1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include <linux/btrfs.h> 46 #include <linux/uaccess.h> 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 #include "dev-replace.h" 59 #include "props.h" 60 #include "sysfs.h" 61 #include "qgroup.h" 62 63 #ifdef CONFIG_64BIT 64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 65 * structures are incorrect, as the timespec structure from userspace 66 * is 4 bytes too small. We define these alternatives here to teach 67 * the kernel about the 32-bit struct packing. 68 */ 69 struct btrfs_ioctl_timespec_32 { 70 __u64 sec; 71 __u32 nsec; 72 } __attribute__ ((__packed__)); 73 74 struct btrfs_ioctl_received_subvol_args_32 { 75 char uuid[BTRFS_UUID_SIZE]; /* in */ 76 __u64 stransid; /* in */ 77 __u64 rtransid; /* out */ 78 struct btrfs_ioctl_timespec_32 stime; /* in */ 79 struct btrfs_ioctl_timespec_32 rtime; /* out */ 80 __u64 flags; /* in */ 81 __u64 reserved[16]; /* in */ 82 } __attribute__ ((__packed__)); 83 84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 85 struct btrfs_ioctl_received_subvol_args_32) 86 #endif 87 88 89 static int btrfs_clone(struct inode *src, struct inode *inode, 90 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 91 int no_time_update); 92 93 /* Mask out flags that are inappropriate for the given type of inode. */ 94 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 95 { 96 if (S_ISDIR(mode)) 97 return flags; 98 else if (S_ISREG(mode)) 99 return flags & ~FS_DIRSYNC_FL; 100 else 101 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 102 } 103 104 /* 105 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 106 */ 107 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 108 { 109 unsigned int iflags = 0; 110 111 if (flags & BTRFS_INODE_SYNC) 112 iflags |= FS_SYNC_FL; 113 if (flags & BTRFS_INODE_IMMUTABLE) 114 iflags |= FS_IMMUTABLE_FL; 115 if (flags & BTRFS_INODE_APPEND) 116 iflags |= FS_APPEND_FL; 117 if (flags & BTRFS_INODE_NODUMP) 118 iflags |= FS_NODUMP_FL; 119 if (flags & BTRFS_INODE_NOATIME) 120 iflags |= FS_NOATIME_FL; 121 if (flags & BTRFS_INODE_DIRSYNC) 122 iflags |= FS_DIRSYNC_FL; 123 if (flags & BTRFS_INODE_NODATACOW) 124 iflags |= FS_NOCOW_FL; 125 126 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 127 iflags |= FS_COMPR_FL; 128 else if (flags & BTRFS_INODE_NOCOMPRESS) 129 iflags |= FS_NOCOMP_FL; 130 131 return iflags; 132 } 133 134 /* 135 * Update inode->i_flags based on the btrfs internal flags. 136 */ 137 void btrfs_update_iflags(struct inode *inode) 138 { 139 struct btrfs_inode *ip = BTRFS_I(inode); 140 unsigned int new_fl = 0; 141 142 if (ip->flags & BTRFS_INODE_SYNC) 143 new_fl |= S_SYNC; 144 if (ip->flags & BTRFS_INODE_IMMUTABLE) 145 new_fl |= S_IMMUTABLE; 146 if (ip->flags & BTRFS_INODE_APPEND) 147 new_fl |= S_APPEND; 148 if (ip->flags & BTRFS_INODE_NOATIME) 149 new_fl |= S_NOATIME; 150 if (ip->flags & BTRFS_INODE_DIRSYNC) 151 new_fl |= S_DIRSYNC; 152 153 set_mask_bits(&inode->i_flags, 154 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 155 new_fl); 156 } 157 158 /* 159 * Inherit flags from the parent inode. 160 * 161 * Currently only the compression flags and the cow flags are inherited. 162 */ 163 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 164 { 165 unsigned int flags; 166 167 if (!dir) 168 return; 169 170 flags = BTRFS_I(dir)->flags; 171 172 if (flags & BTRFS_INODE_NOCOMPRESS) { 173 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 174 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 175 } else if (flags & BTRFS_INODE_COMPRESS) { 176 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 177 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 178 } 179 180 if (flags & BTRFS_INODE_NODATACOW) { 181 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 182 if (S_ISREG(inode->i_mode)) 183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 184 } 185 186 btrfs_update_iflags(inode); 187 } 188 189 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 190 { 191 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 192 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 193 194 if (copy_to_user(arg, &flags, sizeof(flags))) 195 return -EFAULT; 196 return 0; 197 } 198 199 static int check_flags(unsigned int flags) 200 { 201 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 202 FS_NOATIME_FL | FS_NODUMP_FL | \ 203 FS_SYNC_FL | FS_DIRSYNC_FL | \ 204 FS_NOCOMP_FL | FS_COMPR_FL | 205 FS_NOCOW_FL)) 206 return -EOPNOTSUPP; 207 208 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 209 return -EINVAL; 210 211 return 0; 212 } 213 214 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 215 { 216 struct inode *inode = file_inode(file); 217 struct btrfs_inode *ip = BTRFS_I(inode); 218 struct btrfs_root *root = ip->root; 219 struct btrfs_trans_handle *trans; 220 unsigned int flags, oldflags; 221 int ret; 222 u64 ip_oldflags; 223 unsigned int i_oldflags; 224 umode_t mode; 225 226 if (!inode_owner_or_capable(inode)) 227 return -EPERM; 228 229 if (btrfs_root_readonly(root)) 230 return -EROFS; 231 232 if (copy_from_user(&flags, arg, sizeof(flags))) 233 return -EFAULT; 234 235 ret = check_flags(flags); 236 if (ret) 237 return ret; 238 239 ret = mnt_want_write_file(file); 240 if (ret) 241 return ret; 242 243 mutex_lock(&inode->i_mutex); 244 245 ip_oldflags = ip->flags; 246 i_oldflags = inode->i_flags; 247 mode = inode->i_mode; 248 249 flags = btrfs_mask_flags(inode->i_mode, flags); 250 oldflags = btrfs_flags_to_ioctl(ip->flags); 251 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 252 if (!capable(CAP_LINUX_IMMUTABLE)) { 253 ret = -EPERM; 254 goto out_unlock; 255 } 256 } 257 258 if (flags & FS_SYNC_FL) 259 ip->flags |= BTRFS_INODE_SYNC; 260 else 261 ip->flags &= ~BTRFS_INODE_SYNC; 262 if (flags & FS_IMMUTABLE_FL) 263 ip->flags |= BTRFS_INODE_IMMUTABLE; 264 else 265 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 266 if (flags & FS_APPEND_FL) 267 ip->flags |= BTRFS_INODE_APPEND; 268 else 269 ip->flags &= ~BTRFS_INODE_APPEND; 270 if (flags & FS_NODUMP_FL) 271 ip->flags |= BTRFS_INODE_NODUMP; 272 else 273 ip->flags &= ~BTRFS_INODE_NODUMP; 274 if (flags & FS_NOATIME_FL) 275 ip->flags |= BTRFS_INODE_NOATIME; 276 else 277 ip->flags &= ~BTRFS_INODE_NOATIME; 278 if (flags & FS_DIRSYNC_FL) 279 ip->flags |= BTRFS_INODE_DIRSYNC; 280 else 281 ip->flags &= ~BTRFS_INODE_DIRSYNC; 282 if (flags & FS_NOCOW_FL) { 283 if (S_ISREG(mode)) { 284 /* 285 * It's safe to turn csums off here, no extents exist. 286 * Otherwise we want the flag to reflect the real COW 287 * status of the file and will not set it. 288 */ 289 if (inode->i_size == 0) 290 ip->flags |= BTRFS_INODE_NODATACOW 291 | BTRFS_INODE_NODATASUM; 292 } else { 293 ip->flags |= BTRFS_INODE_NODATACOW; 294 } 295 } else { 296 /* 297 * Revert back under same assuptions as above 298 */ 299 if (S_ISREG(mode)) { 300 if (inode->i_size == 0) 301 ip->flags &= ~(BTRFS_INODE_NODATACOW 302 | BTRFS_INODE_NODATASUM); 303 } else { 304 ip->flags &= ~BTRFS_INODE_NODATACOW; 305 } 306 } 307 308 /* 309 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 310 * flag may be changed automatically if compression code won't make 311 * things smaller. 312 */ 313 if (flags & FS_NOCOMP_FL) { 314 ip->flags &= ~BTRFS_INODE_COMPRESS; 315 ip->flags |= BTRFS_INODE_NOCOMPRESS; 316 317 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 318 if (ret && ret != -ENODATA) 319 goto out_drop; 320 } else if (flags & FS_COMPR_FL) { 321 const char *comp; 322 323 ip->flags |= BTRFS_INODE_COMPRESS; 324 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 325 326 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 327 comp = "lzo"; 328 else 329 comp = "zlib"; 330 ret = btrfs_set_prop(inode, "btrfs.compression", 331 comp, strlen(comp), 0); 332 if (ret) 333 goto out_drop; 334 335 } else { 336 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 337 if (ret && ret != -ENODATA) 338 goto out_drop; 339 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 340 } 341 342 trans = btrfs_start_transaction(root, 1); 343 if (IS_ERR(trans)) { 344 ret = PTR_ERR(trans); 345 goto out_drop; 346 } 347 348 btrfs_update_iflags(inode); 349 inode_inc_iversion(inode); 350 inode->i_ctime = CURRENT_TIME; 351 ret = btrfs_update_inode(trans, root, inode); 352 353 btrfs_end_transaction(trans, root); 354 out_drop: 355 if (ret) { 356 ip->flags = ip_oldflags; 357 inode->i_flags = i_oldflags; 358 } 359 360 out_unlock: 361 mutex_unlock(&inode->i_mutex); 362 mnt_drop_write_file(file); 363 return ret; 364 } 365 366 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 367 { 368 struct inode *inode = file_inode(file); 369 370 return put_user(inode->i_generation, arg); 371 } 372 373 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 374 { 375 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 376 struct btrfs_device *device; 377 struct request_queue *q; 378 struct fstrim_range range; 379 u64 minlen = ULLONG_MAX; 380 u64 num_devices = 0; 381 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 382 int ret; 383 384 if (!capable(CAP_SYS_ADMIN)) 385 return -EPERM; 386 387 rcu_read_lock(); 388 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 389 dev_list) { 390 if (!device->bdev) 391 continue; 392 q = bdev_get_queue(device->bdev); 393 if (blk_queue_discard(q)) { 394 num_devices++; 395 minlen = min((u64)q->limits.discard_granularity, 396 minlen); 397 } 398 } 399 rcu_read_unlock(); 400 401 if (!num_devices) 402 return -EOPNOTSUPP; 403 if (copy_from_user(&range, arg, sizeof(range))) 404 return -EFAULT; 405 if (range.start > total_bytes || 406 range.len < fs_info->sb->s_blocksize) 407 return -EINVAL; 408 409 range.len = min(range.len, total_bytes - range.start); 410 range.minlen = max(range.minlen, minlen); 411 ret = btrfs_trim_fs(fs_info->tree_root, &range); 412 if (ret < 0) 413 return ret; 414 415 if (copy_to_user(arg, &range, sizeof(range))) 416 return -EFAULT; 417 418 return 0; 419 } 420 421 int btrfs_is_empty_uuid(u8 *uuid) 422 { 423 int i; 424 425 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 426 if (uuid[i]) 427 return 0; 428 } 429 return 1; 430 } 431 432 static noinline int create_subvol(struct inode *dir, 433 struct dentry *dentry, 434 char *name, int namelen, 435 u64 *async_transid, 436 struct btrfs_qgroup_inherit *inherit) 437 { 438 struct btrfs_trans_handle *trans; 439 struct btrfs_key key; 440 struct btrfs_root_item root_item; 441 struct btrfs_inode_item *inode_item; 442 struct extent_buffer *leaf; 443 struct btrfs_root *root = BTRFS_I(dir)->root; 444 struct btrfs_root *new_root; 445 struct btrfs_block_rsv block_rsv; 446 struct timespec cur_time = CURRENT_TIME; 447 struct inode *inode; 448 int ret; 449 int err; 450 u64 objectid; 451 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 452 u64 index = 0; 453 u64 qgroup_reserved; 454 uuid_le new_uuid; 455 456 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 457 if (ret) 458 return ret; 459 460 /* 461 * Don't create subvolume whose level is not zero. Or qgroup will be 462 * screwed up since it assume subvolme qgroup's level to be 0. 463 */ 464 if (btrfs_qgroup_level(objectid)) 465 return -ENOSPC; 466 467 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 468 /* 469 * The same as the snapshot creation, please see the comment 470 * of create_snapshot(). 471 */ 472 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 473 8, &qgroup_reserved, false); 474 if (ret) 475 return ret; 476 477 trans = btrfs_start_transaction(root, 0); 478 if (IS_ERR(trans)) { 479 ret = PTR_ERR(trans); 480 btrfs_subvolume_release_metadata(root, &block_rsv, 481 qgroup_reserved); 482 return ret; 483 } 484 trans->block_rsv = &block_rsv; 485 trans->bytes_reserved = block_rsv.size; 486 487 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit); 488 if (ret) 489 goto fail; 490 491 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 492 if (IS_ERR(leaf)) { 493 ret = PTR_ERR(leaf); 494 goto fail; 495 } 496 497 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 498 btrfs_set_header_bytenr(leaf, leaf->start); 499 btrfs_set_header_generation(leaf, trans->transid); 500 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 501 btrfs_set_header_owner(leaf, objectid); 502 503 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(), 504 BTRFS_FSID_SIZE); 505 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 506 btrfs_header_chunk_tree_uuid(leaf), 507 BTRFS_UUID_SIZE); 508 btrfs_mark_buffer_dirty(leaf); 509 510 memset(&root_item, 0, sizeof(root_item)); 511 512 inode_item = &root_item.inode; 513 btrfs_set_stack_inode_generation(inode_item, 1); 514 btrfs_set_stack_inode_size(inode_item, 3); 515 btrfs_set_stack_inode_nlink(inode_item, 1); 516 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 517 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 518 519 btrfs_set_root_flags(&root_item, 0); 520 btrfs_set_root_limit(&root_item, 0); 521 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 522 523 btrfs_set_root_bytenr(&root_item, leaf->start); 524 btrfs_set_root_generation(&root_item, trans->transid); 525 btrfs_set_root_level(&root_item, 0); 526 btrfs_set_root_refs(&root_item, 1); 527 btrfs_set_root_used(&root_item, leaf->len); 528 btrfs_set_root_last_snapshot(&root_item, 0); 529 530 btrfs_set_root_generation_v2(&root_item, 531 btrfs_root_generation(&root_item)); 532 uuid_le_gen(&new_uuid); 533 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE); 534 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec); 535 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec); 536 root_item.ctime = root_item.otime; 537 btrfs_set_root_ctransid(&root_item, trans->transid); 538 btrfs_set_root_otransid(&root_item, trans->transid); 539 540 btrfs_tree_unlock(leaf); 541 free_extent_buffer(leaf); 542 leaf = NULL; 543 544 btrfs_set_root_dirid(&root_item, new_dirid); 545 546 key.objectid = objectid; 547 key.offset = 0; 548 key.type = BTRFS_ROOT_ITEM_KEY; 549 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 550 &root_item); 551 if (ret) 552 goto fail; 553 554 key.offset = (u64)-1; 555 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 556 if (IS_ERR(new_root)) { 557 ret = PTR_ERR(new_root); 558 btrfs_abort_transaction(trans, root, ret); 559 goto fail; 560 } 561 562 btrfs_record_root_in_trans(trans, new_root); 563 564 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 565 if (ret) { 566 /* We potentially lose an unused inode item here */ 567 btrfs_abort_transaction(trans, root, ret); 568 goto fail; 569 } 570 571 /* 572 * insert the directory item 573 */ 574 ret = btrfs_set_inode_index(dir, &index); 575 if (ret) { 576 btrfs_abort_transaction(trans, root, ret); 577 goto fail; 578 } 579 580 ret = btrfs_insert_dir_item(trans, root, 581 name, namelen, dir, &key, 582 BTRFS_FT_DIR, index); 583 if (ret) { 584 btrfs_abort_transaction(trans, root, ret); 585 goto fail; 586 } 587 588 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 589 ret = btrfs_update_inode(trans, root, dir); 590 BUG_ON(ret); 591 592 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 593 objectid, root->root_key.objectid, 594 btrfs_ino(dir), index, name, namelen); 595 BUG_ON(ret); 596 597 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 598 root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 599 objectid); 600 if (ret) 601 btrfs_abort_transaction(trans, root, ret); 602 603 fail: 604 trans->block_rsv = NULL; 605 trans->bytes_reserved = 0; 606 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 607 608 if (async_transid) { 609 *async_transid = trans->transid; 610 err = btrfs_commit_transaction_async(trans, root, 1); 611 if (err) 612 err = btrfs_commit_transaction(trans, root); 613 } else { 614 err = btrfs_commit_transaction(trans, root); 615 } 616 if (err && !ret) 617 ret = err; 618 619 if (!ret) { 620 inode = btrfs_lookup_dentry(dir, dentry); 621 if (IS_ERR(inode)) 622 return PTR_ERR(inode); 623 d_instantiate(dentry, inode); 624 } 625 return ret; 626 } 627 628 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root) 629 { 630 s64 writers; 631 DEFINE_WAIT(wait); 632 633 do { 634 prepare_to_wait(&root->subv_writers->wait, &wait, 635 TASK_UNINTERRUPTIBLE); 636 637 writers = percpu_counter_sum(&root->subv_writers->counter); 638 if (writers) 639 schedule(); 640 641 finish_wait(&root->subv_writers->wait, &wait); 642 } while (writers); 643 } 644 645 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 646 struct dentry *dentry, char *name, int namelen, 647 u64 *async_transid, bool readonly, 648 struct btrfs_qgroup_inherit *inherit) 649 { 650 struct inode *inode; 651 struct btrfs_pending_snapshot *pending_snapshot; 652 struct btrfs_trans_handle *trans; 653 int ret; 654 655 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 656 return -EINVAL; 657 658 atomic_inc(&root->will_be_snapshoted); 659 smp_mb__after_atomic(); 660 btrfs_wait_for_no_snapshoting_writes(root); 661 662 ret = btrfs_start_delalloc_inodes(root, 0); 663 if (ret) 664 goto out; 665 666 btrfs_wait_ordered_extents(root, -1); 667 668 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 669 if (!pending_snapshot) { 670 ret = -ENOMEM; 671 goto out; 672 } 673 674 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 675 BTRFS_BLOCK_RSV_TEMP); 676 /* 677 * 1 - parent dir inode 678 * 2 - dir entries 679 * 1 - root item 680 * 2 - root ref/backref 681 * 1 - root of snapshot 682 * 1 - UUID item 683 */ 684 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 685 &pending_snapshot->block_rsv, 8, 686 &pending_snapshot->qgroup_reserved, 687 false); 688 if (ret) 689 goto free; 690 691 pending_snapshot->dentry = dentry; 692 pending_snapshot->root = root; 693 pending_snapshot->readonly = readonly; 694 pending_snapshot->dir = dir; 695 pending_snapshot->inherit = inherit; 696 697 trans = btrfs_start_transaction(root, 0); 698 if (IS_ERR(trans)) { 699 ret = PTR_ERR(trans); 700 goto fail; 701 } 702 703 spin_lock(&root->fs_info->trans_lock); 704 list_add(&pending_snapshot->list, 705 &trans->transaction->pending_snapshots); 706 spin_unlock(&root->fs_info->trans_lock); 707 if (async_transid) { 708 *async_transid = trans->transid; 709 ret = btrfs_commit_transaction_async(trans, 710 root->fs_info->extent_root, 1); 711 if (ret) 712 ret = btrfs_commit_transaction(trans, root); 713 } else { 714 ret = btrfs_commit_transaction(trans, 715 root->fs_info->extent_root); 716 } 717 if (ret) 718 goto fail; 719 720 ret = pending_snapshot->error; 721 if (ret) 722 goto fail; 723 724 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 725 if (ret) 726 goto fail; 727 728 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 729 if (IS_ERR(inode)) { 730 ret = PTR_ERR(inode); 731 goto fail; 732 } 733 734 d_instantiate(dentry, inode); 735 ret = 0; 736 fail: 737 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root, 738 &pending_snapshot->block_rsv, 739 pending_snapshot->qgroup_reserved); 740 free: 741 kfree(pending_snapshot); 742 out: 743 if (atomic_dec_and_test(&root->will_be_snapshoted)) 744 wake_up_atomic_t(&root->will_be_snapshoted); 745 return ret; 746 } 747 748 /* copy of may_delete in fs/namei.c() 749 * Check whether we can remove a link victim from directory dir, check 750 * whether the type of victim is right. 751 * 1. We can't do it if dir is read-only (done in permission()) 752 * 2. We should have write and exec permissions on dir 753 * 3. We can't remove anything from append-only dir 754 * 4. We can't do anything with immutable dir (done in permission()) 755 * 5. If the sticky bit on dir is set we should either 756 * a. be owner of dir, or 757 * b. be owner of victim, or 758 * c. have CAP_FOWNER capability 759 * 6. If the victim is append-only or immutable we can't do antyhing with 760 * links pointing to it. 761 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 762 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 763 * 9. We can't remove a root or mountpoint. 764 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 765 * nfs_async_unlink(). 766 */ 767 768 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 769 { 770 int error; 771 772 if (d_really_is_negative(victim)) 773 return -ENOENT; 774 775 BUG_ON(d_inode(victim->d_parent) != dir); 776 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 777 778 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 779 if (error) 780 return error; 781 if (IS_APPEND(dir)) 782 return -EPERM; 783 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 784 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 785 return -EPERM; 786 if (isdir) { 787 if (!d_is_dir(victim)) 788 return -ENOTDIR; 789 if (IS_ROOT(victim)) 790 return -EBUSY; 791 } else if (d_is_dir(victim)) 792 return -EISDIR; 793 if (IS_DEADDIR(dir)) 794 return -ENOENT; 795 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 796 return -EBUSY; 797 return 0; 798 } 799 800 /* copy of may_create in fs/namei.c() */ 801 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 802 { 803 if (d_really_is_positive(child)) 804 return -EEXIST; 805 if (IS_DEADDIR(dir)) 806 return -ENOENT; 807 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 808 } 809 810 /* 811 * Create a new subvolume below @parent. This is largely modeled after 812 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 813 * inside this filesystem so it's quite a bit simpler. 814 */ 815 static noinline int btrfs_mksubvol(struct path *parent, 816 char *name, int namelen, 817 struct btrfs_root *snap_src, 818 u64 *async_transid, bool readonly, 819 struct btrfs_qgroup_inherit *inherit) 820 { 821 struct inode *dir = d_inode(parent->dentry); 822 struct dentry *dentry; 823 int error; 824 825 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 826 if (error == -EINTR) 827 return error; 828 829 dentry = lookup_one_len(name, parent->dentry, namelen); 830 error = PTR_ERR(dentry); 831 if (IS_ERR(dentry)) 832 goto out_unlock; 833 834 error = -EEXIST; 835 if (d_really_is_positive(dentry)) 836 goto out_dput; 837 838 error = btrfs_may_create(dir, dentry); 839 if (error) 840 goto out_dput; 841 842 /* 843 * even if this name doesn't exist, we may get hash collisions. 844 * check for them now when we can safely fail 845 */ 846 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 847 dir->i_ino, name, 848 namelen); 849 if (error) 850 goto out_dput; 851 852 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 853 854 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 855 goto out_up_read; 856 857 if (snap_src) { 858 error = create_snapshot(snap_src, dir, dentry, name, namelen, 859 async_transid, readonly, inherit); 860 } else { 861 error = create_subvol(dir, dentry, name, namelen, 862 async_transid, inherit); 863 } 864 if (!error) 865 fsnotify_mkdir(dir, dentry); 866 out_up_read: 867 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 868 out_dput: 869 dput(dentry); 870 out_unlock: 871 mutex_unlock(&dir->i_mutex); 872 return error; 873 } 874 875 /* 876 * When we're defragging a range, we don't want to kick it off again 877 * if it is really just waiting for delalloc to send it down. 878 * If we find a nice big extent or delalloc range for the bytes in the 879 * file you want to defrag, we return 0 to let you know to skip this 880 * part of the file 881 */ 882 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 883 { 884 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 885 struct extent_map *em = NULL; 886 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 887 u64 end; 888 889 read_lock(&em_tree->lock); 890 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 891 read_unlock(&em_tree->lock); 892 893 if (em) { 894 end = extent_map_end(em); 895 free_extent_map(em); 896 if (end - offset > thresh) 897 return 0; 898 } 899 /* if we already have a nice delalloc here, just stop */ 900 thresh /= 2; 901 end = count_range_bits(io_tree, &offset, offset + thresh, 902 thresh, EXTENT_DELALLOC, 1); 903 if (end >= thresh) 904 return 0; 905 return 1; 906 } 907 908 /* 909 * helper function to walk through a file and find extents 910 * newer than a specific transid, and smaller than thresh. 911 * 912 * This is used by the defragging code to find new and small 913 * extents 914 */ 915 static int find_new_extents(struct btrfs_root *root, 916 struct inode *inode, u64 newer_than, 917 u64 *off, u32 thresh) 918 { 919 struct btrfs_path *path; 920 struct btrfs_key min_key; 921 struct extent_buffer *leaf; 922 struct btrfs_file_extent_item *extent; 923 int type; 924 int ret; 925 u64 ino = btrfs_ino(inode); 926 927 path = btrfs_alloc_path(); 928 if (!path) 929 return -ENOMEM; 930 931 min_key.objectid = ino; 932 min_key.type = BTRFS_EXTENT_DATA_KEY; 933 min_key.offset = *off; 934 935 while (1) { 936 ret = btrfs_search_forward(root, &min_key, path, newer_than); 937 if (ret != 0) 938 goto none; 939 process_slot: 940 if (min_key.objectid != ino) 941 goto none; 942 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 943 goto none; 944 945 leaf = path->nodes[0]; 946 extent = btrfs_item_ptr(leaf, path->slots[0], 947 struct btrfs_file_extent_item); 948 949 type = btrfs_file_extent_type(leaf, extent); 950 if (type == BTRFS_FILE_EXTENT_REG && 951 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 952 check_defrag_in_cache(inode, min_key.offset, thresh)) { 953 *off = min_key.offset; 954 btrfs_free_path(path); 955 return 0; 956 } 957 958 path->slots[0]++; 959 if (path->slots[0] < btrfs_header_nritems(leaf)) { 960 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 961 goto process_slot; 962 } 963 964 if (min_key.offset == (u64)-1) 965 goto none; 966 967 min_key.offset++; 968 btrfs_release_path(path); 969 } 970 none: 971 btrfs_free_path(path); 972 return -ENOENT; 973 } 974 975 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 976 { 977 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 978 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 979 struct extent_map *em; 980 u64 len = PAGE_CACHE_SIZE; 981 982 /* 983 * hopefully we have this extent in the tree already, try without 984 * the full extent lock 985 */ 986 read_lock(&em_tree->lock); 987 em = lookup_extent_mapping(em_tree, start, len); 988 read_unlock(&em_tree->lock); 989 990 if (!em) { 991 struct extent_state *cached = NULL; 992 u64 end = start + len - 1; 993 994 /* get the big lock and read metadata off disk */ 995 lock_extent_bits(io_tree, start, end, 0, &cached); 996 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 997 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 998 999 if (IS_ERR(em)) 1000 return NULL; 1001 } 1002 1003 return em; 1004 } 1005 1006 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1007 { 1008 struct extent_map *next; 1009 bool ret = true; 1010 1011 /* this is the last extent */ 1012 if (em->start + em->len >= i_size_read(inode)) 1013 return false; 1014 1015 next = defrag_lookup_extent(inode, em->start + em->len); 1016 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1017 ret = false; 1018 else if ((em->block_start + em->block_len == next->block_start) && 1019 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024)) 1020 ret = false; 1021 1022 free_extent_map(next); 1023 return ret; 1024 } 1025 1026 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1027 u64 *last_len, u64 *skip, u64 *defrag_end, 1028 int compress) 1029 { 1030 struct extent_map *em; 1031 int ret = 1; 1032 bool next_mergeable = true; 1033 bool prev_mergeable = true; 1034 1035 /* 1036 * make sure that once we start defragging an extent, we keep on 1037 * defragging it 1038 */ 1039 if (start < *defrag_end) 1040 return 1; 1041 1042 *skip = 0; 1043 1044 em = defrag_lookup_extent(inode, start); 1045 if (!em) 1046 return 0; 1047 1048 /* this will cover holes, and inline extents */ 1049 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1050 ret = 0; 1051 goto out; 1052 } 1053 1054 if (!*defrag_end) 1055 prev_mergeable = false; 1056 1057 next_mergeable = defrag_check_next_extent(inode, em); 1058 /* 1059 * we hit a real extent, if it is big or the next extent is not a 1060 * real extent, don't bother defragging it 1061 */ 1062 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1063 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1064 ret = 0; 1065 out: 1066 /* 1067 * last_len ends up being a counter of how many bytes we've defragged. 1068 * every time we choose not to defrag an extent, we reset *last_len 1069 * so that the next tiny extent will force a defrag. 1070 * 1071 * The end result of this is that tiny extents before a single big 1072 * extent will force at least part of that big extent to be defragged. 1073 */ 1074 if (ret) { 1075 *defrag_end = extent_map_end(em); 1076 } else { 1077 *last_len = 0; 1078 *skip = extent_map_end(em); 1079 *defrag_end = 0; 1080 } 1081 1082 free_extent_map(em); 1083 return ret; 1084 } 1085 1086 /* 1087 * it doesn't do much good to defrag one or two pages 1088 * at a time. This pulls in a nice chunk of pages 1089 * to COW and defrag. 1090 * 1091 * It also makes sure the delalloc code has enough 1092 * dirty data to avoid making new small extents as part 1093 * of the defrag 1094 * 1095 * It's a good idea to start RA on this range 1096 * before calling this. 1097 */ 1098 static int cluster_pages_for_defrag(struct inode *inode, 1099 struct page **pages, 1100 unsigned long start_index, 1101 unsigned long num_pages) 1102 { 1103 unsigned long file_end; 1104 u64 isize = i_size_read(inode); 1105 u64 page_start; 1106 u64 page_end; 1107 u64 page_cnt; 1108 int ret; 1109 int i; 1110 int i_done; 1111 struct btrfs_ordered_extent *ordered; 1112 struct extent_state *cached_state = NULL; 1113 struct extent_io_tree *tree; 1114 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1115 1116 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 1117 if (!isize || start_index > file_end) 1118 return 0; 1119 1120 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1121 1122 ret = btrfs_delalloc_reserve_space(inode, 1123 page_cnt << PAGE_CACHE_SHIFT); 1124 if (ret) 1125 return ret; 1126 i_done = 0; 1127 tree = &BTRFS_I(inode)->io_tree; 1128 1129 /* step one, lock all the pages */ 1130 for (i = 0; i < page_cnt; i++) { 1131 struct page *page; 1132 again: 1133 page = find_or_create_page(inode->i_mapping, 1134 start_index + i, mask); 1135 if (!page) 1136 break; 1137 1138 page_start = page_offset(page); 1139 page_end = page_start + PAGE_CACHE_SIZE - 1; 1140 while (1) { 1141 lock_extent_bits(tree, page_start, page_end, 1142 0, &cached_state); 1143 ordered = btrfs_lookup_ordered_extent(inode, 1144 page_start); 1145 unlock_extent_cached(tree, page_start, page_end, 1146 &cached_state, GFP_NOFS); 1147 if (!ordered) 1148 break; 1149 1150 unlock_page(page); 1151 btrfs_start_ordered_extent(inode, ordered, 1); 1152 btrfs_put_ordered_extent(ordered); 1153 lock_page(page); 1154 /* 1155 * we unlocked the page above, so we need check if 1156 * it was released or not. 1157 */ 1158 if (page->mapping != inode->i_mapping) { 1159 unlock_page(page); 1160 page_cache_release(page); 1161 goto again; 1162 } 1163 } 1164 1165 if (!PageUptodate(page)) { 1166 btrfs_readpage(NULL, page); 1167 lock_page(page); 1168 if (!PageUptodate(page)) { 1169 unlock_page(page); 1170 page_cache_release(page); 1171 ret = -EIO; 1172 break; 1173 } 1174 } 1175 1176 if (page->mapping != inode->i_mapping) { 1177 unlock_page(page); 1178 page_cache_release(page); 1179 goto again; 1180 } 1181 1182 pages[i] = page; 1183 i_done++; 1184 } 1185 if (!i_done || ret) 1186 goto out; 1187 1188 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1189 goto out; 1190 1191 /* 1192 * so now we have a nice long stream of locked 1193 * and up to date pages, lets wait on them 1194 */ 1195 for (i = 0; i < i_done; i++) 1196 wait_on_page_writeback(pages[i]); 1197 1198 page_start = page_offset(pages[0]); 1199 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 1200 1201 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1202 page_start, page_end - 1, 0, &cached_state); 1203 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1204 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1205 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1206 &cached_state, GFP_NOFS); 1207 1208 if (i_done != page_cnt) { 1209 spin_lock(&BTRFS_I(inode)->lock); 1210 BTRFS_I(inode)->outstanding_extents++; 1211 spin_unlock(&BTRFS_I(inode)->lock); 1212 btrfs_delalloc_release_space(inode, 1213 (page_cnt - i_done) << PAGE_CACHE_SHIFT); 1214 } 1215 1216 1217 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1218 &cached_state, GFP_NOFS); 1219 1220 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1221 page_start, page_end - 1, &cached_state, 1222 GFP_NOFS); 1223 1224 for (i = 0; i < i_done; i++) { 1225 clear_page_dirty_for_io(pages[i]); 1226 ClearPageChecked(pages[i]); 1227 set_page_extent_mapped(pages[i]); 1228 set_page_dirty(pages[i]); 1229 unlock_page(pages[i]); 1230 page_cache_release(pages[i]); 1231 } 1232 return i_done; 1233 out: 1234 for (i = 0; i < i_done; i++) { 1235 unlock_page(pages[i]); 1236 page_cache_release(pages[i]); 1237 } 1238 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT); 1239 return ret; 1240 1241 } 1242 1243 int btrfs_defrag_file(struct inode *inode, struct file *file, 1244 struct btrfs_ioctl_defrag_range_args *range, 1245 u64 newer_than, unsigned long max_to_defrag) 1246 { 1247 struct btrfs_root *root = BTRFS_I(inode)->root; 1248 struct file_ra_state *ra = NULL; 1249 unsigned long last_index; 1250 u64 isize = i_size_read(inode); 1251 u64 last_len = 0; 1252 u64 skip = 0; 1253 u64 defrag_end = 0; 1254 u64 newer_off = range->start; 1255 unsigned long i; 1256 unsigned long ra_index = 0; 1257 int ret; 1258 int defrag_count = 0; 1259 int compress_type = BTRFS_COMPRESS_ZLIB; 1260 u32 extent_thresh = range->extent_thresh; 1261 unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 1262 unsigned long cluster = max_cluster; 1263 u64 new_align = ~((u64)128 * 1024 - 1); 1264 struct page **pages = NULL; 1265 1266 if (isize == 0) 1267 return 0; 1268 1269 if (range->start >= isize) 1270 return -EINVAL; 1271 1272 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1273 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1274 return -EINVAL; 1275 if (range->compress_type) 1276 compress_type = range->compress_type; 1277 } 1278 1279 if (extent_thresh == 0) 1280 extent_thresh = 256 * 1024; 1281 1282 /* 1283 * if we were not given a file, allocate a readahead 1284 * context 1285 */ 1286 if (!file) { 1287 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1288 if (!ra) 1289 return -ENOMEM; 1290 file_ra_state_init(ra, inode->i_mapping); 1291 } else { 1292 ra = &file->f_ra; 1293 } 1294 1295 pages = kmalloc_array(max_cluster, sizeof(struct page *), 1296 GFP_NOFS); 1297 if (!pages) { 1298 ret = -ENOMEM; 1299 goto out_ra; 1300 } 1301 1302 /* find the last page to defrag */ 1303 if (range->start + range->len > range->start) { 1304 last_index = min_t(u64, isize - 1, 1305 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1306 } else { 1307 last_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1308 } 1309 1310 if (newer_than) { 1311 ret = find_new_extents(root, inode, newer_than, 1312 &newer_off, 64 * 1024); 1313 if (!ret) { 1314 range->start = newer_off; 1315 /* 1316 * we always align our defrag to help keep 1317 * the extents in the file evenly spaced 1318 */ 1319 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1320 } else 1321 goto out_ra; 1322 } else { 1323 i = range->start >> PAGE_CACHE_SHIFT; 1324 } 1325 if (!max_to_defrag) 1326 max_to_defrag = last_index - i + 1; 1327 1328 /* 1329 * make writeback starts from i, so the defrag range can be 1330 * written sequentially. 1331 */ 1332 if (i < inode->i_mapping->writeback_index) 1333 inode->i_mapping->writeback_index = i; 1334 1335 while (i <= last_index && defrag_count < max_to_defrag && 1336 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) { 1337 /* 1338 * make sure we stop running if someone unmounts 1339 * the FS 1340 */ 1341 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1342 break; 1343 1344 if (btrfs_defrag_cancelled(root->fs_info)) { 1345 printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n"); 1346 ret = -EAGAIN; 1347 break; 1348 } 1349 1350 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1351 extent_thresh, &last_len, &skip, 1352 &defrag_end, range->flags & 1353 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1354 unsigned long next; 1355 /* 1356 * the should_defrag function tells us how much to skip 1357 * bump our counter by the suggested amount 1358 */ 1359 next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE); 1360 i = max(i + 1, next); 1361 continue; 1362 } 1363 1364 if (!newer_than) { 1365 cluster = (PAGE_CACHE_ALIGN(defrag_end) >> 1366 PAGE_CACHE_SHIFT) - i; 1367 cluster = min(cluster, max_cluster); 1368 } else { 1369 cluster = max_cluster; 1370 } 1371 1372 if (i + cluster > ra_index) { 1373 ra_index = max(i, ra_index); 1374 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1375 cluster); 1376 ra_index += cluster; 1377 } 1378 1379 mutex_lock(&inode->i_mutex); 1380 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1381 BTRFS_I(inode)->force_compress = compress_type; 1382 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1383 if (ret < 0) { 1384 mutex_unlock(&inode->i_mutex); 1385 goto out_ra; 1386 } 1387 1388 defrag_count += ret; 1389 balance_dirty_pages_ratelimited(inode->i_mapping); 1390 mutex_unlock(&inode->i_mutex); 1391 1392 if (newer_than) { 1393 if (newer_off == (u64)-1) 1394 break; 1395 1396 if (ret > 0) 1397 i += ret; 1398 1399 newer_off = max(newer_off + 1, 1400 (u64)i << PAGE_CACHE_SHIFT); 1401 1402 ret = find_new_extents(root, inode, 1403 newer_than, &newer_off, 1404 64 * 1024); 1405 if (!ret) { 1406 range->start = newer_off; 1407 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1408 } else { 1409 break; 1410 } 1411 } else { 1412 if (ret > 0) { 1413 i += ret; 1414 last_len += ret << PAGE_CACHE_SHIFT; 1415 } else { 1416 i++; 1417 last_len = 0; 1418 } 1419 } 1420 } 1421 1422 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1423 filemap_flush(inode->i_mapping); 1424 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1425 &BTRFS_I(inode)->runtime_flags)) 1426 filemap_flush(inode->i_mapping); 1427 } 1428 1429 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1430 /* the filemap_flush will queue IO into the worker threads, but 1431 * we have to make sure the IO is actually started and that 1432 * ordered extents get created before we return 1433 */ 1434 atomic_inc(&root->fs_info->async_submit_draining); 1435 while (atomic_read(&root->fs_info->nr_async_submits) || 1436 atomic_read(&root->fs_info->async_delalloc_pages)) { 1437 wait_event(root->fs_info->async_submit_wait, 1438 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1439 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1440 } 1441 atomic_dec(&root->fs_info->async_submit_draining); 1442 } 1443 1444 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1445 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1446 } 1447 1448 ret = defrag_count; 1449 1450 out_ra: 1451 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1452 mutex_lock(&inode->i_mutex); 1453 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1454 mutex_unlock(&inode->i_mutex); 1455 } 1456 if (!file) 1457 kfree(ra); 1458 kfree(pages); 1459 return ret; 1460 } 1461 1462 static noinline int btrfs_ioctl_resize(struct file *file, 1463 void __user *arg) 1464 { 1465 u64 new_size; 1466 u64 old_size; 1467 u64 devid = 1; 1468 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 1469 struct btrfs_ioctl_vol_args *vol_args; 1470 struct btrfs_trans_handle *trans; 1471 struct btrfs_device *device = NULL; 1472 char *sizestr; 1473 char *retptr; 1474 char *devstr = NULL; 1475 int ret = 0; 1476 int mod = 0; 1477 1478 if (!capable(CAP_SYS_ADMIN)) 1479 return -EPERM; 1480 1481 ret = mnt_want_write_file(file); 1482 if (ret) 1483 return ret; 1484 1485 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 1486 1)) { 1487 mnt_drop_write_file(file); 1488 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1489 } 1490 1491 mutex_lock(&root->fs_info->volume_mutex); 1492 vol_args = memdup_user(arg, sizeof(*vol_args)); 1493 if (IS_ERR(vol_args)) { 1494 ret = PTR_ERR(vol_args); 1495 goto out; 1496 } 1497 1498 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1499 1500 sizestr = vol_args->name; 1501 devstr = strchr(sizestr, ':'); 1502 if (devstr) { 1503 sizestr = devstr + 1; 1504 *devstr = '\0'; 1505 devstr = vol_args->name; 1506 ret = kstrtoull(devstr, 10, &devid); 1507 if (ret) 1508 goto out_free; 1509 if (!devid) { 1510 ret = -EINVAL; 1511 goto out_free; 1512 } 1513 btrfs_info(root->fs_info, "resizing devid %llu", devid); 1514 } 1515 1516 device = btrfs_find_device(root->fs_info, devid, NULL, NULL); 1517 if (!device) { 1518 btrfs_info(root->fs_info, "resizer unable to find device %llu", 1519 devid); 1520 ret = -ENODEV; 1521 goto out_free; 1522 } 1523 1524 if (!device->writeable) { 1525 btrfs_info(root->fs_info, 1526 "resizer unable to apply on readonly device %llu", 1527 devid); 1528 ret = -EPERM; 1529 goto out_free; 1530 } 1531 1532 if (!strcmp(sizestr, "max")) 1533 new_size = device->bdev->bd_inode->i_size; 1534 else { 1535 if (sizestr[0] == '-') { 1536 mod = -1; 1537 sizestr++; 1538 } else if (sizestr[0] == '+') { 1539 mod = 1; 1540 sizestr++; 1541 } 1542 new_size = memparse(sizestr, &retptr); 1543 if (*retptr != '\0' || new_size == 0) { 1544 ret = -EINVAL; 1545 goto out_free; 1546 } 1547 } 1548 1549 if (device->is_tgtdev_for_dev_replace) { 1550 ret = -EPERM; 1551 goto out_free; 1552 } 1553 1554 old_size = btrfs_device_get_total_bytes(device); 1555 1556 if (mod < 0) { 1557 if (new_size > old_size) { 1558 ret = -EINVAL; 1559 goto out_free; 1560 } 1561 new_size = old_size - new_size; 1562 } else if (mod > 0) { 1563 if (new_size > ULLONG_MAX - old_size) { 1564 ret = -ERANGE; 1565 goto out_free; 1566 } 1567 new_size = old_size + new_size; 1568 } 1569 1570 if (new_size < 256 * 1024 * 1024) { 1571 ret = -EINVAL; 1572 goto out_free; 1573 } 1574 if (new_size > device->bdev->bd_inode->i_size) { 1575 ret = -EFBIG; 1576 goto out_free; 1577 } 1578 1579 new_size = div_u64(new_size, root->sectorsize); 1580 new_size *= root->sectorsize; 1581 1582 printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n", 1583 rcu_str_deref(device->name), new_size); 1584 1585 if (new_size > old_size) { 1586 trans = btrfs_start_transaction(root, 0); 1587 if (IS_ERR(trans)) { 1588 ret = PTR_ERR(trans); 1589 goto out_free; 1590 } 1591 ret = btrfs_grow_device(trans, device, new_size); 1592 btrfs_commit_transaction(trans, root); 1593 } else if (new_size < old_size) { 1594 ret = btrfs_shrink_device(device, new_size); 1595 } /* equal, nothing need to do */ 1596 1597 out_free: 1598 kfree(vol_args); 1599 out: 1600 mutex_unlock(&root->fs_info->volume_mutex); 1601 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 1602 mnt_drop_write_file(file); 1603 return ret; 1604 } 1605 1606 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1607 char *name, unsigned long fd, int subvol, 1608 u64 *transid, bool readonly, 1609 struct btrfs_qgroup_inherit *inherit) 1610 { 1611 int namelen; 1612 int ret = 0; 1613 1614 ret = mnt_want_write_file(file); 1615 if (ret) 1616 goto out; 1617 1618 namelen = strlen(name); 1619 if (strchr(name, '/')) { 1620 ret = -EINVAL; 1621 goto out_drop_write; 1622 } 1623 1624 if (name[0] == '.' && 1625 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1626 ret = -EEXIST; 1627 goto out_drop_write; 1628 } 1629 1630 if (subvol) { 1631 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1632 NULL, transid, readonly, inherit); 1633 } else { 1634 struct fd src = fdget(fd); 1635 struct inode *src_inode; 1636 if (!src.file) { 1637 ret = -EINVAL; 1638 goto out_drop_write; 1639 } 1640 1641 src_inode = file_inode(src.file); 1642 if (src_inode->i_sb != file_inode(file)->i_sb) { 1643 btrfs_info(BTRFS_I(src_inode)->root->fs_info, 1644 "Snapshot src from another FS"); 1645 ret = -EXDEV; 1646 } else if (!inode_owner_or_capable(src_inode)) { 1647 /* 1648 * Subvolume creation is not restricted, but snapshots 1649 * are limited to own subvolumes only 1650 */ 1651 ret = -EPERM; 1652 } else { 1653 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1654 BTRFS_I(src_inode)->root, 1655 transid, readonly, inherit); 1656 } 1657 fdput(src); 1658 } 1659 out_drop_write: 1660 mnt_drop_write_file(file); 1661 out: 1662 return ret; 1663 } 1664 1665 static noinline int btrfs_ioctl_snap_create(struct file *file, 1666 void __user *arg, int subvol) 1667 { 1668 struct btrfs_ioctl_vol_args *vol_args; 1669 int ret; 1670 1671 vol_args = memdup_user(arg, sizeof(*vol_args)); 1672 if (IS_ERR(vol_args)) 1673 return PTR_ERR(vol_args); 1674 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1675 1676 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1677 vol_args->fd, subvol, 1678 NULL, false, NULL); 1679 1680 kfree(vol_args); 1681 return ret; 1682 } 1683 1684 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1685 void __user *arg, int subvol) 1686 { 1687 struct btrfs_ioctl_vol_args_v2 *vol_args; 1688 int ret; 1689 u64 transid = 0; 1690 u64 *ptr = NULL; 1691 bool readonly = false; 1692 struct btrfs_qgroup_inherit *inherit = NULL; 1693 1694 vol_args = memdup_user(arg, sizeof(*vol_args)); 1695 if (IS_ERR(vol_args)) 1696 return PTR_ERR(vol_args); 1697 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1698 1699 if (vol_args->flags & 1700 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1701 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1702 ret = -EOPNOTSUPP; 1703 goto free_args; 1704 } 1705 1706 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1707 ptr = &transid; 1708 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1709 readonly = true; 1710 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1711 if (vol_args->size > PAGE_CACHE_SIZE) { 1712 ret = -EINVAL; 1713 goto free_args; 1714 } 1715 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1716 if (IS_ERR(inherit)) { 1717 ret = PTR_ERR(inherit); 1718 goto free_args; 1719 } 1720 } 1721 1722 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1723 vol_args->fd, subvol, ptr, 1724 readonly, inherit); 1725 if (ret) 1726 goto free_inherit; 1727 1728 if (ptr && copy_to_user(arg + 1729 offsetof(struct btrfs_ioctl_vol_args_v2, 1730 transid), 1731 ptr, sizeof(*ptr))) 1732 ret = -EFAULT; 1733 1734 free_inherit: 1735 kfree(inherit); 1736 free_args: 1737 kfree(vol_args); 1738 return ret; 1739 } 1740 1741 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1742 void __user *arg) 1743 { 1744 struct inode *inode = file_inode(file); 1745 struct btrfs_root *root = BTRFS_I(inode)->root; 1746 int ret = 0; 1747 u64 flags = 0; 1748 1749 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1750 return -EINVAL; 1751 1752 down_read(&root->fs_info->subvol_sem); 1753 if (btrfs_root_readonly(root)) 1754 flags |= BTRFS_SUBVOL_RDONLY; 1755 up_read(&root->fs_info->subvol_sem); 1756 1757 if (copy_to_user(arg, &flags, sizeof(flags))) 1758 ret = -EFAULT; 1759 1760 return ret; 1761 } 1762 1763 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1764 void __user *arg) 1765 { 1766 struct inode *inode = file_inode(file); 1767 struct btrfs_root *root = BTRFS_I(inode)->root; 1768 struct btrfs_trans_handle *trans; 1769 u64 root_flags; 1770 u64 flags; 1771 int ret = 0; 1772 1773 if (!inode_owner_or_capable(inode)) 1774 return -EPERM; 1775 1776 ret = mnt_want_write_file(file); 1777 if (ret) 1778 goto out; 1779 1780 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1781 ret = -EINVAL; 1782 goto out_drop_write; 1783 } 1784 1785 if (copy_from_user(&flags, arg, sizeof(flags))) { 1786 ret = -EFAULT; 1787 goto out_drop_write; 1788 } 1789 1790 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1791 ret = -EINVAL; 1792 goto out_drop_write; 1793 } 1794 1795 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1796 ret = -EOPNOTSUPP; 1797 goto out_drop_write; 1798 } 1799 1800 down_write(&root->fs_info->subvol_sem); 1801 1802 /* nothing to do */ 1803 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1804 goto out_drop_sem; 1805 1806 root_flags = btrfs_root_flags(&root->root_item); 1807 if (flags & BTRFS_SUBVOL_RDONLY) { 1808 btrfs_set_root_flags(&root->root_item, 1809 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1810 } else { 1811 /* 1812 * Block RO -> RW transition if this subvolume is involved in 1813 * send 1814 */ 1815 spin_lock(&root->root_item_lock); 1816 if (root->send_in_progress == 0) { 1817 btrfs_set_root_flags(&root->root_item, 1818 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1819 spin_unlock(&root->root_item_lock); 1820 } else { 1821 spin_unlock(&root->root_item_lock); 1822 btrfs_warn(root->fs_info, 1823 "Attempt to set subvolume %llu read-write during send", 1824 root->root_key.objectid); 1825 ret = -EPERM; 1826 goto out_drop_sem; 1827 } 1828 } 1829 1830 trans = btrfs_start_transaction(root, 1); 1831 if (IS_ERR(trans)) { 1832 ret = PTR_ERR(trans); 1833 goto out_reset; 1834 } 1835 1836 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1837 &root->root_key, &root->root_item); 1838 1839 btrfs_commit_transaction(trans, root); 1840 out_reset: 1841 if (ret) 1842 btrfs_set_root_flags(&root->root_item, root_flags); 1843 out_drop_sem: 1844 up_write(&root->fs_info->subvol_sem); 1845 out_drop_write: 1846 mnt_drop_write_file(file); 1847 out: 1848 return ret; 1849 } 1850 1851 /* 1852 * helper to check if the subvolume references other subvolumes 1853 */ 1854 static noinline int may_destroy_subvol(struct btrfs_root *root) 1855 { 1856 struct btrfs_path *path; 1857 struct btrfs_dir_item *di; 1858 struct btrfs_key key; 1859 u64 dir_id; 1860 int ret; 1861 1862 path = btrfs_alloc_path(); 1863 if (!path) 1864 return -ENOMEM; 1865 1866 /* Make sure this root isn't set as the default subvol */ 1867 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 1868 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path, 1869 dir_id, "default", 7, 0); 1870 if (di && !IS_ERR(di)) { 1871 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1872 if (key.objectid == root->root_key.objectid) { 1873 ret = -EPERM; 1874 btrfs_err(root->fs_info, "deleting default subvolume " 1875 "%llu is not allowed", key.objectid); 1876 goto out; 1877 } 1878 btrfs_release_path(path); 1879 } 1880 1881 key.objectid = root->root_key.objectid; 1882 key.type = BTRFS_ROOT_REF_KEY; 1883 key.offset = (u64)-1; 1884 1885 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1886 &key, path, 0, 0); 1887 if (ret < 0) 1888 goto out; 1889 BUG_ON(ret == 0); 1890 1891 ret = 0; 1892 if (path->slots[0] > 0) { 1893 path->slots[0]--; 1894 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1895 if (key.objectid == root->root_key.objectid && 1896 key.type == BTRFS_ROOT_REF_KEY) 1897 ret = -ENOTEMPTY; 1898 } 1899 out: 1900 btrfs_free_path(path); 1901 return ret; 1902 } 1903 1904 static noinline int key_in_sk(struct btrfs_key *key, 1905 struct btrfs_ioctl_search_key *sk) 1906 { 1907 struct btrfs_key test; 1908 int ret; 1909 1910 test.objectid = sk->min_objectid; 1911 test.type = sk->min_type; 1912 test.offset = sk->min_offset; 1913 1914 ret = btrfs_comp_cpu_keys(key, &test); 1915 if (ret < 0) 1916 return 0; 1917 1918 test.objectid = sk->max_objectid; 1919 test.type = sk->max_type; 1920 test.offset = sk->max_offset; 1921 1922 ret = btrfs_comp_cpu_keys(key, &test); 1923 if (ret > 0) 1924 return 0; 1925 return 1; 1926 } 1927 1928 static noinline int copy_to_sk(struct btrfs_root *root, 1929 struct btrfs_path *path, 1930 struct btrfs_key *key, 1931 struct btrfs_ioctl_search_key *sk, 1932 size_t *buf_size, 1933 char __user *ubuf, 1934 unsigned long *sk_offset, 1935 int *num_found) 1936 { 1937 u64 found_transid; 1938 struct extent_buffer *leaf; 1939 struct btrfs_ioctl_search_header sh; 1940 struct btrfs_key test; 1941 unsigned long item_off; 1942 unsigned long item_len; 1943 int nritems; 1944 int i; 1945 int slot; 1946 int ret = 0; 1947 1948 leaf = path->nodes[0]; 1949 slot = path->slots[0]; 1950 nritems = btrfs_header_nritems(leaf); 1951 1952 if (btrfs_header_generation(leaf) > sk->max_transid) { 1953 i = nritems; 1954 goto advance_key; 1955 } 1956 found_transid = btrfs_header_generation(leaf); 1957 1958 for (i = slot; i < nritems; i++) { 1959 item_off = btrfs_item_ptr_offset(leaf, i); 1960 item_len = btrfs_item_size_nr(leaf, i); 1961 1962 btrfs_item_key_to_cpu(leaf, key, i); 1963 if (!key_in_sk(key, sk)) 1964 continue; 1965 1966 if (sizeof(sh) + item_len > *buf_size) { 1967 if (*num_found) { 1968 ret = 1; 1969 goto out; 1970 } 1971 1972 /* 1973 * return one empty item back for v1, which does not 1974 * handle -EOVERFLOW 1975 */ 1976 1977 *buf_size = sizeof(sh) + item_len; 1978 item_len = 0; 1979 ret = -EOVERFLOW; 1980 } 1981 1982 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1983 ret = 1; 1984 goto out; 1985 } 1986 1987 sh.objectid = key->objectid; 1988 sh.offset = key->offset; 1989 sh.type = key->type; 1990 sh.len = item_len; 1991 sh.transid = found_transid; 1992 1993 /* copy search result header */ 1994 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 1995 ret = -EFAULT; 1996 goto out; 1997 } 1998 1999 *sk_offset += sizeof(sh); 2000 2001 if (item_len) { 2002 char __user *up = ubuf + *sk_offset; 2003 /* copy the item */ 2004 if (read_extent_buffer_to_user(leaf, up, 2005 item_off, item_len)) { 2006 ret = -EFAULT; 2007 goto out; 2008 } 2009 2010 *sk_offset += item_len; 2011 } 2012 (*num_found)++; 2013 2014 if (ret) /* -EOVERFLOW from above */ 2015 goto out; 2016 2017 if (*num_found >= sk->nr_items) { 2018 ret = 1; 2019 goto out; 2020 } 2021 } 2022 advance_key: 2023 ret = 0; 2024 test.objectid = sk->max_objectid; 2025 test.type = sk->max_type; 2026 test.offset = sk->max_offset; 2027 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2028 ret = 1; 2029 else if (key->offset < (u64)-1) 2030 key->offset++; 2031 else if (key->type < (u8)-1) { 2032 key->offset = 0; 2033 key->type++; 2034 } else if (key->objectid < (u64)-1) { 2035 key->offset = 0; 2036 key->type = 0; 2037 key->objectid++; 2038 } else 2039 ret = 1; 2040 out: 2041 /* 2042 * 0: all items from this leaf copied, continue with next 2043 * 1: * more items can be copied, but unused buffer is too small 2044 * * all items were found 2045 * Either way, it will stops the loop which iterates to the next 2046 * leaf 2047 * -EOVERFLOW: item was to large for buffer 2048 * -EFAULT: could not copy extent buffer back to userspace 2049 */ 2050 return ret; 2051 } 2052 2053 static noinline int search_ioctl(struct inode *inode, 2054 struct btrfs_ioctl_search_key *sk, 2055 size_t *buf_size, 2056 char __user *ubuf) 2057 { 2058 struct btrfs_root *root; 2059 struct btrfs_key key; 2060 struct btrfs_path *path; 2061 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 2062 int ret; 2063 int num_found = 0; 2064 unsigned long sk_offset = 0; 2065 2066 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2067 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2068 return -EOVERFLOW; 2069 } 2070 2071 path = btrfs_alloc_path(); 2072 if (!path) 2073 return -ENOMEM; 2074 2075 if (sk->tree_id == 0) { 2076 /* search the root of the inode that was passed */ 2077 root = BTRFS_I(inode)->root; 2078 } else { 2079 key.objectid = sk->tree_id; 2080 key.type = BTRFS_ROOT_ITEM_KEY; 2081 key.offset = (u64)-1; 2082 root = btrfs_read_fs_root_no_name(info, &key); 2083 if (IS_ERR(root)) { 2084 printk(KERN_ERR "BTRFS: could not find root %llu\n", 2085 sk->tree_id); 2086 btrfs_free_path(path); 2087 return -ENOENT; 2088 } 2089 } 2090 2091 key.objectid = sk->min_objectid; 2092 key.type = sk->min_type; 2093 key.offset = sk->min_offset; 2094 2095 while (1) { 2096 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2097 if (ret != 0) { 2098 if (ret > 0) 2099 ret = 0; 2100 goto err; 2101 } 2102 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf, 2103 &sk_offset, &num_found); 2104 btrfs_release_path(path); 2105 if (ret) 2106 break; 2107 2108 } 2109 if (ret > 0) 2110 ret = 0; 2111 err: 2112 sk->nr_items = num_found; 2113 btrfs_free_path(path); 2114 return ret; 2115 } 2116 2117 static noinline int btrfs_ioctl_tree_search(struct file *file, 2118 void __user *argp) 2119 { 2120 struct btrfs_ioctl_search_args __user *uargs; 2121 struct btrfs_ioctl_search_key sk; 2122 struct inode *inode; 2123 int ret; 2124 size_t buf_size; 2125 2126 if (!capable(CAP_SYS_ADMIN)) 2127 return -EPERM; 2128 2129 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2130 2131 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2132 return -EFAULT; 2133 2134 buf_size = sizeof(uargs->buf); 2135 2136 inode = file_inode(file); 2137 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2138 2139 /* 2140 * In the origin implementation an overflow is handled by returning a 2141 * search header with a len of zero, so reset ret. 2142 */ 2143 if (ret == -EOVERFLOW) 2144 ret = 0; 2145 2146 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2147 ret = -EFAULT; 2148 return ret; 2149 } 2150 2151 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2152 void __user *argp) 2153 { 2154 struct btrfs_ioctl_search_args_v2 __user *uarg; 2155 struct btrfs_ioctl_search_args_v2 args; 2156 struct inode *inode; 2157 int ret; 2158 size_t buf_size; 2159 const size_t buf_limit = 16 * 1024 * 1024; 2160 2161 if (!capable(CAP_SYS_ADMIN)) 2162 return -EPERM; 2163 2164 /* copy search header and buffer size */ 2165 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2166 if (copy_from_user(&args, uarg, sizeof(args))) 2167 return -EFAULT; 2168 2169 buf_size = args.buf_size; 2170 2171 if (buf_size < sizeof(struct btrfs_ioctl_search_header)) 2172 return -EOVERFLOW; 2173 2174 /* limit result size to 16MB */ 2175 if (buf_size > buf_limit) 2176 buf_size = buf_limit; 2177 2178 inode = file_inode(file); 2179 ret = search_ioctl(inode, &args.key, &buf_size, 2180 (char *)(&uarg->buf[0])); 2181 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2182 ret = -EFAULT; 2183 else if (ret == -EOVERFLOW && 2184 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2185 ret = -EFAULT; 2186 2187 return ret; 2188 } 2189 2190 /* 2191 * Search INODE_REFs to identify path name of 'dirid' directory 2192 * in a 'tree_id' tree. and sets path name to 'name'. 2193 */ 2194 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2195 u64 tree_id, u64 dirid, char *name) 2196 { 2197 struct btrfs_root *root; 2198 struct btrfs_key key; 2199 char *ptr; 2200 int ret = -1; 2201 int slot; 2202 int len; 2203 int total_len = 0; 2204 struct btrfs_inode_ref *iref; 2205 struct extent_buffer *l; 2206 struct btrfs_path *path; 2207 2208 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2209 name[0]='\0'; 2210 return 0; 2211 } 2212 2213 path = btrfs_alloc_path(); 2214 if (!path) 2215 return -ENOMEM; 2216 2217 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2218 2219 key.objectid = tree_id; 2220 key.type = BTRFS_ROOT_ITEM_KEY; 2221 key.offset = (u64)-1; 2222 root = btrfs_read_fs_root_no_name(info, &key); 2223 if (IS_ERR(root)) { 2224 printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id); 2225 ret = -ENOENT; 2226 goto out; 2227 } 2228 2229 key.objectid = dirid; 2230 key.type = BTRFS_INODE_REF_KEY; 2231 key.offset = (u64)-1; 2232 2233 while (1) { 2234 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2235 if (ret < 0) 2236 goto out; 2237 else if (ret > 0) { 2238 ret = btrfs_previous_item(root, path, dirid, 2239 BTRFS_INODE_REF_KEY); 2240 if (ret < 0) 2241 goto out; 2242 else if (ret > 0) { 2243 ret = -ENOENT; 2244 goto out; 2245 } 2246 } 2247 2248 l = path->nodes[0]; 2249 slot = path->slots[0]; 2250 btrfs_item_key_to_cpu(l, &key, slot); 2251 2252 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2253 len = btrfs_inode_ref_name_len(l, iref); 2254 ptr -= len + 1; 2255 total_len += len + 1; 2256 if (ptr < name) { 2257 ret = -ENAMETOOLONG; 2258 goto out; 2259 } 2260 2261 *(ptr + len) = '/'; 2262 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2263 2264 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2265 break; 2266 2267 btrfs_release_path(path); 2268 key.objectid = key.offset; 2269 key.offset = (u64)-1; 2270 dirid = key.objectid; 2271 } 2272 memmove(name, ptr, total_len); 2273 name[total_len] = '\0'; 2274 ret = 0; 2275 out: 2276 btrfs_free_path(path); 2277 return ret; 2278 } 2279 2280 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2281 void __user *argp) 2282 { 2283 struct btrfs_ioctl_ino_lookup_args *args; 2284 struct inode *inode; 2285 int ret = 0; 2286 2287 args = memdup_user(argp, sizeof(*args)); 2288 if (IS_ERR(args)) 2289 return PTR_ERR(args); 2290 2291 inode = file_inode(file); 2292 2293 /* 2294 * Unprivileged query to obtain the containing subvolume root id. The 2295 * path is reset so it's consistent with btrfs_search_path_in_tree. 2296 */ 2297 if (args->treeid == 0) 2298 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2299 2300 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2301 args->name[0] = 0; 2302 goto out; 2303 } 2304 2305 if (!capable(CAP_SYS_ADMIN)) { 2306 ret = -EPERM; 2307 goto out; 2308 } 2309 2310 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2311 args->treeid, args->objectid, 2312 args->name); 2313 2314 out: 2315 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2316 ret = -EFAULT; 2317 2318 kfree(args); 2319 return ret; 2320 } 2321 2322 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2323 void __user *arg) 2324 { 2325 struct dentry *parent = file->f_path.dentry; 2326 struct dentry *dentry; 2327 struct inode *dir = d_inode(parent); 2328 struct inode *inode; 2329 struct btrfs_root *root = BTRFS_I(dir)->root; 2330 struct btrfs_root *dest = NULL; 2331 struct btrfs_ioctl_vol_args *vol_args; 2332 struct btrfs_trans_handle *trans; 2333 struct btrfs_block_rsv block_rsv; 2334 u64 root_flags; 2335 u64 qgroup_reserved; 2336 int namelen; 2337 int ret; 2338 int err = 0; 2339 2340 vol_args = memdup_user(arg, sizeof(*vol_args)); 2341 if (IS_ERR(vol_args)) 2342 return PTR_ERR(vol_args); 2343 2344 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2345 namelen = strlen(vol_args->name); 2346 if (strchr(vol_args->name, '/') || 2347 strncmp(vol_args->name, "..", namelen) == 0) { 2348 err = -EINVAL; 2349 goto out; 2350 } 2351 2352 err = mnt_want_write_file(file); 2353 if (err) 2354 goto out; 2355 2356 2357 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 2358 if (err == -EINTR) 2359 goto out_drop_write; 2360 dentry = lookup_one_len(vol_args->name, parent, namelen); 2361 if (IS_ERR(dentry)) { 2362 err = PTR_ERR(dentry); 2363 goto out_unlock_dir; 2364 } 2365 2366 if (d_really_is_negative(dentry)) { 2367 err = -ENOENT; 2368 goto out_dput; 2369 } 2370 2371 inode = d_inode(dentry); 2372 dest = BTRFS_I(inode)->root; 2373 if (!capable(CAP_SYS_ADMIN)) { 2374 /* 2375 * Regular user. Only allow this with a special mount 2376 * option, when the user has write+exec access to the 2377 * subvol root, and when rmdir(2) would have been 2378 * allowed. 2379 * 2380 * Note that this is _not_ check that the subvol is 2381 * empty or doesn't contain data that we wouldn't 2382 * otherwise be able to delete. 2383 * 2384 * Users who want to delete empty subvols should try 2385 * rmdir(2). 2386 */ 2387 err = -EPERM; 2388 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 2389 goto out_dput; 2390 2391 /* 2392 * Do not allow deletion if the parent dir is the same 2393 * as the dir to be deleted. That means the ioctl 2394 * must be called on the dentry referencing the root 2395 * of the subvol, not a random directory contained 2396 * within it. 2397 */ 2398 err = -EINVAL; 2399 if (root == dest) 2400 goto out_dput; 2401 2402 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2403 if (err) 2404 goto out_dput; 2405 } 2406 2407 /* check if subvolume may be deleted by a user */ 2408 err = btrfs_may_delete(dir, dentry, 1); 2409 if (err) 2410 goto out_dput; 2411 2412 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2413 err = -EINVAL; 2414 goto out_dput; 2415 } 2416 2417 mutex_lock(&inode->i_mutex); 2418 2419 /* 2420 * Don't allow to delete a subvolume with send in progress. This is 2421 * inside the i_mutex so the error handling that has to drop the bit 2422 * again is not run concurrently. 2423 */ 2424 spin_lock(&dest->root_item_lock); 2425 root_flags = btrfs_root_flags(&dest->root_item); 2426 if (dest->send_in_progress == 0) { 2427 btrfs_set_root_flags(&dest->root_item, 2428 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2429 spin_unlock(&dest->root_item_lock); 2430 } else { 2431 spin_unlock(&dest->root_item_lock); 2432 btrfs_warn(root->fs_info, 2433 "Attempt to delete subvolume %llu during send", 2434 dest->root_key.objectid); 2435 err = -EPERM; 2436 goto out_unlock_inode; 2437 } 2438 2439 down_write(&root->fs_info->subvol_sem); 2440 2441 err = may_destroy_subvol(dest); 2442 if (err) 2443 goto out_up_write; 2444 2445 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2446 /* 2447 * One for dir inode, two for dir entries, two for root 2448 * ref/backref. 2449 */ 2450 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2451 5, &qgroup_reserved, true); 2452 if (err) 2453 goto out_up_write; 2454 2455 trans = btrfs_start_transaction(root, 0); 2456 if (IS_ERR(trans)) { 2457 err = PTR_ERR(trans); 2458 goto out_release; 2459 } 2460 trans->block_rsv = &block_rsv; 2461 trans->bytes_reserved = block_rsv.size; 2462 2463 ret = btrfs_unlink_subvol(trans, root, dir, 2464 dest->root_key.objectid, 2465 dentry->d_name.name, 2466 dentry->d_name.len); 2467 if (ret) { 2468 err = ret; 2469 btrfs_abort_transaction(trans, root, ret); 2470 goto out_end_trans; 2471 } 2472 2473 btrfs_record_root_in_trans(trans, dest); 2474 2475 memset(&dest->root_item.drop_progress, 0, 2476 sizeof(dest->root_item.drop_progress)); 2477 dest->root_item.drop_level = 0; 2478 btrfs_set_root_refs(&dest->root_item, 0); 2479 2480 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2481 ret = btrfs_insert_orphan_item(trans, 2482 root->fs_info->tree_root, 2483 dest->root_key.objectid); 2484 if (ret) { 2485 btrfs_abort_transaction(trans, root, ret); 2486 err = ret; 2487 goto out_end_trans; 2488 } 2489 } 2490 2491 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2492 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 2493 dest->root_key.objectid); 2494 if (ret && ret != -ENOENT) { 2495 btrfs_abort_transaction(trans, root, ret); 2496 err = ret; 2497 goto out_end_trans; 2498 } 2499 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2500 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2501 dest->root_item.received_uuid, 2502 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2503 dest->root_key.objectid); 2504 if (ret && ret != -ENOENT) { 2505 btrfs_abort_transaction(trans, root, ret); 2506 err = ret; 2507 goto out_end_trans; 2508 } 2509 } 2510 2511 out_end_trans: 2512 trans->block_rsv = NULL; 2513 trans->bytes_reserved = 0; 2514 ret = btrfs_end_transaction(trans, root); 2515 if (ret && !err) 2516 err = ret; 2517 inode->i_flags |= S_DEAD; 2518 out_release: 2519 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 2520 out_up_write: 2521 up_write(&root->fs_info->subvol_sem); 2522 if (err) { 2523 spin_lock(&dest->root_item_lock); 2524 root_flags = btrfs_root_flags(&dest->root_item); 2525 btrfs_set_root_flags(&dest->root_item, 2526 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2527 spin_unlock(&dest->root_item_lock); 2528 } 2529 out_unlock_inode: 2530 mutex_unlock(&inode->i_mutex); 2531 if (!err) { 2532 d_invalidate(dentry); 2533 btrfs_invalidate_inodes(dest); 2534 d_delete(dentry); 2535 ASSERT(dest->send_in_progress == 0); 2536 2537 /* the last ref */ 2538 if (dest->ino_cache_inode) { 2539 iput(dest->ino_cache_inode); 2540 dest->ino_cache_inode = NULL; 2541 } 2542 } 2543 out_dput: 2544 dput(dentry); 2545 out_unlock_dir: 2546 mutex_unlock(&dir->i_mutex); 2547 out_drop_write: 2548 mnt_drop_write_file(file); 2549 out: 2550 kfree(vol_args); 2551 return err; 2552 } 2553 2554 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2555 { 2556 struct inode *inode = file_inode(file); 2557 struct btrfs_root *root = BTRFS_I(inode)->root; 2558 struct btrfs_ioctl_defrag_range_args *range; 2559 int ret; 2560 2561 ret = mnt_want_write_file(file); 2562 if (ret) 2563 return ret; 2564 2565 if (btrfs_root_readonly(root)) { 2566 ret = -EROFS; 2567 goto out; 2568 } 2569 2570 switch (inode->i_mode & S_IFMT) { 2571 case S_IFDIR: 2572 if (!capable(CAP_SYS_ADMIN)) { 2573 ret = -EPERM; 2574 goto out; 2575 } 2576 ret = btrfs_defrag_root(root); 2577 if (ret) 2578 goto out; 2579 ret = btrfs_defrag_root(root->fs_info->extent_root); 2580 break; 2581 case S_IFREG: 2582 if (!(file->f_mode & FMODE_WRITE)) { 2583 ret = -EINVAL; 2584 goto out; 2585 } 2586 2587 range = kzalloc(sizeof(*range), GFP_KERNEL); 2588 if (!range) { 2589 ret = -ENOMEM; 2590 goto out; 2591 } 2592 2593 if (argp) { 2594 if (copy_from_user(range, argp, 2595 sizeof(*range))) { 2596 ret = -EFAULT; 2597 kfree(range); 2598 goto out; 2599 } 2600 /* compression requires us to start the IO */ 2601 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2602 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2603 range->extent_thresh = (u32)-1; 2604 } 2605 } else { 2606 /* the rest are all set to zero by kzalloc */ 2607 range->len = (u64)-1; 2608 } 2609 ret = btrfs_defrag_file(file_inode(file), file, 2610 range, 0, 0); 2611 if (ret > 0) 2612 ret = 0; 2613 kfree(range); 2614 break; 2615 default: 2616 ret = -EINVAL; 2617 } 2618 out: 2619 mnt_drop_write_file(file); 2620 return ret; 2621 } 2622 2623 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2624 { 2625 struct btrfs_ioctl_vol_args *vol_args; 2626 int ret; 2627 2628 if (!capable(CAP_SYS_ADMIN)) 2629 return -EPERM; 2630 2631 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2632 1)) { 2633 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2634 } 2635 2636 mutex_lock(&root->fs_info->volume_mutex); 2637 vol_args = memdup_user(arg, sizeof(*vol_args)); 2638 if (IS_ERR(vol_args)) { 2639 ret = PTR_ERR(vol_args); 2640 goto out; 2641 } 2642 2643 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2644 ret = btrfs_init_new_device(root, vol_args->name); 2645 2646 if (!ret) 2647 btrfs_info(root->fs_info, "disk added %s",vol_args->name); 2648 2649 kfree(vol_args); 2650 out: 2651 mutex_unlock(&root->fs_info->volume_mutex); 2652 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2653 return ret; 2654 } 2655 2656 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2657 { 2658 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2659 struct btrfs_ioctl_vol_args *vol_args; 2660 int ret; 2661 2662 if (!capable(CAP_SYS_ADMIN)) 2663 return -EPERM; 2664 2665 ret = mnt_want_write_file(file); 2666 if (ret) 2667 return ret; 2668 2669 vol_args = memdup_user(arg, sizeof(*vol_args)); 2670 if (IS_ERR(vol_args)) { 2671 ret = PTR_ERR(vol_args); 2672 goto err_drop; 2673 } 2674 2675 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2676 2677 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2678 1)) { 2679 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2680 goto out; 2681 } 2682 2683 mutex_lock(&root->fs_info->volume_mutex); 2684 ret = btrfs_rm_device(root, vol_args->name); 2685 mutex_unlock(&root->fs_info->volume_mutex); 2686 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2687 2688 if (!ret) 2689 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name); 2690 2691 out: 2692 kfree(vol_args); 2693 err_drop: 2694 mnt_drop_write_file(file); 2695 return ret; 2696 } 2697 2698 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2699 { 2700 struct btrfs_ioctl_fs_info_args *fi_args; 2701 struct btrfs_device *device; 2702 struct btrfs_device *next; 2703 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2704 int ret = 0; 2705 2706 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2707 if (!fi_args) 2708 return -ENOMEM; 2709 2710 mutex_lock(&fs_devices->device_list_mutex); 2711 fi_args->num_devices = fs_devices->num_devices; 2712 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2713 2714 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 2715 if (device->devid > fi_args->max_id) 2716 fi_args->max_id = device->devid; 2717 } 2718 mutex_unlock(&fs_devices->device_list_mutex); 2719 2720 fi_args->nodesize = root->fs_info->super_copy->nodesize; 2721 fi_args->sectorsize = root->fs_info->super_copy->sectorsize; 2722 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize; 2723 2724 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2725 ret = -EFAULT; 2726 2727 kfree(fi_args); 2728 return ret; 2729 } 2730 2731 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2732 { 2733 struct btrfs_ioctl_dev_info_args *di_args; 2734 struct btrfs_device *dev; 2735 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2736 int ret = 0; 2737 char *s_uuid = NULL; 2738 2739 di_args = memdup_user(arg, sizeof(*di_args)); 2740 if (IS_ERR(di_args)) 2741 return PTR_ERR(di_args); 2742 2743 if (!btrfs_is_empty_uuid(di_args->uuid)) 2744 s_uuid = di_args->uuid; 2745 2746 mutex_lock(&fs_devices->device_list_mutex); 2747 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL); 2748 2749 if (!dev) { 2750 ret = -ENODEV; 2751 goto out; 2752 } 2753 2754 di_args->devid = dev->devid; 2755 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2756 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2757 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2758 if (dev->name) { 2759 struct rcu_string *name; 2760 2761 rcu_read_lock(); 2762 name = rcu_dereference(dev->name); 2763 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2764 rcu_read_unlock(); 2765 di_args->path[sizeof(di_args->path) - 1] = 0; 2766 } else { 2767 di_args->path[0] = '\0'; 2768 } 2769 2770 out: 2771 mutex_unlock(&fs_devices->device_list_mutex); 2772 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2773 ret = -EFAULT; 2774 2775 kfree(di_args); 2776 return ret; 2777 } 2778 2779 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 2780 { 2781 struct page *page; 2782 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2783 2784 page = grab_cache_page(inode->i_mapping, index); 2785 if (!page) 2786 return NULL; 2787 2788 if (!PageUptodate(page)) { 2789 if (extent_read_full_page_nolock(tree, page, btrfs_get_extent, 2790 0)) 2791 return NULL; 2792 lock_page(page); 2793 if (!PageUptodate(page)) { 2794 unlock_page(page); 2795 page_cache_release(page); 2796 return NULL; 2797 } 2798 } 2799 unlock_page(page); 2800 2801 return page; 2802 } 2803 2804 static int gather_extent_pages(struct inode *inode, struct page **pages, 2805 int num_pages, u64 off) 2806 { 2807 int i; 2808 pgoff_t index = off >> PAGE_CACHE_SHIFT; 2809 2810 for (i = 0; i < num_pages; i++) { 2811 pages[i] = extent_same_get_page(inode, index + i); 2812 if (!pages[i]) 2813 return -ENOMEM; 2814 } 2815 return 0; 2816 } 2817 2818 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len) 2819 { 2820 /* do any pending delalloc/csum calc on src, one way or 2821 another, and lock file content */ 2822 while (1) { 2823 struct btrfs_ordered_extent *ordered; 2824 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2825 ordered = btrfs_lookup_first_ordered_extent(inode, 2826 off + len - 1); 2827 if ((!ordered || 2828 ordered->file_offset + ordered->len <= off || 2829 ordered->file_offset >= off + len) && 2830 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2831 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2832 if (ordered) 2833 btrfs_put_ordered_extent(ordered); 2834 break; 2835 } 2836 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2837 if (ordered) 2838 btrfs_put_ordered_extent(ordered); 2839 btrfs_wait_ordered_range(inode, off, len); 2840 } 2841 } 2842 2843 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 2844 { 2845 mutex_unlock(&inode1->i_mutex); 2846 mutex_unlock(&inode2->i_mutex); 2847 } 2848 2849 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 2850 { 2851 if (inode1 < inode2) 2852 swap(inode1, inode2); 2853 2854 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 2855 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 2856 } 2857 2858 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 2859 struct inode *inode2, u64 loff2, u64 len) 2860 { 2861 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2862 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2863 } 2864 2865 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 2866 struct inode *inode2, u64 loff2, u64 len) 2867 { 2868 if (inode1 < inode2) { 2869 swap(inode1, inode2); 2870 swap(loff1, loff2); 2871 } 2872 lock_extent_range(inode1, loff1, len); 2873 lock_extent_range(inode2, loff2, len); 2874 } 2875 2876 struct cmp_pages { 2877 int num_pages; 2878 struct page **src_pages; 2879 struct page **dst_pages; 2880 }; 2881 2882 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 2883 { 2884 int i; 2885 struct page *pg; 2886 2887 for (i = 0; i < cmp->num_pages; i++) { 2888 pg = cmp->src_pages[i]; 2889 if (pg) 2890 page_cache_release(pg); 2891 pg = cmp->dst_pages[i]; 2892 if (pg) 2893 page_cache_release(pg); 2894 } 2895 kfree(cmp->src_pages); 2896 kfree(cmp->dst_pages); 2897 } 2898 2899 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 2900 struct inode *dst, u64 dst_loff, 2901 u64 len, struct cmp_pages *cmp) 2902 { 2903 int ret; 2904 int num_pages = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT; 2905 struct page **src_pgarr, **dst_pgarr; 2906 2907 /* 2908 * We must gather up all the pages before we initiate our 2909 * extent locking. We use an array for the page pointers. Size 2910 * of the array is bounded by len, which is in turn bounded by 2911 * BTRFS_MAX_DEDUPE_LEN. 2912 */ 2913 src_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS); 2914 dst_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS); 2915 if (!src_pgarr || !dst_pgarr) { 2916 kfree(src_pgarr); 2917 kfree(dst_pgarr); 2918 return -ENOMEM; 2919 } 2920 cmp->num_pages = num_pages; 2921 cmp->src_pages = src_pgarr; 2922 cmp->dst_pages = dst_pgarr; 2923 2924 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff); 2925 if (ret) 2926 goto out; 2927 2928 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff); 2929 2930 out: 2931 if (ret) 2932 btrfs_cmp_data_free(cmp); 2933 return 0; 2934 } 2935 2936 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst, 2937 u64 dst_loff, u64 len, struct cmp_pages *cmp) 2938 { 2939 int ret = 0; 2940 int i; 2941 struct page *src_page, *dst_page; 2942 unsigned int cmp_len = PAGE_CACHE_SIZE; 2943 void *addr, *dst_addr; 2944 2945 i = 0; 2946 while (len) { 2947 if (len < PAGE_CACHE_SIZE) 2948 cmp_len = len; 2949 2950 BUG_ON(i >= cmp->num_pages); 2951 2952 src_page = cmp->src_pages[i]; 2953 dst_page = cmp->dst_pages[i]; 2954 2955 addr = kmap_atomic(src_page); 2956 dst_addr = kmap_atomic(dst_page); 2957 2958 flush_dcache_page(src_page); 2959 flush_dcache_page(dst_page); 2960 2961 if (memcmp(addr, dst_addr, cmp_len)) 2962 ret = BTRFS_SAME_DATA_DIFFERS; 2963 2964 kunmap_atomic(addr); 2965 kunmap_atomic(dst_addr); 2966 2967 if (ret) 2968 break; 2969 2970 len -= cmp_len; 2971 i++; 2972 } 2973 2974 return ret; 2975 } 2976 2977 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 2978 u64 olen) 2979 { 2980 u64 len = *plen; 2981 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 2982 2983 if (off + olen > inode->i_size || off + olen < off) 2984 return -EINVAL; 2985 2986 /* if we extend to eof, continue to block boundary */ 2987 if (off + len == inode->i_size) 2988 *plen = len = ALIGN(inode->i_size, bs) - off; 2989 2990 /* Check that we are block aligned - btrfs_clone() requires this */ 2991 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 2992 return -EINVAL; 2993 2994 return 0; 2995 } 2996 2997 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 2998 struct inode *dst, u64 dst_loff) 2999 { 3000 int ret; 3001 u64 len = olen; 3002 struct cmp_pages cmp; 3003 int same_inode = 0; 3004 u64 same_lock_start = 0; 3005 u64 same_lock_len = 0; 3006 3007 if (src == dst) 3008 same_inode = 1; 3009 3010 if (len == 0) 3011 return 0; 3012 3013 if (same_inode) { 3014 mutex_lock(&src->i_mutex); 3015 3016 ret = extent_same_check_offsets(src, loff, &len, olen); 3017 if (ret) 3018 goto out_unlock; 3019 3020 /* 3021 * Single inode case wants the same checks, except we 3022 * don't want our length pushed out past i_size as 3023 * comparing that data range makes no sense. 3024 * 3025 * extent_same_check_offsets() will do this for an 3026 * unaligned length at i_size, so catch it here and 3027 * reject the request. 3028 * 3029 * This effectively means we require aligned extents 3030 * for the single-inode case, whereas the other cases 3031 * allow an unaligned length so long as it ends at 3032 * i_size. 3033 */ 3034 if (len != olen) { 3035 ret = -EINVAL; 3036 goto out_unlock; 3037 } 3038 3039 /* Check for overlapping ranges */ 3040 if (dst_loff + len > loff && dst_loff < loff + len) { 3041 ret = -EINVAL; 3042 goto out_unlock; 3043 } 3044 3045 same_lock_start = min_t(u64, loff, dst_loff); 3046 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3047 } else { 3048 btrfs_double_inode_lock(src, dst); 3049 3050 ret = extent_same_check_offsets(src, loff, &len, olen); 3051 if (ret) 3052 goto out_unlock; 3053 3054 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3055 if (ret) 3056 goto out_unlock; 3057 } 3058 3059 /* don't make the dst file partly checksummed */ 3060 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3061 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3062 ret = -EINVAL; 3063 goto out_unlock; 3064 } 3065 3066 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp); 3067 if (ret) 3068 goto out_unlock; 3069 3070 if (same_inode) 3071 lock_extent_range(src, same_lock_start, same_lock_len); 3072 else 3073 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 3074 3075 /* pass original length for comparison so we stay within i_size */ 3076 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp); 3077 if (ret == 0) 3078 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3079 3080 if (same_inode) 3081 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3082 same_lock_start + same_lock_len - 1); 3083 else 3084 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3085 3086 btrfs_cmp_data_free(&cmp); 3087 out_unlock: 3088 if (same_inode) 3089 mutex_unlock(&src->i_mutex); 3090 else 3091 btrfs_double_inode_unlock(src, dst); 3092 3093 return ret; 3094 } 3095 3096 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024) 3097 3098 static long btrfs_ioctl_file_extent_same(struct file *file, 3099 struct btrfs_ioctl_same_args __user *argp) 3100 { 3101 struct btrfs_ioctl_same_args *same = NULL; 3102 struct btrfs_ioctl_same_extent_info *info; 3103 struct inode *src = file_inode(file); 3104 u64 off; 3105 u64 len; 3106 int i; 3107 int ret; 3108 unsigned long size; 3109 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3110 bool is_admin = capable(CAP_SYS_ADMIN); 3111 u16 count; 3112 3113 if (!(file->f_mode & FMODE_READ)) 3114 return -EINVAL; 3115 3116 ret = mnt_want_write_file(file); 3117 if (ret) 3118 return ret; 3119 3120 if (get_user(count, &argp->dest_count)) { 3121 ret = -EFAULT; 3122 goto out; 3123 } 3124 3125 size = offsetof(struct btrfs_ioctl_same_args __user, info[count]); 3126 3127 same = memdup_user(argp, size); 3128 3129 if (IS_ERR(same)) { 3130 ret = PTR_ERR(same); 3131 same = NULL; 3132 goto out; 3133 } 3134 3135 off = same->logical_offset; 3136 len = same->length; 3137 3138 /* 3139 * Limit the total length we will dedupe for each operation. 3140 * This is intended to bound the total time spent in this 3141 * ioctl to something sane. 3142 */ 3143 if (len > BTRFS_MAX_DEDUPE_LEN) 3144 len = BTRFS_MAX_DEDUPE_LEN; 3145 3146 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) { 3147 /* 3148 * Btrfs does not support blocksize < page_size. As a 3149 * result, btrfs_cmp_data() won't correctly handle 3150 * this situation without an update. 3151 */ 3152 ret = -EINVAL; 3153 goto out; 3154 } 3155 3156 ret = -EISDIR; 3157 if (S_ISDIR(src->i_mode)) 3158 goto out; 3159 3160 ret = -EACCES; 3161 if (!S_ISREG(src->i_mode)) 3162 goto out; 3163 3164 /* pre-format output fields to sane values */ 3165 for (i = 0; i < count; i++) { 3166 same->info[i].bytes_deduped = 0ULL; 3167 same->info[i].status = 0; 3168 } 3169 3170 for (i = 0, info = same->info; i < count; i++, info++) { 3171 struct inode *dst; 3172 struct fd dst_file = fdget(info->fd); 3173 if (!dst_file.file) { 3174 info->status = -EBADF; 3175 continue; 3176 } 3177 dst = file_inode(dst_file.file); 3178 3179 if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) { 3180 info->status = -EINVAL; 3181 } else if (file->f_path.mnt != dst_file.file->f_path.mnt) { 3182 info->status = -EXDEV; 3183 } else if (S_ISDIR(dst->i_mode)) { 3184 info->status = -EISDIR; 3185 } else if (!S_ISREG(dst->i_mode)) { 3186 info->status = -EACCES; 3187 } else { 3188 info->status = btrfs_extent_same(src, off, len, dst, 3189 info->logical_offset); 3190 if (info->status == 0) 3191 info->bytes_deduped += len; 3192 } 3193 fdput(dst_file); 3194 } 3195 3196 ret = copy_to_user(argp, same, size); 3197 if (ret) 3198 ret = -EFAULT; 3199 3200 out: 3201 mnt_drop_write_file(file); 3202 kfree(same); 3203 return ret; 3204 } 3205 3206 /* Helper to check and see if this root currently has a ref on the given disk 3207 * bytenr. If it does then we need to update the quota for this root. This 3208 * doesn't do anything if quotas aren't enabled. 3209 */ 3210 static int check_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3211 u64 disko) 3212 { 3213 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 3214 struct ulist *roots; 3215 struct ulist_iterator uiter; 3216 struct ulist_node *root_node = NULL; 3217 int ret; 3218 3219 if (!root->fs_info->quota_enabled) 3220 return 1; 3221 3222 btrfs_get_tree_mod_seq(root->fs_info, &tree_mod_seq_elem); 3223 ret = btrfs_find_all_roots(trans, root->fs_info, disko, 3224 tree_mod_seq_elem.seq, &roots); 3225 if (ret < 0) 3226 goto out; 3227 ret = 0; 3228 ULIST_ITER_INIT(&uiter); 3229 while ((root_node = ulist_next(roots, &uiter))) { 3230 if (root_node->val == root->objectid) { 3231 ret = 1; 3232 break; 3233 } 3234 } 3235 ulist_free(roots); 3236 out: 3237 btrfs_put_tree_mod_seq(root->fs_info, &tree_mod_seq_elem); 3238 return ret; 3239 } 3240 3241 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3242 struct inode *inode, 3243 u64 endoff, 3244 const u64 destoff, 3245 const u64 olen, 3246 int no_time_update) 3247 { 3248 struct btrfs_root *root = BTRFS_I(inode)->root; 3249 int ret; 3250 3251 inode_inc_iversion(inode); 3252 if (!no_time_update) 3253 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3254 /* 3255 * We round up to the block size at eof when determining which 3256 * extents to clone above, but shouldn't round up the file size. 3257 */ 3258 if (endoff > destoff + olen) 3259 endoff = destoff + olen; 3260 if (endoff > inode->i_size) 3261 btrfs_i_size_write(inode, endoff); 3262 3263 ret = btrfs_update_inode(trans, root, inode); 3264 if (ret) { 3265 btrfs_abort_transaction(trans, root, ret); 3266 btrfs_end_transaction(trans, root); 3267 goto out; 3268 } 3269 ret = btrfs_end_transaction(trans, root); 3270 out: 3271 return ret; 3272 } 3273 3274 static void clone_update_extent_map(struct inode *inode, 3275 const struct btrfs_trans_handle *trans, 3276 const struct btrfs_path *path, 3277 const u64 hole_offset, 3278 const u64 hole_len) 3279 { 3280 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3281 struct extent_map *em; 3282 int ret; 3283 3284 em = alloc_extent_map(); 3285 if (!em) { 3286 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3287 &BTRFS_I(inode)->runtime_flags); 3288 return; 3289 } 3290 3291 if (path) { 3292 struct btrfs_file_extent_item *fi; 3293 3294 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3295 struct btrfs_file_extent_item); 3296 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3297 em->generation = -1; 3298 if (btrfs_file_extent_type(path->nodes[0], fi) == 3299 BTRFS_FILE_EXTENT_INLINE) 3300 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3301 &BTRFS_I(inode)->runtime_flags); 3302 } else { 3303 em->start = hole_offset; 3304 em->len = hole_len; 3305 em->ram_bytes = em->len; 3306 em->orig_start = hole_offset; 3307 em->block_start = EXTENT_MAP_HOLE; 3308 em->block_len = 0; 3309 em->orig_block_len = 0; 3310 em->compress_type = BTRFS_COMPRESS_NONE; 3311 em->generation = trans->transid; 3312 } 3313 3314 while (1) { 3315 write_lock(&em_tree->lock); 3316 ret = add_extent_mapping(em_tree, em, 1); 3317 write_unlock(&em_tree->lock); 3318 if (ret != -EEXIST) { 3319 free_extent_map(em); 3320 break; 3321 } 3322 btrfs_drop_extent_cache(inode, em->start, 3323 em->start + em->len - 1, 0); 3324 } 3325 3326 if (ret) 3327 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3328 &BTRFS_I(inode)->runtime_flags); 3329 } 3330 3331 /** 3332 * btrfs_clone() - clone a range from inode file to another 3333 * 3334 * @src: Inode to clone from 3335 * @inode: Inode to clone to 3336 * @off: Offset within source to start clone from 3337 * @olen: Original length, passed by user, of range to clone 3338 * @olen_aligned: Block-aligned value of olen 3339 * @destoff: Offset within @inode to start clone 3340 * @no_time_update: Whether to update mtime/ctime on the target inode 3341 */ 3342 static int btrfs_clone(struct inode *src, struct inode *inode, 3343 const u64 off, const u64 olen, const u64 olen_aligned, 3344 const u64 destoff, int no_time_update) 3345 { 3346 struct btrfs_root *root = BTRFS_I(inode)->root; 3347 struct btrfs_path *path = NULL; 3348 struct extent_buffer *leaf; 3349 struct btrfs_trans_handle *trans; 3350 char *buf = NULL; 3351 struct btrfs_key key; 3352 u32 nritems; 3353 int slot; 3354 int ret; 3355 int no_quota; 3356 const u64 len = olen_aligned; 3357 u64 last_disko = 0; 3358 u64 last_dest_end = destoff; 3359 3360 ret = -ENOMEM; 3361 buf = vmalloc(root->nodesize); 3362 if (!buf) 3363 return ret; 3364 3365 path = btrfs_alloc_path(); 3366 if (!path) { 3367 vfree(buf); 3368 return ret; 3369 } 3370 3371 path->reada = 2; 3372 /* clone data */ 3373 key.objectid = btrfs_ino(src); 3374 key.type = BTRFS_EXTENT_DATA_KEY; 3375 key.offset = off; 3376 3377 while (1) { 3378 u64 next_key_min_offset = key.offset + 1; 3379 3380 /* 3381 * note the key will change type as we walk through the 3382 * tree. 3383 */ 3384 path->leave_spinning = 1; 3385 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3386 0, 0); 3387 if (ret < 0) 3388 goto out; 3389 /* 3390 * First search, if no extent item that starts at offset off was 3391 * found but the previous item is an extent item, it's possible 3392 * it might overlap our target range, therefore process it. 3393 */ 3394 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3395 btrfs_item_key_to_cpu(path->nodes[0], &key, 3396 path->slots[0] - 1); 3397 if (key.type == BTRFS_EXTENT_DATA_KEY) 3398 path->slots[0]--; 3399 } 3400 3401 nritems = btrfs_header_nritems(path->nodes[0]); 3402 process_slot: 3403 no_quota = 1; 3404 if (path->slots[0] >= nritems) { 3405 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3406 if (ret < 0) 3407 goto out; 3408 if (ret > 0) 3409 break; 3410 nritems = btrfs_header_nritems(path->nodes[0]); 3411 } 3412 leaf = path->nodes[0]; 3413 slot = path->slots[0]; 3414 3415 btrfs_item_key_to_cpu(leaf, &key, slot); 3416 if (key.type > BTRFS_EXTENT_DATA_KEY || 3417 key.objectid != btrfs_ino(src)) 3418 break; 3419 3420 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3421 struct btrfs_file_extent_item *extent; 3422 int type; 3423 u32 size; 3424 struct btrfs_key new_key; 3425 u64 disko = 0, diskl = 0; 3426 u64 datao = 0, datal = 0; 3427 u8 comp; 3428 u64 drop_start; 3429 3430 extent = btrfs_item_ptr(leaf, slot, 3431 struct btrfs_file_extent_item); 3432 comp = btrfs_file_extent_compression(leaf, extent); 3433 type = btrfs_file_extent_type(leaf, extent); 3434 if (type == BTRFS_FILE_EXTENT_REG || 3435 type == BTRFS_FILE_EXTENT_PREALLOC) { 3436 disko = btrfs_file_extent_disk_bytenr(leaf, 3437 extent); 3438 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3439 extent); 3440 datao = btrfs_file_extent_offset(leaf, extent); 3441 datal = btrfs_file_extent_num_bytes(leaf, 3442 extent); 3443 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3444 /* take upper bound, may be compressed */ 3445 datal = btrfs_file_extent_ram_bytes(leaf, 3446 extent); 3447 } 3448 3449 /* 3450 * The first search might have left us at an extent 3451 * item that ends before our target range's start, can 3452 * happen if we have holes and NO_HOLES feature enabled. 3453 */ 3454 if (key.offset + datal <= off) { 3455 path->slots[0]++; 3456 goto process_slot; 3457 } else if (key.offset >= off + len) { 3458 break; 3459 } 3460 next_key_min_offset = key.offset + datal; 3461 size = btrfs_item_size_nr(leaf, slot); 3462 read_extent_buffer(leaf, buf, 3463 btrfs_item_ptr_offset(leaf, slot), 3464 size); 3465 3466 btrfs_release_path(path); 3467 path->leave_spinning = 0; 3468 3469 memcpy(&new_key, &key, sizeof(new_key)); 3470 new_key.objectid = btrfs_ino(inode); 3471 if (off <= key.offset) 3472 new_key.offset = key.offset + destoff - off; 3473 else 3474 new_key.offset = destoff; 3475 3476 /* 3477 * Deal with a hole that doesn't have an extent item 3478 * that represents it (NO_HOLES feature enabled). 3479 * This hole is either in the middle of the cloning 3480 * range or at the beginning (fully overlaps it or 3481 * partially overlaps it). 3482 */ 3483 if (new_key.offset != last_dest_end) 3484 drop_start = last_dest_end; 3485 else 3486 drop_start = new_key.offset; 3487 3488 /* 3489 * 1 - adjusting old extent (we may have to split it) 3490 * 1 - add new extent 3491 * 1 - inode update 3492 */ 3493 trans = btrfs_start_transaction(root, 3); 3494 if (IS_ERR(trans)) { 3495 ret = PTR_ERR(trans); 3496 goto out; 3497 } 3498 3499 if (type == BTRFS_FILE_EXTENT_REG || 3500 type == BTRFS_FILE_EXTENT_PREALLOC) { 3501 /* 3502 * a | --- range to clone ---| b 3503 * | ------------- extent ------------- | 3504 */ 3505 3506 /* subtract range b */ 3507 if (key.offset + datal > off + len) 3508 datal = off + len - key.offset; 3509 3510 /* subtract range a */ 3511 if (off > key.offset) { 3512 datao += off - key.offset; 3513 datal -= off - key.offset; 3514 } 3515 3516 ret = btrfs_drop_extents(trans, root, inode, 3517 drop_start, 3518 new_key.offset + datal, 3519 1); 3520 if (ret) { 3521 if (ret != -EOPNOTSUPP) 3522 btrfs_abort_transaction(trans, 3523 root, ret); 3524 btrfs_end_transaction(trans, root); 3525 goto out; 3526 } 3527 3528 ret = btrfs_insert_empty_item(trans, root, path, 3529 &new_key, size); 3530 if (ret) { 3531 btrfs_abort_transaction(trans, root, 3532 ret); 3533 btrfs_end_transaction(trans, root); 3534 goto out; 3535 } 3536 3537 leaf = path->nodes[0]; 3538 slot = path->slots[0]; 3539 write_extent_buffer(leaf, buf, 3540 btrfs_item_ptr_offset(leaf, slot), 3541 size); 3542 3543 extent = btrfs_item_ptr(leaf, slot, 3544 struct btrfs_file_extent_item); 3545 3546 /* disko == 0 means it's a hole */ 3547 if (!disko) 3548 datao = 0; 3549 3550 btrfs_set_file_extent_offset(leaf, extent, 3551 datao); 3552 btrfs_set_file_extent_num_bytes(leaf, extent, 3553 datal); 3554 3555 /* 3556 * We need to look up the roots that point at 3557 * this bytenr and see if the new root does. If 3558 * it does not we need to make sure we update 3559 * quotas appropriately. 3560 */ 3561 if (disko && root != BTRFS_I(src)->root && 3562 disko != last_disko) { 3563 no_quota = check_ref(trans, root, 3564 disko); 3565 if (no_quota < 0) { 3566 btrfs_abort_transaction(trans, 3567 root, 3568 ret); 3569 btrfs_end_transaction(trans, 3570 root); 3571 ret = no_quota; 3572 goto out; 3573 } 3574 } 3575 3576 if (disko) { 3577 inode_add_bytes(inode, datal); 3578 ret = btrfs_inc_extent_ref(trans, root, 3579 disko, diskl, 0, 3580 root->root_key.objectid, 3581 btrfs_ino(inode), 3582 new_key.offset - datao, 3583 no_quota); 3584 if (ret) { 3585 btrfs_abort_transaction(trans, 3586 root, 3587 ret); 3588 btrfs_end_transaction(trans, 3589 root); 3590 goto out; 3591 3592 } 3593 } 3594 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3595 u64 skip = 0; 3596 u64 trim = 0; 3597 u64 aligned_end = 0; 3598 3599 /* 3600 * Don't copy an inline extent into an offset 3601 * greater than zero. Having an inline extent 3602 * at such an offset results in chaos as btrfs 3603 * isn't prepared for such cases. Just skip 3604 * this case for the same reasons as commented 3605 * at btrfs_ioctl_clone(). 3606 */ 3607 if (last_dest_end > 0) { 3608 ret = -EOPNOTSUPP; 3609 btrfs_end_transaction(trans, root); 3610 goto out; 3611 } 3612 3613 if (off > key.offset) { 3614 skip = off - key.offset; 3615 new_key.offset += skip; 3616 } 3617 3618 if (key.offset + datal > off + len) 3619 trim = key.offset + datal - (off + len); 3620 3621 if (comp && (skip || trim)) { 3622 ret = -EINVAL; 3623 btrfs_end_transaction(trans, root); 3624 goto out; 3625 } 3626 size -= skip + trim; 3627 datal -= skip + trim; 3628 3629 aligned_end = ALIGN(new_key.offset + datal, 3630 root->sectorsize); 3631 ret = btrfs_drop_extents(trans, root, inode, 3632 drop_start, 3633 aligned_end, 3634 1); 3635 if (ret) { 3636 if (ret != -EOPNOTSUPP) 3637 btrfs_abort_transaction(trans, 3638 root, ret); 3639 btrfs_end_transaction(trans, root); 3640 goto out; 3641 } 3642 3643 ret = btrfs_insert_empty_item(trans, root, path, 3644 &new_key, size); 3645 if (ret) { 3646 btrfs_abort_transaction(trans, root, 3647 ret); 3648 btrfs_end_transaction(trans, root); 3649 goto out; 3650 } 3651 3652 if (skip) { 3653 u32 start = 3654 btrfs_file_extent_calc_inline_size(0); 3655 memmove(buf+start, buf+start+skip, 3656 datal); 3657 } 3658 3659 leaf = path->nodes[0]; 3660 slot = path->slots[0]; 3661 write_extent_buffer(leaf, buf, 3662 btrfs_item_ptr_offset(leaf, slot), 3663 size); 3664 inode_add_bytes(inode, datal); 3665 } 3666 3667 /* If we have an implicit hole (NO_HOLES feature). */ 3668 if (drop_start < new_key.offset) 3669 clone_update_extent_map(inode, trans, 3670 NULL, drop_start, 3671 new_key.offset - drop_start); 3672 3673 clone_update_extent_map(inode, trans, path, 0, 0); 3674 3675 btrfs_mark_buffer_dirty(leaf); 3676 btrfs_release_path(path); 3677 3678 last_dest_end = ALIGN(new_key.offset + datal, 3679 root->sectorsize); 3680 ret = clone_finish_inode_update(trans, inode, 3681 last_dest_end, 3682 destoff, olen, 3683 no_time_update); 3684 if (ret) 3685 goto out; 3686 if (new_key.offset + datal >= destoff + len) 3687 break; 3688 } 3689 btrfs_release_path(path); 3690 key.offset = next_key_min_offset; 3691 } 3692 ret = 0; 3693 3694 if (last_dest_end < destoff + len) { 3695 /* 3696 * We have an implicit hole (NO_HOLES feature is enabled) that 3697 * fully or partially overlaps our cloning range at its end. 3698 */ 3699 btrfs_release_path(path); 3700 3701 /* 3702 * 1 - remove extent(s) 3703 * 1 - inode update 3704 */ 3705 trans = btrfs_start_transaction(root, 2); 3706 if (IS_ERR(trans)) { 3707 ret = PTR_ERR(trans); 3708 goto out; 3709 } 3710 ret = btrfs_drop_extents(trans, root, inode, 3711 last_dest_end, destoff + len, 1); 3712 if (ret) { 3713 if (ret != -EOPNOTSUPP) 3714 btrfs_abort_transaction(trans, root, ret); 3715 btrfs_end_transaction(trans, root); 3716 goto out; 3717 } 3718 clone_update_extent_map(inode, trans, NULL, last_dest_end, 3719 destoff + len - last_dest_end); 3720 ret = clone_finish_inode_update(trans, inode, destoff + len, 3721 destoff, olen, no_time_update); 3722 } 3723 3724 out: 3725 btrfs_free_path(path); 3726 vfree(buf); 3727 return ret; 3728 } 3729 3730 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 3731 u64 off, u64 olen, u64 destoff) 3732 { 3733 struct inode *inode = file_inode(file); 3734 struct btrfs_root *root = BTRFS_I(inode)->root; 3735 struct fd src_file; 3736 struct inode *src; 3737 int ret; 3738 u64 len = olen; 3739 u64 bs = root->fs_info->sb->s_blocksize; 3740 int same_inode = 0; 3741 3742 /* 3743 * TODO: 3744 * - split compressed inline extents. annoying: we need to 3745 * decompress into destination's address_space (the file offset 3746 * may change, so source mapping won't do), then recompress (or 3747 * otherwise reinsert) a subrange. 3748 * 3749 * - split destination inode's inline extents. The inline extents can 3750 * be either compressed or non-compressed. 3751 */ 3752 3753 /* the destination must be opened for writing */ 3754 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 3755 return -EINVAL; 3756 3757 if (btrfs_root_readonly(root)) 3758 return -EROFS; 3759 3760 ret = mnt_want_write_file(file); 3761 if (ret) 3762 return ret; 3763 3764 src_file = fdget(srcfd); 3765 if (!src_file.file) { 3766 ret = -EBADF; 3767 goto out_drop_write; 3768 } 3769 3770 ret = -EXDEV; 3771 if (src_file.file->f_path.mnt != file->f_path.mnt) 3772 goto out_fput; 3773 3774 src = file_inode(src_file.file); 3775 3776 ret = -EINVAL; 3777 if (src == inode) 3778 same_inode = 1; 3779 3780 /* the src must be open for reading */ 3781 if (!(src_file.file->f_mode & FMODE_READ)) 3782 goto out_fput; 3783 3784 /* don't make the dst file partly checksummed */ 3785 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3786 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3787 goto out_fput; 3788 3789 ret = -EISDIR; 3790 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3791 goto out_fput; 3792 3793 ret = -EXDEV; 3794 if (src->i_sb != inode->i_sb) 3795 goto out_fput; 3796 3797 if (!same_inode) { 3798 btrfs_double_inode_lock(src, inode); 3799 } else { 3800 mutex_lock(&src->i_mutex); 3801 } 3802 3803 /* determine range to clone */ 3804 ret = -EINVAL; 3805 if (off + len > src->i_size || off + len < off) 3806 goto out_unlock; 3807 if (len == 0) 3808 olen = len = src->i_size - off; 3809 /* if we extend to eof, continue to block boundary */ 3810 if (off + len == src->i_size) 3811 len = ALIGN(src->i_size, bs) - off; 3812 3813 if (len == 0) { 3814 ret = 0; 3815 goto out_unlock; 3816 } 3817 3818 /* verify the end result is block aligned */ 3819 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3820 !IS_ALIGNED(destoff, bs)) 3821 goto out_unlock; 3822 3823 /* verify if ranges are overlapped within the same file */ 3824 if (same_inode) { 3825 if (destoff + len > off && destoff < off + len) 3826 goto out_unlock; 3827 } 3828 3829 if (destoff > inode->i_size) { 3830 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3831 if (ret) 3832 goto out_unlock; 3833 } 3834 3835 /* 3836 * Lock the target range too. Right after we replace the file extent 3837 * items in the fs tree (which now point to the cloned data), we might 3838 * have a worker replace them with extent items relative to a write 3839 * operation that was issued before this clone operation (i.e. confront 3840 * with inode.c:btrfs_finish_ordered_io). 3841 */ 3842 if (same_inode) { 3843 u64 lock_start = min_t(u64, off, destoff); 3844 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3845 3846 lock_extent_range(src, lock_start, lock_len); 3847 } else { 3848 btrfs_double_extent_lock(src, off, inode, destoff, len); 3849 } 3850 3851 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3852 3853 if (same_inode) { 3854 u64 lock_start = min_t(u64, off, destoff); 3855 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3856 3857 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3858 } else { 3859 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3860 } 3861 /* 3862 * Truncate page cache pages so that future reads will see the cloned 3863 * data immediately and not the previous data. 3864 */ 3865 truncate_inode_pages_range(&inode->i_data, destoff, 3866 PAGE_CACHE_ALIGN(destoff + len) - 1); 3867 out_unlock: 3868 if (!same_inode) 3869 btrfs_double_inode_unlock(src, inode); 3870 else 3871 mutex_unlock(&src->i_mutex); 3872 out_fput: 3873 fdput(src_file); 3874 out_drop_write: 3875 mnt_drop_write_file(file); 3876 return ret; 3877 } 3878 3879 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 3880 { 3881 struct btrfs_ioctl_clone_range_args args; 3882 3883 if (copy_from_user(&args, argp, sizeof(args))) 3884 return -EFAULT; 3885 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 3886 args.src_length, args.dest_offset); 3887 } 3888 3889 /* 3890 * there are many ways the trans_start and trans_end ioctls can lead 3891 * to deadlocks. They should only be used by applications that 3892 * basically own the machine, and have a very in depth understanding 3893 * of all the possible deadlocks and enospc problems. 3894 */ 3895 static long btrfs_ioctl_trans_start(struct file *file) 3896 { 3897 struct inode *inode = file_inode(file); 3898 struct btrfs_root *root = BTRFS_I(inode)->root; 3899 struct btrfs_trans_handle *trans; 3900 int ret; 3901 3902 ret = -EPERM; 3903 if (!capable(CAP_SYS_ADMIN)) 3904 goto out; 3905 3906 ret = -EINPROGRESS; 3907 if (file->private_data) 3908 goto out; 3909 3910 ret = -EROFS; 3911 if (btrfs_root_readonly(root)) 3912 goto out; 3913 3914 ret = mnt_want_write_file(file); 3915 if (ret) 3916 goto out; 3917 3918 atomic_inc(&root->fs_info->open_ioctl_trans); 3919 3920 ret = -ENOMEM; 3921 trans = btrfs_start_ioctl_transaction(root); 3922 if (IS_ERR(trans)) 3923 goto out_drop; 3924 3925 file->private_data = trans; 3926 return 0; 3927 3928 out_drop: 3929 atomic_dec(&root->fs_info->open_ioctl_trans); 3930 mnt_drop_write_file(file); 3931 out: 3932 return ret; 3933 } 3934 3935 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3936 { 3937 struct inode *inode = file_inode(file); 3938 struct btrfs_root *root = BTRFS_I(inode)->root; 3939 struct btrfs_root *new_root; 3940 struct btrfs_dir_item *di; 3941 struct btrfs_trans_handle *trans; 3942 struct btrfs_path *path; 3943 struct btrfs_key location; 3944 struct btrfs_disk_key disk_key; 3945 u64 objectid = 0; 3946 u64 dir_id; 3947 int ret; 3948 3949 if (!capable(CAP_SYS_ADMIN)) 3950 return -EPERM; 3951 3952 ret = mnt_want_write_file(file); 3953 if (ret) 3954 return ret; 3955 3956 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3957 ret = -EFAULT; 3958 goto out; 3959 } 3960 3961 if (!objectid) 3962 objectid = BTRFS_FS_TREE_OBJECTID; 3963 3964 location.objectid = objectid; 3965 location.type = BTRFS_ROOT_ITEM_KEY; 3966 location.offset = (u64)-1; 3967 3968 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 3969 if (IS_ERR(new_root)) { 3970 ret = PTR_ERR(new_root); 3971 goto out; 3972 } 3973 3974 path = btrfs_alloc_path(); 3975 if (!path) { 3976 ret = -ENOMEM; 3977 goto out; 3978 } 3979 path->leave_spinning = 1; 3980 3981 trans = btrfs_start_transaction(root, 1); 3982 if (IS_ERR(trans)) { 3983 btrfs_free_path(path); 3984 ret = PTR_ERR(trans); 3985 goto out; 3986 } 3987 3988 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 3989 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 3990 dir_id, "default", 7, 1); 3991 if (IS_ERR_OR_NULL(di)) { 3992 btrfs_free_path(path); 3993 btrfs_end_transaction(trans, root); 3994 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir" 3995 "item, this isn't going to work"); 3996 ret = -ENOENT; 3997 goto out; 3998 } 3999 4000 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4001 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4002 btrfs_mark_buffer_dirty(path->nodes[0]); 4003 btrfs_free_path(path); 4004 4005 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 4006 btrfs_end_transaction(trans, root); 4007 out: 4008 mnt_drop_write_file(file); 4009 return ret; 4010 } 4011 4012 void btrfs_get_block_group_info(struct list_head *groups_list, 4013 struct btrfs_ioctl_space_info *space) 4014 { 4015 struct btrfs_block_group_cache *block_group; 4016 4017 space->total_bytes = 0; 4018 space->used_bytes = 0; 4019 space->flags = 0; 4020 list_for_each_entry(block_group, groups_list, list) { 4021 space->flags = block_group->flags; 4022 space->total_bytes += block_group->key.offset; 4023 space->used_bytes += 4024 btrfs_block_group_used(&block_group->item); 4025 } 4026 } 4027 4028 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 4029 { 4030 struct btrfs_ioctl_space_args space_args; 4031 struct btrfs_ioctl_space_info space; 4032 struct btrfs_ioctl_space_info *dest; 4033 struct btrfs_ioctl_space_info *dest_orig; 4034 struct btrfs_ioctl_space_info __user *user_dest; 4035 struct btrfs_space_info *info; 4036 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 4037 BTRFS_BLOCK_GROUP_SYSTEM, 4038 BTRFS_BLOCK_GROUP_METADATA, 4039 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 4040 int num_types = 4; 4041 int alloc_size; 4042 int ret = 0; 4043 u64 slot_count = 0; 4044 int i, c; 4045 4046 if (copy_from_user(&space_args, 4047 (struct btrfs_ioctl_space_args __user *)arg, 4048 sizeof(space_args))) 4049 return -EFAULT; 4050 4051 for (i = 0; i < num_types; i++) { 4052 struct btrfs_space_info *tmp; 4053 4054 info = NULL; 4055 rcu_read_lock(); 4056 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4057 list) { 4058 if (tmp->flags == types[i]) { 4059 info = tmp; 4060 break; 4061 } 4062 } 4063 rcu_read_unlock(); 4064 4065 if (!info) 4066 continue; 4067 4068 down_read(&info->groups_sem); 4069 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4070 if (!list_empty(&info->block_groups[c])) 4071 slot_count++; 4072 } 4073 up_read(&info->groups_sem); 4074 } 4075 4076 /* 4077 * Global block reserve, exported as a space_info 4078 */ 4079 slot_count++; 4080 4081 /* space_slots == 0 means they are asking for a count */ 4082 if (space_args.space_slots == 0) { 4083 space_args.total_spaces = slot_count; 4084 goto out; 4085 } 4086 4087 slot_count = min_t(u64, space_args.space_slots, slot_count); 4088 4089 alloc_size = sizeof(*dest) * slot_count; 4090 4091 /* we generally have at most 6 or so space infos, one for each raid 4092 * level. So, a whole page should be more than enough for everyone 4093 */ 4094 if (alloc_size > PAGE_CACHE_SIZE) 4095 return -ENOMEM; 4096 4097 space_args.total_spaces = 0; 4098 dest = kmalloc(alloc_size, GFP_NOFS); 4099 if (!dest) 4100 return -ENOMEM; 4101 dest_orig = dest; 4102 4103 /* now we have a buffer to copy into */ 4104 for (i = 0; i < num_types; i++) { 4105 struct btrfs_space_info *tmp; 4106 4107 if (!slot_count) 4108 break; 4109 4110 info = NULL; 4111 rcu_read_lock(); 4112 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4113 list) { 4114 if (tmp->flags == types[i]) { 4115 info = tmp; 4116 break; 4117 } 4118 } 4119 rcu_read_unlock(); 4120 4121 if (!info) 4122 continue; 4123 down_read(&info->groups_sem); 4124 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4125 if (!list_empty(&info->block_groups[c])) { 4126 btrfs_get_block_group_info( 4127 &info->block_groups[c], &space); 4128 memcpy(dest, &space, sizeof(space)); 4129 dest++; 4130 space_args.total_spaces++; 4131 slot_count--; 4132 } 4133 if (!slot_count) 4134 break; 4135 } 4136 up_read(&info->groups_sem); 4137 } 4138 4139 /* 4140 * Add global block reserve 4141 */ 4142 if (slot_count) { 4143 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv; 4144 4145 spin_lock(&block_rsv->lock); 4146 space.total_bytes = block_rsv->size; 4147 space.used_bytes = block_rsv->size - block_rsv->reserved; 4148 spin_unlock(&block_rsv->lock); 4149 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4150 memcpy(dest, &space, sizeof(space)); 4151 space_args.total_spaces++; 4152 } 4153 4154 user_dest = (struct btrfs_ioctl_space_info __user *) 4155 (arg + sizeof(struct btrfs_ioctl_space_args)); 4156 4157 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4158 ret = -EFAULT; 4159 4160 kfree(dest_orig); 4161 out: 4162 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4163 ret = -EFAULT; 4164 4165 return ret; 4166 } 4167 4168 /* 4169 * there are many ways the trans_start and trans_end ioctls can lead 4170 * to deadlocks. They should only be used by applications that 4171 * basically own the machine, and have a very in depth understanding 4172 * of all the possible deadlocks and enospc problems. 4173 */ 4174 long btrfs_ioctl_trans_end(struct file *file) 4175 { 4176 struct inode *inode = file_inode(file); 4177 struct btrfs_root *root = BTRFS_I(inode)->root; 4178 struct btrfs_trans_handle *trans; 4179 4180 trans = file->private_data; 4181 if (!trans) 4182 return -EINVAL; 4183 file->private_data = NULL; 4184 4185 btrfs_end_transaction(trans, root); 4186 4187 atomic_dec(&root->fs_info->open_ioctl_trans); 4188 4189 mnt_drop_write_file(file); 4190 return 0; 4191 } 4192 4193 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4194 void __user *argp) 4195 { 4196 struct btrfs_trans_handle *trans; 4197 u64 transid; 4198 int ret; 4199 4200 trans = btrfs_attach_transaction_barrier(root); 4201 if (IS_ERR(trans)) { 4202 if (PTR_ERR(trans) != -ENOENT) 4203 return PTR_ERR(trans); 4204 4205 /* No running transaction, don't bother */ 4206 transid = root->fs_info->last_trans_committed; 4207 goto out; 4208 } 4209 transid = trans->transid; 4210 ret = btrfs_commit_transaction_async(trans, root, 0); 4211 if (ret) { 4212 btrfs_end_transaction(trans, root); 4213 return ret; 4214 } 4215 out: 4216 if (argp) 4217 if (copy_to_user(argp, &transid, sizeof(transid))) 4218 return -EFAULT; 4219 return 0; 4220 } 4221 4222 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root, 4223 void __user *argp) 4224 { 4225 u64 transid; 4226 4227 if (argp) { 4228 if (copy_from_user(&transid, argp, sizeof(transid))) 4229 return -EFAULT; 4230 } else { 4231 transid = 0; /* current trans */ 4232 } 4233 return btrfs_wait_for_commit(root, transid); 4234 } 4235 4236 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4237 { 4238 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4239 struct btrfs_ioctl_scrub_args *sa; 4240 int ret; 4241 4242 if (!capable(CAP_SYS_ADMIN)) 4243 return -EPERM; 4244 4245 sa = memdup_user(arg, sizeof(*sa)); 4246 if (IS_ERR(sa)) 4247 return PTR_ERR(sa); 4248 4249 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4250 ret = mnt_want_write_file(file); 4251 if (ret) 4252 goto out; 4253 } 4254 4255 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end, 4256 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4257 0); 4258 4259 if (copy_to_user(arg, sa, sizeof(*sa))) 4260 ret = -EFAULT; 4261 4262 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4263 mnt_drop_write_file(file); 4264 out: 4265 kfree(sa); 4266 return ret; 4267 } 4268 4269 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 4270 { 4271 if (!capable(CAP_SYS_ADMIN)) 4272 return -EPERM; 4273 4274 return btrfs_scrub_cancel(root->fs_info); 4275 } 4276 4277 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 4278 void __user *arg) 4279 { 4280 struct btrfs_ioctl_scrub_args *sa; 4281 int ret; 4282 4283 if (!capable(CAP_SYS_ADMIN)) 4284 return -EPERM; 4285 4286 sa = memdup_user(arg, sizeof(*sa)); 4287 if (IS_ERR(sa)) 4288 return PTR_ERR(sa); 4289 4290 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 4291 4292 if (copy_to_user(arg, sa, sizeof(*sa))) 4293 ret = -EFAULT; 4294 4295 kfree(sa); 4296 return ret; 4297 } 4298 4299 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 4300 void __user *arg) 4301 { 4302 struct btrfs_ioctl_get_dev_stats *sa; 4303 int ret; 4304 4305 sa = memdup_user(arg, sizeof(*sa)); 4306 if (IS_ERR(sa)) 4307 return PTR_ERR(sa); 4308 4309 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4310 kfree(sa); 4311 return -EPERM; 4312 } 4313 4314 ret = btrfs_get_dev_stats(root, sa); 4315 4316 if (copy_to_user(arg, sa, sizeof(*sa))) 4317 ret = -EFAULT; 4318 4319 kfree(sa); 4320 return ret; 4321 } 4322 4323 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg) 4324 { 4325 struct btrfs_ioctl_dev_replace_args *p; 4326 int ret; 4327 4328 if (!capable(CAP_SYS_ADMIN)) 4329 return -EPERM; 4330 4331 p = memdup_user(arg, sizeof(*p)); 4332 if (IS_ERR(p)) 4333 return PTR_ERR(p); 4334 4335 switch (p->cmd) { 4336 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4337 if (root->fs_info->sb->s_flags & MS_RDONLY) { 4338 ret = -EROFS; 4339 goto out; 4340 } 4341 if (atomic_xchg( 4342 &root->fs_info->mutually_exclusive_operation_running, 4343 1)) { 4344 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4345 } else { 4346 ret = btrfs_dev_replace_start(root, p); 4347 atomic_set( 4348 &root->fs_info->mutually_exclusive_operation_running, 4349 0); 4350 } 4351 break; 4352 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4353 btrfs_dev_replace_status(root->fs_info, p); 4354 ret = 0; 4355 break; 4356 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4357 ret = btrfs_dev_replace_cancel(root->fs_info, p); 4358 break; 4359 default: 4360 ret = -EINVAL; 4361 break; 4362 } 4363 4364 if (copy_to_user(arg, p, sizeof(*p))) 4365 ret = -EFAULT; 4366 out: 4367 kfree(p); 4368 return ret; 4369 } 4370 4371 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4372 { 4373 int ret = 0; 4374 int i; 4375 u64 rel_ptr; 4376 int size; 4377 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4378 struct inode_fs_paths *ipath = NULL; 4379 struct btrfs_path *path; 4380 4381 if (!capable(CAP_DAC_READ_SEARCH)) 4382 return -EPERM; 4383 4384 path = btrfs_alloc_path(); 4385 if (!path) { 4386 ret = -ENOMEM; 4387 goto out; 4388 } 4389 4390 ipa = memdup_user(arg, sizeof(*ipa)); 4391 if (IS_ERR(ipa)) { 4392 ret = PTR_ERR(ipa); 4393 ipa = NULL; 4394 goto out; 4395 } 4396 4397 size = min_t(u32, ipa->size, 4096); 4398 ipath = init_ipath(size, root, path); 4399 if (IS_ERR(ipath)) { 4400 ret = PTR_ERR(ipath); 4401 ipath = NULL; 4402 goto out; 4403 } 4404 4405 ret = paths_from_inode(ipa->inum, ipath); 4406 if (ret < 0) 4407 goto out; 4408 4409 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4410 rel_ptr = ipath->fspath->val[i] - 4411 (u64)(unsigned long)ipath->fspath->val; 4412 ipath->fspath->val[i] = rel_ptr; 4413 } 4414 4415 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 4416 (void *)(unsigned long)ipath->fspath, size); 4417 if (ret) { 4418 ret = -EFAULT; 4419 goto out; 4420 } 4421 4422 out: 4423 btrfs_free_path(path); 4424 free_ipath(ipath); 4425 kfree(ipa); 4426 4427 return ret; 4428 } 4429 4430 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4431 { 4432 struct btrfs_data_container *inodes = ctx; 4433 const size_t c = 3 * sizeof(u64); 4434 4435 if (inodes->bytes_left >= c) { 4436 inodes->bytes_left -= c; 4437 inodes->val[inodes->elem_cnt] = inum; 4438 inodes->val[inodes->elem_cnt + 1] = offset; 4439 inodes->val[inodes->elem_cnt + 2] = root; 4440 inodes->elem_cnt += 3; 4441 } else { 4442 inodes->bytes_missing += c - inodes->bytes_left; 4443 inodes->bytes_left = 0; 4444 inodes->elem_missed += 3; 4445 } 4446 4447 return 0; 4448 } 4449 4450 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 4451 void __user *arg) 4452 { 4453 int ret = 0; 4454 int size; 4455 struct btrfs_ioctl_logical_ino_args *loi; 4456 struct btrfs_data_container *inodes = NULL; 4457 struct btrfs_path *path = NULL; 4458 4459 if (!capable(CAP_SYS_ADMIN)) 4460 return -EPERM; 4461 4462 loi = memdup_user(arg, sizeof(*loi)); 4463 if (IS_ERR(loi)) { 4464 ret = PTR_ERR(loi); 4465 loi = NULL; 4466 goto out; 4467 } 4468 4469 path = btrfs_alloc_path(); 4470 if (!path) { 4471 ret = -ENOMEM; 4472 goto out; 4473 } 4474 4475 size = min_t(u32, loi->size, 64 * 1024); 4476 inodes = init_data_container(size); 4477 if (IS_ERR(inodes)) { 4478 ret = PTR_ERR(inodes); 4479 inodes = NULL; 4480 goto out; 4481 } 4482 4483 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 4484 build_ino_list, inodes); 4485 if (ret == -EINVAL) 4486 ret = -ENOENT; 4487 if (ret < 0) 4488 goto out; 4489 4490 ret = copy_to_user((void *)(unsigned long)loi->inodes, 4491 (void *)(unsigned long)inodes, size); 4492 if (ret) 4493 ret = -EFAULT; 4494 4495 out: 4496 btrfs_free_path(path); 4497 vfree(inodes); 4498 kfree(loi); 4499 4500 return ret; 4501 } 4502 4503 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4504 struct btrfs_ioctl_balance_args *bargs) 4505 { 4506 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4507 4508 bargs->flags = bctl->flags; 4509 4510 if (atomic_read(&fs_info->balance_running)) 4511 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4512 if (atomic_read(&fs_info->balance_pause_req)) 4513 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4514 if (atomic_read(&fs_info->balance_cancel_req)) 4515 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4516 4517 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4518 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4519 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4520 4521 if (lock) { 4522 spin_lock(&fs_info->balance_lock); 4523 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4524 spin_unlock(&fs_info->balance_lock); 4525 } else { 4526 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4527 } 4528 } 4529 4530 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4531 { 4532 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4533 struct btrfs_fs_info *fs_info = root->fs_info; 4534 struct btrfs_ioctl_balance_args *bargs; 4535 struct btrfs_balance_control *bctl; 4536 bool need_unlock; /* for mut. excl. ops lock */ 4537 int ret; 4538 4539 if (!capable(CAP_SYS_ADMIN)) 4540 return -EPERM; 4541 4542 ret = mnt_want_write_file(file); 4543 if (ret) 4544 return ret; 4545 4546 again: 4547 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 4548 mutex_lock(&fs_info->volume_mutex); 4549 mutex_lock(&fs_info->balance_mutex); 4550 need_unlock = true; 4551 goto locked; 4552 } 4553 4554 /* 4555 * mut. excl. ops lock is locked. Three possibilites: 4556 * (1) some other op is running 4557 * (2) balance is running 4558 * (3) balance is paused -- special case (think resume) 4559 */ 4560 mutex_lock(&fs_info->balance_mutex); 4561 if (fs_info->balance_ctl) { 4562 /* this is either (2) or (3) */ 4563 if (!atomic_read(&fs_info->balance_running)) { 4564 mutex_unlock(&fs_info->balance_mutex); 4565 if (!mutex_trylock(&fs_info->volume_mutex)) 4566 goto again; 4567 mutex_lock(&fs_info->balance_mutex); 4568 4569 if (fs_info->balance_ctl && 4570 !atomic_read(&fs_info->balance_running)) { 4571 /* this is (3) */ 4572 need_unlock = false; 4573 goto locked; 4574 } 4575 4576 mutex_unlock(&fs_info->balance_mutex); 4577 mutex_unlock(&fs_info->volume_mutex); 4578 goto again; 4579 } else { 4580 /* this is (2) */ 4581 mutex_unlock(&fs_info->balance_mutex); 4582 ret = -EINPROGRESS; 4583 goto out; 4584 } 4585 } else { 4586 /* this is (1) */ 4587 mutex_unlock(&fs_info->balance_mutex); 4588 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4589 goto out; 4590 } 4591 4592 locked: 4593 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 4594 4595 if (arg) { 4596 bargs = memdup_user(arg, sizeof(*bargs)); 4597 if (IS_ERR(bargs)) { 4598 ret = PTR_ERR(bargs); 4599 goto out_unlock; 4600 } 4601 4602 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4603 if (!fs_info->balance_ctl) { 4604 ret = -ENOTCONN; 4605 goto out_bargs; 4606 } 4607 4608 bctl = fs_info->balance_ctl; 4609 spin_lock(&fs_info->balance_lock); 4610 bctl->flags |= BTRFS_BALANCE_RESUME; 4611 spin_unlock(&fs_info->balance_lock); 4612 4613 goto do_balance; 4614 } 4615 } else { 4616 bargs = NULL; 4617 } 4618 4619 if (fs_info->balance_ctl) { 4620 ret = -EINPROGRESS; 4621 goto out_bargs; 4622 } 4623 4624 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4625 if (!bctl) { 4626 ret = -ENOMEM; 4627 goto out_bargs; 4628 } 4629 4630 bctl->fs_info = fs_info; 4631 if (arg) { 4632 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4633 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4634 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4635 4636 bctl->flags = bargs->flags; 4637 } else { 4638 /* balance everything - no filters */ 4639 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4640 } 4641 4642 do_balance: 4643 /* 4644 * Ownership of bctl and mutually_exclusive_operation_running 4645 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4646 * or, if restriper was paused all the way until unmount, in 4647 * free_fs_info. mutually_exclusive_operation_running is 4648 * cleared in __cancel_balance. 4649 */ 4650 need_unlock = false; 4651 4652 ret = btrfs_balance(bctl, bargs); 4653 4654 if (arg) { 4655 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4656 ret = -EFAULT; 4657 } 4658 4659 out_bargs: 4660 kfree(bargs); 4661 out_unlock: 4662 mutex_unlock(&fs_info->balance_mutex); 4663 mutex_unlock(&fs_info->volume_mutex); 4664 if (need_unlock) 4665 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 4666 out: 4667 mnt_drop_write_file(file); 4668 return ret; 4669 } 4670 4671 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 4672 { 4673 if (!capable(CAP_SYS_ADMIN)) 4674 return -EPERM; 4675 4676 switch (cmd) { 4677 case BTRFS_BALANCE_CTL_PAUSE: 4678 return btrfs_pause_balance(root->fs_info); 4679 case BTRFS_BALANCE_CTL_CANCEL: 4680 return btrfs_cancel_balance(root->fs_info); 4681 } 4682 4683 return -EINVAL; 4684 } 4685 4686 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 4687 void __user *arg) 4688 { 4689 struct btrfs_fs_info *fs_info = root->fs_info; 4690 struct btrfs_ioctl_balance_args *bargs; 4691 int ret = 0; 4692 4693 if (!capable(CAP_SYS_ADMIN)) 4694 return -EPERM; 4695 4696 mutex_lock(&fs_info->balance_mutex); 4697 if (!fs_info->balance_ctl) { 4698 ret = -ENOTCONN; 4699 goto out; 4700 } 4701 4702 bargs = kzalloc(sizeof(*bargs), GFP_NOFS); 4703 if (!bargs) { 4704 ret = -ENOMEM; 4705 goto out; 4706 } 4707 4708 update_ioctl_balance_args(fs_info, 1, bargs); 4709 4710 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4711 ret = -EFAULT; 4712 4713 kfree(bargs); 4714 out: 4715 mutex_unlock(&fs_info->balance_mutex); 4716 return ret; 4717 } 4718 4719 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4720 { 4721 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4722 struct btrfs_ioctl_quota_ctl_args *sa; 4723 struct btrfs_trans_handle *trans = NULL; 4724 int ret; 4725 int err; 4726 4727 if (!capable(CAP_SYS_ADMIN)) 4728 return -EPERM; 4729 4730 ret = mnt_want_write_file(file); 4731 if (ret) 4732 return ret; 4733 4734 sa = memdup_user(arg, sizeof(*sa)); 4735 if (IS_ERR(sa)) { 4736 ret = PTR_ERR(sa); 4737 goto drop_write; 4738 } 4739 4740 down_write(&root->fs_info->subvol_sem); 4741 trans = btrfs_start_transaction(root->fs_info->tree_root, 2); 4742 if (IS_ERR(trans)) { 4743 ret = PTR_ERR(trans); 4744 goto out; 4745 } 4746 4747 switch (sa->cmd) { 4748 case BTRFS_QUOTA_CTL_ENABLE: 4749 ret = btrfs_quota_enable(trans, root->fs_info); 4750 break; 4751 case BTRFS_QUOTA_CTL_DISABLE: 4752 ret = btrfs_quota_disable(trans, root->fs_info); 4753 break; 4754 default: 4755 ret = -EINVAL; 4756 break; 4757 } 4758 4759 err = btrfs_commit_transaction(trans, root->fs_info->tree_root); 4760 if (err && !ret) 4761 ret = err; 4762 out: 4763 kfree(sa); 4764 up_write(&root->fs_info->subvol_sem); 4765 drop_write: 4766 mnt_drop_write_file(file); 4767 return ret; 4768 } 4769 4770 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4771 { 4772 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4773 struct btrfs_ioctl_qgroup_assign_args *sa; 4774 struct btrfs_trans_handle *trans; 4775 int ret; 4776 int err; 4777 4778 if (!capable(CAP_SYS_ADMIN)) 4779 return -EPERM; 4780 4781 ret = mnt_want_write_file(file); 4782 if (ret) 4783 return ret; 4784 4785 sa = memdup_user(arg, sizeof(*sa)); 4786 if (IS_ERR(sa)) { 4787 ret = PTR_ERR(sa); 4788 goto drop_write; 4789 } 4790 4791 trans = btrfs_join_transaction(root); 4792 if (IS_ERR(trans)) { 4793 ret = PTR_ERR(trans); 4794 goto out; 4795 } 4796 4797 /* FIXME: check if the IDs really exist */ 4798 if (sa->assign) { 4799 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 4800 sa->src, sa->dst); 4801 } else { 4802 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 4803 sa->src, sa->dst); 4804 } 4805 4806 /* update qgroup status and info */ 4807 err = btrfs_run_qgroups(trans, root->fs_info); 4808 if (err < 0) 4809 btrfs_error(root->fs_info, ret, 4810 "failed to update qgroup status and info\n"); 4811 err = btrfs_end_transaction(trans, root); 4812 if (err && !ret) 4813 ret = err; 4814 4815 out: 4816 kfree(sa); 4817 drop_write: 4818 mnt_drop_write_file(file); 4819 return ret; 4820 } 4821 4822 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4823 { 4824 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4825 struct btrfs_ioctl_qgroup_create_args *sa; 4826 struct btrfs_trans_handle *trans; 4827 int ret; 4828 int err; 4829 4830 if (!capable(CAP_SYS_ADMIN)) 4831 return -EPERM; 4832 4833 ret = mnt_want_write_file(file); 4834 if (ret) 4835 return ret; 4836 4837 sa = memdup_user(arg, sizeof(*sa)); 4838 if (IS_ERR(sa)) { 4839 ret = PTR_ERR(sa); 4840 goto drop_write; 4841 } 4842 4843 if (!sa->qgroupid) { 4844 ret = -EINVAL; 4845 goto out; 4846 } 4847 4848 trans = btrfs_join_transaction(root); 4849 if (IS_ERR(trans)) { 4850 ret = PTR_ERR(trans); 4851 goto out; 4852 } 4853 4854 /* FIXME: check if the IDs really exist */ 4855 if (sa->create) { 4856 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid); 4857 } else { 4858 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 4859 } 4860 4861 err = btrfs_end_transaction(trans, root); 4862 if (err && !ret) 4863 ret = err; 4864 4865 out: 4866 kfree(sa); 4867 drop_write: 4868 mnt_drop_write_file(file); 4869 return ret; 4870 } 4871 4872 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4873 { 4874 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4875 struct btrfs_ioctl_qgroup_limit_args *sa; 4876 struct btrfs_trans_handle *trans; 4877 int ret; 4878 int err; 4879 u64 qgroupid; 4880 4881 if (!capable(CAP_SYS_ADMIN)) 4882 return -EPERM; 4883 4884 ret = mnt_want_write_file(file); 4885 if (ret) 4886 return ret; 4887 4888 sa = memdup_user(arg, sizeof(*sa)); 4889 if (IS_ERR(sa)) { 4890 ret = PTR_ERR(sa); 4891 goto drop_write; 4892 } 4893 4894 trans = btrfs_join_transaction(root); 4895 if (IS_ERR(trans)) { 4896 ret = PTR_ERR(trans); 4897 goto out; 4898 } 4899 4900 qgroupid = sa->qgroupid; 4901 if (!qgroupid) { 4902 /* take the current subvol as qgroup */ 4903 qgroupid = root->root_key.objectid; 4904 } 4905 4906 /* FIXME: check if the IDs really exist */ 4907 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 4908 4909 err = btrfs_end_transaction(trans, root); 4910 if (err && !ret) 4911 ret = err; 4912 4913 out: 4914 kfree(sa); 4915 drop_write: 4916 mnt_drop_write_file(file); 4917 return ret; 4918 } 4919 4920 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4921 { 4922 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4923 struct btrfs_ioctl_quota_rescan_args *qsa; 4924 int ret; 4925 4926 if (!capable(CAP_SYS_ADMIN)) 4927 return -EPERM; 4928 4929 ret = mnt_want_write_file(file); 4930 if (ret) 4931 return ret; 4932 4933 qsa = memdup_user(arg, sizeof(*qsa)); 4934 if (IS_ERR(qsa)) { 4935 ret = PTR_ERR(qsa); 4936 goto drop_write; 4937 } 4938 4939 if (qsa->flags) { 4940 ret = -EINVAL; 4941 goto out; 4942 } 4943 4944 ret = btrfs_qgroup_rescan(root->fs_info); 4945 4946 out: 4947 kfree(qsa); 4948 drop_write: 4949 mnt_drop_write_file(file); 4950 return ret; 4951 } 4952 4953 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 4954 { 4955 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4956 struct btrfs_ioctl_quota_rescan_args *qsa; 4957 int ret = 0; 4958 4959 if (!capable(CAP_SYS_ADMIN)) 4960 return -EPERM; 4961 4962 qsa = kzalloc(sizeof(*qsa), GFP_NOFS); 4963 if (!qsa) 4964 return -ENOMEM; 4965 4966 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4967 qsa->flags = 1; 4968 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid; 4969 } 4970 4971 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4972 ret = -EFAULT; 4973 4974 kfree(qsa); 4975 return ret; 4976 } 4977 4978 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 4979 { 4980 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4981 4982 if (!capable(CAP_SYS_ADMIN)) 4983 return -EPERM; 4984 4985 return btrfs_qgroup_wait_for_completion(root->fs_info); 4986 } 4987 4988 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4989 struct btrfs_ioctl_received_subvol_args *sa) 4990 { 4991 struct inode *inode = file_inode(file); 4992 struct btrfs_root *root = BTRFS_I(inode)->root; 4993 struct btrfs_root_item *root_item = &root->root_item; 4994 struct btrfs_trans_handle *trans; 4995 struct timespec ct = CURRENT_TIME; 4996 int ret = 0; 4997 int received_uuid_changed; 4998 4999 if (!inode_owner_or_capable(inode)) 5000 return -EPERM; 5001 5002 ret = mnt_want_write_file(file); 5003 if (ret < 0) 5004 return ret; 5005 5006 down_write(&root->fs_info->subvol_sem); 5007 5008 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 5009 ret = -EINVAL; 5010 goto out; 5011 } 5012 5013 if (btrfs_root_readonly(root)) { 5014 ret = -EROFS; 5015 goto out; 5016 } 5017 5018 /* 5019 * 1 - root item 5020 * 2 - uuid items (received uuid + subvol uuid) 5021 */ 5022 trans = btrfs_start_transaction(root, 3); 5023 if (IS_ERR(trans)) { 5024 ret = PTR_ERR(trans); 5025 trans = NULL; 5026 goto out; 5027 } 5028 5029 sa->rtransid = trans->transid; 5030 sa->rtime.sec = ct.tv_sec; 5031 sa->rtime.nsec = ct.tv_nsec; 5032 5033 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5034 BTRFS_UUID_SIZE); 5035 if (received_uuid_changed && 5036 !btrfs_is_empty_uuid(root_item->received_uuid)) 5037 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 5038 root_item->received_uuid, 5039 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5040 root->root_key.objectid); 5041 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5042 btrfs_set_root_stransid(root_item, sa->stransid); 5043 btrfs_set_root_rtransid(root_item, sa->rtransid); 5044 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5045 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5046 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5047 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5048 5049 ret = btrfs_update_root(trans, root->fs_info->tree_root, 5050 &root->root_key, &root->root_item); 5051 if (ret < 0) { 5052 btrfs_end_transaction(trans, root); 5053 goto out; 5054 } 5055 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5056 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 5057 sa->uuid, 5058 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5059 root->root_key.objectid); 5060 if (ret < 0 && ret != -EEXIST) { 5061 btrfs_abort_transaction(trans, root, ret); 5062 goto out; 5063 } 5064 } 5065 ret = btrfs_commit_transaction(trans, root); 5066 if (ret < 0) { 5067 btrfs_abort_transaction(trans, root, ret); 5068 goto out; 5069 } 5070 5071 out: 5072 up_write(&root->fs_info->subvol_sem); 5073 mnt_drop_write_file(file); 5074 return ret; 5075 } 5076 5077 #ifdef CONFIG_64BIT 5078 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5079 void __user *arg) 5080 { 5081 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5082 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5083 int ret = 0; 5084 5085 args32 = memdup_user(arg, sizeof(*args32)); 5086 if (IS_ERR(args32)) { 5087 ret = PTR_ERR(args32); 5088 args32 = NULL; 5089 goto out; 5090 } 5091 5092 args64 = kmalloc(sizeof(*args64), GFP_NOFS); 5093 if (!args64) { 5094 ret = -ENOMEM; 5095 goto out; 5096 } 5097 5098 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5099 args64->stransid = args32->stransid; 5100 args64->rtransid = args32->rtransid; 5101 args64->stime.sec = args32->stime.sec; 5102 args64->stime.nsec = args32->stime.nsec; 5103 args64->rtime.sec = args32->rtime.sec; 5104 args64->rtime.nsec = args32->rtime.nsec; 5105 args64->flags = args32->flags; 5106 5107 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5108 if (ret) 5109 goto out; 5110 5111 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5112 args32->stransid = args64->stransid; 5113 args32->rtransid = args64->rtransid; 5114 args32->stime.sec = args64->stime.sec; 5115 args32->stime.nsec = args64->stime.nsec; 5116 args32->rtime.sec = args64->rtime.sec; 5117 args32->rtime.nsec = args64->rtime.nsec; 5118 args32->flags = args64->flags; 5119 5120 ret = copy_to_user(arg, args32, sizeof(*args32)); 5121 if (ret) 5122 ret = -EFAULT; 5123 5124 out: 5125 kfree(args32); 5126 kfree(args64); 5127 return ret; 5128 } 5129 #endif 5130 5131 static long btrfs_ioctl_set_received_subvol(struct file *file, 5132 void __user *arg) 5133 { 5134 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5135 int ret = 0; 5136 5137 sa = memdup_user(arg, sizeof(*sa)); 5138 if (IS_ERR(sa)) { 5139 ret = PTR_ERR(sa); 5140 sa = NULL; 5141 goto out; 5142 } 5143 5144 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5145 5146 if (ret) 5147 goto out; 5148 5149 ret = copy_to_user(arg, sa, sizeof(*sa)); 5150 if (ret) 5151 ret = -EFAULT; 5152 5153 out: 5154 kfree(sa); 5155 return ret; 5156 } 5157 5158 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5159 { 5160 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5161 size_t len; 5162 int ret; 5163 char label[BTRFS_LABEL_SIZE]; 5164 5165 spin_lock(&root->fs_info->super_lock); 5166 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5167 spin_unlock(&root->fs_info->super_lock); 5168 5169 len = strnlen(label, BTRFS_LABEL_SIZE); 5170 5171 if (len == BTRFS_LABEL_SIZE) { 5172 btrfs_warn(root->fs_info, 5173 "label is too long, return the first %zu bytes", --len); 5174 } 5175 5176 ret = copy_to_user(arg, label, len); 5177 5178 return ret ? -EFAULT : 0; 5179 } 5180 5181 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5182 { 5183 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5184 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5185 struct btrfs_trans_handle *trans; 5186 char label[BTRFS_LABEL_SIZE]; 5187 int ret; 5188 5189 if (!capable(CAP_SYS_ADMIN)) 5190 return -EPERM; 5191 5192 if (copy_from_user(label, arg, sizeof(label))) 5193 return -EFAULT; 5194 5195 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5196 btrfs_err(root->fs_info, "unable to set label with more than %d bytes", 5197 BTRFS_LABEL_SIZE - 1); 5198 return -EINVAL; 5199 } 5200 5201 ret = mnt_want_write_file(file); 5202 if (ret) 5203 return ret; 5204 5205 trans = btrfs_start_transaction(root, 0); 5206 if (IS_ERR(trans)) { 5207 ret = PTR_ERR(trans); 5208 goto out_unlock; 5209 } 5210 5211 spin_lock(&root->fs_info->super_lock); 5212 strcpy(super_block->label, label); 5213 spin_unlock(&root->fs_info->super_lock); 5214 ret = btrfs_commit_transaction(trans, root); 5215 5216 out_unlock: 5217 mnt_drop_write_file(file); 5218 return ret; 5219 } 5220 5221 #define INIT_FEATURE_FLAGS(suffix) \ 5222 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5223 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5224 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5225 5226 static int btrfs_ioctl_get_supported_features(struct file *file, 5227 void __user *arg) 5228 { 5229 static struct btrfs_ioctl_feature_flags features[3] = { 5230 INIT_FEATURE_FLAGS(SUPP), 5231 INIT_FEATURE_FLAGS(SAFE_SET), 5232 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5233 }; 5234 5235 if (copy_to_user(arg, &features, sizeof(features))) 5236 return -EFAULT; 5237 5238 return 0; 5239 } 5240 5241 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5242 { 5243 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5244 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5245 struct btrfs_ioctl_feature_flags features; 5246 5247 features.compat_flags = btrfs_super_compat_flags(super_block); 5248 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5249 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5250 5251 if (copy_to_user(arg, &features, sizeof(features))) 5252 return -EFAULT; 5253 5254 return 0; 5255 } 5256 5257 static int check_feature_bits(struct btrfs_root *root, 5258 enum btrfs_feature_set set, 5259 u64 change_mask, u64 flags, u64 supported_flags, 5260 u64 safe_set, u64 safe_clear) 5261 { 5262 const char *type = btrfs_feature_set_names[set]; 5263 char *names; 5264 u64 disallowed, unsupported; 5265 u64 set_mask = flags & change_mask; 5266 u64 clear_mask = ~flags & change_mask; 5267 5268 unsupported = set_mask & ~supported_flags; 5269 if (unsupported) { 5270 names = btrfs_printable_features(set, unsupported); 5271 if (names) { 5272 btrfs_warn(root->fs_info, 5273 "this kernel does not support the %s feature bit%s", 5274 names, strchr(names, ',') ? "s" : ""); 5275 kfree(names); 5276 } else 5277 btrfs_warn(root->fs_info, 5278 "this kernel does not support %s bits 0x%llx", 5279 type, unsupported); 5280 return -EOPNOTSUPP; 5281 } 5282 5283 disallowed = set_mask & ~safe_set; 5284 if (disallowed) { 5285 names = btrfs_printable_features(set, disallowed); 5286 if (names) { 5287 btrfs_warn(root->fs_info, 5288 "can't set the %s feature bit%s while mounted", 5289 names, strchr(names, ',') ? "s" : ""); 5290 kfree(names); 5291 } else 5292 btrfs_warn(root->fs_info, 5293 "can't set %s bits 0x%llx while mounted", 5294 type, disallowed); 5295 return -EPERM; 5296 } 5297 5298 disallowed = clear_mask & ~safe_clear; 5299 if (disallowed) { 5300 names = btrfs_printable_features(set, disallowed); 5301 if (names) { 5302 btrfs_warn(root->fs_info, 5303 "can't clear the %s feature bit%s while mounted", 5304 names, strchr(names, ',') ? "s" : ""); 5305 kfree(names); 5306 } else 5307 btrfs_warn(root->fs_info, 5308 "can't clear %s bits 0x%llx while mounted", 5309 type, disallowed); 5310 return -EPERM; 5311 } 5312 5313 return 0; 5314 } 5315 5316 #define check_feature(root, change_mask, flags, mask_base) \ 5317 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \ 5318 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5319 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5320 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5321 5322 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5323 { 5324 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5325 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5326 struct btrfs_ioctl_feature_flags flags[2]; 5327 struct btrfs_trans_handle *trans; 5328 u64 newflags; 5329 int ret; 5330 5331 if (!capable(CAP_SYS_ADMIN)) 5332 return -EPERM; 5333 5334 if (copy_from_user(flags, arg, sizeof(flags))) 5335 return -EFAULT; 5336 5337 /* Nothing to do */ 5338 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5339 !flags[0].incompat_flags) 5340 return 0; 5341 5342 ret = check_feature(root, flags[0].compat_flags, 5343 flags[1].compat_flags, COMPAT); 5344 if (ret) 5345 return ret; 5346 5347 ret = check_feature(root, flags[0].compat_ro_flags, 5348 flags[1].compat_ro_flags, COMPAT_RO); 5349 if (ret) 5350 return ret; 5351 5352 ret = check_feature(root, flags[0].incompat_flags, 5353 flags[1].incompat_flags, INCOMPAT); 5354 if (ret) 5355 return ret; 5356 5357 trans = btrfs_start_transaction(root, 0); 5358 if (IS_ERR(trans)) 5359 return PTR_ERR(trans); 5360 5361 spin_lock(&root->fs_info->super_lock); 5362 newflags = btrfs_super_compat_flags(super_block); 5363 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5364 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5365 btrfs_set_super_compat_flags(super_block, newflags); 5366 5367 newflags = btrfs_super_compat_ro_flags(super_block); 5368 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5369 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5370 btrfs_set_super_compat_ro_flags(super_block, newflags); 5371 5372 newflags = btrfs_super_incompat_flags(super_block); 5373 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5374 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5375 btrfs_set_super_incompat_flags(super_block, newflags); 5376 spin_unlock(&root->fs_info->super_lock); 5377 5378 return btrfs_commit_transaction(trans, root); 5379 } 5380 5381 long btrfs_ioctl(struct file *file, unsigned int 5382 cmd, unsigned long arg) 5383 { 5384 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5385 void __user *argp = (void __user *)arg; 5386 5387 switch (cmd) { 5388 case FS_IOC_GETFLAGS: 5389 return btrfs_ioctl_getflags(file, argp); 5390 case FS_IOC_SETFLAGS: 5391 return btrfs_ioctl_setflags(file, argp); 5392 case FS_IOC_GETVERSION: 5393 return btrfs_ioctl_getversion(file, argp); 5394 case FITRIM: 5395 return btrfs_ioctl_fitrim(file, argp); 5396 case BTRFS_IOC_SNAP_CREATE: 5397 return btrfs_ioctl_snap_create(file, argp, 0); 5398 case BTRFS_IOC_SNAP_CREATE_V2: 5399 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5400 case BTRFS_IOC_SUBVOL_CREATE: 5401 return btrfs_ioctl_snap_create(file, argp, 1); 5402 case BTRFS_IOC_SUBVOL_CREATE_V2: 5403 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5404 case BTRFS_IOC_SNAP_DESTROY: 5405 return btrfs_ioctl_snap_destroy(file, argp); 5406 case BTRFS_IOC_SUBVOL_GETFLAGS: 5407 return btrfs_ioctl_subvol_getflags(file, argp); 5408 case BTRFS_IOC_SUBVOL_SETFLAGS: 5409 return btrfs_ioctl_subvol_setflags(file, argp); 5410 case BTRFS_IOC_DEFAULT_SUBVOL: 5411 return btrfs_ioctl_default_subvol(file, argp); 5412 case BTRFS_IOC_DEFRAG: 5413 return btrfs_ioctl_defrag(file, NULL); 5414 case BTRFS_IOC_DEFRAG_RANGE: 5415 return btrfs_ioctl_defrag(file, argp); 5416 case BTRFS_IOC_RESIZE: 5417 return btrfs_ioctl_resize(file, argp); 5418 case BTRFS_IOC_ADD_DEV: 5419 return btrfs_ioctl_add_dev(root, argp); 5420 case BTRFS_IOC_RM_DEV: 5421 return btrfs_ioctl_rm_dev(file, argp); 5422 case BTRFS_IOC_FS_INFO: 5423 return btrfs_ioctl_fs_info(root, argp); 5424 case BTRFS_IOC_DEV_INFO: 5425 return btrfs_ioctl_dev_info(root, argp); 5426 case BTRFS_IOC_BALANCE: 5427 return btrfs_ioctl_balance(file, NULL); 5428 case BTRFS_IOC_CLONE: 5429 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 5430 case BTRFS_IOC_CLONE_RANGE: 5431 return btrfs_ioctl_clone_range(file, argp); 5432 case BTRFS_IOC_TRANS_START: 5433 return btrfs_ioctl_trans_start(file); 5434 case BTRFS_IOC_TRANS_END: 5435 return btrfs_ioctl_trans_end(file); 5436 case BTRFS_IOC_TREE_SEARCH: 5437 return btrfs_ioctl_tree_search(file, argp); 5438 case BTRFS_IOC_TREE_SEARCH_V2: 5439 return btrfs_ioctl_tree_search_v2(file, argp); 5440 case BTRFS_IOC_INO_LOOKUP: 5441 return btrfs_ioctl_ino_lookup(file, argp); 5442 case BTRFS_IOC_INO_PATHS: 5443 return btrfs_ioctl_ino_to_path(root, argp); 5444 case BTRFS_IOC_LOGICAL_INO: 5445 return btrfs_ioctl_logical_to_ino(root, argp); 5446 case BTRFS_IOC_SPACE_INFO: 5447 return btrfs_ioctl_space_info(root, argp); 5448 case BTRFS_IOC_SYNC: { 5449 int ret; 5450 5451 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1); 5452 if (ret) 5453 return ret; 5454 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1); 5455 /* 5456 * The transaction thread may want to do more work, 5457 * namely it pokes the cleaner ktread that will start 5458 * processing uncleaned subvols. 5459 */ 5460 wake_up_process(root->fs_info->transaction_kthread); 5461 return ret; 5462 } 5463 case BTRFS_IOC_START_SYNC: 5464 return btrfs_ioctl_start_sync(root, argp); 5465 case BTRFS_IOC_WAIT_SYNC: 5466 return btrfs_ioctl_wait_sync(root, argp); 5467 case BTRFS_IOC_SCRUB: 5468 return btrfs_ioctl_scrub(file, argp); 5469 case BTRFS_IOC_SCRUB_CANCEL: 5470 return btrfs_ioctl_scrub_cancel(root, argp); 5471 case BTRFS_IOC_SCRUB_PROGRESS: 5472 return btrfs_ioctl_scrub_progress(root, argp); 5473 case BTRFS_IOC_BALANCE_V2: 5474 return btrfs_ioctl_balance(file, argp); 5475 case BTRFS_IOC_BALANCE_CTL: 5476 return btrfs_ioctl_balance_ctl(root, arg); 5477 case BTRFS_IOC_BALANCE_PROGRESS: 5478 return btrfs_ioctl_balance_progress(root, argp); 5479 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5480 return btrfs_ioctl_set_received_subvol(file, argp); 5481 #ifdef CONFIG_64BIT 5482 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5483 return btrfs_ioctl_set_received_subvol_32(file, argp); 5484 #endif 5485 case BTRFS_IOC_SEND: 5486 return btrfs_ioctl_send(file, argp); 5487 case BTRFS_IOC_GET_DEV_STATS: 5488 return btrfs_ioctl_get_dev_stats(root, argp); 5489 case BTRFS_IOC_QUOTA_CTL: 5490 return btrfs_ioctl_quota_ctl(file, argp); 5491 case BTRFS_IOC_QGROUP_ASSIGN: 5492 return btrfs_ioctl_qgroup_assign(file, argp); 5493 case BTRFS_IOC_QGROUP_CREATE: 5494 return btrfs_ioctl_qgroup_create(file, argp); 5495 case BTRFS_IOC_QGROUP_LIMIT: 5496 return btrfs_ioctl_qgroup_limit(file, argp); 5497 case BTRFS_IOC_QUOTA_RESCAN: 5498 return btrfs_ioctl_quota_rescan(file, argp); 5499 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5500 return btrfs_ioctl_quota_rescan_status(file, argp); 5501 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5502 return btrfs_ioctl_quota_rescan_wait(file, argp); 5503 case BTRFS_IOC_DEV_REPLACE: 5504 return btrfs_ioctl_dev_replace(root, argp); 5505 case BTRFS_IOC_GET_FSLABEL: 5506 return btrfs_ioctl_get_fslabel(file, argp); 5507 case BTRFS_IOC_SET_FSLABEL: 5508 return btrfs_ioctl_set_fslabel(file, argp); 5509 case BTRFS_IOC_FILE_EXTENT_SAME: 5510 return btrfs_ioctl_file_extent_same(file, argp); 5511 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5512 return btrfs_ioctl_get_supported_features(file, argp); 5513 case BTRFS_IOC_GET_FEATURES: 5514 return btrfs_ioctl_get_features(file, argp); 5515 case BTRFS_IOC_SET_FEATURES: 5516 return btrfs_ioctl_set_features(file, argp); 5517 } 5518 5519 return -ENOTTY; 5520 } 5521