1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "export.h" 32 #include "transaction.h" 33 #include "btrfs_inode.h" 34 #include "print-tree.h" 35 #include "volumes.h" 36 #include "locking.h" 37 #include "inode-map.h" 38 #include "backref.h" 39 #include "rcu-string.h" 40 #include "send.h" 41 #include "dev-replace.h" 42 #include "props.h" 43 #include "sysfs.h" 44 #include "qgroup.h" 45 #include "tree-log.h" 46 #include "compression.h" 47 #include "space-info.h" 48 #include "delalloc-space.h" 49 #include "block-group.h" 50 51 #ifdef CONFIG_64BIT 52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 53 * structures are incorrect, as the timespec structure from userspace 54 * is 4 bytes too small. We define these alternatives here to teach 55 * the kernel about the 32-bit struct packing. 56 */ 57 struct btrfs_ioctl_timespec_32 { 58 __u64 sec; 59 __u32 nsec; 60 } __attribute__ ((__packed__)); 61 62 struct btrfs_ioctl_received_subvol_args_32 { 63 char uuid[BTRFS_UUID_SIZE]; /* in */ 64 __u64 stransid; /* in */ 65 __u64 rtransid; /* out */ 66 struct btrfs_ioctl_timespec_32 stime; /* in */ 67 struct btrfs_ioctl_timespec_32 rtime; /* out */ 68 __u64 flags; /* in */ 69 __u64 reserved[16]; /* in */ 70 } __attribute__ ((__packed__)); 71 72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 73 struct btrfs_ioctl_received_subvol_args_32) 74 #endif 75 76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 77 struct btrfs_ioctl_send_args_32 { 78 __s64 send_fd; /* in */ 79 __u64 clone_sources_count; /* in */ 80 compat_uptr_t clone_sources; /* in */ 81 __u64 parent_root; /* in */ 82 __u64 flags; /* in */ 83 __u64 reserved[4]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 87 struct btrfs_ioctl_send_args_32) 88 #endif 89 90 /* Mask out flags that are inappropriate for the given type of inode. */ 91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 92 unsigned int flags) 93 { 94 if (S_ISDIR(inode->i_mode)) 95 return flags; 96 else if (S_ISREG(inode->i_mode)) 97 return flags & ~FS_DIRSYNC_FL; 98 else 99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 100 } 101 102 /* 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 104 * ioctl. 105 */ 106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 107 { 108 unsigned int iflags = 0; 109 110 if (flags & BTRFS_INODE_SYNC) 111 iflags |= FS_SYNC_FL; 112 if (flags & BTRFS_INODE_IMMUTABLE) 113 iflags |= FS_IMMUTABLE_FL; 114 if (flags & BTRFS_INODE_APPEND) 115 iflags |= FS_APPEND_FL; 116 if (flags & BTRFS_INODE_NODUMP) 117 iflags |= FS_NODUMP_FL; 118 if (flags & BTRFS_INODE_NOATIME) 119 iflags |= FS_NOATIME_FL; 120 if (flags & BTRFS_INODE_DIRSYNC) 121 iflags |= FS_DIRSYNC_FL; 122 if (flags & BTRFS_INODE_NODATACOW) 123 iflags |= FS_NOCOW_FL; 124 125 if (flags & BTRFS_INODE_NOCOMPRESS) 126 iflags |= FS_NOCOMP_FL; 127 else if (flags & BTRFS_INODE_COMPRESS) 128 iflags |= FS_COMPR_FL; 129 130 return iflags; 131 } 132 133 /* 134 * Update inode->i_flags based on the btrfs internal flags. 135 */ 136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 137 { 138 struct btrfs_inode *binode = BTRFS_I(inode); 139 unsigned int new_fl = 0; 140 141 if (binode->flags & BTRFS_INODE_SYNC) 142 new_fl |= S_SYNC; 143 if (binode->flags & BTRFS_INODE_IMMUTABLE) 144 new_fl |= S_IMMUTABLE; 145 if (binode->flags & BTRFS_INODE_APPEND) 146 new_fl |= S_APPEND; 147 if (binode->flags & BTRFS_INODE_NOATIME) 148 new_fl |= S_NOATIME; 149 if (binode->flags & BTRFS_INODE_DIRSYNC) 150 new_fl |= S_DIRSYNC; 151 152 set_mask_bits(&inode->i_flags, 153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 154 new_fl); 155 } 156 157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 158 { 159 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 161 162 if (copy_to_user(arg, &flags, sizeof(flags))) 163 return -EFAULT; 164 return 0; 165 } 166 167 /* 168 * Check if @flags are a supported and valid set of FS_*_FL flags and that 169 * the old and new flags are not conflicting 170 */ 171 static int check_fsflags(unsigned int old_flags, unsigned int flags) 172 { 173 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 174 FS_NOATIME_FL | FS_NODUMP_FL | \ 175 FS_SYNC_FL | FS_DIRSYNC_FL | \ 176 FS_NOCOMP_FL | FS_COMPR_FL | 177 FS_NOCOW_FL)) 178 return -EOPNOTSUPP; 179 180 /* COMPR and NOCOMP on new/old are valid */ 181 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 182 return -EINVAL; 183 184 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 185 return -EINVAL; 186 187 /* NOCOW and compression options are mutually exclusive */ 188 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 189 return -EINVAL; 190 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 191 return -EINVAL; 192 193 return 0; 194 } 195 196 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 197 { 198 struct inode *inode = file_inode(file); 199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 200 struct btrfs_inode *binode = BTRFS_I(inode); 201 struct btrfs_root *root = binode->root; 202 struct btrfs_trans_handle *trans; 203 unsigned int fsflags, old_fsflags; 204 int ret; 205 const char *comp = NULL; 206 u32 binode_flags; 207 208 if (!inode_owner_or_capable(inode)) 209 return -EPERM; 210 211 if (btrfs_root_readonly(root)) 212 return -EROFS; 213 214 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 215 return -EFAULT; 216 217 ret = mnt_want_write_file(file); 218 if (ret) 219 return ret; 220 221 inode_lock(inode); 222 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 223 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 224 225 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 226 if (ret) 227 goto out_unlock; 228 229 ret = check_fsflags(old_fsflags, fsflags); 230 if (ret) 231 goto out_unlock; 232 233 binode_flags = binode->flags; 234 if (fsflags & FS_SYNC_FL) 235 binode_flags |= BTRFS_INODE_SYNC; 236 else 237 binode_flags &= ~BTRFS_INODE_SYNC; 238 if (fsflags & FS_IMMUTABLE_FL) 239 binode_flags |= BTRFS_INODE_IMMUTABLE; 240 else 241 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 242 if (fsflags & FS_APPEND_FL) 243 binode_flags |= BTRFS_INODE_APPEND; 244 else 245 binode_flags &= ~BTRFS_INODE_APPEND; 246 if (fsflags & FS_NODUMP_FL) 247 binode_flags |= BTRFS_INODE_NODUMP; 248 else 249 binode_flags &= ~BTRFS_INODE_NODUMP; 250 if (fsflags & FS_NOATIME_FL) 251 binode_flags |= BTRFS_INODE_NOATIME; 252 else 253 binode_flags &= ~BTRFS_INODE_NOATIME; 254 if (fsflags & FS_DIRSYNC_FL) 255 binode_flags |= BTRFS_INODE_DIRSYNC; 256 else 257 binode_flags &= ~BTRFS_INODE_DIRSYNC; 258 if (fsflags & FS_NOCOW_FL) { 259 if (S_ISREG(inode->i_mode)) { 260 /* 261 * It's safe to turn csums off here, no extents exist. 262 * Otherwise we want the flag to reflect the real COW 263 * status of the file and will not set it. 264 */ 265 if (inode->i_size == 0) 266 binode_flags |= BTRFS_INODE_NODATACOW | 267 BTRFS_INODE_NODATASUM; 268 } else { 269 binode_flags |= BTRFS_INODE_NODATACOW; 270 } 271 } else { 272 /* 273 * Revert back under same assumptions as above 274 */ 275 if (S_ISREG(inode->i_mode)) { 276 if (inode->i_size == 0) 277 binode_flags &= ~(BTRFS_INODE_NODATACOW | 278 BTRFS_INODE_NODATASUM); 279 } else { 280 binode_flags &= ~BTRFS_INODE_NODATACOW; 281 } 282 } 283 284 /* 285 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 286 * flag may be changed automatically if compression code won't make 287 * things smaller. 288 */ 289 if (fsflags & FS_NOCOMP_FL) { 290 binode_flags &= ~BTRFS_INODE_COMPRESS; 291 binode_flags |= BTRFS_INODE_NOCOMPRESS; 292 } else if (fsflags & FS_COMPR_FL) { 293 294 if (IS_SWAPFILE(inode)) { 295 ret = -ETXTBSY; 296 goto out_unlock; 297 } 298 299 binode_flags |= BTRFS_INODE_COMPRESS; 300 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 301 302 comp = btrfs_compress_type2str(fs_info->compress_type); 303 if (!comp || comp[0] == 0) 304 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 305 } else { 306 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 307 } 308 309 /* 310 * 1 for inode item 311 * 2 for properties 312 */ 313 trans = btrfs_start_transaction(root, 3); 314 if (IS_ERR(trans)) { 315 ret = PTR_ERR(trans); 316 goto out_unlock; 317 } 318 319 if (comp) { 320 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 321 strlen(comp), 0); 322 if (ret) { 323 btrfs_abort_transaction(trans, ret); 324 goto out_end_trans; 325 } 326 } else { 327 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 328 0, 0); 329 if (ret && ret != -ENODATA) { 330 btrfs_abort_transaction(trans, ret); 331 goto out_end_trans; 332 } 333 } 334 335 binode->flags = binode_flags; 336 btrfs_sync_inode_flags_to_i_flags(inode); 337 inode_inc_iversion(inode); 338 inode->i_ctime = current_time(inode); 339 ret = btrfs_update_inode(trans, root, inode); 340 341 out_end_trans: 342 btrfs_end_transaction(trans); 343 out_unlock: 344 inode_unlock(inode); 345 mnt_drop_write_file(file); 346 return ret; 347 } 348 349 /* 350 * Translate btrfs internal inode flags to xflags as expected by the 351 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 352 * silently dropped. 353 */ 354 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 355 { 356 unsigned int xflags = 0; 357 358 if (flags & BTRFS_INODE_APPEND) 359 xflags |= FS_XFLAG_APPEND; 360 if (flags & BTRFS_INODE_IMMUTABLE) 361 xflags |= FS_XFLAG_IMMUTABLE; 362 if (flags & BTRFS_INODE_NOATIME) 363 xflags |= FS_XFLAG_NOATIME; 364 if (flags & BTRFS_INODE_NODUMP) 365 xflags |= FS_XFLAG_NODUMP; 366 if (flags & BTRFS_INODE_SYNC) 367 xflags |= FS_XFLAG_SYNC; 368 369 return xflags; 370 } 371 372 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 373 static int check_xflags(unsigned int flags) 374 { 375 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 376 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 377 return -EOPNOTSUPP; 378 return 0; 379 } 380 381 /* 382 * Set the xflags from the internal inode flags. The remaining items of fsxattr 383 * are zeroed. 384 */ 385 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 386 { 387 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 388 struct fsxattr fa; 389 390 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags)); 391 if (copy_to_user(arg, &fa, sizeof(fa))) 392 return -EFAULT; 393 394 return 0; 395 } 396 397 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 398 { 399 struct inode *inode = file_inode(file); 400 struct btrfs_inode *binode = BTRFS_I(inode); 401 struct btrfs_root *root = binode->root; 402 struct btrfs_trans_handle *trans; 403 struct fsxattr fa, old_fa; 404 unsigned old_flags; 405 unsigned old_i_flags; 406 int ret = 0; 407 408 if (!inode_owner_or_capable(inode)) 409 return -EPERM; 410 411 if (btrfs_root_readonly(root)) 412 return -EROFS; 413 414 if (copy_from_user(&fa, arg, sizeof(fa))) 415 return -EFAULT; 416 417 ret = check_xflags(fa.fsx_xflags); 418 if (ret) 419 return ret; 420 421 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 422 return -EOPNOTSUPP; 423 424 ret = mnt_want_write_file(file); 425 if (ret) 426 return ret; 427 428 inode_lock(inode); 429 430 old_flags = binode->flags; 431 old_i_flags = inode->i_flags; 432 433 simple_fill_fsxattr(&old_fa, 434 btrfs_inode_flags_to_xflags(binode->flags)); 435 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 436 if (ret) 437 goto out_unlock; 438 439 if (fa.fsx_xflags & FS_XFLAG_SYNC) 440 binode->flags |= BTRFS_INODE_SYNC; 441 else 442 binode->flags &= ~BTRFS_INODE_SYNC; 443 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 444 binode->flags |= BTRFS_INODE_IMMUTABLE; 445 else 446 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 447 if (fa.fsx_xflags & FS_XFLAG_APPEND) 448 binode->flags |= BTRFS_INODE_APPEND; 449 else 450 binode->flags &= ~BTRFS_INODE_APPEND; 451 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 452 binode->flags |= BTRFS_INODE_NODUMP; 453 else 454 binode->flags &= ~BTRFS_INODE_NODUMP; 455 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 456 binode->flags |= BTRFS_INODE_NOATIME; 457 else 458 binode->flags &= ~BTRFS_INODE_NOATIME; 459 460 /* 1 item for the inode */ 461 trans = btrfs_start_transaction(root, 1); 462 if (IS_ERR(trans)) { 463 ret = PTR_ERR(trans); 464 goto out_unlock; 465 } 466 467 btrfs_sync_inode_flags_to_i_flags(inode); 468 inode_inc_iversion(inode); 469 inode->i_ctime = current_time(inode); 470 ret = btrfs_update_inode(trans, root, inode); 471 472 btrfs_end_transaction(trans); 473 474 out_unlock: 475 if (ret) { 476 binode->flags = old_flags; 477 inode->i_flags = old_i_flags; 478 } 479 480 inode_unlock(inode); 481 mnt_drop_write_file(file); 482 483 return ret; 484 } 485 486 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 487 { 488 struct inode *inode = file_inode(file); 489 490 return put_user(inode->i_generation, arg); 491 } 492 493 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 494 void __user *arg) 495 { 496 struct btrfs_device *device; 497 struct request_queue *q; 498 struct fstrim_range range; 499 u64 minlen = ULLONG_MAX; 500 u64 num_devices = 0; 501 int ret; 502 503 if (!capable(CAP_SYS_ADMIN)) 504 return -EPERM; 505 506 /* 507 * If the fs is mounted with nologreplay, which requires it to be 508 * mounted in RO mode as well, we can not allow discard on free space 509 * inside block groups, because log trees refer to extents that are not 510 * pinned in a block group's free space cache (pinning the extents is 511 * precisely the first phase of replaying a log tree). 512 */ 513 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 514 return -EROFS; 515 516 rcu_read_lock(); 517 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 518 dev_list) { 519 if (!device->bdev) 520 continue; 521 q = bdev_get_queue(device->bdev); 522 if (blk_queue_discard(q)) { 523 num_devices++; 524 minlen = min_t(u64, q->limits.discard_granularity, 525 minlen); 526 } 527 } 528 rcu_read_unlock(); 529 530 if (!num_devices) 531 return -EOPNOTSUPP; 532 if (copy_from_user(&range, arg, sizeof(range))) 533 return -EFAULT; 534 535 /* 536 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 537 * block group is in the logical address space, which can be any 538 * sectorsize aligned bytenr in the range [0, U64_MAX]. 539 */ 540 if (range.len < fs_info->sb->s_blocksize) 541 return -EINVAL; 542 543 range.minlen = max(range.minlen, minlen); 544 ret = btrfs_trim_fs(fs_info, &range); 545 if (ret < 0) 546 return ret; 547 548 if (copy_to_user(arg, &range, sizeof(range))) 549 return -EFAULT; 550 551 return 0; 552 } 553 554 int __pure btrfs_is_empty_uuid(u8 *uuid) 555 { 556 int i; 557 558 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 559 if (uuid[i]) 560 return 0; 561 } 562 return 1; 563 } 564 565 static noinline int create_subvol(struct inode *dir, 566 struct dentry *dentry, 567 const char *name, int namelen, 568 struct btrfs_qgroup_inherit *inherit) 569 { 570 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 571 struct btrfs_trans_handle *trans; 572 struct btrfs_key key; 573 struct btrfs_root_item *root_item; 574 struct btrfs_inode_item *inode_item; 575 struct extent_buffer *leaf; 576 struct btrfs_root *root = BTRFS_I(dir)->root; 577 struct btrfs_root *new_root; 578 struct btrfs_block_rsv block_rsv; 579 struct timespec64 cur_time = current_time(dir); 580 struct inode *inode; 581 int ret; 582 int err; 583 dev_t anon_dev = 0; 584 u64 objectid; 585 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 586 u64 index = 0; 587 588 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 589 if (!root_item) 590 return -ENOMEM; 591 592 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 593 if (ret) 594 goto fail_free; 595 596 ret = get_anon_bdev(&anon_dev); 597 if (ret < 0) 598 goto fail_free; 599 600 /* 601 * Don't create subvolume whose level is not zero. Or qgroup will be 602 * screwed up since it assumes subvolume qgroup's level to be 0. 603 */ 604 if (btrfs_qgroup_level(objectid)) { 605 ret = -ENOSPC; 606 goto fail_free; 607 } 608 609 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 610 /* 611 * The same as the snapshot creation, please see the comment 612 * of create_snapshot(). 613 */ 614 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 615 if (ret) 616 goto fail_free; 617 618 trans = btrfs_start_transaction(root, 0); 619 if (IS_ERR(trans)) { 620 ret = PTR_ERR(trans); 621 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 622 goto fail_free; 623 } 624 trans->block_rsv = &block_rsv; 625 trans->bytes_reserved = block_rsv.size; 626 627 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 628 if (ret) 629 goto fail; 630 631 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 632 if (IS_ERR(leaf)) { 633 ret = PTR_ERR(leaf); 634 goto fail; 635 } 636 637 btrfs_mark_buffer_dirty(leaf); 638 639 inode_item = &root_item->inode; 640 btrfs_set_stack_inode_generation(inode_item, 1); 641 btrfs_set_stack_inode_size(inode_item, 3); 642 btrfs_set_stack_inode_nlink(inode_item, 1); 643 btrfs_set_stack_inode_nbytes(inode_item, 644 fs_info->nodesize); 645 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 646 647 btrfs_set_root_flags(root_item, 0); 648 btrfs_set_root_limit(root_item, 0); 649 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 650 651 btrfs_set_root_bytenr(root_item, leaf->start); 652 btrfs_set_root_generation(root_item, trans->transid); 653 btrfs_set_root_level(root_item, 0); 654 btrfs_set_root_refs(root_item, 1); 655 btrfs_set_root_used(root_item, leaf->len); 656 btrfs_set_root_last_snapshot(root_item, 0); 657 658 btrfs_set_root_generation_v2(root_item, 659 btrfs_root_generation(root_item)); 660 generate_random_guid(root_item->uuid); 661 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 662 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 663 root_item->ctime = root_item->otime; 664 btrfs_set_root_ctransid(root_item, trans->transid); 665 btrfs_set_root_otransid(root_item, trans->transid); 666 667 btrfs_tree_unlock(leaf); 668 free_extent_buffer(leaf); 669 leaf = NULL; 670 671 btrfs_set_root_dirid(root_item, new_dirid); 672 673 key.objectid = objectid; 674 key.offset = 0; 675 key.type = BTRFS_ROOT_ITEM_KEY; 676 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 677 root_item); 678 if (ret) 679 goto fail; 680 681 key.offset = (u64)-1; 682 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 683 if (IS_ERR(new_root)) { 684 free_anon_bdev(anon_dev); 685 ret = PTR_ERR(new_root); 686 btrfs_abort_transaction(trans, ret); 687 goto fail; 688 } 689 /* Freeing will be done in btrfs_put_root() of new_root */ 690 anon_dev = 0; 691 692 btrfs_record_root_in_trans(trans, new_root); 693 694 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 695 btrfs_put_root(new_root); 696 if (ret) { 697 /* We potentially lose an unused inode item here */ 698 btrfs_abort_transaction(trans, ret); 699 goto fail; 700 } 701 702 mutex_lock(&new_root->objectid_mutex); 703 new_root->highest_objectid = new_dirid; 704 mutex_unlock(&new_root->objectid_mutex); 705 706 /* 707 * insert the directory item 708 */ 709 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 710 if (ret) { 711 btrfs_abort_transaction(trans, ret); 712 goto fail; 713 } 714 715 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 716 BTRFS_FT_DIR, index); 717 if (ret) { 718 btrfs_abort_transaction(trans, ret); 719 goto fail; 720 } 721 722 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 723 ret = btrfs_update_inode(trans, root, dir); 724 if (ret) { 725 btrfs_abort_transaction(trans, ret); 726 goto fail; 727 } 728 729 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 730 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 731 if (ret) { 732 btrfs_abort_transaction(trans, ret); 733 goto fail; 734 } 735 736 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 737 BTRFS_UUID_KEY_SUBVOL, objectid); 738 if (ret) 739 btrfs_abort_transaction(trans, ret); 740 741 fail: 742 kfree(root_item); 743 trans->block_rsv = NULL; 744 trans->bytes_reserved = 0; 745 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 746 747 err = btrfs_commit_transaction(trans); 748 if (err && !ret) 749 ret = err; 750 751 if (!ret) { 752 inode = btrfs_lookup_dentry(dir, dentry); 753 if (IS_ERR(inode)) 754 return PTR_ERR(inode); 755 d_instantiate(dentry, inode); 756 } 757 return ret; 758 759 fail_free: 760 if (anon_dev) 761 free_anon_bdev(anon_dev); 762 kfree(root_item); 763 return ret; 764 } 765 766 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 767 struct dentry *dentry, bool readonly, 768 struct btrfs_qgroup_inherit *inherit) 769 { 770 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 771 struct inode *inode; 772 struct btrfs_pending_snapshot *pending_snapshot; 773 struct btrfs_trans_handle *trans; 774 int ret; 775 776 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 777 return -EINVAL; 778 779 if (atomic_read(&root->nr_swapfiles)) { 780 btrfs_warn(fs_info, 781 "cannot snapshot subvolume with active swapfile"); 782 return -ETXTBSY; 783 } 784 785 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 786 if (!pending_snapshot) 787 return -ENOMEM; 788 789 ret = get_anon_bdev(&pending_snapshot->anon_dev); 790 if (ret < 0) 791 goto free_pending; 792 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 793 GFP_KERNEL); 794 pending_snapshot->path = btrfs_alloc_path(); 795 if (!pending_snapshot->root_item || !pending_snapshot->path) { 796 ret = -ENOMEM; 797 goto free_pending; 798 } 799 800 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 801 BTRFS_BLOCK_RSV_TEMP); 802 /* 803 * 1 - parent dir inode 804 * 2 - dir entries 805 * 1 - root item 806 * 2 - root ref/backref 807 * 1 - root of snapshot 808 * 1 - UUID item 809 */ 810 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 811 &pending_snapshot->block_rsv, 8, 812 false); 813 if (ret) 814 goto free_pending; 815 816 pending_snapshot->dentry = dentry; 817 pending_snapshot->root = root; 818 pending_snapshot->readonly = readonly; 819 pending_snapshot->dir = dir; 820 pending_snapshot->inherit = inherit; 821 822 trans = btrfs_start_transaction(root, 0); 823 if (IS_ERR(trans)) { 824 ret = PTR_ERR(trans); 825 goto fail; 826 } 827 828 spin_lock(&fs_info->trans_lock); 829 list_add(&pending_snapshot->list, 830 &trans->transaction->pending_snapshots); 831 spin_unlock(&fs_info->trans_lock); 832 833 ret = btrfs_commit_transaction(trans); 834 if (ret) 835 goto fail; 836 837 ret = pending_snapshot->error; 838 if (ret) 839 goto fail; 840 841 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 842 if (ret) 843 goto fail; 844 845 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 846 if (IS_ERR(inode)) { 847 ret = PTR_ERR(inode); 848 goto fail; 849 } 850 851 d_instantiate(dentry, inode); 852 ret = 0; 853 pending_snapshot->anon_dev = 0; 854 fail: 855 /* Prevent double freeing of anon_dev */ 856 if (ret && pending_snapshot->snap) 857 pending_snapshot->snap->anon_dev = 0; 858 btrfs_put_root(pending_snapshot->snap); 859 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 860 free_pending: 861 if (pending_snapshot->anon_dev) 862 free_anon_bdev(pending_snapshot->anon_dev); 863 kfree(pending_snapshot->root_item); 864 btrfs_free_path(pending_snapshot->path); 865 kfree(pending_snapshot); 866 867 return ret; 868 } 869 870 /* copy of may_delete in fs/namei.c() 871 * Check whether we can remove a link victim from directory dir, check 872 * whether the type of victim is right. 873 * 1. We can't do it if dir is read-only (done in permission()) 874 * 2. We should have write and exec permissions on dir 875 * 3. We can't remove anything from append-only dir 876 * 4. We can't do anything with immutable dir (done in permission()) 877 * 5. If the sticky bit on dir is set we should either 878 * a. be owner of dir, or 879 * b. be owner of victim, or 880 * c. have CAP_FOWNER capability 881 * 6. If the victim is append-only or immutable we can't do anything with 882 * links pointing to it. 883 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 884 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 885 * 9. We can't remove a root or mountpoint. 886 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 887 * nfs_async_unlink(). 888 */ 889 890 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 891 { 892 int error; 893 894 if (d_really_is_negative(victim)) 895 return -ENOENT; 896 897 BUG_ON(d_inode(victim->d_parent) != dir); 898 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 899 900 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 901 if (error) 902 return error; 903 if (IS_APPEND(dir)) 904 return -EPERM; 905 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 906 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 907 return -EPERM; 908 if (isdir) { 909 if (!d_is_dir(victim)) 910 return -ENOTDIR; 911 if (IS_ROOT(victim)) 912 return -EBUSY; 913 } else if (d_is_dir(victim)) 914 return -EISDIR; 915 if (IS_DEADDIR(dir)) 916 return -ENOENT; 917 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 918 return -EBUSY; 919 return 0; 920 } 921 922 /* copy of may_create in fs/namei.c() */ 923 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 924 { 925 if (d_really_is_positive(child)) 926 return -EEXIST; 927 if (IS_DEADDIR(dir)) 928 return -ENOENT; 929 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 930 } 931 932 /* 933 * Create a new subvolume below @parent. This is largely modeled after 934 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 935 * inside this filesystem so it's quite a bit simpler. 936 */ 937 static noinline int btrfs_mksubvol(const struct path *parent, 938 const char *name, int namelen, 939 struct btrfs_root *snap_src, 940 bool readonly, 941 struct btrfs_qgroup_inherit *inherit) 942 { 943 struct inode *dir = d_inode(parent->dentry); 944 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 945 struct dentry *dentry; 946 int error; 947 948 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 949 if (error == -EINTR) 950 return error; 951 952 dentry = lookup_one_len(name, parent->dentry, namelen); 953 error = PTR_ERR(dentry); 954 if (IS_ERR(dentry)) 955 goto out_unlock; 956 957 error = btrfs_may_create(dir, dentry); 958 if (error) 959 goto out_dput; 960 961 /* 962 * even if this name doesn't exist, we may get hash collisions. 963 * check for them now when we can safely fail 964 */ 965 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 966 dir->i_ino, name, 967 namelen); 968 if (error) 969 goto out_dput; 970 971 down_read(&fs_info->subvol_sem); 972 973 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 974 goto out_up_read; 975 976 if (snap_src) 977 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 978 else 979 error = create_subvol(dir, dentry, name, namelen, inherit); 980 981 if (!error) 982 fsnotify_mkdir(dir, dentry); 983 out_up_read: 984 up_read(&fs_info->subvol_sem); 985 out_dput: 986 dput(dentry); 987 out_unlock: 988 inode_unlock(dir); 989 return error; 990 } 991 992 static noinline int btrfs_mksnapshot(const struct path *parent, 993 const char *name, int namelen, 994 struct btrfs_root *root, 995 bool readonly, 996 struct btrfs_qgroup_inherit *inherit) 997 { 998 int ret; 999 bool snapshot_force_cow = false; 1000 1001 /* 1002 * Force new buffered writes to reserve space even when NOCOW is 1003 * possible. This is to avoid later writeback (running dealloc) to 1004 * fallback to COW mode and unexpectedly fail with ENOSPC. 1005 */ 1006 btrfs_drew_read_lock(&root->snapshot_lock); 1007 1008 ret = btrfs_start_delalloc_snapshot(root); 1009 if (ret) 1010 goto out; 1011 1012 /* 1013 * All previous writes have started writeback in NOCOW mode, so now 1014 * we force future writes to fallback to COW mode during snapshot 1015 * creation. 1016 */ 1017 atomic_inc(&root->snapshot_force_cow); 1018 snapshot_force_cow = true; 1019 1020 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1021 1022 ret = btrfs_mksubvol(parent, name, namelen, 1023 root, readonly, inherit); 1024 out: 1025 if (snapshot_force_cow) 1026 atomic_dec(&root->snapshot_force_cow); 1027 btrfs_drew_read_unlock(&root->snapshot_lock); 1028 return ret; 1029 } 1030 1031 /* 1032 * When we're defragging a range, we don't want to kick it off again 1033 * if it is really just waiting for delalloc to send it down. 1034 * If we find a nice big extent or delalloc range for the bytes in the 1035 * file you want to defrag, we return 0 to let you know to skip this 1036 * part of the file 1037 */ 1038 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1039 { 1040 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1041 struct extent_map *em = NULL; 1042 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1043 u64 end; 1044 1045 read_lock(&em_tree->lock); 1046 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1047 read_unlock(&em_tree->lock); 1048 1049 if (em) { 1050 end = extent_map_end(em); 1051 free_extent_map(em); 1052 if (end - offset > thresh) 1053 return 0; 1054 } 1055 /* if we already have a nice delalloc here, just stop */ 1056 thresh /= 2; 1057 end = count_range_bits(io_tree, &offset, offset + thresh, 1058 thresh, EXTENT_DELALLOC, 1); 1059 if (end >= thresh) 1060 return 0; 1061 return 1; 1062 } 1063 1064 /* 1065 * helper function to walk through a file and find extents 1066 * newer than a specific transid, and smaller than thresh. 1067 * 1068 * This is used by the defragging code to find new and small 1069 * extents 1070 */ 1071 static int find_new_extents(struct btrfs_root *root, 1072 struct inode *inode, u64 newer_than, 1073 u64 *off, u32 thresh) 1074 { 1075 struct btrfs_path *path; 1076 struct btrfs_key min_key; 1077 struct extent_buffer *leaf; 1078 struct btrfs_file_extent_item *extent; 1079 int type; 1080 int ret; 1081 u64 ino = btrfs_ino(BTRFS_I(inode)); 1082 1083 path = btrfs_alloc_path(); 1084 if (!path) 1085 return -ENOMEM; 1086 1087 min_key.objectid = ino; 1088 min_key.type = BTRFS_EXTENT_DATA_KEY; 1089 min_key.offset = *off; 1090 1091 while (1) { 1092 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1093 if (ret != 0) 1094 goto none; 1095 process_slot: 1096 if (min_key.objectid != ino) 1097 goto none; 1098 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1099 goto none; 1100 1101 leaf = path->nodes[0]; 1102 extent = btrfs_item_ptr(leaf, path->slots[0], 1103 struct btrfs_file_extent_item); 1104 1105 type = btrfs_file_extent_type(leaf, extent); 1106 if (type == BTRFS_FILE_EXTENT_REG && 1107 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1108 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1109 *off = min_key.offset; 1110 btrfs_free_path(path); 1111 return 0; 1112 } 1113 1114 path->slots[0]++; 1115 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1116 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1117 goto process_slot; 1118 } 1119 1120 if (min_key.offset == (u64)-1) 1121 goto none; 1122 1123 min_key.offset++; 1124 btrfs_release_path(path); 1125 } 1126 none: 1127 btrfs_free_path(path); 1128 return -ENOENT; 1129 } 1130 1131 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1132 { 1133 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1134 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1135 struct extent_map *em; 1136 u64 len = PAGE_SIZE; 1137 1138 /* 1139 * hopefully we have this extent in the tree already, try without 1140 * the full extent lock 1141 */ 1142 read_lock(&em_tree->lock); 1143 em = lookup_extent_mapping(em_tree, start, len); 1144 read_unlock(&em_tree->lock); 1145 1146 if (!em) { 1147 struct extent_state *cached = NULL; 1148 u64 end = start + len - 1; 1149 1150 /* get the big lock and read metadata off disk */ 1151 lock_extent_bits(io_tree, start, end, &cached); 1152 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 1153 unlock_extent_cached(io_tree, start, end, &cached); 1154 1155 if (IS_ERR(em)) 1156 return NULL; 1157 } 1158 1159 return em; 1160 } 1161 1162 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1163 { 1164 struct extent_map *next; 1165 bool ret = true; 1166 1167 /* this is the last extent */ 1168 if (em->start + em->len >= i_size_read(inode)) 1169 return false; 1170 1171 next = defrag_lookup_extent(inode, em->start + em->len); 1172 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1173 ret = false; 1174 else if ((em->block_start + em->block_len == next->block_start) && 1175 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1176 ret = false; 1177 1178 free_extent_map(next); 1179 return ret; 1180 } 1181 1182 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1183 u64 *last_len, u64 *skip, u64 *defrag_end, 1184 int compress) 1185 { 1186 struct extent_map *em; 1187 int ret = 1; 1188 bool next_mergeable = true; 1189 bool prev_mergeable = true; 1190 1191 /* 1192 * make sure that once we start defragging an extent, we keep on 1193 * defragging it 1194 */ 1195 if (start < *defrag_end) 1196 return 1; 1197 1198 *skip = 0; 1199 1200 em = defrag_lookup_extent(inode, start); 1201 if (!em) 1202 return 0; 1203 1204 /* this will cover holes, and inline extents */ 1205 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1206 ret = 0; 1207 goto out; 1208 } 1209 1210 if (!*defrag_end) 1211 prev_mergeable = false; 1212 1213 next_mergeable = defrag_check_next_extent(inode, em); 1214 /* 1215 * we hit a real extent, if it is big or the next extent is not a 1216 * real extent, don't bother defragging it 1217 */ 1218 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1219 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1220 ret = 0; 1221 out: 1222 /* 1223 * last_len ends up being a counter of how many bytes we've defragged. 1224 * every time we choose not to defrag an extent, we reset *last_len 1225 * so that the next tiny extent will force a defrag. 1226 * 1227 * The end result of this is that tiny extents before a single big 1228 * extent will force at least part of that big extent to be defragged. 1229 */ 1230 if (ret) { 1231 *defrag_end = extent_map_end(em); 1232 } else { 1233 *last_len = 0; 1234 *skip = extent_map_end(em); 1235 *defrag_end = 0; 1236 } 1237 1238 free_extent_map(em); 1239 return ret; 1240 } 1241 1242 /* 1243 * it doesn't do much good to defrag one or two pages 1244 * at a time. This pulls in a nice chunk of pages 1245 * to COW and defrag. 1246 * 1247 * It also makes sure the delalloc code has enough 1248 * dirty data to avoid making new small extents as part 1249 * of the defrag 1250 * 1251 * It's a good idea to start RA on this range 1252 * before calling this. 1253 */ 1254 static int cluster_pages_for_defrag(struct inode *inode, 1255 struct page **pages, 1256 unsigned long start_index, 1257 unsigned long num_pages) 1258 { 1259 unsigned long file_end; 1260 u64 isize = i_size_read(inode); 1261 u64 page_start; 1262 u64 page_end; 1263 u64 page_cnt; 1264 int ret; 1265 int i; 1266 int i_done; 1267 struct btrfs_ordered_extent *ordered; 1268 struct extent_state *cached_state = NULL; 1269 struct extent_io_tree *tree; 1270 struct extent_changeset *data_reserved = NULL; 1271 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1272 1273 file_end = (isize - 1) >> PAGE_SHIFT; 1274 if (!isize || start_index > file_end) 1275 return 0; 1276 1277 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1278 1279 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1280 start_index << PAGE_SHIFT, 1281 page_cnt << PAGE_SHIFT); 1282 if (ret) 1283 return ret; 1284 i_done = 0; 1285 tree = &BTRFS_I(inode)->io_tree; 1286 1287 /* step one, lock all the pages */ 1288 for (i = 0; i < page_cnt; i++) { 1289 struct page *page; 1290 again: 1291 page = find_or_create_page(inode->i_mapping, 1292 start_index + i, mask); 1293 if (!page) 1294 break; 1295 1296 page_start = page_offset(page); 1297 page_end = page_start + PAGE_SIZE - 1; 1298 while (1) { 1299 lock_extent_bits(tree, page_start, page_end, 1300 &cached_state); 1301 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), 1302 page_start); 1303 unlock_extent_cached(tree, page_start, page_end, 1304 &cached_state); 1305 if (!ordered) 1306 break; 1307 1308 unlock_page(page); 1309 btrfs_start_ordered_extent(inode, ordered, 1); 1310 btrfs_put_ordered_extent(ordered); 1311 lock_page(page); 1312 /* 1313 * we unlocked the page above, so we need check if 1314 * it was released or not. 1315 */ 1316 if (page->mapping != inode->i_mapping) { 1317 unlock_page(page); 1318 put_page(page); 1319 goto again; 1320 } 1321 } 1322 1323 if (!PageUptodate(page)) { 1324 btrfs_readpage(NULL, page); 1325 lock_page(page); 1326 if (!PageUptodate(page)) { 1327 unlock_page(page); 1328 put_page(page); 1329 ret = -EIO; 1330 break; 1331 } 1332 } 1333 1334 if (page->mapping != inode->i_mapping) { 1335 unlock_page(page); 1336 put_page(page); 1337 goto again; 1338 } 1339 1340 pages[i] = page; 1341 i_done++; 1342 } 1343 if (!i_done || ret) 1344 goto out; 1345 1346 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1347 goto out; 1348 1349 /* 1350 * so now we have a nice long stream of locked 1351 * and up to date pages, lets wait on them 1352 */ 1353 for (i = 0; i < i_done; i++) 1354 wait_on_page_writeback(pages[i]); 1355 1356 page_start = page_offset(pages[0]); 1357 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1358 1359 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1360 page_start, page_end - 1, &cached_state); 1361 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1362 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1363 EXTENT_DEFRAG, 0, 0, &cached_state); 1364 1365 if (i_done != page_cnt) { 1366 spin_lock(&BTRFS_I(inode)->lock); 1367 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1368 spin_unlock(&BTRFS_I(inode)->lock); 1369 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1370 start_index << PAGE_SHIFT, 1371 (page_cnt - i_done) << PAGE_SHIFT, true); 1372 } 1373 1374 1375 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1376 &cached_state); 1377 1378 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1379 page_start, page_end - 1, &cached_state); 1380 1381 for (i = 0; i < i_done; i++) { 1382 clear_page_dirty_for_io(pages[i]); 1383 ClearPageChecked(pages[i]); 1384 set_page_extent_mapped(pages[i]); 1385 set_page_dirty(pages[i]); 1386 unlock_page(pages[i]); 1387 put_page(pages[i]); 1388 } 1389 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1390 extent_changeset_free(data_reserved); 1391 return i_done; 1392 out: 1393 for (i = 0; i < i_done; i++) { 1394 unlock_page(pages[i]); 1395 put_page(pages[i]); 1396 } 1397 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1398 start_index << PAGE_SHIFT, 1399 page_cnt << PAGE_SHIFT, true); 1400 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1401 extent_changeset_free(data_reserved); 1402 return ret; 1403 1404 } 1405 1406 int btrfs_defrag_file(struct inode *inode, struct file *file, 1407 struct btrfs_ioctl_defrag_range_args *range, 1408 u64 newer_than, unsigned long max_to_defrag) 1409 { 1410 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1411 struct btrfs_root *root = BTRFS_I(inode)->root; 1412 struct file_ra_state *ra = NULL; 1413 unsigned long last_index; 1414 u64 isize = i_size_read(inode); 1415 u64 last_len = 0; 1416 u64 skip = 0; 1417 u64 defrag_end = 0; 1418 u64 newer_off = range->start; 1419 unsigned long i; 1420 unsigned long ra_index = 0; 1421 int ret; 1422 int defrag_count = 0; 1423 int compress_type = BTRFS_COMPRESS_ZLIB; 1424 u32 extent_thresh = range->extent_thresh; 1425 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1426 unsigned long cluster = max_cluster; 1427 u64 new_align = ~((u64)SZ_128K - 1); 1428 struct page **pages = NULL; 1429 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1430 1431 if (isize == 0) 1432 return 0; 1433 1434 if (range->start >= isize) 1435 return -EINVAL; 1436 1437 if (do_compress) { 1438 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1439 return -EINVAL; 1440 if (range->compress_type) 1441 compress_type = range->compress_type; 1442 } 1443 1444 if (extent_thresh == 0) 1445 extent_thresh = SZ_256K; 1446 1447 /* 1448 * If we were not given a file, allocate a readahead context. As 1449 * readahead is just an optimization, defrag will work without it so 1450 * we don't error out. 1451 */ 1452 if (!file) { 1453 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1454 if (ra) 1455 file_ra_state_init(ra, inode->i_mapping); 1456 } else { 1457 ra = &file->f_ra; 1458 } 1459 1460 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1461 if (!pages) { 1462 ret = -ENOMEM; 1463 goto out_ra; 1464 } 1465 1466 /* find the last page to defrag */ 1467 if (range->start + range->len > range->start) { 1468 last_index = min_t(u64, isize - 1, 1469 range->start + range->len - 1) >> PAGE_SHIFT; 1470 } else { 1471 last_index = (isize - 1) >> PAGE_SHIFT; 1472 } 1473 1474 if (newer_than) { 1475 ret = find_new_extents(root, inode, newer_than, 1476 &newer_off, SZ_64K); 1477 if (!ret) { 1478 range->start = newer_off; 1479 /* 1480 * we always align our defrag to help keep 1481 * the extents in the file evenly spaced 1482 */ 1483 i = (newer_off & new_align) >> PAGE_SHIFT; 1484 } else 1485 goto out_ra; 1486 } else { 1487 i = range->start >> PAGE_SHIFT; 1488 } 1489 if (!max_to_defrag) 1490 max_to_defrag = last_index - i + 1; 1491 1492 /* 1493 * make writeback starts from i, so the defrag range can be 1494 * written sequentially. 1495 */ 1496 if (i < inode->i_mapping->writeback_index) 1497 inode->i_mapping->writeback_index = i; 1498 1499 while (i <= last_index && defrag_count < max_to_defrag && 1500 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1501 /* 1502 * make sure we stop running if someone unmounts 1503 * the FS 1504 */ 1505 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1506 break; 1507 1508 if (btrfs_defrag_cancelled(fs_info)) { 1509 btrfs_debug(fs_info, "defrag_file cancelled"); 1510 ret = -EAGAIN; 1511 break; 1512 } 1513 1514 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1515 extent_thresh, &last_len, &skip, 1516 &defrag_end, do_compress)){ 1517 unsigned long next; 1518 /* 1519 * the should_defrag function tells us how much to skip 1520 * bump our counter by the suggested amount 1521 */ 1522 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1523 i = max(i + 1, next); 1524 continue; 1525 } 1526 1527 if (!newer_than) { 1528 cluster = (PAGE_ALIGN(defrag_end) >> 1529 PAGE_SHIFT) - i; 1530 cluster = min(cluster, max_cluster); 1531 } else { 1532 cluster = max_cluster; 1533 } 1534 1535 if (i + cluster > ra_index) { 1536 ra_index = max(i, ra_index); 1537 if (ra) 1538 page_cache_sync_readahead(inode->i_mapping, ra, 1539 file, ra_index, cluster); 1540 ra_index += cluster; 1541 } 1542 1543 inode_lock(inode); 1544 if (IS_SWAPFILE(inode)) { 1545 ret = -ETXTBSY; 1546 } else { 1547 if (do_compress) 1548 BTRFS_I(inode)->defrag_compress = compress_type; 1549 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1550 } 1551 if (ret < 0) { 1552 inode_unlock(inode); 1553 goto out_ra; 1554 } 1555 1556 defrag_count += ret; 1557 balance_dirty_pages_ratelimited(inode->i_mapping); 1558 inode_unlock(inode); 1559 1560 if (newer_than) { 1561 if (newer_off == (u64)-1) 1562 break; 1563 1564 if (ret > 0) 1565 i += ret; 1566 1567 newer_off = max(newer_off + 1, 1568 (u64)i << PAGE_SHIFT); 1569 1570 ret = find_new_extents(root, inode, newer_than, 1571 &newer_off, SZ_64K); 1572 if (!ret) { 1573 range->start = newer_off; 1574 i = (newer_off & new_align) >> PAGE_SHIFT; 1575 } else { 1576 break; 1577 } 1578 } else { 1579 if (ret > 0) { 1580 i += ret; 1581 last_len += ret << PAGE_SHIFT; 1582 } else { 1583 i++; 1584 last_len = 0; 1585 } 1586 } 1587 } 1588 1589 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1590 filemap_flush(inode->i_mapping); 1591 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1592 &BTRFS_I(inode)->runtime_flags)) 1593 filemap_flush(inode->i_mapping); 1594 } 1595 1596 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1597 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1598 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1599 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1600 } 1601 1602 ret = defrag_count; 1603 1604 out_ra: 1605 if (do_compress) { 1606 inode_lock(inode); 1607 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1608 inode_unlock(inode); 1609 } 1610 if (!file) 1611 kfree(ra); 1612 kfree(pages); 1613 return ret; 1614 } 1615 1616 static noinline int btrfs_ioctl_resize(struct file *file, 1617 void __user *arg) 1618 { 1619 struct inode *inode = file_inode(file); 1620 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1621 u64 new_size; 1622 u64 old_size; 1623 u64 devid = 1; 1624 struct btrfs_root *root = BTRFS_I(inode)->root; 1625 struct btrfs_ioctl_vol_args *vol_args; 1626 struct btrfs_trans_handle *trans; 1627 struct btrfs_device *device = NULL; 1628 char *sizestr; 1629 char *retptr; 1630 char *devstr = NULL; 1631 int ret = 0; 1632 int mod = 0; 1633 1634 if (!capable(CAP_SYS_ADMIN)) 1635 return -EPERM; 1636 1637 ret = mnt_want_write_file(file); 1638 if (ret) 1639 return ret; 1640 1641 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1642 mnt_drop_write_file(file); 1643 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1644 } 1645 1646 vol_args = memdup_user(arg, sizeof(*vol_args)); 1647 if (IS_ERR(vol_args)) { 1648 ret = PTR_ERR(vol_args); 1649 goto out; 1650 } 1651 1652 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1653 1654 sizestr = vol_args->name; 1655 devstr = strchr(sizestr, ':'); 1656 if (devstr) { 1657 sizestr = devstr + 1; 1658 *devstr = '\0'; 1659 devstr = vol_args->name; 1660 ret = kstrtoull(devstr, 10, &devid); 1661 if (ret) 1662 goto out_free; 1663 if (!devid) { 1664 ret = -EINVAL; 1665 goto out_free; 1666 } 1667 btrfs_info(fs_info, "resizing devid %llu", devid); 1668 } 1669 1670 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 1671 if (!device) { 1672 btrfs_info(fs_info, "resizer unable to find device %llu", 1673 devid); 1674 ret = -ENODEV; 1675 goto out_free; 1676 } 1677 1678 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1679 btrfs_info(fs_info, 1680 "resizer unable to apply on readonly device %llu", 1681 devid); 1682 ret = -EPERM; 1683 goto out_free; 1684 } 1685 1686 if (!strcmp(sizestr, "max")) 1687 new_size = device->bdev->bd_inode->i_size; 1688 else { 1689 if (sizestr[0] == '-') { 1690 mod = -1; 1691 sizestr++; 1692 } else if (sizestr[0] == '+') { 1693 mod = 1; 1694 sizestr++; 1695 } 1696 new_size = memparse(sizestr, &retptr); 1697 if (*retptr != '\0' || new_size == 0) { 1698 ret = -EINVAL; 1699 goto out_free; 1700 } 1701 } 1702 1703 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1704 ret = -EPERM; 1705 goto out_free; 1706 } 1707 1708 old_size = btrfs_device_get_total_bytes(device); 1709 1710 if (mod < 0) { 1711 if (new_size > old_size) { 1712 ret = -EINVAL; 1713 goto out_free; 1714 } 1715 new_size = old_size - new_size; 1716 } else if (mod > 0) { 1717 if (new_size > ULLONG_MAX - old_size) { 1718 ret = -ERANGE; 1719 goto out_free; 1720 } 1721 new_size = old_size + new_size; 1722 } 1723 1724 if (new_size < SZ_256M) { 1725 ret = -EINVAL; 1726 goto out_free; 1727 } 1728 if (new_size > device->bdev->bd_inode->i_size) { 1729 ret = -EFBIG; 1730 goto out_free; 1731 } 1732 1733 new_size = round_down(new_size, fs_info->sectorsize); 1734 1735 if (new_size > old_size) { 1736 trans = btrfs_start_transaction(root, 0); 1737 if (IS_ERR(trans)) { 1738 ret = PTR_ERR(trans); 1739 goto out_free; 1740 } 1741 ret = btrfs_grow_device(trans, device, new_size); 1742 btrfs_commit_transaction(trans); 1743 } else if (new_size < old_size) { 1744 ret = btrfs_shrink_device(device, new_size); 1745 } /* equal, nothing need to do */ 1746 1747 if (ret == 0 && new_size != old_size) 1748 btrfs_info_in_rcu(fs_info, 1749 "resize device %s (devid %llu) from %llu to %llu", 1750 rcu_str_deref(device->name), device->devid, 1751 old_size, new_size); 1752 out_free: 1753 kfree(vol_args); 1754 out: 1755 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1756 mnt_drop_write_file(file); 1757 return ret; 1758 } 1759 1760 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1761 const char *name, unsigned long fd, int subvol, 1762 bool readonly, 1763 struct btrfs_qgroup_inherit *inherit) 1764 { 1765 int namelen; 1766 int ret = 0; 1767 1768 if (!S_ISDIR(file_inode(file)->i_mode)) 1769 return -ENOTDIR; 1770 1771 ret = mnt_want_write_file(file); 1772 if (ret) 1773 goto out; 1774 1775 namelen = strlen(name); 1776 if (strchr(name, '/')) { 1777 ret = -EINVAL; 1778 goto out_drop_write; 1779 } 1780 1781 if (name[0] == '.' && 1782 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1783 ret = -EEXIST; 1784 goto out_drop_write; 1785 } 1786 1787 if (subvol) { 1788 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1789 NULL, readonly, inherit); 1790 } else { 1791 struct fd src = fdget(fd); 1792 struct inode *src_inode; 1793 if (!src.file) { 1794 ret = -EINVAL; 1795 goto out_drop_write; 1796 } 1797 1798 src_inode = file_inode(src.file); 1799 if (src_inode->i_sb != file_inode(file)->i_sb) { 1800 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1801 "Snapshot src from another FS"); 1802 ret = -EXDEV; 1803 } else if (!inode_owner_or_capable(src_inode)) { 1804 /* 1805 * Subvolume creation is not restricted, but snapshots 1806 * are limited to own subvolumes only 1807 */ 1808 ret = -EPERM; 1809 } else { 1810 ret = btrfs_mksnapshot(&file->f_path, name, namelen, 1811 BTRFS_I(src_inode)->root, 1812 readonly, inherit); 1813 } 1814 fdput(src); 1815 } 1816 out_drop_write: 1817 mnt_drop_write_file(file); 1818 out: 1819 return ret; 1820 } 1821 1822 static noinline int btrfs_ioctl_snap_create(struct file *file, 1823 void __user *arg, int subvol) 1824 { 1825 struct btrfs_ioctl_vol_args *vol_args; 1826 int ret; 1827 1828 if (!S_ISDIR(file_inode(file)->i_mode)) 1829 return -ENOTDIR; 1830 1831 vol_args = memdup_user(arg, sizeof(*vol_args)); 1832 if (IS_ERR(vol_args)) 1833 return PTR_ERR(vol_args); 1834 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1835 1836 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1837 subvol, false, NULL); 1838 1839 kfree(vol_args); 1840 return ret; 1841 } 1842 1843 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1844 void __user *arg, int subvol) 1845 { 1846 struct btrfs_ioctl_vol_args_v2 *vol_args; 1847 int ret; 1848 bool readonly = false; 1849 struct btrfs_qgroup_inherit *inherit = NULL; 1850 1851 if (!S_ISDIR(file_inode(file)->i_mode)) 1852 return -ENOTDIR; 1853 1854 vol_args = memdup_user(arg, sizeof(*vol_args)); 1855 if (IS_ERR(vol_args)) 1856 return PTR_ERR(vol_args); 1857 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1858 1859 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1860 ret = -EOPNOTSUPP; 1861 goto free_args; 1862 } 1863 1864 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1865 readonly = true; 1866 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1867 if (vol_args->size > PAGE_SIZE) { 1868 ret = -EINVAL; 1869 goto free_args; 1870 } 1871 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1872 if (IS_ERR(inherit)) { 1873 ret = PTR_ERR(inherit); 1874 goto free_args; 1875 } 1876 } 1877 1878 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1879 subvol, readonly, inherit); 1880 if (ret) 1881 goto free_inherit; 1882 free_inherit: 1883 kfree(inherit); 1884 free_args: 1885 kfree(vol_args); 1886 return ret; 1887 } 1888 1889 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1890 void __user *arg) 1891 { 1892 struct inode *inode = file_inode(file); 1893 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1894 struct btrfs_root *root = BTRFS_I(inode)->root; 1895 int ret = 0; 1896 u64 flags = 0; 1897 1898 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1899 return -EINVAL; 1900 1901 down_read(&fs_info->subvol_sem); 1902 if (btrfs_root_readonly(root)) 1903 flags |= BTRFS_SUBVOL_RDONLY; 1904 up_read(&fs_info->subvol_sem); 1905 1906 if (copy_to_user(arg, &flags, sizeof(flags))) 1907 ret = -EFAULT; 1908 1909 return ret; 1910 } 1911 1912 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1913 void __user *arg) 1914 { 1915 struct inode *inode = file_inode(file); 1916 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1917 struct btrfs_root *root = BTRFS_I(inode)->root; 1918 struct btrfs_trans_handle *trans; 1919 u64 root_flags; 1920 u64 flags; 1921 int ret = 0; 1922 1923 if (!inode_owner_or_capable(inode)) 1924 return -EPERM; 1925 1926 ret = mnt_want_write_file(file); 1927 if (ret) 1928 goto out; 1929 1930 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1931 ret = -EINVAL; 1932 goto out_drop_write; 1933 } 1934 1935 if (copy_from_user(&flags, arg, sizeof(flags))) { 1936 ret = -EFAULT; 1937 goto out_drop_write; 1938 } 1939 1940 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1941 ret = -EOPNOTSUPP; 1942 goto out_drop_write; 1943 } 1944 1945 down_write(&fs_info->subvol_sem); 1946 1947 /* nothing to do */ 1948 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1949 goto out_drop_sem; 1950 1951 root_flags = btrfs_root_flags(&root->root_item); 1952 if (flags & BTRFS_SUBVOL_RDONLY) { 1953 btrfs_set_root_flags(&root->root_item, 1954 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1955 } else { 1956 /* 1957 * Block RO -> RW transition if this subvolume is involved in 1958 * send 1959 */ 1960 spin_lock(&root->root_item_lock); 1961 if (root->send_in_progress == 0) { 1962 btrfs_set_root_flags(&root->root_item, 1963 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1964 spin_unlock(&root->root_item_lock); 1965 } else { 1966 spin_unlock(&root->root_item_lock); 1967 btrfs_warn(fs_info, 1968 "Attempt to set subvolume %llu read-write during send", 1969 root->root_key.objectid); 1970 ret = -EPERM; 1971 goto out_drop_sem; 1972 } 1973 } 1974 1975 trans = btrfs_start_transaction(root, 1); 1976 if (IS_ERR(trans)) { 1977 ret = PTR_ERR(trans); 1978 goto out_reset; 1979 } 1980 1981 ret = btrfs_update_root(trans, fs_info->tree_root, 1982 &root->root_key, &root->root_item); 1983 if (ret < 0) { 1984 btrfs_end_transaction(trans); 1985 goto out_reset; 1986 } 1987 1988 ret = btrfs_commit_transaction(trans); 1989 1990 out_reset: 1991 if (ret) 1992 btrfs_set_root_flags(&root->root_item, root_flags); 1993 out_drop_sem: 1994 up_write(&fs_info->subvol_sem); 1995 out_drop_write: 1996 mnt_drop_write_file(file); 1997 out: 1998 return ret; 1999 } 2000 2001 static noinline int key_in_sk(struct btrfs_key *key, 2002 struct btrfs_ioctl_search_key *sk) 2003 { 2004 struct btrfs_key test; 2005 int ret; 2006 2007 test.objectid = sk->min_objectid; 2008 test.type = sk->min_type; 2009 test.offset = sk->min_offset; 2010 2011 ret = btrfs_comp_cpu_keys(key, &test); 2012 if (ret < 0) 2013 return 0; 2014 2015 test.objectid = sk->max_objectid; 2016 test.type = sk->max_type; 2017 test.offset = sk->max_offset; 2018 2019 ret = btrfs_comp_cpu_keys(key, &test); 2020 if (ret > 0) 2021 return 0; 2022 return 1; 2023 } 2024 2025 static noinline int copy_to_sk(struct btrfs_path *path, 2026 struct btrfs_key *key, 2027 struct btrfs_ioctl_search_key *sk, 2028 size_t *buf_size, 2029 char __user *ubuf, 2030 unsigned long *sk_offset, 2031 int *num_found) 2032 { 2033 u64 found_transid; 2034 struct extent_buffer *leaf; 2035 struct btrfs_ioctl_search_header sh; 2036 struct btrfs_key test; 2037 unsigned long item_off; 2038 unsigned long item_len; 2039 int nritems; 2040 int i; 2041 int slot; 2042 int ret = 0; 2043 2044 leaf = path->nodes[0]; 2045 slot = path->slots[0]; 2046 nritems = btrfs_header_nritems(leaf); 2047 2048 if (btrfs_header_generation(leaf) > sk->max_transid) { 2049 i = nritems; 2050 goto advance_key; 2051 } 2052 found_transid = btrfs_header_generation(leaf); 2053 2054 for (i = slot; i < nritems; i++) { 2055 item_off = btrfs_item_ptr_offset(leaf, i); 2056 item_len = btrfs_item_size_nr(leaf, i); 2057 2058 btrfs_item_key_to_cpu(leaf, key, i); 2059 if (!key_in_sk(key, sk)) 2060 continue; 2061 2062 if (sizeof(sh) + item_len > *buf_size) { 2063 if (*num_found) { 2064 ret = 1; 2065 goto out; 2066 } 2067 2068 /* 2069 * return one empty item back for v1, which does not 2070 * handle -EOVERFLOW 2071 */ 2072 2073 *buf_size = sizeof(sh) + item_len; 2074 item_len = 0; 2075 ret = -EOVERFLOW; 2076 } 2077 2078 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2079 ret = 1; 2080 goto out; 2081 } 2082 2083 sh.objectid = key->objectid; 2084 sh.offset = key->offset; 2085 sh.type = key->type; 2086 sh.len = item_len; 2087 sh.transid = found_transid; 2088 2089 /* 2090 * Copy search result header. If we fault then loop again so we 2091 * can fault in the pages and -EFAULT there if there's a 2092 * problem. Otherwise we'll fault and then copy the buffer in 2093 * properly this next time through 2094 */ 2095 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2096 ret = 0; 2097 goto out; 2098 } 2099 2100 *sk_offset += sizeof(sh); 2101 2102 if (item_len) { 2103 char __user *up = ubuf + *sk_offset; 2104 /* 2105 * Copy the item, same behavior as above, but reset the 2106 * * sk_offset so we copy the full thing again. 2107 */ 2108 if (read_extent_buffer_to_user_nofault(leaf, up, 2109 item_off, item_len)) { 2110 ret = 0; 2111 *sk_offset -= sizeof(sh); 2112 goto out; 2113 } 2114 2115 *sk_offset += item_len; 2116 } 2117 (*num_found)++; 2118 2119 if (ret) /* -EOVERFLOW from above */ 2120 goto out; 2121 2122 if (*num_found >= sk->nr_items) { 2123 ret = 1; 2124 goto out; 2125 } 2126 } 2127 advance_key: 2128 ret = 0; 2129 test.objectid = sk->max_objectid; 2130 test.type = sk->max_type; 2131 test.offset = sk->max_offset; 2132 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2133 ret = 1; 2134 else if (key->offset < (u64)-1) 2135 key->offset++; 2136 else if (key->type < (u8)-1) { 2137 key->offset = 0; 2138 key->type++; 2139 } else if (key->objectid < (u64)-1) { 2140 key->offset = 0; 2141 key->type = 0; 2142 key->objectid++; 2143 } else 2144 ret = 1; 2145 out: 2146 /* 2147 * 0: all items from this leaf copied, continue with next 2148 * 1: * more items can be copied, but unused buffer is too small 2149 * * all items were found 2150 * Either way, it will stops the loop which iterates to the next 2151 * leaf 2152 * -EOVERFLOW: item was to large for buffer 2153 * -EFAULT: could not copy extent buffer back to userspace 2154 */ 2155 return ret; 2156 } 2157 2158 static noinline int search_ioctl(struct inode *inode, 2159 struct btrfs_ioctl_search_key *sk, 2160 size_t *buf_size, 2161 char __user *ubuf) 2162 { 2163 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2164 struct btrfs_root *root; 2165 struct btrfs_key key; 2166 struct btrfs_path *path; 2167 int ret; 2168 int num_found = 0; 2169 unsigned long sk_offset = 0; 2170 2171 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2172 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2173 return -EOVERFLOW; 2174 } 2175 2176 path = btrfs_alloc_path(); 2177 if (!path) 2178 return -ENOMEM; 2179 2180 if (sk->tree_id == 0) { 2181 /* search the root of the inode that was passed */ 2182 root = btrfs_grab_root(BTRFS_I(inode)->root); 2183 } else { 2184 root = btrfs_get_fs_root(info, sk->tree_id, true); 2185 if (IS_ERR(root)) { 2186 btrfs_free_path(path); 2187 return PTR_ERR(root); 2188 } 2189 } 2190 2191 key.objectid = sk->min_objectid; 2192 key.type = sk->min_type; 2193 key.offset = sk->min_offset; 2194 2195 while (1) { 2196 ret = fault_in_pages_writeable(ubuf + sk_offset, 2197 *buf_size - sk_offset); 2198 if (ret) 2199 break; 2200 2201 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2202 if (ret != 0) { 2203 if (ret > 0) 2204 ret = 0; 2205 goto err; 2206 } 2207 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2208 &sk_offset, &num_found); 2209 btrfs_release_path(path); 2210 if (ret) 2211 break; 2212 2213 } 2214 if (ret > 0) 2215 ret = 0; 2216 err: 2217 sk->nr_items = num_found; 2218 btrfs_put_root(root); 2219 btrfs_free_path(path); 2220 return ret; 2221 } 2222 2223 static noinline int btrfs_ioctl_tree_search(struct file *file, 2224 void __user *argp) 2225 { 2226 struct btrfs_ioctl_search_args __user *uargs; 2227 struct btrfs_ioctl_search_key sk; 2228 struct inode *inode; 2229 int ret; 2230 size_t buf_size; 2231 2232 if (!capable(CAP_SYS_ADMIN)) 2233 return -EPERM; 2234 2235 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2236 2237 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2238 return -EFAULT; 2239 2240 buf_size = sizeof(uargs->buf); 2241 2242 inode = file_inode(file); 2243 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2244 2245 /* 2246 * In the origin implementation an overflow is handled by returning a 2247 * search header with a len of zero, so reset ret. 2248 */ 2249 if (ret == -EOVERFLOW) 2250 ret = 0; 2251 2252 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2253 ret = -EFAULT; 2254 return ret; 2255 } 2256 2257 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2258 void __user *argp) 2259 { 2260 struct btrfs_ioctl_search_args_v2 __user *uarg; 2261 struct btrfs_ioctl_search_args_v2 args; 2262 struct inode *inode; 2263 int ret; 2264 size_t buf_size; 2265 const size_t buf_limit = SZ_16M; 2266 2267 if (!capable(CAP_SYS_ADMIN)) 2268 return -EPERM; 2269 2270 /* copy search header and buffer size */ 2271 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2272 if (copy_from_user(&args, uarg, sizeof(args))) 2273 return -EFAULT; 2274 2275 buf_size = args.buf_size; 2276 2277 /* limit result size to 16MB */ 2278 if (buf_size > buf_limit) 2279 buf_size = buf_limit; 2280 2281 inode = file_inode(file); 2282 ret = search_ioctl(inode, &args.key, &buf_size, 2283 (char __user *)(&uarg->buf[0])); 2284 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2285 ret = -EFAULT; 2286 else if (ret == -EOVERFLOW && 2287 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2288 ret = -EFAULT; 2289 2290 return ret; 2291 } 2292 2293 /* 2294 * Search INODE_REFs to identify path name of 'dirid' directory 2295 * in a 'tree_id' tree. and sets path name to 'name'. 2296 */ 2297 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2298 u64 tree_id, u64 dirid, char *name) 2299 { 2300 struct btrfs_root *root; 2301 struct btrfs_key key; 2302 char *ptr; 2303 int ret = -1; 2304 int slot; 2305 int len; 2306 int total_len = 0; 2307 struct btrfs_inode_ref *iref; 2308 struct extent_buffer *l; 2309 struct btrfs_path *path; 2310 2311 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2312 name[0]='\0'; 2313 return 0; 2314 } 2315 2316 path = btrfs_alloc_path(); 2317 if (!path) 2318 return -ENOMEM; 2319 2320 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2321 2322 root = btrfs_get_fs_root(info, tree_id, true); 2323 if (IS_ERR(root)) { 2324 ret = PTR_ERR(root); 2325 root = NULL; 2326 goto out; 2327 } 2328 2329 key.objectid = dirid; 2330 key.type = BTRFS_INODE_REF_KEY; 2331 key.offset = (u64)-1; 2332 2333 while (1) { 2334 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2335 if (ret < 0) 2336 goto out; 2337 else if (ret > 0) { 2338 ret = btrfs_previous_item(root, path, dirid, 2339 BTRFS_INODE_REF_KEY); 2340 if (ret < 0) 2341 goto out; 2342 else if (ret > 0) { 2343 ret = -ENOENT; 2344 goto out; 2345 } 2346 } 2347 2348 l = path->nodes[0]; 2349 slot = path->slots[0]; 2350 btrfs_item_key_to_cpu(l, &key, slot); 2351 2352 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2353 len = btrfs_inode_ref_name_len(l, iref); 2354 ptr -= len + 1; 2355 total_len += len + 1; 2356 if (ptr < name) { 2357 ret = -ENAMETOOLONG; 2358 goto out; 2359 } 2360 2361 *(ptr + len) = '/'; 2362 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2363 2364 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2365 break; 2366 2367 btrfs_release_path(path); 2368 key.objectid = key.offset; 2369 key.offset = (u64)-1; 2370 dirid = key.objectid; 2371 } 2372 memmove(name, ptr, total_len); 2373 name[total_len] = '\0'; 2374 ret = 0; 2375 out: 2376 btrfs_put_root(root); 2377 btrfs_free_path(path); 2378 return ret; 2379 } 2380 2381 static int btrfs_search_path_in_tree_user(struct inode *inode, 2382 struct btrfs_ioctl_ino_lookup_user_args *args) 2383 { 2384 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2385 struct super_block *sb = inode->i_sb; 2386 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2387 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2388 u64 dirid = args->dirid; 2389 unsigned long item_off; 2390 unsigned long item_len; 2391 struct btrfs_inode_ref *iref; 2392 struct btrfs_root_ref *rref; 2393 struct btrfs_root *root = NULL; 2394 struct btrfs_path *path; 2395 struct btrfs_key key, key2; 2396 struct extent_buffer *leaf; 2397 struct inode *temp_inode; 2398 char *ptr; 2399 int slot; 2400 int len; 2401 int total_len = 0; 2402 int ret; 2403 2404 path = btrfs_alloc_path(); 2405 if (!path) 2406 return -ENOMEM; 2407 2408 /* 2409 * If the bottom subvolume does not exist directly under upper_limit, 2410 * construct the path in from the bottom up. 2411 */ 2412 if (dirid != upper_limit.objectid) { 2413 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2414 2415 root = btrfs_get_fs_root(fs_info, treeid, true); 2416 if (IS_ERR(root)) { 2417 ret = PTR_ERR(root); 2418 goto out; 2419 } 2420 2421 key.objectid = dirid; 2422 key.type = BTRFS_INODE_REF_KEY; 2423 key.offset = (u64)-1; 2424 while (1) { 2425 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2426 if (ret < 0) { 2427 goto out_put; 2428 } else if (ret > 0) { 2429 ret = btrfs_previous_item(root, path, dirid, 2430 BTRFS_INODE_REF_KEY); 2431 if (ret < 0) { 2432 goto out_put; 2433 } else if (ret > 0) { 2434 ret = -ENOENT; 2435 goto out_put; 2436 } 2437 } 2438 2439 leaf = path->nodes[0]; 2440 slot = path->slots[0]; 2441 btrfs_item_key_to_cpu(leaf, &key, slot); 2442 2443 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2444 len = btrfs_inode_ref_name_len(leaf, iref); 2445 ptr -= len + 1; 2446 total_len += len + 1; 2447 if (ptr < args->path) { 2448 ret = -ENAMETOOLONG; 2449 goto out_put; 2450 } 2451 2452 *(ptr + len) = '/'; 2453 read_extent_buffer(leaf, ptr, 2454 (unsigned long)(iref + 1), len); 2455 2456 /* Check the read+exec permission of this directory */ 2457 ret = btrfs_previous_item(root, path, dirid, 2458 BTRFS_INODE_ITEM_KEY); 2459 if (ret < 0) { 2460 goto out_put; 2461 } else if (ret > 0) { 2462 ret = -ENOENT; 2463 goto out_put; 2464 } 2465 2466 leaf = path->nodes[0]; 2467 slot = path->slots[0]; 2468 btrfs_item_key_to_cpu(leaf, &key2, slot); 2469 if (key2.objectid != dirid) { 2470 ret = -ENOENT; 2471 goto out_put; 2472 } 2473 2474 temp_inode = btrfs_iget(sb, key2.objectid, root); 2475 if (IS_ERR(temp_inode)) { 2476 ret = PTR_ERR(temp_inode); 2477 goto out_put; 2478 } 2479 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2480 iput(temp_inode); 2481 if (ret) { 2482 ret = -EACCES; 2483 goto out_put; 2484 } 2485 2486 if (key.offset == upper_limit.objectid) 2487 break; 2488 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2489 ret = -EACCES; 2490 goto out_put; 2491 } 2492 2493 btrfs_release_path(path); 2494 key.objectid = key.offset; 2495 key.offset = (u64)-1; 2496 dirid = key.objectid; 2497 } 2498 2499 memmove(args->path, ptr, total_len); 2500 args->path[total_len] = '\0'; 2501 btrfs_put_root(root); 2502 root = NULL; 2503 btrfs_release_path(path); 2504 } 2505 2506 /* Get the bottom subvolume's name from ROOT_REF */ 2507 key.objectid = treeid; 2508 key.type = BTRFS_ROOT_REF_KEY; 2509 key.offset = args->treeid; 2510 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2511 if (ret < 0) { 2512 goto out; 2513 } else if (ret > 0) { 2514 ret = -ENOENT; 2515 goto out; 2516 } 2517 2518 leaf = path->nodes[0]; 2519 slot = path->slots[0]; 2520 btrfs_item_key_to_cpu(leaf, &key, slot); 2521 2522 item_off = btrfs_item_ptr_offset(leaf, slot); 2523 item_len = btrfs_item_size_nr(leaf, slot); 2524 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2525 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2526 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2527 ret = -EINVAL; 2528 goto out; 2529 } 2530 2531 /* Copy subvolume's name */ 2532 item_off += sizeof(struct btrfs_root_ref); 2533 item_len -= sizeof(struct btrfs_root_ref); 2534 read_extent_buffer(leaf, args->name, item_off, item_len); 2535 args->name[item_len] = 0; 2536 2537 out_put: 2538 btrfs_put_root(root); 2539 out: 2540 btrfs_free_path(path); 2541 return ret; 2542 } 2543 2544 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2545 void __user *argp) 2546 { 2547 struct btrfs_ioctl_ino_lookup_args *args; 2548 struct inode *inode; 2549 int ret = 0; 2550 2551 args = memdup_user(argp, sizeof(*args)); 2552 if (IS_ERR(args)) 2553 return PTR_ERR(args); 2554 2555 inode = file_inode(file); 2556 2557 /* 2558 * Unprivileged query to obtain the containing subvolume root id. The 2559 * path is reset so it's consistent with btrfs_search_path_in_tree. 2560 */ 2561 if (args->treeid == 0) 2562 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2563 2564 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2565 args->name[0] = 0; 2566 goto out; 2567 } 2568 2569 if (!capable(CAP_SYS_ADMIN)) { 2570 ret = -EPERM; 2571 goto out; 2572 } 2573 2574 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2575 args->treeid, args->objectid, 2576 args->name); 2577 2578 out: 2579 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2580 ret = -EFAULT; 2581 2582 kfree(args); 2583 return ret; 2584 } 2585 2586 /* 2587 * Version of ino_lookup ioctl (unprivileged) 2588 * 2589 * The main differences from ino_lookup ioctl are: 2590 * 2591 * 1. Read + Exec permission will be checked using inode_permission() during 2592 * path construction. -EACCES will be returned in case of failure. 2593 * 2. Path construction will be stopped at the inode number which corresponds 2594 * to the fd with which this ioctl is called. If constructed path does not 2595 * exist under fd's inode, -EACCES will be returned. 2596 * 3. The name of bottom subvolume is also searched and filled. 2597 */ 2598 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2599 { 2600 struct btrfs_ioctl_ino_lookup_user_args *args; 2601 struct inode *inode; 2602 int ret; 2603 2604 args = memdup_user(argp, sizeof(*args)); 2605 if (IS_ERR(args)) 2606 return PTR_ERR(args); 2607 2608 inode = file_inode(file); 2609 2610 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2611 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2612 /* 2613 * The subvolume does not exist under fd with which this is 2614 * called 2615 */ 2616 kfree(args); 2617 return -EACCES; 2618 } 2619 2620 ret = btrfs_search_path_in_tree_user(inode, args); 2621 2622 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2623 ret = -EFAULT; 2624 2625 kfree(args); 2626 return ret; 2627 } 2628 2629 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2630 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2631 { 2632 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2633 struct btrfs_fs_info *fs_info; 2634 struct btrfs_root *root; 2635 struct btrfs_path *path; 2636 struct btrfs_key key; 2637 struct btrfs_root_item *root_item; 2638 struct btrfs_root_ref *rref; 2639 struct extent_buffer *leaf; 2640 unsigned long item_off; 2641 unsigned long item_len; 2642 struct inode *inode; 2643 int slot; 2644 int ret = 0; 2645 2646 path = btrfs_alloc_path(); 2647 if (!path) 2648 return -ENOMEM; 2649 2650 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2651 if (!subvol_info) { 2652 btrfs_free_path(path); 2653 return -ENOMEM; 2654 } 2655 2656 inode = file_inode(file); 2657 fs_info = BTRFS_I(inode)->root->fs_info; 2658 2659 /* Get root_item of inode's subvolume */ 2660 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2661 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2662 if (IS_ERR(root)) { 2663 ret = PTR_ERR(root); 2664 goto out_free; 2665 } 2666 root_item = &root->root_item; 2667 2668 subvol_info->treeid = key.objectid; 2669 2670 subvol_info->generation = btrfs_root_generation(root_item); 2671 subvol_info->flags = btrfs_root_flags(root_item); 2672 2673 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2674 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2675 BTRFS_UUID_SIZE); 2676 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2677 BTRFS_UUID_SIZE); 2678 2679 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2680 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2681 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2682 2683 subvol_info->otransid = btrfs_root_otransid(root_item); 2684 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2685 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2686 2687 subvol_info->stransid = btrfs_root_stransid(root_item); 2688 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2689 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2690 2691 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2692 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2693 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2694 2695 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2696 /* Search root tree for ROOT_BACKREF of this subvolume */ 2697 key.type = BTRFS_ROOT_BACKREF_KEY; 2698 key.offset = 0; 2699 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2700 if (ret < 0) { 2701 goto out; 2702 } else if (path->slots[0] >= 2703 btrfs_header_nritems(path->nodes[0])) { 2704 ret = btrfs_next_leaf(fs_info->tree_root, path); 2705 if (ret < 0) { 2706 goto out; 2707 } else if (ret > 0) { 2708 ret = -EUCLEAN; 2709 goto out; 2710 } 2711 } 2712 2713 leaf = path->nodes[0]; 2714 slot = path->slots[0]; 2715 btrfs_item_key_to_cpu(leaf, &key, slot); 2716 if (key.objectid == subvol_info->treeid && 2717 key.type == BTRFS_ROOT_BACKREF_KEY) { 2718 subvol_info->parent_id = key.offset; 2719 2720 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2721 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2722 2723 item_off = btrfs_item_ptr_offset(leaf, slot) 2724 + sizeof(struct btrfs_root_ref); 2725 item_len = btrfs_item_size_nr(leaf, slot) 2726 - sizeof(struct btrfs_root_ref); 2727 read_extent_buffer(leaf, subvol_info->name, 2728 item_off, item_len); 2729 } else { 2730 ret = -ENOENT; 2731 goto out; 2732 } 2733 } 2734 2735 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2736 ret = -EFAULT; 2737 2738 out: 2739 btrfs_put_root(root); 2740 out_free: 2741 btrfs_free_path(path); 2742 kfree(subvol_info); 2743 return ret; 2744 } 2745 2746 /* 2747 * Return ROOT_REF information of the subvolume containing this inode 2748 * except the subvolume name. 2749 */ 2750 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2751 { 2752 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2753 struct btrfs_root_ref *rref; 2754 struct btrfs_root *root; 2755 struct btrfs_path *path; 2756 struct btrfs_key key; 2757 struct extent_buffer *leaf; 2758 struct inode *inode; 2759 u64 objectid; 2760 int slot; 2761 int ret; 2762 u8 found; 2763 2764 path = btrfs_alloc_path(); 2765 if (!path) 2766 return -ENOMEM; 2767 2768 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2769 if (IS_ERR(rootrefs)) { 2770 btrfs_free_path(path); 2771 return PTR_ERR(rootrefs); 2772 } 2773 2774 inode = file_inode(file); 2775 root = BTRFS_I(inode)->root->fs_info->tree_root; 2776 objectid = BTRFS_I(inode)->root->root_key.objectid; 2777 2778 key.objectid = objectid; 2779 key.type = BTRFS_ROOT_REF_KEY; 2780 key.offset = rootrefs->min_treeid; 2781 found = 0; 2782 2783 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2784 if (ret < 0) { 2785 goto out; 2786 } else if (path->slots[0] >= 2787 btrfs_header_nritems(path->nodes[0])) { 2788 ret = btrfs_next_leaf(root, path); 2789 if (ret < 0) { 2790 goto out; 2791 } else if (ret > 0) { 2792 ret = -EUCLEAN; 2793 goto out; 2794 } 2795 } 2796 while (1) { 2797 leaf = path->nodes[0]; 2798 slot = path->slots[0]; 2799 2800 btrfs_item_key_to_cpu(leaf, &key, slot); 2801 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2802 ret = 0; 2803 goto out; 2804 } 2805 2806 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2807 ret = -EOVERFLOW; 2808 goto out; 2809 } 2810 2811 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2812 rootrefs->rootref[found].treeid = key.offset; 2813 rootrefs->rootref[found].dirid = 2814 btrfs_root_ref_dirid(leaf, rref); 2815 found++; 2816 2817 ret = btrfs_next_item(root, path); 2818 if (ret < 0) { 2819 goto out; 2820 } else if (ret > 0) { 2821 ret = -EUCLEAN; 2822 goto out; 2823 } 2824 } 2825 2826 out: 2827 if (!ret || ret == -EOVERFLOW) { 2828 rootrefs->num_items = found; 2829 /* update min_treeid for next search */ 2830 if (found) 2831 rootrefs->min_treeid = 2832 rootrefs->rootref[found - 1].treeid + 1; 2833 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2834 ret = -EFAULT; 2835 } 2836 2837 kfree(rootrefs); 2838 btrfs_free_path(path); 2839 2840 return ret; 2841 } 2842 2843 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2844 void __user *arg, 2845 bool destroy_v2) 2846 { 2847 struct dentry *parent = file->f_path.dentry; 2848 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2849 struct dentry *dentry; 2850 struct inode *dir = d_inode(parent); 2851 struct inode *inode; 2852 struct btrfs_root *root = BTRFS_I(dir)->root; 2853 struct btrfs_root *dest = NULL; 2854 struct btrfs_ioctl_vol_args *vol_args = NULL; 2855 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2856 char *subvol_name, *subvol_name_ptr = NULL; 2857 int subvol_namelen; 2858 int err = 0; 2859 bool destroy_parent = false; 2860 2861 if (destroy_v2) { 2862 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2863 if (IS_ERR(vol_args2)) 2864 return PTR_ERR(vol_args2); 2865 2866 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2867 err = -EOPNOTSUPP; 2868 goto out; 2869 } 2870 2871 /* 2872 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2873 * name, same as v1 currently does. 2874 */ 2875 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2876 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2877 subvol_name = vol_args2->name; 2878 2879 err = mnt_want_write_file(file); 2880 if (err) 2881 goto out; 2882 } else { 2883 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2884 err = -EINVAL; 2885 goto out; 2886 } 2887 2888 err = mnt_want_write_file(file); 2889 if (err) 2890 goto out; 2891 2892 dentry = btrfs_get_dentry(fs_info->sb, 2893 BTRFS_FIRST_FREE_OBJECTID, 2894 vol_args2->subvolid, 0, 0); 2895 if (IS_ERR(dentry)) { 2896 err = PTR_ERR(dentry); 2897 goto out_drop_write; 2898 } 2899 2900 /* 2901 * Change the default parent since the subvolume being 2902 * deleted can be outside of the current mount point. 2903 */ 2904 parent = btrfs_get_parent(dentry); 2905 2906 /* 2907 * At this point dentry->d_name can point to '/' if the 2908 * subvolume we want to destroy is outsite of the 2909 * current mount point, so we need to release the 2910 * current dentry and execute the lookup to return a new 2911 * one with ->d_name pointing to the 2912 * <mount point>/subvol_name. 2913 */ 2914 dput(dentry); 2915 if (IS_ERR(parent)) { 2916 err = PTR_ERR(parent); 2917 goto out_drop_write; 2918 } 2919 dir = d_inode(parent); 2920 2921 /* 2922 * If v2 was used with SPEC_BY_ID, a new parent was 2923 * allocated since the subvolume can be outside of the 2924 * current mount point. Later on we need to release this 2925 * new parent dentry. 2926 */ 2927 destroy_parent = true; 2928 2929 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2930 fs_info, vol_args2->subvolid); 2931 if (IS_ERR(subvol_name_ptr)) { 2932 err = PTR_ERR(subvol_name_ptr); 2933 goto free_parent; 2934 } 2935 /* subvol_name_ptr is already NULL termined */ 2936 subvol_name = (char *)kbasename(subvol_name_ptr); 2937 } 2938 } else { 2939 vol_args = memdup_user(arg, sizeof(*vol_args)); 2940 if (IS_ERR(vol_args)) 2941 return PTR_ERR(vol_args); 2942 2943 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2944 subvol_name = vol_args->name; 2945 2946 err = mnt_want_write_file(file); 2947 if (err) 2948 goto out; 2949 } 2950 2951 subvol_namelen = strlen(subvol_name); 2952 2953 if (strchr(subvol_name, '/') || 2954 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2955 err = -EINVAL; 2956 goto free_subvol_name; 2957 } 2958 2959 if (!S_ISDIR(dir->i_mode)) { 2960 err = -ENOTDIR; 2961 goto free_subvol_name; 2962 } 2963 2964 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2965 if (err == -EINTR) 2966 goto free_subvol_name; 2967 dentry = lookup_one_len(subvol_name, parent, subvol_namelen); 2968 if (IS_ERR(dentry)) { 2969 err = PTR_ERR(dentry); 2970 goto out_unlock_dir; 2971 } 2972 2973 if (d_really_is_negative(dentry)) { 2974 err = -ENOENT; 2975 goto out_dput; 2976 } 2977 2978 inode = d_inode(dentry); 2979 dest = BTRFS_I(inode)->root; 2980 if (!capable(CAP_SYS_ADMIN)) { 2981 /* 2982 * Regular user. Only allow this with a special mount 2983 * option, when the user has write+exec access to the 2984 * subvol root, and when rmdir(2) would have been 2985 * allowed. 2986 * 2987 * Note that this is _not_ check that the subvol is 2988 * empty or doesn't contain data that we wouldn't 2989 * otherwise be able to delete. 2990 * 2991 * Users who want to delete empty subvols should try 2992 * rmdir(2). 2993 */ 2994 err = -EPERM; 2995 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2996 goto out_dput; 2997 2998 /* 2999 * Do not allow deletion if the parent dir is the same 3000 * as the dir to be deleted. That means the ioctl 3001 * must be called on the dentry referencing the root 3002 * of the subvol, not a random directory contained 3003 * within it. 3004 */ 3005 err = -EINVAL; 3006 if (root == dest) 3007 goto out_dput; 3008 3009 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 3010 if (err) 3011 goto out_dput; 3012 } 3013 3014 /* check if subvolume may be deleted by a user */ 3015 err = btrfs_may_delete(dir, dentry, 1); 3016 if (err) 3017 goto out_dput; 3018 3019 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3020 err = -EINVAL; 3021 goto out_dput; 3022 } 3023 3024 inode_lock(inode); 3025 err = btrfs_delete_subvolume(dir, dentry); 3026 inode_unlock(inode); 3027 if (!err) { 3028 fsnotify_rmdir(dir, dentry); 3029 d_delete(dentry); 3030 } 3031 3032 out_dput: 3033 dput(dentry); 3034 out_unlock_dir: 3035 inode_unlock(dir); 3036 free_subvol_name: 3037 kfree(subvol_name_ptr); 3038 free_parent: 3039 if (destroy_parent) 3040 dput(parent); 3041 out_drop_write: 3042 mnt_drop_write_file(file); 3043 out: 3044 kfree(vol_args2); 3045 kfree(vol_args); 3046 return err; 3047 } 3048 3049 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3050 { 3051 struct inode *inode = file_inode(file); 3052 struct btrfs_root *root = BTRFS_I(inode)->root; 3053 struct btrfs_ioctl_defrag_range_args *range; 3054 int ret; 3055 3056 ret = mnt_want_write_file(file); 3057 if (ret) 3058 return ret; 3059 3060 if (btrfs_root_readonly(root)) { 3061 ret = -EROFS; 3062 goto out; 3063 } 3064 3065 switch (inode->i_mode & S_IFMT) { 3066 case S_IFDIR: 3067 if (!capable(CAP_SYS_ADMIN)) { 3068 ret = -EPERM; 3069 goto out; 3070 } 3071 ret = btrfs_defrag_root(root); 3072 break; 3073 case S_IFREG: 3074 /* 3075 * Note that this does not check the file descriptor for write 3076 * access. This prevents defragmenting executables that are 3077 * running and allows defrag on files open in read-only mode. 3078 */ 3079 if (!capable(CAP_SYS_ADMIN) && 3080 inode_permission(inode, MAY_WRITE)) { 3081 ret = -EPERM; 3082 goto out; 3083 } 3084 3085 range = kzalloc(sizeof(*range), GFP_KERNEL); 3086 if (!range) { 3087 ret = -ENOMEM; 3088 goto out; 3089 } 3090 3091 if (argp) { 3092 if (copy_from_user(range, argp, 3093 sizeof(*range))) { 3094 ret = -EFAULT; 3095 kfree(range); 3096 goto out; 3097 } 3098 /* compression requires us to start the IO */ 3099 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3100 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 3101 range->extent_thresh = (u32)-1; 3102 } 3103 } else { 3104 /* the rest are all set to zero by kzalloc */ 3105 range->len = (u64)-1; 3106 } 3107 ret = btrfs_defrag_file(file_inode(file), file, 3108 range, BTRFS_OLDEST_GENERATION, 0); 3109 if (ret > 0) 3110 ret = 0; 3111 kfree(range); 3112 break; 3113 default: 3114 ret = -EINVAL; 3115 } 3116 out: 3117 mnt_drop_write_file(file); 3118 return ret; 3119 } 3120 3121 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3122 { 3123 struct btrfs_ioctl_vol_args *vol_args; 3124 int ret; 3125 3126 if (!capable(CAP_SYS_ADMIN)) 3127 return -EPERM; 3128 3129 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 3130 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3131 3132 vol_args = memdup_user(arg, sizeof(*vol_args)); 3133 if (IS_ERR(vol_args)) { 3134 ret = PTR_ERR(vol_args); 3135 goto out; 3136 } 3137 3138 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3139 ret = btrfs_init_new_device(fs_info, vol_args->name); 3140 3141 if (!ret) 3142 btrfs_info(fs_info, "disk added %s", vol_args->name); 3143 3144 kfree(vol_args); 3145 out: 3146 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3147 return ret; 3148 } 3149 3150 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3151 { 3152 struct inode *inode = file_inode(file); 3153 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3154 struct btrfs_ioctl_vol_args_v2 *vol_args; 3155 int ret; 3156 3157 if (!capable(CAP_SYS_ADMIN)) 3158 return -EPERM; 3159 3160 ret = mnt_want_write_file(file); 3161 if (ret) 3162 return ret; 3163 3164 vol_args = memdup_user(arg, sizeof(*vol_args)); 3165 if (IS_ERR(vol_args)) { 3166 ret = PTR_ERR(vol_args); 3167 goto err_drop; 3168 } 3169 3170 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3171 ret = -EOPNOTSUPP; 3172 goto out; 3173 } 3174 3175 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3176 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3177 goto out; 3178 } 3179 3180 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3181 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3182 } else { 3183 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3184 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3185 } 3186 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3187 3188 if (!ret) { 3189 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3190 btrfs_info(fs_info, "device deleted: id %llu", 3191 vol_args->devid); 3192 else 3193 btrfs_info(fs_info, "device deleted: %s", 3194 vol_args->name); 3195 } 3196 out: 3197 kfree(vol_args); 3198 err_drop: 3199 mnt_drop_write_file(file); 3200 return ret; 3201 } 3202 3203 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3204 { 3205 struct inode *inode = file_inode(file); 3206 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3207 struct btrfs_ioctl_vol_args *vol_args; 3208 int ret; 3209 3210 if (!capable(CAP_SYS_ADMIN)) 3211 return -EPERM; 3212 3213 ret = mnt_want_write_file(file); 3214 if (ret) 3215 return ret; 3216 3217 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3218 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3219 goto out_drop_write; 3220 } 3221 3222 vol_args = memdup_user(arg, sizeof(*vol_args)); 3223 if (IS_ERR(vol_args)) { 3224 ret = PTR_ERR(vol_args); 3225 goto out; 3226 } 3227 3228 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3229 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3230 3231 if (!ret) 3232 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3233 kfree(vol_args); 3234 out: 3235 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3236 out_drop_write: 3237 mnt_drop_write_file(file); 3238 3239 return ret; 3240 } 3241 3242 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3243 void __user *arg) 3244 { 3245 struct btrfs_ioctl_fs_info_args *fi_args; 3246 struct btrfs_device *device; 3247 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3248 u64 flags_in; 3249 int ret = 0; 3250 3251 fi_args = memdup_user(arg, sizeof(*fi_args)); 3252 if (IS_ERR(fi_args)) 3253 return PTR_ERR(fi_args); 3254 3255 flags_in = fi_args->flags; 3256 memset(fi_args, 0, sizeof(*fi_args)); 3257 3258 rcu_read_lock(); 3259 fi_args->num_devices = fs_devices->num_devices; 3260 3261 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3262 if (device->devid > fi_args->max_id) 3263 fi_args->max_id = device->devid; 3264 } 3265 rcu_read_unlock(); 3266 3267 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3268 fi_args->nodesize = fs_info->nodesize; 3269 fi_args->sectorsize = fs_info->sectorsize; 3270 fi_args->clone_alignment = fs_info->sectorsize; 3271 3272 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3273 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3274 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3275 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3276 } 3277 3278 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3279 fi_args->generation = fs_info->generation; 3280 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3281 } 3282 3283 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3284 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3285 sizeof(fi_args->metadata_uuid)); 3286 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3287 } 3288 3289 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3290 ret = -EFAULT; 3291 3292 kfree(fi_args); 3293 return ret; 3294 } 3295 3296 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3297 void __user *arg) 3298 { 3299 struct btrfs_ioctl_dev_info_args *di_args; 3300 struct btrfs_device *dev; 3301 int ret = 0; 3302 char *s_uuid = NULL; 3303 3304 di_args = memdup_user(arg, sizeof(*di_args)); 3305 if (IS_ERR(di_args)) 3306 return PTR_ERR(di_args); 3307 3308 if (!btrfs_is_empty_uuid(di_args->uuid)) 3309 s_uuid = di_args->uuid; 3310 3311 rcu_read_lock(); 3312 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3313 NULL, true); 3314 3315 if (!dev) { 3316 ret = -ENODEV; 3317 goto out; 3318 } 3319 3320 di_args->devid = dev->devid; 3321 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3322 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3323 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3324 if (dev->name) { 3325 strncpy(di_args->path, rcu_str_deref(dev->name), 3326 sizeof(di_args->path) - 1); 3327 di_args->path[sizeof(di_args->path) - 1] = 0; 3328 } else { 3329 di_args->path[0] = '\0'; 3330 } 3331 3332 out: 3333 rcu_read_unlock(); 3334 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3335 ret = -EFAULT; 3336 3337 kfree(di_args); 3338 return ret; 3339 } 3340 3341 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3342 { 3343 struct inode *inode = file_inode(file); 3344 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3345 struct btrfs_root *root = BTRFS_I(inode)->root; 3346 struct btrfs_root *new_root; 3347 struct btrfs_dir_item *di; 3348 struct btrfs_trans_handle *trans; 3349 struct btrfs_path *path = NULL; 3350 struct btrfs_disk_key disk_key; 3351 u64 objectid = 0; 3352 u64 dir_id; 3353 int ret; 3354 3355 if (!capable(CAP_SYS_ADMIN)) 3356 return -EPERM; 3357 3358 ret = mnt_want_write_file(file); 3359 if (ret) 3360 return ret; 3361 3362 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3363 ret = -EFAULT; 3364 goto out; 3365 } 3366 3367 if (!objectid) 3368 objectid = BTRFS_FS_TREE_OBJECTID; 3369 3370 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3371 if (IS_ERR(new_root)) { 3372 ret = PTR_ERR(new_root); 3373 goto out; 3374 } 3375 if (!is_fstree(new_root->root_key.objectid)) { 3376 ret = -ENOENT; 3377 goto out_free; 3378 } 3379 3380 path = btrfs_alloc_path(); 3381 if (!path) { 3382 ret = -ENOMEM; 3383 goto out_free; 3384 } 3385 path->leave_spinning = 1; 3386 3387 trans = btrfs_start_transaction(root, 1); 3388 if (IS_ERR(trans)) { 3389 ret = PTR_ERR(trans); 3390 goto out_free; 3391 } 3392 3393 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3394 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3395 dir_id, "default", 7, 1); 3396 if (IS_ERR_OR_NULL(di)) { 3397 btrfs_release_path(path); 3398 btrfs_end_transaction(trans); 3399 btrfs_err(fs_info, 3400 "Umm, you don't have the default diritem, this isn't going to work"); 3401 ret = -ENOENT; 3402 goto out_free; 3403 } 3404 3405 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3406 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3407 btrfs_mark_buffer_dirty(path->nodes[0]); 3408 btrfs_release_path(path); 3409 3410 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3411 btrfs_end_transaction(trans); 3412 out_free: 3413 btrfs_put_root(new_root); 3414 btrfs_free_path(path); 3415 out: 3416 mnt_drop_write_file(file); 3417 return ret; 3418 } 3419 3420 static void get_block_group_info(struct list_head *groups_list, 3421 struct btrfs_ioctl_space_info *space) 3422 { 3423 struct btrfs_block_group *block_group; 3424 3425 space->total_bytes = 0; 3426 space->used_bytes = 0; 3427 space->flags = 0; 3428 list_for_each_entry(block_group, groups_list, list) { 3429 space->flags = block_group->flags; 3430 space->total_bytes += block_group->length; 3431 space->used_bytes += block_group->used; 3432 } 3433 } 3434 3435 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3436 void __user *arg) 3437 { 3438 struct btrfs_ioctl_space_args space_args; 3439 struct btrfs_ioctl_space_info space; 3440 struct btrfs_ioctl_space_info *dest; 3441 struct btrfs_ioctl_space_info *dest_orig; 3442 struct btrfs_ioctl_space_info __user *user_dest; 3443 struct btrfs_space_info *info; 3444 static const u64 types[] = { 3445 BTRFS_BLOCK_GROUP_DATA, 3446 BTRFS_BLOCK_GROUP_SYSTEM, 3447 BTRFS_BLOCK_GROUP_METADATA, 3448 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3449 }; 3450 int num_types = 4; 3451 int alloc_size; 3452 int ret = 0; 3453 u64 slot_count = 0; 3454 int i, c; 3455 3456 if (copy_from_user(&space_args, 3457 (struct btrfs_ioctl_space_args __user *)arg, 3458 sizeof(space_args))) 3459 return -EFAULT; 3460 3461 for (i = 0; i < num_types; i++) { 3462 struct btrfs_space_info *tmp; 3463 3464 info = NULL; 3465 rcu_read_lock(); 3466 list_for_each_entry_rcu(tmp, &fs_info->space_info, 3467 list) { 3468 if (tmp->flags == types[i]) { 3469 info = tmp; 3470 break; 3471 } 3472 } 3473 rcu_read_unlock(); 3474 3475 if (!info) 3476 continue; 3477 3478 down_read(&info->groups_sem); 3479 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3480 if (!list_empty(&info->block_groups[c])) 3481 slot_count++; 3482 } 3483 up_read(&info->groups_sem); 3484 } 3485 3486 /* 3487 * Global block reserve, exported as a space_info 3488 */ 3489 slot_count++; 3490 3491 /* space_slots == 0 means they are asking for a count */ 3492 if (space_args.space_slots == 0) { 3493 space_args.total_spaces = slot_count; 3494 goto out; 3495 } 3496 3497 slot_count = min_t(u64, space_args.space_slots, slot_count); 3498 3499 alloc_size = sizeof(*dest) * slot_count; 3500 3501 /* we generally have at most 6 or so space infos, one for each raid 3502 * level. So, a whole page should be more than enough for everyone 3503 */ 3504 if (alloc_size > PAGE_SIZE) 3505 return -ENOMEM; 3506 3507 space_args.total_spaces = 0; 3508 dest = kmalloc(alloc_size, GFP_KERNEL); 3509 if (!dest) 3510 return -ENOMEM; 3511 dest_orig = dest; 3512 3513 /* now we have a buffer to copy into */ 3514 for (i = 0; i < num_types; i++) { 3515 struct btrfs_space_info *tmp; 3516 3517 if (!slot_count) 3518 break; 3519 3520 info = NULL; 3521 rcu_read_lock(); 3522 list_for_each_entry_rcu(tmp, &fs_info->space_info, 3523 list) { 3524 if (tmp->flags == types[i]) { 3525 info = tmp; 3526 break; 3527 } 3528 } 3529 rcu_read_unlock(); 3530 3531 if (!info) 3532 continue; 3533 down_read(&info->groups_sem); 3534 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3535 if (!list_empty(&info->block_groups[c])) { 3536 get_block_group_info(&info->block_groups[c], 3537 &space); 3538 memcpy(dest, &space, sizeof(space)); 3539 dest++; 3540 space_args.total_spaces++; 3541 slot_count--; 3542 } 3543 if (!slot_count) 3544 break; 3545 } 3546 up_read(&info->groups_sem); 3547 } 3548 3549 /* 3550 * Add global block reserve 3551 */ 3552 if (slot_count) { 3553 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3554 3555 spin_lock(&block_rsv->lock); 3556 space.total_bytes = block_rsv->size; 3557 space.used_bytes = block_rsv->size - block_rsv->reserved; 3558 spin_unlock(&block_rsv->lock); 3559 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3560 memcpy(dest, &space, sizeof(space)); 3561 space_args.total_spaces++; 3562 } 3563 3564 user_dest = (struct btrfs_ioctl_space_info __user *) 3565 (arg + sizeof(struct btrfs_ioctl_space_args)); 3566 3567 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3568 ret = -EFAULT; 3569 3570 kfree(dest_orig); 3571 out: 3572 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3573 ret = -EFAULT; 3574 3575 return ret; 3576 } 3577 3578 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3579 void __user *argp) 3580 { 3581 struct btrfs_trans_handle *trans; 3582 u64 transid; 3583 int ret; 3584 3585 trans = btrfs_attach_transaction_barrier(root); 3586 if (IS_ERR(trans)) { 3587 if (PTR_ERR(trans) != -ENOENT) 3588 return PTR_ERR(trans); 3589 3590 /* No running transaction, don't bother */ 3591 transid = root->fs_info->last_trans_committed; 3592 goto out; 3593 } 3594 transid = trans->transid; 3595 ret = btrfs_commit_transaction_async(trans, 0); 3596 if (ret) { 3597 btrfs_end_transaction(trans); 3598 return ret; 3599 } 3600 out: 3601 if (argp) 3602 if (copy_to_user(argp, &transid, sizeof(transid))) 3603 return -EFAULT; 3604 return 0; 3605 } 3606 3607 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3608 void __user *argp) 3609 { 3610 u64 transid; 3611 3612 if (argp) { 3613 if (copy_from_user(&transid, argp, sizeof(transid))) 3614 return -EFAULT; 3615 } else { 3616 transid = 0; /* current trans */ 3617 } 3618 return btrfs_wait_for_commit(fs_info, transid); 3619 } 3620 3621 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3622 { 3623 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3624 struct btrfs_ioctl_scrub_args *sa; 3625 int ret; 3626 3627 if (!capable(CAP_SYS_ADMIN)) 3628 return -EPERM; 3629 3630 sa = memdup_user(arg, sizeof(*sa)); 3631 if (IS_ERR(sa)) 3632 return PTR_ERR(sa); 3633 3634 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3635 ret = mnt_want_write_file(file); 3636 if (ret) 3637 goto out; 3638 } 3639 3640 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3641 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3642 0); 3643 3644 /* 3645 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3646 * error. This is important as it allows user space to know how much 3647 * progress scrub has done. For example, if scrub is canceled we get 3648 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3649 * space. Later user space can inspect the progress from the structure 3650 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3651 * previously (btrfs-progs does this). 3652 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3653 * then return -EFAULT to signal the structure was not copied or it may 3654 * be corrupt and unreliable due to a partial copy. 3655 */ 3656 if (copy_to_user(arg, sa, sizeof(*sa))) 3657 ret = -EFAULT; 3658 3659 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3660 mnt_drop_write_file(file); 3661 out: 3662 kfree(sa); 3663 return ret; 3664 } 3665 3666 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3667 { 3668 if (!capable(CAP_SYS_ADMIN)) 3669 return -EPERM; 3670 3671 return btrfs_scrub_cancel(fs_info); 3672 } 3673 3674 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3675 void __user *arg) 3676 { 3677 struct btrfs_ioctl_scrub_args *sa; 3678 int ret; 3679 3680 if (!capable(CAP_SYS_ADMIN)) 3681 return -EPERM; 3682 3683 sa = memdup_user(arg, sizeof(*sa)); 3684 if (IS_ERR(sa)) 3685 return PTR_ERR(sa); 3686 3687 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3688 3689 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3690 ret = -EFAULT; 3691 3692 kfree(sa); 3693 return ret; 3694 } 3695 3696 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3697 void __user *arg) 3698 { 3699 struct btrfs_ioctl_get_dev_stats *sa; 3700 int ret; 3701 3702 sa = memdup_user(arg, sizeof(*sa)); 3703 if (IS_ERR(sa)) 3704 return PTR_ERR(sa); 3705 3706 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3707 kfree(sa); 3708 return -EPERM; 3709 } 3710 3711 ret = btrfs_get_dev_stats(fs_info, sa); 3712 3713 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3714 ret = -EFAULT; 3715 3716 kfree(sa); 3717 return ret; 3718 } 3719 3720 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3721 void __user *arg) 3722 { 3723 struct btrfs_ioctl_dev_replace_args *p; 3724 int ret; 3725 3726 if (!capable(CAP_SYS_ADMIN)) 3727 return -EPERM; 3728 3729 p = memdup_user(arg, sizeof(*p)); 3730 if (IS_ERR(p)) 3731 return PTR_ERR(p); 3732 3733 switch (p->cmd) { 3734 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3735 if (sb_rdonly(fs_info->sb)) { 3736 ret = -EROFS; 3737 goto out; 3738 } 3739 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3740 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3741 } else { 3742 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3743 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3744 } 3745 break; 3746 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3747 btrfs_dev_replace_status(fs_info, p); 3748 ret = 0; 3749 break; 3750 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3751 p->result = btrfs_dev_replace_cancel(fs_info); 3752 ret = 0; 3753 break; 3754 default: 3755 ret = -EINVAL; 3756 break; 3757 } 3758 3759 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3760 ret = -EFAULT; 3761 out: 3762 kfree(p); 3763 return ret; 3764 } 3765 3766 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3767 { 3768 int ret = 0; 3769 int i; 3770 u64 rel_ptr; 3771 int size; 3772 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3773 struct inode_fs_paths *ipath = NULL; 3774 struct btrfs_path *path; 3775 3776 if (!capable(CAP_DAC_READ_SEARCH)) 3777 return -EPERM; 3778 3779 path = btrfs_alloc_path(); 3780 if (!path) { 3781 ret = -ENOMEM; 3782 goto out; 3783 } 3784 3785 ipa = memdup_user(arg, sizeof(*ipa)); 3786 if (IS_ERR(ipa)) { 3787 ret = PTR_ERR(ipa); 3788 ipa = NULL; 3789 goto out; 3790 } 3791 3792 size = min_t(u32, ipa->size, 4096); 3793 ipath = init_ipath(size, root, path); 3794 if (IS_ERR(ipath)) { 3795 ret = PTR_ERR(ipath); 3796 ipath = NULL; 3797 goto out; 3798 } 3799 3800 ret = paths_from_inode(ipa->inum, ipath); 3801 if (ret < 0) 3802 goto out; 3803 3804 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3805 rel_ptr = ipath->fspath->val[i] - 3806 (u64)(unsigned long)ipath->fspath->val; 3807 ipath->fspath->val[i] = rel_ptr; 3808 } 3809 3810 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3811 ipath->fspath, size); 3812 if (ret) { 3813 ret = -EFAULT; 3814 goto out; 3815 } 3816 3817 out: 3818 btrfs_free_path(path); 3819 free_ipath(ipath); 3820 kfree(ipa); 3821 3822 return ret; 3823 } 3824 3825 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3826 { 3827 struct btrfs_data_container *inodes = ctx; 3828 const size_t c = 3 * sizeof(u64); 3829 3830 if (inodes->bytes_left >= c) { 3831 inodes->bytes_left -= c; 3832 inodes->val[inodes->elem_cnt] = inum; 3833 inodes->val[inodes->elem_cnt + 1] = offset; 3834 inodes->val[inodes->elem_cnt + 2] = root; 3835 inodes->elem_cnt += 3; 3836 } else { 3837 inodes->bytes_missing += c - inodes->bytes_left; 3838 inodes->bytes_left = 0; 3839 inodes->elem_missed += 3; 3840 } 3841 3842 return 0; 3843 } 3844 3845 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3846 void __user *arg, int version) 3847 { 3848 int ret = 0; 3849 int size; 3850 struct btrfs_ioctl_logical_ino_args *loi; 3851 struct btrfs_data_container *inodes = NULL; 3852 struct btrfs_path *path = NULL; 3853 bool ignore_offset; 3854 3855 if (!capable(CAP_SYS_ADMIN)) 3856 return -EPERM; 3857 3858 loi = memdup_user(arg, sizeof(*loi)); 3859 if (IS_ERR(loi)) 3860 return PTR_ERR(loi); 3861 3862 if (version == 1) { 3863 ignore_offset = false; 3864 size = min_t(u32, loi->size, SZ_64K); 3865 } else { 3866 /* All reserved bits must be 0 for now */ 3867 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3868 ret = -EINVAL; 3869 goto out_loi; 3870 } 3871 /* Only accept flags we have defined so far */ 3872 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3873 ret = -EINVAL; 3874 goto out_loi; 3875 } 3876 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3877 size = min_t(u32, loi->size, SZ_16M); 3878 } 3879 3880 path = btrfs_alloc_path(); 3881 if (!path) { 3882 ret = -ENOMEM; 3883 goto out; 3884 } 3885 3886 inodes = init_data_container(size); 3887 if (IS_ERR(inodes)) { 3888 ret = PTR_ERR(inodes); 3889 inodes = NULL; 3890 goto out; 3891 } 3892 3893 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3894 build_ino_list, inodes, ignore_offset); 3895 if (ret == -EINVAL) 3896 ret = -ENOENT; 3897 if (ret < 0) 3898 goto out; 3899 3900 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3901 size); 3902 if (ret) 3903 ret = -EFAULT; 3904 3905 out: 3906 btrfs_free_path(path); 3907 kvfree(inodes); 3908 out_loi: 3909 kfree(loi); 3910 3911 return ret; 3912 } 3913 3914 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3915 struct btrfs_ioctl_balance_args *bargs) 3916 { 3917 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3918 3919 bargs->flags = bctl->flags; 3920 3921 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3922 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3923 if (atomic_read(&fs_info->balance_pause_req)) 3924 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3925 if (atomic_read(&fs_info->balance_cancel_req)) 3926 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3927 3928 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3929 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3930 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3931 3932 spin_lock(&fs_info->balance_lock); 3933 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3934 spin_unlock(&fs_info->balance_lock); 3935 } 3936 3937 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3938 { 3939 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3940 struct btrfs_fs_info *fs_info = root->fs_info; 3941 struct btrfs_ioctl_balance_args *bargs; 3942 struct btrfs_balance_control *bctl; 3943 bool need_unlock; /* for mut. excl. ops lock */ 3944 int ret; 3945 3946 if (!capable(CAP_SYS_ADMIN)) 3947 return -EPERM; 3948 3949 ret = mnt_want_write_file(file); 3950 if (ret) 3951 return ret; 3952 3953 again: 3954 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3955 mutex_lock(&fs_info->balance_mutex); 3956 need_unlock = true; 3957 goto locked; 3958 } 3959 3960 /* 3961 * mut. excl. ops lock is locked. Three possibilities: 3962 * (1) some other op is running 3963 * (2) balance is running 3964 * (3) balance is paused -- special case (think resume) 3965 */ 3966 mutex_lock(&fs_info->balance_mutex); 3967 if (fs_info->balance_ctl) { 3968 /* this is either (2) or (3) */ 3969 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3970 mutex_unlock(&fs_info->balance_mutex); 3971 /* 3972 * Lock released to allow other waiters to continue, 3973 * we'll reexamine the status again. 3974 */ 3975 mutex_lock(&fs_info->balance_mutex); 3976 3977 if (fs_info->balance_ctl && 3978 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3979 /* this is (3) */ 3980 need_unlock = false; 3981 goto locked; 3982 } 3983 3984 mutex_unlock(&fs_info->balance_mutex); 3985 goto again; 3986 } else { 3987 /* this is (2) */ 3988 mutex_unlock(&fs_info->balance_mutex); 3989 ret = -EINPROGRESS; 3990 goto out; 3991 } 3992 } else { 3993 /* this is (1) */ 3994 mutex_unlock(&fs_info->balance_mutex); 3995 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3996 goto out; 3997 } 3998 3999 locked: 4000 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4001 4002 if (arg) { 4003 bargs = memdup_user(arg, sizeof(*bargs)); 4004 if (IS_ERR(bargs)) { 4005 ret = PTR_ERR(bargs); 4006 goto out_unlock; 4007 } 4008 4009 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4010 if (!fs_info->balance_ctl) { 4011 ret = -ENOTCONN; 4012 goto out_bargs; 4013 } 4014 4015 bctl = fs_info->balance_ctl; 4016 spin_lock(&fs_info->balance_lock); 4017 bctl->flags |= BTRFS_BALANCE_RESUME; 4018 spin_unlock(&fs_info->balance_lock); 4019 4020 goto do_balance; 4021 } 4022 } else { 4023 bargs = NULL; 4024 } 4025 4026 if (fs_info->balance_ctl) { 4027 ret = -EINPROGRESS; 4028 goto out_bargs; 4029 } 4030 4031 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4032 if (!bctl) { 4033 ret = -ENOMEM; 4034 goto out_bargs; 4035 } 4036 4037 if (arg) { 4038 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4039 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4040 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4041 4042 bctl->flags = bargs->flags; 4043 } else { 4044 /* balance everything - no filters */ 4045 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4046 } 4047 4048 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4049 ret = -EINVAL; 4050 goto out_bctl; 4051 } 4052 4053 do_balance: 4054 /* 4055 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to 4056 * btrfs_balance. bctl is freed in reset_balance_state, or, if 4057 * restriper was paused all the way until unmount, in free_fs_info. 4058 * The flag should be cleared after reset_balance_state. 4059 */ 4060 need_unlock = false; 4061 4062 ret = btrfs_balance(fs_info, bctl, bargs); 4063 bctl = NULL; 4064 4065 if ((ret == 0 || ret == -ECANCELED) && arg) { 4066 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4067 ret = -EFAULT; 4068 } 4069 4070 out_bctl: 4071 kfree(bctl); 4072 out_bargs: 4073 kfree(bargs); 4074 out_unlock: 4075 mutex_unlock(&fs_info->balance_mutex); 4076 if (need_unlock) 4077 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4078 out: 4079 mnt_drop_write_file(file); 4080 return ret; 4081 } 4082 4083 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4084 { 4085 if (!capable(CAP_SYS_ADMIN)) 4086 return -EPERM; 4087 4088 switch (cmd) { 4089 case BTRFS_BALANCE_CTL_PAUSE: 4090 return btrfs_pause_balance(fs_info); 4091 case BTRFS_BALANCE_CTL_CANCEL: 4092 return btrfs_cancel_balance(fs_info); 4093 } 4094 4095 return -EINVAL; 4096 } 4097 4098 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4099 void __user *arg) 4100 { 4101 struct btrfs_ioctl_balance_args *bargs; 4102 int ret = 0; 4103 4104 if (!capable(CAP_SYS_ADMIN)) 4105 return -EPERM; 4106 4107 mutex_lock(&fs_info->balance_mutex); 4108 if (!fs_info->balance_ctl) { 4109 ret = -ENOTCONN; 4110 goto out; 4111 } 4112 4113 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4114 if (!bargs) { 4115 ret = -ENOMEM; 4116 goto out; 4117 } 4118 4119 btrfs_update_ioctl_balance_args(fs_info, bargs); 4120 4121 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4122 ret = -EFAULT; 4123 4124 kfree(bargs); 4125 out: 4126 mutex_unlock(&fs_info->balance_mutex); 4127 return ret; 4128 } 4129 4130 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4131 { 4132 struct inode *inode = file_inode(file); 4133 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4134 struct btrfs_ioctl_quota_ctl_args *sa; 4135 int ret; 4136 4137 if (!capable(CAP_SYS_ADMIN)) 4138 return -EPERM; 4139 4140 ret = mnt_want_write_file(file); 4141 if (ret) 4142 return ret; 4143 4144 sa = memdup_user(arg, sizeof(*sa)); 4145 if (IS_ERR(sa)) { 4146 ret = PTR_ERR(sa); 4147 goto drop_write; 4148 } 4149 4150 down_write(&fs_info->subvol_sem); 4151 4152 switch (sa->cmd) { 4153 case BTRFS_QUOTA_CTL_ENABLE: 4154 ret = btrfs_quota_enable(fs_info); 4155 break; 4156 case BTRFS_QUOTA_CTL_DISABLE: 4157 ret = btrfs_quota_disable(fs_info); 4158 break; 4159 default: 4160 ret = -EINVAL; 4161 break; 4162 } 4163 4164 kfree(sa); 4165 up_write(&fs_info->subvol_sem); 4166 drop_write: 4167 mnt_drop_write_file(file); 4168 return ret; 4169 } 4170 4171 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4172 { 4173 struct inode *inode = file_inode(file); 4174 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4175 struct btrfs_root *root = BTRFS_I(inode)->root; 4176 struct btrfs_ioctl_qgroup_assign_args *sa; 4177 struct btrfs_trans_handle *trans; 4178 int ret; 4179 int err; 4180 4181 if (!capable(CAP_SYS_ADMIN)) 4182 return -EPERM; 4183 4184 ret = mnt_want_write_file(file); 4185 if (ret) 4186 return ret; 4187 4188 sa = memdup_user(arg, sizeof(*sa)); 4189 if (IS_ERR(sa)) { 4190 ret = PTR_ERR(sa); 4191 goto drop_write; 4192 } 4193 4194 trans = btrfs_join_transaction(root); 4195 if (IS_ERR(trans)) { 4196 ret = PTR_ERR(trans); 4197 goto out; 4198 } 4199 4200 if (sa->assign) { 4201 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4202 } else { 4203 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4204 } 4205 4206 /* update qgroup status and info */ 4207 err = btrfs_run_qgroups(trans); 4208 if (err < 0) 4209 btrfs_handle_fs_error(fs_info, err, 4210 "failed to update qgroup status and info"); 4211 err = btrfs_end_transaction(trans); 4212 if (err && !ret) 4213 ret = err; 4214 4215 out: 4216 kfree(sa); 4217 drop_write: 4218 mnt_drop_write_file(file); 4219 return ret; 4220 } 4221 4222 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4223 { 4224 struct inode *inode = file_inode(file); 4225 struct btrfs_root *root = BTRFS_I(inode)->root; 4226 struct btrfs_ioctl_qgroup_create_args *sa; 4227 struct btrfs_trans_handle *trans; 4228 int ret; 4229 int err; 4230 4231 if (!capable(CAP_SYS_ADMIN)) 4232 return -EPERM; 4233 4234 ret = mnt_want_write_file(file); 4235 if (ret) 4236 return ret; 4237 4238 sa = memdup_user(arg, sizeof(*sa)); 4239 if (IS_ERR(sa)) { 4240 ret = PTR_ERR(sa); 4241 goto drop_write; 4242 } 4243 4244 if (!sa->qgroupid) { 4245 ret = -EINVAL; 4246 goto out; 4247 } 4248 4249 trans = btrfs_join_transaction(root); 4250 if (IS_ERR(trans)) { 4251 ret = PTR_ERR(trans); 4252 goto out; 4253 } 4254 4255 if (sa->create) { 4256 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4257 } else { 4258 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4259 } 4260 4261 err = btrfs_end_transaction(trans); 4262 if (err && !ret) 4263 ret = err; 4264 4265 out: 4266 kfree(sa); 4267 drop_write: 4268 mnt_drop_write_file(file); 4269 return ret; 4270 } 4271 4272 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4273 { 4274 struct inode *inode = file_inode(file); 4275 struct btrfs_root *root = BTRFS_I(inode)->root; 4276 struct btrfs_ioctl_qgroup_limit_args *sa; 4277 struct btrfs_trans_handle *trans; 4278 int ret; 4279 int err; 4280 u64 qgroupid; 4281 4282 if (!capable(CAP_SYS_ADMIN)) 4283 return -EPERM; 4284 4285 ret = mnt_want_write_file(file); 4286 if (ret) 4287 return ret; 4288 4289 sa = memdup_user(arg, sizeof(*sa)); 4290 if (IS_ERR(sa)) { 4291 ret = PTR_ERR(sa); 4292 goto drop_write; 4293 } 4294 4295 trans = btrfs_join_transaction(root); 4296 if (IS_ERR(trans)) { 4297 ret = PTR_ERR(trans); 4298 goto out; 4299 } 4300 4301 qgroupid = sa->qgroupid; 4302 if (!qgroupid) { 4303 /* take the current subvol as qgroup */ 4304 qgroupid = root->root_key.objectid; 4305 } 4306 4307 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4308 4309 err = btrfs_end_transaction(trans); 4310 if (err && !ret) 4311 ret = err; 4312 4313 out: 4314 kfree(sa); 4315 drop_write: 4316 mnt_drop_write_file(file); 4317 return ret; 4318 } 4319 4320 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4321 { 4322 struct inode *inode = file_inode(file); 4323 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4324 struct btrfs_ioctl_quota_rescan_args *qsa; 4325 int ret; 4326 4327 if (!capable(CAP_SYS_ADMIN)) 4328 return -EPERM; 4329 4330 ret = mnt_want_write_file(file); 4331 if (ret) 4332 return ret; 4333 4334 qsa = memdup_user(arg, sizeof(*qsa)); 4335 if (IS_ERR(qsa)) { 4336 ret = PTR_ERR(qsa); 4337 goto drop_write; 4338 } 4339 4340 if (qsa->flags) { 4341 ret = -EINVAL; 4342 goto out; 4343 } 4344 4345 ret = btrfs_qgroup_rescan(fs_info); 4346 4347 out: 4348 kfree(qsa); 4349 drop_write: 4350 mnt_drop_write_file(file); 4351 return ret; 4352 } 4353 4354 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4355 void __user *arg) 4356 { 4357 struct btrfs_ioctl_quota_rescan_args *qsa; 4358 int ret = 0; 4359 4360 if (!capable(CAP_SYS_ADMIN)) 4361 return -EPERM; 4362 4363 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4364 if (!qsa) 4365 return -ENOMEM; 4366 4367 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4368 qsa->flags = 1; 4369 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4370 } 4371 4372 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4373 ret = -EFAULT; 4374 4375 kfree(qsa); 4376 return ret; 4377 } 4378 4379 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4380 void __user *arg) 4381 { 4382 if (!capable(CAP_SYS_ADMIN)) 4383 return -EPERM; 4384 4385 return btrfs_qgroup_wait_for_completion(fs_info, true); 4386 } 4387 4388 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4389 struct btrfs_ioctl_received_subvol_args *sa) 4390 { 4391 struct inode *inode = file_inode(file); 4392 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4393 struct btrfs_root *root = BTRFS_I(inode)->root; 4394 struct btrfs_root_item *root_item = &root->root_item; 4395 struct btrfs_trans_handle *trans; 4396 struct timespec64 ct = current_time(inode); 4397 int ret = 0; 4398 int received_uuid_changed; 4399 4400 if (!inode_owner_or_capable(inode)) 4401 return -EPERM; 4402 4403 ret = mnt_want_write_file(file); 4404 if (ret < 0) 4405 return ret; 4406 4407 down_write(&fs_info->subvol_sem); 4408 4409 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4410 ret = -EINVAL; 4411 goto out; 4412 } 4413 4414 if (btrfs_root_readonly(root)) { 4415 ret = -EROFS; 4416 goto out; 4417 } 4418 4419 /* 4420 * 1 - root item 4421 * 2 - uuid items (received uuid + subvol uuid) 4422 */ 4423 trans = btrfs_start_transaction(root, 3); 4424 if (IS_ERR(trans)) { 4425 ret = PTR_ERR(trans); 4426 trans = NULL; 4427 goto out; 4428 } 4429 4430 sa->rtransid = trans->transid; 4431 sa->rtime.sec = ct.tv_sec; 4432 sa->rtime.nsec = ct.tv_nsec; 4433 4434 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4435 BTRFS_UUID_SIZE); 4436 if (received_uuid_changed && 4437 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4438 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4439 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4440 root->root_key.objectid); 4441 if (ret && ret != -ENOENT) { 4442 btrfs_abort_transaction(trans, ret); 4443 btrfs_end_transaction(trans); 4444 goto out; 4445 } 4446 } 4447 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4448 btrfs_set_root_stransid(root_item, sa->stransid); 4449 btrfs_set_root_rtransid(root_item, sa->rtransid); 4450 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4451 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4452 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4453 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4454 4455 ret = btrfs_update_root(trans, fs_info->tree_root, 4456 &root->root_key, &root->root_item); 4457 if (ret < 0) { 4458 btrfs_end_transaction(trans); 4459 goto out; 4460 } 4461 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4462 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4463 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4464 root->root_key.objectid); 4465 if (ret < 0 && ret != -EEXIST) { 4466 btrfs_abort_transaction(trans, ret); 4467 btrfs_end_transaction(trans); 4468 goto out; 4469 } 4470 } 4471 ret = btrfs_commit_transaction(trans); 4472 out: 4473 up_write(&fs_info->subvol_sem); 4474 mnt_drop_write_file(file); 4475 return ret; 4476 } 4477 4478 #ifdef CONFIG_64BIT 4479 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4480 void __user *arg) 4481 { 4482 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4483 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4484 int ret = 0; 4485 4486 args32 = memdup_user(arg, sizeof(*args32)); 4487 if (IS_ERR(args32)) 4488 return PTR_ERR(args32); 4489 4490 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4491 if (!args64) { 4492 ret = -ENOMEM; 4493 goto out; 4494 } 4495 4496 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4497 args64->stransid = args32->stransid; 4498 args64->rtransid = args32->rtransid; 4499 args64->stime.sec = args32->stime.sec; 4500 args64->stime.nsec = args32->stime.nsec; 4501 args64->rtime.sec = args32->rtime.sec; 4502 args64->rtime.nsec = args32->rtime.nsec; 4503 args64->flags = args32->flags; 4504 4505 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4506 if (ret) 4507 goto out; 4508 4509 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4510 args32->stransid = args64->stransid; 4511 args32->rtransid = args64->rtransid; 4512 args32->stime.sec = args64->stime.sec; 4513 args32->stime.nsec = args64->stime.nsec; 4514 args32->rtime.sec = args64->rtime.sec; 4515 args32->rtime.nsec = args64->rtime.nsec; 4516 args32->flags = args64->flags; 4517 4518 ret = copy_to_user(arg, args32, sizeof(*args32)); 4519 if (ret) 4520 ret = -EFAULT; 4521 4522 out: 4523 kfree(args32); 4524 kfree(args64); 4525 return ret; 4526 } 4527 #endif 4528 4529 static long btrfs_ioctl_set_received_subvol(struct file *file, 4530 void __user *arg) 4531 { 4532 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4533 int ret = 0; 4534 4535 sa = memdup_user(arg, sizeof(*sa)); 4536 if (IS_ERR(sa)) 4537 return PTR_ERR(sa); 4538 4539 ret = _btrfs_ioctl_set_received_subvol(file, sa); 4540 4541 if (ret) 4542 goto out; 4543 4544 ret = copy_to_user(arg, sa, sizeof(*sa)); 4545 if (ret) 4546 ret = -EFAULT; 4547 4548 out: 4549 kfree(sa); 4550 return ret; 4551 } 4552 4553 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4554 void __user *arg) 4555 { 4556 size_t len; 4557 int ret; 4558 char label[BTRFS_LABEL_SIZE]; 4559 4560 spin_lock(&fs_info->super_lock); 4561 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4562 spin_unlock(&fs_info->super_lock); 4563 4564 len = strnlen(label, BTRFS_LABEL_SIZE); 4565 4566 if (len == BTRFS_LABEL_SIZE) { 4567 btrfs_warn(fs_info, 4568 "label is too long, return the first %zu bytes", 4569 --len); 4570 } 4571 4572 ret = copy_to_user(arg, label, len); 4573 4574 return ret ? -EFAULT : 0; 4575 } 4576 4577 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4578 { 4579 struct inode *inode = file_inode(file); 4580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4581 struct btrfs_root *root = BTRFS_I(inode)->root; 4582 struct btrfs_super_block *super_block = fs_info->super_copy; 4583 struct btrfs_trans_handle *trans; 4584 char label[BTRFS_LABEL_SIZE]; 4585 int ret; 4586 4587 if (!capable(CAP_SYS_ADMIN)) 4588 return -EPERM; 4589 4590 if (copy_from_user(label, arg, sizeof(label))) 4591 return -EFAULT; 4592 4593 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4594 btrfs_err(fs_info, 4595 "unable to set label with more than %d bytes", 4596 BTRFS_LABEL_SIZE - 1); 4597 return -EINVAL; 4598 } 4599 4600 ret = mnt_want_write_file(file); 4601 if (ret) 4602 return ret; 4603 4604 trans = btrfs_start_transaction(root, 0); 4605 if (IS_ERR(trans)) { 4606 ret = PTR_ERR(trans); 4607 goto out_unlock; 4608 } 4609 4610 spin_lock(&fs_info->super_lock); 4611 strcpy(super_block->label, label); 4612 spin_unlock(&fs_info->super_lock); 4613 ret = btrfs_commit_transaction(trans); 4614 4615 out_unlock: 4616 mnt_drop_write_file(file); 4617 return ret; 4618 } 4619 4620 #define INIT_FEATURE_FLAGS(suffix) \ 4621 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4622 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4623 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4624 4625 int btrfs_ioctl_get_supported_features(void __user *arg) 4626 { 4627 static const struct btrfs_ioctl_feature_flags features[3] = { 4628 INIT_FEATURE_FLAGS(SUPP), 4629 INIT_FEATURE_FLAGS(SAFE_SET), 4630 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4631 }; 4632 4633 if (copy_to_user(arg, &features, sizeof(features))) 4634 return -EFAULT; 4635 4636 return 0; 4637 } 4638 4639 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4640 void __user *arg) 4641 { 4642 struct btrfs_super_block *super_block = fs_info->super_copy; 4643 struct btrfs_ioctl_feature_flags features; 4644 4645 features.compat_flags = btrfs_super_compat_flags(super_block); 4646 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4647 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4648 4649 if (copy_to_user(arg, &features, sizeof(features))) 4650 return -EFAULT; 4651 4652 return 0; 4653 } 4654 4655 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4656 enum btrfs_feature_set set, 4657 u64 change_mask, u64 flags, u64 supported_flags, 4658 u64 safe_set, u64 safe_clear) 4659 { 4660 const char *type = btrfs_feature_set_name(set); 4661 char *names; 4662 u64 disallowed, unsupported; 4663 u64 set_mask = flags & change_mask; 4664 u64 clear_mask = ~flags & change_mask; 4665 4666 unsupported = set_mask & ~supported_flags; 4667 if (unsupported) { 4668 names = btrfs_printable_features(set, unsupported); 4669 if (names) { 4670 btrfs_warn(fs_info, 4671 "this kernel does not support the %s feature bit%s", 4672 names, strchr(names, ',') ? "s" : ""); 4673 kfree(names); 4674 } else 4675 btrfs_warn(fs_info, 4676 "this kernel does not support %s bits 0x%llx", 4677 type, unsupported); 4678 return -EOPNOTSUPP; 4679 } 4680 4681 disallowed = set_mask & ~safe_set; 4682 if (disallowed) { 4683 names = btrfs_printable_features(set, disallowed); 4684 if (names) { 4685 btrfs_warn(fs_info, 4686 "can't set the %s feature bit%s while mounted", 4687 names, strchr(names, ',') ? "s" : ""); 4688 kfree(names); 4689 } else 4690 btrfs_warn(fs_info, 4691 "can't set %s bits 0x%llx while mounted", 4692 type, disallowed); 4693 return -EPERM; 4694 } 4695 4696 disallowed = clear_mask & ~safe_clear; 4697 if (disallowed) { 4698 names = btrfs_printable_features(set, disallowed); 4699 if (names) { 4700 btrfs_warn(fs_info, 4701 "can't clear the %s feature bit%s while mounted", 4702 names, strchr(names, ',') ? "s" : ""); 4703 kfree(names); 4704 } else 4705 btrfs_warn(fs_info, 4706 "can't clear %s bits 0x%llx while mounted", 4707 type, disallowed); 4708 return -EPERM; 4709 } 4710 4711 return 0; 4712 } 4713 4714 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4715 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4716 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4717 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4718 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4719 4720 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4721 { 4722 struct inode *inode = file_inode(file); 4723 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4724 struct btrfs_root *root = BTRFS_I(inode)->root; 4725 struct btrfs_super_block *super_block = fs_info->super_copy; 4726 struct btrfs_ioctl_feature_flags flags[2]; 4727 struct btrfs_trans_handle *trans; 4728 u64 newflags; 4729 int ret; 4730 4731 if (!capable(CAP_SYS_ADMIN)) 4732 return -EPERM; 4733 4734 if (copy_from_user(flags, arg, sizeof(flags))) 4735 return -EFAULT; 4736 4737 /* Nothing to do */ 4738 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4739 !flags[0].incompat_flags) 4740 return 0; 4741 4742 ret = check_feature(fs_info, flags[0].compat_flags, 4743 flags[1].compat_flags, COMPAT); 4744 if (ret) 4745 return ret; 4746 4747 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4748 flags[1].compat_ro_flags, COMPAT_RO); 4749 if (ret) 4750 return ret; 4751 4752 ret = check_feature(fs_info, flags[0].incompat_flags, 4753 flags[1].incompat_flags, INCOMPAT); 4754 if (ret) 4755 return ret; 4756 4757 ret = mnt_want_write_file(file); 4758 if (ret) 4759 return ret; 4760 4761 trans = btrfs_start_transaction(root, 0); 4762 if (IS_ERR(trans)) { 4763 ret = PTR_ERR(trans); 4764 goto out_drop_write; 4765 } 4766 4767 spin_lock(&fs_info->super_lock); 4768 newflags = btrfs_super_compat_flags(super_block); 4769 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4770 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4771 btrfs_set_super_compat_flags(super_block, newflags); 4772 4773 newflags = btrfs_super_compat_ro_flags(super_block); 4774 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4775 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4776 btrfs_set_super_compat_ro_flags(super_block, newflags); 4777 4778 newflags = btrfs_super_incompat_flags(super_block); 4779 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4780 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4781 btrfs_set_super_incompat_flags(super_block, newflags); 4782 spin_unlock(&fs_info->super_lock); 4783 4784 ret = btrfs_commit_transaction(trans); 4785 out_drop_write: 4786 mnt_drop_write_file(file); 4787 4788 return ret; 4789 } 4790 4791 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4792 { 4793 struct btrfs_ioctl_send_args *arg; 4794 int ret; 4795 4796 if (compat) { 4797 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4798 struct btrfs_ioctl_send_args_32 args32; 4799 4800 ret = copy_from_user(&args32, argp, sizeof(args32)); 4801 if (ret) 4802 return -EFAULT; 4803 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4804 if (!arg) 4805 return -ENOMEM; 4806 arg->send_fd = args32.send_fd; 4807 arg->clone_sources_count = args32.clone_sources_count; 4808 arg->clone_sources = compat_ptr(args32.clone_sources); 4809 arg->parent_root = args32.parent_root; 4810 arg->flags = args32.flags; 4811 memcpy(arg->reserved, args32.reserved, 4812 sizeof(args32.reserved)); 4813 #else 4814 return -ENOTTY; 4815 #endif 4816 } else { 4817 arg = memdup_user(argp, sizeof(*arg)); 4818 if (IS_ERR(arg)) 4819 return PTR_ERR(arg); 4820 } 4821 ret = btrfs_ioctl_send(file, arg); 4822 kfree(arg); 4823 return ret; 4824 } 4825 4826 long btrfs_ioctl(struct file *file, unsigned int 4827 cmd, unsigned long arg) 4828 { 4829 struct inode *inode = file_inode(file); 4830 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4831 struct btrfs_root *root = BTRFS_I(inode)->root; 4832 void __user *argp = (void __user *)arg; 4833 4834 switch (cmd) { 4835 case FS_IOC_GETFLAGS: 4836 return btrfs_ioctl_getflags(file, argp); 4837 case FS_IOC_SETFLAGS: 4838 return btrfs_ioctl_setflags(file, argp); 4839 case FS_IOC_GETVERSION: 4840 return btrfs_ioctl_getversion(file, argp); 4841 case FS_IOC_GETFSLABEL: 4842 return btrfs_ioctl_get_fslabel(fs_info, argp); 4843 case FS_IOC_SETFSLABEL: 4844 return btrfs_ioctl_set_fslabel(file, argp); 4845 case FITRIM: 4846 return btrfs_ioctl_fitrim(fs_info, argp); 4847 case BTRFS_IOC_SNAP_CREATE: 4848 return btrfs_ioctl_snap_create(file, argp, 0); 4849 case BTRFS_IOC_SNAP_CREATE_V2: 4850 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4851 case BTRFS_IOC_SUBVOL_CREATE: 4852 return btrfs_ioctl_snap_create(file, argp, 1); 4853 case BTRFS_IOC_SUBVOL_CREATE_V2: 4854 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4855 case BTRFS_IOC_SNAP_DESTROY: 4856 return btrfs_ioctl_snap_destroy(file, argp, false); 4857 case BTRFS_IOC_SNAP_DESTROY_V2: 4858 return btrfs_ioctl_snap_destroy(file, argp, true); 4859 case BTRFS_IOC_SUBVOL_GETFLAGS: 4860 return btrfs_ioctl_subvol_getflags(file, argp); 4861 case BTRFS_IOC_SUBVOL_SETFLAGS: 4862 return btrfs_ioctl_subvol_setflags(file, argp); 4863 case BTRFS_IOC_DEFAULT_SUBVOL: 4864 return btrfs_ioctl_default_subvol(file, argp); 4865 case BTRFS_IOC_DEFRAG: 4866 return btrfs_ioctl_defrag(file, NULL); 4867 case BTRFS_IOC_DEFRAG_RANGE: 4868 return btrfs_ioctl_defrag(file, argp); 4869 case BTRFS_IOC_RESIZE: 4870 return btrfs_ioctl_resize(file, argp); 4871 case BTRFS_IOC_ADD_DEV: 4872 return btrfs_ioctl_add_dev(fs_info, argp); 4873 case BTRFS_IOC_RM_DEV: 4874 return btrfs_ioctl_rm_dev(file, argp); 4875 case BTRFS_IOC_RM_DEV_V2: 4876 return btrfs_ioctl_rm_dev_v2(file, argp); 4877 case BTRFS_IOC_FS_INFO: 4878 return btrfs_ioctl_fs_info(fs_info, argp); 4879 case BTRFS_IOC_DEV_INFO: 4880 return btrfs_ioctl_dev_info(fs_info, argp); 4881 case BTRFS_IOC_BALANCE: 4882 return btrfs_ioctl_balance(file, NULL); 4883 case BTRFS_IOC_TREE_SEARCH: 4884 return btrfs_ioctl_tree_search(file, argp); 4885 case BTRFS_IOC_TREE_SEARCH_V2: 4886 return btrfs_ioctl_tree_search_v2(file, argp); 4887 case BTRFS_IOC_INO_LOOKUP: 4888 return btrfs_ioctl_ino_lookup(file, argp); 4889 case BTRFS_IOC_INO_PATHS: 4890 return btrfs_ioctl_ino_to_path(root, argp); 4891 case BTRFS_IOC_LOGICAL_INO: 4892 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4893 case BTRFS_IOC_LOGICAL_INO_V2: 4894 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4895 case BTRFS_IOC_SPACE_INFO: 4896 return btrfs_ioctl_space_info(fs_info, argp); 4897 case BTRFS_IOC_SYNC: { 4898 int ret; 4899 4900 ret = btrfs_start_delalloc_roots(fs_info, -1); 4901 if (ret) 4902 return ret; 4903 ret = btrfs_sync_fs(inode->i_sb, 1); 4904 /* 4905 * The transaction thread may want to do more work, 4906 * namely it pokes the cleaner kthread that will start 4907 * processing uncleaned subvols. 4908 */ 4909 wake_up_process(fs_info->transaction_kthread); 4910 return ret; 4911 } 4912 case BTRFS_IOC_START_SYNC: 4913 return btrfs_ioctl_start_sync(root, argp); 4914 case BTRFS_IOC_WAIT_SYNC: 4915 return btrfs_ioctl_wait_sync(fs_info, argp); 4916 case BTRFS_IOC_SCRUB: 4917 return btrfs_ioctl_scrub(file, argp); 4918 case BTRFS_IOC_SCRUB_CANCEL: 4919 return btrfs_ioctl_scrub_cancel(fs_info); 4920 case BTRFS_IOC_SCRUB_PROGRESS: 4921 return btrfs_ioctl_scrub_progress(fs_info, argp); 4922 case BTRFS_IOC_BALANCE_V2: 4923 return btrfs_ioctl_balance(file, argp); 4924 case BTRFS_IOC_BALANCE_CTL: 4925 return btrfs_ioctl_balance_ctl(fs_info, arg); 4926 case BTRFS_IOC_BALANCE_PROGRESS: 4927 return btrfs_ioctl_balance_progress(fs_info, argp); 4928 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4929 return btrfs_ioctl_set_received_subvol(file, argp); 4930 #ifdef CONFIG_64BIT 4931 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4932 return btrfs_ioctl_set_received_subvol_32(file, argp); 4933 #endif 4934 case BTRFS_IOC_SEND: 4935 return _btrfs_ioctl_send(file, argp, false); 4936 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4937 case BTRFS_IOC_SEND_32: 4938 return _btrfs_ioctl_send(file, argp, true); 4939 #endif 4940 case BTRFS_IOC_GET_DEV_STATS: 4941 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4942 case BTRFS_IOC_QUOTA_CTL: 4943 return btrfs_ioctl_quota_ctl(file, argp); 4944 case BTRFS_IOC_QGROUP_ASSIGN: 4945 return btrfs_ioctl_qgroup_assign(file, argp); 4946 case BTRFS_IOC_QGROUP_CREATE: 4947 return btrfs_ioctl_qgroup_create(file, argp); 4948 case BTRFS_IOC_QGROUP_LIMIT: 4949 return btrfs_ioctl_qgroup_limit(file, argp); 4950 case BTRFS_IOC_QUOTA_RESCAN: 4951 return btrfs_ioctl_quota_rescan(file, argp); 4952 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4953 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4954 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4955 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4956 case BTRFS_IOC_DEV_REPLACE: 4957 return btrfs_ioctl_dev_replace(fs_info, argp); 4958 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4959 return btrfs_ioctl_get_supported_features(argp); 4960 case BTRFS_IOC_GET_FEATURES: 4961 return btrfs_ioctl_get_features(fs_info, argp); 4962 case BTRFS_IOC_SET_FEATURES: 4963 return btrfs_ioctl_set_features(file, argp); 4964 case FS_IOC_FSGETXATTR: 4965 return btrfs_ioctl_fsgetxattr(file, argp); 4966 case FS_IOC_FSSETXATTR: 4967 return btrfs_ioctl_fssetxattr(file, argp); 4968 case BTRFS_IOC_GET_SUBVOL_INFO: 4969 return btrfs_ioctl_get_subvol_info(file, argp); 4970 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4971 return btrfs_ioctl_get_subvol_rootref(file, argp); 4972 case BTRFS_IOC_INO_LOOKUP_USER: 4973 return btrfs_ioctl_ino_lookup_user(file, argp); 4974 } 4975 4976 return -ENOTTY; 4977 } 4978 4979 #ifdef CONFIG_COMPAT 4980 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4981 { 4982 /* 4983 * These all access 32-bit values anyway so no further 4984 * handling is necessary. 4985 */ 4986 switch (cmd) { 4987 case FS_IOC32_GETFLAGS: 4988 cmd = FS_IOC_GETFLAGS; 4989 break; 4990 case FS_IOC32_SETFLAGS: 4991 cmd = FS_IOC_SETFLAGS; 4992 break; 4993 case FS_IOC32_GETVERSION: 4994 cmd = FS_IOC_GETVERSION; 4995 break; 4996 } 4997 4998 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4999 } 5000 #endif 5001