1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "export.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "volumes.h" 39 #include "locking.h" 40 #include "backref.h" 41 #include "rcu-string.h" 42 #include "send.h" 43 #include "dev-replace.h" 44 #include "props.h" 45 #include "sysfs.h" 46 #include "qgroup.h" 47 #include "tree-log.h" 48 #include "compression.h" 49 #include "space-info.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "subpage.h" 53 54 #ifdef CONFIG_64BIT 55 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 56 * structures are incorrect, as the timespec structure from userspace 57 * is 4 bytes too small. We define these alternatives here to teach 58 * the kernel about the 32-bit struct packing. 59 */ 60 struct btrfs_ioctl_timespec_32 { 61 __u64 sec; 62 __u32 nsec; 63 } __attribute__ ((__packed__)); 64 65 struct btrfs_ioctl_received_subvol_args_32 { 66 char uuid[BTRFS_UUID_SIZE]; /* in */ 67 __u64 stransid; /* in */ 68 __u64 rtransid; /* out */ 69 struct btrfs_ioctl_timespec_32 stime; /* in */ 70 struct btrfs_ioctl_timespec_32 rtime; /* out */ 71 __u64 flags; /* in */ 72 __u64 reserved[16]; /* in */ 73 } __attribute__ ((__packed__)); 74 75 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 76 struct btrfs_ioctl_received_subvol_args_32) 77 #endif 78 79 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 80 struct btrfs_ioctl_send_args_32 { 81 __s64 send_fd; /* in */ 82 __u64 clone_sources_count; /* in */ 83 compat_uptr_t clone_sources; /* in */ 84 __u64 parent_root; /* in */ 85 __u64 flags; /* in */ 86 __u32 version; /* in */ 87 __u8 reserved[28]; /* in */ 88 } __attribute__ ((__packed__)); 89 90 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 91 struct btrfs_ioctl_send_args_32) 92 93 struct btrfs_ioctl_encoded_io_args_32 { 94 compat_uptr_t iov; 95 compat_ulong_t iovcnt; 96 __s64 offset; 97 __u64 flags; 98 __u64 len; 99 __u64 unencoded_len; 100 __u64 unencoded_offset; 101 __u32 compression; 102 __u32 encryption; 103 __u8 reserved[64]; 104 }; 105 106 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 107 struct btrfs_ioctl_encoded_io_args_32) 108 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 109 struct btrfs_ioctl_encoded_io_args_32) 110 #endif 111 112 /* Mask out flags that are inappropriate for the given type of inode. */ 113 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 114 unsigned int flags) 115 { 116 if (S_ISDIR(inode->i_mode)) 117 return flags; 118 else if (S_ISREG(inode->i_mode)) 119 return flags & ~FS_DIRSYNC_FL; 120 else 121 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 122 } 123 124 /* 125 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 126 * ioctl. 127 */ 128 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 129 { 130 unsigned int iflags = 0; 131 u32 flags = binode->flags; 132 u32 ro_flags = binode->ro_flags; 133 134 if (flags & BTRFS_INODE_SYNC) 135 iflags |= FS_SYNC_FL; 136 if (flags & BTRFS_INODE_IMMUTABLE) 137 iflags |= FS_IMMUTABLE_FL; 138 if (flags & BTRFS_INODE_APPEND) 139 iflags |= FS_APPEND_FL; 140 if (flags & BTRFS_INODE_NODUMP) 141 iflags |= FS_NODUMP_FL; 142 if (flags & BTRFS_INODE_NOATIME) 143 iflags |= FS_NOATIME_FL; 144 if (flags & BTRFS_INODE_DIRSYNC) 145 iflags |= FS_DIRSYNC_FL; 146 if (flags & BTRFS_INODE_NODATACOW) 147 iflags |= FS_NOCOW_FL; 148 if (ro_flags & BTRFS_INODE_RO_VERITY) 149 iflags |= FS_VERITY_FL; 150 151 if (flags & BTRFS_INODE_NOCOMPRESS) 152 iflags |= FS_NOCOMP_FL; 153 else if (flags & BTRFS_INODE_COMPRESS) 154 iflags |= FS_COMPR_FL; 155 156 return iflags; 157 } 158 159 /* 160 * Update inode->i_flags based on the btrfs internal flags. 161 */ 162 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 163 { 164 struct btrfs_inode *binode = BTRFS_I(inode); 165 unsigned int new_fl = 0; 166 167 if (binode->flags & BTRFS_INODE_SYNC) 168 new_fl |= S_SYNC; 169 if (binode->flags & BTRFS_INODE_IMMUTABLE) 170 new_fl |= S_IMMUTABLE; 171 if (binode->flags & BTRFS_INODE_APPEND) 172 new_fl |= S_APPEND; 173 if (binode->flags & BTRFS_INODE_NOATIME) 174 new_fl |= S_NOATIME; 175 if (binode->flags & BTRFS_INODE_DIRSYNC) 176 new_fl |= S_DIRSYNC; 177 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 178 new_fl |= S_VERITY; 179 180 set_mask_bits(&inode->i_flags, 181 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 182 S_VERITY, new_fl); 183 } 184 185 /* 186 * Check if @flags are a supported and valid set of FS_*_FL flags and that 187 * the old and new flags are not conflicting 188 */ 189 static int check_fsflags(unsigned int old_flags, unsigned int flags) 190 { 191 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 192 FS_NOATIME_FL | FS_NODUMP_FL | \ 193 FS_SYNC_FL | FS_DIRSYNC_FL | \ 194 FS_NOCOMP_FL | FS_COMPR_FL | 195 FS_NOCOW_FL)) 196 return -EOPNOTSUPP; 197 198 /* COMPR and NOCOMP on new/old are valid */ 199 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 200 return -EINVAL; 201 202 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 203 return -EINVAL; 204 205 /* NOCOW and compression options are mutually exclusive */ 206 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 207 return -EINVAL; 208 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 209 return -EINVAL; 210 211 return 0; 212 } 213 214 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 215 unsigned int flags) 216 { 217 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 218 return -EPERM; 219 220 return 0; 221 } 222 223 /* 224 * Set flags/xflags from the internal inode flags. The remaining items of 225 * fsxattr are zeroed. 226 */ 227 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 228 { 229 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 230 231 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 232 return 0; 233 } 234 235 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 236 struct dentry *dentry, struct fileattr *fa) 237 { 238 struct inode *inode = d_inode(dentry); 239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 240 struct btrfs_inode *binode = BTRFS_I(inode); 241 struct btrfs_root *root = binode->root; 242 struct btrfs_trans_handle *trans; 243 unsigned int fsflags, old_fsflags; 244 int ret; 245 const char *comp = NULL; 246 u32 binode_flags; 247 248 if (btrfs_root_readonly(root)) 249 return -EROFS; 250 251 if (fileattr_has_fsx(fa)) 252 return -EOPNOTSUPP; 253 254 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 255 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 256 ret = check_fsflags(old_fsflags, fsflags); 257 if (ret) 258 return ret; 259 260 ret = check_fsflags_compatible(fs_info, fsflags); 261 if (ret) 262 return ret; 263 264 binode_flags = binode->flags; 265 if (fsflags & FS_SYNC_FL) 266 binode_flags |= BTRFS_INODE_SYNC; 267 else 268 binode_flags &= ~BTRFS_INODE_SYNC; 269 if (fsflags & FS_IMMUTABLE_FL) 270 binode_flags |= BTRFS_INODE_IMMUTABLE; 271 else 272 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 273 if (fsflags & FS_APPEND_FL) 274 binode_flags |= BTRFS_INODE_APPEND; 275 else 276 binode_flags &= ~BTRFS_INODE_APPEND; 277 if (fsflags & FS_NODUMP_FL) 278 binode_flags |= BTRFS_INODE_NODUMP; 279 else 280 binode_flags &= ~BTRFS_INODE_NODUMP; 281 if (fsflags & FS_NOATIME_FL) 282 binode_flags |= BTRFS_INODE_NOATIME; 283 else 284 binode_flags &= ~BTRFS_INODE_NOATIME; 285 286 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 287 if (!fa->flags_valid) { 288 /* 1 item for the inode */ 289 trans = btrfs_start_transaction(root, 1); 290 if (IS_ERR(trans)) 291 return PTR_ERR(trans); 292 goto update_flags; 293 } 294 295 if (fsflags & FS_DIRSYNC_FL) 296 binode_flags |= BTRFS_INODE_DIRSYNC; 297 else 298 binode_flags &= ~BTRFS_INODE_DIRSYNC; 299 if (fsflags & FS_NOCOW_FL) { 300 if (S_ISREG(inode->i_mode)) { 301 /* 302 * It's safe to turn csums off here, no extents exist. 303 * Otherwise we want the flag to reflect the real COW 304 * status of the file and will not set it. 305 */ 306 if (inode->i_size == 0) 307 binode_flags |= BTRFS_INODE_NODATACOW | 308 BTRFS_INODE_NODATASUM; 309 } else { 310 binode_flags |= BTRFS_INODE_NODATACOW; 311 } 312 } else { 313 /* 314 * Revert back under same assumptions as above 315 */ 316 if (S_ISREG(inode->i_mode)) { 317 if (inode->i_size == 0) 318 binode_flags &= ~(BTRFS_INODE_NODATACOW | 319 BTRFS_INODE_NODATASUM); 320 } else { 321 binode_flags &= ~BTRFS_INODE_NODATACOW; 322 } 323 } 324 325 /* 326 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 327 * flag may be changed automatically if compression code won't make 328 * things smaller. 329 */ 330 if (fsflags & FS_NOCOMP_FL) { 331 binode_flags &= ~BTRFS_INODE_COMPRESS; 332 binode_flags |= BTRFS_INODE_NOCOMPRESS; 333 } else if (fsflags & FS_COMPR_FL) { 334 335 if (IS_SWAPFILE(inode)) 336 return -ETXTBSY; 337 338 binode_flags |= BTRFS_INODE_COMPRESS; 339 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 340 341 comp = btrfs_compress_type2str(fs_info->compress_type); 342 if (!comp || comp[0] == 0) 343 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 344 } else { 345 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 346 } 347 348 /* 349 * 1 for inode item 350 * 2 for properties 351 */ 352 trans = btrfs_start_transaction(root, 3); 353 if (IS_ERR(trans)) 354 return PTR_ERR(trans); 355 356 if (comp) { 357 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 358 strlen(comp), 0); 359 if (ret) { 360 btrfs_abort_transaction(trans, ret); 361 goto out_end_trans; 362 } 363 } else { 364 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 365 0, 0); 366 if (ret && ret != -ENODATA) { 367 btrfs_abort_transaction(trans, ret); 368 goto out_end_trans; 369 } 370 } 371 372 update_flags: 373 binode->flags = binode_flags; 374 btrfs_sync_inode_flags_to_i_flags(inode); 375 inode_inc_iversion(inode); 376 inode->i_ctime = current_time(inode); 377 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 378 379 out_end_trans: 380 btrfs_end_transaction(trans); 381 return ret; 382 } 383 384 /* 385 * Start exclusive operation @type, return true on success 386 */ 387 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 388 enum btrfs_exclusive_operation type) 389 { 390 bool ret = false; 391 392 spin_lock(&fs_info->super_lock); 393 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 394 fs_info->exclusive_operation = type; 395 ret = true; 396 } 397 spin_unlock(&fs_info->super_lock); 398 399 return ret; 400 } 401 402 /* 403 * Conditionally allow to enter the exclusive operation in case it's compatible 404 * with the running one. This must be paired with btrfs_exclop_start_unlock and 405 * btrfs_exclop_finish. 406 * 407 * Compatibility: 408 * - the same type is already running 409 * - when trying to add a device and balance has been paused 410 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 411 * must check the condition first that would allow none -> @type 412 */ 413 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 414 enum btrfs_exclusive_operation type) 415 { 416 spin_lock(&fs_info->super_lock); 417 if (fs_info->exclusive_operation == type || 418 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 419 type == BTRFS_EXCLOP_DEV_ADD)) 420 return true; 421 422 spin_unlock(&fs_info->super_lock); 423 return false; 424 } 425 426 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 427 { 428 spin_unlock(&fs_info->super_lock); 429 } 430 431 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 432 { 433 spin_lock(&fs_info->super_lock); 434 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 435 spin_unlock(&fs_info->super_lock); 436 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 437 } 438 439 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 440 enum btrfs_exclusive_operation op) 441 { 442 switch (op) { 443 case BTRFS_EXCLOP_BALANCE_PAUSED: 444 spin_lock(&fs_info->super_lock); 445 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 446 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD); 447 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 448 spin_unlock(&fs_info->super_lock); 449 break; 450 case BTRFS_EXCLOP_BALANCE: 451 spin_lock(&fs_info->super_lock); 452 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 453 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 454 spin_unlock(&fs_info->super_lock); 455 break; 456 default: 457 btrfs_warn(fs_info, 458 "invalid exclop balance operation %d requested", op); 459 } 460 } 461 462 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 463 { 464 return put_user(inode->i_generation, arg); 465 } 466 467 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 468 void __user *arg) 469 { 470 struct btrfs_device *device; 471 struct fstrim_range range; 472 u64 minlen = ULLONG_MAX; 473 u64 num_devices = 0; 474 int ret; 475 476 if (!capable(CAP_SYS_ADMIN)) 477 return -EPERM; 478 479 /* 480 * btrfs_trim_block_group() depends on space cache, which is not 481 * available in zoned filesystem. So, disallow fitrim on a zoned 482 * filesystem for now. 483 */ 484 if (btrfs_is_zoned(fs_info)) 485 return -EOPNOTSUPP; 486 487 /* 488 * If the fs is mounted with nologreplay, which requires it to be 489 * mounted in RO mode as well, we can not allow discard on free space 490 * inside block groups, because log trees refer to extents that are not 491 * pinned in a block group's free space cache (pinning the extents is 492 * precisely the first phase of replaying a log tree). 493 */ 494 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 495 return -EROFS; 496 497 rcu_read_lock(); 498 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 499 dev_list) { 500 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 501 continue; 502 num_devices++; 503 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 504 minlen); 505 } 506 rcu_read_unlock(); 507 508 if (!num_devices) 509 return -EOPNOTSUPP; 510 if (copy_from_user(&range, arg, sizeof(range))) 511 return -EFAULT; 512 513 /* 514 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 515 * block group is in the logical address space, which can be any 516 * sectorsize aligned bytenr in the range [0, U64_MAX]. 517 */ 518 if (range.len < fs_info->sb->s_blocksize) 519 return -EINVAL; 520 521 range.minlen = max(range.minlen, minlen); 522 ret = btrfs_trim_fs(fs_info, &range); 523 if (ret < 0) 524 return ret; 525 526 if (copy_to_user(arg, &range, sizeof(range))) 527 return -EFAULT; 528 529 return 0; 530 } 531 532 int __pure btrfs_is_empty_uuid(u8 *uuid) 533 { 534 int i; 535 536 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 537 if (uuid[i]) 538 return 0; 539 } 540 return 1; 541 } 542 543 /* 544 * Calculate the number of transaction items to reserve for creating a subvolume 545 * or snapshot, not including the inode, directory entries, or parent directory. 546 */ 547 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) 548 { 549 /* 550 * 1 to add root block 551 * 1 to add root item 552 * 1 to add root ref 553 * 1 to add root backref 554 * 1 to add UUID item 555 * 1 to add qgroup info 556 * 1 to add qgroup limit 557 * 558 * Ideally the last two would only be accounted if qgroups are enabled, 559 * but that can change between now and the time we would insert them. 560 */ 561 unsigned int num_items = 7; 562 563 if (inherit) { 564 /* 2 to add qgroup relations for each inherited qgroup */ 565 num_items += 2 * inherit->num_qgroups; 566 } 567 return num_items; 568 } 569 570 static noinline int create_subvol(struct user_namespace *mnt_userns, 571 struct inode *dir, struct dentry *dentry, 572 struct btrfs_qgroup_inherit *inherit) 573 { 574 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 575 struct btrfs_trans_handle *trans; 576 struct btrfs_key key; 577 struct btrfs_root_item *root_item; 578 struct btrfs_inode_item *inode_item; 579 struct extent_buffer *leaf; 580 struct btrfs_root *root = BTRFS_I(dir)->root; 581 struct btrfs_root *new_root; 582 struct btrfs_block_rsv block_rsv; 583 struct timespec64 cur_time = current_time(dir); 584 struct btrfs_new_inode_args new_inode_args = { 585 .dir = dir, 586 .dentry = dentry, 587 .subvol = true, 588 }; 589 unsigned int trans_num_items; 590 int ret; 591 dev_t anon_dev; 592 u64 objectid; 593 594 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 595 if (!root_item) 596 return -ENOMEM; 597 598 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 599 if (ret) 600 goto out_root_item; 601 602 /* 603 * Don't create subvolume whose level is not zero. Or qgroup will be 604 * screwed up since it assumes subvolume qgroup's level to be 0. 605 */ 606 if (btrfs_qgroup_level(objectid)) { 607 ret = -ENOSPC; 608 goto out_root_item; 609 } 610 611 ret = get_anon_bdev(&anon_dev); 612 if (ret < 0) 613 goto out_root_item; 614 615 new_inode_args.inode = btrfs_new_subvol_inode(mnt_userns, dir); 616 if (!new_inode_args.inode) { 617 ret = -ENOMEM; 618 goto out_anon_dev; 619 } 620 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 621 if (ret) 622 goto out_inode; 623 trans_num_items += create_subvol_num_items(inherit); 624 625 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 626 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 627 trans_num_items, false); 628 if (ret) 629 goto out_new_inode_args; 630 631 trans = btrfs_start_transaction(root, 0); 632 if (IS_ERR(trans)) { 633 ret = PTR_ERR(trans); 634 btrfs_subvolume_release_metadata(root, &block_rsv); 635 goto out_new_inode_args; 636 } 637 trans->block_rsv = &block_rsv; 638 trans->bytes_reserved = block_rsv.size; 639 640 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 641 if (ret) 642 goto out; 643 644 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 645 BTRFS_NESTING_NORMAL); 646 if (IS_ERR(leaf)) { 647 ret = PTR_ERR(leaf); 648 goto out; 649 } 650 651 btrfs_mark_buffer_dirty(leaf); 652 653 inode_item = &root_item->inode; 654 btrfs_set_stack_inode_generation(inode_item, 1); 655 btrfs_set_stack_inode_size(inode_item, 3); 656 btrfs_set_stack_inode_nlink(inode_item, 1); 657 btrfs_set_stack_inode_nbytes(inode_item, 658 fs_info->nodesize); 659 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 660 661 btrfs_set_root_flags(root_item, 0); 662 btrfs_set_root_limit(root_item, 0); 663 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 664 665 btrfs_set_root_bytenr(root_item, leaf->start); 666 btrfs_set_root_generation(root_item, trans->transid); 667 btrfs_set_root_level(root_item, 0); 668 btrfs_set_root_refs(root_item, 1); 669 btrfs_set_root_used(root_item, leaf->len); 670 btrfs_set_root_last_snapshot(root_item, 0); 671 672 btrfs_set_root_generation_v2(root_item, 673 btrfs_root_generation(root_item)); 674 generate_random_guid(root_item->uuid); 675 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 676 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 677 root_item->ctime = root_item->otime; 678 btrfs_set_root_ctransid(root_item, trans->transid); 679 btrfs_set_root_otransid(root_item, trans->transid); 680 681 btrfs_tree_unlock(leaf); 682 683 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 684 685 key.objectid = objectid; 686 key.offset = 0; 687 key.type = BTRFS_ROOT_ITEM_KEY; 688 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 689 root_item); 690 if (ret) { 691 /* 692 * Since we don't abort the transaction in this case, free the 693 * tree block so that we don't leak space and leave the 694 * filesystem in an inconsistent state (an extent item in the 695 * extent tree with a backreference for a root that does not 696 * exists). 697 */ 698 btrfs_tree_lock(leaf); 699 btrfs_clean_tree_block(leaf); 700 btrfs_tree_unlock(leaf); 701 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 702 free_extent_buffer(leaf); 703 goto out; 704 } 705 706 free_extent_buffer(leaf); 707 leaf = NULL; 708 709 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 710 if (IS_ERR(new_root)) { 711 ret = PTR_ERR(new_root); 712 btrfs_abort_transaction(trans, ret); 713 goto out; 714 } 715 /* anon_dev is owned by new_root now. */ 716 anon_dev = 0; 717 BTRFS_I(new_inode_args.inode)->root = new_root; 718 /* ... and new_root is owned by new_inode_args.inode now. */ 719 720 ret = btrfs_record_root_in_trans(trans, new_root); 721 if (ret) { 722 btrfs_abort_transaction(trans, ret); 723 goto out; 724 } 725 726 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 727 BTRFS_UUID_KEY_SUBVOL, objectid); 728 if (ret) { 729 btrfs_abort_transaction(trans, ret); 730 goto out; 731 } 732 733 ret = btrfs_create_new_inode(trans, &new_inode_args); 734 if (ret) { 735 btrfs_abort_transaction(trans, ret); 736 goto out; 737 } 738 739 d_instantiate_new(dentry, new_inode_args.inode); 740 new_inode_args.inode = NULL; 741 742 out: 743 trans->block_rsv = NULL; 744 trans->bytes_reserved = 0; 745 btrfs_subvolume_release_metadata(root, &block_rsv); 746 747 if (ret) 748 btrfs_end_transaction(trans); 749 else 750 ret = btrfs_commit_transaction(trans); 751 out_new_inode_args: 752 btrfs_new_inode_args_destroy(&new_inode_args); 753 out_inode: 754 iput(new_inode_args.inode); 755 out_anon_dev: 756 if (anon_dev) 757 free_anon_bdev(anon_dev); 758 out_root_item: 759 kfree(root_item); 760 return ret; 761 } 762 763 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 764 struct dentry *dentry, bool readonly, 765 struct btrfs_qgroup_inherit *inherit) 766 { 767 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 768 struct inode *inode; 769 struct btrfs_pending_snapshot *pending_snapshot; 770 unsigned int trans_num_items; 771 struct btrfs_trans_handle *trans; 772 int ret; 773 774 /* We do not support snapshotting right now. */ 775 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 776 btrfs_warn(fs_info, 777 "extent tree v2 doesn't support snapshotting yet"); 778 return -EOPNOTSUPP; 779 } 780 781 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 782 return -EINVAL; 783 784 if (atomic_read(&root->nr_swapfiles)) { 785 btrfs_warn(fs_info, 786 "cannot snapshot subvolume with active swapfile"); 787 return -ETXTBSY; 788 } 789 790 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 791 if (!pending_snapshot) 792 return -ENOMEM; 793 794 ret = get_anon_bdev(&pending_snapshot->anon_dev); 795 if (ret < 0) 796 goto free_pending; 797 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 798 GFP_KERNEL); 799 pending_snapshot->path = btrfs_alloc_path(); 800 if (!pending_snapshot->root_item || !pending_snapshot->path) { 801 ret = -ENOMEM; 802 goto free_pending; 803 } 804 805 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 806 BTRFS_BLOCK_RSV_TEMP); 807 /* 808 * 1 to add dir item 809 * 1 to add dir index 810 * 1 to update parent inode item 811 */ 812 trans_num_items = create_subvol_num_items(inherit) + 3; 813 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 814 &pending_snapshot->block_rsv, 815 trans_num_items, false); 816 if (ret) 817 goto free_pending; 818 819 pending_snapshot->dentry = dentry; 820 pending_snapshot->root = root; 821 pending_snapshot->readonly = readonly; 822 pending_snapshot->dir = dir; 823 pending_snapshot->inherit = inherit; 824 825 trans = btrfs_start_transaction(root, 0); 826 if (IS_ERR(trans)) { 827 ret = PTR_ERR(trans); 828 goto fail; 829 } 830 831 trans->pending_snapshot = pending_snapshot; 832 833 ret = btrfs_commit_transaction(trans); 834 if (ret) 835 goto fail; 836 837 ret = pending_snapshot->error; 838 if (ret) 839 goto fail; 840 841 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 842 if (ret) 843 goto fail; 844 845 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 846 if (IS_ERR(inode)) { 847 ret = PTR_ERR(inode); 848 goto fail; 849 } 850 851 d_instantiate(dentry, inode); 852 ret = 0; 853 pending_snapshot->anon_dev = 0; 854 fail: 855 /* Prevent double freeing of anon_dev */ 856 if (ret && pending_snapshot->snap) 857 pending_snapshot->snap->anon_dev = 0; 858 btrfs_put_root(pending_snapshot->snap); 859 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 860 free_pending: 861 if (pending_snapshot->anon_dev) 862 free_anon_bdev(pending_snapshot->anon_dev); 863 kfree(pending_snapshot->root_item); 864 btrfs_free_path(pending_snapshot->path); 865 kfree(pending_snapshot); 866 867 return ret; 868 } 869 870 /* copy of may_delete in fs/namei.c() 871 * Check whether we can remove a link victim from directory dir, check 872 * whether the type of victim is right. 873 * 1. We can't do it if dir is read-only (done in permission()) 874 * 2. We should have write and exec permissions on dir 875 * 3. We can't remove anything from append-only dir 876 * 4. We can't do anything with immutable dir (done in permission()) 877 * 5. If the sticky bit on dir is set we should either 878 * a. be owner of dir, or 879 * b. be owner of victim, or 880 * c. have CAP_FOWNER capability 881 * 6. If the victim is append-only or immutable we can't do anything with 882 * links pointing to it. 883 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 884 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 885 * 9. We can't remove a root or mountpoint. 886 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 887 * nfs_async_unlink(). 888 */ 889 890 static int btrfs_may_delete(struct user_namespace *mnt_userns, 891 struct inode *dir, struct dentry *victim, int isdir) 892 { 893 int error; 894 895 if (d_really_is_negative(victim)) 896 return -ENOENT; 897 898 BUG_ON(d_inode(victim->d_parent) != dir); 899 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 900 901 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 902 if (error) 903 return error; 904 if (IS_APPEND(dir)) 905 return -EPERM; 906 if (check_sticky(mnt_userns, dir, d_inode(victim)) || 907 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 908 IS_SWAPFILE(d_inode(victim))) 909 return -EPERM; 910 if (isdir) { 911 if (!d_is_dir(victim)) 912 return -ENOTDIR; 913 if (IS_ROOT(victim)) 914 return -EBUSY; 915 } else if (d_is_dir(victim)) 916 return -EISDIR; 917 if (IS_DEADDIR(dir)) 918 return -ENOENT; 919 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 920 return -EBUSY; 921 return 0; 922 } 923 924 /* copy of may_create in fs/namei.c() */ 925 static inline int btrfs_may_create(struct user_namespace *mnt_userns, 926 struct inode *dir, struct dentry *child) 927 { 928 if (d_really_is_positive(child)) 929 return -EEXIST; 930 if (IS_DEADDIR(dir)) 931 return -ENOENT; 932 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 933 return -EOVERFLOW; 934 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 935 } 936 937 /* 938 * Create a new subvolume below @parent. This is largely modeled after 939 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 940 * inside this filesystem so it's quite a bit simpler. 941 */ 942 static noinline int btrfs_mksubvol(const struct path *parent, 943 struct user_namespace *mnt_userns, 944 const char *name, int namelen, 945 struct btrfs_root *snap_src, 946 bool readonly, 947 struct btrfs_qgroup_inherit *inherit) 948 { 949 struct inode *dir = d_inode(parent->dentry); 950 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 951 struct dentry *dentry; 952 int error; 953 954 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 955 if (error == -EINTR) 956 return error; 957 958 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen); 959 error = PTR_ERR(dentry); 960 if (IS_ERR(dentry)) 961 goto out_unlock; 962 963 error = btrfs_may_create(mnt_userns, dir, dentry); 964 if (error) 965 goto out_dput; 966 967 /* 968 * even if this name doesn't exist, we may get hash collisions. 969 * check for them now when we can safely fail 970 */ 971 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 972 dir->i_ino, name, 973 namelen); 974 if (error) 975 goto out_dput; 976 977 down_read(&fs_info->subvol_sem); 978 979 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 980 goto out_up_read; 981 982 if (snap_src) 983 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 984 else 985 error = create_subvol(mnt_userns, dir, dentry, inherit); 986 987 if (!error) 988 fsnotify_mkdir(dir, dentry); 989 out_up_read: 990 up_read(&fs_info->subvol_sem); 991 out_dput: 992 dput(dentry); 993 out_unlock: 994 btrfs_inode_unlock(dir, 0); 995 return error; 996 } 997 998 static noinline int btrfs_mksnapshot(const struct path *parent, 999 struct user_namespace *mnt_userns, 1000 const char *name, int namelen, 1001 struct btrfs_root *root, 1002 bool readonly, 1003 struct btrfs_qgroup_inherit *inherit) 1004 { 1005 int ret; 1006 bool snapshot_force_cow = false; 1007 1008 /* 1009 * Force new buffered writes to reserve space even when NOCOW is 1010 * possible. This is to avoid later writeback (running dealloc) to 1011 * fallback to COW mode and unexpectedly fail with ENOSPC. 1012 */ 1013 btrfs_drew_read_lock(&root->snapshot_lock); 1014 1015 ret = btrfs_start_delalloc_snapshot(root, false); 1016 if (ret) 1017 goto out; 1018 1019 /* 1020 * All previous writes have started writeback in NOCOW mode, so now 1021 * we force future writes to fallback to COW mode during snapshot 1022 * creation. 1023 */ 1024 atomic_inc(&root->snapshot_force_cow); 1025 snapshot_force_cow = true; 1026 1027 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1028 1029 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen, 1030 root, readonly, inherit); 1031 out: 1032 if (snapshot_force_cow) 1033 atomic_dec(&root->snapshot_force_cow); 1034 btrfs_drew_read_unlock(&root->snapshot_lock); 1035 return ret; 1036 } 1037 1038 /* 1039 * Defrag specific helper to get an extent map. 1040 * 1041 * Differences between this and btrfs_get_extent() are: 1042 * 1043 * - No extent_map will be added to inode->extent_tree 1044 * To reduce memory usage in the long run. 1045 * 1046 * - Extra optimization to skip file extents older than @newer_than 1047 * By using btrfs_search_forward() we can skip entire file ranges that 1048 * have extents created in past transactions, because btrfs_search_forward() 1049 * will not visit leaves and nodes with a generation smaller than given 1050 * minimal generation threshold (@newer_than). 1051 * 1052 * Return valid em if we find a file extent matching the requirement. 1053 * Return NULL if we can not find a file extent matching the requirement. 1054 * 1055 * Return ERR_PTR() for error. 1056 */ 1057 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode, 1058 u64 start, u64 newer_than) 1059 { 1060 struct btrfs_root *root = inode->root; 1061 struct btrfs_file_extent_item *fi; 1062 struct btrfs_path path = { 0 }; 1063 struct extent_map *em; 1064 struct btrfs_key key; 1065 u64 ino = btrfs_ino(inode); 1066 int ret; 1067 1068 em = alloc_extent_map(); 1069 if (!em) { 1070 ret = -ENOMEM; 1071 goto err; 1072 } 1073 1074 key.objectid = ino; 1075 key.type = BTRFS_EXTENT_DATA_KEY; 1076 key.offset = start; 1077 1078 if (newer_than) { 1079 ret = btrfs_search_forward(root, &key, &path, newer_than); 1080 if (ret < 0) 1081 goto err; 1082 /* Can't find anything newer */ 1083 if (ret > 0) 1084 goto not_found; 1085 } else { 1086 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); 1087 if (ret < 0) 1088 goto err; 1089 } 1090 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { 1091 /* 1092 * If btrfs_search_slot() makes path to point beyond nritems, 1093 * we should not have an empty leaf, as this inode must at 1094 * least have its INODE_ITEM. 1095 */ 1096 ASSERT(btrfs_header_nritems(path.nodes[0])); 1097 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1; 1098 } 1099 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 1100 /* Perfect match, no need to go one slot back */ 1101 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY && 1102 key.offset == start) 1103 goto iterate; 1104 1105 /* We didn't find a perfect match, needs to go one slot back */ 1106 if (path.slots[0] > 0) { 1107 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 1108 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 1109 path.slots[0]--; 1110 } 1111 1112 iterate: 1113 /* Iterate through the path to find a file extent covering @start */ 1114 while (true) { 1115 u64 extent_end; 1116 1117 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) 1118 goto next; 1119 1120 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 1121 1122 /* 1123 * We may go one slot back to INODE_REF/XATTR item, then 1124 * need to go forward until we reach an EXTENT_DATA. 1125 * But we should still has the correct ino as key.objectid. 1126 */ 1127 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY) 1128 goto next; 1129 1130 /* It's beyond our target range, definitely not extent found */ 1131 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY) 1132 goto not_found; 1133 1134 /* 1135 * | |<- File extent ->| 1136 * \- start 1137 * 1138 * This means there is a hole between start and key.offset. 1139 */ 1140 if (key.offset > start) { 1141 em->start = start; 1142 em->orig_start = start; 1143 em->block_start = EXTENT_MAP_HOLE; 1144 em->len = key.offset - start; 1145 break; 1146 } 1147 1148 fi = btrfs_item_ptr(path.nodes[0], path.slots[0], 1149 struct btrfs_file_extent_item); 1150 extent_end = btrfs_file_extent_end(&path); 1151 1152 /* 1153 * |<- file extent ->| | 1154 * \- start 1155 * 1156 * We haven't reached start, search next slot. 1157 */ 1158 if (extent_end <= start) 1159 goto next; 1160 1161 /* Now this extent covers @start, convert it to em */ 1162 btrfs_extent_item_to_extent_map(inode, &path, fi, false, em); 1163 break; 1164 next: 1165 ret = btrfs_next_item(root, &path); 1166 if (ret < 0) 1167 goto err; 1168 if (ret > 0) 1169 goto not_found; 1170 } 1171 btrfs_release_path(&path); 1172 return em; 1173 1174 not_found: 1175 btrfs_release_path(&path); 1176 free_extent_map(em); 1177 return NULL; 1178 1179 err: 1180 btrfs_release_path(&path); 1181 free_extent_map(em); 1182 return ERR_PTR(ret); 1183 } 1184 1185 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, 1186 u64 newer_than, bool locked) 1187 { 1188 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1189 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1190 struct extent_map *em; 1191 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; 1192 1193 /* 1194 * hopefully we have this extent in the tree already, try without 1195 * the full extent lock 1196 */ 1197 read_lock(&em_tree->lock); 1198 em = lookup_extent_mapping(em_tree, start, sectorsize); 1199 read_unlock(&em_tree->lock); 1200 1201 /* 1202 * We can get a merged extent, in that case, we need to re-search 1203 * tree to get the original em for defrag. 1204 * 1205 * If @newer_than is 0 or em::generation < newer_than, we can trust 1206 * this em, as either we don't care about the generation, or the 1207 * merged extent map will be rejected anyway. 1208 */ 1209 if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) && 1210 newer_than && em->generation >= newer_than) { 1211 free_extent_map(em); 1212 em = NULL; 1213 } 1214 1215 if (!em) { 1216 struct extent_state *cached = NULL; 1217 u64 end = start + sectorsize - 1; 1218 1219 /* get the big lock and read metadata off disk */ 1220 if (!locked) 1221 lock_extent_bits(io_tree, start, end, &cached); 1222 em = defrag_get_extent(BTRFS_I(inode), start, newer_than); 1223 if (!locked) 1224 unlock_extent_cached(io_tree, start, end, &cached); 1225 1226 if (IS_ERR(em)) 1227 return NULL; 1228 } 1229 1230 return em; 1231 } 1232 1233 static u32 get_extent_max_capacity(const struct extent_map *em) 1234 { 1235 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1236 return BTRFS_MAX_COMPRESSED; 1237 return BTRFS_MAX_EXTENT_SIZE; 1238 } 1239 1240 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, 1241 u32 extent_thresh, u64 newer_than, bool locked) 1242 { 1243 struct extent_map *next; 1244 bool ret = false; 1245 1246 /* this is the last extent */ 1247 if (em->start + em->len >= i_size_read(inode)) 1248 return false; 1249 1250 /* 1251 * Here we need to pass @newer_then when checking the next extent, or 1252 * we will hit a case we mark current extent for defrag, but the next 1253 * one will not be a target. 1254 * This will just cause extra IO without really reducing the fragments. 1255 */ 1256 next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked); 1257 /* No more em or hole */ 1258 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1259 goto out; 1260 if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags)) 1261 goto out; 1262 /* 1263 * If the next extent is at its max capacity, defragging current extent 1264 * makes no sense, as the total number of extents won't change. 1265 */ 1266 if (next->len >= get_extent_max_capacity(em)) 1267 goto out; 1268 /* Skip older extent */ 1269 if (next->generation < newer_than) 1270 goto out; 1271 /* Also check extent size */ 1272 if (next->len >= extent_thresh) 1273 goto out; 1274 1275 ret = true; 1276 out: 1277 free_extent_map(next); 1278 return ret; 1279 } 1280 1281 /* 1282 * Prepare one page to be defragged. 1283 * 1284 * This will ensure: 1285 * 1286 * - Returned page is locked and has been set up properly. 1287 * - No ordered extent exists in the page. 1288 * - The page is uptodate. 1289 * 1290 * NOTE: Caller should also wait for page writeback after the cluster is 1291 * prepared, here we don't do writeback wait for each page. 1292 */ 1293 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, 1294 pgoff_t index) 1295 { 1296 struct address_space *mapping = inode->vfs_inode.i_mapping; 1297 gfp_t mask = btrfs_alloc_write_mask(mapping); 1298 u64 page_start = (u64)index << PAGE_SHIFT; 1299 u64 page_end = page_start + PAGE_SIZE - 1; 1300 struct extent_state *cached_state = NULL; 1301 struct page *page; 1302 int ret; 1303 1304 again: 1305 page = find_or_create_page(mapping, index, mask); 1306 if (!page) 1307 return ERR_PTR(-ENOMEM); 1308 1309 /* 1310 * Since we can defragment files opened read-only, we can encounter 1311 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We 1312 * can't do I/O using huge pages yet, so return an error for now. 1313 * Filesystem transparent huge pages are typically only used for 1314 * executables that explicitly enable them, so this isn't very 1315 * restrictive. 1316 */ 1317 if (PageCompound(page)) { 1318 unlock_page(page); 1319 put_page(page); 1320 return ERR_PTR(-ETXTBSY); 1321 } 1322 1323 ret = set_page_extent_mapped(page); 1324 if (ret < 0) { 1325 unlock_page(page); 1326 put_page(page); 1327 return ERR_PTR(ret); 1328 } 1329 1330 /* Wait for any existing ordered extent in the range */ 1331 while (1) { 1332 struct btrfs_ordered_extent *ordered; 1333 1334 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 1335 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 1336 unlock_extent_cached(&inode->io_tree, page_start, page_end, 1337 &cached_state); 1338 if (!ordered) 1339 break; 1340 1341 unlock_page(page); 1342 btrfs_start_ordered_extent(ordered, 1); 1343 btrfs_put_ordered_extent(ordered); 1344 lock_page(page); 1345 /* 1346 * We unlocked the page above, so we need check if it was 1347 * released or not. 1348 */ 1349 if (page->mapping != mapping || !PagePrivate(page)) { 1350 unlock_page(page); 1351 put_page(page); 1352 goto again; 1353 } 1354 } 1355 1356 /* 1357 * Now the page range has no ordered extent any more. Read the page to 1358 * make it uptodate. 1359 */ 1360 if (!PageUptodate(page)) { 1361 btrfs_read_folio(NULL, page_folio(page)); 1362 lock_page(page); 1363 if (page->mapping != mapping || !PagePrivate(page)) { 1364 unlock_page(page); 1365 put_page(page); 1366 goto again; 1367 } 1368 if (!PageUptodate(page)) { 1369 unlock_page(page); 1370 put_page(page); 1371 return ERR_PTR(-EIO); 1372 } 1373 } 1374 return page; 1375 } 1376 1377 struct defrag_target_range { 1378 struct list_head list; 1379 u64 start; 1380 u64 len; 1381 }; 1382 1383 /* 1384 * Collect all valid target extents. 1385 * 1386 * @start: file offset to lookup 1387 * @len: length to lookup 1388 * @extent_thresh: file extent size threshold, any extent size >= this value 1389 * will be ignored 1390 * @newer_than: only defrag extents newer than this value 1391 * @do_compress: whether the defrag is doing compression 1392 * if true, @extent_thresh will be ignored and all regular 1393 * file extents meeting @newer_than will be targets. 1394 * @locked: if the range has already held extent lock 1395 * @target_list: list of targets file extents 1396 */ 1397 static int defrag_collect_targets(struct btrfs_inode *inode, 1398 u64 start, u64 len, u32 extent_thresh, 1399 u64 newer_than, bool do_compress, 1400 bool locked, struct list_head *target_list, 1401 u64 *last_scanned_ret) 1402 { 1403 bool last_is_target = false; 1404 u64 cur = start; 1405 int ret = 0; 1406 1407 while (cur < start + len) { 1408 struct extent_map *em; 1409 struct defrag_target_range *new; 1410 bool next_mergeable = true; 1411 u64 range_len; 1412 1413 last_is_target = false; 1414 em = defrag_lookup_extent(&inode->vfs_inode, cur, 1415 newer_than, locked); 1416 if (!em) 1417 break; 1418 1419 /* 1420 * If the file extent is an inlined one, we may still want to 1421 * defrag it (fallthrough) if it will cause a regular extent. 1422 * This is for users who want to convert inline extents to 1423 * regular ones through max_inline= mount option. 1424 */ 1425 if (em->block_start == EXTENT_MAP_INLINE && 1426 em->len <= inode->root->fs_info->max_inline) 1427 goto next; 1428 1429 /* Skip hole/delalloc/preallocated extents */ 1430 if (em->block_start == EXTENT_MAP_HOLE || 1431 em->block_start == EXTENT_MAP_DELALLOC || 1432 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1433 goto next; 1434 1435 /* Skip older extent */ 1436 if (em->generation < newer_than) 1437 goto next; 1438 1439 /* This em is under writeback, no need to defrag */ 1440 if (em->generation == (u64)-1) 1441 goto next; 1442 1443 /* 1444 * Our start offset might be in the middle of an existing extent 1445 * map, so take that into account. 1446 */ 1447 range_len = em->len - (cur - em->start); 1448 /* 1449 * If this range of the extent map is already flagged for delalloc, 1450 * skip it, because: 1451 * 1452 * 1) We could deadlock later, when trying to reserve space for 1453 * delalloc, because in case we can't immediately reserve space 1454 * the flusher can start delalloc and wait for the respective 1455 * ordered extents to complete. The deadlock would happen 1456 * because we do the space reservation while holding the range 1457 * locked, and starting writeback, or finishing an ordered 1458 * extent, requires locking the range; 1459 * 1460 * 2) If there's delalloc there, it means there's dirty pages for 1461 * which writeback has not started yet (we clean the delalloc 1462 * flag when starting writeback and after creating an ordered 1463 * extent). If we mark pages in an adjacent range for defrag, 1464 * then we will have a larger contiguous range for delalloc, 1465 * very likely resulting in a larger extent after writeback is 1466 * triggered (except in a case of free space fragmentation). 1467 */ 1468 if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1, 1469 EXTENT_DELALLOC, 0, NULL)) 1470 goto next; 1471 1472 /* 1473 * For do_compress case, we want to compress all valid file 1474 * extents, thus no @extent_thresh or mergeable check. 1475 */ 1476 if (do_compress) 1477 goto add; 1478 1479 /* Skip too large extent */ 1480 if (range_len >= extent_thresh) 1481 goto next; 1482 1483 /* 1484 * Skip extents already at its max capacity, this is mostly for 1485 * compressed extents, which max cap is only 128K. 1486 */ 1487 if (em->len >= get_extent_max_capacity(em)) 1488 goto next; 1489 1490 /* 1491 * Normally there are no more extents after an inline one, thus 1492 * @next_mergeable will normally be false and not defragged. 1493 * So if an inline extent passed all above checks, just add it 1494 * for defrag, and be converted to regular extents. 1495 */ 1496 if (em->block_start == EXTENT_MAP_INLINE) 1497 goto add; 1498 1499 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, 1500 extent_thresh, newer_than, locked); 1501 if (!next_mergeable) { 1502 struct defrag_target_range *last; 1503 1504 /* Empty target list, no way to merge with last entry */ 1505 if (list_empty(target_list)) 1506 goto next; 1507 last = list_entry(target_list->prev, 1508 struct defrag_target_range, list); 1509 /* Not mergeable with last entry */ 1510 if (last->start + last->len != cur) 1511 goto next; 1512 1513 /* Mergeable, fall through to add it to @target_list. */ 1514 } 1515 1516 add: 1517 last_is_target = true; 1518 range_len = min(extent_map_end(em), start + len) - cur; 1519 /* 1520 * This one is a good target, check if it can be merged into 1521 * last range of the target list. 1522 */ 1523 if (!list_empty(target_list)) { 1524 struct defrag_target_range *last; 1525 1526 last = list_entry(target_list->prev, 1527 struct defrag_target_range, list); 1528 ASSERT(last->start + last->len <= cur); 1529 if (last->start + last->len == cur) { 1530 /* Mergeable, enlarge the last entry */ 1531 last->len += range_len; 1532 goto next; 1533 } 1534 /* Fall through to allocate a new entry */ 1535 } 1536 1537 /* Allocate new defrag_target_range */ 1538 new = kmalloc(sizeof(*new), GFP_NOFS); 1539 if (!new) { 1540 free_extent_map(em); 1541 ret = -ENOMEM; 1542 break; 1543 } 1544 new->start = cur; 1545 new->len = range_len; 1546 list_add_tail(&new->list, target_list); 1547 1548 next: 1549 cur = extent_map_end(em); 1550 free_extent_map(em); 1551 } 1552 if (ret < 0) { 1553 struct defrag_target_range *entry; 1554 struct defrag_target_range *tmp; 1555 1556 list_for_each_entry_safe(entry, tmp, target_list, list) { 1557 list_del_init(&entry->list); 1558 kfree(entry); 1559 } 1560 } 1561 if (!ret && last_scanned_ret) { 1562 /* 1563 * If the last extent is not a target, the caller can skip to 1564 * the end of that extent. 1565 * Otherwise, we can only go the end of the specified range. 1566 */ 1567 if (!last_is_target) 1568 *last_scanned_ret = max(cur, *last_scanned_ret); 1569 else 1570 *last_scanned_ret = max(start + len, *last_scanned_ret); 1571 } 1572 return ret; 1573 } 1574 1575 #define CLUSTER_SIZE (SZ_256K) 1576 static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1577 1578 /* 1579 * Defrag one contiguous target range. 1580 * 1581 * @inode: target inode 1582 * @target: target range to defrag 1583 * @pages: locked pages covering the defrag range 1584 * @nr_pages: number of locked pages 1585 * 1586 * Caller should ensure: 1587 * 1588 * - Pages are prepared 1589 * Pages should be locked, no ordered extent in the pages range, 1590 * no writeback. 1591 * 1592 * - Extent bits are locked 1593 */ 1594 static int defrag_one_locked_target(struct btrfs_inode *inode, 1595 struct defrag_target_range *target, 1596 struct page **pages, int nr_pages, 1597 struct extent_state **cached_state) 1598 { 1599 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1600 struct extent_changeset *data_reserved = NULL; 1601 const u64 start = target->start; 1602 const u64 len = target->len; 1603 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; 1604 unsigned long start_index = start >> PAGE_SHIFT; 1605 unsigned long first_index = page_index(pages[0]); 1606 int ret = 0; 1607 int i; 1608 1609 ASSERT(last_index - first_index + 1 <= nr_pages); 1610 1611 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); 1612 if (ret < 0) 1613 return ret; 1614 clear_extent_bit(&inode->io_tree, start, start + len - 1, 1615 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1616 EXTENT_DEFRAG, 0, 0, cached_state); 1617 set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state); 1618 1619 /* Update the page status */ 1620 for (i = start_index - first_index; i <= last_index - first_index; i++) { 1621 ClearPageChecked(pages[i]); 1622 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len); 1623 } 1624 btrfs_delalloc_release_extents(inode, len); 1625 extent_changeset_free(data_reserved); 1626 1627 return ret; 1628 } 1629 1630 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, 1631 u32 extent_thresh, u64 newer_than, bool do_compress, 1632 u64 *last_scanned_ret) 1633 { 1634 struct extent_state *cached_state = NULL; 1635 struct defrag_target_range *entry; 1636 struct defrag_target_range *tmp; 1637 LIST_HEAD(target_list); 1638 struct page **pages; 1639 const u32 sectorsize = inode->root->fs_info->sectorsize; 1640 u64 last_index = (start + len - 1) >> PAGE_SHIFT; 1641 u64 start_index = start >> PAGE_SHIFT; 1642 unsigned int nr_pages = last_index - start_index + 1; 1643 int ret = 0; 1644 int i; 1645 1646 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); 1647 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); 1648 1649 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 1650 if (!pages) 1651 return -ENOMEM; 1652 1653 /* Prepare all pages */ 1654 for (i = 0; i < nr_pages; i++) { 1655 pages[i] = defrag_prepare_one_page(inode, start_index + i); 1656 if (IS_ERR(pages[i])) { 1657 ret = PTR_ERR(pages[i]); 1658 pages[i] = NULL; 1659 goto free_pages; 1660 } 1661 } 1662 for (i = 0; i < nr_pages; i++) 1663 wait_on_page_writeback(pages[i]); 1664 1665 /* Lock the pages range */ 1666 lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT, 1667 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1668 &cached_state); 1669 /* 1670 * Now we have a consistent view about the extent map, re-check 1671 * which range really needs to be defragged. 1672 * 1673 * And this time we have extent locked already, pass @locked = true 1674 * so that we won't relock the extent range and cause deadlock. 1675 */ 1676 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1677 newer_than, do_compress, true, 1678 &target_list, last_scanned_ret); 1679 if (ret < 0) 1680 goto unlock_extent; 1681 1682 list_for_each_entry(entry, &target_list, list) { 1683 ret = defrag_one_locked_target(inode, entry, pages, nr_pages, 1684 &cached_state); 1685 if (ret < 0) 1686 break; 1687 } 1688 1689 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1690 list_del_init(&entry->list); 1691 kfree(entry); 1692 } 1693 unlock_extent: 1694 unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT, 1695 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1696 &cached_state); 1697 free_pages: 1698 for (i = 0; i < nr_pages; i++) { 1699 if (pages[i]) { 1700 unlock_page(pages[i]); 1701 put_page(pages[i]); 1702 } 1703 } 1704 kfree(pages); 1705 return ret; 1706 } 1707 1708 static int defrag_one_cluster(struct btrfs_inode *inode, 1709 struct file_ra_state *ra, 1710 u64 start, u32 len, u32 extent_thresh, 1711 u64 newer_than, bool do_compress, 1712 unsigned long *sectors_defragged, 1713 unsigned long max_sectors, 1714 u64 *last_scanned_ret) 1715 { 1716 const u32 sectorsize = inode->root->fs_info->sectorsize; 1717 struct defrag_target_range *entry; 1718 struct defrag_target_range *tmp; 1719 LIST_HEAD(target_list); 1720 int ret; 1721 1722 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1723 newer_than, do_compress, false, 1724 &target_list, NULL); 1725 if (ret < 0) 1726 goto out; 1727 1728 list_for_each_entry(entry, &target_list, list) { 1729 u32 range_len = entry->len; 1730 1731 /* Reached or beyond the limit */ 1732 if (max_sectors && *sectors_defragged >= max_sectors) { 1733 ret = 1; 1734 break; 1735 } 1736 1737 if (max_sectors) 1738 range_len = min_t(u32, range_len, 1739 (max_sectors - *sectors_defragged) * sectorsize); 1740 1741 /* 1742 * If defrag_one_range() has updated last_scanned_ret, 1743 * our range may already be invalid (e.g. hole punched). 1744 * Skip if our range is before last_scanned_ret, as there is 1745 * no need to defrag the range anymore. 1746 */ 1747 if (entry->start + range_len <= *last_scanned_ret) 1748 continue; 1749 1750 if (ra) 1751 page_cache_sync_readahead(inode->vfs_inode.i_mapping, 1752 ra, NULL, entry->start >> PAGE_SHIFT, 1753 ((entry->start + range_len - 1) >> PAGE_SHIFT) - 1754 (entry->start >> PAGE_SHIFT) + 1); 1755 /* 1756 * Here we may not defrag any range if holes are punched before 1757 * we locked the pages. 1758 * But that's fine, it only affects the @sectors_defragged 1759 * accounting. 1760 */ 1761 ret = defrag_one_range(inode, entry->start, range_len, 1762 extent_thresh, newer_than, do_compress, 1763 last_scanned_ret); 1764 if (ret < 0) 1765 break; 1766 *sectors_defragged += range_len >> 1767 inode->root->fs_info->sectorsize_bits; 1768 } 1769 out: 1770 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1771 list_del_init(&entry->list); 1772 kfree(entry); 1773 } 1774 if (ret >= 0) 1775 *last_scanned_ret = max(*last_scanned_ret, start + len); 1776 return ret; 1777 } 1778 1779 /* 1780 * Entry point to file defragmentation. 1781 * 1782 * @inode: inode to be defragged 1783 * @ra: readahead state (can be NUL) 1784 * @range: defrag options including range and flags 1785 * @newer_than: minimum transid to defrag 1786 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode 1787 * will be defragged. 1788 * 1789 * Return <0 for error. 1790 * Return >=0 for the number of sectors defragged, and range->start will be updated 1791 * to indicate the file offset where next defrag should be started at. 1792 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without 1793 * defragging all the range). 1794 */ 1795 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 1796 struct btrfs_ioctl_defrag_range_args *range, 1797 u64 newer_than, unsigned long max_to_defrag) 1798 { 1799 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1800 unsigned long sectors_defragged = 0; 1801 u64 isize = i_size_read(inode); 1802 u64 cur; 1803 u64 last_byte; 1804 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1805 bool ra_allocated = false; 1806 int compress_type = BTRFS_COMPRESS_ZLIB; 1807 int ret = 0; 1808 u32 extent_thresh = range->extent_thresh; 1809 pgoff_t start_index; 1810 1811 if (isize == 0) 1812 return 0; 1813 1814 if (range->start >= isize) 1815 return -EINVAL; 1816 1817 if (do_compress) { 1818 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1819 return -EINVAL; 1820 if (range->compress_type) 1821 compress_type = range->compress_type; 1822 } 1823 1824 if (extent_thresh == 0) 1825 extent_thresh = SZ_256K; 1826 1827 if (range->start + range->len > range->start) { 1828 /* Got a specific range */ 1829 last_byte = min(isize, range->start + range->len); 1830 } else { 1831 /* Defrag until file end */ 1832 last_byte = isize; 1833 } 1834 1835 /* Align the range */ 1836 cur = round_down(range->start, fs_info->sectorsize); 1837 last_byte = round_up(last_byte, fs_info->sectorsize) - 1; 1838 1839 /* 1840 * If we were not given a ra, allocate a readahead context. As 1841 * readahead is just an optimization, defrag will work without it so 1842 * we don't error out. 1843 */ 1844 if (!ra) { 1845 ra_allocated = true; 1846 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1847 if (ra) 1848 file_ra_state_init(ra, inode->i_mapping); 1849 } 1850 1851 /* 1852 * Make writeback start from the beginning of the range, so that the 1853 * defrag range can be written sequentially. 1854 */ 1855 start_index = cur >> PAGE_SHIFT; 1856 if (start_index < inode->i_mapping->writeback_index) 1857 inode->i_mapping->writeback_index = start_index; 1858 1859 while (cur < last_byte) { 1860 const unsigned long prev_sectors_defragged = sectors_defragged; 1861 u64 last_scanned = cur; 1862 u64 cluster_end; 1863 1864 if (btrfs_defrag_cancelled(fs_info)) { 1865 ret = -EAGAIN; 1866 break; 1867 } 1868 1869 /* We want the cluster end at page boundary when possible */ 1870 cluster_end = (((cur >> PAGE_SHIFT) + 1871 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; 1872 cluster_end = min(cluster_end, last_byte); 1873 1874 btrfs_inode_lock(inode, 0); 1875 if (IS_SWAPFILE(inode)) { 1876 ret = -ETXTBSY; 1877 btrfs_inode_unlock(inode, 0); 1878 break; 1879 } 1880 if (!(inode->i_sb->s_flags & SB_ACTIVE)) { 1881 btrfs_inode_unlock(inode, 0); 1882 break; 1883 } 1884 if (do_compress) 1885 BTRFS_I(inode)->defrag_compress = compress_type; 1886 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, 1887 cluster_end + 1 - cur, extent_thresh, 1888 newer_than, do_compress, §ors_defragged, 1889 max_to_defrag, &last_scanned); 1890 1891 if (sectors_defragged > prev_sectors_defragged) 1892 balance_dirty_pages_ratelimited(inode->i_mapping); 1893 1894 btrfs_inode_unlock(inode, 0); 1895 if (ret < 0) 1896 break; 1897 cur = max(cluster_end + 1, last_scanned); 1898 if (ret > 0) { 1899 ret = 0; 1900 break; 1901 } 1902 cond_resched(); 1903 } 1904 1905 if (ra_allocated) 1906 kfree(ra); 1907 /* 1908 * Update range.start for autodefrag, this will indicate where to start 1909 * in next run. 1910 */ 1911 range->start = cur; 1912 if (sectors_defragged) { 1913 /* 1914 * We have defragged some sectors, for compression case they 1915 * need to be written back immediately. 1916 */ 1917 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { 1918 filemap_flush(inode->i_mapping); 1919 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1920 &BTRFS_I(inode)->runtime_flags)) 1921 filemap_flush(inode->i_mapping); 1922 } 1923 if (range->compress_type == BTRFS_COMPRESS_LZO) 1924 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1925 else if (range->compress_type == BTRFS_COMPRESS_ZSTD) 1926 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1927 ret = sectors_defragged; 1928 } 1929 if (do_compress) { 1930 btrfs_inode_lock(inode, 0); 1931 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1932 btrfs_inode_unlock(inode, 0); 1933 } 1934 return ret; 1935 } 1936 1937 /* 1938 * Try to start exclusive operation @type or cancel it if it's running. 1939 * 1940 * Return: 1941 * 0 - normal mode, newly claimed op started 1942 * >0 - normal mode, something else is running, 1943 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1944 * ECANCELED - cancel mode, successful cancel 1945 * ENOTCONN - cancel mode, operation not running anymore 1946 */ 1947 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1948 enum btrfs_exclusive_operation type, bool cancel) 1949 { 1950 if (!cancel) { 1951 /* Start normal op */ 1952 if (!btrfs_exclop_start(fs_info, type)) 1953 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1954 /* Exclusive operation is now claimed */ 1955 return 0; 1956 } 1957 1958 /* Cancel running op */ 1959 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1960 /* 1961 * This blocks any exclop finish from setting it to NONE, so we 1962 * request cancellation. Either it runs and we will wait for it, 1963 * or it has finished and no waiting will happen. 1964 */ 1965 atomic_inc(&fs_info->reloc_cancel_req); 1966 btrfs_exclop_start_unlock(fs_info); 1967 1968 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1969 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1970 TASK_INTERRUPTIBLE); 1971 1972 return -ECANCELED; 1973 } 1974 1975 /* Something else is running or none */ 1976 return -ENOTCONN; 1977 } 1978 1979 static noinline int btrfs_ioctl_resize(struct file *file, 1980 void __user *arg) 1981 { 1982 BTRFS_DEV_LOOKUP_ARGS(args); 1983 struct inode *inode = file_inode(file); 1984 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1985 u64 new_size; 1986 u64 old_size; 1987 u64 devid = 1; 1988 struct btrfs_root *root = BTRFS_I(inode)->root; 1989 struct btrfs_ioctl_vol_args *vol_args; 1990 struct btrfs_trans_handle *trans; 1991 struct btrfs_device *device = NULL; 1992 char *sizestr; 1993 char *retptr; 1994 char *devstr = NULL; 1995 int ret = 0; 1996 int mod = 0; 1997 bool cancel; 1998 1999 if (!capable(CAP_SYS_ADMIN)) 2000 return -EPERM; 2001 2002 ret = mnt_want_write_file(file); 2003 if (ret) 2004 return ret; 2005 2006 /* 2007 * Read the arguments before checking exclusivity to be able to 2008 * distinguish regular resize and cancel 2009 */ 2010 vol_args = memdup_user(arg, sizeof(*vol_args)); 2011 if (IS_ERR(vol_args)) { 2012 ret = PTR_ERR(vol_args); 2013 goto out_drop; 2014 } 2015 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2016 sizestr = vol_args->name; 2017 cancel = (strcmp("cancel", sizestr) == 0); 2018 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 2019 if (ret) 2020 goto out_free; 2021 /* Exclusive operation is now claimed */ 2022 2023 devstr = strchr(sizestr, ':'); 2024 if (devstr) { 2025 sizestr = devstr + 1; 2026 *devstr = '\0'; 2027 devstr = vol_args->name; 2028 ret = kstrtoull(devstr, 10, &devid); 2029 if (ret) 2030 goto out_finish; 2031 if (!devid) { 2032 ret = -EINVAL; 2033 goto out_finish; 2034 } 2035 btrfs_info(fs_info, "resizing devid %llu", devid); 2036 } 2037 2038 args.devid = devid; 2039 device = btrfs_find_device(fs_info->fs_devices, &args); 2040 if (!device) { 2041 btrfs_info(fs_info, "resizer unable to find device %llu", 2042 devid); 2043 ret = -ENODEV; 2044 goto out_finish; 2045 } 2046 2047 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2048 btrfs_info(fs_info, 2049 "resizer unable to apply on readonly device %llu", 2050 devid); 2051 ret = -EPERM; 2052 goto out_finish; 2053 } 2054 2055 if (!strcmp(sizestr, "max")) 2056 new_size = bdev_nr_bytes(device->bdev); 2057 else { 2058 if (sizestr[0] == '-') { 2059 mod = -1; 2060 sizestr++; 2061 } else if (sizestr[0] == '+') { 2062 mod = 1; 2063 sizestr++; 2064 } 2065 new_size = memparse(sizestr, &retptr); 2066 if (*retptr != '\0' || new_size == 0) { 2067 ret = -EINVAL; 2068 goto out_finish; 2069 } 2070 } 2071 2072 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2073 ret = -EPERM; 2074 goto out_finish; 2075 } 2076 2077 old_size = btrfs_device_get_total_bytes(device); 2078 2079 if (mod < 0) { 2080 if (new_size > old_size) { 2081 ret = -EINVAL; 2082 goto out_finish; 2083 } 2084 new_size = old_size - new_size; 2085 } else if (mod > 0) { 2086 if (new_size > ULLONG_MAX - old_size) { 2087 ret = -ERANGE; 2088 goto out_finish; 2089 } 2090 new_size = old_size + new_size; 2091 } 2092 2093 if (new_size < SZ_256M) { 2094 ret = -EINVAL; 2095 goto out_finish; 2096 } 2097 if (new_size > bdev_nr_bytes(device->bdev)) { 2098 ret = -EFBIG; 2099 goto out_finish; 2100 } 2101 2102 new_size = round_down(new_size, fs_info->sectorsize); 2103 2104 if (new_size > old_size) { 2105 trans = btrfs_start_transaction(root, 0); 2106 if (IS_ERR(trans)) { 2107 ret = PTR_ERR(trans); 2108 goto out_finish; 2109 } 2110 ret = btrfs_grow_device(trans, device, new_size); 2111 btrfs_commit_transaction(trans); 2112 } else if (new_size < old_size) { 2113 ret = btrfs_shrink_device(device, new_size); 2114 } /* equal, nothing need to do */ 2115 2116 if (ret == 0 && new_size != old_size) 2117 btrfs_info_in_rcu(fs_info, 2118 "resize device %s (devid %llu) from %llu to %llu", 2119 rcu_str_deref(device->name), device->devid, 2120 old_size, new_size); 2121 out_finish: 2122 btrfs_exclop_finish(fs_info); 2123 out_free: 2124 kfree(vol_args); 2125 out_drop: 2126 mnt_drop_write_file(file); 2127 return ret; 2128 } 2129 2130 static noinline int __btrfs_ioctl_snap_create(struct file *file, 2131 struct user_namespace *mnt_userns, 2132 const char *name, unsigned long fd, int subvol, 2133 bool readonly, 2134 struct btrfs_qgroup_inherit *inherit) 2135 { 2136 int namelen; 2137 int ret = 0; 2138 2139 if (!S_ISDIR(file_inode(file)->i_mode)) 2140 return -ENOTDIR; 2141 2142 ret = mnt_want_write_file(file); 2143 if (ret) 2144 goto out; 2145 2146 namelen = strlen(name); 2147 if (strchr(name, '/')) { 2148 ret = -EINVAL; 2149 goto out_drop_write; 2150 } 2151 2152 if (name[0] == '.' && 2153 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 2154 ret = -EEXIST; 2155 goto out_drop_write; 2156 } 2157 2158 if (subvol) { 2159 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name, 2160 namelen, NULL, readonly, inherit); 2161 } else { 2162 struct fd src = fdget(fd); 2163 struct inode *src_inode; 2164 if (!src.file) { 2165 ret = -EINVAL; 2166 goto out_drop_write; 2167 } 2168 2169 src_inode = file_inode(src.file); 2170 if (src_inode->i_sb != file_inode(file)->i_sb) { 2171 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 2172 "Snapshot src from another FS"); 2173 ret = -EXDEV; 2174 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) { 2175 /* 2176 * Subvolume creation is not restricted, but snapshots 2177 * are limited to own subvolumes only 2178 */ 2179 ret = -EPERM; 2180 } else { 2181 ret = btrfs_mksnapshot(&file->f_path, mnt_userns, 2182 name, namelen, 2183 BTRFS_I(src_inode)->root, 2184 readonly, inherit); 2185 } 2186 fdput(src); 2187 } 2188 out_drop_write: 2189 mnt_drop_write_file(file); 2190 out: 2191 return ret; 2192 } 2193 2194 static noinline int btrfs_ioctl_snap_create(struct file *file, 2195 void __user *arg, int subvol) 2196 { 2197 struct btrfs_ioctl_vol_args *vol_args; 2198 int ret; 2199 2200 if (!S_ISDIR(file_inode(file)->i_mode)) 2201 return -ENOTDIR; 2202 2203 vol_args = memdup_user(arg, sizeof(*vol_args)); 2204 if (IS_ERR(vol_args)) 2205 return PTR_ERR(vol_args); 2206 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2207 2208 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 2209 vol_args->name, vol_args->fd, subvol, 2210 false, NULL); 2211 2212 kfree(vol_args); 2213 return ret; 2214 } 2215 2216 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 2217 void __user *arg, int subvol) 2218 { 2219 struct btrfs_ioctl_vol_args_v2 *vol_args; 2220 int ret; 2221 bool readonly = false; 2222 struct btrfs_qgroup_inherit *inherit = NULL; 2223 2224 if (!S_ISDIR(file_inode(file)->i_mode)) 2225 return -ENOTDIR; 2226 2227 vol_args = memdup_user(arg, sizeof(*vol_args)); 2228 if (IS_ERR(vol_args)) 2229 return PTR_ERR(vol_args); 2230 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2231 2232 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 2233 ret = -EOPNOTSUPP; 2234 goto free_args; 2235 } 2236 2237 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 2238 readonly = true; 2239 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 2240 u64 nums; 2241 2242 if (vol_args->size < sizeof(*inherit) || 2243 vol_args->size > PAGE_SIZE) { 2244 ret = -EINVAL; 2245 goto free_args; 2246 } 2247 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 2248 if (IS_ERR(inherit)) { 2249 ret = PTR_ERR(inherit); 2250 goto free_args; 2251 } 2252 2253 if (inherit->num_qgroups > PAGE_SIZE || 2254 inherit->num_ref_copies > PAGE_SIZE || 2255 inherit->num_excl_copies > PAGE_SIZE) { 2256 ret = -EINVAL; 2257 goto free_inherit; 2258 } 2259 2260 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 2261 2 * inherit->num_excl_copies; 2262 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 2263 ret = -EINVAL; 2264 goto free_inherit; 2265 } 2266 } 2267 2268 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 2269 vol_args->name, vol_args->fd, subvol, 2270 readonly, inherit); 2271 if (ret) 2272 goto free_inherit; 2273 free_inherit: 2274 kfree(inherit); 2275 free_args: 2276 kfree(vol_args); 2277 return ret; 2278 } 2279 2280 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 2281 void __user *arg) 2282 { 2283 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2284 struct btrfs_root *root = BTRFS_I(inode)->root; 2285 int ret = 0; 2286 u64 flags = 0; 2287 2288 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 2289 return -EINVAL; 2290 2291 down_read(&fs_info->subvol_sem); 2292 if (btrfs_root_readonly(root)) 2293 flags |= BTRFS_SUBVOL_RDONLY; 2294 up_read(&fs_info->subvol_sem); 2295 2296 if (copy_to_user(arg, &flags, sizeof(flags))) 2297 ret = -EFAULT; 2298 2299 return ret; 2300 } 2301 2302 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 2303 void __user *arg) 2304 { 2305 struct inode *inode = file_inode(file); 2306 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2307 struct btrfs_root *root = BTRFS_I(inode)->root; 2308 struct btrfs_trans_handle *trans; 2309 u64 root_flags; 2310 u64 flags; 2311 int ret = 0; 2312 2313 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode)) 2314 return -EPERM; 2315 2316 ret = mnt_want_write_file(file); 2317 if (ret) 2318 goto out; 2319 2320 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2321 ret = -EINVAL; 2322 goto out_drop_write; 2323 } 2324 2325 if (copy_from_user(&flags, arg, sizeof(flags))) { 2326 ret = -EFAULT; 2327 goto out_drop_write; 2328 } 2329 2330 if (flags & ~BTRFS_SUBVOL_RDONLY) { 2331 ret = -EOPNOTSUPP; 2332 goto out_drop_write; 2333 } 2334 2335 down_write(&fs_info->subvol_sem); 2336 2337 /* nothing to do */ 2338 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 2339 goto out_drop_sem; 2340 2341 root_flags = btrfs_root_flags(&root->root_item); 2342 if (flags & BTRFS_SUBVOL_RDONLY) { 2343 btrfs_set_root_flags(&root->root_item, 2344 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 2345 } else { 2346 /* 2347 * Block RO -> RW transition if this subvolume is involved in 2348 * send 2349 */ 2350 spin_lock(&root->root_item_lock); 2351 if (root->send_in_progress == 0) { 2352 btrfs_set_root_flags(&root->root_item, 2353 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 2354 spin_unlock(&root->root_item_lock); 2355 } else { 2356 spin_unlock(&root->root_item_lock); 2357 btrfs_warn(fs_info, 2358 "Attempt to set subvolume %llu read-write during send", 2359 root->root_key.objectid); 2360 ret = -EPERM; 2361 goto out_drop_sem; 2362 } 2363 } 2364 2365 trans = btrfs_start_transaction(root, 1); 2366 if (IS_ERR(trans)) { 2367 ret = PTR_ERR(trans); 2368 goto out_reset; 2369 } 2370 2371 ret = btrfs_update_root(trans, fs_info->tree_root, 2372 &root->root_key, &root->root_item); 2373 if (ret < 0) { 2374 btrfs_end_transaction(trans); 2375 goto out_reset; 2376 } 2377 2378 ret = btrfs_commit_transaction(trans); 2379 2380 out_reset: 2381 if (ret) 2382 btrfs_set_root_flags(&root->root_item, root_flags); 2383 out_drop_sem: 2384 up_write(&fs_info->subvol_sem); 2385 out_drop_write: 2386 mnt_drop_write_file(file); 2387 out: 2388 return ret; 2389 } 2390 2391 static noinline int key_in_sk(struct btrfs_key *key, 2392 struct btrfs_ioctl_search_key *sk) 2393 { 2394 struct btrfs_key test; 2395 int ret; 2396 2397 test.objectid = sk->min_objectid; 2398 test.type = sk->min_type; 2399 test.offset = sk->min_offset; 2400 2401 ret = btrfs_comp_cpu_keys(key, &test); 2402 if (ret < 0) 2403 return 0; 2404 2405 test.objectid = sk->max_objectid; 2406 test.type = sk->max_type; 2407 test.offset = sk->max_offset; 2408 2409 ret = btrfs_comp_cpu_keys(key, &test); 2410 if (ret > 0) 2411 return 0; 2412 return 1; 2413 } 2414 2415 static noinline int copy_to_sk(struct btrfs_path *path, 2416 struct btrfs_key *key, 2417 struct btrfs_ioctl_search_key *sk, 2418 size_t *buf_size, 2419 char __user *ubuf, 2420 unsigned long *sk_offset, 2421 int *num_found) 2422 { 2423 u64 found_transid; 2424 struct extent_buffer *leaf; 2425 struct btrfs_ioctl_search_header sh; 2426 struct btrfs_key test; 2427 unsigned long item_off; 2428 unsigned long item_len; 2429 int nritems; 2430 int i; 2431 int slot; 2432 int ret = 0; 2433 2434 leaf = path->nodes[0]; 2435 slot = path->slots[0]; 2436 nritems = btrfs_header_nritems(leaf); 2437 2438 if (btrfs_header_generation(leaf) > sk->max_transid) { 2439 i = nritems; 2440 goto advance_key; 2441 } 2442 found_transid = btrfs_header_generation(leaf); 2443 2444 for (i = slot; i < nritems; i++) { 2445 item_off = btrfs_item_ptr_offset(leaf, i); 2446 item_len = btrfs_item_size(leaf, i); 2447 2448 btrfs_item_key_to_cpu(leaf, key, i); 2449 if (!key_in_sk(key, sk)) 2450 continue; 2451 2452 if (sizeof(sh) + item_len > *buf_size) { 2453 if (*num_found) { 2454 ret = 1; 2455 goto out; 2456 } 2457 2458 /* 2459 * return one empty item back for v1, which does not 2460 * handle -EOVERFLOW 2461 */ 2462 2463 *buf_size = sizeof(sh) + item_len; 2464 item_len = 0; 2465 ret = -EOVERFLOW; 2466 } 2467 2468 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2469 ret = 1; 2470 goto out; 2471 } 2472 2473 sh.objectid = key->objectid; 2474 sh.offset = key->offset; 2475 sh.type = key->type; 2476 sh.len = item_len; 2477 sh.transid = found_transid; 2478 2479 /* 2480 * Copy search result header. If we fault then loop again so we 2481 * can fault in the pages and -EFAULT there if there's a 2482 * problem. Otherwise we'll fault and then copy the buffer in 2483 * properly this next time through 2484 */ 2485 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2486 ret = 0; 2487 goto out; 2488 } 2489 2490 *sk_offset += sizeof(sh); 2491 2492 if (item_len) { 2493 char __user *up = ubuf + *sk_offset; 2494 /* 2495 * Copy the item, same behavior as above, but reset the 2496 * * sk_offset so we copy the full thing again. 2497 */ 2498 if (read_extent_buffer_to_user_nofault(leaf, up, 2499 item_off, item_len)) { 2500 ret = 0; 2501 *sk_offset -= sizeof(sh); 2502 goto out; 2503 } 2504 2505 *sk_offset += item_len; 2506 } 2507 (*num_found)++; 2508 2509 if (ret) /* -EOVERFLOW from above */ 2510 goto out; 2511 2512 if (*num_found >= sk->nr_items) { 2513 ret = 1; 2514 goto out; 2515 } 2516 } 2517 advance_key: 2518 ret = 0; 2519 test.objectid = sk->max_objectid; 2520 test.type = sk->max_type; 2521 test.offset = sk->max_offset; 2522 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2523 ret = 1; 2524 else if (key->offset < (u64)-1) 2525 key->offset++; 2526 else if (key->type < (u8)-1) { 2527 key->offset = 0; 2528 key->type++; 2529 } else if (key->objectid < (u64)-1) { 2530 key->offset = 0; 2531 key->type = 0; 2532 key->objectid++; 2533 } else 2534 ret = 1; 2535 out: 2536 /* 2537 * 0: all items from this leaf copied, continue with next 2538 * 1: * more items can be copied, but unused buffer is too small 2539 * * all items were found 2540 * Either way, it will stops the loop which iterates to the next 2541 * leaf 2542 * -EOVERFLOW: item was to large for buffer 2543 * -EFAULT: could not copy extent buffer back to userspace 2544 */ 2545 return ret; 2546 } 2547 2548 static noinline int search_ioctl(struct inode *inode, 2549 struct btrfs_ioctl_search_key *sk, 2550 size_t *buf_size, 2551 char __user *ubuf) 2552 { 2553 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2554 struct btrfs_root *root; 2555 struct btrfs_key key; 2556 struct btrfs_path *path; 2557 int ret; 2558 int num_found = 0; 2559 unsigned long sk_offset = 0; 2560 2561 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2562 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2563 return -EOVERFLOW; 2564 } 2565 2566 path = btrfs_alloc_path(); 2567 if (!path) 2568 return -ENOMEM; 2569 2570 if (sk->tree_id == 0) { 2571 /* search the root of the inode that was passed */ 2572 root = btrfs_grab_root(BTRFS_I(inode)->root); 2573 } else { 2574 root = btrfs_get_fs_root(info, sk->tree_id, true); 2575 if (IS_ERR(root)) { 2576 btrfs_free_path(path); 2577 return PTR_ERR(root); 2578 } 2579 } 2580 2581 key.objectid = sk->min_objectid; 2582 key.type = sk->min_type; 2583 key.offset = sk->min_offset; 2584 2585 while (1) { 2586 ret = -EFAULT; 2587 /* 2588 * Ensure that the whole user buffer is faulted in at sub-page 2589 * granularity, otherwise the loop may live-lock. 2590 */ 2591 if (fault_in_subpage_writeable(ubuf + sk_offset, 2592 *buf_size - sk_offset)) 2593 break; 2594 2595 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2596 if (ret != 0) { 2597 if (ret > 0) 2598 ret = 0; 2599 goto err; 2600 } 2601 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2602 &sk_offset, &num_found); 2603 btrfs_release_path(path); 2604 if (ret) 2605 break; 2606 2607 } 2608 if (ret > 0) 2609 ret = 0; 2610 err: 2611 sk->nr_items = num_found; 2612 btrfs_put_root(root); 2613 btrfs_free_path(path); 2614 return ret; 2615 } 2616 2617 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 2618 void __user *argp) 2619 { 2620 struct btrfs_ioctl_search_args __user *uargs = argp; 2621 struct btrfs_ioctl_search_key sk; 2622 int ret; 2623 size_t buf_size; 2624 2625 if (!capable(CAP_SYS_ADMIN)) 2626 return -EPERM; 2627 2628 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2629 return -EFAULT; 2630 2631 buf_size = sizeof(uargs->buf); 2632 2633 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2634 2635 /* 2636 * In the origin implementation an overflow is handled by returning a 2637 * search header with a len of zero, so reset ret. 2638 */ 2639 if (ret == -EOVERFLOW) 2640 ret = 0; 2641 2642 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2643 ret = -EFAULT; 2644 return ret; 2645 } 2646 2647 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 2648 void __user *argp) 2649 { 2650 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 2651 struct btrfs_ioctl_search_args_v2 args; 2652 int ret; 2653 size_t buf_size; 2654 const size_t buf_limit = SZ_16M; 2655 2656 if (!capable(CAP_SYS_ADMIN)) 2657 return -EPERM; 2658 2659 /* copy search header and buffer size */ 2660 if (copy_from_user(&args, uarg, sizeof(args))) 2661 return -EFAULT; 2662 2663 buf_size = args.buf_size; 2664 2665 /* limit result size to 16MB */ 2666 if (buf_size > buf_limit) 2667 buf_size = buf_limit; 2668 2669 ret = search_ioctl(inode, &args.key, &buf_size, 2670 (char __user *)(&uarg->buf[0])); 2671 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2672 ret = -EFAULT; 2673 else if (ret == -EOVERFLOW && 2674 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2675 ret = -EFAULT; 2676 2677 return ret; 2678 } 2679 2680 /* 2681 * Search INODE_REFs to identify path name of 'dirid' directory 2682 * in a 'tree_id' tree. and sets path name to 'name'. 2683 */ 2684 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2685 u64 tree_id, u64 dirid, char *name) 2686 { 2687 struct btrfs_root *root; 2688 struct btrfs_key key; 2689 char *ptr; 2690 int ret = -1; 2691 int slot; 2692 int len; 2693 int total_len = 0; 2694 struct btrfs_inode_ref *iref; 2695 struct extent_buffer *l; 2696 struct btrfs_path *path; 2697 2698 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2699 name[0]='\0'; 2700 return 0; 2701 } 2702 2703 path = btrfs_alloc_path(); 2704 if (!path) 2705 return -ENOMEM; 2706 2707 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2708 2709 root = btrfs_get_fs_root(info, tree_id, true); 2710 if (IS_ERR(root)) { 2711 ret = PTR_ERR(root); 2712 root = NULL; 2713 goto out; 2714 } 2715 2716 key.objectid = dirid; 2717 key.type = BTRFS_INODE_REF_KEY; 2718 key.offset = (u64)-1; 2719 2720 while (1) { 2721 ret = btrfs_search_backwards(root, &key, path); 2722 if (ret < 0) 2723 goto out; 2724 else if (ret > 0) { 2725 ret = -ENOENT; 2726 goto out; 2727 } 2728 2729 l = path->nodes[0]; 2730 slot = path->slots[0]; 2731 2732 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2733 len = btrfs_inode_ref_name_len(l, iref); 2734 ptr -= len + 1; 2735 total_len += len + 1; 2736 if (ptr < name) { 2737 ret = -ENAMETOOLONG; 2738 goto out; 2739 } 2740 2741 *(ptr + len) = '/'; 2742 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2743 2744 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2745 break; 2746 2747 btrfs_release_path(path); 2748 key.objectid = key.offset; 2749 key.offset = (u64)-1; 2750 dirid = key.objectid; 2751 } 2752 memmove(name, ptr, total_len); 2753 name[total_len] = '\0'; 2754 ret = 0; 2755 out: 2756 btrfs_put_root(root); 2757 btrfs_free_path(path); 2758 return ret; 2759 } 2760 2761 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns, 2762 struct inode *inode, 2763 struct btrfs_ioctl_ino_lookup_user_args *args) 2764 { 2765 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2766 struct super_block *sb = inode->i_sb; 2767 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2768 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2769 u64 dirid = args->dirid; 2770 unsigned long item_off; 2771 unsigned long item_len; 2772 struct btrfs_inode_ref *iref; 2773 struct btrfs_root_ref *rref; 2774 struct btrfs_root *root = NULL; 2775 struct btrfs_path *path; 2776 struct btrfs_key key, key2; 2777 struct extent_buffer *leaf; 2778 struct inode *temp_inode; 2779 char *ptr; 2780 int slot; 2781 int len; 2782 int total_len = 0; 2783 int ret; 2784 2785 path = btrfs_alloc_path(); 2786 if (!path) 2787 return -ENOMEM; 2788 2789 /* 2790 * If the bottom subvolume does not exist directly under upper_limit, 2791 * construct the path in from the bottom up. 2792 */ 2793 if (dirid != upper_limit.objectid) { 2794 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2795 2796 root = btrfs_get_fs_root(fs_info, treeid, true); 2797 if (IS_ERR(root)) { 2798 ret = PTR_ERR(root); 2799 goto out; 2800 } 2801 2802 key.objectid = dirid; 2803 key.type = BTRFS_INODE_REF_KEY; 2804 key.offset = (u64)-1; 2805 while (1) { 2806 ret = btrfs_search_backwards(root, &key, path); 2807 if (ret < 0) 2808 goto out_put; 2809 else if (ret > 0) { 2810 ret = -ENOENT; 2811 goto out_put; 2812 } 2813 2814 leaf = path->nodes[0]; 2815 slot = path->slots[0]; 2816 2817 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2818 len = btrfs_inode_ref_name_len(leaf, iref); 2819 ptr -= len + 1; 2820 total_len += len + 1; 2821 if (ptr < args->path) { 2822 ret = -ENAMETOOLONG; 2823 goto out_put; 2824 } 2825 2826 *(ptr + len) = '/'; 2827 read_extent_buffer(leaf, ptr, 2828 (unsigned long)(iref + 1), len); 2829 2830 /* Check the read+exec permission of this directory */ 2831 ret = btrfs_previous_item(root, path, dirid, 2832 BTRFS_INODE_ITEM_KEY); 2833 if (ret < 0) { 2834 goto out_put; 2835 } else if (ret > 0) { 2836 ret = -ENOENT; 2837 goto out_put; 2838 } 2839 2840 leaf = path->nodes[0]; 2841 slot = path->slots[0]; 2842 btrfs_item_key_to_cpu(leaf, &key2, slot); 2843 if (key2.objectid != dirid) { 2844 ret = -ENOENT; 2845 goto out_put; 2846 } 2847 2848 temp_inode = btrfs_iget(sb, key2.objectid, root); 2849 if (IS_ERR(temp_inode)) { 2850 ret = PTR_ERR(temp_inode); 2851 goto out_put; 2852 } 2853 ret = inode_permission(mnt_userns, temp_inode, 2854 MAY_READ | MAY_EXEC); 2855 iput(temp_inode); 2856 if (ret) { 2857 ret = -EACCES; 2858 goto out_put; 2859 } 2860 2861 if (key.offset == upper_limit.objectid) 2862 break; 2863 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2864 ret = -EACCES; 2865 goto out_put; 2866 } 2867 2868 btrfs_release_path(path); 2869 key.objectid = key.offset; 2870 key.offset = (u64)-1; 2871 dirid = key.objectid; 2872 } 2873 2874 memmove(args->path, ptr, total_len); 2875 args->path[total_len] = '\0'; 2876 btrfs_put_root(root); 2877 root = NULL; 2878 btrfs_release_path(path); 2879 } 2880 2881 /* Get the bottom subvolume's name from ROOT_REF */ 2882 key.objectid = treeid; 2883 key.type = BTRFS_ROOT_REF_KEY; 2884 key.offset = args->treeid; 2885 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2886 if (ret < 0) { 2887 goto out; 2888 } else if (ret > 0) { 2889 ret = -ENOENT; 2890 goto out; 2891 } 2892 2893 leaf = path->nodes[0]; 2894 slot = path->slots[0]; 2895 btrfs_item_key_to_cpu(leaf, &key, slot); 2896 2897 item_off = btrfs_item_ptr_offset(leaf, slot); 2898 item_len = btrfs_item_size(leaf, slot); 2899 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2900 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2901 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2902 ret = -EINVAL; 2903 goto out; 2904 } 2905 2906 /* Copy subvolume's name */ 2907 item_off += sizeof(struct btrfs_root_ref); 2908 item_len -= sizeof(struct btrfs_root_ref); 2909 read_extent_buffer(leaf, args->name, item_off, item_len); 2910 args->name[item_len] = 0; 2911 2912 out_put: 2913 btrfs_put_root(root); 2914 out: 2915 btrfs_free_path(path); 2916 return ret; 2917 } 2918 2919 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 2920 void __user *argp) 2921 { 2922 struct btrfs_ioctl_ino_lookup_args *args; 2923 int ret = 0; 2924 2925 args = memdup_user(argp, sizeof(*args)); 2926 if (IS_ERR(args)) 2927 return PTR_ERR(args); 2928 2929 /* 2930 * Unprivileged query to obtain the containing subvolume root id. The 2931 * path is reset so it's consistent with btrfs_search_path_in_tree. 2932 */ 2933 if (args->treeid == 0) 2934 args->treeid = root->root_key.objectid; 2935 2936 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2937 args->name[0] = 0; 2938 goto out; 2939 } 2940 2941 if (!capable(CAP_SYS_ADMIN)) { 2942 ret = -EPERM; 2943 goto out; 2944 } 2945 2946 ret = btrfs_search_path_in_tree(root->fs_info, 2947 args->treeid, args->objectid, 2948 args->name); 2949 2950 out: 2951 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2952 ret = -EFAULT; 2953 2954 kfree(args); 2955 return ret; 2956 } 2957 2958 /* 2959 * Version of ino_lookup ioctl (unprivileged) 2960 * 2961 * The main differences from ino_lookup ioctl are: 2962 * 2963 * 1. Read + Exec permission will be checked using inode_permission() during 2964 * path construction. -EACCES will be returned in case of failure. 2965 * 2. Path construction will be stopped at the inode number which corresponds 2966 * to the fd with which this ioctl is called. If constructed path does not 2967 * exist under fd's inode, -EACCES will be returned. 2968 * 3. The name of bottom subvolume is also searched and filled. 2969 */ 2970 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2971 { 2972 struct btrfs_ioctl_ino_lookup_user_args *args; 2973 struct inode *inode; 2974 int ret; 2975 2976 args = memdup_user(argp, sizeof(*args)); 2977 if (IS_ERR(args)) 2978 return PTR_ERR(args); 2979 2980 inode = file_inode(file); 2981 2982 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2983 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2984 /* 2985 * The subvolume does not exist under fd with which this is 2986 * called 2987 */ 2988 kfree(args); 2989 return -EACCES; 2990 } 2991 2992 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args); 2993 2994 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2995 ret = -EFAULT; 2996 2997 kfree(args); 2998 return ret; 2999 } 3000 3001 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 3002 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 3003 { 3004 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 3005 struct btrfs_fs_info *fs_info; 3006 struct btrfs_root *root; 3007 struct btrfs_path *path; 3008 struct btrfs_key key; 3009 struct btrfs_root_item *root_item; 3010 struct btrfs_root_ref *rref; 3011 struct extent_buffer *leaf; 3012 unsigned long item_off; 3013 unsigned long item_len; 3014 int slot; 3015 int ret = 0; 3016 3017 path = btrfs_alloc_path(); 3018 if (!path) 3019 return -ENOMEM; 3020 3021 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 3022 if (!subvol_info) { 3023 btrfs_free_path(path); 3024 return -ENOMEM; 3025 } 3026 3027 fs_info = BTRFS_I(inode)->root->fs_info; 3028 3029 /* Get root_item of inode's subvolume */ 3030 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 3031 root = btrfs_get_fs_root(fs_info, key.objectid, true); 3032 if (IS_ERR(root)) { 3033 ret = PTR_ERR(root); 3034 goto out_free; 3035 } 3036 root_item = &root->root_item; 3037 3038 subvol_info->treeid = key.objectid; 3039 3040 subvol_info->generation = btrfs_root_generation(root_item); 3041 subvol_info->flags = btrfs_root_flags(root_item); 3042 3043 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 3044 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 3045 BTRFS_UUID_SIZE); 3046 memcpy(subvol_info->received_uuid, root_item->received_uuid, 3047 BTRFS_UUID_SIZE); 3048 3049 subvol_info->ctransid = btrfs_root_ctransid(root_item); 3050 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 3051 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 3052 3053 subvol_info->otransid = btrfs_root_otransid(root_item); 3054 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 3055 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 3056 3057 subvol_info->stransid = btrfs_root_stransid(root_item); 3058 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 3059 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 3060 3061 subvol_info->rtransid = btrfs_root_rtransid(root_item); 3062 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 3063 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 3064 3065 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 3066 /* Search root tree for ROOT_BACKREF of this subvolume */ 3067 key.type = BTRFS_ROOT_BACKREF_KEY; 3068 key.offset = 0; 3069 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3070 if (ret < 0) { 3071 goto out; 3072 } else if (path->slots[0] >= 3073 btrfs_header_nritems(path->nodes[0])) { 3074 ret = btrfs_next_leaf(fs_info->tree_root, path); 3075 if (ret < 0) { 3076 goto out; 3077 } else if (ret > 0) { 3078 ret = -EUCLEAN; 3079 goto out; 3080 } 3081 } 3082 3083 leaf = path->nodes[0]; 3084 slot = path->slots[0]; 3085 btrfs_item_key_to_cpu(leaf, &key, slot); 3086 if (key.objectid == subvol_info->treeid && 3087 key.type == BTRFS_ROOT_BACKREF_KEY) { 3088 subvol_info->parent_id = key.offset; 3089 3090 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 3091 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 3092 3093 item_off = btrfs_item_ptr_offset(leaf, slot) 3094 + sizeof(struct btrfs_root_ref); 3095 item_len = btrfs_item_size(leaf, slot) 3096 - sizeof(struct btrfs_root_ref); 3097 read_extent_buffer(leaf, subvol_info->name, 3098 item_off, item_len); 3099 } else { 3100 ret = -ENOENT; 3101 goto out; 3102 } 3103 } 3104 3105 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 3106 ret = -EFAULT; 3107 3108 out: 3109 btrfs_put_root(root); 3110 out_free: 3111 btrfs_free_path(path); 3112 kfree(subvol_info); 3113 return ret; 3114 } 3115 3116 /* 3117 * Return ROOT_REF information of the subvolume containing this inode 3118 * except the subvolume name. 3119 */ 3120 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 3121 void __user *argp) 3122 { 3123 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 3124 struct btrfs_root_ref *rref; 3125 struct btrfs_path *path; 3126 struct btrfs_key key; 3127 struct extent_buffer *leaf; 3128 u64 objectid; 3129 int slot; 3130 int ret; 3131 u8 found; 3132 3133 path = btrfs_alloc_path(); 3134 if (!path) 3135 return -ENOMEM; 3136 3137 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 3138 if (IS_ERR(rootrefs)) { 3139 btrfs_free_path(path); 3140 return PTR_ERR(rootrefs); 3141 } 3142 3143 objectid = root->root_key.objectid; 3144 key.objectid = objectid; 3145 key.type = BTRFS_ROOT_REF_KEY; 3146 key.offset = rootrefs->min_treeid; 3147 found = 0; 3148 3149 root = root->fs_info->tree_root; 3150 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3151 if (ret < 0) { 3152 goto out; 3153 } else if (path->slots[0] >= 3154 btrfs_header_nritems(path->nodes[0])) { 3155 ret = btrfs_next_leaf(root, path); 3156 if (ret < 0) { 3157 goto out; 3158 } else if (ret > 0) { 3159 ret = -EUCLEAN; 3160 goto out; 3161 } 3162 } 3163 while (1) { 3164 leaf = path->nodes[0]; 3165 slot = path->slots[0]; 3166 3167 btrfs_item_key_to_cpu(leaf, &key, slot); 3168 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 3169 ret = 0; 3170 goto out; 3171 } 3172 3173 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 3174 ret = -EOVERFLOW; 3175 goto out; 3176 } 3177 3178 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 3179 rootrefs->rootref[found].treeid = key.offset; 3180 rootrefs->rootref[found].dirid = 3181 btrfs_root_ref_dirid(leaf, rref); 3182 found++; 3183 3184 ret = btrfs_next_item(root, path); 3185 if (ret < 0) { 3186 goto out; 3187 } else if (ret > 0) { 3188 ret = -EUCLEAN; 3189 goto out; 3190 } 3191 } 3192 3193 out: 3194 if (!ret || ret == -EOVERFLOW) { 3195 rootrefs->num_items = found; 3196 /* update min_treeid for next search */ 3197 if (found) 3198 rootrefs->min_treeid = 3199 rootrefs->rootref[found - 1].treeid + 1; 3200 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 3201 ret = -EFAULT; 3202 } 3203 3204 kfree(rootrefs); 3205 btrfs_free_path(path); 3206 3207 return ret; 3208 } 3209 3210 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 3211 void __user *arg, 3212 bool destroy_v2) 3213 { 3214 struct dentry *parent = file->f_path.dentry; 3215 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 3216 struct dentry *dentry; 3217 struct inode *dir = d_inode(parent); 3218 struct inode *inode; 3219 struct btrfs_root *root = BTRFS_I(dir)->root; 3220 struct btrfs_root *dest = NULL; 3221 struct btrfs_ioctl_vol_args *vol_args = NULL; 3222 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 3223 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 3224 char *subvol_name, *subvol_name_ptr = NULL; 3225 int subvol_namelen; 3226 int err = 0; 3227 bool destroy_parent = false; 3228 3229 /* We don't support snapshots with extent tree v2 yet. */ 3230 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3231 btrfs_err(fs_info, 3232 "extent tree v2 doesn't support snapshot deletion yet"); 3233 return -EOPNOTSUPP; 3234 } 3235 3236 if (destroy_v2) { 3237 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 3238 if (IS_ERR(vol_args2)) 3239 return PTR_ERR(vol_args2); 3240 3241 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 3242 err = -EOPNOTSUPP; 3243 goto out; 3244 } 3245 3246 /* 3247 * If SPEC_BY_ID is not set, we are looking for the subvolume by 3248 * name, same as v1 currently does. 3249 */ 3250 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 3251 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 3252 subvol_name = vol_args2->name; 3253 3254 err = mnt_want_write_file(file); 3255 if (err) 3256 goto out; 3257 } else { 3258 struct inode *old_dir; 3259 3260 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 3261 err = -EINVAL; 3262 goto out; 3263 } 3264 3265 err = mnt_want_write_file(file); 3266 if (err) 3267 goto out; 3268 3269 dentry = btrfs_get_dentry(fs_info->sb, 3270 BTRFS_FIRST_FREE_OBJECTID, 3271 vol_args2->subvolid, 0, 0); 3272 if (IS_ERR(dentry)) { 3273 err = PTR_ERR(dentry); 3274 goto out_drop_write; 3275 } 3276 3277 /* 3278 * Change the default parent since the subvolume being 3279 * deleted can be outside of the current mount point. 3280 */ 3281 parent = btrfs_get_parent(dentry); 3282 3283 /* 3284 * At this point dentry->d_name can point to '/' if the 3285 * subvolume we want to destroy is outsite of the 3286 * current mount point, so we need to release the 3287 * current dentry and execute the lookup to return a new 3288 * one with ->d_name pointing to the 3289 * <mount point>/subvol_name. 3290 */ 3291 dput(dentry); 3292 if (IS_ERR(parent)) { 3293 err = PTR_ERR(parent); 3294 goto out_drop_write; 3295 } 3296 old_dir = dir; 3297 dir = d_inode(parent); 3298 3299 /* 3300 * If v2 was used with SPEC_BY_ID, a new parent was 3301 * allocated since the subvolume can be outside of the 3302 * current mount point. Later on we need to release this 3303 * new parent dentry. 3304 */ 3305 destroy_parent = true; 3306 3307 /* 3308 * On idmapped mounts, deletion via subvolid is 3309 * restricted to subvolumes that are immediate 3310 * ancestors of the inode referenced by the file 3311 * descriptor in the ioctl. Otherwise the idmapping 3312 * could potentially be abused to delete subvolumes 3313 * anywhere in the filesystem the user wouldn't be able 3314 * to delete without an idmapped mount. 3315 */ 3316 if (old_dir != dir && mnt_userns != &init_user_ns) { 3317 err = -EOPNOTSUPP; 3318 goto free_parent; 3319 } 3320 3321 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 3322 fs_info, vol_args2->subvolid); 3323 if (IS_ERR(subvol_name_ptr)) { 3324 err = PTR_ERR(subvol_name_ptr); 3325 goto free_parent; 3326 } 3327 /* subvol_name_ptr is already nul terminated */ 3328 subvol_name = (char *)kbasename(subvol_name_ptr); 3329 } 3330 } else { 3331 vol_args = memdup_user(arg, sizeof(*vol_args)); 3332 if (IS_ERR(vol_args)) 3333 return PTR_ERR(vol_args); 3334 3335 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 3336 subvol_name = vol_args->name; 3337 3338 err = mnt_want_write_file(file); 3339 if (err) 3340 goto out; 3341 } 3342 3343 subvol_namelen = strlen(subvol_name); 3344 3345 if (strchr(subvol_name, '/') || 3346 strncmp(subvol_name, "..", subvol_namelen) == 0) { 3347 err = -EINVAL; 3348 goto free_subvol_name; 3349 } 3350 3351 if (!S_ISDIR(dir->i_mode)) { 3352 err = -ENOTDIR; 3353 goto free_subvol_name; 3354 } 3355 3356 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3357 if (err == -EINTR) 3358 goto free_subvol_name; 3359 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen); 3360 if (IS_ERR(dentry)) { 3361 err = PTR_ERR(dentry); 3362 goto out_unlock_dir; 3363 } 3364 3365 if (d_really_is_negative(dentry)) { 3366 err = -ENOENT; 3367 goto out_dput; 3368 } 3369 3370 inode = d_inode(dentry); 3371 dest = BTRFS_I(inode)->root; 3372 if (!capable(CAP_SYS_ADMIN)) { 3373 /* 3374 * Regular user. Only allow this with a special mount 3375 * option, when the user has write+exec access to the 3376 * subvol root, and when rmdir(2) would have been 3377 * allowed. 3378 * 3379 * Note that this is _not_ check that the subvol is 3380 * empty or doesn't contain data that we wouldn't 3381 * otherwise be able to delete. 3382 * 3383 * Users who want to delete empty subvols should try 3384 * rmdir(2). 3385 */ 3386 err = -EPERM; 3387 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3388 goto out_dput; 3389 3390 /* 3391 * Do not allow deletion if the parent dir is the same 3392 * as the dir to be deleted. That means the ioctl 3393 * must be called on the dentry referencing the root 3394 * of the subvol, not a random directory contained 3395 * within it. 3396 */ 3397 err = -EINVAL; 3398 if (root == dest) 3399 goto out_dput; 3400 3401 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC); 3402 if (err) 3403 goto out_dput; 3404 } 3405 3406 /* check if subvolume may be deleted by a user */ 3407 err = btrfs_may_delete(mnt_userns, dir, dentry, 1); 3408 if (err) 3409 goto out_dput; 3410 3411 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3412 err = -EINVAL; 3413 goto out_dput; 3414 } 3415 3416 btrfs_inode_lock(inode, 0); 3417 err = btrfs_delete_subvolume(dir, dentry); 3418 btrfs_inode_unlock(inode, 0); 3419 if (!err) 3420 d_delete_notify(dir, dentry); 3421 3422 out_dput: 3423 dput(dentry); 3424 out_unlock_dir: 3425 btrfs_inode_unlock(dir, 0); 3426 free_subvol_name: 3427 kfree(subvol_name_ptr); 3428 free_parent: 3429 if (destroy_parent) 3430 dput(parent); 3431 out_drop_write: 3432 mnt_drop_write_file(file); 3433 out: 3434 kfree(vol_args2); 3435 kfree(vol_args); 3436 return err; 3437 } 3438 3439 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3440 { 3441 struct inode *inode = file_inode(file); 3442 struct btrfs_root *root = BTRFS_I(inode)->root; 3443 struct btrfs_ioctl_defrag_range_args range = {0}; 3444 int ret; 3445 3446 ret = mnt_want_write_file(file); 3447 if (ret) 3448 return ret; 3449 3450 if (btrfs_root_readonly(root)) { 3451 ret = -EROFS; 3452 goto out; 3453 } 3454 3455 switch (inode->i_mode & S_IFMT) { 3456 case S_IFDIR: 3457 if (!capable(CAP_SYS_ADMIN)) { 3458 ret = -EPERM; 3459 goto out; 3460 } 3461 ret = btrfs_defrag_root(root); 3462 break; 3463 case S_IFREG: 3464 /* 3465 * Note that this does not check the file descriptor for write 3466 * access. This prevents defragmenting executables that are 3467 * running and allows defrag on files open in read-only mode. 3468 */ 3469 if (!capable(CAP_SYS_ADMIN) && 3470 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3471 ret = -EPERM; 3472 goto out; 3473 } 3474 3475 if (argp) { 3476 if (copy_from_user(&range, argp, sizeof(range))) { 3477 ret = -EFAULT; 3478 goto out; 3479 } 3480 /* compression requires us to start the IO */ 3481 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3482 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 3483 range.extent_thresh = (u32)-1; 3484 } 3485 } else { 3486 /* the rest are all set to zero by kzalloc */ 3487 range.len = (u64)-1; 3488 } 3489 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 3490 &range, BTRFS_OLDEST_GENERATION, 0); 3491 if (ret > 0) 3492 ret = 0; 3493 break; 3494 default: 3495 ret = -EINVAL; 3496 } 3497 out: 3498 mnt_drop_write_file(file); 3499 return ret; 3500 } 3501 3502 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3503 { 3504 struct btrfs_ioctl_vol_args *vol_args; 3505 bool restore_op = false; 3506 int ret; 3507 3508 if (!capable(CAP_SYS_ADMIN)) 3509 return -EPERM; 3510 3511 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3512 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 3513 return -EINVAL; 3514 } 3515 3516 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 3517 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3518 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3519 3520 /* 3521 * We can do the device add because we have a paused balanced, 3522 * change the exclusive op type and remember we should bring 3523 * back the paused balance 3524 */ 3525 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 3526 btrfs_exclop_start_unlock(fs_info); 3527 restore_op = true; 3528 } 3529 3530 vol_args = memdup_user(arg, sizeof(*vol_args)); 3531 if (IS_ERR(vol_args)) { 3532 ret = PTR_ERR(vol_args); 3533 goto out; 3534 } 3535 3536 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3537 ret = btrfs_init_new_device(fs_info, vol_args->name); 3538 3539 if (!ret) 3540 btrfs_info(fs_info, "disk added %s", vol_args->name); 3541 3542 kfree(vol_args); 3543 out: 3544 if (restore_op) 3545 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 3546 else 3547 btrfs_exclop_finish(fs_info); 3548 return ret; 3549 } 3550 3551 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3552 { 3553 BTRFS_DEV_LOOKUP_ARGS(args); 3554 struct inode *inode = file_inode(file); 3555 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3556 struct btrfs_ioctl_vol_args_v2 *vol_args; 3557 struct block_device *bdev = NULL; 3558 fmode_t mode; 3559 int ret; 3560 bool cancel = false; 3561 3562 if (!capable(CAP_SYS_ADMIN)) 3563 return -EPERM; 3564 3565 vol_args = memdup_user(arg, sizeof(*vol_args)); 3566 if (IS_ERR(vol_args)) 3567 return PTR_ERR(vol_args); 3568 3569 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3570 ret = -EOPNOTSUPP; 3571 goto out; 3572 } 3573 3574 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3575 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3576 args.devid = vol_args->devid; 3577 } else if (!strcmp("cancel", vol_args->name)) { 3578 cancel = true; 3579 } else { 3580 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3581 if (ret) 3582 goto out; 3583 } 3584 3585 ret = mnt_want_write_file(file); 3586 if (ret) 3587 goto out; 3588 3589 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3590 cancel); 3591 if (ret) 3592 goto err_drop; 3593 3594 /* Exclusive operation is now claimed */ 3595 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3596 3597 btrfs_exclop_finish(fs_info); 3598 3599 if (!ret) { 3600 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3601 btrfs_info(fs_info, "device deleted: id %llu", 3602 vol_args->devid); 3603 else 3604 btrfs_info(fs_info, "device deleted: %s", 3605 vol_args->name); 3606 } 3607 err_drop: 3608 mnt_drop_write_file(file); 3609 if (bdev) 3610 blkdev_put(bdev, mode); 3611 out: 3612 btrfs_put_dev_args_from_path(&args); 3613 kfree(vol_args); 3614 return ret; 3615 } 3616 3617 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3618 { 3619 BTRFS_DEV_LOOKUP_ARGS(args); 3620 struct inode *inode = file_inode(file); 3621 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3622 struct btrfs_ioctl_vol_args *vol_args; 3623 struct block_device *bdev = NULL; 3624 fmode_t mode; 3625 int ret; 3626 bool cancel = false; 3627 3628 if (!capable(CAP_SYS_ADMIN)) 3629 return -EPERM; 3630 3631 vol_args = memdup_user(arg, sizeof(*vol_args)); 3632 if (IS_ERR(vol_args)) 3633 return PTR_ERR(vol_args); 3634 3635 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3636 if (!strcmp("cancel", vol_args->name)) { 3637 cancel = true; 3638 } else { 3639 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3640 if (ret) 3641 goto out; 3642 } 3643 3644 ret = mnt_want_write_file(file); 3645 if (ret) 3646 goto out; 3647 3648 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3649 cancel); 3650 if (ret == 0) { 3651 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3652 if (!ret) 3653 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3654 btrfs_exclop_finish(fs_info); 3655 } 3656 3657 mnt_drop_write_file(file); 3658 if (bdev) 3659 blkdev_put(bdev, mode); 3660 out: 3661 btrfs_put_dev_args_from_path(&args); 3662 kfree(vol_args); 3663 return ret; 3664 } 3665 3666 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3667 void __user *arg) 3668 { 3669 struct btrfs_ioctl_fs_info_args *fi_args; 3670 struct btrfs_device *device; 3671 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3672 u64 flags_in; 3673 int ret = 0; 3674 3675 fi_args = memdup_user(arg, sizeof(*fi_args)); 3676 if (IS_ERR(fi_args)) 3677 return PTR_ERR(fi_args); 3678 3679 flags_in = fi_args->flags; 3680 memset(fi_args, 0, sizeof(*fi_args)); 3681 3682 rcu_read_lock(); 3683 fi_args->num_devices = fs_devices->num_devices; 3684 3685 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3686 if (device->devid > fi_args->max_id) 3687 fi_args->max_id = device->devid; 3688 } 3689 rcu_read_unlock(); 3690 3691 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3692 fi_args->nodesize = fs_info->nodesize; 3693 fi_args->sectorsize = fs_info->sectorsize; 3694 fi_args->clone_alignment = fs_info->sectorsize; 3695 3696 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3697 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3698 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3699 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3700 } 3701 3702 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3703 fi_args->generation = fs_info->generation; 3704 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3705 } 3706 3707 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3708 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3709 sizeof(fi_args->metadata_uuid)); 3710 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3711 } 3712 3713 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3714 ret = -EFAULT; 3715 3716 kfree(fi_args); 3717 return ret; 3718 } 3719 3720 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3721 void __user *arg) 3722 { 3723 BTRFS_DEV_LOOKUP_ARGS(args); 3724 struct btrfs_ioctl_dev_info_args *di_args; 3725 struct btrfs_device *dev; 3726 int ret = 0; 3727 3728 di_args = memdup_user(arg, sizeof(*di_args)); 3729 if (IS_ERR(di_args)) 3730 return PTR_ERR(di_args); 3731 3732 args.devid = di_args->devid; 3733 if (!btrfs_is_empty_uuid(di_args->uuid)) 3734 args.uuid = di_args->uuid; 3735 3736 rcu_read_lock(); 3737 dev = btrfs_find_device(fs_info->fs_devices, &args); 3738 if (!dev) { 3739 ret = -ENODEV; 3740 goto out; 3741 } 3742 3743 di_args->devid = dev->devid; 3744 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3745 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3746 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3747 if (dev->name) { 3748 strncpy(di_args->path, rcu_str_deref(dev->name), 3749 sizeof(di_args->path) - 1); 3750 di_args->path[sizeof(di_args->path) - 1] = 0; 3751 } else { 3752 di_args->path[0] = '\0'; 3753 } 3754 3755 out: 3756 rcu_read_unlock(); 3757 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3758 ret = -EFAULT; 3759 3760 kfree(di_args); 3761 return ret; 3762 } 3763 3764 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3765 { 3766 struct inode *inode = file_inode(file); 3767 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3768 struct btrfs_root *root = BTRFS_I(inode)->root; 3769 struct btrfs_root *new_root; 3770 struct btrfs_dir_item *di; 3771 struct btrfs_trans_handle *trans; 3772 struct btrfs_path *path = NULL; 3773 struct btrfs_disk_key disk_key; 3774 u64 objectid = 0; 3775 u64 dir_id; 3776 int ret; 3777 3778 if (!capable(CAP_SYS_ADMIN)) 3779 return -EPERM; 3780 3781 ret = mnt_want_write_file(file); 3782 if (ret) 3783 return ret; 3784 3785 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3786 ret = -EFAULT; 3787 goto out; 3788 } 3789 3790 if (!objectid) 3791 objectid = BTRFS_FS_TREE_OBJECTID; 3792 3793 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3794 if (IS_ERR(new_root)) { 3795 ret = PTR_ERR(new_root); 3796 goto out; 3797 } 3798 if (!is_fstree(new_root->root_key.objectid)) { 3799 ret = -ENOENT; 3800 goto out_free; 3801 } 3802 3803 path = btrfs_alloc_path(); 3804 if (!path) { 3805 ret = -ENOMEM; 3806 goto out_free; 3807 } 3808 3809 trans = btrfs_start_transaction(root, 1); 3810 if (IS_ERR(trans)) { 3811 ret = PTR_ERR(trans); 3812 goto out_free; 3813 } 3814 3815 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3816 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3817 dir_id, "default", 7, 1); 3818 if (IS_ERR_OR_NULL(di)) { 3819 btrfs_release_path(path); 3820 btrfs_end_transaction(trans); 3821 btrfs_err(fs_info, 3822 "Umm, you don't have the default diritem, this isn't going to work"); 3823 ret = -ENOENT; 3824 goto out_free; 3825 } 3826 3827 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3828 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3829 btrfs_mark_buffer_dirty(path->nodes[0]); 3830 btrfs_release_path(path); 3831 3832 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3833 btrfs_end_transaction(trans); 3834 out_free: 3835 btrfs_put_root(new_root); 3836 btrfs_free_path(path); 3837 out: 3838 mnt_drop_write_file(file); 3839 return ret; 3840 } 3841 3842 static void get_block_group_info(struct list_head *groups_list, 3843 struct btrfs_ioctl_space_info *space) 3844 { 3845 struct btrfs_block_group *block_group; 3846 3847 space->total_bytes = 0; 3848 space->used_bytes = 0; 3849 space->flags = 0; 3850 list_for_each_entry(block_group, groups_list, list) { 3851 space->flags = block_group->flags; 3852 space->total_bytes += block_group->length; 3853 space->used_bytes += block_group->used; 3854 } 3855 } 3856 3857 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3858 void __user *arg) 3859 { 3860 struct btrfs_ioctl_space_args space_args; 3861 struct btrfs_ioctl_space_info space; 3862 struct btrfs_ioctl_space_info *dest; 3863 struct btrfs_ioctl_space_info *dest_orig; 3864 struct btrfs_ioctl_space_info __user *user_dest; 3865 struct btrfs_space_info *info; 3866 static const u64 types[] = { 3867 BTRFS_BLOCK_GROUP_DATA, 3868 BTRFS_BLOCK_GROUP_SYSTEM, 3869 BTRFS_BLOCK_GROUP_METADATA, 3870 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3871 }; 3872 int num_types = 4; 3873 int alloc_size; 3874 int ret = 0; 3875 u64 slot_count = 0; 3876 int i, c; 3877 3878 if (copy_from_user(&space_args, 3879 (struct btrfs_ioctl_space_args __user *)arg, 3880 sizeof(space_args))) 3881 return -EFAULT; 3882 3883 for (i = 0; i < num_types; i++) { 3884 struct btrfs_space_info *tmp; 3885 3886 info = NULL; 3887 list_for_each_entry(tmp, &fs_info->space_info, list) { 3888 if (tmp->flags == types[i]) { 3889 info = tmp; 3890 break; 3891 } 3892 } 3893 3894 if (!info) 3895 continue; 3896 3897 down_read(&info->groups_sem); 3898 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3899 if (!list_empty(&info->block_groups[c])) 3900 slot_count++; 3901 } 3902 up_read(&info->groups_sem); 3903 } 3904 3905 /* 3906 * Global block reserve, exported as a space_info 3907 */ 3908 slot_count++; 3909 3910 /* space_slots == 0 means they are asking for a count */ 3911 if (space_args.space_slots == 0) { 3912 space_args.total_spaces = slot_count; 3913 goto out; 3914 } 3915 3916 slot_count = min_t(u64, space_args.space_slots, slot_count); 3917 3918 alloc_size = sizeof(*dest) * slot_count; 3919 3920 /* we generally have at most 6 or so space infos, one for each raid 3921 * level. So, a whole page should be more than enough for everyone 3922 */ 3923 if (alloc_size > PAGE_SIZE) 3924 return -ENOMEM; 3925 3926 space_args.total_spaces = 0; 3927 dest = kmalloc(alloc_size, GFP_KERNEL); 3928 if (!dest) 3929 return -ENOMEM; 3930 dest_orig = dest; 3931 3932 /* now we have a buffer to copy into */ 3933 for (i = 0; i < num_types; i++) { 3934 struct btrfs_space_info *tmp; 3935 3936 if (!slot_count) 3937 break; 3938 3939 info = NULL; 3940 list_for_each_entry(tmp, &fs_info->space_info, list) { 3941 if (tmp->flags == types[i]) { 3942 info = tmp; 3943 break; 3944 } 3945 } 3946 3947 if (!info) 3948 continue; 3949 down_read(&info->groups_sem); 3950 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3951 if (!list_empty(&info->block_groups[c])) { 3952 get_block_group_info(&info->block_groups[c], 3953 &space); 3954 memcpy(dest, &space, sizeof(space)); 3955 dest++; 3956 space_args.total_spaces++; 3957 slot_count--; 3958 } 3959 if (!slot_count) 3960 break; 3961 } 3962 up_read(&info->groups_sem); 3963 } 3964 3965 /* 3966 * Add global block reserve 3967 */ 3968 if (slot_count) { 3969 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3970 3971 spin_lock(&block_rsv->lock); 3972 space.total_bytes = block_rsv->size; 3973 space.used_bytes = block_rsv->size - block_rsv->reserved; 3974 spin_unlock(&block_rsv->lock); 3975 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3976 memcpy(dest, &space, sizeof(space)); 3977 space_args.total_spaces++; 3978 } 3979 3980 user_dest = (struct btrfs_ioctl_space_info __user *) 3981 (arg + sizeof(struct btrfs_ioctl_space_args)); 3982 3983 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3984 ret = -EFAULT; 3985 3986 kfree(dest_orig); 3987 out: 3988 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3989 ret = -EFAULT; 3990 3991 return ret; 3992 } 3993 3994 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3995 void __user *argp) 3996 { 3997 struct btrfs_trans_handle *trans; 3998 u64 transid; 3999 4000 trans = btrfs_attach_transaction_barrier(root); 4001 if (IS_ERR(trans)) { 4002 if (PTR_ERR(trans) != -ENOENT) 4003 return PTR_ERR(trans); 4004 4005 /* No running transaction, don't bother */ 4006 transid = root->fs_info->last_trans_committed; 4007 goto out; 4008 } 4009 transid = trans->transid; 4010 btrfs_commit_transaction_async(trans); 4011 out: 4012 if (argp) 4013 if (copy_to_user(argp, &transid, sizeof(transid))) 4014 return -EFAULT; 4015 return 0; 4016 } 4017 4018 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4019 void __user *argp) 4020 { 4021 u64 transid; 4022 4023 if (argp) { 4024 if (copy_from_user(&transid, argp, sizeof(transid))) 4025 return -EFAULT; 4026 } else { 4027 transid = 0; /* current trans */ 4028 } 4029 return btrfs_wait_for_commit(fs_info, transid); 4030 } 4031 4032 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4033 { 4034 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4035 struct btrfs_ioctl_scrub_args *sa; 4036 int ret; 4037 4038 if (!capable(CAP_SYS_ADMIN)) 4039 return -EPERM; 4040 4041 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 4042 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 4043 return -EINVAL; 4044 } 4045 4046 sa = memdup_user(arg, sizeof(*sa)); 4047 if (IS_ERR(sa)) 4048 return PTR_ERR(sa); 4049 4050 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4051 ret = mnt_want_write_file(file); 4052 if (ret) 4053 goto out; 4054 } 4055 4056 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4057 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4058 0); 4059 4060 /* 4061 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 4062 * error. This is important as it allows user space to know how much 4063 * progress scrub has done. For example, if scrub is canceled we get 4064 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 4065 * space. Later user space can inspect the progress from the structure 4066 * btrfs_ioctl_scrub_args and resume scrub from where it left off 4067 * previously (btrfs-progs does this). 4068 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 4069 * then return -EFAULT to signal the structure was not copied or it may 4070 * be corrupt and unreliable due to a partial copy. 4071 */ 4072 if (copy_to_user(arg, sa, sizeof(*sa))) 4073 ret = -EFAULT; 4074 4075 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4076 mnt_drop_write_file(file); 4077 out: 4078 kfree(sa); 4079 return ret; 4080 } 4081 4082 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4083 { 4084 if (!capable(CAP_SYS_ADMIN)) 4085 return -EPERM; 4086 4087 return btrfs_scrub_cancel(fs_info); 4088 } 4089 4090 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4091 void __user *arg) 4092 { 4093 struct btrfs_ioctl_scrub_args *sa; 4094 int ret; 4095 4096 if (!capable(CAP_SYS_ADMIN)) 4097 return -EPERM; 4098 4099 sa = memdup_user(arg, sizeof(*sa)); 4100 if (IS_ERR(sa)) 4101 return PTR_ERR(sa); 4102 4103 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4104 4105 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4106 ret = -EFAULT; 4107 4108 kfree(sa); 4109 return ret; 4110 } 4111 4112 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4113 void __user *arg) 4114 { 4115 struct btrfs_ioctl_get_dev_stats *sa; 4116 int ret; 4117 4118 sa = memdup_user(arg, sizeof(*sa)); 4119 if (IS_ERR(sa)) 4120 return PTR_ERR(sa); 4121 4122 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4123 kfree(sa); 4124 return -EPERM; 4125 } 4126 4127 ret = btrfs_get_dev_stats(fs_info, sa); 4128 4129 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4130 ret = -EFAULT; 4131 4132 kfree(sa); 4133 return ret; 4134 } 4135 4136 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4137 void __user *arg) 4138 { 4139 struct btrfs_ioctl_dev_replace_args *p; 4140 int ret; 4141 4142 if (!capable(CAP_SYS_ADMIN)) 4143 return -EPERM; 4144 4145 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 4146 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 4147 return -EINVAL; 4148 } 4149 4150 p = memdup_user(arg, sizeof(*p)); 4151 if (IS_ERR(p)) 4152 return PTR_ERR(p); 4153 4154 switch (p->cmd) { 4155 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4156 if (sb_rdonly(fs_info->sb)) { 4157 ret = -EROFS; 4158 goto out; 4159 } 4160 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 4161 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4162 } else { 4163 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4164 btrfs_exclop_finish(fs_info); 4165 } 4166 break; 4167 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4168 btrfs_dev_replace_status(fs_info, p); 4169 ret = 0; 4170 break; 4171 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4172 p->result = btrfs_dev_replace_cancel(fs_info); 4173 ret = 0; 4174 break; 4175 default: 4176 ret = -EINVAL; 4177 break; 4178 } 4179 4180 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 4181 ret = -EFAULT; 4182 out: 4183 kfree(p); 4184 return ret; 4185 } 4186 4187 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4188 { 4189 int ret = 0; 4190 int i; 4191 u64 rel_ptr; 4192 int size; 4193 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4194 struct inode_fs_paths *ipath = NULL; 4195 struct btrfs_path *path; 4196 4197 if (!capable(CAP_DAC_READ_SEARCH)) 4198 return -EPERM; 4199 4200 path = btrfs_alloc_path(); 4201 if (!path) { 4202 ret = -ENOMEM; 4203 goto out; 4204 } 4205 4206 ipa = memdup_user(arg, sizeof(*ipa)); 4207 if (IS_ERR(ipa)) { 4208 ret = PTR_ERR(ipa); 4209 ipa = NULL; 4210 goto out; 4211 } 4212 4213 size = min_t(u32, ipa->size, 4096); 4214 ipath = init_ipath(size, root, path); 4215 if (IS_ERR(ipath)) { 4216 ret = PTR_ERR(ipath); 4217 ipath = NULL; 4218 goto out; 4219 } 4220 4221 ret = paths_from_inode(ipa->inum, ipath); 4222 if (ret < 0) 4223 goto out; 4224 4225 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4226 rel_ptr = ipath->fspath->val[i] - 4227 (u64)(unsigned long)ipath->fspath->val; 4228 ipath->fspath->val[i] = rel_ptr; 4229 } 4230 4231 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4232 ipath->fspath, size); 4233 if (ret) { 4234 ret = -EFAULT; 4235 goto out; 4236 } 4237 4238 out: 4239 btrfs_free_path(path); 4240 free_ipath(ipath); 4241 kfree(ipa); 4242 4243 return ret; 4244 } 4245 4246 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4247 { 4248 struct btrfs_data_container *inodes = ctx; 4249 const size_t c = 3 * sizeof(u64); 4250 4251 if (inodes->bytes_left >= c) { 4252 inodes->bytes_left -= c; 4253 inodes->val[inodes->elem_cnt] = inum; 4254 inodes->val[inodes->elem_cnt + 1] = offset; 4255 inodes->val[inodes->elem_cnt + 2] = root; 4256 inodes->elem_cnt += 3; 4257 } else { 4258 inodes->bytes_missing += c - inodes->bytes_left; 4259 inodes->bytes_left = 0; 4260 inodes->elem_missed += 3; 4261 } 4262 4263 return 0; 4264 } 4265 4266 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4267 void __user *arg, int version) 4268 { 4269 int ret = 0; 4270 int size; 4271 struct btrfs_ioctl_logical_ino_args *loi; 4272 struct btrfs_data_container *inodes = NULL; 4273 struct btrfs_path *path = NULL; 4274 bool ignore_offset; 4275 4276 if (!capable(CAP_SYS_ADMIN)) 4277 return -EPERM; 4278 4279 loi = memdup_user(arg, sizeof(*loi)); 4280 if (IS_ERR(loi)) 4281 return PTR_ERR(loi); 4282 4283 if (version == 1) { 4284 ignore_offset = false; 4285 size = min_t(u32, loi->size, SZ_64K); 4286 } else { 4287 /* All reserved bits must be 0 for now */ 4288 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4289 ret = -EINVAL; 4290 goto out_loi; 4291 } 4292 /* Only accept flags we have defined so far */ 4293 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4294 ret = -EINVAL; 4295 goto out_loi; 4296 } 4297 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4298 size = min_t(u32, loi->size, SZ_16M); 4299 } 4300 4301 path = btrfs_alloc_path(); 4302 if (!path) { 4303 ret = -ENOMEM; 4304 goto out; 4305 } 4306 4307 inodes = init_data_container(size); 4308 if (IS_ERR(inodes)) { 4309 ret = PTR_ERR(inodes); 4310 inodes = NULL; 4311 goto out; 4312 } 4313 4314 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4315 build_ino_list, inodes, ignore_offset); 4316 if (ret == -EINVAL) 4317 ret = -ENOENT; 4318 if (ret < 0) 4319 goto out; 4320 4321 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4322 size); 4323 if (ret) 4324 ret = -EFAULT; 4325 4326 out: 4327 btrfs_free_path(path); 4328 kvfree(inodes); 4329 out_loi: 4330 kfree(loi); 4331 4332 return ret; 4333 } 4334 4335 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4336 struct btrfs_ioctl_balance_args *bargs) 4337 { 4338 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4339 4340 bargs->flags = bctl->flags; 4341 4342 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4343 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4344 if (atomic_read(&fs_info->balance_pause_req)) 4345 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4346 if (atomic_read(&fs_info->balance_cancel_req)) 4347 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4348 4349 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4350 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4351 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4352 4353 spin_lock(&fs_info->balance_lock); 4354 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4355 spin_unlock(&fs_info->balance_lock); 4356 } 4357 4358 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4359 { 4360 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4361 struct btrfs_fs_info *fs_info = root->fs_info; 4362 struct btrfs_ioctl_balance_args *bargs; 4363 struct btrfs_balance_control *bctl; 4364 bool need_unlock; /* for mut. excl. ops lock */ 4365 int ret; 4366 4367 if (!capable(CAP_SYS_ADMIN)) 4368 return -EPERM; 4369 4370 ret = mnt_want_write_file(file); 4371 if (ret) 4372 return ret; 4373 4374 bargs = memdup_user(arg, sizeof(*bargs)); 4375 if (IS_ERR(bargs)) { 4376 ret = PTR_ERR(bargs); 4377 bargs = NULL; 4378 goto out; 4379 } 4380 4381 again: 4382 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4383 mutex_lock(&fs_info->balance_mutex); 4384 need_unlock = true; 4385 goto locked; 4386 } 4387 4388 /* 4389 * mut. excl. ops lock is locked. Three possibilities: 4390 * (1) some other op is running 4391 * (2) balance is running 4392 * (3) balance is paused -- special case (think resume) 4393 */ 4394 mutex_lock(&fs_info->balance_mutex); 4395 if (fs_info->balance_ctl) { 4396 /* this is either (2) or (3) */ 4397 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4398 mutex_unlock(&fs_info->balance_mutex); 4399 /* 4400 * Lock released to allow other waiters to continue, 4401 * we'll reexamine the status again. 4402 */ 4403 mutex_lock(&fs_info->balance_mutex); 4404 4405 if (fs_info->balance_ctl && 4406 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4407 /* this is (3) */ 4408 need_unlock = false; 4409 goto locked; 4410 } 4411 4412 mutex_unlock(&fs_info->balance_mutex); 4413 goto again; 4414 } else { 4415 /* this is (2) */ 4416 mutex_unlock(&fs_info->balance_mutex); 4417 ret = -EINPROGRESS; 4418 goto out; 4419 } 4420 } else { 4421 /* this is (1) */ 4422 mutex_unlock(&fs_info->balance_mutex); 4423 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4424 goto out; 4425 } 4426 4427 locked: 4428 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4429 if (!fs_info->balance_ctl) { 4430 ret = -ENOTCONN; 4431 goto out_unlock; 4432 } 4433 4434 bctl = fs_info->balance_ctl; 4435 spin_lock(&fs_info->balance_lock); 4436 bctl->flags |= BTRFS_BALANCE_RESUME; 4437 spin_unlock(&fs_info->balance_lock); 4438 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 4439 4440 goto do_balance; 4441 } 4442 4443 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4444 ret = -EINVAL; 4445 goto out_unlock; 4446 } 4447 4448 if (fs_info->balance_ctl) { 4449 ret = -EINPROGRESS; 4450 goto out_unlock; 4451 } 4452 4453 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4454 if (!bctl) { 4455 ret = -ENOMEM; 4456 goto out_unlock; 4457 } 4458 4459 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4460 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4461 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4462 4463 bctl->flags = bargs->flags; 4464 do_balance: 4465 /* 4466 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4467 * bctl is freed in reset_balance_state, or, if restriper was paused 4468 * all the way until unmount, in free_fs_info. The flag should be 4469 * cleared after reset_balance_state. 4470 */ 4471 need_unlock = false; 4472 4473 ret = btrfs_balance(fs_info, bctl, bargs); 4474 bctl = NULL; 4475 4476 if (ret == 0 || ret == -ECANCELED) { 4477 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4478 ret = -EFAULT; 4479 } 4480 4481 kfree(bctl); 4482 out_unlock: 4483 mutex_unlock(&fs_info->balance_mutex); 4484 if (need_unlock) 4485 btrfs_exclop_finish(fs_info); 4486 out: 4487 mnt_drop_write_file(file); 4488 kfree(bargs); 4489 return ret; 4490 } 4491 4492 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4493 { 4494 if (!capable(CAP_SYS_ADMIN)) 4495 return -EPERM; 4496 4497 switch (cmd) { 4498 case BTRFS_BALANCE_CTL_PAUSE: 4499 return btrfs_pause_balance(fs_info); 4500 case BTRFS_BALANCE_CTL_CANCEL: 4501 return btrfs_cancel_balance(fs_info); 4502 } 4503 4504 return -EINVAL; 4505 } 4506 4507 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4508 void __user *arg) 4509 { 4510 struct btrfs_ioctl_balance_args *bargs; 4511 int ret = 0; 4512 4513 if (!capable(CAP_SYS_ADMIN)) 4514 return -EPERM; 4515 4516 mutex_lock(&fs_info->balance_mutex); 4517 if (!fs_info->balance_ctl) { 4518 ret = -ENOTCONN; 4519 goto out; 4520 } 4521 4522 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4523 if (!bargs) { 4524 ret = -ENOMEM; 4525 goto out; 4526 } 4527 4528 btrfs_update_ioctl_balance_args(fs_info, bargs); 4529 4530 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4531 ret = -EFAULT; 4532 4533 kfree(bargs); 4534 out: 4535 mutex_unlock(&fs_info->balance_mutex); 4536 return ret; 4537 } 4538 4539 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4540 { 4541 struct inode *inode = file_inode(file); 4542 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4543 struct btrfs_ioctl_quota_ctl_args *sa; 4544 int ret; 4545 4546 if (!capable(CAP_SYS_ADMIN)) 4547 return -EPERM; 4548 4549 ret = mnt_want_write_file(file); 4550 if (ret) 4551 return ret; 4552 4553 sa = memdup_user(arg, sizeof(*sa)); 4554 if (IS_ERR(sa)) { 4555 ret = PTR_ERR(sa); 4556 goto drop_write; 4557 } 4558 4559 down_write(&fs_info->subvol_sem); 4560 4561 switch (sa->cmd) { 4562 case BTRFS_QUOTA_CTL_ENABLE: 4563 ret = btrfs_quota_enable(fs_info); 4564 break; 4565 case BTRFS_QUOTA_CTL_DISABLE: 4566 ret = btrfs_quota_disable(fs_info); 4567 break; 4568 default: 4569 ret = -EINVAL; 4570 break; 4571 } 4572 4573 kfree(sa); 4574 up_write(&fs_info->subvol_sem); 4575 drop_write: 4576 mnt_drop_write_file(file); 4577 return ret; 4578 } 4579 4580 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4581 { 4582 struct inode *inode = file_inode(file); 4583 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4584 struct btrfs_root *root = BTRFS_I(inode)->root; 4585 struct btrfs_ioctl_qgroup_assign_args *sa; 4586 struct btrfs_trans_handle *trans; 4587 int ret; 4588 int err; 4589 4590 if (!capable(CAP_SYS_ADMIN)) 4591 return -EPERM; 4592 4593 ret = mnt_want_write_file(file); 4594 if (ret) 4595 return ret; 4596 4597 sa = memdup_user(arg, sizeof(*sa)); 4598 if (IS_ERR(sa)) { 4599 ret = PTR_ERR(sa); 4600 goto drop_write; 4601 } 4602 4603 trans = btrfs_join_transaction(root); 4604 if (IS_ERR(trans)) { 4605 ret = PTR_ERR(trans); 4606 goto out; 4607 } 4608 4609 if (sa->assign) { 4610 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4611 } else { 4612 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4613 } 4614 4615 /* update qgroup status and info */ 4616 err = btrfs_run_qgroups(trans); 4617 if (err < 0) 4618 btrfs_handle_fs_error(fs_info, err, 4619 "failed to update qgroup status and info"); 4620 err = btrfs_end_transaction(trans); 4621 if (err && !ret) 4622 ret = err; 4623 4624 out: 4625 kfree(sa); 4626 drop_write: 4627 mnt_drop_write_file(file); 4628 return ret; 4629 } 4630 4631 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4632 { 4633 struct inode *inode = file_inode(file); 4634 struct btrfs_root *root = BTRFS_I(inode)->root; 4635 struct btrfs_ioctl_qgroup_create_args *sa; 4636 struct btrfs_trans_handle *trans; 4637 int ret; 4638 int err; 4639 4640 if (!capable(CAP_SYS_ADMIN)) 4641 return -EPERM; 4642 4643 ret = mnt_want_write_file(file); 4644 if (ret) 4645 return ret; 4646 4647 sa = memdup_user(arg, sizeof(*sa)); 4648 if (IS_ERR(sa)) { 4649 ret = PTR_ERR(sa); 4650 goto drop_write; 4651 } 4652 4653 if (!sa->qgroupid) { 4654 ret = -EINVAL; 4655 goto out; 4656 } 4657 4658 trans = btrfs_join_transaction(root); 4659 if (IS_ERR(trans)) { 4660 ret = PTR_ERR(trans); 4661 goto out; 4662 } 4663 4664 if (sa->create) { 4665 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4666 } else { 4667 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4668 } 4669 4670 err = btrfs_end_transaction(trans); 4671 if (err && !ret) 4672 ret = err; 4673 4674 out: 4675 kfree(sa); 4676 drop_write: 4677 mnt_drop_write_file(file); 4678 return ret; 4679 } 4680 4681 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4682 { 4683 struct inode *inode = file_inode(file); 4684 struct btrfs_root *root = BTRFS_I(inode)->root; 4685 struct btrfs_ioctl_qgroup_limit_args *sa; 4686 struct btrfs_trans_handle *trans; 4687 int ret; 4688 int err; 4689 u64 qgroupid; 4690 4691 if (!capable(CAP_SYS_ADMIN)) 4692 return -EPERM; 4693 4694 ret = mnt_want_write_file(file); 4695 if (ret) 4696 return ret; 4697 4698 sa = memdup_user(arg, sizeof(*sa)); 4699 if (IS_ERR(sa)) { 4700 ret = PTR_ERR(sa); 4701 goto drop_write; 4702 } 4703 4704 trans = btrfs_join_transaction(root); 4705 if (IS_ERR(trans)) { 4706 ret = PTR_ERR(trans); 4707 goto out; 4708 } 4709 4710 qgroupid = sa->qgroupid; 4711 if (!qgroupid) { 4712 /* take the current subvol as qgroup */ 4713 qgroupid = root->root_key.objectid; 4714 } 4715 4716 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4717 4718 err = btrfs_end_transaction(trans); 4719 if (err && !ret) 4720 ret = err; 4721 4722 out: 4723 kfree(sa); 4724 drop_write: 4725 mnt_drop_write_file(file); 4726 return ret; 4727 } 4728 4729 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4730 { 4731 struct inode *inode = file_inode(file); 4732 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4733 struct btrfs_ioctl_quota_rescan_args *qsa; 4734 int ret; 4735 4736 if (!capable(CAP_SYS_ADMIN)) 4737 return -EPERM; 4738 4739 ret = mnt_want_write_file(file); 4740 if (ret) 4741 return ret; 4742 4743 qsa = memdup_user(arg, sizeof(*qsa)); 4744 if (IS_ERR(qsa)) { 4745 ret = PTR_ERR(qsa); 4746 goto drop_write; 4747 } 4748 4749 if (qsa->flags) { 4750 ret = -EINVAL; 4751 goto out; 4752 } 4753 4754 ret = btrfs_qgroup_rescan(fs_info); 4755 4756 out: 4757 kfree(qsa); 4758 drop_write: 4759 mnt_drop_write_file(file); 4760 return ret; 4761 } 4762 4763 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4764 void __user *arg) 4765 { 4766 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 4767 4768 if (!capable(CAP_SYS_ADMIN)) 4769 return -EPERM; 4770 4771 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4772 qsa.flags = 1; 4773 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 4774 } 4775 4776 if (copy_to_user(arg, &qsa, sizeof(qsa))) 4777 return -EFAULT; 4778 4779 return 0; 4780 } 4781 4782 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4783 void __user *arg) 4784 { 4785 if (!capable(CAP_SYS_ADMIN)) 4786 return -EPERM; 4787 4788 return btrfs_qgroup_wait_for_completion(fs_info, true); 4789 } 4790 4791 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4792 struct user_namespace *mnt_userns, 4793 struct btrfs_ioctl_received_subvol_args *sa) 4794 { 4795 struct inode *inode = file_inode(file); 4796 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4797 struct btrfs_root *root = BTRFS_I(inode)->root; 4798 struct btrfs_root_item *root_item = &root->root_item; 4799 struct btrfs_trans_handle *trans; 4800 struct timespec64 ct = current_time(inode); 4801 int ret = 0; 4802 int received_uuid_changed; 4803 4804 if (!inode_owner_or_capable(mnt_userns, inode)) 4805 return -EPERM; 4806 4807 ret = mnt_want_write_file(file); 4808 if (ret < 0) 4809 return ret; 4810 4811 down_write(&fs_info->subvol_sem); 4812 4813 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4814 ret = -EINVAL; 4815 goto out; 4816 } 4817 4818 if (btrfs_root_readonly(root)) { 4819 ret = -EROFS; 4820 goto out; 4821 } 4822 4823 /* 4824 * 1 - root item 4825 * 2 - uuid items (received uuid + subvol uuid) 4826 */ 4827 trans = btrfs_start_transaction(root, 3); 4828 if (IS_ERR(trans)) { 4829 ret = PTR_ERR(trans); 4830 trans = NULL; 4831 goto out; 4832 } 4833 4834 sa->rtransid = trans->transid; 4835 sa->rtime.sec = ct.tv_sec; 4836 sa->rtime.nsec = ct.tv_nsec; 4837 4838 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4839 BTRFS_UUID_SIZE); 4840 if (received_uuid_changed && 4841 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4842 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4843 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4844 root->root_key.objectid); 4845 if (ret && ret != -ENOENT) { 4846 btrfs_abort_transaction(trans, ret); 4847 btrfs_end_transaction(trans); 4848 goto out; 4849 } 4850 } 4851 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4852 btrfs_set_root_stransid(root_item, sa->stransid); 4853 btrfs_set_root_rtransid(root_item, sa->rtransid); 4854 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4855 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4856 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4857 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4858 4859 ret = btrfs_update_root(trans, fs_info->tree_root, 4860 &root->root_key, &root->root_item); 4861 if (ret < 0) { 4862 btrfs_end_transaction(trans); 4863 goto out; 4864 } 4865 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4866 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4867 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4868 root->root_key.objectid); 4869 if (ret < 0 && ret != -EEXIST) { 4870 btrfs_abort_transaction(trans, ret); 4871 btrfs_end_transaction(trans); 4872 goto out; 4873 } 4874 } 4875 ret = btrfs_commit_transaction(trans); 4876 out: 4877 up_write(&fs_info->subvol_sem); 4878 mnt_drop_write_file(file); 4879 return ret; 4880 } 4881 4882 #ifdef CONFIG_64BIT 4883 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4884 void __user *arg) 4885 { 4886 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4887 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4888 int ret = 0; 4889 4890 args32 = memdup_user(arg, sizeof(*args32)); 4891 if (IS_ERR(args32)) 4892 return PTR_ERR(args32); 4893 4894 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4895 if (!args64) { 4896 ret = -ENOMEM; 4897 goto out; 4898 } 4899 4900 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4901 args64->stransid = args32->stransid; 4902 args64->rtransid = args32->rtransid; 4903 args64->stime.sec = args32->stime.sec; 4904 args64->stime.nsec = args32->stime.nsec; 4905 args64->rtime.sec = args32->rtime.sec; 4906 args64->rtime.nsec = args32->rtime.nsec; 4907 args64->flags = args32->flags; 4908 4909 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64); 4910 if (ret) 4911 goto out; 4912 4913 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4914 args32->stransid = args64->stransid; 4915 args32->rtransid = args64->rtransid; 4916 args32->stime.sec = args64->stime.sec; 4917 args32->stime.nsec = args64->stime.nsec; 4918 args32->rtime.sec = args64->rtime.sec; 4919 args32->rtime.nsec = args64->rtime.nsec; 4920 args32->flags = args64->flags; 4921 4922 ret = copy_to_user(arg, args32, sizeof(*args32)); 4923 if (ret) 4924 ret = -EFAULT; 4925 4926 out: 4927 kfree(args32); 4928 kfree(args64); 4929 return ret; 4930 } 4931 #endif 4932 4933 static long btrfs_ioctl_set_received_subvol(struct file *file, 4934 void __user *arg) 4935 { 4936 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4937 int ret = 0; 4938 4939 sa = memdup_user(arg, sizeof(*sa)); 4940 if (IS_ERR(sa)) 4941 return PTR_ERR(sa); 4942 4943 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa); 4944 4945 if (ret) 4946 goto out; 4947 4948 ret = copy_to_user(arg, sa, sizeof(*sa)); 4949 if (ret) 4950 ret = -EFAULT; 4951 4952 out: 4953 kfree(sa); 4954 return ret; 4955 } 4956 4957 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4958 void __user *arg) 4959 { 4960 size_t len; 4961 int ret; 4962 char label[BTRFS_LABEL_SIZE]; 4963 4964 spin_lock(&fs_info->super_lock); 4965 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4966 spin_unlock(&fs_info->super_lock); 4967 4968 len = strnlen(label, BTRFS_LABEL_SIZE); 4969 4970 if (len == BTRFS_LABEL_SIZE) { 4971 btrfs_warn(fs_info, 4972 "label is too long, return the first %zu bytes", 4973 --len); 4974 } 4975 4976 ret = copy_to_user(arg, label, len); 4977 4978 return ret ? -EFAULT : 0; 4979 } 4980 4981 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4982 { 4983 struct inode *inode = file_inode(file); 4984 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4985 struct btrfs_root *root = BTRFS_I(inode)->root; 4986 struct btrfs_super_block *super_block = fs_info->super_copy; 4987 struct btrfs_trans_handle *trans; 4988 char label[BTRFS_LABEL_SIZE]; 4989 int ret; 4990 4991 if (!capable(CAP_SYS_ADMIN)) 4992 return -EPERM; 4993 4994 if (copy_from_user(label, arg, sizeof(label))) 4995 return -EFAULT; 4996 4997 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4998 btrfs_err(fs_info, 4999 "unable to set label with more than %d bytes", 5000 BTRFS_LABEL_SIZE - 1); 5001 return -EINVAL; 5002 } 5003 5004 ret = mnt_want_write_file(file); 5005 if (ret) 5006 return ret; 5007 5008 trans = btrfs_start_transaction(root, 0); 5009 if (IS_ERR(trans)) { 5010 ret = PTR_ERR(trans); 5011 goto out_unlock; 5012 } 5013 5014 spin_lock(&fs_info->super_lock); 5015 strcpy(super_block->label, label); 5016 spin_unlock(&fs_info->super_lock); 5017 ret = btrfs_commit_transaction(trans); 5018 5019 out_unlock: 5020 mnt_drop_write_file(file); 5021 return ret; 5022 } 5023 5024 #define INIT_FEATURE_FLAGS(suffix) \ 5025 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5026 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5027 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5028 5029 int btrfs_ioctl_get_supported_features(void __user *arg) 5030 { 5031 static const struct btrfs_ioctl_feature_flags features[3] = { 5032 INIT_FEATURE_FLAGS(SUPP), 5033 INIT_FEATURE_FLAGS(SAFE_SET), 5034 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5035 }; 5036 5037 if (copy_to_user(arg, &features, sizeof(features))) 5038 return -EFAULT; 5039 5040 return 0; 5041 } 5042 5043 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 5044 void __user *arg) 5045 { 5046 struct btrfs_super_block *super_block = fs_info->super_copy; 5047 struct btrfs_ioctl_feature_flags features; 5048 5049 features.compat_flags = btrfs_super_compat_flags(super_block); 5050 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5051 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5052 5053 if (copy_to_user(arg, &features, sizeof(features))) 5054 return -EFAULT; 5055 5056 return 0; 5057 } 5058 5059 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5060 enum btrfs_feature_set set, 5061 u64 change_mask, u64 flags, u64 supported_flags, 5062 u64 safe_set, u64 safe_clear) 5063 { 5064 const char *type = btrfs_feature_set_name(set); 5065 char *names; 5066 u64 disallowed, unsupported; 5067 u64 set_mask = flags & change_mask; 5068 u64 clear_mask = ~flags & change_mask; 5069 5070 unsupported = set_mask & ~supported_flags; 5071 if (unsupported) { 5072 names = btrfs_printable_features(set, unsupported); 5073 if (names) { 5074 btrfs_warn(fs_info, 5075 "this kernel does not support the %s feature bit%s", 5076 names, strchr(names, ',') ? "s" : ""); 5077 kfree(names); 5078 } else 5079 btrfs_warn(fs_info, 5080 "this kernel does not support %s bits 0x%llx", 5081 type, unsupported); 5082 return -EOPNOTSUPP; 5083 } 5084 5085 disallowed = set_mask & ~safe_set; 5086 if (disallowed) { 5087 names = btrfs_printable_features(set, disallowed); 5088 if (names) { 5089 btrfs_warn(fs_info, 5090 "can't set the %s feature bit%s while mounted", 5091 names, strchr(names, ',') ? "s" : ""); 5092 kfree(names); 5093 } else 5094 btrfs_warn(fs_info, 5095 "can't set %s bits 0x%llx while mounted", 5096 type, disallowed); 5097 return -EPERM; 5098 } 5099 5100 disallowed = clear_mask & ~safe_clear; 5101 if (disallowed) { 5102 names = btrfs_printable_features(set, disallowed); 5103 if (names) { 5104 btrfs_warn(fs_info, 5105 "can't clear the %s feature bit%s while mounted", 5106 names, strchr(names, ',') ? "s" : ""); 5107 kfree(names); 5108 } else 5109 btrfs_warn(fs_info, 5110 "can't clear %s bits 0x%llx while mounted", 5111 type, disallowed); 5112 return -EPERM; 5113 } 5114 5115 return 0; 5116 } 5117 5118 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5119 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5120 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5121 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5122 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5123 5124 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5125 { 5126 struct inode *inode = file_inode(file); 5127 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5128 struct btrfs_root *root = BTRFS_I(inode)->root; 5129 struct btrfs_super_block *super_block = fs_info->super_copy; 5130 struct btrfs_ioctl_feature_flags flags[2]; 5131 struct btrfs_trans_handle *trans; 5132 u64 newflags; 5133 int ret; 5134 5135 if (!capable(CAP_SYS_ADMIN)) 5136 return -EPERM; 5137 5138 if (copy_from_user(flags, arg, sizeof(flags))) 5139 return -EFAULT; 5140 5141 /* Nothing to do */ 5142 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5143 !flags[0].incompat_flags) 5144 return 0; 5145 5146 ret = check_feature(fs_info, flags[0].compat_flags, 5147 flags[1].compat_flags, COMPAT); 5148 if (ret) 5149 return ret; 5150 5151 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5152 flags[1].compat_ro_flags, COMPAT_RO); 5153 if (ret) 5154 return ret; 5155 5156 ret = check_feature(fs_info, flags[0].incompat_flags, 5157 flags[1].incompat_flags, INCOMPAT); 5158 if (ret) 5159 return ret; 5160 5161 ret = mnt_want_write_file(file); 5162 if (ret) 5163 return ret; 5164 5165 trans = btrfs_start_transaction(root, 0); 5166 if (IS_ERR(trans)) { 5167 ret = PTR_ERR(trans); 5168 goto out_drop_write; 5169 } 5170 5171 spin_lock(&fs_info->super_lock); 5172 newflags = btrfs_super_compat_flags(super_block); 5173 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5174 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5175 btrfs_set_super_compat_flags(super_block, newflags); 5176 5177 newflags = btrfs_super_compat_ro_flags(super_block); 5178 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5179 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5180 btrfs_set_super_compat_ro_flags(super_block, newflags); 5181 5182 newflags = btrfs_super_incompat_flags(super_block); 5183 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5184 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5185 btrfs_set_super_incompat_flags(super_block, newflags); 5186 spin_unlock(&fs_info->super_lock); 5187 5188 ret = btrfs_commit_transaction(trans); 5189 out_drop_write: 5190 mnt_drop_write_file(file); 5191 5192 return ret; 5193 } 5194 5195 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat) 5196 { 5197 struct btrfs_ioctl_send_args *arg; 5198 int ret; 5199 5200 if (compat) { 5201 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5202 struct btrfs_ioctl_send_args_32 args32; 5203 5204 ret = copy_from_user(&args32, argp, sizeof(args32)); 5205 if (ret) 5206 return -EFAULT; 5207 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5208 if (!arg) 5209 return -ENOMEM; 5210 arg->send_fd = args32.send_fd; 5211 arg->clone_sources_count = args32.clone_sources_count; 5212 arg->clone_sources = compat_ptr(args32.clone_sources); 5213 arg->parent_root = args32.parent_root; 5214 arg->flags = args32.flags; 5215 memcpy(arg->reserved, args32.reserved, 5216 sizeof(args32.reserved)); 5217 #else 5218 return -ENOTTY; 5219 #endif 5220 } else { 5221 arg = memdup_user(argp, sizeof(*arg)); 5222 if (IS_ERR(arg)) 5223 return PTR_ERR(arg); 5224 } 5225 ret = btrfs_ioctl_send(inode, arg); 5226 kfree(arg); 5227 return ret; 5228 } 5229 5230 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 5231 bool compat) 5232 { 5233 struct btrfs_ioctl_encoded_io_args args = { 0 }; 5234 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 5235 flags); 5236 size_t copy_end; 5237 struct iovec iovstack[UIO_FASTIOV]; 5238 struct iovec *iov = iovstack; 5239 struct iov_iter iter; 5240 loff_t pos; 5241 struct kiocb kiocb; 5242 ssize_t ret; 5243 5244 if (!capable(CAP_SYS_ADMIN)) { 5245 ret = -EPERM; 5246 goto out_acct; 5247 } 5248 5249 if (compat) { 5250 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5251 struct btrfs_ioctl_encoded_io_args_32 args32; 5252 5253 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 5254 flags); 5255 if (copy_from_user(&args32, argp, copy_end)) { 5256 ret = -EFAULT; 5257 goto out_acct; 5258 } 5259 args.iov = compat_ptr(args32.iov); 5260 args.iovcnt = args32.iovcnt; 5261 args.offset = args32.offset; 5262 args.flags = args32.flags; 5263 #else 5264 return -ENOTTY; 5265 #endif 5266 } else { 5267 copy_end = copy_end_kernel; 5268 if (copy_from_user(&args, argp, copy_end)) { 5269 ret = -EFAULT; 5270 goto out_acct; 5271 } 5272 } 5273 if (args.flags != 0) { 5274 ret = -EINVAL; 5275 goto out_acct; 5276 } 5277 5278 ret = import_iovec(READ, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 5279 &iov, &iter); 5280 if (ret < 0) 5281 goto out_acct; 5282 5283 if (iov_iter_count(&iter) == 0) { 5284 ret = 0; 5285 goto out_iov; 5286 } 5287 pos = args.offset; 5288 ret = rw_verify_area(READ, file, &pos, args.len); 5289 if (ret < 0) 5290 goto out_iov; 5291 5292 init_sync_kiocb(&kiocb, file); 5293 kiocb.ki_pos = pos; 5294 5295 ret = btrfs_encoded_read(&kiocb, &iter, &args); 5296 if (ret >= 0) { 5297 fsnotify_access(file); 5298 if (copy_to_user(argp + copy_end, 5299 (char *)&args + copy_end_kernel, 5300 sizeof(args) - copy_end_kernel)) 5301 ret = -EFAULT; 5302 } 5303 5304 out_iov: 5305 kfree(iov); 5306 out_acct: 5307 if (ret > 0) 5308 add_rchar(current, ret); 5309 inc_syscr(current); 5310 return ret; 5311 } 5312 5313 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 5314 { 5315 struct btrfs_ioctl_encoded_io_args args; 5316 struct iovec iovstack[UIO_FASTIOV]; 5317 struct iovec *iov = iovstack; 5318 struct iov_iter iter; 5319 loff_t pos; 5320 struct kiocb kiocb; 5321 ssize_t ret; 5322 5323 if (!capable(CAP_SYS_ADMIN)) { 5324 ret = -EPERM; 5325 goto out_acct; 5326 } 5327 5328 if (!(file->f_mode & FMODE_WRITE)) { 5329 ret = -EBADF; 5330 goto out_acct; 5331 } 5332 5333 if (compat) { 5334 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5335 struct btrfs_ioctl_encoded_io_args_32 args32; 5336 5337 if (copy_from_user(&args32, argp, sizeof(args32))) { 5338 ret = -EFAULT; 5339 goto out_acct; 5340 } 5341 args.iov = compat_ptr(args32.iov); 5342 args.iovcnt = args32.iovcnt; 5343 args.offset = args32.offset; 5344 args.flags = args32.flags; 5345 args.len = args32.len; 5346 args.unencoded_len = args32.unencoded_len; 5347 args.unencoded_offset = args32.unencoded_offset; 5348 args.compression = args32.compression; 5349 args.encryption = args32.encryption; 5350 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 5351 #else 5352 return -ENOTTY; 5353 #endif 5354 } else { 5355 if (copy_from_user(&args, argp, sizeof(args))) { 5356 ret = -EFAULT; 5357 goto out_acct; 5358 } 5359 } 5360 5361 ret = -EINVAL; 5362 if (args.flags != 0) 5363 goto out_acct; 5364 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 5365 goto out_acct; 5366 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 5367 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 5368 goto out_acct; 5369 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 5370 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 5371 goto out_acct; 5372 if (args.unencoded_offset > args.unencoded_len) 5373 goto out_acct; 5374 if (args.len > args.unencoded_len - args.unencoded_offset) 5375 goto out_acct; 5376 5377 ret = import_iovec(WRITE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 5378 &iov, &iter); 5379 if (ret < 0) 5380 goto out_acct; 5381 5382 file_start_write(file); 5383 5384 if (iov_iter_count(&iter) == 0) { 5385 ret = 0; 5386 goto out_end_write; 5387 } 5388 pos = args.offset; 5389 ret = rw_verify_area(WRITE, file, &pos, args.len); 5390 if (ret < 0) 5391 goto out_end_write; 5392 5393 init_sync_kiocb(&kiocb, file); 5394 ret = kiocb_set_rw_flags(&kiocb, 0); 5395 if (ret) 5396 goto out_end_write; 5397 kiocb.ki_pos = pos; 5398 5399 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 5400 if (ret > 0) 5401 fsnotify_modify(file); 5402 5403 out_end_write: 5404 file_end_write(file); 5405 kfree(iov); 5406 out_acct: 5407 if (ret > 0) 5408 add_wchar(current, ret); 5409 inc_syscw(current); 5410 return ret; 5411 } 5412 5413 long btrfs_ioctl(struct file *file, unsigned int 5414 cmd, unsigned long arg) 5415 { 5416 struct inode *inode = file_inode(file); 5417 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5418 struct btrfs_root *root = BTRFS_I(inode)->root; 5419 void __user *argp = (void __user *)arg; 5420 5421 switch (cmd) { 5422 case FS_IOC_GETVERSION: 5423 return btrfs_ioctl_getversion(inode, argp); 5424 case FS_IOC_GETFSLABEL: 5425 return btrfs_ioctl_get_fslabel(fs_info, argp); 5426 case FS_IOC_SETFSLABEL: 5427 return btrfs_ioctl_set_fslabel(file, argp); 5428 case FITRIM: 5429 return btrfs_ioctl_fitrim(fs_info, argp); 5430 case BTRFS_IOC_SNAP_CREATE: 5431 return btrfs_ioctl_snap_create(file, argp, 0); 5432 case BTRFS_IOC_SNAP_CREATE_V2: 5433 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5434 case BTRFS_IOC_SUBVOL_CREATE: 5435 return btrfs_ioctl_snap_create(file, argp, 1); 5436 case BTRFS_IOC_SUBVOL_CREATE_V2: 5437 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5438 case BTRFS_IOC_SNAP_DESTROY: 5439 return btrfs_ioctl_snap_destroy(file, argp, false); 5440 case BTRFS_IOC_SNAP_DESTROY_V2: 5441 return btrfs_ioctl_snap_destroy(file, argp, true); 5442 case BTRFS_IOC_SUBVOL_GETFLAGS: 5443 return btrfs_ioctl_subvol_getflags(inode, argp); 5444 case BTRFS_IOC_SUBVOL_SETFLAGS: 5445 return btrfs_ioctl_subvol_setflags(file, argp); 5446 case BTRFS_IOC_DEFAULT_SUBVOL: 5447 return btrfs_ioctl_default_subvol(file, argp); 5448 case BTRFS_IOC_DEFRAG: 5449 return btrfs_ioctl_defrag(file, NULL); 5450 case BTRFS_IOC_DEFRAG_RANGE: 5451 return btrfs_ioctl_defrag(file, argp); 5452 case BTRFS_IOC_RESIZE: 5453 return btrfs_ioctl_resize(file, argp); 5454 case BTRFS_IOC_ADD_DEV: 5455 return btrfs_ioctl_add_dev(fs_info, argp); 5456 case BTRFS_IOC_RM_DEV: 5457 return btrfs_ioctl_rm_dev(file, argp); 5458 case BTRFS_IOC_RM_DEV_V2: 5459 return btrfs_ioctl_rm_dev_v2(file, argp); 5460 case BTRFS_IOC_FS_INFO: 5461 return btrfs_ioctl_fs_info(fs_info, argp); 5462 case BTRFS_IOC_DEV_INFO: 5463 return btrfs_ioctl_dev_info(fs_info, argp); 5464 case BTRFS_IOC_TREE_SEARCH: 5465 return btrfs_ioctl_tree_search(inode, argp); 5466 case BTRFS_IOC_TREE_SEARCH_V2: 5467 return btrfs_ioctl_tree_search_v2(inode, argp); 5468 case BTRFS_IOC_INO_LOOKUP: 5469 return btrfs_ioctl_ino_lookup(root, argp); 5470 case BTRFS_IOC_INO_PATHS: 5471 return btrfs_ioctl_ino_to_path(root, argp); 5472 case BTRFS_IOC_LOGICAL_INO: 5473 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5474 case BTRFS_IOC_LOGICAL_INO_V2: 5475 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5476 case BTRFS_IOC_SPACE_INFO: 5477 return btrfs_ioctl_space_info(fs_info, argp); 5478 case BTRFS_IOC_SYNC: { 5479 int ret; 5480 5481 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 5482 if (ret) 5483 return ret; 5484 ret = btrfs_sync_fs(inode->i_sb, 1); 5485 /* 5486 * The transaction thread may want to do more work, 5487 * namely it pokes the cleaner kthread that will start 5488 * processing uncleaned subvols. 5489 */ 5490 wake_up_process(fs_info->transaction_kthread); 5491 return ret; 5492 } 5493 case BTRFS_IOC_START_SYNC: 5494 return btrfs_ioctl_start_sync(root, argp); 5495 case BTRFS_IOC_WAIT_SYNC: 5496 return btrfs_ioctl_wait_sync(fs_info, argp); 5497 case BTRFS_IOC_SCRUB: 5498 return btrfs_ioctl_scrub(file, argp); 5499 case BTRFS_IOC_SCRUB_CANCEL: 5500 return btrfs_ioctl_scrub_cancel(fs_info); 5501 case BTRFS_IOC_SCRUB_PROGRESS: 5502 return btrfs_ioctl_scrub_progress(fs_info, argp); 5503 case BTRFS_IOC_BALANCE_V2: 5504 return btrfs_ioctl_balance(file, argp); 5505 case BTRFS_IOC_BALANCE_CTL: 5506 return btrfs_ioctl_balance_ctl(fs_info, arg); 5507 case BTRFS_IOC_BALANCE_PROGRESS: 5508 return btrfs_ioctl_balance_progress(fs_info, argp); 5509 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5510 return btrfs_ioctl_set_received_subvol(file, argp); 5511 #ifdef CONFIG_64BIT 5512 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5513 return btrfs_ioctl_set_received_subvol_32(file, argp); 5514 #endif 5515 case BTRFS_IOC_SEND: 5516 return _btrfs_ioctl_send(inode, argp, false); 5517 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5518 case BTRFS_IOC_SEND_32: 5519 return _btrfs_ioctl_send(inode, argp, true); 5520 #endif 5521 case BTRFS_IOC_GET_DEV_STATS: 5522 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5523 case BTRFS_IOC_QUOTA_CTL: 5524 return btrfs_ioctl_quota_ctl(file, argp); 5525 case BTRFS_IOC_QGROUP_ASSIGN: 5526 return btrfs_ioctl_qgroup_assign(file, argp); 5527 case BTRFS_IOC_QGROUP_CREATE: 5528 return btrfs_ioctl_qgroup_create(file, argp); 5529 case BTRFS_IOC_QGROUP_LIMIT: 5530 return btrfs_ioctl_qgroup_limit(file, argp); 5531 case BTRFS_IOC_QUOTA_RESCAN: 5532 return btrfs_ioctl_quota_rescan(file, argp); 5533 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5534 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5535 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5536 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5537 case BTRFS_IOC_DEV_REPLACE: 5538 return btrfs_ioctl_dev_replace(fs_info, argp); 5539 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5540 return btrfs_ioctl_get_supported_features(argp); 5541 case BTRFS_IOC_GET_FEATURES: 5542 return btrfs_ioctl_get_features(fs_info, argp); 5543 case BTRFS_IOC_SET_FEATURES: 5544 return btrfs_ioctl_set_features(file, argp); 5545 case BTRFS_IOC_GET_SUBVOL_INFO: 5546 return btrfs_ioctl_get_subvol_info(inode, argp); 5547 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5548 return btrfs_ioctl_get_subvol_rootref(root, argp); 5549 case BTRFS_IOC_INO_LOOKUP_USER: 5550 return btrfs_ioctl_ino_lookup_user(file, argp); 5551 case FS_IOC_ENABLE_VERITY: 5552 return fsverity_ioctl_enable(file, (const void __user *)argp); 5553 case FS_IOC_MEASURE_VERITY: 5554 return fsverity_ioctl_measure(file, argp); 5555 case BTRFS_IOC_ENCODED_READ: 5556 return btrfs_ioctl_encoded_read(file, argp, false); 5557 case BTRFS_IOC_ENCODED_WRITE: 5558 return btrfs_ioctl_encoded_write(file, argp, false); 5559 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5560 case BTRFS_IOC_ENCODED_READ_32: 5561 return btrfs_ioctl_encoded_read(file, argp, true); 5562 case BTRFS_IOC_ENCODED_WRITE_32: 5563 return btrfs_ioctl_encoded_write(file, argp, true); 5564 #endif 5565 } 5566 5567 return -ENOTTY; 5568 } 5569 5570 #ifdef CONFIG_COMPAT 5571 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5572 { 5573 /* 5574 * These all access 32-bit values anyway so no further 5575 * handling is necessary. 5576 */ 5577 switch (cmd) { 5578 case FS_IOC32_GETVERSION: 5579 cmd = FS_IOC_GETVERSION; 5580 break; 5581 } 5582 5583 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5584 } 5585 #endif 5586