1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include "compat.h" 44 #include "ctree.h" 45 #include "disk-io.h" 46 #include "transaction.h" 47 #include "btrfs_inode.h" 48 #include "ioctl.h" 49 #include "print-tree.h" 50 #include "volumes.h" 51 #include "locking.h" 52 53 /* Mask out flags that are inappropriate for the given type of inode. */ 54 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 55 { 56 if (S_ISDIR(mode)) 57 return flags; 58 else if (S_ISREG(mode)) 59 return flags & ~FS_DIRSYNC_FL; 60 else 61 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 62 } 63 64 /* 65 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 66 */ 67 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 68 { 69 unsigned int iflags = 0; 70 71 if (flags & BTRFS_INODE_SYNC) 72 iflags |= FS_SYNC_FL; 73 if (flags & BTRFS_INODE_IMMUTABLE) 74 iflags |= FS_IMMUTABLE_FL; 75 if (flags & BTRFS_INODE_APPEND) 76 iflags |= FS_APPEND_FL; 77 if (flags & BTRFS_INODE_NODUMP) 78 iflags |= FS_NODUMP_FL; 79 if (flags & BTRFS_INODE_NOATIME) 80 iflags |= FS_NOATIME_FL; 81 if (flags & BTRFS_INODE_DIRSYNC) 82 iflags |= FS_DIRSYNC_FL; 83 84 return iflags; 85 } 86 87 /* 88 * Update inode->i_flags based on the btrfs internal flags. 89 */ 90 void btrfs_update_iflags(struct inode *inode) 91 { 92 struct btrfs_inode *ip = BTRFS_I(inode); 93 94 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 95 96 if (ip->flags & BTRFS_INODE_SYNC) 97 inode->i_flags |= S_SYNC; 98 if (ip->flags & BTRFS_INODE_IMMUTABLE) 99 inode->i_flags |= S_IMMUTABLE; 100 if (ip->flags & BTRFS_INODE_APPEND) 101 inode->i_flags |= S_APPEND; 102 if (ip->flags & BTRFS_INODE_NOATIME) 103 inode->i_flags |= S_NOATIME; 104 if (ip->flags & BTRFS_INODE_DIRSYNC) 105 inode->i_flags |= S_DIRSYNC; 106 } 107 108 /* 109 * Inherit flags from the parent inode. 110 * 111 * Unlike extN we don't have any flags we don't want to inherit currently. 112 */ 113 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 114 { 115 unsigned int flags; 116 117 if (!dir) 118 return; 119 120 flags = BTRFS_I(dir)->flags; 121 122 if (S_ISREG(inode->i_mode)) 123 flags &= ~BTRFS_INODE_DIRSYNC; 124 else if (!S_ISDIR(inode->i_mode)) 125 flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME); 126 127 BTRFS_I(inode)->flags = flags; 128 btrfs_update_iflags(inode); 129 } 130 131 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 132 { 133 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode); 134 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 135 136 if (copy_to_user(arg, &flags, sizeof(flags))) 137 return -EFAULT; 138 return 0; 139 } 140 141 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 142 { 143 struct inode *inode = file->f_path.dentry->d_inode; 144 struct btrfs_inode *ip = BTRFS_I(inode); 145 struct btrfs_root *root = ip->root; 146 struct btrfs_trans_handle *trans; 147 unsigned int flags, oldflags; 148 int ret; 149 150 if (btrfs_root_readonly(root)) 151 return -EROFS; 152 153 if (copy_from_user(&flags, arg, sizeof(flags))) 154 return -EFAULT; 155 156 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 157 FS_NOATIME_FL | FS_NODUMP_FL | \ 158 FS_SYNC_FL | FS_DIRSYNC_FL)) 159 return -EOPNOTSUPP; 160 161 if (!is_owner_or_cap(inode)) 162 return -EACCES; 163 164 mutex_lock(&inode->i_mutex); 165 166 flags = btrfs_mask_flags(inode->i_mode, flags); 167 oldflags = btrfs_flags_to_ioctl(ip->flags); 168 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 169 if (!capable(CAP_LINUX_IMMUTABLE)) { 170 ret = -EPERM; 171 goto out_unlock; 172 } 173 } 174 175 ret = mnt_want_write(file->f_path.mnt); 176 if (ret) 177 goto out_unlock; 178 179 if (flags & FS_SYNC_FL) 180 ip->flags |= BTRFS_INODE_SYNC; 181 else 182 ip->flags &= ~BTRFS_INODE_SYNC; 183 if (flags & FS_IMMUTABLE_FL) 184 ip->flags |= BTRFS_INODE_IMMUTABLE; 185 else 186 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 187 if (flags & FS_APPEND_FL) 188 ip->flags |= BTRFS_INODE_APPEND; 189 else 190 ip->flags &= ~BTRFS_INODE_APPEND; 191 if (flags & FS_NODUMP_FL) 192 ip->flags |= BTRFS_INODE_NODUMP; 193 else 194 ip->flags &= ~BTRFS_INODE_NODUMP; 195 if (flags & FS_NOATIME_FL) 196 ip->flags |= BTRFS_INODE_NOATIME; 197 else 198 ip->flags &= ~BTRFS_INODE_NOATIME; 199 if (flags & FS_DIRSYNC_FL) 200 ip->flags |= BTRFS_INODE_DIRSYNC; 201 else 202 ip->flags &= ~BTRFS_INODE_DIRSYNC; 203 204 205 trans = btrfs_join_transaction(root, 1); 206 BUG_ON(IS_ERR(trans)); 207 208 ret = btrfs_update_inode(trans, root, inode); 209 BUG_ON(ret); 210 211 btrfs_update_iflags(inode); 212 inode->i_ctime = CURRENT_TIME; 213 btrfs_end_transaction(trans, root); 214 215 mnt_drop_write(file->f_path.mnt); 216 out_unlock: 217 mutex_unlock(&inode->i_mutex); 218 return 0; 219 } 220 221 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 222 { 223 struct inode *inode = file->f_path.dentry->d_inode; 224 225 return put_user(inode->i_generation, arg); 226 } 227 228 static noinline int create_subvol(struct btrfs_root *root, 229 struct dentry *dentry, 230 char *name, int namelen, 231 u64 *async_transid) 232 { 233 struct btrfs_trans_handle *trans; 234 struct btrfs_key key; 235 struct btrfs_root_item root_item; 236 struct btrfs_inode_item *inode_item; 237 struct extent_buffer *leaf; 238 struct btrfs_root *new_root; 239 struct dentry *parent = dget_parent(dentry); 240 struct inode *dir; 241 int ret; 242 int err; 243 u64 objectid; 244 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 245 u64 index = 0; 246 247 ret = btrfs_find_free_objectid(NULL, root->fs_info->tree_root, 248 0, &objectid); 249 if (ret) { 250 dput(parent); 251 return ret; 252 } 253 254 dir = parent->d_inode; 255 256 /* 257 * 1 - inode item 258 * 2 - refs 259 * 1 - root item 260 * 2 - dir items 261 */ 262 trans = btrfs_start_transaction(root, 6); 263 if (IS_ERR(trans)) { 264 dput(parent); 265 return PTR_ERR(trans); 266 } 267 268 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 269 0, objectid, NULL, 0, 0, 0); 270 if (IS_ERR(leaf)) { 271 ret = PTR_ERR(leaf); 272 goto fail; 273 } 274 275 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 276 btrfs_set_header_bytenr(leaf, leaf->start); 277 btrfs_set_header_generation(leaf, trans->transid); 278 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 279 btrfs_set_header_owner(leaf, objectid); 280 281 write_extent_buffer(leaf, root->fs_info->fsid, 282 (unsigned long)btrfs_header_fsid(leaf), 283 BTRFS_FSID_SIZE); 284 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 285 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 286 BTRFS_UUID_SIZE); 287 btrfs_mark_buffer_dirty(leaf); 288 289 inode_item = &root_item.inode; 290 memset(inode_item, 0, sizeof(*inode_item)); 291 inode_item->generation = cpu_to_le64(1); 292 inode_item->size = cpu_to_le64(3); 293 inode_item->nlink = cpu_to_le32(1); 294 inode_item->nbytes = cpu_to_le64(root->leafsize); 295 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 296 297 btrfs_set_root_bytenr(&root_item, leaf->start); 298 btrfs_set_root_generation(&root_item, trans->transid); 299 btrfs_set_root_level(&root_item, 0); 300 btrfs_set_root_refs(&root_item, 1); 301 btrfs_set_root_used(&root_item, leaf->len); 302 btrfs_set_root_last_snapshot(&root_item, 0); 303 304 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress)); 305 root_item.drop_level = 0; 306 307 btrfs_tree_unlock(leaf); 308 free_extent_buffer(leaf); 309 leaf = NULL; 310 311 btrfs_set_root_dirid(&root_item, new_dirid); 312 313 key.objectid = objectid; 314 key.offset = 0; 315 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 316 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 317 &root_item); 318 if (ret) 319 goto fail; 320 321 key.offset = (u64)-1; 322 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 323 BUG_ON(IS_ERR(new_root)); 324 325 btrfs_record_root_in_trans(trans, new_root); 326 327 ret = btrfs_create_subvol_root(trans, new_root, new_dirid, 328 BTRFS_I(dir)->block_group); 329 /* 330 * insert the directory item 331 */ 332 ret = btrfs_set_inode_index(dir, &index); 333 BUG_ON(ret); 334 335 ret = btrfs_insert_dir_item(trans, root, 336 name, namelen, dir->i_ino, &key, 337 BTRFS_FT_DIR, index); 338 if (ret) 339 goto fail; 340 341 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 342 ret = btrfs_update_inode(trans, root, dir); 343 BUG_ON(ret); 344 345 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 346 objectid, root->root_key.objectid, 347 dir->i_ino, index, name, namelen); 348 349 BUG_ON(ret); 350 351 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry)); 352 fail: 353 dput(parent); 354 if (async_transid) { 355 *async_transid = trans->transid; 356 err = btrfs_commit_transaction_async(trans, root, 1); 357 } else { 358 err = btrfs_commit_transaction(trans, root); 359 } 360 if (err && !ret) 361 ret = err; 362 return ret; 363 } 364 365 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry, 366 char *name, int namelen, u64 *async_transid, 367 bool readonly) 368 { 369 struct inode *inode; 370 struct dentry *parent; 371 struct btrfs_pending_snapshot *pending_snapshot; 372 struct btrfs_trans_handle *trans; 373 int ret; 374 375 if (!root->ref_cows) 376 return -EINVAL; 377 378 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 379 if (!pending_snapshot) 380 return -ENOMEM; 381 382 btrfs_init_block_rsv(&pending_snapshot->block_rsv); 383 pending_snapshot->dentry = dentry; 384 pending_snapshot->root = root; 385 pending_snapshot->readonly = readonly; 386 387 trans = btrfs_start_transaction(root->fs_info->extent_root, 5); 388 if (IS_ERR(trans)) { 389 ret = PTR_ERR(trans); 390 goto fail; 391 } 392 393 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot); 394 BUG_ON(ret); 395 396 list_add(&pending_snapshot->list, 397 &trans->transaction->pending_snapshots); 398 if (async_transid) { 399 *async_transid = trans->transid; 400 ret = btrfs_commit_transaction_async(trans, 401 root->fs_info->extent_root, 1); 402 } else { 403 ret = btrfs_commit_transaction(trans, 404 root->fs_info->extent_root); 405 } 406 BUG_ON(ret); 407 408 ret = pending_snapshot->error; 409 if (ret) 410 goto fail; 411 412 btrfs_orphan_cleanup(pending_snapshot->snap); 413 414 parent = dget_parent(dentry); 415 inode = btrfs_lookup_dentry(parent->d_inode, dentry); 416 dput(parent); 417 if (IS_ERR(inode)) { 418 ret = PTR_ERR(inode); 419 goto fail; 420 } 421 BUG_ON(!inode); 422 d_instantiate(dentry, inode); 423 ret = 0; 424 fail: 425 kfree(pending_snapshot); 426 return ret; 427 } 428 429 /* copy of check_sticky in fs/namei.c() 430 * It's inline, so penalty for filesystems that don't use sticky bit is 431 * minimal. 432 */ 433 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode) 434 { 435 uid_t fsuid = current_fsuid(); 436 437 if (!(dir->i_mode & S_ISVTX)) 438 return 0; 439 if (inode->i_uid == fsuid) 440 return 0; 441 if (dir->i_uid == fsuid) 442 return 0; 443 return !capable(CAP_FOWNER); 444 } 445 446 /* copy of may_delete in fs/namei.c() 447 * Check whether we can remove a link victim from directory dir, check 448 * whether the type of victim is right. 449 * 1. We can't do it if dir is read-only (done in permission()) 450 * 2. We should have write and exec permissions on dir 451 * 3. We can't remove anything from append-only dir 452 * 4. We can't do anything with immutable dir (done in permission()) 453 * 5. If the sticky bit on dir is set we should either 454 * a. be owner of dir, or 455 * b. be owner of victim, or 456 * c. have CAP_FOWNER capability 457 * 6. If the victim is append-only or immutable we can't do antyhing with 458 * links pointing to it. 459 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 460 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 461 * 9. We can't remove a root or mountpoint. 462 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 463 * nfs_async_unlink(). 464 */ 465 466 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir) 467 { 468 int error; 469 470 if (!victim->d_inode) 471 return -ENOENT; 472 473 BUG_ON(victim->d_parent->d_inode != dir); 474 audit_inode_child(victim, dir); 475 476 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 477 if (error) 478 return error; 479 if (IS_APPEND(dir)) 480 return -EPERM; 481 if (btrfs_check_sticky(dir, victim->d_inode)|| 482 IS_APPEND(victim->d_inode)|| 483 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 484 return -EPERM; 485 if (isdir) { 486 if (!S_ISDIR(victim->d_inode->i_mode)) 487 return -ENOTDIR; 488 if (IS_ROOT(victim)) 489 return -EBUSY; 490 } else if (S_ISDIR(victim->d_inode->i_mode)) 491 return -EISDIR; 492 if (IS_DEADDIR(dir)) 493 return -ENOENT; 494 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 495 return -EBUSY; 496 return 0; 497 } 498 499 /* copy of may_create in fs/namei.c() */ 500 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 501 { 502 if (child->d_inode) 503 return -EEXIST; 504 if (IS_DEADDIR(dir)) 505 return -ENOENT; 506 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 507 } 508 509 /* 510 * Create a new subvolume below @parent. This is largely modeled after 511 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 512 * inside this filesystem so it's quite a bit simpler. 513 */ 514 static noinline int btrfs_mksubvol(struct path *parent, 515 char *name, int namelen, 516 struct btrfs_root *snap_src, 517 u64 *async_transid, bool readonly) 518 { 519 struct inode *dir = parent->dentry->d_inode; 520 struct dentry *dentry; 521 int error; 522 523 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 524 525 dentry = lookup_one_len(name, parent->dentry, namelen); 526 error = PTR_ERR(dentry); 527 if (IS_ERR(dentry)) 528 goto out_unlock; 529 530 error = -EEXIST; 531 if (dentry->d_inode) 532 goto out_dput; 533 534 error = mnt_want_write(parent->mnt); 535 if (error) 536 goto out_dput; 537 538 error = btrfs_may_create(dir, dentry); 539 if (error) 540 goto out_drop_write; 541 542 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 543 544 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 545 goto out_up_read; 546 547 if (snap_src) { 548 error = create_snapshot(snap_src, dentry, 549 name, namelen, async_transid, readonly); 550 } else { 551 error = create_subvol(BTRFS_I(dir)->root, dentry, 552 name, namelen, async_transid); 553 } 554 if (!error) 555 fsnotify_mkdir(dir, dentry); 556 out_up_read: 557 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 558 out_drop_write: 559 mnt_drop_write(parent->mnt); 560 out_dput: 561 dput(dentry); 562 out_unlock: 563 mutex_unlock(&dir->i_mutex); 564 return error; 565 } 566 567 static int should_defrag_range(struct inode *inode, u64 start, u64 len, 568 int thresh, u64 *last_len, u64 *skip, 569 u64 *defrag_end) 570 { 571 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 572 struct extent_map *em = NULL; 573 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 574 int ret = 1; 575 576 577 if (thresh == 0) 578 thresh = 256 * 1024; 579 580 /* 581 * make sure that once we start defragging and extent, we keep on 582 * defragging it 583 */ 584 if (start < *defrag_end) 585 return 1; 586 587 *skip = 0; 588 589 /* 590 * hopefully we have this extent in the tree already, try without 591 * the full extent lock 592 */ 593 read_lock(&em_tree->lock); 594 em = lookup_extent_mapping(em_tree, start, len); 595 read_unlock(&em_tree->lock); 596 597 if (!em) { 598 /* get the big lock and read metadata off disk */ 599 lock_extent(io_tree, start, start + len - 1, GFP_NOFS); 600 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 601 unlock_extent(io_tree, start, start + len - 1, GFP_NOFS); 602 603 if (IS_ERR(em)) 604 return 0; 605 } 606 607 /* this will cover holes, and inline extents */ 608 if (em->block_start >= EXTENT_MAP_LAST_BYTE) 609 ret = 0; 610 611 /* 612 * we hit a real extent, if it is big don't bother defragging it again 613 */ 614 if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh) 615 ret = 0; 616 617 /* 618 * last_len ends up being a counter of how many bytes we've defragged. 619 * every time we choose not to defrag an extent, we reset *last_len 620 * so that the next tiny extent will force a defrag. 621 * 622 * The end result of this is that tiny extents before a single big 623 * extent will force at least part of that big extent to be defragged. 624 */ 625 if (ret) { 626 *last_len += len; 627 *defrag_end = extent_map_end(em); 628 } else { 629 *last_len = 0; 630 *skip = extent_map_end(em); 631 *defrag_end = 0; 632 } 633 634 free_extent_map(em); 635 return ret; 636 } 637 638 static int btrfs_defrag_file(struct file *file, 639 struct btrfs_ioctl_defrag_range_args *range) 640 { 641 struct inode *inode = fdentry(file)->d_inode; 642 struct btrfs_root *root = BTRFS_I(inode)->root; 643 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 644 struct btrfs_ordered_extent *ordered; 645 struct page *page; 646 struct btrfs_super_block *disk_super; 647 unsigned long last_index; 648 unsigned long ra_pages = root->fs_info->bdi.ra_pages; 649 unsigned long total_read = 0; 650 u64 features; 651 u64 page_start; 652 u64 page_end; 653 u64 last_len = 0; 654 u64 skip = 0; 655 u64 defrag_end = 0; 656 unsigned long i; 657 int ret; 658 int compress_type = BTRFS_COMPRESS_ZLIB; 659 660 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 661 if (range->compress_type > BTRFS_COMPRESS_TYPES) 662 return -EINVAL; 663 if (range->compress_type) 664 compress_type = range->compress_type; 665 } 666 667 if (inode->i_size == 0) 668 return 0; 669 670 if (range->start + range->len > range->start) { 671 last_index = min_t(u64, inode->i_size - 1, 672 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 673 } else { 674 last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT; 675 } 676 677 i = range->start >> PAGE_CACHE_SHIFT; 678 while (i <= last_index) { 679 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 680 PAGE_CACHE_SIZE, 681 range->extent_thresh, 682 &last_len, &skip, 683 &defrag_end)) { 684 unsigned long next; 685 /* 686 * the should_defrag function tells us how much to skip 687 * bump our counter by the suggested amount 688 */ 689 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 690 i = max(i + 1, next); 691 continue; 692 } 693 694 if (total_read % ra_pages == 0) { 695 btrfs_force_ra(inode->i_mapping, &file->f_ra, file, i, 696 min(last_index, i + ra_pages - 1)); 697 } 698 total_read++; 699 mutex_lock(&inode->i_mutex); 700 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 701 BTRFS_I(inode)->force_compress = compress_type; 702 703 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 704 if (ret) 705 goto err_unlock; 706 again: 707 if (inode->i_size == 0 || 708 i > ((inode->i_size - 1) >> PAGE_CACHE_SHIFT)) { 709 ret = 0; 710 goto err_reservations; 711 } 712 713 page = grab_cache_page(inode->i_mapping, i); 714 if (!page) { 715 ret = -ENOMEM; 716 goto err_reservations; 717 } 718 719 if (!PageUptodate(page)) { 720 btrfs_readpage(NULL, page); 721 lock_page(page); 722 if (!PageUptodate(page)) { 723 unlock_page(page); 724 page_cache_release(page); 725 ret = -EIO; 726 goto err_reservations; 727 } 728 } 729 730 if (page->mapping != inode->i_mapping) { 731 unlock_page(page); 732 page_cache_release(page); 733 goto again; 734 } 735 736 wait_on_page_writeback(page); 737 738 if (PageDirty(page)) { 739 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 740 goto loop_unlock; 741 } 742 743 page_start = (u64)page->index << PAGE_CACHE_SHIFT; 744 page_end = page_start + PAGE_CACHE_SIZE - 1; 745 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 746 747 ordered = btrfs_lookup_ordered_extent(inode, page_start); 748 if (ordered) { 749 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 750 unlock_page(page); 751 page_cache_release(page); 752 btrfs_start_ordered_extent(inode, ordered, 1); 753 btrfs_put_ordered_extent(ordered); 754 goto again; 755 } 756 set_page_extent_mapped(page); 757 758 /* 759 * this makes sure page_mkwrite is called on the 760 * page if it is dirtied again later 761 */ 762 clear_page_dirty_for_io(page); 763 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, 764 page_end, EXTENT_DIRTY | EXTENT_DELALLOC | 765 EXTENT_DO_ACCOUNTING, GFP_NOFS); 766 767 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL); 768 ClearPageChecked(page); 769 set_page_dirty(page); 770 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 771 772 loop_unlock: 773 unlock_page(page); 774 page_cache_release(page); 775 mutex_unlock(&inode->i_mutex); 776 777 balance_dirty_pages_ratelimited_nr(inode->i_mapping, 1); 778 i++; 779 } 780 781 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) 782 filemap_flush(inode->i_mapping); 783 784 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 785 /* the filemap_flush will queue IO into the worker threads, but 786 * we have to make sure the IO is actually started and that 787 * ordered extents get created before we return 788 */ 789 atomic_inc(&root->fs_info->async_submit_draining); 790 while (atomic_read(&root->fs_info->nr_async_submits) || 791 atomic_read(&root->fs_info->async_delalloc_pages)) { 792 wait_event(root->fs_info->async_submit_wait, 793 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 794 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 795 } 796 atomic_dec(&root->fs_info->async_submit_draining); 797 798 mutex_lock(&inode->i_mutex); 799 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 800 mutex_unlock(&inode->i_mutex); 801 } 802 803 disk_super = &root->fs_info->super_copy; 804 features = btrfs_super_incompat_flags(disk_super); 805 if (range->compress_type == BTRFS_COMPRESS_LZO) { 806 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 807 btrfs_set_super_incompat_flags(disk_super, features); 808 } 809 810 return 0; 811 812 err_reservations: 813 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 814 err_unlock: 815 mutex_unlock(&inode->i_mutex); 816 return ret; 817 } 818 819 static noinline int btrfs_ioctl_resize(struct btrfs_root *root, 820 void __user *arg) 821 { 822 u64 new_size; 823 u64 old_size; 824 u64 devid = 1; 825 struct btrfs_ioctl_vol_args *vol_args; 826 struct btrfs_trans_handle *trans; 827 struct btrfs_device *device = NULL; 828 char *sizestr; 829 char *devstr = NULL; 830 int ret = 0; 831 int mod = 0; 832 833 if (root->fs_info->sb->s_flags & MS_RDONLY) 834 return -EROFS; 835 836 if (!capable(CAP_SYS_ADMIN)) 837 return -EPERM; 838 839 vol_args = memdup_user(arg, sizeof(*vol_args)); 840 if (IS_ERR(vol_args)) 841 return PTR_ERR(vol_args); 842 843 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 844 845 mutex_lock(&root->fs_info->volume_mutex); 846 sizestr = vol_args->name; 847 devstr = strchr(sizestr, ':'); 848 if (devstr) { 849 char *end; 850 sizestr = devstr + 1; 851 *devstr = '\0'; 852 devstr = vol_args->name; 853 devid = simple_strtoull(devstr, &end, 10); 854 printk(KERN_INFO "resizing devid %llu\n", 855 (unsigned long long)devid); 856 } 857 device = btrfs_find_device(root, devid, NULL, NULL); 858 if (!device) { 859 printk(KERN_INFO "resizer unable to find device %llu\n", 860 (unsigned long long)devid); 861 ret = -EINVAL; 862 goto out_unlock; 863 } 864 if (!strcmp(sizestr, "max")) 865 new_size = device->bdev->bd_inode->i_size; 866 else { 867 if (sizestr[0] == '-') { 868 mod = -1; 869 sizestr++; 870 } else if (sizestr[0] == '+') { 871 mod = 1; 872 sizestr++; 873 } 874 new_size = memparse(sizestr, NULL); 875 if (new_size == 0) { 876 ret = -EINVAL; 877 goto out_unlock; 878 } 879 } 880 881 old_size = device->total_bytes; 882 883 if (mod < 0) { 884 if (new_size > old_size) { 885 ret = -EINVAL; 886 goto out_unlock; 887 } 888 new_size = old_size - new_size; 889 } else if (mod > 0) { 890 new_size = old_size + new_size; 891 } 892 893 if (new_size < 256 * 1024 * 1024) { 894 ret = -EINVAL; 895 goto out_unlock; 896 } 897 if (new_size > device->bdev->bd_inode->i_size) { 898 ret = -EFBIG; 899 goto out_unlock; 900 } 901 902 do_div(new_size, root->sectorsize); 903 new_size *= root->sectorsize; 904 905 printk(KERN_INFO "new size for %s is %llu\n", 906 device->name, (unsigned long long)new_size); 907 908 if (new_size > old_size) { 909 trans = btrfs_start_transaction(root, 0); 910 if (IS_ERR(trans)) { 911 ret = PTR_ERR(trans); 912 goto out_unlock; 913 } 914 ret = btrfs_grow_device(trans, device, new_size); 915 btrfs_commit_transaction(trans, root); 916 } else { 917 ret = btrfs_shrink_device(device, new_size); 918 } 919 920 out_unlock: 921 mutex_unlock(&root->fs_info->volume_mutex); 922 kfree(vol_args); 923 return ret; 924 } 925 926 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 927 char *name, 928 unsigned long fd, 929 int subvol, 930 u64 *transid, 931 bool readonly) 932 { 933 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 934 struct file *src_file; 935 int namelen; 936 int ret = 0; 937 938 if (root->fs_info->sb->s_flags & MS_RDONLY) 939 return -EROFS; 940 941 namelen = strlen(name); 942 if (strchr(name, '/')) { 943 ret = -EINVAL; 944 goto out; 945 } 946 947 if (subvol) { 948 ret = btrfs_mksubvol(&file->f_path, name, namelen, 949 NULL, transid, readonly); 950 } else { 951 struct inode *src_inode; 952 src_file = fget(fd); 953 if (!src_file) { 954 ret = -EINVAL; 955 goto out; 956 } 957 958 src_inode = src_file->f_path.dentry->d_inode; 959 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) { 960 printk(KERN_INFO "btrfs: Snapshot src from " 961 "another FS\n"); 962 ret = -EINVAL; 963 fput(src_file); 964 goto out; 965 } 966 ret = btrfs_mksubvol(&file->f_path, name, namelen, 967 BTRFS_I(src_inode)->root, 968 transid, readonly); 969 fput(src_file); 970 } 971 out: 972 return ret; 973 } 974 975 static noinline int btrfs_ioctl_snap_create(struct file *file, 976 void __user *arg, int subvol) 977 { 978 struct btrfs_ioctl_vol_args *vol_args; 979 int ret; 980 981 vol_args = memdup_user(arg, sizeof(*vol_args)); 982 if (IS_ERR(vol_args)) 983 return PTR_ERR(vol_args); 984 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 985 986 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 987 vol_args->fd, subvol, 988 NULL, false); 989 990 kfree(vol_args); 991 return ret; 992 } 993 994 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 995 void __user *arg, int subvol) 996 { 997 struct btrfs_ioctl_vol_args_v2 *vol_args; 998 int ret; 999 u64 transid = 0; 1000 u64 *ptr = NULL; 1001 bool readonly = false; 1002 1003 vol_args = memdup_user(arg, sizeof(*vol_args)); 1004 if (IS_ERR(vol_args)) 1005 return PTR_ERR(vol_args); 1006 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1007 1008 if (vol_args->flags & 1009 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) { 1010 ret = -EOPNOTSUPP; 1011 goto out; 1012 } 1013 1014 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1015 ptr = &transid; 1016 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1017 readonly = true; 1018 1019 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1020 vol_args->fd, subvol, 1021 ptr, readonly); 1022 1023 if (ret == 0 && ptr && 1024 copy_to_user(arg + 1025 offsetof(struct btrfs_ioctl_vol_args_v2, 1026 transid), ptr, sizeof(*ptr))) 1027 ret = -EFAULT; 1028 out: 1029 kfree(vol_args); 1030 return ret; 1031 } 1032 1033 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1034 void __user *arg) 1035 { 1036 struct inode *inode = fdentry(file)->d_inode; 1037 struct btrfs_root *root = BTRFS_I(inode)->root; 1038 int ret = 0; 1039 u64 flags = 0; 1040 1041 if (inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) 1042 return -EINVAL; 1043 1044 down_read(&root->fs_info->subvol_sem); 1045 if (btrfs_root_readonly(root)) 1046 flags |= BTRFS_SUBVOL_RDONLY; 1047 up_read(&root->fs_info->subvol_sem); 1048 1049 if (copy_to_user(arg, &flags, sizeof(flags))) 1050 ret = -EFAULT; 1051 1052 return ret; 1053 } 1054 1055 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1056 void __user *arg) 1057 { 1058 struct inode *inode = fdentry(file)->d_inode; 1059 struct btrfs_root *root = BTRFS_I(inode)->root; 1060 struct btrfs_trans_handle *trans; 1061 u64 root_flags; 1062 u64 flags; 1063 int ret = 0; 1064 1065 if (root->fs_info->sb->s_flags & MS_RDONLY) 1066 return -EROFS; 1067 1068 if (inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) 1069 return -EINVAL; 1070 1071 if (copy_from_user(&flags, arg, sizeof(flags))) 1072 return -EFAULT; 1073 1074 if (flags & ~BTRFS_SUBVOL_CREATE_ASYNC) 1075 return -EINVAL; 1076 1077 if (flags & ~BTRFS_SUBVOL_RDONLY) 1078 return -EOPNOTSUPP; 1079 1080 down_write(&root->fs_info->subvol_sem); 1081 1082 /* nothing to do */ 1083 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1084 goto out; 1085 1086 root_flags = btrfs_root_flags(&root->root_item); 1087 if (flags & BTRFS_SUBVOL_RDONLY) 1088 btrfs_set_root_flags(&root->root_item, 1089 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1090 else 1091 btrfs_set_root_flags(&root->root_item, 1092 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1093 1094 trans = btrfs_start_transaction(root, 1); 1095 if (IS_ERR(trans)) { 1096 ret = PTR_ERR(trans); 1097 goto out_reset; 1098 } 1099 1100 ret = btrfs_update_root(trans, root, 1101 &root->root_key, &root->root_item); 1102 1103 btrfs_commit_transaction(trans, root); 1104 out_reset: 1105 if (ret) 1106 btrfs_set_root_flags(&root->root_item, root_flags); 1107 out: 1108 up_write(&root->fs_info->subvol_sem); 1109 return ret; 1110 } 1111 1112 /* 1113 * helper to check if the subvolume references other subvolumes 1114 */ 1115 static noinline int may_destroy_subvol(struct btrfs_root *root) 1116 { 1117 struct btrfs_path *path; 1118 struct btrfs_key key; 1119 int ret; 1120 1121 path = btrfs_alloc_path(); 1122 if (!path) 1123 return -ENOMEM; 1124 1125 key.objectid = root->root_key.objectid; 1126 key.type = BTRFS_ROOT_REF_KEY; 1127 key.offset = (u64)-1; 1128 1129 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1130 &key, path, 0, 0); 1131 if (ret < 0) 1132 goto out; 1133 BUG_ON(ret == 0); 1134 1135 ret = 0; 1136 if (path->slots[0] > 0) { 1137 path->slots[0]--; 1138 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1139 if (key.objectid == root->root_key.objectid && 1140 key.type == BTRFS_ROOT_REF_KEY) 1141 ret = -ENOTEMPTY; 1142 } 1143 out: 1144 btrfs_free_path(path); 1145 return ret; 1146 } 1147 1148 static noinline int key_in_sk(struct btrfs_key *key, 1149 struct btrfs_ioctl_search_key *sk) 1150 { 1151 struct btrfs_key test; 1152 int ret; 1153 1154 test.objectid = sk->min_objectid; 1155 test.type = sk->min_type; 1156 test.offset = sk->min_offset; 1157 1158 ret = btrfs_comp_cpu_keys(key, &test); 1159 if (ret < 0) 1160 return 0; 1161 1162 test.objectid = sk->max_objectid; 1163 test.type = sk->max_type; 1164 test.offset = sk->max_offset; 1165 1166 ret = btrfs_comp_cpu_keys(key, &test); 1167 if (ret > 0) 1168 return 0; 1169 return 1; 1170 } 1171 1172 static noinline int copy_to_sk(struct btrfs_root *root, 1173 struct btrfs_path *path, 1174 struct btrfs_key *key, 1175 struct btrfs_ioctl_search_key *sk, 1176 char *buf, 1177 unsigned long *sk_offset, 1178 int *num_found) 1179 { 1180 u64 found_transid; 1181 struct extent_buffer *leaf; 1182 struct btrfs_ioctl_search_header sh; 1183 unsigned long item_off; 1184 unsigned long item_len; 1185 int nritems; 1186 int i; 1187 int slot; 1188 int found = 0; 1189 int ret = 0; 1190 1191 leaf = path->nodes[0]; 1192 slot = path->slots[0]; 1193 nritems = btrfs_header_nritems(leaf); 1194 1195 if (btrfs_header_generation(leaf) > sk->max_transid) { 1196 i = nritems; 1197 goto advance_key; 1198 } 1199 found_transid = btrfs_header_generation(leaf); 1200 1201 for (i = slot; i < nritems; i++) { 1202 item_off = btrfs_item_ptr_offset(leaf, i); 1203 item_len = btrfs_item_size_nr(leaf, i); 1204 1205 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE) 1206 item_len = 0; 1207 1208 if (sizeof(sh) + item_len + *sk_offset > 1209 BTRFS_SEARCH_ARGS_BUFSIZE) { 1210 ret = 1; 1211 goto overflow; 1212 } 1213 1214 btrfs_item_key_to_cpu(leaf, key, i); 1215 if (!key_in_sk(key, sk)) 1216 continue; 1217 1218 sh.objectid = key->objectid; 1219 sh.offset = key->offset; 1220 sh.type = key->type; 1221 sh.len = item_len; 1222 sh.transid = found_transid; 1223 1224 /* copy search result header */ 1225 memcpy(buf + *sk_offset, &sh, sizeof(sh)); 1226 *sk_offset += sizeof(sh); 1227 1228 if (item_len) { 1229 char *p = buf + *sk_offset; 1230 /* copy the item */ 1231 read_extent_buffer(leaf, p, 1232 item_off, item_len); 1233 *sk_offset += item_len; 1234 } 1235 found++; 1236 1237 if (*num_found >= sk->nr_items) 1238 break; 1239 } 1240 advance_key: 1241 ret = 0; 1242 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 1243 key->offset++; 1244 else if (key->type < (u8)-1 && key->type < sk->max_type) { 1245 key->offset = 0; 1246 key->type++; 1247 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 1248 key->offset = 0; 1249 key->type = 0; 1250 key->objectid++; 1251 } else 1252 ret = 1; 1253 overflow: 1254 *num_found += found; 1255 return ret; 1256 } 1257 1258 static noinline int search_ioctl(struct inode *inode, 1259 struct btrfs_ioctl_search_args *args) 1260 { 1261 struct btrfs_root *root; 1262 struct btrfs_key key; 1263 struct btrfs_key max_key; 1264 struct btrfs_path *path; 1265 struct btrfs_ioctl_search_key *sk = &args->key; 1266 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 1267 int ret; 1268 int num_found = 0; 1269 unsigned long sk_offset = 0; 1270 1271 path = btrfs_alloc_path(); 1272 if (!path) 1273 return -ENOMEM; 1274 1275 if (sk->tree_id == 0) { 1276 /* search the root of the inode that was passed */ 1277 root = BTRFS_I(inode)->root; 1278 } else { 1279 key.objectid = sk->tree_id; 1280 key.type = BTRFS_ROOT_ITEM_KEY; 1281 key.offset = (u64)-1; 1282 root = btrfs_read_fs_root_no_name(info, &key); 1283 if (IS_ERR(root)) { 1284 printk(KERN_ERR "could not find root %llu\n", 1285 sk->tree_id); 1286 btrfs_free_path(path); 1287 return -ENOENT; 1288 } 1289 } 1290 1291 key.objectid = sk->min_objectid; 1292 key.type = sk->min_type; 1293 key.offset = sk->min_offset; 1294 1295 max_key.objectid = sk->max_objectid; 1296 max_key.type = sk->max_type; 1297 max_key.offset = sk->max_offset; 1298 1299 path->keep_locks = 1; 1300 1301 while(1) { 1302 ret = btrfs_search_forward(root, &key, &max_key, path, 0, 1303 sk->min_transid); 1304 if (ret != 0) { 1305 if (ret > 0) 1306 ret = 0; 1307 goto err; 1308 } 1309 ret = copy_to_sk(root, path, &key, sk, args->buf, 1310 &sk_offset, &num_found); 1311 btrfs_release_path(root, path); 1312 if (ret || num_found >= sk->nr_items) 1313 break; 1314 1315 } 1316 ret = 0; 1317 err: 1318 sk->nr_items = num_found; 1319 btrfs_free_path(path); 1320 return ret; 1321 } 1322 1323 static noinline int btrfs_ioctl_tree_search(struct file *file, 1324 void __user *argp) 1325 { 1326 struct btrfs_ioctl_search_args *args; 1327 struct inode *inode; 1328 int ret; 1329 1330 if (!capable(CAP_SYS_ADMIN)) 1331 return -EPERM; 1332 1333 args = memdup_user(argp, sizeof(*args)); 1334 if (IS_ERR(args)) 1335 return PTR_ERR(args); 1336 1337 inode = fdentry(file)->d_inode; 1338 ret = search_ioctl(inode, args); 1339 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1340 ret = -EFAULT; 1341 kfree(args); 1342 return ret; 1343 } 1344 1345 /* 1346 * Search INODE_REFs to identify path name of 'dirid' directory 1347 * in a 'tree_id' tree. and sets path name to 'name'. 1348 */ 1349 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1350 u64 tree_id, u64 dirid, char *name) 1351 { 1352 struct btrfs_root *root; 1353 struct btrfs_key key; 1354 char *ptr; 1355 int ret = -1; 1356 int slot; 1357 int len; 1358 int total_len = 0; 1359 struct btrfs_inode_ref *iref; 1360 struct extent_buffer *l; 1361 struct btrfs_path *path; 1362 1363 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1364 name[0]='\0'; 1365 return 0; 1366 } 1367 1368 path = btrfs_alloc_path(); 1369 if (!path) 1370 return -ENOMEM; 1371 1372 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 1373 1374 key.objectid = tree_id; 1375 key.type = BTRFS_ROOT_ITEM_KEY; 1376 key.offset = (u64)-1; 1377 root = btrfs_read_fs_root_no_name(info, &key); 1378 if (IS_ERR(root)) { 1379 printk(KERN_ERR "could not find root %llu\n", tree_id); 1380 ret = -ENOENT; 1381 goto out; 1382 } 1383 1384 key.objectid = dirid; 1385 key.type = BTRFS_INODE_REF_KEY; 1386 key.offset = (u64)-1; 1387 1388 while(1) { 1389 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1390 if (ret < 0) 1391 goto out; 1392 1393 l = path->nodes[0]; 1394 slot = path->slots[0]; 1395 if (ret > 0 && slot > 0) 1396 slot--; 1397 btrfs_item_key_to_cpu(l, &key, slot); 1398 1399 if (ret > 0 && (key.objectid != dirid || 1400 key.type != BTRFS_INODE_REF_KEY)) { 1401 ret = -ENOENT; 1402 goto out; 1403 } 1404 1405 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1406 len = btrfs_inode_ref_name_len(l, iref); 1407 ptr -= len + 1; 1408 total_len += len + 1; 1409 if (ptr < name) 1410 goto out; 1411 1412 *(ptr + len) = '/'; 1413 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len); 1414 1415 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1416 break; 1417 1418 btrfs_release_path(root, path); 1419 key.objectid = key.offset; 1420 key.offset = (u64)-1; 1421 dirid = key.objectid; 1422 1423 } 1424 if (ptr < name) 1425 goto out; 1426 memcpy(name, ptr, total_len); 1427 name[total_len]='\0'; 1428 ret = 0; 1429 out: 1430 btrfs_free_path(path); 1431 return ret; 1432 } 1433 1434 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 1435 void __user *argp) 1436 { 1437 struct btrfs_ioctl_ino_lookup_args *args; 1438 struct inode *inode; 1439 int ret; 1440 1441 if (!capable(CAP_SYS_ADMIN)) 1442 return -EPERM; 1443 1444 args = memdup_user(argp, sizeof(*args)); 1445 if (IS_ERR(args)) 1446 return PTR_ERR(args); 1447 1448 inode = fdentry(file)->d_inode; 1449 1450 if (args->treeid == 0) 1451 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 1452 1453 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 1454 args->treeid, args->objectid, 1455 args->name); 1456 1457 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1458 ret = -EFAULT; 1459 1460 kfree(args); 1461 return ret; 1462 } 1463 1464 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 1465 void __user *arg) 1466 { 1467 struct dentry *parent = fdentry(file); 1468 struct dentry *dentry; 1469 struct inode *dir = parent->d_inode; 1470 struct inode *inode; 1471 struct btrfs_root *root = BTRFS_I(dir)->root; 1472 struct btrfs_root *dest = NULL; 1473 struct btrfs_ioctl_vol_args *vol_args; 1474 struct btrfs_trans_handle *trans; 1475 int namelen; 1476 int ret; 1477 int err = 0; 1478 1479 vol_args = memdup_user(arg, sizeof(*vol_args)); 1480 if (IS_ERR(vol_args)) 1481 return PTR_ERR(vol_args); 1482 1483 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1484 namelen = strlen(vol_args->name); 1485 if (strchr(vol_args->name, '/') || 1486 strncmp(vol_args->name, "..", namelen) == 0) { 1487 err = -EINVAL; 1488 goto out; 1489 } 1490 1491 err = mnt_want_write(file->f_path.mnt); 1492 if (err) 1493 goto out; 1494 1495 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 1496 dentry = lookup_one_len(vol_args->name, parent, namelen); 1497 if (IS_ERR(dentry)) { 1498 err = PTR_ERR(dentry); 1499 goto out_unlock_dir; 1500 } 1501 1502 if (!dentry->d_inode) { 1503 err = -ENOENT; 1504 goto out_dput; 1505 } 1506 1507 inode = dentry->d_inode; 1508 dest = BTRFS_I(inode)->root; 1509 if (!capable(CAP_SYS_ADMIN)){ 1510 /* 1511 * Regular user. Only allow this with a special mount 1512 * option, when the user has write+exec access to the 1513 * subvol root, and when rmdir(2) would have been 1514 * allowed. 1515 * 1516 * Note that this is _not_ check that the subvol is 1517 * empty or doesn't contain data that we wouldn't 1518 * otherwise be able to delete. 1519 * 1520 * Users who want to delete empty subvols should try 1521 * rmdir(2). 1522 */ 1523 err = -EPERM; 1524 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 1525 goto out_dput; 1526 1527 /* 1528 * Do not allow deletion if the parent dir is the same 1529 * as the dir to be deleted. That means the ioctl 1530 * must be called on the dentry referencing the root 1531 * of the subvol, not a random directory contained 1532 * within it. 1533 */ 1534 err = -EINVAL; 1535 if (root == dest) 1536 goto out_dput; 1537 1538 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 1539 if (err) 1540 goto out_dput; 1541 1542 /* check if subvolume may be deleted by a non-root user */ 1543 err = btrfs_may_delete(dir, dentry, 1); 1544 if (err) 1545 goto out_dput; 1546 } 1547 1548 if (inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) { 1549 err = -EINVAL; 1550 goto out_dput; 1551 } 1552 1553 mutex_lock(&inode->i_mutex); 1554 err = d_invalidate(dentry); 1555 if (err) 1556 goto out_unlock; 1557 1558 down_write(&root->fs_info->subvol_sem); 1559 1560 err = may_destroy_subvol(dest); 1561 if (err) 1562 goto out_up_write; 1563 1564 trans = btrfs_start_transaction(root, 0); 1565 if (IS_ERR(trans)) { 1566 err = PTR_ERR(trans); 1567 goto out_up_write; 1568 } 1569 trans->block_rsv = &root->fs_info->global_block_rsv; 1570 1571 ret = btrfs_unlink_subvol(trans, root, dir, 1572 dest->root_key.objectid, 1573 dentry->d_name.name, 1574 dentry->d_name.len); 1575 BUG_ON(ret); 1576 1577 btrfs_record_root_in_trans(trans, dest); 1578 1579 memset(&dest->root_item.drop_progress, 0, 1580 sizeof(dest->root_item.drop_progress)); 1581 dest->root_item.drop_level = 0; 1582 btrfs_set_root_refs(&dest->root_item, 0); 1583 1584 if (!xchg(&dest->orphan_item_inserted, 1)) { 1585 ret = btrfs_insert_orphan_item(trans, 1586 root->fs_info->tree_root, 1587 dest->root_key.objectid); 1588 BUG_ON(ret); 1589 } 1590 1591 ret = btrfs_end_transaction(trans, root); 1592 BUG_ON(ret); 1593 inode->i_flags |= S_DEAD; 1594 out_up_write: 1595 up_write(&root->fs_info->subvol_sem); 1596 out_unlock: 1597 mutex_unlock(&inode->i_mutex); 1598 if (!err) { 1599 shrink_dcache_sb(root->fs_info->sb); 1600 btrfs_invalidate_inodes(dest); 1601 d_delete(dentry); 1602 } 1603 out_dput: 1604 dput(dentry); 1605 out_unlock_dir: 1606 mutex_unlock(&dir->i_mutex); 1607 mnt_drop_write(file->f_path.mnt); 1608 out: 1609 kfree(vol_args); 1610 return err; 1611 } 1612 1613 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 1614 { 1615 struct inode *inode = fdentry(file)->d_inode; 1616 struct btrfs_root *root = BTRFS_I(inode)->root; 1617 struct btrfs_ioctl_defrag_range_args *range; 1618 int ret; 1619 1620 if (btrfs_root_readonly(root)) 1621 return -EROFS; 1622 1623 ret = mnt_want_write(file->f_path.mnt); 1624 if (ret) 1625 return ret; 1626 1627 switch (inode->i_mode & S_IFMT) { 1628 case S_IFDIR: 1629 if (!capable(CAP_SYS_ADMIN)) { 1630 ret = -EPERM; 1631 goto out; 1632 } 1633 ret = btrfs_defrag_root(root, 0); 1634 if (ret) 1635 goto out; 1636 ret = btrfs_defrag_root(root->fs_info->extent_root, 0); 1637 break; 1638 case S_IFREG: 1639 if (!(file->f_mode & FMODE_WRITE)) { 1640 ret = -EINVAL; 1641 goto out; 1642 } 1643 1644 range = kzalloc(sizeof(*range), GFP_KERNEL); 1645 if (!range) { 1646 ret = -ENOMEM; 1647 goto out; 1648 } 1649 1650 if (argp) { 1651 if (copy_from_user(range, argp, 1652 sizeof(*range))) { 1653 ret = -EFAULT; 1654 kfree(range); 1655 goto out; 1656 } 1657 /* compression requires us to start the IO */ 1658 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1659 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 1660 range->extent_thresh = (u32)-1; 1661 } 1662 } else { 1663 /* the rest are all set to zero by kzalloc */ 1664 range->len = (u64)-1; 1665 } 1666 ret = btrfs_defrag_file(file, range); 1667 kfree(range); 1668 break; 1669 default: 1670 ret = -EINVAL; 1671 } 1672 out: 1673 mnt_drop_write(file->f_path.mnt); 1674 return ret; 1675 } 1676 1677 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 1678 { 1679 struct btrfs_ioctl_vol_args *vol_args; 1680 int ret; 1681 1682 if (!capable(CAP_SYS_ADMIN)) 1683 return -EPERM; 1684 1685 vol_args = memdup_user(arg, sizeof(*vol_args)); 1686 if (IS_ERR(vol_args)) 1687 return PTR_ERR(vol_args); 1688 1689 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1690 ret = btrfs_init_new_device(root, vol_args->name); 1691 1692 kfree(vol_args); 1693 return ret; 1694 } 1695 1696 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg) 1697 { 1698 struct btrfs_ioctl_vol_args *vol_args; 1699 int ret; 1700 1701 if (!capable(CAP_SYS_ADMIN)) 1702 return -EPERM; 1703 1704 if (root->fs_info->sb->s_flags & MS_RDONLY) 1705 return -EROFS; 1706 1707 vol_args = memdup_user(arg, sizeof(*vol_args)); 1708 if (IS_ERR(vol_args)) 1709 return PTR_ERR(vol_args); 1710 1711 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1712 ret = btrfs_rm_device(root, vol_args->name); 1713 1714 kfree(vol_args); 1715 return ret; 1716 } 1717 1718 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 1719 u64 off, u64 olen, u64 destoff) 1720 { 1721 struct inode *inode = fdentry(file)->d_inode; 1722 struct btrfs_root *root = BTRFS_I(inode)->root; 1723 struct file *src_file; 1724 struct inode *src; 1725 struct btrfs_trans_handle *trans; 1726 struct btrfs_path *path; 1727 struct extent_buffer *leaf; 1728 char *buf; 1729 struct btrfs_key key; 1730 u32 nritems; 1731 int slot; 1732 int ret; 1733 u64 len = olen; 1734 u64 bs = root->fs_info->sb->s_blocksize; 1735 u64 hint_byte; 1736 1737 /* 1738 * TODO: 1739 * - split compressed inline extents. annoying: we need to 1740 * decompress into destination's address_space (the file offset 1741 * may change, so source mapping won't do), then recompress (or 1742 * otherwise reinsert) a subrange. 1743 * - allow ranges within the same file to be cloned (provided 1744 * they don't overlap)? 1745 */ 1746 1747 /* the destination must be opened for writing */ 1748 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 1749 return -EINVAL; 1750 1751 if (btrfs_root_readonly(root)) 1752 return -EROFS; 1753 1754 ret = mnt_want_write(file->f_path.mnt); 1755 if (ret) 1756 return ret; 1757 1758 src_file = fget(srcfd); 1759 if (!src_file) { 1760 ret = -EBADF; 1761 goto out_drop_write; 1762 } 1763 1764 src = src_file->f_dentry->d_inode; 1765 1766 ret = -EINVAL; 1767 if (src == inode) 1768 goto out_fput; 1769 1770 /* the src must be open for reading */ 1771 if (!(src_file->f_mode & FMODE_READ)) 1772 goto out_fput; 1773 1774 ret = -EISDIR; 1775 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 1776 goto out_fput; 1777 1778 ret = -EXDEV; 1779 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root) 1780 goto out_fput; 1781 1782 ret = -ENOMEM; 1783 buf = vmalloc(btrfs_level_size(root, 0)); 1784 if (!buf) 1785 goto out_fput; 1786 1787 path = btrfs_alloc_path(); 1788 if (!path) { 1789 vfree(buf); 1790 goto out_fput; 1791 } 1792 path->reada = 2; 1793 1794 if (inode < src) { 1795 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 1796 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 1797 } else { 1798 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 1799 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 1800 } 1801 1802 /* determine range to clone */ 1803 ret = -EINVAL; 1804 if (off + len > src->i_size || off + len < off) 1805 goto out_unlock; 1806 if (len == 0) 1807 olen = len = src->i_size - off; 1808 /* if we extend to eof, continue to block boundary */ 1809 if (off + len == src->i_size) 1810 len = ALIGN(src->i_size, bs) - off; 1811 1812 /* verify the end result is block aligned */ 1813 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 1814 !IS_ALIGNED(destoff, bs)) 1815 goto out_unlock; 1816 1817 /* do any pending delalloc/csum calc on src, one way or 1818 another, and lock file content */ 1819 while (1) { 1820 struct btrfs_ordered_extent *ordered; 1821 lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 1822 ordered = btrfs_lookup_first_ordered_extent(src, off+len); 1823 if (!ordered && 1824 !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len, 1825 EXTENT_DELALLOC, 0, NULL)) 1826 break; 1827 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 1828 if (ordered) 1829 btrfs_put_ordered_extent(ordered); 1830 btrfs_wait_ordered_range(src, off, len); 1831 } 1832 1833 /* clone data */ 1834 key.objectid = src->i_ino; 1835 key.type = BTRFS_EXTENT_DATA_KEY; 1836 key.offset = 0; 1837 1838 while (1) { 1839 /* 1840 * note the key will change type as we walk through the 1841 * tree. 1842 */ 1843 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1844 if (ret < 0) 1845 goto out; 1846 1847 nritems = btrfs_header_nritems(path->nodes[0]); 1848 if (path->slots[0] >= nritems) { 1849 ret = btrfs_next_leaf(root, path); 1850 if (ret < 0) 1851 goto out; 1852 if (ret > 0) 1853 break; 1854 nritems = btrfs_header_nritems(path->nodes[0]); 1855 } 1856 leaf = path->nodes[0]; 1857 slot = path->slots[0]; 1858 1859 btrfs_item_key_to_cpu(leaf, &key, slot); 1860 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || 1861 key.objectid != src->i_ino) 1862 break; 1863 1864 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { 1865 struct btrfs_file_extent_item *extent; 1866 int type; 1867 u32 size; 1868 struct btrfs_key new_key; 1869 u64 disko = 0, diskl = 0; 1870 u64 datao = 0, datal = 0; 1871 u8 comp; 1872 u64 endoff; 1873 1874 size = btrfs_item_size_nr(leaf, slot); 1875 read_extent_buffer(leaf, buf, 1876 btrfs_item_ptr_offset(leaf, slot), 1877 size); 1878 1879 extent = btrfs_item_ptr(leaf, slot, 1880 struct btrfs_file_extent_item); 1881 comp = btrfs_file_extent_compression(leaf, extent); 1882 type = btrfs_file_extent_type(leaf, extent); 1883 if (type == BTRFS_FILE_EXTENT_REG || 1884 type == BTRFS_FILE_EXTENT_PREALLOC) { 1885 disko = btrfs_file_extent_disk_bytenr(leaf, 1886 extent); 1887 diskl = btrfs_file_extent_disk_num_bytes(leaf, 1888 extent); 1889 datao = btrfs_file_extent_offset(leaf, extent); 1890 datal = btrfs_file_extent_num_bytes(leaf, 1891 extent); 1892 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1893 /* take upper bound, may be compressed */ 1894 datal = btrfs_file_extent_ram_bytes(leaf, 1895 extent); 1896 } 1897 btrfs_release_path(root, path); 1898 1899 if (key.offset + datal <= off || 1900 key.offset >= off+len) 1901 goto next; 1902 1903 memcpy(&new_key, &key, sizeof(new_key)); 1904 new_key.objectid = inode->i_ino; 1905 if (off <= key.offset) 1906 new_key.offset = key.offset + destoff - off; 1907 else 1908 new_key.offset = destoff; 1909 1910 trans = btrfs_start_transaction(root, 1); 1911 if (IS_ERR(trans)) { 1912 ret = PTR_ERR(trans); 1913 goto out; 1914 } 1915 1916 if (type == BTRFS_FILE_EXTENT_REG || 1917 type == BTRFS_FILE_EXTENT_PREALLOC) { 1918 if (off > key.offset) { 1919 datao += off - key.offset; 1920 datal -= off - key.offset; 1921 } 1922 1923 if (key.offset + datal > off + len) 1924 datal = off + len - key.offset; 1925 1926 ret = btrfs_drop_extents(trans, inode, 1927 new_key.offset, 1928 new_key.offset + datal, 1929 &hint_byte, 1); 1930 BUG_ON(ret); 1931 1932 ret = btrfs_insert_empty_item(trans, root, path, 1933 &new_key, size); 1934 BUG_ON(ret); 1935 1936 leaf = path->nodes[0]; 1937 slot = path->slots[0]; 1938 write_extent_buffer(leaf, buf, 1939 btrfs_item_ptr_offset(leaf, slot), 1940 size); 1941 1942 extent = btrfs_item_ptr(leaf, slot, 1943 struct btrfs_file_extent_item); 1944 1945 /* disko == 0 means it's a hole */ 1946 if (!disko) 1947 datao = 0; 1948 1949 btrfs_set_file_extent_offset(leaf, extent, 1950 datao); 1951 btrfs_set_file_extent_num_bytes(leaf, extent, 1952 datal); 1953 if (disko) { 1954 inode_add_bytes(inode, datal); 1955 ret = btrfs_inc_extent_ref(trans, root, 1956 disko, diskl, 0, 1957 root->root_key.objectid, 1958 inode->i_ino, 1959 new_key.offset - datao); 1960 BUG_ON(ret); 1961 } 1962 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 1963 u64 skip = 0; 1964 u64 trim = 0; 1965 if (off > key.offset) { 1966 skip = off - key.offset; 1967 new_key.offset += skip; 1968 } 1969 1970 if (key.offset + datal > off+len) 1971 trim = key.offset + datal - (off+len); 1972 1973 if (comp && (skip || trim)) { 1974 ret = -EINVAL; 1975 btrfs_end_transaction(trans, root); 1976 goto out; 1977 } 1978 size -= skip + trim; 1979 datal -= skip + trim; 1980 1981 ret = btrfs_drop_extents(trans, inode, 1982 new_key.offset, 1983 new_key.offset + datal, 1984 &hint_byte, 1); 1985 BUG_ON(ret); 1986 1987 ret = btrfs_insert_empty_item(trans, root, path, 1988 &new_key, size); 1989 BUG_ON(ret); 1990 1991 if (skip) { 1992 u32 start = 1993 btrfs_file_extent_calc_inline_size(0); 1994 memmove(buf+start, buf+start+skip, 1995 datal); 1996 } 1997 1998 leaf = path->nodes[0]; 1999 slot = path->slots[0]; 2000 write_extent_buffer(leaf, buf, 2001 btrfs_item_ptr_offset(leaf, slot), 2002 size); 2003 inode_add_bytes(inode, datal); 2004 } 2005 2006 btrfs_mark_buffer_dirty(leaf); 2007 btrfs_release_path(root, path); 2008 2009 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2010 2011 /* 2012 * we round up to the block size at eof when 2013 * determining which extents to clone above, 2014 * but shouldn't round up the file size 2015 */ 2016 endoff = new_key.offset + datal; 2017 if (endoff > destoff+olen) 2018 endoff = destoff+olen; 2019 if (endoff > inode->i_size) 2020 btrfs_i_size_write(inode, endoff); 2021 2022 BTRFS_I(inode)->flags = BTRFS_I(src)->flags; 2023 ret = btrfs_update_inode(trans, root, inode); 2024 BUG_ON(ret); 2025 btrfs_end_transaction(trans, root); 2026 } 2027 next: 2028 btrfs_release_path(root, path); 2029 key.offset++; 2030 } 2031 ret = 0; 2032 out: 2033 btrfs_release_path(root, path); 2034 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 2035 out_unlock: 2036 mutex_unlock(&src->i_mutex); 2037 mutex_unlock(&inode->i_mutex); 2038 vfree(buf); 2039 btrfs_free_path(path); 2040 out_fput: 2041 fput(src_file); 2042 out_drop_write: 2043 mnt_drop_write(file->f_path.mnt); 2044 return ret; 2045 } 2046 2047 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 2048 { 2049 struct btrfs_ioctl_clone_range_args args; 2050 2051 if (copy_from_user(&args, argp, sizeof(args))) 2052 return -EFAULT; 2053 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 2054 args.src_length, args.dest_offset); 2055 } 2056 2057 /* 2058 * there are many ways the trans_start and trans_end ioctls can lead 2059 * to deadlocks. They should only be used by applications that 2060 * basically own the machine, and have a very in depth understanding 2061 * of all the possible deadlocks and enospc problems. 2062 */ 2063 static long btrfs_ioctl_trans_start(struct file *file) 2064 { 2065 struct inode *inode = fdentry(file)->d_inode; 2066 struct btrfs_root *root = BTRFS_I(inode)->root; 2067 struct btrfs_trans_handle *trans; 2068 int ret; 2069 2070 ret = -EPERM; 2071 if (!capable(CAP_SYS_ADMIN)) 2072 goto out; 2073 2074 ret = -EINPROGRESS; 2075 if (file->private_data) 2076 goto out; 2077 2078 ret = -EROFS; 2079 if (btrfs_root_readonly(root)) 2080 goto out; 2081 2082 ret = mnt_want_write(file->f_path.mnt); 2083 if (ret) 2084 goto out; 2085 2086 mutex_lock(&root->fs_info->trans_mutex); 2087 root->fs_info->open_ioctl_trans++; 2088 mutex_unlock(&root->fs_info->trans_mutex); 2089 2090 ret = -ENOMEM; 2091 trans = btrfs_start_ioctl_transaction(root, 0); 2092 if (IS_ERR(trans)) 2093 goto out_drop; 2094 2095 file->private_data = trans; 2096 return 0; 2097 2098 out_drop: 2099 mutex_lock(&root->fs_info->trans_mutex); 2100 root->fs_info->open_ioctl_trans--; 2101 mutex_unlock(&root->fs_info->trans_mutex); 2102 mnt_drop_write(file->f_path.mnt); 2103 out: 2104 return ret; 2105 } 2106 2107 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2108 { 2109 struct inode *inode = fdentry(file)->d_inode; 2110 struct btrfs_root *root = BTRFS_I(inode)->root; 2111 struct btrfs_root *new_root; 2112 struct btrfs_dir_item *di; 2113 struct btrfs_trans_handle *trans; 2114 struct btrfs_path *path; 2115 struct btrfs_key location; 2116 struct btrfs_disk_key disk_key; 2117 struct btrfs_super_block *disk_super; 2118 u64 features; 2119 u64 objectid = 0; 2120 u64 dir_id; 2121 2122 if (!capable(CAP_SYS_ADMIN)) 2123 return -EPERM; 2124 2125 if (copy_from_user(&objectid, argp, sizeof(objectid))) 2126 return -EFAULT; 2127 2128 if (!objectid) 2129 objectid = root->root_key.objectid; 2130 2131 location.objectid = objectid; 2132 location.type = BTRFS_ROOT_ITEM_KEY; 2133 location.offset = (u64)-1; 2134 2135 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 2136 if (IS_ERR(new_root)) 2137 return PTR_ERR(new_root); 2138 2139 if (btrfs_root_refs(&new_root->root_item) == 0) 2140 return -ENOENT; 2141 2142 path = btrfs_alloc_path(); 2143 if (!path) 2144 return -ENOMEM; 2145 path->leave_spinning = 1; 2146 2147 trans = btrfs_start_transaction(root, 1); 2148 if (IS_ERR(trans)) { 2149 btrfs_free_path(path); 2150 return PTR_ERR(trans); 2151 } 2152 2153 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy); 2154 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 2155 dir_id, "default", 7, 1); 2156 if (IS_ERR_OR_NULL(di)) { 2157 btrfs_free_path(path); 2158 btrfs_end_transaction(trans, root); 2159 printk(KERN_ERR "Umm, you don't have the default dir item, " 2160 "this isn't going to work\n"); 2161 return -ENOENT; 2162 } 2163 2164 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2165 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2166 btrfs_mark_buffer_dirty(path->nodes[0]); 2167 btrfs_free_path(path); 2168 2169 disk_super = &root->fs_info->super_copy; 2170 features = btrfs_super_incompat_flags(disk_super); 2171 if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) { 2172 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL; 2173 btrfs_set_super_incompat_flags(disk_super, features); 2174 } 2175 btrfs_end_transaction(trans, root); 2176 2177 return 0; 2178 } 2179 2180 static void get_block_group_info(struct list_head *groups_list, 2181 struct btrfs_ioctl_space_info *space) 2182 { 2183 struct btrfs_block_group_cache *block_group; 2184 2185 space->total_bytes = 0; 2186 space->used_bytes = 0; 2187 space->flags = 0; 2188 list_for_each_entry(block_group, groups_list, list) { 2189 space->flags = block_group->flags; 2190 space->total_bytes += block_group->key.offset; 2191 space->used_bytes += 2192 btrfs_block_group_used(&block_group->item); 2193 } 2194 } 2195 2196 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 2197 { 2198 struct btrfs_ioctl_space_args space_args; 2199 struct btrfs_ioctl_space_info space; 2200 struct btrfs_ioctl_space_info *dest; 2201 struct btrfs_ioctl_space_info *dest_orig; 2202 struct btrfs_ioctl_space_info *user_dest; 2203 struct btrfs_space_info *info; 2204 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 2205 BTRFS_BLOCK_GROUP_SYSTEM, 2206 BTRFS_BLOCK_GROUP_METADATA, 2207 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 2208 int num_types = 4; 2209 int alloc_size; 2210 int ret = 0; 2211 u64 slot_count = 0; 2212 int i, c; 2213 2214 if (copy_from_user(&space_args, 2215 (struct btrfs_ioctl_space_args __user *)arg, 2216 sizeof(space_args))) 2217 return -EFAULT; 2218 2219 for (i = 0; i < num_types; i++) { 2220 struct btrfs_space_info *tmp; 2221 2222 info = NULL; 2223 rcu_read_lock(); 2224 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2225 list) { 2226 if (tmp->flags == types[i]) { 2227 info = tmp; 2228 break; 2229 } 2230 } 2231 rcu_read_unlock(); 2232 2233 if (!info) 2234 continue; 2235 2236 down_read(&info->groups_sem); 2237 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2238 if (!list_empty(&info->block_groups[c])) 2239 slot_count++; 2240 } 2241 up_read(&info->groups_sem); 2242 } 2243 2244 /* space_slots == 0 means they are asking for a count */ 2245 if (space_args.space_slots == 0) { 2246 space_args.total_spaces = slot_count; 2247 goto out; 2248 } 2249 2250 slot_count = min_t(u64, space_args.space_slots, slot_count); 2251 2252 alloc_size = sizeof(*dest) * slot_count; 2253 2254 /* we generally have at most 6 or so space infos, one for each raid 2255 * level. So, a whole page should be more than enough for everyone 2256 */ 2257 if (alloc_size > PAGE_CACHE_SIZE) 2258 return -ENOMEM; 2259 2260 space_args.total_spaces = 0; 2261 dest = kmalloc(alloc_size, GFP_NOFS); 2262 if (!dest) 2263 return -ENOMEM; 2264 dest_orig = dest; 2265 2266 /* now we have a buffer to copy into */ 2267 for (i = 0; i < num_types; i++) { 2268 struct btrfs_space_info *tmp; 2269 2270 if (!slot_count) 2271 break; 2272 2273 info = NULL; 2274 rcu_read_lock(); 2275 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2276 list) { 2277 if (tmp->flags == types[i]) { 2278 info = tmp; 2279 break; 2280 } 2281 } 2282 rcu_read_unlock(); 2283 2284 if (!info) 2285 continue; 2286 down_read(&info->groups_sem); 2287 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2288 if (!list_empty(&info->block_groups[c])) { 2289 get_block_group_info(&info->block_groups[c], 2290 &space); 2291 memcpy(dest, &space, sizeof(space)); 2292 dest++; 2293 space_args.total_spaces++; 2294 slot_count--; 2295 } 2296 if (!slot_count) 2297 break; 2298 } 2299 up_read(&info->groups_sem); 2300 } 2301 2302 user_dest = (struct btrfs_ioctl_space_info *) 2303 (arg + sizeof(struct btrfs_ioctl_space_args)); 2304 2305 if (copy_to_user(user_dest, dest_orig, alloc_size)) 2306 ret = -EFAULT; 2307 2308 kfree(dest_orig); 2309 out: 2310 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 2311 ret = -EFAULT; 2312 2313 return ret; 2314 } 2315 2316 /* 2317 * there are many ways the trans_start and trans_end ioctls can lead 2318 * to deadlocks. They should only be used by applications that 2319 * basically own the machine, and have a very in depth understanding 2320 * of all the possible deadlocks and enospc problems. 2321 */ 2322 long btrfs_ioctl_trans_end(struct file *file) 2323 { 2324 struct inode *inode = fdentry(file)->d_inode; 2325 struct btrfs_root *root = BTRFS_I(inode)->root; 2326 struct btrfs_trans_handle *trans; 2327 2328 trans = file->private_data; 2329 if (!trans) 2330 return -EINVAL; 2331 file->private_data = NULL; 2332 2333 btrfs_end_transaction(trans, root); 2334 2335 mutex_lock(&root->fs_info->trans_mutex); 2336 root->fs_info->open_ioctl_trans--; 2337 mutex_unlock(&root->fs_info->trans_mutex); 2338 2339 mnt_drop_write(file->f_path.mnt); 2340 return 0; 2341 } 2342 2343 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp) 2344 { 2345 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 2346 struct btrfs_trans_handle *trans; 2347 u64 transid; 2348 2349 trans = btrfs_start_transaction(root, 0); 2350 if (IS_ERR(trans)) 2351 return PTR_ERR(trans); 2352 transid = trans->transid; 2353 btrfs_commit_transaction_async(trans, root, 0); 2354 2355 if (argp) 2356 if (copy_to_user(argp, &transid, sizeof(transid))) 2357 return -EFAULT; 2358 return 0; 2359 } 2360 2361 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp) 2362 { 2363 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 2364 u64 transid; 2365 2366 if (argp) { 2367 if (copy_from_user(&transid, argp, sizeof(transid))) 2368 return -EFAULT; 2369 } else { 2370 transid = 0; /* current trans */ 2371 } 2372 return btrfs_wait_for_commit(root, transid); 2373 } 2374 2375 long btrfs_ioctl(struct file *file, unsigned int 2376 cmd, unsigned long arg) 2377 { 2378 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 2379 void __user *argp = (void __user *)arg; 2380 2381 switch (cmd) { 2382 case FS_IOC_GETFLAGS: 2383 return btrfs_ioctl_getflags(file, argp); 2384 case FS_IOC_SETFLAGS: 2385 return btrfs_ioctl_setflags(file, argp); 2386 case FS_IOC_GETVERSION: 2387 return btrfs_ioctl_getversion(file, argp); 2388 case BTRFS_IOC_SNAP_CREATE: 2389 return btrfs_ioctl_snap_create(file, argp, 0); 2390 case BTRFS_IOC_SNAP_CREATE_V2: 2391 return btrfs_ioctl_snap_create_v2(file, argp, 0); 2392 case BTRFS_IOC_SUBVOL_CREATE: 2393 return btrfs_ioctl_snap_create(file, argp, 1); 2394 case BTRFS_IOC_SNAP_DESTROY: 2395 return btrfs_ioctl_snap_destroy(file, argp); 2396 case BTRFS_IOC_SUBVOL_GETFLAGS: 2397 return btrfs_ioctl_subvol_getflags(file, argp); 2398 case BTRFS_IOC_SUBVOL_SETFLAGS: 2399 return btrfs_ioctl_subvol_setflags(file, argp); 2400 case BTRFS_IOC_DEFAULT_SUBVOL: 2401 return btrfs_ioctl_default_subvol(file, argp); 2402 case BTRFS_IOC_DEFRAG: 2403 return btrfs_ioctl_defrag(file, NULL); 2404 case BTRFS_IOC_DEFRAG_RANGE: 2405 return btrfs_ioctl_defrag(file, argp); 2406 case BTRFS_IOC_RESIZE: 2407 return btrfs_ioctl_resize(root, argp); 2408 case BTRFS_IOC_ADD_DEV: 2409 return btrfs_ioctl_add_dev(root, argp); 2410 case BTRFS_IOC_RM_DEV: 2411 return btrfs_ioctl_rm_dev(root, argp); 2412 case BTRFS_IOC_BALANCE: 2413 return btrfs_balance(root->fs_info->dev_root); 2414 case BTRFS_IOC_CLONE: 2415 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 2416 case BTRFS_IOC_CLONE_RANGE: 2417 return btrfs_ioctl_clone_range(file, argp); 2418 case BTRFS_IOC_TRANS_START: 2419 return btrfs_ioctl_trans_start(file); 2420 case BTRFS_IOC_TRANS_END: 2421 return btrfs_ioctl_trans_end(file); 2422 case BTRFS_IOC_TREE_SEARCH: 2423 return btrfs_ioctl_tree_search(file, argp); 2424 case BTRFS_IOC_INO_LOOKUP: 2425 return btrfs_ioctl_ino_lookup(file, argp); 2426 case BTRFS_IOC_SPACE_INFO: 2427 return btrfs_ioctl_space_info(root, argp); 2428 case BTRFS_IOC_SYNC: 2429 btrfs_sync_fs(file->f_dentry->d_sb, 1); 2430 return 0; 2431 case BTRFS_IOC_START_SYNC: 2432 return btrfs_ioctl_start_sync(file, argp); 2433 case BTRFS_IOC_WAIT_SYNC: 2434 return btrfs_ioctl_wait_sync(file, argp); 2435 } 2436 2437 return -ENOTTY; 2438 } 2439