xref: /openbmc/linux/fs/btrfs/ioctl.c (revision e4c0d0e2)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include "compat.h"
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "ioctl.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54 
55 /* Mask out flags that are inappropriate for the given type of inode. */
56 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
57 {
58 	if (S_ISDIR(mode))
59 		return flags;
60 	else if (S_ISREG(mode))
61 		return flags & ~FS_DIRSYNC_FL;
62 	else
63 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
64 }
65 
66 /*
67  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
68  */
69 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
70 {
71 	unsigned int iflags = 0;
72 
73 	if (flags & BTRFS_INODE_SYNC)
74 		iflags |= FS_SYNC_FL;
75 	if (flags & BTRFS_INODE_IMMUTABLE)
76 		iflags |= FS_IMMUTABLE_FL;
77 	if (flags & BTRFS_INODE_APPEND)
78 		iflags |= FS_APPEND_FL;
79 	if (flags & BTRFS_INODE_NODUMP)
80 		iflags |= FS_NODUMP_FL;
81 	if (flags & BTRFS_INODE_NOATIME)
82 		iflags |= FS_NOATIME_FL;
83 	if (flags & BTRFS_INODE_DIRSYNC)
84 		iflags |= FS_DIRSYNC_FL;
85 	if (flags & BTRFS_INODE_NODATACOW)
86 		iflags |= FS_NOCOW_FL;
87 
88 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
89 		iflags |= FS_COMPR_FL;
90 	else if (flags & BTRFS_INODE_NOCOMPRESS)
91 		iflags |= FS_NOCOMP_FL;
92 
93 	return iflags;
94 }
95 
96 /*
97  * Update inode->i_flags based on the btrfs internal flags.
98  */
99 void btrfs_update_iflags(struct inode *inode)
100 {
101 	struct btrfs_inode *ip = BTRFS_I(inode);
102 
103 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
104 
105 	if (ip->flags & BTRFS_INODE_SYNC)
106 		inode->i_flags |= S_SYNC;
107 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
108 		inode->i_flags |= S_IMMUTABLE;
109 	if (ip->flags & BTRFS_INODE_APPEND)
110 		inode->i_flags |= S_APPEND;
111 	if (ip->flags & BTRFS_INODE_NOATIME)
112 		inode->i_flags |= S_NOATIME;
113 	if (ip->flags & BTRFS_INODE_DIRSYNC)
114 		inode->i_flags |= S_DIRSYNC;
115 }
116 
117 /*
118  * Inherit flags from the parent inode.
119  *
120  * Unlike extN we don't have any flags we don't want to inherit currently.
121  */
122 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
123 {
124 	unsigned int flags;
125 
126 	if (!dir)
127 		return;
128 
129 	flags = BTRFS_I(dir)->flags;
130 
131 	if (S_ISREG(inode->i_mode))
132 		flags &= ~BTRFS_INODE_DIRSYNC;
133 	else if (!S_ISDIR(inode->i_mode))
134 		flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME);
135 
136 	BTRFS_I(inode)->flags = flags;
137 	btrfs_update_iflags(inode);
138 }
139 
140 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
141 {
142 	struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
143 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
144 
145 	if (copy_to_user(arg, &flags, sizeof(flags)))
146 		return -EFAULT;
147 	return 0;
148 }
149 
150 static int check_flags(unsigned int flags)
151 {
152 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
153 		      FS_NOATIME_FL | FS_NODUMP_FL | \
154 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
155 		      FS_NOCOMP_FL | FS_COMPR_FL |
156 		      FS_NOCOW_FL))
157 		return -EOPNOTSUPP;
158 
159 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
160 		return -EINVAL;
161 
162 	return 0;
163 }
164 
165 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
166 {
167 	struct inode *inode = file->f_path.dentry->d_inode;
168 	struct btrfs_inode *ip = BTRFS_I(inode);
169 	struct btrfs_root *root = ip->root;
170 	struct btrfs_trans_handle *trans;
171 	unsigned int flags, oldflags;
172 	int ret;
173 
174 	if (btrfs_root_readonly(root))
175 		return -EROFS;
176 
177 	if (copy_from_user(&flags, arg, sizeof(flags)))
178 		return -EFAULT;
179 
180 	ret = check_flags(flags);
181 	if (ret)
182 		return ret;
183 
184 	if (!inode_owner_or_capable(inode))
185 		return -EACCES;
186 
187 	mutex_lock(&inode->i_mutex);
188 
189 	flags = btrfs_mask_flags(inode->i_mode, flags);
190 	oldflags = btrfs_flags_to_ioctl(ip->flags);
191 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
192 		if (!capable(CAP_LINUX_IMMUTABLE)) {
193 			ret = -EPERM;
194 			goto out_unlock;
195 		}
196 	}
197 
198 	ret = mnt_want_write(file->f_path.mnt);
199 	if (ret)
200 		goto out_unlock;
201 
202 	if (flags & FS_SYNC_FL)
203 		ip->flags |= BTRFS_INODE_SYNC;
204 	else
205 		ip->flags &= ~BTRFS_INODE_SYNC;
206 	if (flags & FS_IMMUTABLE_FL)
207 		ip->flags |= BTRFS_INODE_IMMUTABLE;
208 	else
209 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
210 	if (flags & FS_APPEND_FL)
211 		ip->flags |= BTRFS_INODE_APPEND;
212 	else
213 		ip->flags &= ~BTRFS_INODE_APPEND;
214 	if (flags & FS_NODUMP_FL)
215 		ip->flags |= BTRFS_INODE_NODUMP;
216 	else
217 		ip->flags &= ~BTRFS_INODE_NODUMP;
218 	if (flags & FS_NOATIME_FL)
219 		ip->flags |= BTRFS_INODE_NOATIME;
220 	else
221 		ip->flags &= ~BTRFS_INODE_NOATIME;
222 	if (flags & FS_DIRSYNC_FL)
223 		ip->flags |= BTRFS_INODE_DIRSYNC;
224 	else
225 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
226 	if (flags & FS_NOCOW_FL)
227 		ip->flags |= BTRFS_INODE_NODATACOW;
228 	else
229 		ip->flags &= ~BTRFS_INODE_NODATACOW;
230 
231 	/*
232 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
233 	 * flag may be changed automatically if compression code won't make
234 	 * things smaller.
235 	 */
236 	if (flags & FS_NOCOMP_FL) {
237 		ip->flags &= ~BTRFS_INODE_COMPRESS;
238 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
239 	} else if (flags & FS_COMPR_FL) {
240 		ip->flags |= BTRFS_INODE_COMPRESS;
241 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
242 	} else {
243 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
244 	}
245 
246 	trans = btrfs_join_transaction(root);
247 	BUG_ON(IS_ERR(trans));
248 
249 	ret = btrfs_update_inode(trans, root, inode);
250 	BUG_ON(ret);
251 
252 	btrfs_update_iflags(inode);
253 	inode->i_ctime = CURRENT_TIME;
254 	btrfs_end_transaction(trans, root);
255 
256 	mnt_drop_write(file->f_path.mnt);
257 
258 	ret = 0;
259  out_unlock:
260 	mutex_unlock(&inode->i_mutex);
261 	return ret;
262 }
263 
264 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
265 {
266 	struct inode *inode = file->f_path.dentry->d_inode;
267 
268 	return put_user(inode->i_generation, arg);
269 }
270 
271 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
272 {
273 	struct btrfs_root *root = fdentry(file)->d_sb->s_fs_info;
274 	struct btrfs_fs_info *fs_info = root->fs_info;
275 	struct btrfs_device *device;
276 	struct request_queue *q;
277 	struct fstrim_range range;
278 	u64 minlen = ULLONG_MAX;
279 	u64 num_devices = 0;
280 	int ret;
281 
282 	if (!capable(CAP_SYS_ADMIN))
283 		return -EPERM;
284 
285 	rcu_read_lock();
286 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
287 				dev_list) {
288 		if (!device->bdev)
289 			continue;
290 		q = bdev_get_queue(device->bdev);
291 		if (blk_queue_discard(q)) {
292 			num_devices++;
293 			minlen = min((u64)q->limits.discard_granularity,
294 				     minlen);
295 		}
296 	}
297 	rcu_read_unlock();
298 	if (!num_devices)
299 		return -EOPNOTSUPP;
300 
301 	if (copy_from_user(&range, arg, sizeof(range)))
302 		return -EFAULT;
303 
304 	range.minlen = max(range.minlen, minlen);
305 	ret = btrfs_trim_fs(root, &range);
306 	if (ret < 0)
307 		return ret;
308 
309 	if (copy_to_user(arg, &range, sizeof(range)))
310 		return -EFAULT;
311 
312 	return 0;
313 }
314 
315 static noinline int create_subvol(struct btrfs_root *root,
316 				  struct dentry *dentry,
317 				  char *name, int namelen,
318 				  u64 *async_transid)
319 {
320 	struct btrfs_trans_handle *trans;
321 	struct btrfs_key key;
322 	struct btrfs_root_item root_item;
323 	struct btrfs_inode_item *inode_item;
324 	struct extent_buffer *leaf;
325 	struct btrfs_root *new_root;
326 	struct dentry *parent = dget_parent(dentry);
327 	struct inode *dir;
328 	int ret;
329 	int err;
330 	u64 objectid;
331 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
332 	u64 index = 0;
333 
334 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
335 	if (ret) {
336 		dput(parent);
337 		return ret;
338 	}
339 
340 	dir = parent->d_inode;
341 
342 	/*
343 	 * 1 - inode item
344 	 * 2 - refs
345 	 * 1 - root item
346 	 * 2 - dir items
347 	 */
348 	trans = btrfs_start_transaction(root, 6);
349 	if (IS_ERR(trans)) {
350 		dput(parent);
351 		return PTR_ERR(trans);
352 	}
353 
354 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
355 				      0, objectid, NULL, 0, 0, 0);
356 	if (IS_ERR(leaf)) {
357 		ret = PTR_ERR(leaf);
358 		goto fail;
359 	}
360 
361 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
362 	btrfs_set_header_bytenr(leaf, leaf->start);
363 	btrfs_set_header_generation(leaf, trans->transid);
364 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
365 	btrfs_set_header_owner(leaf, objectid);
366 
367 	write_extent_buffer(leaf, root->fs_info->fsid,
368 			    (unsigned long)btrfs_header_fsid(leaf),
369 			    BTRFS_FSID_SIZE);
370 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
371 			    (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
372 			    BTRFS_UUID_SIZE);
373 	btrfs_mark_buffer_dirty(leaf);
374 
375 	inode_item = &root_item.inode;
376 	memset(inode_item, 0, sizeof(*inode_item));
377 	inode_item->generation = cpu_to_le64(1);
378 	inode_item->size = cpu_to_le64(3);
379 	inode_item->nlink = cpu_to_le32(1);
380 	inode_item->nbytes = cpu_to_le64(root->leafsize);
381 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
382 
383 	root_item.flags = 0;
384 	root_item.byte_limit = 0;
385 	inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
386 
387 	btrfs_set_root_bytenr(&root_item, leaf->start);
388 	btrfs_set_root_generation(&root_item, trans->transid);
389 	btrfs_set_root_level(&root_item, 0);
390 	btrfs_set_root_refs(&root_item, 1);
391 	btrfs_set_root_used(&root_item, leaf->len);
392 	btrfs_set_root_last_snapshot(&root_item, 0);
393 
394 	memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
395 	root_item.drop_level = 0;
396 
397 	btrfs_tree_unlock(leaf);
398 	free_extent_buffer(leaf);
399 	leaf = NULL;
400 
401 	btrfs_set_root_dirid(&root_item, new_dirid);
402 
403 	key.objectid = objectid;
404 	key.offset = 0;
405 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
406 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
407 				&root_item);
408 	if (ret)
409 		goto fail;
410 
411 	key.offset = (u64)-1;
412 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
413 	BUG_ON(IS_ERR(new_root));
414 
415 	btrfs_record_root_in_trans(trans, new_root);
416 
417 	ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
418 	/*
419 	 * insert the directory item
420 	 */
421 	ret = btrfs_set_inode_index(dir, &index);
422 	BUG_ON(ret);
423 
424 	ret = btrfs_insert_dir_item(trans, root,
425 				    name, namelen, dir, &key,
426 				    BTRFS_FT_DIR, index);
427 	if (ret)
428 		goto fail;
429 
430 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
431 	ret = btrfs_update_inode(trans, root, dir);
432 	BUG_ON(ret);
433 
434 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
435 				 objectid, root->root_key.objectid,
436 				 btrfs_ino(dir), index, name, namelen);
437 
438 	BUG_ON(ret);
439 
440 	d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
441 fail:
442 	dput(parent);
443 	if (async_transid) {
444 		*async_transid = trans->transid;
445 		err = btrfs_commit_transaction_async(trans, root, 1);
446 	} else {
447 		err = btrfs_commit_transaction(trans, root);
448 	}
449 	if (err && !ret)
450 		ret = err;
451 	return ret;
452 }
453 
454 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
455 			   char *name, int namelen, u64 *async_transid,
456 			   bool readonly)
457 {
458 	struct inode *inode;
459 	struct dentry *parent;
460 	struct btrfs_pending_snapshot *pending_snapshot;
461 	struct btrfs_trans_handle *trans;
462 	int ret;
463 
464 	if (!root->ref_cows)
465 		return -EINVAL;
466 
467 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
468 	if (!pending_snapshot)
469 		return -ENOMEM;
470 
471 	btrfs_init_block_rsv(&pending_snapshot->block_rsv);
472 	pending_snapshot->dentry = dentry;
473 	pending_snapshot->root = root;
474 	pending_snapshot->readonly = readonly;
475 
476 	trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
477 	if (IS_ERR(trans)) {
478 		ret = PTR_ERR(trans);
479 		goto fail;
480 	}
481 
482 	ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
483 	BUG_ON(ret);
484 
485 	spin_lock(&root->fs_info->trans_lock);
486 	list_add(&pending_snapshot->list,
487 		 &trans->transaction->pending_snapshots);
488 	spin_unlock(&root->fs_info->trans_lock);
489 	if (async_transid) {
490 		*async_transid = trans->transid;
491 		ret = btrfs_commit_transaction_async(trans,
492 				     root->fs_info->extent_root, 1);
493 	} else {
494 		ret = btrfs_commit_transaction(trans,
495 					       root->fs_info->extent_root);
496 	}
497 	BUG_ON(ret);
498 
499 	ret = pending_snapshot->error;
500 	if (ret)
501 		goto fail;
502 
503 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
504 	if (ret)
505 		goto fail;
506 
507 	parent = dget_parent(dentry);
508 	inode = btrfs_lookup_dentry(parent->d_inode, dentry);
509 	dput(parent);
510 	if (IS_ERR(inode)) {
511 		ret = PTR_ERR(inode);
512 		goto fail;
513 	}
514 	BUG_ON(!inode);
515 	d_instantiate(dentry, inode);
516 	ret = 0;
517 fail:
518 	kfree(pending_snapshot);
519 	return ret;
520 }
521 
522 /*  copy of check_sticky in fs/namei.c()
523 * It's inline, so penalty for filesystems that don't use sticky bit is
524 * minimal.
525 */
526 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
527 {
528 	uid_t fsuid = current_fsuid();
529 
530 	if (!(dir->i_mode & S_ISVTX))
531 		return 0;
532 	if (inode->i_uid == fsuid)
533 		return 0;
534 	if (dir->i_uid == fsuid)
535 		return 0;
536 	return !capable(CAP_FOWNER);
537 }
538 
539 /*  copy of may_delete in fs/namei.c()
540  *	Check whether we can remove a link victim from directory dir, check
541  *  whether the type of victim is right.
542  *  1. We can't do it if dir is read-only (done in permission())
543  *  2. We should have write and exec permissions on dir
544  *  3. We can't remove anything from append-only dir
545  *  4. We can't do anything with immutable dir (done in permission())
546  *  5. If the sticky bit on dir is set we should either
547  *	a. be owner of dir, or
548  *	b. be owner of victim, or
549  *	c. have CAP_FOWNER capability
550  *  6. If the victim is append-only or immutable we can't do antyhing with
551  *     links pointing to it.
552  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
553  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
554  *  9. We can't remove a root or mountpoint.
555  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
556  *     nfs_async_unlink().
557  */
558 
559 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
560 {
561 	int error;
562 
563 	if (!victim->d_inode)
564 		return -ENOENT;
565 
566 	BUG_ON(victim->d_parent->d_inode != dir);
567 	audit_inode_child(victim, dir);
568 
569 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
570 	if (error)
571 		return error;
572 	if (IS_APPEND(dir))
573 		return -EPERM;
574 	if (btrfs_check_sticky(dir, victim->d_inode)||
575 		IS_APPEND(victim->d_inode)||
576 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
577 		return -EPERM;
578 	if (isdir) {
579 		if (!S_ISDIR(victim->d_inode->i_mode))
580 			return -ENOTDIR;
581 		if (IS_ROOT(victim))
582 			return -EBUSY;
583 	} else if (S_ISDIR(victim->d_inode->i_mode))
584 		return -EISDIR;
585 	if (IS_DEADDIR(dir))
586 		return -ENOENT;
587 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
588 		return -EBUSY;
589 	return 0;
590 }
591 
592 /* copy of may_create in fs/namei.c() */
593 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
594 {
595 	if (child->d_inode)
596 		return -EEXIST;
597 	if (IS_DEADDIR(dir))
598 		return -ENOENT;
599 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
600 }
601 
602 /*
603  * Create a new subvolume below @parent.  This is largely modeled after
604  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
605  * inside this filesystem so it's quite a bit simpler.
606  */
607 static noinline int btrfs_mksubvol(struct path *parent,
608 				   char *name, int namelen,
609 				   struct btrfs_root *snap_src,
610 				   u64 *async_transid, bool readonly)
611 {
612 	struct inode *dir  = parent->dentry->d_inode;
613 	struct dentry *dentry;
614 	int error;
615 
616 	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
617 
618 	dentry = lookup_one_len(name, parent->dentry, namelen);
619 	error = PTR_ERR(dentry);
620 	if (IS_ERR(dentry))
621 		goto out_unlock;
622 
623 	error = -EEXIST;
624 	if (dentry->d_inode)
625 		goto out_dput;
626 
627 	error = mnt_want_write(parent->mnt);
628 	if (error)
629 		goto out_dput;
630 
631 	error = btrfs_may_create(dir, dentry);
632 	if (error)
633 		goto out_drop_write;
634 
635 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
636 
637 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
638 		goto out_up_read;
639 
640 	if (snap_src) {
641 		error = create_snapshot(snap_src, dentry,
642 					name, namelen, async_transid, readonly);
643 	} else {
644 		error = create_subvol(BTRFS_I(dir)->root, dentry,
645 				      name, namelen, async_transid);
646 	}
647 	if (!error)
648 		fsnotify_mkdir(dir, dentry);
649 out_up_read:
650 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
651 out_drop_write:
652 	mnt_drop_write(parent->mnt);
653 out_dput:
654 	dput(dentry);
655 out_unlock:
656 	mutex_unlock(&dir->i_mutex);
657 	return error;
658 }
659 
660 /*
661  * When we're defragging a range, we don't want to kick it off again
662  * if it is really just waiting for delalloc to send it down.
663  * If we find a nice big extent or delalloc range for the bytes in the
664  * file you want to defrag, we return 0 to let you know to skip this
665  * part of the file
666  */
667 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
668 {
669 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
670 	struct extent_map *em = NULL;
671 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
672 	u64 end;
673 
674 	read_lock(&em_tree->lock);
675 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
676 	read_unlock(&em_tree->lock);
677 
678 	if (em) {
679 		end = extent_map_end(em);
680 		free_extent_map(em);
681 		if (end - offset > thresh)
682 			return 0;
683 	}
684 	/* if we already have a nice delalloc here, just stop */
685 	thresh /= 2;
686 	end = count_range_bits(io_tree, &offset, offset + thresh,
687 			       thresh, EXTENT_DELALLOC, 1);
688 	if (end >= thresh)
689 		return 0;
690 	return 1;
691 }
692 
693 /*
694  * helper function to walk through a file and find extents
695  * newer than a specific transid, and smaller than thresh.
696  *
697  * This is used by the defragging code to find new and small
698  * extents
699  */
700 static int find_new_extents(struct btrfs_root *root,
701 			    struct inode *inode, u64 newer_than,
702 			    u64 *off, int thresh)
703 {
704 	struct btrfs_path *path;
705 	struct btrfs_key min_key;
706 	struct btrfs_key max_key;
707 	struct extent_buffer *leaf;
708 	struct btrfs_file_extent_item *extent;
709 	int type;
710 	int ret;
711 	u64 ino = btrfs_ino(inode);
712 
713 	path = btrfs_alloc_path();
714 	if (!path)
715 		return -ENOMEM;
716 
717 	min_key.objectid = ino;
718 	min_key.type = BTRFS_EXTENT_DATA_KEY;
719 	min_key.offset = *off;
720 
721 	max_key.objectid = ino;
722 	max_key.type = (u8)-1;
723 	max_key.offset = (u64)-1;
724 
725 	path->keep_locks = 1;
726 
727 	while(1) {
728 		ret = btrfs_search_forward(root, &min_key, &max_key,
729 					   path, 0, newer_than);
730 		if (ret != 0)
731 			goto none;
732 		if (min_key.objectid != ino)
733 			goto none;
734 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
735 			goto none;
736 
737 		leaf = path->nodes[0];
738 		extent = btrfs_item_ptr(leaf, path->slots[0],
739 					struct btrfs_file_extent_item);
740 
741 		type = btrfs_file_extent_type(leaf, extent);
742 		if (type == BTRFS_FILE_EXTENT_REG &&
743 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
744 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
745 			*off = min_key.offset;
746 			btrfs_free_path(path);
747 			return 0;
748 		}
749 
750 		if (min_key.offset == (u64)-1)
751 			goto none;
752 
753 		min_key.offset++;
754 		btrfs_release_path(path);
755 	}
756 none:
757 	btrfs_free_path(path);
758 	return -ENOENT;
759 }
760 
761 static int should_defrag_range(struct inode *inode, u64 start, u64 len,
762 			       int thresh, u64 *last_len, u64 *skip,
763 			       u64 *defrag_end)
764 {
765 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
766 	struct extent_map *em = NULL;
767 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
768 	int ret = 1;
769 
770 	/*
771 	 * make sure that once we start defragging and extent, we keep on
772 	 * defragging it
773 	 */
774 	if (start < *defrag_end)
775 		return 1;
776 
777 	*skip = 0;
778 
779 	/*
780 	 * hopefully we have this extent in the tree already, try without
781 	 * the full extent lock
782 	 */
783 	read_lock(&em_tree->lock);
784 	em = lookup_extent_mapping(em_tree, start, len);
785 	read_unlock(&em_tree->lock);
786 
787 	if (!em) {
788 		/* get the big lock and read metadata off disk */
789 		lock_extent(io_tree, start, start + len - 1, GFP_NOFS);
790 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
791 		unlock_extent(io_tree, start, start + len - 1, GFP_NOFS);
792 
793 		if (IS_ERR(em))
794 			return 0;
795 	}
796 
797 	/* this will cover holes, and inline extents */
798 	if (em->block_start >= EXTENT_MAP_LAST_BYTE)
799 		ret = 0;
800 
801 	/*
802 	 * we hit a real extent, if it is big don't bother defragging it again
803 	 */
804 	if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
805 		ret = 0;
806 
807 	/*
808 	 * last_len ends up being a counter of how many bytes we've defragged.
809 	 * every time we choose not to defrag an extent, we reset *last_len
810 	 * so that the next tiny extent will force a defrag.
811 	 *
812 	 * The end result of this is that tiny extents before a single big
813 	 * extent will force at least part of that big extent to be defragged.
814 	 */
815 	if (ret) {
816 		*last_len += len;
817 		*defrag_end = extent_map_end(em);
818 	} else {
819 		*last_len = 0;
820 		*skip = extent_map_end(em);
821 		*defrag_end = 0;
822 	}
823 
824 	free_extent_map(em);
825 	return ret;
826 }
827 
828 /*
829  * it doesn't do much good to defrag one or two pages
830  * at a time.  This pulls in a nice chunk of pages
831  * to COW and defrag.
832  *
833  * It also makes sure the delalloc code has enough
834  * dirty data to avoid making new small extents as part
835  * of the defrag
836  *
837  * It's a good idea to start RA on this range
838  * before calling this.
839  */
840 static int cluster_pages_for_defrag(struct inode *inode,
841 				    struct page **pages,
842 				    unsigned long start_index,
843 				    int num_pages)
844 {
845 	unsigned long file_end;
846 	u64 isize = i_size_read(inode);
847 	u64 page_start;
848 	u64 page_end;
849 	int ret;
850 	int i;
851 	int i_done;
852 	struct btrfs_ordered_extent *ordered;
853 	struct extent_state *cached_state = NULL;
854 
855 	if (isize == 0)
856 		return 0;
857 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
858 
859 	ret = btrfs_delalloc_reserve_space(inode,
860 					   num_pages << PAGE_CACHE_SHIFT);
861 	if (ret)
862 		return ret;
863 again:
864 	ret = 0;
865 	i_done = 0;
866 
867 	/* step one, lock all the pages */
868 	for (i = 0; i < num_pages; i++) {
869 		struct page *page;
870 		page = grab_cache_page(inode->i_mapping,
871 					    start_index + i);
872 		if (!page)
873 			break;
874 
875 		if (!PageUptodate(page)) {
876 			btrfs_readpage(NULL, page);
877 			lock_page(page);
878 			if (!PageUptodate(page)) {
879 				unlock_page(page);
880 				page_cache_release(page);
881 				ret = -EIO;
882 				break;
883 			}
884 		}
885 		isize = i_size_read(inode);
886 		file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
887 		if (!isize || page->index > file_end ||
888 		    page->mapping != inode->i_mapping) {
889 			/* whoops, we blew past eof, skip this page */
890 			unlock_page(page);
891 			page_cache_release(page);
892 			break;
893 		}
894 		pages[i] = page;
895 		i_done++;
896 	}
897 	if (!i_done || ret)
898 		goto out;
899 
900 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
901 		goto out;
902 
903 	/*
904 	 * so now we have a nice long stream of locked
905 	 * and up to date pages, lets wait on them
906 	 */
907 	for (i = 0; i < i_done; i++)
908 		wait_on_page_writeback(pages[i]);
909 
910 	page_start = page_offset(pages[0]);
911 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
912 
913 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
914 			 page_start, page_end - 1, 0, &cached_state,
915 			 GFP_NOFS);
916 	ordered = btrfs_lookup_first_ordered_extent(inode, page_end - 1);
917 	if (ordered &&
918 	    ordered->file_offset + ordered->len > page_start &&
919 	    ordered->file_offset < page_end) {
920 		btrfs_put_ordered_extent(ordered);
921 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
922 				     page_start, page_end - 1,
923 				     &cached_state, GFP_NOFS);
924 		for (i = 0; i < i_done; i++) {
925 			unlock_page(pages[i]);
926 			page_cache_release(pages[i]);
927 		}
928 		btrfs_wait_ordered_range(inode, page_start,
929 					 page_end - page_start);
930 		goto again;
931 	}
932 	if (ordered)
933 		btrfs_put_ordered_extent(ordered);
934 
935 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
936 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
937 			  EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
938 			  GFP_NOFS);
939 
940 	if (i_done != num_pages) {
941 		atomic_inc(&BTRFS_I(inode)->outstanding_extents);
942 		btrfs_delalloc_release_space(inode,
943 				     (num_pages - i_done) << PAGE_CACHE_SHIFT);
944 	}
945 
946 
947 	btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
948 				  &cached_state);
949 
950 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
951 			     page_start, page_end - 1, &cached_state,
952 			     GFP_NOFS);
953 
954 	for (i = 0; i < i_done; i++) {
955 		clear_page_dirty_for_io(pages[i]);
956 		ClearPageChecked(pages[i]);
957 		set_page_extent_mapped(pages[i]);
958 		set_page_dirty(pages[i]);
959 		unlock_page(pages[i]);
960 		page_cache_release(pages[i]);
961 	}
962 	return i_done;
963 out:
964 	for (i = 0; i < i_done; i++) {
965 		unlock_page(pages[i]);
966 		page_cache_release(pages[i]);
967 	}
968 	btrfs_delalloc_release_space(inode, num_pages << PAGE_CACHE_SHIFT);
969 	return ret;
970 
971 }
972 
973 int btrfs_defrag_file(struct inode *inode, struct file *file,
974 		      struct btrfs_ioctl_defrag_range_args *range,
975 		      u64 newer_than, unsigned long max_to_defrag)
976 {
977 	struct btrfs_root *root = BTRFS_I(inode)->root;
978 	struct btrfs_super_block *disk_super;
979 	struct file_ra_state *ra = NULL;
980 	unsigned long last_index;
981 	u64 features;
982 	u64 last_len = 0;
983 	u64 skip = 0;
984 	u64 defrag_end = 0;
985 	u64 newer_off = range->start;
986 	int newer_left = 0;
987 	unsigned long i;
988 	int ret;
989 	int defrag_count = 0;
990 	int compress_type = BTRFS_COMPRESS_ZLIB;
991 	int extent_thresh = range->extent_thresh;
992 	int newer_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
993 	u64 new_align = ~((u64)128 * 1024 - 1);
994 	struct page **pages = NULL;
995 
996 	if (extent_thresh == 0)
997 		extent_thresh = 256 * 1024;
998 
999 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1000 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1001 			return -EINVAL;
1002 		if (range->compress_type)
1003 			compress_type = range->compress_type;
1004 	}
1005 
1006 	if (inode->i_size == 0)
1007 		return 0;
1008 
1009 	/*
1010 	 * if we were not given a file, allocate a readahead
1011 	 * context
1012 	 */
1013 	if (!file) {
1014 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1015 		if (!ra)
1016 			return -ENOMEM;
1017 		file_ra_state_init(ra, inode->i_mapping);
1018 	} else {
1019 		ra = &file->f_ra;
1020 	}
1021 
1022 	pages = kmalloc(sizeof(struct page *) * newer_cluster,
1023 			GFP_NOFS);
1024 	if (!pages) {
1025 		ret = -ENOMEM;
1026 		goto out_ra;
1027 	}
1028 
1029 	/* find the last page to defrag */
1030 	if (range->start + range->len > range->start) {
1031 		last_index = min_t(u64, inode->i_size - 1,
1032 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1033 	} else {
1034 		last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
1035 	}
1036 
1037 	if (newer_than) {
1038 		ret = find_new_extents(root, inode, newer_than,
1039 				       &newer_off, 64 * 1024);
1040 		if (!ret) {
1041 			range->start = newer_off;
1042 			/*
1043 			 * we always align our defrag to help keep
1044 			 * the extents in the file evenly spaced
1045 			 */
1046 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1047 			newer_left = newer_cluster;
1048 		} else
1049 			goto out_ra;
1050 	} else {
1051 		i = range->start >> PAGE_CACHE_SHIFT;
1052 	}
1053 	if (!max_to_defrag)
1054 		max_to_defrag = last_index - 1;
1055 
1056 	while (i <= last_index && defrag_count < max_to_defrag) {
1057 		/*
1058 		 * make sure we stop running if someone unmounts
1059 		 * the FS
1060 		 */
1061 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1062 			break;
1063 
1064 		if (!newer_than &&
1065 		    !should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1066 					PAGE_CACHE_SIZE,
1067 					extent_thresh,
1068 					&last_len, &skip,
1069 					&defrag_end)) {
1070 			unsigned long next;
1071 			/*
1072 			 * the should_defrag function tells us how much to skip
1073 			 * bump our counter by the suggested amount
1074 			 */
1075 			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1076 			i = max(i + 1, next);
1077 			continue;
1078 		}
1079 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1080 			BTRFS_I(inode)->force_compress = compress_type;
1081 
1082 		btrfs_force_ra(inode->i_mapping, ra, file, i, newer_cluster);
1083 
1084 		ret = cluster_pages_for_defrag(inode, pages, i, newer_cluster);
1085 		if (ret < 0)
1086 			goto out_ra;
1087 
1088 		defrag_count += ret;
1089 		balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1090 		i += ret;
1091 
1092 		if (newer_than) {
1093 			if (newer_off == (u64)-1)
1094 				break;
1095 
1096 			newer_off = max(newer_off + 1,
1097 					(u64)i << PAGE_CACHE_SHIFT);
1098 
1099 			ret = find_new_extents(root, inode,
1100 					       newer_than, &newer_off,
1101 					       64 * 1024);
1102 			if (!ret) {
1103 				range->start = newer_off;
1104 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1105 				newer_left = newer_cluster;
1106 			} else {
1107 				break;
1108 			}
1109 		} else {
1110 			i++;
1111 		}
1112 	}
1113 
1114 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1115 		filemap_flush(inode->i_mapping);
1116 
1117 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1118 		/* the filemap_flush will queue IO into the worker threads, but
1119 		 * we have to make sure the IO is actually started and that
1120 		 * ordered extents get created before we return
1121 		 */
1122 		atomic_inc(&root->fs_info->async_submit_draining);
1123 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1124 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1125 			wait_event(root->fs_info->async_submit_wait,
1126 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1127 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1128 		}
1129 		atomic_dec(&root->fs_info->async_submit_draining);
1130 
1131 		mutex_lock(&inode->i_mutex);
1132 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1133 		mutex_unlock(&inode->i_mutex);
1134 	}
1135 
1136 	disk_super = &root->fs_info->super_copy;
1137 	features = btrfs_super_incompat_flags(disk_super);
1138 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1139 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1140 		btrfs_set_super_incompat_flags(disk_super, features);
1141 	}
1142 
1143 	if (!file)
1144 		kfree(ra);
1145 	return defrag_count;
1146 
1147 out_ra:
1148 	if (!file)
1149 		kfree(ra);
1150 	kfree(pages);
1151 	return ret;
1152 }
1153 
1154 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1155 					void __user *arg)
1156 {
1157 	u64 new_size;
1158 	u64 old_size;
1159 	u64 devid = 1;
1160 	struct btrfs_ioctl_vol_args *vol_args;
1161 	struct btrfs_trans_handle *trans;
1162 	struct btrfs_device *device = NULL;
1163 	char *sizestr;
1164 	char *devstr = NULL;
1165 	int ret = 0;
1166 	int mod = 0;
1167 
1168 	if (root->fs_info->sb->s_flags & MS_RDONLY)
1169 		return -EROFS;
1170 
1171 	if (!capable(CAP_SYS_ADMIN))
1172 		return -EPERM;
1173 
1174 	vol_args = memdup_user(arg, sizeof(*vol_args));
1175 	if (IS_ERR(vol_args))
1176 		return PTR_ERR(vol_args);
1177 
1178 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1179 
1180 	mutex_lock(&root->fs_info->volume_mutex);
1181 	sizestr = vol_args->name;
1182 	devstr = strchr(sizestr, ':');
1183 	if (devstr) {
1184 		char *end;
1185 		sizestr = devstr + 1;
1186 		*devstr = '\0';
1187 		devstr = vol_args->name;
1188 		devid = simple_strtoull(devstr, &end, 10);
1189 		printk(KERN_INFO "resizing devid %llu\n",
1190 		       (unsigned long long)devid);
1191 	}
1192 	device = btrfs_find_device(root, devid, NULL, NULL);
1193 	if (!device) {
1194 		printk(KERN_INFO "resizer unable to find device %llu\n",
1195 		       (unsigned long long)devid);
1196 		ret = -EINVAL;
1197 		goto out_unlock;
1198 	}
1199 	if (!strcmp(sizestr, "max"))
1200 		new_size = device->bdev->bd_inode->i_size;
1201 	else {
1202 		if (sizestr[0] == '-') {
1203 			mod = -1;
1204 			sizestr++;
1205 		} else if (sizestr[0] == '+') {
1206 			mod = 1;
1207 			sizestr++;
1208 		}
1209 		new_size = memparse(sizestr, NULL);
1210 		if (new_size == 0) {
1211 			ret = -EINVAL;
1212 			goto out_unlock;
1213 		}
1214 	}
1215 
1216 	old_size = device->total_bytes;
1217 
1218 	if (mod < 0) {
1219 		if (new_size > old_size) {
1220 			ret = -EINVAL;
1221 			goto out_unlock;
1222 		}
1223 		new_size = old_size - new_size;
1224 	} else if (mod > 0) {
1225 		new_size = old_size + new_size;
1226 	}
1227 
1228 	if (new_size < 256 * 1024 * 1024) {
1229 		ret = -EINVAL;
1230 		goto out_unlock;
1231 	}
1232 	if (new_size > device->bdev->bd_inode->i_size) {
1233 		ret = -EFBIG;
1234 		goto out_unlock;
1235 	}
1236 
1237 	do_div(new_size, root->sectorsize);
1238 	new_size *= root->sectorsize;
1239 
1240 	printk(KERN_INFO "new size for %s is %llu\n",
1241 		device->name, (unsigned long long)new_size);
1242 
1243 	if (new_size > old_size) {
1244 		trans = btrfs_start_transaction(root, 0);
1245 		if (IS_ERR(trans)) {
1246 			ret = PTR_ERR(trans);
1247 			goto out_unlock;
1248 		}
1249 		ret = btrfs_grow_device(trans, device, new_size);
1250 		btrfs_commit_transaction(trans, root);
1251 	} else {
1252 		ret = btrfs_shrink_device(device, new_size);
1253 	}
1254 
1255 out_unlock:
1256 	mutex_unlock(&root->fs_info->volume_mutex);
1257 	kfree(vol_args);
1258 	return ret;
1259 }
1260 
1261 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1262 						    char *name,
1263 						    unsigned long fd,
1264 						    int subvol,
1265 						    u64 *transid,
1266 						    bool readonly)
1267 {
1268 	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1269 	struct file *src_file;
1270 	int namelen;
1271 	int ret = 0;
1272 
1273 	if (root->fs_info->sb->s_flags & MS_RDONLY)
1274 		return -EROFS;
1275 
1276 	namelen = strlen(name);
1277 	if (strchr(name, '/')) {
1278 		ret = -EINVAL;
1279 		goto out;
1280 	}
1281 
1282 	if (subvol) {
1283 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1284 				     NULL, transid, readonly);
1285 	} else {
1286 		struct inode *src_inode;
1287 		src_file = fget(fd);
1288 		if (!src_file) {
1289 			ret = -EINVAL;
1290 			goto out;
1291 		}
1292 
1293 		src_inode = src_file->f_path.dentry->d_inode;
1294 		if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1295 			printk(KERN_INFO "btrfs: Snapshot src from "
1296 			       "another FS\n");
1297 			ret = -EINVAL;
1298 			fput(src_file);
1299 			goto out;
1300 		}
1301 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1302 				     BTRFS_I(src_inode)->root,
1303 				     transid, readonly);
1304 		fput(src_file);
1305 	}
1306 out:
1307 	return ret;
1308 }
1309 
1310 static noinline int btrfs_ioctl_snap_create(struct file *file,
1311 					    void __user *arg, int subvol)
1312 {
1313 	struct btrfs_ioctl_vol_args *vol_args;
1314 	int ret;
1315 
1316 	vol_args = memdup_user(arg, sizeof(*vol_args));
1317 	if (IS_ERR(vol_args))
1318 		return PTR_ERR(vol_args);
1319 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1320 
1321 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1322 					      vol_args->fd, subvol,
1323 					      NULL, false);
1324 
1325 	kfree(vol_args);
1326 	return ret;
1327 }
1328 
1329 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1330 					       void __user *arg, int subvol)
1331 {
1332 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1333 	int ret;
1334 	u64 transid = 0;
1335 	u64 *ptr = NULL;
1336 	bool readonly = false;
1337 
1338 	vol_args = memdup_user(arg, sizeof(*vol_args));
1339 	if (IS_ERR(vol_args))
1340 		return PTR_ERR(vol_args);
1341 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1342 
1343 	if (vol_args->flags &
1344 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
1345 		ret = -EOPNOTSUPP;
1346 		goto out;
1347 	}
1348 
1349 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1350 		ptr = &transid;
1351 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1352 		readonly = true;
1353 
1354 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1355 					      vol_args->fd, subvol,
1356 					      ptr, readonly);
1357 
1358 	if (ret == 0 && ptr &&
1359 	    copy_to_user(arg +
1360 			 offsetof(struct btrfs_ioctl_vol_args_v2,
1361 				  transid), ptr, sizeof(*ptr)))
1362 		ret = -EFAULT;
1363 out:
1364 	kfree(vol_args);
1365 	return ret;
1366 }
1367 
1368 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1369 						void __user *arg)
1370 {
1371 	struct inode *inode = fdentry(file)->d_inode;
1372 	struct btrfs_root *root = BTRFS_I(inode)->root;
1373 	int ret = 0;
1374 	u64 flags = 0;
1375 
1376 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1377 		return -EINVAL;
1378 
1379 	down_read(&root->fs_info->subvol_sem);
1380 	if (btrfs_root_readonly(root))
1381 		flags |= BTRFS_SUBVOL_RDONLY;
1382 	up_read(&root->fs_info->subvol_sem);
1383 
1384 	if (copy_to_user(arg, &flags, sizeof(flags)))
1385 		ret = -EFAULT;
1386 
1387 	return ret;
1388 }
1389 
1390 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1391 					      void __user *arg)
1392 {
1393 	struct inode *inode = fdentry(file)->d_inode;
1394 	struct btrfs_root *root = BTRFS_I(inode)->root;
1395 	struct btrfs_trans_handle *trans;
1396 	u64 root_flags;
1397 	u64 flags;
1398 	int ret = 0;
1399 
1400 	if (root->fs_info->sb->s_flags & MS_RDONLY)
1401 		return -EROFS;
1402 
1403 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1404 		return -EINVAL;
1405 
1406 	if (copy_from_user(&flags, arg, sizeof(flags)))
1407 		return -EFAULT;
1408 
1409 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC)
1410 		return -EINVAL;
1411 
1412 	if (flags & ~BTRFS_SUBVOL_RDONLY)
1413 		return -EOPNOTSUPP;
1414 
1415 	if (!inode_owner_or_capable(inode))
1416 		return -EACCES;
1417 
1418 	down_write(&root->fs_info->subvol_sem);
1419 
1420 	/* nothing to do */
1421 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1422 		goto out;
1423 
1424 	root_flags = btrfs_root_flags(&root->root_item);
1425 	if (flags & BTRFS_SUBVOL_RDONLY)
1426 		btrfs_set_root_flags(&root->root_item,
1427 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1428 	else
1429 		btrfs_set_root_flags(&root->root_item,
1430 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1431 
1432 	trans = btrfs_start_transaction(root, 1);
1433 	if (IS_ERR(trans)) {
1434 		ret = PTR_ERR(trans);
1435 		goto out_reset;
1436 	}
1437 
1438 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1439 				&root->root_key, &root->root_item);
1440 
1441 	btrfs_commit_transaction(trans, root);
1442 out_reset:
1443 	if (ret)
1444 		btrfs_set_root_flags(&root->root_item, root_flags);
1445 out:
1446 	up_write(&root->fs_info->subvol_sem);
1447 	return ret;
1448 }
1449 
1450 /*
1451  * helper to check if the subvolume references other subvolumes
1452  */
1453 static noinline int may_destroy_subvol(struct btrfs_root *root)
1454 {
1455 	struct btrfs_path *path;
1456 	struct btrfs_key key;
1457 	int ret;
1458 
1459 	path = btrfs_alloc_path();
1460 	if (!path)
1461 		return -ENOMEM;
1462 
1463 	key.objectid = root->root_key.objectid;
1464 	key.type = BTRFS_ROOT_REF_KEY;
1465 	key.offset = (u64)-1;
1466 
1467 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1468 				&key, path, 0, 0);
1469 	if (ret < 0)
1470 		goto out;
1471 	BUG_ON(ret == 0);
1472 
1473 	ret = 0;
1474 	if (path->slots[0] > 0) {
1475 		path->slots[0]--;
1476 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1477 		if (key.objectid == root->root_key.objectid &&
1478 		    key.type == BTRFS_ROOT_REF_KEY)
1479 			ret = -ENOTEMPTY;
1480 	}
1481 out:
1482 	btrfs_free_path(path);
1483 	return ret;
1484 }
1485 
1486 static noinline int key_in_sk(struct btrfs_key *key,
1487 			      struct btrfs_ioctl_search_key *sk)
1488 {
1489 	struct btrfs_key test;
1490 	int ret;
1491 
1492 	test.objectid = sk->min_objectid;
1493 	test.type = sk->min_type;
1494 	test.offset = sk->min_offset;
1495 
1496 	ret = btrfs_comp_cpu_keys(key, &test);
1497 	if (ret < 0)
1498 		return 0;
1499 
1500 	test.objectid = sk->max_objectid;
1501 	test.type = sk->max_type;
1502 	test.offset = sk->max_offset;
1503 
1504 	ret = btrfs_comp_cpu_keys(key, &test);
1505 	if (ret > 0)
1506 		return 0;
1507 	return 1;
1508 }
1509 
1510 static noinline int copy_to_sk(struct btrfs_root *root,
1511 			       struct btrfs_path *path,
1512 			       struct btrfs_key *key,
1513 			       struct btrfs_ioctl_search_key *sk,
1514 			       char *buf,
1515 			       unsigned long *sk_offset,
1516 			       int *num_found)
1517 {
1518 	u64 found_transid;
1519 	struct extent_buffer *leaf;
1520 	struct btrfs_ioctl_search_header sh;
1521 	unsigned long item_off;
1522 	unsigned long item_len;
1523 	int nritems;
1524 	int i;
1525 	int slot;
1526 	int ret = 0;
1527 
1528 	leaf = path->nodes[0];
1529 	slot = path->slots[0];
1530 	nritems = btrfs_header_nritems(leaf);
1531 
1532 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1533 		i = nritems;
1534 		goto advance_key;
1535 	}
1536 	found_transid = btrfs_header_generation(leaf);
1537 
1538 	for (i = slot; i < nritems; i++) {
1539 		item_off = btrfs_item_ptr_offset(leaf, i);
1540 		item_len = btrfs_item_size_nr(leaf, i);
1541 
1542 		if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1543 			item_len = 0;
1544 
1545 		if (sizeof(sh) + item_len + *sk_offset >
1546 		    BTRFS_SEARCH_ARGS_BUFSIZE) {
1547 			ret = 1;
1548 			goto overflow;
1549 		}
1550 
1551 		btrfs_item_key_to_cpu(leaf, key, i);
1552 		if (!key_in_sk(key, sk))
1553 			continue;
1554 
1555 		sh.objectid = key->objectid;
1556 		sh.offset = key->offset;
1557 		sh.type = key->type;
1558 		sh.len = item_len;
1559 		sh.transid = found_transid;
1560 
1561 		/* copy search result header */
1562 		memcpy(buf + *sk_offset, &sh, sizeof(sh));
1563 		*sk_offset += sizeof(sh);
1564 
1565 		if (item_len) {
1566 			char *p = buf + *sk_offset;
1567 			/* copy the item */
1568 			read_extent_buffer(leaf, p,
1569 					   item_off, item_len);
1570 			*sk_offset += item_len;
1571 		}
1572 		(*num_found)++;
1573 
1574 		if (*num_found >= sk->nr_items)
1575 			break;
1576 	}
1577 advance_key:
1578 	ret = 0;
1579 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1580 		key->offset++;
1581 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
1582 		key->offset = 0;
1583 		key->type++;
1584 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1585 		key->offset = 0;
1586 		key->type = 0;
1587 		key->objectid++;
1588 	} else
1589 		ret = 1;
1590 overflow:
1591 	return ret;
1592 }
1593 
1594 static noinline int search_ioctl(struct inode *inode,
1595 				 struct btrfs_ioctl_search_args *args)
1596 {
1597 	struct btrfs_root *root;
1598 	struct btrfs_key key;
1599 	struct btrfs_key max_key;
1600 	struct btrfs_path *path;
1601 	struct btrfs_ioctl_search_key *sk = &args->key;
1602 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1603 	int ret;
1604 	int num_found = 0;
1605 	unsigned long sk_offset = 0;
1606 
1607 	path = btrfs_alloc_path();
1608 	if (!path)
1609 		return -ENOMEM;
1610 
1611 	if (sk->tree_id == 0) {
1612 		/* search the root of the inode that was passed */
1613 		root = BTRFS_I(inode)->root;
1614 	} else {
1615 		key.objectid = sk->tree_id;
1616 		key.type = BTRFS_ROOT_ITEM_KEY;
1617 		key.offset = (u64)-1;
1618 		root = btrfs_read_fs_root_no_name(info, &key);
1619 		if (IS_ERR(root)) {
1620 			printk(KERN_ERR "could not find root %llu\n",
1621 			       sk->tree_id);
1622 			btrfs_free_path(path);
1623 			return -ENOENT;
1624 		}
1625 	}
1626 
1627 	key.objectid = sk->min_objectid;
1628 	key.type = sk->min_type;
1629 	key.offset = sk->min_offset;
1630 
1631 	max_key.objectid = sk->max_objectid;
1632 	max_key.type = sk->max_type;
1633 	max_key.offset = sk->max_offset;
1634 
1635 	path->keep_locks = 1;
1636 
1637 	while(1) {
1638 		ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1639 					   sk->min_transid);
1640 		if (ret != 0) {
1641 			if (ret > 0)
1642 				ret = 0;
1643 			goto err;
1644 		}
1645 		ret = copy_to_sk(root, path, &key, sk, args->buf,
1646 				 &sk_offset, &num_found);
1647 		btrfs_release_path(path);
1648 		if (ret || num_found >= sk->nr_items)
1649 			break;
1650 
1651 	}
1652 	ret = 0;
1653 err:
1654 	sk->nr_items = num_found;
1655 	btrfs_free_path(path);
1656 	return ret;
1657 }
1658 
1659 static noinline int btrfs_ioctl_tree_search(struct file *file,
1660 					   void __user *argp)
1661 {
1662 	 struct btrfs_ioctl_search_args *args;
1663 	 struct inode *inode;
1664 	 int ret;
1665 
1666 	if (!capable(CAP_SYS_ADMIN))
1667 		return -EPERM;
1668 
1669 	args = memdup_user(argp, sizeof(*args));
1670 	if (IS_ERR(args))
1671 		return PTR_ERR(args);
1672 
1673 	inode = fdentry(file)->d_inode;
1674 	ret = search_ioctl(inode, args);
1675 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1676 		ret = -EFAULT;
1677 	kfree(args);
1678 	return ret;
1679 }
1680 
1681 /*
1682  * Search INODE_REFs to identify path name of 'dirid' directory
1683  * in a 'tree_id' tree. and sets path name to 'name'.
1684  */
1685 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1686 				u64 tree_id, u64 dirid, char *name)
1687 {
1688 	struct btrfs_root *root;
1689 	struct btrfs_key key;
1690 	char *ptr;
1691 	int ret = -1;
1692 	int slot;
1693 	int len;
1694 	int total_len = 0;
1695 	struct btrfs_inode_ref *iref;
1696 	struct extent_buffer *l;
1697 	struct btrfs_path *path;
1698 
1699 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1700 		name[0]='\0';
1701 		return 0;
1702 	}
1703 
1704 	path = btrfs_alloc_path();
1705 	if (!path)
1706 		return -ENOMEM;
1707 
1708 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1709 
1710 	key.objectid = tree_id;
1711 	key.type = BTRFS_ROOT_ITEM_KEY;
1712 	key.offset = (u64)-1;
1713 	root = btrfs_read_fs_root_no_name(info, &key);
1714 	if (IS_ERR(root)) {
1715 		printk(KERN_ERR "could not find root %llu\n", tree_id);
1716 		ret = -ENOENT;
1717 		goto out;
1718 	}
1719 
1720 	key.objectid = dirid;
1721 	key.type = BTRFS_INODE_REF_KEY;
1722 	key.offset = (u64)-1;
1723 
1724 	while(1) {
1725 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1726 		if (ret < 0)
1727 			goto out;
1728 
1729 		l = path->nodes[0];
1730 		slot = path->slots[0];
1731 		if (ret > 0 && slot > 0)
1732 			slot--;
1733 		btrfs_item_key_to_cpu(l, &key, slot);
1734 
1735 		if (ret > 0 && (key.objectid != dirid ||
1736 				key.type != BTRFS_INODE_REF_KEY)) {
1737 			ret = -ENOENT;
1738 			goto out;
1739 		}
1740 
1741 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1742 		len = btrfs_inode_ref_name_len(l, iref);
1743 		ptr -= len + 1;
1744 		total_len += len + 1;
1745 		if (ptr < name)
1746 			goto out;
1747 
1748 		*(ptr + len) = '/';
1749 		read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1750 
1751 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1752 			break;
1753 
1754 		btrfs_release_path(path);
1755 		key.objectid = key.offset;
1756 		key.offset = (u64)-1;
1757 		dirid = key.objectid;
1758 
1759 	}
1760 	if (ptr < name)
1761 		goto out;
1762 	memcpy(name, ptr, total_len);
1763 	name[total_len]='\0';
1764 	ret = 0;
1765 out:
1766 	btrfs_free_path(path);
1767 	return ret;
1768 }
1769 
1770 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1771 					   void __user *argp)
1772 {
1773 	 struct btrfs_ioctl_ino_lookup_args *args;
1774 	 struct inode *inode;
1775 	 int ret;
1776 
1777 	if (!capable(CAP_SYS_ADMIN))
1778 		return -EPERM;
1779 
1780 	args = memdup_user(argp, sizeof(*args));
1781 	if (IS_ERR(args))
1782 		return PTR_ERR(args);
1783 
1784 	inode = fdentry(file)->d_inode;
1785 
1786 	if (args->treeid == 0)
1787 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1788 
1789 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1790 					args->treeid, args->objectid,
1791 					args->name);
1792 
1793 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1794 		ret = -EFAULT;
1795 
1796 	kfree(args);
1797 	return ret;
1798 }
1799 
1800 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1801 					     void __user *arg)
1802 {
1803 	struct dentry *parent = fdentry(file);
1804 	struct dentry *dentry;
1805 	struct inode *dir = parent->d_inode;
1806 	struct inode *inode;
1807 	struct btrfs_root *root = BTRFS_I(dir)->root;
1808 	struct btrfs_root *dest = NULL;
1809 	struct btrfs_ioctl_vol_args *vol_args;
1810 	struct btrfs_trans_handle *trans;
1811 	int namelen;
1812 	int ret;
1813 	int err = 0;
1814 
1815 	vol_args = memdup_user(arg, sizeof(*vol_args));
1816 	if (IS_ERR(vol_args))
1817 		return PTR_ERR(vol_args);
1818 
1819 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1820 	namelen = strlen(vol_args->name);
1821 	if (strchr(vol_args->name, '/') ||
1822 	    strncmp(vol_args->name, "..", namelen) == 0) {
1823 		err = -EINVAL;
1824 		goto out;
1825 	}
1826 
1827 	err = mnt_want_write(file->f_path.mnt);
1828 	if (err)
1829 		goto out;
1830 
1831 	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1832 	dentry = lookup_one_len(vol_args->name, parent, namelen);
1833 	if (IS_ERR(dentry)) {
1834 		err = PTR_ERR(dentry);
1835 		goto out_unlock_dir;
1836 	}
1837 
1838 	if (!dentry->d_inode) {
1839 		err = -ENOENT;
1840 		goto out_dput;
1841 	}
1842 
1843 	inode = dentry->d_inode;
1844 	dest = BTRFS_I(inode)->root;
1845 	if (!capable(CAP_SYS_ADMIN)){
1846 		/*
1847 		 * Regular user.  Only allow this with a special mount
1848 		 * option, when the user has write+exec access to the
1849 		 * subvol root, and when rmdir(2) would have been
1850 		 * allowed.
1851 		 *
1852 		 * Note that this is _not_ check that the subvol is
1853 		 * empty or doesn't contain data that we wouldn't
1854 		 * otherwise be able to delete.
1855 		 *
1856 		 * Users who want to delete empty subvols should try
1857 		 * rmdir(2).
1858 		 */
1859 		err = -EPERM;
1860 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1861 			goto out_dput;
1862 
1863 		/*
1864 		 * Do not allow deletion if the parent dir is the same
1865 		 * as the dir to be deleted.  That means the ioctl
1866 		 * must be called on the dentry referencing the root
1867 		 * of the subvol, not a random directory contained
1868 		 * within it.
1869 		 */
1870 		err = -EINVAL;
1871 		if (root == dest)
1872 			goto out_dput;
1873 
1874 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
1875 		if (err)
1876 			goto out_dput;
1877 
1878 		/* check if subvolume may be deleted by a non-root user */
1879 		err = btrfs_may_delete(dir, dentry, 1);
1880 		if (err)
1881 			goto out_dput;
1882 	}
1883 
1884 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1885 		err = -EINVAL;
1886 		goto out_dput;
1887 	}
1888 
1889 	mutex_lock(&inode->i_mutex);
1890 	err = d_invalidate(dentry);
1891 	if (err)
1892 		goto out_unlock;
1893 
1894 	down_write(&root->fs_info->subvol_sem);
1895 
1896 	err = may_destroy_subvol(dest);
1897 	if (err)
1898 		goto out_up_write;
1899 
1900 	trans = btrfs_start_transaction(root, 0);
1901 	if (IS_ERR(trans)) {
1902 		err = PTR_ERR(trans);
1903 		goto out_up_write;
1904 	}
1905 	trans->block_rsv = &root->fs_info->global_block_rsv;
1906 
1907 	ret = btrfs_unlink_subvol(trans, root, dir,
1908 				dest->root_key.objectid,
1909 				dentry->d_name.name,
1910 				dentry->d_name.len);
1911 	BUG_ON(ret);
1912 
1913 	btrfs_record_root_in_trans(trans, dest);
1914 
1915 	memset(&dest->root_item.drop_progress, 0,
1916 		sizeof(dest->root_item.drop_progress));
1917 	dest->root_item.drop_level = 0;
1918 	btrfs_set_root_refs(&dest->root_item, 0);
1919 
1920 	if (!xchg(&dest->orphan_item_inserted, 1)) {
1921 		ret = btrfs_insert_orphan_item(trans,
1922 					root->fs_info->tree_root,
1923 					dest->root_key.objectid);
1924 		BUG_ON(ret);
1925 	}
1926 
1927 	ret = btrfs_end_transaction(trans, root);
1928 	BUG_ON(ret);
1929 	inode->i_flags |= S_DEAD;
1930 out_up_write:
1931 	up_write(&root->fs_info->subvol_sem);
1932 out_unlock:
1933 	mutex_unlock(&inode->i_mutex);
1934 	if (!err) {
1935 		shrink_dcache_sb(root->fs_info->sb);
1936 		btrfs_invalidate_inodes(dest);
1937 		d_delete(dentry);
1938 	}
1939 out_dput:
1940 	dput(dentry);
1941 out_unlock_dir:
1942 	mutex_unlock(&dir->i_mutex);
1943 	mnt_drop_write(file->f_path.mnt);
1944 out:
1945 	kfree(vol_args);
1946 	return err;
1947 }
1948 
1949 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
1950 {
1951 	struct inode *inode = fdentry(file)->d_inode;
1952 	struct btrfs_root *root = BTRFS_I(inode)->root;
1953 	struct btrfs_ioctl_defrag_range_args *range;
1954 	int ret;
1955 
1956 	if (btrfs_root_readonly(root))
1957 		return -EROFS;
1958 
1959 	ret = mnt_want_write(file->f_path.mnt);
1960 	if (ret)
1961 		return ret;
1962 
1963 	switch (inode->i_mode & S_IFMT) {
1964 	case S_IFDIR:
1965 		if (!capable(CAP_SYS_ADMIN)) {
1966 			ret = -EPERM;
1967 			goto out;
1968 		}
1969 		ret = btrfs_defrag_root(root, 0);
1970 		if (ret)
1971 			goto out;
1972 		ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
1973 		break;
1974 	case S_IFREG:
1975 		if (!(file->f_mode & FMODE_WRITE)) {
1976 			ret = -EINVAL;
1977 			goto out;
1978 		}
1979 
1980 		range = kzalloc(sizeof(*range), GFP_KERNEL);
1981 		if (!range) {
1982 			ret = -ENOMEM;
1983 			goto out;
1984 		}
1985 
1986 		if (argp) {
1987 			if (copy_from_user(range, argp,
1988 					   sizeof(*range))) {
1989 				ret = -EFAULT;
1990 				kfree(range);
1991 				goto out;
1992 			}
1993 			/* compression requires us to start the IO */
1994 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1995 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
1996 				range->extent_thresh = (u32)-1;
1997 			}
1998 		} else {
1999 			/* the rest are all set to zero by kzalloc */
2000 			range->len = (u64)-1;
2001 		}
2002 		ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2003 					range, 0, 0);
2004 		if (ret > 0)
2005 			ret = 0;
2006 		kfree(range);
2007 		break;
2008 	default:
2009 		ret = -EINVAL;
2010 	}
2011 out:
2012 	mnt_drop_write(file->f_path.mnt);
2013 	return ret;
2014 }
2015 
2016 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2017 {
2018 	struct btrfs_ioctl_vol_args *vol_args;
2019 	int ret;
2020 
2021 	if (!capable(CAP_SYS_ADMIN))
2022 		return -EPERM;
2023 
2024 	vol_args = memdup_user(arg, sizeof(*vol_args));
2025 	if (IS_ERR(vol_args))
2026 		return PTR_ERR(vol_args);
2027 
2028 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2029 	ret = btrfs_init_new_device(root, vol_args->name);
2030 
2031 	kfree(vol_args);
2032 	return ret;
2033 }
2034 
2035 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2036 {
2037 	struct btrfs_ioctl_vol_args *vol_args;
2038 	int ret;
2039 
2040 	if (!capable(CAP_SYS_ADMIN))
2041 		return -EPERM;
2042 
2043 	if (root->fs_info->sb->s_flags & MS_RDONLY)
2044 		return -EROFS;
2045 
2046 	vol_args = memdup_user(arg, sizeof(*vol_args));
2047 	if (IS_ERR(vol_args))
2048 		return PTR_ERR(vol_args);
2049 
2050 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2051 	ret = btrfs_rm_device(root, vol_args->name);
2052 
2053 	kfree(vol_args);
2054 	return ret;
2055 }
2056 
2057 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2058 {
2059 	struct btrfs_ioctl_fs_info_args *fi_args;
2060 	struct btrfs_device *device;
2061 	struct btrfs_device *next;
2062 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2063 	int ret = 0;
2064 
2065 	if (!capable(CAP_SYS_ADMIN))
2066 		return -EPERM;
2067 
2068 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2069 	if (!fi_args)
2070 		return -ENOMEM;
2071 
2072 	fi_args->num_devices = fs_devices->num_devices;
2073 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2074 
2075 	mutex_lock(&fs_devices->device_list_mutex);
2076 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2077 		if (device->devid > fi_args->max_id)
2078 			fi_args->max_id = device->devid;
2079 	}
2080 	mutex_unlock(&fs_devices->device_list_mutex);
2081 
2082 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2083 		ret = -EFAULT;
2084 
2085 	kfree(fi_args);
2086 	return ret;
2087 }
2088 
2089 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2090 {
2091 	struct btrfs_ioctl_dev_info_args *di_args;
2092 	struct btrfs_device *dev;
2093 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2094 	int ret = 0;
2095 	char *s_uuid = NULL;
2096 	char empty_uuid[BTRFS_UUID_SIZE] = {0};
2097 
2098 	if (!capable(CAP_SYS_ADMIN))
2099 		return -EPERM;
2100 
2101 	di_args = memdup_user(arg, sizeof(*di_args));
2102 	if (IS_ERR(di_args))
2103 		return PTR_ERR(di_args);
2104 
2105 	if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2106 		s_uuid = di_args->uuid;
2107 
2108 	mutex_lock(&fs_devices->device_list_mutex);
2109 	dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2110 	mutex_unlock(&fs_devices->device_list_mutex);
2111 
2112 	if (!dev) {
2113 		ret = -ENODEV;
2114 		goto out;
2115 	}
2116 
2117 	di_args->devid = dev->devid;
2118 	di_args->bytes_used = dev->bytes_used;
2119 	di_args->total_bytes = dev->total_bytes;
2120 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2121 	strncpy(di_args->path, dev->name, sizeof(di_args->path));
2122 
2123 out:
2124 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2125 		ret = -EFAULT;
2126 
2127 	kfree(di_args);
2128 	return ret;
2129 }
2130 
2131 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2132 				       u64 off, u64 olen, u64 destoff)
2133 {
2134 	struct inode *inode = fdentry(file)->d_inode;
2135 	struct btrfs_root *root = BTRFS_I(inode)->root;
2136 	struct file *src_file;
2137 	struct inode *src;
2138 	struct btrfs_trans_handle *trans;
2139 	struct btrfs_path *path;
2140 	struct extent_buffer *leaf;
2141 	char *buf;
2142 	struct btrfs_key key;
2143 	u32 nritems;
2144 	int slot;
2145 	int ret;
2146 	u64 len = olen;
2147 	u64 bs = root->fs_info->sb->s_blocksize;
2148 	u64 hint_byte;
2149 
2150 	/*
2151 	 * TODO:
2152 	 * - split compressed inline extents.  annoying: we need to
2153 	 *   decompress into destination's address_space (the file offset
2154 	 *   may change, so source mapping won't do), then recompress (or
2155 	 *   otherwise reinsert) a subrange.
2156 	 * - allow ranges within the same file to be cloned (provided
2157 	 *   they don't overlap)?
2158 	 */
2159 
2160 	/* the destination must be opened for writing */
2161 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2162 		return -EINVAL;
2163 
2164 	if (btrfs_root_readonly(root))
2165 		return -EROFS;
2166 
2167 	ret = mnt_want_write(file->f_path.mnt);
2168 	if (ret)
2169 		return ret;
2170 
2171 	src_file = fget(srcfd);
2172 	if (!src_file) {
2173 		ret = -EBADF;
2174 		goto out_drop_write;
2175 	}
2176 
2177 	src = src_file->f_dentry->d_inode;
2178 
2179 	ret = -EINVAL;
2180 	if (src == inode)
2181 		goto out_fput;
2182 
2183 	/* the src must be open for reading */
2184 	if (!(src_file->f_mode & FMODE_READ))
2185 		goto out_fput;
2186 
2187 	ret = -EISDIR;
2188 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2189 		goto out_fput;
2190 
2191 	ret = -EXDEV;
2192 	if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
2193 		goto out_fput;
2194 
2195 	ret = -ENOMEM;
2196 	buf = vmalloc(btrfs_level_size(root, 0));
2197 	if (!buf)
2198 		goto out_fput;
2199 
2200 	path = btrfs_alloc_path();
2201 	if (!path) {
2202 		vfree(buf);
2203 		goto out_fput;
2204 	}
2205 	path->reada = 2;
2206 
2207 	if (inode < src) {
2208 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2209 		mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2210 	} else {
2211 		mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2212 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2213 	}
2214 
2215 	/* determine range to clone */
2216 	ret = -EINVAL;
2217 	if (off + len > src->i_size || off + len < off)
2218 		goto out_unlock;
2219 	if (len == 0)
2220 		olen = len = src->i_size - off;
2221 	/* if we extend to eof, continue to block boundary */
2222 	if (off + len == src->i_size)
2223 		len = ALIGN(src->i_size, bs) - off;
2224 
2225 	/* verify the end result is block aligned */
2226 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2227 	    !IS_ALIGNED(destoff, bs))
2228 		goto out_unlock;
2229 
2230 	/* do any pending delalloc/csum calc on src, one way or
2231 	   another, and lock file content */
2232 	while (1) {
2233 		struct btrfs_ordered_extent *ordered;
2234 		lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2235 		ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2236 		if (!ordered &&
2237 		    !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2238 				   EXTENT_DELALLOC, 0, NULL))
2239 			break;
2240 		unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2241 		if (ordered)
2242 			btrfs_put_ordered_extent(ordered);
2243 		btrfs_wait_ordered_range(src, off, len);
2244 	}
2245 
2246 	/* clone data */
2247 	key.objectid = btrfs_ino(src);
2248 	key.type = BTRFS_EXTENT_DATA_KEY;
2249 	key.offset = 0;
2250 
2251 	while (1) {
2252 		/*
2253 		 * note the key will change type as we walk through the
2254 		 * tree.
2255 		 */
2256 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2257 		if (ret < 0)
2258 			goto out;
2259 
2260 		nritems = btrfs_header_nritems(path->nodes[0]);
2261 		if (path->slots[0] >= nritems) {
2262 			ret = btrfs_next_leaf(root, path);
2263 			if (ret < 0)
2264 				goto out;
2265 			if (ret > 0)
2266 				break;
2267 			nritems = btrfs_header_nritems(path->nodes[0]);
2268 		}
2269 		leaf = path->nodes[0];
2270 		slot = path->slots[0];
2271 
2272 		btrfs_item_key_to_cpu(leaf, &key, slot);
2273 		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2274 		    key.objectid != btrfs_ino(src))
2275 			break;
2276 
2277 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2278 			struct btrfs_file_extent_item *extent;
2279 			int type;
2280 			u32 size;
2281 			struct btrfs_key new_key;
2282 			u64 disko = 0, diskl = 0;
2283 			u64 datao = 0, datal = 0;
2284 			u8 comp;
2285 			u64 endoff;
2286 
2287 			size = btrfs_item_size_nr(leaf, slot);
2288 			read_extent_buffer(leaf, buf,
2289 					   btrfs_item_ptr_offset(leaf, slot),
2290 					   size);
2291 
2292 			extent = btrfs_item_ptr(leaf, slot,
2293 						struct btrfs_file_extent_item);
2294 			comp = btrfs_file_extent_compression(leaf, extent);
2295 			type = btrfs_file_extent_type(leaf, extent);
2296 			if (type == BTRFS_FILE_EXTENT_REG ||
2297 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2298 				disko = btrfs_file_extent_disk_bytenr(leaf,
2299 								      extent);
2300 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
2301 								 extent);
2302 				datao = btrfs_file_extent_offset(leaf, extent);
2303 				datal = btrfs_file_extent_num_bytes(leaf,
2304 								    extent);
2305 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
2306 				/* take upper bound, may be compressed */
2307 				datal = btrfs_file_extent_ram_bytes(leaf,
2308 								    extent);
2309 			}
2310 			btrfs_release_path(path);
2311 
2312 			if (key.offset + datal <= off ||
2313 			    key.offset >= off+len)
2314 				goto next;
2315 
2316 			memcpy(&new_key, &key, sizeof(new_key));
2317 			new_key.objectid = btrfs_ino(inode);
2318 			if (off <= key.offset)
2319 				new_key.offset = key.offset + destoff - off;
2320 			else
2321 				new_key.offset = destoff;
2322 
2323 			trans = btrfs_start_transaction(root, 1);
2324 			if (IS_ERR(trans)) {
2325 				ret = PTR_ERR(trans);
2326 				goto out;
2327 			}
2328 
2329 			if (type == BTRFS_FILE_EXTENT_REG ||
2330 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2331 				if (off > key.offset) {
2332 					datao += off - key.offset;
2333 					datal -= off - key.offset;
2334 				}
2335 
2336 				if (key.offset + datal > off + len)
2337 					datal = off + len - key.offset;
2338 
2339 				ret = btrfs_drop_extents(trans, inode,
2340 							 new_key.offset,
2341 							 new_key.offset + datal,
2342 							 &hint_byte, 1);
2343 				BUG_ON(ret);
2344 
2345 				ret = btrfs_insert_empty_item(trans, root, path,
2346 							      &new_key, size);
2347 				BUG_ON(ret);
2348 
2349 				leaf = path->nodes[0];
2350 				slot = path->slots[0];
2351 				write_extent_buffer(leaf, buf,
2352 					    btrfs_item_ptr_offset(leaf, slot),
2353 					    size);
2354 
2355 				extent = btrfs_item_ptr(leaf, slot,
2356 						struct btrfs_file_extent_item);
2357 
2358 				/* disko == 0 means it's a hole */
2359 				if (!disko)
2360 					datao = 0;
2361 
2362 				btrfs_set_file_extent_offset(leaf, extent,
2363 							     datao);
2364 				btrfs_set_file_extent_num_bytes(leaf, extent,
2365 								datal);
2366 				if (disko) {
2367 					inode_add_bytes(inode, datal);
2368 					ret = btrfs_inc_extent_ref(trans, root,
2369 							disko, diskl, 0,
2370 							root->root_key.objectid,
2371 							btrfs_ino(inode),
2372 							new_key.offset - datao);
2373 					BUG_ON(ret);
2374 				}
2375 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
2376 				u64 skip = 0;
2377 				u64 trim = 0;
2378 				if (off > key.offset) {
2379 					skip = off - key.offset;
2380 					new_key.offset += skip;
2381 				}
2382 
2383 				if (key.offset + datal > off+len)
2384 					trim = key.offset + datal - (off+len);
2385 
2386 				if (comp && (skip || trim)) {
2387 					ret = -EINVAL;
2388 					btrfs_end_transaction(trans, root);
2389 					goto out;
2390 				}
2391 				size -= skip + trim;
2392 				datal -= skip + trim;
2393 
2394 				ret = btrfs_drop_extents(trans, inode,
2395 							 new_key.offset,
2396 							 new_key.offset + datal,
2397 							 &hint_byte, 1);
2398 				BUG_ON(ret);
2399 
2400 				ret = btrfs_insert_empty_item(trans, root, path,
2401 							      &new_key, size);
2402 				BUG_ON(ret);
2403 
2404 				if (skip) {
2405 					u32 start =
2406 					  btrfs_file_extent_calc_inline_size(0);
2407 					memmove(buf+start, buf+start+skip,
2408 						datal);
2409 				}
2410 
2411 				leaf = path->nodes[0];
2412 				slot = path->slots[0];
2413 				write_extent_buffer(leaf, buf,
2414 					    btrfs_item_ptr_offset(leaf, slot),
2415 					    size);
2416 				inode_add_bytes(inode, datal);
2417 			}
2418 
2419 			btrfs_mark_buffer_dirty(leaf);
2420 			btrfs_release_path(path);
2421 
2422 			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2423 
2424 			/*
2425 			 * we round up to the block size at eof when
2426 			 * determining which extents to clone above,
2427 			 * but shouldn't round up the file size
2428 			 */
2429 			endoff = new_key.offset + datal;
2430 			if (endoff > destoff+olen)
2431 				endoff = destoff+olen;
2432 			if (endoff > inode->i_size)
2433 				btrfs_i_size_write(inode, endoff);
2434 
2435 			BTRFS_I(inode)->flags = BTRFS_I(src)->flags;
2436 			ret = btrfs_update_inode(trans, root, inode);
2437 			BUG_ON(ret);
2438 			btrfs_end_transaction(trans, root);
2439 		}
2440 next:
2441 		btrfs_release_path(path);
2442 		key.offset++;
2443 	}
2444 	ret = 0;
2445 out:
2446 	btrfs_release_path(path);
2447 	unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2448 out_unlock:
2449 	mutex_unlock(&src->i_mutex);
2450 	mutex_unlock(&inode->i_mutex);
2451 	vfree(buf);
2452 	btrfs_free_path(path);
2453 out_fput:
2454 	fput(src_file);
2455 out_drop_write:
2456 	mnt_drop_write(file->f_path.mnt);
2457 	return ret;
2458 }
2459 
2460 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2461 {
2462 	struct btrfs_ioctl_clone_range_args args;
2463 
2464 	if (copy_from_user(&args, argp, sizeof(args)))
2465 		return -EFAULT;
2466 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2467 				 args.src_length, args.dest_offset);
2468 }
2469 
2470 /*
2471  * there are many ways the trans_start and trans_end ioctls can lead
2472  * to deadlocks.  They should only be used by applications that
2473  * basically own the machine, and have a very in depth understanding
2474  * of all the possible deadlocks and enospc problems.
2475  */
2476 static long btrfs_ioctl_trans_start(struct file *file)
2477 {
2478 	struct inode *inode = fdentry(file)->d_inode;
2479 	struct btrfs_root *root = BTRFS_I(inode)->root;
2480 	struct btrfs_trans_handle *trans;
2481 	int ret;
2482 
2483 	ret = -EPERM;
2484 	if (!capable(CAP_SYS_ADMIN))
2485 		goto out;
2486 
2487 	ret = -EINPROGRESS;
2488 	if (file->private_data)
2489 		goto out;
2490 
2491 	ret = -EROFS;
2492 	if (btrfs_root_readonly(root))
2493 		goto out;
2494 
2495 	ret = mnt_want_write(file->f_path.mnt);
2496 	if (ret)
2497 		goto out;
2498 
2499 	atomic_inc(&root->fs_info->open_ioctl_trans);
2500 
2501 	ret = -ENOMEM;
2502 	trans = btrfs_start_ioctl_transaction(root);
2503 	if (IS_ERR(trans))
2504 		goto out_drop;
2505 
2506 	file->private_data = trans;
2507 	return 0;
2508 
2509 out_drop:
2510 	atomic_dec(&root->fs_info->open_ioctl_trans);
2511 	mnt_drop_write(file->f_path.mnt);
2512 out:
2513 	return ret;
2514 }
2515 
2516 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2517 {
2518 	struct inode *inode = fdentry(file)->d_inode;
2519 	struct btrfs_root *root = BTRFS_I(inode)->root;
2520 	struct btrfs_root *new_root;
2521 	struct btrfs_dir_item *di;
2522 	struct btrfs_trans_handle *trans;
2523 	struct btrfs_path *path;
2524 	struct btrfs_key location;
2525 	struct btrfs_disk_key disk_key;
2526 	struct btrfs_super_block *disk_super;
2527 	u64 features;
2528 	u64 objectid = 0;
2529 	u64 dir_id;
2530 
2531 	if (!capable(CAP_SYS_ADMIN))
2532 		return -EPERM;
2533 
2534 	if (copy_from_user(&objectid, argp, sizeof(objectid)))
2535 		return -EFAULT;
2536 
2537 	if (!objectid)
2538 		objectid = root->root_key.objectid;
2539 
2540 	location.objectid = objectid;
2541 	location.type = BTRFS_ROOT_ITEM_KEY;
2542 	location.offset = (u64)-1;
2543 
2544 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2545 	if (IS_ERR(new_root))
2546 		return PTR_ERR(new_root);
2547 
2548 	if (btrfs_root_refs(&new_root->root_item) == 0)
2549 		return -ENOENT;
2550 
2551 	path = btrfs_alloc_path();
2552 	if (!path)
2553 		return -ENOMEM;
2554 	path->leave_spinning = 1;
2555 
2556 	trans = btrfs_start_transaction(root, 1);
2557 	if (IS_ERR(trans)) {
2558 		btrfs_free_path(path);
2559 		return PTR_ERR(trans);
2560 	}
2561 
2562 	dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
2563 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2564 				   dir_id, "default", 7, 1);
2565 	if (IS_ERR_OR_NULL(di)) {
2566 		btrfs_free_path(path);
2567 		btrfs_end_transaction(trans, root);
2568 		printk(KERN_ERR "Umm, you don't have the default dir item, "
2569 		       "this isn't going to work\n");
2570 		return -ENOENT;
2571 	}
2572 
2573 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2574 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2575 	btrfs_mark_buffer_dirty(path->nodes[0]);
2576 	btrfs_free_path(path);
2577 
2578 	disk_super = &root->fs_info->super_copy;
2579 	features = btrfs_super_incompat_flags(disk_super);
2580 	if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
2581 		features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
2582 		btrfs_set_super_incompat_flags(disk_super, features);
2583 	}
2584 	btrfs_end_transaction(trans, root);
2585 
2586 	return 0;
2587 }
2588 
2589 static void get_block_group_info(struct list_head *groups_list,
2590 				 struct btrfs_ioctl_space_info *space)
2591 {
2592 	struct btrfs_block_group_cache *block_group;
2593 
2594 	space->total_bytes = 0;
2595 	space->used_bytes = 0;
2596 	space->flags = 0;
2597 	list_for_each_entry(block_group, groups_list, list) {
2598 		space->flags = block_group->flags;
2599 		space->total_bytes += block_group->key.offset;
2600 		space->used_bytes +=
2601 			btrfs_block_group_used(&block_group->item);
2602 	}
2603 }
2604 
2605 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2606 {
2607 	struct btrfs_ioctl_space_args space_args;
2608 	struct btrfs_ioctl_space_info space;
2609 	struct btrfs_ioctl_space_info *dest;
2610 	struct btrfs_ioctl_space_info *dest_orig;
2611 	struct btrfs_ioctl_space_info __user *user_dest;
2612 	struct btrfs_space_info *info;
2613 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2614 		       BTRFS_BLOCK_GROUP_SYSTEM,
2615 		       BTRFS_BLOCK_GROUP_METADATA,
2616 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2617 	int num_types = 4;
2618 	int alloc_size;
2619 	int ret = 0;
2620 	u64 slot_count = 0;
2621 	int i, c;
2622 
2623 	if (copy_from_user(&space_args,
2624 			   (struct btrfs_ioctl_space_args __user *)arg,
2625 			   sizeof(space_args)))
2626 		return -EFAULT;
2627 
2628 	for (i = 0; i < num_types; i++) {
2629 		struct btrfs_space_info *tmp;
2630 
2631 		info = NULL;
2632 		rcu_read_lock();
2633 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2634 					list) {
2635 			if (tmp->flags == types[i]) {
2636 				info = tmp;
2637 				break;
2638 			}
2639 		}
2640 		rcu_read_unlock();
2641 
2642 		if (!info)
2643 			continue;
2644 
2645 		down_read(&info->groups_sem);
2646 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2647 			if (!list_empty(&info->block_groups[c]))
2648 				slot_count++;
2649 		}
2650 		up_read(&info->groups_sem);
2651 	}
2652 
2653 	/* space_slots == 0 means they are asking for a count */
2654 	if (space_args.space_slots == 0) {
2655 		space_args.total_spaces = slot_count;
2656 		goto out;
2657 	}
2658 
2659 	slot_count = min_t(u64, space_args.space_slots, slot_count);
2660 
2661 	alloc_size = sizeof(*dest) * slot_count;
2662 
2663 	/* we generally have at most 6 or so space infos, one for each raid
2664 	 * level.  So, a whole page should be more than enough for everyone
2665 	 */
2666 	if (alloc_size > PAGE_CACHE_SIZE)
2667 		return -ENOMEM;
2668 
2669 	space_args.total_spaces = 0;
2670 	dest = kmalloc(alloc_size, GFP_NOFS);
2671 	if (!dest)
2672 		return -ENOMEM;
2673 	dest_orig = dest;
2674 
2675 	/* now we have a buffer to copy into */
2676 	for (i = 0; i < num_types; i++) {
2677 		struct btrfs_space_info *tmp;
2678 
2679 		if (!slot_count)
2680 			break;
2681 
2682 		info = NULL;
2683 		rcu_read_lock();
2684 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2685 					list) {
2686 			if (tmp->flags == types[i]) {
2687 				info = tmp;
2688 				break;
2689 			}
2690 		}
2691 		rcu_read_unlock();
2692 
2693 		if (!info)
2694 			continue;
2695 		down_read(&info->groups_sem);
2696 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2697 			if (!list_empty(&info->block_groups[c])) {
2698 				get_block_group_info(&info->block_groups[c],
2699 						     &space);
2700 				memcpy(dest, &space, sizeof(space));
2701 				dest++;
2702 				space_args.total_spaces++;
2703 				slot_count--;
2704 			}
2705 			if (!slot_count)
2706 				break;
2707 		}
2708 		up_read(&info->groups_sem);
2709 	}
2710 
2711 	user_dest = (struct btrfs_ioctl_space_info *)
2712 		(arg + sizeof(struct btrfs_ioctl_space_args));
2713 
2714 	if (copy_to_user(user_dest, dest_orig, alloc_size))
2715 		ret = -EFAULT;
2716 
2717 	kfree(dest_orig);
2718 out:
2719 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2720 		ret = -EFAULT;
2721 
2722 	return ret;
2723 }
2724 
2725 /*
2726  * there are many ways the trans_start and trans_end ioctls can lead
2727  * to deadlocks.  They should only be used by applications that
2728  * basically own the machine, and have a very in depth understanding
2729  * of all the possible deadlocks and enospc problems.
2730  */
2731 long btrfs_ioctl_trans_end(struct file *file)
2732 {
2733 	struct inode *inode = fdentry(file)->d_inode;
2734 	struct btrfs_root *root = BTRFS_I(inode)->root;
2735 	struct btrfs_trans_handle *trans;
2736 
2737 	trans = file->private_data;
2738 	if (!trans)
2739 		return -EINVAL;
2740 	file->private_data = NULL;
2741 
2742 	btrfs_end_transaction(trans, root);
2743 
2744 	atomic_dec(&root->fs_info->open_ioctl_trans);
2745 
2746 	mnt_drop_write(file->f_path.mnt);
2747 	return 0;
2748 }
2749 
2750 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
2751 {
2752 	struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2753 	struct btrfs_trans_handle *trans;
2754 	u64 transid;
2755 	int ret;
2756 
2757 	trans = btrfs_start_transaction(root, 0);
2758 	if (IS_ERR(trans))
2759 		return PTR_ERR(trans);
2760 	transid = trans->transid;
2761 	ret = btrfs_commit_transaction_async(trans, root, 0);
2762 	if (ret) {
2763 		btrfs_end_transaction(trans, root);
2764 		return ret;
2765 	}
2766 
2767 	if (argp)
2768 		if (copy_to_user(argp, &transid, sizeof(transid)))
2769 			return -EFAULT;
2770 	return 0;
2771 }
2772 
2773 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
2774 {
2775 	struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2776 	u64 transid;
2777 
2778 	if (argp) {
2779 		if (copy_from_user(&transid, argp, sizeof(transid)))
2780 			return -EFAULT;
2781 	} else {
2782 		transid = 0;  /* current trans */
2783 	}
2784 	return btrfs_wait_for_commit(root, transid);
2785 }
2786 
2787 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
2788 {
2789 	int ret;
2790 	struct btrfs_ioctl_scrub_args *sa;
2791 
2792 	if (!capable(CAP_SYS_ADMIN))
2793 		return -EPERM;
2794 
2795 	sa = memdup_user(arg, sizeof(*sa));
2796 	if (IS_ERR(sa))
2797 		return PTR_ERR(sa);
2798 
2799 	ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
2800 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
2801 
2802 	if (copy_to_user(arg, sa, sizeof(*sa)))
2803 		ret = -EFAULT;
2804 
2805 	kfree(sa);
2806 	return ret;
2807 }
2808 
2809 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
2810 {
2811 	if (!capable(CAP_SYS_ADMIN))
2812 		return -EPERM;
2813 
2814 	return btrfs_scrub_cancel(root);
2815 }
2816 
2817 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
2818 				       void __user *arg)
2819 {
2820 	struct btrfs_ioctl_scrub_args *sa;
2821 	int ret;
2822 
2823 	if (!capable(CAP_SYS_ADMIN))
2824 		return -EPERM;
2825 
2826 	sa = memdup_user(arg, sizeof(*sa));
2827 	if (IS_ERR(sa))
2828 		return PTR_ERR(sa);
2829 
2830 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
2831 
2832 	if (copy_to_user(arg, sa, sizeof(*sa)))
2833 		ret = -EFAULT;
2834 
2835 	kfree(sa);
2836 	return ret;
2837 }
2838 
2839 long btrfs_ioctl(struct file *file, unsigned int
2840 		cmd, unsigned long arg)
2841 {
2842 	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
2843 	void __user *argp = (void __user *)arg;
2844 
2845 	switch (cmd) {
2846 	case FS_IOC_GETFLAGS:
2847 		return btrfs_ioctl_getflags(file, argp);
2848 	case FS_IOC_SETFLAGS:
2849 		return btrfs_ioctl_setflags(file, argp);
2850 	case FS_IOC_GETVERSION:
2851 		return btrfs_ioctl_getversion(file, argp);
2852 	case FITRIM:
2853 		return btrfs_ioctl_fitrim(file, argp);
2854 	case BTRFS_IOC_SNAP_CREATE:
2855 		return btrfs_ioctl_snap_create(file, argp, 0);
2856 	case BTRFS_IOC_SNAP_CREATE_V2:
2857 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
2858 	case BTRFS_IOC_SUBVOL_CREATE:
2859 		return btrfs_ioctl_snap_create(file, argp, 1);
2860 	case BTRFS_IOC_SNAP_DESTROY:
2861 		return btrfs_ioctl_snap_destroy(file, argp);
2862 	case BTRFS_IOC_SUBVOL_GETFLAGS:
2863 		return btrfs_ioctl_subvol_getflags(file, argp);
2864 	case BTRFS_IOC_SUBVOL_SETFLAGS:
2865 		return btrfs_ioctl_subvol_setflags(file, argp);
2866 	case BTRFS_IOC_DEFAULT_SUBVOL:
2867 		return btrfs_ioctl_default_subvol(file, argp);
2868 	case BTRFS_IOC_DEFRAG:
2869 		return btrfs_ioctl_defrag(file, NULL);
2870 	case BTRFS_IOC_DEFRAG_RANGE:
2871 		return btrfs_ioctl_defrag(file, argp);
2872 	case BTRFS_IOC_RESIZE:
2873 		return btrfs_ioctl_resize(root, argp);
2874 	case BTRFS_IOC_ADD_DEV:
2875 		return btrfs_ioctl_add_dev(root, argp);
2876 	case BTRFS_IOC_RM_DEV:
2877 		return btrfs_ioctl_rm_dev(root, argp);
2878 	case BTRFS_IOC_FS_INFO:
2879 		return btrfs_ioctl_fs_info(root, argp);
2880 	case BTRFS_IOC_DEV_INFO:
2881 		return btrfs_ioctl_dev_info(root, argp);
2882 	case BTRFS_IOC_BALANCE:
2883 		return btrfs_balance(root->fs_info->dev_root);
2884 	case BTRFS_IOC_CLONE:
2885 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
2886 	case BTRFS_IOC_CLONE_RANGE:
2887 		return btrfs_ioctl_clone_range(file, argp);
2888 	case BTRFS_IOC_TRANS_START:
2889 		return btrfs_ioctl_trans_start(file);
2890 	case BTRFS_IOC_TRANS_END:
2891 		return btrfs_ioctl_trans_end(file);
2892 	case BTRFS_IOC_TREE_SEARCH:
2893 		return btrfs_ioctl_tree_search(file, argp);
2894 	case BTRFS_IOC_INO_LOOKUP:
2895 		return btrfs_ioctl_ino_lookup(file, argp);
2896 	case BTRFS_IOC_SPACE_INFO:
2897 		return btrfs_ioctl_space_info(root, argp);
2898 	case BTRFS_IOC_SYNC:
2899 		btrfs_sync_fs(file->f_dentry->d_sb, 1);
2900 		return 0;
2901 	case BTRFS_IOC_START_SYNC:
2902 		return btrfs_ioctl_start_sync(file, argp);
2903 	case BTRFS_IOC_WAIT_SYNC:
2904 		return btrfs_ioctl_wait_sync(file, argp);
2905 	case BTRFS_IOC_SCRUB:
2906 		return btrfs_ioctl_scrub(root, argp);
2907 	case BTRFS_IOC_SCRUB_CANCEL:
2908 		return btrfs_ioctl_scrub_cancel(root, argp);
2909 	case BTRFS_IOC_SCRUB_PROGRESS:
2910 		return btrfs_ioctl_scrub_progress(root, argp);
2911 	}
2912 
2913 	return -ENOTTY;
2914 }
2915