xref: /openbmc/linux/fs/btrfs/ioctl.c (revision f16fe2d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "export.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "volumes.h"
38 #include "locking.h"
39 #include "backref.h"
40 #include "rcu-string.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "delalloc-space.h"
50 #include "block-group.h"
51 #include "subpage.h"
52 
53 #ifdef CONFIG_64BIT
54 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
55  * structures are incorrect, as the timespec structure from userspace
56  * is 4 bytes too small. We define these alternatives here to teach
57  * the kernel about the 32-bit struct packing.
58  */
59 struct btrfs_ioctl_timespec_32 {
60 	__u64 sec;
61 	__u32 nsec;
62 } __attribute__ ((__packed__));
63 
64 struct btrfs_ioctl_received_subvol_args_32 {
65 	char	uuid[BTRFS_UUID_SIZE];	/* in */
66 	__u64	stransid;		/* in */
67 	__u64	rtransid;		/* out */
68 	struct btrfs_ioctl_timespec_32 stime; /* in */
69 	struct btrfs_ioctl_timespec_32 rtime; /* out */
70 	__u64	flags;			/* in */
71 	__u64	reserved[16];		/* in */
72 } __attribute__ ((__packed__));
73 
74 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
75 				struct btrfs_ioctl_received_subvol_args_32)
76 #endif
77 
78 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
79 struct btrfs_ioctl_send_args_32 {
80 	__s64 send_fd;			/* in */
81 	__u64 clone_sources_count;	/* in */
82 	compat_uptr_t clone_sources;	/* in */
83 	__u64 parent_root;		/* in */
84 	__u64 flags;			/* in */
85 	__u32 version;			/* in */
86 	__u8  reserved[28];		/* in */
87 } __attribute__ ((__packed__));
88 
89 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
90 			       struct btrfs_ioctl_send_args_32)
91 #endif
92 
93 /* Mask out flags that are inappropriate for the given type of inode. */
94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
95 		unsigned int flags)
96 {
97 	if (S_ISDIR(inode->i_mode))
98 		return flags;
99 	else if (S_ISREG(inode->i_mode))
100 		return flags & ~FS_DIRSYNC_FL;
101 	else
102 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104 
105 /*
106  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
107  * ioctl.
108  */
109 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
110 {
111 	unsigned int iflags = 0;
112 	u32 flags = binode->flags;
113 	u32 ro_flags = binode->ro_flags;
114 
115 	if (flags & BTRFS_INODE_SYNC)
116 		iflags |= FS_SYNC_FL;
117 	if (flags & BTRFS_INODE_IMMUTABLE)
118 		iflags |= FS_IMMUTABLE_FL;
119 	if (flags & BTRFS_INODE_APPEND)
120 		iflags |= FS_APPEND_FL;
121 	if (flags & BTRFS_INODE_NODUMP)
122 		iflags |= FS_NODUMP_FL;
123 	if (flags & BTRFS_INODE_NOATIME)
124 		iflags |= FS_NOATIME_FL;
125 	if (flags & BTRFS_INODE_DIRSYNC)
126 		iflags |= FS_DIRSYNC_FL;
127 	if (flags & BTRFS_INODE_NODATACOW)
128 		iflags |= FS_NOCOW_FL;
129 	if (ro_flags & BTRFS_INODE_RO_VERITY)
130 		iflags |= FS_VERITY_FL;
131 
132 	if (flags & BTRFS_INODE_NOCOMPRESS)
133 		iflags |= FS_NOCOMP_FL;
134 	else if (flags & BTRFS_INODE_COMPRESS)
135 		iflags |= FS_COMPR_FL;
136 
137 	return iflags;
138 }
139 
140 /*
141  * Update inode->i_flags based on the btrfs internal flags.
142  */
143 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
144 {
145 	struct btrfs_inode *binode = BTRFS_I(inode);
146 	unsigned int new_fl = 0;
147 
148 	if (binode->flags & BTRFS_INODE_SYNC)
149 		new_fl |= S_SYNC;
150 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
151 		new_fl |= S_IMMUTABLE;
152 	if (binode->flags & BTRFS_INODE_APPEND)
153 		new_fl |= S_APPEND;
154 	if (binode->flags & BTRFS_INODE_NOATIME)
155 		new_fl |= S_NOATIME;
156 	if (binode->flags & BTRFS_INODE_DIRSYNC)
157 		new_fl |= S_DIRSYNC;
158 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
159 		new_fl |= S_VERITY;
160 
161 	set_mask_bits(&inode->i_flags,
162 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
163 		      S_VERITY, new_fl);
164 }
165 
166 /*
167  * Check if @flags are a supported and valid set of FS_*_FL flags and that
168  * the old and new flags are not conflicting
169  */
170 static int check_fsflags(unsigned int old_flags, unsigned int flags)
171 {
172 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
173 		      FS_NOATIME_FL | FS_NODUMP_FL | \
174 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
175 		      FS_NOCOMP_FL | FS_COMPR_FL |
176 		      FS_NOCOW_FL))
177 		return -EOPNOTSUPP;
178 
179 	/* COMPR and NOCOMP on new/old are valid */
180 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
181 		return -EINVAL;
182 
183 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
184 		return -EINVAL;
185 
186 	/* NOCOW and compression options are mutually exclusive */
187 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
188 		return -EINVAL;
189 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
190 		return -EINVAL;
191 
192 	return 0;
193 }
194 
195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
196 				    unsigned int flags)
197 {
198 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
199 		return -EPERM;
200 
201 	return 0;
202 }
203 
204 /*
205  * Set flags/xflags from the internal inode flags. The remaining items of
206  * fsxattr are zeroed.
207  */
208 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
209 {
210 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
211 
212 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
213 	return 0;
214 }
215 
216 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
217 		       struct dentry *dentry, struct fileattr *fa)
218 {
219 	struct inode *inode = d_inode(dentry);
220 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
221 	struct btrfs_inode *binode = BTRFS_I(inode);
222 	struct btrfs_root *root = binode->root;
223 	struct btrfs_trans_handle *trans;
224 	unsigned int fsflags, old_fsflags;
225 	int ret;
226 	const char *comp = NULL;
227 	u32 binode_flags;
228 
229 	if (btrfs_root_readonly(root))
230 		return -EROFS;
231 
232 	if (fileattr_has_fsx(fa))
233 		return -EOPNOTSUPP;
234 
235 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
236 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
237 	ret = check_fsflags(old_fsflags, fsflags);
238 	if (ret)
239 		return ret;
240 
241 	ret = check_fsflags_compatible(fs_info, fsflags);
242 	if (ret)
243 		return ret;
244 
245 	binode_flags = binode->flags;
246 	if (fsflags & FS_SYNC_FL)
247 		binode_flags |= BTRFS_INODE_SYNC;
248 	else
249 		binode_flags &= ~BTRFS_INODE_SYNC;
250 	if (fsflags & FS_IMMUTABLE_FL)
251 		binode_flags |= BTRFS_INODE_IMMUTABLE;
252 	else
253 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
254 	if (fsflags & FS_APPEND_FL)
255 		binode_flags |= BTRFS_INODE_APPEND;
256 	else
257 		binode_flags &= ~BTRFS_INODE_APPEND;
258 	if (fsflags & FS_NODUMP_FL)
259 		binode_flags |= BTRFS_INODE_NODUMP;
260 	else
261 		binode_flags &= ~BTRFS_INODE_NODUMP;
262 	if (fsflags & FS_NOATIME_FL)
263 		binode_flags |= BTRFS_INODE_NOATIME;
264 	else
265 		binode_flags &= ~BTRFS_INODE_NOATIME;
266 
267 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
268 	if (!fa->flags_valid) {
269 		/* 1 item for the inode */
270 		trans = btrfs_start_transaction(root, 1);
271 		if (IS_ERR(trans))
272 			return PTR_ERR(trans);
273 		goto update_flags;
274 	}
275 
276 	if (fsflags & FS_DIRSYNC_FL)
277 		binode_flags |= BTRFS_INODE_DIRSYNC;
278 	else
279 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
280 	if (fsflags & FS_NOCOW_FL) {
281 		if (S_ISREG(inode->i_mode)) {
282 			/*
283 			 * It's safe to turn csums off here, no extents exist.
284 			 * Otherwise we want the flag to reflect the real COW
285 			 * status of the file and will not set it.
286 			 */
287 			if (inode->i_size == 0)
288 				binode_flags |= BTRFS_INODE_NODATACOW |
289 						BTRFS_INODE_NODATASUM;
290 		} else {
291 			binode_flags |= BTRFS_INODE_NODATACOW;
292 		}
293 	} else {
294 		/*
295 		 * Revert back under same assumptions as above
296 		 */
297 		if (S_ISREG(inode->i_mode)) {
298 			if (inode->i_size == 0)
299 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
300 						  BTRFS_INODE_NODATASUM);
301 		} else {
302 			binode_flags &= ~BTRFS_INODE_NODATACOW;
303 		}
304 	}
305 
306 	/*
307 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
308 	 * flag may be changed automatically if compression code won't make
309 	 * things smaller.
310 	 */
311 	if (fsflags & FS_NOCOMP_FL) {
312 		binode_flags &= ~BTRFS_INODE_COMPRESS;
313 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
314 	} else if (fsflags & FS_COMPR_FL) {
315 
316 		if (IS_SWAPFILE(inode))
317 			return -ETXTBSY;
318 
319 		binode_flags |= BTRFS_INODE_COMPRESS;
320 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
321 
322 		comp = btrfs_compress_type2str(fs_info->compress_type);
323 		if (!comp || comp[0] == 0)
324 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
325 	} else {
326 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
327 	}
328 
329 	/*
330 	 * 1 for inode item
331 	 * 2 for properties
332 	 */
333 	trans = btrfs_start_transaction(root, 3);
334 	if (IS_ERR(trans))
335 		return PTR_ERR(trans);
336 
337 	if (comp) {
338 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
339 				     strlen(comp), 0);
340 		if (ret) {
341 			btrfs_abort_transaction(trans, ret);
342 			goto out_end_trans;
343 		}
344 	} else {
345 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
346 				     0, 0);
347 		if (ret && ret != -ENODATA) {
348 			btrfs_abort_transaction(trans, ret);
349 			goto out_end_trans;
350 		}
351 	}
352 
353 update_flags:
354 	binode->flags = binode_flags;
355 	btrfs_sync_inode_flags_to_i_flags(inode);
356 	inode_inc_iversion(inode);
357 	inode->i_ctime = current_time(inode);
358 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
359 
360  out_end_trans:
361 	btrfs_end_transaction(trans);
362 	return ret;
363 }
364 
365 /*
366  * Start exclusive operation @type, return true on success
367  */
368 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
369 			enum btrfs_exclusive_operation type)
370 {
371 	bool ret = false;
372 
373 	spin_lock(&fs_info->super_lock);
374 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
375 		fs_info->exclusive_operation = type;
376 		ret = true;
377 	}
378 	spin_unlock(&fs_info->super_lock);
379 
380 	return ret;
381 }
382 
383 /*
384  * Conditionally allow to enter the exclusive operation in case it's compatible
385  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
386  * btrfs_exclop_finish.
387  *
388  * Compatibility:
389  * - the same type is already running
390  * - when trying to add a device and balance has been paused
391  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
392  *   must check the condition first that would allow none -> @type
393  */
394 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
395 				 enum btrfs_exclusive_operation type)
396 {
397 	spin_lock(&fs_info->super_lock);
398 	if (fs_info->exclusive_operation == type ||
399 	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
400 	     type == BTRFS_EXCLOP_DEV_ADD))
401 		return true;
402 
403 	spin_unlock(&fs_info->super_lock);
404 	return false;
405 }
406 
407 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
408 {
409 	spin_unlock(&fs_info->super_lock);
410 }
411 
412 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
413 {
414 	spin_lock(&fs_info->super_lock);
415 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
416 	spin_unlock(&fs_info->super_lock);
417 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
418 }
419 
420 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
421 			  enum btrfs_exclusive_operation op)
422 {
423 	switch (op) {
424 	case BTRFS_EXCLOP_BALANCE_PAUSED:
425 		spin_lock(&fs_info->super_lock);
426 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
427 		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD);
428 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
429 		spin_unlock(&fs_info->super_lock);
430 		break;
431 	case BTRFS_EXCLOP_BALANCE:
432 		spin_lock(&fs_info->super_lock);
433 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
434 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
435 		spin_unlock(&fs_info->super_lock);
436 		break;
437 	default:
438 		btrfs_warn(fs_info,
439 			"invalid exclop balance operation %d requested", op);
440 	}
441 }
442 
443 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
444 {
445 	struct inode *inode = file_inode(file);
446 
447 	return put_user(inode->i_generation, arg);
448 }
449 
450 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
451 					void __user *arg)
452 {
453 	struct btrfs_device *device;
454 	struct request_queue *q;
455 	struct fstrim_range range;
456 	u64 minlen = ULLONG_MAX;
457 	u64 num_devices = 0;
458 	int ret;
459 
460 	if (!capable(CAP_SYS_ADMIN))
461 		return -EPERM;
462 
463 	/*
464 	 * btrfs_trim_block_group() depends on space cache, which is not
465 	 * available in zoned filesystem. So, disallow fitrim on a zoned
466 	 * filesystem for now.
467 	 */
468 	if (btrfs_is_zoned(fs_info))
469 		return -EOPNOTSUPP;
470 
471 	/*
472 	 * If the fs is mounted with nologreplay, which requires it to be
473 	 * mounted in RO mode as well, we can not allow discard on free space
474 	 * inside block groups, because log trees refer to extents that are not
475 	 * pinned in a block group's free space cache (pinning the extents is
476 	 * precisely the first phase of replaying a log tree).
477 	 */
478 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
479 		return -EROFS;
480 
481 	rcu_read_lock();
482 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
483 				dev_list) {
484 		if (!device->bdev)
485 			continue;
486 		q = bdev_get_queue(device->bdev);
487 		if (blk_queue_discard(q)) {
488 			num_devices++;
489 			minlen = min_t(u64, q->limits.discard_granularity,
490 				     minlen);
491 		}
492 	}
493 	rcu_read_unlock();
494 
495 	if (!num_devices)
496 		return -EOPNOTSUPP;
497 	if (copy_from_user(&range, arg, sizeof(range)))
498 		return -EFAULT;
499 
500 	/*
501 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
502 	 * block group is in the logical address space, which can be any
503 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
504 	 */
505 	if (range.len < fs_info->sb->s_blocksize)
506 		return -EINVAL;
507 
508 	range.minlen = max(range.minlen, minlen);
509 	ret = btrfs_trim_fs(fs_info, &range);
510 	if (ret < 0)
511 		return ret;
512 
513 	if (copy_to_user(arg, &range, sizeof(range)))
514 		return -EFAULT;
515 
516 	return 0;
517 }
518 
519 int __pure btrfs_is_empty_uuid(u8 *uuid)
520 {
521 	int i;
522 
523 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
524 		if (uuid[i])
525 			return 0;
526 	}
527 	return 1;
528 }
529 
530 static noinline int create_subvol(struct user_namespace *mnt_userns,
531 				  struct inode *dir, struct dentry *dentry,
532 				  const char *name, int namelen,
533 				  struct btrfs_qgroup_inherit *inherit)
534 {
535 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
536 	struct btrfs_trans_handle *trans;
537 	struct btrfs_key key;
538 	struct btrfs_root_item *root_item;
539 	struct btrfs_inode_item *inode_item;
540 	struct extent_buffer *leaf;
541 	struct btrfs_root *root = BTRFS_I(dir)->root;
542 	struct btrfs_root *new_root;
543 	struct btrfs_block_rsv block_rsv;
544 	struct timespec64 cur_time = current_time(dir);
545 	struct inode *inode;
546 	int ret;
547 	dev_t anon_dev = 0;
548 	u64 objectid;
549 	u64 index = 0;
550 
551 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
552 	if (!root_item)
553 		return -ENOMEM;
554 
555 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
556 	if (ret)
557 		goto fail_free;
558 
559 	ret = get_anon_bdev(&anon_dev);
560 	if (ret < 0)
561 		goto fail_free;
562 
563 	/*
564 	 * Don't create subvolume whose level is not zero. Or qgroup will be
565 	 * screwed up since it assumes subvolume qgroup's level to be 0.
566 	 */
567 	if (btrfs_qgroup_level(objectid)) {
568 		ret = -ENOSPC;
569 		goto fail_free;
570 	}
571 
572 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
573 	/*
574 	 * The same as the snapshot creation, please see the comment
575 	 * of create_snapshot().
576 	 */
577 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
578 	if (ret)
579 		goto fail_free;
580 
581 	trans = btrfs_start_transaction(root, 0);
582 	if (IS_ERR(trans)) {
583 		ret = PTR_ERR(trans);
584 		btrfs_subvolume_release_metadata(root, &block_rsv);
585 		goto fail_free;
586 	}
587 	trans->block_rsv = &block_rsv;
588 	trans->bytes_reserved = block_rsv.size;
589 
590 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
591 	if (ret)
592 		goto fail;
593 
594 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
595 				      BTRFS_NESTING_NORMAL);
596 	if (IS_ERR(leaf)) {
597 		ret = PTR_ERR(leaf);
598 		goto fail;
599 	}
600 
601 	btrfs_mark_buffer_dirty(leaf);
602 
603 	inode_item = &root_item->inode;
604 	btrfs_set_stack_inode_generation(inode_item, 1);
605 	btrfs_set_stack_inode_size(inode_item, 3);
606 	btrfs_set_stack_inode_nlink(inode_item, 1);
607 	btrfs_set_stack_inode_nbytes(inode_item,
608 				     fs_info->nodesize);
609 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
610 
611 	btrfs_set_root_flags(root_item, 0);
612 	btrfs_set_root_limit(root_item, 0);
613 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
614 
615 	btrfs_set_root_bytenr(root_item, leaf->start);
616 	btrfs_set_root_generation(root_item, trans->transid);
617 	btrfs_set_root_level(root_item, 0);
618 	btrfs_set_root_refs(root_item, 1);
619 	btrfs_set_root_used(root_item, leaf->len);
620 	btrfs_set_root_last_snapshot(root_item, 0);
621 
622 	btrfs_set_root_generation_v2(root_item,
623 			btrfs_root_generation(root_item));
624 	generate_random_guid(root_item->uuid);
625 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
626 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
627 	root_item->ctime = root_item->otime;
628 	btrfs_set_root_ctransid(root_item, trans->transid);
629 	btrfs_set_root_otransid(root_item, trans->transid);
630 
631 	btrfs_tree_unlock(leaf);
632 
633 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
634 
635 	key.objectid = objectid;
636 	key.offset = 0;
637 	key.type = BTRFS_ROOT_ITEM_KEY;
638 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
639 				root_item);
640 	if (ret) {
641 		/*
642 		 * Since we don't abort the transaction in this case, free the
643 		 * tree block so that we don't leak space and leave the
644 		 * filesystem in an inconsistent state (an extent item in the
645 		 * extent tree with a backreference for a root that does not
646 		 * exists).
647 		 */
648 		btrfs_tree_lock(leaf);
649 		btrfs_clean_tree_block(leaf);
650 		btrfs_tree_unlock(leaf);
651 		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
652 		free_extent_buffer(leaf);
653 		goto fail;
654 	}
655 
656 	free_extent_buffer(leaf);
657 	leaf = NULL;
658 
659 	key.offset = (u64)-1;
660 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
661 	if (IS_ERR(new_root)) {
662 		free_anon_bdev(anon_dev);
663 		ret = PTR_ERR(new_root);
664 		btrfs_abort_transaction(trans, ret);
665 		goto fail;
666 	}
667 	/* Freeing will be done in btrfs_put_root() of new_root */
668 	anon_dev = 0;
669 
670 	ret = btrfs_record_root_in_trans(trans, new_root);
671 	if (ret) {
672 		btrfs_put_root(new_root);
673 		btrfs_abort_transaction(trans, ret);
674 		goto fail;
675 	}
676 
677 	ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns);
678 	btrfs_put_root(new_root);
679 	if (ret) {
680 		/* We potentially lose an unused inode item here */
681 		btrfs_abort_transaction(trans, ret);
682 		goto fail;
683 	}
684 
685 	/*
686 	 * insert the directory item
687 	 */
688 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
689 	if (ret) {
690 		btrfs_abort_transaction(trans, ret);
691 		goto fail;
692 	}
693 
694 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
695 				    BTRFS_FT_DIR, index);
696 	if (ret) {
697 		btrfs_abort_transaction(trans, ret);
698 		goto fail;
699 	}
700 
701 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
702 	ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
703 	if (ret) {
704 		btrfs_abort_transaction(trans, ret);
705 		goto fail;
706 	}
707 
708 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
709 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
710 	if (ret) {
711 		btrfs_abort_transaction(trans, ret);
712 		goto fail;
713 	}
714 
715 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
716 				  BTRFS_UUID_KEY_SUBVOL, objectid);
717 	if (ret)
718 		btrfs_abort_transaction(trans, ret);
719 
720 fail:
721 	kfree(root_item);
722 	trans->block_rsv = NULL;
723 	trans->bytes_reserved = 0;
724 	btrfs_subvolume_release_metadata(root, &block_rsv);
725 
726 	if (ret)
727 		btrfs_end_transaction(trans);
728 	else
729 		ret = btrfs_commit_transaction(trans);
730 
731 	if (!ret) {
732 		inode = btrfs_lookup_dentry(dir, dentry);
733 		if (IS_ERR(inode))
734 			return PTR_ERR(inode);
735 		d_instantiate(dentry, inode);
736 	}
737 	return ret;
738 
739 fail_free:
740 	if (anon_dev)
741 		free_anon_bdev(anon_dev);
742 	kfree(root_item);
743 	return ret;
744 }
745 
746 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
747 			   struct dentry *dentry, bool readonly,
748 			   struct btrfs_qgroup_inherit *inherit)
749 {
750 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
751 	struct inode *inode;
752 	struct btrfs_pending_snapshot *pending_snapshot;
753 	struct btrfs_trans_handle *trans;
754 	int ret;
755 
756 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
757 		return -EINVAL;
758 
759 	if (atomic_read(&root->nr_swapfiles)) {
760 		btrfs_warn(fs_info,
761 			   "cannot snapshot subvolume with active swapfile");
762 		return -ETXTBSY;
763 	}
764 
765 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
766 	if (!pending_snapshot)
767 		return -ENOMEM;
768 
769 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
770 	if (ret < 0)
771 		goto free_pending;
772 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
773 			GFP_KERNEL);
774 	pending_snapshot->path = btrfs_alloc_path();
775 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
776 		ret = -ENOMEM;
777 		goto free_pending;
778 	}
779 
780 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
781 			     BTRFS_BLOCK_RSV_TEMP);
782 	/*
783 	 * 1 - parent dir inode
784 	 * 2 - dir entries
785 	 * 1 - root item
786 	 * 2 - root ref/backref
787 	 * 1 - root of snapshot
788 	 * 1 - UUID item
789 	 */
790 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
791 					&pending_snapshot->block_rsv, 8,
792 					false);
793 	if (ret)
794 		goto free_pending;
795 
796 	pending_snapshot->dentry = dentry;
797 	pending_snapshot->root = root;
798 	pending_snapshot->readonly = readonly;
799 	pending_snapshot->dir = dir;
800 	pending_snapshot->inherit = inherit;
801 
802 	trans = btrfs_start_transaction(root, 0);
803 	if (IS_ERR(trans)) {
804 		ret = PTR_ERR(trans);
805 		goto fail;
806 	}
807 
808 	spin_lock(&fs_info->trans_lock);
809 	list_add(&pending_snapshot->list,
810 		 &trans->transaction->pending_snapshots);
811 	spin_unlock(&fs_info->trans_lock);
812 
813 	ret = btrfs_commit_transaction(trans);
814 	if (ret)
815 		goto fail;
816 
817 	ret = pending_snapshot->error;
818 	if (ret)
819 		goto fail;
820 
821 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
822 	if (ret)
823 		goto fail;
824 
825 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
826 	if (IS_ERR(inode)) {
827 		ret = PTR_ERR(inode);
828 		goto fail;
829 	}
830 
831 	d_instantiate(dentry, inode);
832 	ret = 0;
833 	pending_snapshot->anon_dev = 0;
834 fail:
835 	/* Prevent double freeing of anon_dev */
836 	if (ret && pending_snapshot->snap)
837 		pending_snapshot->snap->anon_dev = 0;
838 	btrfs_put_root(pending_snapshot->snap);
839 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
840 free_pending:
841 	if (pending_snapshot->anon_dev)
842 		free_anon_bdev(pending_snapshot->anon_dev);
843 	kfree(pending_snapshot->root_item);
844 	btrfs_free_path(pending_snapshot->path);
845 	kfree(pending_snapshot);
846 
847 	return ret;
848 }
849 
850 /*  copy of may_delete in fs/namei.c()
851  *	Check whether we can remove a link victim from directory dir, check
852  *  whether the type of victim is right.
853  *  1. We can't do it if dir is read-only (done in permission())
854  *  2. We should have write and exec permissions on dir
855  *  3. We can't remove anything from append-only dir
856  *  4. We can't do anything with immutable dir (done in permission())
857  *  5. If the sticky bit on dir is set we should either
858  *	a. be owner of dir, or
859  *	b. be owner of victim, or
860  *	c. have CAP_FOWNER capability
861  *  6. If the victim is append-only or immutable we can't do anything with
862  *     links pointing to it.
863  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
864  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
865  *  9. We can't remove a root or mountpoint.
866  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
867  *     nfs_async_unlink().
868  */
869 
870 static int btrfs_may_delete(struct user_namespace *mnt_userns,
871 			    struct inode *dir, struct dentry *victim, int isdir)
872 {
873 	int error;
874 
875 	if (d_really_is_negative(victim))
876 		return -ENOENT;
877 
878 	BUG_ON(d_inode(victim->d_parent) != dir);
879 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
880 
881 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
882 	if (error)
883 		return error;
884 	if (IS_APPEND(dir))
885 		return -EPERM;
886 	if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
887 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
888 	    IS_SWAPFILE(d_inode(victim)))
889 		return -EPERM;
890 	if (isdir) {
891 		if (!d_is_dir(victim))
892 			return -ENOTDIR;
893 		if (IS_ROOT(victim))
894 			return -EBUSY;
895 	} else if (d_is_dir(victim))
896 		return -EISDIR;
897 	if (IS_DEADDIR(dir))
898 		return -ENOENT;
899 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
900 		return -EBUSY;
901 	return 0;
902 }
903 
904 /* copy of may_create in fs/namei.c() */
905 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
906 				   struct inode *dir, struct dentry *child)
907 {
908 	if (d_really_is_positive(child))
909 		return -EEXIST;
910 	if (IS_DEADDIR(dir))
911 		return -ENOENT;
912 	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
913 		return -EOVERFLOW;
914 	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
915 }
916 
917 /*
918  * Create a new subvolume below @parent.  This is largely modeled after
919  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
920  * inside this filesystem so it's quite a bit simpler.
921  */
922 static noinline int btrfs_mksubvol(const struct path *parent,
923 				   struct user_namespace *mnt_userns,
924 				   const char *name, int namelen,
925 				   struct btrfs_root *snap_src,
926 				   bool readonly,
927 				   struct btrfs_qgroup_inherit *inherit)
928 {
929 	struct inode *dir = d_inode(parent->dentry);
930 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
931 	struct dentry *dentry;
932 	int error;
933 
934 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
935 	if (error == -EINTR)
936 		return error;
937 
938 	dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
939 	error = PTR_ERR(dentry);
940 	if (IS_ERR(dentry))
941 		goto out_unlock;
942 
943 	error = btrfs_may_create(mnt_userns, dir, dentry);
944 	if (error)
945 		goto out_dput;
946 
947 	/*
948 	 * even if this name doesn't exist, we may get hash collisions.
949 	 * check for them now when we can safely fail
950 	 */
951 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
952 					       dir->i_ino, name,
953 					       namelen);
954 	if (error)
955 		goto out_dput;
956 
957 	down_read(&fs_info->subvol_sem);
958 
959 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
960 		goto out_up_read;
961 
962 	if (snap_src)
963 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
964 	else
965 		error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit);
966 
967 	if (!error)
968 		fsnotify_mkdir(dir, dentry);
969 out_up_read:
970 	up_read(&fs_info->subvol_sem);
971 out_dput:
972 	dput(dentry);
973 out_unlock:
974 	btrfs_inode_unlock(dir, 0);
975 	return error;
976 }
977 
978 static noinline int btrfs_mksnapshot(const struct path *parent,
979 				   struct user_namespace *mnt_userns,
980 				   const char *name, int namelen,
981 				   struct btrfs_root *root,
982 				   bool readonly,
983 				   struct btrfs_qgroup_inherit *inherit)
984 {
985 	int ret;
986 	bool snapshot_force_cow = false;
987 
988 	/*
989 	 * Force new buffered writes to reserve space even when NOCOW is
990 	 * possible. This is to avoid later writeback (running dealloc) to
991 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
992 	 */
993 	btrfs_drew_read_lock(&root->snapshot_lock);
994 
995 	ret = btrfs_start_delalloc_snapshot(root, false);
996 	if (ret)
997 		goto out;
998 
999 	/*
1000 	 * All previous writes have started writeback in NOCOW mode, so now
1001 	 * we force future writes to fallback to COW mode during snapshot
1002 	 * creation.
1003 	 */
1004 	atomic_inc(&root->snapshot_force_cow);
1005 	snapshot_force_cow = true;
1006 
1007 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1008 
1009 	ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
1010 			     root, readonly, inherit);
1011 out:
1012 	if (snapshot_force_cow)
1013 		atomic_dec(&root->snapshot_force_cow);
1014 	btrfs_drew_read_unlock(&root->snapshot_lock);
1015 	return ret;
1016 }
1017 
1018 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
1019 					       bool locked)
1020 {
1021 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1022 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1023 	struct extent_map *em;
1024 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
1025 
1026 	/*
1027 	 * hopefully we have this extent in the tree already, try without
1028 	 * the full extent lock
1029 	 */
1030 	read_lock(&em_tree->lock);
1031 	em = lookup_extent_mapping(em_tree, start, sectorsize);
1032 	read_unlock(&em_tree->lock);
1033 
1034 	if (!em) {
1035 		struct extent_state *cached = NULL;
1036 		u64 end = start + sectorsize - 1;
1037 
1038 		/* get the big lock and read metadata off disk */
1039 		if (!locked)
1040 			lock_extent_bits(io_tree, start, end, &cached);
1041 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, sectorsize);
1042 		if (!locked)
1043 			unlock_extent_cached(io_tree, start, end, &cached);
1044 
1045 		if (IS_ERR(em))
1046 			return NULL;
1047 	}
1048 
1049 	return em;
1050 }
1051 
1052 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
1053 				     bool locked)
1054 {
1055 	struct extent_map *next;
1056 	bool ret = true;
1057 
1058 	/* this is the last extent */
1059 	if (em->start + em->len >= i_size_read(inode))
1060 		return false;
1061 
1062 	next = defrag_lookup_extent(inode, em->start + em->len, locked);
1063 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1064 		ret = false;
1065 	else if ((em->block_start + em->block_len == next->block_start) &&
1066 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1067 		ret = false;
1068 
1069 	free_extent_map(next);
1070 	return ret;
1071 }
1072 
1073 /*
1074  * Prepare one page to be defragged.
1075  *
1076  * This will ensure:
1077  *
1078  * - Returned page is locked and has been set up properly.
1079  * - No ordered extent exists in the page.
1080  * - The page is uptodate.
1081  *
1082  * NOTE: Caller should also wait for page writeback after the cluster is
1083  * prepared, here we don't do writeback wait for each page.
1084  */
1085 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
1086 					    pgoff_t index)
1087 {
1088 	struct address_space *mapping = inode->vfs_inode.i_mapping;
1089 	gfp_t mask = btrfs_alloc_write_mask(mapping);
1090 	u64 page_start = (u64)index << PAGE_SHIFT;
1091 	u64 page_end = page_start + PAGE_SIZE - 1;
1092 	struct extent_state *cached_state = NULL;
1093 	struct page *page;
1094 	int ret;
1095 
1096 again:
1097 	page = find_or_create_page(mapping, index, mask);
1098 	if (!page)
1099 		return ERR_PTR(-ENOMEM);
1100 
1101 	/*
1102 	 * Since we can defragment files opened read-only, we can encounter
1103 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
1104 	 * can't do I/O using huge pages yet, so return an error for now.
1105 	 * Filesystem transparent huge pages are typically only used for
1106 	 * executables that explicitly enable them, so this isn't very
1107 	 * restrictive.
1108 	 */
1109 	if (PageCompound(page)) {
1110 		unlock_page(page);
1111 		put_page(page);
1112 		return ERR_PTR(-ETXTBSY);
1113 	}
1114 
1115 	ret = set_page_extent_mapped(page);
1116 	if (ret < 0) {
1117 		unlock_page(page);
1118 		put_page(page);
1119 		return ERR_PTR(ret);
1120 	}
1121 
1122 	/* Wait for any existing ordered extent in the range */
1123 	while (1) {
1124 		struct btrfs_ordered_extent *ordered;
1125 
1126 		lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
1127 		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
1128 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
1129 				     &cached_state);
1130 		if (!ordered)
1131 			break;
1132 
1133 		unlock_page(page);
1134 		btrfs_start_ordered_extent(ordered, 1);
1135 		btrfs_put_ordered_extent(ordered);
1136 		lock_page(page);
1137 		/*
1138 		 * We unlocked the page above, so we need check if it was
1139 		 * released or not.
1140 		 */
1141 		if (page->mapping != mapping || !PagePrivate(page)) {
1142 			unlock_page(page);
1143 			put_page(page);
1144 			goto again;
1145 		}
1146 	}
1147 
1148 	/*
1149 	 * Now the page range has no ordered extent any more.  Read the page to
1150 	 * make it uptodate.
1151 	 */
1152 	if (!PageUptodate(page)) {
1153 		btrfs_readpage(NULL, page);
1154 		lock_page(page);
1155 		if (page->mapping != mapping || !PagePrivate(page)) {
1156 			unlock_page(page);
1157 			put_page(page);
1158 			goto again;
1159 		}
1160 		if (!PageUptodate(page)) {
1161 			unlock_page(page);
1162 			put_page(page);
1163 			return ERR_PTR(-EIO);
1164 		}
1165 	}
1166 	return page;
1167 }
1168 
1169 struct defrag_target_range {
1170 	struct list_head list;
1171 	u64 start;
1172 	u64 len;
1173 };
1174 
1175 /*
1176  * Collect all valid target extents.
1177  *
1178  * @start:	   file offset to lookup
1179  * @len:	   length to lookup
1180  * @extent_thresh: file extent size threshold, any extent size >= this value
1181  *		   will be ignored
1182  * @newer_than:    only defrag extents newer than this value
1183  * @do_compress:   whether the defrag is doing compression
1184  *		   if true, @extent_thresh will be ignored and all regular
1185  *		   file extents meeting @newer_than will be targets.
1186  * @locked:	   if the range has already held extent lock
1187  * @target_list:   list of targets file extents
1188  */
1189 static int defrag_collect_targets(struct btrfs_inode *inode,
1190 				  u64 start, u64 len, u32 extent_thresh,
1191 				  u64 newer_than, bool do_compress,
1192 				  bool locked, struct list_head *target_list)
1193 {
1194 	u64 cur = start;
1195 	int ret = 0;
1196 
1197 	while (cur < start + len) {
1198 		struct extent_map *em;
1199 		struct defrag_target_range *new;
1200 		bool next_mergeable = true;
1201 		u64 range_len;
1202 
1203 		em = defrag_lookup_extent(&inode->vfs_inode, cur, locked);
1204 		if (!em)
1205 			break;
1206 
1207 		/* Skip hole/inline/preallocated extents */
1208 		if (em->block_start >= EXTENT_MAP_LAST_BYTE ||
1209 		    test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1210 			goto next;
1211 
1212 		/* Skip older extent */
1213 		if (em->generation < newer_than)
1214 			goto next;
1215 
1216 		/*
1217 		 * For do_compress case, we want to compress all valid file
1218 		 * extents, thus no @extent_thresh or mergeable check.
1219 		 */
1220 		if (do_compress)
1221 			goto add;
1222 
1223 		/* Skip too large extent */
1224 		if (em->len >= extent_thresh)
1225 			goto next;
1226 
1227 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1228 							  locked);
1229 		if (!next_mergeable) {
1230 			struct defrag_target_range *last;
1231 
1232 			/* Empty target list, no way to merge with last entry */
1233 			if (list_empty(target_list))
1234 				goto next;
1235 			last = list_entry(target_list->prev,
1236 					  struct defrag_target_range, list);
1237 			/* Not mergeable with last entry */
1238 			if (last->start + last->len != cur)
1239 				goto next;
1240 
1241 			/* Mergeable, fall through to add it to @target_list. */
1242 		}
1243 
1244 add:
1245 		range_len = min(extent_map_end(em), start + len) - cur;
1246 		/*
1247 		 * This one is a good target, check if it can be merged into
1248 		 * last range of the target list.
1249 		 */
1250 		if (!list_empty(target_list)) {
1251 			struct defrag_target_range *last;
1252 
1253 			last = list_entry(target_list->prev,
1254 					  struct defrag_target_range, list);
1255 			ASSERT(last->start + last->len <= cur);
1256 			if (last->start + last->len == cur) {
1257 				/* Mergeable, enlarge the last entry */
1258 				last->len += range_len;
1259 				goto next;
1260 			}
1261 			/* Fall through to allocate a new entry */
1262 		}
1263 
1264 		/* Allocate new defrag_target_range */
1265 		new = kmalloc(sizeof(*new), GFP_NOFS);
1266 		if (!new) {
1267 			free_extent_map(em);
1268 			ret = -ENOMEM;
1269 			break;
1270 		}
1271 		new->start = cur;
1272 		new->len = range_len;
1273 		list_add_tail(&new->list, target_list);
1274 
1275 next:
1276 		cur = extent_map_end(em);
1277 		free_extent_map(em);
1278 	}
1279 	if (ret < 0) {
1280 		struct defrag_target_range *entry;
1281 		struct defrag_target_range *tmp;
1282 
1283 		list_for_each_entry_safe(entry, tmp, target_list, list) {
1284 			list_del_init(&entry->list);
1285 			kfree(entry);
1286 		}
1287 	}
1288 	return ret;
1289 }
1290 
1291 #define CLUSTER_SIZE	(SZ_256K)
1292 
1293 /*
1294  * Defrag one contiguous target range.
1295  *
1296  * @inode:	target inode
1297  * @target:	target range to defrag
1298  * @pages:	locked pages covering the defrag range
1299  * @nr_pages:	number of locked pages
1300  *
1301  * Caller should ensure:
1302  *
1303  * - Pages are prepared
1304  *   Pages should be locked, no ordered extent in the pages range,
1305  *   no writeback.
1306  *
1307  * - Extent bits are locked
1308  */
1309 static int defrag_one_locked_target(struct btrfs_inode *inode,
1310 				    struct defrag_target_range *target,
1311 				    struct page **pages, int nr_pages,
1312 				    struct extent_state **cached_state)
1313 {
1314 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1315 	struct extent_changeset *data_reserved = NULL;
1316 	const u64 start = target->start;
1317 	const u64 len = target->len;
1318 	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1319 	unsigned long start_index = start >> PAGE_SHIFT;
1320 	unsigned long first_index = page_index(pages[0]);
1321 	int ret = 0;
1322 	int i;
1323 
1324 	ASSERT(last_index - first_index + 1 <= nr_pages);
1325 
1326 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1327 	if (ret < 0)
1328 		return ret;
1329 	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1330 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1331 			 EXTENT_DEFRAG, 0, 0, cached_state);
1332 	set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1333 
1334 	/* Update the page status */
1335 	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1336 		ClearPageChecked(pages[i]);
1337 		btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1338 	}
1339 	btrfs_delalloc_release_extents(inode, len);
1340 	extent_changeset_free(data_reserved);
1341 
1342 	return ret;
1343 }
1344 
1345 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1346 			    u32 extent_thresh, u64 newer_than, bool do_compress)
1347 {
1348 	struct extent_state *cached_state = NULL;
1349 	struct defrag_target_range *entry;
1350 	struct defrag_target_range *tmp;
1351 	LIST_HEAD(target_list);
1352 	struct page **pages;
1353 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1354 	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1355 	u64 start_index = start >> PAGE_SHIFT;
1356 	unsigned int nr_pages = last_index - start_index + 1;
1357 	int ret = 0;
1358 	int i;
1359 
1360 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1361 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1362 
1363 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1364 	if (!pages)
1365 		return -ENOMEM;
1366 
1367 	/* Prepare all pages */
1368 	for (i = 0; i < nr_pages; i++) {
1369 		pages[i] = defrag_prepare_one_page(inode, start_index + i);
1370 		if (IS_ERR(pages[i])) {
1371 			ret = PTR_ERR(pages[i]);
1372 			pages[i] = NULL;
1373 			goto free_pages;
1374 		}
1375 	}
1376 	for (i = 0; i < nr_pages; i++)
1377 		wait_on_page_writeback(pages[i]);
1378 
1379 	/* Lock the pages range */
1380 	lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT,
1381 			 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1382 			 &cached_state);
1383 	/*
1384 	 * Now we have a consistent view about the extent map, re-check
1385 	 * which range really needs to be defragged.
1386 	 *
1387 	 * And this time we have extent locked already, pass @locked = true
1388 	 * so that we won't relock the extent range and cause deadlock.
1389 	 */
1390 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1391 				     newer_than, do_compress, true,
1392 				     &target_list);
1393 	if (ret < 0)
1394 		goto unlock_extent;
1395 
1396 	list_for_each_entry(entry, &target_list, list) {
1397 		ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1398 					       &cached_state);
1399 		if (ret < 0)
1400 			break;
1401 	}
1402 
1403 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1404 		list_del_init(&entry->list);
1405 		kfree(entry);
1406 	}
1407 unlock_extent:
1408 	unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT,
1409 			     (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1410 			     &cached_state);
1411 free_pages:
1412 	for (i = 0; i < nr_pages; i++) {
1413 		if (pages[i]) {
1414 			unlock_page(pages[i]);
1415 			put_page(pages[i]);
1416 		}
1417 	}
1418 	kfree(pages);
1419 	return ret;
1420 }
1421 
1422 static int defrag_one_cluster(struct btrfs_inode *inode,
1423 			      struct file_ra_state *ra,
1424 			      u64 start, u32 len, u32 extent_thresh,
1425 			      u64 newer_than, bool do_compress,
1426 			      unsigned long *sectors_defragged,
1427 			      unsigned long max_sectors)
1428 {
1429 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1430 	struct defrag_target_range *entry;
1431 	struct defrag_target_range *tmp;
1432 	LIST_HEAD(target_list);
1433 	int ret;
1434 
1435 	BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1436 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1437 				     newer_than, do_compress, false,
1438 				     &target_list);
1439 	if (ret < 0)
1440 		goto out;
1441 
1442 	list_for_each_entry(entry, &target_list, list) {
1443 		u32 range_len = entry->len;
1444 
1445 		/* Reached the limit */
1446 		if (max_sectors && max_sectors == *sectors_defragged)
1447 			break;
1448 
1449 		if (max_sectors)
1450 			range_len = min_t(u32, range_len,
1451 				(max_sectors - *sectors_defragged) * sectorsize);
1452 
1453 		if (ra)
1454 			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1455 				ra, NULL, entry->start >> PAGE_SHIFT,
1456 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1457 				(entry->start >> PAGE_SHIFT) + 1);
1458 		/*
1459 		 * Here we may not defrag any range if holes are punched before
1460 		 * we locked the pages.
1461 		 * But that's fine, it only affects the @sectors_defragged
1462 		 * accounting.
1463 		 */
1464 		ret = defrag_one_range(inode, entry->start, range_len,
1465 				       extent_thresh, newer_than, do_compress);
1466 		if (ret < 0)
1467 			break;
1468 		*sectors_defragged += range_len;
1469 	}
1470 out:
1471 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1472 		list_del_init(&entry->list);
1473 		kfree(entry);
1474 	}
1475 	return ret;
1476 }
1477 
1478 /*
1479  * Entry point to file defragmentation.
1480  *
1481  * @inode:	   inode to be defragged
1482  * @ra:		   readahead state (can be NUL)
1483  * @range:	   defrag options including range and flags
1484  * @newer_than:	   minimum transid to defrag
1485  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1486  *		   will be defragged.
1487  */
1488 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1489 		      struct btrfs_ioctl_defrag_range_args *range,
1490 		      u64 newer_than, unsigned long max_to_defrag)
1491 {
1492 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1493 	unsigned long sectors_defragged = 0;
1494 	u64 isize = i_size_read(inode);
1495 	u64 cur;
1496 	u64 last_byte;
1497 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1498 	bool ra_allocated = false;
1499 	int compress_type = BTRFS_COMPRESS_ZLIB;
1500 	int ret = 0;
1501 	u32 extent_thresh = range->extent_thresh;
1502 
1503 	if (isize == 0)
1504 		return 0;
1505 
1506 	if (range->start >= isize)
1507 		return -EINVAL;
1508 
1509 	if (do_compress) {
1510 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1511 			return -EINVAL;
1512 		if (range->compress_type)
1513 			compress_type = range->compress_type;
1514 	}
1515 
1516 	if (extent_thresh == 0)
1517 		extent_thresh = SZ_256K;
1518 
1519 	if (range->start + range->len > range->start) {
1520 		/* Got a specific range */
1521 		last_byte = min(isize, range->start + range->len) - 1;
1522 	} else {
1523 		/* Defrag until file end */
1524 		last_byte = isize - 1;
1525 	}
1526 
1527 	/*
1528 	 * If we were not given a ra, allocate a readahead context. As
1529 	 * readahead is just an optimization, defrag will work without it so
1530 	 * we don't error out.
1531 	 */
1532 	if (!ra) {
1533 		ra_allocated = true;
1534 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1535 		if (ra)
1536 			file_ra_state_init(ra, inode->i_mapping);
1537 	}
1538 
1539 	/* Align the range */
1540 	cur = round_down(range->start, fs_info->sectorsize);
1541 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1542 
1543 	while (cur < last_byte) {
1544 		u64 cluster_end;
1545 
1546 		/* The cluster size 256K should always be page aligned */
1547 		BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1548 
1549 		/* We want the cluster end at page boundary when possible */
1550 		cluster_end = (((cur >> PAGE_SHIFT) +
1551 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1552 		cluster_end = min(cluster_end, last_byte);
1553 
1554 		btrfs_inode_lock(inode, 0);
1555 		if (IS_SWAPFILE(inode)) {
1556 			ret = -ETXTBSY;
1557 			btrfs_inode_unlock(inode, 0);
1558 			break;
1559 		}
1560 		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1561 			btrfs_inode_unlock(inode, 0);
1562 			break;
1563 		}
1564 		if (do_compress)
1565 			BTRFS_I(inode)->defrag_compress = compress_type;
1566 		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1567 				cluster_end + 1 - cur, extent_thresh,
1568 				newer_than, do_compress,
1569 				&sectors_defragged, max_to_defrag);
1570 		btrfs_inode_unlock(inode, 0);
1571 		if (ret < 0)
1572 			break;
1573 		cur = cluster_end + 1;
1574 	}
1575 
1576 	if (ra_allocated)
1577 		kfree(ra);
1578 	if (sectors_defragged) {
1579 		/*
1580 		 * We have defragged some sectors, for compression case they
1581 		 * need to be written back immediately.
1582 		 */
1583 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1584 			filemap_flush(inode->i_mapping);
1585 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1586 				     &BTRFS_I(inode)->runtime_flags))
1587 				filemap_flush(inode->i_mapping);
1588 		}
1589 		if (range->compress_type == BTRFS_COMPRESS_LZO)
1590 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1591 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1592 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1593 		ret = sectors_defragged;
1594 	}
1595 	if (do_compress) {
1596 		btrfs_inode_lock(inode, 0);
1597 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1598 		btrfs_inode_unlock(inode, 0);
1599 	}
1600 	return ret;
1601 }
1602 
1603 /*
1604  * Try to start exclusive operation @type or cancel it if it's running.
1605  *
1606  * Return:
1607  *   0        - normal mode, newly claimed op started
1608  *  >0        - normal mode, something else is running,
1609  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1610  * ECANCELED  - cancel mode, successful cancel
1611  * ENOTCONN   - cancel mode, operation not running anymore
1612  */
1613 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1614 			enum btrfs_exclusive_operation type, bool cancel)
1615 {
1616 	if (!cancel) {
1617 		/* Start normal op */
1618 		if (!btrfs_exclop_start(fs_info, type))
1619 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1620 		/* Exclusive operation is now claimed */
1621 		return 0;
1622 	}
1623 
1624 	/* Cancel running op */
1625 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1626 		/*
1627 		 * This blocks any exclop finish from setting it to NONE, so we
1628 		 * request cancellation. Either it runs and we will wait for it,
1629 		 * or it has finished and no waiting will happen.
1630 		 */
1631 		atomic_inc(&fs_info->reloc_cancel_req);
1632 		btrfs_exclop_start_unlock(fs_info);
1633 
1634 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1635 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1636 				    TASK_INTERRUPTIBLE);
1637 
1638 		return -ECANCELED;
1639 	}
1640 
1641 	/* Something else is running or none */
1642 	return -ENOTCONN;
1643 }
1644 
1645 static noinline int btrfs_ioctl_resize(struct file *file,
1646 					void __user *arg)
1647 {
1648 	BTRFS_DEV_LOOKUP_ARGS(args);
1649 	struct inode *inode = file_inode(file);
1650 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1651 	u64 new_size;
1652 	u64 old_size;
1653 	u64 devid = 1;
1654 	struct btrfs_root *root = BTRFS_I(inode)->root;
1655 	struct btrfs_ioctl_vol_args *vol_args;
1656 	struct btrfs_trans_handle *trans;
1657 	struct btrfs_device *device = NULL;
1658 	char *sizestr;
1659 	char *retptr;
1660 	char *devstr = NULL;
1661 	int ret = 0;
1662 	int mod = 0;
1663 	bool cancel;
1664 
1665 	if (!capable(CAP_SYS_ADMIN))
1666 		return -EPERM;
1667 
1668 	ret = mnt_want_write_file(file);
1669 	if (ret)
1670 		return ret;
1671 
1672 	/*
1673 	 * Read the arguments before checking exclusivity to be able to
1674 	 * distinguish regular resize and cancel
1675 	 */
1676 	vol_args = memdup_user(arg, sizeof(*vol_args));
1677 	if (IS_ERR(vol_args)) {
1678 		ret = PTR_ERR(vol_args);
1679 		goto out_drop;
1680 	}
1681 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1682 	sizestr = vol_args->name;
1683 	cancel = (strcmp("cancel", sizestr) == 0);
1684 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1685 	if (ret)
1686 		goto out_free;
1687 	/* Exclusive operation is now claimed */
1688 
1689 	devstr = strchr(sizestr, ':');
1690 	if (devstr) {
1691 		sizestr = devstr + 1;
1692 		*devstr = '\0';
1693 		devstr = vol_args->name;
1694 		ret = kstrtoull(devstr, 10, &devid);
1695 		if (ret)
1696 			goto out_finish;
1697 		if (!devid) {
1698 			ret = -EINVAL;
1699 			goto out_finish;
1700 		}
1701 		btrfs_info(fs_info, "resizing devid %llu", devid);
1702 	}
1703 
1704 	args.devid = devid;
1705 	device = btrfs_find_device(fs_info->fs_devices, &args);
1706 	if (!device) {
1707 		btrfs_info(fs_info, "resizer unable to find device %llu",
1708 			   devid);
1709 		ret = -ENODEV;
1710 		goto out_finish;
1711 	}
1712 
1713 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1714 		btrfs_info(fs_info,
1715 			   "resizer unable to apply on readonly device %llu",
1716 		       devid);
1717 		ret = -EPERM;
1718 		goto out_finish;
1719 	}
1720 
1721 	if (!strcmp(sizestr, "max"))
1722 		new_size = bdev_nr_bytes(device->bdev);
1723 	else {
1724 		if (sizestr[0] == '-') {
1725 			mod = -1;
1726 			sizestr++;
1727 		} else if (sizestr[0] == '+') {
1728 			mod = 1;
1729 			sizestr++;
1730 		}
1731 		new_size = memparse(sizestr, &retptr);
1732 		if (*retptr != '\0' || new_size == 0) {
1733 			ret = -EINVAL;
1734 			goto out_finish;
1735 		}
1736 	}
1737 
1738 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1739 		ret = -EPERM;
1740 		goto out_finish;
1741 	}
1742 
1743 	old_size = btrfs_device_get_total_bytes(device);
1744 
1745 	if (mod < 0) {
1746 		if (new_size > old_size) {
1747 			ret = -EINVAL;
1748 			goto out_finish;
1749 		}
1750 		new_size = old_size - new_size;
1751 	} else if (mod > 0) {
1752 		if (new_size > ULLONG_MAX - old_size) {
1753 			ret = -ERANGE;
1754 			goto out_finish;
1755 		}
1756 		new_size = old_size + new_size;
1757 	}
1758 
1759 	if (new_size < SZ_256M) {
1760 		ret = -EINVAL;
1761 		goto out_finish;
1762 	}
1763 	if (new_size > bdev_nr_bytes(device->bdev)) {
1764 		ret = -EFBIG;
1765 		goto out_finish;
1766 	}
1767 
1768 	new_size = round_down(new_size, fs_info->sectorsize);
1769 
1770 	if (new_size > old_size) {
1771 		trans = btrfs_start_transaction(root, 0);
1772 		if (IS_ERR(trans)) {
1773 			ret = PTR_ERR(trans);
1774 			goto out_finish;
1775 		}
1776 		ret = btrfs_grow_device(trans, device, new_size);
1777 		btrfs_commit_transaction(trans);
1778 	} else if (new_size < old_size) {
1779 		ret = btrfs_shrink_device(device, new_size);
1780 	} /* equal, nothing need to do */
1781 
1782 	if (ret == 0 && new_size != old_size)
1783 		btrfs_info_in_rcu(fs_info,
1784 			"resize device %s (devid %llu) from %llu to %llu",
1785 			rcu_str_deref(device->name), device->devid,
1786 			old_size, new_size);
1787 out_finish:
1788 	btrfs_exclop_finish(fs_info);
1789 out_free:
1790 	kfree(vol_args);
1791 out_drop:
1792 	mnt_drop_write_file(file);
1793 	return ret;
1794 }
1795 
1796 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1797 				struct user_namespace *mnt_userns,
1798 				const char *name, unsigned long fd, int subvol,
1799 				bool readonly,
1800 				struct btrfs_qgroup_inherit *inherit)
1801 {
1802 	int namelen;
1803 	int ret = 0;
1804 
1805 	if (!S_ISDIR(file_inode(file)->i_mode))
1806 		return -ENOTDIR;
1807 
1808 	ret = mnt_want_write_file(file);
1809 	if (ret)
1810 		goto out;
1811 
1812 	namelen = strlen(name);
1813 	if (strchr(name, '/')) {
1814 		ret = -EINVAL;
1815 		goto out_drop_write;
1816 	}
1817 
1818 	if (name[0] == '.' &&
1819 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1820 		ret = -EEXIST;
1821 		goto out_drop_write;
1822 	}
1823 
1824 	if (subvol) {
1825 		ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
1826 				     namelen, NULL, readonly, inherit);
1827 	} else {
1828 		struct fd src = fdget(fd);
1829 		struct inode *src_inode;
1830 		if (!src.file) {
1831 			ret = -EINVAL;
1832 			goto out_drop_write;
1833 		}
1834 
1835 		src_inode = file_inode(src.file);
1836 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1837 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1838 				   "Snapshot src from another FS");
1839 			ret = -EXDEV;
1840 		} else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
1841 			/*
1842 			 * Subvolume creation is not restricted, but snapshots
1843 			 * are limited to own subvolumes only
1844 			 */
1845 			ret = -EPERM;
1846 		} else {
1847 			ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
1848 					       name, namelen,
1849 					       BTRFS_I(src_inode)->root,
1850 					       readonly, inherit);
1851 		}
1852 		fdput(src);
1853 	}
1854 out_drop_write:
1855 	mnt_drop_write_file(file);
1856 out:
1857 	return ret;
1858 }
1859 
1860 static noinline int btrfs_ioctl_snap_create(struct file *file,
1861 					    void __user *arg, int subvol)
1862 {
1863 	struct btrfs_ioctl_vol_args *vol_args;
1864 	int ret;
1865 
1866 	if (!S_ISDIR(file_inode(file)->i_mode))
1867 		return -ENOTDIR;
1868 
1869 	vol_args = memdup_user(arg, sizeof(*vol_args));
1870 	if (IS_ERR(vol_args))
1871 		return PTR_ERR(vol_args);
1872 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1873 
1874 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1875 					vol_args->name, vol_args->fd, subvol,
1876 					false, NULL);
1877 
1878 	kfree(vol_args);
1879 	return ret;
1880 }
1881 
1882 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1883 					       void __user *arg, int subvol)
1884 {
1885 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1886 	int ret;
1887 	bool readonly = false;
1888 	struct btrfs_qgroup_inherit *inherit = NULL;
1889 
1890 	if (!S_ISDIR(file_inode(file)->i_mode))
1891 		return -ENOTDIR;
1892 
1893 	vol_args = memdup_user(arg, sizeof(*vol_args));
1894 	if (IS_ERR(vol_args))
1895 		return PTR_ERR(vol_args);
1896 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1897 
1898 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1899 		ret = -EOPNOTSUPP;
1900 		goto free_args;
1901 	}
1902 
1903 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1904 		readonly = true;
1905 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1906 		u64 nums;
1907 
1908 		if (vol_args->size < sizeof(*inherit) ||
1909 		    vol_args->size > PAGE_SIZE) {
1910 			ret = -EINVAL;
1911 			goto free_args;
1912 		}
1913 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1914 		if (IS_ERR(inherit)) {
1915 			ret = PTR_ERR(inherit);
1916 			goto free_args;
1917 		}
1918 
1919 		if (inherit->num_qgroups > PAGE_SIZE ||
1920 		    inherit->num_ref_copies > PAGE_SIZE ||
1921 		    inherit->num_excl_copies > PAGE_SIZE) {
1922 			ret = -EINVAL;
1923 			goto free_inherit;
1924 		}
1925 
1926 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1927 		       2 * inherit->num_excl_copies;
1928 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1929 			ret = -EINVAL;
1930 			goto free_inherit;
1931 		}
1932 	}
1933 
1934 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1935 					vol_args->name, vol_args->fd, subvol,
1936 					readonly, inherit);
1937 	if (ret)
1938 		goto free_inherit;
1939 free_inherit:
1940 	kfree(inherit);
1941 free_args:
1942 	kfree(vol_args);
1943 	return ret;
1944 }
1945 
1946 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1947 						void __user *arg)
1948 {
1949 	struct inode *inode = file_inode(file);
1950 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1951 	struct btrfs_root *root = BTRFS_I(inode)->root;
1952 	int ret = 0;
1953 	u64 flags = 0;
1954 
1955 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1956 		return -EINVAL;
1957 
1958 	down_read(&fs_info->subvol_sem);
1959 	if (btrfs_root_readonly(root))
1960 		flags |= BTRFS_SUBVOL_RDONLY;
1961 	up_read(&fs_info->subvol_sem);
1962 
1963 	if (copy_to_user(arg, &flags, sizeof(flags)))
1964 		ret = -EFAULT;
1965 
1966 	return ret;
1967 }
1968 
1969 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1970 					      void __user *arg)
1971 {
1972 	struct inode *inode = file_inode(file);
1973 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1974 	struct btrfs_root *root = BTRFS_I(inode)->root;
1975 	struct btrfs_trans_handle *trans;
1976 	u64 root_flags;
1977 	u64 flags;
1978 	int ret = 0;
1979 
1980 	if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
1981 		return -EPERM;
1982 
1983 	ret = mnt_want_write_file(file);
1984 	if (ret)
1985 		goto out;
1986 
1987 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1988 		ret = -EINVAL;
1989 		goto out_drop_write;
1990 	}
1991 
1992 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1993 		ret = -EFAULT;
1994 		goto out_drop_write;
1995 	}
1996 
1997 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1998 		ret = -EOPNOTSUPP;
1999 		goto out_drop_write;
2000 	}
2001 
2002 	down_write(&fs_info->subvol_sem);
2003 
2004 	/* nothing to do */
2005 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2006 		goto out_drop_sem;
2007 
2008 	root_flags = btrfs_root_flags(&root->root_item);
2009 	if (flags & BTRFS_SUBVOL_RDONLY) {
2010 		btrfs_set_root_flags(&root->root_item,
2011 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2012 	} else {
2013 		/*
2014 		 * Block RO -> RW transition if this subvolume is involved in
2015 		 * send
2016 		 */
2017 		spin_lock(&root->root_item_lock);
2018 		if (root->send_in_progress == 0) {
2019 			btrfs_set_root_flags(&root->root_item,
2020 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2021 			spin_unlock(&root->root_item_lock);
2022 		} else {
2023 			spin_unlock(&root->root_item_lock);
2024 			btrfs_warn(fs_info,
2025 				   "Attempt to set subvolume %llu read-write during send",
2026 				   root->root_key.objectid);
2027 			ret = -EPERM;
2028 			goto out_drop_sem;
2029 		}
2030 	}
2031 
2032 	trans = btrfs_start_transaction(root, 1);
2033 	if (IS_ERR(trans)) {
2034 		ret = PTR_ERR(trans);
2035 		goto out_reset;
2036 	}
2037 
2038 	ret = btrfs_update_root(trans, fs_info->tree_root,
2039 				&root->root_key, &root->root_item);
2040 	if (ret < 0) {
2041 		btrfs_end_transaction(trans);
2042 		goto out_reset;
2043 	}
2044 
2045 	ret = btrfs_commit_transaction(trans);
2046 
2047 out_reset:
2048 	if (ret)
2049 		btrfs_set_root_flags(&root->root_item, root_flags);
2050 out_drop_sem:
2051 	up_write(&fs_info->subvol_sem);
2052 out_drop_write:
2053 	mnt_drop_write_file(file);
2054 out:
2055 	return ret;
2056 }
2057 
2058 static noinline int key_in_sk(struct btrfs_key *key,
2059 			      struct btrfs_ioctl_search_key *sk)
2060 {
2061 	struct btrfs_key test;
2062 	int ret;
2063 
2064 	test.objectid = sk->min_objectid;
2065 	test.type = sk->min_type;
2066 	test.offset = sk->min_offset;
2067 
2068 	ret = btrfs_comp_cpu_keys(key, &test);
2069 	if (ret < 0)
2070 		return 0;
2071 
2072 	test.objectid = sk->max_objectid;
2073 	test.type = sk->max_type;
2074 	test.offset = sk->max_offset;
2075 
2076 	ret = btrfs_comp_cpu_keys(key, &test);
2077 	if (ret > 0)
2078 		return 0;
2079 	return 1;
2080 }
2081 
2082 static noinline int copy_to_sk(struct btrfs_path *path,
2083 			       struct btrfs_key *key,
2084 			       struct btrfs_ioctl_search_key *sk,
2085 			       size_t *buf_size,
2086 			       char __user *ubuf,
2087 			       unsigned long *sk_offset,
2088 			       int *num_found)
2089 {
2090 	u64 found_transid;
2091 	struct extent_buffer *leaf;
2092 	struct btrfs_ioctl_search_header sh;
2093 	struct btrfs_key test;
2094 	unsigned long item_off;
2095 	unsigned long item_len;
2096 	int nritems;
2097 	int i;
2098 	int slot;
2099 	int ret = 0;
2100 
2101 	leaf = path->nodes[0];
2102 	slot = path->slots[0];
2103 	nritems = btrfs_header_nritems(leaf);
2104 
2105 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2106 		i = nritems;
2107 		goto advance_key;
2108 	}
2109 	found_transid = btrfs_header_generation(leaf);
2110 
2111 	for (i = slot; i < nritems; i++) {
2112 		item_off = btrfs_item_ptr_offset(leaf, i);
2113 		item_len = btrfs_item_size(leaf, i);
2114 
2115 		btrfs_item_key_to_cpu(leaf, key, i);
2116 		if (!key_in_sk(key, sk))
2117 			continue;
2118 
2119 		if (sizeof(sh) + item_len > *buf_size) {
2120 			if (*num_found) {
2121 				ret = 1;
2122 				goto out;
2123 			}
2124 
2125 			/*
2126 			 * return one empty item back for v1, which does not
2127 			 * handle -EOVERFLOW
2128 			 */
2129 
2130 			*buf_size = sizeof(sh) + item_len;
2131 			item_len = 0;
2132 			ret = -EOVERFLOW;
2133 		}
2134 
2135 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2136 			ret = 1;
2137 			goto out;
2138 		}
2139 
2140 		sh.objectid = key->objectid;
2141 		sh.offset = key->offset;
2142 		sh.type = key->type;
2143 		sh.len = item_len;
2144 		sh.transid = found_transid;
2145 
2146 		/*
2147 		 * Copy search result header. If we fault then loop again so we
2148 		 * can fault in the pages and -EFAULT there if there's a
2149 		 * problem. Otherwise we'll fault and then copy the buffer in
2150 		 * properly this next time through
2151 		 */
2152 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2153 			ret = 0;
2154 			goto out;
2155 		}
2156 
2157 		*sk_offset += sizeof(sh);
2158 
2159 		if (item_len) {
2160 			char __user *up = ubuf + *sk_offset;
2161 			/*
2162 			 * Copy the item, same behavior as above, but reset the
2163 			 * * sk_offset so we copy the full thing again.
2164 			 */
2165 			if (read_extent_buffer_to_user_nofault(leaf, up,
2166 						item_off, item_len)) {
2167 				ret = 0;
2168 				*sk_offset -= sizeof(sh);
2169 				goto out;
2170 			}
2171 
2172 			*sk_offset += item_len;
2173 		}
2174 		(*num_found)++;
2175 
2176 		if (ret) /* -EOVERFLOW from above */
2177 			goto out;
2178 
2179 		if (*num_found >= sk->nr_items) {
2180 			ret = 1;
2181 			goto out;
2182 		}
2183 	}
2184 advance_key:
2185 	ret = 0;
2186 	test.objectid = sk->max_objectid;
2187 	test.type = sk->max_type;
2188 	test.offset = sk->max_offset;
2189 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2190 		ret = 1;
2191 	else if (key->offset < (u64)-1)
2192 		key->offset++;
2193 	else if (key->type < (u8)-1) {
2194 		key->offset = 0;
2195 		key->type++;
2196 	} else if (key->objectid < (u64)-1) {
2197 		key->offset = 0;
2198 		key->type = 0;
2199 		key->objectid++;
2200 	} else
2201 		ret = 1;
2202 out:
2203 	/*
2204 	 *  0: all items from this leaf copied, continue with next
2205 	 *  1: * more items can be copied, but unused buffer is too small
2206 	 *     * all items were found
2207 	 *     Either way, it will stops the loop which iterates to the next
2208 	 *     leaf
2209 	 *  -EOVERFLOW: item was to large for buffer
2210 	 *  -EFAULT: could not copy extent buffer back to userspace
2211 	 */
2212 	return ret;
2213 }
2214 
2215 static noinline int search_ioctl(struct inode *inode,
2216 				 struct btrfs_ioctl_search_key *sk,
2217 				 size_t *buf_size,
2218 				 char __user *ubuf)
2219 {
2220 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2221 	struct btrfs_root *root;
2222 	struct btrfs_key key;
2223 	struct btrfs_path *path;
2224 	int ret;
2225 	int num_found = 0;
2226 	unsigned long sk_offset = 0;
2227 
2228 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2229 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2230 		return -EOVERFLOW;
2231 	}
2232 
2233 	path = btrfs_alloc_path();
2234 	if (!path)
2235 		return -ENOMEM;
2236 
2237 	if (sk->tree_id == 0) {
2238 		/* search the root of the inode that was passed */
2239 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2240 	} else {
2241 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2242 		if (IS_ERR(root)) {
2243 			btrfs_free_path(path);
2244 			return PTR_ERR(root);
2245 		}
2246 	}
2247 
2248 	key.objectid = sk->min_objectid;
2249 	key.type = sk->min_type;
2250 	key.offset = sk->min_offset;
2251 
2252 	while (1) {
2253 		ret = -EFAULT;
2254 		if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset))
2255 			break;
2256 
2257 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2258 		if (ret != 0) {
2259 			if (ret > 0)
2260 				ret = 0;
2261 			goto err;
2262 		}
2263 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2264 				 &sk_offset, &num_found);
2265 		btrfs_release_path(path);
2266 		if (ret)
2267 			break;
2268 
2269 	}
2270 	if (ret > 0)
2271 		ret = 0;
2272 err:
2273 	sk->nr_items = num_found;
2274 	btrfs_put_root(root);
2275 	btrfs_free_path(path);
2276 	return ret;
2277 }
2278 
2279 static noinline int btrfs_ioctl_tree_search(struct file *file,
2280 					   void __user *argp)
2281 {
2282 	struct btrfs_ioctl_search_args __user *uargs;
2283 	struct btrfs_ioctl_search_key sk;
2284 	struct inode *inode;
2285 	int ret;
2286 	size_t buf_size;
2287 
2288 	if (!capable(CAP_SYS_ADMIN))
2289 		return -EPERM;
2290 
2291 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2292 
2293 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2294 		return -EFAULT;
2295 
2296 	buf_size = sizeof(uargs->buf);
2297 
2298 	inode = file_inode(file);
2299 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2300 
2301 	/*
2302 	 * In the origin implementation an overflow is handled by returning a
2303 	 * search header with a len of zero, so reset ret.
2304 	 */
2305 	if (ret == -EOVERFLOW)
2306 		ret = 0;
2307 
2308 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2309 		ret = -EFAULT;
2310 	return ret;
2311 }
2312 
2313 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2314 					       void __user *argp)
2315 {
2316 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2317 	struct btrfs_ioctl_search_args_v2 args;
2318 	struct inode *inode;
2319 	int ret;
2320 	size_t buf_size;
2321 	const size_t buf_limit = SZ_16M;
2322 
2323 	if (!capable(CAP_SYS_ADMIN))
2324 		return -EPERM;
2325 
2326 	/* copy search header and buffer size */
2327 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2328 	if (copy_from_user(&args, uarg, sizeof(args)))
2329 		return -EFAULT;
2330 
2331 	buf_size = args.buf_size;
2332 
2333 	/* limit result size to 16MB */
2334 	if (buf_size > buf_limit)
2335 		buf_size = buf_limit;
2336 
2337 	inode = file_inode(file);
2338 	ret = search_ioctl(inode, &args.key, &buf_size,
2339 			   (char __user *)(&uarg->buf[0]));
2340 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2341 		ret = -EFAULT;
2342 	else if (ret == -EOVERFLOW &&
2343 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2344 		ret = -EFAULT;
2345 
2346 	return ret;
2347 }
2348 
2349 /*
2350  * Search INODE_REFs to identify path name of 'dirid' directory
2351  * in a 'tree_id' tree. and sets path name to 'name'.
2352  */
2353 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2354 				u64 tree_id, u64 dirid, char *name)
2355 {
2356 	struct btrfs_root *root;
2357 	struct btrfs_key key;
2358 	char *ptr;
2359 	int ret = -1;
2360 	int slot;
2361 	int len;
2362 	int total_len = 0;
2363 	struct btrfs_inode_ref *iref;
2364 	struct extent_buffer *l;
2365 	struct btrfs_path *path;
2366 
2367 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2368 		name[0]='\0';
2369 		return 0;
2370 	}
2371 
2372 	path = btrfs_alloc_path();
2373 	if (!path)
2374 		return -ENOMEM;
2375 
2376 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2377 
2378 	root = btrfs_get_fs_root(info, tree_id, true);
2379 	if (IS_ERR(root)) {
2380 		ret = PTR_ERR(root);
2381 		root = NULL;
2382 		goto out;
2383 	}
2384 
2385 	key.objectid = dirid;
2386 	key.type = BTRFS_INODE_REF_KEY;
2387 	key.offset = (u64)-1;
2388 
2389 	while (1) {
2390 		ret = btrfs_search_backwards(root, &key, path);
2391 		if (ret < 0)
2392 			goto out;
2393 		else if (ret > 0) {
2394 			ret = -ENOENT;
2395 			goto out;
2396 		}
2397 
2398 		l = path->nodes[0];
2399 		slot = path->slots[0];
2400 
2401 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2402 		len = btrfs_inode_ref_name_len(l, iref);
2403 		ptr -= len + 1;
2404 		total_len += len + 1;
2405 		if (ptr < name) {
2406 			ret = -ENAMETOOLONG;
2407 			goto out;
2408 		}
2409 
2410 		*(ptr + len) = '/';
2411 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2412 
2413 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2414 			break;
2415 
2416 		btrfs_release_path(path);
2417 		key.objectid = key.offset;
2418 		key.offset = (u64)-1;
2419 		dirid = key.objectid;
2420 	}
2421 	memmove(name, ptr, total_len);
2422 	name[total_len] = '\0';
2423 	ret = 0;
2424 out:
2425 	btrfs_put_root(root);
2426 	btrfs_free_path(path);
2427 	return ret;
2428 }
2429 
2430 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2431 				struct inode *inode,
2432 				struct btrfs_ioctl_ino_lookup_user_args *args)
2433 {
2434 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2435 	struct super_block *sb = inode->i_sb;
2436 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2437 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2438 	u64 dirid = args->dirid;
2439 	unsigned long item_off;
2440 	unsigned long item_len;
2441 	struct btrfs_inode_ref *iref;
2442 	struct btrfs_root_ref *rref;
2443 	struct btrfs_root *root = NULL;
2444 	struct btrfs_path *path;
2445 	struct btrfs_key key, key2;
2446 	struct extent_buffer *leaf;
2447 	struct inode *temp_inode;
2448 	char *ptr;
2449 	int slot;
2450 	int len;
2451 	int total_len = 0;
2452 	int ret;
2453 
2454 	path = btrfs_alloc_path();
2455 	if (!path)
2456 		return -ENOMEM;
2457 
2458 	/*
2459 	 * If the bottom subvolume does not exist directly under upper_limit,
2460 	 * construct the path in from the bottom up.
2461 	 */
2462 	if (dirid != upper_limit.objectid) {
2463 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2464 
2465 		root = btrfs_get_fs_root(fs_info, treeid, true);
2466 		if (IS_ERR(root)) {
2467 			ret = PTR_ERR(root);
2468 			goto out;
2469 		}
2470 
2471 		key.objectid = dirid;
2472 		key.type = BTRFS_INODE_REF_KEY;
2473 		key.offset = (u64)-1;
2474 		while (1) {
2475 			ret = btrfs_search_backwards(root, &key, path);
2476 			if (ret < 0)
2477 				goto out_put;
2478 			else if (ret > 0) {
2479 				ret = -ENOENT;
2480 				goto out_put;
2481 			}
2482 
2483 			leaf = path->nodes[0];
2484 			slot = path->slots[0];
2485 
2486 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2487 			len = btrfs_inode_ref_name_len(leaf, iref);
2488 			ptr -= len + 1;
2489 			total_len += len + 1;
2490 			if (ptr < args->path) {
2491 				ret = -ENAMETOOLONG;
2492 				goto out_put;
2493 			}
2494 
2495 			*(ptr + len) = '/';
2496 			read_extent_buffer(leaf, ptr,
2497 					(unsigned long)(iref + 1), len);
2498 
2499 			/* Check the read+exec permission of this directory */
2500 			ret = btrfs_previous_item(root, path, dirid,
2501 						  BTRFS_INODE_ITEM_KEY);
2502 			if (ret < 0) {
2503 				goto out_put;
2504 			} else if (ret > 0) {
2505 				ret = -ENOENT;
2506 				goto out_put;
2507 			}
2508 
2509 			leaf = path->nodes[0];
2510 			slot = path->slots[0];
2511 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2512 			if (key2.objectid != dirid) {
2513 				ret = -ENOENT;
2514 				goto out_put;
2515 			}
2516 
2517 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2518 			if (IS_ERR(temp_inode)) {
2519 				ret = PTR_ERR(temp_inode);
2520 				goto out_put;
2521 			}
2522 			ret = inode_permission(mnt_userns, temp_inode,
2523 					       MAY_READ | MAY_EXEC);
2524 			iput(temp_inode);
2525 			if (ret) {
2526 				ret = -EACCES;
2527 				goto out_put;
2528 			}
2529 
2530 			if (key.offset == upper_limit.objectid)
2531 				break;
2532 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2533 				ret = -EACCES;
2534 				goto out_put;
2535 			}
2536 
2537 			btrfs_release_path(path);
2538 			key.objectid = key.offset;
2539 			key.offset = (u64)-1;
2540 			dirid = key.objectid;
2541 		}
2542 
2543 		memmove(args->path, ptr, total_len);
2544 		args->path[total_len] = '\0';
2545 		btrfs_put_root(root);
2546 		root = NULL;
2547 		btrfs_release_path(path);
2548 	}
2549 
2550 	/* Get the bottom subvolume's name from ROOT_REF */
2551 	key.objectid = treeid;
2552 	key.type = BTRFS_ROOT_REF_KEY;
2553 	key.offset = args->treeid;
2554 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2555 	if (ret < 0) {
2556 		goto out;
2557 	} else if (ret > 0) {
2558 		ret = -ENOENT;
2559 		goto out;
2560 	}
2561 
2562 	leaf = path->nodes[0];
2563 	slot = path->slots[0];
2564 	btrfs_item_key_to_cpu(leaf, &key, slot);
2565 
2566 	item_off = btrfs_item_ptr_offset(leaf, slot);
2567 	item_len = btrfs_item_size(leaf, slot);
2568 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2569 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2570 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2571 		ret = -EINVAL;
2572 		goto out;
2573 	}
2574 
2575 	/* Copy subvolume's name */
2576 	item_off += sizeof(struct btrfs_root_ref);
2577 	item_len -= sizeof(struct btrfs_root_ref);
2578 	read_extent_buffer(leaf, args->name, item_off, item_len);
2579 	args->name[item_len] = 0;
2580 
2581 out_put:
2582 	btrfs_put_root(root);
2583 out:
2584 	btrfs_free_path(path);
2585 	return ret;
2586 }
2587 
2588 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2589 					   void __user *argp)
2590 {
2591 	struct btrfs_ioctl_ino_lookup_args *args;
2592 	struct inode *inode;
2593 	int ret = 0;
2594 
2595 	args = memdup_user(argp, sizeof(*args));
2596 	if (IS_ERR(args))
2597 		return PTR_ERR(args);
2598 
2599 	inode = file_inode(file);
2600 
2601 	/*
2602 	 * Unprivileged query to obtain the containing subvolume root id. The
2603 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2604 	 */
2605 	if (args->treeid == 0)
2606 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2607 
2608 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2609 		args->name[0] = 0;
2610 		goto out;
2611 	}
2612 
2613 	if (!capable(CAP_SYS_ADMIN)) {
2614 		ret = -EPERM;
2615 		goto out;
2616 	}
2617 
2618 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2619 					args->treeid, args->objectid,
2620 					args->name);
2621 
2622 out:
2623 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2624 		ret = -EFAULT;
2625 
2626 	kfree(args);
2627 	return ret;
2628 }
2629 
2630 /*
2631  * Version of ino_lookup ioctl (unprivileged)
2632  *
2633  * The main differences from ino_lookup ioctl are:
2634  *
2635  *   1. Read + Exec permission will be checked using inode_permission() during
2636  *      path construction. -EACCES will be returned in case of failure.
2637  *   2. Path construction will be stopped at the inode number which corresponds
2638  *      to the fd with which this ioctl is called. If constructed path does not
2639  *      exist under fd's inode, -EACCES will be returned.
2640  *   3. The name of bottom subvolume is also searched and filled.
2641  */
2642 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2643 {
2644 	struct btrfs_ioctl_ino_lookup_user_args *args;
2645 	struct inode *inode;
2646 	int ret;
2647 
2648 	args = memdup_user(argp, sizeof(*args));
2649 	if (IS_ERR(args))
2650 		return PTR_ERR(args);
2651 
2652 	inode = file_inode(file);
2653 
2654 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2655 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2656 		/*
2657 		 * The subvolume does not exist under fd with which this is
2658 		 * called
2659 		 */
2660 		kfree(args);
2661 		return -EACCES;
2662 	}
2663 
2664 	ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2665 
2666 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2667 		ret = -EFAULT;
2668 
2669 	kfree(args);
2670 	return ret;
2671 }
2672 
2673 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2674 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2675 {
2676 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2677 	struct btrfs_fs_info *fs_info;
2678 	struct btrfs_root *root;
2679 	struct btrfs_path *path;
2680 	struct btrfs_key key;
2681 	struct btrfs_root_item *root_item;
2682 	struct btrfs_root_ref *rref;
2683 	struct extent_buffer *leaf;
2684 	unsigned long item_off;
2685 	unsigned long item_len;
2686 	struct inode *inode;
2687 	int slot;
2688 	int ret = 0;
2689 
2690 	path = btrfs_alloc_path();
2691 	if (!path)
2692 		return -ENOMEM;
2693 
2694 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2695 	if (!subvol_info) {
2696 		btrfs_free_path(path);
2697 		return -ENOMEM;
2698 	}
2699 
2700 	inode = file_inode(file);
2701 	fs_info = BTRFS_I(inode)->root->fs_info;
2702 
2703 	/* Get root_item of inode's subvolume */
2704 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2705 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2706 	if (IS_ERR(root)) {
2707 		ret = PTR_ERR(root);
2708 		goto out_free;
2709 	}
2710 	root_item = &root->root_item;
2711 
2712 	subvol_info->treeid = key.objectid;
2713 
2714 	subvol_info->generation = btrfs_root_generation(root_item);
2715 	subvol_info->flags = btrfs_root_flags(root_item);
2716 
2717 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2718 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2719 						    BTRFS_UUID_SIZE);
2720 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2721 						    BTRFS_UUID_SIZE);
2722 
2723 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2724 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2725 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2726 
2727 	subvol_info->otransid = btrfs_root_otransid(root_item);
2728 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2729 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2730 
2731 	subvol_info->stransid = btrfs_root_stransid(root_item);
2732 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2733 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2734 
2735 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2736 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2737 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2738 
2739 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2740 		/* Search root tree for ROOT_BACKREF of this subvolume */
2741 		key.type = BTRFS_ROOT_BACKREF_KEY;
2742 		key.offset = 0;
2743 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2744 		if (ret < 0) {
2745 			goto out;
2746 		} else if (path->slots[0] >=
2747 			   btrfs_header_nritems(path->nodes[0])) {
2748 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2749 			if (ret < 0) {
2750 				goto out;
2751 			} else if (ret > 0) {
2752 				ret = -EUCLEAN;
2753 				goto out;
2754 			}
2755 		}
2756 
2757 		leaf = path->nodes[0];
2758 		slot = path->slots[0];
2759 		btrfs_item_key_to_cpu(leaf, &key, slot);
2760 		if (key.objectid == subvol_info->treeid &&
2761 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2762 			subvol_info->parent_id = key.offset;
2763 
2764 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2765 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2766 
2767 			item_off = btrfs_item_ptr_offset(leaf, slot)
2768 					+ sizeof(struct btrfs_root_ref);
2769 			item_len = btrfs_item_size(leaf, slot)
2770 					- sizeof(struct btrfs_root_ref);
2771 			read_extent_buffer(leaf, subvol_info->name,
2772 					   item_off, item_len);
2773 		} else {
2774 			ret = -ENOENT;
2775 			goto out;
2776 		}
2777 	}
2778 
2779 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2780 		ret = -EFAULT;
2781 
2782 out:
2783 	btrfs_put_root(root);
2784 out_free:
2785 	btrfs_free_path(path);
2786 	kfree(subvol_info);
2787 	return ret;
2788 }
2789 
2790 /*
2791  * Return ROOT_REF information of the subvolume containing this inode
2792  * except the subvolume name.
2793  */
2794 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2795 {
2796 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2797 	struct btrfs_root_ref *rref;
2798 	struct btrfs_root *root;
2799 	struct btrfs_path *path;
2800 	struct btrfs_key key;
2801 	struct extent_buffer *leaf;
2802 	struct inode *inode;
2803 	u64 objectid;
2804 	int slot;
2805 	int ret;
2806 	u8 found;
2807 
2808 	path = btrfs_alloc_path();
2809 	if (!path)
2810 		return -ENOMEM;
2811 
2812 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2813 	if (IS_ERR(rootrefs)) {
2814 		btrfs_free_path(path);
2815 		return PTR_ERR(rootrefs);
2816 	}
2817 
2818 	inode = file_inode(file);
2819 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2820 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2821 
2822 	key.objectid = objectid;
2823 	key.type = BTRFS_ROOT_REF_KEY;
2824 	key.offset = rootrefs->min_treeid;
2825 	found = 0;
2826 
2827 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2828 	if (ret < 0) {
2829 		goto out;
2830 	} else if (path->slots[0] >=
2831 		   btrfs_header_nritems(path->nodes[0])) {
2832 		ret = btrfs_next_leaf(root, path);
2833 		if (ret < 0) {
2834 			goto out;
2835 		} else if (ret > 0) {
2836 			ret = -EUCLEAN;
2837 			goto out;
2838 		}
2839 	}
2840 	while (1) {
2841 		leaf = path->nodes[0];
2842 		slot = path->slots[0];
2843 
2844 		btrfs_item_key_to_cpu(leaf, &key, slot);
2845 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2846 			ret = 0;
2847 			goto out;
2848 		}
2849 
2850 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2851 			ret = -EOVERFLOW;
2852 			goto out;
2853 		}
2854 
2855 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2856 		rootrefs->rootref[found].treeid = key.offset;
2857 		rootrefs->rootref[found].dirid =
2858 				  btrfs_root_ref_dirid(leaf, rref);
2859 		found++;
2860 
2861 		ret = btrfs_next_item(root, path);
2862 		if (ret < 0) {
2863 			goto out;
2864 		} else if (ret > 0) {
2865 			ret = -EUCLEAN;
2866 			goto out;
2867 		}
2868 	}
2869 
2870 out:
2871 	if (!ret || ret == -EOVERFLOW) {
2872 		rootrefs->num_items = found;
2873 		/* update min_treeid for next search */
2874 		if (found)
2875 			rootrefs->min_treeid =
2876 				rootrefs->rootref[found - 1].treeid + 1;
2877 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2878 			ret = -EFAULT;
2879 	}
2880 
2881 	kfree(rootrefs);
2882 	btrfs_free_path(path);
2883 
2884 	return ret;
2885 }
2886 
2887 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2888 					     void __user *arg,
2889 					     bool destroy_v2)
2890 {
2891 	struct dentry *parent = file->f_path.dentry;
2892 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2893 	struct dentry *dentry;
2894 	struct inode *dir = d_inode(parent);
2895 	struct inode *inode;
2896 	struct btrfs_root *root = BTRFS_I(dir)->root;
2897 	struct btrfs_root *dest = NULL;
2898 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2899 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2900 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
2901 	char *subvol_name, *subvol_name_ptr = NULL;
2902 	int subvol_namelen;
2903 	int err = 0;
2904 	bool destroy_parent = false;
2905 
2906 	if (destroy_v2) {
2907 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2908 		if (IS_ERR(vol_args2))
2909 			return PTR_ERR(vol_args2);
2910 
2911 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2912 			err = -EOPNOTSUPP;
2913 			goto out;
2914 		}
2915 
2916 		/*
2917 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2918 		 * name, same as v1 currently does.
2919 		 */
2920 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2921 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2922 			subvol_name = vol_args2->name;
2923 
2924 			err = mnt_want_write_file(file);
2925 			if (err)
2926 				goto out;
2927 		} else {
2928 			struct inode *old_dir;
2929 
2930 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2931 				err = -EINVAL;
2932 				goto out;
2933 			}
2934 
2935 			err = mnt_want_write_file(file);
2936 			if (err)
2937 				goto out;
2938 
2939 			dentry = btrfs_get_dentry(fs_info->sb,
2940 					BTRFS_FIRST_FREE_OBJECTID,
2941 					vol_args2->subvolid, 0, 0);
2942 			if (IS_ERR(dentry)) {
2943 				err = PTR_ERR(dentry);
2944 				goto out_drop_write;
2945 			}
2946 
2947 			/*
2948 			 * Change the default parent since the subvolume being
2949 			 * deleted can be outside of the current mount point.
2950 			 */
2951 			parent = btrfs_get_parent(dentry);
2952 
2953 			/*
2954 			 * At this point dentry->d_name can point to '/' if the
2955 			 * subvolume we want to destroy is outsite of the
2956 			 * current mount point, so we need to release the
2957 			 * current dentry and execute the lookup to return a new
2958 			 * one with ->d_name pointing to the
2959 			 * <mount point>/subvol_name.
2960 			 */
2961 			dput(dentry);
2962 			if (IS_ERR(parent)) {
2963 				err = PTR_ERR(parent);
2964 				goto out_drop_write;
2965 			}
2966 			old_dir = dir;
2967 			dir = d_inode(parent);
2968 
2969 			/*
2970 			 * If v2 was used with SPEC_BY_ID, a new parent was
2971 			 * allocated since the subvolume can be outside of the
2972 			 * current mount point. Later on we need to release this
2973 			 * new parent dentry.
2974 			 */
2975 			destroy_parent = true;
2976 
2977 			/*
2978 			 * On idmapped mounts, deletion via subvolid is
2979 			 * restricted to subvolumes that are immediate
2980 			 * ancestors of the inode referenced by the file
2981 			 * descriptor in the ioctl. Otherwise the idmapping
2982 			 * could potentially be abused to delete subvolumes
2983 			 * anywhere in the filesystem the user wouldn't be able
2984 			 * to delete without an idmapped mount.
2985 			 */
2986 			if (old_dir != dir && mnt_userns != &init_user_ns) {
2987 				err = -EOPNOTSUPP;
2988 				goto free_parent;
2989 			}
2990 
2991 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2992 						fs_info, vol_args2->subvolid);
2993 			if (IS_ERR(subvol_name_ptr)) {
2994 				err = PTR_ERR(subvol_name_ptr);
2995 				goto free_parent;
2996 			}
2997 			/* subvol_name_ptr is already nul terminated */
2998 			subvol_name = (char *)kbasename(subvol_name_ptr);
2999 		}
3000 	} else {
3001 		vol_args = memdup_user(arg, sizeof(*vol_args));
3002 		if (IS_ERR(vol_args))
3003 			return PTR_ERR(vol_args);
3004 
3005 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3006 		subvol_name = vol_args->name;
3007 
3008 		err = mnt_want_write_file(file);
3009 		if (err)
3010 			goto out;
3011 	}
3012 
3013 	subvol_namelen = strlen(subvol_name);
3014 
3015 	if (strchr(subvol_name, '/') ||
3016 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
3017 		err = -EINVAL;
3018 		goto free_subvol_name;
3019 	}
3020 
3021 	if (!S_ISDIR(dir->i_mode)) {
3022 		err = -ENOTDIR;
3023 		goto free_subvol_name;
3024 	}
3025 
3026 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3027 	if (err == -EINTR)
3028 		goto free_subvol_name;
3029 	dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3030 	if (IS_ERR(dentry)) {
3031 		err = PTR_ERR(dentry);
3032 		goto out_unlock_dir;
3033 	}
3034 
3035 	if (d_really_is_negative(dentry)) {
3036 		err = -ENOENT;
3037 		goto out_dput;
3038 	}
3039 
3040 	inode = d_inode(dentry);
3041 	dest = BTRFS_I(inode)->root;
3042 	if (!capable(CAP_SYS_ADMIN)) {
3043 		/*
3044 		 * Regular user.  Only allow this with a special mount
3045 		 * option, when the user has write+exec access to the
3046 		 * subvol root, and when rmdir(2) would have been
3047 		 * allowed.
3048 		 *
3049 		 * Note that this is _not_ check that the subvol is
3050 		 * empty or doesn't contain data that we wouldn't
3051 		 * otherwise be able to delete.
3052 		 *
3053 		 * Users who want to delete empty subvols should try
3054 		 * rmdir(2).
3055 		 */
3056 		err = -EPERM;
3057 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3058 			goto out_dput;
3059 
3060 		/*
3061 		 * Do not allow deletion if the parent dir is the same
3062 		 * as the dir to be deleted.  That means the ioctl
3063 		 * must be called on the dentry referencing the root
3064 		 * of the subvol, not a random directory contained
3065 		 * within it.
3066 		 */
3067 		err = -EINVAL;
3068 		if (root == dest)
3069 			goto out_dput;
3070 
3071 		err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3072 		if (err)
3073 			goto out_dput;
3074 	}
3075 
3076 	/* check if subvolume may be deleted by a user */
3077 	err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3078 	if (err)
3079 		goto out_dput;
3080 
3081 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3082 		err = -EINVAL;
3083 		goto out_dput;
3084 	}
3085 
3086 	btrfs_inode_lock(inode, 0);
3087 	err = btrfs_delete_subvolume(dir, dentry);
3088 	btrfs_inode_unlock(inode, 0);
3089 	if (!err) {
3090 		fsnotify_rmdir(dir, dentry);
3091 		d_delete(dentry);
3092 	}
3093 
3094 out_dput:
3095 	dput(dentry);
3096 out_unlock_dir:
3097 	btrfs_inode_unlock(dir, 0);
3098 free_subvol_name:
3099 	kfree(subvol_name_ptr);
3100 free_parent:
3101 	if (destroy_parent)
3102 		dput(parent);
3103 out_drop_write:
3104 	mnt_drop_write_file(file);
3105 out:
3106 	kfree(vol_args2);
3107 	kfree(vol_args);
3108 	return err;
3109 }
3110 
3111 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3112 {
3113 	struct inode *inode = file_inode(file);
3114 	struct btrfs_root *root = BTRFS_I(inode)->root;
3115 	struct btrfs_ioctl_defrag_range_args range = {0};
3116 	int ret;
3117 
3118 	ret = mnt_want_write_file(file);
3119 	if (ret)
3120 		return ret;
3121 
3122 	if (btrfs_root_readonly(root)) {
3123 		ret = -EROFS;
3124 		goto out;
3125 	}
3126 
3127 	switch (inode->i_mode & S_IFMT) {
3128 	case S_IFDIR:
3129 		if (!capable(CAP_SYS_ADMIN)) {
3130 			ret = -EPERM;
3131 			goto out;
3132 		}
3133 		ret = btrfs_defrag_root(root);
3134 		break;
3135 	case S_IFREG:
3136 		/*
3137 		 * Note that this does not check the file descriptor for write
3138 		 * access. This prevents defragmenting executables that are
3139 		 * running and allows defrag on files open in read-only mode.
3140 		 */
3141 		if (!capable(CAP_SYS_ADMIN) &&
3142 		    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3143 			ret = -EPERM;
3144 			goto out;
3145 		}
3146 
3147 		if (argp) {
3148 			if (copy_from_user(&range, argp, sizeof(range))) {
3149 				ret = -EFAULT;
3150 				goto out;
3151 			}
3152 			/* compression requires us to start the IO */
3153 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3154 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3155 				range.extent_thresh = (u32)-1;
3156 			}
3157 		} else {
3158 			/* the rest are all set to zero by kzalloc */
3159 			range.len = (u64)-1;
3160 		}
3161 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
3162 					&range, BTRFS_OLDEST_GENERATION, 0);
3163 		if (ret > 0)
3164 			ret = 0;
3165 		break;
3166 	default:
3167 		ret = -EINVAL;
3168 	}
3169 out:
3170 	mnt_drop_write_file(file);
3171 	return ret;
3172 }
3173 
3174 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3175 {
3176 	struct btrfs_ioctl_vol_args *vol_args;
3177 	bool restore_op = false;
3178 	int ret;
3179 
3180 	if (!capable(CAP_SYS_ADMIN))
3181 		return -EPERM;
3182 
3183 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
3184 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
3185 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3186 
3187 		/*
3188 		 * We can do the device add because we have a paused balanced,
3189 		 * change the exclusive op type and remember we should bring
3190 		 * back the paused balance
3191 		 */
3192 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
3193 		btrfs_exclop_start_unlock(fs_info);
3194 		restore_op = true;
3195 	}
3196 
3197 	vol_args = memdup_user(arg, sizeof(*vol_args));
3198 	if (IS_ERR(vol_args)) {
3199 		ret = PTR_ERR(vol_args);
3200 		goto out;
3201 	}
3202 
3203 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3204 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3205 
3206 	if (!ret)
3207 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3208 
3209 	kfree(vol_args);
3210 out:
3211 	if (restore_op)
3212 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
3213 	else
3214 		btrfs_exclop_finish(fs_info);
3215 	return ret;
3216 }
3217 
3218 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3219 {
3220 	BTRFS_DEV_LOOKUP_ARGS(args);
3221 	struct inode *inode = file_inode(file);
3222 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3223 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3224 	struct block_device *bdev = NULL;
3225 	fmode_t mode;
3226 	int ret;
3227 	bool cancel = false;
3228 
3229 	if (!capable(CAP_SYS_ADMIN))
3230 		return -EPERM;
3231 
3232 	vol_args = memdup_user(arg, sizeof(*vol_args));
3233 	if (IS_ERR(vol_args))
3234 		return PTR_ERR(vol_args);
3235 
3236 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3237 		ret = -EOPNOTSUPP;
3238 		goto out;
3239 	}
3240 
3241 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3242 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3243 		args.devid = vol_args->devid;
3244 	} else if (!strcmp("cancel", vol_args->name)) {
3245 		cancel = true;
3246 	} else {
3247 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3248 		if (ret)
3249 			goto out;
3250 	}
3251 
3252 	ret = mnt_want_write_file(file);
3253 	if (ret)
3254 		goto out;
3255 
3256 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3257 					   cancel);
3258 	if (ret)
3259 		goto err_drop;
3260 
3261 	/* Exclusive operation is now claimed */
3262 	ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3263 
3264 	btrfs_exclop_finish(fs_info);
3265 
3266 	if (!ret) {
3267 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3268 			btrfs_info(fs_info, "device deleted: id %llu",
3269 					vol_args->devid);
3270 		else
3271 			btrfs_info(fs_info, "device deleted: %s",
3272 					vol_args->name);
3273 	}
3274 err_drop:
3275 	mnt_drop_write_file(file);
3276 	if (bdev)
3277 		blkdev_put(bdev, mode);
3278 out:
3279 	btrfs_put_dev_args_from_path(&args);
3280 	kfree(vol_args);
3281 	return ret;
3282 }
3283 
3284 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3285 {
3286 	BTRFS_DEV_LOOKUP_ARGS(args);
3287 	struct inode *inode = file_inode(file);
3288 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3289 	struct btrfs_ioctl_vol_args *vol_args;
3290 	struct block_device *bdev = NULL;
3291 	fmode_t mode;
3292 	int ret;
3293 	bool cancel;
3294 
3295 	if (!capable(CAP_SYS_ADMIN))
3296 		return -EPERM;
3297 
3298 	vol_args = memdup_user(arg, sizeof(*vol_args));
3299 	if (IS_ERR(vol_args))
3300 		return PTR_ERR(vol_args);
3301 
3302 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3303 	if (!strcmp("cancel", vol_args->name)) {
3304 		cancel = true;
3305 	} else {
3306 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3307 		if (ret)
3308 			goto out;
3309 	}
3310 
3311 	ret = mnt_want_write_file(file);
3312 	if (ret)
3313 		goto out;
3314 
3315 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3316 					   cancel);
3317 	if (ret == 0) {
3318 		ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3319 		if (!ret)
3320 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3321 		btrfs_exclop_finish(fs_info);
3322 	}
3323 
3324 	mnt_drop_write_file(file);
3325 	if (bdev)
3326 		blkdev_put(bdev, mode);
3327 out:
3328 	btrfs_put_dev_args_from_path(&args);
3329 	kfree(vol_args);
3330 	return ret;
3331 }
3332 
3333 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3334 				void __user *arg)
3335 {
3336 	struct btrfs_ioctl_fs_info_args *fi_args;
3337 	struct btrfs_device *device;
3338 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3339 	u64 flags_in;
3340 	int ret = 0;
3341 
3342 	fi_args = memdup_user(arg, sizeof(*fi_args));
3343 	if (IS_ERR(fi_args))
3344 		return PTR_ERR(fi_args);
3345 
3346 	flags_in = fi_args->flags;
3347 	memset(fi_args, 0, sizeof(*fi_args));
3348 
3349 	rcu_read_lock();
3350 	fi_args->num_devices = fs_devices->num_devices;
3351 
3352 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3353 		if (device->devid > fi_args->max_id)
3354 			fi_args->max_id = device->devid;
3355 	}
3356 	rcu_read_unlock();
3357 
3358 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3359 	fi_args->nodesize = fs_info->nodesize;
3360 	fi_args->sectorsize = fs_info->sectorsize;
3361 	fi_args->clone_alignment = fs_info->sectorsize;
3362 
3363 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3364 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3365 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3366 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3367 	}
3368 
3369 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3370 		fi_args->generation = fs_info->generation;
3371 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3372 	}
3373 
3374 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3375 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3376 		       sizeof(fi_args->metadata_uuid));
3377 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3378 	}
3379 
3380 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3381 		ret = -EFAULT;
3382 
3383 	kfree(fi_args);
3384 	return ret;
3385 }
3386 
3387 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3388 				 void __user *arg)
3389 {
3390 	BTRFS_DEV_LOOKUP_ARGS(args);
3391 	struct btrfs_ioctl_dev_info_args *di_args;
3392 	struct btrfs_device *dev;
3393 	int ret = 0;
3394 
3395 	di_args = memdup_user(arg, sizeof(*di_args));
3396 	if (IS_ERR(di_args))
3397 		return PTR_ERR(di_args);
3398 
3399 	args.devid = di_args->devid;
3400 	if (!btrfs_is_empty_uuid(di_args->uuid))
3401 		args.uuid = di_args->uuid;
3402 
3403 	rcu_read_lock();
3404 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3405 	if (!dev) {
3406 		ret = -ENODEV;
3407 		goto out;
3408 	}
3409 
3410 	di_args->devid = dev->devid;
3411 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3412 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3413 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3414 	if (dev->name) {
3415 		strncpy(di_args->path, rcu_str_deref(dev->name),
3416 				sizeof(di_args->path) - 1);
3417 		di_args->path[sizeof(di_args->path) - 1] = 0;
3418 	} else {
3419 		di_args->path[0] = '\0';
3420 	}
3421 
3422 out:
3423 	rcu_read_unlock();
3424 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3425 		ret = -EFAULT;
3426 
3427 	kfree(di_args);
3428 	return ret;
3429 }
3430 
3431 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3432 {
3433 	struct inode *inode = file_inode(file);
3434 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3435 	struct btrfs_root *root = BTRFS_I(inode)->root;
3436 	struct btrfs_root *new_root;
3437 	struct btrfs_dir_item *di;
3438 	struct btrfs_trans_handle *trans;
3439 	struct btrfs_path *path = NULL;
3440 	struct btrfs_disk_key disk_key;
3441 	u64 objectid = 0;
3442 	u64 dir_id;
3443 	int ret;
3444 
3445 	if (!capable(CAP_SYS_ADMIN))
3446 		return -EPERM;
3447 
3448 	ret = mnt_want_write_file(file);
3449 	if (ret)
3450 		return ret;
3451 
3452 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3453 		ret = -EFAULT;
3454 		goto out;
3455 	}
3456 
3457 	if (!objectid)
3458 		objectid = BTRFS_FS_TREE_OBJECTID;
3459 
3460 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3461 	if (IS_ERR(new_root)) {
3462 		ret = PTR_ERR(new_root);
3463 		goto out;
3464 	}
3465 	if (!is_fstree(new_root->root_key.objectid)) {
3466 		ret = -ENOENT;
3467 		goto out_free;
3468 	}
3469 
3470 	path = btrfs_alloc_path();
3471 	if (!path) {
3472 		ret = -ENOMEM;
3473 		goto out_free;
3474 	}
3475 
3476 	trans = btrfs_start_transaction(root, 1);
3477 	if (IS_ERR(trans)) {
3478 		ret = PTR_ERR(trans);
3479 		goto out_free;
3480 	}
3481 
3482 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3483 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3484 				   dir_id, "default", 7, 1);
3485 	if (IS_ERR_OR_NULL(di)) {
3486 		btrfs_release_path(path);
3487 		btrfs_end_transaction(trans);
3488 		btrfs_err(fs_info,
3489 			  "Umm, you don't have the default diritem, this isn't going to work");
3490 		ret = -ENOENT;
3491 		goto out_free;
3492 	}
3493 
3494 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3495 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3496 	btrfs_mark_buffer_dirty(path->nodes[0]);
3497 	btrfs_release_path(path);
3498 
3499 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3500 	btrfs_end_transaction(trans);
3501 out_free:
3502 	btrfs_put_root(new_root);
3503 	btrfs_free_path(path);
3504 out:
3505 	mnt_drop_write_file(file);
3506 	return ret;
3507 }
3508 
3509 static void get_block_group_info(struct list_head *groups_list,
3510 				 struct btrfs_ioctl_space_info *space)
3511 {
3512 	struct btrfs_block_group *block_group;
3513 
3514 	space->total_bytes = 0;
3515 	space->used_bytes = 0;
3516 	space->flags = 0;
3517 	list_for_each_entry(block_group, groups_list, list) {
3518 		space->flags = block_group->flags;
3519 		space->total_bytes += block_group->length;
3520 		space->used_bytes += block_group->used;
3521 	}
3522 }
3523 
3524 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3525 				   void __user *arg)
3526 {
3527 	struct btrfs_ioctl_space_args space_args;
3528 	struct btrfs_ioctl_space_info space;
3529 	struct btrfs_ioctl_space_info *dest;
3530 	struct btrfs_ioctl_space_info *dest_orig;
3531 	struct btrfs_ioctl_space_info __user *user_dest;
3532 	struct btrfs_space_info *info;
3533 	static const u64 types[] = {
3534 		BTRFS_BLOCK_GROUP_DATA,
3535 		BTRFS_BLOCK_GROUP_SYSTEM,
3536 		BTRFS_BLOCK_GROUP_METADATA,
3537 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3538 	};
3539 	int num_types = 4;
3540 	int alloc_size;
3541 	int ret = 0;
3542 	u64 slot_count = 0;
3543 	int i, c;
3544 
3545 	if (copy_from_user(&space_args,
3546 			   (struct btrfs_ioctl_space_args __user *)arg,
3547 			   sizeof(space_args)))
3548 		return -EFAULT;
3549 
3550 	for (i = 0; i < num_types; i++) {
3551 		struct btrfs_space_info *tmp;
3552 
3553 		info = NULL;
3554 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3555 			if (tmp->flags == types[i]) {
3556 				info = tmp;
3557 				break;
3558 			}
3559 		}
3560 
3561 		if (!info)
3562 			continue;
3563 
3564 		down_read(&info->groups_sem);
3565 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3566 			if (!list_empty(&info->block_groups[c]))
3567 				slot_count++;
3568 		}
3569 		up_read(&info->groups_sem);
3570 	}
3571 
3572 	/*
3573 	 * Global block reserve, exported as a space_info
3574 	 */
3575 	slot_count++;
3576 
3577 	/* space_slots == 0 means they are asking for a count */
3578 	if (space_args.space_slots == 0) {
3579 		space_args.total_spaces = slot_count;
3580 		goto out;
3581 	}
3582 
3583 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3584 
3585 	alloc_size = sizeof(*dest) * slot_count;
3586 
3587 	/* we generally have at most 6 or so space infos, one for each raid
3588 	 * level.  So, a whole page should be more than enough for everyone
3589 	 */
3590 	if (alloc_size > PAGE_SIZE)
3591 		return -ENOMEM;
3592 
3593 	space_args.total_spaces = 0;
3594 	dest = kmalloc(alloc_size, GFP_KERNEL);
3595 	if (!dest)
3596 		return -ENOMEM;
3597 	dest_orig = dest;
3598 
3599 	/* now we have a buffer to copy into */
3600 	for (i = 0; i < num_types; i++) {
3601 		struct btrfs_space_info *tmp;
3602 
3603 		if (!slot_count)
3604 			break;
3605 
3606 		info = NULL;
3607 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3608 			if (tmp->flags == types[i]) {
3609 				info = tmp;
3610 				break;
3611 			}
3612 		}
3613 
3614 		if (!info)
3615 			continue;
3616 		down_read(&info->groups_sem);
3617 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3618 			if (!list_empty(&info->block_groups[c])) {
3619 				get_block_group_info(&info->block_groups[c],
3620 						     &space);
3621 				memcpy(dest, &space, sizeof(space));
3622 				dest++;
3623 				space_args.total_spaces++;
3624 				slot_count--;
3625 			}
3626 			if (!slot_count)
3627 				break;
3628 		}
3629 		up_read(&info->groups_sem);
3630 	}
3631 
3632 	/*
3633 	 * Add global block reserve
3634 	 */
3635 	if (slot_count) {
3636 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3637 
3638 		spin_lock(&block_rsv->lock);
3639 		space.total_bytes = block_rsv->size;
3640 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3641 		spin_unlock(&block_rsv->lock);
3642 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3643 		memcpy(dest, &space, sizeof(space));
3644 		space_args.total_spaces++;
3645 	}
3646 
3647 	user_dest = (struct btrfs_ioctl_space_info __user *)
3648 		(arg + sizeof(struct btrfs_ioctl_space_args));
3649 
3650 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3651 		ret = -EFAULT;
3652 
3653 	kfree(dest_orig);
3654 out:
3655 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3656 		ret = -EFAULT;
3657 
3658 	return ret;
3659 }
3660 
3661 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3662 					    void __user *argp)
3663 {
3664 	struct btrfs_trans_handle *trans;
3665 	u64 transid;
3666 
3667 	trans = btrfs_attach_transaction_barrier(root);
3668 	if (IS_ERR(trans)) {
3669 		if (PTR_ERR(trans) != -ENOENT)
3670 			return PTR_ERR(trans);
3671 
3672 		/* No running transaction, don't bother */
3673 		transid = root->fs_info->last_trans_committed;
3674 		goto out;
3675 	}
3676 	transid = trans->transid;
3677 	btrfs_commit_transaction_async(trans);
3678 out:
3679 	if (argp)
3680 		if (copy_to_user(argp, &transid, sizeof(transid)))
3681 			return -EFAULT;
3682 	return 0;
3683 }
3684 
3685 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3686 					   void __user *argp)
3687 {
3688 	u64 transid;
3689 
3690 	if (argp) {
3691 		if (copy_from_user(&transid, argp, sizeof(transid)))
3692 			return -EFAULT;
3693 	} else {
3694 		transid = 0;  /* current trans */
3695 	}
3696 	return btrfs_wait_for_commit(fs_info, transid);
3697 }
3698 
3699 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3700 {
3701 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3702 	struct btrfs_ioctl_scrub_args *sa;
3703 	int ret;
3704 
3705 	if (!capable(CAP_SYS_ADMIN))
3706 		return -EPERM;
3707 
3708 	sa = memdup_user(arg, sizeof(*sa));
3709 	if (IS_ERR(sa))
3710 		return PTR_ERR(sa);
3711 
3712 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3713 		ret = mnt_want_write_file(file);
3714 		if (ret)
3715 			goto out;
3716 	}
3717 
3718 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3719 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3720 			      0);
3721 
3722 	/*
3723 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3724 	 * error. This is important as it allows user space to know how much
3725 	 * progress scrub has done. For example, if scrub is canceled we get
3726 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3727 	 * space. Later user space can inspect the progress from the structure
3728 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3729 	 * previously (btrfs-progs does this).
3730 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3731 	 * then return -EFAULT to signal the structure was not copied or it may
3732 	 * be corrupt and unreliable due to a partial copy.
3733 	 */
3734 	if (copy_to_user(arg, sa, sizeof(*sa)))
3735 		ret = -EFAULT;
3736 
3737 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3738 		mnt_drop_write_file(file);
3739 out:
3740 	kfree(sa);
3741 	return ret;
3742 }
3743 
3744 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3745 {
3746 	if (!capable(CAP_SYS_ADMIN))
3747 		return -EPERM;
3748 
3749 	return btrfs_scrub_cancel(fs_info);
3750 }
3751 
3752 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3753 				       void __user *arg)
3754 {
3755 	struct btrfs_ioctl_scrub_args *sa;
3756 	int ret;
3757 
3758 	if (!capable(CAP_SYS_ADMIN))
3759 		return -EPERM;
3760 
3761 	sa = memdup_user(arg, sizeof(*sa));
3762 	if (IS_ERR(sa))
3763 		return PTR_ERR(sa);
3764 
3765 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3766 
3767 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3768 		ret = -EFAULT;
3769 
3770 	kfree(sa);
3771 	return ret;
3772 }
3773 
3774 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3775 				      void __user *arg)
3776 {
3777 	struct btrfs_ioctl_get_dev_stats *sa;
3778 	int ret;
3779 
3780 	sa = memdup_user(arg, sizeof(*sa));
3781 	if (IS_ERR(sa))
3782 		return PTR_ERR(sa);
3783 
3784 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3785 		kfree(sa);
3786 		return -EPERM;
3787 	}
3788 
3789 	ret = btrfs_get_dev_stats(fs_info, sa);
3790 
3791 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3792 		ret = -EFAULT;
3793 
3794 	kfree(sa);
3795 	return ret;
3796 }
3797 
3798 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3799 				    void __user *arg)
3800 {
3801 	struct btrfs_ioctl_dev_replace_args *p;
3802 	int ret;
3803 
3804 	if (!capable(CAP_SYS_ADMIN))
3805 		return -EPERM;
3806 
3807 	p = memdup_user(arg, sizeof(*p));
3808 	if (IS_ERR(p))
3809 		return PTR_ERR(p);
3810 
3811 	switch (p->cmd) {
3812 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3813 		if (sb_rdonly(fs_info->sb)) {
3814 			ret = -EROFS;
3815 			goto out;
3816 		}
3817 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3818 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3819 		} else {
3820 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3821 			btrfs_exclop_finish(fs_info);
3822 		}
3823 		break;
3824 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3825 		btrfs_dev_replace_status(fs_info, p);
3826 		ret = 0;
3827 		break;
3828 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3829 		p->result = btrfs_dev_replace_cancel(fs_info);
3830 		ret = 0;
3831 		break;
3832 	default:
3833 		ret = -EINVAL;
3834 		break;
3835 	}
3836 
3837 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3838 		ret = -EFAULT;
3839 out:
3840 	kfree(p);
3841 	return ret;
3842 }
3843 
3844 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3845 {
3846 	int ret = 0;
3847 	int i;
3848 	u64 rel_ptr;
3849 	int size;
3850 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3851 	struct inode_fs_paths *ipath = NULL;
3852 	struct btrfs_path *path;
3853 
3854 	if (!capable(CAP_DAC_READ_SEARCH))
3855 		return -EPERM;
3856 
3857 	path = btrfs_alloc_path();
3858 	if (!path) {
3859 		ret = -ENOMEM;
3860 		goto out;
3861 	}
3862 
3863 	ipa = memdup_user(arg, sizeof(*ipa));
3864 	if (IS_ERR(ipa)) {
3865 		ret = PTR_ERR(ipa);
3866 		ipa = NULL;
3867 		goto out;
3868 	}
3869 
3870 	size = min_t(u32, ipa->size, 4096);
3871 	ipath = init_ipath(size, root, path);
3872 	if (IS_ERR(ipath)) {
3873 		ret = PTR_ERR(ipath);
3874 		ipath = NULL;
3875 		goto out;
3876 	}
3877 
3878 	ret = paths_from_inode(ipa->inum, ipath);
3879 	if (ret < 0)
3880 		goto out;
3881 
3882 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3883 		rel_ptr = ipath->fspath->val[i] -
3884 			  (u64)(unsigned long)ipath->fspath->val;
3885 		ipath->fspath->val[i] = rel_ptr;
3886 	}
3887 
3888 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3889 			   ipath->fspath, size);
3890 	if (ret) {
3891 		ret = -EFAULT;
3892 		goto out;
3893 	}
3894 
3895 out:
3896 	btrfs_free_path(path);
3897 	free_ipath(ipath);
3898 	kfree(ipa);
3899 
3900 	return ret;
3901 }
3902 
3903 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3904 {
3905 	struct btrfs_data_container *inodes = ctx;
3906 	const size_t c = 3 * sizeof(u64);
3907 
3908 	if (inodes->bytes_left >= c) {
3909 		inodes->bytes_left -= c;
3910 		inodes->val[inodes->elem_cnt] = inum;
3911 		inodes->val[inodes->elem_cnt + 1] = offset;
3912 		inodes->val[inodes->elem_cnt + 2] = root;
3913 		inodes->elem_cnt += 3;
3914 	} else {
3915 		inodes->bytes_missing += c - inodes->bytes_left;
3916 		inodes->bytes_left = 0;
3917 		inodes->elem_missed += 3;
3918 	}
3919 
3920 	return 0;
3921 }
3922 
3923 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3924 					void __user *arg, int version)
3925 {
3926 	int ret = 0;
3927 	int size;
3928 	struct btrfs_ioctl_logical_ino_args *loi;
3929 	struct btrfs_data_container *inodes = NULL;
3930 	struct btrfs_path *path = NULL;
3931 	bool ignore_offset;
3932 
3933 	if (!capable(CAP_SYS_ADMIN))
3934 		return -EPERM;
3935 
3936 	loi = memdup_user(arg, sizeof(*loi));
3937 	if (IS_ERR(loi))
3938 		return PTR_ERR(loi);
3939 
3940 	if (version == 1) {
3941 		ignore_offset = false;
3942 		size = min_t(u32, loi->size, SZ_64K);
3943 	} else {
3944 		/* All reserved bits must be 0 for now */
3945 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3946 			ret = -EINVAL;
3947 			goto out_loi;
3948 		}
3949 		/* Only accept flags we have defined so far */
3950 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3951 			ret = -EINVAL;
3952 			goto out_loi;
3953 		}
3954 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3955 		size = min_t(u32, loi->size, SZ_16M);
3956 	}
3957 
3958 	path = btrfs_alloc_path();
3959 	if (!path) {
3960 		ret = -ENOMEM;
3961 		goto out;
3962 	}
3963 
3964 	inodes = init_data_container(size);
3965 	if (IS_ERR(inodes)) {
3966 		ret = PTR_ERR(inodes);
3967 		inodes = NULL;
3968 		goto out;
3969 	}
3970 
3971 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3972 					  build_ino_list, inodes, ignore_offset);
3973 	if (ret == -EINVAL)
3974 		ret = -ENOENT;
3975 	if (ret < 0)
3976 		goto out;
3977 
3978 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3979 			   size);
3980 	if (ret)
3981 		ret = -EFAULT;
3982 
3983 out:
3984 	btrfs_free_path(path);
3985 	kvfree(inodes);
3986 out_loi:
3987 	kfree(loi);
3988 
3989 	return ret;
3990 }
3991 
3992 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3993 			       struct btrfs_ioctl_balance_args *bargs)
3994 {
3995 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3996 
3997 	bargs->flags = bctl->flags;
3998 
3999 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4000 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4001 	if (atomic_read(&fs_info->balance_pause_req))
4002 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4003 	if (atomic_read(&fs_info->balance_cancel_req))
4004 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4005 
4006 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4007 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4008 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4009 
4010 	spin_lock(&fs_info->balance_lock);
4011 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4012 	spin_unlock(&fs_info->balance_lock);
4013 }
4014 
4015 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4016 {
4017 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4018 	struct btrfs_fs_info *fs_info = root->fs_info;
4019 	struct btrfs_ioctl_balance_args *bargs;
4020 	struct btrfs_balance_control *bctl;
4021 	bool need_unlock; /* for mut. excl. ops lock */
4022 	int ret;
4023 
4024 	if (!arg)
4025 		btrfs_warn(fs_info,
4026 	"IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18");
4027 
4028 	if (!capable(CAP_SYS_ADMIN))
4029 		return -EPERM;
4030 
4031 	ret = mnt_want_write_file(file);
4032 	if (ret)
4033 		return ret;
4034 
4035 again:
4036 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4037 		mutex_lock(&fs_info->balance_mutex);
4038 		need_unlock = true;
4039 		goto locked;
4040 	}
4041 
4042 	/*
4043 	 * mut. excl. ops lock is locked.  Three possibilities:
4044 	 *   (1) some other op is running
4045 	 *   (2) balance is running
4046 	 *   (3) balance is paused -- special case (think resume)
4047 	 */
4048 	mutex_lock(&fs_info->balance_mutex);
4049 	if (fs_info->balance_ctl) {
4050 		/* this is either (2) or (3) */
4051 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4052 			mutex_unlock(&fs_info->balance_mutex);
4053 			/*
4054 			 * Lock released to allow other waiters to continue,
4055 			 * we'll reexamine the status again.
4056 			 */
4057 			mutex_lock(&fs_info->balance_mutex);
4058 
4059 			if (fs_info->balance_ctl &&
4060 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4061 				/* this is (3) */
4062 				need_unlock = false;
4063 				goto locked;
4064 			}
4065 
4066 			mutex_unlock(&fs_info->balance_mutex);
4067 			goto again;
4068 		} else {
4069 			/* this is (2) */
4070 			mutex_unlock(&fs_info->balance_mutex);
4071 			ret = -EINPROGRESS;
4072 			goto out;
4073 		}
4074 	} else {
4075 		/* this is (1) */
4076 		mutex_unlock(&fs_info->balance_mutex);
4077 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4078 		goto out;
4079 	}
4080 
4081 locked:
4082 
4083 	if (arg) {
4084 		bargs = memdup_user(arg, sizeof(*bargs));
4085 		if (IS_ERR(bargs)) {
4086 			ret = PTR_ERR(bargs);
4087 			goto out_unlock;
4088 		}
4089 
4090 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4091 			if (!fs_info->balance_ctl) {
4092 				ret = -ENOTCONN;
4093 				goto out_bargs;
4094 			}
4095 
4096 			bctl = fs_info->balance_ctl;
4097 			spin_lock(&fs_info->balance_lock);
4098 			bctl->flags |= BTRFS_BALANCE_RESUME;
4099 			spin_unlock(&fs_info->balance_lock);
4100 			btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
4101 
4102 			goto do_balance;
4103 		}
4104 	} else {
4105 		bargs = NULL;
4106 	}
4107 
4108 	if (fs_info->balance_ctl) {
4109 		ret = -EINPROGRESS;
4110 		goto out_bargs;
4111 	}
4112 
4113 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4114 	if (!bctl) {
4115 		ret = -ENOMEM;
4116 		goto out_bargs;
4117 	}
4118 
4119 	if (arg) {
4120 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4121 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4122 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4123 
4124 		bctl->flags = bargs->flags;
4125 	} else {
4126 		/* balance everything - no filters */
4127 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4128 	}
4129 
4130 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4131 		ret = -EINVAL;
4132 		goto out_bctl;
4133 	}
4134 
4135 do_balance:
4136 	/*
4137 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4138 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4139 	 * all the way until unmount, in free_fs_info.  The flag should be
4140 	 * cleared after reset_balance_state.
4141 	 */
4142 	need_unlock = false;
4143 
4144 	ret = btrfs_balance(fs_info, bctl, bargs);
4145 	bctl = NULL;
4146 
4147 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4148 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4149 			ret = -EFAULT;
4150 	}
4151 
4152 out_bctl:
4153 	kfree(bctl);
4154 out_bargs:
4155 	kfree(bargs);
4156 out_unlock:
4157 	mutex_unlock(&fs_info->balance_mutex);
4158 	if (need_unlock)
4159 		btrfs_exclop_finish(fs_info);
4160 out:
4161 	mnt_drop_write_file(file);
4162 	return ret;
4163 }
4164 
4165 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4166 {
4167 	if (!capable(CAP_SYS_ADMIN))
4168 		return -EPERM;
4169 
4170 	switch (cmd) {
4171 	case BTRFS_BALANCE_CTL_PAUSE:
4172 		return btrfs_pause_balance(fs_info);
4173 	case BTRFS_BALANCE_CTL_CANCEL:
4174 		return btrfs_cancel_balance(fs_info);
4175 	}
4176 
4177 	return -EINVAL;
4178 }
4179 
4180 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4181 					 void __user *arg)
4182 {
4183 	struct btrfs_ioctl_balance_args *bargs;
4184 	int ret = 0;
4185 
4186 	if (!capable(CAP_SYS_ADMIN))
4187 		return -EPERM;
4188 
4189 	mutex_lock(&fs_info->balance_mutex);
4190 	if (!fs_info->balance_ctl) {
4191 		ret = -ENOTCONN;
4192 		goto out;
4193 	}
4194 
4195 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4196 	if (!bargs) {
4197 		ret = -ENOMEM;
4198 		goto out;
4199 	}
4200 
4201 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4202 
4203 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4204 		ret = -EFAULT;
4205 
4206 	kfree(bargs);
4207 out:
4208 	mutex_unlock(&fs_info->balance_mutex);
4209 	return ret;
4210 }
4211 
4212 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4213 {
4214 	struct inode *inode = file_inode(file);
4215 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4216 	struct btrfs_ioctl_quota_ctl_args *sa;
4217 	int ret;
4218 
4219 	if (!capable(CAP_SYS_ADMIN))
4220 		return -EPERM;
4221 
4222 	ret = mnt_want_write_file(file);
4223 	if (ret)
4224 		return ret;
4225 
4226 	sa = memdup_user(arg, sizeof(*sa));
4227 	if (IS_ERR(sa)) {
4228 		ret = PTR_ERR(sa);
4229 		goto drop_write;
4230 	}
4231 
4232 	down_write(&fs_info->subvol_sem);
4233 
4234 	switch (sa->cmd) {
4235 	case BTRFS_QUOTA_CTL_ENABLE:
4236 		ret = btrfs_quota_enable(fs_info);
4237 		break;
4238 	case BTRFS_QUOTA_CTL_DISABLE:
4239 		ret = btrfs_quota_disable(fs_info);
4240 		break;
4241 	default:
4242 		ret = -EINVAL;
4243 		break;
4244 	}
4245 
4246 	kfree(sa);
4247 	up_write(&fs_info->subvol_sem);
4248 drop_write:
4249 	mnt_drop_write_file(file);
4250 	return ret;
4251 }
4252 
4253 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4254 {
4255 	struct inode *inode = file_inode(file);
4256 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4257 	struct btrfs_root *root = BTRFS_I(inode)->root;
4258 	struct btrfs_ioctl_qgroup_assign_args *sa;
4259 	struct btrfs_trans_handle *trans;
4260 	int ret;
4261 	int err;
4262 
4263 	if (!capable(CAP_SYS_ADMIN))
4264 		return -EPERM;
4265 
4266 	ret = mnt_want_write_file(file);
4267 	if (ret)
4268 		return ret;
4269 
4270 	sa = memdup_user(arg, sizeof(*sa));
4271 	if (IS_ERR(sa)) {
4272 		ret = PTR_ERR(sa);
4273 		goto drop_write;
4274 	}
4275 
4276 	trans = btrfs_join_transaction(root);
4277 	if (IS_ERR(trans)) {
4278 		ret = PTR_ERR(trans);
4279 		goto out;
4280 	}
4281 
4282 	if (sa->assign) {
4283 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4284 	} else {
4285 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4286 	}
4287 
4288 	/* update qgroup status and info */
4289 	err = btrfs_run_qgroups(trans);
4290 	if (err < 0)
4291 		btrfs_handle_fs_error(fs_info, err,
4292 				      "failed to update qgroup status and info");
4293 	err = btrfs_end_transaction(trans);
4294 	if (err && !ret)
4295 		ret = err;
4296 
4297 out:
4298 	kfree(sa);
4299 drop_write:
4300 	mnt_drop_write_file(file);
4301 	return ret;
4302 }
4303 
4304 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4305 {
4306 	struct inode *inode = file_inode(file);
4307 	struct btrfs_root *root = BTRFS_I(inode)->root;
4308 	struct btrfs_ioctl_qgroup_create_args *sa;
4309 	struct btrfs_trans_handle *trans;
4310 	int ret;
4311 	int err;
4312 
4313 	if (!capable(CAP_SYS_ADMIN))
4314 		return -EPERM;
4315 
4316 	ret = mnt_want_write_file(file);
4317 	if (ret)
4318 		return ret;
4319 
4320 	sa = memdup_user(arg, sizeof(*sa));
4321 	if (IS_ERR(sa)) {
4322 		ret = PTR_ERR(sa);
4323 		goto drop_write;
4324 	}
4325 
4326 	if (!sa->qgroupid) {
4327 		ret = -EINVAL;
4328 		goto out;
4329 	}
4330 
4331 	trans = btrfs_join_transaction(root);
4332 	if (IS_ERR(trans)) {
4333 		ret = PTR_ERR(trans);
4334 		goto out;
4335 	}
4336 
4337 	if (sa->create) {
4338 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4339 	} else {
4340 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4341 	}
4342 
4343 	err = btrfs_end_transaction(trans);
4344 	if (err && !ret)
4345 		ret = err;
4346 
4347 out:
4348 	kfree(sa);
4349 drop_write:
4350 	mnt_drop_write_file(file);
4351 	return ret;
4352 }
4353 
4354 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4355 {
4356 	struct inode *inode = file_inode(file);
4357 	struct btrfs_root *root = BTRFS_I(inode)->root;
4358 	struct btrfs_ioctl_qgroup_limit_args *sa;
4359 	struct btrfs_trans_handle *trans;
4360 	int ret;
4361 	int err;
4362 	u64 qgroupid;
4363 
4364 	if (!capable(CAP_SYS_ADMIN))
4365 		return -EPERM;
4366 
4367 	ret = mnt_want_write_file(file);
4368 	if (ret)
4369 		return ret;
4370 
4371 	sa = memdup_user(arg, sizeof(*sa));
4372 	if (IS_ERR(sa)) {
4373 		ret = PTR_ERR(sa);
4374 		goto drop_write;
4375 	}
4376 
4377 	trans = btrfs_join_transaction(root);
4378 	if (IS_ERR(trans)) {
4379 		ret = PTR_ERR(trans);
4380 		goto out;
4381 	}
4382 
4383 	qgroupid = sa->qgroupid;
4384 	if (!qgroupid) {
4385 		/* take the current subvol as qgroup */
4386 		qgroupid = root->root_key.objectid;
4387 	}
4388 
4389 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4390 
4391 	err = btrfs_end_transaction(trans);
4392 	if (err && !ret)
4393 		ret = err;
4394 
4395 out:
4396 	kfree(sa);
4397 drop_write:
4398 	mnt_drop_write_file(file);
4399 	return ret;
4400 }
4401 
4402 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4403 {
4404 	struct inode *inode = file_inode(file);
4405 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4406 	struct btrfs_ioctl_quota_rescan_args *qsa;
4407 	int ret;
4408 
4409 	if (!capable(CAP_SYS_ADMIN))
4410 		return -EPERM;
4411 
4412 	ret = mnt_want_write_file(file);
4413 	if (ret)
4414 		return ret;
4415 
4416 	qsa = memdup_user(arg, sizeof(*qsa));
4417 	if (IS_ERR(qsa)) {
4418 		ret = PTR_ERR(qsa);
4419 		goto drop_write;
4420 	}
4421 
4422 	if (qsa->flags) {
4423 		ret = -EINVAL;
4424 		goto out;
4425 	}
4426 
4427 	ret = btrfs_qgroup_rescan(fs_info);
4428 
4429 out:
4430 	kfree(qsa);
4431 drop_write:
4432 	mnt_drop_write_file(file);
4433 	return ret;
4434 }
4435 
4436 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4437 						void __user *arg)
4438 {
4439 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
4440 
4441 	if (!capable(CAP_SYS_ADMIN))
4442 		return -EPERM;
4443 
4444 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4445 		qsa.flags = 1;
4446 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4447 	}
4448 
4449 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
4450 		return -EFAULT;
4451 
4452 	return 0;
4453 }
4454 
4455 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4456 						void __user *arg)
4457 {
4458 	if (!capable(CAP_SYS_ADMIN))
4459 		return -EPERM;
4460 
4461 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4462 }
4463 
4464 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4465 					    struct user_namespace *mnt_userns,
4466 					    struct btrfs_ioctl_received_subvol_args *sa)
4467 {
4468 	struct inode *inode = file_inode(file);
4469 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4470 	struct btrfs_root *root = BTRFS_I(inode)->root;
4471 	struct btrfs_root_item *root_item = &root->root_item;
4472 	struct btrfs_trans_handle *trans;
4473 	struct timespec64 ct = current_time(inode);
4474 	int ret = 0;
4475 	int received_uuid_changed;
4476 
4477 	if (!inode_owner_or_capable(mnt_userns, inode))
4478 		return -EPERM;
4479 
4480 	ret = mnt_want_write_file(file);
4481 	if (ret < 0)
4482 		return ret;
4483 
4484 	down_write(&fs_info->subvol_sem);
4485 
4486 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4487 		ret = -EINVAL;
4488 		goto out;
4489 	}
4490 
4491 	if (btrfs_root_readonly(root)) {
4492 		ret = -EROFS;
4493 		goto out;
4494 	}
4495 
4496 	/*
4497 	 * 1 - root item
4498 	 * 2 - uuid items (received uuid + subvol uuid)
4499 	 */
4500 	trans = btrfs_start_transaction(root, 3);
4501 	if (IS_ERR(trans)) {
4502 		ret = PTR_ERR(trans);
4503 		trans = NULL;
4504 		goto out;
4505 	}
4506 
4507 	sa->rtransid = trans->transid;
4508 	sa->rtime.sec = ct.tv_sec;
4509 	sa->rtime.nsec = ct.tv_nsec;
4510 
4511 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4512 				       BTRFS_UUID_SIZE);
4513 	if (received_uuid_changed &&
4514 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4515 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4516 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4517 					  root->root_key.objectid);
4518 		if (ret && ret != -ENOENT) {
4519 		        btrfs_abort_transaction(trans, ret);
4520 		        btrfs_end_transaction(trans);
4521 		        goto out;
4522 		}
4523 	}
4524 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4525 	btrfs_set_root_stransid(root_item, sa->stransid);
4526 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4527 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4528 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4529 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4530 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4531 
4532 	ret = btrfs_update_root(trans, fs_info->tree_root,
4533 				&root->root_key, &root->root_item);
4534 	if (ret < 0) {
4535 		btrfs_end_transaction(trans);
4536 		goto out;
4537 	}
4538 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4539 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4540 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4541 					  root->root_key.objectid);
4542 		if (ret < 0 && ret != -EEXIST) {
4543 			btrfs_abort_transaction(trans, ret);
4544 			btrfs_end_transaction(trans);
4545 			goto out;
4546 		}
4547 	}
4548 	ret = btrfs_commit_transaction(trans);
4549 out:
4550 	up_write(&fs_info->subvol_sem);
4551 	mnt_drop_write_file(file);
4552 	return ret;
4553 }
4554 
4555 #ifdef CONFIG_64BIT
4556 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4557 						void __user *arg)
4558 {
4559 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4560 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4561 	int ret = 0;
4562 
4563 	args32 = memdup_user(arg, sizeof(*args32));
4564 	if (IS_ERR(args32))
4565 		return PTR_ERR(args32);
4566 
4567 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4568 	if (!args64) {
4569 		ret = -ENOMEM;
4570 		goto out;
4571 	}
4572 
4573 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4574 	args64->stransid = args32->stransid;
4575 	args64->rtransid = args32->rtransid;
4576 	args64->stime.sec = args32->stime.sec;
4577 	args64->stime.nsec = args32->stime.nsec;
4578 	args64->rtime.sec = args32->rtime.sec;
4579 	args64->rtime.nsec = args32->rtime.nsec;
4580 	args64->flags = args32->flags;
4581 
4582 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4583 	if (ret)
4584 		goto out;
4585 
4586 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4587 	args32->stransid = args64->stransid;
4588 	args32->rtransid = args64->rtransid;
4589 	args32->stime.sec = args64->stime.sec;
4590 	args32->stime.nsec = args64->stime.nsec;
4591 	args32->rtime.sec = args64->rtime.sec;
4592 	args32->rtime.nsec = args64->rtime.nsec;
4593 	args32->flags = args64->flags;
4594 
4595 	ret = copy_to_user(arg, args32, sizeof(*args32));
4596 	if (ret)
4597 		ret = -EFAULT;
4598 
4599 out:
4600 	kfree(args32);
4601 	kfree(args64);
4602 	return ret;
4603 }
4604 #endif
4605 
4606 static long btrfs_ioctl_set_received_subvol(struct file *file,
4607 					    void __user *arg)
4608 {
4609 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4610 	int ret = 0;
4611 
4612 	sa = memdup_user(arg, sizeof(*sa));
4613 	if (IS_ERR(sa))
4614 		return PTR_ERR(sa);
4615 
4616 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4617 
4618 	if (ret)
4619 		goto out;
4620 
4621 	ret = copy_to_user(arg, sa, sizeof(*sa));
4622 	if (ret)
4623 		ret = -EFAULT;
4624 
4625 out:
4626 	kfree(sa);
4627 	return ret;
4628 }
4629 
4630 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4631 					void __user *arg)
4632 {
4633 	size_t len;
4634 	int ret;
4635 	char label[BTRFS_LABEL_SIZE];
4636 
4637 	spin_lock(&fs_info->super_lock);
4638 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4639 	spin_unlock(&fs_info->super_lock);
4640 
4641 	len = strnlen(label, BTRFS_LABEL_SIZE);
4642 
4643 	if (len == BTRFS_LABEL_SIZE) {
4644 		btrfs_warn(fs_info,
4645 			   "label is too long, return the first %zu bytes",
4646 			   --len);
4647 	}
4648 
4649 	ret = copy_to_user(arg, label, len);
4650 
4651 	return ret ? -EFAULT : 0;
4652 }
4653 
4654 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4655 {
4656 	struct inode *inode = file_inode(file);
4657 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4658 	struct btrfs_root *root = BTRFS_I(inode)->root;
4659 	struct btrfs_super_block *super_block = fs_info->super_copy;
4660 	struct btrfs_trans_handle *trans;
4661 	char label[BTRFS_LABEL_SIZE];
4662 	int ret;
4663 
4664 	if (!capable(CAP_SYS_ADMIN))
4665 		return -EPERM;
4666 
4667 	if (copy_from_user(label, arg, sizeof(label)))
4668 		return -EFAULT;
4669 
4670 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4671 		btrfs_err(fs_info,
4672 			  "unable to set label with more than %d bytes",
4673 			  BTRFS_LABEL_SIZE - 1);
4674 		return -EINVAL;
4675 	}
4676 
4677 	ret = mnt_want_write_file(file);
4678 	if (ret)
4679 		return ret;
4680 
4681 	trans = btrfs_start_transaction(root, 0);
4682 	if (IS_ERR(trans)) {
4683 		ret = PTR_ERR(trans);
4684 		goto out_unlock;
4685 	}
4686 
4687 	spin_lock(&fs_info->super_lock);
4688 	strcpy(super_block->label, label);
4689 	spin_unlock(&fs_info->super_lock);
4690 	ret = btrfs_commit_transaction(trans);
4691 
4692 out_unlock:
4693 	mnt_drop_write_file(file);
4694 	return ret;
4695 }
4696 
4697 #define INIT_FEATURE_FLAGS(suffix) \
4698 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4699 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4700 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4701 
4702 int btrfs_ioctl_get_supported_features(void __user *arg)
4703 {
4704 	static const struct btrfs_ioctl_feature_flags features[3] = {
4705 		INIT_FEATURE_FLAGS(SUPP),
4706 		INIT_FEATURE_FLAGS(SAFE_SET),
4707 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4708 	};
4709 
4710 	if (copy_to_user(arg, &features, sizeof(features)))
4711 		return -EFAULT;
4712 
4713 	return 0;
4714 }
4715 
4716 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4717 					void __user *arg)
4718 {
4719 	struct btrfs_super_block *super_block = fs_info->super_copy;
4720 	struct btrfs_ioctl_feature_flags features;
4721 
4722 	features.compat_flags = btrfs_super_compat_flags(super_block);
4723 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4724 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4725 
4726 	if (copy_to_user(arg, &features, sizeof(features)))
4727 		return -EFAULT;
4728 
4729 	return 0;
4730 }
4731 
4732 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4733 			      enum btrfs_feature_set set,
4734 			      u64 change_mask, u64 flags, u64 supported_flags,
4735 			      u64 safe_set, u64 safe_clear)
4736 {
4737 	const char *type = btrfs_feature_set_name(set);
4738 	char *names;
4739 	u64 disallowed, unsupported;
4740 	u64 set_mask = flags & change_mask;
4741 	u64 clear_mask = ~flags & change_mask;
4742 
4743 	unsupported = set_mask & ~supported_flags;
4744 	if (unsupported) {
4745 		names = btrfs_printable_features(set, unsupported);
4746 		if (names) {
4747 			btrfs_warn(fs_info,
4748 				   "this kernel does not support the %s feature bit%s",
4749 				   names, strchr(names, ',') ? "s" : "");
4750 			kfree(names);
4751 		} else
4752 			btrfs_warn(fs_info,
4753 				   "this kernel does not support %s bits 0x%llx",
4754 				   type, unsupported);
4755 		return -EOPNOTSUPP;
4756 	}
4757 
4758 	disallowed = set_mask & ~safe_set;
4759 	if (disallowed) {
4760 		names = btrfs_printable_features(set, disallowed);
4761 		if (names) {
4762 			btrfs_warn(fs_info,
4763 				   "can't set the %s feature bit%s while mounted",
4764 				   names, strchr(names, ',') ? "s" : "");
4765 			kfree(names);
4766 		} else
4767 			btrfs_warn(fs_info,
4768 				   "can't set %s bits 0x%llx while mounted",
4769 				   type, disallowed);
4770 		return -EPERM;
4771 	}
4772 
4773 	disallowed = clear_mask & ~safe_clear;
4774 	if (disallowed) {
4775 		names = btrfs_printable_features(set, disallowed);
4776 		if (names) {
4777 			btrfs_warn(fs_info,
4778 				   "can't clear the %s feature bit%s while mounted",
4779 				   names, strchr(names, ',') ? "s" : "");
4780 			kfree(names);
4781 		} else
4782 			btrfs_warn(fs_info,
4783 				   "can't clear %s bits 0x%llx while mounted",
4784 				   type, disallowed);
4785 		return -EPERM;
4786 	}
4787 
4788 	return 0;
4789 }
4790 
4791 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4792 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4793 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4794 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4795 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4796 
4797 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4798 {
4799 	struct inode *inode = file_inode(file);
4800 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4801 	struct btrfs_root *root = BTRFS_I(inode)->root;
4802 	struct btrfs_super_block *super_block = fs_info->super_copy;
4803 	struct btrfs_ioctl_feature_flags flags[2];
4804 	struct btrfs_trans_handle *trans;
4805 	u64 newflags;
4806 	int ret;
4807 
4808 	if (!capable(CAP_SYS_ADMIN))
4809 		return -EPERM;
4810 
4811 	if (copy_from_user(flags, arg, sizeof(flags)))
4812 		return -EFAULT;
4813 
4814 	/* Nothing to do */
4815 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4816 	    !flags[0].incompat_flags)
4817 		return 0;
4818 
4819 	ret = check_feature(fs_info, flags[0].compat_flags,
4820 			    flags[1].compat_flags, COMPAT);
4821 	if (ret)
4822 		return ret;
4823 
4824 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4825 			    flags[1].compat_ro_flags, COMPAT_RO);
4826 	if (ret)
4827 		return ret;
4828 
4829 	ret = check_feature(fs_info, flags[0].incompat_flags,
4830 			    flags[1].incompat_flags, INCOMPAT);
4831 	if (ret)
4832 		return ret;
4833 
4834 	ret = mnt_want_write_file(file);
4835 	if (ret)
4836 		return ret;
4837 
4838 	trans = btrfs_start_transaction(root, 0);
4839 	if (IS_ERR(trans)) {
4840 		ret = PTR_ERR(trans);
4841 		goto out_drop_write;
4842 	}
4843 
4844 	spin_lock(&fs_info->super_lock);
4845 	newflags = btrfs_super_compat_flags(super_block);
4846 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4847 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4848 	btrfs_set_super_compat_flags(super_block, newflags);
4849 
4850 	newflags = btrfs_super_compat_ro_flags(super_block);
4851 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4852 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4853 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4854 
4855 	newflags = btrfs_super_incompat_flags(super_block);
4856 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4857 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4858 	btrfs_set_super_incompat_flags(super_block, newflags);
4859 	spin_unlock(&fs_info->super_lock);
4860 
4861 	ret = btrfs_commit_transaction(trans);
4862 out_drop_write:
4863 	mnt_drop_write_file(file);
4864 
4865 	return ret;
4866 }
4867 
4868 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4869 {
4870 	struct btrfs_ioctl_send_args *arg;
4871 	int ret;
4872 
4873 	if (compat) {
4874 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4875 		struct btrfs_ioctl_send_args_32 args32;
4876 
4877 		ret = copy_from_user(&args32, argp, sizeof(args32));
4878 		if (ret)
4879 			return -EFAULT;
4880 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4881 		if (!arg)
4882 			return -ENOMEM;
4883 		arg->send_fd = args32.send_fd;
4884 		arg->clone_sources_count = args32.clone_sources_count;
4885 		arg->clone_sources = compat_ptr(args32.clone_sources);
4886 		arg->parent_root = args32.parent_root;
4887 		arg->flags = args32.flags;
4888 		memcpy(arg->reserved, args32.reserved,
4889 		       sizeof(args32.reserved));
4890 #else
4891 		return -ENOTTY;
4892 #endif
4893 	} else {
4894 		arg = memdup_user(argp, sizeof(*arg));
4895 		if (IS_ERR(arg))
4896 			return PTR_ERR(arg);
4897 	}
4898 	ret = btrfs_ioctl_send(file, arg);
4899 	kfree(arg);
4900 	return ret;
4901 }
4902 
4903 long btrfs_ioctl(struct file *file, unsigned int
4904 		cmd, unsigned long arg)
4905 {
4906 	struct inode *inode = file_inode(file);
4907 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4908 	struct btrfs_root *root = BTRFS_I(inode)->root;
4909 	void __user *argp = (void __user *)arg;
4910 
4911 	switch (cmd) {
4912 	case FS_IOC_GETVERSION:
4913 		return btrfs_ioctl_getversion(file, argp);
4914 	case FS_IOC_GETFSLABEL:
4915 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4916 	case FS_IOC_SETFSLABEL:
4917 		return btrfs_ioctl_set_fslabel(file, argp);
4918 	case FITRIM:
4919 		return btrfs_ioctl_fitrim(fs_info, argp);
4920 	case BTRFS_IOC_SNAP_CREATE:
4921 		return btrfs_ioctl_snap_create(file, argp, 0);
4922 	case BTRFS_IOC_SNAP_CREATE_V2:
4923 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4924 	case BTRFS_IOC_SUBVOL_CREATE:
4925 		return btrfs_ioctl_snap_create(file, argp, 1);
4926 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4927 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4928 	case BTRFS_IOC_SNAP_DESTROY:
4929 		return btrfs_ioctl_snap_destroy(file, argp, false);
4930 	case BTRFS_IOC_SNAP_DESTROY_V2:
4931 		return btrfs_ioctl_snap_destroy(file, argp, true);
4932 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4933 		return btrfs_ioctl_subvol_getflags(file, argp);
4934 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4935 		return btrfs_ioctl_subvol_setflags(file, argp);
4936 	case BTRFS_IOC_DEFAULT_SUBVOL:
4937 		return btrfs_ioctl_default_subvol(file, argp);
4938 	case BTRFS_IOC_DEFRAG:
4939 		return btrfs_ioctl_defrag(file, NULL);
4940 	case BTRFS_IOC_DEFRAG_RANGE:
4941 		return btrfs_ioctl_defrag(file, argp);
4942 	case BTRFS_IOC_RESIZE:
4943 		return btrfs_ioctl_resize(file, argp);
4944 	case BTRFS_IOC_ADD_DEV:
4945 		return btrfs_ioctl_add_dev(fs_info, argp);
4946 	case BTRFS_IOC_RM_DEV:
4947 		return btrfs_ioctl_rm_dev(file, argp);
4948 	case BTRFS_IOC_RM_DEV_V2:
4949 		return btrfs_ioctl_rm_dev_v2(file, argp);
4950 	case BTRFS_IOC_FS_INFO:
4951 		return btrfs_ioctl_fs_info(fs_info, argp);
4952 	case BTRFS_IOC_DEV_INFO:
4953 		return btrfs_ioctl_dev_info(fs_info, argp);
4954 	case BTRFS_IOC_BALANCE:
4955 		return btrfs_ioctl_balance(file, NULL);
4956 	case BTRFS_IOC_TREE_SEARCH:
4957 		return btrfs_ioctl_tree_search(file, argp);
4958 	case BTRFS_IOC_TREE_SEARCH_V2:
4959 		return btrfs_ioctl_tree_search_v2(file, argp);
4960 	case BTRFS_IOC_INO_LOOKUP:
4961 		return btrfs_ioctl_ino_lookup(file, argp);
4962 	case BTRFS_IOC_INO_PATHS:
4963 		return btrfs_ioctl_ino_to_path(root, argp);
4964 	case BTRFS_IOC_LOGICAL_INO:
4965 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4966 	case BTRFS_IOC_LOGICAL_INO_V2:
4967 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4968 	case BTRFS_IOC_SPACE_INFO:
4969 		return btrfs_ioctl_space_info(fs_info, argp);
4970 	case BTRFS_IOC_SYNC: {
4971 		int ret;
4972 
4973 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4974 		if (ret)
4975 			return ret;
4976 		ret = btrfs_sync_fs(inode->i_sb, 1);
4977 		/*
4978 		 * The transaction thread may want to do more work,
4979 		 * namely it pokes the cleaner kthread that will start
4980 		 * processing uncleaned subvols.
4981 		 */
4982 		wake_up_process(fs_info->transaction_kthread);
4983 		return ret;
4984 	}
4985 	case BTRFS_IOC_START_SYNC:
4986 		return btrfs_ioctl_start_sync(root, argp);
4987 	case BTRFS_IOC_WAIT_SYNC:
4988 		return btrfs_ioctl_wait_sync(fs_info, argp);
4989 	case BTRFS_IOC_SCRUB:
4990 		return btrfs_ioctl_scrub(file, argp);
4991 	case BTRFS_IOC_SCRUB_CANCEL:
4992 		return btrfs_ioctl_scrub_cancel(fs_info);
4993 	case BTRFS_IOC_SCRUB_PROGRESS:
4994 		return btrfs_ioctl_scrub_progress(fs_info, argp);
4995 	case BTRFS_IOC_BALANCE_V2:
4996 		return btrfs_ioctl_balance(file, argp);
4997 	case BTRFS_IOC_BALANCE_CTL:
4998 		return btrfs_ioctl_balance_ctl(fs_info, arg);
4999 	case BTRFS_IOC_BALANCE_PROGRESS:
5000 		return btrfs_ioctl_balance_progress(fs_info, argp);
5001 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5002 		return btrfs_ioctl_set_received_subvol(file, argp);
5003 #ifdef CONFIG_64BIT
5004 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5005 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5006 #endif
5007 	case BTRFS_IOC_SEND:
5008 		return _btrfs_ioctl_send(file, argp, false);
5009 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5010 	case BTRFS_IOC_SEND_32:
5011 		return _btrfs_ioctl_send(file, argp, true);
5012 #endif
5013 	case BTRFS_IOC_GET_DEV_STATS:
5014 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5015 	case BTRFS_IOC_QUOTA_CTL:
5016 		return btrfs_ioctl_quota_ctl(file, argp);
5017 	case BTRFS_IOC_QGROUP_ASSIGN:
5018 		return btrfs_ioctl_qgroup_assign(file, argp);
5019 	case BTRFS_IOC_QGROUP_CREATE:
5020 		return btrfs_ioctl_qgroup_create(file, argp);
5021 	case BTRFS_IOC_QGROUP_LIMIT:
5022 		return btrfs_ioctl_qgroup_limit(file, argp);
5023 	case BTRFS_IOC_QUOTA_RESCAN:
5024 		return btrfs_ioctl_quota_rescan(file, argp);
5025 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5026 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5027 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5028 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5029 	case BTRFS_IOC_DEV_REPLACE:
5030 		return btrfs_ioctl_dev_replace(fs_info, argp);
5031 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5032 		return btrfs_ioctl_get_supported_features(argp);
5033 	case BTRFS_IOC_GET_FEATURES:
5034 		return btrfs_ioctl_get_features(fs_info, argp);
5035 	case BTRFS_IOC_SET_FEATURES:
5036 		return btrfs_ioctl_set_features(file, argp);
5037 	case BTRFS_IOC_GET_SUBVOL_INFO:
5038 		return btrfs_ioctl_get_subvol_info(file, argp);
5039 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5040 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5041 	case BTRFS_IOC_INO_LOOKUP_USER:
5042 		return btrfs_ioctl_ino_lookup_user(file, argp);
5043 	case FS_IOC_ENABLE_VERITY:
5044 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5045 	case FS_IOC_MEASURE_VERITY:
5046 		return fsverity_ioctl_measure(file, argp);
5047 	}
5048 
5049 	return -ENOTTY;
5050 }
5051 
5052 #ifdef CONFIG_COMPAT
5053 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5054 {
5055 	/*
5056 	 * These all access 32-bit values anyway so no further
5057 	 * handling is necessary.
5058 	 */
5059 	switch (cmd) {
5060 	case FS_IOC32_GETVERSION:
5061 		cmd = FS_IOC_GETVERSION;
5062 		break;
5063 	}
5064 
5065 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5066 }
5067 #endif
5068