1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include "compat.h" 45 #include "ctree.h" 46 #include "disk-io.h" 47 #include "transaction.h" 48 #include "btrfs_inode.h" 49 #include "ioctl.h" 50 #include "print-tree.h" 51 #include "volumes.h" 52 #include "locking.h" 53 #include "inode-map.h" 54 55 /* Mask out flags that are inappropriate for the given type of inode. */ 56 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 57 { 58 if (S_ISDIR(mode)) 59 return flags; 60 else if (S_ISREG(mode)) 61 return flags & ~FS_DIRSYNC_FL; 62 else 63 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 64 } 65 66 /* 67 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 68 */ 69 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 70 { 71 unsigned int iflags = 0; 72 73 if (flags & BTRFS_INODE_SYNC) 74 iflags |= FS_SYNC_FL; 75 if (flags & BTRFS_INODE_IMMUTABLE) 76 iflags |= FS_IMMUTABLE_FL; 77 if (flags & BTRFS_INODE_APPEND) 78 iflags |= FS_APPEND_FL; 79 if (flags & BTRFS_INODE_NODUMP) 80 iflags |= FS_NODUMP_FL; 81 if (flags & BTRFS_INODE_NOATIME) 82 iflags |= FS_NOATIME_FL; 83 if (flags & BTRFS_INODE_DIRSYNC) 84 iflags |= FS_DIRSYNC_FL; 85 if (flags & BTRFS_INODE_NODATACOW) 86 iflags |= FS_NOCOW_FL; 87 88 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 89 iflags |= FS_COMPR_FL; 90 else if (flags & BTRFS_INODE_NOCOMPRESS) 91 iflags |= FS_NOCOMP_FL; 92 93 return iflags; 94 } 95 96 /* 97 * Update inode->i_flags based on the btrfs internal flags. 98 */ 99 void btrfs_update_iflags(struct inode *inode) 100 { 101 struct btrfs_inode *ip = BTRFS_I(inode); 102 103 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 104 105 if (ip->flags & BTRFS_INODE_SYNC) 106 inode->i_flags |= S_SYNC; 107 if (ip->flags & BTRFS_INODE_IMMUTABLE) 108 inode->i_flags |= S_IMMUTABLE; 109 if (ip->flags & BTRFS_INODE_APPEND) 110 inode->i_flags |= S_APPEND; 111 if (ip->flags & BTRFS_INODE_NOATIME) 112 inode->i_flags |= S_NOATIME; 113 if (ip->flags & BTRFS_INODE_DIRSYNC) 114 inode->i_flags |= S_DIRSYNC; 115 } 116 117 /* 118 * Inherit flags from the parent inode. 119 * 120 * Unlike extN we don't have any flags we don't want to inherit currently. 121 */ 122 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 123 { 124 unsigned int flags; 125 126 if (!dir) 127 return; 128 129 flags = BTRFS_I(dir)->flags; 130 131 if (S_ISREG(inode->i_mode)) 132 flags &= ~BTRFS_INODE_DIRSYNC; 133 else if (!S_ISDIR(inode->i_mode)) 134 flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME); 135 136 BTRFS_I(inode)->flags = flags; 137 btrfs_update_iflags(inode); 138 } 139 140 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 141 { 142 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode); 143 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 144 145 if (copy_to_user(arg, &flags, sizeof(flags))) 146 return -EFAULT; 147 return 0; 148 } 149 150 static int check_flags(unsigned int flags) 151 { 152 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 153 FS_NOATIME_FL | FS_NODUMP_FL | \ 154 FS_SYNC_FL | FS_DIRSYNC_FL | \ 155 FS_NOCOMP_FL | FS_COMPR_FL | 156 FS_NOCOW_FL)) 157 return -EOPNOTSUPP; 158 159 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 160 return -EINVAL; 161 162 return 0; 163 } 164 165 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 166 { 167 struct inode *inode = file->f_path.dentry->d_inode; 168 struct btrfs_inode *ip = BTRFS_I(inode); 169 struct btrfs_root *root = ip->root; 170 struct btrfs_trans_handle *trans; 171 unsigned int flags, oldflags; 172 int ret; 173 174 if (btrfs_root_readonly(root)) 175 return -EROFS; 176 177 if (copy_from_user(&flags, arg, sizeof(flags))) 178 return -EFAULT; 179 180 ret = check_flags(flags); 181 if (ret) 182 return ret; 183 184 if (!inode_owner_or_capable(inode)) 185 return -EACCES; 186 187 mutex_lock(&inode->i_mutex); 188 189 flags = btrfs_mask_flags(inode->i_mode, flags); 190 oldflags = btrfs_flags_to_ioctl(ip->flags); 191 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 192 if (!capable(CAP_LINUX_IMMUTABLE)) { 193 ret = -EPERM; 194 goto out_unlock; 195 } 196 } 197 198 ret = mnt_want_write(file->f_path.mnt); 199 if (ret) 200 goto out_unlock; 201 202 if (flags & FS_SYNC_FL) 203 ip->flags |= BTRFS_INODE_SYNC; 204 else 205 ip->flags &= ~BTRFS_INODE_SYNC; 206 if (flags & FS_IMMUTABLE_FL) 207 ip->flags |= BTRFS_INODE_IMMUTABLE; 208 else 209 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 210 if (flags & FS_APPEND_FL) 211 ip->flags |= BTRFS_INODE_APPEND; 212 else 213 ip->flags &= ~BTRFS_INODE_APPEND; 214 if (flags & FS_NODUMP_FL) 215 ip->flags |= BTRFS_INODE_NODUMP; 216 else 217 ip->flags &= ~BTRFS_INODE_NODUMP; 218 if (flags & FS_NOATIME_FL) 219 ip->flags |= BTRFS_INODE_NOATIME; 220 else 221 ip->flags &= ~BTRFS_INODE_NOATIME; 222 if (flags & FS_DIRSYNC_FL) 223 ip->flags |= BTRFS_INODE_DIRSYNC; 224 else 225 ip->flags &= ~BTRFS_INODE_DIRSYNC; 226 if (flags & FS_NOCOW_FL) 227 ip->flags |= BTRFS_INODE_NODATACOW; 228 else 229 ip->flags &= ~BTRFS_INODE_NODATACOW; 230 231 /* 232 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 233 * flag may be changed automatically if compression code won't make 234 * things smaller. 235 */ 236 if (flags & FS_NOCOMP_FL) { 237 ip->flags &= ~BTRFS_INODE_COMPRESS; 238 ip->flags |= BTRFS_INODE_NOCOMPRESS; 239 } else if (flags & FS_COMPR_FL) { 240 ip->flags |= BTRFS_INODE_COMPRESS; 241 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 242 } else { 243 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 244 } 245 246 trans = btrfs_join_transaction(root); 247 BUG_ON(IS_ERR(trans)); 248 249 ret = btrfs_update_inode(trans, root, inode); 250 BUG_ON(ret); 251 252 btrfs_update_iflags(inode); 253 inode->i_ctime = CURRENT_TIME; 254 btrfs_end_transaction(trans, root); 255 256 mnt_drop_write(file->f_path.mnt); 257 258 ret = 0; 259 out_unlock: 260 mutex_unlock(&inode->i_mutex); 261 return ret; 262 } 263 264 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 265 { 266 struct inode *inode = file->f_path.dentry->d_inode; 267 268 return put_user(inode->i_generation, arg); 269 } 270 271 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 272 { 273 struct btrfs_root *root = fdentry(file)->d_sb->s_fs_info; 274 struct btrfs_fs_info *fs_info = root->fs_info; 275 struct btrfs_device *device; 276 struct request_queue *q; 277 struct fstrim_range range; 278 u64 minlen = ULLONG_MAX; 279 u64 num_devices = 0; 280 int ret; 281 282 if (!capable(CAP_SYS_ADMIN)) 283 return -EPERM; 284 285 rcu_read_lock(); 286 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 287 dev_list) { 288 if (!device->bdev) 289 continue; 290 q = bdev_get_queue(device->bdev); 291 if (blk_queue_discard(q)) { 292 num_devices++; 293 minlen = min((u64)q->limits.discard_granularity, 294 minlen); 295 } 296 } 297 rcu_read_unlock(); 298 if (!num_devices) 299 return -EOPNOTSUPP; 300 301 if (copy_from_user(&range, arg, sizeof(range))) 302 return -EFAULT; 303 304 range.minlen = max(range.minlen, minlen); 305 ret = btrfs_trim_fs(root, &range); 306 if (ret < 0) 307 return ret; 308 309 if (copy_to_user(arg, &range, sizeof(range))) 310 return -EFAULT; 311 312 return 0; 313 } 314 315 static noinline int create_subvol(struct btrfs_root *root, 316 struct dentry *dentry, 317 char *name, int namelen, 318 u64 *async_transid) 319 { 320 struct btrfs_trans_handle *trans; 321 struct btrfs_key key; 322 struct btrfs_root_item root_item; 323 struct btrfs_inode_item *inode_item; 324 struct extent_buffer *leaf; 325 struct btrfs_root *new_root; 326 struct dentry *parent = dget_parent(dentry); 327 struct inode *dir; 328 int ret; 329 int err; 330 u64 objectid; 331 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 332 u64 index = 0; 333 334 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 335 if (ret) { 336 dput(parent); 337 return ret; 338 } 339 340 dir = parent->d_inode; 341 342 /* 343 * 1 - inode item 344 * 2 - refs 345 * 1 - root item 346 * 2 - dir items 347 */ 348 trans = btrfs_start_transaction(root, 6); 349 if (IS_ERR(trans)) { 350 dput(parent); 351 return PTR_ERR(trans); 352 } 353 354 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 355 0, objectid, NULL, 0, 0, 0); 356 if (IS_ERR(leaf)) { 357 ret = PTR_ERR(leaf); 358 goto fail; 359 } 360 361 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 362 btrfs_set_header_bytenr(leaf, leaf->start); 363 btrfs_set_header_generation(leaf, trans->transid); 364 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 365 btrfs_set_header_owner(leaf, objectid); 366 367 write_extent_buffer(leaf, root->fs_info->fsid, 368 (unsigned long)btrfs_header_fsid(leaf), 369 BTRFS_FSID_SIZE); 370 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 371 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 372 BTRFS_UUID_SIZE); 373 btrfs_mark_buffer_dirty(leaf); 374 375 inode_item = &root_item.inode; 376 memset(inode_item, 0, sizeof(*inode_item)); 377 inode_item->generation = cpu_to_le64(1); 378 inode_item->size = cpu_to_le64(3); 379 inode_item->nlink = cpu_to_le32(1); 380 inode_item->nbytes = cpu_to_le64(root->leafsize); 381 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 382 383 root_item.flags = 0; 384 root_item.byte_limit = 0; 385 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT); 386 387 btrfs_set_root_bytenr(&root_item, leaf->start); 388 btrfs_set_root_generation(&root_item, trans->transid); 389 btrfs_set_root_level(&root_item, 0); 390 btrfs_set_root_refs(&root_item, 1); 391 btrfs_set_root_used(&root_item, leaf->len); 392 btrfs_set_root_last_snapshot(&root_item, 0); 393 394 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress)); 395 root_item.drop_level = 0; 396 397 btrfs_tree_unlock(leaf); 398 free_extent_buffer(leaf); 399 leaf = NULL; 400 401 btrfs_set_root_dirid(&root_item, new_dirid); 402 403 key.objectid = objectid; 404 key.offset = 0; 405 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 406 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 407 &root_item); 408 if (ret) 409 goto fail; 410 411 key.offset = (u64)-1; 412 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 413 BUG_ON(IS_ERR(new_root)); 414 415 btrfs_record_root_in_trans(trans, new_root); 416 417 ret = btrfs_create_subvol_root(trans, new_root, new_dirid); 418 /* 419 * insert the directory item 420 */ 421 ret = btrfs_set_inode_index(dir, &index); 422 BUG_ON(ret); 423 424 ret = btrfs_insert_dir_item(trans, root, 425 name, namelen, dir, &key, 426 BTRFS_FT_DIR, index); 427 if (ret) 428 goto fail; 429 430 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 431 ret = btrfs_update_inode(trans, root, dir); 432 BUG_ON(ret); 433 434 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 435 objectid, root->root_key.objectid, 436 btrfs_ino(dir), index, name, namelen); 437 438 BUG_ON(ret); 439 440 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry)); 441 fail: 442 dput(parent); 443 if (async_transid) { 444 *async_transid = trans->transid; 445 err = btrfs_commit_transaction_async(trans, root, 1); 446 } else { 447 err = btrfs_commit_transaction(trans, root); 448 } 449 if (err && !ret) 450 ret = err; 451 return ret; 452 } 453 454 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry, 455 char *name, int namelen, u64 *async_transid, 456 bool readonly) 457 { 458 struct inode *inode; 459 struct dentry *parent; 460 struct btrfs_pending_snapshot *pending_snapshot; 461 struct btrfs_trans_handle *trans; 462 int ret; 463 464 if (!root->ref_cows) 465 return -EINVAL; 466 467 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 468 if (!pending_snapshot) 469 return -ENOMEM; 470 471 btrfs_init_block_rsv(&pending_snapshot->block_rsv); 472 pending_snapshot->dentry = dentry; 473 pending_snapshot->root = root; 474 pending_snapshot->readonly = readonly; 475 476 trans = btrfs_start_transaction(root->fs_info->extent_root, 5); 477 if (IS_ERR(trans)) { 478 ret = PTR_ERR(trans); 479 goto fail; 480 } 481 482 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot); 483 BUG_ON(ret); 484 485 spin_lock(&root->fs_info->trans_lock); 486 list_add(&pending_snapshot->list, 487 &trans->transaction->pending_snapshots); 488 spin_unlock(&root->fs_info->trans_lock); 489 if (async_transid) { 490 *async_transid = trans->transid; 491 ret = btrfs_commit_transaction_async(trans, 492 root->fs_info->extent_root, 1); 493 } else { 494 ret = btrfs_commit_transaction(trans, 495 root->fs_info->extent_root); 496 } 497 BUG_ON(ret); 498 499 ret = pending_snapshot->error; 500 if (ret) 501 goto fail; 502 503 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 504 if (ret) 505 goto fail; 506 507 parent = dget_parent(dentry); 508 inode = btrfs_lookup_dentry(parent->d_inode, dentry); 509 dput(parent); 510 if (IS_ERR(inode)) { 511 ret = PTR_ERR(inode); 512 goto fail; 513 } 514 BUG_ON(!inode); 515 d_instantiate(dentry, inode); 516 ret = 0; 517 fail: 518 kfree(pending_snapshot); 519 return ret; 520 } 521 522 /* copy of check_sticky in fs/namei.c() 523 * It's inline, so penalty for filesystems that don't use sticky bit is 524 * minimal. 525 */ 526 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode) 527 { 528 uid_t fsuid = current_fsuid(); 529 530 if (!(dir->i_mode & S_ISVTX)) 531 return 0; 532 if (inode->i_uid == fsuid) 533 return 0; 534 if (dir->i_uid == fsuid) 535 return 0; 536 return !capable(CAP_FOWNER); 537 } 538 539 /* copy of may_delete in fs/namei.c() 540 * Check whether we can remove a link victim from directory dir, check 541 * whether the type of victim is right. 542 * 1. We can't do it if dir is read-only (done in permission()) 543 * 2. We should have write and exec permissions on dir 544 * 3. We can't remove anything from append-only dir 545 * 4. We can't do anything with immutable dir (done in permission()) 546 * 5. If the sticky bit on dir is set we should either 547 * a. be owner of dir, or 548 * b. be owner of victim, or 549 * c. have CAP_FOWNER capability 550 * 6. If the victim is append-only or immutable we can't do antyhing with 551 * links pointing to it. 552 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 553 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 554 * 9. We can't remove a root or mountpoint. 555 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 556 * nfs_async_unlink(). 557 */ 558 559 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir) 560 { 561 int error; 562 563 if (!victim->d_inode) 564 return -ENOENT; 565 566 BUG_ON(victim->d_parent->d_inode != dir); 567 audit_inode_child(victim, dir); 568 569 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 570 if (error) 571 return error; 572 if (IS_APPEND(dir)) 573 return -EPERM; 574 if (btrfs_check_sticky(dir, victim->d_inode)|| 575 IS_APPEND(victim->d_inode)|| 576 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 577 return -EPERM; 578 if (isdir) { 579 if (!S_ISDIR(victim->d_inode->i_mode)) 580 return -ENOTDIR; 581 if (IS_ROOT(victim)) 582 return -EBUSY; 583 } else if (S_ISDIR(victim->d_inode->i_mode)) 584 return -EISDIR; 585 if (IS_DEADDIR(dir)) 586 return -ENOENT; 587 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 588 return -EBUSY; 589 return 0; 590 } 591 592 /* copy of may_create in fs/namei.c() */ 593 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 594 { 595 if (child->d_inode) 596 return -EEXIST; 597 if (IS_DEADDIR(dir)) 598 return -ENOENT; 599 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 600 } 601 602 /* 603 * Create a new subvolume below @parent. This is largely modeled after 604 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 605 * inside this filesystem so it's quite a bit simpler. 606 */ 607 static noinline int btrfs_mksubvol(struct path *parent, 608 char *name, int namelen, 609 struct btrfs_root *snap_src, 610 u64 *async_transid, bool readonly) 611 { 612 struct inode *dir = parent->dentry->d_inode; 613 struct dentry *dentry; 614 int error; 615 616 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 617 618 dentry = lookup_one_len(name, parent->dentry, namelen); 619 error = PTR_ERR(dentry); 620 if (IS_ERR(dentry)) 621 goto out_unlock; 622 623 error = -EEXIST; 624 if (dentry->d_inode) 625 goto out_dput; 626 627 error = mnt_want_write(parent->mnt); 628 if (error) 629 goto out_dput; 630 631 error = btrfs_may_create(dir, dentry); 632 if (error) 633 goto out_drop_write; 634 635 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 636 637 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 638 goto out_up_read; 639 640 if (snap_src) { 641 error = create_snapshot(snap_src, dentry, 642 name, namelen, async_transid, readonly); 643 } else { 644 error = create_subvol(BTRFS_I(dir)->root, dentry, 645 name, namelen, async_transid); 646 } 647 if (!error) 648 fsnotify_mkdir(dir, dentry); 649 out_up_read: 650 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 651 out_drop_write: 652 mnt_drop_write(parent->mnt); 653 out_dput: 654 dput(dentry); 655 out_unlock: 656 mutex_unlock(&dir->i_mutex); 657 return error; 658 } 659 660 /* 661 * When we're defragging a range, we don't want to kick it off again 662 * if it is really just waiting for delalloc to send it down. 663 * If we find a nice big extent or delalloc range for the bytes in the 664 * file you want to defrag, we return 0 to let you know to skip this 665 * part of the file 666 */ 667 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh) 668 { 669 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 670 struct extent_map *em = NULL; 671 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 672 u64 end; 673 674 read_lock(&em_tree->lock); 675 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 676 read_unlock(&em_tree->lock); 677 678 if (em) { 679 end = extent_map_end(em); 680 free_extent_map(em); 681 if (end - offset > thresh) 682 return 0; 683 } 684 /* if we already have a nice delalloc here, just stop */ 685 thresh /= 2; 686 end = count_range_bits(io_tree, &offset, offset + thresh, 687 thresh, EXTENT_DELALLOC, 1); 688 if (end >= thresh) 689 return 0; 690 return 1; 691 } 692 693 /* 694 * helper function to walk through a file and find extents 695 * newer than a specific transid, and smaller than thresh. 696 * 697 * This is used by the defragging code to find new and small 698 * extents 699 */ 700 static int find_new_extents(struct btrfs_root *root, 701 struct inode *inode, u64 newer_than, 702 u64 *off, int thresh) 703 { 704 struct btrfs_path *path; 705 struct btrfs_key min_key; 706 struct btrfs_key max_key; 707 struct extent_buffer *leaf; 708 struct btrfs_file_extent_item *extent; 709 int type; 710 int ret; 711 u64 ino = btrfs_ino(inode); 712 713 path = btrfs_alloc_path(); 714 if (!path) 715 return -ENOMEM; 716 717 min_key.objectid = ino; 718 min_key.type = BTRFS_EXTENT_DATA_KEY; 719 min_key.offset = *off; 720 721 max_key.objectid = ino; 722 max_key.type = (u8)-1; 723 max_key.offset = (u64)-1; 724 725 path->keep_locks = 1; 726 727 while(1) { 728 ret = btrfs_search_forward(root, &min_key, &max_key, 729 path, 0, newer_than); 730 if (ret != 0) 731 goto none; 732 if (min_key.objectid != ino) 733 goto none; 734 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 735 goto none; 736 737 leaf = path->nodes[0]; 738 extent = btrfs_item_ptr(leaf, path->slots[0], 739 struct btrfs_file_extent_item); 740 741 type = btrfs_file_extent_type(leaf, extent); 742 if (type == BTRFS_FILE_EXTENT_REG && 743 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 744 check_defrag_in_cache(inode, min_key.offset, thresh)) { 745 *off = min_key.offset; 746 btrfs_free_path(path); 747 return 0; 748 } 749 750 if (min_key.offset == (u64)-1) 751 goto none; 752 753 min_key.offset++; 754 btrfs_release_path(path); 755 } 756 none: 757 btrfs_free_path(path); 758 return -ENOENT; 759 } 760 761 static int should_defrag_range(struct inode *inode, u64 start, u64 len, 762 int thresh, u64 *last_len, u64 *skip, 763 u64 *defrag_end) 764 { 765 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 766 struct extent_map *em = NULL; 767 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 768 int ret = 1; 769 770 /* 771 * make sure that once we start defragging and extent, we keep on 772 * defragging it 773 */ 774 if (start < *defrag_end) 775 return 1; 776 777 *skip = 0; 778 779 /* 780 * hopefully we have this extent in the tree already, try without 781 * the full extent lock 782 */ 783 read_lock(&em_tree->lock); 784 em = lookup_extent_mapping(em_tree, start, len); 785 read_unlock(&em_tree->lock); 786 787 if (!em) { 788 /* get the big lock and read metadata off disk */ 789 lock_extent(io_tree, start, start + len - 1, GFP_NOFS); 790 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 791 unlock_extent(io_tree, start, start + len - 1, GFP_NOFS); 792 793 if (IS_ERR(em)) 794 return 0; 795 } 796 797 /* this will cover holes, and inline extents */ 798 if (em->block_start >= EXTENT_MAP_LAST_BYTE) 799 ret = 0; 800 801 /* 802 * we hit a real extent, if it is big don't bother defragging it again 803 */ 804 if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh) 805 ret = 0; 806 807 /* 808 * last_len ends up being a counter of how many bytes we've defragged. 809 * every time we choose not to defrag an extent, we reset *last_len 810 * so that the next tiny extent will force a defrag. 811 * 812 * The end result of this is that tiny extents before a single big 813 * extent will force at least part of that big extent to be defragged. 814 */ 815 if (ret) { 816 *last_len += len; 817 *defrag_end = extent_map_end(em); 818 } else { 819 *last_len = 0; 820 *skip = extent_map_end(em); 821 *defrag_end = 0; 822 } 823 824 free_extent_map(em); 825 return ret; 826 } 827 828 /* 829 * it doesn't do much good to defrag one or two pages 830 * at a time. This pulls in a nice chunk of pages 831 * to COW and defrag. 832 * 833 * It also makes sure the delalloc code has enough 834 * dirty data to avoid making new small extents as part 835 * of the defrag 836 * 837 * It's a good idea to start RA on this range 838 * before calling this. 839 */ 840 static int cluster_pages_for_defrag(struct inode *inode, 841 struct page **pages, 842 unsigned long start_index, 843 int num_pages) 844 { 845 unsigned long file_end; 846 u64 isize = i_size_read(inode); 847 u64 page_start; 848 u64 page_end; 849 int ret; 850 int i; 851 int i_done; 852 struct btrfs_ordered_extent *ordered; 853 struct extent_state *cached_state = NULL; 854 855 if (isize == 0) 856 return 0; 857 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 858 859 ret = btrfs_delalloc_reserve_space(inode, 860 num_pages << PAGE_CACHE_SHIFT); 861 if (ret) 862 return ret; 863 again: 864 ret = 0; 865 i_done = 0; 866 867 /* step one, lock all the pages */ 868 for (i = 0; i < num_pages; i++) { 869 struct page *page; 870 page = grab_cache_page(inode->i_mapping, 871 start_index + i); 872 if (!page) 873 break; 874 875 if (!PageUptodate(page)) { 876 btrfs_readpage(NULL, page); 877 lock_page(page); 878 if (!PageUptodate(page)) { 879 unlock_page(page); 880 page_cache_release(page); 881 ret = -EIO; 882 break; 883 } 884 } 885 isize = i_size_read(inode); 886 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 887 if (!isize || page->index > file_end || 888 page->mapping != inode->i_mapping) { 889 /* whoops, we blew past eof, skip this page */ 890 unlock_page(page); 891 page_cache_release(page); 892 break; 893 } 894 pages[i] = page; 895 i_done++; 896 } 897 if (!i_done || ret) 898 goto out; 899 900 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 901 goto out; 902 903 /* 904 * so now we have a nice long stream of locked 905 * and up to date pages, lets wait on them 906 */ 907 for (i = 0; i < i_done; i++) 908 wait_on_page_writeback(pages[i]); 909 910 page_start = page_offset(pages[0]); 911 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 912 913 lock_extent_bits(&BTRFS_I(inode)->io_tree, 914 page_start, page_end - 1, 0, &cached_state, 915 GFP_NOFS); 916 ordered = btrfs_lookup_first_ordered_extent(inode, page_end - 1); 917 if (ordered && 918 ordered->file_offset + ordered->len > page_start && 919 ordered->file_offset < page_end) { 920 btrfs_put_ordered_extent(ordered); 921 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 922 page_start, page_end - 1, 923 &cached_state, GFP_NOFS); 924 for (i = 0; i < i_done; i++) { 925 unlock_page(pages[i]); 926 page_cache_release(pages[i]); 927 } 928 btrfs_wait_ordered_range(inode, page_start, 929 page_end - page_start); 930 goto again; 931 } 932 if (ordered) 933 btrfs_put_ordered_extent(ordered); 934 935 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 936 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 937 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state, 938 GFP_NOFS); 939 940 if (i_done != num_pages) { 941 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 942 btrfs_delalloc_release_space(inode, 943 (num_pages - i_done) << PAGE_CACHE_SHIFT); 944 } 945 946 947 btrfs_set_extent_delalloc(inode, page_start, page_end - 1, 948 &cached_state); 949 950 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 951 page_start, page_end - 1, &cached_state, 952 GFP_NOFS); 953 954 for (i = 0; i < i_done; i++) { 955 clear_page_dirty_for_io(pages[i]); 956 ClearPageChecked(pages[i]); 957 set_page_extent_mapped(pages[i]); 958 set_page_dirty(pages[i]); 959 unlock_page(pages[i]); 960 page_cache_release(pages[i]); 961 } 962 return i_done; 963 out: 964 for (i = 0; i < i_done; i++) { 965 unlock_page(pages[i]); 966 page_cache_release(pages[i]); 967 } 968 btrfs_delalloc_release_space(inode, num_pages << PAGE_CACHE_SHIFT); 969 return ret; 970 971 } 972 973 int btrfs_defrag_file(struct inode *inode, struct file *file, 974 struct btrfs_ioctl_defrag_range_args *range, 975 u64 newer_than, unsigned long max_to_defrag) 976 { 977 struct btrfs_root *root = BTRFS_I(inode)->root; 978 struct btrfs_super_block *disk_super; 979 struct file_ra_state *ra = NULL; 980 unsigned long last_index; 981 u64 features; 982 u64 last_len = 0; 983 u64 skip = 0; 984 u64 defrag_end = 0; 985 u64 newer_off = range->start; 986 int newer_left = 0; 987 unsigned long i; 988 int ret; 989 int defrag_count = 0; 990 int compress_type = BTRFS_COMPRESS_ZLIB; 991 int extent_thresh = range->extent_thresh; 992 int newer_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 993 u64 new_align = ~((u64)128 * 1024 - 1); 994 struct page **pages = NULL; 995 996 if (extent_thresh == 0) 997 extent_thresh = 256 * 1024; 998 999 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1000 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1001 return -EINVAL; 1002 if (range->compress_type) 1003 compress_type = range->compress_type; 1004 } 1005 1006 if (inode->i_size == 0) 1007 return 0; 1008 1009 /* 1010 * if we were not given a file, allocate a readahead 1011 * context 1012 */ 1013 if (!file) { 1014 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1015 if (!ra) 1016 return -ENOMEM; 1017 file_ra_state_init(ra, inode->i_mapping); 1018 } else { 1019 ra = &file->f_ra; 1020 } 1021 1022 pages = kmalloc(sizeof(struct page *) * newer_cluster, 1023 GFP_NOFS); 1024 if (!pages) { 1025 ret = -ENOMEM; 1026 goto out_ra; 1027 } 1028 1029 /* find the last page to defrag */ 1030 if (range->start + range->len > range->start) { 1031 last_index = min_t(u64, inode->i_size - 1, 1032 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1033 } else { 1034 last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT; 1035 } 1036 1037 if (newer_than) { 1038 ret = find_new_extents(root, inode, newer_than, 1039 &newer_off, 64 * 1024); 1040 if (!ret) { 1041 range->start = newer_off; 1042 /* 1043 * we always align our defrag to help keep 1044 * the extents in the file evenly spaced 1045 */ 1046 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1047 newer_left = newer_cluster; 1048 } else 1049 goto out_ra; 1050 } else { 1051 i = range->start >> PAGE_CACHE_SHIFT; 1052 } 1053 if (!max_to_defrag) 1054 max_to_defrag = last_index - 1; 1055 1056 while (i <= last_index && defrag_count < max_to_defrag) { 1057 /* 1058 * make sure we stop running if someone unmounts 1059 * the FS 1060 */ 1061 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1062 break; 1063 1064 if (!newer_than && 1065 !should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1066 PAGE_CACHE_SIZE, 1067 extent_thresh, 1068 &last_len, &skip, 1069 &defrag_end)) { 1070 unsigned long next; 1071 /* 1072 * the should_defrag function tells us how much to skip 1073 * bump our counter by the suggested amount 1074 */ 1075 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1076 i = max(i + 1, next); 1077 continue; 1078 } 1079 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1080 BTRFS_I(inode)->force_compress = compress_type; 1081 1082 btrfs_force_ra(inode->i_mapping, ra, file, i, newer_cluster); 1083 1084 ret = cluster_pages_for_defrag(inode, pages, i, newer_cluster); 1085 if (ret < 0) 1086 goto out_ra; 1087 1088 defrag_count += ret; 1089 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret); 1090 i += ret; 1091 1092 if (newer_than) { 1093 if (newer_off == (u64)-1) 1094 break; 1095 1096 newer_off = max(newer_off + 1, 1097 (u64)i << PAGE_CACHE_SHIFT); 1098 1099 ret = find_new_extents(root, inode, 1100 newer_than, &newer_off, 1101 64 * 1024); 1102 if (!ret) { 1103 range->start = newer_off; 1104 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1105 newer_left = newer_cluster; 1106 } else { 1107 break; 1108 } 1109 } else { 1110 i++; 1111 } 1112 } 1113 1114 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) 1115 filemap_flush(inode->i_mapping); 1116 1117 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1118 /* the filemap_flush will queue IO into the worker threads, but 1119 * we have to make sure the IO is actually started and that 1120 * ordered extents get created before we return 1121 */ 1122 atomic_inc(&root->fs_info->async_submit_draining); 1123 while (atomic_read(&root->fs_info->nr_async_submits) || 1124 atomic_read(&root->fs_info->async_delalloc_pages)) { 1125 wait_event(root->fs_info->async_submit_wait, 1126 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1127 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1128 } 1129 atomic_dec(&root->fs_info->async_submit_draining); 1130 1131 mutex_lock(&inode->i_mutex); 1132 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1133 mutex_unlock(&inode->i_mutex); 1134 } 1135 1136 disk_super = &root->fs_info->super_copy; 1137 features = btrfs_super_incompat_flags(disk_super); 1138 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1139 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 1140 btrfs_set_super_incompat_flags(disk_super, features); 1141 } 1142 1143 if (!file) 1144 kfree(ra); 1145 return defrag_count; 1146 1147 out_ra: 1148 if (!file) 1149 kfree(ra); 1150 kfree(pages); 1151 return ret; 1152 } 1153 1154 static noinline int btrfs_ioctl_resize(struct btrfs_root *root, 1155 void __user *arg) 1156 { 1157 u64 new_size; 1158 u64 old_size; 1159 u64 devid = 1; 1160 struct btrfs_ioctl_vol_args *vol_args; 1161 struct btrfs_trans_handle *trans; 1162 struct btrfs_device *device = NULL; 1163 char *sizestr; 1164 char *devstr = NULL; 1165 int ret = 0; 1166 int mod = 0; 1167 1168 if (root->fs_info->sb->s_flags & MS_RDONLY) 1169 return -EROFS; 1170 1171 if (!capable(CAP_SYS_ADMIN)) 1172 return -EPERM; 1173 1174 vol_args = memdup_user(arg, sizeof(*vol_args)); 1175 if (IS_ERR(vol_args)) 1176 return PTR_ERR(vol_args); 1177 1178 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1179 1180 mutex_lock(&root->fs_info->volume_mutex); 1181 sizestr = vol_args->name; 1182 devstr = strchr(sizestr, ':'); 1183 if (devstr) { 1184 char *end; 1185 sizestr = devstr + 1; 1186 *devstr = '\0'; 1187 devstr = vol_args->name; 1188 devid = simple_strtoull(devstr, &end, 10); 1189 printk(KERN_INFO "resizing devid %llu\n", 1190 (unsigned long long)devid); 1191 } 1192 device = btrfs_find_device(root, devid, NULL, NULL); 1193 if (!device) { 1194 printk(KERN_INFO "resizer unable to find device %llu\n", 1195 (unsigned long long)devid); 1196 ret = -EINVAL; 1197 goto out_unlock; 1198 } 1199 if (!strcmp(sizestr, "max")) 1200 new_size = device->bdev->bd_inode->i_size; 1201 else { 1202 if (sizestr[0] == '-') { 1203 mod = -1; 1204 sizestr++; 1205 } else if (sizestr[0] == '+') { 1206 mod = 1; 1207 sizestr++; 1208 } 1209 new_size = memparse(sizestr, NULL); 1210 if (new_size == 0) { 1211 ret = -EINVAL; 1212 goto out_unlock; 1213 } 1214 } 1215 1216 old_size = device->total_bytes; 1217 1218 if (mod < 0) { 1219 if (new_size > old_size) { 1220 ret = -EINVAL; 1221 goto out_unlock; 1222 } 1223 new_size = old_size - new_size; 1224 } else if (mod > 0) { 1225 new_size = old_size + new_size; 1226 } 1227 1228 if (new_size < 256 * 1024 * 1024) { 1229 ret = -EINVAL; 1230 goto out_unlock; 1231 } 1232 if (new_size > device->bdev->bd_inode->i_size) { 1233 ret = -EFBIG; 1234 goto out_unlock; 1235 } 1236 1237 do_div(new_size, root->sectorsize); 1238 new_size *= root->sectorsize; 1239 1240 printk(KERN_INFO "new size for %s is %llu\n", 1241 device->name, (unsigned long long)new_size); 1242 1243 if (new_size > old_size) { 1244 trans = btrfs_start_transaction(root, 0); 1245 if (IS_ERR(trans)) { 1246 ret = PTR_ERR(trans); 1247 goto out_unlock; 1248 } 1249 ret = btrfs_grow_device(trans, device, new_size); 1250 btrfs_commit_transaction(trans, root); 1251 } else { 1252 ret = btrfs_shrink_device(device, new_size); 1253 } 1254 1255 out_unlock: 1256 mutex_unlock(&root->fs_info->volume_mutex); 1257 kfree(vol_args); 1258 return ret; 1259 } 1260 1261 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1262 char *name, 1263 unsigned long fd, 1264 int subvol, 1265 u64 *transid, 1266 bool readonly) 1267 { 1268 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 1269 struct file *src_file; 1270 int namelen; 1271 int ret = 0; 1272 1273 if (root->fs_info->sb->s_flags & MS_RDONLY) 1274 return -EROFS; 1275 1276 namelen = strlen(name); 1277 if (strchr(name, '/')) { 1278 ret = -EINVAL; 1279 goto out; 1280 } 1281 1282 if (subvol) { 1283 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1284 NULL, transid, readonly); 1285 } else { 1286 struct inode *src_inode; 1287 src_file = fget(fd); 1288 if (!src_file) { 1289 ret = -EINVAL; 1290 goto out; 1291 } 1292 1293 src_inode = src_file->f_path.dentry->d_inode; 1294 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) { 1295 printk(KERN_INFO "btrfs: Snapshot src from " 1296 "another FS\n"); 1297 ret = -EINVAL; 1298 fput(src_file); 1299 goto out; 1300 } 1301 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1302 BTRFS_I(src_inode)->root, 1303 transid, readonly); 1304 fput(src_file); 1305 } 1306 out: 1307 return ret; 1308 } 1309 1310 static noinline int btrfs_ioctl_snap_create(struct file *file, 1311 void __user *arg, int subvol) 1312 { 1313 struct btrfs_ioctl_vol_args *vol_args; 1314 int ret; 1315 1316 vol_args = memdup_user(arg, sizeof(*vol_args)); 1317 if (IS_ERR(vol_args)) 1318 return PTR_ERR(vol_args); 1319 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1320 1321 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1322 vol_args->fd, subvol, 1323 NULL, false); 1324 1325 kfree(vol_args); 1326 return ret; 1327 } 1328 1329 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1330 void __user *arg, int subvol) 1331 { 1332 struct btrfs_ioctl_vol_args_v2 *vol_args; 1333 int ret; 1334 u64 transid = 0; 1335 u64 *ptr = NULL; 1336 bool readonly = false; 1337 1338 vol_args = memdup_user(arg, sizeof(*vol_args)); 1339 if (IS_ERR(vol_args)) 1340 return PTR_ERR(vol_args); 1341 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1342 1343 if (vol_args->flags & 1344 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) { 1345 ret = -EOPNOTSUPP; 1346 goto out; 1347 } 1348 1349 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1350 ptr = &transid; 1351 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1352 readonly = true; 1353 1354 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1355 vol_args->fd, subvol, 1356 ptr, readonly); 1357 1358 if (ret == 0 && ptr && 1359 copy_to_user(arg + 1360 offsetof(struct btrfs_ioctl_vol_args_v2, 1361 transid), ptr, sizeof(*ptr))) 1362 ret = -EFAULT; 1363 out: 1364 kfree(vol_args); 1365 return ret; 1366 } 1367 1368 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1369 void __user *arg) 1370 { 1371 struct inode *inode = fdentry(file)->d_inode; 1372 struct btrfs_root *root = BTRFS_I(inode)->root; 1373 int ret = 0; 1374 u64 flags = 0; 1375 1376 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1377 return -EINVAL; 1378 1379 down_read(&root->fs_info->subvol_sem); 1380 if (btrfs_root_readonly(root)) 1381 flags |= BTRFS_SUBVOL_RDONLY; 1382 up_read(&root->fs_info->subvol_sem); 1383 1384 if (copy_to_user(arg, &flags, sizeof(flags))) 1385 ret = -EFAULT; 1386 1387 return ret; 1388 } 1389 1390 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1391 void __user *arg) 1392 { 1393 struct inode *inode = fdentry(file)->d_inode; 1394 struct btrfs_root *root = BTRFS_I(inode)->root; 1395 struct btrfs_trans_handle *trans; 1396 u64 root_flags; 1397 u64 flags; 1398 int ret = 0; 1399 1400 if (root->fs_info->sb->s_flags & MS_RDONLY) 1401 return -EROFS; 1402 1403 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1404 return -EINVAL; 1405 1406 if (copy_from_user(&flags, arg, sizeof(flags))) 1407 return -EFAULT; 1408 1409 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) 1410 return -EINVAL; 1411 1412 if (flags & ~BTRFS_SUBVOL_RDONLY) 1413 return -EOPNOTSUPP; 1414 1415 if (!inode_owner_or_capable(inode)) 1416 return -EACCES; 1417 1418 down_write(&root->fs_info->subvol_sem); 1419 1420 /* nothing to do */ 1421 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1422 goto out; 1423 1424 root_flags = btrfs_root_flags(&root->root_item); 1425 if (flags & BTRFS_SUBVOL_RDONLY) 1426 btrfs_set_root_flags(&root->root_item, 1427 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1428 else 1429 btrfs_set_root_flags(&root->root_item, 1430 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1431 1432 trans = btrfs_start_transaction(root, 1); 1433 if (IS_ERR(trans)) { 1434 ret = PTR_ERR(trans); 1435 goto out_reset; 1436 } 1437 1438 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1439 &root->root_key, &root->root_item); 1440 1441 btrfs_commit_transaction(trans, root); 1442 out_reset: 1443 if (ret) 1444 btrfs_set_root_flags(&root->root_item, root_flags); 1445 out: 1446 up_write(&root->fs_info->subvol_sem); 1447 return ret; 1448 } 1449 1450 /* 1451 * helper to check if the subvolume references other subvolumes 1452 */ 1453 static noinline int may_destroy_subvol(struct btrfs_root *root) 1454 { 1455 struct btrfs_path *path; 1456 struct btrfs_key key; 1457 int ret; 1458 1459 path = btrfs_alloc_path(); 1460 if (!path) 1461 return -ENOMEM; 1462 1463 key.objectid = root->root_key.objectid; 1464 key.type = BTRFS_ROOT_REF_KEY; 1465 key.offset = (u64)-1; 1466 1467 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1468 &key, path, 0, 0); 1469 if (ret < 0) 1470 goto out; 1471 BUG_ON(ret == 0); 1472 1473 ret = 0; 1474 if (path->slots[0] > 0) { 1475 path->slots[0]--; 1476 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1477 if (key.objectid == root->root_key.objectid && 1478 key.type == BTRFS_ROOT_REF_KEY) 1479 ret = -ENOTEMPTY; 1480 } 1481 out: 1482 btrfs_free_path(path); 1483 return ret; 1484 } 1485 1486 static noinline int key_in_sk(struct btrfs_key *key, 1487 struct btrfs_ioctl_search_key *sk) 1488 { 1489 struct btrfs_key test; 1490 int ret; 1491 1492 test.objectid = sk->min_objectid; 1493 test.type = sk->min_type; 1494 test.offset = sk->min_offset; 1495 1496 ret = btrfs_comp_cpu_keys(key, &test); 1497 if (ret < 0) 1498 return 0; 1499 1500 test.objectid = sk->max_objectid; 1501 test.type = sk->max_type; 1502 test.offset = sk->max_offset; 1503 1504 ret = btrfs_comp_cpu_keys(key, &test); 1505 if (ret > 0) 1506 return 0; 1507 return 1; 1508 } 1509 1510 static noinline int copy_to_sk(struct btrfs_root *root, 1511 struct btrfs_path *path, 1512 struct btrfs_key *key, 1513 struct btrfs_ioctl_search_key *sk, 1514 char *buf, 1515 unsigned long *sk_offset, 1516 int *num_found) 1517 { 1518 u64 found_transid; 1519 struct extent_buffer *leaf; 1520 struct btrfs_ioctl_search_header sh; 1521 unsigned long item_off; 1522 unsigned long item_len; 1523 int nritems; 1524 int i; 1525 int slot; 1526 int ret = 0; 1527 1528 leaf = path->nodes[0]; 1529 slot = path->slots[0]; 1530 nritems = btrfs_header_nritems(leaf); 1531 1532 if (btrfs_header_generation(leaf) > sk->max_transid) { 1533 i = nritems; 1534 goto advance_key; 1535 } 1536 found_transid = btrfs_header_generation(leaf); 1537 1538 for (i = slot; i < nritems; i++) { 1539 item_off = btrfs_item_ptr_offset(leaf, i); 1540 item_len = btrfs_item_size_nr(leaf, i); 1541 1542 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE) 1543 item_len = 0; 1544 1545 if (sizeof(sh) + item_len + *sk_offset > 1546 BTRFS_SEARCH_ARGS_BUFSIZE) { 1547 ret = 1; 1548 goto overflow; 1549 } 1550 1551 btrfs_item_key_to_cpu(leaf, key, i); 1552 if (!key_in_sk(key, sk)) 1553 continue; 1554 1555 sh.objectid = key->objectid; 1556 sh.offset = key->offset; 1557 sh.type = key->type; 1558 sh.len = item_len; 1559 sh.transid = found_transid; 1560 1561 /* copy search result header */ 1562 memcpy(buf + *sk_offset, &sh, sizeof(sh)); 1563 *sk_offset += sizeof(sh); 1564 1565 if (item_len) { 1566 char *p = buf + *sk_offset; 1567 /* copy the item */ 1568 read_extent_buffer(leaf, p, 1569 item_off, item_len); 1570 *sk_offset += item_len; 1571 } 1572 (*num_found)++; 1573 1574 if (*num_found >= sk->nr_items) 1575 break; 1576 } 1577 advance_key: 1578 ret = 0; 1579 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 1580 key->offset++; 1581 else if (key->type < (u8)-1 && key->type < sk->max_type) { 1582 key->offset = 0; 1583 key->type++; 1584 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 1585 key->offset = 0; 1586 key->type = 0; 1587 key->objectid++; 1588 } else 1589 ret = 1; 1590 overflow: 1591 return ret; 1592 } 1593 1594 static noinline int search_ioctl(struct inode *inode, 1595 struct btrfs_ioctl_search_args *args) 1596 { 1597 struct btrfs_root *root; 1598 struct btrfs_key key; 1599 struct btrfs_key max_key; 1600 struct btrfs_path *path; 1601 struct btrfs_ioctl_search_key *sk = &args->key; 1602 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 1603 int ret; 1604 int num_found = 0; 1605 unsigned long sk_offset = 0; 1606 1607 path = btrfs_alloc_path(); 1608 if (!path) 1609 return -ENOMEM; 1610 1611 if (sk->tree_id == 0) { 1612 /* search the root of the inode that was passed */ 1613 root = BTRFS_I(inode)->root; 1614 } else { 1615 key.objectid = sk->tree_id; 1616 key.type = BTRFS_ROOT_ITEM_KEY; 1617 key.offset = (u64)-1; 1618 root = btrfs_read_fs_root_no_name(info, &key); 1619 if (IS_ERR(root)) { 1620 printk(KERN_ERR "could not find root %llu\n", 1621 sk->tree_id); 1622 btrfs_free_path(path); 1623 return -ENOENT; 1624 } 1625 } 1626 1627 key.objectid = sk->min_objectid; 1628 key.type = sk->min_type; 1629 key.offset = sk->min_offset; 1630 1631 max_key.objectid = sk->max_objectid; 1632 max_key.type = sk->max_type; 1633 max_key.offset = sk->max_offset; 1634 1635 path->keep_locks = 1; 1636 1637 while(1) { 1638 ret = btrfs_search_forward(root, &key, &max_key, path, 0, 1639 sk->min_transid); 1640 if (ret != 0) { 1641 if (ret > 0) 1642 ret = 0; 1643 goto err; 1644 } 1645 ret = copy_to_sk(root, path, &key, sk, args->buf, 1646 &sk_offset, &num_found); 1647 btrfs_release_path(path); 1648 if (ret || num_found >= sk->nr_items) 1649 break; 1650 1651 } 1652 ret = 0; 1653 err: 1654 sk->nr_items = num_found; 1655 btrfs_free_path(path); 1656 return ret; 1657 } 1658 1659 static noinline int btrfs_ioctl_tree_search(struct file *file, 1660 void __user *argp) 1661 { 1662 struct btrfs_ioctl_search_args *args; 1663 struct inode *inode; 1664 int ret; 1665 1666 if (!capable(CAP_SYS_ADMIN)) 1667 return -EPERM; 1668 1669 args = memdup_user(argp, sizeof(*args)); 1670 if (IS_ERR(args)) 1671 return PTR_ERR(args); 1672 1673 inode = fdentry(file)->d_inode; 1674 ret = search_ioctl(inode, args); 1675 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1676 ret = -EFAULT; 1677 kfree(args); 1678 return ret; 1679 } 1680 1681 /* 1682 * Search INODE_REFs to identify path name of 'dirid' directory 1683 * in a 'tree_id' tree. and sets path name to 'name'. 1684 */ 1685 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1686 u64 tree_id, u64 dirid, char *name) 1687 { 1688 struct btrfs_root *root; 1689 struct btrfs_key key; 1690 char *ptr; 1691 int ret = -1; 1692 int slot; 1693 int len; 1694 int total_len = 0; 1695 struct btrfs_inode_ref *iref; 1696 struct extent_buffer *l; 1697 struct btrfs_path *path; 1698 1699 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1700 name[0]='\0'; 1701 return 0; 1702 } 1703 1704 path = btrfs_alloc_path(); 1705 if (!path) 1706 return -ENOMEM; 1707 1708 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 1709 1710 key.objectid = tree_id; 1711 key.type = BTRFS_ROOT_ITEM_KEY; 1712 key.offset = (u64)-1; 1713 root = btrfs_read_fs_root_no_name(info, &key); 1714 if (IS_ERR(root)) { 1715 printk(KERN_ERR "could not find root %llu\n", tree_id); 1716 ret = -ENOENT; 1717 goto out; 1718 } 1719 1720 key.objectid = dirid; 1721 key.type = BTRFS_INODE_REF_KEY; 1722 key.offset = (u64)-1; 1723 1724 while(1) { 1725 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1726 if (ret < 0) 1727 goto out; 1728 1729 l = path->nodes[0]; 1730 slot = path->slots[0]; 1731 if (ret > 0 && slot > 0) 1732 slot--; 1733 btrfs_item_key_to_cpu(l, &key, slot); 1734 1735 if (ret > 0 && (key.objectid != dirid || 1736 key.type != BTRFS_INODE_REF_KEY)) { 1737 ret = -ENOENT; 1738 goto out; 1739 } 1740 1741 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1742 len = btrfs_inode_ref_name_len(l, iref); 1743 ptr -= len + 1; 1744 total_len += len + 1; 1745 if (ptr < name) 1746 goto out; 1747 1748 *(ptr + len) = '/'; 1749 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len); 1750 1751 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1752 break; 1753 1754 btrfs_release_path(path); 1755 key.objectid = key.offset; 1756 key.offset = (u64)-1; 1757 dirid = key.objectid; 1758 1759 } 1760 if (ptr < name) 1761 goto out; 1762 memcpy(name, ptr, total_len); 1763 name[total_len]='\0'; 1764 ret = 0; 1765 out: 1766 btrfs_free_path(path); 1767 return ret; 1768 } 1769 1770 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 1771 void __user *argp) 1772 { 1773 struct btrfs_ioctl_ino_lookup_args *args; 1774 struct inode *inode; 1775 int ret; 1776 1777 if (!capable(CAP_SYS_ADMIN)) 1778 return -EPERM; 1779 1780 args = memdup_user(argp, sizeof(*args)); 1781 if (IS_ERR(args)) 1782 return PTR_ERR(args); 1783 1784 inode = fdentry(file)->d_inode; 1785 1786 if (args->treeid == 0) 1787 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 1788 1789 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 1790 args->treeid, args->objectid, 1791 args->name); 1792 1793 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1794 ret = -EFAULT; 1795 1796 kfree(args); 1797 return ret; 1798 } 1799 1800 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 1801 void __user *arg) 1802 { 1803 struct dentry *parent = fdentry(file); 1804 struct dentry *dentry; 1805 struct inode *dir = parent->d_inode; 1806 struct inode *inode; 1807 struct btrfs_root *root = BTRFS_I(dir)->root; 1808 struct btrfs_root *dest = NULL; 1809 struct btrfs_ioctl_vol_args *vol_args; 1810 struct btrfs_trans_handle *trans; 1811 int namelen; 1812 int ret; 1813 int err = 0; 1814 1815 vol_args = memdup_user(arg, sizeof(*vol_args)); 1816 if (IS_ERR(vol_args)) 1817 return PTR_ERR(vol_args); 1818 1819 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1820 namelen = strlen(vol_args->name); 1821 if (strchr(vol_args->name, '/') || 1822 strncmp(vol_args->name, "..", namelen) == 0) { 1823 err = -EINVAL; 1824 goto out; 1825 } 1826 1827 err = mnt_want_write(file->f_path.mnt); 1828 if (err) 1829 goto out; 1830 1831 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 1832 dentry = lookup_one_len(vol_args->name, parent, namelen); 1833 if (IS_ERR(dentry)) { 1834 err = PTR_ERR(dentry); 1835 goto out_unlock_dir; 1836 } 1837 1838 if (!dentry->d_inode) { 1839 err = -ENOENT; 1840 goto out_dput; 1841 } 1842 1843 inode = dentry->d_inode; 1844 dest = BTRFS_I(inode)->root; 1845 if (!capable(CAP_SYS_ADMIN)){ 1846 /* 1847 * Regular user. Only allow this with a special mount 1848 * option, when the user has write+exec access to the 1849 * subvol root, and when rmdir(2) would have been 1850 * allowed. 1851 * 1852 * Note that this is _not_ check that the subvol is 1853 * empty or doesn't contain data that we wouldn't 1854 * otherwise be able to delete. 1855 * 1856 * Users who want to delete empty subvols should try 1857 * rmdir(2). 1858 */ 1859 err = -EPERM; 1860 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 1861 goto out_dput; 1862 1863 /* 1864 * Do not allow deletion if the parent dir is the same 1865 * as the dir to be deleted. That means the ioctl 1866 * must be called on the dentry referencing the root 1867 * of the subvol, not a random directory contained 1868 * within it. 1869 */ 1870 err = -EINVAL; 1871 if (root == dest) 1872 goto out_dput; 1873 1874 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 1875 if (err) 1876 goto out_dput; 1877 1878 /* check if subvolume may be deleted by a non-root user */ 1879 err = btrfs_may_delete(dir, dentry, 1); 1880 if (err) 1881 goto out_dput; 1882 } 1883 1884 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1885 err = -EINVAL; 1886 goto out_dput; 1887 } 1888 1889 mutex_lock(&inode->i_mutex); 1890 err = d_invalidate(dentry); 1891 if (err) 1892 goto out_unlock; 1893 1894 down_write(&root->fs_info->subvol_sem); 1895 1896 err = may_destroy_subvol(dest); 1897 if (err) 1898 goto out_up_write; 1899 1900 trans = btrfs_start_transaction(root, 0); 1901 if (IS_ERR(trans)) { 1902 err = PTR_ERR(trans); 1903 goto out_up_write; 1904 } 1905 trans->block_rsv = &root->fs_info->global_block_rsv; 1906 1907 ret = btrfs_unlink_subvol(trans, root, dir, 1908 dest->root_key.objectid, 1909 dentry->d_name.name, 1910 dentry->d_name.len); 1911 BUG_ON(ret); 1912 1913 btrfs_record_root_in_trans(trans, dest); 1914 1915 memset(&dest->root_item.drop_progress, 0, 1916 sizeof(dest->root_item.drop_progress)); 1917 dest->root_item.drop_level = 0; 1918 btrfs_set_root_refs(&dest->root_item, 0); 1919 1920 if (!xchg(&dest->orphan_item_inserted, 1)) { 1921 ret = btrfs_insert_orphan_item(trans, 1922 root->fs_info->tree_root, 1923 dest->root_key.objectid); 1924 BUG_ON(ret); 1925 } 1926 1927 ret = btrfs_end_transaction(trans, root); 1928 BUG_ON(ret); 1929 inode->i_flags |= S_DEAD; 1930 out_up_write: 1931 up_write(&root->fs_info->subvol_sem); 1932 out_unlock: 1933 mutex_unlock(&inode->i_mutex); 1934 if (!err) { 1935 shrink_dcache_sb(root->fs_info->sb); 1936 btrfs_invalidate_inodes(dest); 1937 d_delete(dentry); 1938 } 1939 out_dput: 1940 dput(dentry); 1941 out_unlock_dir: 1942 mutex_unlock(&dir->i_mutex); 1943 mnt_drop_write(file->f_path.mnt); 1944 out: 1945 kfree(vol_args); 1946 return err; 1947 } 1948 1949 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 1950 { 1951 struct inode *inode = fdentry(file)->d_inode; 1952 struct btrfs_root *root = BTRFS_I(inode)->root; 1953 struct btrfs_ioctl_defrag_range_args *range; 1954 int ret; 1955 1956 if (btrfs_root_readonly(root)) 1957 return -EROFS; 1958 1959 ret = mnt_want_write(file->f_path.mnt); 1960 if (ret) 1961 return ret; 1962 1963 switch (inode->i_mode & S_IFMT) { 1964 case S_IFDIR: 1965 if (!capable(CAP_SYS_ADMIN)) { 1966 ret = -EPERM; 1967 goto out; 1968 } 1969 ret = btrfs_defrag_root(root, 0); 1970 if (ret) 1971 goto out; 1972 ret = btrfs_defrag_root(root->fs_info->extent_root, 0); 1973 break; 1974 case S_IFREG: 1975 if (!(file->f_mode & FMODE_WRITE)) { 1976 ret = -EINVAL; 1977 goto out; 1978 } 1979 1980 range = kzalloc(sizeof(*range), GFP_KERNEL); 1981 if (!range) { 1982 ret = -ENOMEM; 1983 goto out; 1984 } 1985 1986 if (argp) { 1987 if (copy_from_user(range, argp, 1988 sizeof(*range))) { 1989 ret = -EFAULT; 1990 kfree(range); 1991 goto out; 1992 } 1993 /* compression requires us to start the IO */ 1994 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1995 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 1996 range->extent_thresh = (u32)-1; 1997 } 1998 } else { 1999 /* the rest are all set to zero by kzalloc */ 2000 range->len = (u64)-1; 2001 } 2002 ret = btrfs_defrag_file(fdentry(file)->d_inode, file, 2003 range, 0, 0); 2004 if (ret > 0) 2005 ret = 0; 2006 kfree(range); 2007 break; 2008 default: 2009 ret = -EINVAL; 2010 } 2011 out: 2012 mnt_drop_write(file->f_path.mnt); 2013 return ret; 2014 } 2015 2016 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2017 { 2018 struct btrfs_ioctl_vol_args *vol_args; 2019 int ret; 2020 2021 if (!capable(CAP_SYS_ADMIN)) 2022 return -EPERM; 2023 2024 vol_args = memdup_user(arg, sizeof(*vol_args)); 2025 if (IS_ERR(vol_args)) 2026 return PTR_ERR(vol_args); 2027 2028 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2029 ret = btrfs_init_new_device(root, vol_args->name); 2030 2031 kfree(vol_args); 2032 return ret; 2033 } 2034 2035 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg) 2036 { 2037 struct btrfs_ioctl_vol_args *vol_args; 2038 int ret; 2039 2040 if (!capable(CAP_SYS_ADMIN)) 2041 return -EPERM; 2042 2043 if (root->fs_info->sb->s_flags & MS_RDONLY) 2044 return -EROFS; 2045 2046 vol_args = memdup_user(arg, sizeof(*vol_args)); 2047 if (IS_ERR(vol_args)) 2048 return PTR_ERR(vol_args); 2049 2050 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2051 ret = btrfs_rm_device(root, vol_args->name); 2052 2053 kfree(vol_args); 2054 return ret; 2055 } 2056 2057 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2058 { 2059 struct btrfs_ioctl_fs_info_args *fi_args; 2060 struct btrfs_device *device; 2061 struct btrfs_device *next; 2062 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2063 int ret = 0; 2064 2065 if (!capable(CAP_SYS_ADMIN)) 2066 return -EPERM; 2067 2068 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2069 if (!fi_args) 2070 return -ENOMEM; 2071 2072 fi_args->num_devices = fs_devices->num_devices; 2073 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2074 2075 mutex_lock(&fs_devices->device_list_mutex); 2076 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 2077 if (device->devid > fi_args->max_id) 2078 fi_args->max_id = device->devid; 2079 } 2080 mutex_unlock(&fs_devices->device_list_mutex); 2081 2082 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2083 ret = -EFAULT; 2084 2085 kfree(fi_args); 2086 return ret; 2087 } 2088 2089 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2090 { 2091 struct btrfs_ioctl_dev_info_args *di_args; 2092 struct btrfs_device *dev; 2093 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2094 int ret = 0; 2095 char *s_uuid = NULL; 2096 char empty_uuid[BTRFS_UUID_SIZE] = {0}; 2097 2098 if (!capable(CAP_SYS_ADMIN)) 2099 return -EPERM; 2100 2101 di_args = memdup_user(arg, sizeof(*di_args)); 2102 if (IS_ERR(di_args)) 2103 return PTR_ERR(di_args); 2104 2105 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0) 2106 s_uuid = di_args->uuid; 2107 2108 mutex_lock(&fs_devices->device_list_mutex); 2109 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL); 2110 mutex_unlock(&fs_devices->device_list_mutex); 2111 2112 if (!dev) { 2113 ret = -ENODEV; 2114 goto out; 2115 } 2116 2117 di_args->devid = dev->devid; 2118 di_args->bytes_used = dev->bytes_used; 2119 di_args->total_bytes = dev->total_bytes; 2120 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2121 strncpy(di_args->path, dev->name, sizeof(di_args->path)); 2122 2123 out: 2124 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2125 ret = -EFAULT; 2126 2127 kfree(di_args); 2128 return ret; 2129 } 2130 2131 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 2132 u64 off, u64 olen, u64 destoff) 2133 { 2134 struct inode *inode = fdentry(file)->d_inode; 2135 struct btrfs_root *root = BTRFS_I(inode)->root; 2136 struct file *src_file; 2137 struct inode *src; 2138 struct btrfs_trans_handle *trans; 2139 struct btrfs_path *path; 2140 struct extent_buffer *leaf; 2141 char *buf; 2142 struct btrfs_key key; 2143 u32 nritems; 2144 int slot; 2145 int ret; 2146 u64 len = olen; 2147 u64 bs = root->fs_info->sb->s_blocksize; 2148 u64 hint_byte; 2149 2150 /* 2151 * TODO: 2152 * - split compressed inline extents. annoying: we need to 2153 * decompress into destination's address_space (the file offset 2154 * may change, so source mapping won't do), then recompress (or 2155 * otherwise reinsert) a subrange. 2156 * - allow ranges within the same file to be cloned (provided 2157 * they don't overlap)? 2158 */ 2159 2160 /* the destination must be opened for writing */ 2161 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 2162 return -EINVAL; 2163 2164 if (btrfs_root_readonly(root)) 2165 return -EROFS; 2166 2167 ret = mnt_want_write(file->f_path.mnt); 2168 if (ret) 2169 return ret; 2170 2171 src_file = fget(srcfd); 2172 if (!src_file) { 2173 ret = -EBADF; 2174 goto out_drop_write; 2175 } 2176 2177 src = src_file->f_dentry->d_inode; 2178 2179 ret = -EINVAL; 2180 if (src == inode) 2181 goto out_fput; 2182 2183 /* the src must be open for reading */ 2184 if (!(src_file->f_mode & FMODE_READ)) 2185 goto out_fput; 2186 2187 ret = -EISDIR; 2188 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 2189 goto out_fput; 2190 2191 ret = -EXDEV; 2192 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root) 2193 goto out_fput; 2194 2195 ret = -ENOMEM; 2196 buf = vmalloc(btrfs_level_size(root, 0)); 2197 if (!buf) 2198 goto out_fput; 2199 2200 path = btrfs_alloc_path(); 2201 if (!path) { 2202 vfree(buf); 2203 goto out_fput; 2204 } 2205 path->reada = 2; 2206 2207 if (inode < src) { 2208 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 2209 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 2210 } else { 2211 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 2212 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 2213 } 2214 2215 /* determine range to clone */ 2216 ret = -EINVAL; 2217 if (off + len > src->i_size || off + len < off) 2218 goto out_unlock; 2219 if (len == 0) 2220 olen = len = src->i_size - off; 2221 /* if we extend to eof, continue to block boundary */ 2222 if (off + len == src->i_size) 2223 len = ALIGN(src->i_size, bs) - off; 2224 2225 /* verify the end result is block aligned */ 2226 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 2227 !IS_ALIGNED(destoff, bs)) 2228 goto out_unlock; 2229 2230 /* do any pending delalloc/csum calc on src, one way or 2231 another, and lock file content */ 2232 while (1) { 2233 struct btrfs_ordered_extent *ordered; 2234 lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 2235 ordered = btrfs_lookup_first_ordered_extent(src, off+len); 2236 if (!ordered && 2237 !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len, 2238 EXTENT_DELALLOC, 0, NULL)) 2239 break; 2240 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 2241 if (ordered) 2242 btrfs_put_ordered_extent(ordered); 2243 btrfs_wait_ordered_range(src, off, len); 2244 } 2245 2246 /* clone data */ 2247 key.objectid = btrfs_ino(src); 2248 key.type = BTRFS_EXTENT_DATA_KEY; 2249 key.offset = 0; 2250 2251 while (1) { 2252 /* 2253 * note the key will change type as we walk through the 2254 * tree. 2255 */ 2256 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2257 if (ret < 0) 2258 goto out; 2259 2260 nritems = btrfs_header_nritems(path->nodes[0]); 2261 if (path->slots[0] >= nritems) { 2262 ret = btrfs_next_leaf(root, path); 2263 if (ret < 0) 2264 goto out; 2265 if (ret > 0) 2266 break; 2267 nritems = btrfs_header_nritems(path->nodes[0]); 2268 } 2269 leaf = path->nodes[0]; 2270 slot = path->slots[0]; 2271 2272 btrfs_item_key_to_cpu(leaf, &key, slot); 2273 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || 2274 key.objectid != btrfs_ino(src)) 2275 break; 2276 2277 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { 2278 struct btrfs_file_extent_item *extent; 2279 int type; 2280 u32 size; 2281 struct btrfs_key new_key; 2282 u64 disko = 0, diskl = 0; 2283 u64 datao = 0, datal = 0; 2284 u8 comp; 2285 u64 endoff; 2286 2287 size = btrfs_item_size_nr(leaf, slot); 2288 read_extent_buffer(leaf, buf, 2289 btrfs_item_ptr_offset(leaf, slot), 2290 size); 2291 2292 extent = btrfs_item_ptr(leaf, slot, 2293 struct btrfs_file_extent_item); 2294 comp = btrfs_file_extent_compression(leaf, extent); 2295 type = btrfs_file_extent_type(leaf, extent); 2296 if (type == BTRFS_FILE_EXTENT_REG || 2297 type == BTRFS_FILE_EXTENT_PREALLOC) { 2298 disko = btrfs_file_extent_disk_bytenr(leaf, 2299 extent); 2300 diskl = btrfs_file_extent_disk_num_bytes(leaf, 2301 extent); 2302 datao = btrfs_file_extent_offset(leaf, extent); 2303 datal = btrfs_file_extent_num_bytes(leaf, 2304 extent); 2305 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2306 /* take upper bound, may be compressed */ 2307 datal = btrfs_file_extent_ram_bytes(leaf, 2308 extent); 2309 } 2310 btrfs_release_path(path); 2311 2312 if (key.offset + datal <= off || 2313 key.offset >= off+len) 2314 goto next; 2315 2316 memcpy(&new_key, &key, sizeof(new_key)); 2317 new_key.objectid = btrfs_ino(inode); 2318 if (off <= key.offset) 2319 new_key.offset = key.offset + destoff - off; 2320 else 2321 new_key.offset = destoff; 2322 2323 trans = btrfs_start_transaction(root, 1); 2324 if (IS_ERR(trans)) { 2325 ret = PTR_ERR(trans); 2326 goto out; 2327 } 2328 2329 if (type == BTRFS_FILE_EXTENT_REG || 2330 type == BTRFS_FILE_EXTENT_PREALLOC) { 2331 if (off > key.offset) { 2332 datao += off - key.offset; 2333 datal -= off - key.offset; 2334 } 2335 2336 if (key.offset + datal > off + len) 2337 datal = off + len - key.offset; 2338 2339 ret = btrfs_drop_extents(trans, inode, 2340 new_key.offset, 2341 new_key.offset + datal, 2342 &hint_byte, 1); 2343 BUG_ON(ret); 2344 2345 ret = btrfs_insert_empty_item(trans, root, path, 2346 &new_key, size); 2347 BUG_ON(ret); 2348 2349 leaf = path->nodes[0]; 2350 slot = path->slots[0]; 2351 write_extent_buffer(leaf, buf, 2352 btrfs_item_ptr_offset(leaf, slot), 2353 size); 2354 2355 extent = btrfs_item_ptr(leaf, slot, 2356 struct btrfs_file_extent_item); 2357 2358 /* disko == 0 means it's a hole */ 2359 if (!disko) 2360 datao = 0; 2361 2362 btrfs_set_file_extent_offset(leaf, extent, 2363 datao); 2364 btrfs_set_file_extent_num_bytes(leaf, extent, 2365 datal); 2366 if (disko) { 2367 inode_add_bytes(inode, datal); 2368 ret = btrfs_inc_extent_ref(trans, root, 2369 disko, diskl, 0, 2370 root->root_key.objectid, 2371 btrfs_ino(inode), 2372 new_key.offset - datao); 2373 BUG_ON(ret); 2374 } 2375 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2376 u64 skip = 0; 2377 u64 trim = 0; 2378 if (off > key.offset) { 2379 skip = off - key.offset; 2380 new_key.offset += skip; 2381 } 2382 2383 if (key.offset + datal > off+len) 2384 trim = key.offset + datal - (off+len); 2385 2386 if (comp && (skip || trim)) { 2387 ret = -EINVAL; 2388 btrfs_end_transaction(trans, root); 2389 goto out; 2390 } 2391 size -= skip + trim; 2392 datal -= skip + trim; 2393 2394 ret = btrfs_drop_extents(trans, inode, 2395 new_key.offset, 2396 new_key.offset + datal, 2397 &hint_byte, 1); 2398 BUG_ON(ret); 2399 2400 ret = btrfs_insert_empty_item(trans, root, path, 2401 &new_key, size); 2402 BUG_ON(ret); 2403 2404 if (skip) { 2405 u32 start = 2406 btrfs_file_extent_calc_inline_size(0); 2407 memmove(buf+start, buf+start+skip, 2408 datal); 2409 } 2410 2411 leaf = path->nodes[0]; 2412 slot = path->slots[0]; 2413 write_extent_buffer(leaf, buf, 2414 btrfs_item_ptr_offset(leaf, slot), 2415 size); 2416 inode_add_bytes(inode, datal); 2417 } 2418 2419 btrfs_mark_buffer_dirty(leaf); 2420 btrfs_release_path(path); 2421 2422 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2423 2424 /* 2425 * we round up to the block size at eof when 2426 * determining which extents to clone above, 2427 * but shouldn't round up the file size 2428 */ 2429 endoff = new_key.offset + datal; 2430 if (endoff > destoff+olen) 2431 endoff = destoff+olen; 2432 if (endoff > inode->i_size) 2433 btrfs_i_size_write(inode, endoff); 2434 2435 BTRFS_I(inode)->flags = BTRFS_I(src)->flags; 2436 ret = btrfs_update_inode(trans, root, inode); 2437 BUG_ON(ret); 2438 btrfs_end_transaction(trans, root); 2439 } 2440 next: 2441 btrfs_release_path(path); 2442 key.offset++; 2443 } 2444 ret = 0; 2445 out: 2446 btrfs_release_path(path); 2447 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 2448 out_unlock: 2449 mutex_unlock(&src->i_mutex); 2450 mutex_unlock(&inode->i_mutex); 2451 vfree(buf); 2452 btrfs_free_path(path); 2453 out_fput: 2454 fput(src_file); 2455 out_drop_write: 2456 mnt_drop_write(file->f_path.mnt); 2457 return ret; 2458 } 2459 2460 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 2461 { 2462 struct btrfs_ioctl_clone_range_args args; 2463 2464 if (copy_from_user(&args, argp, sizeof(args))) 2465 return -EFAULT; 2466 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 2467 args.src_length, args.dest_offset); 2468 } 2469 2470 /* 2471 * there are many ways the trans_start and trans_end ioctls can lead 2472 * to deadlocks. They should only be used by applications that 2473 * basically own the machine, and have a very in depth understanding 2474 * of all the possible deadlocks and enospc problems. 2475 */ 2476 static long btrfs_ioctl_trans_start(struct file *file) 2477 { 2478 struct inode *inode = fdentry(file)->d_inode; 2479 struct btrfs_root *root = BTRFS_I(inode)->root; 2480 struct btrfs_trans_handle *trans; 2481 int ret; 2482 2483 ret = -EPERM; 2484 if (!capable(CAP_SYS_ADMIN)) 2485 goto out; 2486 2487 ret = -EINPROGRESS; 2488 if (file->private_data) 2489 goto out; 2490 2491 ret = -EROFS; 2492 if (btrfs_root_readonly(root)) 2493 goto out; 2494 2495 ret = mnt_want_write(file->f_path.mnt); 2496 if (ret) 2497 goto out; 2498 2499 atomic_inc(&root->fs_info->open_ioctl_trans); 2500 2501 ret = -ENOMEM; 2502 trans = btrfs_start_ioctl_transaction(root); 2503 if (IS_ERR(trans)) 2504 goto out_drop; 2505 2506 file->private_data = trans; 2507 return 0; 2508 2509 out_drop: 2510 atomic_dec(&root->fs_info->open_ioctl_trans); 2511 mnt_drop_write(file->f_path.mnt); 2512 out: 2513 return ret; 2514 } 2515 2516 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2517 { 2518 struct inode *inode = fdentry(file)->d_inode; 2519 struct btrfs_root *root = BTRFS_I(inode)->root; 2520 struct btrfs_root *new_root; 2521 struct btrfs_dir_item *di; 2522 struct btrfs_trans_handle *trans; 2523 struct btrfs_path *path; 2524 struct btrfs_key location; 2525 struct btrfs_disk_key disk_key; 2526 struct btrfs_super_block *disk_super; 2527 u64 features; 2528 u64 objectid = 0; 2529 u64 dir_id; 2530 2531 if (!capable(CAP_SYS_ADMIN)) 2532 return -EPERM; 2533 2534 if (copy_from_user(&objectid, argp, sizeof(objectid))) 2535 return -EFAULT; 2536 2537 if (!objectid) 2538 objectid = root->root_key.objectid; 2539 2540 location.objectid = objectid; 2541 location.type = BTRFS_ROOT_ITEM_KEY; 2542 location.offset = (u64)-1; 2543 2544 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 2545 if (IS_ERR(new_root)) 2546 return PTR_ERR(new_root); 2547 2548 if (btrfs_root_refs(&new_root->root_item) == 0) 2549 return -ENOENT; 2550 2551 path = btrfs_alloc_path(); 2552 if (!path) 2553 return -ENOMEM; 2554 path->leave_spinning = 1; 2555 2556 trans = btrfs_start_transaction(root, 1); 2557 if (IS_ERR(trans)) { 2558 btrfs_free_path(path); 2559 return PTR_ERR(trans); 2560 } 2561 2562 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy); 2563 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 2564 dir_id, "default", 7, 1); 2565 if (IS_ERR_OR_NULL(di)) { 2566 btrfs_free_path(path); 2567 btrfs_end_transaction(trans, root); 2568 printk(KERN_ERR "Umm, you don't have the default dir item, " 2569 "this isn't going to work\n"); 2570 return -ENOENT; 2571 } 2572 2573 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2574 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2575 btrfs_mark_buffer_dirty(path->nodes[0]); 2576 btrfs_free_path(path); 2577 2578 disk_super = &root->fs_info->super_copy; 2579 features = btrfs_super_incompat_flags(disk_super); 2580 if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) { 2581 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL; 2582 btrfs_set_super_incompat_flags(disk_super, features); 2583 } 2584 btrfs_end_transaction(trans, root); 2585 2586 return 0; 2587 } 2588 2589 static void get_block_group_info(struct list_head *groups_list, 2590 struct btrfs_ioctl_space_info *space) 2591 { 2592 struct btrfs_block_group_cache *block_group; 2593 2594 space->total_bytes = 0; 2595 space->used_bytes = 0; 2596 space->flags = 0; 2597 list_for_each_entry(block_group, groups_list, list) { 2598 space->flags = block_group->flags; 2599 space->total_bytes += block_group->key.offset; 2600 space->used_bytes += 2601 btrfs_block_group_used(&block_group->item); 2602 } 2603 } 2604 2605 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 2606 { 2607 struct btrfs_ioctl_space_args space_args; 2608 struct btrfs_ioctl_space_info space; 2609 struct btrfs_ioctl_space_info *dest; 2610 struct btrfs_ioctl_space_info *dest_orig; 2611 struct btrfs_ioctl_space_info __user *user_dest; 2612 struct btrfs_space_info *info; 2613 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 2614 BTRFS_BLOCK_GROUP_SYSTEM, 2615 BTRFS_BLOCK_GROUP_METADATA, 2616 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 2617 int num_types = 4; 2618 int alloc_size; 2619 int ret = 0; 2620 u64 slot_count = 0; 2621 int i, c; 2622 2623 if (copy_from_user(&space_args, 2624 (struct btrfs_ioctl_space_args __user *)arg, 2625 sizeof(space_args))) 2626 return -EFAULT; 2627 2628 for (i = 0; i < num_types; i++) { 2629 struct btrfs_space_info *tmp; 2630 2631 info = NULL; 2632 rcu_read_lock(); 2633 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2634 list) { 2635 if (tmp->flags == types[i]) { 2636 info = tmp; 2637 break; 2638 } 2639 } 2640 rcu_read_unlock(); 2641 2642 if (!info) 2643 continue; 2644 2645 down_read(&info->groups_sem); 2646 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2647 if (!list_empty(&info->block_groups[c])) 2648 slot_count++; 2649 } 2650 up_read(&info->groups_sem); 2651 } 2652 2653 /* space_slots == 0 means they are asking for a count */ 2654 if (space_args.space_slots == 0) { 2655 space_args.total_spaces = slot_count; 2656 goto out; 2657 } 2658 2659 slot_count = min_t(u64, space_args.space_slots, slot_count); 2660 2661 alloc_size = sizeof(*dest) * slot_count; 2662 2663 /* we generally have at most 6 or so space infos, one for each raid 2664 * level. So, a whole page should be more than enough for everyone 2665 */ 2666 if (alloc_size > PAGE_CACHE_SIZE) 2667 return -ENOMEM; 2668 2669 space_args.total_spaces = 0; 2670 dest = kmalloc(alloc_size, GFP_NOFS); 2671 if (!dest) 2672 return -ENOMEM; 2673 dest_orig = dest; 2674 2675 /* now we have a buffer to copy into */ 2676 for (i = 0; i < num_types; i++) { 2677 struct btrfs_space_info *tmp; 2678 2679 if (!slot_count) 2680 break; 2681 2682 info = NULL; 2683 rcu_read_lock(); 2684 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2685 list) { 2686 if (tmp->flags == types[i]) { 2687 info = tmp; 2688 break; 2689 } 2690 } 2691 rcu_read_unlock(); 2692 2693 if (!info) 2694 continue; 2695 down_read(&info->groups_sem); 2696 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2697 if (!list_empty(&info->block_groups[c])) { 2698 get_block_group_info(&info->block_groups[c], 2699 &space); 2700 memcpy(dest, &space, sizeof(space)); 2701 dest++; 2702 space_args.total_spaces++; 2703 slot_count--; 2704 } 2705 if (!slot_count) 2706 break; 2707 } 2708 up_read(&info->groups_sem); 2709 } 2710 2711 user_dest = (struct btrfs_ioctl_space_info *) 2712 (arg + sizeof(struct btrfs_ioctl_space_args)); 2713 2714 if (copy_to_user(user_dest, dest_orig, alloc_size)) 2715 ret = -EFAULT; 2716 2717 kfree(dest_orig); 2718 out: 2719 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 2720 ret = -EFAULT; 2721 2722 return ret; 2723 } 2724 2725 /* 2726 * there are many ways the trans_start and trans_end ioctls can lead 2727 * to deadlocks. They should only be used by applications that 2728 * basically own the machine, and have a very in depth understanding 2729 * of all the possible deadlocks and enospc problems. 2730 */ 2731 long btrfs_ioctl_trans_end(struct file *file) 2732 { 2733 struct inode *inode = fdentry(file)->d_inode; 2734 struct btrfs_root *root = BTRFS_I(inode)->root; 2735 struct btrfs_trans_handle *trans; 2736 2737 trans = file->private_data; 2738 if (!trans) 2739 return -EINVAL; 2740 file->private_data = NULL; 2741 2742 btrfs_end_transaction(trans, root); 2743 2744 atomic_dec(&root->fs_info->open_ioctl_trans); 2745 2746 mnt_drop_write(file->f_path.mnt); 2747 return 0; 2748 } 2749 2750 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp) 2751 { 2752 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 2753 struct btrfs_trans_handle *trans; 2754 u64 transid; 2755 int ret; 2756 2757 trans = btrfs_start_transaction(root, 0); 2758 if (IS_ERR(trans)) 2759 return PTR_ERR(trans); 2760 transid = trans->transid; 2761 ret = btrfs_commit_transaction_async(trans, root, 0); 2762 if (ret) { 2763 btrfs_end_transaction(trans, root); 2764 return ret; 2765 } 2766 2767 if (argp) 2768 if (copy_to_user(argp, &transid, sizeof(transid))) 2769 return -EFAULT; 2770 return 0; 2771 } 2772 2773 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp) 2774 { 2775 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 2776 u64 transid; 2777 2778 if (argp) { 2779 if (copy_from_user(&transid, argp, sizeof(transid))) 2780 return -EFAULT; 2781 } else { 2782 transid = 0; /* current trans */ 2783 } 2784 return btrfs_wait_for_commit(root, transid); 2785 } 2786 2787 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg) 2788 { 2789 int ret; 2790 struct btrfs_ioctl_scrub_args *sa; 2791 2792 if (!capable(CAP_SYS_ADMIN)) 2793 return -EPERM; 2794 2795 sa = memdup_user(arg, sizeof(*sa)); 2796 if (IS_ERR(sa)) 2797 return PTR_ERR(sa); 2798 2799 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end, 2800 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY); 2801 2802 if (copy_to_user(arg, sa, sizeof(*sa))) 2803 ret = -EFAULT; 2804 2805 kfree(sa); 2806 return ret; 2807 } 2808 2809 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 2810 { 2811 if (!capable(CAP_SYS_ADMIN)) 2812 return -EPERM; 2813 2814 return btrfs_scrub_cancel(root); 2815 } 2816 2817 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 2818 void __user *arg) 2819 { 2820 struct btrfs_ioctl_scrub_args *sa; 2821 int ret; 2822 2823 if (!capable(CAP_SYS_ADMIN)) 2824 return -EPERM; 2825 2826 sa = memdup_user(arg, sizeof(*sa)); 2827 if (IS_ERR(sa)) 2828 return PTR_ERR(sa); 2829 2830 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 2831 2832 if (copy_to_user(arg, sa, sizeof(*sa))) 2833 ret = -EFAULT; 2834 2835 kfree(sa); 2836 return ret; 2837 } 2838 2839 long btrfs_ioctl(struct file *file, unsigned int 2840 cmd, unsigned long arg) 2841 { 2842 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 2843 void __user *argp = (void __user *)arg; 2844 2845 switch (cmd) { 2846 case FS_IOC_GETFLAGS: 2847 return btrfs_ioctl_getflags(file, argp); 2848 case FS_IOC_SETFLAGS: 2849 return btrfs_ioctl_setflags(file, argp); 2850 case FS_IOC_GETVERSION: 2851 return btrfs_ioctl_getversion(file, argp); 2852 case FITRIM: 2853 return btrfs_ioctl_fitrim(file, argp); 2854 case BTRFS_IOC_SNAP_CREATE: 2855 return btrfs_ioctl_snap_create(file, argp, 0); 2856 case BTRFS_IOC_SNAP_CREATE_V2: 2857 return btrfs_ioctl_snap_create_v2(file, argp, 0); 2858 case BTRFS_IOC_SUBVOL_CREATE: 2859 return btrfs_ioctl_snap_create(file, argp, 1); 2860 case BTRFS_IOC_SNAP_DESTROY: 2861 return btrfs_ioctl_snap_destroy(file, argp); 2862 case BTRFS_IOC_SUBVOL_GETFLAGS: 2863 return btrfs_ioctl_subvol_getflags(file, argp); 2864 case BTRFS_IOC_SUBVOL_SETFLAGS: 2865 return btrfs_ioctl_subvol_setflags(file, argp); 2866 case BTRFS_IOC_DEFAULT_SUBVOL: 2867 return btrfs_ioctl_default_subvol(file, argp); 2868 case BTRFS_IOC_DEFRAG: 2869 return btrfs_ioctl_defrag(file, NULL); 2870 case BTRFS_IOC_DEFRAG_RANGE: 2871 return btrfs_ioctl_defrag(file, argp); 2872 case BTRFS_IOC_RESIZE: 2873 return btrfs_ioctl_resize(root, argp); 2874 case BTRFS_IOC_ADD_DEV: 2875 return btrfs_ioctl_add_dev(root, argp); 2876 case BTRFS_IOC_RM_DEV: 2877 return btrfs_ioctl_rm_dev(root, argp); 2878 case BTRFS_IOC_FS_INFO: 2879 return btrfs_ioctl_fs_info(root, argp); 2880 case BTRFS_IOC_DEV_INFO: 2881 return btrfs_ioctl_dev_info(root, argp); 2882 case BTRFS_IOC_BALANCE: 2883 return btrfs_balance(root->fs_info->dev_root); 2884 case BTRFS_IOC_CLONE: 2885 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 2886 case BTRFS_IOC_CLONE_RANGE: 2887 return btrfs_ioctl_clone_range(file, argp); 2888 case BTRFS_IOC_TRANS_START: 2889 return btrfs_ioctl_trans_start(file); 2890 case BTRFS_IOC_TRANS_END: 2891 return btrfs_ioctl_trans_end(file); 2892 case BTRFS_IOC_TREE_SEARCH: 2893 return btrfs_ioctl_tree_search(file, argp); 2894 case BTRFS_IOC_INO_LOOKUP: 2895 return btrfs_ioctl_ino_lookup(file, argp); 2896 case BTRFS_IOC_SPACE_INFO: 2897 return btrfs_ioctl_space_info(root, argp); 2898 case BTRFS_IOC_SYNC: 2899 btrfs_sync_fs(file->f_dentry->d_sb, 1); 2900 return 0; 2901 case BTRFS_IOC_START_SYNC: 2902 return btrfs_ioctl_start_sync(file, argp); 2903 case BTRFS_IOC_WAIT_SYNC: 2904 return btrfs_ioctl_wait_sync(file, argp); 2905 case BTRFS_IOC_SCRUB: 2906 return btrfs_ioctl_scrub(root, argp); 2907 case BTRFS_IOC_SCRUB_CANCEL: 2908 return btrfs_ioctl_scrub_cancel(root, argp); 2909 case BTRFS_IOC_SCRUB_PROGRESS: 2910 return btrfs_ioctl_scrub_progress(root, argp); 2911 } 2912 2913 return -ENOTTY; 2914 } 2915