xref: /openbmc/linux/fs/btrfs/ioctl.c (revision ec2da07c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "btrfs_inode.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "locking.h"
36 #include "inode-map.h"
37 #include "backref.h"
38 #include "rcu-string.h"
39 #include "send.h"
40 #include "dev-replace.h"
41 #include "props.h"
42 #include "sysfs.h"
43 #include "qgroup.h"
44 #include "tree-log.h"
45 #include "compression.h"
46 #include "space-info.h"
47 #include "delalloc-space.h"
48 
49 #ifdef CONFIG_64BIT
50 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
51  * structures are incorrect, as the timespec structure from userspace
52  * is 4 bytes too small. We define these alternatives here to teach
53  * the kernel about the 32-bit struct packing.
54  */
55 struct btrfs_ioctl_timespec_32 {
56 	__u64 sec;
57 	__u32 nsec;
58 } __attribute__ ((__packed__));
59 
60 struct btrfs_ioctl_received_subvol_args_32 {
61 	char	uuid[BTRFS_UUID_SIZE];	/* in */
62 	__u64	stransid;		/* in */
63 	__u64	rtransid;		/* out */
64 	struct btrfs_ioctl_timespec_32 stime; /* in */
65 	struct btrfs_ioctl_timespec_32 rtime; /* out */
66 	__u64	flags;			/* in */
67 	__u64	reserved[16];		/* in */
68 } __attribute__ ((__packed__));
69 
70 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
71 				struct btrfs_ioctl_received_subvol_args_32)
72 #endif
73 
74 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
75 struct btrfs_ioctl_send_args_32 {
76 	__s64 send_fd;			/* in */
77 	__u64 clone_sources_count;	/* in */
78 	compat_uptr_t clone_sources;	/* in */
79 	__u64 parent_root;		/* in */
80 	__u64 flags;			/* in */
81 	__u64 reserved[4];		/* in */
82 } __attribute__ ((__packed__));
83 
84 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
85 			       struct btrfs_ioctl_send_args_32)
86 #endif
87 
88 static int btrfs_clone(struct inode *src, struct inode *inode,
89 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
90 		       int no_time_update);
91 
92 /* Mask out flags that are inappropriate for the given type of inode. */
93 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
94 		unsigned int flags)
95 {
96 	if (S_ISDIR(inode->i_mode))
97 		return flags;
98 	else if (S_ISREG(inode->i_mode))
99 		return flags & ~FS_DIRSYNC_FL;
100 	else
101 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
102 }
103 
104 /*
105  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
106  * ioctl.
107  */
108 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
109 {
110 	unsigned int iflags = 0;
111 
112 	if (flags & BTRFS_INODE_SYNC)
113 		iflags |= FS_SYNC_FL;
114 	if (flags & BTRFS_INODE_IMMUTABLE)
115 		iflags |= FS_IMMUTABLE_FL;
116 	if (flags & BTRFS_INODE_APPEND)
117 		iflags |= FS_APPEND_FL;
118 	if (flags & BTRFS_INODE_NODUMP)
119 		iflags |= FS_NODUMP_FL;
120 	if (flags & BTRFS_INODE_NOATIME)
121 		iflags |= FS_NOATIME_FL;
122 	if (flags & BTRFS_INODE_DIRSYNC)
123 		iflags |= FS_DIRSYNC_FL;
124 	if (flags & BTRFS_INODE_NODATACOW)
125 		iflags |= FS_NOCOW_FL;
126 
127 	if (flags & BTRFS_INODE_NOCOMPRESS)
128 		iflags |= FS_NOCOMP_FL;
129 	else if (flags & BTRFS_INODE_COMPRESS)
130 		iflags |= FS_COMPR_FL;
131 
132 	return iflags;
133 }
134 
135 /*
136  * Update inode->i_flags based on the btrfs internal flags.
137  */
138 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
139 {
140 	struct btrfs_inode *binode = BTRFS_I(inode);
141 	unsigned int new_fl = 0;
142 
143 	if (binode->flags & BTRFS_INODE_SYNC)
144 		new_fl |= S_SYNC;
145 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
146 		new_fl |= S_IMMUTABLE;
147 	if (binode->flags & BTRFS_INODE_APPEND)
148 		new_fl |= S_APPEND;
149 	if (binode->flags & BTRFS_INODE_NOATIME)
150 		new_fl |= S_NOATIME;
151 	if (binode->flags & BTRFS_INODE_DIRSYNC)
152 		new_fl |= S_DIRSYNC;
153 
154 	set_mask_bits(&inode->i_flags,
155 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
156 		      new_fl);
157 }
158 
159 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
160 {
161 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
162 	unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
163 
164 	if (copy_to_user(arg, &flags, sizeof(flags)))
165 		return -EFAULT;
166 	return 0;
167 }
168 
169 /* Check if @flags are a supported and valid set of FS_*_FL flags */
170 static int check_fsflags(unsigned int flags)
171 {
172 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
173 		      FS_NOATIME_FL | FS_NODUMP_FL | \
174 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
175 		      FS_NOCOMP_FL | FS_COMPR_FL |
176 		      FS_NOCOW_FL))
177 		return -EOPNOTSUPP;
178 
179 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
180 		return -EINVAL;
181 
182 	return 0;
183 }
184 
185 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
186 {
187 	struct inode *inode = file_inode(file);
188 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
189 	struct btrfs_inode *binode = BTRFS_I(inode);
190 	struct btrfs_root *root = binode->root;
191 	struct btrfs_trans_handle *trans;
192 	unsigned int fsflags, old_fsflags;
193 	int ret;
194 	const char *comp = NULL;
195 	u32 binode_flags = binode->flags;
196 
197 	if (!inode_owner_or_capable(inode))
198 		return -EPERM;
199 
200 	if (btrfs_root_readonly(root))
201 		return -EROFS;
202 
203 	if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
204 		return -EFAULT;
205 
206 	ret = check_fsflags(fsflags);
207 	if (ret)
208 		return ret;
209 
210 	ret = mnt_want_write_file(file);
211 	if (ret)
212 		return ret;
213 
214 	inode_lock(inode);
215 
216 	fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
217 	old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
218 	ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
219 	if (ret)
220 		goto out_unlock;
221 
222 	if (fsflags & FS_SYNC_FL)
223 		binode_flags |= BTRFS_INODE_SYNC;
224 	else
225 		binode_flags &= ~BTRFS_INODE_SYNC;
226 	if (fsflags & FS_IMMUTABLE_FL)
227 		binode_flags |= BTRFS_INODE_IMMUTABLE;
228 	else
229 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
230 	if (fsflags & FS_APPEND_FL)
231 		binode_flags |= BTRFS_INODE_APPEND;
232 	else
233 		binode_flags &= ~BTRFS_INODE_APPEND;
234 	if (fsflags & FS_NODUMP_FL)
235 		binode_flags |= BTRFS_INODE_NODUMP;
236 	else
237 		binode_flags &= ~BTRFS_INODE_NODUMP;
238 	if (fsflags & FS_NOATIME_FL)
239 		binode_flags |= BTRFS_INODE_NOATIME;
240 	else
241 		binode_flags &= ~BTRFS_INODE_NOATIME;
242 	if (fsflags & FS_DIRSYNC_FL)
243 		binode_flags |= BTRFS_INODE_DIRSYNC;
244 	else
245 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
246 	if (fsflags & FS_NOCOW_FL) {
247 		if (S_ISREG(inode->i_mode)) {
248 			/*
249 			 * It's safe to turn csums off here, no extents exist.
250 			 * Otherwise we want the flag to reflect the real COW
251 			 * status of the file and will not set it.
252 			 */
253 			if (inode->i_size == 0)
254 				binode_flags |= BTRFS_INODE_NODATACOW |
255 						BTRFS_INODE_NODATASUM;
256 		} else {
257 			binode_flags |= BTRFS_INODE_NODATACOW;
258 		}
259 	} else {
260 		/*
261 		 * Revert back under same assumptions as above
262 		 */
263 		if (S_ISREG(inode->i_mode)) {
264 			if (inode->i_size == 0)
265 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
266 						  BTRFS_INODE_NODATASUM);
267 		} else {
268 			binode_flags &= ~BTRFS_INODE_NODATACOW;
269 		}
270 	}
271 
272 	/*
273 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
274 	 * flag may be changed automatically if compression code won't make
275 	 * things smaller.
276 	 */
277 	if (fsflags & FS_NOCOMP_FL) {
278 		binode_flags &= ~BTRFS_INODE_COMPRESS;
279 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
280 	} else if (fsflags & FS_COMPR_FL) {
281 
282 		if (IS_SWAPFILE(inode)) {
283 			ret = -ETXTBSY;
284 			goto out_unlock;
285 		}
286 
287 		binode_flags |= BTRFS_INODE_COMPRESS;
288 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
289 
290 		comp = btrfs_compress_type2str(fs_info->compress_type);
291 		if (!comp || comp[0] == 0)
292 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
293 	} else {
294 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
295 	}
296 
297 	/*
298 	 * 1 for inode item
299 	 * 2 for properties
300 	 */
301 	trans = btrfs_start_transaction(root, 3);
302 	if (IS_ERR(trans)) {
303 		ret = PTR_ERR(trans);
304 		goto out_unlock;
305 	}
306 
307 	if (comp) {
308 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
309 				     strlen(comp), 0);
310 		if (ret) {
311 			btrfs_abort_transaction(trans, ret);
312 			goto out_end_trans;
313 		}
314 	} else {
315 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
316 				     0, 0);
317 		if (ret && ret != -ENODATA) {
318 			btrfs_abort_transaction(trans, ret);
319 			goto out_end_trans;
320 		}
321 	}
322 
323 	binode->flags = binode_flags;
324 	btrfs_sync_inode_flags_to_i_flags(inode);
325 	inode_inc_iversion(inode);
326 	inode->i_ctime = current_time(inode);
327 	ret = btrfs_update_inode(trans, root, inode);
328 
329  out_end_trans:
330 	btrfs_end_transaction(trans);
331  out_unlock:
332 	inode_unlock(inode);
333 	mnt_drop_write_file(file);
334 	return ret;
335 }
336 
337 /*
338  * Translate btrfs internal inode flags to xflags as expected by the
339  * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
340  * silently dropped.
341  */
342 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
343 {
344 	unsigned int xflags = 0;
345 
346 	if (flags & BTRFS_INODE_APPEND)
347 		xflags |= FS_XFLAG_APPEND;
348 	if (flags & BTRFS_INODE_IMMUTABLE)
349 		xflags |= FS_XFLAG_IMMUTABLE;
350 	if (flags & BTRFS_INODE_NOATIME)
351 		xflags |= FS_XFLAG_NOATIME;
352 	if (flags & BTRFS_INODE_NODUMP)
353 		xflags |= FS_XFLAG_NODUMP;
354 	if (flags & BTRFS_INODE_SYNC)
355 		xflags |= FS_XFLAG_SYNC;
356 
357 	return xflags;
358 }
359 
360 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
361 static int check_xflags(unsigned int flags)
362 {
363 	if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
364 		      FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
365 		return -EOPNOTSUPP;
366 	return 0;
367 }
368 
369 /*
370  * Set the xflags from the internal inode flags. The remaining items of fsxattr
371  * are zeroed.
372  */
373 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
374 {
375 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
376 	struct fsxattr fa;
377 
378 	simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
379 	if (copy_to_user(arg, &fa, sizeof(fa)))
380 		return -EFAULT;
381 
382 	return 0;
383 }
384 
385 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
386 {
387 	struct inode *inode = file_inode(file);
388 	struct btrfs_inode *binode = BTRFS_I(inode);
389 	struct btrfs_root *root = binode->root;
390 	struct btrfs_trans_handle *trans;
391 	struct fsxattr fa, old_fa;
392 	unsigned old_flags;
393 	unsigned old_i_flags;
394 	int ret = 0;
395 
396 	if (!inode_owner_or_capable(inode))
397 		return -EPERM;
398 
399 	if (btrfs_root_readonly(root))
400 		return -EROFS;
401 
402 	if (copy_from_user(&fa, arg, sizeof(fa)))
403 		return -EFAULT;
404 
405 	ret = check_xflags(fa.fsx_xflags);
406 	if (ret)
407 		return ret;
408 
409 	if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
410 		return -EOPNOTSUPP;
411 
412 	ret = mnt_want_write_file(file);
413 	if (ret)
414 		return ret;
415 
416 	inode_lock(inode);
417 
418 	old_flags = binode->flags;
419 	old_i_flags = inode->i_flags;
420 
421 	simple_fill_fsxattr(&old_fa,
422 			    btrfs_inode_flags_to_xflags(binode->flags));
423 	ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
424 	if (ret)
425 		goto out_unlock;
426 
427 	if (fa.fsx_xflags & FS_XFLAG_SYNC)
428 		binode->flags |= BTRFS_INODE_SYNC;
429 	else
430 		binode->flags &= ~BTRFS_INODE_SYNC;
431 	if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
432 		binode->flags |= BTRFS_INODE_IMMUTABLE;
433 	else
434 		binode->flags &= ~BTRFS_INODE_IMMUTABLE;
435 	if (fa.fsx_xflags & FS_XFLAG_APPEND)
436 		binode->flags |= BTRFS_INODE_APPEND;
437 	else
438 		binode->flags &= ~BTRFS_INODE_APPEND;
439 	if (fa.fsx_xflags & FS_XFLAG_NODUMP)
440 		binode->flags |= BTRFS_INODE_NODUMP;
441 	else
442 		binode->flags &= ~BTRFS_INODE_NODUMP;
443 	if (fa.fsx_xflags & FS_XFLAG_NOATIME)
444 		binode->flags |= BTRFS_INODE_NOATIME;
445 	else
446 		binode->flags &= ~BTRFS_INODE_NOATIME;
447 
448 	/* 1 item for the inode */
449 	trans = btrfs_start_transaction(root, 1);
450 	if (IS_ERR(trans)) {
451 		ret = PTR_ERR(trans);
452 		goto out_unlock;
453 	}
454 
455 	btrfs_sync_inode_flags_to_i_flags(inode);
456 	inode_inc_iversion(inode);
457 	inode->i_ctime = current_time(inode);
458 	ret = btrfs_update_inode(trans, root, inode);
459 
460 	btrfs_end_transaction(trans);
461 
462 out_unlock:
463 	if (ret) {
464 		binode->flags = old_flags;
465 		inode->i_flags = old_i_flags;
466 	}
467 
468 	inode_unlock(inode);
469 	mnt_drop_write_file(file);
470 
471 	return ret;
472 }
473 
474 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
475 {
476 	struct inode *inode = file_inode(file);
477 
478 	return put_user(inode->i_generation, arg);
479 }
480 
481 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
482 {
483 	struct inode *inode = file_inode(file);
484 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
485 	struct btrfs_device *device;
486 	struct request_queue *q;
487 	struct fstrim_range range;
488 	u64 minlen = ULLONG_MAX;
489 	u64 num_devices = 0;
490 	int ret;
491 
492 	if (!capable(CAP_SYS_ADMIN))
493 		return -EPERM;
494 
495 	/*
496 	 * If the fs is mounted with nologreplay, which requires it to be
497 	 * mounted in RO mode as well, we can not allow discard on free space
498 	 * inside block groups, because log trees refer to extents that are not
499 	 * pinned in a block group's free space cache (pinning the extents is
500 	 * precisely the first phase of replaying a log tree).
501 	 */
502 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
503 		return -EROFS;
504 
505 	rcu_read_lock();
506 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
507 				dev_list) {
508 		if (!device->bdev)
509 			continue;
510 		q = bdev_get_queue(device->bdev);
511 		if (blk_queue_discard(q)) {
512 			num_devices++;
513 			minlen = min_t(u64, q->limits.discard_granularity,
514 				     minlen);
515 		}
516 	}
517 	rcu_read_unlock();
518 
519 	if (!num_devices)
520 		return -EOPNOTSUPP;
521 	if (copy_from_user(&range, arg, sizeof(range)))
522 		return -EFAULT;
523 
524 	/*
525 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
526 	 * block group is in the logical address space, which can be any
527 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
528 	 */
529 	if (range.len < fs_info->sb->s_blocksize)
530 		return -EINVAL;
531 
532 	range.minlen = max(range.minlen, minlen);
533 	ret = btrfs_trim_fs(fs_info, &range);
534 	if (ret < 0)
535 		return ret;
536 
537 	if (copy_to_user(arg, &range, sizeof(range)))
538 		return -EFAULT;
539 
540 	return 0;
541 }
542 
543 int btrfs_is_empty_uuid(u8 *uuid)
544 {
545 	int i;
546 
547 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
548 		if (uuid[i])
549 			return 0;
550 	}
551 	return 1;
552 }
553 
554 static noinline int create_subvol(struct inode *dir,
555 				  struct dentry *dentry,
556 				  const char *name, int namelen,
557 				  u64 *async_transid,
558 				  struct btrfs_qgroup_inherit *inherit)
559 {
560 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
561 	struct btrfs_trans_handle *trans;
562 	struct btrfs_key key;
563 	struct btrfs_root_item *root_item;
564 	struct btrfs_inode_item *inode_item;
565 	struct extent_buffer *leaf;
566 	struct btrfs_root *root = BTRFS_I(dir)->root;
567 	struct btrfs_root *new_root;
568 	struct btrfs_block_rsv block_rsv;
569 	struct timespec64 cur_time = current_time(dir);
570 	struct inode *inode;
571 	int ret;
572 	int err;
573 	u64 objectid;
574 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
575 	u64 index = 0;
576 	uuid_le new_uuid;
577 
578 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
579 	if (!root_item)
580 		return -ENOMEM;
581 
582 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
583 	if (ret)
584 		goto fail_free;
585 
586 	/*
587 	 * Don't create subvolume whose level is not zero. Or qgroup will be
588 	 * screwed up since it assumes subvolume qgroup's level to be 0.
589 	 */
590 	if (btrfs_qgroup_level(objectid)) {
591 		ret = -ENOSPC;
592 		goto fail_free;
593 	}
594 
595 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
596 	/*
597 	 * The same as the snapshot creation, please see the comment
598 	 * of create_snapshot().
599 	 */
600 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
601 	if (ret)
602 		goto fail_free;
603 
604 	trans = btrfs_start_transaction(root, 0);
605 	if (IS_ERR(trans)) {
606 		ret = PTR_ERR(trans);
607 		btrfs_subvolume_release_metadata(fs_info, &block_rsv);
608 		goto fail_free;
609 	}
610 	trans->block_rsv = &block_rsv;
611 	trans->bytes_reserved = block_rsv.size;
612 
613 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
614 	if (ret)
615 		goto fail;
616 
617 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
618 	if (IS_ERR(leaf)) {
619 		ret = PTR_ERR(leaf);
620 		goto fail;
621 	}
622 
623 	btrfs_mark_buffer_dirty(leaf);
624 
625 	inode_item = &root_item->inode;
626 	btrfs_set_stack_inode_generation(inode_item, 1);
627 	btrfs_set_stack_inode_size(inode_item, 3);
628 	btrfs_set_stack_inode_nlink(inode_item, 1);
629 	btrfs_set_stack_inode_nbytes(inode_item,
630 				     fs_info->nodesize);
631 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
632 
633 	btrfs_set_root_flags(root_item, 0);
634 	btrfs_set_root_limit(root_item, 0);
635 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
636 
637 	btrfs_set_root_bytenr(root_item, leaf->start);
638 	btrfs_set_root_generation(root_item, trans->transid);
639 	btrfs_set_root_level(root_item, 0);
640 	btrfs_set_root_refs(root_item, 1);
641 	btrfs_set_root_used(root_item, leaf->len);
642 	btrfs_set_root_last_snapshot(root_item, 0);
643 
644 	btrfs_set_root_generation_v2(root_item,
645 			btrfs_root_generation(root_item));
646 	uuid_le_gen(&new_uuid);
647 	memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
648 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
649 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
650 	root_item->ctime = root_item->otime;
651 	btrfs_set_root_ctransid(root_item, trans->transid);
652 	btrfs_set_root_otransid(root_item, trans->transid);
653 
654 	btrfs_tree_unlock(leaf);
655 	free_extent_buffer(leaf);
656 	leaf = NULL;
657 
658 	btrfs_set_root_dirid(root_item, new_dirid);
659 
660 	key.objectid = objectid;
661 	key.offset = 0;
662 	key.type = BTRFS_ROOT_ITEM_KEY;
663 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
664 				root_item);
665 	if (ret)
666 		goto fail;
667 
668 	key.offset = (u64)-1;
669 	new_root = btrfs_read_fs_root_no_name(fs_info, &key);
670 	if (IS_ERR(new_root)) {
671 		ret = PTR_ERR(new_root);
672 		btrfs_abort_transaction(trans, ret);
673 		goto fail;
674 	}
675 
676 	btrfs_record_root_in_trans(trans, new_root);
677 
678 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
679 	if (ret) {
680 		/* We potentially lose an unused inode item here */
681 		btrfs_abort_transaction(trans, ret);
682 		goto fail;
683 	}
684 
685 	mutex_lock(&new_root->objectid_mutex);
686 	new_root->highest_objectid = new_dirid;
687 	mutex_unlock(&new_root->objectid_mutex);
688 
689 	/*
690 	 * insert the directory item
691 	 */
692 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
693 	if (ret) {
694 		btrfs_abort_transaction(trans, ret);
695 		goto fail;
696 	}
697 
698 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
699 				    BTRFS_FT_DIR, index);
700 	if (ret) {
701 		btrfs_abort_transaction(trans, ret);
702 		goto fail;
703 	}
704 
705 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
706 	ret = btrfs_update_inode(trans, root, dir);
707 	BUG_ON(ret);
708 
709 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
710 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
711 	BUG_ON(ret);
712 
713 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
714 				  BTRFS_UUID_KEY_SUBVOL, objectid);
715 	if (ret)
716 		btrfs_abort_transaction(trans, ret);
717 
718 fail:
719 	kfree(root_item);
720 	trans->block_rsv = NULL;
721 	trans->bytes_reserved = 0;
722 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
723 
724 	if (async_transid) {
725 		*async_transid = trans->transid;
726 		err = btrfs_commit_transaction_async(trans, 1);
727 		if (err)
728 			err = btrfs_commit_transaction(trans);
729 	} else {
730 		err = btrfs_commit_transaction(trans);
731 	}
732 	if (err && !ret)
733 		ret = err;
734 
735 	if (!ret) {
736 		inode = btrfs_lookup_dentry(dir, dentry);
737 		if (IS_ERR(inode))
738 			return PTR_ERR(inode);
739 		d_instantiate(dentry, inode);
740 	}
741 	return ret;
742 
743 fail_free:
744 	kfree(root_item);
745 	return ret;
746 }
747 
748 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
749 			   struct dentry *dentry,
750 			   u64 *async_transid, bool readonly,
751 			   struct btrfs_qgroup_inherit *inherit)
752 {
753 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
754 	struct inode *inode;
755 	struct btrfs_pending_snapshot *pending_snapshot;
756 	struct btrfs_trans_handle *trans;
757 	int ret;
758 	bool snapshot_force_cow = false;
759 
760 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
761 		return -EINVAL;
762 
763 	if (atomic_read(&root->nr_swapfiles)) {
764 		btrfs_warn(fs_info,
765 			   "cannot snapshot subvolume with active swapfile");
766 		return -ETXTBSY;
767 	}
768 
769 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
770 	if (!pending_snapshot)
771 		return -ENOMEM;
772 
773 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
774 			GFP_KERNEL);
775 	pending_snapshot->path = btrfs_alloc_path();
776 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
777 		ret = -ENOMEM;
778 		goto free_pending;
779 	}
780 
781 	/*
782 	 * Force new buffered writes to reserve space even when NOCOW is
783 	 * possible. This is to avoid later writeback (running dealloc) to
784 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
785 	 */
786 	atomic_inc(&root->will_be_snapshotted);
787 	smp_mb__after_atomic();
788 	/* wait for no snapshot writes */
789 	wait_event(root->subv_writers->wait,
790 		   percpu_counter_sum(&root->subv_writers->counter) == 0);
791 
792 	ret = btrfs_start_delalloc_snapshot(root);
793 	if (ret)
794 		goto dec_and_free;
795 
796 	/*
797 	 * All previous writes have started writeback in NOCOW mode, so now
798 	 * we force future writes to fallback to COW mode during snapshot
799 	 * creation.
800 	 */
801 	atomic_inc(&root->snapshot_force_cow);
802 	snapshot_force_cow = true;
803 
804 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
805 
806 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
807 			     BTRFS_BLOCK_RSV_TEMP);
808 	/*
809 	 * 1 - parent dir inode
810 	 * 2 - dir entries
811 	 * 1 - root item
812 	 * 2 - root ref/backref
813 	 * 1 - root of snapshot
814 	 * 1 - UUID item
815 	 */
816 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
817 					&pending_snapshot->block_rsv, 8,
818 					false);
819 	if (ret)
820 		goto dec_and_free;
821 
822 	pending_snapshot->dentry = dentry;
823 	pending_snapshot->root = root;
824 	pending_snapshot->readonly = readonly;
825 	pending_snapshot->dir = dir;
826 	pending_snapshot->inherit = inherit;
827 
828 	trans = btrfs_start_transaction(root, 0);
829 	if (IS_ERR(trans)) {
830 		ret = PTR_ERR(trans);
831 		goto fail;
832 	}
833 
834 	spin_lock(&fs_info->trans_lock);
835 	list_add(&pending_snapshot->list,
836 		 &trans->transaction->pending_snapshots);
837 	spin_unlock(&fs_info->trans_lock);
838 	if (async_transid) {
839 		*async_transid = trans->transid;
840 		ret = btrfs_commit_transaction_async(trans, 1);
841 		if (ret)
842 			ret = btrfs_commit_transaction(trans);
843 	} else {
844 		ret = btrfs_commit_transaction(trans);
845 	}
846 	if (ret)
847 		goto fail;
848 
849 	ret = pending_snapshot->error;
850 	if (ret)
851 		goto fail;
852 
853 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
854 	if (ret)
855 		goto fail;
856 
857 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
858 	if (IS_ERR(inode)) {
859 		ret = PTR_ERR(inode);
860 		goto fail;
861 	}
862 
863 	d_instantiate(dentry, inode);
864 	ret = 0;
865 fail:
866 	btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
867 dec_and_free:
868 	if (snapshot_force_cow)
869 		atomic_dec(&root->snapshot_force_cow);
870 	if (atomic_dec_and_test(&root->will_be_snapshotted))
871 		wake_up_var(&root->will_be_snapshotted);
872 free_pending:
873 	kfree(pending_snapshot->root_item);
874 	btrfs_free_path(pending_snapshot->path);
875 	kfree(pending_snapshot);
876 
877 	return ret;
878 }
879 
880 /*  copy of may_delete in fs/namei.c()
881  *	Check whether we can remove a link victim from directory dir, check
882  *  whether the type of victim is right.
883  *  1. We can't do it if dir is read-only (done in permission())
884  *  2. We should have write and exec permissions on dir
885  *  3. We can't remove anything from append-only dir
886  *  4. We can't do anything with immutable dir (done in permission())
887  *  5. If the sticky bit on dir is set we should either
888  *	a. be owner of dir, or
889  *	b. be owner of victim, or
890  *	c. have CAP_FOWNER capability
891  *  6. If the victim is append-only or immutable we can't do anything with
892  *     links pointing to it.
893  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
894  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
895  *  9. We can't remove a root or mountpoint.
896  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
897  *     nfs_async_unlink().
898  */
899 
900 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
901 {
902 	int error;
903 
904 	if (d_really_is_negative(victim))
905 		return -ENOENT;
906 
907 	BUG_ON(d_inode(victim->d_parent) != dir);
908 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
909 
910 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
911 	if (error)
912 		return error;
913 	if (IS_APPEND(dir))
914 		return -EPERM;
915 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
916 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
917 		return -EPERM;
918 	if (isdir) {
919 		if (!d_is_dir(victim))
920 			return -ENOTDIR;
921 		if (IS_ROOT(victim))
922 			return -EBUSY;
923 	} else if (d_is_dir(victim))
924 		return -EISDIR;
925 	if (IS_DEADDIR(dir))
926 		return -ENOENT;
927 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
928 		return -EBUSY;
929 	return 0;
930 }
931 
932 /* copy of may_create in fs/namei.c() */
933 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
934 {
935 	if (d_really_is_positive(child))
936 		return -EEXIST;
937 	if (IS_DEADDIR(dir))
938 		return -ENOENT;
939 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
940 }
941 
942 /*
943  * Create a new subvolume below @parent.  This is largely modeled after
944  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
945  * inside this filesystem so it's quite a bit simpler.
946  */
947 static noinline int btrfs_mksubvol(const struct path *parent,
948 				   const char *name, int namelen,
949 				   struct btrfs_root *snap_src,
950 				   u64 *async_transid, bool readonly,
951 				   struct btrfs_qgroup_inherit *inherit)
952 {
953 	struct inode *dir = d_inode(parent->dentry);
954 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
955 	struct dentry *dentry;
956 	int error;
957 
958 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
959 	if (error == -EINTR)
960 		return error;
961 
962 	dentry = lookup_one_len(name, parent->dentry, namelen);
963 	error = PTR_ERR(dentry);
964 	if (IS_ERR(dentry))
965 		goto out_unlock;
966 
967 	error = btrfs_may_create(dir, dentry);
968 	if (error)
969 		goto out_dput;
970 
971 	/*
972 	 * even if this name doesn't exist, we may get hash collisions.
973 	 * check for them now when we can safely fail
974 	 */
975 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
976 					       dir->i_ino, name,
977 					       namelen);
978 	if (error)
979 		goto out_dput;
980 
981 	down_read(&fs_info->subvol_sem);
982 
983 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
984 		goto out_up_read;
985 
986 	if (snap_src) {
987 		error = create_snapshot(snap_src, dir, dentry,
988 					async_transid, readonly, inherit);
989 	} else {
990 		error = create_subvol(dir, dentry, name, namelen,
991 				      async_transid, inherit);
992 	}
993 	if (!error)
994 		fsnotify_mkdir(dir, dentry);
995 out_up_read:
996 	up_read(&fs_info->subvol_sem);
997 out_dput:
998 	dput(dentry);
999 out_unlock:
1000 	inode_unlock(dir);
1001 	return error;
1002 }
1003 
1004 /*
1005  * When we're defragging a range, we don't want to kick it off again
1006  * if it is really just waiting for delalloc to send it down.
1007  * If we find a nice big extent or delalloc range for the bytes in the
1008  * file you want to defrag, we return 0 to let you know to skip this
1009  * part of the file
1010  */
1011 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1012 {
1013 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1014 	struct extent_map *em = NULL;
1015 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1016 	u64 end;
1017 
1018 	read_lock(&em_tree->lock);
1019 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1020 	read_unlock(&em_tree->lock);
1021 
1022 	if (em) {
1023 		end = extent_map_end(em);
1024 		free_extent_map(em);
1025 		if (end - offset > thresh)
1026 			return 0;
1027 	}
1028 	/* if we already have a nice delalloc here, just stop */
1029 	thresh /= 2;
1030 	end = count_range_bits(io_tree, &offset, offset + thresh,
1031 			       thresh, EXTENT_DELALLOC, 1);
1032 	if (end >= thresh)
1033 		return 0;
1034 	return 1;
1035 }
1036 
1037 /*
1038  * helper function to walk through a file and find extents
1039  * newer than a specific transid, and smaller than thresh.
1040  *
1041  * This is used by the defragging code to find new and small
1042  * extents
1043  */
1044 static int find_new_extents(struct btrfs_root *root,
1045 			    struct inode *inode, u64 newer_than,
1046 			    u64 *off, u32 thresh)
1047 {
1048 	struct btrfs_path *path;
1049 	struct btrfs_key min_key;
1050 	struct extent_buffer *leaf;
1051 	struct btrfs_file_extent_item *extent;
1052 	int type;
1053 	int ret;
1054 	u64 ino = btrfs_ino(BTRFS_I(inode));
1055 
1056 	path = btrfs_alloc_path();
1057 	if (!path)
1058 		return -ENOMEM;
1059 
1060 	min_key.objectid = ino;
1061 	min_key.type = BTRFS_EXTENT_DATA_KEY;
1062 	min_key.offset = *off;
1063 
1064 	while (1) {
1065 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1066 		if (ret != 0)
1067 			goto none;
1068 process_slot:
1069 		if (min_key.objectid != ino)
1070 			goto none;
1071 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1072 			goto none;
1073 
1074 		leaf = path->nodes[0];
1075 		extent = btrfs_item_ptr(leaf, path->slots[0],
1076 					struct btrfs_file_extent_item);
1077 
1078 		type = btrfs_file_extent_type(leaf, extent);
1079 		if (type == BTRFS_FILE_EXTENT_REG &&
1080 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1081 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1082 			*off = min_key.offset;
1083 			btrfs_free_path(path);
1084 			return 0;
1085 		}
1086 
1087 		path->slots[0]++;
1088 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1089 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1090 			goto process_slot;
1091 		}
1092 
1093 		if (min_key.offset == (u64)-1)
1094 			goto none;
1095 
1096 		min_key.offset++;
1097 		btrfs_release_path(path);
1098 	}
1099 none:
1100 	btrfs_free_path(path);
1101 	return -ENOENT;
1102 }
1103 
1104 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1105 {
1106 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1107 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1108 	struct extent_map *em;
1109 	u64 len = PAGE_SIZE;
1110 
1111 	/*
1112 	 * hopefully we have this extent in the tree already, try without
1113 	 * the full extent lock
1114 	 */
1115 	read_lock(&em_tree->lock);
1116 	em = lookup_extent_mapping(em_tree, start, len);
1117 	read_unlock(&em_tree->lock);
1118 
1119 	if (!em) {
1120 		struct extent_state *cached = NULL;
1121 		u64 end = start + len - 1;
1122 
1123 		/* get the big lock and read metadata off disk */
1124 		lock_extent_bits(io_tree, start, end, &cached);
1125 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
1126 		unlock_extent_cached(io_tree, start, end, &cached);
1127 
1128 		if (IS_ERR(em))
1129 			return NULL;
1130 	}
1131 
1132 	return em;
1133 }
1134 
1135 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1136 {
1137 	struct extent_map *next;
1138 	bool ret = true;
1139 
1140 	/* this is the last extent */
1141 	if (em->start + em->len >= i_size_read(inode))
1142 		return false;
1143 
1144 	next = defrag_lookup_extent(inode, em->start + em->len);
1145 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1146 		ret = false;
1147 	else if ((em->block_start + em->block_len == next->block_start) &&
1148 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1149 		ret = false;
1150 
1151 	free_extent_map(next);
1152 	return ret;
1153 }
1154 
1155 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1156 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1157 			       int compress)
1158 {
1159 	struct extent_map *em;
1160 	int ret = 1;
1161 	bool next_mergeable = true;
1162 	bool prev_mergeable = true;
1163 
1164 	/*
1165 	 * make sure that once we start defragging an extent, we keep on
1166 	 * defragging it
1167 	 */
1168 	if (start < *defrag_end)
1169 		return 1;
1170 
1171 	*skip = 0;
1172 
1173 	em = defrag_lookup_extent(inode, start);
1174 	if (!em)
1175 		return 0;
1176 
1177 	/* this will cover holes, and inline extents */
1178 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1179 		ret = 0;
1180 		goto out;
1181 	}
1182 
1183 	if (!*defrag_end)
1184 		prev_mergeable = false;
1185 
1186 	next_mergeable = defrag_check_next_extent(inode, em);
1187 	/*
1188 	 * we hit a real extent, if it is big or the next extent is not a
1189 	 * real extent, don't bother defragging it
1190 	 */
1191 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1192 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1193 		ret = 0;
1194 out:
1195 	/*
1196 	 * last_len ends up being a counter of how many bytes we've defragged.
1197 	 * every time we choose not to defrag an extent, we reset *last_len
1198 	 * so that the next tiny extent will force a defrag.
1199 	 *
1200 	 * The end result of this is that tiny extents before a single big
1201 	 * extent will force at least part of that big extent to be defragged.
1202 	 */
1203 	if (ret) {
1204 		*defrag_end = extent_map_end(em);
1205 	} else {
1206 		*last_len = 0;
1207 		*skip = extent_map_end(em);
1208 		*defrag_end = 0;
1209 	}
1210 
1211 	free_extent_map(em);
1212 	return ret;
1213 }
1214 
1215 /*
1216  * it doesn't do much good to defrag one or two pages
1217  * at a time.  This pulls in a nice chunk of pages
1218  * to COW and defrag.
1219  *
1220  * It also makes sure the delalloc code has enough
1221  * dirty data to avoid making new small extents as part
1222  * of the defrag
1223  *
1224  * It's a good idea to start RA on this range
1225  * before calling this.
1226  */
1227 static int cluster_pages_for_defrag(struct inode *inode,
1228 				    struct page **pages,
1229 				    unsigned long start_index,
1230 				    unsigned long num_pages)
1231 {
1232 	unsigned long file_end;
1233 	u64 isize = i_size_read(inode);
1234 	u64 page_start;
1235 	u64 page_end;
1236 	u64 page_cnt;
1237 	int ret;
1238 	int i;
1239 	int i_done;
1240 	struct btrfs_ordered_extent *ordered;
1241 	struct extent_state *cached_state = NULL;
1242 	struct extent_io_tree *tree;
1243 	struct extent_changeset *data_reserved = NULL;
1244 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1245 
1246 	file_end = (isize - 1) >> PAGE_SHIFT;
1247 	if (!isize || start_index > file_end)
1248 		return 0;
1249 
1250 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1251 
1252 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1253 			start_index << PAGE_SHIFT,
1254 			page_cnt << PAGE_SHIFT);
1255 	if (ret)
1256 		return ret;
1257 	i_done = 0;
1258 	tree = &BTRFS_I(inode)->io_tree;
1259 
1260 	/* step one, lock all the pages */
1261 	for (i = 0; i < page_cnt; i++) {
1262 		struct page *page;
1263 again:
1264 		page = find_or_create_page(inode->i_mapping,
1265 					   start_index + i, mask);
1266 		if (!page)
1267 			break;
1268 
1269 		page_start = page_offset(page);
1270 		page_end = page_start + PAGE_SIZE - 1;
1271 		while (1) {
1272 			lock_extent_bits(tree, page_start, page_end,
1273 					 &cached_state);
1274 			ordered = btrfs_lookup_ordered_extent(inode,
1275 							      page_start);
1276 			unlock_extent_cached(tree, page_start, page_end,
1277 					     &cached_state);
1278 			if (!ordered)
1279 				break;
1280 
1281 			unlock_page(page);
1282 			btrfs_start_ordered_extent(inode, ordered, 1);
1283 			btrfs_put_ordered_extent(ordered);
1284 			lock_page(page);
1285 			/*
1286 			 * we unlocked the page above, so we need check if
1287 			 * it was released or not.
1288 			 */
1289 			if (page->mapping != inode->i_mapping) {
1290 				unlock_page(page);
1291 				put_page(page);
1292 				goto again;
1293 			}
1294 		}
1295 
1296 		if (!PageUptodate(page)) {
1297 			btrfs_readpage(NULL, page);
1298 			lock_page(page);
1299 			if (!PageUptodate(page)) {
1300 				unlock_page(page);
1301 				put_page(page);
1302 				ret = -EIO;
1303 				break;
1304 			}
1305 		}
1306 
1307 		if (page->mapping != inode->i_mapping) {
1308 			unlock_page(page);
1309 			put_page(page);
1310 			goto again;
1311 		}
1312 
1313 		pages[i] = page;
1314 		i_done++;
1315 	}
1316 	if (!i_done || ret)
1317 		goto out;
1318 
1319 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1320 		goto out;
1321 
1322 	/*
1323 	 * so now we have a nice long stream of locked
1324 	 * and up to date pages, lets wait on them
1325 	 */
1326 	for (i = 0; i < i_done; i++)
1327 		wait_on_page_writeback(pages[i]);
1328 
1329 	page_start = page_offset(pages[0]);
1330 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1331 
1332 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1333 			 page_start, page_end - 1, &cached_state);
1334 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1335 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1336 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1337 			  &cached_state);
1338 
1339 	if (i_done != page_cnt) {
1340 		spin_lock(&BTRFS_I(inode)->lock);
1341 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1342 		spin_unlock(&BTRFS_I(inode)->lock);
1343 		btrfs_delalloc_release_space(inode, data_reserved,
1344 				start_index << PAGE_SHIFT,
1345 				(page_cnt - i_done) << PAGE_SHIFT, true);
1346 	}
1347 
1348 
1349 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1350 			  &cached_state);
1351 
1352 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1353 			     page_start, page_end - 1, &cached_state);
1354 
1355 	for (i = 0; i < i_done; i++) {
1356 		clear_page_dirty_for_io(pages[i]);
1357 		ClearPageChecked(pages[i]);
1358 		set_page_extent_mapped(pages[i]);
1359 		set_page_dirty(pages[i]);
1360 		unlock_page(pages[i]);
1361 		put_page(pages[i]);
1362 	}
1363 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1364 				       false);
1365 	extent_changeset_free(data_reserved);
1366 	return i_done;
1367 out:
1368 	for (i = 0; i < i_done; i++) {
1369 		unlock_page(pages[i]);
1370 		put_page(pages[i]);
1371 	}
1372 	btrfs_delalloc_release_space(inode, data_reserved,
1373 			start_index << PAGE_SHIFT,
1374 			page_cnt << PAGE_SHIFT, true);
1375 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1376 				       true);
1377 	extent_changeset_free(data_reserved);
1378 	return ret;
1379 
1380 }
1381 
1382 int btrfs_defrag_file(struct inode *inode, struct file *file,
1383 		      struct btrfs_ioctl_defrag_range_args *range,
1384 		      u64 newer_than, unsigned long max_to_defrag)
1385 {
1386 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1387 	struct btrfs_root *root = BTRFS_I(inode)->root;
1388 	struct file_ra_state *ra = NULL;
1389 	unsigned long last_index;
1390 	u64 isize = i_size_read(inode);
1391 	u64 last_len = 0;
1392 	u64 skip = 0;
1393 	u64 defrag_end = 0;
1394 	u64 newer_off = range->start;
1395 	unsigned long i;
1396 	unsigned long ra_index = 0;
1397 	int ret;
1398 	int defrag_count = 0;
1399 	int compress_type = BTRFS_COMPRESS_ZLIB;
1400 	u32 extent_thresh = range->extent_thresh;
1401 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1402 	unsigned long cluster = max_cluster;
1403 	u64 new_align = ~((u64)SZ_128K - 1);
1404 	struct page **pages = NULL;
1405 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1406 
1407 	if (isize == 0)
1408 		return 0;
1409 
1410 	if (range->start >= isize)
1411 		return -EINVAL;
1412 
1413 	if (do_compress) {
1414 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1415 			return -EINVAL;
1416 		if (range->compress_type)
1417 			compress_type = range->compress_type;
1418 	}
1419 
1420 	if (extent_thresh == 0)
1421 		extent_thresh = SZ_256K;
1422 
1423 	/*
1424 	 * If we were not given a file, allocate a readahead context. As
1425 	 * readahead is just an optimization, defrag will work without it so
1426 	 * we don't error out.
1427 	 */
1428 	if (!file) {
1429 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1430 		if (ra)
1431 			file_ra_state_init(ra, inode->i_mapping);
1432 	} else {
1433 		ra = &file->f_ra;
1434 	}
1435 
1436 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1437 	if (!pages) {
1438 		ret = -ENOMEM;
1439 		goto out_ra;
1440 	}
1441 
1442 	/* find the last page to defrag */
1443 	if (range->start + range->len > range->start) {
1444 		last_index = min_t(u64, isize - 1,
1445 			 range->start + range->len - 1) >> PAGE_SHIFT;
1446 	} else {
1447 		last_index = (isize - 1) >> PAGE_SHIFT;
1448 	}
1449 
1450 	if (newer_than) {
1451 		ret = find_new_extents(root, inode, newer_than,
1452 				       &newer_off, SZ_64K);
1453 		if (!ret) {
1454 			range->start = newer_off;
1455 			/*
1456 			 * we always align our defrag to help keep
1457 			 * the extents in the file evenly spaced
1458 			 */
1459 			i = (newer_off & new_align) >> PAGE_SHIFT;
1460 		} else
1461 			goto out_ra;
1462 	} else {
1463 		i = range->start >> PAGE_SHIFT;
1464 	}
1465 	if (!max_to_defrag)
1466 		max_to_defrag = last_index - i + 1;
1467 
1468 	/*
1469 	 * make writeback starts from i, so the defrag range can be
1470 	 * written sequentially.
1471 	 */
1472 	if (i < inode->i_mapping->writeback_index)
1473 		inode->i_mapping->writeback_index = i;
1474 
1475 	while (i <= last_index && defrag_count < max_to_defrag &&
1476 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1477 		/*
1478 		 * make sure we stop running if someone unmounts
1479 		 * the FS
1480 		 */
1481 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1482 			break;
1483 
1484 		if (btrfs_defrag_cancelled(fs_info)) {
1485 			btrfs_debug(fs_info, "defrag_file cancelled");
1486 			ret = -EAGAIN;
1487 			break;
1488 		}
1489 
1490 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1491 					 extent_thresh, &last_len, &skip,
1492 					 &defrag_end, do_compress)){
1493 			unsigned long next;
1494 			/*
1495 			 * the should_defrag function tells us how much to skip
1496 			 * bump our counter by the suggested amount
1497 			 */
1498 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1499 			i = max(i + 1, next);
1500 			continue;
1501 		}
1502 
1503 		if (!newer_than) {
1504 			cluster = (PAGE_ALIGN(defrag_end) >>
1505 				   PAGE_SHIFT) - i;
1506 			cluster = min(cluster, max_cluster);
1507 		} else {
1508 			cluster = max_cluster;
1509 		}
1510 
1511 		if (i + cluster > ra_index) {
1512 			ra_index = max(i, ra_index);
1513 			if (ra)
1514 				page_cache_sync_readahead(inode->i_mapping, ra,
1515 						file, ra_index, cluster);
1516 			ra_index += cluster;
1517 		}
1518 
1519 		inode_lock(inode);
1520 		if (IS_SWAPFILE(inode)) {
1521 			ret = -ETXTBSY;
1522 		} else {
1523 			if (do_compress)
1524 				BTRFS_I(inode)->defrag_compress = compress_type;
1525 			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1526 		}
1527 		if (ret < 0) {
1528 			inode_unlock(inode);
1529 			goto out_ra;
1530 		}
1531 
1532 		defrag_count += ret;
1533 		balance_dirty_pages_ratelimited(inode->i_mapping);
1534 		inode_unlock(inode);
1535 
1536 		if (newer_than) {
1537 			if (newer_off == (u64)-1)
1538 				break;
1539 
1540 			if (ret > 0)
1541 				i += ret;
1542 
1543 			newer_off = max(newer_off + 1,
1544 					(u64)i << PAGE_SHIFT);
1545 
1546 			ret = find_new_extents(root, inode, newer_than,
1547 					       &newer_off, SZ_64K);
1548 			if (!ret) {
1549 				range->start = newer_off;
1550 				i = (newer_off & new_align) >> PAGE_SHIFT;
1551 			} else {
1552 				break;
1553 			}
1554 		} else {
1555 			if (ret > 0) {
1556 				i += ret;
1557 				last_len += ret << PAGE_SHIFT;
1558 			} else {
1559 				i++;
1560 				last_len = 0;
1561 			}
1562 		}
1563 	}
1564 
1565 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1566 		filemap_flush(inode->i_mapping);
1567 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1568 			     &BTRFS_I(inode)->runtime_flags))
1569 			filemap_flush(inode->i_mapping);
1570 	}
1571 
1572 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1573 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1574 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1575 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1576 	}
1577 
1578 	ret = defrag_count;
1579 
1580 out_ra:
1581 	if (do_compress) {
1582 		inode_lock(inode);
1583 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1584 		inode_unlock(inode);
1585 	}
1586 	if (!file)
1587 		kfree(ra);
1588 	kfree(pages);
1589 	return ret;
1590 }
1591 
1592 static noinline int btrfs_ioctl_resize(struct file *file,
1593 					void __user *arg)
1594 {
1595 	struct inode *inode = file_inode(file);
1596 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1597 	u64 new_size;
1598 	u64 old_size;
1599 	u64 devid = 1;
1600 	struct btrfs_root *root = BTRFS_I(inode)->root;
1601 	struct btrfs_ioctl_vol_args *vol_args;
1602 	struct btrfs_trans_handle *trans;
1603 	struct btrfs_device *device = NULL;
1604 	char *sizestr;
1605 	char *retptr;
1606 	char *devstr = NULL;
1607 	int ret = 0;
1608 	int mod = 0;
1609 
1610 	if (!capable(CAP_SYS_ADMIN))
1611 		return -EPERM;
1612 
1613 	ret = mnt_want_write_file(file);
1614 	if (ret)
1615 		return ret;
1616 
1617 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1618 		mnt_drop_write_file(file);
1619 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1620 	}
1621 
1622 	vol_args = memdup_user(arg, sizeof(*vol_args));
1623 	if (IS_ERR(vol_args)) {
1624 		ret = PTR_ERR(vol_args);
1625 		goto out;
1626 	}
1627 
1628 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1629 
1630 	sizestr = vol_args->name;
1631 	devstr = strchr(sizestr, ':');
1632 	if (devstr) {
1633 		sizestr = devstr + 1;
1634 		*devstr = '\0';
1635 		devstr = vol_args->name;
1636 		ret = kstrtoull(devstr, 10, &devid);
1637 		if (ret)
1638 			goto out_free;
1639 		if (!devid) {
1640 			ret = -EINVAL;
1641 			goto out_free;
1642 		}
1643 		btrfs_info(fs_info, "resizing devid %llu", devid);
1644 	}
1645 
1646 	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1647 	if (!device) {
1648 		btrfs_info(fs_info, "resizer unable to find device %llu",
1649 			   devid);
1650 		ret = -ENODEV;
1651 		goto out_free;
1652 	}
1653 
1654 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1655 		btrfs_info(fs_info,
1656 			   "resizer unable to apply on readonly device %llu",
1657 		       devid);
1658 		ret = -EPERM;
1659 		goto out_free;
1660 	}
1661 
1662 	if (!strcmp(sizestr, "max"))
1663 		new_size = device->bdev->bd_inode->i_size;
1664 	else {
1665 		if (sizestr[0] == '-') {
1666 			mod = -1;
1667 			sizestr++;
1668 		} else if (sizestr[0] == '+') {
1669 			mod = 1;
1670 			sizestr++;
1671 		}
1672 		new_size = memparse(sizestr, &retptr);
1673 		if (*retptr != '\0' || new_size == 0) {
1674 			ret = -EINVAL;
1675 			goto out_free;
1676 		}
1677 	}
1678 
1679 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1680 		ret = -EPERM;
1681 		goto out_free;
1682 	}
1683 
1684 	old_size = btrfs_device_get_total_bytes(device);
1685 
1686 	if (mod < 0) {
1687 		if (new_size > old_size) {
1688 			ret = -EINVAL;
1689 			goto out_free;
1690 		}
1691 		new_size = old_size - new_size;
1692 	} else if (mod > 0) {
1693 		if (new_size > ULLONG_MAX - old_size) {
1694 			ret = -ERANGE;
1695 			goto out_free;
1696 		}
1697 		new_size = old_size + new_size;
1698 	}
1699 
1700 	if (new_size < SZ_256M) {
1701 		ret = -EINVAL;
1702 		goto out_free;
1703 	}
1704 	if (new_size > device->bdev->bd_inode->i_size) {
1705 		ret = -EFBIG;
1706 		goto out_free;
1707 	}
1708 
1709 	new_size = round_down(new_size, fs_info->sectorsize);
1710 
1711 	btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1712 			  rcu_str_deref(device->name), new_size);
1713 
1714 	if (new_size > old_size) {
1715 		trans = btrfs_start_transaction(root, 0);
1716 		if (IS_ERR(trans)) {
1717 			ret = PTR_ERR(trans);
1718 			goto out_free;
1719 		}
1720 		ret = btrfs_grow_device(trans, device, new_size);
1721 		btrfs_commit_transaction(trans);
1722 	} else if (new_size < old_size) {
1723 		ret = btrfs_shrink_device(device, new_size);
1724 	} /* equal, nothing need to do */
1725 
1726 out_free:
1727 	kfree(vol_args);
1728 out:
1729 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1730 	mnt_drop_write_file(file);
1731 	return ret;
1732 }
1733 
1734 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1735 				const char *name, unsigned long fd, int subvol,
1736 				u64 *transid, bool readonly,
1737 				struct btrfs_qgroup_inherit *inherit)
1738 {
1739 	int namelen;
1740 	int ret = 0;
1741 
1742 	if (!S_ISDIR(file_inode(file)->i_mode))
1743 		return -ENOTDIR;
1744 
1745 	ret = mnt_want_write_file(file);
1746 	if (ret)
1747 		goto out;
1748 
1749 	namelen = strlen(name);
1750 	if (strchr(name, '/')) {
1751 		ret = -EINVAL;
1752 		goto out_drop_write;
1753 	}
1754 
1755 	if (name[0] == '.' &&
1756 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1757 		ret = -EEXIST;
1758 		goto out_drop_write;
1759 	}
1760 
1761 	if (subvol) {
1762 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1763 				     NULL, transid, readonly, inherit);
1764 	} else {
1765 		struct fd src = fdget(fd);
1766 		struct inode *src_inode;
1767 		if (!src.file) {
1768 			ret = -EINVAL;
1769 			goto out_drop_write;
1770 		}
1771 
1772 		src_inode = file_inode(src.file);
1773 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1774 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1775 				   "Snapshot src from another FS");
1776 			ret = -EXDEV;
1777 		} else if (!inode_owner_or_capable(src_inode)) {
1778 			/*
1779 			 * Subvolume creation is not restricted, but snapshots
1780 			 * are limited to own subvolumes only
1781 			 */
1782 			ret = -EPERM;
1783 		} else {
1784 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1785 					     BTRFS_I(src_inode)->root,
1786 					     transid, readonly, inherit);
1787 		}
1788 		fdput(src);
1789 	}
1790 out_drop_write:
1791 	mnt_drop_write_file(file);
1792 out:
1793 	return ret;
1794 }
1795 
1796 static noinline int btrfs_ioctl_snap_create(struct file *file,
1797 					    void __user *arg, int subvol)
1798 {
1799 	struct btrfs_ioctl_vol_args *vol_args;
1800 	int ret;
1801 
1802 	if (!S_ISDIR(file_inode(file)->i_mode))
1803 		return -ENOTDIR;
1804 
1805 	vol_args = memdup_user(arg, sizeof(*vol_args));
1806 	if (IS_ERR(vol_args))
1807 		return PTR_ERR(vol_args);
1808 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1809 
1810 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1811 					      vol_args->fd, subvol,
1812 					      NULL, false, NULL);
1813 
1814 	kfree(vol_args);
1815 	return ret;
1816 }
1817 
1818 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1819 					       void __user *arg, int subvol)
1820 {
1821 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1822 	int ret;
1823 	u64 transid = 0;
1824 	u64 *ptr = NULL;
1825 	bool readonly = false;
1826 	struct btrfs_qgroup_inherit *inherit = NULL;
1827 
1828 	if (!S_ISDIR(file_inode(file)->i_mode))
1829 		return -ENOTDIR;
1830 
1831 	vol_args = memdup_user(arg, sizeof(*vol_args));
1832 	if (IS_ERR(vol_args))
1833 		return PTR_ERR(vol_args);
1834 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1835 
1836 	if (vol_args->flags &
1837 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1838 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1839 		ret = -EOPNOTSUPP;
1840 		goto free_args;
1841 	}
1842 
1843 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1844 		ptr = &transid;
1845 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1846 		readonly = true;
1847 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1848 		if (vol_args->size > PAGE_SIZE) {
1849 			ret = -EINVAL;
1850 			goto free_args;
1851 		}
1852 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1853 		if (IS_ERR(inherit)) {
1854 			ret = PTR_ERR(inherit);
1855 			goto free_args;
1856 		}
1857 	}
1858 
1859 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1860 					      vol_args->fd, subvol, ptr,
1861 					      readonly, inherit);
1862 	if (ret)
1863 		goto free_inherit;
1864 
1865 	if (ptr && copy_to_user(arg +
1866 				offsetof(struct btrfs_ioctl_vol_args_v2,
1867 					transid),
1868 				ptr, sizeof(*ptr)))
1869 		ret = -EFAULT;
1870 
1871 free_inherit:
1872 	kfree(inherit);
1873 free_args:
1874 	kfree(vol_args);
1875 	return ret;
1876 }
1877 
1878 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1879 						void __user *arg)
1880 {
1881 	struct inode *inode = file_inode(file);
1882 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1883 	struct btrfs_root *root = BTRFS_I(inode)->root;
1884 	int ret = 0;
1885 	u64 flags = 0;
1886 
1887 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1888 		return -EINVAL;
1889 
1890 	down_read(&fs_info->subvol_sem);
1891 	if (btrfs_root_readonly(root))
1892 		flags |= BTRFS_SUBVOL_RDONLY;
1893 	up_read(&fs_info->subvol_sem);
1894 
1895 	if (copy_to_user(arg, &flags, sizeof(flags)))
1896 		ret = -EFAULT;
1897 
1898 	return ret;
1899 }
1900 
1901 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1902 					      void __user *arg)
1903 {
1904 	struct inode *inode = file_inode(file);
1905 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1906 	struct btrfs_root *root = BTRFS_I(inode)->root;
1907 	struct btrfs_trans_handle *trans;
1908 	u64 root_flags;
1909 	u64 flags;
1910 	int ret = 0;
1911 
1912 	if (!inode_owner_or_capable(inode))
1913 		return -EPERM;
1914 
1915 	ret = mnt_want_write_file(file);
1916 	if (ret)
1917 		goto out;
1918 
1919 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1920 		ret = -EINVAL;
1921 		goto out_drop_write;
1922 	}
1923 
1924 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1925 		ret = -EFAULT;
1926 		goto out_drop_write;
1927 	}
1928 
1929 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1930 		ret = -EINVAL;
1931 		goto out_drop_write;
1932 	}
1933 
1934 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1935 		ret = -EOPNOTSUPP;
1936 		goto out_drop_write;
1937 	}
1938 
1939 	down_write(&fs_info->subvol_sem);
1940 
1941 	/* nothing to do */
1942 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1943 		goto out_drop_sem;
1944 
1945 	root_flags = btrfs_root_flags(&root->root_item);
1946 	if (flags & BTRFS_SUBVOL_RDONLY) {
1947 		btrfs_set_root_flags(&root->root_item,
1948 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1949 	} else {
1950 		/*
1951 		 * Block RO -> RW transition if this subvolume is involved in
1952 		 * send
1953 		 */
1954 		spin_lock(&root->root_item_lock);
1955 		if (root->send_in_progress == 0) {
1956 			btrfs_set_root_flags(&root->root_item,
1957 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1958 			spin_unlock(&root->root_item_lock);
1959 		} else {
1960 			spin_unlock(&root->root_item_lock);
1961 			btrfs_warn(fs_info,
1962 				   "Attempt to set subvolume %llu read-write during send",
1963 				   root->root_key.objectid);
1964 			ret = -EPERM;
1965 			goto out_drop_sem;
1966 		}
1967 	}
1968 
1969 	trans = btrfs_start_transaction(root, 1);
1970 	if (IS_ERR(trans)) {
1971 		ret = PTR_ERR(trans);
1972 		goto out_reset;
1973 	}
1974 
1975 	ret = btrfs_update_root(trans, fs_info->tree_root,
1976 				&root->root_key, &root->root_item);
1977 	if (ret < 0) {
1978 		btrfs_end_transaction(trans);
1979 		goto out_reset;
1980 	}
1981 
1982 	ret = btrfs_commit_transaction(trans);
1983 
1984 out_reset:
1985 	if (ret)
1986 		btrfs_set_root_flags(&root->root_item, root_flags);
1987 out_drop_sem:
1988 	up_write(&fs_info->subvol_sem);
1989 out_drop_write:
1990 	mnt_drop_write_file(file);
1991 out:
1992 	return ret;
1993 }
1994 
1995 static noinline int key_in_sk(struct btrfs_key *key,
1996 			      struct btrfs_ioctl_search_key *sk)
1997 {
1998 	struct btrfs_key test;
1999 	int ret;
2000 
2001 	test.objectid = sk->min_objectid;
2002 	test.type = sk->min_type;
2003 	test.offset = sk->min_offset;
2004 
2005 	ret = btrfs_comp_cpu_keys(key, &test);
2006 	if (ret < 0)
2007 		return 0;
2008 
2009 	test.objectid = sk->max_objectid;
2010 	test.type = sk->max_type;
2011 	test.offset = sk->max_offset;
2012 
2013 	ret = btrfs_comp_cpu_keys(key, &test);
2014 	if (ret > 0)
2015 		return 0;
2016 	return 1;
2017 }
2018 
2019 static noinline int copy_to_sk(struct btrfs_path *path,
2020 			       struct btrfs_key *key,
2021 			       struct btrfs_ioctl_search_key *sk,
2022 			       size_t *buf_size,
2023 			       char __user *ubuf,
2024 			       unsigned long *sk_offset,
2025 			       int *num_found)
2026 {
2027 	u64 found_transid;
2028 	struct extent_buffer *leaf;
2029 	struct btrfs_ioctl_search_header sh;
2030 	struct btrfs_key test;
2031 	unsigned long item_off;
2032 	unsigned long item_len;
2033 	int nritems;
2034 	int i;
2035 	int slot;
2036 	int ret = 0;
2037 
2038 	leaf = path->nodes[0];
2039 	slot = path->slots[0];
2040 	nritems = btrfs_header_nritems(leaf);
2041 
2042 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2043 		i = nritems;
2044 		goto advance_key;
2045 	}
2046 	found_transid = btrfs_header_generation(leaf);
2047 
2048 	for (i = slot; i < nritems; i++) {
2049 		item_off = btrfs_item_ptr_offset(leaf, i);
2050 		item_len = btrfs_item_size_nr(leaf, i);
2051 
2052 		btrfs_item_key_to_cpu(leaf, key, i);
2053 		if (!key_in_sk(key, sk))
2054 			continue;
2055 
2056 		if (sizeof(sh) + item_len > *buf_size) {
2057 			if (*num_found) {
2058 				ret = 1;
2059 				goto out;
2060 			}
2061 
2062 			/*
2063 			 * return one empty item back for v1, which does not
2064 			 * handle -EOVERFLOW
2065 			 */
2066 
2067 			*buf_size = sizeof(sh) + item_len;
2068 			item_len = 0;
2069 			ret = -EOVERFLOW;
2070 		}
2071 
2072 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2073 			ret = 1;
2074 			goto out;
2075 		}
2076 
2077 		sh.objectid = key->objectid;
2078 		sh.offset = key->offset;
2079 		sh.type = key->type;
2080 		sh.len = item_len;
2081 		sh.transid = found_transid;
2082 
2083 		/* copy search result header */
2084 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2085 			ret = -EFAULT;
2086 			goto out;
2087 		}
2088 
2089 		*sk_offset += sizeof(sh);
2090 
2091 		if (item_len) {
2092 			char __user *up = ubuf + *sk_offset;
2093 			/* copy the item */
2094 			if (read_extent_buffer_to_user(leaf, up,
2095 						       item_off, item_len)) {
2096 				ret = -EFAULT;
2097 				goto out;
2098 			}
2099 
2100 			*sk_offset += item_len;
2101 		}
2102 		(*num_found)++;
2103 
2104 		if (ret) /* -EOVERFLOW from above */
2105 			goto out;
2106 
2107 		if (*num_found >= sk->nr_items) {
2108 			ret = 1;
2109 			goto out;
2110 		}
2111 	}
2112 advance_key:
2113 	ret = 0;
2114 	test.objectid = sk->max_objectid;
2115 	test.type = sk->max_type;
2116 	test.offset = sk->max_offset;
2117 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2118 		ret = 1;
2119 	else if (key->offset < (u64)-1)
2120 		key->offset++;
2121 	else if (key->type < (u8)-1) {
2122 		key->offset = 0;
2123 		key->type++;
2124 	} else if (key->objectid < (u64)-1) {
2125 		key->offset = 0;
2126 		key->type = 0;
2127 		key->objectid++;
2128 	} else
2129 		ret = 1;
2130 out:
2131 	/*
2132 	 *  0: all items from this leaf copied, continue with next
2133 	 *  1: * more items can be copied, but unused buffer is too small
2134 	 *     * all items were found
2135 	 *     Either way, it will stops the loop which iterates to the next
2136 	 *     leaf
2137 	 *  -EOVERFLOW: item was to large for buffer
2138 	 *  -EFAULT: could not copy extent buffer back to userspace
2139 	 */
2140 	return ret;
2141 }
2142 
2143 static noinline int search_ioctl(struct inode *inode,
2144 				 struct btrfs_ioctl_search_key *sk,
2145 				 size_t *buf_size,
2146 				 char __user *ubuf)
2147 {
2148 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2149 	struct btrfs_root *root;
2150 	struct btrfs_key key;
2151 	struct btrfs_path *path;
2152 	int ret;
2153 	int num_found = 0;
2154 	unsigned long sk_offset = 0;
2155 
2156 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2157 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2158 		return -EOVERFLOW;
2159 	}
2160 
2161 	path = btrfs_alloc_path();
2162 	if (!path)
2163 		return -ENOMEM;
2164 
2165 	if (sk->tree_id == 0) {
2166 		/* search the root of the inode that was passed */
2167 		root = BTRFS_I(inode)->root;
2168 	} else {
2169 		key.objectid = sk->tree_id;
2170 		key.type = BTRFS_ROOT_ITEM_KEY;
2171 		key.offset = (u64)-1;
2172 		root = btrfs_read_fs_root_no_name(info, &key);
2173 		if (IS_ERR(root)) {
2174 			btrfs_free_path(path);
2175 			return PTR_ERR(root);
2176 		}
2177 	}
2178 
2179 	key.objectid = sk->min_objectid;
2180 	key.type = sk->min_type;
2181 	key.offset = sk->min_offset;
2182 
2183 	while (1) {
2184 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2185 		if (ret != 0) {
2186 			if (ret > 0)
2187 				ret = 0;
2188 			goto err;
2189 		}
2190 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2191 				 &sk_offset, &num_found);
2192 		btrfs_release_path(path);
2193 		if (ret)
2194 			break;
2195 
2196 	}
2197 	if (ret > 0)
2198 		ret = 0;
2199 err:
2200 	sk->nr_items = num_found;
2201 	btrfs_free_path(path);
2202 	return ret;
2203 }
2204 
2205 static noinline int btrfs_ioctl_tree_search(struct file *file,
2206 					   void __user *argp)
2207 {
2208 	struct btrfs_ioctl_search_args __user *uargs;
2209 	struct btrfs_ioctl_search_key sk;
2210 	struct inode *inode;
2211 	int ret;
2212 	size_t buf_size;
2213 
2214 	if (!capable(CAP_SYS_ADMIN))
2215 		return -EPERM;
2216 
2217 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2218 
2219 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2220 		return -EFAULT;
2221 
2222 	buf_size = sizeof(uargs->buf);
2223 
2224 	inode = file_inode(file);
2225 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2226 
2227 	/*
2228 	 * In the origin implementation an overflow is handled by returning a
2229 	 * search header with a len of zero, so reset ret.
2230 	 */
2231 	if (ret == -EOVERFLOW)
2232 		ret = 0;
2233 
2234 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2235 		ret = -EFAULT;
2236 	return ret;
2237 }
2238 
2239 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2240 					       void __user *argp)
2241 {
2242 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2243 	struct btrfs_ioctl_search_args_v2 args;
2244 	struct inode *inode;
2245 	int ret;
2246 	size_t buf_size;
2247 	const size_t buf_limit = SZ_16M;
2248 
2249 	if (!capable(CAP_SYS_ADMIN))
2250 		return -EPERM;
2251 
2252 	/* copy search header and buffer size */
2253 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2254 	if (copy_from_user(&args, uarg, sizeof(args)))
2255 		return -EFAULT;
2256 
2257 	buf_size = args.buf_size;
2258 
2259 	/* limit result size to 16MB */
2260 	if (buf_size > buf_limit)
2261 		buf_size = buf_limit;
2262 
2263 	inode = file_inode(file);
2264 	ret = search_ioctl(inode, &args.key, &buf_size,
2265 			   (char __user *)(&uarg->buf[0]));
2266 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2267 		ret = -EFAULT;
2268 	else if (ret == -EOVERFLOW &&
2269 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2270 		ret = -EFAULT;
2271 
2272 	return ret;
2273 }
2274 
2275 /*
2276  * Search INODE_REFs to identify path name of 'dirid' directory
2277  * in a 'tree_id' tree. and sets path name to 'name'.
2278  */
2279 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2280 				u64 tree_id, u64 dirid, char *name)
2281 {
2282 	struct btrfs_root *root;
2283 	struct btrfs_key key;
2284 	char *ptr;
2285 	int ret = -1;
2286 	int slot;
2287 	int len;
2288 	int total_len = 0;
2289 	struct btrfs_inode_ref *iref;
2290 	struct extent_buffer *l;
2291 	struct btrfs_path *path;
2292 
2293 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2294 		name[0]='\0';
2295 		return 0;
2296 	}
2297 
2298 	path = btrfs_alloc_path();
2299 	if (!path)
2300 		return -ENOMEM;
2301 
2302 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2303 
2304 	key.objectid = tree_id;
2305 	key.type = BTRFS_ROOT_ITEM_KEY;
2306 	key.offset = (u64)-1;
2307 	root = btrfs_read_fs_root_no_name(info, &key);
2308 	if (IS_ERR(root)) {
2309 		ret = PTR_ERR(root);
2310 		goto out;
2311 	}
2312 
2313 	key.objectid = dirid;
2314 	key.type = BTRFS_INODE_REF_KEY;
2315 	key.offset = (u64)-1;
2316 
2317 	while (1) {
2318 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2319 		if (ret < 0)
2320 			goto out;
2321 		else if (ret > 0) {
2322 			ret = btrfs_previous_item(root, path, dirid,
2323 						  BTRFS_INODE_REF_KEY);
2324 			if (ret < 0)
2325 				goto out;
2326 			else if (ret > 0) {
2327 				ret = -ENOENT;
2328 				goto out;
2329 			}
2330 		}
2331 
2332 		l = path->nodes[0];
2333 		slot = path->slots[0];
2334 		btrfs_item_key_to_cpu(l, &key, slot);
2335 
2336 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2337 		len = btrfs_inode_ref_name_len(l, iref);
2338 		ptr -= len + 1;
2339 		total_len += len + 1;
2340 		if (ptr < name) {
2341 			ret = -ENAMETOOLONG;
2342 			goto out;
2343 		}
2344 
2345 		*(ptr + len) = '/';
2346 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2347 
2348 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2349 			break;
2350 
2351 		btrfs_release_path(path);
2352 		key.objectid = key.offset;
2353 		key.offset = (u64)-1;
2354 		dirid = key.objectid;
2355 	}
2356 	memmove(name, ptr, total_len);
2357 	name[total_len] = '\0';
2358 	ret = 0;
2359 out:
2360 	btrfs_free_path(path);
2361 	return ret;
2362 }
2363 
2364 static int btrfs_search_path_in_tree_user(struct inode *inode,
2365 				struct btrfs_ioctl_ino_lookup_user_args *args)
2366 {
2367 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2368 	struct super_block *sb = inode->i_sb;
2369 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2370 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2371 	u64 dirid = args->dirid;
2372 	unsigned long item_off;
2373 	unsigned long item_len;
2374 	struct btrfs_inode_ref *iref;
2375 	struct btrfs_root_ref *rref;
2376 	struct btrfs_root *root;
2377 	struct btrfs_path *path;
2378 	struct btrfs_key key, key2;
2379 	struct extent_buffer *leaf;
2380 	struct inode *temp_inode;
2381 	char *ptr;
2382 	int slot;
2383 	int len;
2384 	int total_len = 0;
2385 	int ret;
2386 
2387 	path = btrfs_alloc_path();
2388 	if (!path)
2389 		return -ENOMEM;
2390 
2391 	/*
2392 	 * If the bottom subvolume does not exist directly under upper_limit,
2393 	 * construct the path in from the bottom up.
2394 	 */
2395 	if (dirid != upper_limit.objectid) {
2396 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2397 
2398 		key.objectid = treeid;
2399 		key.type = BTRFS_ROOT_ITEM_KEY;
2400 		key.offset = (u64)-1;
2401 		root = btrfs_read_fs_root_no_name(fs_info, &key);
2402 		if (IS_ERR(root)) {
2403 			ret = PTR_ERR(root);
2404 			goto out;
2405 		}
2406 
2407 		key.objectid = dirid;
2408 		key.type = BTRFS_INODE_REF_KEY;
2409 		key.offset = (u64)-1;
2410 		while (1) {
2411 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2412 			if (ret < 0) {
2413 				goto out;
2414 			} else if (ret > 0) {
2415 				ret = btrfs_previous_item(root, path, dirid,
2416 							  BTRFS_INODE_REF_KEY);
2417 				if (ret < 0) {
2418 					goto out;
2419 				} else if (ret > 0) {
2420 					ret = -ENOENT;
2421 					goto out;
2422 				}
2423 			}
2424 
2425 			leaf = path->nodes[0];
2426 			slot = path->slots[0];
2427 			btrfs_item_key_to_cpu(leaf, &key, slot);
2428 
2429 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2430 			len = btrfs_inode_ref_name_len(leaf, iref);
2431 			ptr -= len + 1;
2432 			total_len += len + 1;
2433 			if (ptr < args->path) {
2434 				ret = -ENAMETOOLONG;
2435 				goto out;
2436 			}
2437 
2438 			*(ptr + len) = '/';
2439 			read_extent_buffer(leaf, ptr,
2440 					(unsigned long)(iref + 1), len);
2441 
2442 			/* Check the read+exec permission of this directory */
2443 			ret = btrfs_previous_item(root, path, dirid,
2444 						  BTRFS_INODE_ITEM_KEY);
2445 			if (ret < 0) {
2446 				goto out;
2447 			} else if (ret > 0) {
2448 				ret = -ENOENT;
2449 				goto out;
2450 			}
2451 
2452 			leaf = path->nodes[0];
2453 			slot = path->slots[0];
2454 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2455 			if (key2.objectid != dirid) {
2456 				ret = -ENOENT;
2457 				goto out;
2458 			}
2459 
2460 			temp_inode = btrfs_iget(sb, &key2, root, NULL);
2461 			if (IS_ERR(temp_inode)) {
2462 				ret = PTR_ERR(temp_inode);
2463 				goto out;
2464 			}
2465 			ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2466 			iput(temp_inode);
2467 			if (ret) {
2468 				ret = -EACCES;
2469 				goto out;
2470 			}
2471 
2472 			if (key.offset == upper_limit.objectid)
2473 				break;
2474 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2475 				ret = -EACCES;
2476 				goto out;
2477 			}
2478 
2479 			btrfs_release_path(path);
2480 			key.objectid = key.offset;
2481 			key.offset = (u64)-1;
2482 			dirid = key.objectid;
2483 		}
2484 
2485 		memmove(args->path, ptr, total_len);
2486 		args->path[total_len] = '\0';
2487 		btrfs_release_path(path);
2488 	}
2489 
2490 	/* Get the bottom subvolume's name from ROOT_REF */
2491 	root = fs_info->tree_root;
2492 	key.objectid = treeid;
2493 	key.type = BTRFS_ROOT_REF_KEY;
2494 	key.offset = args->treeid;
2495 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2496 	if (ret < 0) {
2497 		goto out;
2498 	} else if (ret > 0) {
2499 		ret = -ENOENT;
2500 		goto out;
2501 	}
2502 
2503 	leaf = path->nodes[0];
2504 	slot = path->slots[0];
2505 	btrfs_item_key_to_cpu(leaf, &key, slot);
2506 
2507 	item_off = btrfs_item_ptr_offset(leaf, slot);
2508 	item_len = btrfs_item_size_nr(leaf, slot);
2509 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2510 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2511 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2512 		ret = -EINVAL;
2513 		goto out;
2514 	}
2515 
2516 	/* Copy subvolume's name */
2517 	item_off += sizeof(struct btrfs_root_ref);
2518 	item_len -= sizeof(struct btrfs_root_ref);
2519 	read_extent_buffer(leaf, args->name, item_off, item_len);
2520 	args->name[item_len] = 0;
2521 
2522 out:
2523 	btrfs_free_path(path);
2524 	return ret;
2525 }
2526 
2527 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2528 					   void __user *argp)
2529 {
2530 	struct btrfs_ioctl_ino_lookup_args *args;
2531 	struct inode *inode;
2532 	int ret = 0;
2533 
2534 	args = memdup_user(argp, sizeof(*args));
2535 	if (IS_ERR(args))
2536 		return PTR_ERR(args);
2537 
2538 	inode = file_inode(file);
2539 
2540 	/*
2541 	 * Unprivileged query to obtain the containing subvolume root id. The
2542 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2543 	 */
2544 	if (args->treeid == 0)
2545 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2546 
2547 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2548 		args->name[0] = 0;
2549 		goto out;
2550 	}
2551 
2552 	if (!capable(CAP_SYS_ADMIN)) {
2553 		ret = -EPERM;
2554 		goto out;
2555 	}
2556 
2557 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2558 					args->treeid, args->objectid,
2559 					args->name);
2560 
2561 out:
2562 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2563 		ret = -EFAULT;
2564 
2565 	kfree(args);
2566 	return ret;
2567 }
2568 
2569 /*
2570  * Version of ino_lookup ioctl (unprivileged)
2571  *
2572  * The main differences from ino_lookup ioctl are:
2573  *
2574  *   1. Read + Exec permission will be checked using inode_permission() during
2575  *      path construction. -EACCES will be returned in case of failure.
2576  *   2. Path construction will be stopped at the inode number which corresponds
2577  *      to the fd with which this ioctl is called. If constructed path does not
2578  *      exist under fd's inode, -EACCES will be returned.
2579  *   3. The name of bottom subvolume is also searched and filled.
2580  */
2581 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2582 {
2583 	struct btrfs_ioctl_ino_lookup_user_args *args;
2584 	struct inode *inode;
2585 	int ret;
2586 
2587 	args = memdup_user(argp, sizeof(*args));
2588 	if (IS_ERR(args))
2589 		return PTR_ERR(args);
2590 
2591 	inode = file_inode(file);
2592 
2593 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2594 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2595 		/*
2596 		 * The subvolume does not exist under fd with which this is
2597 		 * called
2598 		 */
2599 		kfree(args);
2600 		return -EACCES;
2601 	}
2602 
2603 	ret = btrfs_search_path_in_tree_user(inode, args);
2604 
2605 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2606 		ret = -EFAULT;
2607 
2608 	kfree(args);
2609 	return ret;
2610 }
2611 
2612 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2613 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2614 {
2615 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2616 	struct btrfs_fs_info *fs_info;
2617 	struct btrfs_root *root;
2618 	struct btrfs_path *path;
2619 	struct btrfs_key key;
2620 	struct btrfs_root_item *root_item;
2621 	struct btrfs_root_ref *rref;
2622 	struct extent_buffer *leaf;
2623 	unsigned long item_off;
2624 	unsigned long item_len;
2625 	struct inode *inode;
2626 	int slot;
2627 	int ret = 0;
2628 
2629 	path = btrfs_alloc_path();
2630 	if (!path)
2631 		return -ENOMEM;
2632 
2633 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2634 	if (!subvol_info) {
2635 		btrfs_free_path(path);
2636 		return -ENOMEM;
2637 	}
2638 
2639 	inode = file_inode(file);
2640 	fs_info = BTRFS_I(inode)->root->fs_info;
2641 
2642 	/* Get root_item of inode's subvolume */
2643 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2644 	key.type = BTRFS_ROOT_ITEM_KEY;
2645 	key.offset = (u64)-1;
2646 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2647 	if (IS_ERR(root)) {
2648 		ret = PTR_ERR(root);
2649 		goto out;
2650 	}
2651 	root_item = &root->root_item;
2652 
2653 	subvol_info->treeid = key.objectid;
2654 
2655 	subvol_info->generation = btrfs_root_generation(root_item);
2656 	subvol_info->flags = btrfs_root_flags(root_item);
2657 
2658 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2659 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2660 						    BTRFS_UUID_SIZE);
2661 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2662 						    BTRFS_UUID_SIZE);
2663 
2664 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2665 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2666 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2667 
2668 	subvol_info->otransid = btrfs_root_otransid(root_item);
2669 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2670 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2671 
2672 	subvol_info->stransid = btrfs_root_stransid(root_item);
2673 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2674 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2675 
2676 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2677 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2678 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2679 
2680 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2681 		/* Search root tree for ROOT_BACKREF of this subvolume */
2682 		root = fs_info->tree_root;
2683 
2684 		key.type = BTRFS_ROOT_BACKREF_KEY;
2685 		key.offset = 0;
2686 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2687 		if (ret < 0) {
2688 			goto out;
2689 		} else if (path->slots[0] >=
2690 			   btrfs_header_nritems(path->nodes[0])) {
2691 			ret = btrfs_next_leaf(root, path);
2692 			if (ret < 0) {
2693 				goto out;
2694 			} else if (ret > 0) {
2695 				ret = -EUCLEAN;
2696 				goto out;
2697 			}
2698 		}
2699 
2700 		leaf = path->nodes[0];
2701 		slot = path->slots[0];
2702 		btrfs_item_key_to_cpu(leaf, &key, slot);
2703 		if (key.objectid == subvol_info->treeid &&
2704 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2705 			subvol_info->parent_id = key.offset;
2706 
2707 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2708 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2709 
2710 			item_off = btrfs_item_ptr_offset(leaf, slot)
2711 					+ sizeof(struct btrfs_root_ref);
2712 			item_len = btrfs_item_size_nr(leaf, slot)
2713 					- sizeof(struct btrfs_root_ref);
2714 			read_extent_buffer(leaf, subvol_info->name,
2715 					   item_off, item_len);
2716 		} else {
2717 			ret = -ENOENT;
2718 			goto out;
2719 		}
2720 	}
2721 
2722 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2723 		ret = -EFAULT;
2724 
2725 out:
2726 	btrfs_free_path(path);
2727 	kzfree(subvol_info);
2728 	return ret;
2729 }
2730 
2731 /*
2732  * Return ROOT_REF information of the subvolume containing this inode
2733  * except the subvolume name.
2734  */
2735 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2736 {
2737 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2738 	struct btrfs_root_ref *rref;
2739 	struct btrfs_root *root;
2740 	struct btrfs_path *path;
2741 	struct btrfs_key key;
2742 	struct extent_buffer *leaf;
2743 	struct inode *inode;
2744 	u64 objectid;
2745 	int slot;
2746 	int ret;
2747 	u8 found;
2748 
2749 	path = btrfs_alloc_path();
2750 	if (!path)
2751 		return -ENOMEM;
2752 
2753 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2754 	if (IS_ERR(rootrefs)) {
2755 		btrfs_free_path(path);
2756 		return PTR_ERR(rootrefs);
2757 	}
2758 
2759 	inode = file_inode(file);
2760 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2761 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2762 
2763 	key.objectid = objectid;
2764 	key.type = BTRFS_ROOT_REF_KEY;
2765 	key.offset = rootrefs->min_treeid;
2766 	found = 0;
2767 
2768 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2769 	if (ret < 0) {
2770 		goto out;
2771 	} else if (path->slots[0] >=
2772 		   btrfs_header_nritems(path->nodes[0])) {
2773 		ret = btrfs_next_leaf(root, path);
2774 		if (ret < 0) {
2775 			goto out;
2776 		} else if (ret > 0) {
2777 			ret = -EUCLEAN;
2778 			goto out;
2779 		}
2780 	}
2781 	while (1) {
2782 		leaf = path->nodes[0];
2783 		slot = path->slots[0];
2784 
2785 		btrfs_item_key_to_cpu(leaf, &key, slot);
2786 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2787 			ret = 0;
2788 			goto out;
2789 		}
2790 
2791 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2792 			ret = -EOVERFLOW;
2793 			goto out;
2794 		}
2795 
2796 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2797 		rootrefs->rootref[found].treeid = key.offset;
2798 		rootrefs->rootref[found].dirid =
2799 				  btrfs_root_ref_dirid(leaf, rref);
2800 		found++;
2801 
2802 		ret = btrfs_next_item(root, path);
2803 		if (ret < 0) {
2804 			goto out;
2805 		} else if (ret > 0) {
2806 			ret = -EUCLEAN;
2807 			goto out;
2808 		}
2809 	}
2810 
2811 out:
2812 	if (!ret || ret == -EOVERFLOW) {
2813 		rootrefs->num_items = found;
2814 		/* update min_treeid for next search */
2815 		if (found)
2816 			rootrefs->min_treeid =
2817 				rootrefs->rootref[found - 1].treeid + 1;
2818 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2819 			ret = -EFAULT;
2820 	}
2821 
2822 	kfree(rootrefs);
2823 	btrfs_free_path(path);
2824 
2825 	return ret;
2826 }
2827 
2828 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2829 					     void __user *arg)
2830 {
2831 	struct dentry *parent = file->f_path.dentry;
2832 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2833 	struct dentry *dentry;
2834 	struct inode *dir = d_inode(parent);
2835 	struct inode *inode;
2836 	struct btrfs_root *root = BTRFS_I(dir)->root;
2837 	struct btrfs_root *dest = NULL;
2838 	struct btrfs_ioctl_vol_args *vol_args;
2839 	int namelen;
2840 	int err = 0;
2841 
2842 	if (!S_ISDIR(dir->i_mode))
2843 		return -ENOTDIR;
2844 
2845 	vol_args = memdup_user(arg, sizeof(*vol_args));
2846 	if (IS_ERR(vol_args))
2847 		return PTR_ERR(vol_args);
2848 
2849 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2850 	namelen = strlen(vol_args->name);
2851 	if (strchr(vol_args->name, '/') ||
2852 	    strncmp(vol_args->name, "..", namelen) == 0) {
2853 		err = -EINVAL;
2854 		goto out;
2855 	}
2856 
2857 	err = mnt_want_write_file(file);
2858 	if (err)
2859 		goto out;
2860 
2861 
2862 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2863 	if (err == -EINTR)
2864 		goto out_drop_write;
2865 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2866 	if (IS_ERR(dentry)) {
2867 		err = PTR_ERR(dentry);
2868 		goto out_unlock_dir;
2869 	}
2870 
2871 	if (d_really_is_negative(dentry)) {
2872 		err = -ENOENT;
2873 		goto out_dput;
2874 	}
2875 
2876 	inode = d_inode(dentry);
2877 	dest = BTRFS_I(inode)->root;
2878 	if (!capable(CAP_SYS_ADMIN)) {
2879 		/*
2880 		 * Regular user.  Only allow this with a special mount
2881 		 * option, when the user has write+exec access to the
2882 		 * subvol root, and when rmdir(2) would have been
2883 		 * allowed.
2884 		 *
2885 		 * Note that this is _not_ check that the subvol is
2886 		 * empty or doesn't contain data that we wouldn't
2887 		 * otherwise be able to delete.
2888 		 *
2889 		 * Users who want to delete empty subvols should try
2890 		 * rmdir(2).
2891 		 */
2892 		err = -EPERM;
2893 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2894 			goto out_dput;
2895 
2896 		/*
2897 		 * Do not allow deletion if the parent dir is the same
2898 		 * as the dir to be deleted.  That means the ioctl
2899 		 * must be called on the dentry referencing the root
2900 		 * of the subvol, not a random directory contained
2901 		 * within it.
2902 		 */
2903 		err = -EINVAL;
2904 		if (root == dest)
2905 			goto out_dput;
2906 
2907 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2908 		if (err)
2909 			goto out_dput;
2910 	}
2911 
2912 	/* check if subvolume may be deleted by a user */
2913 	err = btrfs_may_delete(dir, dentry, 1);
2914 	if (err)
2915 		goto out_dput;
2916 
2917 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2918 		err = -EINVAL;
2919 		goto out_dput;
2920 	}
2921 
2922 	inode_lock(inode);
2923 	err = btrfs_delete_subvolume(dir, dentry);
2924 	inode_unlock(inode);
2925 	if (!err) {
2926 		fsnotify_rmdir(dir, dentry);
2927 		d_delete(dentry);
2928 	}
2929 
2930 out_dput:
2931 	dput(dentry);
2932 out_unlock_dir:
2933 	inode_unlock(dir);
2934 out_drop_write:
2935 	mnt_drop_write_file(file);
2936 out:
2937 	kfree(vol_args);
2938 	return err;
2939 }
2940 
2941 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2942 {
2943 	struct inode *inode = file_inode(file);
2944 	struct btrfs_root *root = BTRFS_I(inode)->root;
2945 	struct btrfs_ioctl_defrag_range_args *range;
2946 	int ret;
2947 
2948 	ret = mnt_want_write_file(file);
2949 	if (ret)
2950 		return ret;
2951 
2952 	if (btrfs_root_readonly(root)) {
2953 		ret = -EROFS;
2954 		goto out;
2955 	}
2956 
2957 	switch (inode->i_mode & S_IFMT) {
2958 	case S_IFDIR:
2959 		if (!capable(CAP_SYS_ADMIN)) {
2960 			ret = -EPERM;
2961 			goto out;
2962 		}
2963 		ret = btrfs_defrag_root(root);
2964 		break;
2965 	case S_IFREG:
2966 		/*
2967 		 * Note that this does not check the file descriptor for write
2968 		 * access. This prevents defragmenting executables that are
2969 		 * running and allows defrag on files open in read-only mode.
2970 		 */
2971 		if (!capable(CAP_SYS_ADMIN) &&
2972 		    inode_permission(inode, MAY_WRITE)) {
2973 			ret = -EPERM;
2974 			goto out;
2975 		}
2976 
2977 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2978 		if (!range) {
2979 			ret = -ENOMEM;
2980 			goto out;
2981 		}
2982 
2983 		if (argp) {
2984 			if (copy_from_user(range, argp,
2985 					   sizeof(*range))) {
2986 				ret = -EFAULT;
2987 				kfree(range);
2988 				goto out;
2989 			}
2990 			/* compression requires us to start the IO */
2991 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2992 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2993 				range->extent_thresh = (u32)-1;
2994 			}
2995 		} else {
2996 			/* the rest are all set to zero by kzalloc */
2997 			range->len = (u64)-1;
2998 		}
2999 		ret = btrfs_defrag_file(file_inode(file), file,
3000 					range, BTRFS_OLDEST_GENERATION, 0);
3001 		if (ret > 0)
3002 			ret = 0;
3003 		kfree(range);
3004 		break;
3005 	default:
3006 		ret = -EINVAL;
3007 	}
3008 out:
3009 	mnt_drop_write_file(file);
3010 	return ret;
3011 }
3012 
3013 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3014 {
3015 	struct btrfs_ioctl_vol_args *vol_args;
3016 	int ret;
3017 
3018 	if (!capable(CAP_SYS_ADMIN))
3019 		return -EPERM;
3020 
3021 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3022 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3023 
3024 	vol_args = memdup_user(arg, sizeof(*vol_args));
3025 	if (IS_ERR(vol_args)) {
3026 		ret = PTR_ERR(vol_args);
3027 		goto out;
3028 	}
3029 
3030 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3031 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3032 
3033 	if (!ret)
3034 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3035 
3036 	kfree(vol_args);
3037 out:
3038 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3039 	return ret;
3040 }
3041 
3042 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3043 {
3044 	struct inode *inode = file_inode(file);
3045 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3046 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3047 	int ret;
3048 
3049 	if (!capable(CAP_SYS_ADMIN))
3050 		return -EPERM;
3051 
3052 	ret = mnt_want_write_file(file);
3053 	if (ret)
3054 		return ret;
3055 
3056 	vol_args = memdup_user(arg, sizeof(*vol_args));
3057 	if (IS_ERR(vol_args)) {
3058 		ret = PTR_ERR(vol_args);
3059 		goto err_drop;
3060 	}
3061 
3062 	/* Check for compatibility reject unknown flags */
3063 	if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) {
3064 		ret = -EOPNOTSUPP;
3065 		goto out;
3066 	}
3067 
3068 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3069 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3070 		goto out;
3071 	}
3072 
3073 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3074 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3075 	} else {
3076 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3077 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3078 	}
3079 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3080 
3081 	if (!ret) {
3082 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3083 			btrfs_info(fs_info, "device deleted: id %llu",
3084 					vol_args->devid);
3085 		else
3086 			btrfs_info(fs_info, "device deleted: %s",
3087 					vol_args->name);
3088 	}
3089 out:
3090 	kfree(vol_args);
3091 err_drop:
3092 	mnt_drop_write_file(file);
3093 	return ret;
3094 }
3095 
3096 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3097 {
3098 	struct inode *inode = file_inode(file);
3099 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3100 	struct btrfs_ioctl_vol_args *vol_args;
3101 	int ret;
3102 
3103 	if (!capable(CAP_SYS_ADMIN))
3104 		return -EPERM;
3105 
3106 	ret = mnt_want_write_file(file);
3107 	if (ret)
3108 		return ret;
3109 
3110 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3111 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3112 		goto out_drop_write;
3113 	}
3114 
3115 	vol_args = memdup_user(arg, sizeof(*vol_args));
3116 	if (IS_ERR(vol_args)) {
3117 		ret = PTR_ERR(vol_args);
3118 		goto out;
3119 	}
3120 
3121 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3122 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3123 
3124 	if (!ret)
3125 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3126 	kfree(vol_args);
3127 out:
3128 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3129 out_drop_write:
3130 	mnt_drop_write_file(file);
3131 
3132 	return ret;
3133 }
3134 
3135 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3136 				void __user *arg)
3137 {
3138 	struct btrfs_ioctl_fs_info_args *fi_args;
3139 	struct btrfs_device *device;
3140 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3141 	int ret = 0;
3142 
3143 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
3144 	if (!fi_args)
3145 		return -ENOMEM;
3146 
3147 	rcu_read_lock();
3148 	fi_args->num_devices = fs_devices->num_devices;
3149 
3150 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3151 		if (device->devid > fi_args->max_id)
3152 			fi_args->max_id = device->devid;
3153 	}
3154 	rcu_read_unlock();
3155 
3156 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3157 	fi_args->nodesize = fs_info->nodesize;
3158 	fi_args->sectorsize = fs_info->sectorsize;
3159 	fi_args->clone_alignment = fs_info->sectorsize;
3160 
3161 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3162 		ret = -EFAULT;
3163 
3164 	kfree(fi_args);
3165 	return ret;
3166 }
3167 
3168 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3169 				 void __user *arg)
3170 {
3171 	struct btrfs_ioctl_dev_info_args *di_args;
3172 	struct btrfs_device *dev;
3173 	int ret = 0;
3174 	char *s_uuid = NULL;
3175 
3176 	di_args = memdup_user(arg, sizeof(*di_args));
3177 	if (IS_ERR(di_args))
3178 		return PTR_ERR(di_args);
3179 
3180 	if (!btrfs_is_empty_uuid(di_args->uuid))
3181 		s_uuid = di_args->uuid;
3182 
3183 	rcu_read_lock();
3184 	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3185 				NULL, true);
3186 
3187 	if (!dev) {
3188 		ret = -ENODEV;
3189 		goto out;
3190 	}
3191 
3192 	di_args->devid = dev->devid;
3193 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3194 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3195 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3196 	if (dev->name) {
3197 		strncpy(di_args->path, rcu_str_deref(dev->name),
3198 				sizeof(di_args->path) - 1);
3199 		di_args->path[sizeof(di_args->path) - 1] = 0;
3200 	} else {
3201 		di_args->path[0] = '\0';
3202 	}
3203 
3204 out:
3205 	rcu_read_unlock();
3206 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3207 		ret = -EFAULT;
3208 
3209 	kfree(di_args);
3210 	return ret;
3211 }
3212 
3213 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
3214 				       struct inode *inode2, u64 loff2, u64 len)
3215 {
3216 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3217 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3218 }
3219 
3220 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
3221 				     struct inode *inode2, u64 loff2, u64 len)
3222 {
3223 	if (inode1 < inode2) {
3224 		swap(inode1, inode2);
3225 		swap(loff1, loff2);
3226 	} else if (inode1 == inode2 && loff2 < loff1) {
3227 		swap(loff1, loff2);
3228 	}
3229 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3230 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3231 }
3232 
3233 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
3234 				   struct inode *dst, u64 dst_loff)
3235 {
3236 	int ret;
3237 
3238 	/*
3239 	 * Lock destination range to serialize with concurrent readpages() and
3240 	 * source range to serialize with relocation.
3241 	 */
3242 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
3243 	ret = btrfs_clone(src, dst, loff, len, len, dst_loff, 1);
3244 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3245 
3246 	return ret;
3247 }
3248 
3249 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3250 
3251 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3252 			     struct inode *dst, u64 dst_loff)
3253 {
3254 	int ret;
3255 	u64 i, tail_len, chunk_count;
3256 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
3257 
3258 	spin_lock(&root_dst->root_item_lock);
3259 	if (root_dst->send_in_progress) {
3260 		btrfs_warn_rl(root_dst->fs_info,
3261 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
3262 			      root_dst->root_key.objectid,
3263 			      root_dst->send_in_progress);
3264 		spin_unlock(&root_dst->root_item_lock);
3265 		return -EAGAIN;
3266 	}
3267 	root_dst->dedupe_in_progress++;
3268 	spin_unlock(&root_dst->root_item_lock);
3269 
3270 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
3271 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
3272 
3273 	for (i = 0; i < chunk_count; i++) {
3274 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
3275 					      dst, dst_loff);
3276 		if (ret)
3277 			goto out;
3278 
3279 		loff += BTRFS_MAX_DEDUPE_LEN;
3280 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
3281 	}
3282 
3283 	if (tail_len > 0)
3284 		ret = btrfs_extent_same_range(src, loff, tail_len, dst,
3285 					      dst_loff);
3286 out:
3287 	spin_lock(&root_dst->root_item_lock);
3288 	root_dst->dedupe_in_progress--;
3289 	spin_unlock(&root_dst->root_item_lock);
3290 
3291 	return ret;
3292 }
3293 
3294 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3295 				     struct inode *inode,
3296 				     u64 endoff,
3297 				     const u64 destoff,
3298 				     const u64 olen,
3299 				     int no_time_update)
3300 {
3301 	struct btrfs_root *root = BTRFS_I(inode)->root;
3302 	int ret;
3303 
3304 	inode_inc_iversion(inode);
3305 	if (!no_time_update)
3306 		inode->i_mtime = inode->i_ctime = current_time(inode);
3307 	/*
3308 	 * We round up to the block size at eof when determining which
3309 	 * extents to clone above, but shouldn't round up the file size.
3310 	 */
3311 	if (endoff > destoff + olen)
3312 		endoff = destoff + olen;
3313 	if (endoff > inode->i_size)
3314 		btrfs_i_size_write(BTRFS_I(inode), endoff);
3315 
3316 	ret = btrfs_update_inode(trans, root, inode);
3317 	if (ret) {
3318 		btrfs_abort_transaction(trans, ret);
3319 		btrfs_end_transaction(trans);
3320 		goto out;
3321 	}
3322 	ret = btrfs_end_transaction(trans);
3323 out:
3324 	return ret;
3325 }
3326 
3327 static void clone_update_extent_map(struct btrfs_inode *inode,
3328 				    const struct btrfs_trans_handle *trans,
3329 				    const struct btrfs_path *path,
3330 				    const u64 hole_offset,
3331 				    const u64 hole_len)
3332 {
3333 	struct extent_map_tree *em_tree = &inode->extent_tree;
3334 	struct extent_map *em;
3335 	int ret;
3336 
3337 	em = alloc_extent_map();
3338 	if (!em) {
3339 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3340 		return;
3341 	}
3342 
3343 	if (path) {
3344 		struct btrfs_file_extent_item *fi;
3345 
3346 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3347 				    struct btrfs_file_extent_item);
3348 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3349 		em->generation = -1;
3350 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3351 		    BTRFS_FILE_EXTENT_INLINE)
3352 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3353 					&inode->runtime_flags);
3354 	} else {
3355 		em->start = hole_offset;
3356 		em->len = hole_len;
3357 		em->ram_bytes = em->len;
3358 		em->orig_start = hole_offset;
3359 		em->block_start = EXTENT_MAP_HOLE;
3360 		em->block_len = 0;
3361 		em->orig_block_len = 0;
3362 		em->compress_type = BTRFS_COMPRESS_NONE;
3363 		em->generation = trans->transid;
3364 	}
3365 
3366 	while (1) {
3367 		write_lock(&em_tree->lock);
3368 		ret = add_extent_mapping(em_tree, em, 1);
3369 		write_unlock(&em_tree->lock);
3370 		if (ret != -EEXIST) {
3371 			free_extent_map(em);
3372 			break;
3373 		}
3374 		btrfs_drop_extent_cache(inode, em->start,
3375 					em->start + em->len - 1, 0);
3376 	}
3377 
3378 	if (ret)
3379 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3380 }
3381 
3382 /*
3383  * Make sure we do not end up inserting an inline extent into a file that has
3384  * already other (non-inline) extents. If a file has an inline extent it can
3385  * not have any other extents and the (single) inline extent must start at the
3386  * file offset 0. Failing to respect these rules will lead to file corruption,
3387  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3388  *
3389  * We can have extents that have been already written to disk or we can have
3390  * dirty ranges still in delalloc, in which case the extent maps and items are
3391  * created only when we run delalloc, and the delalloc ranges might fall outside
3392  * the range we are currently locking in the inode's io tree. So we check the
3393  * inode's i_size because of that (i_size updates are done while holding the
3394  * i_mutex, which we are holding here).
3395  * We also check to see if the inode has a size not greater than "datal" but has
3396  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3397  * protected against such concurrent fallocate calls by the i_mutex).
3398  *
3399  * If the file has no extents but a size greater than datal, do not allow the
3400  * copy because we would need turn the inline extent into a non-inline one (even
3401  * with NO_HOLES enabled). If we find our destination inode only has one inline
3402  * extent, just overwrite it with the source inline extent if its size is less
3403  * than the source extent's size, or we could copy the source inline extent's
3404  * data into the destination inode's inline extent if the later is greater then
3405  * the former.
3406  */
3407 static int clone_copy_inline_extent(struct inode *dst,
3408 				    struct btrfs_trans_handle *trans,
3409 				    struct btrfs_path *path,
3410 				    struct btrfs_key *new_key,
3411 				    const u64 drop_start,
3412 				    const u64 datal,
3413 				    const u64 skip,
3414 				    const u64 size,
3415 				    char *inline_data)
3416 {
3417 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3418 	struct btrfs_root *root = BTRFS_I(dst)->root;
3419 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3420 				      fs_info->sectorsize);
3421 	int ret;
3422 	struct btrfs_key key;
3423 
3424 	if (new_key->offset > 0)
3425 		return -EOPNOTSUPP;
3426 
3427 	key.objectid = btrfs_ino(BTRFS_I(dst));
3428 	key.type = BTRFS_EXTENT_DATA_KEY;
3429 	key.offset = 0;
3430 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3431 	if (ret < 0) {
3432 		return ret;
3433 	} else if (ret > 0) {
3434 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3435 			ret = btrfs_next_leaf(root, path);
3436 			if (ret < 0)
3437 				return ret;
3438 			else if (ret > 0)
3439 				goto copy_inline_extent;
3440 		}
3441 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3442 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3443 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3444 			ASSERT(key.offset > 0);
3445 			return -EOPNOTSUPP;
3446 		}
3447 	} else if (i_size_read(dst) <= datal) {
3448 		struct btrfs_file_extent_item *ei;
3449 		u64 ext_len;
3450 
3451 		/*
3452 		 * If the file size is <= datal, make sure there are no other
3453 		 * extents following (can happen do to an fallocate call with
3454 		 * the flag FALLOC_FL_KEEP_SIZE).
3455 		 */
3456 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3457 				    struct btrfs_file_extent_item);
3458 		/*
3459 		 * If it's an inline extent, it can not have other extents
3460 		 * following it.
3461 		 */
3462 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3463 		    BTRFS_FILE_EXTENT_INLINE)
3464 			goto copy_inline_extent;
3465 
3466 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3467 		if (ext_len > aligned_end)
3468 			return -EOPNOTSUPP;
3469 
3470 		ret = btrfs_next_item(root, path);
3471 		if (ret < 0) {
3472 			return ret;
3473 		} else if (ret == 0) {
3474 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3475 					      path->slots[0]);
3476 			if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3477 			    key.type == BTRFS_EXTENT_DATA_KEY)
3478 				return -EOPNOTSUPP;
3479 		}
3480 	}
3481 
3482 copy_inline_extent:
3483 	/*
3484 	 * We have no extent items, or we have an extent at offset 0 which may
3485 	 * or may not be inlined. All these cases are dealt the same way.
3486 	 */
3487 	if (i_size_read(dst) > datal) {
3488 		/*
3489 		 * If the destination inode has an inline extent...
3490 		 * This would require copying the data from the source inline
3491 		 * extent into the beginning of the destination's inline extent.
3492 		 * But this is really complex, both extents can be compressed
3493 		 * or just one of them, which would require decompressing and
3494 		 * re-compressing data (which could increase the new compressed
3495 		 * size, not allowing the compressed data to fit anymore in an
3496 		 * inline extent).
3497 		 * So just don't support this case for now (it should be rare,
3498 		 * we are not really saving space when cloning inline extents).
3499 		 */
3500 		return -EOPNOTSUPP;
3501 	}
3502 
3503 	btrfs_release_path(path);
3504 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3505 	if (ret)
3506 		return ret;
3507 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3508 	if (ret)
3509 		return ret;
3510 
3511 	if (skip) {
3512 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3513 
3514 		memmove(inline_data + start, inline_data + start + skip, datal);
3515 	}
3516 
3517 	write_extent_buffer(path->nodes[0], inline_data,
3518 			    btrfs_item_ptr_offset(path->nodes[0],
3519 						  path->slots[0]),
3520 			    size);
3521 	inode_add_bytes(dst, datal);
3522 
3523 	return 0;
3524 }
3525 
3526 /**
3527  * btrfs_clone() - clone a range from inode file to another
3528  *
3529  * @src: Inode to clone from
3530  * @inode: Inode to clone to
3531  * @off: Offset within source to start clone from
3532  * @olen: Original length, passed by user, of range to clone
3533  * @olen_aligned: Block-aligned value of olen
3534  * @destoff: Offset within @inode to start clone
3535  * @no_time_update: Whether to update mtime/ctime on the target inode
3536  */
3537 static int btrfs_clone(struct inode *src, struct inode *inode,
3538 		       const u64 off, const u64 olen, const u64 olen_aligned,
3539 		       const u64 destoff, int no_time_update)
3540 {
3541 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3542 	struct btrfs_root *root = BTRFS_I(inode)->root;
3543 	struct btrfs_path *path = NULL;
3544 	struct extent_buffer *leaf;
3545 	struct btrfs_trans_handle *trans;
3546 	char *buf = NULL;
3547 	struct btrfs_key key;
3548 	u32 nritems;
3549 	int slot;
3550 	int ret;
3551 	const u64 len = olen_aligned;
3552 	u64 last_dest_end = destoff;
3553 
3554 	ret = -ENOMEM;
3555 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3556 	if (!buf)
3557 		return ret;
3558 
3559 	path = btrfs_alloc_path();
3560 	if (!path) {
3561 		kvfree(buf);
3562 		return ret;
3563 	}
3564 
3565 	path->reada = READA_FORWARD;
3566 	/* clone data */
3567 	key.objectid = btrfs_ino(BTRFS_I(src));
3568 	key.type = BTRFS_EXTENT_DATA_KEY;
3569 	key.offset = off;
3570 
3571 	while (1) {
3572 		u64 next_key_min_offset = key.offset + 1;
3573 
3574 		/*
3575 		 * note the key will change type as we walk through the
3576 		 * tree.
3577 		 */
3578 		path->leave_spinning = 1;
3579 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3580 				0, 0);
3581 		if (ret < 0)
3582 			goto out;
3583 		/*
3584 		 * First search, if no extent item that starts at offset off was
3585 		 * found but the previous item is an extent item, it's possible
3586 		 * it might overlap our target range, therefore process it.
3587 		 */
3588 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3589 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3590 					      path->slots[0] - 1);
3591 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3592 				path->slots[0]--;
3593 		}
3594 
3595 		nritems = btrfs_header_nritems(path->nodes[0]);
3596 process_slot:
3597 		if (path->slots[0] >= nritems) {
3598 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3599 			if (ret < 0)
3600 				goto out;
3601 			if (ret > 0)
3602 				break;
3603 			nritems = btrfs_header_nritems(path->nodes[0]);
3604 		}
3605 		leaf = path->nodes[0];
3606 		slot = path->slots[0];
3607 
3608 		btrfs_item_key_to_cpu(leaf, &key, slot);
3609 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3610 		    key.objectid != btrfs_ino(BTRFS_I(src)))
3611 			break;
3612 
3613 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3614 			struct btrfs_file_extent_item *extent;
3615 			int type;
3616 			u32 size;
3617 			struct btrfs_key new_key;
3618 			u64 disko = 0, diskl = 0;
3619 			u64 datao = 0, datal = 0;
3620 			u8 comp;
3621 			u64 drop_start;
3622 
3623 			extent = btrfs_item_ptr(leaf, slot,
3624 						struct btrfs_file_extent_item);
3625 			comp = btrfs_file_extent_compression(leaf, extent);
3626 			type = btrfs_file_extent_type(leaf, extent);
3627 			if (type == BTRFS_FILE_EXTENT_REG ||
3628 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3629 				disko = btrfs_file_extent_disk_bytenr(leaf,
3630 								      extent);
3631 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3632 								 extent);
3633 				datao = btrfs_file_extent_offset(leaf, extent);
3634 				datal = btrfs_file_extent_num_bytes(leaf,
3635 								    extent);
3636 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3637 				/* take upper bound, may be compressed */
3638 				datal = btrfs_file_extent_ram_bytes(leaf,
3639 								    extent);
3640 			}
3641 
3642 			/*
3643 			 * The first search might have left us at an extent
3644 			 * item that ends before our target range's start, can
3645 			 * happen if we have holes and NO_HOLES feature enabled.
3646 			 */
3647 			if (key.offset + datal <= off) {
3648 				path->slots[0]++;
3649 				goto process_slot;
3650 			} else if (key.offset >= off + len) {
3651 				break;
3652 			}
3653 			next_key_min_offset = key.offset + datal;
3654 			size = btrfs_item_size_nr(leaf, slot);
3655 			read_extent_buffer(leaf, buf,
3656 					   btrfs_item_ptr_offset(leaf, slot),
3657 					   size);
3658 
3659 			btrfs_release_path(path);
3660 			path->leave_spinning = 0;
3661 
3662 			memcpy(&new_key, &key, sizeof(new_key));
3663 			new_key.objectid = btrfs_ino(BTRFS_I(inode));
3664 			if (off <= key.offset)
3665 				new_key.offset = key.offset + destoff - off;
3666 			else
3667 				new_key.offset = destoff;
3668 
3669 			/*
3670 			 * Deal with a hole that doesn't have an extent item
3671 			 * that represents it (NO_HOLES feature enabled).
3672 			 * This hole is either in the middle of the cloning
3673 			 * range or at the beginning (fully overlaps it or
3674 			 * partially overlaps it).
3675 			 */
3676 			if (new_key.offset != last_dest_end)
3677 				drop_start = last_dest_end;
3678 			else
3679 				drop_start = new_key.offset;
3680 
3681 			/*
3682 			 * 1 - adjusting old extent (we may have to split it)
3683 			 * 1 - add new extent
3684 			 * 1 - inode update
3685 			 */
3686 			trans = btrfs_start_transaction(root, 3);
3687 			if (IS_ERR(trans)) {
3688 				ret = PTR_ERR(trans);
3689 				goto out;
3690 			}
3691 
3692 			if (type == BTRFS_FILE_EXTENT_REG ||
3693 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3694 				/*
3695 				 *    a  | --- range to clone ---|  b
3696 				 * | ------------- extent ------------- |
3697 				 */
3698 
3699 				/* subtract range b */
3700 				if (key.offset + datal > off + len)
3701 					datal = off + len - key.offset;
3702 
3703 				/* subtract range a */
3704 				if (off > key.offset) {
3705 					datao += off - key.offset;
3706 					datal -= off - key.offset;
3707 				}
3708 
3709 				ret = btrfs_drop_extents(trans, root, inode,
3710 							 drop_start,
3711 							 new_key.offset + datal,
3712 							 1);
3713 				if (ret) {
3714 					if (ret != -EOPNOTSUPP)
3715 						btrfs_abort_transaction(trans,
3716 									ret);
3717 					btrfs_end_transaction(trans);
3718 					goto out;
3719 				}
3720 
3721 				ret = btrfs_insert_empty_item(trans, root, path,
3722 							      &new_key, size);
3723 				if (ret) {
3724 					btrfs_abort_transaction(trans, ret);
3725 					btrfs_end_transaction(trans);
3726 					goto out;
3727 				}
3728 
3729 				leaf = path->nodes[0];
3730 				slot = path->slots[0];
3731 				write_extent_buffer(leaf, buf,
3732 					    btrfs_item_ptr_offset(leaf, slot),
3733 					    size);
3734 
3735 				extent = btrfs_item_ptr(leaf, slot,
3736 						struct btrfs_file_extent_item);
3737 
3738 				/* disko == 0 means it's a hole */
3739 				if (!disko)
3740 					datao = 0;
3741 
3742 				btrfs_set_file_extent_offset(leaf, extent,
3743 							     datao);
3744 				btrfs_set_file_extent_num_bytes(leaf, extent,
3745 								datal);
3746 
3747 				if (disko) {
3748 					struct btrfs_ref ref = { 0 };
3749 					inode_add_bytes(inode, datal);
3750 					btrfs_init_generic_ref(&ref,
3751 						BTRFS_ADD_DELAYED_REF, disko,
3752 						diskl, 0);
3753 					btrfs_init_data_ref(&ref,
3754 						root->root_key.objectid,
3755 						btrfs_ino(BTRFS_I(inode)),
3756 						new_key.offset - datao);
3757 					ret = btrfs_inc_extent_ref(trans, &ref);
3758 					if (ret) {
3759 						btrfs_abort_transaction(trans,
3760 									ret);
3761 						btrfs_end_transaction(trans);
3762 						goto out;
3763 
3764 					}
3765 				}
3766 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3767 				u64 skip = 0;
3768 				u64 trim = 0;
3769 
3770 				if (off > key.offset) {
3771 					skip = off - key.offset;
3772 					new_key.offset += skip;
3773 				}
3774 
3775 				if (key.offset + datal > off + len)
3776 					trim = key.offset + datal - (off + len);
3777 
3778 				if (comp && (skip || trim)) {
3779 					ret = -EINVAL;
3780 					btrfs_end_transaction(trans);
3781 					goto out;
3782 				}
3783 				size -= skip + trim;
3784 				datal -= skip + trim;
3785 
3786 				ret = clone_copy_inline_extent(inode,
3787 							       trans, path,
3788 							       &new_key,
3789 							       drop_start,
3790 							       datal,
3791 							       skip, size, buf);
3792 				if (ret) {
3793 					if (ret != -EOPNOTSUPP)
3794 						btrfs_abort_transaction(trans,
3795 									ret);
3796 					btrfs_end_transaction(trans);
3797 					goto out;
3798 				}
3799 				leaf = path->nodes[0];
3800 				slot = path->slots[0];
3801 			}
3802 
3803 			/* If we have an implicit hole (NO_HOLES feature). */
3804 			if (drop_start < new_key.offset)
3805 				clone_update_extent_map(BTRFS_I(inode), trans,
3806 						NULL, drop_start,
3807 						new_key.offset - drop_start);
3808 
3809 			clone_update_extent_map(BTRFS_I(inode), trans,
3810 					path, 0, 0);
3811 
3812 			btrfs_mark_buffer_dirty(leaf);
3813 			btrfs_release_path(path);
3814 
3815 			last_dest_end = ALIGN(new_key.offset + datal,
3816 					      fs_info->sectorsize);
3817 			ret = clone_finish_inode_update(trans, inode,
3818 							last_dest_end,
3819 							destoff, olen,
3820 							no_time_update);
3821 			if (ret)
3822 				goto out;
3823 			if (new_key.offset + datal >= destoff + len)
3824 				break;
3825 		}
3826 		btrfs_release_path(path);
3827 		key.offset = next_key_min_offset;
3828 
3829 		if (fatal_signal_pending(current)) {
3830 			ret = -EINTR;
3831 			goto out;
3832 		}
3833 	}
3834 	ret = 0;
3835 
3836 	if (last_dest_end < destoff + len) {
3837 		/*
3838 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3839 		 * fully or partially overlaps our cloning range at its end.
3840 		 */
3841 		btrfs_release_path(path);
3842 
3843 		/*
3844 		 * 1 - remove extent(s)
3845 		 * 1 - inode update
3846 		 */
3847 		trans = btrfs_start_transaction(root, 2);
3848 		if (IS_ERR(trans)) {
3849 			ret = PTR_ERR(trans);
3850 			goto out;
3851 		}
3852 		ret = btrfs_drop_extents(trans, root, inode,
3853 					 last_dest_end, destoff + len, 1);
3854 		if (ret) {
3855 			if (ret != -EOPNOTSUPP)
3856 				btrfs_abort_transaction(trans, ret);
3857 			btrfs_end_transaction(trans);
3858 			goto out;
3859 		}
3860 		clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3861 				last_dest_end,
3862 				destoff + len - last_dest_end);
3863 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3864 						destoff, olen, no_time_update);
3865 	}
3866 
3867 out:
3868 	btrfs_free_path(path);
3869 	kvfree(buf);
3870 	return ret;
3871 }
3872 
3873 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3874 					u64 off, u64 olen, u64 destoff)
3875 {
3876 	struct inode *inode = file_inode(file);
3877 	struct inode *src = file_inode(file_src);
3878 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3879 	int ret;
3880 	u64 len = olen;
3881 	u64 bs = fs_info->sb->s_blocksize;
3882 
3883 	/*
3884 	 * TODO:
3885 	 * - split compressed inline extents.  annoying: we need to
3886 	 *   decompress into destination's address_space (the file offset
3887 	 *   may change, so source mapping won't do), then recompress (or
3888 	 *   otherwise reinsert) a subrange.
3889 	 *
3890 	 * - split destination inode's inline extents.  The inline extents can
3891 	 *   be either compressed or non-compressed.
3892 	 */
3893 
3894 	/*
3895 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
3896 	 * eof block into the middle of a file, which would result in corruption
3897 	 * if the file size is not blocksize aligned. So we don't need to check
3898 	 * for that case here.
3899 	 */
3900 	if (off + len == src->i_size)
3901 		len = ALIGN(src->i_size, bs) - off;
3902 
3903 	if (destoff > inode->i_size) {
3904 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
3905 
3906 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3907 		if (ret)
3908 			return ret;
3909 		/*
3910 		 * We may have truncated the last block if the inode's size is
3911 		 * not sector size aligned, so we need to wait for writeback to
3912 		 * complete before proceeding further, otherwise we can race
3913 		 * with cloning and attempt to increment a reference to an
3914 		 * extent that no longer exists (writeback completed right after
3915 		 * we found the previous extent covering eof and before we
3916 		 * attempted to increment its reference count).
3917 		 */
3918 		ret = btrfs_wait_ordered_range(inode, wb_start,
3919 					       destoff - wb_start);
3920 		if (ret)
3921 			return ret;
3922 	}
3923 
3924 	/*
3925 	 * Lock destination range to serialize with concurrent readpages() and
3926 	 * source range to serialize with relocation.
3927 	 */
3928 	btrfs_double_extent_lock(src, off, inode, destoff, len);
3929 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3930 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
3931 	/*
3932 	 * Truncate page cache pages so that future reads will see the cloned
3933 	 * data immediately and not the previous data.
3934 	 */
3935 	truncate_inode_pages_range(&inode->i_data,
3936 				round_down(destoff, PAGE_SIZE),
3937 				round_up(destoff + len, PAGE_SIZE) - 1);
3938 
3939 	return ret;
3940 }
3941 
3942 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
3943 				       struct file *file_out, loff_t pos_out,
3944 				       loff_t *len, unsigned int remap_flags)
3945 {
3946 	struct inode *inode_in = file_inode(file_in);
3947 	struct inode *inode_out = file_inode(file_out);
3948 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
3949 	bool same_inode = inode_out == inode_in;
3950 	u64 wb_len;
3951 	int ret;
3952 
3953 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
3954 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
3955 
3956 		if (btrfs_root_readonly(root_out))
3957 			return -EROFS;
3958 
3959 		if (file_in->f_path.mnt != file_out->f_path.mnt ||
3960 		    inode_in->i_sb != inode_out->i_sb)
3961 			return -EXDEV;
3962 	}
3963 
3964 	/* don't make the dst file partly checksummed */
3965 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
3966 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
3967 		return -EINVAL;
3968 	}
3969 
3970 	/*
3971 	 * Now that the inodes are locked, we need to start writeback ourselves
3972 	 * and can not rely on the writeback from the VFS's generic helper
3973 	 * generic_remap_file_range_prep() because:
3974 	 *
3975 	 * 1) For compression we must call filemap_fdatawrite_range() range
3976 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
3977 	 *    helper only calls it once;
3978 	 *
3979 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
3980 	 *    waits for the writeback to complete, i.e. for IO to be done, and
3981 	 *    not for the ordered extents to complete. We need to wait for them
3982 	 *    to complete so that new file extent items are in the fs tree.
3983 	 */
3984 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
3985 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
3986 	else
3987 		wb_len = ALIGN(*len, bs);
3988 
3989 	/*
3990 	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
3991 	 * any in progress could create its ordered extents after we wait for
3992 	 * existing ordered extents below).
3993 	 */
3994 	inode_dio_wait(inode_in);
3995 	if (!same_inode)
3996 		inode_dio_wait(inode_out);
3997 
3998 	/*
3999 	 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
4000 	 *
4001 	 * Btrfs' back references do not have a block level granularity, they
4002 	 * work at the whole extent level.
4003 	 * NOCOW buffered write without data space reserved may not be able
4004 	 * to fall back to CoW due to lack of data space, thus could cause
4005 	 * data loss.
4006 	 *
4007 	 * Here we take a shortcut by flushing the whole inode, so that all
4008 	 * nocow write should reach disk as nocow before we increase the
4009 	 * reference of the extent. We could do better by only flushing NOCOW
4010 	 * data, but that needs extra accounting.
4011 	 *
4012 	 * Also we don't need to check ASYNC_EXTENT, as async extent will be
4013 	 * CoWed anyway, not affecting nocow part.
4014 	 */
4015 	ret = filemap_flush(inode_in->i_mapping);
4016 	if (ret < 0)
4017 		return ret;
4018 
4019 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
4020 				       wb_len);
4021 	if (ret < 0)
4022 		return ret;
4023 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
4024 				       wb_len);
4025 	if (ret < 0)
4026 		return ret;
4027 
4028 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
4029 					    len, remap_flags);
4030 }
4031 
4032 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
4033 		struct file *dst_file, loff_t destoff, loff_t len,
4034 		unsigned int remap_flags)
4035 {
4036 	struct inode *src_inode = file_inode(src_file);
4037 	struct inode *dst_inode = file_inode(dst_file);
4038 	bool same_inode = dst_inode == src_inode;
4039 	int ret;
4040 
4041 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
4042 		return -EINVAL;
4043 
4044 	if (same_inode)
4045 		inode_lock(src_inode);
4046 	else
4047 		lock_two_nondirectories(src_inode, dst_inode);
4048 
4049 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
4050 					  &len, remap_flags);
4051 	if (ret < 0 || len == 0)
4052 		goto out_unlock;
4053 
4054 	if (remap_flags & REMAP_FILE_DEDUP)
4055 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
4056 	else
4057 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
4058 
4059 out_unlock:
4060 	if (same_inode)
4061 		inode_unlock(src_inode);
4062 	else
4063 		unlock_two_nondirectories(src_inode, dst_inode);
4064 
4065 	return ret < 0 ? ret : len;
4066 }
4067 
4068 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4069 {
4070 	struct inode *inode = file_inode(file);
4071 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4072 	struct btrfs_root *root = BTRFS_I(inode)->root;
4073 	struct btrfs_root *new_root;
4074 	struct btrfs_dir_item *di;
4075 	struct btrfs_trans_handle *trans;
4076 	struct btrfs_path *path;
4077 	struct btrfs_key location;
4078 	struct btrfs_disk_key disk_key;
4079 	u64 objectid = 0;
4080 	u64 dir_id;
4081 	int ret;
4082 
4083 	if (!capable(CAP_SYS_ADMIN))
4084 		return -EPERM;
4085 
4086 	ret = mnt_want_write_file(file);
4087 	if (ret)
4088 		return ret;
4089 
4090 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4091 		ret = -EFAULT;
4092 		goto out;
4093 	}
4094 
4095 	if (!objectid)
4096 		objectid = BTRFS_FS_TREE_OBJECTID;
4097 
4098 	location.objectid = objectid;
4099 	location.type = BTRFS_ROOT_ITEM_KEY;
4100 	location.offset = (u64)-1;
4101 
4102 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4103 	if (IS_ERR(new_root)) {
4104 		ret = PTR_ERR(new_root);
4105 		goto out;
4106 	}
4107 	if (!is_fstree(new_root->root_key.objectid)) {
4108 		ret = -ENOENT;
4109 		goto out;
4110 	}
4111 
4112 	path = btrfs_alloc_path();
4113 	if (!path) {
4114 		ret = -ENOMEM;
4115 		goto out;
4116 	}
4117 	path->leave_spinning = 1;
4118 
4119 	trans = btrfs_start_transaction(root, 1);
4120 	if (IS_ERR(trans)) {
4121 		btrfs_free_path(path);
4122 		ret = PTR_ERR(trans);
4123 		goto out;
4124 	}
4125 
4126 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4127 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4128 				   dir_id, "default", 7, 1);
4129 	if (IS_ERR_OR_NULL(di)) {
4130 		btrfs_free_path(path);
4131 		btrfs_end_transaction(trans);
4132 		btrfs_err(fs_info,
4133 			  "Umm, you don't have the default diritem, this isn't going to work");
4134 		ret = -ENOENT;
4135 		goto out;
4136 	}
4137 
4138 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4139 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4140 	btrfs_mark_buffer_dirty(path->nodes[0]);
4141 	btrfs_free_path(path);
4142 
4143 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4144 	btrfs_end_transaction(trans);
4145 out:
4146 	mnt_drop_write_file(file);
4147 	return ret;
4148 }
4149 
4150 static void get_block_group_info(struct list_head *groups_list,
4151 				 struct btrfs_ioctl_space_info *space)
4152 {
4153 	struct btrfs_block_group_cache *block_group;
4154 
4155 	space->total_bytes = 0;
4156 	space->used_bytes = 0;
4157 	space->flags = 0;
4158 	list_for_each_entry(block_group, groups_list, list) {
4159 		space->flags = block_group->flags;
4160 		space->total_bytes += block_group->key.offset;
4161 		space->used_bytes +=
4162 			btrfs_block_group_used(&block_group->item);
4163 	}
4164 }
4165 
4166 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4167 				   void __user *arg)
4168 {
4169 	struct btrfs_ioctl_space_args space_args;
4170 	struct btrfs_ioctl_space_info space;
4171 	struct btrfs_ioctl_space_info *dest;
4172 	struct btrfs_ioctl_space_info *dest_orig;
4173 	struct btrfs_ioctl_space_info __user *user_dest;
4174 	struct btrfs_space_info *info;
4175 	static const u64 types[] = {
4176 		BTRFS_BLOCK_GROUP_DATA,
4177 		BTRFS_BLOCK_GROUP_SYSTEM,
4178 		BTRFS_BLOCK_GROUP_METADATA,
4179 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4180 	};
4181 	int num_types = 4;
4182 	int alloc_size;
4183 	int ret = 0;
4184 	u64 slot_count = 0;
4185 	int i, c;
4186 
4187 	if (copy_from_user(&space_args,
4188 			   (struct btrfs_ioctl_space_args __user *)arg,
4189 			   sizeof(space_args)))
4190 		return -EFAULT;
4191 
4192 	for (i = 0; i < num_types; i++) {
4193 		struct btrfs_space_info *tmp;
4194 
4195 		info = NULL;
4196 		rcu_read_lock();
4197 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4198 					list) {
4199 			if (tmp->flags == types[i]) {
4200 				info = tmp;
4201 				break;
4202 			}
4203 		}
4204 		rcu_read_unlock();
4205 
4206 		if (!info)
4207 			continue;
4208 
4209 		down_read(&info->groups_sem);
4210 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4211 			if (!list_empty(&info->block_groups[c]))
4212 				slot_count++;
4213 		}
4214 		up_read(&info->groups_sem);
4215 	}
4216 
4217 	/*
4218 	 * Global block reserve, exported as a space_info
4219 	 */
4220 	slot_count++;
4221 
4222 	/* space_slots == 0 means they are asking for a count */
4223 	if (space_args.space_slots == 0) {
4224 		space_args.total_spaces = slot_count;
4225 		goto out;
4226 	}
4227 
4228 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4229 
4230 	alloc_size = sizeof(*dest) * slot_count;
4231 
4232 	/* we generally have at most 6 or so space infos, one for each raid
4233 	 * level.  So, a whole page should be more than enough for everyone
4234 	 */
4235 	if (alloc_size > PAGE_SIZE)
4236 		return -ENOMEM;
4237 
4238 	space_args.total_spaces = 0;
4239 	dest = kmalloc(alloc_size, GFP_KERNEL);
4240 	if (!dest)
4241 		return -ENOMEM;
4242 	dest_orig = dest;
4243 
4244 	/* now we have a buffer to copy into */
4245 	for (i = 0; i < num_types; i++) {
4246 		struct btrfs_space_info *tmp;
4247 
4248 		if (!slot_count)
4249 			break;
4250 
4251 		info = NULL;
4252 		rcu_read_lock();
4253 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4254 					list) {
4255 			if (tmp->flags == types[i]) {
4256 				info = tmp;
4257 				break;
4258 			}
4259 		}
4260 		rcu_read_unlock();
4261 
4262 		if (!info)
4263 			continue;
4264 		down_read(&info->groups_sem);
4265 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4266 			if (!list_empty(&info->block_groups[c])) {
4267 				get_block_group_info(&info->block_groups[c],
4268 						     &space);
4269 				memcpy(dest, &space, sizeof(space));
4270 				dest++;
4271 				space_args.total_spaces++;
4272 				slot_count--;
4273 			}
4274 			if (!slot_count)
4275 				break;
4276 		}
4277 		up_read(&info->groups_sem);
4278 	}
4279 
4280 	/*
4281 	 * Add global block reserve
4282 	 */
4283 	if (slot_count) {
4284 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4285 
4286 		spin_lock(&block_rsv->lock);
4287 		space.total_bytes = block_rsv->size;
4288 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4289 		spin_unlock(&block_rsv->lock);
4290 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4291 		memcpy(dest, &space, sizeof(space));
4292 		space_args.total_spaces++;
4293 	}
4294 
4295 	user_dest = (struct btrfs_ioctl_space_info __user *)
4296 		(arg + sizeof(struct btrfs_ioctl_space_args));
4297 
4298 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4299 		ret = -EFAULT;
4300 
4301 	kfree(dest_orig);
4302 out:
4303 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4304 		ret = -EFAULT;
4305 
4306 	return ret;
4307 }
4308 
4309 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4310 					    void __user *argp)
4311 {
4312 	struct btrfs_trans_handle *trans;
4313 	u64 transid;
4314 	int ret;
4315 
4316 	trans = btrfs_attach_transaction_barrier(root);
4317 	if (IS_ERR(trans)) {
4318 		if (PTR_ERR(trans) != -ENOENT)
4319 			return PTR_ERR(trans);
4320 
4321 		/* No running transaction, don't bother */
4322 		transid = root->fs_info->last_trans_committed;
4323 		goto out;
4324 	}
4325 	transid = trans->transid;
4326 	ret = btrfs_commit_transaction_async(trans, 0);
4327 	if (ret) {
4328 		btrfs_end_transaction(trans);
4329 		return ret;
4330 	}
4331 out:
4332 	if (argp)
4333 		if (copy_to_user(argp, &transid, sizeof(transid)))
4334 			return -EFAULT;
4335 	return 0;
4336 }
4337 
4338 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4339 					   void __user *argp)
4340 {
4341 	u64 transid;
4342 
4343 	if (argp) {
4344 		if (copy_from_user(&transid, argp, sizeof(transid)))
4345 			return -EFAULT;
4346 	} else {
4347 		transid = 0;  /* current trans */
4348 	}
4349 	return btrfs_wait_for_commit(fs_info, transid);
4350 }
4351 
4352 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4353 {
4354 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4355 	struct btrfs_ioctl_scrub_args *sa;
4356 	int ret;
4357 
4358 	if (!capable(CAP_SYS_ADMIN))
4359 		return -EPERM;
4360 
4361 	sa = memdup_user(arg, sizeof(*sa));
4362 	if (IS_ERR(sa))
4363 		return PTR_ERR(sa);
4364 
4365 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4366 		ret = mnt_want_write_file(file);
4367 		if (ret)
4368 			goto out;
4369 	}
4370 
4371 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4372 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4373 			      0);
4374 
4375 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4376 		ret = -EFAULT;
4377 
4378 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4379 		mnt_drop_write_file(file);
4380 out:
4381 	kfree(sa);
4382 	return ret;
4383 }
4384 
4385 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4386 {
4387 	if (!capable(CAP_SYS_ADMIN))
4388 		return -EPERM;
4389 
4390 	return btrfs_scrub_cancel(fs_info);
4391 }
4392 
4393 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4394 				       void __user *arg)
4395 {
4396 	struct btrfs_ioctl_scrub_args *sa;
4397 	int ret;
4398 
4399 	if (!capable(CAP_SYS_ADMIN))
4400 		return -EPERM;
4401 
4402 	sa = memdup_user(arg, sizeof(*sa));
4403 	if (IS_ERR(sa))
4404 		return PTR_ERR(sa);
4405 
4406 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4407 
4408 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4409 		ret = -EFAULT;
4410 
4411 	kfree(sa);
4412 	return ret;
4413 }
4414 
4415 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4416 				      void __user *arg)
4417 {
4418 	struct btrfs_ioctl_get_dev_stats *sa;
4419 	int ret;
4420 
4421 	sa = memdup_user(arg, sizeof(*sa));
4422 	if (IS_ERR(sa))
4423 		return PTR_ERR(sa);
4424 
4425 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4426 		kfree(sa);
4427 		return -EPERM;
4428 	}
4429 
4430 	ret = btrfs_get_dev_stats(fs_info, sa);
4431 
4432 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4433 		ret = -EFAULT;
4434 
4435 	kfree(sa);
4436 	return ret;
4437 }
4438 
4439 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4440 				    void __user *arg)
4441 {
4442 	struct btrfs_ioctl_dev_replace_args *p;
4443 	int ret;
4444 
4445 	if (!capable(CAP_SYS_ADMIN))
4446 		return -EPERM;
4447 
4448 	p = memdup_user(arg, sizeof(*p));
4449 	if (IS_ERR(p))
4450 		return PTR_ERR(p);
4451 
4452 	switch (p->cmd) {
4453 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4454 		if (sb_rdonly(fs_info->sb)) {
4455 			ret = -EROFS;
4456 			goto out;
4457 		}
4458 		if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4459 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4460 		} else {
4461 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4462 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4463 		}
4464 		break;
4465 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4466 		btrfs_dev_replace_status(fs_info, p);
4467 		ret = 0;
4468 		break;
4469 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4470 		p->result = btrfs_dev_replace_cancel(fs_info);
4471 		ret = 0;
4472 		break;
4473 	default:
4474 		ret = -EINVAL;
4475 		break;
4476 	}
4477 
4478 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
4479 		ret = -EFAULT;
4480 out:
4481 	kfree(p);
4482 	return ret;
4483 }
4484 
4485 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4486 {
4487 	int ret = 0;
4488 	int i;
4489 	u64 rel_ptr;
4490 	int size;
4491 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4492 	struct inode_fs_paths *ipath = NULL;
4493 	struct btrfs_path *path;
4494 
4495 	if (!capable(CAP_DAC_READ_SEARCH))
4496 		return -EPERM;
4497 
4498 	path = btrfs_alloc_path();
4499 	if (!path) {
4500 		ret = -ENOMEM;
4501 		goto out;
4502 	}
4503 
4504 	ipa = memdup_user(arg, sizeof(*ipa));
4505 	if (IS_ERR(ipa)) {
4506 		ret = PTR_ERR(ipa);
4507 		ipa = NULL;
4508 		goto out;
4509 	}
4510 
4511 	size = min_t(u32, ipa->size, 4096);
4512 	ipath = init_ipath(size, root, path);
4513 	if (IS_ERR(ipath)) {
4514 		ret = PTR_ERR(ipath);
4515 		ipath = NULL;
4516 		goto out;
4517 	}
4518 
4519 	ret = paths_from_inode(ipa->inum, ipath);
4520 	if (ret < 0)
4521 		goto out;
4522 
4523 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4524 		rel_ptr = ipath->fspath->val[i] -
4525 			  (u64)(unsigned long)ipath->fspath->val;
4526 		ipath->fspath->val[i] = rel_ptr;
4527 	}
4528 
4529 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4530 			   ipath->fspath, size);
4531 	if (ret) {
4532 		ret = -EFAULT;
4533 		goto out;
4534 	}
4535 
4536 out:
4537 	btrfs_free_path(path);
4538 	free_ipath(ipath);
4539 	kfree(ipa);
4540 
4541 	return ret;
4542 }
4543 
4544 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4545 {
4546 	struct btrfs_data_container *inodes = ctx;
4547 	const size_t c = 3 * sizeof(u64);
4548 
4549 	if (inodes->bytes_left >= c) {
4550 		inodes->bytes_left -= c;
4551 		inodes->val[inodes->elem_cnt] = inum;
4552 		inodes->val[inodes->elem_cnt + 1] = offset;
4553 		inodes->val[inodes->elem_cnt + 2] = root;
4554 		inodes->elem_cnt += 3;
4555 	} else {
4556 		inodes->bytes_missing += c - inodes->bytes_left;
4557 		inodes->bytes_left = 0;
4558 		inodes->elem_missed += 3;
4559 	}
4560 
4561 	return 0;
4562 }
4563 
4564 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4565 					void __user *arg, int version)
4566 {
4567 	int ret = 0;
4568 	int size;
4569 	struct btrfs_ioctl_logical_ino_args *loi;
4570 	struct btrfs_data_container *inodes = NULL;
4571 	struct btrfs_path *path = NULL;
4572 	bool ignore_offset;
4573 
4574 	if (!capable(CAP_SYS_ADMIN))
4575 		return -EPERM;
4576 
4577 	loi = memdup_user(arg, sizeof(*loi));
4578 	if (IS_ERR(loi))
4579 		return PTR_ERR(loi);
4580 
4581 	if (version == 1) {
4582 		ignore_offset = false;
4583 		size = min_t(u32, loi->size, SZ_64K);
4584 	} else {
4585 		/* All reserved bits must be 0 for now */
4586 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4587 			ret = -EINVAL;
4588 			goto out_loi;
4589 		}
4590 		/* Only accept flags we have defined so far */
4591 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4592 			ret = -EINVAL;
4593 			goto out_loi;
4594 		}
4595 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4596 		size = min_t(u32, loi->size, SZ_16M);
4597 	}
4598 
4599 	path = btrfs_alloc_path();
4600 	if (!path) {
4601 		ret = -ENOMEM;
4602 		goto out;
4603 	}
4604 
4605 	inodes = init_data_container(size);
4606 	if (IS_ERR(inodes)) {
4607 		ret = PTR_ERR(inodes);
4608 		inodes = NULL;
4609 		goto out;
4610 	}
4611 
4612 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4613 					  build_ino_list, inodes, ignore_offset);
4614 	if (ret == -EINVAL)
4615 		ret = -ENOENT;
4616 	if (ret < 0)
4617 		goto out;
4618 
4619 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4620 			   size);
4621 	if (ret)
4622 		ret = -EFAULT;
4623 
4624 out:
4625 	btrfs_free_path(path);
4626 	kvfree(inodes);
4627 out_loi:
4628 	kfree(loi);
4629 
4630 	return ret;
4631 }
4632 
4633 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4634 			       struct btrfs_ioctl_balance_args *bargs)
4635 {
4636 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4637 
4638 	bargs->flags = bctl->flags;
4639 
4640 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4641 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4642 	if (atomic_read(&fs_info->balance_pause_req))
4643 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4644 	if (atomic_read(&fs_info->balance_cancel_req))
4645 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4646 
4647 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4648 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4649 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4650 
4651 	spin_lock(&fs_info->balance_lock);
4652 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4653 	spin_unlock(&fs_info->balance_lock);
4654 }
4655 
4656 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4657 {
4658 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4659 	struct btrfs_fs_info *fs_info = root->fs_info;
4660 	struct btrfs_ioctl_balance_args *bargs;
4661 	struct btrfs_balance_control *bctl;
4662 	bool need_unlock; /* for mut. excl. ops lock */
4663 	int ret;
4664 
4665 	if (!capable(CAP_SYS_ADMIN))
4666 		return -EPERM;
4667 
4668 	ret = mnt_want_write_file(file);
4669 	if (ret)
4670 		return ret;
4671 
4672 again:
4673 	if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4674 		mutex_lock(&fs_info->balance_mutex);
4675 		need_unlock = true;
4676 		goto locked;
4677 	}
4678 
4679 	/*
4680 	 * mut. excl. ops lock is locked.  Three possibilities:
4681 	 *   (1) some other op is running
4682 	 *   (2) balance is running
4683 	 *   (3) balance is paused -- special case (think resume)
4684 	 */
4685 	mutex_lock(&fs_info->balance_mutex);
4686 	if (fs_info->balance_ctl) {
4687 		/* this is either (2) or (3) */
4688 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4689 			mutex_unlock(&fs_info->balance_mutex);
4690 			/*
4691 			 * Lock released to allow other waiters to continue,
4692 			 * we'll reexamine the status again.
4693 			 */
4694 			mutex_lock(&fs_info->balance_mutex);
4695 
4696 			if (fs_info->balance_ctl &&
4697 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4698 				/* this is (3) */
4699 				need_unlock = false;
4700 				goto locked;
4701 			}
4702 
4703 			mutex_unlock(&fs_info->balance_mutex);
4704 			goto again;
4705 		} else {
4706 			/* this is (2) */
4707 			mutex_unlock(&fs_info->balance_mutex);
4708 			ret = -EINPROGRESS;
4709 			goto out;
4710 		}
4711 	} else {
4712 		/* this is (1) */
4713 		mutex_unlock(&fs_info->balance_mutex);
4714 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4715 		goto out;
4716 	}
4717 
4718 locked:
4719 	BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4720 
4721 	if (arg) {
4722 		bargs = memdup_user(arg, sizeof(*bargs));
4723 		if (IS_ERR(bargs)) {
4724 			ret = PTR_ERR(bargs);
4725 			goto out_unlock;
4726 		}
4727 
4728 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4729 			if (!fs_info->balance_ctl) {
4730 				ret = -ENOTCONN;
4731 				goto out_bargs;
4732 			}
4733 
4734 			bctl = fs_info->balance_ctl;
4735 			spin_lock(&fs_info->balance_lock);
4736 			bctl->flags |= BTRFS_BALANCE_RESUME;
4737 			spin_unlock(&fs_info->balance_lock);
4738 
4739 			goto do_balance;
4740 		}
4741 	} else {
4742 		bargs = NULL;
4743 	}
4744 
4745 	if (fs_info->balance_ctl) {
4746 		ret = -EINPROGRESS;
4747 		goto out_bargs;
4748 	}
4749 
4750 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4751 	if (!bctl) {
4752 		ret = -ENOMEM;
4753 		goto out_bargs;
4754 	}
4755 
4756 	if (arg) {
4757 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4758 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4759 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4760 
4761 		bctl->flags = bargs->flags;
4762 	} else {
4763 		/* balance everything - no filters */
4764 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4765 	}
4766 
4767 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4768 		ret = -EINVAL;
4769 		goto out_bctl;
4770 	}
4771 
4772 do_balance:
4773 	/*
4774 	 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
4775 	 * btrfs_balance.  bctl is freed in reset_balance_state, or, if
4776 	 * restriper was paused all the way until unmount, in free_fs_info.
4777 	 * The flag should be cleared after reset_balance_state.
4778 	 */
4779 	need_unlock = false;
4780 
4781 	ret = btrfs_balance(fs_info, bctl, bargs);
4782 	bctl = NULL;
4783 
4784 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4785 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4786 			ret = -EFAULT;
4787 	}
4788 
4789 out_bctl:
4790 	kfree(bctl);
4791 out_bargs:
4792 	kfree(bargs);
4793 out_unlock:
4794 	mutex_unlock(&fs_info->balance_mutex);
4795 	if (need_unlock)
4796 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4797 out:
4798 	mnt_drop_write_file(file);
4799 	return ret;
4800 }
4801 
4802 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4803 {
4804 	if (!capable(CAP_SYS_ADMIN))
4805 		return -EPERM;
4806 
4807 	switch (cmd) {
4808 	case BTRFS_BALANCE_CTL_PAUSE:
4809 		return btrfs_pause_balance(fs_info);
4810 	case BTRFS_BALANCE_CTL_CANCEL:
4811 		return btrfs_cancel_balance(fs_info);
4812 	}
4813 
4814 	return -EINVAL;
4815 }
4816 
4817 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4818 					 void __user *arg)
4819 {
4820 	struct btrfs_ioctl_balance_args *bargs;
4821 	int ret = 0;
4822 
4823 	if (!capable(CAP_SYS_ADMIN))
4824 		return -EPERM;
4825 
4826 	mutex_lock(&fs_info->balance_mutex);
4827 	if (!fs_info->balance_ctl) {
4828 		ret = -ENOTCONN;
4829 		goto out;
4830 	}
4831 
4832 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4833 	if (!bargs) {
4834 		ret = -ENOMEM;
4835 		goto out;
4836 	}
4837 
4838 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4839 
4840 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4841 		ret = -EFAULT;
4842 
4843 	kfree(bargs);
4844 out:
4845 	mutex_unlock(&fs_info->balance_mutex);
4846 	return ret;
4847 }
4848 
4849 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4850 {
4851 	struct inode *inode = file_inode(file);
4852 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4853 	struct btrfs_ioctl_quota_ctl_args *sa;
4854 	int ret;
4855 
4856 	if (!capable(CAP_SYS_ADMIN))
4857 		return -EPERM;
4858 
4859 	ret = mnt_want_write_file(file);
4860 	if (ret)
4861 		return ret;
4862 
4863 	sa = memdup_user(arg, sizeof(*sa));
4864 	if (IS_ERR(sa)) {
4865 		ret = PTR_ERR(sa);
4866 		goto drop_write;
4867 	}
4868 
4869 	down_write(&fs_info->subvol_sem);
4870 
4871 	switch (sa->cmd) {
4872 	case BTRFS_QUOTA_CTL_ENABLE:
4873 		ret = btrfs_quota_enable(fs_info);
4874 		break;
4875 	case BTRFS_QUOTA_CTL_DISABLE:
4876 		ret = btrfs_quota_disable(fs_info);
4877 		break;
4878 	default:
4879 		ret = -EINVAL;
4880 		break;
4881 	}
4882 
4883 	kfree(sa);
4884 	up_write(&fs_info->subvol_sem);
4885 drop_write:
4886 	mnt_drop_write_file(file);
4887 	return ret;
4888 }
4889 
4890 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4891 {
4892 	struct inode *inode = file_inode(file);
4893 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4894 	struct btrfs_root *root = BTRFS_I(inode)->root;
4895 	struct btrfs_ioctl_qgroup_assign_args *sa;
4896 	struct btrfs_trans_handle *trans;
4897 	int ret;
4898 	int err;
4899 
4900 	if (!capable(CAP_SYS_ADMIN))
4901 		return -EPERM;
4902 
4903 	ret = mnt_want_write_file(file);
4904 	if (ret)
4905 		return ret;
4906 
4907 	sa = memdup_user(arg, sizeof(*sa));
4908 	if (IS_ERR(sa)) {
4909 		ret = PTR_ERR(sa);
4910 		goto drop_write;
4911 	}
4912 
4913 	trans = btrfs_join_transaction(root);
4914 	if (IS_ERR(trans)) {
4915 		ret = PTR_ERR(trans);
4916 		goto out;
4917 	}
4918 
4919 	if (sa->assign) {
4920 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4921 	} else {
4922 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4923 	}
4924 
4925 	/* update qgroup status and info */
4926 	err = btrfs_run_qgroups(trans);
4927 	if (err < 0)
4928 		btrfs_handle_fs_error(fs_info, err,
4929 				      "failed to update qgroup status and info");
4930 	err = btrfs_end_transaction(trans);
4931 	if (err && !ret)
4932 		ret = err;
4933 
4934 out:
4935 	kfree(sa);
4936 drop_write:
4937 	mnt_drop_write_file(file);
4938 	return ret;
4939 }
4940 
4941 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4942 {
4943 	struct inode *inode = file_inode(file);
4944 	struct btrfs_root *root = BTRFS_I(inode)->root;
4945 	struct btrfs_ioctl_qgroup_create_args *sa;
4946 	struct btrfs_trans_handle *trans;
4947 	int ret;
4948 	int err;
4949 
4950 	if (!capable(CAP_SYS_ADMIN))
4951 		return -EPERM;
4952 
4953 	ret = mnt_want_write_file(file);
4954 	if (ret)
4955 		return ret;
4956 
4957 	sa = memdup_user(arg, sizeof(*sa));
4958 	if (IS_ERR(sa)) {
4959 		ret = PTR_ERR(sa);
4960 		goto drop_write;
4961 	}
4962 
4963 	if (!sa->qgroupid) {
4964 		ret = -EINVAL;
4965 		goto out;
4966 	}
4967 
4968 	trans = btrfs_join_transaction(root);
4969 	if (IS_ERR(trans)) {
4970 		ret = PTR_ERR(trans);
4971 		goto out;
4972 	}
4973 
4974 	if (sa->create) {
4975 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4976 	} else {
4977 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4978 	}
4979 
4980 	err = btrfs_end_transaction(trans);
4981 	if (err && !ret)
4982 		ret = err;
4983 
4984 out:
4985 	kfree(sa);
4986 drop_write:
4987 	mnt_drop_write_file(file);
4988 	return ret;
4989 }
4990 
4991 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4992 {
4993 	struct inode *inode = file_inode(file);
4994 	struct btrfs_root *root = BTRFS_I(inode)->root;
4995 	struct btrfs_ioctl_qgroup_limit_args *sa;
4996 	struct btrfs_trans_handle *trans;
4997 	int ret;
4998 	int err;
4999 	u64 qgroupid;
5000 
5001 	if (!capable(CAP_SYS_ADMIN))
5002 		return -EPERM;
5003 
5004 	ret = mnt_want_write_file(file);
5005 	if (ret)
5006 		return ret;
5007 
5008 	sa = memdup_user(arg, sizeof(*sa));
5009 	if (IS_ERR(sa)) {
5010 		ret = PTR_ERR(sa);
5011 		goto drop_write;
5012 	}
5013 
5014 	trans = btrfs_join_transaction(root);
5015 	if (IS_ERR(trans)) {
5016 		ret = PTR_ERR(trans);
5017 		goto out;
5018 	}
5019 
5020 	qgroupid = sa->qgroupid;
5021 	if (!qgroupid) {
5022 		/* take the current subvol as qgroup */
5023 		qgroupid = root->root_key.objectid;
5024 	}
5025 
5026 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
5027 
5028 	err = btrfs_end_transaction(trans);
5029 	if (err && !ret)
5030 		ret = err;
5031 
5032 out:
5033 	kfree(sa);
5034 drop_write:
5035 	mnt_drop_write_file(file);
5036 	return ret;
5037 }
5038 
5039 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5040 {
5041 	struct inode *inode = file_inode(file);
5042 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5043 	struct btrfs_ioctl_quota_rescan_args *qsa;
5044 	int ret;
5045 
5046 	if (!capable(CAP_SYS_ADMIN))
5047 		return -EPERM;
5048 
5049 	ret = mnt_want_write_file(file);
5050 	if (ret)
5051 		return ret;
5052 
5053 	qsa = memdup_user(arg, sizeof(*qsa));
5054 	if (IS_ERR(qsa)) {
5055 		ret = PTR_ERR(qsa);
5056 		goto drop_write;
5057 	}
5058 
5059 	if (qsa->flags) {
5060 		ret = -EINVAL;
5061 		goto out;
5062 	}
5063 
5064 	ret = btrfs_qgroup_rescan(fs_info);
5065 
5066 out:
5067 	kfree(qsa);
5068 drop_write:
5069 	mnt_drop_write_file(file);
5070 	return ret;
5071 }
5072 
5073 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5074 {
5075 	struct inode *inode = file_inode(file);
5076 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5077 	struct btrfs_ioctl_quota_rescan_args *qsa;
5078 	int ret = 0;
5079 
5080 	if (!capable(CAP_SYS_ADMIN))
5081 		return -EPERM;
5082 
5083 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5084 	if (!qsa)
5085 		return -ENOMEM;
5086 
5087 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5088 		qsa->flags = 1;
5089 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5090 	}
5091 
5092 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5093 		ret = -EFAULT;
5094 
5095 	kfree(qsa);
5096 	return ret;
5097 }
5098 
5099 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5100 {
5101 	struct inode *inode = file_inode(file);
5102 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5103 
5104 	if (!capable(CAP_SYS_ADMIN))
5105 		return -EPERM;
5106 
5107 	return btrfs_qgroup_wait_for_completion(fs_info, true);
5108 }
5109 
5110 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5111 					    struct btrfs_ioctl_received_subvol_args *sa)
5112 {
5113 	struct inode *inode = file_inode(file);
5114 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5115 	struct btrfs_root *root = BTRFS_I(inode)->root;
5116 	struct btrfs_root_item *root_item = &root->root_item;
5117 	struct btrfs_trans_handle *trans;
5118 	struct timespec64 ct = current_time(inode);
5119 	int ret = 0;
5120 	int received_uuid_changed;
5121 
5122 	if (!inode_owner_or_capable(inode))
5123 		return -EPERM;
5124 
5125 	ret = mnt_want_write_file(file);
5126 	if (ret < 0)
5127 		return ret;
5128 
5129 	down_write(&fs_info->subvol_sem);
5130 
5131 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5132 		ret = -EINVAL;
5133 		goto out;
5134 	}
5135 
5136 	if (btrfs_root_readonly(root)) {
5137 		ret = -EROFS;
5138 		goto out;
5139 	}
5140 
5141 	/*
5142 	 * 1 - root item
5143 	 * 2 - uuid items (received uuid + subvol uuid)
5144 	 */
5145 	trans = btrfs_start_transaction(root, 3);
5146 	if (IS_ERR(trans)) {
5147 		ret = PTR_ERR(trans);
5148 		trans = NULL;
5149 		goto out;
5150 	}
5151 
5152 	sa->rtransid = trans->transid;
5153 	sa->rtime.sec = ct.tv_sec;
5154 	sa->rtime.nsec = ct.tv_nsec;
5155 
5156 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5157 				       BTRFS_UUID_SIZE);
5158 	if (received_uuid_changed &&
5159 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
5160 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
5161 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5162 					  root->root_key.objectid);
5163 		if (ret && ret != -ENOENT) {
5164 		        btrfs_abort_transaction(trans, ret);
5165 		        btrfs_end_transaction(trans);
5166 		        goto out;
5167 		}
5168 	}
5169 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5170 	btrfs_set_root_stransid(root_item, sa->stransid);
5171 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5172 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5173 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5174 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5175 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5176 
5177 	ret = btrfs_update_root(trans, fs_info->tree_root,
5178 				&root->root_key, &root->root_item);
5179 	if (ret < 0) {
5180 		btrfs_end_transaction(trans);
5181 		goto out;
5182 	}
5183 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5184 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
5185 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5186 					  root->root_key.objectid);
5187 		if (ret < 0 && ret != -EEXIST) {
5188 			btrfs_abort_transaction(trans, ret);
5189 			btrfs_end_transaction(trans);
5190 			goto out;
5191 		}
5192 	}
5193 	ret = btrfs_commit_transaction(trans);
5194 out:
5195 	up_write(&fs_info->subvol_sem);
5196 	mnt_drop_write_file(file);
5197 	return ret;
5198 }
5199 
5200 #ifdef CONFIG_64BIT
5201 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5202 						void __user *arg)
5203 {
5204 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5205 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5206 	int ret = 0;
5207 
5208 	args32 = memdup_user(arg, sizeof(*args32));
5209 	if (IS_ERR(args32))
5210 		return PTR_ERR(args32);
5211 
5212 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5213 	if (!args64) {
5214 		ret = -ENOMEM;
5215 		goto out;
5216 	}
5217 
5218 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5219 	args64->stransid = args32->stransid;
5220 	args64->rtransid = args32->rtransid;
5221 	args64->stime.sec = args32->stime.sec;
5222 	args64->stime.nsec = args32->stime.nsec;
5223 	args64->rtime.sec = args32->rtime.sec;
5224 	args64->rtime.nsec = args32->rtime.nsec;
5225 	args64->flags = args32->flags;
5226 
5227 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5228 	if (ret)
5229 		goto out;
5230 
5231 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5232 	args32->stransid = args64->stransid;
5233 	args32->rtransid = args64->rtransid;
5234 	args32->stime.sec = args64->stime.sec;
5235 	args32->stime.nsec = args64->stime.nsec;
5236 	args32->rtime.sec = args64->rtime.sec;
5237 	args32->rtime.nsec = args64->rtime.nsec;
5238 	args32->flags = args64->flags;
5239 
5240 	ret = copy_to_user(arg, args32, sizeof(*args32));
5241 	if (ret)
5242 		ret = -EFAULT;
5243 
5244 out:
5245 	kfree(args32);
5246 	kfree(args64);
5247 	return ret;
5248 }
5249 #endif
5250 
5251 static long btrfs_ioctl_set_received_subvol(struct file *file,
5252 					    void __user *arg)
5253 {
5254 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5255 	int ret = 0;
5256 
5257 	sa = memdup_user(arg, sizeof(*sa));
5258 	if (IS_ERR(sa))
5259 		return PTR_ERR(sa);
5260 
5261 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5262 
5263 	if (ret)
5264 		goto out;
5265 
5266 	ret = copy_to_user(arg, sa, sizeof(*sa));
5267 	if (ret)
5268 		ret = -EFAULT;
5269 
5270 out:
5271 	kfree(sa);
5272 	return ret;
5273 }
5274 
5275 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5276 {
5277 	struct inode *inode = file_inode(file);
5278 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5279 	size_t len;
5280 	int ret;
5281 	char label[BTRFS_LABEL_SIZE];
5282 
5283 	spin_lock(&fs_info->super_lock);
5284 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5285 	spin_unlock(&fs_info->super_lock);
5286 
5287 	len = strnlen(label, BTRFS_LABEL_SIZE);
5288 
5289 	if (len == BTRFS_LABEL_SIZE) {
5290 		btrfs_warn(fs_info,
5291 			   "label is too long, return the first %zu bytes",
5292 			   --len);
5293 	}
5294 
5295 	ret = copy_to_user(arg, label, len);
5296 
5297 	return ret ? -EFAULT : 0;
5298 }
5299 
5300 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5301 {
5302 	struct inode *inode = file_inode(file);
5303 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5304 	struct btrfs_root *root = BTRFS_I(inode)->root;
5305 	struct btrfs_super_block *super_block = fs_info->super_copy;
5306 	struct btrfs_trans_handle *trans;
5307 	char label[BTRFS_LABEL_SIZE];
5308 	int ret;
5309 
5310 	if (!capable(CAP_SYS_ADMIN))
5311 		return -EPERM;
5312 
5313 	if (copy_from_user(label, arg, sizeof(label)))
5314 		return -EFAULT;
5315 
5316 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5317 		btrfs_err(fs_info,
5318 			  "unable to set label with more than %d bytes",
5319 			  BTRFS_LABEL_SIZE - 1);
5320 		return -EINVAL;
5321 	}
5322 
5323 	ret = mnt_want_write_file(file);
5324 	if (ret)
5325 		return ret;
5326 
5327 	trans = btrfs_start_transaction(root, 0);
5328 	if (IS_ERR(trans)) {
5329 		ret = PTR_ERR(trans);
5330 		goto out_unlock;
5331 	}
5332 
5333 	spin_lock(&fs_info->super_lock);
5334 	strcpy(super_block->label, label);
5335 	spin_unlock(&fs_info->super_lock);
5336 	ret = btrfs_commit_transaction(trans);
5337 
5338 out_unlock:
5339 	mnt_drop_write_file(file);
5340 	return ret;
5341 }
5342 
5343 #define INIT_FEATURE_FLAGS(suffix) \
5344 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5345 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5346 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5347 
5348 int btrfs_ioctl_get_supported_features(void __user *arg)
5349 {
5350 	static const struct btrfs_ioctl_feature_flags features[3] = {
5351 		INIT_FEATURE_FLAGS(SUPP),
5352 		INIT_FEATURE_FLAGS(SAFE_SET),
5353 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5354 	};
5355 
5356 	if (copy_to_user(arg, &features, sizeof(features)))
5357 		return -EFAULT;
5358 
5359 	return 0;
5360 }
5361 
5362 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5363 {
5364 	struct inode *inode = file_inode(file);
5365 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5366 	struct btrfs_super_block *super_block = fs_info->super_copy;
5367 	struct btrfs_ioctl_feature_flags features;
5368 
5369 	features.compat_flags = btrfs_super_compat_flags(super_block);
5370 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5371 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5372 
5373 	if (copy_to_user(arg, &features, sizeof(features)))
5374 		return -EFAULT;
5375 
5376 	return 0;
5377 }
5378 
5379 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5380 			      enum btrfs_feature_set set,
5381 			      u64 change_mask, u64 flags, u64 supported_flags,
5382 			      u64 safe_set, u64 safe_clear)
5383 {
5384 	const char *type = btrfs_feature_set_names[set];
5385 	char *names;
5386 	u64 disallowed, unsupported;
5387 	u64 set_mask = flags & change_mask;
5388 	u64 clear_mask = ~flags & change_mask;
5389 
5390 	unsupported = set_mask & ~supported_flags;
5391 	if (unsupported) {
5392 		names = btrfs_printable_features(set, unsupported);
5393 		if (names) {
5394 			btrfs_warn(fs_info,
5395 				   "this kernel does not support the %s feature bit%s",
5396 				   names, strchr(names, ',') ? "s" : "");
5397 			kfree(names);
5398 		} else
5399 			btrfs_warn(fs_info,
5400 				   "this kernel does not support %s bits 0x%llx",
5401 				   type, unsupported);
5402 		return -EOPNOTSUPP;
5403 	}
5404 
5405 	disallowed = set_mask & ~safe_set;
5406 	if (disallowed) {
5407 		names = btrfs_printable_features(set, disallowed);
5408 		if (names) {
5409 			btrfs_warn(fs_info,
5410 				   "can't set the %s feature bit%s while mounted",
5411 				   names, strchr(names, ',') ? "s" : "");
5412 			kfree(names);
5413 		} else
5414 			btrfs_warn(fs_info,
5415 				   "can't set %s bits 0x%llx while mounted",
5416 				   type, disallowed);
5417 		return -EPERM;
5418 	}
5419 
5420 	disallowed = clear_mask & ~safe_clear;
5421 	if (disallowed) {
5422 		names = btrfs_printable_features(set, disallowed);
5423 		if (names) {
5424 			btrfs_warn(fs_info,
5425 				   "can't clear the %s feature bit%s while mounted",
5426 				   names, strchr(names, ',') ? "s" : "");
5427 			kfree(names);
5428 		} else
5429 			btrfs_warn(fs_info,
5430 				   "can't clear %s bits 0x%llx while mounted",
5431 				   type, disallowed);
5432 		return -EPERM;
5433 	}
5434 
5435 	return 0;
5436 }
5437 
5438 #define check_feature(fs_info, change_mask, flags, mask_base)	\
5439 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
5440 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5441 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5442 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5443 
5444 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5445 {
5446 	struct inode *inode = file_inode(file);
5447 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5448 	struct btrfs_root *root = BTRFS_I(inode)->root;
5449 	struct btrfs_super_block *super_block = fs_info->super_copy;
5450 	struct btrfs_ioctl_feature_flags flags[2];
5451 	struct btrfs_trans_handle *trans;
5452 	u64 newflags;
5453 	int ret;
5454 
5455 	if (!capable(CAP_SYS_ADMIN))
5456 		return -EPERM;
5457 
5458 	if (copy_from_user(flags, arg, sizeof(flags)))
5459 		return -EFAULT;
5460 
5461 	/* Nothing to do */
5462 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5463 	    !flags[0].incompat_flags)
5464 		return 0;
5465 
5466 	ret = check_feature(fs_info, flags[0].compat_flags,
5467 			    flags[1].compat_flags, COMPAT);
5468 	if (ret)
5469 		return ret;
5470 
5471 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
5472 			    flags[1].compat_ro_flags, COMPAT_RO);
5473 	if (ret)
5474 		return ret;
5475 
5476 	ret = check_feature(fs_info, flags[0].incompat_flags,
5477 			    flags[1].incompat_flags, INCOMPAT);
5478 	if (ret)
5479 		return ret;
5480 
5481 	ret = mnt_want_write_file(file);
5482 	if (ret)
5483 		return ret;
5484 
5485 	trans = btrfs_start_transaction(root, 0);
5486 	if (IS_ERR(trans)) {
5487 		ret = PTR_ERR(trans);
5488 		goto out_drop_write;
5489 	}
5490 
5491 	spin_lock(&fs_info->super_lock);
5492 	newflags = btrfs_super_compat_flags(super_block);
5493 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5494 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5495 	btrfs_set_super_compat_flags(super_block, newflags);
5496 
5497 	newflags = btrfs_super_compat_ro_flags(super_block);
5498 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5499 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5500 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5501 
5502 	newflags = btrfs_super_incompat_flags(super_block);
5503 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5504 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5505 	btrfs_set_super_incompat_flags(super_block, newflags);
5506 	spin_unlock(&fs_info->super_lock);
5507 
5508 	ret = btrfs_commit_transaction(trans);
5509 out_drop_write:
5510 	mnt_drop_write_file(file);
5511 
5512 	return ret;
5513 }
5514 
5515 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5516 {
5517 	struct btrfs_ioctl_send_args *arg;
5518 	int ret;
5519 
5520 	if (compat) {
5521 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5522 		struct btrfs_ioctl_send_args_32 args32;
5523 
5524 		ret = copy_from_user(&args32, argp, sizeof(args32));
5525 		if (ret)
5526 			return -EFAULT;
5527 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5528 		if (!arg)
5529 			return -ENOMEM;
5530 		arg->send_fd = args32.send_fd;
5531 		arg->clone_sources_count = args32.clone_sources_count;
5532 		arg->clone_sources = compat_ptr(args32.clone_sources);
5533 		arg->parent_root = args32.parent_root;
5534 		arg->flags = args32.flags;
5535 		memcpy(arg->reserved, args32.reserved,
5536 		       sizeof(args32.reserved));
5537 #else
5538 		return -ENOTTY;
5539 #endif
5540 	} else {
5541 		arg = memdup_user(argp, sizeof(*arg));
5542 		if (IS_ERR(arg))
5543 			return PTR_ERR(arg);
5544 	}
5545 	ret = btrfs_ioctl_send(file, arg);
5546 	kfree(arg);
5547 	return ret;
5548 }
5549 
5550 long btrfs_ioctl(struct file *file, unsigned int
5551 		cmd, unsigned long arg)
5552 {
5553 	struct inode *inode = file_inode(file);
5554 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5555 	struct btrfs_root *root = BTRFS_I(inode)->root;
5556 	void __user *argp = (void __user *)arg;
5557 
5558 	switch (cmd) {
5559 	case FS_IOC_GETFLAGS:
5560 		return btrfs_ioctl_getflags(file, argp);
5561 	case FS_IOC_SETFLAGS:
5562 		return btrfs_ioctl_setflags(file, argp);
5563 	case FS_IOC_GETVERSION:
5564 		return btrfs_ioctl_getversion(file, argp);
5565 	case FITRIM:
5566 		return btrfs_ioctl_fitrim(file, argp);
5567 	case BTRFS_IOC_SNAP_CREATE:
5568 		return btrfs_ioctl_snap_create(file, argp, 0);
5569 	case BTRFS_IOC_SNAP_CREATE_V2:
5570 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5571 	case BTRFS_IOC_SUBVOL_CREATE:
5572 		return btrfs_ioctl_snap_create(file, argp, 1);
5573 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5574 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5575 	case BTRFS_IOC_SNAP_DESTROY:
5576 		return btrfs_ioctl_snap_destroy(file, argp);
5577 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5578 		return btrfs_ioctl_subvol_getflags(file, argp);
5579 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5580 		return btrfs_ioctl_subvol_setflags(file, argp);
5581 	case BTRFS_IOC_DEFAULT_SUBVOL:
5582 		return btrfs_ioctl_default_subvol(file, argp);
5583 	case BTRFS_IOC_DEFRAG:
5584 		return btrfs_ioctl_defrag(file, NULL);
5585 	case BTRFS_IOC_DEFRAG_RANGE:
5586 		return btrfs_ioctl_defrag(file, argp);
5587 	case BTRFS_IOC_RESIZE:
5588 		return btrfs_ioctl_resize(file, argp);
5589 	case BTRFS_IOC_ADD_DEV:
5590 		return btrfs_ioctl_add_dev(fs_info, argp);
5591 	case BTRFS_IOC_RM_DEV:
5592 		return btrfs_ioctl_rm_dev(file, argp);
5593 	case BTRFS_IOC_RM_DEV_V2:
5594 		return btrfs_ioctl_rm_dev_v2(file, argp);
5595 	case BTRFS_IOC_FS_INFO:
5596 		return btrfs_ioctl_fs_info(fs_info, argp);
5597 	case BTRFS_IOC_DEV_INFO:
5598 		return btrfs_ioctl_dev_info(fs_info, argp);
5599 	case BTRFS_IOC_BALANCE:
5600 		return btrfs_ioctl_balance(file, NULL);
5601 	case BTRFS_IOC_TREE_SEARCH:
5602 		return btrfs_ioctl_tree_search(file, argp);
5603 	case BTRFS_IOC_TREE_SEARCH_V2:
5604 		return btrfs_ioctl_tree_search_v2(file, argp);
5605 	case BTRFS_IOC_INO_LOOKUP:
5606 		return btrfs_ioctl_ino_lookup(file, argp);
5607 	case BTRFS_IOC_INO_PATHS:
5608 		return btrfs_ioctl_ino_to_path(root, argp);
5609 	case BTRFS_IOC_LOGICAL_INO:
5610 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5611 	case BTRFS_IOC_LOGICAL_INO_V2:
5612 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5613 	case BTRFS_IOC_SPACE_INFO:
5614 		return btrfs_ioctl_space_info(fs_info, argp);
5615 	case BTRFS_IOC_SYNC: {
5616 		int ret;
5617 
5618 		ret = btrfs_start_delalloc_roots(fs_info, -1);
5619 		if (ret)
5620 			return ret;
5621 		ret = btrfs_sync_fs(inode->i_sb, 1);
5622 		/*
5623 		 * The transaction thread may want to do more work,
5624 		 * namely it pokes the cleaner kthread that will start
5625 		 * processing uncleaned subvols.
5626 		 */
5627 		wake_up_process(fs_info->transaction_kthread);
5628 		return ret;
5629 	}
5630 	case BTRFS_IOC_START_SYNC:
5631 		return btrfs_ioctl_start_sync(root, argp);
5632 	case BTRFS_IOC_WAIT_SYNC:
5633 		return btrfs_ioctl_wait_sync(fs_info, argp);
5634 	case BTRFS_IOC_SCRUB:
5635 		return btrfs_ioctl_scrub(file, argp);
5636 	case BTRFS_IOC_SCRUB_CANCEL:
5637 		return btrfs_ioctl_scrub_cancel(fs_info);
5638 	case BTRFS_IOC_SCRUB_PROGRESS:
5639 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5640 	case BTRFS_IOC_BALANCE_V2:
5641 		return btrfs_ioctl_balance(file, argp);
5642 	case BTRFS_IOC_BALANCE_CTL:
5643 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5644 	case BTRFS_IOC_BALANCE_PROGRESS:
5645 		return btrfs_ioctl_balance_progress(fs_info, argp);
5646 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5647 		return btrfs_ioctl_set_received_subvol(file, argp);
5648 #ifdef CONFIG_64BIT
5649 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5650 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5651 #endif
5652 	case BTRFS_IOC_SEND:
5653 		return _btrfs_ioctl_send(file, argp, false);
5654 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5655 	case BTRFS_IOC_SEND_32:
5656 		return _btrfs_ioctl_send(file, argp, true);
5657 #endif
5658 	case BTRFS_IOC_GET_DEV_STATS:
5659 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5660 	case BTRFS_IOC_QUOTA_CTL:
5661 		return btrfs_ioctl_quota_ctl(file, argp);
5662 	case BTRFS_IOC_QGROUP_ASSIGN:
5663 		return btrfs_ioctl_qgroup_assign(file, argp);
5664 	case BTRFS_IOC_QGROUP_CREATE:
5665 		return btrfs_ioctl_qgroup_create(file, argp);
5666 	case BTRFS_IOC_QGROUP_LIMIT:
5667 		return btrfs_ioctl_qgroup_limit(file, argp);
5668 	case BTRFS_IOC_QUOTA_RESCAN:
5669 		return btrfs_ioctl_quota_rescan(file, argp);
5670 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5671 		return btrfs_ioctl_quota_rescan_status(file, argp);
5672 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5673 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5674 	case BTRFS_IOC_DEV_REPLACE:
5675 		return btrfs_ioctl_dev_replace(fs_info, argp);
5676 	case BTRFS_IOC_GET_FSLABEL:
5677 		return btrfs_ioctl_get_fslabel(file, argp);
5678 	case BTRFS_IOC_SET_FSLABEL:
5679 		return btrfs_ioctl_set_fslabel(file, argp);
5680 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5681 		return btrfs_ioctl_get_supported_features(argp);
5682 	case BTRFS_IOC_GET_FEATURES:
5683 		return btrfs_ioctl_get_features(file, argp);
5684 	case BTRFS_IOC_SET_FEATURES:
5685 		return btrfs_ioctl_set_features(file, argp);
5686 	case FS_IOC_FSGETXATTR:
5687 		return btrfs_ioctl_fsgetxattr(file, argp);
5688 	case FS_IOC_FSSETXATTR:
5689 		return btrfs_ioctl_fssetxattr(file, argp);
5690 	case BTRFS_IOC_GET_SUBVOL_INFO:
5691 		return btrfs_ioctl_get_subvol_info(file, argp);
5692 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5693 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5694 	case BTRFS_IOC_INO_LOOKUP_USER:
5695 		return btrfs_ioctl_ino_lookup_user(file, argp);
5696 	}
5697 
5698 	return -ENOTTY;
5699 }
5700 
5701 #ifdef CONFIG_COMPAT
5702 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5703 {
5704 	/*
5705 	 * These all access 32-bit values anyway so no further
5706 	 * handling is necessary.
5707 	 */
5708 	switch (cmd) {
5709 	case FS_IOC32_GETFLAGS:
5710 		cmd = FS_IOC_GETFLAGS;
5711 		break;
5712 	case FS_IOC32_SETFLAGS:
5713 		cmd = FS_IOC_SETFLAGS;
5714 		break;
5715 	case FS_IOC32_GETVERSION:
5716 		cmd = FS_IOC_GETVERSION;
5717 		break;
5718 	}
5719 
5720 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5721 }
5722 #endif
5723