1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "export.h" 34 #include "transaction.h" 35 #include "btrfs_inode.h" 36 #include "print-tree.h" 37 #include "volumes.h" 38 #include "locking.h" 39 #include "backref.h" 40 #include "rcu-string.h" 41 #include "send.h" 42 #include "dev-replace.h" 43 #include "props.h" 44 #include "sysfs.h" 45 #include "qgroup.h" 46 #include "tree-log.h" 47 #include "compression.h" 48 #include "space-info.h" 49 #include "delalloc-space.h" 50 #include "block-group.h" 51 #include "subpage.h" 52 53 #ifdef CONFIG_64BIT 54 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 55 * structures are incorrect, as the timespec structure from userspace 56 * is 4 bytes too small. We define these alternatives here to teach 57 * the kernel about the 32-bit struct packing. 58 */ 59 struct btrfs_ioctl_timespec_32 { 60 __u64 sec; 61 __u32 nsec; 62 } __attribute__ ((__packed__)); 63 64 struct btrfs_ioctl_received_subvol_args_32 { 65 char uuid[BTRFS_UUID_SIZE]; /* in */ 66 __u64 stransid; /* in */ 67 __u64 rtransid; /* out */ 68 struct btrfs_ioctl_timespec_32 stime; /* in */ 69 struct btrfs_ioctl_timespec_32 rtime; /* out */ 70 __u64 flags; /* in */ 71 __u64 reserved[16]; /* in */ 72 } __attribute__ ((__packed__)); 73 74 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 75 struct btrfs_ioctl_received_subvol_args_32) 76 #endif 77 78 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 79 struct btrfs_ioctl_send_args_32 { 80 __s64 send_fd; /* in */ 81 __u64 clone_sources_count; /* in */ 82 compat_uptr_t clone_sources; /* in */ 83 __u64 parent_root; /* in */ 84 __u64 flags; /* in */ 85 __u32 version; /* in */ 86 __u8 reserved[28]; /* in */ 87 } __attribute__ ((__packed__)); 88 89 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 90 struct btrfs_ioctl_send_args_32) 91 #endif 92 93 /* Mask out flags that are inappropriate for the given type of inode. */ 94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 95 unsigned int flags) 96 { 97 if (S_ISDIR(inode->i_mode)) 98 return flags; 99 else if (S_ISREG(inode->i_mode)) 100 return flags & ~FS_DIRSYNC_FL; 101 else 102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 103 } 104 105 /* 106 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 107 * ioctl. 108 */ 109 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 110 { 111 unsigned int iflags = 0; 112 u32 flags = binode->flags; 113 u32 ro_flags = binode->ro_flags; 114 115 if (flags & BTRFS_INODE_SYNC) 116 iflags |= FS_SYNC_FL; 117 if (flags & BTRFS_INODE_IMMUTABLE) 118 iflags |= FS_IMMUTABLE_FL; 119 if (flags & BTRFS_INODE_APPEND) 120 iflags |= FS_APPEND_FL; 121 if (flags & BTRFS_INODE_NODUMP) 122 iflags |= FS_NODUMP_FL; 123 if (flags & BTRFS_INODE_NOATIME) 124 iflags |= FS_NOATIME_FL; 125 if (flags & BTRFS_INODE_DIRSYNC) 126 iflags |= FS_DIRSYNC_FL; 127 if (flags & BTRFS_INODE_NODATACOW) 128 iflags |= FS_NOCOW_FL; 129 if (ro_flags & BTRFS_INODE_RO_VERITY) 130 iflags |= FS_VERITY_FL; 131 132 if (flags & BTRFS_INODE_NOCOMPRESS) 133 iflags |= FS_NOCOMP_FL; 134 else if (flags & BTRFS_INODE_COMPRESS) 135 iflags |= FS_COMPR_FL; 136 137 return iflags; 138 } 139 140 /* 141 * Update inode->i_flags based on the btrfs internal flags. 142 */ 143 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 144 { 145 struct btrfs_inode *binode = BTRFS_I(inode); 146 unsigned int new_fl = 0; 147 148 if (binode->flags & BTRFS_INODE_SYNC) 149 new_fl |= S_SYNC; 150 if (binode->flags & BTRFS_INODE_IMMUTABLE) 151 new_fl |= S_IMMUTABLE; 152 if (binode->flags & BTRFS_INODE_APPEND) 153 new_fl |= S_APPEND; 154 if (binode->flags & BTRFS_INODE_NOATIME) 155 new_fl |= S_NOATIME; 156 if (binode->flags & BTRFS_INODE_DIRSYNC) 157 new_fl |= S_DIRSYNC; 158 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 159 new_fl |= S_VERITY; 160 161 set_mask_bits(&inode->i_flags, 162 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 163 S_VERITY, new_fl); 164 } 165 166 /* 167 * Check if @flags are a supported and valid set of FS_*_FL flags and that 168 * the old and new flags are not conflicting 169 */ 170 static int check_fsflags(unsigned int old_flags, unsigned int flags) 171 { 172 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 173 FS_NOATIME_FL | FS_NODUMP_FL | \ 174 FS_SYNC_FL | FS_DIRSYNC_FL | \ 175 FS_NOCOMP_FL | FS_COMPR_FL | 176 FS_NOCOW_FL)) 177 return -EOPNOTSUPP; 178 179 /* COMPR and NOCOMP on new/old are valid */ 180 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 181 return -EINVAL; 182 183 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 184 return -EINVAL; 185 186 /* NOCOW and compression options are mutually exclusive */ 187 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 188 return -EINVAL; 189 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 190 return -EINVAL; 191 192 return 0; 193 } 194 195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 196 unsigned int flags) 197 { 198 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 199 return -EPERM; 200 201 return 0; 202 } 203 204 /* 205 * Set flags/xflags from the internal inode flags. The remaining items of 206 * fsxattr are zeroed. 207 */ 208 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 209 { 210 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 211 212 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 213 return 0; 214 } 215 216 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 217 struct dentry *dentry, struct fileattr *fa) 218 { 219 struct inode *inode = d_inode(dentry); 220 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 221 struct btrfs_inode *binode = BTRFS_I(inode); 222 struct btrfs_root *root = binode->root; 223 struct btrfs_trans_handle *trans; 224 unsigned int fsflags, old_fsflags; 225 int ret; 226 const char *comp = NULL; 227 u32 binode_flags; 228 229 if (btrfs_root_readonly(root)) 230 return -EROFS; 231 232 if (fileattr_has_fsx(fa)) 233 return -EOPNOTSUPP; 234 235 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 236 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 237 ret = check_fsflags(old_fsflags, fsflags); 238 if (ret) 239 return ret; 240 241 ret = check_fsflags_compatible(fs_info, fsflags); 242 if (ret) 243 return ret; 244 245 binode_flags = binode->flags; 246 if (fsflags & FS_SYNC_FL) 247 binode_flags |= BTRFS_INODE_SYNC; 248 else 249 binode_flags &= ~BTRFS_INODE_SYNC; 250 if (fsflags & FS_IMMUTABLE_FL) 251 binode_flags |= BTRFS_INODE_IMMUTABLE; 252 else 253 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 254 if (fsflags & FS_APPEND_FL) 255 binode_flags |= BTRFS_INODE_APPEND; 256 else 257 binode_flags &= ~BTRFS_INODE_APPEND; 258 if (fsflags & FS_NODUMP_FL) 259 binode_flags |= BTRFS_INODE_NODUMP; 260 else 261 binode_flags &= ~BTRFS_INODE_NODUMP; 262 if (fsflags & FS_NOATIME_FL) 263 binode_flags |= BTRFS_INODE_NOATIME; 264 else 265 binode_flags &= ~BTRFS_INODE_NOATIME; 266 267 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 268 if (!fa->flags_valid) { 269 /* 1 item for the inode */ 270 trans = btrfs_start_transaction(root, 1); 271 if (IS_ERR(trans)) 272 return PTR_ERR(trans); 273 goto update_flags; 274 } 275 276 if (fsflags & FS_DIRSYNC_FL) 277 binode_flags |= BTRFS_INODE_DIRSYNC; 278 else 279 binode_flags &= ~BTRFS_INODE_DIRSYNC; 280 if (fsflags & FS_NOCOW_FL) { 281 if (S_ISREG(inode->i_mode)) { 282 /* 283 * It's safe to turn csums off here, no extents exist. 284 * Otherwise we want the flag to reflect the real COW 285 * status of the file and will not set it. 286 */ 287 if (inode->i_size == 0) 288 binode_flags |= BTRFS_INODE_NODATACOW | 289 BTRFS_INODE_NODATASUM; 290 } else { 291 binode_flags |= BTRFS_INODE_NODATACOW; 292 } 293 } else { 294 /* 295 * Revert back under same assumptions as above 296 */ 297 if (S_ISREG(inode->i_mode)) { 298 if (inode->i_size == 0) 299 binode_flags &= ~(BTRFS_INODE_NODATACOW | 300 BTRFS_INODE_NODATASUM); 301 } else { 302 binode_flags &= ~BTRFS_INODE_NODATACOW; 303 } 304 } 305 306 /* 307 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 308 * flag may be changed automatically if compression code won't make 309 * things smaller. 310 */ 311 if (fsflags & FS_NOCOMP_FL) { 312 binode_flags &= ~BTRFS_INODE_COMPRESS; 313 binode_flags |= BTRFS_INODE_NOCOMPRESS; 314 } else if (fsflags & FS_COMPR_FL) { 315 316 if (IS_SWAPFILE(inode)) 317 return -ETXTBSY; 318 319 binode_flags |= BTRFS_INODE_COMPRESS; 320 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 321 322 comp = btrfs_compress_type2str(fs_info->compress_type); 323 if (!comp || comp[0] == 0) 324 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 325 } else { 326 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 327 } 328 329 /* 330 * 1 for inode item 331 * 2 for properties 332 */ 333 trans = btrfs_start_transaction(root, 3); 334 if (IS_ERR(trans)) 335 return PTR_ERR(trans); 336 337 if (comp) { 338 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 339 strlen(comp), 0); 340 if (ret) { 341 btrfs_abort_transaction(trans, ret); 342 goto out_end_trans; 343 } 344 } else { 345 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 346 0, 0); 347 if (ret && ret != -ENODATA) { 348 btrfs_abort_transaction(trans, ret); 349 goto out_end_trans; 350 } 351 } 352 353 update_flags: 354 binode->flags = binode_flags; 355 btrfs_sync_inode_flags_to_i_flags(inode); 356 inode_inc_iversion(inode); 357 inode->i_ctime = current_time(inode); 358 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 359 360 out_end_trans: 361 btrfs_end_transaction(trans); 362 return ret; 363 } 364 365 /* 366 * Start exclusive operation @type, return true on success 367 */ 368 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 369 enum btrfs_exclusive_operation type) 370 { 371 bool ret = false; 372 373 spin_lock(&fs_info->super_lock); 374 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 375 fs_info->exclusive_operation = type; 376 ret = true; 377 } 378 spin_unlock(&fs_info->super_lock); 379 380 return ret; 381 } 382 383 /* 384 * Conditionally allow to enter the exclusive operation in case it's compatible 385 * with the running one. This must be paired with btrfs_exclop_start_unlock and 386 * btrfs_exclop_finish. 387 * 388 * Compatibility: 389 * - the same type is already running 390 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 391 * must check the condition first that would allow none -> @type 392 */ 393 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 394 enum btrfs_exclusive_operation type) 395 { 396 spin_lock(&fs_info->super_lock); 397 if (fs_info->exclusive_operation == type) 398 return true; 399 400 spin_unlock(&fs_info->super_lock); 401 return false; 402 } 403 404 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 405 { 406 spin_unlock(&fs_info->super_lock); 407 } 408 409 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 410 { 411 spin_lock(&fs_info->super_lock); 412 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 413 spin_unlock(&fs_info->super_lock); 414 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 415 } 416 417 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 418 { 419 struct inode *inode = file_inode(file); 420 421 return put_user(inode->i_generation, arg); 422 } 423 424 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 425 void __user *arg) 426 { 427 struct btrfs_device *device; 428 struct request_queue *q; 429 struct fstrim_range range; 430 u64 minlen = ULLONG_MAX; 431 u64 num_devices = 0; 432 int ret; 433 434 if (!capable(CAP_SYS_ADMIN)) 435 return -EPERM; 436 437 /* 438 * btrfs_trim_block_group() depends on space cache, which is not 439 * available in zoned filesystem. So, disallow fitrim on a zoned 440 * filesystem for now. 441 */ 442 if (btrfs_is_zoned(fs_info)) 443 return -EOPNOTSUPP; 444 445 /* 446 * If the fs is mounted with nologreplay, which requires it to be 447 * mounted in RO mode as well, we can not allow discard on free space 448 * inside block groups, because log trees refer to extents that are not 449 * pinned in a block group's free space cache (pinning the extents is 450 * precisely the first phase of replaying a log tree). 451 */ 452 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 453 return -EROFS; 454 455 rcu_read_lock(); 456 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 457 dev_list) { 458 if (!device->bdev) 459 continue; 460 q = bdev_get_queue(device->bdev); 461 if (blk_queue_discard(q)) { 462 num_devices++; 463 minlen = min_t(u64, q->limits.discard_granularity, 464 minlen); 465 } 466 } 467 rcu_read_unlock(); 468 469 if (!num_devices) 470 return -EOPNOTSUPP; 471 if (copy_from_user(&range, arg, sizeof(range))) 472 return -EFAULT; 473 474 /* 475 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 476 * block group is in the logical address space, which can be any 477 * sectorsize aligned bytenr in the range [0, U64_MAX]. 478 */ 479 if (range.len < fs_info->sb->s_blocksize) 480 return -EINVAL; 481 482 range.minlen = max(range.minlen, minlen); 483 ret = btrfs_trim_fs(fs_info, &range); 484 if (ret < 0) 485 return ret; 486 487 if (copy_to_user(arg, &range, sizeof(range))) 488 return -EFAULT; 489 490 return 0; 491 } 492 493 int __pure btrfs_is_empty_uuid(u8 *uuid) 494 { 495 int i; 496 497 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 498 if (uuid[i]) 499 return 0; 500 } 501 return 1; 502 } 503 504 static noinline int create_subvol(struct user_namespace *mnt_userns, 505 struct inode *dir, struct dentry *dentry, 506 const char *name, int namelen, 507 struct btrfs_qgroup_inherit *inherit) 508 { 509 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 510 struct btrfs_trans_handle *trans; 511 struct btrfs_key key; 512 struct btrfs_root_item *root_item; 513 struct btrfs_inode_item *inode_item; 514 struct extent_buffer *leaf; 515 struct btrfs_root *root = BTRFS_I(dir)->root; 516 struct btrfs_root *new_root; 517 struct btrfs_block_rsv block_rsv; 518 struct timespec64 cur_time = current_time(dir); 519 struct inode *inode; 520 int ret; 521 int err; 522 dev_t anon_dev = 0; 523 u64 objectid; 524 u64 index = 0; 525 526 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 527 if (!root_item) 528 return -ENOMEM; 529 530 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 531 if (ret) 532 goto fail_free; 533 534 ret = get_anon_bdev(&anon_dev); 535 if (ret < 0) 536 goto fail_free; 537 538 /* 539 * Don't create subvolume whose level is not zero. Or qgroup will be 540 * screwed up since it assumes subvolume qgroup's level to be 0. 541 */ 542 if (btrfs_qgroup_level(objectid)) { 543 ret = -ENOSPC; 544 goto fail_free; 545 } 546 547 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 548 /* 549 * The same as the snapshot creation, please see the comment 550 * of create_snapshot(). 551 */ 552 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 553 if (ret) 554 goto fail_free; 555 556 trans = btrfs_start_transaction(root, 0); 557 if (IS_ERR(trans)) { 558 ret = PTR_ERR(trans); 559 btrfs_subvolume_release_metadata(root, &block_rsv); 560 goto fail_free; 561 } 562 trans->block_rsv = &block_rsv; 563 trans->bytes_reserved = block_rsv.size; 564 565 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 566 if (ret) 567 goto fail; 568 569 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 570 BTRFS_NESTING_NORMAL); 571 if (IS_ERR(leaf)) { 572 ret = PTR_ERR(leaf); 573 goto fail; 574 } 575 576 btrfs_mark_buffer_dirty(leaf); 577 578 inode_item = &root_item->inode; 579 btrfs_set_stack_inode_generation(inode_item, 1); 580 btrfs_set_stack_inode_size(inode_item, 3); 581 btrfs_set_stack_inode_nlink(inode_item, 1); 582 btrfs_set_stack_inode_nbytes(inode_item, 583 fs_info->nodesize); 584 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 585 586 btrfs_set_root_flags(root_item, 0); 587 btrfs_set_root_limit(root_item, 0); 588 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 589 590 btrfs_set_root_bytenr(root_item, leaf->start); 591 btrfs_set_root_generation(root_item, trans->transid); 592 btrfs_set_root_level(root_item, 0); 593 btrfs_set_root_refs(root_item, 1); 594 btrfs_set_root_used(root_item, leaf->len); 595 btrfs_set_root_last_snapshot(root_item, 0); 596 597 btrfs_set_root_generation_v2(root_item, 598 btrfs_root_generation(root_item)); 599 generate_random_guid(root_item->uuid); 600 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 601 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 602 root_item->ctime = root_item->otime; 603 btrfs_set_root_ctransid(root_item, trans->transid); 604 btrfs_set_root_otransid(root_item, trans->transid); 605 606 btrfs_tree_unlock(leaf); 607 608 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 609 610 key.objectid = objectid; 611 key.offset = 0; 612 key.type = BTRFS_ROOT_ITEM_KEY; 613 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 614 root_item); 615 if (ret) { 616 /* 617 * Since we don't abort the transaction in this case, free the 618 * tree block so that we don't leak space and leave the 619 * filesystem in an inconsistent state (an extent item in the 620 * extent tree with a backreference for a root that does not 621 * exists). 622 */ 623 btrfs_tree_lock(leaf); 624 btrfs_clean_tree_block(leaf); 625 btrfs_tree_unlock(leaf); 626 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 627 free_extent_buffer(leaf); 628 goto fail; 629 } 630 631 free_extent_buffer(leaf); 632 leaf = NULL; 633 634 key.offset = (u64)-1; 635 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 636 if (IS_ERR(new_root)) { 637 free_anon_bdev(anon_dev); 638 ret = PTR_ERR(new_root); 639 btrfs_abort_transaction(trans, ret); 640 goto fail; 641 } 642 /* Freeing will be done in btrfs_put_root() of new_root */ 643 anon_dev = 0; 644 645 ret = btrfs_record_root_in_trans(trans, new_root); 646 if (ret) { 647 btrfs_put_root(new_root); 648 btrfs_abort_transaction(trans, ret); 649 goto fail; 650 } 651 652 ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns); 653 btrfs_put_root(new_root); 654 if (ret) { 655 /* We potentially lose an unused inode item here */ 656 btrfs_abort_transaction(trans, ret); 657 goto fail; 658 } 659 660 /* 661 * insert the directory item 662 */ 663 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 664 if (ret) { 665 btrfs_abort_transaction(trans, ret); 666 goto fail; 667 } 668 669 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 670 BTRFS_FT_DIR, index); 671 if (ret) { 672 btrfs_abort_transaction(trans, ret); 673 goto fail; 674 } 675 676 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 677 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 678 if (ret) { 679 btrfs_abort_transaction(trans, ret); 680 goto fail; 681 } 682 683 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 684 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 685 if (ret) { 686 btrfs_abort_transaction(trans, ret); 687 goto fail; 688 } 689 690 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 691 BTRFS_UUID_KEY_SUBVOL, objectid); 692 if (ret) 693 btrfs_abort_transaction(trans, ret); 694 695 fail: 696 kfree(root_item); 697 trans->block_rsv = NULL; 698 trans->bytes_reserved = 0; 699 btrfs_subvolume_release_metadata(root, &block_rsv); 700 701 err = btrfs_commit_transaction(trans); 702 if (err && !ret) 703 ret = err; 704 705 if (!ret) { 706 inode = btrfs_lookup_dentry(dir, dentry); 707 if (IS_ERR(inode)) 708 return PTR_ERR(inode); 709 d_instantiate(dentry, inode); 710 } 711 return ret; 712 713 fail_free: 714 if (anon_dev) 715 free_anon_bdev(anon_dev); 716 kfree(root_item); 717 return ret; 718 } 719 720 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 721 struct dentry *dentry, bool readonly, 722 struct btrfs_qgroup_inherit *inherit) 723 { 724 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 725 struct inode *inode; 726 struct btrfs_pending_snapshot *pending_snapshot; 727 struct btrfs_trans_handle *trans; 728 int ret; 729 730 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 731 return -EINVAL; 732 733 if (atomic_read(&root->nr_swapfiles)) { 734 btrfs_warn(fs_info, 735 "cannot snapshot subvolume with active swapfile"); 736 return -ETXTBSY; 737 } 738 739 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 740 if (!pending_snapshot) 741 return -ENOMEM; 742 743 ret = get_anon_bdev(&pending_snapshot->anon_dev); 744 if (ret < 0) 745 goto free_pending; 746 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 747 GFP_KERNEL); 748 pending_snapshot->path = btrfs_alloc_path(); 749 if (!pending_snapshot->root_item || !pending_snapshot->path) { 750 ret = -ENOMEM; 751 goto free_pending; 752 } 753 754 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 755 BTRFS_BLOCK_RSV_TEMP); 756 /* 757 * 1 - parent dir inode 758 * 2 - dir entries 759 * 1 - root item 760 * 2 - root ref/backref 761 * 1 - root of snapshot 762 * 1 - UUID item 763 */ 764 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 765 &pending_snapshot->block_rsv, 8, 766 false); 767 if (ret) 768 goto free_pending; 769 770 pending_snapshot->dentry = dentry; 771 pending_snapshot->root = root; 772 pending_snapshot->readonly = readonly; 773 pending_snapshot->dir = dir; 774 pending_snapshot->inherit = inherit; 775 776 trans = btrfs_start_transaction(root, 0); 777 if (IS_ERR(trans)) { 778 ret = PTR_ERR(trans); 779 goto fail; 780 } 781 782 spin_lock(&fs_info->trans_lock); 783 list_add(&pending_snapshot->list, 784 &trans->transaction->pending_snapshots); 785 spin_unlock(&fs_info->trans_lock); 786 787 ret = btrfs_commit_transaction(trans); 788 if (ret) 789 goto fail; 790 791 ret = pending_snapshot->error; 792 if (ret) 793 goto fail; 794 795 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 796 if (ret) 797 goto fail; 798 799 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 800 if (IS_ERR(inode)) { 801 ret = PTR_ERR(inode); 802 goto fail; 803 } 804 805 d_instantiate(dentry, inode); 806 ret = 0; 807 pending_snapshot->anon_dev = 0; 808 fail: 809 /* Prevent double freeing of anon_dev */ 810 if (ret && pending_snapshot->snap) 811 pending_snapshot->snap->anon_dev = 0; 812 btrfs_put_root(pending_snapshot->snap); 813 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 814 free_pending: 815 if (pending_snapshot->anon_dev) 816 free_anon_bdev(pending_snapshot->anon_dev); 817 kfree(pending_snapshot->root_item); 818 btrfs_free_path(pending_snapshot->path); 819 kfree(pending_snapshot); 820 821 return ret; 822 } 823 824 /* copy of may_delete in fs/namei.c() 825 * Check whether we can remove a link victim from directory dir, check 826 * whether the type of victim is right. 827 * 1. We can't do it if dir is read-only (done in permission()) 828 * 2. We should have write and exec permissions on dir 829 * 3. We can't remove anything from append-only dir 830 * 4. We can't do anything with immutable dir (done in permission()) 831 * 5. If the sticky bit on dir is set we should either 832 * a. be owner of dir, or 833 * b. be owner of victim, or 834 * c. have CAP_FOWNER capability 835 * 6. If the victim is append-only or immutable we can't do anything with 836 * links pointing to it. 837 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 838 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 839 * 9. We can't remove a root or mountpoint. 840 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 841 * nfs_async_unlink(). 842 */ 843 844 static int btrfs_may_delete(struct user_namespace *mnt_userns, 845 struct inode *dir, struct dentry *victim, int isdir) 846 { 847 int error; 848 849 if (d_really_is_negative(victim)) 850 return -ENOENT; 851 852 BUG_ON(d_inode(victim->d_parent) != dir); 853 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 854 855 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 856 if (error) 857 return error; 858 if (IS_APPEND(dir)) 859 return -EPERM; 860 if (check_sticky(mnt_userns, dir, d_inode(victim)) || 861 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 862 IS_SWAPFILE(d_inode(victim))) 863 return -EPERM; 864 if (isdir) { 865 if (!d_is_dir(victim)) 866 return -ENOTDIR; 867 if (IS_ROOT(victim)) 868 return -EBUSY; 869 } else if (d_is_dir(victim)) 870 return -EISDIR; 871 if (IS_DEADDIR(dir)) 872 return -ENOENT; 873 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 874 return -EBUSY; 875 return 0; 876 } 877 878 /* copy of may_create in fs/namei.c() */ 879 static inline int btrfs_may_create(struct user_namespace *mnt_userns, 880 struct inode *dir, struct dentry *child) 881 { 882 if (d_really_is_positive(child)) 883 return -EEXIST; 884 if (IS_DEADDIR(dir)) 885 return -ENOENT; 886 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 887 return -EOVERFLOW; 888 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 889 } 890 891 /* 892 * Create a new subvolume below @parent. This is largely modeled after 893 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 894 * inside this filesystem so it's quite a bit simpler. 895 */ 896 static noinline int btrfs_mksubvol(const struct path *parent, 897 struct user_namespace *mnt_userns, 898 const char *name, int namelen, 899 struct btrfs_root *snap_src, 900 bool readonly, 901 struct btrfs_qgroup_inherit *inherit) 902 { 903 struct inode *dir = d_inode(parent->dentry); 904 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 905 struct dentry *dentry; 906 int error; 907 908 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 909 if (error == -EINTR) 910 return error; 911 912 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen); 913 error = PTR_ERR(dentry); 914 if (IS_ERR(dentry)) 915 goto out_unlock; 916 917 error = btrfs_may_create(mnt_userns, dir, dentry); 918 if (error) 919 goto out_dput; 920 921 /* 922 * even if this name doesn't exist, we may get hash collisions. 923 * check for them now when we can safely fail 924 */ 925 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 926 dir->i_ino, name, 927 namelen); 928 if (error) 929 goto out_dput; 930 931 down_read(&fs_info->subvol_sem); 932 933 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 934 goto out_up_read; 935 936 if (snap_src) 937 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 938 else 939 error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit); 940 941 if (!error) 942 fsnotify_mkdir(dir, dentry); 943 out_up_read: 944 up_read(&fs_info->subvol_sem); 945 out_dput: 946 dput(dentry); 947 out_unlock: 948 btrfs_inode_unlock(dir, 0); 949 return error; 950 } 951 952 static noinline int btrfs_mksnapshot(const struct path *parent, 953 struct user_namespace *mnt_userns, 954 const char *name, int namelen, 955 struct btrfs_root *root, 956 bool readonly, 957 struct btrfs_qgroup_inherit *inherit) 958 { 959 int ret; 960 bool snapshot_force_cow = false; 961 962 /* 963 * Force new buffered writes to reserve space even when NOCOW is 964 * possible. This is to avoid later writeback (running dealloc) to 965 * fallback to COW mode and unexpectedly fail with ENOSPC. 966 */ 967 btrfs_drew_read_lock(&root->snapshot_lock); 968 969 ret = btrfs_start_delalloc_snapshot(root, false); 970 if (ret) 971 goto out; 972 973 /* 974 * All previous writes have started writeback in NOCOW mode, so now 975 * we force future writes to fallback to COW mode during snapshot 976 * creation. 977 */ 978 atomic_inc(&root->snapshot_force_cow); 979 snapshot_force_cow = true; 980 981 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 982 983 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen, 984 root, readonly, inherit); 985 out: 986 if (snapshot_force_cow) 987 atomic_dec(&root->snapshot_force_cow); 988 btrfs_drew_read_unlock(&root->snapshot_lock); 989 return ret; 990 } 991 992 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, 993 bool locked) 994 { 995 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 996 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 997 struct extent_map *em; 998 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; 999 1000 /* 1001 * hopefully we have this extent in the tree already, try without 1002 * the full extent lock 1003 */ 1004 read_lock(&em_tree->lock); 1005 em = lookup_extent_mapping(em_tree, start, sectorsize); 1006 read_unlock(&em_tree->lock); 1007 1008 if (!em) { 1009 struct extent_state *cached = NULL; 1010 u64 end = start + sectorsize - 1; 1011 1012 /* get the big lock and read metadata off disk */ 1013 if (!locked) 1014 lock_extent_bits(io_tree, start, end, &cached); 1015 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, sectorsize); 1016 if (!locked) 1017 unlock_extent_cached(io_tree, start, end, &cached); 1018 1019 if (IS_ERR(em)) 1020 return NULL; 1021 } 1022 1023 return em; 1024 } 1025 1026 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, 1027 bool locked) 1028 { 1029 struct extent_map *next; 1030 bool ret = true; 1031 1032 /* this is the last extent */ 1033 if (em->start + em->len >= i_size_read(inode)) 1034 return false; 1035 1036 next = defrag_lookup_extent(inode, em->start + em->len, locked); 1037 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1038 ret = false; 1039 else if ((em->block_start + em->block_len == next->block_start) && 1040 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1041 ret = false; 1042 1043 free_extent_map(next); 1044 return ret; 1045 } 1046 1047 /* 1048 * Prepare one page to be defragged. 1049 * 1050 * This will ensure: 1051 * 1052 * - Returned page is locked and has been set up properly. 1053 * - No ordered extent exists in the page. 1054 * - The page is uptodate. 1055 * 1056 * NOTE: Caller should also wait for page writeback after the cluster is 1057 * prepared, here we don't do writeback wait for each page. 1058 */ 1059 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, 1060 pgoff_t index) 1061 { 1062 struct address_space *mapping = inode->vfs_inode.i_mapping; 1063 gfp_t mask = btrfs_alloc_write_mask(mapping); 1064 u64 page_start = (u64)index << PAGE_SHIFT; 1065 u64 page_end = page_start + PAGE_SIZE - 1; 1066 struct extent_state *cached_state = NULL; 1067 struct page *page; 1068 int ret; 1069 1070 again: 1071 page = find_or_create_page(mapping, index, mask); 1072 if (!page) 1073 return ERR_PTR(-ENOMEM); 1074 1075 /* 1076 * Since we can defragment files opened read-only, we can encounter 1077 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We 1078 * can't do I/O using huge pages yet, so return an error for now. 1079 * Filesystem transparent huge pages are typically only used for 1080 * executables that explicitly enable them, so this isn't very 1081 * restrictive. 1082 */ 1083 if (PageCompound(page)) { 1084 unlock_page(page); 1085 put_page(page); 1086 return ERR_PTR(-ETXTBSY); 1087 } 1088 1089 ret = set_page_extent_mapped(page); 1090 if (ret < 0) { 1091 unlock_page(page); 1092 put_page(page); 1093 return ERR_PTR(ret); 1094 } 1095 1096 /* Wait for any existing ordered extent in the range */ 1097 while (1) { 1098 struct btrfs_ordered_extent *ordered; 1099 1100 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 1101 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 1102 unlock_extent_cached(&inode->io_tree, page_start, page_end, 1103 &cached_state); 1104 if (!ordered) 1105 break; 1106 1107 unlock_page(page); 1108 btrfs_start_ordered_extent(ordered, 1); 1109 btrfs_put_ordered_extent(ordered); 1110 lock_page(page); 1111 /* 1112 * We unlocked the page above, so we need check if it was 1113 * released or not. 1114 */ 1115 if (page->mapping != mapping || !PagePrivate(page)) { 1116 unlock_page(page); 1117 put_page(page); 1118 goto again; 1119 } 1120 } 1121 1122 /* 1123 * Now the page range has no ordered extent any more. Read the page to 1124 * make it uptodate. 1125 */ 1126 if (!PageUptodate(page)) { 1127 btrfs_readpage(NULL, page); 1128 lock_page(page); 1129 if (page->mapping != mapping || !PagePrivate(page)) { 1130 unlock_page(page); 1131 put_page(page); 1132 goto again; 1133 } 1134 if (!PageUptodate(page)) { 1135 unlock_page(page); 1136 put_page(page); 1137 return ERR_PTR(-EIO); 1138 } 1139 } 1140 return page; 1141 } 1142 1143 struct defrag_target_range { 1144 struct list_head list; 1145 u64 start; 1146 u64 len; 1147 }; 1148 1149 /* 1150 * Collect all valid target extents. 1151 * 1152 * @start: file offset to lookup 1153 * @len: length to lookup 1154 * @extent_thresh: file extent size threshold, any extent size >= this value 1155 * will be ignored 1156 * @newer_than: only defrag extents newer than this value 1157 * @do_compress: whether the defrag is doing compression 1158 * if true, @extent_thresh will be ignored and all regular 1159 * file extents meeting @newer_than will be targets. 1160 * @locked: if the range has already held extent lock 1161 * @target_list: list of targets file extents 1162 */ 1163 static int defrag_collect_targets(struct btrfs_inode *inode, 1164 u64 start, u64 len, u32 extent_thresh, 1165 u64 newer_than, bool do_compress, 1166 bool locked, struct list_head *target_list) 1167 { 1168 u64 cur = start; 1169 int ret = 0; 1170 1171 while (cur < start + len) { 1172 struct extent_map *em; 1173 struct defrag_target_range *new; 1174 bool next_mergeable = true; 1175 u64 range_len; 1176 1177 em = defrag_lookup_extent(&inode->vfs_inode, cur, locked); 1178 if (!em) 1179 break; 1180 1181 /* Skip hole/inline/preallocated extents */ 1182 if (em->block_start >= EXTENT_MAP_LAST_BYTE || 1183 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1184 goto next; 1185 1186 /* Skip older extent */ 1187 if (em->generation < newer_than) 1188 goto next; 1189 1190 /* 1191 * For do_compress case, we want to compress all valid file 1192 * extents, thus no @extent_thresh or mergeable check. 1193 */ 1194 if (do_compress) 1195 goto add; 1196 1197 /* Skip too large extent */ 1198 if (em->len >= extent_thresh) 1199 goto next; 1200 1201 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, 1202 locked); 1203 if (!next_mergeable) { 1204 struct defrag_target_range *last; 1205 1206 /* Empty target list, no way to merge with last entry */ 1207 if (list_empty(target_list)) 1208 goto next; 1209 last = list_entry(target_list->prev, 1210 struct defrag_target_range, list); 1211 /* Not mergeable with last entry */ 1212 if (last->start + last->len != cur) 1213 goto next; 1214 1215 /* Mergeable, fall through to add it to @target_list. */ 1216 } 1217 1218 add: 1219 range_len = min(extent_map_end(em), start + len) - cur; 1220 /* 1221 * This one is a good target, check if it can be merged into 1222 * last range of the target list. 1223 */ 1224 if (!list_empty(target_list)) { 1225 struct defrag_target_range *last; 1226 1227 last = list_entry(target_list->prev, 1228 struct defrag_target_range, list); 1229 ASSERT(last->start + last->len <= cur); 1230 if (last->start + last->len == cur) { 1231 /* Mergeable, enlarge the last entry */ 1232 last->len += range_len; 1233 goto next; 1234 } 1235 /* Fall through to allocate a new entry */ 1236 } 1237 1238 /* Allocate new defrag_target_range */ 1239 new = kmalloc(sizeof(*new), GFP_NOFS); 1240 if (!new) { 1241 free_extent_map(em); 1242 ret = -ENOMEM; 1243 break; 1244 } 1245 new->start = cur; 1246 new->len = range_len; 1247 list_add_tail(&new->list, target_list); 1248 1249 next: 1250 cur = extent_map_end(em); 1251 free_extent_map(em); 1252 } 1253 if (ret < 0) { 1254 struct defrag_target_range *entry; 1255 struct defrag_target_range *tmp; 1256 1257 list_for_each_entry_safe(entry, tmp, target_list, list) { 1258 list_del_init(&entry->list); 1259 kfree(entry); 1260 } 1261 } 1262 return ret; 1263 } 1264 1265 #define CLUSTER_SIZE (SZ_256K) 1266 1267 /* 1268 * Defrag one contiguous target range. 1269 * 1270 * @inode: target inode 1271 * @target: target range to defrag 1272 * @pages: locked pages covering the defrag range 1273 * @nr_pages: number of locked pages 1274 * 1275 * Caller should ensure: 1276 * 1277 * - Pages are prepared 1278 * Pages should be locked, no ordered extent in the pages range, 1279 * no writeback. 1280 * 1281 * - Extent bits are locked 1282 */ 1283 static int defrag_one_locked_target(struct btrfs_inode *inode, 1284 struct defrag_target_range *target, 1285 struct page **pages, int nr_pages, 1286 struct extent_state **cached_state) 1287 { 1288 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1289 struct extent_changeset *data_reserved = NULL; 1290 const u64 start = target->start; 1291 const u64 len = target->len; 1292 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; 1293 unsigned long start_index = start >> PAGE_SHIFT; 1294 unsigned long first_index = page_index(pages[0]); 1295 int ret = 0; 1296 int i; 1297 1298 ASSERT(last_index - first_index + 1 <= nr_pages); 1299 1300 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); 1301 if (ret < 0) 1302 return ret; 1303 clear_extent_bit(&inode->io_tree, start, start + len - 1, 1304 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1305 EXTENT_DEFRAG, 0, 0, cached_state); 1306 set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state); 1307 1308 /* Update the page status */ 1309 for (i = start_index - first_index; i <= last_index - first_index; i++) { 1310 ClearPageChecked(pages[i]); 1311 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len); 1312 } 1313 btrfs_delalloc_release_extents(inode, len); 1314 extent_changeset_free(data_reserved); 1315 1316 return ret; 1317 } 1318 1319 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, 1320 u32 extent_thresh, u64 newer_than, bool do_compress) 1321 { 1322 struct extent_state *cached_state = NULL; 1323 struct defrag_target_range *entry; 1324 struct defrag_target_range *tmp; 1325 LIST_HEAD(target_list); 1326 struct page **pages; 1327 const u32 sectorsize = inode->root->fs_info->sectorsize; 1328 u64 last_index = (start + len - 1) >> PAGE_SHIFT; 1329 u64 start_index = start >> PAGE_SHIFT; 1330 unsigned int nr_pages = last_index - start_index + 1; 1331 int ret = 0; 1332 int i; 1333 1334 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); 1335 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); 1336 1337 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 1338 if (!pages) 1339 return -ENOMEM; 1340 1341 /* Prepare all pages */ 1342 for (i = 0; i < nr_pages; i++) { 1343 pages[i] = defrag_prepare_one_page(inode, start_index + i); 1344 if (IS_ERR(pages[i])) { 1345 ret = PTR_ERR(pages[i]); 1346 pages[i] = NULL; 1347 goto free_pages; 1348 } 1349 } 1350 for (i = 0; i < nr_pages; i++) 1351 wait_on_page_writeback(pages[i]); 1352 1353 /* Lock the pages range */ 1354 lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT, 1355 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1356 &cached_state); 1357 /* 1358 * Now we have a consistent view about the extent map, re-check 1359 * which range really needs to be defragged. 1360 * 1361 * And this time we have extent locked already, pass @locked = true 1362 * so that we won't relock the extent range and cause deadlock. 1363 */ 1364 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1365 newer_than, do_compress, true, 1366 &target_list); 1367 if (ret < 0) 1368 goto unlock_extent; 1369 1370 list_for_each_entry(entry, &target_list, list) { 1371 ret = defrag_one_locked_target(inode, entry, pages, nr_pages, 1372 &cached_state); 1373 if (ret < 0) 1374 break; 1375 } 1376 1377 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1378 list_del_init(&entry->list); 1379 kfree(entry); 1380 } 1381 unlock_extent: 1382 unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT, 1383 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1384 &cached_state); 1385 free_pages: 1386 for (i = 0; i < nr_pages; i++) { 1387 if (pages[i]) { 1388 unlock_page(pages[i]); 1389 put_page(pages[i]); 1390 } 1391 } 1392 kfree(pages); 1393 return ret; 1394 } 1395 1396 static int defrag_one_cluster(struct btrfs_inode *inode, 1397 struct file_ra_state *ra, 1398 u64 start, u32 len, u32 extent_thresh, 1399 u64 newer_than, bool do_compress, 1400 unsigned long *sectors_defragged, 1401 unsigned long max_sectors) 1402 { 1403 const u32 sectorsize = inode->root->fs_info->sectorsize; 1404 struct defrag_target_range *entry; 1405 struct defrag_target_range *tmp; 1406 LIST_HEAD(target_list); 1407 int ret; 1408 1409 BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1410 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1411 newer_than, do_compress, false, 1412 &target_list); 1413 if (ret < 0) 1414 goto out; 1415 1416 list_for_each_entry(entry, &target_list, list) { 1417 u32 range_len = entry->len; 1418 1419 /* Reached the limit */ 1420 if (max_sectors && max_sectors == *sectors_defragged) 1421 break; 1422 1423 if (max_sectors) 1424 range_len = min_t(u32, range_len, 1425 (max_sectors - *sectors_defragged) * sectorsize); 1426 1427 if (ra) 1428 page_cache_sync_readahead(inode->vfs_inode.i_mapping, 1429 ra, NULL, entry->start >> PAGE_SHIFT, 1430 ((entry->start + range_len - 1) >> PAGE_SHIFT) - 1431 (entry->start >> PAGE_SHIFT) + 1); 1432 /* 1433 * Here we may not defrag any range if holes are punched before 1434 * we locked the pages. 1435 * But that's fine, it only affects the @sectors_defragged 1436 * accounting. 1437 */ 1438 ret = defrag_one_range(inode, entry->start, range_len, 1439 extent_thresh, newer_than, do_compress); 1440 if (ret < 0) 1441 break; 1442 *sectors_defragged += range_len; 1443 } 1444 out: 1445 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1446 list_del_init(&entry->list); 1447 kfree(entry); 1448 } 1449 return ret; 1450 } 1451 1452 /* 1453 * Entry point to file defragmentation. 1454 * 1455 * @inode: inode to be defragged 1456 * @ra: readahead state (can be NUL) 1457 * @range: defrag options including range and flags 1458 * @newer_than: minimum transid to defrag 1459 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode 1460 * will be defragged. 1461 */ 1462 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 1463 struct btrfs_ioctl_defrag_range_args *range, 1464 u64 newer_than, unsigned long max_to_defrag) 1465 { 1466 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1467 unsigned long sectors_defragged = 0; 1468 u64 isize = i_size_read(inode); 1469 u64 cur; 1470 u64 last_byte; 1471 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1472 bool ra_allocated = false; 1473 int compress_type = BTRFS_COMPRESS_ZLIB; 1474 int ret = 0; 1475 u32 extent_thresh = range->extent_thresh; 1476 1477 if (isize == 0) 1478 return 0; 1479 1480 if (range->start >= isize) 1481 return -EINVAL; 1482 1483 if (do_compress) { 1484 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1485 return -EINVAL; 1486 if (range->compress_type) 1487 compress_type = range->compress_type; 1488 } 1489 1490 if (extent_thresh == 0) 1491 extent_thresh = SZ_256K; 1492 1493 if (range->start + range->len > range->start) { 1494 /* Got a specific range */ 1495 last_byte = min(isize, range->start + range->len) - 1; 1496 } else { 1497 /* Defrag until file end */ 1498 last_byte = isize - 1; 1499 } 1500 1501 /* 1502 * If we were not given a ra, allocate a readahead context. As 1503 * readahead is just an optimization, defrag will work without it so 1504 * we don't error out. 1505 */ 1506 if (!ra) { 1507 ra_allocated = true; 1508 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1509 if (ra) 1510 file_ra_state_init(ra, inode->i_mapping); 1511 } 1512 1513 /* Align the range */ 1514 cur = round_down(range->start, fs_info->sectorsize); 1515 last_byte = round_up(last_byte, fs_info->sectorsize) - 1; 1516 1517 while (cur < last_byte) { 1518 u64 cluster_end; 1519 1520 /* The cluster size 256K should always be page aligned */ 1521 BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1522 1523 /* We want the cluster end at page boundary when possible */ 1524 cluster_end = (((cur >> PAGE_SHIFT) + 1525 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; 1526 cluster_end = min(cluster_end, last_byte); 1527 1528 btrfs_inode_lock(inode, 0); 1529 if (IS_SWAPFILE(inode)) { 1530 ret = -ETXTBSY; 1531 btrfs_inode_unlock(inode, 0); 1532 break; 1533 } 1534 if (!(inode->i_sb->s_flags & SB_ACTIVE)) { 1535 btrfs_inode_unlock(inode, 0); 1536 break; 1537 } 1538 if (do_compress) 1539 BTRFS_I(inode)->defrag_compress = compress_type; 1540 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, 1541 cluster_end + 1 - cur, extent_thresh, 1542 newer_than, do_compress, 1543 §ors_defragged, max_to_defrag); 1544 btrfs_inode_unlock(inode, 0); 1545 if (ret < 0) 1546 break; 1547 cur = cluster_end + 1; 1548 } 1549 1550 if (ra_allocated) 1551 kfree(ra); 1552 if (sectors_defragged) { 1553 /* 1554 * We have defragged some sectors, for compression case they 1555 * need to be written back immediately. 1556 */ 1557 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { 1558 filemap_flush(inode->i_mapping); 1559 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1560 &BTRFS_I(inode)->runtime_flags)) 1561 filemap_flush(inode->i_mapping); 1562 } 1563 if (range->compress_type == BTRFS_COMPRESS_LZO) 1564 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1565 else if (range->compress_type == BTRFS_COMPRESS_ZSTD) 1566 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1567 ret = sectors_defragged; 1568 } 1569 if (do_compress) { 1570 btrfs_inode_lock(inode, 0); 1571 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1572 btrfs_inode_unlock(inode, 0); 1573 } 1574 return ret; 1575 } 1576 1577 /* 1578 * Try to start exclusive operation @type or cancel it if it's running. 1579 * 1580 * Return: 1581 * 0 - normal mode, newly claimed op started 1582 * >0 - normal mode, something else is running, 1583 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1584 * ECANCELED - cancel mode, successful cancel 1585 * ENOTCONN - cancel mode, operation not running anymore 1586 */ 1587 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1588 enum btrfs_exclusive_operation type, bool cancel) 1589 { 1590 if (!cancel) { 1591 /* Start normal op */ 1592 if (!btrfs_exclop_start(fs_info, type)) 1593 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1594 /* Exclusive operation is now claimed */ 1595 return 0; 1596 } 1597 1598 /* Cancel running op */ 1599 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1600 /* 1601 * This blocks any exclop finish from setting it to NONE, so we 1602 * request cancellation. Either it runs and we will wait for it, 1603 * or it has finished and no waiting will happen. 1604 */ 1605 atomic_inc(&fs_info->reloc_cancel_req); 1606 btrfs_exclop_start_unlock(fs_info); 1607 1608 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1609 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1610 TASK_INTERRUPTIBLE); 1611 1612 return -ECANCELED; 1613 } 1614 1615 /* Something else is running or none */ 1616 return -ENOTCONN; 1617 } 1618 1619 static noinline int btrfs_ioctl_resize(struct file *file, 1620 void __user *arg) 1621 { 1622 BTRFS_DEV_LOOKUP_ARGS(args); 1623 struct inode *inode = file_inode(file); 1624 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1625 u64 new_size; 1626 u64 old_size; 1627 u64 devid = 1; 1628 struct btrfs_root *root = BTRFS_I(inode)->root; 1629 struct btrfs_ioctl_vol_args *vol_args; 1630 struct btrfs_trans_handle *trans; 1631 struct btrfs_device *device = NULL; 1632 char *sizestr; 1633 char *retptr; 1634 char *devstr = NULL; 1635 int ret = 0; 1636 int mod = 0; 1637 bool cancel; 1638 1639 if (!capable(CAP_SYS_ADMIN)) 1640 return -EPERM; 1641 1642 ret = mnt_want_write_file(file); 1643 if (ret) 1644 return ret; 1645 1646 /* 1647 * Read the arguments before checking exclusivity to be able to 1648 * distinguish regular resize and cancel 1649 */ 1650 vol_args = memdup_user(arg, sizeof(*vol_args)); 1651 if (IS_ERR(vol_args)) { 1652 ret = PTR_ERR(vol_args); 1653 goto out_drop; 1654 } 1655 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1656 sizestr = vol_args->name; 1657 cancel = (strcmp("cancel", sizestr) == 0); 1658 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1659 if (ret) 1660 goto out_free; 1661 /* Exclusive operation is now claimed */ 1662 1663 devstr = strchr(sizestr, ':'); 1664 if (devstr) { 1665 sizestr = devstr + 1; 1666 *devstr = '\0'; 1667 devstr = vol_args->name; 1668 ret = kstrtoull(devstr, 10, &devid); 1669 if (ret) 1670 goto out_finish; 1671 if (!devid) { 1672 ret = -EINVAL; 1673 goto out_finish; 1674 } 1675 btrfs_info(fs_info, "resizing devid %llu", devid); 1676 } 1677 1678 args.devid = devid; 1679 device = btrfs_find_device(fs_info->fs_devices, &args); 1680 if (!device) { 1681 btrfs_info(fs_info, "resizer unable to find device %llu", 1682 devid); 1683 ret = -ENODEV; 1684 goto out_finish; 1685 } 1686 1687 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1688 btrfs_info(fs_info, 1689 "resizer unable to apply on readonly device %llu", 1690 devid); 1691 ret = -EPERM; 1692 goto out_finish; 1693 } 1694 1695 if (!strcmp(sizestr, "max")) 1696 new_size = bdev_nr_bytes(device->bdev); 1697 else { 1698 if (sizestr[0] == '-') { 1699 mod = -1; 1700 sizestr++; 1701 } else if (sizestr[0] == '+') { 1702 mod = 1; 1703 sizestr++; 1704 } 1705 new_size = memparse(sizestr, &retptr); 1706 if (*retptr != '\0' || new_size == 0) { 1707 ret = -EINVAL; 1708 goto out_finish; 1709 } 1710 } 1711 1712 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1713 ret = -EPERM; 1714 goto out_finish; 1715 } 1716 1717 old_size = btrfs_device_get_total_bytes(device); 1718 1719 if (mod < 0) { 1720 if (new_size > old_size) { 1721 ret = -EINVAL; 1722 goto out_finish; 1723 } 1724 new_size = old_size - new_size; 1725 } else if (mod > 0) { 1726 if (new_size > ULLONG_MAX - old_size) { 1727 ret = -ERANGE; 1728 goto out_finish; 1729 } 1730 new_size = old_size + new_size; 1731 } 1732 1733 if (new_size < SZ_256M) { 1734 ret = -EINVAL; 1735 goto out_finish; 1736 } 1737 if (new_size > bdev_nr_bytes(device->bdev)) { 1738 ret = -EFBIG; 1739 goto out_finish; 1740 } 1741 1742 new_size = round_down(new_size, fs_info->sectorsize); 1743 1744 if (new_size > old_size) { 1745 trans = btrfs_start_transaction(root, 0); 1746 if (IS_ERR(trans)) { 1747 ret = PTR_ERR(trans); 1748 goto out_finish; 1749 } 1750 ret = btrfs_grow_device(trans, device, new_size); 1751 btrfs_commit_transaction(trans); 1752 } else if (new_size < old_size) { 1753 ret = btrfs_shrink_device(device, new_size); 1754 } /* equal, nothing need to do */ 1755 1756 if (ret == 0 && new_size != old_size) 1757 btrfs_info_in_rcu(fs_info, 1758 "resize device %s (devid %llu) from %llu to %llu", 1759 rcu_str_deref(device->name), device->devid, 1760 old_size, new_size); 1761 out_finish: 1762 btrfs_exclop_finish(fs_info); 1763 out_free: 1764 kfree(vol_args); 1765 out_drop: 1766 mnt_drop_write_file(file); 1767 return ret; 1768 } 1769 1770 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1771 struct user_namespace *mnt_userns, 1772 const char *name, unsigned long fd, int subvol, 1773 bool readonly, 1774 struct btrfs_qgroup_inherit *inherit) 1775 { 1776 int namelen; 1777 int ret = 0; 1778 1779 if (!S_ISDIR(file_inode(file)->i_mode)) 1780 return -ENOTDIR; 1781 1782 ret = mnt_want_write_file(file); 1783 if (ret) 1784 goto out; 1785 1786 namelen = strlen(name); 1787 if (strchr(name, '/')) { 1788 ret = -EINVAL; 1789 goto out_drop_write; 1790 } 1791 1792 if (name[0] == '.' && 1793 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1794 ret = -EEXIST; 1795 goto out_drop_write; 1796 } 1797 1798 if (subvol) { 1799 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name, 1800 namelen, NULL, readonly, inherit); 1801 } else { 1802 struct fd src = fdget(fd); 1803 struct inode *src_inode; 1804 if (!src.file) { 1805 ret = -EINVAL; 1806 goto out_drop_write; 1807 } 1808 1809 src_inode = file_inode(src.file); 1810 if (src_inode->i_sb != file_inode(file)->i_sb) { 1811 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1812 "Snapshot src from another FS"); 1813 ret = -EXDEV; 1814 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) { 1815 /* 1816 * Subvolume creation is not restricted, but snapshots 1817 * are limited to own subvolumes only 1818 */ 1819 ret = -EPERM; 1820 } else { 1821 ret = btrfs_mksnapshot(&file->f_path, mnt_userns, 1822 name, namelen, 1823 BTRFS_I(src_inode)->root, 1824 readonly, inherit); 1825 } 1826 fdput(src); 1827 } 1828 out_drop_write: 1829 mnt_drop_write_file(file); 1830 out: 1831 return ret; 1832 } 1833 1834 static noinline int btrfs_ioctl_snap_create(struct file *file, 1835 void __user *arg, int subvol) 1836 { 1837 struct btrfs_ioctl_vol_args *vol_args; 1838 int ret; 1839 1840 if (!S_ISDIR(file_inode(file)->i_mode)) 1841 return -ENOTDIR; 1842 1843 vol_args = memdup_user(arg, sizeof(*vol_args)); 1844 if (IS_ERR(vol_args)) 1845 return PTR_ERR(vol_args); 1846 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1847 1848 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 1849 vol_args->name, vol_args->fd, subvol, 1850 false, NULL); 1851 1852 kfree(vol_args); 1853 return ret; 1854 } 1855 1856 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1857 void __user *arg, int subvol) 1858 { 1859 struct btrfs_ioctl_vol_args_v2 *vol_args; 1860 int ret; 1861 bool readonly = false; 1862 struct btrfs_qgroup_inherit *inherit = NULL; 1863 1864 if (!S_ISDIR(file_inode(file)->i_mode)) 1865 return -ENOTDIR; 1866 1867 vol_args = memdup_user(arg, sizeof(*vol_args)); 1868 if (IS_ERR(vol_args)) 1869 return PTR_ERR(vol_args); 1870 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1871 1872 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1873 ret = -EOPNOTSUPP; 1874 goto free_args; 1875 } 1876 1877 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1878 readonly = true; 1879 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1880 u64 nums; 1881 1882 if (vol_args->size < sizeof(*inherit) || 1883 vol_args->size > PAGE_SIZE) { 1884 ret = -EINVAL; 1885 goto free_args; 1886 } 1887 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1888 if (IS_ERR(inherit)) { 1889 ret = PTR_ERR(inherit); 1890 goto free_args; 1891 } 1892 1893 if (inherit->num_qgroups > PAGE_SIZE || 1894 inherit->num_ref_copies > PAGE_SIZE || 1895 inherit->num_excl_copies > PAGE_SIZE) { 1896 ret = -EINVAL; 1897 goto free_inherit; 1898 } 1899 1900 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1901 2 * inherit->num_excl_copies; 1902 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1903 ret = -EINVAL; 1904 goto free_inherit; 1905 } 1906 } 1907 1908 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 1909 vol_args->name, vol_args->fd, subvol, 1910 readonly, inherit); 1911 if (ret) 1912 goto free_inherit; 1913 free_inherit: 1914 kfree(inherit); 1915 free_args: 1916 kfree(vol_args); 1917 return ret; 1918 } 1919 1920 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1921 void __user *arg) 1922 { 1923 struct inode *inode = file_inode(file); 1924 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1925 struct btrfs_root *root = BTRFS_I(inode)->root; 1926 int ret = 0; 1927 u64 flags = 0; 1928 1929 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1930 return -EINVAL; 1931 1932 down_read(&fs_info->subvol_sem); 1933 if (btrfs_root_readonly(root)) 1934 flags |= BTRFS_SUBVOL_RDONLY; 1935 up_read(&fs_info->subvol_sem); 1936 1937 if (copy_to_user(arg, &flags, sizeof(flags))) 1938 ret = -EFAULT; 1939 1940 return ret; 1941 } 1942 1943 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1944 void __user *arg) 1945 { 1946 struct inode *inode = file_inode(file); 1947 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1948 struct btrfs_root *root = BTRFS_I(inode)->root; 1949 struct btrfs_trans_handle *trans; 1950 u64 root_flags; 1951 u64 flags; 1952 int ret = 0; 1953 1954 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode)) 1955 return -EPERM; 1956 1957 ret = mnt_want_write_file(file); 1958 if (ret) 1959 goto out; 1960 1961 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1962 ret = -EINVAL; 1963 goto out_drop_write; 1964 } 1965 1966 if (copy_from_user(&flags, arg, sizeof(flags))) { 1967 ret = -EFAULT; 1968 goto out_drop_write; 1969 } 1970 1971 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1972 ret = -EOPNOTSUPP; 1973 goto out_drop_write; 1974 } 1975 1976 down_write(&fs_info->subvol_sem); 1977 1978 /* nothing to do */ 1979 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1980 goto out_drop_sem; 1981 1982 root_flags = btrfs_root_flags(&root->root_item); 1983 if (flags & BTRFS_SUBVOL_RDONLY) { 1984 btrfs_set_root_flags(&root->root_item, 1985 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1986 } else { 1987 /* 1988 * Block RO -> RW transition if this subvolume is involved in 1989 * send 1990 */ 1991 spin_lock(&root->root_item_lock); 1992 if (root->send_in_progress == 0) { 1993 btrfs_set_root_flags(&root->root_item, 1994 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1995 spin_unlock(&root->root_item_lock); 1996 } else { 1997 spin_unlock(&root->root_item_lock); 1998 btrfs_warn(fs_info, 1999 "Attempt to set subvolume %llu read-write during send", 2000 root->root_key.objectid); 2001 ret = -EPERM; 2002 goto out_drop_sem; 2003 } 2004 } 2005 2006 trans = btrfs_start_transaction(root, 1); 2007 if (IS_ERR(trans)) { 2008 ret = PTR_ERR(trans); 2009 goto out_reset; 2010 } 2011 2012 ret = btrfs_update_root(trans, fs_info->tree_root, 2013 &root->root_key, &root->root_item); 2014 if (ret < 0) { 2015 btrfs_end_transaction(trans); 2016 goto out_reset; 2017 } 2018 2019 ret = btrfs_commit_transaction(trans); 2020 2021 out_reset: 2022 if (ret) 2023 btrfs_set_root_flags(&root->root_item, root_flags); 2024 out_drop_sem: 2025 up_write(&fs_info->subvol_sem); 2026 out_drop_write: 2027 mnt_drop_write_file(file); 2028 out: 2029 return ret; 2030 } 2031 2032 static noinline int key_in_sk(struct btrfs_key *key, 2033 struct btrfs_ioctl_search_key *sk) 2034 { 2035 struct btrfs_key test; 2036 int ret; 2037 2038 test.objectid = sk->min_objectid; 2039 test.type = sk->min_type; 2040 test.offset = sk->min_offset; 2041 2042 ret = btrfs_comp_cpu_keys(key, &test); 2043 if (ret < 0) 2044 return 0; 2045 2046 test.objectid = sk->max_objectid; 2047 test.type = sk->max_type; 2048 test.offset = sk->max_offset; 2049 2050 ret = btrfs_comp_cpu_keys(key, &test); 2051 if (ret > 0) 2052 return 0; 2053 return 1; 2054 } 2055 2056 static noinline int copy_to_sk(struct btrfs_path *path, 2057 struct btrfs_key *key, 2058 struct btrfs_ioctl_search_key *sk, 2059 size_t *buf_size, 2060 char __user *ubuf, 2061 unsigned long *sk_offset, 2062 int *num_found) 2063 { 2064 u64 found_transid; 2065 struct extent_buffer *leaf; 2066 struct btrfs_ioctl_search_header sh; 2067 struct btrfs_key test; 2068 unsigned long item_off; 2069 unsigned long item_len; 2070 int nritems; 2071 int i; 2072 int slot; 2073 int ret = 0; 2074 2075 leaf = path->nodes[0]; 2076 slot = path->slots[0]; 2077 nritems = btrfs_header_nritems(leaf); 2078 2079 if (btrfs_header_generation(leaf) > sk->max_transid) { 2080 i = nritems; 2081 goto advance_key; 2082 } 2083 found_transid = btrfs_header_generation(leaf); 2084 2085 for (i = slot; i < nritems; i++) { 2086 item_off = btrfs_item_ptr_offset(leaf, i); 2087 item_len = btrfs_item_size_nr(leaf, i); 2088 2089 btrfs_item_key_to_cpu(leaf, key, i); 2090 if (!key_in_sk(key, sk)) 2091 continue; 2092 2093 if (sizeof(sh) + item_len > *buf_size) { 2094 if (*num_found) { 2095 ret = 1; 2096 goto out; 2097 } 2098 2099 /* 2100 * return one empty item back for v1, which does not 2101 * handle -EOVERFLOW 2102 */ 2103 2104 *buf_size = sizeof(sh) + item_len; 2105 item_len = 0; 2106 ret = -EOVERFLOW; 2107 } 2108 2109 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2110 ret = 1; 2111 goto out; 2112 } 2113 2114 sh.objectid = key->objectid; 2115 sh.offset = key->offset; 2116 sh.type = key->type; 2117 sh.len = item_len; 2118 sh.transid = found_transid; 2119 2120 /* 2121 * Copy search result header. If we fault then loop again so we 2122 * can fault in the pages and -EFAULT there if there's a 2123 * problem. Otherwise we'll fault and then copy the buffer in 2124 * properly this next time through 2125 */ 2126 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2127 ret = 0; 2128 goto out; 2129 } 2130 2131 *sk_offset += sizeof(sh); 2132 2133 if (item_len) { 2134 char __user *up = ubuf + *sk_offset; 2135 /* 2136 * Copy the item, same behavior as above, but reset the 2137 * * sk_offset so we copy the full thing again. 2138 */ 2139 if (read_extent_buffer_to_user_nofault(leaf, up, 2140 item_off, item_len)) { 2141 ret = 0; 2142 *sk_offset -= sizeof(sh); 2143 goto out; 2144 } 2145 2146 *sk_offset += item_len; 2147 } 2148 (*num_found)++; 2149 2150 if (ret) /* -EOVERFLOW from above */ 2151 goto out; 2152 2153 if (*num_found >= sk->nr_items) { 2154 ret = 1; 2155 goto out; 2156 } 2157 } 2158 advance_key: 2159 ret = 0; 2160 test.objectid = sk->max_objectid; 2161 test.type = sk->max_type; 2162 test.offset = sk->max_offset; 2163 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2164 ret = 1; 2165 else if (key->offset < (u64)-1) 2166 key->offset++; 2167 else if (key->type < (u8)-1) { 2168 key->offset = 0; 2169 key->type++; 2170 } else if (key->objectid < (u64)-1) { 2171 key->offset = 0; 2172 key->type = 0; 2173 key->objectid++; 2174 } else 2175 ret = 1; 2176 out: 2177 /* 2178 * 0: all items from this leaf copied, continue with next 2179 * 1: * more items can be copied, but unused buffer is too small 2180 * * all items were found 2181 * Either way, it will stops the loop which iterates to the next 2182 * leaf 2183 * -EOVERFLOW: item was to large for buffer 2184 * -EFAULT: could not copy extent buffer back to userspace 2185 */ 2186 return ret; 2187 } 2188 2189 static noinline int search_ioctl(struct inode *inode, 2190 struct btrfs_ioctl_search_key *sk, 2191 size_t *buf_size, 2192 char __user *ubuf) 2193 { 2194 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2195 struct btrfs_root *root; 2196 struct btrfs_key key; 2197 struct btrfs_path *path; 2198 int ret; 2199 int num_found = 0; 2200 unsigned long sk_offset = 0; 2201 2202 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2203 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2204 return -EOVERFLOW; 2205 } 2206 2207 path = btrfs_alloc_path(); 2208 if (!path) 2209 return -ENOMEM; 2210 2211 if (sk->tree_id == 0) { 2212 /* search the root of the inode that was passed */ 2213 root = btrfs_grab_root(BTRFS_I(inode)->root); 2214 } else { 2215 root = btrfs_get_fs_root(info, sk->tree_id, true); 2216 if (IS_ERR(root)) { 2217 btrfs_free_path(path); 2218 return PTR_ERR(root); 2219 } 2220 } 2221 2222 key.objectid = sk->min_objectid; 2223 key.type = sk->min_type; 2224 key.offset = sk->min_offset; 2225 2226 while (1) { 2227 ret = -EFAULT; 2228 if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset)) 2229 break; 2230 2231 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2232 if (ret != 0) { 2233 if (ret > 0) 2234 ret = 0; 2235 goto err; 2236 } 2237 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2238 &sk_offset, &num_found); 2239 btrfs_release_path(path); 2240 if (ret) 2241 break; 2242 2243 } 2244 if (ret > 0) 2245 ret = 0; 2246 err: 2247 sk->nr_items = num_found; 2248 btrfs_put_root(root); 2249 btrfs_free_path(path); 2250 return ret; 2251 } 2252 2253 static noinline int btrfs_ioctl_tree_search(struct file *file, 2254 void __user *argp) 2255 { 2256 struct btrfs_ioctl_search_args __user *uargs; 2257 struct btrfs_ioctl_search_key sk; 2258 struct inode *inode; 2259 int ret; 2260 size_t buf_size; 2261 2262 if (!capable(CAP_SYS_ADMIN)) 2263 return -EPERM; 2264 2265 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2266 2267 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2268 return -EFAULT; 2269 2270 buf_size = sizeof(uargs->buf); 2271 2272 inode = file_inode(file); 2273 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2274 2275 /* 2276 * In the origin implementation an overflow is handled by returning a 2277 * search header with a len of zero, so reset ret. 2278 */ 2279 if (ret == -EOVERFLOW) 2280 ret = 0; 2281 2282 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2283 ret = -EFAULT; 2284 return ret; 2285 } 2286 2287 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2288 void __user *argp) 2289 { 2290 struct btrfs_ioctl_search_args_v2 __user *uarg; 2291 struct btrfs_ioctl_search_args_v2 args; 2292 struct inode *inode; 2293 int ret; 2294 size_t buf_size; 2295 const size_t buf_limit = SZ_16M; 2296 2297 if (!capable(CAP_SYS_ADMIN)) 2298 return -EPERM; 2299 2300 /* copy search header and buffer size */ 2301 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2302 if (copy_from_user(&args, uarg, sizeof(args))) 2303 return -EFAULT; 2304 2305 buf_size = args.buf_size; 2306 2307 /* limit result size to 16MB */ 2308 if (buf_size > buf_limit) 2309 buf_size = buf_limit; 2310 2311 inode = file_inode(file); 2312 ret = search_ioctl(inode, &args.key, &buf_size, 2313 (char __user *)(&uarg->buf[0])); 2314 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2315 ret = -EFAULT; 2316 else if (ret == -EOVERFLOW && 2317 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2318 ret = -EFAULT; 2319 2320 return ret; 2321 } 2322 2323 /* 2324 * Search INODE_REFs to identify path name of 'dirid' directory 2325 * in a 'tree_id' tree. and sets path name to 'name'. 2326 */ 2327 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2328 u64 tree_id, u64 dirid, char *name) 2329 { 2330 struct btrfs_root *root; 2331 struct btrfs_key key; 2332 char *ptr; 2333 int ret = -1; 2334 int slot; 2335 int len; 2336 int total_len = 0; 2337 struct btrfs_inode_ref *iref; 2338 struct extent_buffer *l; 2339 struct btrfs_path *path; 2340 2341 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2342 name[0]='\0'; 2343 return 0; 2344 } 2345 2346 path = btrfs_alloc_path(); 2347 if (!path) 2348 return -ENOMEM; 2349 2350 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2351 2352 root = btrfs_get_fs_root(info, tree_id, true); 2353 if (IS_ERR(root)) { 2354 ret = PTR_ERR(root); 2355 root = NULL; 2356 goto out; 2357 } 2358 2359 key.objectid = dirid; 2360 key.type = BTRFS_INODE_REF_KEY; 2361 key.offset = (u64)-1; 2362 2363 while (1) { 2364 ret = btrfs_search_backwards(root, &key, path); 2365 if (ret < 0) 2366 goto out; 2367 else if (ret > 0) { 2368 ret = -ENOENT; 2369 goto out; 2370 } 2371 2372 l = path->nodes[0]; 2373 slot = path->slots[0]; 2374 2375 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2376 len = btrfs_inode_ref_name_len(l, iref); 2377 ptr -= len + 1; 2378 total_len += len + 1; 2379 if (ptr < name) { 2380 ret = -ENAMETOOLONG; 2381 goto out; 2382 } 2383 2384 *(ptr + len) = '/'; 2385 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2386 2387 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2388 break; 2389 2390 btrfs_release_path(path); 2391 key.objectid = key.offset; 2392 key.offset = (u64)-1; 2393 dirid = key.objectid; 2394 } 2395 memmove(name, ptr, total_len); 2396 name[total_len] = '\0'; 2397 ret = 0; 2398 out: 2399 btrfs_put_root(root); 2400 btrfs_free_path(path); 2401 return ret; 2402 } 2403 2404 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns, 2405 struct inode *inode, 2406 struct btrfs_ioctl_ino_lookup_user_args *args) 2407 { 2408 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2409 struct super_block *sb = inode->i_sb; 2410 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2411 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2412 u64 dirid = args->dirid; 2413 unsigned long item_off; 2414 unsigned long item_len; 2415 struct btrfs_inode_ref *iref; 2416 struct btrfs_root_ref *rref; 2417 struct btrfs_root *root = NULL; 2418 struct btrfs_path *path; 2419 struct btrfs_key key, key2; 2420 struct extent_buffer *leaf; 2421 struct inode *temp_inode; 2422 char *ptr; 2423 int slot; 2424 int len; 2425 int total_len = 0; 2426 int ret; 2427 2428 path = btrfs_alloc_path(); 2429 if (!path) 2430 return -ENOMEM; 2431 2432 /* 2433 * If the bottom subvolume does not exist directly under upper_limit, 2434 * construct the path in from the bottom up. 2435 */ 2436 if (dirid != upper_limit.objectid) { 2437 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2438 2439 root = btrfs_get_fs_root(fs_info, treeid, true); 2440 if (IS_ERR(root)) { 2441 ret = PTR_ERR(root); 2442 goto out; 2443 } 2444 2445 key.objectid = dirid; 2446 key.type = BTRFS_INODE_REF_KEY; 2447 key.offset = (u64)-1; 2448 while (1) { 2449 ret = btrfs_search_backwards(root, &key, path); 2450 if (ret < 0) 2451 goto out_put; 2452 else if (ret > 0) { 2453 ret = -ENOENT; 2454 goto out_put; 2455 } 2456 2457 leaf = path->nodes[0]; 2458 slot = path->slots[0]; 2459 2460 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2461 len = btrfs_inode_ref_name_len(leaf, iref); 2462 ptr -= len + 1; 2463 total_len += len + 1; 2464 if (ptr < args->path) { 2465 ret = -ENAMETOOLONG; 2466 goto out_put; 2467 } 2468 2469 *(ptr + len) = '/'; 2470 read_extent_buffer(leaf, ptr, 2471 (unsigned long)(iref + 1), len); 2472 2473 /* Check the read+exec permission of this directory */ 2474 ret = btrfs_previous_item(root, path, dirid, 2475 BTRFS_INODE_ITEM_KEY); 2476 if (ret < 0) { 2477 goto out_put; 2478 } else if (ret > 0) { 2479 ret = -ENOENT; 2480 goto out_put; 2481 } 2482 2483 leaf = path->nodes[0]; 2484 slot = path->slots[0]; 2485 btrfs_item_key_to_cpu(leaf, &key2, slot); 2486 if (key2.objectid != dirid) { 2487 ret = -ENOENT; 2488 goto out_put; 2489 } 2490 2491 temp_inode = btrfs_iget(sb, key2.objectid, root); 2492 if (IS_ERR(temp_inode)) { 2493 ret = PTR_ERR(temp_inode); 2494 goto out_put; 2495 } 2496 ret = inode_permission(mnt_userns, temp_inode, 2497 MAY_READ | MAY_EXEC); 2498 iput(temp_inode); 2499 if (ret) { 2500 ret = -EACCES; 2501 goto out_put; 2502 } 2503 2504 if (key.offset == upper_limit.objectid) 2505 break; 2506 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2507 ret = -EACCES; 2508 goto out_put; 2509 } 2510 2511 btrfs_release_path(path); 2512 key.objectid = key.offset; 2513 key.offset = (u64)-1; 2514 dirid = key.objectid; 2515 } 2516 2517 memmove(args->path, ptr, total_len); 2518 args->path[total_len] = '\0'; 2519 btrfs_put_root(root); 2520 root = NULL; 2521 btrfs_release_path(path); 2522 } 2523 2524 /* Get the bottom subvolume's name from ROOT_REF */ 2525 key.objectid = treeid; 2526 key.type = BTRFS_ROOT_REF_KEY; 2527 key.offset = args->treeid; 2528 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2529 if (ret < 0) { 2530 goto out; 2531 } else if (ret > 0) { 2532 ret = -ENOENT; 2533 goto out; 2534 } 2535 2536 leaf = path->nodes[0]; 2537 slot = path->slots[0]; 2538 btrfs_item_key_to_cpu(leaf, &key, slot); 2539 2540 item_off = btrfs_item_ptr_offset(leaf, slot); 2541 item_len = btrfs_item_size_nr(leaf, slot); 2542 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2543 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2544 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2545 ret = -EINVAL; 2546 goto out; 2547 } 2548 2549 /* Copy subvolume's name */ 2550 item_off += sizeof(struct btrfs_root_ref); 2551 item_len -= sizeof(struct btrfs_root_ref); 2552 read_extent_buffer(leaf, args->name, item_off, item_len); 2553 args->name[item_len] = 0; 2554 2555 out_put: 2556 btrfs_put_root(root); 2557 out: 2558 btrfs_free_path(path); 2559 return ret; 2560 } 2561 2562 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2563 void __user *argp) 2564 { 2565 struct btrfs_ioctl_ino_lookup_args *args; 2566 struct inode *inode; 2567 int ret = 0; 2568 2569 args = memdup_user(argp, sizeof(*args)); 2570 if (IS_ERR(args)) 2571 return PTR_ERR(args); 2572 2573 inode = file_inode(file); 2574 2575 /* 2576 * Unprivileged query to obtain the containing subvolume root id. The 2577 * path is reset so it's consistent with btrfs_search_path_in_tree. 2578 */ 2579 if (args->treeid == 0) 2580 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2581 2582 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2583 args->name[0] = 0; 2584 goto out; 2585 } 2586 2587 if (!capable(CAP_SYS_ADMIN)) { 2588 ret = -EPERM; 2589 goto out; 2590 } 2591 2592 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2593 args->treeid, args->objectid, 2594 args->name); 2595 2596 out: 2597 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2598 ret = -EFAULT; 2599 2600 kfree(args); 2601 return ret; 2602 } 2603 2604 /* 2605 * Version of ino_lookup ioctl (unprivileged) 2606 * 2607 * The main differences from ino_lookup ioctl are: 2608 * 2609 * 1. Read + Exec permission will be checked using inode_permission() during 2610 * path construction. -EACCES will be returned in case of failure. 2611 * 2. Path construction will be stopped at the inode number which corresponds 2612 * to the fd with which this ioctl is called. If constructed path does not 2613 * exist under fd's inode, -EACCES will be returned. 2614 * 3. The name of bottom subvolume is also searched and filled. 2615 */ 2616 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2617 { 2618 struct btrfs_ioctl_ino_lookup_user_args *args; 2619 struct inode *inode; 2620 int ret; 2621 2622 args = memdup_user(argp, sizeof(*args)); 2623 if (IS_ERR(args)) 2624 return PTR_ERR(args); 2625 2626 inode = file_inode(file); 2627 2628 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2629 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2630 /* 2631 * The subvolume does not exist under fd with which this is 2632 * called 2633 */ 2634 kfree(args); 2635 return -EACCES; 2636 } 2637 2638 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args); 2639 2640 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2641 ret = -EFAULT; 2642 2643 kfree(args); 2644 return ret; 2645 } 2646 2647 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2648 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2649 { 2650 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2651 struct btrfs_fs_info *fs_info; 2652 struct btrfs_root *root; 2653 struct btrfs_path *path; 2654 struct btrfs_key key; 2655 struct btrfs_root_item *root_item; 2656 struct btrfs_root_ref *rref; 2657 struct extent_buffer *leaf; 2658 unsigned long item_off; 2659 unsigned long item_len; 2660 struct inode *inode; 2661 int slot; 2662 int ret = 0; 2663 2664 path = btrfs_alloc_path(); 2665 if (!path) 2666 return -ENOMEM; 2667 2668 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2669 if (!subvol_info) { 2670 btrfs_free_path(path); 2671 return -ENOMEM; 2672 } 2673 2674 inode = file_inode(file); 2675 fs_info = BTRFS_I(inode)->root->fs_info; 2676 2677 /* Get root_item of inode's subvolume */ 2678 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2679 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2680 if (IS_ERR(root)) { 2681 ret = PTR_ERR(root); 2682 goto out_free; 2683 } 2684 root_item = &root->root_item; 2685 2686 subvol_info->treeid = key.objectid; 2687 2688 subvol_info->generation = btrfs_root_generation(root_item); 2689 subvol_info->flags = btrfs_root_flags(root_item); 2690 2691 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2692 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2693 BTRFS_UUID_SIZE); 2694 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2695 BTRFS_UUID_SIZE); 2696 2697 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2698 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2699 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2700 2701 subvol_info->otransid = btrfs_root_otransid(root_item); 2702 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2703 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2704 2705 subvol_info->stransid = btrfs_root_stransid(root_item); 2706 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2707 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2708 2709 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2710 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2711 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2712 2713 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2714 /* Search root tree for ROOT_BACKREF of this subvolume */ 2715 key.type = BTRFS_ROOT_BACKREF_KEY; 2716 key.offset = 0; 2717 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2718 if (ret < 0) { 2719 goto out; 2720 } else if (path->slots[0] >= 2721 btrfs_header_nritems(path->nodes[0])) { 2722 ret = btrfs_next_leaf(fs_info->tree_root, path); 2723 if (ret < 0) { 2724 goto out; 2725 } else if (ret > 0) { 2726 ret = -EUCLEAN; 2727 goto out; 2728 } 2729 } 2730 2731 leaf = path->nodes[0]; 2732 slot = path->slots[0]; 2733 btrfs_item_key_to_cpu(leaf, &key, slot); 2734 if (key.objectid == subvol_info->treeid && 2735 key.type == BTRFS_ROOT_BACKREF_KEY) { 2736 subvol_info->parent_id = key.offset; 2737 2738 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2739 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2740 2741 item_off = btrfs_item_ptr_offset(leaf, slot) 2742 + sizeof(struct btrfs_root_ref); 2743 item_len = btrfs_item_size_nr(leaf, slot) 2744 - sizeof(struct btrfs_root_ref); 2745 read_extent_buffer(leaf, subvol_info->name, 2746 item_off, item_len); 2747 } else { 2748 ret = -ENOENT; 2749 goto out; 2750 } 2751 } 2752 2753 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2754 ret = -EFAULT; 2755 2756 out: 2757 btrfs_put_root(root); 2758 out_free: 2759 btrfs_free_path(path); 2760 kfree(subvol_info); 2761 return ret; 2762 } 2763 2764 /* 2765 * Return ROOT_REF information of the subvolume containing this inode 2766 * except the subvolume name. 2767 */ 2768 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2769 { 2770 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2771 struct btrfs_root_ref *rref; 2772 struct btrfs_root *root; 2773 struct btrfs_path *path; 2774 struct btrfs_key key; 2775 struct extent_buffer *leaf; 2776 struct inode *inode; 2777 u64 objectid; 2778 int slot; 2779 int ret; 2780 u8 found; 2781 2782 path = btrfs_alloc_path(); 2783 if (!path) 2784 return -ENOMEM; 2785 2786 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2787 if (IS_ERR(rootrefs)) { 2788 btrfs_free_path(path); 2789 return PTR_ERR(rootrefs); 2790 } 2791 2792 inode = file_inode(file); 2793 root = BTRFS_I(inode)->root->fs_info->tree_root; 2794 objectid = BTRFS_I(inode)->root->root_key.objectid; 2795 2796 key.objectid = objectid; 2797 key.type = BTRFS_ROOT_REF_KEY; 2798 key.offset = rootrefs->min_treeid; 2799 found = 0; 2800 2801 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2802 if (ret < 0) { 2803 goto out; 2804 } else if (path->slots[0] >= 2805 btrfs_header_nritems(path->nodes[0])) { 2806 ret = btrfs_next_leaf(root, path); 2807 if (ret < 0) { 2808 goto out; 2809 } else if (ret > 0) { 2810 ret = -EUCLEAN; 2811 goto out; 2812 } 2813 } 2814 while (1) { 2815 leaf = path->nodes[0]; 2816 slot = path->slots[0]; 2817 2818 btrfs_item_key_to_cpu(leaf, &key, slot); 2819 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2820 ret = 0; 2821 goto out; 2822 } 2823 2824 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2825 ret = -EOVERFLOW; 2826 goto out; 2827 } 2828 2829 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2830 rootrefs->rootref[found].treeid = key.offset; 2831 rootrefs->rootref[found].dirid = 2832 btrfs_root_ref_dirid(leaf, rref); 2833 found++; 2834 2835 ret = btrfs_next_item(root, path); 2836 if (ret < 0) { 2837 goto out; 2838 } else if (ret > 0) { 2839 ret = -EUCLEAN; 2840 goto out; 2841 } 2842 } 2843 2844 out: 2845 if (!ret || ret == -EOVERFLOW) { 2846 rootrefs->num_items = found; 2847 /* update min_treeid for next search */ 2848 if (found) 2849 rootrefs->min_treeid = 2850 rootrefs->rootref[found - 1].treeid + 1; 2851 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2852 ret = -EFAULT; 2853 } 2854 2855 kfree(rootrefs); 2856 btrfs_free_path(path); 2857 2858 return ret; 2859 } 2860 2861 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2862 void __user *arg, 2863 bool destroy_v2) 2864 { 2865 struct dentry *parent = file->f_path.dentry; 2866 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2867 struct dentry *dentry; 2868 struct inode *dir = d_inode(parent); 2869 struct inode *inode; 2870 struct btrfs_root *root = BTRFS_I(dir)->root; 2871 struct btrfs_root *dest = NULL; 2872 struct btrfs_ioctl_vol_args *vol_args = NULL; 2873 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2874 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 2875 char *subvol_name, *subvol_name_ptr = NULL; 2876 int subvol_namelen; 2877 int err = 0; 2878 bool destroy_parent = false; 2879 2880 if (destroy_v2) { 2881 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2882 if (IS_ERR(vol_args2)) 2883 return PTR_ERR(vol_args2); 2884 2885 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2886 err = -EOPNOTSUPP; 2887 goto out; 2888 } 2889 2890 /* 2891 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2892 * name, same as v1 currently does. 2893 */ 2894 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2895 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2896 subvol_name = vol_args2->name; 2897 2898 err = mnt_want_write_file(file); 2899 if (err) 2900 goto out; 2901 } else { 2902 struct inode *old_dir; 2903 2904 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2905 err = -EINVAL; 2906 goto out; 2907 } 2908 2909 err = mnt_want_write_file(file); 2910 if (err) 2911 goto out; 2912 2913 dentry = btrfs_get_dentry(fs_info->sb, 2914 BTRFS_FIRST_FREE_OBJECTID, 2915 vol_args2->subvolid, 0, 0); 2916 if (IS_ERR(dentry)) { 2917 err = PTR_ERR(dentry); 2918 goto out_drop_write; 2919 } 2920 2921 /* 2922 * Change the default parent since the subvolume being 2923 * deleted can be outside of the current mount point. 2924 */ 2925 parent = btrfs_get_parent(dentry); 2926 2927 /* 2928 * At this point dentry->d_name can point to '/' if the 2929 * subvolume we want to destroy is outsite of the 2930 * current mount point, so we need to release the 2931 * current dentry and execute the lookup to return a new 2932 * one with ->d_name pointing to the 2933 * <mount point>/subvol_name. 2934 */ 2935 dput(dentry); 2936 if (IS_ERR(parent)) { 2937 err = PTR_ERR(parent); 2938 goto out_drop_write; 2939 } 2940 old_dir = dir; 2941 dir = d_inode(parent); 2942 2943 /* 2944 * If v2 was used with SPEC_BY_ID, a new parent was 2945 * allocated since the subvolume can be outside of the 2946 * current mount point. Later on we need to release this 2947 * new parent dentry. 2948 */ 2949 destroy_parent = true; 2950 2951 /* 2952 * On idmapped mounts, deletion via subvolid is 2953 * restricted to subvolumes that are immediate 2954 * ancestors of the inode referenced by the file 2955 * descriptor in the ioctl. Otherwise the idmapping 2956 * could potentially be abused to delete subvolumes 2957 * anywhere in the filesystem the user wouldn't be able 2958 * to delete without an idmapped mount. 2959 */ 2960 if (old_dir != dir && mnt_userns != &init_user_ns) { 2961 err = -EOPNOTSUPP; 2962 goto free_parent; 2963 } 2964 2965 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2966 fs_info, vol_args2->subvolid); 2967 if (IS_ERR(subvol_name_ptr)) { 2968 err = PTR_ERR(subvol_name_ptr); 2969 goto free_parent; 2970 } 2971 /* subvol_name_ptr is already nul terminated */ 2972 subvol_name = (char *)kbasename(subvol_name_ptr); 2973 } 2974 } else { 2975 vol_args = memdup_user(arg, sizeof(*vol_args)); 2976 if (IS_ERR(vol_args)) 2977 return PTR_ERR(vol_args); 2978 2979 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2980 subvol_name = vol_args->name; 2981 2982 err = mnt_want_write_file(file); 2983 if (err) 2984 goto out; 2985 } 2986 2987 subvol_namelen = strlen(subvol_name); 2988 2989 if (strchr(subvol_name, '/') || 2990 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2991 err = -EINVAL; 2992 goto free_subvol_name; 2993 } 2994 2995 if (!S_ISDIR(dir->i_mode)) { 2996 err = -ENOTDIR; 2997 goto free_subvol_name; 2998 } 2999 3000 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3001 if (err == -EINTR) 3002 goto free_subvol_name; 3003 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen); 3004 if (IS_ERR(dentry)) { 3005 err = PTR_ERR(dentry); 3006 goto out_unlock_dir; 3007 } 3008 3009 if (d_really_is_negative(dentry)) { 3010 err = -ENOENT; 3011 goto out_dput; 3012 } 3013 3014 inode = d_inode(dentry); 3015 dest = BTRFS_I(inode)->root; 3016 if (!capable(CAP_SYS_ADMIN)) { 3017 /* 3018 * Regular user. Only allow this with a special mount 3019 * option, when the user has write+exec access to the 3020 * subvol root, and when rmdir(2) would have been 3021 * allowed. 3022 * 3023 * Note that this is _not_ check that the subvol is 3024 * empty or doesn't contain data that we wouldn't 3025 * otherwise be able to delete. 3026 * 3027 * Users who want to delete empty subvols should try 3028 * rmdir(2). 3029 */ 3030 err = -EPERM; 3031 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3032 goto out_dput; 3033 3034 /* 3035 * Do not allow deletion if the parent dir is the same 3036 * as the dir to be deleted. That means the ioctl 3037 * must be called on the dentry referencing the root 3038 * of the subvol, not a random directory contained 3039 * within it. 3040 */ 3041 err = -EINVAL; 3042 if (root == dest) 3043 goto out_dput; 3044 3045 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC); 3046 if (err) 3047 goto out_dput; 3048 } 3049 3050 /* check if subvolume may be deleted by a user */ 3051 err = btrfs_may_delete(mnt_userns, dir, dentry, 1); 3052 if (err) 3053 goto out_dput; 3054 3055 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3056 err = -EINVAL; 3057 goto out_dput; 3058 } 3059 3060 btrfs_inode_lock(inode, 0); 3061 err = btrfs_delete_subvolume(dir, dentry); 3062 btrfs_inode_unlock(inode, 0); 3063 if (!err) { 3064 fsnotify_rmdir(dir, dentry); 3065 d_delete(dentry); 3066 } 3067 3068 out_dput: 3069 dput(dentry); 3070 out_unlock_dir: 3071 btrfs_inode_unlock(dir, 0); 3072 free_subvol_name: 3073 kfree(subvol_name_ptr); 3074 free_parent: 3075 if (destroy_parent) 3076 dput(parent); 3077 out_drop_write: 3078 mnt_drop_write_file(file); 3079 out: 3080 kfree(vol_args2); 3081 kfree(vol_args); 3082 return err; 3083 } 3084 3085 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3086 { 3087 struct inode *inode = file_inode(file); 3088 struct btrfs_root *root = BTRFS_I(inode)->root; 3089 struct btrfs_ioctl_defrag_range_args range = {0}; 3090 int ret; 3091 3092 ret = mnt_want_write_file(file); 3093 if (ret) 3094 return ret; 3095 3096 if (btrfs_root_readonly(root)) { 3097 ret = -EROFS; 3098 goto out; 3099 } 3100 3101 switch (inode->i_mode & S_IFMT) { 3102 case S_IFDIR: 3103 if (!capable(CAP_SYS_ADMIN)) { 3104 ret = -EPERM; 3105 goto out; 3106 } 3107 ret = btrfs_defrag_root(root); 3108 break; 3109 case S_IFREG: 3110 /* 3111 * Note that this does not check the file descriptor for write 3112 * access. This prevents defragmenting executables that are 3113 * running and allows defrag on files open in read-only mode. 3114 */ 3115 if (!capable(CAP_SYS_ADMIN) && 3116 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3117 ret = -EPERM; 3118 goto out; 3119 } 3120 3121 if (argp) { 3122 if (copy_from_user(&range, argp, sizeof(range))) { 3123 ret = -EFAULT; 3124 goto out; 3125 } 3126 /* compression requires us to start the IO */ 3127 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3128 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 3129 range.extent_thresh = (u32)-1; 3130 } 3131 } else { 3132 /* the rest are all set to zero by kzalloc */ 3133 range.len = (u64)-1; 3134 } 3135 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 3136 &range, BTRFS_OLDEST_GENERATION, 0); 3137 if (ret > 0) 3138 ret = 0; 3139 break; 3140 default: 3141 ret = -EINVAL; 3142 } 3143 out: 3144 mnt_drop_write_file(file); 3145 return ret; 3146 } 3147 3148 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3149 { 3150 struct btrfs_ioctl_vol_args *vol_args; 3151 int ret; 3152 3153 if (!capable(CAP_SYS_ADMIN)) 3154 return -EPERM; 3155 3156 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3157 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3158 3159 vol_args = memdup_user(arg, sizeof(*vol_args)); 3160 if (IS_ERR(vol_args)) { 3161 ret = PTR_ERR(vol_args); 3162 goto out; 3163 } 3164 3165 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3166 ret = btrfs_init_new_device(fs_info, vol_args->name); 3167 3168 if (!ret) 3169 btrfs_info(fs_info, "disk added %s", vol_args->name); 3170 3171 kfree(vol_args); 3172 out: 3173 btrfs_exclop_finish(fs_info); 3174 return ret; 3175 } 3176 3177 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3178 { 3179 BTRFS_DEV_LOOKUP_ARGS(args); 3180 struct inode *inode = file_inode(file); 3181 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3182 struct btrfs_ioctl_vol_args_v2 *vol_args; 3183 struct block_device *bdev = NULL; 3184 fmode_t mode; 3185 int ret; 3186 bool cancel = false; 3187 3188 if (!capable(CAP_SYS_ADMIN)) 3189 return -EPERM; 3190 3191 vol_args = memdup_user(arg, sizeof(*vol_args)); 3192 if (IS_ERR(vol_args)) 3193 return PTR_ERR(vol_args); 3194 3195 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3196 ret = -EOPNOTSUPP; 3197 goto out; 3198 } 3199 3200 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3201 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3202 args.devid = vol_args->devid; 3203 } else if (!strcmp("cancel", vol_args->name)) { 3204 cancel = true; 3205 } else { 3206 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3207 if (ret) 3208 goto out; 3209 } 3210 3211 ret = mnt_want_write_file(file); 3212 if (ret) 3213 goto out; 3214 3215 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3216 cancel); 3217 if (ret) 3218 goto err_drop; 3219 3220 /* Exclusive operation is now claimed */ 3221 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3222 3223 btrfs_exclop_finish(fs_info); 3224 3225 if (!ret) { 3226 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3227 btrfs_info(fs_info, "device deleted: id %llu", 3228 vol_args->devid); 3229 else 3230 btrfs_info(fs_info, "device deleted: %s", 3231 vol_args->name); 3232 } 3233 err_drop: 3234 mnt_drop_write_file(file); 3235 if (bdev) 3236 blkdev_put(bdev, mode); 3237 out: 3238 btrfs_put_dev_args_from_path(&args); 3239 kfree(vol_args); 3240 return ret; 3241 } 3242 3243 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3244 { 3245 BTRFS_DEV_LOOKUP_ARGS(args); 3246 struct inode *inode = file_inode(file); 3247 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3248 struct btrfs_ioctl_vol_args *vol_args; 3249 struct block_device *bdev = NULL; 3250 fmode_t mode; 3251 int ret; 3252 bool cancel; 3253 3254 if (!capable(CAP_SYS_ADMIN)) 3255 return -EPERM; 3256 3257 vol_args = memdup_user(arg, sizeof(*vol_args)); 3258 if (IS_ERR(vol_args)) 3259 return PTR_ERR(vol_args); 3260 3261 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3262 if (!strcmp("cancel", vol_args->name)) { 3263 cancel = true; 3264 } else { 3265 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3266 if (ret) 3267 goto out; 3268 } 3269 3270 ret = mnt_want_write_file(file); 3271 if (ret) 3272 goto out; 3273 3274 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3275 cancel); 3276 if (ret == 0) { 3277 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3278 if (!ret) 3279 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3280 btrfs_exclop_finish(fs_info); 3281 } 3282 3283 mnt_drop_write_file(file); 3284 if (bdev) 3285 blkdev_put(bdev, mode); 3286 out: 3287 btrfs_put_dev_args_from_path(&args); 3288 kfree(vol_args); 3289 return ret; 3290 } 3291 3292 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3293 void __user *arg) 3294 { 3295 struct btrfs_ioctl_fs_info_args *fi_args; 3296 struct btrfs_device *device; 3297 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3298 u64 flags_in; 3299 int ret = 0; 3300 3301 fi_args = memdup_user(arg, sizeof(*fi_args)); 3302 if (IS_ERR(fi_args)) 3303 return PTR_ERR(fi_args); 3304 3305 flags_in = fi_args->flags; 3306 memset(fi_args, 0, sizeof(*fi_args)); 3307 3308 rcu_read_lock(); 3309 fi_args->num_devices = fs_devices->num_devices; 3310 3311 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3312 if (device->devid > fi_args->max_id) 3313 fi_args->max_id = device->devid; 3314 } 3315 rcu_read_unlock(); 3316 3317 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3318 fi_args->nodesize = fs_info->nodesize; 3319 fi_args->sectorsize = fs_info->sectorsize; 3320 fi_args->clone_alignment = fs_info->sectorsize; 3321 3322 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3323 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3324 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3325 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3326 } 3327 3328 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3329 fi_args->generation = fs_info->generation; 3330 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3331 } 3332 3333 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3334 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3335 sizeof(fi_args->metadata_uuid)); 3336 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3337 } 3338 3339 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3340 ret = -EFAULT; 3341 3342 kfree(fi_args); 3343 return ret; 3344 } 3345 3346 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3347 void __user *arg) 3348 { 3349 BTRFS_DEV_LOOKUP_ARGS(args); 3350 struct btrfs_ioctl_dev_info_args *di_args; 3351 struct btrfs_device *dev; 3352 int ret = 0; 3353 3354 di_args = memdup_user(arg, sizeof(*di_args)); 3355 if (IS_ERR(di_args)) 3356 return PTR_ERR(di_args); 3357 3358 args.devid = di_args->devid; 3359 if (!btrfs_is_empty_uuid(di_args->uuid)) 3360 args.uuid = di_args->uuid; 3361 3362 rcu_read_lock(); 3363 dev = btrfs_find_device(fs_info->fs_devices, &args); 3364 if (!dev) { 3365 ret = -ENODEV; 3366 goto out; 3367 } 3368 3369 di_args->devid = dev->devid; 3370 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3371 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3372 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3373 if (dev->name) { 3374 strncpy(di_args->path, rcu_str_deref(dev->name), 3375 sizeof(di_args->path) - 1); 3376 di_args->path[sizeof(di_args->path) - 1] = 0; 3377 } else { 3378 di_args->path[0] = '\0'; 3379 } 3380 3381 out: 3382 rcu_read_unlock(); 3383 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3384 ret = -EFAULT; 3385 3386 kfree(di_args); 3387 return ret; 3388 } 3389 3390 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3391 { 3392 struct inode *inode = file_inode(file); 3393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3394 struct btrfs_root *root = BTRFS_I(inode)->root; 3395 struct btrfs_root *new_root; 3396 struct btrfs_dir_item *di; 3397 struct btrfs_trans_handle *trans; 3398 struct btrfs_path *path = NULL; 3399 struct btrfs_disk_key disk_key; 3400 u64 objectid = 0; 3401 u64 dir_id; 3402 int ret; 3403 3404 if (!capable(CAP_SYS_ADMIN)) 3405 return -EPERM; 3406 3407 ret = mnt_want_write_file(file); 3408 if (ret) 3409 return ret; 3410 3411 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3412 ret = -EFAULT; 3413 goto out; 3414 } 3415 3416 if (!objectid) 3417 objectid = BTRFS_FS_TREE_OBJECTID; 3418 3419 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3420 if (IS_ERR(new_root)) { 3421 ret = PTR_ERR(new_root); 3422 goto out; 3423 } 3424 if (!is_fstree(new_root->root_key.objectid)) { 3425 ret = -ENOENT; 3426 goto out_free; 3427 } 3428 3429 path = btrfs_alloc_path(); 3430 if (!path) { 3431 ret = -ENOMEM; 3432 goto out_free; 3433 } 3434 3435 trans = btrfs_start_transaction(root, 1); 3436 if (IS_ERR(trans)) { 3437 ret = PTR_ERR(trans); 3438 goto out_free; 3439 } 3440 3441 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3442 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3443 dir_id, "default", 7, 1); 3444 if (IS_ERR_OR_NULL(di)) { 3445 btrfs_release_path(path); 3446 btrfs_end_transaction(trans); 3447 btrfs_err(fs_info, 3448 "Umm, you don't have the default diritem, this isn't going to work"); 3449 ret = -ENOENT; 3450 goto out_free; 3451 } 3452 3453 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3454 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3455 btrfs_mark_buffer_dirty(path->nodes[0]); 3456 btrfs_release_path(path); 3457 3458 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3459 btrfs_end_transaction(trans); 3460 out_free: 3461 btrfs_put_root(new_root); 3462 btrfs_free_path(path); 3463 out: 3464 mnt_drop_write_file(file); 3465 return ret; 3466 } 3467 3468 static void get_block_group_info(struct list_head *groups_list, 3469 struct btrfs_ioctl_space_info *space) 3470 { 3471 struct btrfs_block_group *block_group; 3472 3473 space->total_bytes = 0; 3474 space->used_bytes = 0; 3475 space->flags = 0; 3476 list_for_each_entry(block_group, groups_list, list) { 3477 space->flags = block_group->flags; 3478 space->total_bytes += block_group->length; 3479 space->used_bytes += block_group->used; 3480 } 3481 } 3482 3483 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3484 void __user *arg) 3485 { 3486 struct btrfs_ioctl_space_args space_args; 3487 struct btrfs_ioctl_space_info space; 3488 struct btrfs_ioctl_space_info *dest; 3489 struct btrfs_ioctl_space_info *dest_orig; 3490 struct btrfs_ioctl_space_info __user *user_dest; 3491 struct btrfs_space_info *info; 3492 static const u64 types[] = { 3493 BTRFS_BLOCK_GROUP_DATA, 3494 BTRFS_BLOCK_GROUP_SYSTEM, 3495 BTRFS_BLOCK_GROUP_METADATA, 3496 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3497 }; 3498 int num_types = 4; 3499 int alloc_size; 3500 int ret = 0; 3501 u64 slot_count = 0; 3502 int i, c; 3503 3504 if (copy_from_user(&space_args, 3505 (struct btrfs_ioctl_space_args __user *)arg, 3506 sizeof(space_args))) 3507 return -EFAULT; 3508 3509 for (i = 0; i < num_types; i++) { 3510 struct btrfs_space_info *tmp; 3511 3512 info = NULL; 3513 list_for_each_entry(tmp, &fs_info->space_info, list) { 3514 if (tmp->flags == types[i]) { 3515 info = tmp; 3516 break; 3517 } 3518 } 3519 3520 if (!info) 3521 continue; 3522 3523 down_read(&info->groups_sem); 3524 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3525 if (!list_empty(&info->block_groups[c])) 3526 slot_count++; 3527 } 3528 up_read(&info->groups_sem); 3529 } 3530 3531 /* 3532 * Global block reserve, exported as a space_info 3533 */ 3534 slot_count++; 3535 3536 /* space_slots == 0 means they are asking for a count */ 3537 if (space_args.space_slots == 0) { 3538 space_args.total_spaces = slot_count; 3539 goto out; 3540 } 3541 3542 slot_count = min_t(u64, space_args.space_slots, slot_count); 3543 3544 alloc_size = sizeof(*dest) * slot_count; 3545 3546 /* we generally have at most 6 or so space infos, one for each raid 3547 * level. So, a whole page should be more than enough for everyone 3548 */ 3549 if (alloc_size > PAGE_SIZE) 3550 return -ENOMEM; 3551 3552 space_args.total_spaces = 0; 3553 dest = kmalloc(alloc_size, GFP_KERNEL); 3554 if (!dest) 3555 return -ENOMEM; 3556 dest_orig = dest; 3557 3558 /* now we have a buffer to copy into */ 3559 for (i = 0; i < num_types; i++) { 3560 struct btrfs_space_info *tmp; 3561 3562 if (!slot_count) 3563 break; 3564 3565 info = NULL; 3566 list_for_each_entry(tmp, &fs_info->space_info, list) { 3567 if (tmp->flags == types[i]) { 3568 info = tmp; 3569 break; 3570 } 3571 } 3572 3573 if (!info) 3574 continue; 3575 down_read(&info->groups_sem); 3576 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3577 if (!list_empty(&info->block_groups[c])) { 3578 get_block_group_info(&info->block_groups[c], 3579 &space); 3580 memcpy(dest, &space, sizeof(space)); 3581 dest++; 3582 space_args.total_spaces++; 3583 slot_count--; 3584 } 3585 if (!slot_count) 3586 break; 3587 } 3588 up_read(&info->groups_sem); 3589 } 3590 3591 /* 3592 * Add global block reserve 3593 */ 3594 if (slot_count) { 3595 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3596 3597 spin_lock(&block_rsv->lock); 3598 space.total_bytes = block_rsv->size; 3599 space.used_bytes = block_rsv->size - block_rsv->reserved; 3600 spin_unlock(&block_rsv->lock); 3601 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3602 memcpy(dest, &space, sizeof(space)); 3603 space_args.total_spaces++; 3604 } 3605 3606 user_dest = (struct btrfs_ioctl_space_info __user *) 3607 (arg + sizeof(struct btrfs_ioctl_space_args)); 3608 3609 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3610 ret = -EFAULT; 3611 3612 kfree(dest_orig); 3613 out: 3614 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3615 ret = -EFAULT; 3616 3617 return ret; 3618 } 3619 3620 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3621 void __user *argp) 3622 { 3623 struct btrfs_trans_handle *trans; 3624 u64 transid; 3625 int ret; 3626 3627 trans = btrfs_attach_transaction_barrier(root); 3628 if (IS_ERR(trans)) { 3629 if (PTR_ERR(trans) != -ENOENT) 3630 return PTR_ERR(trans); 3631 3632 /* No running transaction, don't bother */ 3633 transid = root->fs_info->last_trans_committed; 3634 goto out; 3635 } 3636 transid = trans->transid; 3637 ret = btrfs_commit_transaction_async(trans); 3638 if (ret) { 3639 btrfs_end_transaction(trans); 3640 return ret; 3641 } 3642 out: 3643 if (argp) 3644 if (copy_to_user(argp, &transid, sizeof(transid))) 3645 return -EFAULT; 3646 return 0; 3647 } 3648 3649 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3650 void __user *argp) 3651 { 3652 u64 transid; 3653 3654 if (argp) { 3655 if (copy_from_user(&transid, argp, sizeof(transid))) 3656 return -EFAULT; 3657 } else { 3658 transid = 0; /* current trans */ 3659 } 3660 return btrfs_wait_for_commit(fs_info, transid); 3661 } 3662 3663 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3664 { 3665 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3666 struct btrfs_ioctl_scrub_args *sa; 3667 int ret; 3668 3669 if (!capable(CAP_SYS_ADMIN)) 3670 return -EPERM; 3671 3672 sa = memdup_user(arg, sizeof(*sa)); 3673 if (IS_ERR(sa)) 3674 return PTR_ERR(sa); 3675 3676 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3677 ret = mnt_want_write_file(file); 3678 if (ret) 3679 goto out; 3680 } 3681 3682 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3683 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3684 0); 3685 3686 /* 3687 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3688 * error. This is important as it allows user space to know how much 3689 * progress scrub has done. For example, if scrub is canceled we get 3690 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3691 * space. Later user space can inspect the progress from the structure 3692 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3693 * previously (btrfs-progs does this). 3694 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3695 * then return -EFAULT to signal the structure was not copied or it may 3696 * be corrupt and unreliable due to a partial copy. 3697 */ 3698 if (copy_to_user(arg, sa, sizeof(*sa))) 3699 ret = -EFAULT; 3700 3701 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3702 mnt_drop_write_file(file); 3703 out: 3704 kfree(sa); 3705 return ret; 3706 } 3707 3708 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3709 { 3710 if (!capable(CAP_SYS_ADMIN)) 3711 return -EPERM; 3712 3713 return btrfs_scrub_cancel(fs_info); 3714 } 3715 3716 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3717 void __user *arg) 3718 { 3719 struct btrfs_ioctl_scrub_args *sa; 3720 int ret; 3721 3722 if (!capable(CAP_SYS_ADMIN)) 3723 return -EPERM; 3724 3725 sa = memdup_user(arg, sizeof(*sa)); 3726 if (IS_ERR(sa)) 3727 return PTR_ERR(sa); 3728 3729 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3730 3731 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3732 ret = -EFAULT; 3733 3734 kfree(sa); 3735 return ret; 3736 } 3737 3738 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3739 void __user *arg) 3740 { 3741 struct btrfs_ioctl_get_dev_stats *sa; 3742 int ret; 3743 3744 sa = memdup_user(arg, sizeof(*sa)); 3745 if (IS_ERR(sa)) 3746 return PTR_ERR(sa); 3747 3748 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3749 kfree(sa); 3750 return -EPERM; 3751 } 3752 3753 ret = btrfs_get_dev_stats(fs_info, sa); 3754 3755 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3756 ret = -EFAULT; 3757 3758 kfree(sa); 3759 return ret; 3760 } 3761 3762 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3763 void __user *arg) 3764 { 3765 struct btrfs_ioctl_dev_replace_args *p; 3766 int ret; 3767 3768 if (!capable(CAP_SYS_ADMIN)) 3769 return -EPERM; 3770 3771 p = memdup_user(arg, sizeof(*p)); 3772 if (IS_ERR(p)) 3773 return PTR_ERR(p); 3774 3775 switch (p->cmd) { 3776 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3777 if (sb_rdonly(fs_info->sb)) { 3778 ret = -EROFS; 3779 goto out; 3780 } 3781 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3782 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3783 } else { 3784 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3785 btrfs_exclop_finish(fs_info); 3786 } 3787 break; 3788 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3789 btrfs_dev_replace_status(fs_info, p); 3790 ret = 0; 3791 break; 3792 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3793 p->result = btrfs_dev_replace_cancel(fs_info); 3794 ret = 0; 3795 break; 3796 default: 3797 ret = -EINVAL; 3798 break; 3799 } 3800 3801 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3802 ret = -EFAULT; 3803 out: 3804 kfree(p); 3805 return ret; 3806 } 3807 3808 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3809 { 3810 int ret = 0; 3811 int i; 3812 u64 rel_ptr; 3813 int size; 3814 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3815 struct inode_fs_paths *ipath = NULL; 3816 struct btrfs_path *path; 3817 3818 if (!capable(CAP_DAC_READ_SEARCH)) 3819 return -EPERM; 3820 3821 path = btrfs_alloc_path(); 3822 if (!path) { 3823 ret = -ENOMEM; 3824 goto out; 3825 } 3826 3827 ipa = memdup_user(arg, sizeof(*ipa)); 3828 if (IS_ERR(ipa)) { 3829 ret = PTR_ERR(ipa); 3830 ipa = NULL; 3831 goto out; 3832 } 3833 3834 size = min_t(u32, ipa->size, 4096); 3835 ipath = init_ipath(size, root, path); 3836 if (IS_ERR(ipath)) { 3837 ret = PTR_ERR(ipath); 3838 ipath = NULL; 3839 goto out; 3840 } 3841 3842 ret = paths_from_inode(ipa->inum, ipath); 3843 if (ret < 0) 3844 goto out; 3845 3846 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3847 rel_ptr = ipath->fspath->val[i] - 3848 (u64)(unsigned long)ipath->fspath->val; 3849 ipath->fspath->val[i] = rel_ptr; 3850 } 3851 3852 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3853 ipath->fspath, size); 3854 if (ret) { 3855 ret = -EFAULT; 3856 goto out; 3857 } 3858 3859 out: 3860 btrfs_free_path(path); 3861 free_ipath(ipath); 3862 kfree(ipa); 3863 3864 return ret; 3865 } 3866 3867 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3868 { 3869 struct btrfs_data_container *inodes = ctx; 3870 const size_t c = 3 * sizeof(u64); 3871 3872 if (inodes->bytes_left >= c) { 3873 inodes->bytes_left -= c; 3874 inodes->val[inodes->elem_cnt] = inum; 3875 inodes->val[inodes->elem_cnt + 1] = offset; 3876 inodes->val[inodes->elem_cnt + 2] = root; 3877 inodes->elem_cnt += 3; 3878 } else { 3879 inodes->bytes_missing += c - inodes->bytes_left; 3880 inodes->bytes_left = 0; 3881 inodes->elem_missed += 3; 3882 } 3883 3884 return 0; 3885 } 3886 3887 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3888 void __user *arg, int version) 3889 { 3890 int ret = 0; 3891 int size; 3892 struct btrfs_ioctl_logical_ino_args *loi; 3893 struct btrfs_data_container *inodes = NULL; 3894 struct btrfs_path *path = NULL; 3895 bool ignore_offset; 3896 3897 if (!capable(CAP_SYS_ADMIN)) 3898 return -EPERM; 3899 3900 loi = memdup_user(arg, sizeof(*loi)); 3901 if (IS_ERR(loi)) 3902 return PTR_ERR(loi); 3903 3904 if (version == 1) { 3905 ignore_offset = false; 3906 size = min_t(u32, loi->size, SZ_64K); 3907 } else { 3908 /* All reserved bits must be 0 for now */ 3909 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3910 ret = -EINVAL; 3911 goto out_loi; 3912 } 3913 /* Only accept flags we have defined so far */ 3914 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3915 ret = -EINVAL; 3916 goto out_loi; 3917 } 3918 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3919 size = min_t(u32, loi->size, SZ_16M); 3920 } 3921 3922 path = btrfs_alloc_path(); 3923 if (!path) { 3924 ret = -ENOMEM; 3925 goto out; 3926 } 3927 3928 inodes = init_data_container(size); 3929 if (IS_ERR(inodes)) { 3930 ret = PTR_ERR(inodes); 3931 inodes = NULL; 3932 goto out; 3933 } 3934 3935 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3936 build_ino_list, inodes, ignore_offset); 3937 if (ret == -EINVAL) 3938 ret = -ENOENT; 3939 if (ret < 0) 3940 goto out; 3941 3942 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3943 size); 3944 if (ret) 3945 ret = -EFAULT; 3946 3947 out: 3948 btrfs_free_path(path); 3949 kvfree(inodes); 3950 out_loi: 3951 kfree(loi); 3952 3953 return ret; 3954 } 3955 3956 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3957 struct btrfs_ioctl_balance_args *bargs) 3958 { 3959 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3960 3961 bargs->flags = bctl->flags; 3962 3963 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3964 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3965 if (atomic_read(&fs_info->balance_pause_req)) 3966 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3967 if (atomic_read(&fs_info->balance_cancel_req)) 3968 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3969 3970 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3971 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3972 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3973 3974 spin_lock(&fs_info->balance_lock); 3975 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3976 spin_unlock(&fs_info->balance_lock); 3977 } 3978 3979 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3980 { 3981 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3982 struct btrfs_fs_info *fs_info = root->fs_info; 3983 struct btrfs_ioctl_balance_args *bargs; 3984 struct btrfs_balance_control *bctl; 3985 bool need_unlock; /* for mut. excl. ops lock */ 3986 int ret; 3987 3988 if (!arg) 3989 btrfs_warn(fs_info, 3990 "IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18"); 3991 3992 if (!capable(CAP_SYS_ADMIN)) 3993 return -EPERM; 3994 3995 ret = mnt_want_write_file(file); 3996 if (ret) 3997 return ret; 3998 3999 again: 4000 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4001 mutex_lock(&fs_info->balance_mutex); 4002 need_unlock = true; 4003 goto locked; 4004 } 4005 4006 /* 4007 * mut. excl. ops lock is locked. Three possibilities: 4008 * (1) some other op is running 4009 * (2) balance is running 4010 * (3) balance is paused -- special case (think resume) 4011 */ 4012 mutex_lock(&fs_info->balance_mutex); 4013 if (fs_info->balance_ctl) { 4014 /* this is either (2) or (3) */ 4015 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4016 mutex_unlock(&fs_info->balance_mutex); 4017 /* 4018 * Lock released to allow other waiters to continue, 4019 * we'll reexamine the status again. 4020 */ 4021 mutex_lock(&fs_info->balance_mutex); 4022 4023 if (fs_info->balance_ctl && 4024 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4025 /* this is (3) */ 4026 need_unlock = false; 4027 goto locked; 4028 } 4029 4030 mutex_unlock(&fs_info->balance_mutex); 4031 goto again; 4032 } else { 4033 /* this is (2) */ 4034 mutex_unlock(&fs_info->balance_mutex); 4035 ret = -EINPROGRESS; 4036 goto out; 4037 } 4038 } else { 4039 /* this is (1) */ 4040 mutex_unlock(&fs_info->balance_mutex); 4041 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4042 goto out; 4043 } 4044 4045 locked: 4046 4047 if (arg) { 4048 bargs = memdup_user(arg, sizeof(*bargs)); 4049 if (IS_ERR(bargs)) { 4050 ret = PTR_ERR(bargs); 4051 goto out_unlock; 4052 } 4053 4054 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4055 if (!fs_info->balance_ctl) { 4056 ret = -ENOTCONN; 4057 goto out_bargs; 4058 } 4059 4060 bctl = fs_info->balance_ctl; 4061 spin_lock(&fs_info->balance_lock); 4062 bctl->flags |= BTRFS_BALANCE_RESUME; 4063 spin_unlock(&fs_info->balance_lock); 4064 4065 goto do_balance; 4066 } 4067 } else { 4068 bargs = NULL; 4069 } 4070 4071 if (fs_info->balance_ctl) { 4072 ret = -EINPROGRESS; 4073 goto out_bargs; 4074 } 4075 4076 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4077 if (!bctl) { 4078 ret = -ENOMEM; 4079 goto out_bargs; 4080 } 4081 4082 if (arg) { 4083 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4084 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4085 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4086 4087 bctl->flags = bargs->flags; 4088 } else { 4089 /* balance everything - no filters */ 4090 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4091 } 4092 4093 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4094 ret = -EINVAL; 4095 goto out_bctl; 4096 } 4097 4098 do_balance: 4099 /* 4100 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4101 * bctl is freed in reset_balance_state, or, if restriper was paused 4102 * all the way until unmount, in free_fs_info. The flag should be 4103 * cleared after reset_balance_state. 4104 */ 4105 need_unlock = false; 4106 4107 ret = btrfs_balance(fs_info, bctl, bargs); 4108 bctl = NULL; 4109 4110 if ((ret == 0 || ret == -ECANCELED) && arg) { 4111 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4112 ret = -EFAULT; 4113 } 4114 4115 out_bctl: 4116 kfree(bctl); 4117 out_bargs: 4118 kfree(bargs); 4119 out_unlock: 4120 mutex_unlock(&fs_info->balance_mutex); 4121 if (need_unlock) 4122 btrfs_exclop_finish(fs_info); 4123 out: 4124 mnt_drop_write_file(file); 4125 return ret; 4126 } 4127 4128 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4129 { 4130 if (!capable(CAP_SYS_ADMIN)) 4131 return -EPERM; 4132 4133 switch (cmd) { 4134 case BTRFS_BALANCE_CTL_PAUSE: 4135 return btrfs_pause_balance(fs_info); 4136 case BTRFS_BALANCE_CTL_CANCEL: 4137 return btrfs_cancel_balance(fs_info); 4138 } 4139 4140 return -EINVAL; 4141 } 4142 4143 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4144 void __user *arg) 4145 { 4146 struct btrfs_ioctl_balance_args *bargs; 4147 int ret = 0; 4148 4149 if (!capable(CAP_SYS_ADMIN)) 4150 return -EPERM; 4151 4152 mutex_lock(&fs_info->balance_mutex); 4153 if (!fs_info->balance_ctl) { 4154 ret = -ENOTCONN; 4155 goto out; 4156 } 4157 4158 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4159 if (!bargs) { 4160 ret = -ENOMEM; 4161 goto out; 4162 } 4163 4164 btrfs_update_ioctl_balance_args(fs_info, bargs); 4165 4166 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4167 ret = -EFAULT; 4168 4169 kfree(bargs); 4170 out: 4171 mutex_unlock(&fs_info->balance_mutex); 4172 return ret; 4173 } 4174 4175 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4176 { 4177 struct inode *inode = file_inode(file); 4178 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4179 struct btrfs_ioctl_quota_ctl_args *sa; 4180 int ret; 4181 4182 if (!capable(CAP_SYS_ADMIN)) 4183 return -EPERM; 4184 4185 ret = mnt_want_write_file(file); 4186 if (ret) 4187 return ret; 4188 4189 sa = memdup_user(arg, sizeof(*sa)); 4190 if (IS_ERR(sa)) { 4191 ret = PTR_ERR(sa); 4192 goto drop_write; 4193 } 4194 4195 down_write(&fs_info->subvol_sem); 4196 4197 switch (sa->cmd) { 4198 case BTRFS_QUOTA_CTL_ENABLE: 4199 ret = btrfs_quota_enable(fs_info); 4200 break; 4201 case BTRFS_QUOTA_CTL_DISABLE: 4202 ret = btrfs_quota_disable(fs_info); 4203 break; 4204 default: 4205 ret = -EINVAL; 4206 break; 4207 } 4208 4209 kfree(sa); 4210 up_write(&fs_info->subvol_sem); 4211 drop_write: 4212 mnt_drop_write_file(file); 4213 return ret; 4214 } 4215 4216 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4217 { 4218 struct inode *inode = file_inode(file); 4219 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4220 struct btrfs_root *root = BTRFS_I(inode)->root; 4221 struct btrfs_ioctl_qgroup_assign_args *sa; 4222 struct btrfs_trans_handle *trans; 4223 int ret; 4224 int err; 4225 4226 if (!capable(CAP_SYS_ADMIN)) 4227 return -EPERM; 4228 4229 ret = mnt_want_write_file(file); 4230 if (ret) 4231 return ret; 4232 4233 sa = memdup_user(arg, sizeof(*sa)); 4234 if (IS_ERR(sa)) { 4235 ret = PTR_ERR(sa); 4236 goto drop_write; 4237 } 4238 4239 trans = btrfs_join_transaction(root); 4240 if (IS_ERR(trans)) { 4241 ret = PTR_ERR(trans); 4242 goto out; 4243 } 4244 4245 if (sa->assign) { 4246 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4247 } else { 4248 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4249 } 4250 4251 /* update qgroup status and info */ 4252 err = btrfs_run_qgroups(trans); 4253 if (err < 0) 4254 btrfs_handle_fs_error(fs_info, err, 4255 "failed to update qgroup status and info"); 4256 err = btrfs_end_transaction(trans); 4257 if (err && !ret) 4258 ret = err; 4259 4260 out: 4261 kfree(sa); 4262 drop_write: 4263 mnt_drop_write_file(file); 4264 return ret; 4265 } 4266 4267 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4268 { 4269 struct inode *inode = file_inode(file); 4270 struct btrfs_root *root = BTRFS_I(inode)->root; 4271 struct btrfs_ioctl_qgroup_create_args *sa; 4272 struct btrfs_trans_handle *trans; 4273 int ret; 4274 int err; 4275 4276 if (!capable(CAP_SYS_ADMIN)) 4277 return -EPERM; 4278 4279 ret = mnt_want_write_file(file); 4280 if (ret) 4281 return ret; 4282 4283 sa = memdup_user(arg, sizeof(*sa)); 4284 if (IS_ERR(sa)) { 4285 ret = PTR_ERR(sa); 4286 goto drop_write; 4287 } 4288 4289 if (!sa->qgroupid) { 4290 ret = -EINVAL; 4291 goto out; 4292 } 4293 4294 trans = btrfs_join_transaction(root); 4295 if (IS_ERR(trans)) { 4296 ret = PTR_ERR(trans); 4297 goto out; 4298 } 4299 4300 if (sa->create) { 4301 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4302 } else { 4303 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4304 } 4305 4306 err = btrfs_end_transaction(trans); 4307 if (err && !ret) 4308 ret = err; 4309 4310 out: 4311 kfree(sa); 4312 drop_write: 4313 mnt_drop_write_file(file); 4314 return ret; 4315 } 4316 4317 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4318 { 4319 struct inode *inode = file_inode(file); 4320 struct btrfs_root *root = BTRFS_I(inode)->root; 4321 struct btrfs_ioctl_qgroup_limit_args *sa; 4322 struct btrfs_trans_handle *trans; 4323 int ret; 4324 int err; 4325 u64 qgroupid; 4326 4327 if (!capable(CAP_SYS_ADMIN)) 4328 return -EPERM; 4329 4330 ret = mnt_want_write_file(file); 4331 if (ret) 4332 return ret; 4333 4334 sa = memdup_user(arg, sizeof(*sa)); 4335 if (IS_ERR(sa)) { 4336 ret = PTR_ERR(sa); 4337 goto drop_write; 4338 } 4339 4340 trans = btrfs_join_transaction(root); 4341 if (IS_ERR(trans)) { 4342 ret = PTR_ERR(trans); 4343 goto out; 4344 } 4345 4346 qgroupid = sa->qgroupid; 4347 if (!qgroupid) { 4348 /* take the current subvol as qgroup */ 4349 qgroupid = root->root_key.objectid; 4350 } 4351 4352 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4353 4354 err = btrfs_end_transaction(trans); 4355 if (err && !ret) 4356 ret = err; 4357 4358 out: 4359 kfree(sa); 4360 drop_write: 4361 mnt_drop_write_file(file); 4362 return ret; 4363 } 4364 4365 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4366 { 4367 struct inode *inode = file_inode(file); 4368 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4369 struct btrfs_ioctl_quota_rescan_args *qsa; 4370 int ret; 4371 4372 if (!capable(CAP_SYS_ADMIN)) 4373 return -EPERM; 4374 4375 ret = mnt_want_write_file(file); 4376 if (ret) 4377 return ret; 4378 4379 qsa = memdup_user(arg, sizeof(*qsa)); 4380 if (IS_ERR(qsa)) { 4381 ret = PTR_ERR(qsa); 4382 goto drop_write; 4383 } 4384 4385 if (qsa->flags) { 4386 ret = -EINVAL; 4387 goto out; 4388 } 4389 4390 ret = btrfs_qgroup_rescan(fs_info); 4391 4392 out: 4393 kfree(qsa); 4394 drop_write: 4395 mnt_drop_write_file(file); 4396 return ret; 4397 } 4398 4399 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4400 void __user *arg) 4401 { 4402 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 4403 4404 if (!capable(CAP_SYS_ADMIN)) 4405 return -EPERM; 4406 4407 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4408 qsa.flags = 1; 4409 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 4410 } 4411 4412 if (copy_to_user(arg, &qsa, sizeof(qsa))) 4413 return -EFAULT; 4414 4415 return 0; 4416 } 4417 4418 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4419 void __user *arg) 4420 { 4421 if (!capable(CAP_SYS_ADMIN)) 4422 return -EPERM; 4423 4424 return btrfs_qgroup_wait_for_completion(fs_info, true); 4425 } 4426 4427 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4428 struct user_namespace *mnt_userns, 4429 struct btrfs_ioctl_received_subvol_args *sa) 4430 { 4431 struct inode *inode = file_inode(file); 4432 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4433 struct btrfs_root *root = BTRFS_I(inode)->root; 4434 struct btrfs_root_item *root_item = &root->root_item; 4435 struct btrfs_trans_handle *trans; 4436 struct timespec64 ct = current_time(inode); 4437 int ret = 0; 4438 int received_uuid_changed; 4439 4440 if (!inode_owner_or_capable(mnt_userns, inode)) 4441 return -EPERM; 4442 4443 ret = mnt_want_write_file(file); 4444 if (ret < 0) 4445 return ret; 4446 4447 down_write(&fs_info->subvol_sem); 4448 4449 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4450 ret = -EINVAL; 4451 goto out; 4452 } 4453 4454 if (btrfs_root_readonly(root)) { 4455 ret = -EROFS; 4456 goto out; 4457 } 4458 4459 /* 4460 * 1 - root item 4461 * 2 - uuid items (received uuid + subvol uuid) 4462 */ 4463 trans = btrfs_start_transaction(root, 3); 4464 if (IS_ERR(trans)) { 4465 ret = PTR_ERR(trans); 4466 trans = NULL; 4467 goto out; 4468 } 4469 4470 sa->rtransid = trans->transid; 4471 sa->rtime.sec = ct.tv_sec; 4472 sa->rtime.nsec = ct.tv_nsec; 4473 4474 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4475 BTRFS_UUID_SIZE); 4476 if (received_uuid_changed && 4477 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4478 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4479 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4480 root->root_key.objectid); 4481 if (ret && ret != -ENOENT) { 4482 btrfs_abort_transaction(trans, ret); 4483 btrfs_end_transaction(trans); 4484 goto out; 4485 } 4486 } 4487 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4488 btrfs_set_root_stransid(root_item, sa->stransid); 4489 btrfs_set_root_rtransid(root_item, sa->rtransid); 4490 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4491 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4492 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4493 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4494 4495 ret = btrfs_update_root(trans, fs_info->tree_root, 4496 &root->root_key, &root->root_item); 4497 if (ret < 0) { 4498 btrfs_end_transaction(trans); 4499 goto out; 4500 } 4501 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4502 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4503 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4504 root->root_key.objectid); 4505 if (ret < 0 && ret != -EEXIST) { 4506 btrfs_abort_transaction(trans, ret); 4507 btrfs_end_transaction(trans); 4508 goto out; 4509 } 4510 } 4511 ret = btrfs_commit_transaction(trans); 4512 out: 4513 up_write(&fs_info->subvol_sem); 4514 mnt_drop_write_file(file); 4515 return ret; 4516 } 4517 4518 #ifdef CONFIG_64BIT 4519 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4520 void __user *arg) 4521 { 4522 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4523 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4524 int ret = 0; 4525 4526 args32 = memdup_user(arg, sizeof(*args32)); 4527 if (IS_ERR(args32)) 4528 return PTR_ERR(args32); 4529 4530 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4531 if (!args64) { 4532 ret = -ENOMEM; 4533 goto out; 4534 } 4535 4536 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4537 args64->stransid = args32->stransid; 4538 args64->rtransid = args32->rtransid; 4539 args64->stime.sec = args32->stime.sec; 4540 args64->stime.nsec = args32->stime.nsec; 4541 args64->rtime.sec = args32->rtime.sec; 4542 args64->rtime.nsec = args32->rtime.nsec; 4543 args64->flags = args32->flags; 4544 4545 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64); 4546 if (ret) 4547 goto out; 4548 4549 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4550 args32->stransid = args64->stransid; 4551 args32->rtransid = args64->rtransid; 4552 args32->stime.sec = args64->stime.sec; 4553 args32->stime.nsec = args64->stime.nsec; 4554 args32->rtime.sec = args64->rtime.sec; 4555 args32->rtime.nsec = args64->rtime.nsec; 4556 args32->flags = args64->flags; 4557 4558 ret = copy_to_user(arg, args32, sizeof(*args32)); 4559 if (ret) 4560 ret = -EFAULT; 4561 4562 out: 4563 kfree(args32); 4564 kfree(args64); 4565 return ret; 4566 } 4567 #endif 4568 4569 static long btrfs_ioctl_set_received_subvol(struct file *file, 4570 void __user *arg) 4571 { 4572 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4573 int ret = 0; 4574 4575 sa = memdup_user(arg, sizeof(*sa)); 4576 if (IS_ERR(sa)) 4577 return PTR_ERR(sa); 4578 4579 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa); 4580 4581 if (ret) 4582 goto out; 4583 4584 ret = copy_to_user(arg, sa, sizeof(*sa)); 4585 if (ret) 4586 ret = -EFAULT; 4587 4588 out: 4589 kfree(sa); 4590 return ret; 4591 } 4592 4593 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4594 void __user *arg) 4595 { 4596 size_t len; 4597 int ret; 4598 char label[BTRFS_LABEL_SIZE]; 4599 4600 spin_lock(&fs_info->super_lock); 4601 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4602 spin_unlock(&fs_info->super_lock); 4603 4604 len = strnlen(label, BTRFS_LABEL_SIZE); 4605 4606 if (len == BTRFS_LABEL_SIZE) { 4607 btrfs_warn(fs_info, 4608 "label is too long, return the first %zu bytes", 4609 --len); 4610 } 4611 4612 ret = copy_to_user(arg, label, len); 4613 4614 return ret ? -EFAULT : 0; 4615 } 4616 4617 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4618 { 4619 struct inode *inode = file_inode(file); 4620 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4621 struct btrfs_root *root = BTRFS_I(inode)->root; 4622 struct btrfs_super_block *super_block = fs_info->super_copy; 4623 struct btrfs_trans_handle *trans; 4624 char label[BTRFS_LABEL_SIZE]; 4625 int ret; 4626 4627 if (!capable(CAP_SYS_ADMIN)) 4628 return -EPERM; 4629 4630 if (copy_from_user(label, arg, sizeof(label))) 4631 return -EFAULT; 4632 4633 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4634 btrfs_err(fs_info, 4635 "unable to set label with more than %d bytes", 4636 BTRFS_LABEL_SIZE - 1); 4637 return -EINVAL; 4638 } 4639 4640 ret = mnt_want_write_file(file); 4641 if (ret) 4642 return ret; 4643 4644 trans = btrfs_start_transaction(root, 0); 4645 if (IS_ERR(trans)) { 4646 ret = PTR_ERR(trans); 4647 goto out_unlock; 4648 } 4649 4650 spin_lock(&fs_info->super_lock); 4651 strcpy(super_block->label, label); 4652 spin_unlock(&fs_info->super_lock); 4653 ret = btrfs_commit_transaction(trans); 4654 4655 out_unlock: 4656 mnt_drop_write_file(file); 4657 return ret; 4658 } 4659 4660 #define INIT_FEATURE_FLAGS(suffix) \ 4661 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4662 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4663 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4664 4665 int btrfs_ioctl_get_supported_features(void __user *arg) 4666 { 4667 static const struct btrfs_ioctl_feature_flags features[3] = { 4668 INIT_FEATURE_FLAGS(SUPP), 4669 INIT_FEATURE_FLAGS(SAFE_SET), 4670 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4671 }; 4672 4673 if (copy_to_user(arg, &features, sizeof(features))) 4674 return -EFAULT; 4675 4676 return 0; 4677 } 4678 4679 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4680 void __user *arg) 4681 { 4682 struct btrfs_super_block *super_block = fs_info->super_copy; 4683 struct btrfs_ioctl_feature_flags features; 4684 4685 features.compat_flags = btrfs_super_compat_flags(super_block); 4686 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4687 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4688 4689 if (copy_to_user(arg, &features, sizeof(features))) 4690 return -EFAULT; 4691 4692 return 0; 4693 } 4694 4695 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4696 enum btrfs_feature_set set, 4697 u64 change_mask, u64 flags, u64 supported_flags, 4698 u64 safe_set, u64 safe_clear) 4699 { 4700 const char *type = btrfs_feature_set_name(set); 4701 char *names; 4702 u64 disallowed, unsupported; 4703 u64 set_mask = flags & change_mask; 4704 u64 clear_mask = ~flags & change_mask; 4705 4706 unsupported = set_mask & ~supported_flags; 4707 if (unsupported) { 4708 names = btrfs_printable_features(set, unsupported); 4709 if (names) { 4710 btrfs_warn(fs_info, 4711 "this kernel does not support the %s feature bit%s", 4712 names, strchr(names, ',') ? "s" : ""); 4713 kfree(names); 4714 } else 4715 btrfs_warn(fs_info, 4716 "this kernel does not support %s bits 0x%llx", 4717 type, unsupported); 4718 return -EOPNOTSUPP; 4719 } 4720 4721 disallowed = set_mask & ~safe_set; 4722 if (disallowed) { 4723 names = btrfs_printable_features(set, disallowed); 4724 if (names) { 4725 btrfs_warn(fs_info, 4726 "can't set the %s feature bit%s while mounted", 4727 names, strchr(names, ',') ? "s" : ""); 4728 kfree(names); 4729 } else 4730 btrfs_warn(fs_info, 4731 "can't set %s bits 0x%llx while mounted", 4732 type, disallowed); 4733 return -EPERM; 4734 } 4735 4736 disallowed = clear_mask & ~safe_clear; 4737 if (disallowed) { 4738 names = btrfs_printable_features(set, disallowed); 4739 if (names) { 4740 btrfs_warn(fs_info, 4741 "can't clear the %s feature bit%s while mounted", 4742 names, strchr(names, ',') ? "s" : ""); 4743 kfree(names); 4744 } else 4745 btrfs_warn(fs_info, 4746 "can't clear %s bits 0x%llx while mounted", 4747 type, disallowed); 4748 return -EPERM; 4749 } 4750 4751 return 0; 4752 } 4753 4754 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4755 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4756 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4757 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4758 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4759 4760 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4761 { 4762 struct inode *inode = file_inode(file); 4763 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4764 struct btrfs_root *root = BTRFS_I(inode)->root; 4765 struct btrfs_super_block *super_block = fs_info->super_copy; 4766 struct btrfs_ioctl_feature_flags flags[2]; 4767 struct btrfs_trans_handle *trans; 4768 u64 newflags; 4769 int ret; 4770 4771 if (!capable(CAP_SYS_ADMIN)) 4772 return -EPERM; 4773 4774 if (copy_from_user(flags, arg, sizeof(flags))) 4775 return -EFAULT; 4776 4777 /* Nothing to do */ 4778 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4779 !flags[0].incompat_flags) 4780 return 0; 4781 4782 ret = check_feature(fs_info, flags[0].compat_flags, 4783 flags[1].compat_flags, COMPAT); 4784 if (ret) 4785 return ret; 4786 4787 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4788 flags[1].compat_ro_flags, COMPAT_RO); 4789 if (ret) 4790 return ret; 4791 4792 ret = check_feature(fs_info, flags[0].incompat_flags, 4793 flags[1].incompat_flags, INCOMPAT); 4794 if (ret) 4795 return ret; 4796 4797 ret = mnt_want_write_file(file); 4798 if (ret) 4799 return ret; 4800 4801 trans = btrfs_start_transaction(root, 0); 4802 if (IS_ERR(trans)) { 4803 ret = PTR_ERR(trans); 4804 goto out_drop_write; 4805 } 4806 4807 spin_lock(&fs_info->super_lock); 4808 newflags = btrfs_super_compat_flags(super_block); 4809 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4810 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4811 btrfs_set_super_compat_flags(super_block, newflags); 4812 4813 newflags = btrfs_super_compat_ro_flags(super_block); 4814 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4815 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4816 btrfs_set_super_compat_ro_flags(super_block, newflags); 4817 4818 newflags = btrfs_super_incompat_flags(super_block); 4819 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4820 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4821 btrfs_set_super_incompat_flags(super_block, newflags); 4822 spin_unlock(&fs_info->super_lock); 4823 4824 ret = btrfs_commit_transaction(trans); 4825 out_drop_write: 4826 mnt_drop_write_file(file); 4827 4828 return ret; 4829 } 4830 4831 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4832 { 4833 struct btrfs_ioctl_send_args *arg; 4834 int ret; 4835 4836 if (compat) { 4837 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4838 struct btrfs_ioctl_send_args_32 args32; 4839 4840 ret = copy_from_user(&args32, argp, sizeof(args32)); 4841 if (ret) 4842 return -EFAULT; 4843 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4844 if (!arg) 4845 return -ENOMEM; 4846 arg->send_fd = args32.send_fd; 4847 arg->clone_sources_count = args32.clone_sources_count; 4848 arg->clone_sources = compat_ptr(args32.clone_sources); 4849 arg->parent_root = args32.parent_root; 4850 arg->flags = args32.flags; 4851 memcpy(arg->reserved, args32.reserved, 4852 sizeof(args32.reserved)); 4853 #else 4854 return -ENOTTY; 4855 #endif 4856 } else { 4857 arg = memdup_user(argp, sizeof(*arg)); 4858 if (IS_ERR(arg)) 4859 return PTR_ERR(arg); 4860 } 4861 ret = btrfs_ioctl_send(file, arg); 4862 kfree(arg); 4863 return ret; 4864 } 4865 4866 long btrfs_ioctl(struct file *file, unsigned int 4867 cmd, unsigned long arg) 4868 { 4869 struct inode *inode = file_inode(file); 4870 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4871 struct btrfs_root *root = BTRFS_I(inode)->root; 4872 void __user *argp = (void __user *)arg; 4873 4874 switch (cmd) { 4875 case FS_IOC_GETVERSION: 4876 return btrfs_ioctl_getversion(file, argp); 4877 case FS_IOC_GETFSLABEL: 4878 return btrfs_ioctl_get_fslabel(fs_info, argp); 4879 case FS_IOC_SETFSLABEL: 4880 return btrfs_ioctl_set_fslabel(file, argp); 4881 case FITRIM: 4882 return btrfs_ioctl_fitrim(fs_info, argp); 4883 case BTRFS_IOC_SNAP_CREATE: 4884 return btrfs_ioctl_snap_create(file, argp, 0); 4885 case BTRFS_IOC_SNAP_CREATE_V2: 4886 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4887 case BTRFS_IOC_SUBVOL_CREATE: 4888 return btrfs_ioctl_snap_create(file, argp, 1); 4889 case BTRFS_IOC_SUBVOL_CREATE_V2: 4890 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4891 case BTRFS_IOC_SNAP_DESTROY: 4892 return btrfs_ioctl_snap_destroy(file, argp, false); 4893 case BTRFS_IOC_SNAP_DESTROY_V2: 4894 return btrfs_ioctl_snap_destroy(file, argp, true); 4895 case BTRFS_IOC_SUBVOL_GETFLAGS: 4896 return btrfs_ioctl_subvol_getflags(file, argp); 4897 case BTRFS_IOC_SUBVOL_SETFLAGS: 4898 return btrfs_ioctl_subvol_setflags(file, argp); 4899 case BTRFS_IOC_DEFAULT_SUBVOL: 4900 return btrfs_ioctl_default_subvol(file, argp); 4901 case BTRFS_IOC_DEFRAG: 4902 return btrfs_ioctl_defrag(file, NULL); 4903 case BTRFS_IOC_DEFRAG_RANGE: 4904 return btrfs_ioctl_defrag(file, argp); 4905 case BTRFS_IOC_RESIZE: 4906 return btrfs_ioctl_resize(file, argp); 4907 case BTRFS_IOC_ADD_DEV: 4908 return btrfs_ioctl_add_dev(fs_info, argp); 4909 case BTRFS_IOC_RM_DEV: 4910 return btrfs_ioctl_rm_dev(file, argp); 4911 case BTRFS_IOC_RM_DEV_V2: 4912 return btrfs_ioctl_rm_dev_v2(file, argp); 4913 case BTRFS_IOC_FS_INFO: 4914 return btrfs_ioctl_fs_info(fs_info, argp); 4915 case BTRFS_IOC_DEV_INFO: 4916 return btrfs_ioctl_dev_info(fs_info, argp); 4917 case BTRFS_IOC_BALANCE: 4918 return btrfs_ioctl_balance(file, NULL); 4919 case BTRFS_IOC_TREE_SEARCH: 4920 return btrfs_ioctl_tree_search(file, argp); 4921 case BTRFS_IOC_TREE_SEARCH_V2: 4922 return btrfs_ioctl_tree_search_v2(file, argp); 4923 case BTRFS_IOC_INO_LOOKUP: 4924 return btrfs_ioctl_ino_lookup(file, argp); 4925 case BTRFS_IOC_INO_PATHS: 4926 return btrfs_ioctl_ino_to_path(root, argp); 4927 case BTRFS_IOC_LOGICAL_INO: 4928 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4929 case BTRFS_IOC_LOGICAL_INO_V2: 4930 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4931 case BTRFS_IOC_SPACE_INFO: 4932 return btrfs_ioctl_space_info(fs_info, argp); 4933 case BTRFS_IOC_SYNC: { 4934 int ret; 4935 4936 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4937 if (ret) 4938 return ret; 4939 ret = btrfs_sync_fs(inode->i_sb, 1); 4940 /* 4941 * The transaction thread may want to do more work, 4942 * namely it pokes the cleaner kthread that will start 4943 * processing uncleaned subvols. 4944 */ 4945 wake_up_process(fs_info->transaction_kthread); 4946 return ret; 4947 } 4948 case BTRFS_IOC_START_SYNC: 4949 return btrfs_ioctl_start_sync(root, argp); 4950 case BTRFS_IOC_WAIT_SYNC: 4951 return btrfs_ioctl_wait_sync(fs_info, argp); 4952 case BTRFS_IOC_SCRUB: 4953 return btrfs_ioctl_scrub(file, argp); 4954 case BTRFS_IOC_SCRUB_CANCEL: 4955 return btrfs_ioctl_scrub_cancel(fs_info); 4956 case BTRFS_IOC_SCRUB_PROGRESS: 4957 return btrfs_ioctl_scrub_progress(fs_info, argp); 4958 case BTRFS_IOC_BALANCE_V2: 4959 return btrfs_ioctl_balance(file, argp); 4960 case BTRFS_IOC_BALANCE_CTL: 4961 return btrfs_ioctl_balance_ctl(fs_info, arg); 4962 case BTRFS_IOC_BALANCE_PROGRESS: 4963 return btrfs_ioctl_balance_progress(fs_info, argp); 4964 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4965 return btrfs_ioctl_set_received_subvol(file, argp); 4966 #ifdef CONFIG_64BIT 4967 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4968 return btrfs_ioctl_set_received_subvol_32(file, argp); 4969 #endif 4970 case BTRFS_IOC_SEND: 4971 return _btrfs_ioctl_send(file, argp, false); 4972 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4973 case BTRFS_IOC_SEND_32: 4974 return _btrfs_ioctl_send(file, argp, true); 4975 #endif 4976 case BTRFS_IOC_GET_DEV_STATS: 4977 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4978 case BTRFS_IOC_QUOTA_CTL: 4979 return btrfs_ioctl_quota_ctl(file, argp); 4980 case BTRFS_IOC_QGROUP_ASSIGN: 4981 return btrfs_ioctl_qgroup_assign(file, argp); 4982 case BTRFS_IOC_QGROUP_CREATE: 4983 return btrfs_ioctl_qgroup_create(file, argp); 4984 case BTRFS_IOC_QGROUP_LIMIT: 4985 return btrfs_ioctl_qgroup_limit(file, argp); 4986 case BTRFS_IOC_QUOTA_RESCAN: 4987 return btrfs_ioctl_quota_rescan(file, argp); 4988 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4989 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4990 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4991 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4992 case BTRFS_IOC_DEV_REPLACE: 4993 return btrfs_ioctl_dev_replace(fs_info, argp); 4994 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4995 return btrfs_ioctl_get_supported_features(argp); 4996 case BTRFS_IOC_GET_FEATURES: 4997 return btrfs_ioctl_get_features(fs_info, argp); 4998 case BTRFS_IOC_SET_FEATURES: 4999 return btrfs_ioctl_set_features(file, argp); 5000 case BTRFS_IOC_GET_SUBVOL_INFO: 5001 return btrfs_ioctl_get_subvol_info(file, argp); 5002 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5003 return btrfs_ioctl_get_subvol_rootref(file, argp); 5004 case BTRFS_IOC_INO_LOOKUP_USER: 5005 return btrfs_ioctl_ino_lookup_user(file, argp); 5006 case FS_IOC_ENABLE_VERITY: 5007 return fsverity_ioctl_enable(file, (const void __user *)argp); 5008 case FS_IOC_MEASURE_VERITY: 5009 return fsverity_ioctl_measure(file, argp); 5010 } 5011 5012 return -ENOTTY; 5013 } 5014 5015 #ifdef CONFIG_COMPAT 5016 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5017 { 5018 /* 5019 * These all access 32-bit values anyway so no further 5020 * handling is necessary. 5021 */ 5022 switch (cmd) { 5023 case FS_IOC32_GETVERSION: 5024 cmd = FS_IOC_GETVERSION; 5025 break; 5026 } 5027 5028 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5029 } 5030 #endif 5031