xref: /openbmc/linux/fs/btrfs/ioctl.c (revision e190bfe5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include "compat.h"
44 #include "ctree.h"
45 #include "disk-io.h"
46 #include "transaction.h"
47 #include "btrfs_inode.h"
48 #include "ioctl.h"
49 #include "print-tree.h"
50 #include "volumes.h"
51 #include "locking.h"
52 
53 /* Mask out flags that are inappropriate for the given type of inode. */
54 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
55 {
56 	if (S_ISDIR(mode))
57 		return flags;
58 	else if (S_ISREG(mode))
59 		return flags & ~FS_DIRSYNC_FL;
60 	else
61 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
62 }
63 
64 /*
65  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
66  */
67 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
68 {
69 	unsigned int iflags = 0;
70 
71 	if (flags & BTRFS_INODE_SYNC)
72 		iflags |= FS_SYNC_FL;
73 	if (flags & BTRFS_INODE_IMMUTABLE)
74 		iflags |= FS_IMMUTABLE_FL;
75 	if (flags & BTRFS_INODE_APPEND)
76 		iflags |= FS_APPEND_FL;
77 	if (flags & BTRFS_INODE_NODUMP)
78 		iflags |= FS_NODUMP_FL;
79 	if (flags & BTRFS_INODE_NOATIME)
80 		iflags |= FS_NOATIME_FL;
81 	if (flags & BTRFS_INODE_DIRSYNC)
82 		iflags |= FS_DIRSYNC_FL;
83 
84 	return iflags;
85 }
86 
87 /*
88  * Update inode->i_flags based on the btrfs internal flags.
89  */
90 void btrfs_update_iflags(struct inode *inode)
91 {
92 	struct btrfs_inode *ip = BTRFS_I(inode);
93 
94 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
95 
96 	if (ip->flags & BTRFS_INODE_SYNC)
97 		inode->i_flags |= S_SYNC;
98 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
99 		inode->i_flags |= S_IMMUTABLE;
100 	if (ip->flags & BTRFS_INODE_APPEND)
101 		inode->i_flags |= S_APPEND;
102 	if (ip->flags & BTRFS_INODE_NOATIME)
103 		inode->i_flags |= S_NOATIME;
104 	if (ip->flags & BTRFS_INODE_DIRSYNC)
105 		inode->i_flags |= S_DIRSYNC;
106 }
107 
108 /*
109  * Inherit flags from the parent inode.
110  *
111  * Unlike extN we don't have any flags we don't want to inherit currently.
112  */
113 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
114 {
115 	unsigned int flags;
116 
117 	if (!dir)
118 		return;
119 
120 	flags = BTRFS_I(dir)->flags;
121 
122 	if (S_ISREG(inode->i_mode))
123 		flags &= ~BTRFS_INODE_DIRSYNC;
124 	else if (!S_ISDIR(inode->i_mode))
125 		flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME);
126 
127 	BTRFS_I(inode)->flags = flags;
128 	btrfs_update_iflags(inode);
129 }
130 
131 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
132 {
133 	struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
134 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
135 
136 	if (copy_to_user(arg, &flags, sizeof(flags)))
137 		return -EFAULT;
138 	return 0;
139 }
140 
141 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
142 {
143 	struct inode *inode = file->f_path.dentry->d_inode;
144 	struct btrfs_inode *ip = BTRFS_I(inode);
145 	struct btrfs_root *root = ip->root;
146 	struct btrfs_trans_handle *trans;
147 	unsigned int flags, oldflags;
148 	int ret;
149 
150 	if (copy_from_user(&flags, arg, sizeof(flags)))
151 		return -EFAULT;
152 
153 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
154 		      FS_NOATIME_FL | FS_NODUMP_FL | \
155 		      FS_SYNC_FL | FS_DIRSYNC_FL))
156 		return -EOPNOTSUPP;
157 
158 	if (!is_owner_or_cap(inode))
159 		return -EACCES;
160 
161 	mutex_lock(&inode->i_mutex);
162 
163 	flags = btrfs_mask_flags(inode->i_mode, flags);
164 	oldflags = btrfs_flags_to_ioctl(ip->flags);
165 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
166 		if (!capable(CAP_LINUX_IMMUTABLE)) {
167 			ret = -EPERM;
168 			goto out_unlock;
169 		}
170 	}
171 
172 	ret = mnt_want_write(file->f_path.mnt);
173 	if (ret)
174 		goto out_unlock;
175 
176 	if (flags & FS_SYNC_FL)
177 		ip->flags |= BTRFS_INODE_SYNC;
178 	else
179 		ip->flags &= ~BTRFS_INODE_SYNC;
180 	if (flags & FS_IMMUTABLE_FL)
181 		ip->flags |= BTRFS_INODE_IMMUTABLE;
182 	else
183 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
184 	if (flags & FS_APPEND_FL)
185 		ip->flags |= BTRFS_INODE_APPEND;
186 	else
187 		ip->flags &= ~BTRFS_INODE_APPEND;
188 	if (flags & FS_NODUMP_FL)
189 		ip->flags |= BTRFS_INODE_NODUMP;
190 	else
191 		ip->flags &= ~BTRFS_INODE_NODUMP;
192 	if (flags & FS_NOATIME_FL)
193 		ip->flags |= BTRFS_INODE_NOATIME;
194 	else
195 		ip->flags &= ~BTRFS_INODE_NOATIME;
196 	if (flags & FS_DIRSYNC_FL)
197 		ip->flags |= BTRFS_INODE_DIRSYNC;
198 	else
199 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
200 
201 
202 	trans = btrfs_join_transaction(root, 1);
203 	BUG_ON(!trans);
204 
205 	ret = btrfs_update_inode(trans, root, inode);
206 	BUG_ON(ret);
207 
208 	btrfs_update_iflags(inode);
209 	inode->i_ctime = CURRENT_TIME;
210 	btrfs_end_transaction(trans, root);
211 
212 	mnt_drop_write(file->f_path.mnt);
213  out_unlock:
214 	mutex_unlock(&inode->i_mutex);
215 	return 0;
216 }
217 
218 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
219 {
220 	struct inode *inode = file->f_path.dentry->d_inode;
221 
222 	return put_user(inode->i_generation, arg);
223 }
224 
225 static noinline int create_subvol(struct btrfs_root *root,
226 				  struct dentry *dentry,
227 				  char *name, int namelen)
228 {
229 	struct btrfs_trans_handle *trans;
230 	struct btrfs_key key;
231 	struct btrfs_root_item root_item;
232 	struct btrfs_inode_item *inode_item;
233 	struct extent_buffer *leaf;
234 	struct btrfs_root *new_root;
235 	struct inode *dir = dentry->d_parent->d_inode;
236 	int ret;
237 	int err;
238 	u64 objectid;
239 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
240 	u64 index = 0;
241 
242 	ret = btrfs_find_free_objectid(NULL, root->fs_info->tree_root,
243 				       0, &objectid);
244 	if (ret)
245 		return ret;
246 	/*
247 	 * 1 - inode item
248 	 * 2 - refs
249 	 * 1 - root item
250 	 * 2 - dir items
251 	 */
252 	trans = btrfs_start_transaction(root, 6);
253 	if (IS_ERR(trans))
254 		return PTR_ERR(trans);
255 
256 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
257 				      0, objectid, NULL, 0, 0, 0);
258 	if (IS_ERR(leaf)) {
259 		ret = PTR_ERR(leaf);
260 		goto fail;
261 	}
262 
263 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
264 	btrfs_set_header_bytenr(leaf, leaf->start);
265 	btrfs_set_header_generation(leaf, trans->transid);
266 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
267 	btrfs_set_header_owner(leaf, objectid);
268 
269 	write_extent_buffer(leaf, root->fs_info->fsid,
270 			    (unsigned long)btrfs_header_fsid(leaf),
271 			    BTRFS_FSID_SIZE);
272 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
273 			    (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
274 			    BTRFS_UUID_SIZE);
275 	btrfs_mark_buffer_dirty(leaf);
276 
277 	inode_item = &root_item.inode;
278 	memset(inode_item, 0, sizeof(*inode_item));
279 	inode_item->generation = cpu_to_le64(1);
280 	inode_item->size = cpu_to_le64(3);
281 	inode_item->nlink = cpu_to_le32(1);
282 	inode_item->nbytes = cpu_to_le64(root->leafsize);
283 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
284 
285 	btrfs_set_root_bytenr(&root_item, leaf->start);
286 	btrfs_set_root_generation(&root_item, trans->transid);
287 	btrfs_set_root_level(&root_item, 0);
288 	btrfs_set_root_refs(&root_item, 1);
289 	btrfs_set_root_used(&root_item, leaf->len);
290 	btrfs_set_root_last_snapshot(&root_item, 0);
291 
292 	memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
293 	root_item.drop_level = 0;
294 
295 	btrfs_tree_unlock(leaf);
296 	free_extent_buffer(leaf);
297 	leaf = NULL;
298 
299 	btrfs_set_root_dirid(&root_item, new_dirid);
300 
301 	key.objectid = objectid;
302 	key.offset = 0;
303 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
304 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
305 				&root_item);
306 	if (ret)
307 		goto fail;
308 
309 	key.offset = (u64)-1;
310 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
311 	BUG_ON(IS_ERR(new_root));
312 
313 	btrfs_record_root_in_trans(trans, new_root);
314 
315 	ret = btrfs_create_subvol_root(trans, new_root, new_dirid,
316 				       BTRFS_I(dir)->block_group);
317 	/*
318 	 * insert the directory item
319 	 */
320 	ret = btrfs_set_inode_index(dir, &index);
321 	BUG_ON(ret);
322 
323 	ret = btrfs_insert_dir_item(trans, root,
324 				    name, namelen, dir->i_ino, &key,
325 				    BTRFS_FT_DIR, index);
326 	if (ret)
327 		goto fail;
328 
329 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
330 	ret = btrfs_update_inode(trans, root, dir);
331 	BUG_ON(ret);
332 
333 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
334 				 objectid, root->root_key.objectid,
335 				 dir->i_ino, index, name, namelen);
336 
337 	BUG_ON(ret);
338 
339 	d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
340 fail:
341 	err = btrfs_commit_transaction(trans, root);
342 	if (err && !ret)
343 		ret = err;
344 	return ret;
345 }
346 
347 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry)
348 {
349 	struct inode *inode;
350 	struct btrfs_pending_snapshot *pending_snapshot;
351 	struct btrfs_trans_handle *trans;
352 	int ret;
353 
354 	if (!root->ref_cows)
355 		return -EINVAL;
356 
357 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
358 	if (!pending_snapshot)
359 		return -ENOMEM;
360 
361 	btrfs_init_block_rsv(&pending_snapshot->block_rsv);
362 	pending_snapshot->dentry = dentry;
363 	pending_snapshot->root = root;
364 
365 	trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
366 	if (IS_ERR(trans)) {
367 		ret = PTR_ERR(trans);
368 		goto fail;
369 	}
370 
371 	ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
372 	BUG_ON(ret);
373 
374 	list_add(&pending_snapshot->list,
375 		 &trans->transaction->pending_snapshots);
376 	ret = btrfs_commit_transaction(trans, root->fs_info->extent_root);
377 	BUG_ON(ret);
378 
379 	ret = pending_snapshot->error;
380 	if (ret)
381 		goto fail;
382 
383 	btrfs_orphan_cleanup(pending_snapshot->snap);
384 
385 	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
386 	if (IS_ERR(inode)) {
387 		ret = PTR_ERR(inode);
388 		goto fail;
389 	}
390 	BUG_ON(!inode);
391 	d_instantiate(dentry, inode);
392 	ret = 0;
393 fail:
394 	kfree(pending_snapshot);
395 	return ret;
396 }
397 
398 /* copy of may_create in fs/namei.c() */
399 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
400 {
401 	if (child->d_inode)
402 		return -EEXIST;
403 	if (IS_DEADDIR(dir))
404 		return -ENOENT;
405 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
406 }
407 
408 /*
409  * Create a new subvolume below @parent.  This is largely modeled after
410  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
411  * inside this filesystem so it's quite a bit simpler.
412  */
413 static noinline int btrfs_mksubvol(struct path *parent,
414 				   char *name, int namelen,
415 				   struct btrfs_root *snap_src)
416 {
417 	struct inode *dir  = parent->dentry->d_inode;
418 	struct dentry *dentry;
419 	int error;
420 
421 	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
422 
423 	dentry = lookup_one_len(name, parent->dentry, namelen);
424 	error = PTR_ERR(dentry);
425 	if (IS_ERR(dentry))
426 		goto out_unlock;
427 
428 	error = -EEXIST;
429 	if (dentry->d_inode)
430 		goto out_dput;
431 
432 	error = mnt_want_write(parent->mnt);
433 	if (error)
434 		goto out_dput;
435 
436 	error = btrfs_may_create(dir, dentry);
437 	if (error)
438 		goto out_drop_write;
439 
440 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
441 
442 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
443 		goto out_up_read;
444 
445 	if (snap_src) {
446 		error = create_snapshot(snap_src, dentry);
447 	} else {
448 		error = create_subvol(BTRFS_I(dir)->root, dentry,
449 				      name, namelen);
450 	}
451 	if (!error)
452 		fsnotify_mkdir(dir, dentry);
453 out_up_read:
454 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
455 out_drop_write:
456 	mnt_drop_write(parent->mnt);
457 out_dput:
458 	dput(dentry);
459 out_unlock:
460 	mutex_unlock(&dir->i_mutex);
461 	return error;
462 }
463 
464 static int should_defrag_range(struct inode *inode, u64 start, u64 len,
465 			       int thresh, u64 *last_len, u64 *skip,
466 			       u64 *defrag_end)
467 {
468 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
469 	struct extent_map *em = NULL;
470 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
471 	int ret = 1;
472 
473 
474 	if (thresh == 0)
475 		thresh = 256 * 1024;
476 
477 	/*
478 	 * make sure that once we start defragging and extent, we keep on
479 	 * defragging it
480 	 */
481 	if (start < *defrag_end)
482 		return 1;
483 
484 	*skip = 0;
485 
486 	/*
487 	 * hopefully we have this extent in the tree already, try without
488 	 * the full extent lock
489 	 */
490 	read_lock(&em_tree->lock);
491 	em = lookup_extent_mapping(em_tree, start, len);
492 	read_unlock(&em_tree->lock);
493 
494 	if (!em) {
495 		/* get the big lock and read metadata off disk */
496 		lock_extent(io_tree, start, start + len - 1, GFP_NOFS);
497 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
498 		unlock_extent(io_tree, start, start + len - 1, GFP_NOFS);
499 
500 		if (IS_ERR(em))
501 			return 0;
502 	}
503 
504 	/* this will cover holes, and inline extents */
505 	if (em->block_start >= EXTENT_MAP_LAST_BYTE)
506 		ret = 0;
507 
508 	/*
509 	 * we hit a real extent, if it is big don't bother defragging it again
510 	 */
511 	if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
512 		ret = 0;
513 
514 	/*
515 	 * last_len ends up being a counter of how many bytes we've defragged.
516 	 * every time we choose not to defrag an extent, we reset *last_len
517 	 * so that the next tiny extent will force a defrag.
518 	 *
519 	 * The end result of this is that tiny extents before a single big
520 	 * extent will force at least part of that big extent to be defragged.
521 	 */
522 	if (ret) {
523 		*last_len += len;
524 		*defrag_end = extent_map_end(em);
525 	} else {
526 		*last_len = 0;
527 		*skip = extent_map_end(em);
528 		*defrag_end = 0;
529 	}
530 
531 	free_extent_map(em);
532 	return ret;
533 }
534 
535 static int btrfs_defrag_file(struct file *file,
536 			     struct btrfs_ioctl_defrag_range_args *range)
537 {
538 	struct inode *inode = fdentry(file)->d_inode;
539 	struct btrfs_root *root = BTRFS_I(inode)->root;
540 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
541 	struct btrfs_ordered_extent *ordered;
542 	struct page *page;
543 	unsigned long last_index;
544 	unsigned long ra_pages = root->fs_info->bdi.ra_pages;
545 	unsigned long total_read = 0;
546 	u64 page_start;
547 	u64 page_end;
548 	u64 last_len = 0;
549 	u64 skip = 0;
550 	u64 defrag_end = 0;
551 	unsigned long i;
552 	int ret;
553 
554 	if (inode->i_size == 0)
555 		return 0;
556 
557 	if (range->start + range->len > range->start) {
558 		last_index = min_t(u64, inode->i_size - 1,
559 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
560 	} else {
561 		last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
562 	}
563 
564 	i = range->start >> PAGE_CACHE_SHIFT;
565 	while (i <= last_index) {
566 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
567 					PAGE_CACHE_SIZE,
568 					range->extent_thresh,
569 					&last_len, &skip,
570 					&defrag_end)) {
571 			unsigned long next;
572 			/*
573 			 * the should_defrag function tells us how much to skip
574 			 * bump our counter by the suggested amount
575 			 */
576 			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
577 			i = max(i + 1, next);
578 			continue;
579 		}
580 
581 		if (total_read % ra_pages == 0) {
582 			btrfs_force_ra(inode->i_mapping, &file->f_ra, file, i,
583 				       min(last_index, i + ra_pages - 1));
584 		}
585 		total_read++;
586 		mutex_lock(&inode->i_mutex);
587 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
588 			BTRFS_I(inode)->force_compress = 1;
589 
590 		ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
591 		if (ret)
592 			goto err_unlock;
593 again:
594 		if (inode->i_size == 0 ||
595 		    i > ((inode->i_size - 1) >> PAGE_CACHE_SHIFT)) {
596 			ret = 0;
597 			goto err_reservations;
598 		}
599 
600 		page = grab_cache_page(inode->i_mapping, i);
601 		if (!page) {
602 			ret = -ENOMEM;
603 			goto err_reservations;
604 		}
605 
606 		if (!PageUptodate(page)) {
607 			btrfs_readpage(NULL, page);
608 			lock_page(page);
609 			if (!PageUptodate(page)) {
610 				unlock_page(page);
611 				page_cache_release(page);
612 				ret = -EIO;
613 				goto err_reservations;
614 			}
615 		}
616 
617 		if (page->mapping != inode->i_mapping) {
618 			unlock_page(page);
619 			page_cache_release(page);
620 			goto again;
621 		}
622 
623 		wait_on_page_writeback(page);
624 
625 		if (PageDirty(page)) {
626 			btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
627 			goto loop_unlock;
628 		}
629 
630 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
631 		page_end = page_start + PAGE_CACHE_SIZE - 1;
632 		lock_extent(io_tree, page_start, page_end, GFP_NOFS);
633 
634 		ordered = btrfs_lookup_ordered_extent(inode, page_start);
635 		if (ordered) {
636 			unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
637 			unlock_page(page);
638 			page_cache_release(page);
639 			btrfs_start_ordered_extent(inode, ordered, 1);
640 			btrfs_put_ordered_extent(ordered);
641 			goto again;
642 		}
643 		set_page_extent_mapped(page);
644 
645 		/*
646 		 * this makes sure page_mkwrite is called on the
647 		 * page if it is dirtied again later
648 		 */
649 		clear_page_dirty_for_io(page);
650 		clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start,
651 				  page_end, EXTENT_DIRTY | EXTENT_DELALLOC |
652 				  EXTENT_DO_ACCOUNTING, GFP_NOFS);
653 
654 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
655 		ClearPageChecked(page);
656 		set_page_dirty(page);
657 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
658 
659 loop_unlock:
660 		unlock_page(page);
661 		page_cache_release(page);
662 		mutex_unlock(&inode->i_mutex);
663 
664 		balance_dirty_pages_ratelimited_nr(inode->i_mapping, 1);
665 		i++;
666 	}
667 
668 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
669 		filemap_flush(inode->i_mapping);
670 
671 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
672 		/* the filemap_flush will queue IO into the worker threads, but
673 		 * we have to make sure the IO is actually started and that
674 		 * ordered extents get created before we return
675 		 */
676 		atomic_inc(&root->fs_info->async_submit_draining);
677 		while (atomic_read(&root->fs_info->nr_async_submits) ||
678 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
679 			wait_event(root->fs_info->async_submit_wait,
680 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
681 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
682 		}
683 		atomic_dec(&root->fs_info->async_submit_draining);
684 
685 		mutex_lock(&inode->i_mutex);
686 		BTRFS_I(inode)->force_compress = 0;
687 		mutex_unlock(&inode->i_mutex);
688 	}
689 
690 	return 0;
691 
692 err_reservations:
693 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
694 err_unlock:
695 	mutex_unlock(&inode->i_mutex);
696 	return ret;
697 }
698 
699 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
700 					void __user *arg)
701 {
702 	u64 new_size;
703 	u64 old_size;
704 	u64 devid = 1;
705 	struct btrfs_ioctl_vol_args *vol_args;
706 	struct btrfs_trans_handle *trans;
707 	struct btrfs_device *device = NULL;
708 	char *sizestr;
709 	char *devstr = NULL;
710 	int ret = 0;
711 	int namelen;
712 	int mod = 0;
713 
714 	if (root->fs_info->sb->s_flags & MS_RDONLY)
715 		return -EROFS;
716 
717 	if (!capable(CAP_SYS_ADMIN))
718 		return -EPERM;
719 
720 	vol_args = memdup_user(arg, sizeof(*vol_args));
721 	if (IS_ERR(vol_args))
722 		return PTR_ERR(vol_args);
723 
724 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
725 	namelen = strlen(vol_args->name);
726 
727 	mutex_lock(&root->fs_info->volume_mutex);
728 	sizestr = vol_args->name;
729 	devstr = strchr(sizestr, ':');
730 	if (devstr) {
731 		char *end;
732 		sizestr = devstr + 1;
733 		*devstr = '\0';
734 		devstr = vol_args->name;
735 		devid = simple_strtoull(devstr, &end, 10);
736 		printk(KERN_INFO "resizing devid %llu\n",
737 		       (unsigned long long)devid);
738 	}
739 	device = btrfs_find_device(root, devid, NULL, NULL);
740 	if (!device) {
741 		printk(KERN_INFO "resizer unable to find device %llu\n",
742 		       (unsigned long long)devid);
743 		ret = -EINVAL;
744 		goto out_unlock;
745 	}
746 	if (!strcmp(sizestr, "max"))
747 		new_size = device->bdev->bd_inode->i_size;
748 	else {
749 		if (sizestr[0] == '-') {
750 			mod = -1;
751 			sizestr++;
752 		} else if (sizestr[0] == '+') {
753 			mod = 1;
754 			sizestr++;
755 		}
756 		new_size = memparse(sizestr, NULL);
757 		if (new_size == 0) {
758 			ret = -EINVAL;
759 			goto out_unlock;
760 		}
761 	}
762 
763 	old_size = device->total_bytes;
764 
765 	if (mod < 0) {
766 		if (new_size > old_size) {
767 			ret = -EINVAL;
768 			goto out_unlock;
769 		}
770 		new_size = old_size - new_size;
771 	} else if (mod > 0) {
772 		new_size = old_size + new_size;
773 	}
774 
775 	if (new_size < 256 * 1024 * 1024) {
776 		ret = -EINVAL;
777 		goto out_unlock;
778 	}
779 	if (new_size > device->bdev->bd_inode->i_size) {
780 		ret = -EFBIG;
781 		goto out_unlock;
782 	}
783 
784 	do_div(new_size, root->sectorsize);
785 	new_size *= root->sectorsize;
786 
787 	printk(KERN_INFO "new size for %s is %llu\n",
788 		device->name, (unsigned long long)new_size);
789 
790 	if (new_size > old_size) {
791 		trans = btrfs_start_transaction(root, 0);
792 		ret = btrfs_grow_device(trans, device, new_size);
793 		btrfs_commit_transaction(trans, root);
794 	} else {
795 		ret = btrfs_shrink_device(device, new_size);
796 	}
797 
798 out_unlock:
799 	mutex_unlock(&root->fs_info->volume_mutex);
800 	kfree(vol_args);
801 	return ret;
802 }
803 
804 static noinline int btrfs_ioctl_snap_create(struct file *file,
805 					    void __user *arg, int subvol)
806 {
807 	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
808 	struct btrfs_ioctl_vol_args *vol_args;
809 	struct file *src_file;
810 	int namelen;
811 	int ret = 0;
812 
813 	if (root->fs_info->sb->s_flags & MS_RDONLY)
814 		return -EROFS;
815 
816 	vol_args = memdup_user(arg, sizeof(*vol_args));
817 	if (IS_ERR(vol_args))
818 		return PTR_ERR(vol_args);
819 
820 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
821 	namelen = strlen(vol_args->name);
822 	if (strchr(vol_args->name, '/')) {
823 		ret = -EINVAL;
824 		goto out;
825 	}
826 
827 	if (subvol) {
828 		ret = btrfs_mksubvol(&file->f_path, vol_args->name, namelen,
829 				     NULL);
830 	} else {
831 		struct inode *src_inode;
832 		src_file = fget(vol_args->fd);
833 		if (!src_file) {
834 			ret = -EINVAL;
835 			goto out;
836 		}
837 
838 		src_inode = src_file->f_path.dentry->d_inode;
839 		if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
840 			printk(KERN_INFO "btrfs: Snapshot src from "
841 			       "another FS\n");
842 			ret = -EINVAL;
843 			fput(src_file);
844 			goto out;
845 		}
846 		ret = btrfs_mksubvol(&file->f_path, vol_args->name, namelen,
847 				     BTRFS_I(src_inode)->root);
848 		fput(src_file);
849 	}
850 out:
851 	kfree(vol_args);
852 	return ret;
853 }
854 
855 /*
856  * helper to check if the subvolume references other subvolumes
857  */
858 static noinline int may_destroy_subvol(struct btrfs_root *root)
859 {
860 	struct btrfs_path *path;
861 	struct btrfs_key key;
862 	int ret;
863 
864 	path = btrfs_alloc_path();
865 	if (!path)
866 		return -ENOMEM;
867 
868 	key.objectid = root->root_key.objectid;
869 	key.type = BTRFS_ROOT_REF_KEY;
870 	key.offset = (u64)-1;
871 
872 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
873 				&key, path, 0, 0);
874 	if (ret < 0)
875 		goto out;
876 	BUG_ON(ret == 0);
877 
878 	ret = 0;
879 	if (path->slots[0] > 0) {
880 		path->slots[0]--;
881 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
882 		if (key.objectid == root->root_key.objectid &&
883 		    key.type == BTRFS_ROOT_REF_KEY)
884 			ret = -ENOTEMPTY;
885 	}
886 out:
887 	btrfs_free_path(path);
888 	return ret;
889 }
890 
891 static noinline int key_in_sk(struct btrfs_key *key,
892 			      struct btrfs_ioctl_search_key *sk)
893 {
894 	struct btrfs_key test;
895 	int ret;
896 
897 	test.objectid = sk->min_objectid;
898 	test.type = sk->min_type;
899 	test.offset = sk->min_offset;
900 
901 	ret = btrfs_comp_cpu_keys(key, &test);
902 	if (ret < 0)
903 		return 0;
904 
905 	test.objectid = sk->max_objectid;
906 	test.type = sk->max_type;
907 	test.offset = sk->max_offset;
908 
909 	ret = btrfs_comp_cpu_keys(key, &test);
910 	if (ret > 0)
911 		return 0;
912 	return 1;
913 }
914 
915 static noinline int copy_to_sk(struct btrfs_root *root,
916 			       struct btrfs_path *path,
917 			       struct btrfs_key *key,
918 			       struct btrfs_ioctl_search_key *sk,
919 			       char *buf,
920 			       unsigned long *sk_offset,
921 			       int *num_found)
922 {
923 	u64 found_transid;
924 	struct extent_buffer *leaf;
925 	struct btrfs_ioctl_search_header sh;
926 	unsigned long item_off;
927 	unsigned long item_len;
928 	int nritems;
929 	int i;
930 	int slot;
931 	int found = 0;
932 	int ret = 0;
933 
934 	leaf = path->nodes[0];
935 	slot = path->slots[0];
936 	nritems = btrfs_header_nritems(leaf);
937 
938 	if (btrfs_header_generation(leaf) > sk->max_transid) {
939 		i = nritems;
940 		goto advance_key;
941 	}
942 	found_transid = btrfs_header_generation(leaf);
943 
944 	for (i = slot; i < nritems; i++) {
945 		item_off = btrfs_item_ptr_offset(leaf, i);
946 		item_len = btrfs_item_size_nr(leaf, i);
947 
948 		if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
949 			item_len = 0;
950 
951 		if (sizeof(sh) + item_len + *sk_offset >
952 		    BTRFS_SEARCH_ARGS_BUFSIZE) {
953 			ret = 1;
954 			goto overflow;
955 		}
956 
957 		btrfs_item_key_to_cpu(leaf, key, i);
958 		if (!key_in_sk(key, sk))
959 			continue;
960 
961 		sh.objectid = key->objectid;
962 		sh.offset = key->offset;
963 		sh.type = key->type;
964 		sh.len = item_len;
965 		sh.transid = found_transid;
966 
967 		/* copy search result header */
968 		memcpy(buf + *sk_offset, &sh, sizeof(sh));
969 		*sk_offset += sizeof(sh);
970 
971 		if (item_len) {
972 			char *p = buf + *sk_offset;
973 			/* copy the item */
974 			read_extent_buffer(leaf, p,
975 					   item_off, item_len);
976 			*sk_offset += item_len;
977 		}
978 		found++;
979 
980 		if (*num_found >= sk->nr_items)
981 			break;
982 	}
983 advance_key:
984 	ret = 0;
985 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
986 		key->offset++;
987 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
988 		key->offset = 0;
989 		key->type++;
990 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
991 		key->offset = 0;
992 		key->type = 0;
993 		key->objectid++;
994 	} else
995 		ret = 1;
996 overflow:
997 	*num_found += found;
998 	return ret;
999 }
1000 
1001 static noinline int search_ioctl(struct inode *inode,
1002 				 struct btrfs_ioctl_search_args *args)
1003 {
1004 	struct btrfs_root *root;
1005 	struct btrfs_key key;
1006 	struct btrfs_key max_key;
1007 	struct btrfs_path *path;
1008 	struct btrfs_ioctl_search_key *sk = &args->key;
1009 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1010 	int ret;
1011 	int num_found = 0;
1012 	unsigned long sk_offset = 0;
1013 
1014 	path = btrfs_alloc_path();
1015 	if (!path)
1016 		return -ENOMEM;
1017 
1018 	if (sk->tree_id == 0) {
1019 		/* search the root of the inode that was passed */
1020 		root = BTRFS_I(inode)->root;
1021 	} else {
1022 		key.objectid = sk->tree_id;
1023 		key.type = BTRFS_ROOT_ITEM_KEY;
1024 		key.offset = (u64)-1;
1025 		root = btrfs_read_fs_root_no_name(info, &key);
1026 		if (IS_ERR(root)) {
1027 			printk(KERN_ERR "could not find root %llu\n",
1028 			       sk->tree_id);
1029 			btrfs_free_path(path);
1030 			return -ENOENT;
1031 		}
1032 	}
1033 
1034 	key.objectid = sk->min_objectid;
1035 	key.type = sk->min_type;
1036 	key.offset = sk->min_offset;
1037 
1038 	max_key.objectid = sk->max_objectid;
1039 	max_key.type = sk->max_type;
1040 	max_key.offset = sk->max_offset;
1041 
1042 	path->keep_locks = 1;
1043 
1044 	while(1) {
1045 		ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1046 					   sk->min_transid);
1047 		if (ret != 0) {
1048 			if (ret > 0)
1049 				ret = 0;
1050 			goto err;
1051 		}
1052 		ret = copy_to_sk(root, path, &key, sk, args->buf,
1053 				 &sk_offset, &num_found);
1054 		btrfs_release_path(root, path);
1055 		if (ret || num_found >= sk->nr_items)
1056 			break;
1057 
1058 	}
1059 	ret = 0;
1060 err:
1061 	sk->nr_items = num_found;
1062 	btrfs_free_path(path);
1063 	return ret;
1064 }
1065 
1066 static noinline int btrfs_ioctl_tree_search(struct file *file,
1067 					   void __user *argp)
1068 {
1069 	 struct btrfs_ioctl_search_args *args;
1070 	 struct inode *inode;
1071 	 int ret;
1072 
1073 	if (!capable(CAP_SYS_ADMIN))
1074 		return -EPERM;
1075 
1076 	args = kmalloc(sizeof(*args), GFP_KERNEL);
1077 	if (!args)
1078 		return -ENOMEM;
1079 
1080 	if (copy_from_user(args, argp, sizeof(*args))) {
1081 		kfree(args);
1082 		return -EFAULT;
1083 	}
1084 	inode = fdentry(file)->d_inode;
1085 	ret = search_ioctl(inode, args);
1086 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1087 		ret = -EFAULT;
1088 	kfree(args);
1089 	return ret;
1090 }
1091 
1092 /*
1093  * Search INODE_REFs to identify path name of 'dirid' directory
1094  * in a 'tree_id' tree. and sets path name to 'name'.
1095  */
1096 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1097 				u64 tree_id, u64 dirid, char *name)
1098 {
1099 	struct btrfs_root *root;
1100 	struct btrfs_key key;
1101 	char *ptr;
1102 	int ret = -1;
1103 	int slot;
1104 	int len;
1105 	int total_len = 0;
1106 	struct btrfs_inode_ref *iref;
1107 	struct extent_buffer *l;
1108 	struct btrfs_path *path;
1109 
1110 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1111 		name[0]='\0';
1112 		return 0;
1113 	}
1114 
1115 	path = btrfs_alloc_path();
1116 	if (!path)
1117 		return -ENOMEM;
1118 
1119 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1120 
1121 	key.objectid = tree_id;
1122 	key.type = BTRFS_ROOT_ITEM_KEY;
1123 	key.offset = (u64)-1;
1124 	root = btrfs_read_fs_root_no_name(info, &key);
1125 	if (IS_ERR(root)) {
1126 		printk(KERN_ERR "could not find root %llu\n", tree_id);
1127 		ret = -ENOENT;
1128 		goto out;
1129 	}
1130 
1131 	key.objectid = dirid;
1132 	key.type = BTRFS_INODE_REF_KEY;
1133 	key.offset = (u64)-1;
1134 
1135 	while(1) {
1136 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1137 		if (ret < 0)
1138 			goto out;
1139 
1140 		l = path->nodes[0];
1141 		slot = path->slots[0];
1142 		if (ret > 0 && slot > 0)
1143 			slot--;
1144 		btrfs_item_key_to_cpu(l, &key, slot);
1145 
1146 		if (ret > 0 && (key.objectid != dirid ||
1147 				key.type != BTRFS_INODE_REF_KEY)) {
1148 			ret = -ENOENT;
1149 			goto out;
1150 		}
1151 
1152 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1153 		len = btrfs_inode_ref_name_len(l, iref);
1154 		ptr -= len + 1;
1155 		total_len += len + 1;
1156 		if (ptr < name)
1157 			goto out;
1158 
1159 		*(ptr + len) = '/';
1160 		read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1161 
1162 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1163 			break;
1164 
1165 		btrfs_release_path(root, path);
1166 		key.objectid = key.offset;
1167 		key.offset = (u64)-1;
1168 		dirid = key.objectid;
1169 
1170 	}
1171 	if (ptr < name)
1172 		goto out;
1173 	memcpy(name, ptr, total_len);
1174 	name[total_len]='\0';
1175 	ret = 0;
1176 out:
1177 	btrfs_free_path(path);
1178 	return ret;
1179 }
1180 
1181 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1182 					   void __user *argp)
1183 {
1184 	 struct btrfs_ioctl_ino_lookup_args *args;
1185 	 struct inode *inode;
1186 	 int ret;
1187 
1188 	if (!capable(CAP_SYS_ADMIN))
1189 		return -EPERM;
1190 
1191 	args = kmalloc(sizeof(*args), GFP_KERNEL);
1192 	if (!args)
1193 		return -ENOMEM;
1194 
1195 	if (copy_from_user(args, argp, sizeof(*args))) {
1196 		kfree(args);
1197 		return -EFAULT;
1198 	}
1199 	inode = fdentry(file)->d_inode;
1200 
1201 	if (args->treeid == 0)
1202 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1203 
1204 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1205 					args->treeid, args->objectid,
1206 					args->name);
1207 
1208 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1209 		ret = -EFAULT;
1210 
1211 	kfree(args);
1212 	return ret;
1213 }
1214 
1215 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1216 					     void __user *arg)
1217 {
1218 	struct dentry *parent = fdentry(file);
1219 	struct dentry *dentry;
1220 	struct inode *dir = parent->d_inode;
1221 	struct inode *inode;
1222 	struct btrfs_root *root = BTRFS_I(dir)->root;
1223 	struct btrfs_root *dest = NULL;
1224 	struct btrfs_ioctl_vol_args *vol_args;
1225 	struct btrfs_trans_handle *trans;
1226 	int namelen;
1227 	int ret;
1228 	int err = 0;
1229 
1230 	if (!capable(CAP_SYS_ADMIN))
1231 		return -EPERM;
1232 
1233 	vol_args = memdup_user(arg, sizeof(*vol_args));
1234 	if (IS_ERR(vol_args))
1235 		return PTR_ERR(vol_args);
1236 
1237 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1238 	namelen = strlen(vol_args->name);
1239 	if (strchr(vol_args->name, '/') ||
1240 	    strncmp(vol_args->name, "..", namelen) == 0) {
1241 		err = -EINVAL;
1242 		goto out;
1243 	}
1244 
1245 	err = mnt_want_write(file->f_path.mnt);
1246 	if (err)
1247 		goto out;
1248 
1249 	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1250 	dentry = lookup_one_len(vol_args->name, parent, namelen);
1251 	if (IS_ERR(dentry)) {
1252 		err = PTR_ERR(dentry);
1253 		goto out_unlock_dir;
1254 	}
1255 
1256 	if (!dentry->d_inode) {
1257 		err = -ENOENT;
1258 		goto out_dput;
1259 	}
1260 
1261 	inode = dentry->d_inode;
1262 	if (inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
1263 		err = -EINVAL;
1264 		goto out_dput;
1265 	}
1266 
1267 	dest = BTRFS_I(inode)->root;
1268 
1269 	mutex_lock(&inode->i_mutex);
1270 	err = d_invalidate(dentry);
1271 	if (err)
1272 		goto out_unlock;
1273 
1274 	down_write(&root->fs_info->subvol_sem);
1275 
1276 	err = may_destroy_subvol(dest);
1277 	if (err)
1278 		goto out_up_write;
1279 
1280 	trans = btrfs_start_transaction(root, 0);
1281 	if (IS_ERR(trans)) {
1282 		err = PTR_ERR(trans);
1283 		goto out_up_write;
1284 	}
1285 	trans->block_rsv = &root->fs_info->global_block_rsv;
1286 
1287 	ret = btrfs_unlink_subvol(trans, root, dir,
1288 				dest->root_key.objectid,
1289 				dentry->d_name.name,
1290 				dentry->d_name.len);
1291 	BUG_ON(ret);
1292 
1293 	btrfs_record_root_in_trans(trans, dest);
1294 
1295 	memset(&dest->root_item.drop_progress, 0,
1296 		sizeof(dest->root_item.drop_progress));
1297 	dest->root_item.drop_level = 0;
1298 	btrfs_set_root_refs(&dest->root_item, 0);
1299 
1300 	if (!xchg(&dest->orphan_item_inserted, 1)) {
1301 		ret = btrfs_insert_orphan_item(trans,
1302 					root->fs_info->tree_root,
1303 					dest->root_key.objectid);
1304 		BUG_ON(ret);
1305 	}
1306 
1307 	ret = btrfs_commit_transaction(trans, root);
1308 	BUG_ON(ret);
1309 	inode->i_flags |= S_DEAD;
1310 out_up_write:
1311 	up_write(&root->fs_info->subvol_sem);
1312 out_unlock:
1313 	mutex_unlock(&inode->i_mutex);
1314 	if (!err) {
1315 		shrink_dcache_sb(root->fs_info->sb);
1316 		btrfs_invalidate_inodes(dest);
1317 		d_delete(dentry);
1318 	}
1319 out_dput:
1320 	dput(dentry);
1321 out_unlock_dir:
1322 	mutex_unlock(&dir->i_mutex);
1323 	mnt_drop_write(file->f_path.mnt);
1324 out:
1325 	kfree(vol_args);
1326 	return err;
1327 }
1328 
1329 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
1330 {
1331 	struct inode *inode = fdentry(file)->d_inode;
1332 	struct btrfs_root *root = BTRFS_I(inode)->root;
1333 	struct btrfs_ioctl_defrag_range_args *range;
1334 	int ret;
1335 
1336 	ret = mnt_want_write(file->f_path.mnt);
1337 	if (ret)
1338 		return ret;
1339 
1340 	switch (inode->i_mode & S_IFMT) {
1341 	case S_IFDIR:
1342 		if (!capable(CAP_SYS_ADMIN)) {
1343 			ret = -EPERM;
1344 			goto out;
1345 		}
1346 		ret = btrfs_defrag_root(root, 0);
1347 		if (ret)
1348 			goto out;
1349 		ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
1350 		break;
1351 	case S_IFREG:
1352 		if (!(file->f_mode & FMODE_WRITE)) {
1353 			ret = -EINVAL;
1354 			goto out;
1355 		}
1356 
1357 		range = kzalloc(sizeof(*range), GFP_KERNEL);
1358 		if (!range) {
1359 			ret = -ENOMEM;
1360 			goto out;
1361 		}
1362 
1363 		if (argp) {
1364 			if (copy_from_user(range, argp,
1365 					   sizeof(*range))) {
1366 				ret = -EFAULT;
1367 				kfree(range);
1368 				goto out;
1369 			}
1370 			/* compression requires us to start the IO */
1371 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1372 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
1373 				range->extent_thresh = (u32)-1;
1374 			}
1375 		} else {
1376 			/* the rest are all set to zero by kzalloc */
1377 			range->len = (u64)-1;
1378 		}
1379 		ret = btrfs_defrag_file(file, range);
1380 		kfree(range);
1381 		break;
1382 	default:
1383 		ret = -EINVAL;
1384 	}
1385 out:
1386 	mnt_drop_write(file->f_path.mnt);
1387 	return ret;
1388 }
1389 
1390 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
1391 {
1392 	struct btrfs_ioctl_vol_args *vol_args;
1393 	int ret;
1394 
1395 	if (!capable(CAP_SYS_ADMIN))
1396 		return -EPERM;
1397 
1398 	vol_args = memdup_user(arg, sizeof(*vol_args));
1399 	if (IS_ERR(vol_args))
1400 		return PTR_ERR(vol_args);
1401 
1402 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1403 	ret = btrfs_init_new_device(root, vol_args->name);
1404 
1405 	kfree(vol_args);
1406 	return ret;
1407 }
1408 
1409 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
1410 {
1411 	struct btrfs_ioctl_vol_args *vol_args;
1412 	int ret;
1413 
1414 	if (!capable(CAP_SYS_ADMIN))
1415 		return -EPERM;
1416 
1417 	if (root->fs_info->sb->s_flags & MS_RDONLY)
1418 		return -EROFS;
1419 
1420 	vol_args = memdup_user(arg, sizeof(*vol_args));
1421 	if (IS_ERR(vol_args))
1422 		return PTR_ERR(vol_args);
1423 
1424 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1425 	ret = btrfs_rm_device(root, vol_args->name);
1426 
1427 	kfree(vol_args);
1428 	return ret;
1429 }
1430 
1431 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
1432 				       u64 off, u64 olen, u64 destoff)
1433 {
1434 	struct inode *inode = fdentry(file)->d_inode;
1435 	struct btrfs_root *root = BTRFS_I(inode)->root;
1436 	struct file *src_file;
1437 	struct inode *src;
1438 	struct btrfs_trans_handle *trans;
1439 	struct btrfs_path *path;
1440 	struct extent_buffer *leaf;
1441 	char *buf;
1442 	struct btrfs_key key;
1443 	u32 nritems;
1444 	int slot;
1445 	int ret;
1446 	u64 len = olen;
1447 	u64 bs = root->fs_info->sb->s_blocksize;
1448 	u64 hint_byte;
1449 
1450 	/*
1451 	 * TODO:
1452 	 * - split compressed inline extents.  annoying: we need to
1453 	 *   decompress into destination's address_space (the file offset
1454 	 *   may change, so source mapping won't do), then recompress (or
1455 	 *   otherwise reinsert) a subrange.
1456 	 * - allow ranges within the same file to be cloned (provided
1457 	 *   they don't overlap)?
1458 	 */
1459 
1460 	/* the destination must be opened for writing */
1461 	if (!(file->f_mode & FMODE_WRITE))
1462 		return -EINVAL;
1463 
1464 	ret = mnt_want_write(file->f_path.mnt);
1465 	if (ret)
1466 		return ret;
1467 
1468 	src_file = fget(srcfd);
1469 	if (!src_file) {
1470 		ret = -EBADF;
1471 		goto out_drop_write;
1472 	}
1473 
1474 	src = src_file->f_dentry->d_inode;
1475 
1476 	ret = -EINVAL;
1477 	if (src == inode)
1478 		goto out_fput;
1479 
1480 	/* the src must be open for reading */
1481 	if (!(src_file->f_mode & FMODE_READ))
1482 		goto out_fput;
1483 
1484 	ret = -EISDIR;
1485 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
1486 		goto out_fput;
1487 
1488 	ret = -EXDEV;
1489 	if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
1490 		goto out_fput;
1491 
1492 	ret = -ENOMEM;
1493 	buf = vmalloc(btrfs_level_size(root, 0));
1494 	if (!buf)
1495 		goto out_fput;
1496 
1497 	path = btrfs_alloc_path();
1498 	if (!path) {
1499 		vfree(buf);
1500 		goto out_fput;
1501 	}
1502 	path->reada = 2;
1503 
1504 	if (inode < src) {
1505 		mutex_lock(&inode->i_mutex);
1506 		mutex_lock(&src->i_mutex);
1507 	} else {
1508 		mutex_lock(&src->i_mutex);
1509 		mutex_lock(&inode->i_mutex);
1510 	}
1511 
1512 	/* determine range to clone */
1513 	ret = -EINVAL;
1514 	if (off >= src->i_size || off + len > src->i_size)
1515 		goto out_unlock;
1516 	if (len == 0)
1517 		olen = len = src->i_size - off;
1518 	/* if we extend to eof, continue to block boundary */
1519 	if (off + len == src->i_size)
1520 		len = ((src->i_size + bs-1) & ~(bs-1))
1521 			- off;
1522 
1523 	/* verify the end result is block aligned */
1524 	if ((off & (bs-1)) ||
1525 	    ((off + len) & (bs-1)))
1526 		goto out_unlock;
1527 
1528 	/* do any pending delalloc/csum calc on src, one way or
1529 	   another, and lock file content */
1530 	while (1) {
1531 		struct btrfs_ordered_extent *ordered;
1532 		lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
1533 		ordered = btrfs_lookup_first_ordered_extent(inode, off+len);
1534 		if (BTRFS_I(src)->delalloc_bytes == 0 && !ordered)
1535 			break;
1536 		unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
1537 		if (ordered)
1538 			btrfs_put_ordered_extent(ordered);
1539 		btrfs_wait_ordered_range(src, off, off+len);
1540 	}
1541 
1542 	/* clone data */
1543 	key.objectid = src->i_ino;
1544 	key.type = BTRFS_EXTENT_DATA_KEY;
1545 	key.offset = 0;
1546 
1547 	while (1) {
1548 		/*
1549 		 * note the key will change type as we walk through the
1550 		 * tree.
1551 		 */
1552 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1553 		if (ret < 0)
1554 			goto out;
1555 
1556 		nritems = btrfs_header_nritems(path->nodes[0]);
1557 		if (path->slots[0] >= nritems) {
1558 			ret = btrfs_next_leaf(root, path);
1559 			if (ret < 0)
1560 				goto out;
1561 			if (ret > 0)
1562 				break;
1563 			nritems = btrfs_header_nritems(path->nodes[0]);
1564 		}
1565 		leaf = path->nodes[0];
1566 		slot = path->slots[0];
1567 
1568 		btrfs_item_key_to_cpu(leaf, &key, slot);
1569 		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
1570 		    key.objectid != src->i_ino)
1571 			break;
1572 
1573 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
1574 			struct btrfs_file_extent_item *extent;
1575 			int type;
1576 			u32 size;
1577 			struct btrfs_key new_key;
1578 			u64 disko = 0, diskl = 0;
1579 			u64 datao = 0, datal = 0;
1580 			u8 comp;
1581 
1582 			size = btrfs_item_size_nr(leaf, slot);
1583 			read_extent_buffer(leaf, buf,
1584 					   btrfs_item_ptr_offset(leaf, slot),
1585 					   size);
1586 
1587 			extent = btrfs_item_ptr(leaf, slot,
1588 						struct btrfs_file_extent_item);
1589 			comp = btrfs_file_extent_compression(leaf, extent);
1590 			type = btrfs_file_extent_type(leaf, extent);
1591 			if (type == BTRFS_FILE_EXTENT_REG ||
1592 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
1593 				disko = btrfs_file_extent_disk_bytenr(leaf,
1594 								      extent);
1595 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
1596 								 extent);
1597 				datao = btrfs_file_extent_offset(leaf, extent);
1598 				datal = btrfs_file_extent_num_bytes(leaf,
1599 								    extent);
1600 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1601 				/* take upper bound, may be compressed */
1602 				datal = btrfs_file_extent_ram_bytes(leaf,
1603 								    extent);
1604 			}
1605 			btrfs_release_path(root, path);
1606 
1607 			if (key.offset + datal < off ||
1608 			    key.offset >= off+len)
1609 				goto next;
1610 
1611 			memcpy(&new_key, &key, sizeof(new_key));
1612 			new_key.objectid = inode->i_ino;
1613 			new_key.offset = key.offset + destoff - off;
1614 
1615 			trans = btrfs_start_transaction(root, 1);
1616 			if (IS_ERR(trans)) {
1617 				ret = PTR_ERR(trans);
1618 				goto out;
1619 			}
1620 
1621 			if (type == BTRFS_FILE_EXTENT_REG ||
1622 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
1623 				if (off > key.offset) {
1624 					datao += off - key.offset;
1625 					datal -= off - key.offset;
1626 				}
1627 
1628 				if (key.offset + datal > off + len)
1629 					datal = off + len - key.offset;
1630 
1631 				ret = btrfs_drop_extents(trans, inode,
1632 							 new_key.offset,
1633 							 new_key.offset + datal,
1634 							 &hint_byte, 1);
1635 				BUG_ON(ret);
1636 
1637 				ret = btrfs_insert_empty_item(trans, root, path,
1638 							      &new_key, size);
1639 				BUG_ON(ret);
1640 
1641 				leaf = path->nodes[0];
1642 				slot = path->slots[0];
1643 				write_extent_buffer(leaf, buf,
1644 					    btrfs_item_ptr_offset(leaf, slot),
1645 					    size);
1646 
1647 				extent = btrfs_item_ptr(leaf, slot,
1648 						struct btrfs_file_extent_item);
1649 
1650 				/* disko == 0 means it's a hole */
1651 				if (!disko)
1652 					datao = 0;
1653 
1654 				btrfs_set_file_extent_offset(leaf, extent,
1655 							     datao);
1656 				btrfs_set_file_extent_num_bytes(leaf, extent,
1657 								datal);
1658 				if (disko) {
1659 					inode_add_bytes(inode, datal);
1660 					ret = btrfs_inc_extent_ref(trans, root,
1661 							disko, diskl, 0,
1662 							root->root_key.objectid,
1663 							inode->i_ino,
1664 							new_key.offset - datao);
1665 					BUG_ON(ret);
1666 				}
1667 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
1668 				u64 skip = 0;
1669 				u64 trim = 0;
1670 				if (off > key.offset) {
1671 					skip = off - key.offset;
1672 					new_key.offset += skip;
1673 				}
1674 
1675 				if (key.offset + datal > off+len)
1676 					trim = key.offset + datal - (off+len);
1677 
1678 				if (comp && (skip || trim)) {
1679 					ret = -EINVAL;
1680 					btrfs_end_transaction(trans, root);
1681 					goto out;
1682 				}
1683 				size -= skip + trim;
1684 				datal -= skip + trim;
1685 
1686 				ret = btrfs_drop_extents(trans, inode,
1687 							 new_key.offset,
1688 							 new_key.offset + datal,
1689 							 &hint_byte, 1);
1690 				BUG_ON(ret);
1691 
1692 				ret = btrfs_insert_empty_item(trans, root, path,
1693 							      &new_key, size);
1694 				BUG_ON(ret);
1695 
1696 				if (skip) {
1697 					u32 start =
1698 					  btrfs_file_extent_calc_inline_size(0);
1699 					memmove(buf+start, buf+start+skip,
1700 						datal);
1701 				}
1702 
1703 				leaf = path->nodes[0];
1704 				slot = path->slots[0];
1705 				write_extent_buffer(leaf, buf,
1706 					    btrfs_item_ptr_offset(leaf, slot),
1707 					    size);
1708 				inode_add_bytes(inode, datal);
1709 			}
1710 
1711 			btrfs_mark_buffer_dirty(leaf);
1712 			btrfs_release_path(root, path);
1713 
1714 			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1715 			if (new_key.offset + datal > inode->i_size)
1716 				btrfs_i_size_write(inode,
1717 						   new_key.offset + datal);
1718 			BTRFS_I(inode)->flags = BTRFS_I(src)->flags;
1719 			ret = btrfs_update_inode(trans, root, inode);
1720 			BUG_ON(ret);
1721 			btrfs_end_transaction(trans, root);
1722 		}
1723 next:
1724 		btrfs_release_path(root, path);
1725 		key.offset++;
1726 	}
1727 	ret = 0;
1728 out:
1729 	btrfs_release_path(root, path);
1730 	unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
1731 out_unlock:
1732 	mutex_unlock(&src->i_mutex);
1733 	mutex_unlock(&inode->i_mutex);
1734 	vfree(buf);
1735 	btrfs_free_path(path);
1736 out_fput:
1737 	fput(src_file);
1738 out_drop_write:
1739 	mnt_drop_write(file->f_path.mnt);
1740 	return ret;
1741 }
1742 
1743 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
1744 {
1745 	struct btrfs_ioctl_clone_range_args args;
1746 
1747 	if (copy_from_user(&args, argp, sizeof(args)))
1748 		return -EFAULT;
1749 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
1750 				 args.src_length, args.dest_offset);
1751 }
1752 
1753 /*
1754  * there are many ways the trans_start and trans_end ioctls can lead
1755  * to deadlocks.  They should only be used by applications that
1756  * basically own the machine, and have a very in depth understanding
1757  * of all the possible deadlocks and enospc problems.
1758  */
1759 static long btrfs_ioctl_trans_start(struct file *file)
1760 {
1761 	struct inode *inode = fdentry(file)->d_inode;
1762 	struct btrfs_root *root = BTRFS_I(inode)->root;
1763 	struct btrfs_trans_handle *trans;
1764 	int ret;
1765 
1766 	ret = -EPERM;
1767 	if (!capable(CAP_SYS_ADMIN))
1768 		goto out;
1769 
1770 	ret = -EINPROGRESS;
1771 	if (file->private_data)
1772 		goto out;
1773 
1774 	ret = mnt_want_write(file->f_path.mnt);
1775 	if (ret)
1776 		goto out;
1777 
1778 	mutex_lock(&root->fs_info->trans_mutex);
1779 	root->fs_info->open_ioctl_trans++;
1780 	mutex_unlock(&root->fs_info->trans_mutex);
1781 
1782 	ret = -ENOMEM;
1783 	trans = btrfs_start_ioctl_transaction(root, 0);
1784 	if (!trans)
1785 		goto out_drop;
1786 
1787 	file->private_data = trans;
1788 	return 0;
1789 
1790 out_drop:
1791 	mutex_lock(&root->fs_info->trans_mutex);
1792 	root->fs_info->open_ioctl_trans--;
1793 	mutex_unlock(&root->fs_info->trans_mutex);
1794 	mnt_drop_write(file->f_path.mnt);
1795 out:
1796 	return ret;
1797 }
1798 
1799 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
1800 {
1801 	struct inode *inode = fdentry(file)->d_inode;
1802 	struct btrfs_root *root = BTRFS_I(inode)->root;
1803 	struct btrfs_root *new_root;
1804 	struct btrfs_dir_item *di;
1805 	struct btrfs_trans_handle *trans;
1806 	struct btrfs_path *path;
1807 	struct btrfs_key location;
1808 	struct btrfs_disk_key disk_key;
1809 	struct btrfs_super_block *disk_super;
1810 	u64 features;
1811 	u64 objectid = 0;
1812 	u64 dir_id;
1813 
1814 	if (!capable(CAP_SYS_ADMIN))
1815 		return -EPERM;
1816 
1817 	if (copy_from_user(&objectid, argp, sizeof(objectid)))
1818 		return -EFAULT;
1819 
1820 	if (!objectid)
1821 		objectid = root->root_key.objectid;
1822 
1823 	location.objectid = objectid;
1824 	location.type = BTRFS_ROOT_ITEM_KEY;
1825 	location.offset = (u64)-1;
1826 
1827 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
1828 	if (IS_ERR(new_root))
1829 		return PTR_ERR(new_root);
1830 
1831 	if (btrfs_root_refs(&new_root->root_item) == 0)
1832 		return -ENOENT;
1833 
1834 	path = btrfs_alloc_path();
1835 	if (!path)
1836 		return -ENOMEM;
1837 	path->leave_spinning = 1;
1838 
1839 	trans = btrfs_start_transaction(root, 1);
1840 	if (!trans) {
1841 		btrfs_free_path(path);
1842 		return -ENOMEM;
1843 	}
1844 
1845 	dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
1846 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
1847 				   dir_id, "default", 7, 1);
1848 	if (IS_ERR_OR_NULL(di)) {
1849 		btrfs_free_path(path);
1850 		btrfs_end_transaction(trans, root);
1851 		printk(KERN_ERR "Umm, you don't have the default dir item, "
1852 		       "this isn't going to work\n");
1853 		return -ENOENT;
1854 	}
1855 
1856 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
1857 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
1858 	btrfs_mark_buffer_dirty(path->nodes[0]);
1859 	btrfs_free_path(path);
1860 
1861 	disk_super = &root->fs_info->super_copy;
1862 	features = btrfs_super_incompat_flags(disk_super);
1863 	if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
1864 		features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
1865 		btrfs_set_super_incompat_flags(disk_super, features);
1866 	}
1867 	btrfs_end_transaction(trans, root);
1868 
1869 	return 0;
1870 }
1871 
1872 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
1873 {
1874 	struct btrfs_ioctl_space_args space_args;
1875 	struct btrfs_ioctl_space_info space;
1876 	struct btrfs_ioctl_space_info *dest;
1877 	struct btrfs_ioctl_space_info *dest_orig;
1878 	struct btrfs_ioctl_space_info *user_dest;
1879 	struct btrfs_space_info *info;
1880 	int alloc_size;
1881 	int ret = 0;
1882 	int slot_count = 0;
1883 
1884 	if (copy_from_user(&space_args,
1885 			   (struct btrfs_ioctl_space_args __user *)arg,
1886 			   sizeof(space_args)))
1887 		return -EFAULT;
1888 
1889 	/* first we count slots */
1890 	rcu_read_lock();
1891 	list_for_each_entry_rcu(info, &root->fs_info->space_info, list)
1892 		slot_count++;
1893 	rcu_read_unlock();
1894 
1895 	/* space_slots == 0 means they are asking for a count */
1896 	if (space_args.space_slots == 0) {
1897 		space_args.total_spaces = slot_count;
1898 		goto out;
1899 	}
1900 	alloc_size = sizeof(*dest) * slot_count;
1901 	/* we generally have at most 6 or so space infos, one for each raid
1902 	 * level.  So, a whole page should be more than enough for everyone
1903 	 */
1904 	if (alloc_size > PAGE_CACHE_SIZE)
1905 		return -ENOMEM;
1906 
1907 	space_args.total_spaces = 0;
1908 	dest = kmalloc(alloc_size, GFP_NOFS);
1909 	if (!dest)
1910 		return -ENOMEM;
1911 	dest_orig = dest;
1912 
1913 	/* now we have a buffer to copy into */
1914 	rcu_read_lock();
1915 	list_for_each_entry_rcu(info, &root->fs_info->space_info, list) {
1916 		/* make sure we don't copy more than we allocated
1917 		 * in our buffer
1918 		 */
1919 		if (slot_count == 0)
1920 			break;
1921 		slot_count--;
1922 
1923 		/* make sure userland has enough room in their buffer */
1924 		if (space_args.total_spaces >= space_args.space_slots)
1925 			break;
1926 
1927 		space.flags = info->flags;
1928 		space.total_bytes = info->total_bytes;
1929 		space.used_bytes = info->bytes_used;
1930 		memcpy(dest, &space, sizeof(space));
1931 		dest++;
1932 		space_args.total_spaces++;
1933 	}
1934 	rcu_read_unlock();
1935 
1936 	user_dest = (struct btrfs_ioctl_space_info *)
1937 		(arg + sizeof(struct btrfs_ioctl_space_args));
1938 
1939 	if (copy_to_user(user_dest, dest_orig, alloc_size))
1940 		ret = -EFAULT;
1941 
1942 	kfree(dest_orig);
1943 out:
1944 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
1945 		ret = -EFAULT;
1946 
1947 	return ret;
1948 }
1949 
1950 /*
1951  * there are many ways the trans_start and trans_end ioctls can lead
1952  * to deadlocks.  They should only be used by applications that
1953  * basically own the machine, and have a very in depth understanding
1954  * of all the possible deadlocks and enospc problems.
1955  */
1956 long btrfs_ioctl_trans_end(struct file *file)
1957 {
1958 	struct inode *inode = fdentry(file)->d_inode;
1959 	struct btrfs_root *root = BTRFS_I(inode)->root;
1960 	struct btrfs_trans_handle *trans;
1961 
1962 	trans = file->private_data;
1963 	if (!trans)
1964 		return -EINVAL;
1965 	file->private_data = NULL;
1966 
1967 	btrfs_end_transaction(trans, root);
1968 
1969 	mutex_lock(&root->fs_info->trans_mutex);
1970 	root->fs_info->open_ioctl_trans--;
1971 	mutex_unlock(&root->fs_info->trans_mutex);
1972 
1973 	mnt_drop_write(file->f_path.mnt);
1974 	return 0;
1975 }
1976 
1977 long btrfs_ioctl(struct file *file, unsigned int
1978 		cmd, unsigned long arg)
1979 {
1980 	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1981 	void __user *argp = (void __user *)arg;
1982 
1983 	switch (cmd) {
1984 	case FS_IOC_GETFLAGS:
1985 		return btrfs_ioctl_getflags(file, argp);
1986 	case FS_IOC_SETFLAGS:
1987 		return btrfs_ioctl_setflags(file, argp);
1988 	case FS_IOC_GETVERSION:
1989 		return btrfs_ioctl_getversion(file, argp);
1990 	case BTRFS_IOC_SNAP_CREATE:
1991 		return btrfs_ioctl_snap_create(file, argp, 0);
1992 	case BTRFS_IOC_SUBVOL_CREATE:
1993 		return btrfs_ioctl_snap_create(file, argp, 1);
1994 	case BTRFS_IOC_SNAP_DESTROY:
1995 		return btrfs_ioctl_snap_destroy(file, argp);
1996 	case BTRFS_IOC_DEFAULT_SUBVOL:
1997 		return btrfs_ioctl_default_subvol(file, argp);
1998 	case BTRFS_IOC_DEFRAG:
1999 		return btrfs_ioctl_defrag(file, NULL);
2000 	case BTRFS_IOC_DEFRAG_RANGE:
2001 		return btrfs_ioctl_defrag(file, argp);
2002 	case BTRFS_IOC_RESIZE:
2003 		return btrfs_ioctl_resize(root, argp);
2004 	case BTRFS_IOC_ADD_DEV:
2005 		return btrfs_ioctl_add_dev(root, argp);
2006 	case BTRFS_IOC_RM_DEV:
2007 		return btrfs_ioctl_rm_dev(root, argp);
2008 	case BTRFS_IOC_BALANCE:
2009 		return btrfs_balance(root->fs_info->dev_root);
2010 	case BTRFS_IOC_CLONE:
2011 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
2012 	case BTRFS_IOC_CLONE_RANGE:
2013 		return btrfs_ioctl_clone_range(file, argp);
2014 	case BTRFS_IOC_TRANS_START:
2015 		return btrfs_ioctl_trans_start(file);
2016 	case BTRFS_IOC_TRANS_END:
2017 		return btrfs_ioctl_trans_end(file);
2018 	case BTRFS_IOC_TREE_SEARCH:
2019 		return btrfs_ioctl_tree_search(file, argp);
2020 	case BTRFS_IOC_INO_LOOKUP:
2021 		return btrfs_ioctl_ino_lookup(file, argp);
2022 	case BTRFS_IOC_SPACE_INFO:
2023 		return btrfs_ioctl_space_info(root, argp);
2024 	case BTRFS_IOC_SYNC:
2025 		btrfs_sync_fs(file->f_dentry->d_sb, 1);
2026 		return 0;
2027 	}
2028 
2029 	return -ENOTTY;
2030 }
2031