1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "export.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "volumes.h" 39 #include "locking.h" 40 #include "backref.h" 41 #include "rcu-string.h" 42 #include "send.h" 43 #include "dev-replace.h" 44 #include "props.h" 45 #include "sysfs.h" 46 #include "qgroup.h" 47 #include "tree-log.h" 48 #include "compression.h" 49 #include "space-info.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "subpage.h" 53 #include "fs.h" 54 #include "accessors.h" 55 #include "extent-tree.h" 56 #include "root-tree.h" 57 #include "defrag.h" 58 #include "dir-item.h" 59 #include "uuid-tree.h" 60 #include "ioctl.h" 61 #include "file.h" 62 #include "scrub.h" 63 #include "super.h" 64 65 #ifdef CONFIG_64BIT 66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 67 * structures are incorrect, as the timespec structure from userspace 68 * is 4 bytes too small. We define these alternatives here to teach 69 * the kernel about the 32-bit struct packing. 70 */ 71 struct btrfs_ioctl_timespec_32 { 72 __u64 sec; 73 __u32 nsec; 74 } __attribute__ ((__packed__)); 75 76 struct btrfs_ioctl_received_subvol_args_32 { 77 char uuid[BTRFS_UUID_SIZE]; /* in */ 78 __u64 stransid; /* in */ 79 __u64 rtransid; /* out */ 80 struct btrfs_ioctl_timespec_32 stime; /* in */ 81 struct btrfs_ioctl_timespec_32 rtime; /* out */ 82 __u64 flags; /* in */ 83 __u64 reserved[16]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 87 struct btrfs_ioctl_received_subvol_args_32) 88 #endif 89 90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 91 struct btrfs_ioctl_send_args_32 { 92 __s64 send_fd; /* in */ 93 __u64 clone_sources_count; /* in */ 94 compat_uptr_t clone_sources; /* in */ 95 __u64 parent_root; /* in */ 96 __u64 flags; /* in */ 97 __u32 version; /* in */ 98 __u8 reserved[28]; /* in */ 99 } __attribute__ ((__packed__)); 100 101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 102 struct btrfs_ioctl_send_args_32) 103 104 struct btrfs_ioctl_encoded_io_args_32 { 105 compat_uptr_t iov; 106 compat_ulong_t iovcnt; 107 __s64 offset; 108 __u64 flags; 109 __u64 len; 110 __u64 unencoded_len; 111 __u64 unencoded_offset; 112 __u32 compression; 113 __u32 encryption; 114 __u8 reserved[64]; 115 }; 116 117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 118 struct btrfs_ioctl_encoded_io_args_32) 119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 120 struct btrfs_ioctl_encoded_io_args_32) 121 #endif 122 123 /* Mask out flags that are inappropriate for the given type of inode. */ 124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 125 unsigned int flags) 126 { 127 if (S_ISDIR(inode->i_mode)) 128 return flags; 129 else if (S_ISREG(inode->i_mode)) 130 return flags & ~FS_DIRSYNC_FL; 131 else 132 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 133 } 134 135 /* 136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 137 * ioctl. 138 */ 139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 140 { 141 unsigned int iflags = 0; 142 u32 flags = binode->flags; 143 u32 ro_flags = binode->ro_flags; 144 145 if (flags & BTRFS_INODE_SYNC) 146 iflags |= FS_SYNC_FL; 147 if (flags & BTRFS_INODE_IMMUTABLE) 148 iflags |= FS_IMMUTABLE_FL; 149 if (flags & BTRFS_INODE_APPEND) 150 iflags |= FS_APPEND_FL; 151 if (flags & BTRFS_INODE_NODUMP) 152 iflags |= FS_NODUMP_FL; 153 if (flags & BTRFS_INODE_NOATIME) 154 iflags |= FS_NOATIME_FL; 155 if (flags & BTRFS_INODE_DIRSYNC) 156 iflags |= FS_DIRSYNC_FL; 157 if (flags & BTRFS_INODE_NODATACOW) 158 iflags |= FS_NOCOW_FL; 159 if (ro_flags & BTRFS_INODE_RO_VERITY) 160 iflags |= FS_VERITY_FL; 161 162 if (flags & BTRFS_INODE_NOCOMPRESS) 163 iflags |= FS_NOCOMP_FL; 164 else if (flags & BTRFS_INODE_COMPRESS) 165 iflags |= FS_COMPR_FL; 166 167 return iflags; 168 } 169 170 /* 171 * Update inode->i_flags based on the btrfs internal flags. 172 */ 173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 174 { 175 struct btrfs_inode *binode = BTRFS_I(inode); 176 unsigned int new_fl = 0; 177 178 if (binode->flags & BTRFS_INODE_SYNC) 179 new_fl |= S_SYNC; 180 if (binode->flags & BTRFS_INODE_IMMUTABLE) 181 new_fl |= S_IMMUTABLE; 182 if (binode->flags & BTRFS_INODE_APPEND) 183 new_fl |= S_APPEND; 184 if (binode->flags & BTRFS_INODE_NOATIME) 185 new_fl |= S_NOATIME; 186 if (binode->flags & BTRFS_INODE_DIRSYNC) 187 new_fl |= S_DIRSYNC; 188 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 189 new_fl |= S_VERITY; 190 191 set_mask_bits(&inode->i_flags, 192 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 193 S_VERITY, new_fl); 194 } 195 196 /* 197 * Check if @flags are a supported and valid set of FS_*_FL flags and that 198 * the old and new flags are not conflicting 199 */ 200 static int check_fsflags(unsigned int old_flags, unsigned int flags) 201 { 202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 203 FS_NOATIME_FL | FS_NODUMP_FL | \ 204 FS_SYNC_FL | FS_DIRSYNC_FL | \ 205 FS_NOCOMP_FL | FS_COMPR_FL | 206 FS_NOCOW_FL)) 207 return -EOPNOTSUPP; 208 209 /* COMPR and NOCOMP on new/old are valid */ 210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 211 return -EINVAL; 212 213 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 214 return -EINVAL; 215 216 /* NOCOW and compression options are mutually exclusive */ 217 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 218 return -EINVAL; 219 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 220 return -EINVAL; 221 222 return 0; 223 } 224 225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 226 unsigned int flags) 227 { 228 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 229 return -EPERM; 230 231 return 0; 232 } 233 234 /* 235 * Set flags/xflags from the internal inode flags. The remaining items of 236 * fsxattr are zeroed. 237 */ 238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 239 { 240 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 241 242 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 243 return 0; 244 } 245 246 int btrfs_fileattr_set(struct mnt_idmap *idmap, 247 struct dentry *dentry, struct fileattr *fa) 248 { 249 struct inode *inode = d_inode(dentry); 250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 251 struct btrfs_inode *binode = BTRFS_I(inode); 252 struct btrfs_root *root = binode->root; 253 struct btrfs_trans_handle *trans; 254 unsigned int fsflags, old_fsflags; 255 int ret; 256 const char *comp = NULL; 257 u32 binode_flags; 258 259 if (btrfs_root_readonly(root)) 260 return -EROFS; 261 262 if (fileattr_has_fsx(fa)) 263 return -EOPNOTSUPP; 264 265 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 266 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 267 ret = check_fsflags(old_fsflags, fsflags); 268 if (ret) 269 return ret; 270 271 ret = check_fsflags_compatible(fs_info, fsflags); 272 if (ret) 273 return ret; 274 275 binode_flags = binode->flags; 276 if (fsflags & FS_SYNC_FL) 277 binode_flags |= BTRFS_INODE_SYNC; 278 else 279 binode_flags &= ~BTRFS_INODE_SYNC; 280 if (fsflags & FS_IMMUTABLE_FL) 281 binode_flags |= BTRFS_INODE_IMMUTABLE; 282 else 283 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 284 if (fsflags & FS_APPEND_FL) 285 binode_flags |= BTRFS_INODE_APPEND; 286 else 287 binode_flags &= ~BTRFS_INODE_APPEND; 288 if (fsflags & FS_NODUMP_FL) 289 binode_flags |= BTRFS_INODE_NODUMP; 290 else 291 binode_flags &= ~BTRFS_INODE_NODUMP; 292 if (fsflags & FS_NOATIME_FL) 293 binode_flags |= BTRFS_INODE_NOATIME; 294 else 295 binode_flags &= ~BTRFS_INODE_NOATIME; 296 297 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 298 if (!fa->flags_valid) { 299 /* 1 item for the inode */ 300 trans = btrfs_start_transaction(root, 1); 301 if (IS_ERR(trans)) 302 return PTR_ERR(trans); 303 goto update_flags; 304 } 305 306 if (fsflags & FS_DIRSYNC_FL) 307 binode_flags |= BTRFS_INODE_DIRSYNC; 308 else 309 binode_flags &= ~BTRFS_INODE_DIRSYNC; 310 if (fsflags & FS_NOCOW_FL) { 311 if (S_ISREG(inode->i_mode)) { 312 /* 313 * It's safe to turn csums off here, no extents exist. 314 * Otherwise we want the flag to reflect the real COW 315 * status of the file and will not set it. 316 */ 317 if (inode->i_size == 0) 318 binode_flags |= BTRFS_INODE_NODATACOW | 319 BTRFS_INODE_NODATASUM; 320 } else { 321 binode_flags |= BTRFS_INODE_NODATACOW; 322 } 323 } else { 324 /* 325 * Revert back under same assumptions as above 326 */ 327 if (S_ISREG(inode->i_mode)) { 328 if (inode->i_size == 0) 329 binode_flags &= ~(BTRFS_INODE_NODATACOW | 330 BTRFS_INODE_NODATASUM); 331 } else { 332 binode_flags &= ~BTRFS_INODE_NODATACOW; 333 } 334 } 335 336 /* 337 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 338 * flag may be changed automatically if compression code won't make 339 * things smaller. 340 */ 341 if (fsflags & FS_NOCOMP_FL) { 342 binode_flags &= ~BTRFS_INODE_COMPRESS; 343 binode_flags |= BTRFS_INODE_NOCOMPRESS; 344 } else if (fsflags & FS_COMPR_FL) { 345 346 if (IS_SWAPFILE(inode)) 347 return -ETXTBSY; 348 349 binode_flags |= BTRFS_INODE_COMPRESS; 350 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 351 352 comp = btrfs_compress_type2str(fs_info->compress_type); 353 if (!comp || comp[0] == 0) 354 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 355 } else { 356 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 357 } 358 359 /* 360 * 1 for inode item 361 * 2 for properties 362 */ 363 trans = btrfs_start_transaction(root, 3); 364 if (IS_ERR(trans)) 365 return PTR_ERR(trans); 366 367 if (comp) { 368 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 369 strlen(comp), 0); 370 if (ret) { 371 btrfs_abort_transaction(trans, ret); 372 goto out_end_trans; 373 } 374 } else { 375 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 376 0, 0); 377 if (ret && ret != -ENODATA) { 378 btrfs_abort_transaction(trans, ret); 379 goto out_end_trans; 380 } 381 } 382 383 update_flags: 384 binode->flags = binode_flags; 385 btrfs_sync_inode_flags_to_i_flags(inode); 386 inode_inc_iversion(inode); 387 inode_set_ctime_current(inode); 388 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 389 390 out_end_trans: 391 btrfs_end_transaction(trans); 392 return ret; 393 } 394 395 /* 396 * Start exclusive operation @type, return true on success 397 */ 398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 399 enum btrfs_exclusive_operation type) 400 { 401 bool ret = false; 402 403 spin_lock(&fs_info->super_lock); 404 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 405 fs_info->exclusive_operation = type; 406 ret = true; 407 } 408 spin_unlock(&fs_info->super_lock); 409 410 return ret; 411 } 412 413 /* 414 * Conditionally allow to enter the exclusive operation in case it's compatible 415 * with the running one. This must be paired with btrfs_exclop_start_unlock and 416 * btrfs_exclop_finish. 417 * 418 * Compatibility: 419 * - the same type is already running 420 * - when trying to add a device and balance has been paused 421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 422 * must check the condition first that would allow none -> @type 423 */ 424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 425 enum btrfs_exclusive_operation type) 426 { 427 spin_lock(&fs_info->super_lock); 428 if (fs_info->exclusive_operation == type || 429 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 430 type == BTRFS_EXCLOP_DEV_ADD)) 431 return true; 432 433 spin_unlock(&fs_info->super_lock); 434 return false; 435 } 436 437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 438 { 439 spin_unlock(&fs_info->super_lock); 440 } 441 442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 443 { 444 spin_lock(&fs_info->super_lock); 445 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 446 spin_unlock(&fs_info->super_lock); 447 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 448 } 449 450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 451 enum btrfs_exclusive_operation op) 452 { 453 switch (op) { 454 case BTRFS_EXCLOP_BALANCE_PAUSED: 455 spin_lock(&fs_info->super_lock); 456 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 457 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || 458 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE || 459 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 460 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 461 spin_unlock(&fs_info->super_lock); 462 break; 463 case BTRFS_EXCLOP_BALANCE: 464 spin_lock(&fs_info->super_lock); 465 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 466 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 467 spin_unlock(&fs_info->super_lock); 468 break; 469 default: 470 btrfs_warn(fs_info, 471 "invalid exclop balance operation %d requested", op); 472 } 473 } 474 475 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 476 { 477 return put_user(inode->i_generation, arg); 478 } 479 480 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 481 void __user *arg) 482 { 483 struct btrfs_device *device; 484 struct fstrim_range range; 485 u64 minlen = ULLONG_MAX; 486 u64 num_devices = 0; 487 int ret; 488 489 if (!capable(CAP_SYS_ADMIN)) 490 return -EPERM; 491 492 /* 493 * btrfs_trim_block_group() depends on space cache, which is not 494 * available in zoned filesystem. So, disallow fitrim on a zoned 495 * filesystem for now. 496 */ 497 if (btrfs_is_zoned(fs_info)) 498 return -EOPNOTSUPP; 499 500 /* 501 * If the fs is mounted with nologreplay, which requires it to be 502 * mounted in RO mode as well, we can not allow discard on free space 503 * inside block groups, because log trees refer to extents that are not 504 * pinned in a block group's free space cache (pinning the extents is 505 * precisely the first phase of replaying a log tree). 506 */ 507 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 508 return -EROFS; 509 510 rcu_read_lock(); 511 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 512 dev_list) { 513 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 514 continue; 515 num_devices++; 516 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 517 minlen); 518 } 519 rcu_read_unlock(); 520 521 if (!num_devices) 522 return -EOPNOTSUPP; 523 if (copy_from_user(&range, arg, sizeof(range))) 524 return -EFAULT; 525 526 /* 527 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 528 * block group is in the logical address space, which can be any 529 * sectorsize aligned bytenr in the range [0, U64_MAX]. 530 */ 531 if (range.len < fs_info->sb->s_blocksize) 532 return -EINVAL; 533 534 range.minlen = max(range.minlen, minlen); 535 ret = btrfs_trim_fs(fs_info, &range); 536 if (ret < 0) 537 return ret; 538 539 if (copy_to_user(arg, &range, sizeof(range))) 540 return -EFAULT; 541 542 return 0; 543 } 544 545 int __pure btrfs_is_empty_uuid(u8 *uuid) 546 { 547 int i; 548 549 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 550 if (uuid[i]) 551 return 0; 552 } 553 return 1; 554 } 555 556 /* 557 * Calculate the number of transaction items to reserve for creating a subvolume 558 * or snapshot, not including the inode, directory entries, or parent directory. 559 */ 560 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) 561 { 562 /* 563 * 1 to add root block 564 * 1 to add root item 565 * 1 to add root ref 566 * 1 to add root backref 567 * 1 to add UUID item 568 * 1 to add qgroup info 569 * 1 to add qgroup limit 570 * 571 * Ideally the last two would only be accounted if qgroups are enabled, 572 * but that can change between now and the time we would insert them. 573 */ 574 unsigned int num_items = 7; 575 576 if (inherit) { 577 /* 2 to add qgroup relations for each inherited qgroup */ 578 num_items += 2 * inherit->num_qgroups; 579 } 580 return num_items; 581 } 582 583 static noinline int create_subvol(struct mnt_idmap *idmap, 584 struct inode *dir, struct dentry *dentry, 585 struct btrfs_qgroup_inherit *inherit) 586 { 587 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 588 struct btrfs_trans_handle *trans; 589 struct btrfs_key key; 590 struct btrfs_root_item *root_item; 591 struct btrfs_inode_item *inode_item; 592 struct extent_buffer *leaf; 593 struct btrfs_root *root = BTRFS_I(dir)->root; 594 struct btrfs_root *new_root; 595 struct btrfs_block_rsv block_rsv; 596 struct timespec64 cur_time = current_time(dir); 597 struct btrfs_new_inode_args new_inode_args = { 598 .dir = dir, 599 .dentry = dentry, 600 .subvol = true, 601 }; 602 unsigned int trans_num_items; 603 int ret; 604 dev_t anon_dev; 605 u64 objectid; 606 607 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 608 if (!root_item) 609 return -ENOMEM; 610 611 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 612 if (ret) 613 goto out_root_item; 614 615 /* 616 * Don't create subvolume whose level is not zero. Or qgroup will be 617 * screwed up since it assumes subvolume qgroup's level to be 0. 618 */ 619 if (btrfs_qgroup_level(objectid)) { 620 ret = -ENOSPC; 621 goto out_root_item; 622 } 623 624 ret = get_anon_bdev(&anon_dev); 625 if (ret < 0) 626 goto out_root_item; 627 628 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir); 629 if (!new_inode_args.inode) { 630 ret = -ENOMEM; 631 goto out_anon_dev; 632 } 633 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 634 if (ret) 635 goto out_inode; 636 trans_num_items += create_subvol_num_items(inherit); 637 638 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 639 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 640 trans_num_items, false); 641 if (ret) 642 goto out_new_inode_args; 643 644 trans = btrfs_start_transaction(root, 0); 645 if (IS_ERR(trans)) { 646 ret = PTR_ERR(trans); 647 btrfs_subvolume_release_metadata(root, &block_rsv); 648 goto out_new_inode_args; 649 } 650 trans->block_rsv = &block_rsv; 651 trans->bytes_reserved = block_rsv.size; 652 /* Tree log can't currently deal with an inode which is a new root. */ 653 btrfs_set_log_full_commit(trans); 654 655 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 656 if (ret) 657 goto out; 658 659 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 660 BTRFS_NESTING_NORMAL); 661 if (IS_ERR(leaf)) { 662 ret = PTR_ERR(leaf); 663 goto out; 664 } 665 666 btrfs_mark_buffer_dirty(leaf); 667 668 inode_item = &root_item->inode; 669 btrfs_set_stack_inode_generation(inode_item, 1); 670 btrfs_set_stack_inode_size(inode_item, 3); 671 btrfs_set_stack_inode_nlink(inode_item, 1); 672 btrfs_set_stack_inode_nbytes(inode_item, 673 fs_info->nodesize); 674 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 675 676 btrfs_set_root_flags(root_item, 0); 677 btrfs_set_root_limit(root_item, 0); 678 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 679 680 btrfs_set_root_bytenr(root_item, leaf->start); 681 btrfs_set_root_generation(root_item, trans->transid); 682 btrfs_set_root_level(root_item, 0); 683 btrfs_set_root_refs(root_item, 1); 684 btrfs_set_root_used(root_item, leaf->len); 685 btrfs_set_root_last_snapshot(root_item, 0); 686 687 btrfs_set_root_generation_v2(root_item, 688 btrfs_root_generation(root_item)); 689 generate_random_guid(root_item->uuid); 690 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 691 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 692 root_item->ctime = root_item->otime; 693 btrfs_set_root_ctransid(root_item, trans->transid); 694 btrfs_set_root_otransid(root_item, trans->transid); 695 696 btrfs_tree_unlock(leaf); 697 698 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 699 700 key.objectid = objectid; 701 key.offset = 0; 702 key.type = BTRFS_ROOT_ITEM_KEY; 703 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 704 root_item); 705 if (ret) { 706 /* 707 * Since we don't abort the transaction in this case, free the 708 * tree block so that we don't leak space and leave the 709 * filesystem in an inconsistent state (an extent item in the 710 * extent tree with a backreference for a root that does not 711 * exists). 712 */ 713 btrfs_tree_lock(leaf); 714 btrfs_clear_buffer_dirty(trans, leaf); 715 btrfs_tree_unlock(leaf); 716 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 717 free_extent_buffer(leaf); 718 goto out; 719 } 720 721 free_extent_buffer(leaf); 722 leaf = NULL; 723 724 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 725 if (IS_ERR(new_root)) { 726 ret = PTR_ERR(new_root); 727 btrfs_abort_transaction(trans, ret); 728 goto out; 729 } 730 /* anon_dev is owned by new_root now. */ 731 anon_dev = 0; 732 BTRFS_I(new_inode_args.inode)->root = new_root; 733 /* ... and new_root is owned by new_inode_args.inode now. */ 734 735 ret = btrfs_record_root_in_trans(trans, new_root); 736 if (ret) { 737 btrfs_abort_transaction(trans, ret); 738 goto out; 739 } 740 741 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 742 BTRFS_UUID_KEY_SUBVOL, objectid); 743 if (ret) { 744 btrfs_abort_transaction(trans, ret); 745 goto out; 746 } 747 748 ret = btrfs_create_new_inode(trans, &new_inode_args); 749 if (ret) { 750 btrfs_abort_transaction(trans, ret); 751 goto out; 752 } 753 754 d_instantiate_new(dentry, new_inode_args.inode); 755 new_inode_args.inode = NULL; 756 757 out: 758 trans->block_rsv = NULL; 759 trans->bytes_reserved = 0; 760 btrfs_subvolume_release_metadata(root, &block_rsv); 761 762 btrfs_end_transaction(trans); 763 out_new_inode_args: 764 btrfs_new_inode_args_destroy(&new_inode_args); 765 out_inode: 766 iput(new_inode_args.inode); 767 out_anon_dev: 768 if (anon_dev) 769 free_anon_bdev(anon_dev); 770 out_root_item: 771 kfree(root_item); 772 return ret; 773 } 774 775 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 776 struct dentry *dentry, bool readonly, 777 struct btrfs_qgroup_inherit *inherit) 778 { 779 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 780 struct inode *inode; 781 struct btrfs_pending_snapshot *pending_snapshot; 782 unsigned int trans_num_items; 783 struct btrfs_trans_handle *trans; 784 int ret; 785 786 /* We do not support snapshotting right now. */ 787 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 788 btrfs_warn(fs_info, 789 "extent tree v2 doesn't support snapshotting yet"); 790 return -EOPNOTSUPP; 791 } 792 793 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 794 return -EINVAL; 795 796 if (atomic_read(&root->nr_swapfiles)) { 797 btrfs_warn(fs_info, 798 "cannot snapshot subvolume with active swapfile"); 799 return -ETXTBSY; 800 } 801 802 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 803 if (!pending_snapshot) 804 return -ENOMEM; 805 806 ret = get_anon_bdev(&pending_snapshot->anon_dev); 807 if (ret < 0) 808 goto free_pending; 809 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 810 GFP_KERNEL); 811 pending_snapshot->path = btrfs_alloc_path(); 812 if (!pending_snapshot->root_item || !pending_snapshot->path) { 813 ret = -ENOMEM; 814 goto free_pending; 815 } 816 817 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 818 BTRFS_BLOCK_RSV_TEMP); 819 /* 820 * 1 to add dir item 821 * 1 to add dir index 822 * 1 to update parent inode item 823 */ 824 trans_num_items = create_subvol_num_items(inherit) + 3; 825 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 826 &pending_snapshot->block_rsv, 827 trans_num_items, false); 828 if (ret) 829 goto free_pending; 830 831 pending_snapshot->dentry = dentry; 832 pending_snapshot->root = root; 833 pending_snapshot->readonly = readonly; 834 pending_snapshot->dir = dir; 835 pending_snapshot->inherit = inherit; 836 837 trans = btrfs_start_transaction(root, 0); 838 if (IS_ERR(trans)) { 839 ret = PTR_ERR(trans); 840 goto fail; 841 } 842 843 trans->pending_snapshot = pending_snapshot; 844 845 ret = btrfs_commit_transaction(trans); 846 if (ret) 847 goto fail; 848 849 ret = pending_snapshot->error; 850 if (ret) 851 goto fail; 852 853 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 854 if (ret) 855 goto fail; 856 857 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 858 if (IS_ERR(inode)) { 859 ret = PTR_ERR(inode); 860 goto fail; 861 } 862 863 d_instantiate(dentry, inode); 864 ret = 0; 865 pending_snapshot->anon_dev = 0; 866 fail: 867 /* Prevent double freeing of anon_dev */ 868 if (ret && pending_snapshot->snap) 869 pending_snapshot->snap->anon_dev = 0; 870 btrfs_put_root(pending_snapshot->snap); 871 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 872 free_pending: 873 if (pending_snapshot->anon_dev) 874 free_anon_bdev(pending_snapshot->anon_dev); 875 kfree(pending_snapshot->root_item); 876 btrfs_free_path(pending_snapshot->path); 877 kfree(pending_snapshot); 878 879 return ret; 880 } 881 882 /* copy of may_delete in fs/namei.c() 883 * Check whether we can remove a link victim from directory dir, check 884 * whether the type of victim is right. 885 * 1. We can't do it if dir is read-only (done in permission()) 886 * 2. We should have write and exec permissions on dir 887 * 3. We can't remove anything from append-only dir 888 * 4. We can't do anything with immutable dir (done in permission()) 889 * 5. If the sticky bit on dir is set we should either 890 * a. be owner of dir, or 891 * b. be owner of victim, or 892 * c. have CAP_FOWNER capability 893 * 6. If the victim is append-only or immutable we can't do anything with 894 * links pointing to it. 895 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 896 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 897 * 9. We can't remove a root or mountpoint. 898 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 899 * nfs_async_unlink(). 900 */ 901 902 static int btrfs_may_delete(struct mnt_idmap *idmap, 903 struct inode *dir, struct dentry *victim, int isdir) 904 { 905 int error; 906 907 if (d_really_is_negative(victim)) 908 return -ENOENT; 909 910 BUG_ON(d_inode(victim->d_parent) != dir); 911 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 912 913 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 914 if (error) 915 return error; 916 if (IS_APPEND(dir)) 917 return -EPERM; 918 if (check_sticky(idmap, dir, d_inode(victim)) || 919 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 920 IS_SWAPFILE(d_inode(victim))) 921 return -EPERM; 922 if (isdir) { 923 if (!d_is_dir(victim)) 924 return -ENOTDIR; 925 if (IS_ROOT(victim)) 926 return -EBUSY; 927 } else if (d_is_dir(victim)) 928 return -EISDIR; 929 if (IS_DEADDIR(dir)) 930 return -ENOENT; 931 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 932 return -EBUSY; 933 return 0; 934 } 935 936 /* copy of may_create in fs/namei.c() */ 937 static inline int btrfs_may_create(struct mnt_idmap *idmap, 938 struct inode *dir, struct dentry *child) 939 { 940 if (d_really_is_positive(child)) 941 return -EEXIST; 942 if (IS_DEADDIR(dir)) 943 return -ENOENT; 944 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 945 return -EOVERFLOW; 946 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 947 } 948 949 /* 950 * Create a new subvolume below @parent. This is largely modeled after 951 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 952 * inside this filesystem so it's quite a bit simpler. 953 */ 954 static noinline int btrfs_mksubvol(const struct path *parent, 955 struct mnt_idmap *idmap, 956 const char *name, int namelen, 957 struct btrfs_root *snap_src, 958 bool readonly, 959 struct btrfs_qgroup_inherit *inherit) 960 { 961 struct inode *dir = d_inode(parent->dentry); 962 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 963 struct dentry *dentry; 964 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen); 965 int error; 966 967 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 968 if (error == -EINTR) 969 return error; 970 971 dentry = lookup_one(idmap, name, parent->dentry, namelen); 972 error = PTR_ERR(dentry); 973 if (IS_ERR(dentry)) 974 goto out_unlock; 975 976 error = btrfs_may_create(idmap, dir, dentry); 977 if (error) 978 goto out_dput; 979 980 /* 981 * even if this name doesn't exist, we may get hash collisions. 982 * check for them now when we can safely fail 983 */ 984 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 985 dir->i_ino, &name_str); 986 if (error) 987 goto out_dput; 988 989 down_read(&fs_info->subvol_sem); 990 991 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 992 goto out_up_read; 993 994 if (snap_src) 995 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 996 else 997 error = create_subvol(idmap, dir, dentry, inherit); 998 999 if (!error) 1000 fsnotify_mkdir(dir, dentry); 1001 out_up_read: 1002 up_read(&fs_info->subvol_sem); 1003 out_dput: 1004 dput(dentry); 1005 out_unlock: 1006 btrfs_inode_unlock(BTRFS_I(dir), 0); 1007 return error; 1008 } 1009 1010 static noinline int btrfs_mksnapshot(const struct path *parent, 1011 struct mnt_idmap *idmap, 1012 const char *name, int namelen, 1013 struct btrfs_root *root, 1014 bool readonly, 1015 struct btrfs_qgroup_inherit *inherit) 1016 { 1017 int ret; 1018 bool snapshot_force_cow = false; 1019 1020 /* 1021 * Force new buffered writes to reserve space even when NOCOW is 1022 * possible. This is to avoid later writeback (running dealloc) to 1023 * fallback to COW mode and unexpectedly fail with ENOSPC. 1024 */ 1025 btrfs_drew_read_lock(&root->snapshot_lock); 1026 1027 ret = btrfs_start_delalloc_snapshot(root, false); 1028 if (ret) 1029 goto out; 1030 1031 /* 1032 * All previous writes have started writeback in NOCOW mode, so now 1033 * we force future writes to fallback to COW mode during snapshot 1034 * creation. 1035 */ 1036 atomic_inc(&root->snapshot_force_cow); 1037 snapshot_force_cow = true; 1038 1039 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1040 1041 ret = btrfs_mksubvol(parent, idmap, name, namelen, 1042 root, readonly, inherit); 1043 out: 1044 if (snapshot_force_cow) 1045 atomic_dec(&root->snapshot_force_cow); 1046 btrfs_drew_read_unlock(&root->snapshot_lock); 1047 return ret; 1048 } 1049 1050 /* 1051 * Try to start exclusive operation @type or cancel it if it's running. 1052 * 1053 * Return: 1054 * 0 - normal mode, newly claimed op started 1055 * >0 - normal mode, something else is running, 1056 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1057 * ECANCELED - cancel mode, successful cancel 1058 * ENOTCONN - cancel mode, operation not running anymore 1059 */ 1060 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1061 enum btrfs_exclusive_operation type, bool cancel) 1062 { 1063 if (!cancel) { 1064 /* Start normal op */ 1065 if (!btrfs_exclop_start(fs_info, type)) 1066 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1067 /* Exclusive operation is now claimed */ 1068 return 0; 1069 } 1070 1071 /* Cancel running op */ 1072 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1073 /* 1074 * This blocks any exclop finish from setting it to NONE, so we 1075 * request cancellation. Either it runs and we will wait for it, 1076 * or it has finished and no waiting will happen. 1077 */ 1078 atomic_inc(&fs_info->reloc_cancel_req); 1079 btrfs_exclop_start_unlock(fs_info); 1080 1081 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1082 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1083 TASK_INTERRUPTIBLE); 1084 1085 return -ECANCELED; 1086 } 1087 1088 /* Something else is running or none */ 1089 return -ENOTCONN; 1090 } 1091 1092 static noinline int btrfs_ioctl_resize(struct file *file, 1093 void __user *arg) 1094 { 1095 BTRFS_DEV_LOOKUP_ARGS(args); 1096 struct inode *inode = file_inode(file); 1097 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1098 u64 new_size; 1099 u64 old_size; 1100 u64 devid = 1; 1101 struct btrfs_root *root = BTRFS_I(inode)->root; 1102 struct btrfs_ioctl_vol_args *vol_args; 1103 struct btrfs_trans_handle *trans; 1104 struct btrfs_device *device = NULL; 1105 char *sizestr; 1106 char *retptr; 1107 char *devstr = NULL; 1108 int ret = 0; 1109 int mod = 0; 1110 bool cancel; 1111 1112 if (!capable(CAP_SYS_ADMIN)) 1113 return -EPERM; 1114 1115 ret = mnt_want_write_file(file); 1116 if (ret) 1117 return ret; 1118 1119 /* 1120 * Read the arguments before checking exclusivity to be able to 1121 * distinguish regular resize and cancel 1122 */ 1123 vol_args = memdup_user(arg, sizeof(*vol_args)); 1124 if (IS_ERR(vol_args)) { 1125 ret = PTR_ERR(vol_args); 1126 goto out_drop; 1127 } 1128 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1129 sizestr = vol_args->name; 1130 cancel = (strcmp("cancel", sizestr) == 0); 1131 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1132 if (ret) 1133 goto out_free; 1134 /* Exclusive operation is now claimed */ 1135 1136 devstr = strchr(sizestr, ':'); 1137 if (devstr) { 1138 sizestr = devstr + 1; 1139 *devstr = '\0'; 1140 devstr = vol_args->name; 1141 ret = kstrtoull(devstr, 10, &devid); 1142 if (ret) 1143 goto out_finish; 1144 if (!devid) { 1145 ret = -EINVAL; 1146 goto out_finish; 1147 } 1148 btrfs_info(fs_info, "resizing devid %llu", devid); 1149 } 1150 1151 args.devid = devid; 1152 device = btrfs_find_device(fs_info->fs_devices, &args); 1153 if (!device) { 1154 btrfs_info(fs_info, "resizer unable to find device %llu", 1155 devid); 1156 ret = -ENODEV; 1157 goto out_finish; 1158 } 1159 1160 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1161 btrfs_info(fs_info, 1162 "resizer unable to apply on readonly device %llu", 1163 devid); 1164 ret = -EPERM; 1165 goto out_finish; 1166 } 1167 1168 if (!strcmp(sizestr, "max")) 1169 new_size = bdev_nr_bytes(device->bdev); 1170 else { 1171 if (sizestr[0] == '-') { 1172 mod = -1; 1173 sizestr++; 1174 } else if (sizestr[0] == '+') { 1175 mod = 1; 1176 sizestr++; 1177 } 1178 new_size = memparse(sizestr, &retptr); 1179 if (*retptr != '\0' || new_size == 0) { 1180 ret = -EINVAL; 1181 goto out_finish; 1182 } 1183 } 1184 1185 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1186 ret = -EPERM; 1187 goto out_finish; 1188 } 1189 1190 old_size = btrfs_device_get_total_bytes(device); 1191 1192 if (mod < 0) { 1193 if (new_size > old_size) { 1194 ret = -EINVAL; 1195 goto out_finish; 1196 } 1197 new_size = old_size - new_size; 1198 } else if (mod > 0) { 1199 if (new_size > ULLONG_MAX - old_size) { 1200 ret = -ERANGE; 1201 goto out_finish; 1202 } 1203 new_size = old_size + new_size; 1204 } 1205 1206 if (new_size < SZ_256M) { 1207 ret = -EINVAL; 1208 goto out_finish; 1209 } 1210 if (new_size > bdev_nr_bytes(device->bdev)) { 1211 ret = -EFBIG; 1212 goto out_finish; 1213 } 1214 1215 new_size = round_down(new_size, fs_info->sectorsize); 1216 1217 if (new_size > old_size) { 1218 trans = btrfs_start_transaction(root, 0); 1219 if (IS_ERR(trans)) { 1220 ret = PTR_ERR(trans); 1221 goto out_finish; 1222 } 1223 ret = btrfs_grow_device(trans, device, new_size); 1224 btrfs_commit_transaction(trans); 1225 } else if (new_size < old_size) { 1226 ret = btrfs_shrink_device(device, new_size); 1227 } /* equal, nothing need to do */ 1228 1229 if (ret == 0 && new_size != old_size) 1230 btrfs_info_in_rcu(fs_info, 1231 "resize device %s (devid %llu) from %llu to %llu", 1232 btrfs_dev_name(device), device->devid, 1233 old_size, new_size); 1234 out_finish: 1235 btrfs_exclop_finish(fs_info); 1236 out_free: 1237 kfree(vol_args); 1238 out_drop: 1239 mnt_drop_write_file(file); 1240 return ret; 1241 } 1242 1243 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1244 struct mnt_idmap *idmap, 1245 const char *name, unsigned long fd, int subvol, 1246 bool readonly, 1247 struct btrfs_qgroup_inherit *inherit) 1248 { 1249 int namelen; 1250 int ret = 0; 1251 1252 if (!S_ISDIR(file_inode(file)->i_mode)) 1253 return -ENOTDIR; 1254 1255 ret = mnt_want_write_file(file); 1256 if (ret) 1257 goto out; 1258 1259 namelen = strlen(name); 1260 if (strchr(name, '/')) { 1261 ret = -EINVAL; 1262 goto out_drop_write; 1263 } 1264 1265 if (name[0] == '.' && 1266 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1267 ret = -EEXIST; 1268 goto out_drop_write; 1269 } 1270 1271 if (subvol) { 1272 ret = btrfs_mksubvol(&file->f_path, idmap, name, 1273 namelen, NULL, readonly, inherit); 1274 } else { 1275 struct fd src = fdget(fd); 1276 struct inode *src_inode; 1277 if (!src.file) { 1278 ret = -EINVAL; 1279 goto out_drop_write; 1280 } 1281 1282 src_inode = file_inode(src.file); 1283 if (src_inode->i_sb != file_inode(file)->i_sb) { 1284 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1285 "Snapshot src from another FS"); 1286 ret = -EXDEV; 1287 } else if (!inode_owner_or_capable(idmap, src_inode)) { 1288 /* 1289 * Subvolume creation is not restricted, but snapshots 1290 * are limited to own subvolumes only 1291 */ 1292 ret = -EPERM; 1293 } else { 1294 ret = btrfs_mksnapshot(&file->f_path, idmap, 1295 name, namelen, 1296 BTRFS_I(src_inode)->root, 1297 readonly, inherit); 1298 } 1299 fdput(src); 1300 } 1301 out_drop_write: 1302 mnt_drop_write_file(file); 1303 out: 1304 return ret; 1305 } 1306 1307 static noinline int btrfs_ioctl_snap_create(struct file *file, 1308 void __user *arg, int subvol) 1309 { 1310 struct btrfs_ioctl_vol_args *vol_args; 1311 int ret; 1312 1313 if (!S_ISDIR(file_inode(file)->i_mode)) 1314 return -ENOTDIR; 1315 1316 vol_args = memdup_user(arg, sizeof(*vol_args)); 1317 if (IS_ERR(vol_args)) 1318 return PTR_ERR(vol_args); 1319 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1320 1321 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1322 vol_args->name, vol_args->fd, subvol, 1323 false, NULL); 1324 1325 kfree(vol_args); 1326 return ret; 1327 } 1328 1329 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1330 void __user *arg, int subvol) 1331 { 1332 struct btrfs_ioctl_vol_args_v2 *vol_args; 1333 int ret; 1334 bool readonly = false; 1335 struct btrfs_qgroup_inherit *inherit = NULL; 1336 1337 if (!S_ISDIR(file_inode(file)->i_mode)) 1338 return -ENOTDIR; 1339 1340 vol_args = memdup_user(arg, sizeof(*vol_args)); 1341 if (IS_ERR(vol_args)) 1342 return PTR_ERR(vol_args); 1343 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1344 1345 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1346 ret = -EOPNOTSUPP; 1347 goto free_args; 1348 } 1349 1350 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1351 readonly = true; 1352 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1353 u64 nums; 1354 1355 if (vol_args->size < sizeof(*inherit) || 1356 vol_args->size > PAGE_SIZE) { 1357 ret = -EINVAL; 1358 goto free_args; 1359 } 1360 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1361 if (IS_ERR(inherit)) { 1362 ret = PTR_ERR(inherit); 1363 goto free_args; 1364 } 1365 1366 if (inherit->num_qgroups > PAGE_SIZE || 1367 inherit->num_ref_copies > PAGE_SIZE || 1368 inherit->num_excl_copies > PAGE_SIZE) { 1369 ret = -EINVAL; 1370 goto free_inherit; 1371 } 1372 1373 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1374 2 * inherit->num_excl_copies; 1375 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1376 ret = -EINVAL; 1377 goto free_inherit; 1378 } 1379 } 1380 1381 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1382 vol_args->name, vol_args->fd, subvol, 1383 readonly, inherit); 1384 if (ret) 1385 goto free_inherit; 1386 free_inherit: 1387 kfree(inherit); 1388 free_args: 1389 kfree(vol_args); 1390 return ret; 1391 } 1392 1393 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 1394 void __user *arg) 1395 { 1396 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1397 struct btrfs_root *root = BTRFS_I(inode)->root; 1398 int ret = 0; 1399 u64 flags = 0; 1400 1401 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1402 return -EINVAL; 1403 1404 down_read(&fs_info->subvol_sem); 1405 if (btrfs_root_readonly(root)) 1406 flags |= BTRFS_SUBVOL_RDONLY; 1407 up_read(&fs_info->subvol_sem); 1408 1409 if (copy_to_user(arg, &flags, sizeof(flags))) 1410 ret = -EFAULT; 1411 1412 return ret; 1413 } 1414 1415 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1416 void __user *arg) 1417 { 1418 struct inode *inode = file_inode(file); 1419 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1420 struct btrfs_root *root = BTRFS_I(inode)->root; 1421 struct btrfs_trans_handle *trans; 1422 u64 root_flags; 1423 u64 flags; 1424 int ret = 0; 1425 1426 if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) 1427 return -EPERM; 1428 1429 ret = mnt_want_write_file(file); 1430 if (ret) 1431 goto out; 1432 1433 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1434 ret = -EINVAL; 1435 goto out_drop_write; 1436 } 1437 1438 if (copy_from_user(&flags, arg, sizeof(flags))) { 1439 ret = -EFAULT; 1440 goto out_drop_write; 1441 } 1442 1443 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1444 ret = -EOPNOTSUPP; 1445 goto out_drop_write; 1446 } 1447 1448 down_write(&fs_info->subvol_sem); 1449 1450 /* nothing to do */ 1451 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1452 goto out_drop_sem; 1453 1454 root_flags = btrfs_root_flags(&root->root_item); 1455 if (flags & BTRFS_SUBVOL_RDONLY) { 1456 btrfs_set_root_flags(&root->root_item, 1457 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1458 } else { 1459 /* 1460 * Block RO -> RW transition if this subvolume is involved in 1461 * send 1462 */ 1463 spin_lock(&root->root_item_lock); 1464 if (root->send_in_progress == 0) { 1465 btrfs_set_root_flags(&root->root_item, 1466 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1467 spin_unlock(&root->root_item_lock); 1468 } else { 1469 spin_unlock(&root->root_item_lock); 1470 btrfs_warn(fs_info, 1471 "Attempt to set subvolume %llu read-write during send", 1472 root->root_key.objectid); 1473 ret = -EPERM; 1474 goto out_drop_sem; 1475 } 1476 } 1477 1478 trans = btrfs_start_transaction(root, 1); 1479 if (IS_ERR(trans)) { 1480 ret = PTR_ERR(trans); 1481 goto out_reset; 1482 } 1483 1484 ret = btrfs_update_root(trans, fs_info->tree_root, 1485 &root->root_key, &root->root_item); 1486 if (ret < 0) { 1487 btrfs_end_transaction(trans); 1488 goto out_reset; 1489 } 1490 1491 ret = btrfs_commit_transaction(trans); 1492 1493 out_reset: 1494 if (ret) 1495 btrfs_set_root_flags(&root->root_item, root_flags); 1496 out_drop_sem: 1497 up_write(&fs_info->subvol_sem); 1498 out_drop_write: 1499 mnt_drop_write_file(file); 1500 out: 1501 return ret; 1502 } 1503 1504 static noinline int key_in_sk(struct btrfs_key *key, 1505 struct btrfs_ioctl_search_key *sk) 1506 { 1507 struct btrfs_key test; 1508 int ret; 1509 1510 test.objectid = sk->min_objectid; 1511 test.type = sk->min_type; 1512 test.offset = sk->min_offset; 1513 1514 ret = btrfs_comp_cpu_keys(key, &test); 1515 if (ret < 0) 1516 return 0; 1517 1518 test.objectid = sk->max_objectid; 1519 test.type = sk->max_type; 1520 test.offset = sk->max_offset; 1521 1522 ret = btrfs_comp_cpu_keys(key, &test); 1523 if (ret > 0) 1524 return 0; 1525 return 1; 1526 } 1527 1528 static noinline int copy_to_sk(struct btrfs_path *path, 1529 struct btrfs_key *key, 1530 struct btrfs_ioctl_search_key *sk, 1531 size_t *buf_size, 1532 char __user *ubuf, 1533 unsigned long *sk_offset, 1534 int *num_found) 1535 { 1536 u64 found_transid; 1537 struct extent_buffer *leaf; 1538 struct btrfs_ioctl_search_header sh; 1539 struct btrfs_key test; 1540 unsigned long item_off; 1541 unsigned long item_len; 1542 int nritems; 1543 int i; 1544 int slot; 1545 int ret = 0; 1546 1547 leaf = path->nodes[0]; 1548 slot = path->slots[0]; 1549 nritems = btrfs_header_nritems(leaf); 1550 1551 if (btrfs_header_generation(leaf) > sk->max_transid) { 1552 i = nritems; 1553 goto advance_key; 1554 } 1555 found_transid = btrfs_header_generation(leaf); 1556 1557 for (i = slot; i < nritems; i++) { 1558 item_off = btrfs_item_ptr_offset(leaf, i); 1559 item_len = btrfs_item_size(leaf, i); 1560 1561 btrfs_item_key_to_cpu(leaf, key, i); 1562 if (!key_in_sk(key, sk)) 1563 continue; 1564 1565 if (sizeof(sh) + item_len > *buf_size) { 1566 if (*num_found) { 1567 ret = 1; 1568 goto out; 1569 } 1570 1571 /* 1572 * return one empty item back for v1, which does not 1573 * handle -EOVERFLOW 1574 */ 1575 1576 *buf_size = sizeof(sh) + item_len; 1577 item_len = 0; 1578 ret = -EOVERFLOW; 1579 } 1580 1581 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1582 ret = 1; 1583 goto out; 1584 } 1585 1586 sh.objectid = key->objectid; 1587 sh.offset = key->offset; 1588 sh.type = key->type; 1589 sh.len = item_len; 1590 sh.transid = found_transid; 1591 1592 /* 1593 * Copy search result header. If we fault then loop again so we 1594 * can fault in the pages and -EFAULT there if there's a 1595 * problem. Otherwise we'll fault and then copy the buffer in 1596 * properly this next time through 1597 */ 1598 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 1599 ret = 0; 1600 goto out; 1601 } 1602 1603 *sk_offset += sizeof(sh); 1604 1605 if (item_len) { 1606 char __user *up = ubuf + *sk_offset; 1607 /* 1608 * Copy the item, same behavior as above, but reset the 1609 * * sk_offset so we copy the full thing again. 1610 */ 1611 if (read_extent_buffer_to_user_nofault(leaf, up, 1612 item_off, item_len)) { 1613 ret = 0; 1614 *sk_offset -= sizeof(sh); 1615 goto out; 1616 } 1617 1618 *sk_offset += item_len; 1619 } 1620 (*num_found)++; 1621 1622 if (ret) /* -EOVERFLOW from above */ 1623 goto out; 1624 1625 if (*num_found >= sk->nr_items) { 1626 ret = 1; 1627 goto out; 1628 } 1629 } 1630 advance_key: 1631 ret = 0; 1632 test.objectid = sk->max_objectid; 1633 test.type = sk->max_type; 1634 test.offset = sk->max_offset; 1635 if (btrfs_comp_cpu_keys(key, &test) >= 0) 1636 ret = 1; 1637 else if (key->offset < (u64)-1) 1638 key->offset++; 1639 else if (key->type < (u8)-1) { 1640 key->offset = 0; 1641 key->type++; 1642 } else if (key->objectid < (u64)-1) { 1643 key->offset = 0; 1644 key->type = 0; 1645 key->objectid++; 1646 } else 1647 ret = 1; 1648 out: 1649 /* 1650 * 0: all items from this leaf copied, continue with next 1651 * 1: * more items can be copied, but unused buffer is too small 1652 * * all items were found 1653 * Either way, it will stops the loop which iterates to the next 1654 * leaf 1655 * -EOVERFLOW: item was to large for buffer 1656 * -EFAULT: could not copy extent buffer back to userspace 1657 */ 1658 return ret; 1659 } 1660 1661 static noinline int search_ioctl(struct inode *inode, 1662 struct btrfs_ioctl_search_key *sk, 1663 size_t *buf_size, 1664 char __user *ubuf) 1665 { 1666 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 1667 struct btrfs_root *root; 1668 struct btrfs_key key; 1669 struct btrfs_path *path; 1670 int ret; 1671 int num_found = 0; 1672 unsigned long sk_offset = 0; 1673 1674 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 1675 *buf_size = sizeof(struct btrfs_ioctl_search_header); 1676 return -EOVERFLOW; 1677 } 1678 1679 path = btrfs_alloc_path(); 1680 if (!path) 1681 return -ENOMEM; 1682 1683 if (sk->tree_id == 0) { 1684 /* search the root of the inode that was passed */ 1685 root = btrfs_grab_root(BTRFS_I(inode)->root); 1686 } else { 1687 root = btrfs_get_fs_root(info, sk->tree_id, true); 1688 if (IS_ERR(root)) { 1689 btrfs_free_path(path); 1690 return PTR_ERR(root); 1691 } 1692 } 1693 1694 key.objectid = sk->min_objectid; 1695 key.type = sk->min_type; 1696 key.offset = sk->min_offset; 1697 1698 while (1) { 1699 ret = -EFAULT; 1700 /* 1701 * Ensure that the whole user buffer is faulted in at sub-page 1702 * granularity, otherwise the loop may live-lock. 1703 */ 1704 if (fault_in_subpage_writeable(ubuf + sk_offset, 1705 *buf_size - sk_offset)) 1706 break; 1707 1708 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 1709 if (ret != 0) { 1710 if (ret > 0) 1711 ret = 0; 1712 goto err; 1713 } 1714 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 1715 &sk_offset, &num_found); 1716 btrfs_release_path(path); 1717 if (ret) 1718 break; 1719 1720 } 1721 if (ret > 0) 1722 ret = 0; 1723 err: 1724 sk->nr_items = num_found; 1725 btrfs_put_root(root); 1726 btrfs_free_path(path); 1727 return ret; 1728 } 1729 1730 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 1731 void __user *argp) 1732 { 1733 struct btrfs_ioctl_search_args __user *uargs = argp; 1734 struct btrfs_ioctl_search_key sk; 1735 int ret; 1736 size_t buf_size; 1737 1738 if (!capable(CAP_SYS_ADMIN)) 1739 return -EPERM; 1740 1741 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 1742 return -EFAULT; 1743 1744 buf_size = sizeof(uargs->buf); 1745 1746 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 1747 1748 /* 1749 * In the origin implementation an overflow is handled by returning a 1750 * search header with a len of zero, so reset ret. 1751 */ 1752 if (ret == -EOVERFLOW) 1753 ret = 0; 1754 1755 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 1756 ret = -EFAULT; 1757 return ret; 1758 } 1759 1760 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 1761 void __user *argp) 1762 { 1763 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 1764 struct btrfs_ioctl_search_args_v2 args; 1765 int ret; 1766 size_t buf_size; 1767 const size_t buf_limit = SZ_16M; 1768 1769 if (!capable(CAP_SYS_ADMIN)) 1770 return -EPERM; 1771 1772 /* copy search header and buffer size */ 1773 if (copy_from_user(&args, uarg, sizeof(args))) 1774 return -EFAULT; 1775 1776 buf_size = args.buf_size; 1777 1778 /* limit result size to 16MB */ 1779 if (buf_size > buf_limit) 1780 buf_size = buf_limit; 1781 1782 ret = search_ioctl(inode, &args.key, &buf_size, 1783 (char __user *)(&uarg->buf[0])); 1784 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 1785 ret = -EFAULT; 1786 else if (ret == -EOVERFLOW && 1787 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 1788 ret = -EFAULT; 1789 1790 return ret; 1791 } 1792 1793 /* 1794 * Search INODE_REFs to identify path name of 'dirid' directory 1795 * in a 'tree_id' tree. and sets path name to 'name'. 1796 */ 1797 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1798 u64 tree_id, u64 dirid, char *name) 1799 { 1800 struct btrfs_root *root; 1801 struct btrfs_key key; 1802 char *ptr; 1803 int ret = -1; 1804 int slot; 1805 int len; 1806 int total_len = 0; 1807 struct btrfs_inode_ref *iref; 1808 struct extent_buffer *l; 1809 struct btrfs_path *path; 1810 1811 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1812 name[0]='\0'; 1813 return 0; 1814 } 1815 1816 path = btrfs_alloc_path(); 1817 if (!path) 1818 return -ENOMEM; 1819 1820 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 1821 1822 root = btrfs_get_fs_root(info, tree_id, true); 1823 if (IS_ERR(root)) { 1824 ret = PTR_ERR(root); 1825 root = NULL; 1826 goto out; 1827 } 1828 1829 key.objectid = dirid; 1830 key.type = BTRFS_INODE_REF_KEY; 1831 key.offset = (u64)-1; 1832 1833 while (1) { 1834 ret = btrfs_search_backwards(root, &key, path); 1835 if (ret < 0) 1836 goto out; 1837 else if (ret > 0) { 1838 ret = -ENOENT; 1839 goto out; 1840 } 1841 1842 l = path->nodes[0]; 1843 slot = path->slots[0]; 1844 1845 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1846 len = btrfs_inode_ref_name_len(l, iref); 1847 ptr -= len + 1; 1848 total_len += len + 1; 1849 if (ptr < name) { 1850 ret = -ENAMETOOLONG; 1851 goto out; 1852 } 1853 1854 *(ptr + len) = '/'; 1855 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 1856 1857 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1858 break; 1859 1860 btrfs_release_path(path); 1861 key.objectid = key.offset; 1862 key.offset = (u64)-1; 1863 dirid = key.objectid; 1864 } 1865 memmove(name, ptr, total_len); 1866 name[total_len] = '\0'; 1867 ret = 0; 1868 out: 1869 btrfs_put_root(root); 1870 btrfs_free_path(path); 1871 return ret; 1872 } 1873 1874 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap, 1875 struct inode *inode, 1876 struct btrfs_ioctl_ino_lookup_user_args *args) 1877 { 1878 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1879 struct super_block *sb = inode->i_sb; 1880 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 1881 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 1882 u64 dirid = args->dirid; 1883 unsigned long item_off; 1884 unsigned long item_len; 1885 struct btrfs_inode_ref *iref; 1886 struct btrfs_root_ref *rref; 1887 struct btrfs_root *root = NULL; 1888 struct btrfs_path *path; 1889 struct btrfs_key key, key2; 1890 struct extent_buffer *leaf; 1891 struct inode *temp_inode; 1892 char *ptr; 1893 int slot; 1894 int len; 1895 int total_len = 0; 1896 int ret; 1897 1898 path = btrfs_alloc_path(); 1899 if (!path) 1900 return -ENOMEM; 1901 1902 /* 1903 * If the bottom subvolume does not exist directly under upper_limit, 1904 * construct the path in from the bottom up. 1905 */ 1906 if (dirid != upper_limit.objectid) { 1907 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 1908 1909 root = btrfs_get_fs_root(fs_info, treeid, true); 1910 if (IS_ERR(root)) { 1911 ret = PTR_ERR(root); 1912 goto out; 1913 } 1914 1915 key.objectid = dirid; 1916 key.type = BTRFS_INODE_REF_KEY; 1917 key.offset = (u64)-1; 1918 while (1) { 1919 ret = btrfs_search_backwards(root, &key, path); 1920 if (ret < 0) 1921 goto out_put; 1922 else if (ret > 0) { 1923 ret = -ENOENT; 1924 goto out_put; 1925 } 1926 1927 leaf = path->nodes[0]; 1928 slot = path->slots[0]; 1929 1930 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 1931 len = btrfs_inode_ref_name_len(leaf, iref); 1932 ptr -= len + 1; 1933 total_len += len + 1; 1934 if (ptr < args->path) { 1935 ret = -ENAMETOOLONG; 1936 goto out_put; 1937 } 1938 1939 *(ptr + len) = '/'; 1940 read_extent_buffer(leaf, ptr, 1941 (unsigned long)(iref + 1), len); 1942 1943 /* Check the read+exec permission of this directory */ 1944 ret = btrfs_previous_item(root, path, dirid, 1945 BTRFS_INODE_ITEM_KEY); 1946 if (ret < 0) { 1947 goto out_put; 1948 } else if (ret > 0) { 1949 ret = -ENOENT; 1950 goto out_put; 1951 } 1952 1953 leaf = path->nodes[0]; 1954 slot = path->slots[0]; 1955 btrfs_item_key_to_cpu(leaf, &key2, slot); 1956 if (key2.objectid != dirid) { 1957 ret = -ENOENT; 1958 goto out_put; 1959 } 1960 1961 temp_inode = btrfs_iget(sb, key2.objectid, root); 1962 if (IS_ERR(temp_inode)) { 1963 ret = PTR_ERR(temp_inode); 1964 goto out_put; 1965 } 1966 ret = inode_permission(idmap, temp_inode, 1967 MAY_READ | MAY_EXEC); 1968 iput(temp_inode); 1969 if (ret) { 1970 ret = -EACCES; 1971 goto out_put; 1972 } 1973 1974 if (key.offset == upper_limit.objectid) 1975 break; 1976 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 1977 ret = -EACCES; 1978 goto out_put; 1979 } 1980 1981 btrfs_release_path(path); 1982 key.objectid = key.offset; 1983 key.offset = (u64)-1; 1984 dirid = key.objectid; 1985 } 1986 1987 memmove(args->path, ptr, total_len); 1988 args->path[total_len] = '\0'; 1989 btrfs_put_root(root); 1990 root = NULL; 1991 btrfs_release_path(path); 1992 } 1993 1994 /* Get the bottom subvolume's name from ROOT_REF */ 1995 key.objectid = treeid; 1996 key.type = BTRFS_ROOT_REF_KEY; 1997 key.offset = args->treeid; 1998 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1999 if (ret < 0) { 2000 goto out; 2001 } else if (ret > 0) { 2002 ret = -ENOENT; 2003 goto out; 2004 } 2005 2006 leaf = path->nodes[0]; 2007 slot = path->slots[0]; 2008 btrfs_item_key_to_cpu(leaf, &key, slot); 2009 2010 item_off = btrfs_item_ptr_offset(leaf, slot); 2011 item_len = btrfs_item_size(leaf, slot); 2012 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2013 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2014 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2015 ret = -EINVAL; 2016 goto out; 2017 } 2018 2019 /* Copy subvolume's name */ 2020 item_off += sizeof(struct btrfs_root_ref); 2021 item_len -= sizeof(struct btrfs_root_ref); 2022 read_extent_buffer(leaf, args->name, item_off, item_len); 2023 args->name[item_len] = 0; 2024 2025 out_put: 2026 btrfs_put_root(root); 2027 out: 2028 btrfs_free_path(path); 2029 return ret; 2030 } 2031 2032 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 2033 void __user *argp) 2034 { 2035 struct btrfs_ioctl_ino_lookup_args *args; 2036 int ret = 0; 2037 2038 args = memdup_user(argp, sizeof(*args)); 2039 if (IS_ERR(args)) 2040 return PTR_ERR(args); 2041 2042 /* 2043 * Unprivileged query to obtain the containing subvolume root id. The 2044 * path is reset so it's consistent with btrfs_search_path_in_tree. 2045 */ 2046 if (args->treeid == 0) 2047 args->treeid = root->root_key.objectid; 2048 2049 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2050 args->name[0] = 0; 2051 goto out; 2052 } 2053 2054 if (!capable(CAP_SYS_ADMIN)) { 2055 ret = -EPERM; 2056 goto out; 2057 } 2058 2059 ret = btrfs_search_path_in_tree(root->fs_info, 2060 args->treeid, args->objectid, 2061 args->name); 2062 2063 out: 2064 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2065 ret = -EFAULT; 2066 2067 kfree(args); 2068 return ret; 2069 } 2070 2071 /* 2072 * Version of ino_lookup ioctl (unprivileged) 2073 * 2074 * The main differences from ino_lookup ioctl are: 2075 * 2076 * 1. Read + Exec permission will be checked using inode_permission() during 2077 * path construction. -EACCES will be returned in case of failure. 2078 * 2. Path construction will be stopped at the inode number which corresponds 2079 * to the fd with which this ioctl is called. If constructed path does not 2080 * exist under fd's inode, -EACCES will be returned. 2081 * 3. The name of bottom subvolume is also searched and filled. 2082 */ 2083 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2084 { 2085 struct btrfs_ioctl_ino_lookup_user_args *args; 2086 struct inode *inode; 2087 int ret; 2088 2089 args = memdup_user(argp, sizeof(*args)); 2090 if (IS_ERR(args)) 2091 return PTR_ERR(args); 2092 2093 inode = file_inode(file); 2094 2095 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2096 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2097 /* 2098 * The subvolume does not exist under fd with which this is 2099 * called 2100 */ 2101 kfree(args); 2102 return -EACCES; 2103 } 2104 2105 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args); 2106 2107 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2108 ret = -EFAULT; 2109 2110 kfree(args); 2111 return ret; 2112 } 2113 2114 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2115 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2116 { 2117 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2118 struct btrfs_fs_info *fs_info; 2119 struct btrfs_root *root; 2120 struct btrfs_path *path; 2121 struct btrfs_key key; 2122 struct btrfs_root_item *root_item; 2123 struct btrfs_root_ref *rref; 2124 struct extent_buffer *leaf; 2125 unsigned long item_off; 2126 unsigned long item_len; 2127 int slot; 2128 int ret = 0; 2129 2130 path = btrfs_alloc_path(); 2131 if (!path) 2132 return -ENOMEM; 2133 2134 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2135 if (!subvol_info) { 2136 btrfs_free_path(path); 2137 return -ENOMEM; 2138 } 2139 2140 fs_info = BTRFS_I(inode)->root->fs_info; 2141 2142 /* Get root_item of inode's subvolume */ 2143 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2144 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2145 if (IS_ERR(root)) { 2146 ret = PTR_ERR(root); 2147 goto out_free; 2148 } 2149 root_item = &root->root_item; 2150 2151 subvol_info->treeid = key.objectid; 2152 2153 subvol_info->generation = btrfs_root_generation(root_item); 2154 subvol_info->flags = btrfs_root_flags(root_item); 2155 2156 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2157 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2158 BTRFS_UUID_SIZE); 2159 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2160 BTRFS_UUID_SIZE); 2161 2162 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2163 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2164 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2165 2166 subvol_info->otransid = btrfs_root_otransid(root_item); 2167 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2168 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2169 2170 subvol_info->stransid = btrfs_root_stransid(root_item); 2171 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2172 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2173 2174 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2175 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2176 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2177 2178 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2179 /* Search root tree for ROOT_BACKREF of this subvolume */ 2180 key.type = BTRFS_ROOT_BACKREF_KEY; 2181 key.offset = 0; 2182 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2183 if (ret < 0) { 2184 goto out; 2185 } else if (path->slots[0] >= 2186 btrfs_header_nritems(path->nodes[0])) { 2187 ret = btrfs_next_leaf(fs_info->tree_root, path); 2188 if (ret < 0) { 2189 goto out; 2190 } else if (ret > 0) { 2191 ret = -EUCLEAN; 2192 goto out; 2193 } 2194 } 2195 2196 leaf = path->nodes[0]; 2197 slot = path->slots[0]; 2198 btrfs_item_key_to_cpu(leaf, &key, slot); 2199 if (key.objectid == subvol_info->treeid && 2200 key.type == BTRFS_ROOT_BACKREF_KEY) { 2201 subvol_info->parent_id = key.offset; 2202 2203 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2204 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2205 2206 item_off = btrfs_item_ptr_offset(leaf, slot) 2207 + sizeof(struct btrfs_root_ref); 2208 item_len = btrfs_item_size(leaf, slot) 2209 - sizeof(struct btrfs_root_ref); 2210 read_extent_buffer(leaf, subvol_info->name, 2211 item_off, item_len); 2212 } else { 2213 ret = -ENOENT; 2214 goto out; 2215 } 2216 } 2217 2218 btrfs_free_path(path); 2219 path = NULL; 2220 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2221 ret = -EFAULT; 2222 2223 out: 2224 btrfs_put_root(root); 2225 out_free: 2226 btrfs_free_path(path); 2227 kfree(subvol_info); 2228 return ret; 2229 } 2230 2231 /* 2232 * Return ROOT_REF information of the subvolume containing this inode 2233 * except the subvolume name. 2234 */ 2235 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 2236 void __user *argp) 2237 { 2238 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2239 struct btrfs_root_ref *rref; 2240 struct btrfs_path *path; 2241 struct btrfs_key key; 2242 struct extent_buffer *leaf; 2243 u64 objectid; 2244 int slot; 2245 int ret; 2246 u8 found; 2247 2248 path = btrfs_alloc_path(); 2249 if (!path) 2250 return -ENOMEM; 2251 2252 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2253 if (IS_ERR(rootrefs)) { 2254 btrfs_free_path(path); 2255 return PTR_ERR(rootrefs); 2256 } 2257 2258 objectid = root->root_key.objectid; 2259 key.objectid = objectid; 2260 key.type = BTRFS_ROOT_REF_KEY; 2261 key.offset = rootrefs->min_treeid; 2262 found = 0; 2263 2264 root = root->fs_info->tree_root; 2265 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2266 if (ret < 0) { 2267 goto out; 2268 } else if (path->slots[0] >= 2269 btrfs_header_nritems(path->nodes[0])) { 2270 ret = btrfs_next_leaf(root, path); 2271 if (ret < 0) { 2272 goto out; 2273 } else if (ret > 0) { 2274 ret = -EUCLEAN; 2275 goto out; 2276 } 2277 } 2278 while (1) { 2279 leaf = path->nodes[0]; 2280 slot = path->slots[0]; 2281 2282 btrfs_item_key_to_cpu(leaf, &key, slot); 2283 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2284 ret = 0; 2285 goto out; 2286 } 2287 2288 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2289 ret = -EOVERFLOW; 2290 goto out; 2291 } 2292 2293 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2294 rootrefs->rootref[found].treeid = key.offset; 2295 rootrefs->rootref[found].dirid = 2296 btrfs_root_ref_dirid(leaf, rref); 2297 found++; 2298 2299 ret = btrfs_next_item(root, path); 2300 if (ret < 0) { 2301 goto out; 2302 } else if (ret > 0) { 2303 ret = -EUCLEAN; 2304 goto out; 2305 } 2306 } 2307 2308 out: 2309 btrfs_free_path(path); 2310 2311 if (!ret || ret == -EOVERFLOW) { 2312 rootrefs->num_items = found; 2313 /* update min_treeid for next search */ 2314 if (found) 2315 rootrefs->min_treeid = 2316 rootrefs->rootref[found - 1].treeid + 1; 2317 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2318 ret = -EFAULT; 2319 } 2320 2321 kfree(rootrefs); 2322 2323 return ret; 2324 } 2325 2326 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2327 void __user *arg, 2328 bool destroy_v2) 2329 { 2330 struct dentry *parent = file->f_path.dentry; 2331 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2332 struct dentry *dentry; 2333 struct inode *dir = d_inode(parent); 2334 struct inode *inode; 2335 struct btrfs_root *root = BTRFS_I(dir)->root; 2336 struct btrfs_root *dest = NULL; 2337 struct btrfs_ioctl_vol_args *vol_args = NULL; 2338 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2339 struct mnt_idmap *idmap = file_mnt_idmap(file); 2340 char *subvol_name, *subvol_name_ptr = NULL; 2341 int subvol_namelen; 2342 int err = 0; 2343 bool destroy_parent = false; 2344 2345 /* We don't support snapshots with extent tree v2 yet. */ 2346 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2347 btrfs_err(fs_info, 2348 "extent tree v2 doesn't support snapshot deletion yet"); 2349 return -EOPNOTSUPP; 2350 } 2351 2352 if (destroy_v2) { 2353 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2354 if (IS_ERR(vol_args2)) 2355 return PTR_ERR(vol_args2); 2356 2357 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2358 err = -EOPNOTSUPP; 2359 goto out; 2360 } 2361 2362 /* 2363 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2364 * name, same as v1 currently does. 2365 */ 2366 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2367 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2368 subvol_name = vol_args2->name; 2369 2370 err = mnt_want_write_file(file); 2371 if (err) 2372 goto out; 2373 } else { 2374 struct inode *old_dir; 2375 2376 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2377 err = -EINVAL; 2378 goto out; 2379 } 2380 2381 err = mnt_want_write_file(file); 2382 if (err) 2383 goto out; 2384 2385 dentry = btrfs_get_dentry(fs_info->sb, 2386 BTRFS_FIRST_FREE_OBJECTID, 2387 vol_args2->subvolid, 0); 2388 if (IS_ERR(dentry)) { 2389 err = PTR_ERR(dentry); 2390 goto out_drop_write; 2391 } 2392 2393 /* 2394 * Change the default parent since the subvolume being 2395 * deleted can be outside of the current mount point. 2396 */ 2397 parent = btrfs_get_parent(dentry); 2398 2399 /* 2400 * At this point dentry->d_name can point to '/' if the 2401 * subvolume we want to destroy is outsite of the 2402 * current mount point, so we need to release the 2403 * current dentry and execute the lookup to return a new 2404 * one with ->d_name pointing to the 2405 * <mount point>/subvol_name. 2406 */ 2407 dput(dentry); 2408 if (IS_ERR(parent)) { 2409 err = PTR_ERR(parent); 2410 goto out_drop_write; 2411 } 2412 old_dir = dir; 2413 dir = d_inode(parent); 2414 2415 /* 2416 * If v2 was used with SPEC_BY_ID, a new parent was 2417 * allocated since the subvolume can be outside of the 2418 * current mount point. Later on we need to release this 2419 * new parent dentry. 2420 */ 2421 destroy_parent = true; 2422 2423 /* 2424 * On idmapped mounts, deletion via subvolid is 2425 * restricted to subvolumes that are immediate 2426 * ancestors of the inode referenced by the file 2427 * descriptor in the ioctl. Otherwise the idmapping 2428 * could potentially be abused to delete subvolumes 2429 * anywhere in the filesystem the user wouldn't be able 2430 * to delete without an idmapped mount. 2431 */ 2432 if (old_dir != dir && idmap != &nop_mnt_idmap) { 2433 err = -EOPNOTSUPP; 2434 goto free_parent; 2435 } 2436 2437 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2438 fs_info, vol_args2->subvolid); 2439 if (IS_ERR(subvol_name_ptr)) { 2440 err = PTR_ERR(subvol_name_ptr); 2441 goto free_parent; 2442 } 2443 /* subvol_name_ptr is already nul terminated */ 2444 subvol_name = (char *)kbasename(subvol_name_ptr); 2445 } 2446 } else { 2447 vol_args = memdup_user(arg, sizeof(*vol_args)); 2448 if (IS_ERR(vol_args)) 2449 return PTR_ERR(vol_args); 2450 2451 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2452 subvol_name = vol_args->name; 2453 2454 err = mnt_want_write_file(file); 2455 if (err) 2456 goto out; 2457 } 2458 2459 subvol_namelen = strlen(subvol_name); 2460 2461 if (strchr(subvol_name, '/') || 2462 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2463 err = -EINVAL; 2464 goto free_subvol_name; 2465 } 2466 2467 if (!S_ISDIR(dir->i_mode)) { 2468 err = -ENOTDIR; 2469 goto free_subvol_name; 2470 } 2471 2472 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2473 if (err == -EINTR) 2474 goto free_subvol_name; 2475 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen); 2476 if (IS_ERR(dentry)) { 2477 err = PTR_ERR(dentry); 2478 goto out_unlock_dir; 2479 } 2480 2481 if (d_really_is_negative(dentry)) { 2482 err = -ENOENT; 2483 goto out_dput; 2484 } 2485 2486 inode = d_inode(dentry); 2487 dest = BTRFS_I(inode)->root; 2488 if (!capable(CAP_SYS_ADMIN)) { 2489 /* 2490 * Regular user. Only allow this with a special mount 2491 * option, when the user has write+exec access to the 2492 * subvol root, and when rmdir(2) would have been 2493 * allowed. 2494 * 2495 * Note that this is _not_ check that the subvol is 2496 * empty or doesn't contain data that we wouldn't 2497 * otherwise be able to delete. 2498 * 2499 * Users who want to delete empty subvols should try 2500 * rmdir(2). 2501 */ 2502 err = -EPERM; 2503 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2504 goto out_dput; 2505 2506 /* 2507 * Do not allow deletion if the parent dir is the same 2508 * as the dir to be deleted. That means the ioctl 2509 * must be called on the dentry referencing the root 2510 * of the subvol, not a random directory contained 2511 * within it. 2512 */ 2513 err = -EINVAL; 2514 if (root == dest) 2515 goto out_dput; 2516 2517 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC); 2518 if (err) 2519 goto out_dput; 2520 } 2521 2522 /* check if subvolume may be deleted by a user */ 2523 err = btrfs_may_delete(idmap, dir, dentry, 1); 2524 if (err) 2525 goto out_dput; 2526 2527 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2528 err = -EINVAL; 2529 goto out_dput; 2530 } 2531 2532 btrfs_inode_lock(BTRFS_I(inode), 0); 2533 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry); 2534 btrfs_inode_unlock(BTRFS_I(inode), 0); 2535 if (!err) 2536 d_delete_notify(dir, dentry); 2537 2538 out_dput: 2539 dput(dentry); 2540 out_unlock_dir: 2541 btrfs_inode_unlock(BTRFS_I(dir), 0); 2542 free_subvol_name: 2543 kfree(subvol_name_ptr); 2544 free_parent: 2545 if (destroy_parent) 2546 dput(parent); 2547 out_drop_write: 2548 mnt_drop_write_file(file); 2549 out: 2550 kfree(vol_args2); 2551 kfree(vol_args); 2552 return err; 2553 } 2554 2555 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2556 { 2557 struct inode *inode = file_inode(file); 2558 struct btrfs_root *root = BTRFS_I(inode)->root; 2559 struct btrfs_ioctl_defrag_range_args range = {0}; 2560 int ret; 2561 2562 ret = mnt_want_write_file(file); 2563 if (ret) 2564 return ret; 2565 2566 if (btrfs_root_readonly(root)) { 2567 ret = -EROFS; 2568 goto out; 2569 } 2570 2571 switch (inode->i_mode & S_IFMT) { 2572 case S_IFDIR: 2573 if (!capable(CAP_SYS_ADMIN)) { 2574 ret = -EPERM; 2575 goto out; 2576 } 2577 ret = btrfs_defrag_root(root); 2578 break; 2579 case S_IFREG: 2580 /* 2581 * Note that this does not check the file descriptor for write 2582 * access. This prevents defragmenting executables that are 2583 * running and allows defrag on files open in read-only mode. 2584 */ 2585 if (!capable(CAP_SYS_ADMIN) && 2586 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) { 2587 ret = -EPERM; 2588 goto out; 2589 } 2590 2591 if (argp) { 2592 if (copy_from_user(&range, argp, sizeof(range))) { 2593 ret = -EFAULT; 2594 goto out; 2595 } 2596 /* compression requires us to start the IO */ 2597 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2598 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 2599 range.extent_thresh = (u32)-1; 2600 } 2601 } else { 2602 /* the rest are all set to zero by kzalloc */ 2603 range.len = (u64)-1; 2604 } 2605 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 2606 &range, BTRFS_OLDEST_GENERATION, 0); 2607 if (ret > 0) 2608 ret = 0; 2609 break; 2610 default: 2611 ret = -EINVAL; 2612 } 2613 out: 2614 mnt_drop_write_file(file); 2615 return ret; 2616 } 2617 2618 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2619 { 2620 struct btrfs_ioctl_vol_args *vol_args; 2621 bool restore_op = false; 2622 int ret; 2623 2624 if (!capable(CAP_SYS_ADMIN)) 2625 return -EPERM; 2626 2627 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2628 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 2629 return -EINVAL; 2630 } 2631 2632 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 2633 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 2634 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2635 2636 /* 2637 * We can do the device add because we have a paused balanced, 2638 * change the exclusive op type and remember we should bring 2639 * back the paused balance 2640 */ 2641 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 2642 btrfs_exclop_start_unlock(fs_info); 2643 restore_op = true; 2644 } 2645 2646 vol_args = memdup_user(arg, sizeof(*vol_args)); 2647 if (IS_ERR(vol_args)) { 2648 ret = PTR_ERR(vol_args); 2649 goto out; 2650 } 2651 2652 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2653 ret = btrfs_init_new_device(fs_info, vol_args->name); 2654 2655 if (!ret) 2656 btrfs_info(fs_info, "disk added %s", vol_args->name); 2657 2658 kfree(vol_args); 2659 out: 2660 if (restore_op) 2661 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 2662 else 2663 btrfs_exclop_finish(fs_info); 2664 return ret; 2665 } 2666 2667 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2668 { 2669 BTRFS_DEV_LOOKUP_ARGS(args); 2670 struct inode *inode = file_inode(file); 2671 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2672 struct btrfs_ioctl_vol_args_v2 *vol_args; 2673 struct block_device *bdev = NULL; 2674 void *holder; 2675 int ret; 2676 bool cancel = false; 2677 2678 if (!capable(CAP_SYS_ADMIN)) 2679 return -EPERM; 2680 2681 vol_args = memdup_user(arg, sizeof(*vol_args)); 2682 if (IS_ERR(vol_args)) 2683 return PTR_ERR(vol_args); 2684 2685 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 2686 ret = -EOPNOTSUPP; 2687 goto out; 2688 } 2689 2690 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2691 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2692 args.devid = vol_args->devid; 2693 } else if (!strcmp("cancel", vol_args->name)) { 2694 cancel = true; 2695 } else { 2696 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2697 if (ret) 2698 goto out; 2699 } 2700 2701 ret = mnt_want_write_file(file); 2702 if (ret) 2703 goto out; 2704 2705 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2706 cancel); 2707 if (ret) 2708 goto err_drop; 2709 2710 /* Exclusive operation is now claimed */ 2711 ret = btrfs_rm_device(fs_info, &args, &bdev, &holder); 2712 2713 btrfs_exclop_finish(fs_info); 2714 2715 if (!ret) { 2716 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2717 btrfs_info(fs_info, "device deleted: id %llu", 2718 vol_args->devid); 2719 else 2720 btrfs_info(fs_info, "device deleted: %s", 2721 vol_args->name); 2722 } 2723 err_drop: 2724 mnt_drop_write_file(file); 2725 if (bdev) 2726 blkdev_put(bdev, holder); 2727 out: 2728 btrfs_put_dev_args_from_path(&args); 2729 kfree(vol_args); 2730 return ret; 2731 } 2732 2733 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2734 { 2735 BTRFS_DEV_LOOKUP_ARGS(args); 2736 struct inode *inode = file_inode(file); 2737 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2738 struct btrfs_ioctl_vol_args *vol_args; 2739 struct block_device *bdev = NULL; 2740 void *holder; 2741 int ret; 2742 bool cancel = false; 2743 2744 if (!capable(CAP_SYS_ADMIN)) 2745 return -EPERM; 2746 2747 vol_args = memdup_user(arg, sizeof(*vol_args)); 2748 if (IS_ERR(vol_args)) 2749 return PTR_ERR(vol_args); 2750 2751 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2752 if (!strcmp("cancel", vol_args->name)) { 2753 cancel = true; 2754 } else { 2755 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2756 if (ret) 2757 goto out; 2758 } 2759 2760 ret = mnt_want_write_file(file); 2761 if (ret) 2762 goto out; 2763 2764 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2765 cancel); 2766 if (ret == 0) { 2767 ret = btrfs_rm_device(fs_info, &args, &bdev, &holder); 2768 if (!ret) 2769 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2770 btrfs_exclop_finish(fs_info); 2771 } 2772 2773 mnt_drop_write_file(file); 2774 if (bdev) 2775 blkdev_put(bdev, holder); 2776 out: 2777 btrfs_put_dev_args_from_path(&args); 2778 kfree(vol_args); 2779 return ret; 2780 } 2781 2782 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2783 void __user *arg) 2784 { 2785 struct btrfs_ioctl_fs_info_args *fi_args; 2786 struct btrfs_device *device; 2787 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2788 u64 flags_in; 2789 int ret = 0; 2790 2791 fi_args = memdup_user(arg, sizeof(*fi_args)); 2792 if (IS_ERR(fi_args)) 2793 return PTR_ERR(fi_args); 2794 2795 flags_in = fi_args->flags; 2796 memset(fi_args, 0, sizeof(*fi_args)); 2797 2798 rcu_read_lock(); 2799 fi_args->num_devices = fs_devices->num_devices; 2800 2801 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2802 if (device->devid > fi_args->max_id) 2803 fi_args->max_id = device->devid; 2804 } 2805 rcu_read_unlock(); 2806 2807 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 2808 fi_args->nodesize = fs_info->nodesize; 2809 fi_args->sectorsize = fs_info->sectorsize; 2810 fi_args->clone_alignment = fs_info->sectorsize; 2811 2812 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 2813 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 2814 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 2815 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 2816 } 2817 2818 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 2819 fi_args->generation = fs_info->generation; 2820 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 2821 } 2822 2823 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 2824 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 2825 sizeof(fi_args->metadata_uuid)); 2826 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 2827 } 2828 2829 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2830 ret = -EFAULT; 2831 2832 kfree(fi_args); 2833 return ret; 2834 } 2835 2836 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2837 void __user *arg) 2838 { 2839 BTRFS_DEV_LOOKUP_ARGS(args); 2840 struct btrfs_ioctl_dev_info_args *di_args; 2841 struct btrfs_device *dev; 2842 int ret = 0; 2843 2844 di_args = memdup_user(arg, sizeof(*di_args)); 2845 if (IS_ERR(di_args)) 2846 return PTR_ERR(di_args); 2847 2848 args.devid = di_args->devid; 2849 if (!btrfs_is_empty_uuid(di_args->uuid)) 2850 args.uuid = di_args->uuid; 2851 2852 rcu_read_lock(); 2853 dev = btrfs_find_device(fs_info->fs_devices, &args); 2854 if (!dev) { 2855 ret = -ENODEV; 2856 goto out; 2857 } 2858 2859 di_args->devid = dev->devid; 2860 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2861 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2862 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2863 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2864 if (dev->name) 2865 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path)); 2866 else 2867 di_args->path[0] = '\0'; 2868 2869 out: 2870 rcu_read_unlock(); 2871 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2872 ret = -EFAULT; 2873 2874 kfree(di_args); 2875 return ret; 2876 } 2877 2878 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2879 { 2880 struct inode *inode = file_inode(file); 2881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2882 struct btrfs_root *root = BTRFS_I(inode)->root; 2883 struct btrfs_root *new_root; 2884 struct btrfs_dir_item *di; 2885 struct btrfs_trans_handle *trans; 2886 struct btrfs_path *path = NULL; 2887 struct btrfs_disk_key disk_key; 2888 struct fscrypt_str name = FSTR_INIT("default", 7); 2889 u64 objectid = 0; 2890 u64 dir_id; 2891 int ret; 2892 2893 if (!capable(CAP_SYS_ADMIN)) 2894 return -EPERM; 2895 2896 ret = mnt_want_write_file(file); 2897 if (ret) 2898 return ret; 2899 2900 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2901 ret = -EFAULT; 2902 goto out; 2903 } 2904 2905 if (!objectid) 2906 objectid = BTRFS_FS_TREE_OBJECTID; 2907 2908 new_root = btrfs_get_fs_root(fs_info, objectid, true); 2909 if (IS_ERR(new_root)) { 2910 ret = PTR_ERR(new_root); 2911 goto out; 2912 } 2913 if (!is_fstree(new_root->root_key.objectid)) { 2914 ret = -ENOENT; 2915 goto out_free; 2916 } 2917 2918 path = btrfs_alloc_path(); 2919 if (!path) { 2920 ret = -ENOMEM; 2921 goto out_free; 2922 } 2923 2924 trans = btrfs_start_transaction(root, 1); 2925 if (IS_ERR(trans)) { 2926 ret = PTR_ERR(trans); 2927 goto out_free; 2928 } 2929 2930 dir_id = btrfs_super_root_dir(fs_info->super_copy); 2931 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 2932 dir_id, &name, 1); 2933 if (IS_ERR_OR_NULL(di)) { 2934 btrfs_release_path(path); 2935 btrfs_end_transaction(trans); 2936 btrfs_err(fs_info, 2937 "Umm, you don't have the default diritem, this isn't going to work"); 2938 ret = -ENOENT; 2939 goto out_free; 2940 } 2941 2942 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2943 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2944 btrfs_mark_buffer_dirty(path->nodes[0]); 2945 btrfs_release_path(path); 2946 2947 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 2948 btrfs_end_transaction(trans); 2949 out_free: 2950 btrfs_put_root(new_root); 2951 btrfs_free_path(path); 2952 out: 2953 mnt_drop_write_file(file); 2954 return ret; 2955 } 2956 2957 static void get_block_group_info(struct list_head *groups_list, 2958 struct btrfs_ioctl_space_info *space) 2959 { 2960 struct btrfs_block_group *block_group; 2961 2962 space->total_bytes = 0; 2963 space->used_bytes = 0; 2964 space->flags = 0; 2965 list_for_each_entry(block_group, groups_list, list) { 2966 space->flags = block_group->flags; 2967 space->total_bytes += block_group->length; 2968 space->used_bytes += block_group->used; 2969 } 2970 } 2971 2972 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 2973 void __user *arg) 2974 { 2975 struct btrfs_ioctl_space_args space_args; 2976 struct btrfs_ioctl_space_info space; 2977 struct btrfs_ioctl_space_info *dest; 2978 struct btrfs_ioctl_space_info *dest_orig; 2979 struct btrfs_ioctl_space_info __user *user_dest; 2980 struct btrfs_space_info *info; 2981 static const u64 types[] = { 2982 BTRFS_BLOCK_GROUP_DATA, 2983 BTRFS_BLOCK_GROUP_SYSTEM, 2984 BTRFS_BLOCK_GROUP_METADATA, 2985 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 2986 }; 2987 int num_types = 4; 2988 int alloc_size; 2989 int ret = 0; 2990 u64 slot_count = 0; 2991 int i, c; 2992 2993 if (copy_from_user(&space_args, 2994 (struct btrfs_ioctl_space_args __user *)arg, 2995 sizeof(space_args))) 2996 return -EFAULT; 2997 2998 for (i = 0; i < num_types; i++) { 2999 struct btrfs_space_info *tmp; 3000 3001 info = NULL; 3002 list_for_each_entry(tmp, &fs_info->space_info, list) { 3003 if (tmp->flags == types[i]) { 3004 info = tmp; 3005 break; 3006 } 3007 } 3008 3009 if (!info) 3010 continue; 3011 3012 down_read(&info->groups_sem); 3013 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3014 if (!list_empty(&info->block_groups[c])) 3015 slot_count++; 3016 } 3017 up_read(&info->groups_sem); 3018 } 3019 3020 /* 3021 * Global block reserve, exported as a space_info 3022 */ 3023 slot_count++; 3024 3025 /* space_slots == 0 means they are asking for a count */ 3026 if (space_args.space_slots == 0) { 3027 space_args.total_spaces = slot_count; 3028 goto out; 3029 } 3030 3031 slot_count = min_t(u64, space_args.space_slots, slot_count); 3032 3033 alloc_size = sizeof(*dest) * slot_count; 3034 3035 /* we generally have at most 6 or so space infos, one for each raid 3036 * level. So, a whole page should be more than enough for everyone 3037 */ 3038 if (alloc_size > PAGE_SIZE) 3039 return -ENOMEM; 3040 3041 space_args.total_spaces = 0; 3042 dest = kmalloc(alloc_size, GFP_KERNEL); 3043 if (!dest) 3044 return -ENOMEM; 3045 dest_orig = dest; 3046 3047 /* now we have a buffer to copy into */ 3048 for (i = 0; i < num_types; i++) { 3049 struct btrfs_space_info *tmp; 3050 3051 if (!slot_count) 3052 break; 3053 3054 info = NULL; 3055 list_for_each_entry(tmp, &fs_info->space_info, list) { 3056 if (tmp->flags == types[i]) { 3057 info = tmp; 3058 break; 3059 } 3060 } 3061 3062 if (!info) 3063 continue; 3064 down_read(&info->groups_sem); 3065 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3066 if (!list_empty(&info->block_groups[c])) { 3067 get_block_group_info(&info->block_groups[c], 3068 &space); 3069 memcpy(dest, &space, sizeof(space)); 3070 dest++; 3071 space_args.total_spaces++; 3072 slot_count--; 3073 } 3074 if (!slot_count) 3075 break; 3076 } 3077 up_read(&info->groups_sem); 3078 } 3079 3080 /* 3081 * Add global block reserve 3082 */ 3083 if (slot_count) { 3084 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3085 3086 spin_lock(&block_rsv->lock); 3087 space.total_bytes = block_rsv->size; 3088 space.used_bytes = block_rsv->size - block_rsv->reserved; 3089 spin_unlock(&block_rsv->lock); 3090 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3091 memcpy(dest, &space, sizeof(space)); 3092 space_args.total_spaces++; 3093 } 3094 3095 user_dest = (struct btrfs_ioctl_space_info __user *) 3096 (arg + sizeof(struct btrfs_ioctl_space_args)); 3097 3098 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3099 ret = -EFAULT; 3100 3101 kfree(dest_orig); 3102 out: 3103 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3104 ret = -EFAULT; 3105 3106 return ret; 3107 } 3108 3109 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3110 void __user *argp) 3111 { 3112 struct btrfs_trans_handle *trans; 3113 u64 transid; 3114 3115 /* 3116 * Start orphan cleanup here for the given root in case it hasn't been 3117 * started already by other means. Errors are handled in the other 3118 * functions during transaction commit. 3119 */ 3120 btrfs_orphan_cleanup(root); 3121 3122 trans = btrfs_attach_transaction_barrier(root); 3123 if (IS_ERR(trans)) { 3124 if (PTR_ERR(trans) != -ENOENT) 3125 return PTR_ERR(trans); 3126 3127 /* No running transaction, don't bother */ 3128 transid = root->fs_info->last_trans_committed; 3129 goto out; 3130 } 3131 transid = trans->transid; 3132 btrfs_commit_transaction_async(trans); 3133 out: 3134 if (argp) 3135 if (copy_to_user(argp, &transid, sizeof(transid))) 3136 return -EFAULT; 3137 return 0; 3138 } 3139 3140 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3141 void __user *argp) 3142 { 3143 /* By default wait for the current transaction. */ 3144 u64 transid = 0; 3145 3146 if (argp) 3147 if (copy_from_user(&transid, argp, sizeof(transid))) 3148 return -EFAULT; 3149 3150 return btrfs_wait_for_commit(fs_info, transid); 3151 } 3152 3153 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3154 { 3155 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3156 struct btrfs_ioctl_scrub_args *sa; 3157 int ret; 3158 3159 if (!capable(CAP_SYS_ADMIN)) 3160 return -EPERM; 3161 3162 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3163 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 3164 return -EINVAL; 3165 } 3166 3167 sa = memdup_user(arg, sizeof(*sa)); 3168 if (IS_ERR(sa)) 3169 return PTR_ERR(sa); 3170 3171 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) { 3172 ret = -EOPNOTSUPP; 3173 goto out; 3174 } 3175 3176 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3177 ret = mnt_want_write_file(file); 3178 if (ret) 3179 goto out; 3180 } 3181 3182 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3183 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3184 0); 3185 3186 /* 3187 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3188 * error. This is important as it allows user space to know how much 3189 * progress scrub has done. For example, if scrub is canceled we get 3190 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3191 * space. Later user space can inspect the progress from the structure 3192 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3193 * previously (btrfs-progs does this). 3194 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3195 * then return -EFAULT to signal the structure was not copied or it may 3196 * be corrupt and unreliable due to a partial copy. 3197 */ 3198 if (copy_to_user(arg, sa, sizeof(*sa))) 3199 ret = -EFAULT; 3200 3201 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3202 mnt_drop_write_file(file); 3203 out: 3204 kfree(sa); 3205 return ret; 3206 } 3207 3208 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3209 { 3210 if (!capable(CAP_SYS_ADMIN)) 3211 return -EPERM; 3212 3213 return btrfs_scrub_cancel(fs_info); 3214 } 3215 3216 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3217 void __user *arg) 3218 { 3219 struct btrfs_ioctl_scrub_args *sa; 3220 int ret; 3221 3222 if (!capable(CAP_SYS_ADMIN)) 3223 return -EPERM; 3224 3225 sa = memdup_user(arg, sizeof(*sa)); 3226 if (IS_ERR(sa)) 3227 return PTR_ERR(sa); 3228 3229 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3230 3231 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3232 ret = -EFAULT; 3233 3234 kfree(sa); 3235 return ret; 3236 } 3237 3238 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3239 void __user *arg) 3240 { 3241 struct btrfs_ioctl_get_dev_stats *sa; 3242 int ret; 3243 3244 sa = memdup_user(arg, sizeof(*sa)); 3245 if (IS_ERR(sa)) 3246 return PTR_ERR(sa); 3247 3248 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3249 kfree(sa); 3250 return -EPERM; 3251 } 3252 3253 ret = btrfs_get_dev_stats(fs_info, sa); 3254 3255 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3256 ret = -EFAULT; 3257 3258 kfree(sa); 3259 return ret; 3260 } 3261 3262 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3263 void __user *arg) 3264 { 3265 struct btrfs_ioctl_dev_replace_args *p; 3266 int ret; 3267 3268 if (!capable(CAP_SYS_ADMIN)) 3269 return -EPERM; 3270 3271 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3272 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 3273 return -EINVAL; 3274 } 3275 3276 p = memdup_user(arg, sizeof(*p)); 3277 if (IS_ERR(p)) 3278 return PTR_ERR(p); 3279 3280 switch (p->cmd) { 3281 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3282 if (sb_rdonly(fs_info->sb)) { 3283 ret = -EROFS; 3284 goto out; 3285 } 3286 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3287 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3288 } else { 3289 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3290 btrfs_exclop_finish(fs_info); 3291 } 3292 break; 3293 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3294 btrfs_dev_replace_status(fs_info, p); 3295 ret = 0; 3296 break; 3297 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3298 p->result = btrfs_dev_replace_cancel(fs_info); 3299 ret = 0; 3300 break; 3301 default: 3302 ret = -EINVAL; 3303 break; 3304 } 3305 3306 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3307 ret = -EFAULT; 3308 out: 3309 kfree(p); 3310 return ret; 3311 } 3312 3313 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3314 { 3315 int ret = 0; 3316 int i; 3317 u64 rel_ptr; 3318 int size; 3319 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3320 struct inode_fs_paths *ipath = NULL; 3321 struct btrfs_path *path; 3322 3323 if (!capable(CAP_DAC_READ_SEARCH)) 3324 return -EPERM; 3325 3326 path = btrfs_alloc_path(); 3327 if (!path) { 3328 ret = -ENOMEM; 3329 goto out; 3330 } 3331 3332 ipa = memdup_user(arg, sizeof(*ipa)); 3333 if (IS_ERR(ipa)) { 3334 ret = PTR_ERR(ipa); 3335 ipa = NULL; 3336 goto out; 3337 } 3338 3339 size = min_t(u32, ipa->size, 4096); 3340 ipath = init_ipath(size, root, path); 3341 if (IS_ERR(ipath)) { 3342 ret = PTR_ERR(ipath); 3343 ipath = NULL; 3344 goto out; 3345 } 3346 3347 ret = paths_from_inode(ipa->inum, ipath); 3348 if (ret < 0) 3349 goto out; 3350 3351 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3352 rel_ptr = ipath->fspath->val[i] - 3353 (u64)(unsigned long)ipath->fspath->val; 3354 ipath->fspath->val[i] = rel_ptr; 3355 } 3356 3357 btrfs_free_path(path); 3358 path = NULL; 3359 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3360 ipath->fspath, size); 3361 if (ret) { 3362 ret = -EFAULT; 3363 goto out; 3364 } 3365 3366 out: 3367 btrfs_free_path(path); 3368 free_ipath(ipath); 3369 kfree(ipa); 3370 3371 return ret; 3372 } 3373 3374 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3375 void __user *arg, int version) 3376 { 3377 int ret = 0; 3378 int size; 3379 struct btrfs_ioctl_logical_ino_args *loi; 3380 struct btrfs_data_container *inodes = NULL; 3381 struct btrfs_path *path = NULL; 3382 bool ignore_offset; 3383 3384 if (!capable(CAP_SYS_ADMIN)) 3385 return -EPERM; 3386 3387 loi = memdup_user(arg, sizeof(*loi)); 3388 if (IS_ERR(loi)) 3389 return PTR_ERR(loi); 3390 3391 if (version == 1) { 3392 ignore_offset = false; 3393 size = min_t(u32, loi->size, SZ_64K); 3394 } else { 3395 /* All reserved bits must be 0 for now */ 3396 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3397 ret = -EINVAL; 3398 goto out_loi; 3399 } 3400 /* Only accept flags we have defined so far */ 3401 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3402 ret = -EINVAL; 3403 goto out_loi; 3404 } 3405 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3406 size = min_t(u32, loi->size, SZ_16M); 3407 } 3408 3409 inodes = init_data_container(size); 3410 if (IS_ERR(inodes)) { 3411 ret = PTR_ERR(inodes); 3412 goto out_loi; 3413 } 3414 3415 path = btrfs_alloc_path(); 3416 if (!path) { 3417 ret = -ENOMEM; 3418 goto out; 3419 } 3420 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3421 inodes, ignore_offset); 3422 btrfs_free_path(path); 3423 if (ret == -EINVAL) 3424 ret = -ENOENT; 3425 if (ret < 0) 3426 goto out; 3427 3428 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3429 size); 3430 if (ret) 3431 ret = -EFAULT; 3432 3433 out: 3434 kvfree(inodes); 3435 out_loi: 3436 kfree(loi); 3437 3438 return ret; 3439 } 3440 3441 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3442 struct btrfs_ioctl_balance_args *bargs) 3443 { 3444 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3445 3446 bargs->flags = bctl->flags; 3447 3448 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3449 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3450 if (atomic_read(&fs_info->balance_pause_req)) 3451 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3452 if (atomic_read(&fs_info->balance_cancel_req)) 3453 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3454 3455 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3456 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3457 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3458 3459 spin_lock(&fs_info->balance_lock); 3460 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3461 spin_unlock(&fs_info->balance_lock); 3462 } 3463 3464 /* 3465 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as 3466 * required. 3467 * 3468 * @fs_info: the filesystem 3469 * @excl_acquired: ptr to boolean value which is set to false in case balance 3470 * is being resumed 3471 * 3472 * Return 0 on success in which case both fs_info::balance is acquired as well 3473 * as exclusive ops are blocked. In case of failure return an error code. 3474 */ 3475 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) 3476 { 3477 int ret; 3478 3479 /* 3480 * Exclusive operation is locked. Three possibilities: 3481 * (1) some other op is running 3482 * (2) balance is running 3483 * (3) balance is paused -- special case (think resume) 3484 */ 3485 while (1) { 3486 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3487 *excl_acquired = true; 3488 mutex_lock(&fs_info->balance_mutex); 3489 return 0; 3490 } 3491 3492 mutex_lock(&fs_info->balance_mutex); 3493 if (fs_info->balance_ctl) { 3494 /* This is either (2) or (3) */ 3495 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3496 /* This is (2) */ 3497 ret = -EINPROGRESS; 3498 goto out_failure; 3499 3500 } else { 3501 mutex_unlock(&fs_info->balance_mutex); 3502 /* 3503 * Lock released to allow other waiters to 3504 * continue, we'll reexamine the status again. 3505 */ 3506 mutex_lock(&fs_info->balance_mutex); 3507 3508 if (fs_info->balance_ctl && 3509 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3510 /* This is (3) */ 3511 *excl_acquired = false; 3512 return 0; 3513 } 3514 } 3515 } else { 3516 /* This is (1) */ 3517 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3518 goto out_failure; 3519 } 3520 3521 mutex_unlock(&fs_info->balance_mutex); 3522 } 3523 3524 out_failure: 3525 mutex_unlock(&fs_info->balance_mutex); 3526 *excl_acquired = false; 3527 return ret; 3528 } 3529 3530 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3531 { 3532 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3533 struct btrfs_fs_info *fs_info = root->fs_info; 3534 struct btrfs_ioctl_balance_args *bargs; 3535 struct btrfs_balance_control *bctl; 3536 bool need_unlock = true; 3537 int ret; 3538 3539 if (!capable(CAP_SYS_ADMIN)) 3540 return -EPERM; 3541 3542 ret = mnt_want_write_file(file); 3543 if (ret) 3544 return ret; 3545 3546 bargs = memdup_user(arg, sizeof(*bargs)); 3547 if (IS_ERR(bargs)) { 3548 ret = PTR_ERR(bargs); 3549 bargs = NULL; 3550 goto out; 3551 } 3552 3553 ret = btrfs_try_lock_balance(fs_info, &need_unlock); 3554 if (ret) 3555 goto out; 3556 3557 lockdep_assert_held(&fs_info->balance_mutex); 3558 3559 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3560 if (!fs_info->balance_ctl) { 3561 ret = -ENOTCONN; 3562 goto out_unlock; 3563 } 3564 3565 bctl = fs_info->balance_ctl; 3566 spin_lock(&fs_info->balance_lock); 3567 bctl->flags |= BTRFS_BALANCE_RESUME; 3568 spin_unlock(&fs_info->balance_lock); 3569 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 3570 3571 goto do_balance; 3572 } 3573 3574 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3575 ret = -EINVAL; 3576 goto out_unlock; 3577 } 3578 3579 if (fs_info->balance_ctl) { 3580 ret = -EINPROGRESS; 3581 goto out_unlock; 3582 } 3583 3584 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3585 if (!bctl) { 3586 ret = -ENOMEM; 3587 goto out_unlock; 3588 } 3589 3590 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3591 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3592 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3593 3594 bctl->flags = bargs->flags; 3595 do_balance: 3596 /* 3597 * Ownership of bctl and exclusive operation goes to btrfs_balance. 3598 * bctl is freed in reset_balance_state, or, if restriper was paused 3599 * all the way until unmount, in free_fs_info. The flag should be 3600 * cleared after reset_balance_state. 3601 */ 3602 need_unlock = false; 3603 3604 ret = btrfs_balance(fs_info, bctl, bargs); 3605 bctl = NULL; 3606 3607 if (ret == 0 || ret == -ECANCELED) { 3608 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3609 ret = -EFAULT; 3610 } 3611 3612 kfree(bctl); 3613 out_unlock: 3614 mutex_unlock(&fs_info->balance_mutex); 3615 if (need_unlock) 3616 btrfs_exclop_finish(fs_info); 3617 out: 3618 mnt_drop_write_file(file); 3619 kfree(bargs); 3620 return ret; 3621 } 3622 3623 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 3624 { 3625 if (!capable(CAP_SYS_ADMIN)) 3626 return -EPERM; 3627 3628 switch (cmd) { 3629 case BTRFS_BALANCE_CTL_PAUSE: 3630 return btrfs_pause_balance(fs_info); 3631 case BTRFS_BALANCE_CTL_CANCEL: 3632 return btrfs_cancel_balance(fs_info); 3633 } 3634 3635 return -EINVAL; 3636 } 3637 3638 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 3639 void __user *arg) 3640 { 3641 struct btrfs_ioctl_balance_args *bargs; 3642 int ret = 0; 3643 3644 if (!capable(CAP_SYS_ADMIN)) 3645 return -EPERM; 3646 3647 mutex_lock(&fs_info->balance_mutex); 3648 if (!fs_info->balance_ctl) { 3649 ret = -ENOTCONN; 3650 goto out; 3651 } 3652 3653 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 3654 if (!bargs) { 3655 ret = -ENOMEM; 3656 goto out; 3657 } 3658 3659 btrfs_update_ioctl_balance_args(fs_info, bargs); 3660 3661 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3662 ret = -EFAULT; 3663 3664 kfree(bargs); 3665 out: 3666 mutex_unlock(&fs_info->balance_mutex); 3667 return ret; 3668 } 3669 3670 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3671 { 3672 struct inode *inode = file_inode(file); 3673 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3674 struct btrfs_ioctl_quota_ctl_args *sa; 3675 int ret; 3676 3677 if (!capable(CAP_SYS_ADMIN)) 3678 return -EPERM; 3679 3680 ret = mnt_want_write_file(file); 3681 if (ret) 3682 return ret; 3683 3684 sa = memdup_user(arg, sizeof(*sa)); 3685 if (IS_ERR(sa)) { 3686 ret = PTR_ERR(sa); 3687 goto drop_write; 3688 } 3689 3690 down_write(&fs_info->subvol_sem); 3691 3692 switch (sa->cmd) { 3693 case BTRFS_QUOTA_CTL_ENABLE: 3694 ret = btrfs_quota_enable(fs_info); 3695 break; 3696 case BTRFS_QUOTA_CTL_DISABLE: 3697 ret = btrfs_quota_disable(fs_info); 3698 break; 3699 default: 3700 ret = -EINVAL; 3701 break; 3702 } 3703 3704 kfree(sa); 3705 up_write(&fs_info->subvol_sem); 3706 drop_write: 3707 mnt_drop_write_file(file); 3708 return ret; 3709 } 3710 3711 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3712 { 3713 struct inode *inode = file_inode(file); 3714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3715 struct btrfs_root *root = BTRFS_I(inode)->root; 3716 struct btrfs_ioctl_qgroup_assign_args *sa; 3717 struct btrfs_trans_handle *trans; 3718 int ret; 3719 int err; 3720 3721 if (!capable(CAP_SYS_ADMIN)) 3722 return -EPERM; 3723 3724 ret = mnt_want_write_file(file); 3725 if (ret) 3726 return ret; 3727 3728 sa = memdup_user(arg, sizeof(*sa)); 3729 if (IS_ERR(sa)) { 3730 ret = PTR_ERR(sa); 3731 goto drop_write; 3732 } 3733 3734 trans = btrfs_join_transaction(root); 3735 if (IS_ERR(trans)) { 3736 ret = PTR_ERR(trans); 3737 goto out; 3738 } 3739 3740 if (sa->assign) { 3741 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 3742 } else { 3743 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 3744 } 3745 3746 /* update qgroup status and info */ 3747 mutex_lock(&fs_info->qgroup_ioctl_lock); 3748 err = btrfs_run_qgroups(trans); 3749 mutex_unlock(&fs_info->qgroup_ioctl_lock); 3750 if (err < 0) 3751 btrfs_handle_fs_error(fs_info, err, 3752 "failed to update qgroup status and info"); 3753 err = btrfs_end_transaction(trans); 3754 if (err && !ret) 3755 ret = err; 3756 3757 out: 3758 kfree(sa); 3759 drop_write: 3760 mnt_drop_write_file(file); 3761 return ret; 3762 } 3763 3764 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3765 { 3766 struct inode *inode = file_inode(file); 3767 struct btrfs_root *root = BTRFS_I(inode)->root; 3768 struct btrfs_ioctl_qgroup_create_args *sa; 3769 struct btrfs_trans_handle *trans; 3770 int ret; 3771 int err; 3772 3773 if (!capable(CAP_SYS_ADMIN)) 3774 return -EPERM; 3775 3776 ret = mnt_want_write_file(file); 3777 if (ret) 3778 return ret; 3779 3780 sa = memdup_user(arg, sizeof(*sa)); 3781 if (IS_ERR(sa)) { 3782 ret = PTR_ERR(sa); 3783 goto drop_write; 3784 } 3785 3786 if (!sa->qgroupid) { 3787 ret = -EINVAL; 3788 goto out; 3789 } 3790 3791 trans = btrfs_join_transaction(root); 3792 if (IS_ERR(trans)) { 3793 ret = PTR_ERR(trans); 3794 goto out; 3795 } 3796 3797 if (sa->create) { 3798 ret = btrfs_create_qgroup(trans, sa->qgroupid); 3799 } else { 3800 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 3801 } 3802 3803 err = btrfs_end_transaction(trans); 3804 if (err && !ret) 3805 ret = err; 3806 3807 out: 3808 kfree(sa); 3809 drop_write: 3810 mnt_drop_write_file(file); 3811 return ret; 3812 } 3813 3814 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3815 { 3816 struct inode *inode = file_inode(file); 3817 struct btrfs_root *root = BTRFS_I(inode)->root; 3818 struct btrfs_ioctl_qgroup_limit_args *sa; 3819 struct btrfs_trans_handle *trans; 3820 int ret; 3821 int err; 3822 u64 qgroupid; 3823 3824 if (!capable(CAP_SYS_ADMIN)) 3825 return -EPERM; 3826 3827 ret = mnt_want_write_file(file); 3828 if (ret) 3829 return ret; 3830 3831 sa = memdup_user(arg, sizeof(*sa)); 3832 if (IS_ERR(sa)) { 3833 ret = PTR_ERR(sa); 3834 goto drop_write; 3835 } 3836 3837 trans = btrfs_join_transaction(root); 3838 if (IS_ERR(trans)) { 3839 ret = PTR_ERR(trans); 3840 goto out; 3841 } 3842 3843 qgroupid = sa->qgroupid; 3844 if (!qgroupid) { 3845 /* take the current subvol as qgroup */ 3846 qgroupid = root->root_key.objectid; 3847 } 3848 3849 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 3850 3851 err = btrfs_end_transaction(trans); 3852 if (err && !ret) 3853 ret = err; 3854 3855 out: 3856 kfree(sa); 3857 drop_write: 3858 mnt_drop_write_file(file); 3859 return ret; 3860 } 3861 3862 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 3863 { 3864 struct inode *inode = file_inode(file); 3865 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3866 struct btrfs_ioctl_quota_rescan_args *qsa; 3867 int ret; 3868 3869 if (!capable(CAP_SYS_ADMIN)) 3870 return -EPERM; 3871 3872 ret = mnt_want_write_file(file); 3873 if (ret) 3874 return ret; 3875 3876 qsa = memdup_user(arg, sizeof(*qsa)); 3877 if (IS_ERR(qsa)) { 3878 ret = PTR_ERR(qsa); 3879 goto drop_write; 3880 } 3881 3882 if (qsa->flags) { 3883 ret = -EINVAL; 3884 goto out; 3885 } 3886 3887 ret = btrfs_qgroup_rescan(fs_info); 3888 3889 out: 3890 kfree(qsa); 3891 drop_write: 3892 mnt_drop_write_file(file); 3893 return ret; 3894 } 3895 3896 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 3897 void __user *arg) 3898 { 3899 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 3900 3901 if (!capable(CAP_SYS_ADMIN)) 3902 return -EPERM; 3903 3904 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 3905 qsa.flags = 1; 3906 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 3907 } 3908 3909 if (copy_to_user(arg, &qsa, sizeof(qsa))) 3910 return -EFAULT; 3911 3912 return 0; 3913 } 3914 3915 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 3916 void __user *arg) 3917 { 3918 if (!capable(CAP_SYS_ADMIN)) 3919 return -EPERM; 3920 3921 return btrfs_qgroup_wait_for_completion(fs_info, true); 3922 } 3923 3924 static long _btrfs_ioctl_set_received_subvol(struct file *file, 3925 struct mnt_idmap *idmap, 3926 struct btrfs_ioctl_received_subvol_args *sa) 3927 { 3928 struct inode *inode = file_inode(file); 3929 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3930 struct btrfs_root *root = BTRFS_I(inode)->root; 3931 struct btrfs_root_item *root_item = &root->root_item; 3932 struct btrfs_trans_handle *trans; 3933 struct timespec64 ct = current_time(inode); 3934 int ret = 0; 3935 int received_uuid_changed; 3936 3937 if (!inode_owner_or_capable(idmap, inode)) 3938 return -EPERM; 3939 3940 ret = mnt_want_write_file(file); 3941 if (ret < 0) 3942 return ret; 3943 3944 down_write(&fs_info->subvol_sem); 3945 3946 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3947 ret = -EINVAL; 3948 goto out; 3949 } 3950 3951 if (btrfs_root_readonly(root)) { 3952 ret = -EROFS; 3953 goto out; 3954 } 3955 3956 /* 3957 * 1 - root item 3958 * 2 - uuid items (received uuid + subvol uuid) 3959 */ 3960 trans = btrfs_start_transaction(root, 3); 3961 if (IS_ERR(trans)) { 3962 ret = PTR_ERR(trans); 3963 trans = NULL; 3964 goto out; 3965 } 3966 3967 sa->rtransid = trans->transid; 3968 sa->rtime.sec = ct.tv_sec; 3969 sa->rtime.nsec = ct.tv_nsec; 3970 3971 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 3972 BTRFS_UUID_SIZE); 3973 if (received_uuid_changed && 3974 !btrfs_is_empty_uuid(root_item->received_uuid)) { 3975 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 3976 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3977 root->root_key.objectid); 3978 if (ret && ret != -ENOENT) { 3979 btrfs_abort_transaction(trans, ret); 3980 btrfs_end_transaction(trans); 3981 goto out; 3982 } 3983 } 3984 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 3985 btrfs_set_root_stransid(root_item, sa->stransid); 3986 btrfs_set_root_rtransid(root_item, sa->rtransid); 3987 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 3988 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 3989 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 3990 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 3991 3992 ret = btrfs_update_root(trans, fs_info->tree_root, 3993 &root->root_key, &root->root_item); 3994 if (ret < 0) { 3995 btrfs_end_transaction(trans); 3996 goto out; 3997 } 3998 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 3999 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4000 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4001 root->root_key.objectid); 4002 if (ret < 0 && ret != -EEXIST) { 4003 btrfs_abort_transaction(trans, ret); 4004 btrfs_end_transaction(trans); 4005 goto out; 4006 } 4007 } 4008 ret = btrfs_commit_transaction(trans); 4009 out: 4010 up_write(&fs_info->subvol_sem); 4011 mnt_drop_write_file(file); 4012 return ret; 4013 } 4014 4015 #ifdef CONFIG_64BIT 4016 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4017 void __user *arg) 4018 { 4019 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4020 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4021 int ret = 0; 4022 4023 args32 = memdup_user(arg, sizeof(*args32)); 4024 if (IS_ERR(args32)) 4025 return PTR_ERR(args32); 4026 4027 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4028 if (!args64) { 4029 ret = -ENOMEM; 4030 goto out; 4031 } 4032 4033 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4034 args64->stransid = args32->stransid; 4035 args64->rtransid = args32->rtransid; 4036 args64->stime.sec = args32->stime.sec; 4037 args64->stime.nsec = args32->stime.nsec; 4038 args64->rtime.sec = args32->rtime.sec; 4039 args64->rtime.nsec = args32->rtime.nsec; 4040 args64->flags = args32->flags; 4041 4042 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64); 4043 if (ret) 4044 goto out; 4045 4046 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4047 args32->stransid = args64->stransid; 4048 args32->rtransid = args64->rtransid; 4049 args32->stime.sec = args64->stime.sec; 4050 args32->stime.nsec = args64->stime.nsec; 4051 args32->rtime.sec = args64->rtime.sec; 4052 args32->rtime.nsec = args64->rtime.nsec; 4053 args32->flags = args64->flags; 4054 4055 ret = copy_to_user(arg, args32, sizeof(*args32)); 4056 if (ret) 4057 ret = -EFAULT; 4058 4059 out: 4060 kfree(args32); 4061 kfree(args64); 4062 return ret; 4063 } 4064 #endif 4065 4066 static long btrfs_ioctl_set_received_subvol(struct file *file, 4067 void __user *arg) 4068 { 4069 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4070 int ret = 0; 4071 4072 sa = memdup_user(arg, sizeof(*sa)); 4073 if (IS_ERR(sa)) 4074 return PTR_ERR(sa); 4075 4076 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa); 4077 4078 if (ret) 4079 goto out; 4080 4081 ret = copy_to_user(arg, sa, sizeof(*sa)); 4082 if (ret) 4083 ret = -EFAULT; 4084 4085 out: 4086 kfree(sa); 4087 return ret; 4088 } 4089 4090 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4091 void __user *arg) 4092 { 4093 size_t len; 4094 int ret; 4095 char label[BTRFS_LABEL_SIZE]; 4096 4097 spin_lock(&fs_info->super_lock); 4098 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4099 spin_unlock(&fs_info->super_lock); 4100 4101 len = strnlen(label, BTRFS_LABEL_SIZE); 4102 4103 if (len == BTRFS_LABEL_SIZE) { 4104 btrfs_warn(fs_info, 4105 "label is too long, return the first %zu bytes", 4106 --len); 4107 } 4108 4109 ret = copy_to_user(arg, label, len); 4110 4111 return ret ? -EFAULT : 0; 4112 } 4113 4114 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4115 { 4116 struct inode *inode = file_inode(file); 4117 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4118 struct btrfs_root *root = BTRFS_I(inode)->root; 4119 struct btrfs_super_block *super_block = fs_info->super_copy; 4120 struct btrfs_trans_handle *trans; 4121 char label[BTRFS_LABEL_SIZE]; 4122 int ret; 4123 4124 if (!capable(CAP_SYS_ADMIN)) 4125 return -EPERM; 4126 4127 if (copy_from_user(label, arg, sizeof(label))) 4128 return -EFAULT; 4129 4130 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4131 btrfs_err(fs_info, 4132 "unable to set label with more than %d bytes", 4133 BTRFS_LABEL_SIZE - 1); 4134 return -EINVAL; 4135 } 4136 4137 ret = mnt_want_write_file(file); 4138 if (ret) 4139 return ret; 4140 4141 trans = btrfs_start_transaction(root, 0); 4142 if (IS_ERR(trans)) { 4143 ret = PTR_ERR(trans); 4144 goto out_unlock; 4145 } 4146 4147 spin_lock(&fs_info->super_lock); 4148 strcpy(super_block->label, label); 4149 spin_unlock(&fs_info->super_lock); 4150 ret = btrfs_commit_transaction(trans); 4151 4152 out_unlock: 4153 mnt_drop_write_file(file); 4154 return ret; 4155 } 4156 4157 #define INIT_FEATURE_FLAGS(suffix) \ 4158 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4159 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4160 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4161 4162 int btrfs_ioctl_get_supported_features(void __user *arg) 4163 { 4164 static const struct btrfs_ioctl_feature_flags features[3] = { 4165 INIT_FEATURE_FLAGS(SUPP), 4166 INIT_FEATURE_FLAGS(SAFE_SET), 4167 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4168 }; 4169 4170 if (copy_to_user(arg, &features, sizeof(features))) 4171 return -EFAULT; 4172 4173 return 0; 4174 } 4175 4176 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4177 void __user *arg) 4178 { 4179 struct btrfs_super_block *super_block = fs_info->super_copy; 4180 struct btrfs_ioctl_feature_flags features; 4181 4182 features.compat_flags = btrfs_super_compat_flags(super_block); 4183 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4184 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4185 4186 if (copy_to_user(arg, &features, sizeof(features))) 4187 return -EFAULT; 4188 4189 return 0; 4190 } 4191 4192 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4193 enum btrfs_feature_set set, 4194 u64 change_mask, u64 flags, u64 supported_flags, 4195 u64 safe_set, u64 safe_clear) 4196 { 4197 const char *type = btrfs_feature_set_name(set); 4198 char *names; 4199 u64 disallowed, unsupported; 4200 u64 set_mask = flags & change_mask; 4201 u64 clear_mask = ~flags & change_mask; 4202 4203 unsupported = set_mask & ~supported_flags; 4204 if (unsupported) { 4205 names = btrfs_printable_features(set, unsupported); 4206 if (names) { 4207 btrfs_warn(fs_info, 4208 "this kernel does not support the %s feature bit%s", 4209 names, strchr(names, ',') ? "s" : ""); 4210 kfree(names); 4211 } else 4212 btrfs_warn(fs_info, 4213 "this kernel does not support %s bits 0x%llx", 4214 type, unsupported); 4215 return -EOPNOTSUPP; 4216 } 4217 4218 disallowed = set_mask & ~safe_set; 4219 if (disallowed) { 4220 names = btrfs_printable_features(set, disallowed); 4221 if (names) { 4222 btrfs_warn(fs_info, 4223 "can't set the %s feature bit%s while mounted", 4224 names, strchr(names, ',') ? "s" : ""); 4225 kfree(names); 4226 } else 4227 btrfs_warn(fs_info, 4228 "can't set %s bits 0x%llx while mounted", 4229 type, disallowed); 4230 return -EPERM; 4231 } 4232 4233 disallowed = clear_mask & ~safe_clear; 4234 if (disallowed) { 4235 names = btrfs_printable_features(set, disallowed); 4236 if (names) { 4237 btrfs_warn(fs_info, 4238 "can't clear the %s feature bit%s while mounted", 4239 names, strchr(names, ',') ? "s" : ""); 4240 kfree(names); 4241 } else 4242 btrfs_warn(fs_info, 4243 "can't clear %s bits 0x%llx while mounted", 4244 type, disallowed); 4245 return -EPERM; 4246 } 4247 4248 return 0; 4249 } 4250 4251 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4252 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4253 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4254 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4255 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4256 4257 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4258 { 4259 struct inode *inode = file_inode(file); 4260 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4261 struct btrfs_root *root = BTRFS_I(inode)->root; 4262 struct btrfs_super_block *super_block = fs_info->super_copy; 4263 struct btrfs_ioctl_feature_flags flags[2]; 4264 struct btrfs_trans_handle *trans; 4265 u64 newflags; 4266 int ret; 4267 4268 if (!capable(CAP_SYS_ADMIN)) 4269 return -EPERM; 4270 4271 if (copy_from_user(flags, arg, sizeof(flags))) 4272 return -EFAULT; 4273 4274 /* Nothing to do */ 4275 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4276 !flags[0].incompat_flags) 4277 return 0; 4278 4279 ret = check_feature(fs_info, flags[0].compat_flags, 4280 flags[1].compat_flags, COMPAT); 4281 if (ret) 4282 return ret; 4283 4284 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4285 flags[1].compat_ro_flags, COMPAT_RO); 4286 if (ret) 4287 return ret; 4288 4289 ret = check_feature(fs_info, flags[0].incompat_flags, 4290 flags[1].incompat_flags, INCOMPAT); 4291 if (ret) 4292 return ret; 4293 4294 ret = mnt_want_write_file(file); 4295 if (ret) 4296 return ret; 4297 4298 trans = btrfs_start_transaction(root, 0); 4299 if (IS_ERR(trans)) { 4300 ret = PTR_ERR(trans); 4301 goto out_drop_write; 4302 } 4303 4304 spin_lock(&fs_info->super_lock); 4305 newflags = btrfs_super_compat_flags(super_block); 4306 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4307 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4308 btrfs_set_super_compat_flags(super_block, newflags); 4309 4310 newflags = btrfs_super_compat_ro_flags(super_block); 4311 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4312 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4313 btrfs_set_super_compat_ro_flags(super_block, newflags); 4314 4315 newflags = btrfs_super_incompat_flags(super_block); 4316 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4317 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4318 btrfs_set_super_incompat_flags(super_block, newflags); 4319 spin_unlock(&fs_info->super_lock); 4320 4321 ret = btrfs_commit_transaction(trans); 4322 out_drop_write: 4323 mnt_drop_write_file(file); 4324 4325 return ret; 4326 } 4327 4328 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat) 4329 { 4330 struct btrfs_ioctl_send_args *arg; 4331 int ret; 4332 4333 if (compat) { 4334 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4335 struct btrfs_ioctl_send_args_32 args32; 4336 4337 ret = copy_from_user(&args32, argp, sizeof(args32)); 4338 if (ret) 4339 return -EFAULT; 4340 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4341 if (!arg) 4342 return -ENOMEM; 4343 arg->send_fd = args32.send_fd; 4344 arg->clone_sources_count = args32.clone_sources_count; 4345 arg->clone_sources = compat_ptr(args32.clone_sources); 4346 arg->parent_root = args32.parent_root; 4347 arg->flags = args32.flags; 4348 memcpy(arg->reserved, args32.reserved, 4349 sizeof(args32.reserved)); 4350 #else 4351 return -ENOTTY; 4352 #endif 4353 } else { 4354 arg = memdup_user(argp, sizeof(*arg)); 4355 if (IS_ERR(arg)) 4356 return PTR_ERR(arg); 4357 } 4358 ret = btrfs_ioctl_send(inode, arg); 4359 kfree(arg); 4360 return ret; 4361 } 4362 4363 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 4364 bool compat) 4365 { 4366 struct btrfs_ioctl_encoded_io_args args = { 0 }; 4367 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 4368 flags); 4369 size_t copy_end; 4370 struct iovec iovstack[UIO_FASTIOV]; 4371 struct iovec *iov = iovstack; 4372 struct iov_iter iter; 4373 loff_t pos; 4374 struct kiocb kiocb; 4375 ssize_t ret; 4376 4377 if (!capable(CAP_SYS_ADMIN)) { 4378 ret = -EPERM; 4379 goto out_acct; 4380 } 4381 4382 if (compat) { 4383 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4384 struct btrfs_ioctl_encoded_io_args_32 args32; 4385 4386 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 4387 flags); 4388 if (copy_from_user(&args32, argp, copy_end)) { 4389 ret = -EFAULT; 4390 goto out_acct; 4391 } 4392 args.iov = compat_ptr(args32.iov); 4393 args.iovcnt = args32.iovcnt; 4394 args.offset = args32.offset; 4395 args.flags = args32.flags; 4396 #else 4397 return -ENOTTY; 4398 #endif 4399 } else { 4400 copy_end = copy_end_kernel; 4401 if (copy_from_user(&args, argp, copy_end)) { 4402 ret = -EFAULT; 4403 goto out_acct; 4404 } 4405 } 4406 if (args.flags != 0) { 4407 ret = -EINVAL; 4408 goto out_acct; 4409 } 4410 4411 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4412 &iov, &iter); 4413 if (ret < 0) 4414 goto out_acct; 4415 4416 if (iov_iter_count(&iter) == 0) { 4417 ret = 0; 4418 goto out_iov; 4419 } 4420 pos = args.offset; 4421 ret = rw_verify_area(READ, file, &pos, args.len); 4422 if (ret < 0) 4423 goto out_iov; 4424 4425 init_sync_kiocb(&kiocb, file); 4426 kiocb.ki_pos = pos; 4427 4428 ret = btrfs_encoded_read(&kiocb, &iter, &args); 4429 if (ret >= 0) { 4430 fsnotify_access(file); 4431 if (copy_to_user(argp + copy_end, 4432 (char *)&args + copy_end_kernel, 4433 sizeof(args) - copy_end_kernel)) 4434 ret = -EFAULT; 4435 } 4436 4437 out_iov: 4438 kfree(iov); 4439 out_acct: 4440 if (ret > 0) 4441 add_rchar(current, ret); 4442 inc_syscr(current); 4443 return ret; 4444 } 4445 4446 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 4447 { 4448 struct btrfs_ioctl_encoded_io_args args; 4449 struct iovec iovstack[UIO_FASTIOV]; 4450 struct iovec *iov = iovstack; 4451 struct iov_iter iter; 4452 loff_t pos; 4453 struct kiocb kiocb; 4454 ssize_t ret; 4455 4456 if (!capable(CAP_SYS_ADMIN)) { 4457 ret = -EPERM; 4458 goto out_acct; 4459 } 4460 4461 if (!(file->f_mode & FMODE_WRITE)) { 4462 ret = -EBADF; 4463 goto out_acct; 4464 } 4465 4466 if (compat) { 4467 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4468 struct btrfs_ioctl_encoded_io_args_32 args32; 4469 4470 if (copy_from_user(&args32, argp, sizeof(args32))) { 4471 ret = -EFAULT; 4472 goto out_acct; 4473 } 4474 args.iov = compat_ptr(args32.iov); 4475 args.iovcnt = args32.iovcnt; 4476 args.offset = args32.offset; 4477 args.flags = args32.flags; 4478 args.len = args32.len; 4479 args.unencoded_len = args32.unencoded_len; 4480 args.unencoded_offset = args32.unencoded_offset; 4481 args.compression = args32.compression; 4482 args.encryption = args32.encryption; 4483 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 4484 #else 4485 return -ENOTTY; 4486 #endif 4487 } else { 4488 if (copy_from_user(&args, argp, sizeof(args))) { 4489 ret = -EFAULT; 4490 goto out_acct; 4491 } 4492 } 4493 4494 ret = -EINVAL; 4495 if (args.flags != 0) 4496 goto out_acct; 4497 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 4498 goto out_acct; 4499 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 4500 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 4501 goto out_acct; 4502 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 4503 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 4504 goto out_acct; 4505 if (args.unencoded_offset > args.unencoded_len) 4506 goto out_acct; 4507 if (args.len > args.unencoded_len - args.unencoded_offset) 4508 goto out_acct; 4509 4510 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4511 &iov, &iter); 4512 if (ret < 0) 4513 goto out_acct; 4514 4515 file_start_write(file); 4516 4517 if (iov_iter_count(&iter) == 0) { 4518 ret = 0; 4519 goto out_end_write; 4520 } 4521 pos = args.offset; 4522 ret = rw_verify_area(WRITE, file, &pos, args.len); 4523 if (ret < 0) 4524 goto out_end_write; 4525 4526 init_sync_kiocb(&kiocb, file); 4527 ret = kiocb_set_rw_flags(&kiocb, 0); 4528 if (ret) 4529 goto out_end_write; 4530 kiocb.ki_pos = pos; 4531 4532 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 4533 if (ret > 0) 4534 fsnotify_modify(file); 4535 4536 out_end_write: 4537 file_end_write(file); 4538 kfree(iov); 4539 out_acct: 4540 if (ret > 0) 4541 add_wchar(current, ret); 4542 inc_syscw(current); 4543 return ret; 4544 } 4545 4546 long btrfs_ioctl(struct file *file, unsigned int 4547 cmd, unsigned long arg) 4548 { 4549 struct inode *inode = file_inode(file); 4550 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4551 struct btrfs_root *root = BTRFS_I(inode)->root; 4552 void __user *argp = (void __user *)arg; 4553 4554 switch (cmd) { 4555 case FS_IOC_GETVERSION: 4556 return btrfs_ioctl_getversion(inode, argp); 4557 case FS_IOC_GETFSLABEL: 4558 return btrfs_ioctl_get_fslabel(fs_info, argp); 4559 case FS_IOC_SETFSLABEL: 4560 return btrfs_ioctl_set_fslabel(file, argp); 4561 case FITRIM: 4562 return btrfs_ioctl_fitrim(fs_info, argp); 4563 case BTRFS_IOC_SNAP_CREATE: 4564 return btrfs_ioctl_snap_create(file, argp, 0); 4565 case BTRFS_IOC_SNAP_CREATE_V2: 4566 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4567 case BTRFS_IOC_SUBVOL_CREATE: 4568 return btrfs_ioctl_snap_create(file, argp, 1); 4569 case BTRFS_IOC_SUBVOL_CREATE_V2: 4570 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4571 case BTRFS_IOC_SNAP_DESTROY: 4572 return btrfs_ioctl_snap_destroy(file, argp, false); 4573 case BTRFS_IOC_SNAP_DESTROY_V2: 4574 return btrfs_ioctl_snap_destroy(file, argp, true); 4575 case BTRFS_IOC_SUBVOL_GETFLAGS: 4576 return btrfs_ioctl_subvol_getflags(inode, argp); 4577 case BTRFS_IOC_SUBVOL_SETFLAGS: 4578 return btrfs_ioctl_subvol_setflags(file, argp); 4579 case BTRFS_IOC_DEFAULT_SUBVOL: 4580 return btrfs_ioctl_default_subvol(file, argp); 4581 case BTRFS_IOC_DEFRAG: 4582 return btrfs_ioctl_defrag(file, NULL); 4583 case BTRFS_IOC_DEFRAG_RANGE: 4584 return btrfs_ioctl_defrag(file, argp); 4585 case BTRFS_IOC_RESIZE: 4586 return btrfs_ioctl_resize(file, argp); 4587 case BTRFS_IOC_ADD_DEV: 4588 return btrfs_ioctl_add_dev(fs_info, argp); 4589 case BTRFS_IOC_RM_DEV: 4590 return btrfs_ioctl_rm_dev(file, argp); 4591 case BTRFS_IOC_RM_DEV_V2: 4592 return btrfs_ioctl_rm_dev_v2(file, argp); 4593 case BTRFS_IOC_FS_INFO: 4594 return btrfs_ioctl_fs_info(fs_info, argp); 4595 case BTRFS_IOC_DEV_INFO: 4596 return btrfs_ioctl_dev_info(fs_info, argp); 4597 case BTRFS_IOC_TREE_SEARCH: 4598 return btrfs_ioctl_tree_search(inode, argp); 4599 case BTRFS_IOC_TREE_SEARCH_V2: 4600 return btrfs_ioctl_tree_search_v2(inode, argp); 4601 case BTRFS_IOC_INO_LOOKUP: 4602 return btrfs_ioctl_ino_lookup(root, argp); 4603 case BTRFS_IOC_INO_PATHS: 4604 return btrfs_ioctl_ino_to_path(root, argp); 4605 case BTRFS_IOC_LOGICAL_INO: 4606 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4607 case BTRFS_IOC_LOGICAL_INO_V2: 4608 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4609 case BTRFS_IOC_SPACE_INFO: 4610 return btrfs_ioctl_space_info(fs_info, argp); 4611 case BTRFS_IOC_SYNC: { 4612 int ret; 4613 4614 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4615 if (ret) 4616 return ret; 4617 ret = btrfs_sync_fs(inode->i_sb, 1); 4618 /* 4619 * The transaction thread may want to do more work, 4620 * namely it pokes the cleaner kthread that will start 4621 * processing uncleaned subvols. 4622 */ 4623 wake_up_process(fs_info->transaction_kthread); 4624 return ret; 4625 } 4626 case BTRFS_IOC_START_SYNC: 4627 return btrfs_ioctl_start_sync(root, argp); 4628 case BTRFS_IOC_WAIT_SYNC: 4629 return btrfs_ioctl_wait_sync(fs_info, argp); 4630 case BTRFS_IOC_SCRUB: 4631 return btrfs_ioctl_scrub(file, argp); 4632 case BTRFS_IOC_SCRUB_CANCEL: 4633 return btrfs_ioctl_scrub_cancel(fs_info); 4634 case BTRFS_IOC_SCRUB_PROGRESS: 4635 return btrfs_ioctl_scrub_progress(fs_info, argp); 4636 case BTRFS_IOC_BALANCE_V2: 4637 return btrfs_ioctl_balance(file, argp); 4638 case BTRFS_IOC_BALANCE_CTL: 4639 return btrfs_ioctl_balance_ctl(fs_info, arg); 4640 case BTRFS_IOC_BALANCE_PROGRESS: 4641 return btrfs_ioctl_balance_progress(fs_info, argp); 4642 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4643 return btrfs_ioctl_set_received_subvol(file, argp); 4644 #ifdef CONFIG_64BIT 4645 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4646 return btrfs_ioctl_set_received_subvol_32(file, argp); 4647 #endif 4648 case BTRFS_IOC_SEND: 4649 return _btrfs_ioctl_send(inode, argp, false); 4650 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4651 case BTRFS_IOC_SEND_32: 4652 return _btrfs_ioctl_send(inode, argp, true); 4653 #endif 4654 case BTRFS_IOC_GET_DEV_STATS: 4655 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4656 case BTRFS_IOC_QUOTA_CTL: 4657 return btrfs_ioctl_quota_ctl(file, argp); 4658 case BTRFS_IOC_QGROUP_ASSIGN: 4659 return btrfs_ioctl_qgroup_assign(file, argp); 4660 case BTRFS_IOC_QGROUP_CREATE: 4661 return btrfs_ioctl_qgroup_create(file, argp); 4662 case BTRFS_IOC_QGROUP_LIMIT: 4663 return btrfs_ioctl_qgroup_limit(file, argp); 4664 case BTRFS_IOC_QUOTA_RESCAN: 4665 return btrfs_ioctl_quota_rescan(file, argp); 4666 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4667 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4668 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4669 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4670 case BTRFS_IOC_DEV_REPLACE: 4671 return btrfs_ioctl_dev_replace(fs_info, argp); 4672 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4673 return btrfs_ioctl_get_supported_features(argp); 4674 case BTRFS_IOC_GET_FEATURES: 4675 return btrfs_ioctl_get_features(fs_info, argp); 4676 case BTRFS_IOC_SET_FEATURES: 4677 return btrfs_ioctl_set_features(file, argp); 4678 case BTRFS_IOC_GET_SUBVOL_INFO: 4679 return btrfs_ioctl_get_subvol_info(inode, argp); 4680 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4681 return btrfs_ioctl_get_subvol_rootref(root, argp); 4682 case BTRFS_IOC_INO_LOOKUP_USER: 4683 return btrfs_ioctl_ino_lookup_user(file, argp); 4684 case FS_IOC_ENABLE_VERITY: 4685 return fsverity_ioctl_enable(file, (const void __user *)argp); 4686 case FS_IOC_MEASURE_VERITY: 4687 return fsverity_ioctl_measure(file, argp); 4688 case BTRFS_IOC_ENCODED_READ: 4689 return btrfs_ioctl_encoded_read(file, argp, false); 4690 case BTRFS_IOC_ENCODED_WRITE: 4691 return btrfs_ioctl_encoded_write(file, argp, false); 4692 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4693 case BTRFS_IOC_ENCODED_READ_32: 4694 return btrfs_ioctl_encoded_read(file, argp, true); 4695 case BTRFS_IOC_ENCODED_WRITE_32: 4696 return btrfs_ioctl_encoded_write(file, argp, true); 4697 #endif 4698 } 4699 4700 return -ENOTTY; 4701 } 4702 4703 #ifdef CONFIG_COMPAT 4704 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4705 { 4706 /* 4707 * These all access 32-bit values anyway so no further 4708 * handling is necessary. 4709 */ 4710 switch (cmd) { 4711 case FS_IOC32_GETVERSION: 4712 cmd = FS_IOC_GETVERSION; 4713 break; 4714 } 4715 4716 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4717 } 4718 #endif 4719