3260 	struct inode *src = file_inode(src_file);
3261 	struct inode *dst = file_inode(dst_file);
3262 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3263 	ssize_t res;
3264 
3265 	if (olen > BTRFS_MAX_DEDUPE_LEN)
3266 		olen = BTRFS_MAX_DEDUPE_LEN;
3267 
3268 	if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3269 		/*
3270 		 * Btrfs does not support blocksize < page_size. As a
3271 		 * result, btrfs_cmp_data() won't correctly handle
3272 		 * this situation without an update.
3273 		 */
3274 		return -EINVAL;
3275 	}
3276 
3277 	res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3278 	if (res)
3279 		return res;
3280 	return olen;
3281 }
3282 
3283 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3284 				     struct inode *inode,
3285 				     u64 endoff,
3286 				     const u64 destoff,
3287 				     const u64 olen,
3288 				     int no_time_update)
3289 {
3290 	struct btrfs_root *root = BTRFS_I(inode)->root;
3291 	int ret;
3292 
3293 	inode_inc_iversion(inode);
3294 	if (!no_time_update)
3295 		inode->i_mtime = inode->i_ctime = current_time(inode);
3296 	/*
3297 	 * We round up to the block size at eof when determining which
3298 	 * extents to clone above, but shouldn't round up the file size.
3299 	 */
3300 	if (endoff > destoff + olen)
3301 		endoff = destoff + olen;
3302 	if (endoff > inode->i_size)
3303 		btrfs_i_size_write(inode, endoff);
3304 
3305 	ret = btrfs_update_inode(trans, root, inode);
3306 	if (ret) {
3307 		btrfs_abort_transaction(trans, ret);
3308 		btrfs_end_transaction(trans, root);
3309 		goto out;
3310 	}
3311 	ret = btrfs_end_transaction(trans, root);
3312 out:
3313 	return ret;
3314 }
3315 
3316 static void clone_update_extent_map(struct inode *inode,
3317 				    const struct btrfs_trans_handle *trans,
3318 				    const struct btrfs_path *path,
3319 				    const u64 hole_offset,
3320 				    const u64 hole_len)
3321 {
3322 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3323 	struct extent_map *em;
3324 	int ret;
3325 
3326 	em = alloc_extent_map();
3327 	if (!em) {
3328 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3329 			&BTRFS_I(inode)->runtime_flags);
3330 		return;
3331 	}
3332 
3333 	if (path) {
3334 		struct btrfs_file_extent_item *fi;
3335 
3336 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3337 				    struct btrfs_file_extent_item);
3338 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3339 		em->generation = -1;
3340 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3341 		    BTRFS_FILE_EXTENT_INLINE)
3342 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3343 				&BTRFS_I(inode)->runtime_flags);
3344 	} else {
3345 		em->start = hole_offset;
3346 		em->len = hole_len;
3347 		em->ram_bytes = em->len;
3348 		em->orig_start = hole_offset;
3349 		em->block_start = EXTENT_MAP_HOLE;
3350 		em->block_len = 0;
3351 		em->orig_block_len = 0;
3352 		em->compress_type = BTRFS_COMPRESS_NONE;
3353 		em->generation = trans->transid;
3354 	}
3355 
3356 	while (1) {
3357 		write_lock(&em_tree->lock);
3358 		ret = add_extent_mapping(em_tree, em, 1);
3359 		write_unlock(&em_tree->lock);
3360 		if (ret != -EEXIST) {
3361 			free_extent_map(em);
3362 			break;
3363 		}
3364 		btrfs_drop_extent_cache(inode, em->start,
3365 					em->start + em->len - 1, 0);
3366 	}
3367 
3368 	if (ret)
3369 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3370 			&BTRFS_I(inode)->runtime_flags);
3371 }
3372 
3373 /*
3374  * Make sure we do not end up inserting an inline extent into a file that has
3375  * already other (non-inline) extents. If a file has an inline extent it can
3376  * not have any other extents and the (single) inline extent must start at the
3377  * file offset 0. Failing to respect these rules will lead to file corruption,
3378  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3379  *
3380  * We can have extents that have been already written to disk or we can have
3381  * dirty ranges still in delalloc, in which case the extent maps and items are
3382  * created only when we run delalloc, and the delalloc ranges might fall outside
3383  * the range we are currently locking in the inode's io tree. So we check the
3384  * inode's i_size because of that (i_size updates are done while holding the
3385  * i_mutex, which we are holding here).
3386  * We also check to see if the inode has a size not greater than "datal" but has
3387  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3388  * protected against such concurrent fallocate calls by the i_mutex).
3389  *
3390  * If the file has no extents but a size greater than datal, do not allow the
3391  * copy because we would need turn the inline extent into a non-inline one (even
3392  * with NO_HOLES enabled). If we find our destination inode only has one inline
3393  * extent, just overwrite it with the source inline extent if its size is less
3394  * than the source extent's size, or we could copy the source inline extent's
3395  * data into the destination inode's inline extent if the later is greater then
3396  * the former.
3397  */
3398 static int clone_copy_inline_extent(struct inode *src,
3399 				    struct inode *dst,
3400 				    struct btrfs_trans_handle *trans,
3401 				    struct btrfs_path *path,
3402 				    struct btrfs_key *new_key,
3403 				    const u64 drop_start,
3404 				    const u64 datal,
3405 				    const u64 skip,
3406 				    const u64 size,
3407 				    char *inline_data)
3408 {
3409 	struct btrfs_root *root = BTRFS_I(dst)->root;
3410 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3411 				      root->sectorsize);
3412 	int ret;
3413 	struct btrfs_key key;
3414 
3415 	if (new_key->offset > 0)
3416 		return -EOPNOTSUPP;
3417 
3418 	key.objectid = btrfs_ino(dst);
3419 	key.type = BTRFS_EXTENT_DATA_KEY;
3420 	key.offset = 0;
3421 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3422 	if (ret < 0) {
3423 		return ret;
3424 	} else if (ret > 0) {
3425 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3426 			ret = btrfs_next_leaf(root, path);
3427 			if (ret < 0)
3428 				return ret;
3429 			else if (ret > 0)
3430 				goto copy_inline_extent;
3431 		}
3432 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3433 		if (key.objectid == btrfs_ino(dst) &&
3434 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3435 			ASSERT(key.offset > 0);
3436 			return -EOPNOTSUPP;
3437 		}
3438 	} else if (i_size_read(dst) <= datal) {
3439 		struct btrfs_file_extent_item *ei;
3440 		u64 ext_len;
3441 
3442 		/*
3443 		 * If the file size is <= datal, make sure there are no other
3444 		 * extents following (can happen do to an fallocate call with
3445 		 * the flag FALLOC_FL_KEEP_SIZE).
3446 		 */
3447 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3448 				    struct btrfs_file_extent_item);
3449 		/*
3450 		 * If it's an inline extent, it can not have other extents
3451 		 * following it.
3452 		 */
3453 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3454 		    BTRFS_FILE_EXTENT_INLINE)
3455 			goto copy_inline_extent;
3456 
3457 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3458 		if (ext_len > aligned_end)
3459 			return -EOPNOTSUPP;
3460 
3461 		ret = btrfs_next_item(root, path);
3462 		if (ret < 0) {
3463 			return ret;
3464 		} else if (ret == 0) {
3465 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3466 					      path->slots[0]);
3467 			if (key.objectid == btrfs_ino(dst) &&
3468 			    key.type == BTRFS_EXTENT_DATA_KEY)
3469 				return -EOPNOTSUPP;
3470 		}
3471 	}
3472 
3473 copy_inline_extent:
3474 	/*
3475 	 * We have no extent items, or we have an extent at offset 0 which may
3476 	 * or may not be inlined. All these cases are dealt the same way.
3477 	 */
3478 	if (i_size_read(dst) > datal) {
3479 		/*
3480 		 * If the destination inode has an inline extent...
3481 		 * This would require copying the data from the source inline
3482 		 * extent into the beginning of the destination's inline extent.
3483 		 * But this is really complex, both extents can be compressed
3484 		 * or just one of them, which would require decompressing and
3485 		 * re-compressing data (which could increase the new compressed
3486 		 * size, not allowing the compressed data to fit anymore in an
3487 		 * inline extent).
3488 		 * So just don't support this case for now (it should be rare,
3489 		 * we are not really saving space when cloning inline extents).
3490 		 */
3491 		return -EOPNOTSUPP;
3492 	}
3493 
3494 	btrfs_release_path(path);
3495 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3496 	if (ret)
3497 		return ret;
3498 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3499 	if (ret)
3500 		return ret;
3501 
3502 	if (skip) {
3503 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3504 
3505 		memmove(inline_data + start, inline_data + start + skip, datal);
3506 	}
3507 
3508 	write_extent_buffer(path->nodes[0], inline_data,
3509 			    btrfs_item_ptr_offset(path->nodes[0],
3510 						  path->slots[0]),
3511 			    size);
3512 	inode_add_bytes(dst, datal);
3513 
3514 	return 0;
3515 }
3516 
3517 /**
3518  * btrfs_clone() - clone a range from inode file to another
3519  *
3520  * @src: Inode to clone from
3521  * @inode: Inode to clone to
3522  * @off: Offset within source to start clone from
3523  * @olen: Original length, passed by user, of range to clone
3524  * @olen_aligned: Block-aligned value of olen
3525  * @destoff: Offset within @inode to start clone
3526  * @no_time_update: Whether to update mtime/ctime on the target inode
3527  */
3528 static int btrfs_clone(struct inode *src, struct inode *inode,
3529 		       const u64 off, const u64 olen, const u64 olen_aligned,
3530 		       const u64 destoff, int no_time_update)
3531 {
3532 	struct btrfs_root *root = BTRFS_I(inode)->root;
3533 	struct btrfs_path *path = NULL;
3534 	struct extent_buffer *leaf;
3535 	struct btrfs_trans_handle *trans;
3536 	char *buf = NULL;
3537 	struct btrfs_key key;
3538 	u32 nritems;
3539 	int slot;
3540 	int ret;
3541 	const u64 len = olen_aligned;
3542 	u64 last_dest_end = destoff;
3543 
3544 	ret = -ENOMEM;
3545 	buf = kmalloc(root->nodesize, GFP_KERNEL | __GFP_NOWARN);
3546 	if (!buf) {
3547 		buf = vmalloc(root->nodesize);
3548 		if (!buf)
3549 			return ret;
3550 	}
3551 
3552 	path = btrfs_alloc_path();
3553 	if (!path) {
3554 		kvfree(buf);
3555 		return ret;
3556 	}
3557 
3558 	path->reada = READA_FORWARD;
3559 	/* clone data */
3560 	key.objectid = btrfs_ino(src);
3561 	key.type = BTRFS_EXTENT_DATA_KEY;
3562 	key.offset = off;
3563 
3564 	while (1) {
3565 		u64 next_key_min_offset = key.offset + 1;
3566 
3567 		/*
3568 		 * note the key will change type as we walk through the
3569 		 * tree.
3570 		 */
3571 		path->leave_spinning = 1;
3572 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3573 				0, 0);
3574 		if (ret < 0)
3575 			goto out;
3576 		/*
3577 		 * First search, if no extent item that starts at offset off was
3578 		 * found but the previous item is an extent item, it's possible
3579 		 * it might overlap our target range, therefore process it.
3580 		 */
3581 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3582 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3583 					      path->slots[0] - 1);
3584 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3585 				path->slots[0]--;
3586 		}
3587 
3588 		nritems = btrfs_header_nritems(path->nodes[0]);
3589 process_slot:
3590 		if (path->slots[0] >= nritems) {
3591 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3592 			if (ret < 0)
3593 				goto out;
3594 			if (ret > 0)
3595 				break;
3596 			nritems = btrfs_header_nritems(path->nodes[0]);
3597 		}
3598 		leaf = path->nodes[0];
3599 		slot = path->slots[0];
3600 
3601 		btrfs_item_key_to_cpu(leaf, &key, slot);
3602 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3603 		    key.objectid != btrfs_ino(src))
3604 			break;
3605 
3606 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3607 			struct btrfs_file_extent_item *extent;
3608 			int type;
3609 			u32 size;
3610 			struct btrfs_key new_key;
3611 			u64 disko = 0, diskl = 0;
3612 			u64 datao = 0, datal = 0;
3613 			u8 comp;
3614 			u64 drop_start;
3615 
3616 			extent = btrfs_item_ptr(leaf, slot,
3617 						struct btrfs_file_extent_item);
3618 			comp = btrfs_file_extent_compression(leaf, extent);
3619 			type = btrfs_file_extent_type(leaf, extent);
3620 			if (type == BTRFS_FILE_EXTENT_REG ||
3621 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3622 				disko = btrfs_file_extent_disk_bytenr(leaf,
3623 								      extent);
3624 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3625 								 extent);
3626 				datao = btrfs_file_extent_offset(leaf, extent);
3627 				datal = btrfs_file_extent_num_bytes(leaf,
3628 								    extent);
3629 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3630 				/* take upper bound, may be compressed */
3631 				datal = btrfs_file_extent_ram_bytes(leaf,
3632 								    extent);
3633 			}
3634 
3635 			/*
3636 			 * The first search might have left us at an extent
3637 			 * item that ends before our target range's start, can
3638 			 * happen if we have holes and NO_HOLES feature enabled.
3639 			 */
3640 			if (key.offset + datal <= off) {
3641 				path->slots[0]++;
3642 				goto process_slot;
3643 			} else if (key.offset >= off + len) {
3644 				break;
3645 			}
3646 			next_key_min_offset = key.offset + datal;
3647 			size = btrfs_item_size_nr(leaf, slot);
3648 			read_extent_buffer(leaf, buf,
3649 					   btrfs_item_ptr_offset(leaf, slot),
3650 					   size);
3651 
3652 			btrfs_release_path(path);
3653 			path->leave_spinning = 0;
3654 
3655 			memcpy(&new_key, &key, sizeof(new_key));
3656 			new_key.objectid = btrfs_ino(inode);
3657 			if (off <= key.offset)
3658 				new_key.offset = key.offset + destoff - off;
3659 			else
3660 				new_key.offset = destoff;
3661 
3662 			/*
3663 			 * Deal with a hole that doesn't have an extent item
3664 			 * that represents it (NO_HOLES feature enabled).
3665 			 * This hole is either in the middle of the cloning
3666 			 * range or at the beginning (fully overlaps it or
3667 			 * partially overlaps it).
3668 			 */
3669 			if (new_key.offset != last_dest_end)
3670 				drop_start = last_dest_end;
3671 			else
3672 				drop_start = new_key.offset;
3673 
3674 			/*
3675 			 * 1 - adjusting old extent (we may have to split it)
3676 			 * 1 - add new extent
3677 			 * 1 - inode update
3678 			 */
3679 			trans = btrfs_start_transaction(root, 3);
3680 			if (IS_ERR(trans)) {
3681 				ret = PTR_ERR(trans);
3682 				goto out;
3683 			}
3684 
3685 			if (type == BTRFS_FILE_EXTENT_REG ||
3686 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3687 				/*
3688 				 *    a  | --- range to clone ---|  b
3689 				 * | ------------- extent ------------- |
3690 				 */
3691 
3692 				/* subtract range b */
3693 				if (key.offset + datal > off + len)
3694 					datal = off + len - key.offset;
3695 
3696 				/* subtract range a */
3697 				if (off > key.offset) {
3698 					datao += off - key.offset;
3699 					datal -= off - key.offset;
3700 				}
3701 
3702 				ret = btrfs_drop_extents(trans, root, inode,
3703 							 drop_start,
3704 							 new_key.offset + datal,
3705 							 1);
3706 				if (ret) {
3707 					if (ret != -EOPNOTSUPP)
3708 						btrfs_abort_transaction(trans,
3709 									ret);
3710 					btrfs_end_transaction(trans, root);
3711 					goto out;
3712 				}
3713 
3714 				ret = btrfs_insert_empty_item(trans, root, path,
3715 							      &new_key, size);
3716 				if (ret) {
3717 					btrfs_abort_transaction(trans, ret);
3718 					btrfs_end_transaction(trans, root);
3719 					goto out;
3720 				}
3721 
3722 				leaf = path->nodes[0];
3723 				slot = path->slots[0];
3724 				write_extent_buffer(leaf, buf,
3725 					    btrfs_item_ptr_offset(leaf, slot),
3726 					    size);
3727 
3728 				extent = btrfs_item_ptr(leaf, slot,
3729 						struct btrfs_file_extent_item);
3730 
3731 				/* disko == 0 means it's a hole */
3732 				if (!disko)
3733 					datao = 0;
3734 
3735 				btrfs_set_file_extent_offset(leaf, extent,
3736 							     datao);
3737 				btrfs_set_file_extent_num_bytes(leaf, extent,
3738 								datal);
3739 
3740 				if (disko) {
3741 					inode_add_bytes(inode, datal);
3742 					ret = btrfs_inc_extent_ref(trans, root,
3743 							disko, diskl, 0,
3744 							root->root_key.objectid,
3745 							btrfs_ino(inode),
3746 							new_key.offset - datao);
3747 					if (ret) {
3748 						btrfs_abort_transaction(trans,
3749 									ret);
3750 						btrfs_end_transaction(trans,
3751 								      root);
3752 						goto out;
3753 
3754 					}
3755 				}
3756 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3757 				u64 skip = 0;
3758 				u64 trim = 0;
3759 
3760 				if (off > key.offset) {
3761 					skip = off - key.offset;
3762 					new_key.offset += skip;
3763 				}
3764 
3765 				if (key.offset + datal > off + len)
3766 					trim = key.offset + datal - (off + len);
3767 
3768 				if (comp && (skip || trim)) {
3769 					ret = -EINVAL;
3770 					btrfs_end_transaction(trans, root);
3771 					goto out;
3772 				}
3773 				size -= skip + trim;
3774 				datal -= skip + trim;
3775 
3776 				ret = clone_copy_inline_extent(src, inode,
3777 							       trans, path,
3778 							       &new_key,
3779 							       drop_start,
3780 							       datal,
3781 							       skip, size, buf);
3782 				if (ret) {
3783 					if (ret != -EOPNOTSUPP)
3784 						btrfs_abort_transaction(trans,
3785 									ret);
3786 					btrfs_end_transaction(trans, root);
3787 					goto out;
3788 				}
3789 				leaf = path->nodes[0];
3790 				slot = path->slots[0];
3791 			}
3792 
3793 			/* If we have an implicit hole (NO_HOLES feature). */
3794 			if (drop_start < new_key.offset)
3795 				clone_update_extent_map(inode, trans,
3796 						NULL, drop_start,
3797 						new_key.offset - drop_start);
3798 
3799 			clone_update_extent_map(inode, trans, path, 0, 0);
3800 
3801 			btrfs_mark_buffer_dirty(leaf);
3802 			btrfs_release_path(path);
3803 
3804 			last_dest_end = ALIGN(new_key.offset + datal,
3805 					      root->sectorsize);
3806 			ret = clone_finish_inode_update(trans, inode,
3807 							last_dest_end,
3808 							destoff, olen,
3809 							no_time_update);
3810 			if (ret)
3811 				goto out;
3812 			if (new_key.offset + datal >= destoff + len)
3813 				break;
3814 		}
3815 		btrfs_release_path(path);
3816 		key.offset = next_key_min_offset;
3817 
3818 		if (fatal_signal_pending(current)) {
3819 			ret = -EINTR;
3820 			goto out;
3821 		}
3822 	}
3823 	ret = 0;
3824 
3825 	if (last_dest_end < destoff + len) {
3826 		/*
3827 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3828 		 * fully or partially overlaps our cloning range at its end.
3829 		 */
3830 		btrfs_release_path(path);
3831 
3832 		/*
3833 		 * 1 - remove extent(s)
3834 		 * 1 - inode update
3835 		 */
3836 		trans = btrfs_start_transaction(root, 2);
3837 		if (IS_ERR(trans)) {
3838 			ret = PTR_ERR(trans);
3839 			goto out;
3840 		}
3841 		ret = btrfs_drop_extents(trans, root, inode,
3842 					 last_dest_end, destoff + len, 1);
3843 		if (ret) {
3844 			if (ret != -EOPNOTSUPP)
3845 				btrfs_abort_transaction(trans, ret);
3846 			btrfs_end_transaction(trans, root);
3847 			goto out;
3848 		}
3849 		clone_update_extent_map(inode, trans, NULL, last_dest_end,
3850 					destoff + len - last_dest_end);
3851 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3852 						destoff, olen, no_time_update);
3853 	}
3854 
3855 out:
3856 	btrfs_free_path(path);
3857 	kvfree(buf);
3858 	return ret;
3859 }
3860 
3861 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3862 					u64 off, u64 olen, u64 destoff)
3863 {
3864 	struct inode *inode = file_inode(file);
3865 	struct inode *src = file_inode(file_src);
3866 	struct btrfs_root *root = BTRFS_I(inode)->root;
3867 	int ret;
3868 	u64 len = olen;
3869 	u64 bs = root->fs_info->sb->s_blocksize;
3870 	int same_inode = src == inode;
3871 
3872 	/*
3873 	 * TODO:
3874 	 * - split compressed inline extents.  annoying: we need to
3875 	 *   decompress into destination's address_space (the file offset
3876 	 *   may change, so source mapping won't do), then recompress (or
3877 	 *   otherwise reinsert) a subrange.
3878 	 *
3879 	 * - split destination inode's inline extents.  The inline extents can
3880 	 *   be either compressed or non-compressed.
3881 	 */
3882 
3883 	if (btrfs_root_readonly(root))
3884 		return -EROFS;
3885 
3886 	if (file_src->f_path.mnt != file->f_path.mnt ||
3887 	    src->i_sb != inode->i_sb)
3888 		return -EXDEV;
3889 
3890 	/* don't make the dst file partly checksummed */
3891 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3892 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3893 		return -EINVAL;
3894 
3895 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3896 		return -EISDIR;
3897 
3898 	if (!same_inode) {
3899 		btrfs_double_inode_lock(src, inode);
3900 	} else {
3901 		inode_lock(src);
3902 	}
3903 
3904 	/* determine range to clone */
3905 	ret = -EINVAL;
3906 	if (off + len > src->i_size || off + len < off)
3907 		goto out_unlock;
3908 	if (len == 0)
3909 		olen = len = src->i_size - off;
3910 	/* if we extend to eof, continue to block boundary */
3911 	if (off + len == src->i_size)
3912 		len = ALIGN(src->i_size, bs) - off;
3913 
3914 	if (len == 0) {
3915 		ret = 0;
3916 		goto out_unlock;
3917 	}
3918 
3919 	/* verify the end result is block aligned */
3920 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3921 	    !IS_ALIGNED(destoff, bs))
3922 		goto out_unlock;
3923 
3924 	/* verify if ranges are overlapped within the same file */
3925 	if (same_inode) {
3926 		if (destoff + len > off && destoff < off + len)
3927 			goto out_unlock;
3928 	}
3929 
3930 	if (destoff > inode->i_size) {
3931 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3932 		if (ret)
3933 			goto out_unlock;
3934 	}
3935 
3936 	/*
3937 	 * Lock the target range too. Right after we replace the file extent
3938 	 * items in the fs tree (which now point to the cloned data), we might
3939 	 * have a worker replace them with extent items relative to a write
3940 	 * operation that was issued before this clone operation (i.e. confront
3941 	 * with inode.c:btrfs_finish_ordered_io).
3942 	 */
3943 	if (same_inode) {
3944 		u64 lock_start = min_t(u64, off, destoff);
3945 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3946 
3947 		ret = lock_extent_range(src, lock_start, lock_len, true);
3948 	} else {
3949 		ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3950 					       true);
3951 	}
3952 	ASSERT(ret == 0);
3953 	if (WARN_ON(ret)) {
3954 		/* ranges in the io trees already unlocked */
3955 		goto out_unlock;
3956 	}
3957 
3958 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3959 
3960 	if (same_inode) {
3961 		u64 lock_start = min_t(u64, off, destoff);
3962 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3963 
3964 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3965 	} else {
3966 		btrfs_double_extent_unlock(src, off, inode, destoff, len);
3967 	}
3968 	/*
3969 	 * Truncate page cache pages so that future reads will see the cloned
3970 	 * data immediately and not the previous data.
3971 	 */
3972 	truncate_inode_pages_range(&inode->i_data,
3973 				round_down(destoff, PAGE_SIZE),
3974 				round_up(destoff + len, PAGE_SIZE) - 1);
3975 out_unlock:
3976 	if (!same_inode)
3977 		btrfs_double_inode_unlock(src, inode);
3978 	else
3979 		inode_unlock(src);
3980 	return ret;
3981 }
3982 
3983 ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in,
3984 			      struct file *file_out, loff_t pos_out,
3985 			      size_t len, unsigned int flags)
3986 {
3987 	ssize_t ret;
3988 
3989 	ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out);
3990 	if (ret == 0)
3991 		ret = len;
3992 	return ret;
3993 }
3994 
3995 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3996 		struct file *dst_file, loff_t destoff, u64 len)
3997 {
3998 	return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3999 }
4000 
4001 /*
4002  * there are many ways the trans_start and trans_end ioctls can lead
4003  * to deadlocks.  They should only be used by applications that
4004  * basically own the machine, and have a very in depth understanding
4005  * of all the possible deadlocks and enospc problems.
4006  */
4007 static long btrfs_ioctl_trans_start(struct file *file)
4008 {
4009 	struct inode *inode = file_inode(file);
4010 	struct btrfs_root *root = BTRFS_I(inode)->root;
4011 	struct btrfs_trans_handle *trans;
4012 	int ret;
4013 
4014 	ret = -EPERM;
4015 	if (!capable(CAP_SYS_ADMIN))
4016 		goto out;
4017 
4018 	ret = -EINPROGRESS;
4019 	if (file->private_data)
4020 		goto out;
4021 
4022 	ret = -EROFS;
4023 	if (btrfs_root_readonly(root))
4024 		goto out;
4025 
4026 	ret = mnt_want_write_file(file);
4027 	if (ret)
4028 		goto out;
4029 
4030 	atomic_inc(&root->fs_info->open_ioctl_trans);
4031 
4032 	ret = -ENOMEM;
4033 	trans = btrfs_start_ioctl_transaction(root);
4034 	if (IS_ERR(trans))
4035 		goto out_drop;
4036 
4037 	file->private_data = trans;
4038 	return 0;
4039 
4040 out_drop:
4041 	atomic_dec(&root->fs_info->open_ioctl_trans);
4042 	mnt_drop_write_file(file);
4043 out:
4044 	return ret;
4045 }
4046 
4047 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4048 {
4049 	struct inode *inode = file_inode(file);
4050 	struct btrfs_root *root = BTRFS_I(inode)->root;
4051 	struct btrfs_root *new_root;
4052 	struct btrfs_dir_item *di;
4053 	struct btrfs_trans_handle *trans;
4054 	struct btrfs_path *path;
4055 	struct btrfs_key location;
4056 	struct btrfs_disk_key disk_key;
4057 	u64 objectid = 0;
4058 	u64 dir_id;
4059 	int ret;
4060 
4061 	if (!capable(CAP_SYS_ADMIN))
4062 		return -EPERM;
4063 
4064 	ret = mnt_want_write_file(file);
4065 	if (ret)
4066 		return ret;
4067 
4068 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4069 		ret = -EFAULT;
4070 		goto out;
4071 	}
4072 
4073 	if (!objectid)
4074 		objectid = BTRFS_FS_TREE_OBJECTID;
4075 
4076 	location.objectid = objectid;
4077 	location.type = BTRFS_ROOT_ITEM_KEY;
4078 	location.offset = (u64)-1;
4079 
4080 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
4081 	if (IS_ERR(new_root)) {
4082 		ret = PTR_ERR(new_root);
4083 		goto out;
4084 	}
4085 
4086 	path = btrfs_alloc_path();
4087 	if (!path) {
4088 		ret = -ENOMEM;
4089 		goto out;
4090 	}
4091 	path->leave_spinning = 1;
4092 
4093 	trans = btrfs_start_transaction(root, 1);
4094 	if (IS_ERR(trans)) {
4095 		btrfs_free_path(path);
4096 		ret = PTR_ERR(trans);
4097 		goto out;
4098 	}
4099 
4100 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
4101 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
4102 				   dir_id, "default", 7, 1);
4103 	if (IS_ERR_OR_NULL(di)) {
4104 		btrfs_free_path(path);
4105 		btrfs_end_transaction(trans, root);
4106 		btrfs_err(new_root->fs_info,
4107 			  "Umm, you don't have the default diritem, this isn't going to work");
4108 		ret = -ENOENT;
4109 		goto out;
4110 	}
4111 
4112 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4113 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4114 	btrfs_mark_buffer_dirty(path->nodes[0]);
4115 	btrfs_free_path(path);
4116 
4117 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4118 	btrfs_end_transaction(trans, root);
4119 out:
4120 	mnt_drop_write_file(file);
4121 	return ret;
4122 }
4123 
4124 void btrfs_get_block_group_info(struct list_head *groups_list,
4125 				struct btrfs_ioctl_space_info *space)
4126 {
4127 	struct btrfs_block_group_cache *block_group;
4128 
4129 	space->total_bytes = 0;
4130 	space->used_bytes = 0;
4131 	space->flags = 0;
4132 	list_for_each_entry(block_group, groups_list, list) {
4133 		space->flags = block_group->flags;
4134 		space->total_bytes += block_group->key.offset;
4135 		space->used_bytes +=
4136 			btrfs_block_group_used(&block_group->item);
4137 	}
4138 }
4139 
4140 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
4141 {
4142 	struct btrfs_ioctl_space_args space_args;
4143 	struct btrfs_ioctl_space_info space;
4144 	struct btrfs_ioctl_space_info *dest;
4145 	struct btrfs_ioctl_space_info *dest_orig;
4146 	struct btrfs_ioctl_space_info __user *user_dest;
4147 	struct btrfs_space_info *info;
4148 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4149 		       BTRFS_BLOCK_GROUP_SYSTEM,
4150 		       BTRFS_BLOCK_GROUP_METADATA,
4151 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4152 	int num_types = 4;
4153 	int alloc_size;
4154 	int ret = 0;
4155 	u64 slot_count = 0;
4156 	int i, c;
4157 
4158 	if (copy_from_user(&space_args,
4159 			   (struct btrfs_ioctl_space_args __user *)arg,
4160 			   sizeof(space_args)))
4161 		return -EFAULT;
4162 
4163 	for (i = 0; i < num_types; i++) {
4164 		struct btrfs_space_info *tmp;
4165 
4166 		info = NULL;
4167 		rcu_read_lock();
4168 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4169 					list) {
4170 			if (tmp->flags == types[i]) {
4171 				info = tmp;
4172 				break;
4173 			}
4174 		}
4175 		rcu_read_unlock();
4176 
4177 		if (!info)
4178 			continue;
4179 
4180 		down_read(&info->groups_sem);
4181 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4182 			if (!list_empty(&info->block_groups[c]))
4183 				slot_count++;
4184 		}
4185 		up_read(&info->groups_sem);
4186 	}
4187 
4188 	/*
4189 	 * Global block reserve, exported as a space_info
4190 	 */
4191 	slot_count++;
4192 
4193 	/* space_slots == 0 means they are asking for a count */
4194 	if (space_args.space_slots == 0) {
4195 		space_args.total_spaces = slot_count;
4196 		goto out;
4197 	}
4198 
4199 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4200 
4201 	alloc_size = sizeof(*dest) * slot_count;
4202 
4203 	/* we generally have at most 6 or so space infos, one for each raid
4204 	 * level.  So, a whole page should be more than enough for everyone
4205 	 */
4206 	if (alloc_size > PAGE_SIZE)
4207 		return -ENOMEM;
4208 
4209 	space_args.total_spaces = 0;
4210 	dest = kmalloc(alloc_size, GFP_KERNEL);
4211 	if (!dest)
4212 		return -ENOMEM;
4213 	dest_orig = dest;
4214 
4215 	/* now we have a buffer to copy into */
4216 	for (i = 0; i < num_types; i++) {
4217 		struct btrfs_space_info *tmp;
4218 
4219 		if (!slot_count)
4220 			break;
4221 
4222 		info = NULL;
4223 		rcu_read_lock();
4224 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4225 					list) {
4226 			if (tmp->flags == types[i]) {
4227 				info = tmp;
4228 				break;
4229 			}
4230 		}
4231 		rcu_read_unlock();
4232 
4233 		if (!info)
4234 			continue;
4235 		down_read(&info->groups_sem);
4236 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4237 			if (!list_empty(&info->block_groups[c])) {
4238 				btrfs_get_block_group_info(
4239 					&info->block_groups[c], &space);
4240 				memcpy(dest, &space, sizeof(space));
4241 				dest++;
4242 				space_args.total_spaces++;
4243 				slot_count--;
4244 			}
4245 			if (!slot_count)
4246 				break;
4247 		}
4248 		up_read(&info->groups_sem);
4249 	}
4250 
4251 	/*
4252 	 * Add global block reserve
4253 	 */
4254 	if (slot_count) {
4255 		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4256 
4257 		spin_lock(&block_rsv->lock);
4258 		space.total_bytes = block_rsv->size;
4259 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4260 		spin_unlock(&block_rsv->lock);
4261 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4262 		memcpy(dest, &space, sizeof(space));
4263 		space_args.total_spaces++;
4264 	}
4265 
4266 	user_dest = (struct btrfs_ioctl_space_info __user *)
4267 		(arg + sizeof(struct btrfs_ioctl_space_args));
4268 
4269 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4270 		ret = -EFAULT;
4271 
4272 	kfree(dest_orig);
4273 out:
4274 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4275 		ret = -EFAULT;
4276 
4277 	return ret;
4278 }
4279 
4280 /*
4281  * there are many ways the trans_start and trans_end ioctls can lead
4282  * to deadlocks.  They should only be used by applications that
4283  * basically own the machine, and have a very in depth understanding
4284  * of all the possible deadlocks and enospc problems.
4285  */
4286 long btrfs_ioctl_trans_end(struct file *file)
4287 {
4288 	struct inode *inode = file_inode(file);
4289 	struct btrfs_root *root = BTRFS_I(inode)->root;
4290 	struct btrfs_trans_handle *trans;
4291 
4292 	trans = file->private_data;
4293 	if (!trans)
4294 		return -EINVAL;
4295 	file->private_data = NULL;
4296 
4297 	btrfs_end_transaction(trans, root);
4298 
4299 	atomic_dec(&root->fs_info->open_ioctl_trans);
4300 
4301 	mnt_drop_write_file(file);
4302 	return 0;
4303 }
4304 
4305 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4306 					    void __user *argp)
4307 {
4308 	struct btrfs_trans_handle *trans;
4309 	u64 transid;
4310 	int ret;
4311 
4312 	trans = btrfs_attach_transaction_barrier(root);
4313 	if (IS_ERR(trans)) {
4314 		if (PTR_ERR(trans) != -ENOENT)
4315 			return PTR_ERR(trans);
4316 
4317 		/* No running transaction, don't bother */
4318 		transid = root->fs_info->last_trans_committed;
4319 		goto out;
4320 	}
4321 	transid = trans->transid;
4322 	ret = btrfs_commit_transaction_async(trans, root, 0);
4323 	if (ret) {
4324 		btrfs_end_transaction(trans, root);
4325 		return ret;
4326 	}
4327 out:
4328 	if (argp)
4329 		if (copy_to_user(argp, &transid, sizeof(transid)))
4330 			return -EFAULT;
4331 	return 0;
4332 }
4333 
4334 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4335 					   void __user *argp)
4336 {
4337 	u64 transid;
4338 
4339 	if (argp) {
4340 		if (copy_from_user(&transid, argp, sizeof(transid)))
4341 			return -EFAULT;
4342 	} else {
4343 		transid = 0;  /* current trans */
4344 	}
4345 	return btrfs_wait_for_commit(root, transid);
4346 }
4347 
4348 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4349 {
4350 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4351 	struct btrfs_ioctl_scrub_args *sa;
4352 	int ret;
4353 
4354 	if (!capable(CAP_SYS_ADMIN))
4355 		return -EPERM;
4356 
4357 	sa = memdup_user(arg, sizeof(*sa));
4358 	if (IS_ERR(sa))
4359 		return PTR_ERR(sa);
4360 
4361 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4362 		ret = mnt_want_write_file(file);
4363 		if (ret)
4364 			goto out;
4365 	}
4366 
4367 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4368 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4369 			      0);
4370 
4371 	if (copy_to_user(arg, sa, sizeof(*sa)))
4372 		ret = -EFAULT;
4373 
4374 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4375 		mnt_drop_write_file(file);
4376 out:
4377 	kfree(sa);
4378 	return ret;
4379 }
4380 
4381 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4382 {
4383 	if (!capable(CAP_SYS_ADMIN))
4384 		return -EPERM;
4385 
4386 	return btrfs_scrub_cancel(root->fs_info);
4387 }
4388 
4389 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4390 				       void __user *arg)
4391 {
4392 	struct btrfs_ioctl_scrub_args *sa;
4393 	int ret;
4394 
4395 	if (!capable(CAP_SYS_ADMIN))
4396 		return -EPERM;
4397 
4398 	sa = memdup_user(arg, sizeof(*sa));
4399 	if (IS_ERR(sa))
4400 		return PTR_ERR(sa);
4401 
4402 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4403 
4404 	if (copy_to_user(arg, sa, sizeof(*sa)))
4405 		ret = -EFAULT;
4406 
4407 	kfree(sa);
4408 	return ret;
4409 }
4410 
4411 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4412 				      void __user *arg)
4413 {
4414 	struct btrfs_ioctl_get_dev_stats *sa;
4415 	int ret;
4416 
4417 	sa = memdup_user(arg, sizeof(*sa));
4418 	if (IS_ERR(sa))
4419 		return PTR_ERR(sa);
4420 
4421 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4422 		kfree(sa);
4423 		return -EPERM;
4424 	}
4425 
4426 	ret = btrfs_get_dev_stats(root, sa);
4427 
4428 	if (copy_to_user(arg, sa, sizeof(*sa)))
4429 		ret = -EFAULT;
4430 
4431 	kfree(sa);
4432 	return ret;
4433 }
4434 
4435 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4436 {
4437 	struct btrfs_ioctl_dev_replace_args *p;
4438 	int ret;
4439 
4440 	if (!capable(CAP_SYS_ADMIN))
4441 		return -EPERM;
4442 
4443 	p = memdup_user(arg, sizeof(*p));
4444 	if (IS_ERR(p))
4445 		return PTR_ERR(p);
4446 
4447 	switch (p->cmd) {
4448 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4449 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4450 			ret = -EROFS;
4451 			goto out;
4452 		}
4453 		if (atomic_xchg(
4454 			&root->fs_info->mutually_exclusive_operation_running,
4455 			1)) {
4456 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4457 		} else {
4458 			ret = btrfs_dev_replace_by_ioctl(root, p);
4459 			atomic_set(
4460 			 &root->fs_info->mutually_exclusive_operation_running,
4461 			 0);
4462 		}
4463 		break;
4464 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4465 		btrfs_dev_replace_status(root->fs_info, p);
4466 		ret = 0;
4467 		break;
4468 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4469 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
4470 		break;
4471 	default:
4472 		ret = -EINVAL;
4473 		break;
4474 	}
4475 
4476 	if (copy_to_user(arg, p, sizeof(*p)))
4477 		ret = -EFAULT;
4478 out:
4479 	kfree(p);
4480 	return ret;
4481 }
4482 
4483 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4484 {
4485 	int ret = 0;
4486 	int i;
4487 	u64 rel_ptr;
4488 	int size;
4489 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4490 	struct inode_fs_paths *ipath = NULL;
4491 	struct btrfs_path *path;
4492 
4493 	if (!capable(CAP_DAC_READ_SEARCH))
4494 		return -EPERM;
4495 
4496 	path = btrfs_alloc_path();
4497 	if (!path) {
4498 		ret = -ENOMEM;
4499 		goto out;
4500 	}
4501 
4502 	ipa = memdup_user(arg, sizeof(*ipa));
4503 	if (IS_ERR(ipa)) {
4504 		ret = PTR_ERR(ipa);
4505 		ipa = NULL;
4506 		goto out;
4507 	}
4508 
4509 	size = min_t(u32, ipa->size, 4096);
4510 	ipath = init_ipath(size, root, path);
4511 	if (IS_ERR(ipath)) {
4512 		ret = PTR_ERR(ipath);
4513 		ipath = NULL;
4514 		goto out;
4515 	}
4516 
4517 	ret = paths_from_inode(ipa->inum, ipath);
4518 	if (ret < 0)
4519 		goto out;
4520 
4521 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4522 		rel_ptr = ipath->fspath->val[i] -
4523 			  (u64)(unsigned long)ipath->fspath->val;
4524 		ipath->fspath->val[i] = rel_ptr;
4525 	}
4526 
4527 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4528 			   (void *)(unsigned long)ipath->fspath, size);
4529 	if (ret) {
4530 		ret = -EFAULT;
4531 		goto out;
4532 	}
4533 
4534 out:
4535 	btrfs_free_path(path);
4536 	free_ipath(ipath);
4537 	kfree(ipa);
4538 
4539 	return ret;
4540 }
4541 
4542 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4543 {
4544 	struct btrfs_data_container *inodes = ctx;
4545 	const size_t c = 3 * sizeof(u64);
4546 
4547 	if (inodes->bytes_left >= c) {
4548 		inodes->bytes_left -= c;
4549 		inodes->val[inodes->elem_cnt] = inum;
4550 		inodes->val[inodes->elem_cnt + 1] = offset;
4551 		inodes->val[inodes->elem_cnt + 2] = root;
4552 		inodes->elem_cnt += 3;
4553 	} else {
4554 		inodes->bytes_missing += c - inodes->bytes_left;
4555 		inodes->bytes_left = 0;
4556 		inodes->elem_missed += 3;
4557 	}
4558 
4559 	return 0;
4560 }
4561 
4562 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4563 					void __user *arg)
4564 {
4565 	int ret = 0;
4566 	int size;
4567 	struct btrfs_ioctl_logical_ino_args *loi;
4568 	struct btrfs_data_container *inodes = NULL;
4569 	struct btrfs_path *path = NULL;
4570 
4571 	if (!capable(CAP_SYS_ADMIN))
4572 		return -EPERM;
4573 
4574 	loi = memdup_user(arg, sizeof(*loi));
4575 	if (IS_ERR(loi)) {
4576 		ret = PTR_ERR(loi);
4577 		loi = NULL;
4578 		goto out;
4579 	}
4580 
4581 	path = btrfs_alloc_path();
4582 	if (!path) {
4583 		ret = -ENOMEM;
4584 		goto out;
4585 	}
4586 
4587 	size = min_t(u32, loi->size, SZ_64K);
4588 	inodes = init_data_container(size);
4589 	if (IS_ERR(inodes)) {
4590 		ret = PTR_ERR(inodes);
4591 		inodes = NULL;
4592 		goto out;
4593 	}
4594 
4595 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4596 					  build_ino_list, inodes);
4597 	if (ret == -EINVAL)
4598 		ret = -ENOENT;
4599 	if (ret < 0)
4600 		goto out;
4601 
4602 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4603 			   (void *)(unsigned long)inodes, size);
4604 	if (ret)
4605 		ret = -EFAULT;
4606 
4607 out:
4608 	btrfs_free_path(path);
4609 	vfree(inodes);
4610 	kfree(loi);
4611 
4612 	return ret;
4613 }
4614 
4615 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4616 			       struct btrfs_ioctl_balance_args *bargs)
4617 {
4618 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4619 
4620 	bargs->flags = bctl->flags;
4621 
4622 	if (atomic_read(&fs_info->balance_running))
4623 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4624 	if (atomic_read(&fs_info->balance_pause_req))
4625 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4626 	if (atomic_read(&fs_info->balance_cancel_req))
4627 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4628 
4629 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4630 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4631 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4632 
4633 	if (lock) {
4634 		spin_lock(&fs_info->balance_lock);
4635 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4636 		spin_unlock(&fs_info->balance_lock);
4637 	} else {
4638 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4639 	}
4640 }
4641 
4642 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4643 {
4644 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4645 	struct btrfs_fs_info *fs_info = root->fs_info;
4646 	struct btrfs_ioctl_balance_args *bargs;
4647 	struct btrfs_balance_control *bctl;
4648 	bool need_unlock; /* for mut. excl. ops lock */
4649 	int ret;
4650 
4651 	if (!capable(CAP_SYS_ADMIN))
4652 		return -EPERM;
4653 
4654 	ret = mnt_want_write_file(file);
4655 	if (ret)
4656 		return ret;
4657 
4658 again:
4659 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4660 		mutex_lock(&fs_info->volume_mutex);
4661 		mutex_lock(&fs_info->balance_mutex);
4662 		need_unlock = true;
4663 		goto locked;
4664 	}
4665 
4666 	/*
4667 	 * mut. excl. ops lock is locked.  Three possibilities:
4668 	 *   (1) some other op is running
4669 	 *   (2) balance is running
4670 	 *   (3) balance is paused -- special case (think resume)
4671 	 */
4672 	mutex_lock(&fs_info->balance_mutex);
4673 	if (fs_info->balance_ctl) {
4674 		/* this is either (2) or (3) */
4675 		if (!atomic_read(&fs_info->balance_running)) {
4676 			mutex_unlock(&fs_info->balance_mutex);
4677 			if (!mutex_trylock(&fs_info->volume_mutex))
4678 				goto again;
4679 			mutex_lock(&fs_info->balance_mutex);
4680 
4681 			if (fs_info->balance_ctl &&
4682 			    !atomic_read(&fs_info->balance_running)) {
4683 				/* this is (3) */
4684 				need_unlock = false;
4685 				goto locked;
4686 			}
4687 
4688 			mutex_unlock(&fs_info->balance_mutex);
4689 			mutex_unlock(&fs_info->volume_mutex);
4690 			goto again;
4691 		} else {
4692 			/* this is (2) */
4693 			mutex_unlock(&fs_info->balance_mutex);
4694 			ret = -EINPROGRESS;
4695 			goto out;
4696 		}
4697 	} else {
4698 		/* this is (1) */
4699 		mutex_unlock(&fs_info->balance_mutex);
4700 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4701 		goto out;
4702 	}
4703 
4704 locked:
4705 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4706 
4707 	if (arg) {
4708 		bargs = memdup_user(arg, sizeof(*bargs));
4709 		if (IS_ERR(bargs)) {
4710 			ret = PTR_ERR(bargs);
4711 			goto out_unlock;
4712 		}
4713 
4714 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4715 			if (!fs_info->balance_ctl) {
4716 				ret = -ENOTCONN;
4717 				goto out_bargs;
4718 			}
4719 
4720 			bctl = fs_info->balance_ctl;
4721 			spin_lock(&fs_info->balance_lock);
4722 			bctl->flags |= BTRFS_BALANCE_RESUME;
4723 			spin_unlock(&fs_info->balance_lock);
4724 
4725 			goto do_balance;
4726 		}
4727 	} else {
4728 		bargs = NULL;
4729 	}
4730 
4731 	if (fs_info->balance_ctl) {
4732 		ret = -EINPROGRESS;
4733 		goto out_bargs;
4734 	}
4735 
4736 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4737 	if (!bctl) {
4738 		ret = -ENOMEM;
4739 		goto out_bargs;
4740 	}
4741 
4742 	bctl->fs_info = fs_info;
4743 	if (arg) {
4744 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4745 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4746 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4747 
4748 		bctl->flags = bargs->flags;
4749 	} else {
4750 		/* balance everything - no filters */
4751 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4752 	}
4753 
4754 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4755 		ret = -EINVAL;
4756 		goto out_bctl;
4757 	}
4758 
4759 do_balance:
4760 	/*
4761 	 * Ownership of bctl and mutually_exclusive_operation_running
4762 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4763 	 * or, if restriper was paused all the way until unmount, in
4764 	 * free_fs_info.  mutually_exclusive_operation_running is
4765 	 * cleared in __cancel_balance.
4766 	 */
4767 	need_unlock = false;
4768 
4769 	ret = btrfs_balance(bctl, bargs);
4770 	bctl = NULL;
4771 
4772 	if (arg) {
4773 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4774 			ret = -EFAULT;
4775 	}
4776 
4777 out_bctl:
4778 	kfree(bctl);
4779 out_bargs:
4780 	kfree(bargs);
4781 out_unlock:
4782 	mutex_unlock(&fs_info->balance_mutex);
4783 	mutex_unlock(&fs_info->volume_mutex);
4784 	if (need_unlock)
4785 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4786 out:
4787 	mnt_drop_write_file(file);
4788 	return ret;
4789 }
4790 
4791 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4792 {
4793 	if (!capable(CAP_SYS_ADMIN))
4794 		return -EPERM;
4795 
4796 	switch (cmd) {
4797 	case BTRFS_BALANCE_CTL_PAUSE:
4798 		return btrfs_pause_balance(root->fs_info);
4799 	case BTRFS_BALANCE_CTL_CANCEL:
4800 		return btrfs_cancel_balance(root->fs_info);
4801 	}
4802 
4803 	return -EINVAL;
4804 }
4805 
4806 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4807 					 void __user *arg)
4808 {
4809 	struct btrfs_fs_info *fs_info = root->fs_info;
4810 	struct btrfs_ioctl_balance_args *bargs;
4811 	int ret = 0;
4812 
4813 	if (!capable(CAP_SYS_ADMIN))
4814 		return -EPERM;
4815 
4816 	mutex_lock(&fs_info->balance_mutex);
4817 	if (!fs_info->balance_ctl) {
4818 		ret = -ENOTCONN;
4819 		goto out;
4820 	}
4821 
4822 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4823 	if (!bargs) {
4824 		ret = -ENOMEM;
4825 		goto out;
4826 	}
4827 
4828 	update_ioctl_balance_args(fs_info, 1, bargs);
4829 
4830 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4831 		ret = -EFAULT;
4832 
4833 	kfree(bargs);
4834 out:
4835 	mutex_unlock(&fs_info->balance_mutex);
4836 	return ret;
4837 }
4838 
4839 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4840 {
4841 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4842 	struct btrfs_ioctl_quota_ctl_args *sa;
4843 	struct btrfs_trans_handle *trans = NULL;
4844 	int ret;
4845 	int err;
4846 
4847 	if (!capable(CAP_SYS_ADMIN))
4848 		return -EPERM;
4849 
4850 	ret = mnt_want_write_file(file);
4851 	if (ret)
4852 		return ret;
4853 
4854 	sa = memdup_user(arg, sizeof(*sa));
4855 	if (IS_ERR(sa)) {
4856 		ret = PTR_ERR(sa);
4857 		goto drop_write;
4858 	}
4859 
4860 	down_write(&root->fs_info->subvol_sem);
4861 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4862 	if (IS_ERR(trans)) {
4863 		ret = PTR_ERR(trans);
4864 		goto out;
4865 	}
4866 
4867 	switch (sa->cmd) {
4868 	case BTRFS_QUOTA_CTL_ENABLE:
4869 		ret = btrfs_quota_enable(trans, root->fs_info);
4870 		break;
4871 	case BTRFS_QUOTA_CTL_DISABLE:
4872 		ret = btrfs_quota_disable(trans, root->fs_info);
4873 		break;
4874 	default:
4875 		ret = -EINVAL;
4876 		break;
4877 	}
4878 
4879 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4880 	if (err && !ret)
4881 		ret = err;
4882 out:
4883 	kfree(sa);
4884 	up_write(&root->fs_info->subvol_sem);
4885 drop_write:
4886 	mnt_drop_write_file(file);
4887 	return ret;
4888 }
4889 
4890 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4891 {
4892 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4893 	struct btrfs_ioctl_qgroup_assign_args *sa;
4894 	struct btrfs_trans_handle *trans;
4895 	int ret;
4896 	int err;
4897 
4898 	if (!capable(CAP_SYS_ADMIN))
4899 		return -EPERM;
4900 
4901 	ret = mnt_want_write_file(file);
4902 	if (ret)
4903 		return ret;
4904 
4905 	sa = memdup_user(arg, sizeof(*sa));
4906 	if (IS_ERR(sa)) {
4907 		ret = PTR_ERR(sa);
4908 		goto drop_write;
4909 	}
4910 
4911 	trans = btrfs_join_transaction(root);
4912 	if (IS_ERR(trans)) {
4913 		ret = PTR_ERR(trans);
4914 		goto out;
4915 	}
4916 
4917 	/* FIXME: check if the IDs really exist */
4918 	if (sa->assign) {
4919 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4920 						sa->src, sa->dst);
4921 	} else {
4922 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4923 						sa->src, sa->dst);
4924 	}
4925 
4926 	/* update qgroup status and info */
4927 	err = btrfs_run_qgroups(trans, root->fs_info);
4928 	if (err < 0)
4929 		btrfs_handle_fs_error(root->fs_info, err,
4930 			    "failed to update qgroup status and info");
4931 	err = btrfs_end_transaction(trans, root);
4932 	if (err && !ret)
4933 		ret = err;
4934 
4935 out:
4936 	kfree(sa);
4937 drop_write:
4938 	mnt_drop_write_file(file);
4939 	return ret;
4940 }
4941 
4942 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4943 {
4944 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4945 	struct btrfs_ioctl_qgroup_create_args *sa;
4946 	struct btrfs_trans_handle *trans;
4947 	int ret;
4948 	int err;
4949 
4950 	if (!capable(CAP_SYS_ADMIN))
4951 		return -EPERM;
4952 
4953 	ret = mnt_want_write_file(file);
4954 	if (ret)
4955 		return ret;
4956 
4957 	sa = memdup_user(arg, sizeof(*sa));
4958 	if (IS_ERR(sa)) {
4959 		ret = PTR_ERR(sa);
4960 		goto drop_write;
4961 	}
4962 
4963 	if (!sa->qgroupid) {
4964 		ret = -EINVAL;
4965 		goto out;
4966 	}
4967 
4968 	trans = btrfs_join_transaction(root);
4969 	if (IS_ERR(trans)) {
4970 		ret = PTR_ERR(trans);
4971 		goto out;
4972 	}
4973 
4974 	/* FIXME: check if the IDs really exist */
4975 	if (sa->create) {
4976 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4977 	} else {
4978 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4979 	}
4980 
4981 	err = btrfs_end_transaction(trans, root);
4982 	if (err && !ret)
4983 		ret = err;
4984 
4985 out:
4986 	kfree(sa);
4987 drop_write:
4988 	mnt_drop_write_file(file);
4989 	return ret;
4990 }
4991 
4992 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4993 {
4994 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4995 	struct btrfs_ioctl_qgroup_limit_args *sa;
4996 	struct btrfs_trans_handle *trans;
4997 	int ret;
4998 	int err;
4999 	u64 qgroupid;
5000 
5001 	if (!capable(CAP_SYS_ADMIN))
5002 		return -EPERM;
5003 
5004 	ret = mnt_want_write_file(file);
5005 	if (ret)
5006 		return ret;
5007 
5008 	sa = memdup_user(arg, sizeof(*sa));
5009 	if (IS_ERR(sa)) {
5010 		ret = PTR_ERR(sa);
5011 		goto drop_write;
5012 	}
5013 
5014 	trans = btrfs_join_transaction(root);
5015 	if (IS_ERR(trans)) {
5016 		ret = PTR_ERR(trans);
5017 		goto out;
5018 	}
5019 
5020 	qgroupid = sa->qgroupid;
5021 	if (!qgroupid) {
5022 		/* take the current subvol as qgroup */
5023 		qgroupid = root->root_key.objectid;
5024 	}
5025 
5026 	/* FIXME: check if the IDs really exist */
5027 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
5028 
5029 	err = btrfs_end_transaction(trans, root);
5030 	if (err && !ret)
5031 		ret = err;
5032 
5033 out:
5034 	kfree(sa);
5035 drop_write:
5036 	mnt_drop_write_file(file);
5037 	return ret;
5038 }
5039 
5040 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5041 {
5042 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5043 	struct btrfs_ioctl_quota_rescan_args *qsa;
5044 	int ret;
5045 
5046 	if (!capable(CAP_SYS_ADMIN))
5047 		return -EPERM;
5048 
5049 	ret = mnt_want_write_file(file);
5050 	if (ret)
5051 		return ret;
5052 
5053 	qsa = memdup_user(arg, sizeof(*qsa));
5054 	if (IS_ERR(qsa)) {
5055 		ret = PTR_ERR(qsa);
5056 		goto drop_write;
5057 	}
5058 
5059 	if (qsa->flags) {
5060 		ret = -EINVAL;
5061 		goto out;
5062 	}
5063 
5064 	ret = btrfs_qgroup_rescan(root->fs_info);
5065 
5066 out:
5067 	kfree(qsa);
5068 drop_write:
5069 	mnt_drop_write_file(file);
5070 	return ret;
5071 }
5072 
5073 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5074 {
5075 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5076 	struct btrfs_ioctl_quota_rescan_args *qsa;
5077 	int ret = 0;
5078 
5079 	if (!capable(CAP_SYS_ADMIN))
5080 		return -EPERM;
5081 
5082 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5083 	if (!qsa)
5084 		return -ENOMEM;
5085 
5086 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5087 		qsa->flags = 1;
5088 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
5089 	}
5090 
5091 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5092 		ret = -EFAULT;
5093 
5094 	kfree(qsa);
5095 	return ret;
5096 }
5097 
5098 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5099 {
5100 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5101 
5102 	if (!capable(CAP_SYS_ADMIN))
5103 		return -EPERM;
5104 
5105 	return btrfs_qgroup_wait_for_completion(root->fs_info, true);
5106 }
5107 
5108 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5109 					    struct btrfs_ioctl_received_subvol_args *sa)
5110 {
5111 	struct inode *inode = file_inode(file);
5112 	struct btrfs_root *root = BTRFS_I(inode)->root;
5113 	struct btrfs_root_item *root_item = &root->root_item;
5114 	struct btrfs_trans_handle *trans;
5115 	struct timespec ct = current_time(inode);
5116 	int ret = 0;
5117 	int received_uuid_changed;
5118 
5119 	if (!inode_owner_or_capable(inode))
5120 		return -EPERM;
5121 
5122 	ret = mnt_want_write_file(file);
5123 	if (ret < 0)
5124 		return ret;
5125 
5126 	down_write(&root->fs_info->subvol_sem);
5127 
5128 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5129 		ret = -EINVAL;
5130 		goto out;
5131 	}
5132 
5133 	if (btrfs_root_readonly(root)) {
5134 		ret = -EROFS;
5135 		goto out;
5136 	}
5137 
5138 	/*
5139 	 * 1 - root item
5140 	 * 2 - uuid items (received uuid + subvol uuid)
5141 	 */
5142 	trans = btrfs_start_transaction(root, 3);
5143 	if (IS_ERR(trans)) {
5144 		ret = PTR_ERR(trans);
5145 		trans = NULL;
5146 		goto out;
5147 	}
5148 
5149 	sa->rtransid = trans->transid;
5150 	sa->rtime.sec = ct.tv_sec;
5151 	sa->rtime.nsec = ct.tv_nsec;
5152 
5153 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5154 				       BTRFS_UUID_SIZE);
5155 	if (received_uuid_changed &&
5156 	    !btrfs_is_empty_uuid(root_item->received_uuid))
5157 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5158 				    root_item->received_uuid,
5159 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5160 				    root->root_key.objectid);
5161 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5162 	btrfs_set_root_stransid(root_item, sa->stransid);
5163 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5164 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5165 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5166 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5167 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5168 
5169 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
5170 				&root->root_key, &root->root_item);
5171 	if (ret < 0) {
5172 		btrfs_end_transaction(trans, root);
5173 		goto out;
5174 	}
5175 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5176 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5177 					  sa->uuid,
5178 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5179 					  root->root_key.objectid);
5180 		if (ret < 0 && ret != -EEXIST) {
5181 			btrfs_abort_transaction(trans, ret);
5182 			goto out;
5183 		}
5184 	}
5185 	ret = btrfs_commit_transaction(trans, root);
5186 	if (ret < 0) {
5187 		btrfs_abort_transaction(trans, ret);
5188 		goto out;
5189 	}
5190 
5191 out:
5192 	up_write(&root->fs_info->subvol_sem);
5193 	mnt_drop_write_file(file);
5194 	return ret;
5195 }
5196 
5197 #ifdef CONFIG_64BIT
5198 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5199 						void __user *arg)
5200 {
5201 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5202 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5203 	int ret = 0;
5204 
5205 	args32 = memdup_user(arg, sizeof(*args32));
5206 	if (IS_ERR(args32)) {
5207 		ret = PTR_ERR(args32);
5208 		args32 = NULL;
5209 		goto out;
5210 	}
5211 
5212 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5213 	if (!args64) {
5214 		ret = -ENOMEM;
5215 		goto out;
5216 	}
5217 
5218 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5219 	args64->stransid = args32->stransid;
5220 	args64->rtransid = args32->rtransid;
5221 	args64->stime.sec = args32->stime.sec;
5222 	args64->stime.nsec = args32->stime.nsec;
5223 	args64->rtime.sec = args32->rtime.sec;
5224 	args64->rtime.nsec = args32->rtime.nsec;
5225 	args64->flags = args32->flags;
5226 
5227 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5228 	if (ret)
5229 		goto out;
5230 
5231 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5232 	args32->stransid = args64->stransid;
5233 	args32->rtransid = args64->rtransid;
5234 	args32->stime.sec = args64->stime.sec;
5235 	args32->stime.nsec = args64->stime.nsec;
5236 	args32->rtime.sec = args64->rtime.sec;
5237 	args32->rtime.nsec = args64->rtime.nsec;
5238 	args32->flags = args64->flags;
5239 
5240 	ret = copy_to_user(arg, args32, sizeof(*args32));
5241 	if (ret)
5242 		ret = -EFAULT;
5243 
5244 out:
5245 	kfree(args32);
5246 	kfree(args64);
5247 	return ret;
5248 }
5249 #endif
5250 
5251 static long btrfs_ioctl_set_received_subvol(struct file *file,
5252 					    void __user *arg)
5253 {
5254 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5255 	int ret = 0;
5256 
5257 	sa = memdup_user(arg, sizeof(*sa));
5258 	if (IS_ERR(sa)) {
5259 		ret = PTR_ERR(sa);
5260 		sa = NULL;
5261 		goto out;
5262 	}
5263 
5264 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5265 
5266 	if (ret)
5267 		goto out;
5268 
5269 	ret = copy_to_user(arg, sa, sizeof(*sa));
5270 	if (ret)
5271 		ret = -EFAULT;
5272 
5273 out:
5274 	kfree(sa);
5275 	return ret;
5276 }
5277 
5278 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5279 {
5280 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5281 	size_t len;
5282 	int ret;
5283 	char label[BTRFS_LABEL_SIZE];
5284 
5285 	spin_lock(&root->fs_info->super_lock);
5286 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5287 	spin_unlock(&root->fs_info->super_lock);
5288 
5289 	len = strnlen(label, BTRFS_LABEL_SIZE);
5290 
5291 	if (len == BTRFS_LABEL_SIZE) {
5292 		btrfs_warn(root->fs_info,
5293 			"label is too long, return the first %zu bytes", --len);
5294 	}
5295 
5296 	ret = copy_to_user(arg, label, len);
5297 
5298 	return ret ? -EFAULT : 0;
5299 }
5300 
5301 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5302 {
5303 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5304 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5305 	struct btrfs_trans_handle *trans;
5306 	char label[BTRFS_LABEL_SIZE];
5307 	int ret;
5308 
5309 	if (!capable(CAP_SYS_ADMIN))
5310 		return -EPERM;
5311 
5312 	if (copy_from_user(label, arg, sizeof(label)))
5313 		return -EFAULT;
5314 
5315 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5316 		btrfs_err(root->fs_info,
5317 			  "unable to set label with more than %d bytes",
5318 			  BTRFS_LABEL_SIZE - 1);
5319 		return -EINVAL;
5320 	}
5321 
5322 	ret = mnt_want_write_file(file);
5323 	if (ret)
5324 		return ret;
5325 
5326 	trans = btrfs_start_transaction(root, 0);
5327 	if (IS_ERR(trans)) {
5328 		ret = PTR_ERR(trans);
5329 		goto out_unlock;
5330 	}
5331 
5332 	spin_lock(&root->fs_info->super_lock);
5333 	strcpy(super_block->label, label);
5334 	spin_unlock(&root->fs_info->super_lock);
5335 	ret = btrfs_commit_transaction(trans, root);
5336 
5337 out_unlock:
5338 	mnt_drop_write_file(file);
5339 	return ret;
5340 }
5341 
5342 #define INIT_FEATURE_FLAGS(suffix) \
5343 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5344 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5345 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5346 
5347 int btrfs_ioctl_get_supported_features(void __user *arg)
5348 {
5349 	static const struct btrfs_ioctl_feature_flags features[3] = {
5350 		INIT_FEATURE_FLAGS(SUPP),
5351 		INIT_FEATURE_FLAGS(SAFE_SET),
5352 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5353 	};
5354 
5355 	if (copy_to_user(arg, &features, sizeof(features)))
5356 		return -EFAULT;
5357 
5358 	return 0;
5359 }
5360 
5361 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5362 {
5363 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5364 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5365 	struct btrfs_ioctl_feature_flags features;
5366 
5367 	features.compat_flags = btrfs_super_compat_flags(super_block);
5368 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5369 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5370 
5371 	if (copy_to_user(arg, &features, sizeof(features)))
5372 		return -EFAULT;
5373 
5374 	return 0;
5375 }
5376 
5377 static int check_feature_bits(struct btrfs_root *root,
5378 			      enum btrfs_feature_set set,
5379 			      u64 change_mask, u64 flags, u64 supported_flags,
5380 			      u64 safe_set, u64 safe_clear)
5381 {
5382 	const char *type = btrfs_feature_set_names[set];
5383 	char *names;
5384 	u64 disallowed, unsupported;
5385 	u64 set_mask = flags & change_mask;
5386 	u64 clear_mask = ~flags & change_mask;
5387 
5388 	unsupported = set_mask & ~supported_flags;
5389 	if (unsupported) {
5390 		names = btrfs_printable_features(set, unsupported);
5391 		if (names) {
5392 			btrfs_warn(root->fs_info,
5393 			   "this kernel does not support the %s feature bit%s",
5394 			   names, strchr(names, ',') ? "s" : "");
5395 			kfree(names);
5396 		} else
5397 			btrfs_warn(root->fs_info,
5398 			   "this kernel does not support %s bits 0x%llx",
5399 			   type, unsupported);
5400 		return -EOPNOTSUPP;
5401 	}
5402 
5403 	disallowed = set_mask & ~safe_set;
5404 	if (disallowed) {
5405 		names = btrfs_printable_features(set, disallowed);
5406 		if (names) {
5407 			btrfs_warn(root->fs_info,
5408 			   "can't set the %s feature bit%s while mounted",
5409 			   names, strchr(names, ',') ? "s" : "");
5410 			kfree(names);
5411 		} else
5412 			btrfs_warn(root->fs_info,
5413 			   "can't set %s bits 0x%llx while mounted",
5414 			   type, disallowed);
5415 		return -EPERM;
5416 	}
5417 
5418 	disallowed = clear_mask & ~safe_clear;
5419 	if (disallowed) {
5420 		names = btrfs_printable_features(set, disallowed);
5421 		if (names) {
5422 			btrfs_warn(root->fs_info,
5423 			   "can't clear the %s feature bit%s while mounted",
5424 			   names, strchr(names, ',') ? "s" : "");
5425 			kfree(names);
5426 		} else
5427 			btrfs_warn(root->fs_info,
5428 			   "can't clear %s bits 0x%llx while mounted",
5429 			   type, disallowed);
5430 		return -EPERM;
5431 	}
5432 
5433 	return 0;
5434 }
5435 
5436 #define check_feature(root, change_mask, flags, mask_base)	\
5437 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5438 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5439 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5440 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5441 
5442 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5443 {
5444 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5445 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5446 	struct btrfs_ioctl_feature_flags flags[2];
5447 	struct btrfs_trans_handle *trans;
5448 	u64 newflags;
5449 	int ret;
5450 
5451 	if (!capable(CAP_SYS_ADMIN))
5452 		return -EPERM;
5453 
5454 	if (copy_from_user(flags, arg, sizeof(flags)))
5455 		return -EFAULT;
5456 
5457 	/* Nothing to do */
5458 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5459 	    !flags[0].incompat_flags)
5460 		return 0;
5461 
5462 	ret = check_feature(root, flags[0].compat_flags,
5463 			    flags[1].compat_flags, COMPAT);
5464 	if (ret)
5465 		return ret;
5466 
5467 	ret = check_feature(root, flags[0].compat_ro_flags,
5468 			    flags[1].compat_ro_flags, COMPAT_RO);
5469 	if (ret)
5470 		return ret;
5471 
5472 	ret = check_feature(root, flags[0].incompat_flags,
5473 			    flags[1].incompat_flags, INCOMPAT);
5474 	if (ret)
5475 		return ret;
5476 
5477 	ret = mnt_want_write_file(file);
5478 	if (ret)
5479 		return ret;
5480 
5481 	trans = btrfs_start_transaction(root, 0);
5482 	if (IS_ERR(trans)) {
5483 		ret = PTR_ERR(trans);
5484 		goto out_drop_write;
5485 	}
5486 
5487 	spin_lock(&root->fs_info->super_lock);
5488 	newflags = btrfs_super_compat_flags(super_block);
5489 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5490 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5491 	btrfs_set_super_compat_flags(super_block, newflags);
5492 
5493 	newflags = btrfs_super_compat_ro_flags(super_block);
5494 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5495 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5496 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5497 
5498 	newflags = btrfs_super_incompat_flags(super_block);
5499 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5500 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5501 	btrfs_set_super_incompat_flags(super_block, newflags);
5502 	spin_unlock(&root->fs_info->super_lock);
5503 
5504 	ret = btrfs_commit_transaction(trans, root);
5505 out_drop_write:
5506 	mnt_drop_write_file(file);
5507 
5508 	return ret;
5509 }
5510 
5511 long btrfs_ioctl(struct file *file, unsigned int
5512 		cmd, unsigned long arg)
5513 {
5514 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5515 	void __user *argp = (void __user *)arg;
5516 
5517 	switch (cmd) {
5518 	case FS_IOC_GETFLAGS:
5519 		return btrfs_ioctl_getflags(file, argp);
5520 	case FS_IOC_SETFLAGS:
5521 		return btrfs_ioctl_setflags(file, argp);
5522 	case FS_IOC_GETVERSION:
5523 		return btrfs_ioctl_getversion(file, argp);
5524 	case FITRIM:
5525 		return btrfs_ioctl_fitrim(file, argp);
5526 	case BTRFS_IOC_SNAP_CREATE:
5527 		return btrfs_ioctl_snap_create(file, argp, 0);
5528 	case BTRFS_IOC_SNAP_CREATE_V2:
5529 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5530 	case BTRFS_IOC_SUBVOL_CREATE:
5531 		return btrfs_ioctl_snap_create(file, argp, 1);
5532 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5533 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5534 	case BTRFS_IOC_SNAP_DESTROY:
5535 		return btrfs_ioctl_snap_destroy(file, argp);
5536 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5537 		return btrfs_ioctl_subvol_getflags(file, argp);
5538 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5539 		return btrfs_ioctl_subvol_setflags(file, argp);
5540 	case BTRFS_IOC_DEFAULT_SUBVOL:
5541 		return btrfs_ioctl_default_subvol(file, argp);
5542 	case BTRFS_IOC_DEFRAG:
5543 		return btrfs_ioctl_defrag(file, NULL);
5544 	case BTRFS_IOC_DEFRAG_RANGE:
5545 		return btrfs_ioctl_defrag(file, argp);
5546 	case BTRFS_IOC_RESIZE:
5547 		return btrfs_ioctl_resize(file, argp);
5548 	case BTRFS_IOC_ADD_DEV:
5549 		return btrfs_ioctl_add_dev(root, argp);
5550 	case BTRFS_IOC_RM_DEV:
5551 		return btrfs_ioctl_rm_dev(file, argp);
5552 	case BTRFS_IOC_RM_DEV_V2:
5553 		return btrfs_ioctl_rm_dev_v2(file, argp);
5554 	case BTRFS_IOC_FS_INFO:
5555 		return btrfs_ioctl_fs_info(root, argp);
5556 	case BTRFS_IOC_DEV_INFO:
5557 		return btrfs_ioctl_dev_info(root, argp);
5558 	case BTRFS_IOC_BALANCE:
5559 		return btrfs_ioctl_balance(file, NULL);
5560 	case BTRFS_IOC_TRANS_START:
5561 		return btrfs_ioctl_trans_start(file);
5562 	case BTRFS_IOC_TRANS_END:
5563 		return btrfs_ioctl_trans_end(file);
5564 	case BTRFS_IOC_TREE_SEARCH:
5565 		return btrfs_ioctl_tree_search(file, argp);
5566 	case BTRFS_IOC_TREE_SEARCH_V2:
5567 		return btrfs_ioctl_tree_search_v2(file, argp);
5568 	case BTRFS_IOC_INO_LOOKUP:
5569 		return btrfs_ioctl_ino_lookup(file, argp);
5570 	case BTRFS_IOC_INO_PATHS:
5571 		return btrfs_ioctl_ino_to_path(root, argp);
5572 	case BTRFS_IOC_LOGICAL_INO:
5573 		return btrfs_ioctl_logical_to_ino(root, argp);
5574 	case BTRFS_IOC_SPACE_INFO:
5575 		return btrfs_ioctl_space_info(root, argp);
5576 	case BTRFS_IOC_SYNC: {
5577 		int ret;
5578 
5579 		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5580 		if (ret)
5581 			return ret;
5582 		ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5583 		/*
5584 		 * The transaction thread may want to do more work,
5585 		 * namely it pokes the cleaner kthread that will start
5586 		 * processing uncleaned subvols.
5587 		 */
5588 		wake_up_process(root->fs_info->transaction_kthread);
5589 		return ret;
5590 	}
5591 	case BTRFS_IOC_START_SYNC:
5592 		return btrfs_ioctl_start_sync(root, argp);
5593 	case BTRFS_IOC_WAIT_SYNC:
5594 		return btrfs_ioctl_wait_sync(root, argp);
5595 	case BTRFS_IOC_SCRUB:
5596 		return btrfs_ioctl_scrub(file, argp);
5597 	case BTRFS_IOC_SCRUB_CANCEL:
5598 		return btrfs_ioctl_scrub_cancel(root, argp);
5599 	case BTRFS_IOC_SCRUB_PROGRESS:
5600 		return btrfs_ioctl_scrub_progress(root, argp);
5601 	case BTRFS_IOC_BALANCE_V2:
5602 		return btrfs_ioctl_balance(file, argp);
5603 	case BTRFS_IOC_BALANCE_CTL:
5604 		return btrfs_ioctl_balance_ctl(root, arg);
5605 	case BTRFS_IOC_BALANCE_PROGRESS:
5606 		return btrfs_ioctl_balance_progress(root, argp);
5607 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5608 		return btrfs_ioctl_set_received_subvol(file, argp);
5609 #ifdef CONFIG_64BIT
5610 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5611 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5612 #endif
5613 	case BTRFS_IOC_SEND:
5614 		return btrfs_ioctl_send(file, argp);
5615 	case BTRFS_IOC_GET_DEV_STATS:
5616 		return btrfs_ioctl_get_dev_stats(root, argp);
5617 	case BTRFS_IOC_QUOTA_CTL:
5618 		return btrfs_ioctl_quota_ctl(file, argp);
5619 	case BTRFS_IOC_QGROUP_ASSIGN:
5620 		return btrfs_ioctl_qgroup_assign(file, argp);
5621 	case BTRFS_IOC_QGROUP_CREATE:
5622 		return btrfs_ioctl_qgroup_create(file, argp);
5623 	case BTRFS_IOC_QGROUP_LIMIT:
5624 		return btrfs_ioctl_qgroup_limit(file, argp);
5625 	case BTRFS_IOC_QUOTA_RESCAN:
5626 		return btrfs_ioctl_quota_rescan(file, argp);
5627 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5628 		return btrfs_ioctl_quota_rescan_status(file, argp);
5629 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5630 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5631 	case BTRFS_IOC_DEV_REPLACE:
5632 		return btrfs_ioctl_dev_replace(root, argp);
5633 	case BTRFS_IOC_GET_FSLABEL:
5634 		return btrfs_ioctl_get_fslabel(file, argp);
5635 	case BTRFS_IOC_SET_FSLABEL:
5636 		return btrfs_ioctl_set_fslabel(file, argp);
5637 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5638 		return btrfs_ioctl_get_supported_features(argp);
5639 	case BTRFS_IOC_GET_FEATURES:
5640 		return btrfs_ioctl_get_features(file, argp);
5641 	case BTRFS_IOC_SET_FEATURES:
5642 		return btrfs_ioctl_set_features(file, argp);
5643 	}
5644 
5645 	return -ENOTTY;
5646 }
5647 
5648 #ifdef CONFIG_COMPAT
5649 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5650 {
5651 	switch (cmd) {
5652 	case FS_IOC32_GETFLAGS:
5653 		cmd = FS_IOC_GETFLAGS;
5654 		break;
5655 	case FS_IOC32_SETFLAGS:
5656 		cmd = FS_IOC_SETFLAGS;
5657 		break;
5658 	case FS_IOC32_GETVERSION:
5659 		cmd = FS_IOC_GETVERSION;
5660 		break;
5661 	default:
5662 		return -ENOIOCTLCMD;
5663 	}
5664 
5665 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5666 }
5667 #endif
5668