1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include <linux/btrfs.h> 46 #include <linux/uaccess.h> 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 #include "dev-replace.h" 59 #include "props.h" 60 #include "sysfs.h" 61 #include "qgroup.h" 62 63 #ifdef CONFIG_64BIT 64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 65 * structures are incorrect, as the timespec structure from userspace 66 * is 4 bytes too small. We define these alternatives here to teach 67 * the kernel about the 32-bit struct packing. 68 */ 69 struct btrfs_ioctl_timespec_32 { 70 __u64 sec; 71 __u32 nsec; 72 } __attribute__ ((__packed__)); 73 74 struct btrfs_ioctl_received_subvol_args_32 { 75 char uuid[BTRFS_UUID_SIZE]; /* in */ 76 __u64 stransid; /* in */ 77 __u64 rtransid; /* out */ 78 struct btrfs_ioctl_timespec_32 stime; /* in */ 79 struct btrfs_ioctl_timespec_32 rtime; /* out */ 80 __u64 flags; /* in */ 81 __u64 reserved[16]; /* in */ 82 } __attribute__ ((__packed__)); 83 84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 85 struct btrfs_ioctl_received_subvol_args_32) 86 #endif 87 88 89 static int btrfs_clone(struct inode *src, struct inode *inode, 90 u64 off, u64 olen, u64 olen_aligned, u64 destoff); 91 92 /* Mask out flags that are inappropriate for the given type of inode. */ 93 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 94 { 95 if (S_ISDIR(mode)) 96 return flags; 97 else if (S_ISREG(mode)) 98 return flags & ~FS_DIRSYNC_FL; 99 else 100 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 101 } 102 103 /* 104 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 105 */ 106 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 107 { 108 unsigned int iflags = 0; 109 110 if (flags & BTRFS_INODE_SYNC) 111 iflags |= FS_SYNC_FL; 112 if (flags & BTRFS_INODE_IMMUTABLE) 113 iflags |= FS_IMMUTABLE_FL; 114 if (flags & BTRFS_INODE_APPEND) 115 iflags |= FS_APPEND_FL; 116 if (flags & BTRFS_INODE_NODUMP) 117 iflags |= FS_NODUMP_FL; 118 if (flags & BTRFS_INODE_NOATIME) 119 iflags |= FS_NOATIME_FL; 120 if (flags & BTRFS_INODE_DIRSYNC) 121 iflags |= FS_DIRSYNC_FL; 122 if (flags & BTRFS_INODE_NODATACOW) 123 iflags |= FS_NOCOW_FL; 124 125 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 126 iflags |= FS_COMPR_FL; 127 else if (flags & BTRFS_INODE_NOCOMPRESS) 128 iflags |= FS_NOCOMP_FL; 129 130 return iflags; 131 } 132 133 /* 134 * Update inode->i_flags based on the btrfs internal flags. 135 */ 136 void btrfs_update_iflags(struct inode *inode) 137 { 138 struct btrfs_inode *ip = BTRFS_I(inode); 139 140 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 141 142 if (ip->flags & BTRFS_INODE_SYNC) 143 inode->i_flags |= S_SYNC; 144 if (ip->flags & BTRFS_INODE_IMMUTABLE) 145 inode->i_flags |= S_IMMUTABLE; 146 if (ip->flags & BTRFS_INODE_APPEND) 147 inode->i_flags |= S_APPEND; 148 if (ip->flags & BTRFS_INODE_NOATIME) 149 inode->i_flags |= S_NOATIME; 150 if (ip->flags & BTRFS_INODE_DIRSYNC) 151 inode->i_flags |= S_DIRSYNC; 152 } 153 154 /* 155 * Inherit flags from the parent inode. 156 * 157 * Currently only the compression flags and the cow flags are inherited. 158 */ 159 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 160 { 161 unsigned int flags; 162 163 if (!dir) 164 return; 165 166 flags = BTRFS_I(dir)->flags; 167 168 if (flags & BTRFS_INODE_NOCOMPRESS) { 169 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 170 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 171 } else if (flags & BTRFS_INODE_COMPRESS) { 172 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 173 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 174 } 175 176 if (flags & BTRFS_INODE_NODATACOW) { 177 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 178 if (S_ISREG(inode->i_mode)) 179 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 180 } 181 182 btrfs_update_iflags(inode); 183 } 184 185 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 186 { 187 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 188 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 189 190 if (copy_to_user(arg, &flags, sizeof(flags))) 191 return -EFAULT; 192 return 0; 193 } 194 195 static int check_flags(unsigned int flags) 196 { 197 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 198 FS_NOATIME_FL | FS_NODUMP_FL | \ 199 FS_SYNC_FL | FS_DIRSYNC_FL | \ 200 FS_NOCOMP_FL | FS_COMPR_FL | 201 FS_NOCOW_FL)) 202 return -EOPNOTSUPP; 203 204 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 205 return -EINVAL; 206 207 return 0; 208 } 209 210 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 211 { 212 struct inode *inode = file_inode(file); 213 struct btrfs_inode *ip = BTRFS_I(inode); 214 struct btrfs_root *root = ip->root; 215 struct btrfs_trans_handle *trans; 216 unsigned int flags, oldflags; 217 int ret; 218 u64 ip_oldflags; 219 unsigned int i_oldflags; 220 umode_t mode; 221 222 if (!inode_owner_or_capable(inode)) 223 return -EPERM; 224 225 if (btrfs_root_readonly(root)) 226 return -EROFS; 227 228 if (copy_from_user(&flags, arg, sizeof(flags))) 229 return -EFAULT; 230 231 ret = check_flags(flags); 232 if (ret) 233 return ret; 234 235 ret = mnt_want_write_file(file); 236 if (ret) 237 return ret; 238 239 mutex_lock(&inode->i_mutex); 240 241 ip_oldflags = ip->flags; 242 i_oldflags = inode->i_flags; 243 mode = inode->i_mode; 244 245 flags = btrfs_mask_flags(inode->i_mode, flags); 246 oldflags = btrfs_flags_to_ioctl(ip->flags); 247 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 248 if (!capable(CAP_LINUX_IMMUTABLE)) { 249 ret = -EPERM; 250 goto out_unlock; 251 } 252 } 253 254 if (flags & FS_SYNC_FL) 255 ip->flags |= BTRFS_INODE_SYNC; 256 else 257 ip->flags &= ~BTRFS_INODE_SYNC; 258 if (flags & FS_IMMUTABLE_FL) 259 ip->flags |= BTRFS_INODE_IMMUTABLE; 260 else 261 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 262 if (flags & FS_APPEND_FL) 263 ip->flags |= BTRFS_INODE_APPEND; 264 else 265 ip->flags &= ~BTRFS_INODE_APPEND; 266 if (flags & FS_NODUMP_FL) 267 ip->flags |= BTRFS_INODE_NODUMP; 268 else 269 ip->flags &= ~BTRFS_INODE_NODUMP; 270 if (flags & FS_NOATIME_FL) 271 ip->flags |= BTRFS_INODE_NOATIME; 272 else 273 ip->flags &= ~BTRFS_INODE_NOATIME; 274 if (flags & FS_DIRSYNC_FL) 275 ip->flags |= BTRFS_INODE_DIRSYNC; 276 else 277 ip->flags &= ~BTRFS_INODE_DIRSYNC; 278 if (flags & FS_NOCOW_FL) { 279 if (S_ISREG(mode)) { 280 /* 281 * It's safe to turn csums off here, no extents exist. 282 * Otherwise we want the flag to reflect the real COW 283 * status of the file and will not set it. 284 */ 285 if (inode->i_size == 0) 286 ip->flags |= BTRFS_INODE_NODATACOW 287 | BTRFS_INODE_NODATASUM; 288 } else { 289 ip->flags |= BTRFS_INODE_NODATACOW; 290 } 291 } else { 292 /* 293 * Revert back under same assuptions as above 294 */ 295 if (S_ISREG(mode)) { 296 if (inode->i_size == 0) 297 ip->flags &= ~(BTRFS_INODE_NODATACOW 298 | BTRFS_INODE_NODATASUM); 299 } else { 300 ip->flags &= ~BTRFS_INODE_NODATACOW; 301 } 302 } 303 304 /* 305 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 306 * flag may be changed automatically if compression code won't make 307 * things smaller. 308 */ 309 if (flags & FS_NOCOMP_FL) { 310 ip->flags &= ~BTRFS_INODE_COMPRESS; 311 ip->flags |= BTRFS_INODE_NOCOMPRESS; 312 313 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 314 if (ret && ret != -ENODATA) 315 goto out_drop; 316 } else if (flags & FS_COMPR_FL) { 317 const char *comp; 318 319 ip->flags |= BTRFS_INODE_COMPRESS; 320 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 321 322 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 323 comp = "lzo"; 324 else 325 comp = "zlib"; 326 ret = btrfs_set_prop(inode, "btrfs.compression", 327 comp, strlen(comp), 0); 328 if (ret) 329 goto out_drop; 330 331 } else { 332 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 333 } 334 335 trans = btrfs_start_transaction(root, 1); 336 if (IS_ERR(trans)) { 337 ret = PTR_ERR(trans); 338 goto out_drop; 339 } 340 341 btrfs_update_iflags(inode); 342 inode_inc_iversion(inode); 343 inode->i_ctime = CURRENT_TIME; 344 ret = btrfs_update_inode(trans, root, inode); 345 346 btrfs_end_transaction(trans, root); 347 out_drop: 348 if (ret) { 349 ip->flags = ip_oldflags; 350 inode->i_flags = i_oldflags; 351 } 352 353 out_unlock: 354 mutex_unlock(&inode->i_mutex); 355 mnt_drop_write_file(file); 356 return ret; 357 } 358 359 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 360 { 361 struct inode *inode = file_inode(file); 362 363 return put_user(inode->i_generation, arg); 364 } 365 366 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 367 { 368 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 369 struct btrfs_device *device; 370 struct request_queue *q; 371 struct fstrim_range range; 372 u64 minlen = ULLONG_MAX; 373 u64 num_devices = 0; 374 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 375 int ret; 376 377 if (!capable(CAP_SYS_ADMIN)) 378 return -EPERM; 379 380 rcu_read_lock(); 381 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 382 dev_list) { 383 if (!device->bdev) 384 continue; 385 q = bdev_get_queue(device->bdev); 386 if (blk_queue_discard(q)) { 387 num_devices++; 388 minlen = min((u64)q->limits.discard_granularity, 389 minlen); 390 } 391 } 392 rcu_read_unlock(); 393 394 if (!num_devices) 395 return -EOPNOTSUPP; 396 if (copy_from_user(&range, arg, sizeof(range))) 397 return -EFAULT; 398 if (range.start > total_bytes || 399 range.len < fs_info->sb->s_blocksize) 400 return -EINVAL; 401 402 range.len = min(range.len, total_bytes - range.start); 403 range.minlen = max(range.minlen, minlen); 404 ret = btrfs_trim_fs(fs_info->tree_root, &range); 405 if (ret < 0) 406 return ret; 407 408 if (copy_to_user(arg, &range, sizeof(range))) 409 return -EFAULT; 410 411 return 0; 412 } 413 414 int btrfs_is_empty_uuid(u8 *uuid) 415 { 416 int i; 417 418 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 419 if (uuid[i]) 420 return 0; 421 } 422 return 1; 423 } 424 425 static noinline int create_subvol(struct inode *dir, 426 struct dentry *dentry, 427 char *name, int namelen, 428 u64 *async_transid, 429 struct btrfs_qgroup_inherit *inherit) 430 { 431 struct btrfs_trans_handle *trans; 432 struct btrfs_key key; 433 struct btrfs_root_item root_item; 434 struct btrfs_inode_item *inode_item; 435 struct extent_buffer *leaf; 436 struct btrfs_root *root = BTRFS_I(dir)->root; 437 struct btrfs_root *new_root; 438 struct btrfs_block_rsv block_rsv; 439 struct timespec cur_time = CURRENT_TIME; 440 struct inode *inode; 441 int ret; 442 int err; 443 u64 objectid; 444 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 445 u64 index = 0; 446 u64 qgroup_reserved; 447 uuid_le new_uuid; 448 449 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 450 if (ret) 451 return ret; 452 453 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 454 /* 455 * The same as the snapshot creation, please see the comment 456 * of create_snapshot(). 457 */ 458 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 459 8, &qgroup_reserved, false); 460 if (ret) 461 return ret; 462 463 trans = btrfs_start_transaction(root, 0); 464 if (IS_ERR(trans)) { 465 ret = PTR_ERR(trans); 466 btrfs_subvolume_release_metadata(root, &block_rsv, 467 qgroup_reserved); 468 return ret; 469 } 470 trans->block_rsv = &block_rsv; 471 trans->bytes_reserved = block_rsv.size; 472 473 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit); 474 if (ret) 475 goto fail; 476 477 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 478 0, objectid, NULL, 0, 0, 0); 479 if (IS_ERR(leaf)) { 480 ret = PTR_ERR(leaf); 481 goto fail; 482 } 483 484 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 485 btrfs_set_header_bytenr(leaf, leaf->start); 486 btrfs_set_header_generation(leaf, trans->transid); 487 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 488 btrfs_set_header_owner(leaf, objectid); 489 490 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(), 491 BTRFS_FSID_SIZE); 492 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 493 btrfs_header_chunk_tree_uuid(leaf), 494 BTRFS_UUID_SIZE); 495 btrfs_mark_buffer_dirty(leaf); 496 497 memset(&root_item, 0, sizeof(root_item)); 498 499 inode_item = &root_item.inode; 500 btrfs_set_stack_inode_generation(inode_item, 1); 501 btrfs_set_stack_inode_size(inode_item, 3); 502 btrfs_set_stack_inode_nlink(inode_item, 1); 503 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize); 504 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 505 506 btrfs_set_root_flags(&root_item, 0); 507 btrfs_set_root_limit(&root_item, 0); 508 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 509 510 btrfs_set_root_bytenr(&root_item, leaf->start); 511 btrfs_set_root_generation(&root_item, trans->transid); 512 btrfs_set_root_level(&root_item, 0); 513 btrfs_set_root_refs(&root_item, 1); 514 btrfs_set_root_used(&root_item, leaf->len); 515 btrfs_set_root_last_snapshot(&root_item, 0); 516 517 btrfs_set_root_generation_v2(&root_item, 518 btrfs_root_generation(&root_item)); 519 uuid_le_gen(&new_uuid); 520 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE); 521 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec); 522 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec); 523 root_item.ctime = root_item.otime; 524 btrfs_set_root_ctransid(&root_item, trans->transid); 525 btrfs_set_root_otransid(&root_item, trans->transid); 526 527 btrfs_tree_unlock(leaf); 528 free_extent_buffer(leaf); 529 leaf = NULL; 530 531 btrfs_set_root_dirid(&root_item, new_dirid); 532 533 key.objectid = objectid; 534 key.offset = 0; 535 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 536 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 537 &root_item); 538 if (ret) 539 goto fail; 540 541 key.offset = (u64)-1; 542 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 543 if (IS_ERR(new_root)) { 544 btrfs_abort_transaction(trans, root, PTR_ERR(new_root)); 545 ret = PTR_ERR(new_root); 546 goto fail; 547 } 548 549 btrfs_record_root_in_trans(trans, new_root); 550 551 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 552 if (ret) { 553 /* We potentially lose an unused inode item here */ 554 btrfs_abort_transaction(trans, root, ret); 555 goto fail; 556 } 557 558 /* 559 * insert the directory item 560 */ 561 ret = btrfs_set_inode_index(dir, &index); 562 if (ret) { 563 btrfs_abort_transaction(trans, root, ret); 564 goto fail; 565 } 566 567 ret = btrfs_insert_dir_item(trans, root, 568 name, namelen, dir, &key, 569 BTRFS_FT_DIR, index); 570 if (ret) { 571 btrfs_abort_transaction(trans, root, ret); 572 goto fail; 573 } 574 575 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 576 ret = btrfs_update_inode(trans, root, dir); 577 BUG_ON(ret); 578 579 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 580 objectid, root->root_key.objectid, 581 btrfs_ino(dir), index, name, namelen); 582 BUG_ON(ret); 583 584 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 585 root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 586 objectid); 587 if (ret) 588 btrfs_abort_transaction(trans, root, ret); 589 590 fail: 591 trans->block_rsv = NULL; 592 trans->bytes_reserved = 0; 593 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 594 595 if (async_transid) { 596 *async_transid = trans->transid; 597 err = btrfs_commit_transaction_async(trans, root, 1); 598 if (err) 599 err = btrfs_commit_transaction(trans, root); 600 } else { 601 err = btrfs_commit_transaction(trans, root); 602 } 603 if (err && !ret) 604 ret = err; 605 606 if (!ret) { 607 inode = btrfs_lookup_dentry(dir, dentry); 608 if (IS_ERR(inode)) 609 return PTR_ERR(inode); 610 d_instantiate(dentry, inode); 611 } 612 return ret; 613 } 614 615 static void btrfs_wait_nocow_write(struct btrfs_root *root) 616 { 617 s64 writers; 618 DEFINE_WAIT(wait); 619 620 do { 621 prepare_to_wait(&root->subv_writers->wait, &wait, 622 TASK_UNINTERRUPTIBLE); 623 624 writers = percpu_counter_sum(&root->subv_writers->counter); 625 if (writers) 626 schedule(); 627 628 finish_wait(&root->subv_writers->wait, &wait); 629 } while (writers); 630 } 631 632 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 633 struct dentry *dentry, char *name, int namelen, 634 u64 *async_transid, bool readonly, 635 struct btrfs_qgroup_inherit *inherit) 636 { 637 struct inode *inode; 638 struct btrfs_pending_snapshot *pending_snapshot; 639 struct btrfs_trans_handle *trans; 640 int ret; 641 642 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 643 return -EINVAL; 644 645 atomic_inc(&root->will_be_snapshoted); 646 smp_mb__after_atomic(); 647 btrfs_wait_nocow_write(root); 648 649 ret = btrfs_start_delalloc_inodes(root, 0); 650 if (ret) 651 goto out; 652 653 btrfs_wait_ordered_extents(root, -1); 654 655 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 656 if (!pending_snapshot) { 657 ret = -ENOMEM; 658 goto out; 659 } 660 661 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 662 BTRFS_BLOCK_RSV_TEMP); 663 /* 664 * 1 - parent dir inode 665 * 2 - dir entries 666 * 1 - root item 667 * 2 - root ref/backref 668 * 1 - root of snapshot 669 * 1 - UUID item 670 */ 671 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 672 &pending_snapshot->block_rsv, 8, 673 &pending_snapshot->qgroup_reserved, 674 false); 675 if (ret) 676 goto free; 677 678 pending_snapshot->dentry = dentry; 679 pending_snapshot->root = root; 680 pending_snapshot->readonly = readonly; 681 pending_snapshot->dir = dir; 682 pending_snapshot->inherit = inherit; 683 684 trans = btrfs_start_transaction(root, 0); 685 if (IS_ERR(trans)) { 686 ret = PTR_ERR(trans); 687 goto fail; 688 } 689 690 spin_lock(&root->fs_info->trans_lock); 691 list_add(&pending_snapshot->list, 692 &trans->transaction->pending_snapshots); 693 spin_unlock(&root->fs_info->trans_lock); 694 if (async_transid) { 695 *async_transid = trans->transid; 696 ret = btrfs_commit_transaction_async(trans, 697 root->fs_info->extent_root, 1); 698 if (ret) 699 ret = btrfs_commit_transaction(trans, root); 700 } else { 701 ret = btrfs_commit_transaction(trans, 702 root->fs_info->extent_root); 703 } 704 if (ret) 705 goto fail; 706 707 ret = pending_snapshot->error; 708 if (ret) 709 goto fail; 710 711 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 712 if (ret) 713 goto fail; 714 715 /* 716 * If orphan cleanup did remove any orphans, it means the tree was 717 * modified and therefore the commit root is not the same as the 718 * current root anymore. This is a problem, because send uses the 719 * commit root and therefore can see inode items that don't exist 720 * in the current root anymore, and for example make calls to 721 * btrfs_iget, which will do tree lookups based on the current root 722 * and not on the commit root. Those lookups will fail, returning a 723 * -ESTALE error, and making send fail with that error. So make sure 724 * a send does not see any orphans we have just removed, and that it 725 * will see the same inodes regardless of whether a transaction 726 * commit happened before it started (meaning that the commit root 727 * will be the same as the current root) or not. 728 */ 729 if (readonly && pending_snapshot->snap->node != 730 pending_snapshot->snap->commit_root) { 731 trans = btrfs_join_transaction(pending_snapshot->snap); 732 if (IS_ERR(trans) && PTR_ERR(trans) != -ENOENT) { 733 ret = PTR_ERR(trans); 734 goto fail; 735 } 736 if (!IS_ERR(trans)) { 737 ret = btrfs_commit_transaction(trans, 738 pending_snapshot->snap); 739 if (ret) 740 goto fail; 741 } 742 } 743 744 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry); 745 if (IS_ERR(inode)) { 746 ret = PTR_ERR(inode); 747 goto fail; 748 } 749 750 d_instantiate(dentry, inode); 751 ret = 0; 752 fail: 753 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root, 754 &pending_snapshot->block_rsv, 755 pending_snapshot->qgroup_reserved); 756 free: 757 kfree(pending_snapshot); 758 out: 759 atomic_dec(&root->will_be_snapshoted); 760 return ret; 761 } 762 763 /* copy of check_sticky in fs/namei.c() 764 * It's inline, so penalty for filesystems that don't use sticky bit is 765 * minimal. 766 */ 767 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode) 768 { 769 kuid_t fsuid = current_fsuid(); 770 771 if (!(dir->i_mode & S_ISVTX)) 772 return 0; 773 if (uid_eq(inode->i_uid, fsuid)) 774 return 0; 775 if (uid_eq(dir->i_uid, fsuid)) 776 return 0; 777 return !capable(CAP_FOWNER); 778 } 779 780 /* copy of may_delete in fs/namei.c() 781 * Check whether we can remove a link victim from directory dir, check 782 * whether the type of victim is right. 783 * 1. We can't do it if dir is read-only (done in permission()) 784 * 2. We should have write and exec permissions on dir 785 * 3. We can't remove anything from append-only dir 786 * 4. We can't do anything with immutable dir (done in permission()) 787 * 5. If the sticky bit on dir is set we should either 788 * a. be owner of dir, or 789 * b. be owner of victim, or 790 * c. have CAP_FOWNER capability 791 * 6. If the victim is append-only or immutable we can't do antyhing with 792 * links pointing to it. 793 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 794 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 795 * 9. We can't remove a root or mountpoint. 796 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 797 * nfs_async_unlink(). 798 */ 799 800 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 801 { 802 int error; 803 804 if (!victim->d_inode) 805 return -ENOENT; 806 807 BUG_ON(victim->d_parent->d_inode != dir); 808 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 809 810 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 811 if (error) 812 return error; 813 if (IS_APPEND(dir)) 814 return -EPERM; 815 if (btrfs_check_sticky(dir, victim->d_inode)|| 816 IS_APPEND(victim->d_inode)|| 817 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 818 return -EPERM; 819 if (isdir) { 820 if (!S_ISDIR(victim->d_inode->i_mode)) 821 return -ENOTDIR; 822 if (IS_ROOT(victim)) 823 return -EBUSY; 824 } else if (S_ISDIR(victim->d_inode->i_mode)) 825 return -EISDIR; 826 if (IS_DEADDIR(dir)) 827 return -ENOENT; 828 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 829 return -EBUSY; 830 return 0; 831 } 832 833 /* copy of may_create in fs/namei.c() */ 834 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 835 { 836 if (child->d_inode) 837 return -EEXIST; 838 if (IS_DEADDIR(dir)) 839 return -ENOENT; 840 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 841 } 842 843 /* 844 * Create a new subvolume below @parent. This is largely modeled after 845 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 846 * inside this filesystem so it's quite a bit simpler. 847 */ 848 static noinline int btrfs_mksubvol(struct path *parent, 849 char *name, int namelen, 850 struct btrfs_root *snap_src, 851 u64 *async_transid, bool readonly, 852 struct btrfs_qgroup_inherit *inherit) 853 { 854 struct inode *dir = parent->dentry->d_inode; 855 struct dentry *dentry; 856 int error; 857 858 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 859 if (error == -EINTR) 860 return error; 861 862 dentry = lookup_one_len(name, parent->dentry, namelen); 863 error = PTR_ERR(dentry); 864 if (IS_ERR(dentry)) 865 goto out_unlock; 866 867 error = -EEXIST; 868 if (dentry->d_inode) 869 goto out_dput; 870 871 error = btrfs_may_create(dir, dentry); 872 if (error) 873 goto out_dput; 874 875 /* 876 * even if this name doesn't exist, we may get hash collisions. 877 * check for them now when we can safely fail 878 */ 879 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 880 dir->i_ino, name, 881 namelen); 882 if (error) 883 goto out_dput; 884 885 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 886 887 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 888 goto out_up_read; 889 890 if (snap_src) { 891 error = create_snapshot(snap_src, dir, dentry, name, namelen, 892 async_transid, readonly, inherit); 893 } else { 894 error = create_subvol(dir, dentry, name, namelen, 895 async_transid, inherit); 896 } 897 if (!error) 898 fsnotify_mkdir(dir, dentry); 899 out_up_read: 900 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 901 out_dput: 902 dput(dentry); 903 out_unlock: 904 mutex_unlock(&dir->i_mutex); 905 return error; 906 } 907 908 /* 909 * When we're defragging a range, we don't want to kick it off again 910 * if it is really just waiting for delalloc to send it down. 911 * If we find a nice big extent or delalloc range for the bytes in the 912 * file you want to defrag, we return 0 to let you know to skip this 913 * part of the file 914 */ 915 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh) 916 { 917 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 918 struct extent_map *em = NULL; 919 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 920 u64 end; 921 922 read_lock(&em_tree->lock); 923 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 924 read_unlock(&em_tree->lock); 925 926 if (em) { 927 end = extent_map_end(em); 928 free_extent_map(em); 929 if (end - offset > thresh) 930 return 0; 931 } 932 /* if we already have a nice delalloc here, just stop */ 933 thresh /= 2; 934 end = count_range_bits(io_tree, &offset, offset + thresh, 935 thresh, EXTENT_DELALLOC, 1); 936 if (end >= thresh) 937 return 0; 938 return 1; 939 } 940 941 /* 942 * helper function to walk through a file and find extents 943 * newer than a specific transid, and smaller than thresh. 944 * 945 * This is used by the defragging code to find new and small 946 * extents 947 */ 948 static int find_new_extents(struct btrfs_root *root, 949 struct inode *inode, u64 newer_than, 950 u64 *off, int thresh) 951 { 952 struct btrfs_path *path; 953 struct btrfs_key min_key; 954 struct extent_buffer *leaf; 955 struct btrfs_file_extent_item *extent; 956 int type; 957 int ret; 958 u64 ino = btrfs_ino(inode); 959 960 path = btrfs_alloc_path(); 961 if (!path) 962 return -ENOMEM; 963 964 min_key.objectid = ino; 965 min_key.type = BTRFS_EXTENT_DATA_KEY; 966 min_key.offset = *off; 967 968 while (1) { 969 path->keep_locks = 1; 970 ret = btrfs_search_forward(root, &min_key, path, newer_than); 971 if (ret != 0) 972 goto none; 973 path->keep_locks = 0; 974 btrfs_unlock_up_safe(path, 1); 975 process_slot: 976 if (min_key.objectid != ino) 977 goto none; 978 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 979 goto none; 980 981 leaf = path->nodes[0]; 982 extent = btrfs_item_ptr(leaf, path->slots[0], 983 struct btrfs_file_extent_item); 984 985 type = btrfs_file_extent_type(leaf, extent); 986 if (type == BTRFS_FILE_EXTENT_REG && 987 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 988 check_defrag_in_cache(inode, min_key.offset, thresh)) { 989 *off = min_key.offset; 990 btrfs_free_path(path); 991 return 0; 992 } 993 994 path->slots[0]++; 995 if (path->slots[0] < btrfs_header_nritems(leaf)) { 996 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 997 goto process_slot; 998 } 999 1000 if (min_key.offset == (u64)-1) 1001 goto none; 1002 1003 min_key.offset++; 1004 btrfs_release_path(path); 1005 } 1006 none: 1007 btrfs_free_path(path); 1008 return -ENOENT; 1009 } 1010 1011 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1012 { 1013 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1014 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1015 struct extent_map *em; 1016 u64 len = PAGE_CACHE_SIZE; 1017 1018 /* 1019 * hopefully we have this extent in the tree already, try without 1020 * the full extent lock 1021 */ 1022 read_lock(&em_tree->lock); 1023 em = lookup_extent_mapping(em_tree, start, len); 1024 read_unlock(&em_tree->lock); 1025 1026 if (!em) { 1027 struct extent_state *cached = NULL; 1028 u64 end = start + len - 1; 1029 1030 /* get the big lock and read metadata off disk */ 1031 lock_extent_bits(io_tree, start, end, 0, &cached); 1032 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 1033 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 1034 1035 if (IS_ERR(em)) 1036 return NULL; 1037 } 1038 1039 return em; 1040 } 1041 1042 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1043 { 1044 struct extent_map *next; 1045 bool ret = true; 1046 1047 /* this is the last extent */ 1048 if (em->start + em->len >= i_size_read(inode)) 1049 return false; 1050 1051 next = defrag_lookup_extent(inode, em->start + em->len); 1052 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE || 1053 (em->block_start + em->block_len == next->block_start)) 1054 ret = false; 1055 1056 free_extent_map(next); 1057 return ret; 1058 } 1059 1060 static int should_defrag_range(struct inode *inode, u64 start, int thresh, 1061 u64 *last_len, u64 *skip, u64 *defrag_end, 1062 int compress) 1063 { 1064 struct extent_map *em; 1065 int ret = 1; 1066 bool next_mergeable = true; 1067 1068 /* 1069 * make sure that once we start defragging an extent, we keep on 1070 * defragging it 1071 */ 1072 if (start < *defrag_end) 1073 return 1; 1074 1075 *skip = 0; 1076 1077 em = defrag_lookup_extent(inode, start); 1078 if (!em) 1079 return 0; 1080 1081 /* this will cover holes, and inline extents */ 1082 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1083 ret = 0; 1084 goto out; 1085 } 1086 1087 next_mergeable = defrag_check_next_extent(inode, em); 1088 1089 /* 1090 * we hit a real extent, if it is big or the next extent is not a 1091 * real extent, don't bother defragging it 1092 */ 1093 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1094 (em->len >= thresh || !next_mergeable)) 1095 ret = 0; 1096 out: 1097 /* 1098 * last_len ends up being a counter of how many bytes we've defragged. 1099 * every time we choose not to defrag an extent, we reset *last_len 1100 * so that the next tiny extent will force a defrag. 1101 * 1102 * The end result of this is that tiny extents before a single big 1103 * extent will force at least part of that big extent to be defragged. 1104 */ 1105 if (ret) { 1106 *defrag_end = extent_map_end(em); 1107 } else { 1108 *last_len = 0; 1109 *skip = extent_map_end(em); 1110 *defrag_end = 0; 1111 } 1112 1113 free_extent_map(em); 1114 return ret; 1115 } 1116 1117 /* 1118 * it doesn't do much good to defrag one or two pages 1119 * at a time. This pulls in a nice chunk of pages 1120 * to COW and defrag. 1121 * 1122 * It also makes sure the delalloc code has enough 1123 * dirty data to avoid making new small extents as part 1124 * of the defrag 1125 * 1126 * It's a good idea to start RA on this range 1127 * before calling this. 1128 */ 1129 static int cluster_pages_for_defrag(struct inode *inode, 1130 struct page **pages, 1131 unsigned long start_index, 1132 unsigned long num_pages) 1133 { 1134 unsigned long file_end; 1135 u64 isize = i_size_read(inode); 1136 u64 page_start; 1137 u64 page_end; 1138 u64 page_cnt; 1139 int ret; 1140 int i; 1141 int i_done; 1142 struct btrfs_ordered_extent *ordered; 1143 struct extent_state *cached_state = NULL; 1144 struct extent_io_tree *tree; 1145 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1146 1147 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 1148 if (!isize || start_index > file_end) 1149 return 0; 1150 1151 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1152 1153 ret = btrfs_delalloc_reserve_space(inode, 1154 page_cnt << PAGE_CACHE_SHIFT); 1155 if (ret) 1156 return ret; 1157 i_done = 0; 1158 tree = &BTRFS_I(inode)->io_tree; 1159 1160 /* step one, lock all the pages */ 1161 for (i = 0; i < page_cnt; i++) { 1162 struct page *page; 1163 again: 1164 page = find_or_create_page(inode->i_mapping, 1165 start_index + i, mask); 1166 if (!page) 1167 break; 1168 1169 page_start = page_offset(page); 1170 page_end = page_start + PAGE_CACHE_SIZE - 1; 1171 while (1) { 1172 lock_extent_bits(tree, page_start, page_end, 1173 0, &cached_state); 1174 ordered = btrfs_lookup_ordered_extent(inode, 1175 page_start); 1176 unlock_extent_cached(tree, page_start, page_end, 1177 &cached_state, GFP_NOFS); 1178 if (!ordered) 1179 break; 1180 1181 unlock_page(page); 1182 btrfs_start_ordered_extent(inode, ordered, 1); 1183 btrfs_put_ordered_extent(ordered); 1184 lock_page(page); 1185 /* 1186 * we unlocked the page above, so we need check if 1187 * it was released or not. 1188 */ 1189 if (page->mapping != inode->i_mapping) { 1190 unlock_page(page); 1191 page_cache_release(page); 1192 goto again; 1193 } 1194 } 1195 1196 if (!PageUptodate(page)) { 1197 btrfs_readpage(NULL, page); 1198 lock_page(page); 1199 if (!PageUptodate(page)) { 1200 unlock_page(page); 1201 page_cache_release(page); 1202 ret = -EIO; 1203 break; 1204 } 1205 } 1206 1207 if (page->mapping != inode->i_mapping) { 1208 unlock_page(page); 1209 page_cache_release(page); 1210 goto again; 1211 } 1212 1213 pages[i] = page; 1214 i_done++; 1215 } 1216 if (!i_done || ret) 1217 goto out; 1218 1219 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1220 goto out; 1221 1222 /* 1223 * so now we have a nice long stream of locked 1224 * and up to date pages, lets wait on them 1225 */ 1226 for (i = 0; i < i_done; i++) 1227 wait_on_page_writeback(pages[i]); 1228 1229 page_start = page_offset(pages[0]); 1230 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 1231 1232 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1233 page_start, page_end - 1, 0, &cached_state); 1234 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1235 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1236 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1237 &cached_state, GFP_NOFS); 1238 1239 if (i_done != page_cnt) { 1240 spin_lock(&BTRFS_I(inode)->lock); 1241 BTRFS_I(inode)->outstanding_extents++; 1242 spin_unlock(&BTRFS_I(inode)->lock); 1243 btrfs_delalloc_release_space(inode, 1244 (page_cnt - i_done) << PAGE_CACHE_SHIFT); 1245 } 1246 1247 1248 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1249 &cached_state, GFP_NOFS); 1250 1251 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1252 page_start, page_end - 1, &cached_state, 1253 GFP_NOFS); 1254 1255 for (i = 0; i < i_done; i++) { 1256 clear_page_dirty_for_io(pages[i]); 1257 ClearPageChecked(pages[i]); 1258 set_page_extent_mapped(pages[i]); 1259 set_page_dirty(pages[i]); 1260 unlock_page(pages[i]); 1261 page_cache_release(pages[i]); 1262 } 1263 return i_done; 1264 out: 1265 for (i = 0; i < i_done; i++) { 1266 unlock_page(pages[i]); 1267 page_cache_release(pages[i]); 1268 } 1269 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT); 1270 return ret; 1271 1272 } 1273 1274 int btrfs_defrag_file(struct inode *inode, struct file *file, 1275 struct btrfs_ioctl_defrag_range_args *range, 1276 u64 newer_than, unsigned long max_to_defrag) 1277 { 1278 struct btrfs_root *root = BTRFS_I(inode)->root; 1279 struct file_ra_state *ra = NULL; 1280 unsigned long last_index; 1281 u64 isize = i_size_read(inode); 1282 u64 last_len = 0; 1283 u64 skip = 0; 1284 u64 defrag_end = 0; 1285 u64 newer_off = range->start; 1286 unsigned long i; 1287 unsigned long ra_index = 0; 1288 int ret; 1289 int defrag_count = 0; 1290 int compress_type = BTRFS_COMPRESS_ZLIB; 1291 int extent_thresh = range->extent_thresh; 1292 unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 1293 unsigned long cluster = max_cluster; 1294 u64 new_align = ~((u64)128 * 1024 - 1); 1295 struct page **pages = NULL; 1296 1297 if (isize == 0) 1298 return 0; 1299 1300 if (range->start >= isize) 1301 return -EINVAL; 1302 1303 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1304 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1305 return -EINVAL; 1306 if (range->compress_type) 1307 compress_type = range->compress_type; 1308 } 1309 1310 if (extent_thresh == 0) 1311 extent_thresh = 256 * 1024; 1312 1313 /* 1314 * if we were not given a file, allocate a readahead 1315 * context 1316 */ 1317 if (!file) { 1318 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1319 if (!ra) 1320 return -ENOMEM; 1321 file_ra_state_init(ra, inode->i_mapping); 1322 } else { 1323 ra = &file->f_ra; 1324 } 1325 1326 pages = kmalloc_array(max_cluster, sizeof(struct page *), 1327 GFP_NOFS); 1328 if (!pages) { 1329 ret = -ENOMEM; 1330 goto out_ra; 1331 } 1332 1333 /* find the last page to defrag */ 1334 if (range->start + range->len > range->start) { 1335 last_index = min_t(u64, isize - 1, 1336 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1337 } else { 1338 last_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1339 } 1340 1341 if (newer_than) { 1342 ret = find_new_extents(root, inode, newer_than, 1343 &newer_off, 64 * 1024); 1344 if (!ret) { 1345 range->start = newer_off; 1346 /* 1347 * we always align our defrag to help keep 1348 * the extents in the file evenly spaced 1349 */ 1350 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1351 } else 1352 goto out_ra; 1353 } else { 1354 i = range->start >> PAGE_CACHE_SHIFT; 1355 } 1356 if (!max_to_defrag) 1357 max_to_defrag = last_index + 1; 1358 1359 /* 1360 * make writeback starts from i, so the defrag range can be 1361 * written sequentially. 1362 */ 1363 if (i < inode->i_mapping->writeback_index) 1364 inode->i_mapping->writeback_index = i; 1365 1366 while (i <= last_index && defrag_count < max_to_defrag && 1367 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> 1368 PAGE_CACHE_SHIFT)) { 1369 /* 1370 * make sure we stop running if someone unmounts 1371 * the FS 1372 */ 1373 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1374 break; 1375 1376 if (btrfs_defrag_cancelled(root->fs_info)) { 1377 printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n"); 1378 ret = -EAGAIN; 1379 break; 1380 } 1381 1382 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1383 extent_thresh, &last_len, &skip, 1384 &defrag_end, range->flags & 1385 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1386 unsigned long next; 1387 /* 1388 * the should_defrag function tells us how much to skip 1389 * bump our counter by the suggested amount 1390 */ 1391 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1392 i = max(i + 1, next); 1393 continue; 1394 } 1395 1396 if (!newer_than) { 1397 cluster = (PAGE_CACHE_ALIGN(defrag_end) >> 1398 PAGE_CACHE_SHIFT) - i; 1399 cluster = min(cluster, max_cluster); 1400 } else { 1401 cluster = max_cluster; 1402 } 1403 1404 if (i + cluster > ra_index) { 1405 ra_index = max(i, ra_index); 1406 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1407 cluster); 1408 ra_index += max_cluster; 1409 } 1410 1411 mutex_lock(&inode->i_mutex); 1412 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1413 BTRFS_I(inode)->force_compress = compress_type; 1414 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1415 if (ret < 0) { 1416 mutex_unlock(&inode->i_mutex); 1417 goto out_ra; 1418 } 1419 1420 defrag_count += ret; 1421 balance_dirty_pages_ratelimited(inode->i_mapping); 1422 mutex_unlock(&inode->i_mutex); 1423 1424 if (newer_than) { 1425 if (newer_off == (u64)-1) 1426 break; 1427 1428 if (ret > 0) 1429 i += ret; 1430 1431 newer_off = max(newer_off + 1, 1432 (u64)i << PAGE_CACHE_SHIFT); 1433 1434 ret = find_new_extents(root, inode, 1435 newer_than, &newer_off, 1436 64 * 1024); 1437 if (!ret) { 1438 range->start = newer_off; 1439 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1440 } else { 1441 break; 1442 } 1443 } else { 1444 if (ret > 0) { 1445 i += ret; 1446 last_len += ret << PAGE_CACHE_SHIFT; 1447 } else { 1448 i++; 1449 last_len = 0; 1450 } 1451 } 1452 } 1453 1454 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1455 filemap_flush(inode->i_mapping); 1456 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1457 &BTRFS_I(inode)->runtime_flags)) 1458 filemap_flush(inode->i_mapping); 1459 } 1460 1461 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1462 /* the filemap_flush will queue IO into the worker threads, but 1463 * we have to make sure the IO is actually started and that 1464 * ordered extents get created before we return 1465 */ 1466 atomic_inc(&root->fs_info->async_submit_draining); 1467 while (atomic_read(&root->fs_info->nr_async_submits) || 1468 atomic_read(&root->fs_info->async_delalloc_pages)) { 1469 wait_event(root->fs_info->async_submit_wait, 1470 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1471 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1472 } 1473 atomic_dec(&root->fs_info->async_submit_draining); 1474 } 1475 1476 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1477 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1478 } 1479 1480 ret = defrag_count; 1481 1482 out_ra: 1483 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1484 mutex_lock(&inode->i_mutex); 1485 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1486 mutex_unlock(&inode->i_mutex); 1487 } 1488 if (!file) 1489 kfree(ra); 1490 kfree(pages); 1491 return ret; 1492 } 1493 1494 static noinline int btrfs_ioctl_resize(struct file *file, 1495 void __user *arg) 1496 { 1497 u64 new_size; 1498 u64 old_size; 1499 u64 devid = 1; 1500 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 1501 struct btrfs_ioctl_vol_args *vol_args; 1502 struct btrfs_trans_handle *trans; 1503 struct btrfs_device *device = NULL; 1504 char *sizestr; 1505 char *retptr; 1506 char *devstr = NULL; 1507 int ret = 0; 1508 int mod = 0; 1509 1510 if (!capable(CAP_SYS_ADMIN)) 1511 return -EPERM; 1512 1513 ret = mnt_want_write_file(file); 1514 if (ret) 1515 return ret; 1516 1517 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 1518 1)) { 1519 mnt_drop_write_file(file); 1520 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1521 } 1522 1523 mutex_lock(&root->fs_info->volume_mutex); 1524 vol_args = memdup_user(arg, sizeof(*vol_args)); 1525 if (IS_ERR(vol_args)) { 1526 ret = PTR_ERR(vol_args); 1527 goto out; 1528 } 1529 1530 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1531 1532 sizestr = vol_args->name; 1533 devstr = strchr(sizestr, ':'); 1534 if (devstr) { 1535 sizestr = devstr + 1; 1536 *devstr = '\0'; 1537 devstr = vol_args->name; 1538 ret = kstrtoull(devstr, 10, &devid); 1539 if (ret) 1540 goto out_free; 1541 if (!devid) { 1542 ret = -EINVAL; 1543 goto out_free; 1544 } 1545 btrfs_info(root->fs_info, "resizing devid %llu", devid); 1546 } 1547 1548 device = btrfs_find_device(root->fs_info, devid, NULL, NULL); 1549 if (!device) { 1550 btrfs_info(root->fs_info, "resizer unable to find device %llu", 1551 devid); 1552 ret = -ENODEV; 1553 goto out_free; 1554 } 1555 1556 if (!device->writeable) { 1557 btrfs_info(root->fs_info, 1558 "resizer unable to apply on readonly device %llu", 1559 devid); 1560 ret = -EPERM; 1561 goto out_free; 1562 } 1563 1564 if (!strcmp(sizestr, "max")) 1565 new_size = device->bdev->bd_inode->i_size; 1566 else { 1567 if (sizestr[0] == '-') { 1568 mod = -1; 1569 sizestr++; 1570 } else if (sizestr[0] == '+') { 1571 mod = 1; 1572 sizestr++; 1573 } 1574 new_size = memparse(sizestr, &retptr); 1575 if (*retptr != '\0' || new_size == 0) { 1576 ret = -EINVAL; 1577 goto out_free; 1578 } 1579 } 1580 1581 if (device->is_tgtdev_for_dev_replace) { 1582 ret = -EPERM; 1583 goto out_free; 1584 } 1585 1586 old_size = device->total_bytes; 1587 1588 if (mod < 0) { 1589 if (new_size > old_size) { 1590 ret = -EINVAL; 1591 goto out_free; 1592 } 1593 new_size = old_size - new_size; 1594 } else if (mod > 0) { 1595 if (new_size > ULLONG_MAX - old_size) { 1596 ret = -ERANGE; 1597 goto out_free; 1598 } 1599 new_size = old_size + new_size; 1600 } 1601 1602 if (new_size < 256 * 1024 * 1024) { 1603 ret = -EINVAL; 1604 goto out_free; 1605 } 1606 if (new_size > device->bdev->bd_inode->i_size) { 1607 ret = -EFBIG; 1608 goto out_free; 1609 } 1610 1611 do_div(new_size, root->sectorsize); 1612 new_size *= root->sectorsize; 1613 1614 printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n", 1615 rcu_str_deref(device->name), new_size); 1616 1617 if (new_size > old_size) { 1618 trans = btrfs_start_transaction(root, 0); 1619 if (IS_ERR(trans)) { 1620 ret = PTR_ERR(trans); 1621 goto out_free; 1622 } 1623 ret = btrfs_grow_device(trans, device, new_size); 1624 btrfs_commit_transaction(trans, root); 1625 } else if (new_size < old_size) { 1626 ret = btrfs_shrink_device(device, new_size); 1627 } /* equal, nothing need to do */ 1628 1629 out_free: 1630 kfree(vol_args); 1631 out: 1632 mutex_unlock(&root->fs_info->volume_mutex); 1633 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 1634 mnt_drop_write_file(file); 1635 return ret; 1636 } 1637 1638 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1639 char *name, unsigned long fd, int subvol, 1640 u64 *transid, bool readonly, 1641 struct btrfs_qgroup_inherit *inherit) 1642 { 1643 int namelen; 1644 int ret = 0; 1645 1646 ret = mnt_want_write_file(file); 1647 if (ret) 1648 goto out; 1649 1650 namelen = strlen(name); 1651 if (strchr(name, '/')) { 1652 ret = -EINVAL; 1653 goto out_drop_write; 1654 } 1655 1656 if (name[0] == '.' && 1657 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1658 ret = -EEXIST; 1659 goto out_drop_write; 1660 } 1661 1662 if (subvol) { 1663 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1664 NULL, transid, readonly, inherit); 1665 } else { 1666 struct fd src = fdget(fd); 1667 struct inode *src_inode; 1668 if (!src.file) { 1669 ret = -EINVAL; 1670 goto out_drop_write; 1671 } 1672 1673 src_inode = file_inode(src.file); 1674 if (src_inode->i_sb != file_inode(file)->i_sb) { 1675 btrfs_info(BTRFS_I(src_inode)->root->fs_info, 1676 "Snapshot src from another FS"); 1677 ret = -EXDEV; 1678 } else if (!inode_owner_or_capable(src_inode)) { 1679 /* 1680 * Subvolume creation is not restricted, but snapshots 1681 * are limited to own subvolumes only 1682 */ 1683 ret = -EPERM; 1684 } else { 1685 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1686 BTRFS_I(src_inode)->root, 1687 transid, readonly, inherit); 1688 } 1689 fdput(src); 1690 } 1691 out_drop_write: 1692 mnt_drop_write_file(file); 1693 out: 1694 return ret; 1695 } 1696 1697 static noinline int btrfs_ioctl_snap_create(struct file *file, 1698 void __user *arg, int subvol) 1699 { 1700 struct btrfs_ioctl_vol_args *vol_args; 1701 int ret; 1702 1703 vol_args = memdup_user(arg, sizeof(*vol_args)); 1704 if (IS_ERR(vol_args)) 1705 return PTR_ERR(vol_args); 1706 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1707 1708 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1709 vol_args->fd, subvol, 1710 NULL, false, NULL); 1711 1712 kfree(vol_args); 1713 return ret; 1714 } 1715 1716 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1717 void __user *arg, int subvol) 1718 { 1719 struct btrfs_ioctl_vol_args_v2 *vol_args; 1720 int ret; 1721 u64 transid = 0; 1722 u64 *ptr = NULL; 1723 bool readonly = false; 1724 struct btrfs_qgroup_inherit *inherit = NULL; 1725 1726 vol_args = memdup_user(arg, sizeof(*vol_args)); 1727 if (IS_ERR(vol_args)) 1728 return PTR_ERR(vol_args); 1729 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1730 1731 if (vol_args->flags & 1732 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1733 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1734 ret = -EOPNOTSUPP; 1735 goto out; 1736 } 1737 1738 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1739 ptr = &transid; 1740 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1741 readonly = true; 1742 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1743 if (vol_args->size > PAGE_CACHE_SIZE) { 1744 ret = -EINVAL; 1745 goto out; 1746 } 1747 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1748 if (IS_ERR(inherit)) { 1749 ret = PTR_ERR(inherit); 1750 goto out; 1751 } 1752 } 1753 1754 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1755 vol_args->fd, subvol, ptr, 1756 readonly, inherit); 1757 1758 if (ret == 0 && ptr && 1759 copy_to_user(arg + 1760 offsetof(struct btrfs_ioctl_vol_args_v2, 1761 transid), ptr, sizeof(*ptr))) 1762 ret = -EFAULT; 1763 out: 1764 kfree(vol_args); 1765 kfree(inherit); 1766 return ret; 1767 } 1768 1769 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1770 void __user *arg) 1771 { 1772 struct inode *inode = file_inode(file); 1773 struct btrfs_root *root = BTRFS_I(inode)->root; 1774 int ret = 0; 1775 u64 flags = 0; 1776 1777 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1778 return -EINVAL; 1779 1780 down_read(&root->fs_info->subvol_sem); 1781 if (btrfs_root_readonly(root)) 1782 flags |= BTRFS_SUBVOL_RDONLY; 1783 up_read(&root->fs_info->subvol_sem); 1784 1785 if (copy_to_user(arg, &flags, sizeof(flags))) 1786 ret = -EFAULT; 1787 1788 return ret; 1789 } 1790 1791 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1792 void __user *arg) 1793 { 1794 struct inode *inode = file_inode(file); 1795 struct btrfs_root *root = BTRFS_I(inode)->root; 1796 struct btrfs_trans_handle *trans; 1797 u64 root_flags; 1798 u64 flags; 1799 int ret = 0; 1800 1801 if (!inode_owner_or_capable(inode)) 1802 return -EPERM; 1803 1804 ret = mnt_want_write_file(file); 1805 if (ret) 1806 goto out; 1807 1808 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1809 ret = -EINVAL; 1810 goto out_drop_write; 1811 } 1812 1813 if (copy_from_user(&flags, arg, sizeof(flags))) { 1814 ret = -EFAULT; 1815 goto out_drop_write; 1816 } 1817 1818 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1819 ret = -EINVAL; 1820 goto out_drop_write; 1821 } 1822 1823 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1824 ret = -EOPNOTSUPP; 1825 goto out_drop_write; 1826 } 1827 1828 down_write(&root->fs_info->subvol_sem); 1829 1830 /* nothing to do */ 1831 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1832 goto out_drop_sem; 1833 1834 root_flags = btrfs_root_flags(&root->root_item); 1835 if (flags & BTRFS_SUBVOL_RDONLY) { 1836 btrfs_set_root_flags(&root->root_item, 1837 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1838 } else { 1839 /* 1840 * Block RO -> RW transition if this subvolume is involved in 1841 * send 1842 */ 1843 spin_lock(&root->root_item_lock); 1844 if (root->send_in_progress == 0) { 1845 btrfs_set_root_flags(&root->root_item, 1846 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1847 spin_unlock(&root->root_item_lock); 1848 } else { 1849 spin_unlock(&root->root_item_lock); 1850 btrfs_warn(root->fs_info, 1851 "Attempt to set subvolume %llu read-write during send", 1852 root->root_key.objectid); 1853 ret = -EPERM; 1854 goto out_drop_sem; 1855 } 1856 } 1857 1858 trans = btrfs_start_transaction(root, 1); 1859 if (IS_ERR(trans)) { 1860 ret = PTR_ERR(trans); 1861 goto out_reset; 1862 } 1863 1864 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1865 &root->root_key, &root->root_item); 1866 1867 btrfs_commit_transaction(trans, root); 1868 out_reset: 1869 if (ret) 1870 btrfs_set_root_flags(&root->root_item, root_flags); 1871 out_drop_sem: 1872 up_write(&root->fs_info->subvol_sem); 1873 out_drop_write: 1874 mnt_drop_write_file(file); 1875 out: 1876 return ret; 1877 } 1878 1879 /* 1880 * helper to check if the subvolume references other subvolumes 1881 */ 1882 static noinline int may_destroy_subvol(struct btrfs_root *root) 1883 { 1884 struct btrfs_path *path; 1885 struct btrfs_dir_item *di; 1886 struct btrfs_key key; 1887 u64 dir_id; 1888 int ret; 1889 1890 path = btrfs_alloc_path(); 1891 if (!path) 1892 return -ENOMEM; 1893 1894 /* Make sure this root isn't set as the default subvol */ 1895 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 1896 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path, 1897 dir_id, "default", 7, 0); 1898 if (di && !IS_ERR(di)) { 1899 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1900 if (key.objectid == root->root_key.objectid) { 1901 ret = -EPERM; 1902 btrfs_err(root->fs_info, "deleting default subvolume " 1903 "%llu is not allowed", key.objectid); 1904 goto out; 1905 } 1906 btrfs_release_path(path); 1907 } 1908 1909 key.objectid = root->root_key.objectid; 1910 key.type = BTRFS_ROOT_REF_KEY; 1911 key.offset = (u64)-1; 1912 1913 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1914 &key, path, 0, 0); 1915 if (ret < 0) 1916 goto out; 1917 BUG_ON(ret == 0); 1918 1919 ret = 0; 1920 if (path->slots[0] > 0) { 1921 path->slots[0]--; 1922 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1923 if (key.objectid == root->root_key.objectid && 1924 key.type == BTRFS_ROOT_REF_KEY) 1925 ret = -ENOTEMPTY; 1926 } 1927 out: 1928 btrfs_free_path(path); 1929 return ret; 1930 } 1931 1932 static noinline int key_in_sk(struct btrfs_key *key, 1933 struct btrfs_ioctl_search_key *sk) 1934 { 1935 struct btrfs_key test; 1936 int ret; 1937 1938 test.objectid = sk->min_objectid; 1939 test.type = sk->min_type; 1940 test.offset = sk->min_offset; 1941 1942 ret = btrfs_comp_cpu_keys(key, &test); 1943 if (ret < 0) 1944 return 0; 1945 1946 test.objectid = sk->max_objectid; 1947 test.type = sk->max_type; 1948 test.offset = sk->max_offset; 1949 1950 ret = btrfs_comp_cpu_keys(key, &test); 1951 if (ret > 0) 1952 return 0; 1953 return 1; 1954 } 1955 1956 static noinline int copy_to_sk(struct btrfs_root *root, 1957 struct btrfs_path *path, 1958 struct btrfs_key *key, 1959 struct btrfs_ioctl_search_key *sk, 1960 size_t *buf_size, 1961 char __user *ubuf, 1962 unsigned long *sk_offset, 1963 int *num_found) 1964 { 1965 u64 found_transid; 1966 struct extent_buffer *leaf; 1967 struct btrfs_ioctl_search_header sh; 1968 unsigned long item_off; 1969 unsigned long item_len; 1970 int nritems; 1971 int i; 1972 int slot; 1973 int ret = 0; 1974 1975 leaf = path->nodes[0]; 1976 slot = path->slots[0]; 1977 nritems = btrfs_header_nritems(leaf); 1978 1979 if (btrfs_header_generation(leaf) > sk->max_transid) { 1980 i = nritems; 1981 goto advance_key; 1982 } 1983 found_transid = btrfs_header_generation(leaf); 1984 1985 for (i = slot; i < nritems; i++) { 1986 item_off = btrfs_item_ptr_offset(leaf, i); 1987 item_len = btrfs_item_size_nr(leaf, i); 1988 1989 btrfs_item_key_to_cpu(leaf, key, i); 1990 if (!key_in_sk(key, sk)) 1991 continue; 1992 1993 if (sizeof(sh) + item_len > *buf_size) { 1994 if (*num_found) { 1995 ret = 1; 1996 goto out; 1997 } 1998 1999 /* 2000 * return one empty item back for v1, which does not 2001 * handle -EOVERFLOW 2002 */ 2003 2004 *buf_size = sizeof(sh) + item_len; 2005 item_len = 0; 2006 ret = -EOVERFLOW; 2007 } 2008 2009 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2010 ret = 1; 2011 goto out; 2012 } 2013 2014 sh.objectid = key->objectid; 2015 sh.offset = key->offset; 2016 sh.type = key->type; 2017 sh.len = item_len; 2018 sh.transid = found_transid; 2019 2020 /* copy search result header */ 2021 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2022 ret = -EFAULT; 2023 goto out; 2024 } 2025 2026 *sk_offset += sizeof(sh); 2027 2028 if (item_len) { 2029 char __user *up = ubuf + *sk_offset; 2030 /* copy the item */ 2031 if (read_extent_buffer_to_user(leaf, up, 2032 item_off, item_len)) { 2033 ret = -EFAULT; 2034 goto out; 2035 } 2036 2037 *sk_offset += item_len; 2038 } 2039 (*num_found)++; 2040 2041 if (ret) /* -EOVERFLOW from above */ 2042 goto out; 2043 2044 if (*num_found >= sk->nr_items) { 2045 ret = 1; 2046 goto out; 2047 } 2048 } 2049 advance_key: 2050 ret = 0; 2051 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 2052 key->offset++; 2053 else if (key->type < (u8)-1 && key->type < sk->max_type) { 2054 key->offset = 0; 2055 key->type++; 2056 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 2057 key->offset = 0; 2058 key->type = 0; 2059 key->objectid++; 2060 } else 2061 ret = 1; 2062 out: 2063 /* 2064 * 0: all items from this leaf copied, continue with next 2065 * 1: * more items can be copied, but unused buffer is too small 2066 * * all items were found 2067 * Either way, it will stops the loop which iterates to the next 2068 * leaf 2069 * -EOVERFLOW: item was to large for buffer 2070 * -EFAULT: could not copy extent buffer back to userspace 2071 */ 2072 return ret; 2073 } 2074 2075 static noinline int search_ioctl(struct inode *inode, 2076 struct btrfs_ioctl_search_key *sk, 2077 size_t *buf_size, 2078 char __user *ubuf) 2079 { 2080 struct btrfs_root *root; 2081 struct btrfs_key key; 2082 struct btrfs_path *path; 2083 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 2084 int ret; 2085 int num_found = 0; 2086 unsigned long sk_offset = 0; 2087 2088 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2089 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2090 return -EOVERFLOW; 2091 } 2092 2093 path = btrfs_alloc_path(); 2094 if (!path) 2095 return -ENOMEM; 2096 2097 if (sk->tree_id == 0) { 2098 /* search the root of the inode that was passed */ 2099 root = BTRFS_I(inode)->root; 2100 } else { 2101 key.objectid = sk->tree_id; 2102 key.type = BTRFS_ROOT_ITEM_KEY; 2103 key.offset = (u64)-1; 2104 root = btrfs_read_fs_root_no_name(info, &key); 2105 if (IS_ERR(root)) { 2106 printk(KERN_ERR "BTRFS: could not find root %llu\n", 2107 sk->tree_id); 2108 btrfs_free_path(path); 2109 return -ENOENT; 2110 } 2111 } 2112 2113 key.objectid = sk->min_objectid; 2114 key.type = sk->min_type; 2115 key.offset = sk->min_offset; 2116 2117 path->keep_locks = 1; 2118 2119 while (1) { 2120 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2121 if (ret != 0) { 2122 if (ret > 0) 2123 ret = 0; 2124 goto err; 2125 } 2126 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf, 2127 &sk_offset, &num_found); 2128 btrfs_release_path(path); 2129 if (ret) 2130 break; 2131 2132 } 2133 if (ret > 0) 2134 ret = 0; 2135 err: 2136 sk->nr_items = num_found; 2137 btrfs_free_path(path); 2138 return ret; 2139 } 2140 2141 static noinline int btrfs_ioctl_tree_search(struct file *file, 2142 void __user *argp) 2143 { 2144 struct btrfs_ioctl_search_args __user *uargs; 2145 struct btrfs_ioctl_search_key sk; 2146 struct inode *inode; 2147 int ret; 2148 size_t buf_size; 2149 2150 if (!capable(CAP_SYS_ADMIN)) 2151 return -EPERM; 2152 2153 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2154 2155 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2156 return -EFAULT; 2157 2158 buf_size = sizeof(uargs->buf); 2159 2160 inode = file_inode(file); 2161 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2162 2163 /* 2164 * In the origin implementation an overflow is handled by returning a 2165 * search header with a len of zero, so reset ret. 2166 */ 2167 if (ret == -EOVERFLOW) 2168 ret = 0; 2169 2170 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2171 ret = -EFAULT; 2172 return ret; 2173 } 2174 2175 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2176 void __user *argp) 2177 { 2178 struct btrfs_ioctl_search_args_v2 __user *uarg; 2179 struct btrfs_ioctl_search_args_v2 args; 2180 struct inode *inode; 2181 int ret; 2182 size_t buf_size; 2183 const size_t buf_limit = 16 * 1024 * 1024; 2184 2185 if (!capable(CAP_SYS_ADMIN)) 2186 return -EPERM; 2187 2188 /* copy search header and buffer size */ 2189 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2190 if (copy_from_user(&args, uarg, sizeof(args))) 2191 return -EFAULT; 2192 2193 buf_size = args.buf_size; 2194 2195 if (buf_size < sizeof(struct btrfs_ioctl_search_header)) 2196 return -EOVERFLOW; 2197 2198 /* limit result size to 16MB */ 2199 if (buf_size > buf_limit) 2200 buf_size = buf_limit; 2201 2202 inode = file_inode(file); 2203 ret = search_ioctl(inode, &args.key, &buf_size, 2204 (char *)(&uarg->buf[0])); 2205 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2206 ret = -EFAULT; 2207 else if (ret == -EOVERFLOW && 2208 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2209 ret = -EFAULT; 2210 2211 return ret; 2212 } 2213 2214 /* 2215 * Search INODE_REFs to identify path name of 'dirid' directory 2216 * in a 'tree_id' tree. and sets path name to 'name'. 2217 */ 2218 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2219 u64 tree_id, u64 dirid, char *name) 2220 { 2221 struct btrfs_root *root; 2222 struct btrfs_key key; 2223 char *ptr; 2224 int ret = -1; 2225 int slot; 2226 int len; 2227 int total_len = 0; 2228 struct btrfs_inode_ref *iref; 2229 struct extent_buffer *l; 2230 struct btrfs_path *path; 2231 2232 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2233 name[0]='\0'; 2234 return 0; 2235 } 2236 2237 path = btrfs_alloc_path(); 2238 if (!path) 2239 return -ENOMEM; 2240 2241 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2242 2243 key.objectid = tree_id; 2244 key.type = BTRFS_ROOT_ITEM_KEY; 2245 key.offset = (u64)-1; 2246 root = btrfs_read_fs_root_no_name(info, &key); 2247 if (IS_ERR(root)) { 2248 printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id); 2249 ret = -ENOENT; 2250 goto out; 2251 } 2252 2253 key.objectid = dirid; 2254 key.type = BTRFS_INODE_REF_KEY; 2255 key.offset = (u64)-1; 2256 2257 while (1) { 2258 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2259 if (ret < 0) 2260 goto out; 2261 else if (ret > 0) { 2262 ret = btrfs_previous_item(root, path, dirid, 2263 BTRFS_INODE_REF_KEY); 2264 if (ret < 0) 2265 goto out; 2266 else if (ret > 0) { 2267 ret = -ENOENT; 2268 goto out; 2269 } 2270 } 2271 2272 l = path->nodes[0]; 2273 slot = path->slots[0]; 2274 btrfs_item_key_to_cpu(l, &key, slot); 2275 2276 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2277 len = btrfs_inode_ref_name_len(l, iref); 2278 ptr -= len + 1; 2279 total_len += len + 1; 2280 if (ptr < name) { 2281 ret = -ENAMETOOLONG; 2282 goto out; 2283 } 2284 2285 *(ptr + len) = '/'; 2286 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2287 2288 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2289 break; 2290 2291 btrfs_release_path(path); 2292 key.objectid = key.offset; 2293 key.offset = (u64)-1; 2294 dirid = key.objectid; 2295 } 2296 memmove(name, ptr, total_len); 2297 name[total_len] = '\0'; 2298 ret = 0; 2299 out: 2300 btrfs_free_path(path); 2301 return ret; 2302 } 2303 2304 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2305 void __user *argp) 2306 { 2307 struct btrfs_ioctl_ino_lookup_args *args; 2308 struct inode *inode; 2309 int ret; 2310 2311 if (!capable(CAP_SYS_ADMIN)) 2312 return -EPERM; 2313 2314 args = memdup_user(argp, sizeof(*args)); 2315 if (IS_ERR(args)) 2316 return PTR_ERR(args); 2317 2318 inode = file_inode(file); 2319 2320 if (args->treeid == 0) 2321 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2322 2323 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2324 args->treeid, args->objectid, 2325 args->name); 2326 2327 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2328 ret = -EFAULT; 2329 2330 kfree(args); 2331 return ret; 2332 } 2333 2334 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2335 void __user *arg) 2336 { 2337 struct dentry *parent = file->f_path.dentry; 2338 struct dentry *dentry; 2339 struct inode *dir = parent->d_inode; 2340 struct inode *inode; 2341 struct btrfs_root *root = BTRFS_I(dir)->root; 2342 struct btrfs_root *dest = NULL; 2343 struct btrfs_ioctl_vol_args *vol_args; 2344 struct btrfs_trans_handle *trans; 2345 struct btrfs_block_rsv block_rsv; 2346 u64 root_flags; 2347 u64 qgroup_reserved; 2348 int namelen; 2349 int ret; 2350 int err = 0; 2351 2352 vol_args = memdup_user(arg, sizeof(*vol_args)); 2353 if (IS_ERR(vol_args)) 2354 return PTR_ERR(vol_args); 2355 2356 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2357 namelen = strlen(vol_args->name); 2358 if (strchr(vol_args->name, '/') || 2359 strncmp(vol_args->name, "..", namelen) == 0) { 2360 err = -EINVAL; 2361 goto out; 2362 } 2363 2364 err = mnt_want_write_file(file); 2365 if (err) 2366 goto out; 2367 2368 2369 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 2370 if (err == -EINTR) 2371 goto out_drop_write; 2372 dentry = lookup_one_len(vol_args->name, parent, namelen); 2373 if (IS_ERR(dentry)) { 2374 err = PTR_ERR(dentry); 2375 goto out_unlock_dir; 2376 } 2377 2378 if (!dentry->d_inode) { 2379 err = -ENOENT; 2380 goto out_dput; 2381 } 2382 2383 inode = dentry->d_inode; 2384 dest = BTRFS_I(inode)->root; 2385 if (!capable(CAP_SYS_ADMIN)) { 2386 /* 2387 * Regular user. Only allow this with a special mount 2388 * option, when the user has write+exec access to the 2389 * subvol root, and when rmdir(2) would have been 2390 * allowed. 2391 * 2392 * Note that this is _not_ check that the subvol is 2393 * empty or doesn't contain data that we wouldn't 2394 * otherwise be able to delete. 2395 * 2396 * Users who want to delete empty subvols should try 2397 * rmdir(2). 2398 */ 2399 err = -EPERM; 2400 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 2401 goto out_dput; 2402 2403 /* 2404 * Do not allow deletion if the parent dir is the same 2405 * as the dir to be deleted. That means the ioctl 2406 * must be called on the dentry referencing the root 2407 * of the subvol, not a random directory contained 2408 * within it. 2409 */ 2410 err = -EINVAL; 2411 if (root == dest) 2412 goto out_dput; 2413 2414 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2415 if (err) 2416 goto out_dput; 2417 } 2418 2419 /* check if subvolume may be deleted by a user */ 2420 err = btrfs_may_delete(dir, dentry, 1); 2421 if (err) 2422 goto out_dput; 2423 2424 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2425 err = -EINVAL; 2426 goto out_dput; 2427 } 2428 2429 mutex_lock(&inode->i_mutex); 2430 2431 /* 2432 * Don't allow to delete a subvolume with send in progress. This is 2433 * inside the i_mutex so the error handling that has to drop the bit 2434 * again is not run concurrently. 2435 */ 2436 spin_lock(&dest->root_item_lock); 2437 root_flags = btrfs_root_flags(&dest->root_item); 2438 if (dest->send_in_progress == 0) { 2439 btrfs_set_root_flags(&dest->root_item, 2440 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2441 spin_unlock(&dest->root_item_lock); 2442 } else { 2443 spin_unlock(&dest->root_item_lock); 2444 btrfs_warn(root->fs_info, 2445 "Attempt to delete subvolume %llu during send", 2446 dest->root_key.objectid); 2447 err = -EPERM; 2448 goto out_dput; 2449 } 2450 2451 err = d_invalidate(dentry); 2452 if (err) 2453 goto out_unlock; 2454 2455 down_write(&root->fs_info->subvol_sem); 2456 2457 err = may_destroy_subvol(dest); 2458 if (err) 2459 goto out_up_write; 2460 2461 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2462 /* 2463 * One for dir inode, two for dir entries, two for root 2464 * ref/backref. 2465 */ 2466 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2467 5, &qgroup_reserved, true); 2468 if (err) 2469 goto out_up_write; 2470 2471 trans = btrfs_start_transaction(root, 0); 2472 if (IS_ERR(trans)) { 2473 err = PTR_ERR(trans); 2474 goto out_release; 2475 } 2476 trans->block_rsv = &block_rsv; 2477 trans->bytes_reserved = block_rsv.size; 2478 2479 ret = btrfs_unlink_subvol(trans, root, dir, 2480 dest->root_key.objectid, 2481 dentry->d_name.name, 2482 dentry->d_name.len); 2483 if (ret) { 2484 err = ret; 2485 btrfs_abort_transaction(trans, root, ret); 2486 goto out_end_trans; 2487 } 2488 2489 btrfs_record_root_in_trans(trans, dest); 2490 2491 memset(&dest->root_item.drop_progress, 0, 2492 sizeof(dest->root_item.drop_progress)); 2493 dest->root_item.drop_level = 0; 2494 btrfs_set_root_refs(&dest->root_item, 0); 2495 2496 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2497 ret = btrfs_insert_orphan_item(trans, 2498 root->fs_info->tree_root, 2499 dest->root_key.objectid); 2500 if (ret) { 2501 btrfs_abort_transaction(trans, root, ret); 2502 err = ret; 2503 goto out_end_trans; 2504 } 2505 } 2506 2507 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2508 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 2509 dest->root_key.objectid); 2510 if (ret && ret != -ENOENT) { 2511 btrfs_abort_transaction(trans, root, ret); 2512 err = ret; 2513 goto out_end_trans; 2514 } 2515 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2516 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2517 dest->root_item.received_uuid, 2518 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2519 dest->root_key.objectid); 2520 if (ret && ret != -ENOENT) { 2521 btrfs_abort_transaction(trans, root, ret); 2522 err = ret; 2523 goto out_end_trans; 2524 } 2525 } 2526 2527 out_end_trans: 2528 trans->block_rsv = NULL; 2529 trans->bytes_reserved = 0; 2530 ret = btrfs_end_transaction(trans, root); 2531 if (ret && !err) 2532 err = ret; 2533 inode->i_flags |= S_DEAD; 2534 out_release: 2535 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 2536 out_up_write: 2537 up_write(&root->fs_info->subvol_sem); 2538 out_unlock: 2539 if (err) { 2540 spin_lock(&dest->root_item_lock); 2541 root_flags = btrfs_root_flags(&dest->root_item); 2542 btrfs_set_root_flags(&dest->root_item, 2543 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2544 spin_unlock(&dest->root_item_lock); 2545 } 2546 mutex_unlock(&inode->i_mutex); 2547 if (!err) { 2548 shrink_dcache_sb(root->fs_info->sb); 2549 btrfs_invalidate_inodes(dest); 2550 d_delete(dentry); 2551 ASSERT(dest->send_in_progress == 0); 2552 2553 /* the last ref */ 2554 if (dest->cache_inode) { 2555 iput(dest->cache_inode); 2556 dest->cache_inode = NULL; 2557 } 2558 } 2559 out_dput: 2560 dput(dentry); 2561 out_unlock_dir: 2562 mutex_unlock(&dir->i_mutex); 2563 out_drop_write: 2564 mnt_drop_write_file(file); 2565 out: 2566 kfree(vol_args); 2567 return err; 2568 } 2569 2570 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2571 { 2572 struct inode *inode = file_inode(file); 2573 struct btrfs_root *root = BTRFS_I(inode)->root; 2574 struct btrfs_ioctl_defrag_range_args *range; 2575 int ret; 2576 2577 ret = mnt_want_write_file(file); 2578 if (ret) 2579 return ret; 2580 2581 if (btrfs_root_readonly(root)) { 2582 ret = -EROFS; 2583 goto out; 2584 } 2585 2586 switch (inode->i_mode & S_IFMT) { 2587 case S_IFDIR: 2588 if (!capable(CAP_SYS_ADMIN)) { 2589 ret = -EPERM; 2590 goto out; 2591 } 2592 ret = btrfs_defrag_root(root); 2593 if (ret) 2594 goto out; 2595 ret = btrfs_defrag_root(root->fs_info->extent_root); 2596 break; 2597 case S_IFREG: 2598 if (!(file->f_mode & FMODE_WRITE)) { 2599 ret = -EINVAL; 2600 goto out; 2601 } 2602 2603 range = kzalloc(sizeof(*range), GFP_KERNEL); 2604 if (!range) { 2605 ret = -ENOMEM; 2606 goto out; 2607 } 2608 2609 if (argp) { 2610 if (copy_from_user(range, argp, 2611 sizeof(*range))) { 2612 ret = -EFAULT; 2613 kfree(range); 2614 goto out; 2615 } 2616 /* compression requires us to start the IO */ 2617 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2618 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2619 range->extent_thresh = (u32)-1; 2620 } 2621 } else { 2622 /* the rest are all set to zero by kzalloc */ 2623 range->len = (u64)-1; 2624 } 2625 ret = btrfs_defrag_file(file_inode(file), file, 2626 range, 0, 0); 2627 if (ret > 0) 2628 ret = 0; 2629 kfree(range); 2630 break; 2631 default: 2632 ret = -EINVAL; 2633 } 2634 out: 2635 mnt_drop_write_file(file); 2636 return ret; 2637 } 2638 2639 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2640 { 2641 struct btrfs_ioctl_vol_args *vol_args; 2642 int ret; 2643 2644 if (!capable(CAP_SYS_ADMIN)) 2645 return -EPERM; 2646 2647 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2648 1)) { 2649 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2650 } 2651 2652 mutex_lock(&root->fs_info->volume_mutex); 2653 vol_args = memdup_user(arg, sizeof(*vol_args)); 2654 if (IS_ERR(vol_args)) { 2655 ret = PTR_ERR(vol_args); 2656 goto out; 2657 } 2658 2659 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2660 ret = btrfs_init_new_device(root, vol_args->name); 2661 2662 kfree(vol_args); 2663 out: 2664 mutex_unlock(&root->fs_info->volume_mutex); 2665 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2666 return ret; 2667 } 2668 2669 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2670 { 2671 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2672 struct btrfs_ioctl_vol_args *vol_args; 2673 int ret; 2674 2675 if (!capable(CAP_SYS_ADMIN)) 2676 return -EPERM; 2677 2678 ret = mnt_want_write_file(file); 2679 if (ret) 2680 return ret; 2681 2682 vol_args = memdup_user(arg, sizeof(*vol_args)); 2683 if (IS_ERR(vol_args)) { 2684 ret = PTR_ERR(vol_args); 2685 goto out; 2686 } 2687 2688 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2689 2690 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2691 1)) { 2692 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2693 goto out; 2694 } 2695 2696 mutex_lock(&root->fs_info->volume_mutex); 2697 ret = btrfs_rm_device(root, vol_args->name); 2698 mutex_unlock(&root->fs_info->volume_mutex); 2699 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2700 2701 out: 2702 kfree(vol_args); 2703 mnt_drop_write_file(file); 2704 return ret; 2705 } 2706 2707 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2708 { 2709 struct btrfs_ioctl_fs_info_args *fi_args; 2710 struct btrfs_device *device; 2711 struct btrfs_device *next; 2712 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2713 int ret = 0; 2714 2715 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2716 if (!fi_args) 2717 return -ENOMEM; 2718 2719 mutex_lock(&fs_devices->device_list_mutex); 2720 fi_args->num_devices = fs_devices->num_devices; 2721 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2722 2723 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 2724 if (device->devid > fi_args->max_id) 2725 fi_args->max_id = device->devid; 2726 } 2727 mutex_unlock(&fs_devices->device_list_mutex); 2728 2729 fi_args->nodesize = root->fs_info->super_copy->nodesize; 2730 fi_args->sectorsize = root->fs_info->super_copy->sectorsize; 2731 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize; 2732 2733 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2734 ret = -EFAULT; 2735 2736 kfree(fi_args); 2737 return ret; 2738 } 2739 2740 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2741 { 2742 struct btrfs_ioctl_dev_info_args *di_args; 2743 struct btrfs_device *dev; 2744 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2745 int ret = 0; 2746 char *s_uuid = NULL; 2747 2748 di_args = memdup_user(arg, sizeof(*di_args)); 2749 if (IS_ERR(di_args)) 2750 return PTR_ERR(di_args); 2751 2752 if (!btrfs_is_empty_uuid(di_args->uuid)) 2753 s_uuid = di_args->uuid; 2754 2755 mutex_lock(&fs_devices->device_list_mutex); 2756 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL); 2757 2758 if (!dev) { 2759 ret = -ENODEV; 2760 goto out; 2761 } 2762 2763 di_args->devid = dev->devid; 2764 di_args->bytes_used = dev->bytes_used; 2765 di_args->total_bytes = dev->total_bytes; 2766 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2767 if (dev->name) { 2768 struct rcu_string *name; 2769 2770 rcu_read_lock(); 2771 name = rcu_dereference(dev->name); 2772 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2773 rcu_read_unlock(); 2774 di_args->path[sizeof(di_args->path) - 1] = 0; 2775 } else { 2776 di_args->path[0] = '\0'; 2777 } 2778 2779 out: 2780 mutex_unlock(&fs_devices->device_list_mutex); 2781 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2782 ret = -EFAULT; 2783 2784 kfree(di_args); 2785 return ret; 2786 } 2787 2788 static struct page *extent_same_get_page(struct inode *inode, u64 off) 2789 { 2790 struct page *page; 2791 pgoff_t index; 2792 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2793 2794 index = off >> PAGE_CACHE_SHIFT; 2795 2796 page = grab_cache_page(inode->i_mapping, index); 2797 if (!page) 2798 return NULL; 2799 2800 if (!PageUptodate(page)) { 2801 if (extent_read_full_page_nolock(tree, page, btrfs_get_extent, 2802 0)) 2803 return NULL; 2804 lock_page(page); 2805 if (!PageUptodate(page)) { 2806 unlock_page(page); 2807 page_cache_release(page); 2808 return NULL; 2809 } 2810 } 2811 unlock_page(page); 2812 2813 return page; 2814 } 2815 2816 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len) 2817 { 2818 /* do any pending delalloc/csum calc on src, one way or 2819 another, and lock file content */ 2820 while (1) { 2821 struct btrfs_ordered_extent *ordered; 2822 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2823 ordered = btrfs_lookup_first_ordered_extent(inode, 2824 off + len - 1); 2825 if ((!ordered || 2826 ordered->file_offset + ordered->len <= off || 2827 ordered->file_offset >= off + len) && 2828 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2829 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2830 if (ordered) 2831 btrfs_put_ordered_extent(ordered); 2832 break; 2833 } 2834 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2835 if (ordered) 2836 btrfs_put_ordered_extent(ordered); 2837 btrfs_wait_ordered_range(inode, off, len); 2838 } 2839 } 2840 2841 static void btrfs_double_unlock(struct inode *inode1, u64 loff1, 2842 struct inode *inode2, u64 loff2, u64 len) 2843 { 2844 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2845 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2846 2847 mutex_unlock(&inode1->i_mutex); 2848 mutex_unlock(&inode2->i_mutex); 2849 } 2850 2851 static void btrfs_double_lock(struct inode *inode1, u64 loff1, 2852 struct inode *inode2, u64 loff2, u64 len) 2853 { 2854 if (inode1 < inode2) { 2855 swap(inode1, inode2); 2856 swap(loff1, loff2); 2857 } 2858 2859 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 2860 lock_extent_range(inode1, loff1, len); 2861 if (inode1 != inode2) { 2862 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 2863 lock_extent_range(inode2, loff2, len); 2864 } 2865 } 2866 2867 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst, 2868 u64 dst_loff, u64 len) 2869 { 2870 int ret = 0; 2871 struct page *src_page, *dst_page; 2872 unsigned int cmp_len = PAGE_CACHE_SIZE; 2873 void *addr, *dst_addr; 2874 2875 while (len) { 2876 if (len < PAGE_CACHE_SIZE) 2877 cmp_len = len; 2878 2879 src_page = extent_same_get_page(src, loff); 2880 if (!src_page) 2881 return -EINVAL; 2882 dst_page = extent_same_get_page(dst, dst_loff); 2883 if (!dst_page) { 2884 page_cache_release(src_page); 2885 return -EINVAL; 2886 } 2887 addr = kmap_atomic(src_page); 2888 dst_addr = kmap_atomic(dst_page); 2889 2890 flush_dcache_page(src_page); 2891 flush_dcache_page(dst_page); 2892 2893 if (memcmp(addr, dst_addr, cmp_len)) 2894 ret = BTRFS_SAME_DATA_DIFFERS; 2895 2896 kunmap_atomic(addr); 2897 kunmap_atomic(dst_addr); 2898 page_cache_release(src_page); 2899 page_cache_release(dst_page); 2900 2901 if (ret) 2902 break; 2903 2904 loff += cmp_len; 2905 dst_loff += cmp_len; 2906 len -= cmp_len; 2907 } 2908 2909 return ret; 2910 } 2911 2912 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len) 2913 { 2914 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 2915 2916 if (off + len > inode->i_size || off + len < off) 2917 return -EINVAL; 2918 /* Check that we are block aligned - btrfs_clone() requires this */ 2919 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 2920 return -EINVAL; 2921 2922 return 0; 2923 } 2924 2925 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len, 2926 struct inode *dst, u64 dst_loff) 2927 { 2928 int ret; 2929 2930 /* 2931 * btrfs_clone() can't handle extents in the same file 2932 * yet. Once that works, we can drop this check and replace it 2933 * with a check for the same inode, but overlapping extents. 2934 */ 2935 if (src == dst) 2936 return -EINVAL; 2937 2938 btrfs_double_lock(src, loff, dst, dst_loff, len); 2939 2940 ret = extent_same_check_offsets(src, loff, len); 2941 if (ret) 2942 goto out_unlock; 2943 2944 ret = extent_same_check_offsets(dst, dst_loff, len); 2945 if (ret) 2946 goto out_unlock; 2947 2948 /* don't make the dst file partly checksummed */ 2949 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 2950 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 2951 ret = -EINVAL; 2952 goto out_unlock; 2953 } 2954 2955 ret = btrfs_cmp_data(src, loff, dst, dst_loff, len); 2956 if (ret == 0) 2957 ret = btrfs_clone(src, dst, loff, len, len, dst_loff); 2958 2959 out_unlock: 2960 btrfs_double_unlock(src, loff, dst, dst_loff, len); 2961 2962 return ret; 2963 } 2964 2965 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024) 2966 2967 static long btrfs_ioctl_file_extent_same(struct file *file, 2968 struct btrfs_ioctl_same_args __user *argp) 2969 { 2970 struct btrfs_ioctl_same_args *same; 2971 struct btrfs_ioctl_same_extent_info *info; 2972 struct inode *src = file_inode(file); 2973 u64 off; 2974 u64 len; 2975 int i; 2976 int ret; 2977 unsigned long size; 2978 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 2979 bool is_admin = capable(CAP_SYS_ADMIN); 2980 u16 count; 2981 2982 if (!(file->f_mode & FMODE_READ)) 2983 return -EINVAL; 2984 2985 ret = mnt_want_write_file(file); 2986 if (ret) 2987 return ret; 2988 2989 if (get_user(count, &argp->dest_count)) { 2990 ret = -EFAULT; 2991 goto out; 2992 } 2993 2994 size = offsetof(struct btrfs_ioctl_same_args __user, info[count]); 2995 2996 same = memdup_user(argp, size); 2997 2998 if (IS_ERR(same)) { 2999 ret = PTR_ERR(same); 3000 goto out; 3001 } 3002 3003 off = same->logical_offset; 3004 len = same->length; 3005 3006 /* 3007 * Limit the total length we will dedupe for each operation. 3008 * This is intended to bound the total time spent in this 3009 * ioctl to something sane. 3010 */ 3011 if (len > BTRFS_MAX_DEDUPE_LEN) 3012 len = BTRFS_MAX_DEDUPE_LEN; 3013 3014 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) { 3015 /* 3016 * Btrfs does not support blocksize < page_size. As a 3017 * result, btrfs_cmp_data() won't correctly handle 3018 * this situation without an update. 3019 */ 3020 ret = -EINVAL; 3021 goto out; 3022 } 3023 3024 ret = -EISDIR; 3025 if (S_ISDIR(src->i_mode)) 3026 goto out; 3027 3028 ret = -EACCES; 3029 if (!S_ISREG(src->i_mode)) 3030 goto out; 3031 3032 /* pre-format output fields to sane values */ 3033 for (i = 0; i < count; i++) { 3034 same->info[i].bytes_deduped = 0ULL; 3035 same->info[i].status = 0; 3036 } 3037 3038 for (i = 0, info = same->info; i < count; i++, info++) { 3039 struct inode *dst; 3040 struct fd dst_file = fdget(info->fd); 3041 if (!dst_file.file) { 3042 info->status = -EBADF; 3043 continue; 3044 } 3045 dst = file_inode(dst_file.file); 3046 3047 if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) { 3048 info->status = -EINVAL; 3049 } else if (file->f_path.mnt != dst_file.file->f_path.mnt) { 3050 info->status = -EXDEV; 3051 } else if (S_ISDIR(dst->i_mode)) { 3052 info->status = -EISDIR; 3053 } else if (!S_ISREG(dst->i_mode)) { 3054 info->status = -EACCES; 3055 } else { 3056 info->status = btrfs_extent_same(src, off, len, dst, 3057 info->logical_offset); 3058 if (info->status == 0) 3059 info->bytes_deduped += len; 3060 } 3061 fdput(dst_file); 3062 } 3063 3064 ret = copy_to_user(argp, same, size); 3065 if (ret) 3066 ret = -EFAULT; 3067 3068 out: 3069 mnt_drop_write_file(file); 3070 return ret; 3071 } 3072 3073 /* Helper to check and see if this root currently has a ref on the given disk 3074 * bytenr. If it does then we need to update the quota for this root. This 3075 * doesn't do anything if quotas aren't enabled. 3076 */ 3077 static int check_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3078 u64 disko) 3079 { 3080 struct seq_list tree_mod_seq_elem = {}; 3081 struct ulist *roots; 3082 struct ulist_iterator uiter; 3083 struct ulist_node *root_node = NULL; 3084 int ret; 3085 3086 if (!root->fs_info->quota_enabled) 3087 return 1; 3088 3089 btrfs_get_tree_mod_seq(root->fs_info, &tree_mod_seq_elem); 3090 ret = btrfs_find_all_roots(trans, root->fs_info, disko, 3091 tree_mod_seq_elem.seq, &roots); 3092 if (ret < 0) 3093 goto out; 3094 ret = 0; 3095 ULIST_ITER_INIT(&uiter); 3096 while ((root_node = ulist_next(roots, &uiter))) { 3097 if (root_node->val == root->objectid) { 3098 ret = 1; 3099 break; 3100 } 3101 } 3102 ulist_free(roots); 3103 out: 3104 btrfs_put_tree_mod_seq(root->fs_info, &tree_mod_seq_elem); 3105 return ret; 3106 } 3107 3108 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3109 struct inode *inode, 3110 u64 endoff, 3111 const u64 destoff, 3112 const u64 olen) 3113 { 3114 struct btrfs_root *root = BTRFS_I(inode)->root; 3115 int ret; 3116 3117 inode_inc_iversion(inode); 3118 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3119 /* 3120 * We round up to the block size at eof when determining which 3121 * extents to clone above, but shouldn't round up the file size. 3122 */ 3123 if (endoff > destoff + olen) 3124 endoff = destoff + olen; 3125 if (endoff > inode->i_size) 3126 btrfs_i_size_write(inode, endoff); 3127 3128 ret = btrfs_update_inode(trans, root, inode); 3129 if (ret) { 3130 btrfs_abort_transaction(trans, root, ret); 3131 btrfs_end_transaction(trans, root); 3132 goto out; 3133 } 3134 ret = btrfs_end_transaction(trans, root); 3135 out: 3136 return ret; 3137 } 3138 3139 static void clone_update_extent_map(struct inode *inode, 3140 const struct btrfs_trans_handle *trans, 3141 const struct btrfs_path *path, 3142 struct btrfs_file_extent_item *fi, 3143 const u64 hole_offset, 3144 const u64 hole_len) 3145 { 3146 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3147 struct extent_map *em; 3148 int ret; 3149 3150 em = alloc_extent_map(); 3151 if (!em) { 3152 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3153 &BTRFS_I(inode)->runtime_flags); 3154 return; 3155 } 3156 3157 if (fi) { 3158 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3159 em->generation = -1; 3160 if (btrfs_file_extent_type(path->nodes[0], fi) == 3161 BTRFS_FILE_EXTENT_INLINE) 3162 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3163 &BTRFS_I(inode)->runtime_flags); 3164 } else { 3165 em->start = hole_offset; 3166 em->len = hole_len; 3167 em->ram_bytes = em->len; 3168 em->orig_start = hole_offset; 3169 em->block_start = EXTENT_MAP_HOLE; 3170 em->block_len = 0; 3171 em->orig_block_len = 0; 3172 em->compress_type = BTRFS_COMPRESS_NONE; 3173 em->generation = trans->transid; 3174 } 3175 3176 while (1) { 3177 write_lock(&em_tree->lock); 3178 ret = add_extent_mapping(em_tree, em, 1); 3179 write_unlock(&em_tree->lock); 3180 if (ret != -EEXIST) { 3181 free_extent_map(em); 3182 break; 3183 } 3184 btrfs_drop_extent_cache(inode, em->start, 3185 em->start + em->len - 1, 0); 3186 } 3187 3188 if (unlikely(ret)) 3189 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3190 &BTRFS_I(inode)->runtime_flags); 3191 } 3192 3193 /** 3194 * btrfs_clone() - clone a range from inode file to another 3195 * 3196 * @src: Inode to clone from 3197 * @inode: Inode to clone to 3198 * @off: Offset within source to start clone from 3199 * @olen: Original length, passed by user, of range to clone 3200 * @olen_aligned: Block-aligned value of olen, extent_same uses 3201 * identical values here 3202 * @destoff: Offset within @inode to start clone 3203 */ 3204 static int btrfs_clone(struct inode *src, struct inode *inode, 3205 const u64 off, const u64 olen, const u64 olen_aligned, 3206 const u64 destoff) 3207 { 3208 struct btrfs_root *root = BTRFS_I(inode)->root; 3209 struct btrfs_path *path = NULL; 3210 struct extent_buffer *leaf; 3211 struct btrfs_trans_handle *trans; 3212 char *buf = NULL; 3213 struct btrfs_key key; 3214 u32 nritems; 3215 int slot; 3216 int ret; 3217 int no_quota; 3218 const u64 len = olen_aligned; 3219 u64 last_disko = 0; 3220 u64 last_dest_end = destoff; 3221 3222 ret = -ENOMEM; 3223 buf = vmalloc(btrfs_level_size(root, 0)); 3224 if (!buf) 3225 return ret; 3226 3227 path = btrfs_alloc_path(); 3228 if (!path) { 3229 vfree(buf); 3230 return ret; 3231 } 3232 3233 path->reada = 2; 3234 /* clone data */ 3235 key.objectid = btrfs_ino(src); 3236 key.type = BTRFS_EXTENT_DATA_KEY; 3237 key.offset = off; 3238 3239 while (1) { 3240 /* 3241 * note the key will change type as we walk through the 3242 * tree. 3243 */ 3244 path->leave_spinning = 1; 3245 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3246 0, 0); 3247 if (ret < 0) 3248 goto out; 3249 /* 3250 * First search, if no extent item that starts at offset off was 3251 * found but the previous item is an extent item, it's possible 3252 * it might overlap our target range, therefore process it. 3253 */ 3254 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3255 btrfs_item_key_to_cpu(path->nodes[0], &key, 3256 path->slots[0] - 1); 3257 if (key.type == BTRFS_EXTENT_DATA_KEY) 3258 path->slots[0]--; 3259 } 3260 3261 nritems = btrfs_header_nritems(path->nodes[0]); 3262 process_slot: 3263 no_quota = 1; 3264 if (path->slots[0] >= nritems) { 3265 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3266 if (ret < 0) 3267 goto out; 3268 if (ret > 0) 3269 break; 3270 nritems = btrfs_header_nritems(path->nodes[0]); 3271 } 3272 leaf = path->nodes[0]; 3273 slot = path->slots[0]; 3274 3275 btrfs_item_key_to_cpu(leaf, &key, slot); 3276 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || 3277 key.objectid != btrfs_ino(src)) 3278 break; 3279 3280 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { 3281 struct btrfs_file_extent_item *extent; 3282 int type; 3283 u32 size; 3284 struct btrfs_key new_key; 3285 u64 disko = 0, diskl = 0; 3286 u64 datao = 0, datal = 0; 3287 u8 comp; 3288 u64 drop_start; 3289 3290 extent = btrfs_item_ptr(leaf, slot, 3291 struct btrfs_file_extent_item); 3292 comp = btrfs_file_extent_compression(leaf, extent); 3293 type = btrfs_file_extent_type(leaf, extent); 3294 if (type == BTRFS_FILE_EXTENT_REG || 3295 type == BTRFS_FILE_EXTENT_PREALLOC) { 3296 disko = btrfs_file_extent_disk_bytenr(leaf, 3297 extent); 3298 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3299 extent); 3300 datao = btrfs_file_extent_offset(leaf, extent); 3301 datal = btrfs_file_extent_num_bytes(leaf, 3302 extent); 3303 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3304 /* take upper bound, may be compressed */ 3305 datal = btrfs_file_extent_ram_bytes(leaf, 3306 extent); 3307 } 3308 3309 /* 3310 * The first search might have left us at an extent 3311 * item that ends before our target range's start, can 3312 * happen if we have holes and NO_HOLES feature enabled. 3313 */ 3314 if (key.offset + datal <= off) { 3315 path->slots[0]++; 3316 goto process_slot; 3317 } else if (key.offset >= off + len) { 3318 break; 3319 } 3320 3321 size = btrfs_item_size_nr(leaf, slot); 3322 read_extent_buffer(leaf, buf, 3323 btrfs_item_ptr_offset(leaf, slot), 3324 size); 3325 3326 btrfs_release_path(path); 3327 path->leave_spinning = 0; 3328 3329 memcpy(&new_key, &key, sizeof(new_key)); 3330 new_key.objectid = btrfs_ino(inode); 3331 if (off <= key.offset) 3332 new_key.offset = key.offset + destoff - off; 3333 else 3334 new_key.offset = destoff; 3335 3336 /* 3337 * Deal with a hole that doesn't have an extent item 3338 * that represents it (NO_HOLES feature enabled). 3339 * This hole is either in the middle of the cloning 3340 * range or at the beginning (fully overlaps it or 3341 * partially overlaps it). 3342 */ 3343 if (new_key.offset != last_dest_end) 3344 drop_start = last_dest_end; 3345 else 3346 drop_start = new_key.offset; 3347 3348 /* 3349 * 1 - adjusting old extent (we may have to split it) 3350 * 1 - add new extent 3351 * 1 - inode update 3352 */ 3353 trans = btrfs_start_transaction(root, 3); 3354 if (IS_ERR(trans)) { 3355 ret = PTR_ERR(trans); 3356 goto out; 3357 } 3358 3359 if (type == BTRFS_FILE_EXTENT_REG || 3360 type == BTRFS_FILE_EXTENT_PREALLOC) { 3361 /* 3362 * a | --- range to clone ---| b 3363 * | ------------- extent ------------- | 3364 */ 3365 3366 /* subtract range b */ 3367 if (key.offset + datal > off + len) 3368 datal = off + len - key.offset; 3369 3370 /* subtract range a */ 3371 if (off > key.offset) { 3372 datao += off - key.offset; 3373 datal -= off - key.offset; 3374 } 3375 3376 ret = btrfs_drop_extents(trans, root, inode, 3377 drop_start, 3378 new_key.offset + datal, 3379 1); 3380 if (ret) { 3381 if (ret != -EOPNOTSUPP) 3382 btrfs_abort_transaction(trans, 3383 root, ret); 3384 btrfs_end_transaction(trans, root); 3385 goto out; 3386 } 3387 3388 ret = btrfs_insert_empty_item(trans, root, path, 3389 &new_key, size); 3390 if (ret) { 3391 btrfs_abort_transaction(trans, root, 3392 ret); 3393 btrfs_end_transaction(trans, root); 3394 goto out; 3395 } 3396 3397 leaf = path->nodes[0]; 3398 slot = path->slots[0]; 3399 write_extent_buffer(leaf, buf, 3400 btrfs_item_ptr_offset(leaf, slot), 3401 size); 3402 3403 extent = btrfs_item_ptr(leaf, slot, 3404 struct btrfs_file_extent_item); 3405 3406 /* disko == 0 means it's a hole */ 3407 if (!disko) 3408 datao = 0; 3409 3410 btrfs_set_file_extent_offset(leaf, extent, 3411 datao); 3412 btrfs_set_file_extent_num_bytes(leaf, extent, 3413 datal); 3414 3415 /* 3416 * We need to look up the roots that point at 3417 * this bytenr and see if the new root does. If 3418 * it does not we need to make sure we update 3419 * quotas appropriately. 3420 */ 3421 if (disko && root != BTRFS_I(src)->root && 3422 disko != last_disko) { 3423 no_quota = check_ref(trans, root, 3424 disko); 3425 if (no_quota < 0) { 3426 btrfs_abort_transaction(trans, 3427 root, 3428 ret); 3429 btrfs_end_transaction(trans, 3430 root); 3431 ret = no_quota; 3432 goto out; 3433 } 3434 } 3435 3436 if (disko) { 3437 inode_add_bytes(inode, datal); 3438 ret = btrfs_inc_extent_ref(trans, root, 3439 disko, diskl, 0, 3440 root->root_key.objectid, 3441 btrfs_ino(inode), 3442 new_key.offset - datao, 3443 no_quota); 3444 if (ret) { 3445 btrfs_abort_transaction(trans, 3446 root, 3447 ret); 3448 btrfs_end_transaction(trans, 3449 root); 3450 goto out; 3451 3452 } 3453 } 3454 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3455 u64 skip = 0; 3456 u64 trim = 0; 3457 u64 aligned_end = 0; 3458 3459 if (off > key.offset) { 3460 skip = off - key.offset; 3461 new_key.offset += skip; 3462 } 3463 3464 if (key.offset + datal > off + len) 3465 trim = key.offset + datal - (off + len); 3466 3467 if (comp && (skip || trim)) { 3468 ret = -EINVAL; 3469 btrfs_end_transaction(trans, root); 3470 goto out; 3471 } 3472 size -= skip + trim; 3473 datal -= skip + trim; 3474 3475 aligned_end = ALIGN(new_key.offset + datal, 3476 root->sectorsize); 3477 ret = btrfs_drop_extents(trans, root, inode, 3478 drop_start, 3479 aligned_end, 3480 1); 3481 if (ret) { 3482 if (ret != -EOPNOTSUPP) 3483 btrfs_abort_transaction(trans, 3484 root, ret); 3485 btrfs_end_transaction(trans, root); 3486 goto out; 3487 } 3488 3489 ret = btrfs_insert_empty_item(trans, root, path, 3490 &new_key, size); 3491 if (ret) { 3492 btrfs_abort_transaction(trans, root, 3493 ret); 3494 btrfs_end_transaction(trans, root); 3495 goto out; 3496 } 3497 3498 if (skip) { 3499 u32 start = 3500 btrfs_file_extent_calc_inline_size(0); 3501 memmove(buf+start, buf+start+skip, 3502 datal); 3503 } 3504 3505 leaf = path->nodes[0]; 3506 slot = path->slots[0]; 3507 write_extent_buffer(leaf, buf, 3508 btrfs_item_ptr_offset(leaf, slot), 3509 size); 3510 inode_add_bytes(inode, datal); 3511 extent = btrfs_item_ptr(leaf, slot, 3512 struct btrfs_file_extent_item); 3513 } 3514 3515 /* If we have an implicit hole (NO_HOLES feature). */ 3516 if (drop_start < new_key.offset) 3517 clone_update_extent_map(inode, trans, 3518 path, NULL, drop_start, 3519 new_key.offset - drop_start); 3520 3521 clone_update_extent_map(inode, trans, path, 3522 extent, 0, 0); 3523 3524 btrfs_mark_buffer_dirty(leaf); 3525 btrfs_release_path(path); 3526 3527 last_dest_end = new_key.offset + datal; 3528 ret = clone_finish_inode_update(trans, inode, 3529 last_dest_end, 3530 destoff, olen); 3531 if (ret) 3532 goto out; 3533 if (new_key.offset + datal >= destoff + len) 3534 break; 3535 } 3536 btrfs_release_path(path); 3537 key.offset++; 3538 } 3539 ret = 0; 3540 3541 if (last_dest_end < destoff + len) { 3542 /* 3543 * We have an implicit hole (NO_HOLES feature is enabled) that 3544 * fully or partially overlaps our cloning range at its end. 3545 */ 3546 btrfs_release_path(path); 3547 3548 /* 3549 * 1 - remove extent(s) 3550 * 1 - inode update 3551 */ 3552 trans = btrfs_start_transaction(root, 2); 3553 if (IS_ERR(trans)) { 3554 ret = PTR_ERR(trans); 3555 goto out; 3556 } 3557 ret = btrfs_drop_extents(trans, root, inode, 3558 last_dest_end, destoff + len, 1); 3559 if (ret) { 3560 if (ret != -EOPNOTSUPP) 3561 btrfs_abort_transaction(trans, root, ret); 3562 btrfs_end_transaction(trans, root); 3563 goto out; 3564 } 3565 ret = clone_finish_inode_update(trans, inode, destoff + len, 3566 destoff, olen); 3567 if (ret) 3568 goto out; 3569 clone_update_extent_map(inode, trans, path, NULL, last_dest_end, 3570 destoff + len - last_dest_end); 3571 } 3572 3573 out: 3574 btrfs_free_path(path); 3575 vfree(buf); 3576 return ret; 3577 } 3578 3579 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 3580 u64 off, u64 olen, u64 destoff) 3581 { 3582 struct inode *inode = file_inode(file); 3583 struct btrfs_root *root = BTRFS_I(inode)->root; 3584 struct fd src_file; 3585 struct inode *src; 3586 int ret; 3587 u64 len = olen; 3588 u64 bs = root->fs_info->sb->s_blocksize; 3589 int same_inode = 0; 3590 3591 /* 3592 * TODO: 3593 * - split compressed inline extents. annoying: we need to 3594 * decompress into destination's address_space (the file offset 3595 * may change, so source mapping won't do), then recompress (or 3596 * otherwise reinsert) a subrange. 3597 * 3598 * - split destination inode's inline extents. The inline extents can 3599 * be either compressed or non-compressed. 3600 */ 3601 3602 /* the destination must be opened for writing */ 3603 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 3604 return -EINVAL; 3605 3606 if (btrfs_root_readonly(root)) 3607 return -EROFS; 3608 3609 ret = mnt_want_write_file(file); 3610 if (ret) 3611 return ret; 3612 3613 src_file = fdget(srcfd); 3614 if (!src_file.file) { 3615 ret = -EBADF; 3616 goto out_drop_write; 3617 } 3618 3619 ret = -EXDEV; 3620 if (src_file.file->f_path.mnt != file->f_path.mnt) 3621 goto out_fput; 3622 3623 src = file_inode(src_file.file); 3624 3625 ret = -EINVAL; 3626 if (src == inode) 3627 same_inode = 1; 3628 3629 /* the src must be open for reading */ 3630 if (!(src_file.file->f_mode & FMODE_READ)) 3631 goto out_fput; 3632 3633 /* don't make the dst file partly checksummed */ 3634 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3635 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3636 goto out_fput; 3637 3638 ret = -EISDIR; 3639 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3640 goto out_fput; 3641 3642 ret = -EXDEV; 3643 if (src->i_sb != inode->i_sb) 3644 goto out_fput; 3645 3646 if (!same_inode) { 3647 if (inode < src) { 3648 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 3649 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 3650 } else { 3651 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 3652 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 3653 } 3654 } else { 3655 mutex_lock(&src->i_mutex); 3656 } 3657 3658 /* determine range to clone */ 3659 ret = -EINVAL; 3660 if (off + len > src->i_size || off + len < off) 3661 goto out_unlock; 3662 if (len == 0) 3663 olen = len = src->i_size - off; 3664 /* if we extend to eof, continue to block boundary */ 3665 if (off + len == src->i_size) 3666 len = ALIGN(src->i_size, bs) - off; 3667 3668 /* verify the end result is block aligned */ 3669 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3670 !IS_ALIGNED(destoff, bs)) 3671 goto out_unlock; 3672 3673 /* verify if ranges are overlapped within the same file */ 3674 if (same_inode) { 3675 if (destoff + len > off && destoff < off + len) 3676 goto out_unlock; 3677 } 3678 3679 if (destoff > inode->i_size) { 3680 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3681 if (ret) 3682 goto out_unlock; 3683 } 3684 3685 /* 3686 * Lock the target range too. Right after we replace the file extent 3687 * items in the fs tree (which now point to the cloned data), we might 3688 * have a worker replace them with extent items relative to a write 3689 * operation that was issued before this clone operation (i.e. confront 3690 * with inode.c:btrfs_finish_ordered_io). 3691 */ 3692 if (same_inode) { 3693 u64 lock_start = min_t(u64, off, destoff); 3694 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3695 3696 lock_extent_range(src, lock_start, lock_len); 3697 } else { 3698 lock_extent_range(src, off, len); 3699 lock_extent_range(inode, destoff, len); 3700 } 3701 3702 ret = btrfs_clone(src, inode, off, olen, len, destoff); 3703 3704 if (same_inode) { 3705 u64 lock_start = min_t(u64, off, destoff); 3706 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3707 3708 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3709 } else { 3710 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 3711 unlock_extent(&BTRFS_I(inode)->io_tree, destoff, 3712 destoff + len - 1); 3713 } 3714 /* 3715 * Truncate page cache pages so that future reads will see the cloned 3716 * data immediately and not the previous data. 3717 */ 3718 truncate_inode_pages_range(&inode->i_data, destoff, 3719 PAGE_CACHE_ALIGN(destoff + len) - 1); 3720 out_unlock: 3721 if (!same_inode) { 3722 if (inode < src) { 3723 mutex_unlock(&src->i_mutex); 3724 mutex_unlock(&inode->i_mutex); 3725 } else { 3726 mutex_unlock(&inode->i_mutex); 3727 mutex_unlock(&src->i_mutex); 3728 } 3729 } else { 3730 mutex_unlock(&src->i_mutex); 3731 } 3732 out_fput: 3733 fdput(src_file); 3734 out_drop_write: 3735 mnt_drop_write_file(file); 3736 return ret; 3737 } 3738 3739 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 3740 { 3741 struct btrfs_ioctl_clone_range_args args; 3742 3743 if (copy_from_user(&args, argp, sizeof(args))) 3744 return -EFAULT; 3745 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 3746 args.src_length, args.dest_offset); 3747 } 3748 3749 /* 3750 * there are many ways the trans_start and trans_end ioctls can lead 3751 * to deadlocks. They should only be used by applications that 3752 * basically own the machine, and have a very in depth understanding 3753 * of all the possible deadlocks and enospc problems. 3754 */ 3755 static long btrfs_ioctl_trans_start(struct file *file) 3756 { 3757 struct inode *inode = file_inode(file); 3758 struct btrfs_root *root = BTRFS_I(inode)->root; 3759 struct btrfs_trans_handle *trans; 3760 int ret; 3761 3762 ret = -EPERM; 3763 if (!capable(CAP_SYS_ADMIN)) 3764 goto out; 3765 3766 ret = -EINPROGRESS; 3767 if (file->private_data) 3768 goto out; 3769 3770 ret = -EROFS; 3771 if (btrfs_root_readonly(root)) 3772 goto out; 3773 3774 ret = mnt_want_write_file(file); 3775 if (ret) 3776 goto out; 3777 3778 atomic_inc(&root->fs_info->open_ioctl_trans); 3779 3780 ret = -ENOMEM; 3781 trans = btrfs_start_ioctl_transaction(root); 3782 if (IS_ERR(trans)) 3783 goto out_drop; 3784 3785 file->private_data = trans; 3786 return 0; 3787 3788 out_drop: 3789 atomic_dec(&root->fs_info->open_ioctl_trans); 3790 mnt_drop_write_file(file); 3791 out: 3792 return ret; 3793 } 3794 3795 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3796 { 3797 struct inode *inode = file_inode(file); 3798 struct btrfs_root *root = BTRFS_I(inode)->root; 3799 struct btrfs_root *new_root; 3800 struct btrfs_dir_item *di; 3801 struct btrfs_trans_handle *trans; 3802 struct btrfs_path *path; 3803 struct btrfs_key location; 3804 struct btrfs_disk_key disk_key; 3805 u64 objectid = 0; 3806 u64 dir_id; 3807 int ret; 3808 3809 if (!capable(CAP_SYS_ADMIN)) 3810 return -EPERM; 3811 3812 ret = mnt_want_write_file(file); 3813 if (ret) 3814 return ret; 3815 3816 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3817 ret = -EFAULT; 3818 goto out; 3819 } 3820 3821 if (!objectid) 3822 objectid = BTRFS_FS_TREE_OBJECTID; 3823 3824 location.objectid = objectid; 3825 location.type = BTRFS_ROOT_ITEM_KEY; 3826 location.offset = (u64)-1; 3827 3828 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 3829 if (IS_ERR(new_root)) { 3830 ret = PTR_ERR(new_root); 3831 goto out; 3832 } 3833 3834 path = btrfs_alloc_path(); 3835 if (!path) { 3836 ret = -ENOMEM; 3837 goto out; 3838 } 3839 path->leave_spinning = 1; 3840 3841 trans = btrfs_start_transaction(root, 1); 3842 if (IS_ERR(trans)) { 3843 btrfs_free_path(path); 3844 ret = PTR_ERR(trans); 3845 goto out; 3846 } 3847 3848 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 3849 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 3850 dir_id, "default", 7, 1); 3851 if (IS_ERR_OR_NULL(di)) { 3852 btrfs_free_path(path); 3853 btrfs_end_transaction(trans, root); 3854 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir" 3855 "item, this isn't going to work"); 3856 ret = -ENOENT; 3857 goto out; 3858 } 3859 3860 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3861 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3862 btrfs_mark_buffer_dirty(path->nodes[0]); 3863 btrfs_free_path(path); 3864 3865 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 3866 btrfs_end_transaction(trans, root); 3867 out: 3868 mnt_drop_write_file(file); 3869 return ret; 3870 } 3871 3872 void btrfs_get_block_group_info(struct list_head *groups_list, 3873 struct btrfs_ioctl_space_info *space) 3874 { 3875 struct btrfs_block_group_cache *block_group; 3876 3877 space->total_bytes = 0; 3878 space->used_bytes = 0; 3879 space->flags = 0; 3880 list_for_each_entry(block_group, groups_list, list) { 3881 space->flags = block_group->flags; 3882 space->total_bytes += block_group->key.offset; 3883 space->used_bytes += 3884 btrfs_block_group_used(&block_group->item); 3885 } 3886 } 3887 3888 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 3889 { 3890 struct btrfs_ioctl_space_args space_args; 3891 struct btrfs_ioctl_space_info space; 3892 struct btrfs_ioctl_space_info *dest; 3893 struct btrfs_ioctl_space_info *dest_orig; 3894 struct btrfs_ioctl_space_info __user *user_dest; 3895 struct btrfs_space_info *info; 3896 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3897 BTRFS_BLOCK_GROUP_SYSTEM, 3898 BTRFS_BLOCK_GROUP_METADATA, 3899 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3900 int num_types = 4; 3901 int alloc_size; 3902 int ret = 0; 3903 u64 slot_count = 0; 3904 int i, c; 3905 3906 if (copy_from_user(&space_args, 3907 (struct btrfs_ioctl_space_args __user *)arg, 3908 sizeof(space_args))) 3909 return -EFAULT; 3910 3911 for (i = 0; i < num_types; i++) { 3912 struct btrfs_space_info *tmp; 3913 3914 info = NULL; 3915 rcu_read_lock(); 3916 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 3917 list) { 3918 if (tmp->flags == types[i]) { 3919 info = tmp; 3920 break; 3921 } 3922 } 3923 rcu_read_unlock(); 3924 3925 if (!info) 3926 continue; 3927 3928 down_read(&info->groups_sem); 3929 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3930 if (!list_empty(&info->block_groups[c])) 3931 slot_count++; 3932 } 3933 up_read(&info->groups_sem); 3934 } 3935 3936 /* 3937 * Global block reserve, exported as a space_info 3938 */ 3939 slot_count++; 3940 3941 /* space_slots == 0 means they are asking for a count */ 3942 if (space_args.space_slots == 0) { 3943 space_args.total_spaces = slot_count; 3944 goto out; 3945 } 3946 3947 slot_count = min_t(u64, space_args.space_slots, slot_count); 3948 3949 alloc_size = sizeof(*dest) * slot_count; 3950 3951 /* we generally have at most 6 or so space infos, one for each raid 3952 * level. So, a whole page should be more than enough for everyone 3953 */ 3954 if (alloc_size > PAGE_CACHE_SIZE) 3955 return -ENOMEM; 3956 3957 space_args.total_spaces = 0; 3958 dest = kmalloc(alloc_size, GFP_NOFS); 3959 if (!dest) 3960 return -ENOMEM; 3961 dest_orig = dest; 3962 3963 /* now we have a buffer to copy into */ 3964 for (i = 0; i < num_types; i++) { 3965 struct btrfs_space_info *tmp; 3966 3967 if (!slot_count) 3968 break; 3969 3970 info = NULL; 3971 rcu_read_lock(); 3972 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 3973 list) { 3974 if (tmp->flags == types[i]) { 3975 info = tmp; 3976 break; 3977 } 3978 } 3979 rcu_read_unlock(); 3980 3981 if (!info) 3982 continue; 3983 down_read(&info->groups_sem); 3984 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3985 if (!list_empty(&info->block_groups[c])) { 3986 btrfs_get_block_group_info( 3987 &info->block_groups[c], &space); 3988 memcpy(dest, &space, sizeof(space)); 3989 dest++; 3990 space_args.total_spaces++; 3991 slot_count--; 3992 } 3993 if (!slot_count) 3994 break; 3995 } 3996 up_read(&info->groups_sem); 3997 } 3998 3999 /* 4000 * Add global block reserve 4001 */ 4002 if (slot_count) { 4003 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv; 4004 4005 spin_lock(&block_rsv->lock); 4006 space.total_bytes = block_rsv->size; 4007 space.used_bytes = block_rsv->size - block_rsv->reserved; 4008 spin_unlock(&block_rsv->lock); 4009 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4010 memcpy(dest, &space, sizeof(space)); 4011 space_args.total_spaces++; 4012 } 4013 4014 user_dest = (struct btrfs_ioctl_space_info __user *) 4015 (arg + sizeof(struct btrfs_ioctl_space_args)); 4016 4017 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4018 ret = -EFAULT; 4019 4020 kfree(dest_orig); 4021 out: 4022 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4023 ret = -EFAULT; 4024 4025 return ret; 4026 } 4027 4028 /* 4029 * there are many ways the trans_start and trans_end ioctls can lead 4030 * to deadlocks. They should only be used by applications that 4031 * basically own the machine, and have a very in depth understanding 4032 * of all the possible deadlocks and enospc problems. 4033 */ 4034 long btrfs_ioctl_trans_end(struct file *file) 4035 { 4036 struct inode *inode = file_inode(file); 4037 struct btrfs_root *root = BTRFS_I(inode)->root; 4038 struct btrfs_trans_handle *trans; 4039 4040 trans = file->private_data; 4041 if (!trans) 4042 return -EINVAL; 4043 file->private_data = NULL; 4044 4045 btrfs_end_transaction(trans, root); 4046 4047 atomic_dec(&root->fs_info->open_ioctl_trans); 4048 4049 mnt_drop_write_file(file); 4050 return 0; 4051 } 4052 4053 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4054 void __user *argp) 4055 { 4056 struct btrfs_trans_handle *trans; 4057 u64 transid; 4058 int ret; 4059 4060 trans = btrfs_attach_transaction_barrier(root); 4061 if (IS_ERR(trans)) { 4062 if (PTR_ERR(trans) != -ENOENT) 4063 return PTR_ERR(trans); 4064 4065 /* No running transaction, don't bother */ 4066 transid = root->fs_info->last_trans_committed; 4067 goto out; 4068 } 4069 transid = trans->transid; 4070 ret = btrfs_commit_transaction_async(trans, root, 0); 4071 if (ret) { 4072 btrfs_end_transaction(trans, root); 4073 return ret; 4074 } 4075 out: 4076 if (argp) 4077 if (copy_to_user(argp, &transid, sizeof(transid))) 4078 return -EFAULT; 4079 return 0; 4080 } 4081 4082 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root, 4083 void __user *argp) 4084 { 4085 u64 transid; 4086 4087 if (argp) { 4088 if (copy_from_user(&transid, argp, sizeof(transid))) 4089 return -EFAULT; 4090 } else { 4091 transid = 0; /* current trans */ 4092 } 4093 return btrfs_wait_for_commit(root, transid); 4094 } 4095 4096 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4097 { 4098 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4099 struct btrfs_ioctl_scrub_args *sa; 4100 int ret; 4101 4102 if (!capable(CAP_SYS_ADMIN)) 4103 return -EPERM; 4104 4105 sa = memdup_user(arg, sizeof(*sa)); 4106 if (IS_ERR(sa)) 4107 return PTR_ERR(sa); 4108 4109 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4110 ret = mnt_want_write_file(file); 4111 if (ret) 4112 goto out; 4113 } 4114 4115 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end, 4116 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4117 0); 4118 4119 if (copy_to_user(arg, sa, sizeof(*sa))) 4120 ret = -EFAULT; 4121 4122 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4123 mnt_drop_write_file(file); 4124 out: 4125 kfree(sa); 4126 return ret; 4127 } 4128 4129 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 4130 { 4131 if (!capable(CAP_SYS_ADMIN)) 4132 return -EPERM; 4133 4134 return btrfs_scrub_cancel(root->fs_info); 4135 } 4136 4137 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 4138 void __user *arg) 4139 { 4140 struct btrfs_ioctl_scrub_args *sa; 4141 int ret; 4142 4143 if (!capable(CAP_SYS_ADMIN)) 4144 return -EPERM; 4145 4146 sa = memdup_user(arg, sizeof(*sa)); 4147 if (IS_ERR(sa)) 4148 return PTR_ERR(sa); 4149 4150 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 4151 4152 if (copy_to_user(arg, sa, sizeof(*sa))) 4153 ret = -EFAULT; 4154 4155 kfree(sa); 4156 return ret; 4157 } 4158 4159 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 4160 void __user *arg) 4161 { 4162 struct btrfs_ioctl_get_dev_stats *sa; 4163 int ret; 4164 4165 sa = memdup_user(arg, sizeof(*sa)); 4166 if (IS_ERR(sa)) 4167 return PTR_ERR(sa); 4168 4169 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4170 kfree(sa); 4171 return -EPERM; 4172 } 4173 4174 ret = btrfs_get_dev_stats(root, sa); 4175 4176 if (copy_to_user(arg, sa, sizeof(*sa))) 4177 ret = -EFAULT; 4178 4179 kfree(sa); 4180 return ret; 4181 } 4182 4183 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg) 4184 { 4185 struct btrfs_ioctl_dev_replace_args *p; 4186 int ret; 4187 4188 if (!capable(CAP_SYS_ADMIN)) 4189 return -EPERM; 4190 4191 p = memdup_user(arg, sizeof(*p)); 4192 if (IS_ERR(p)) 4193 return PTR_ERR(p); 4194 4195 switch (p->cmd) { 4196 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4197 if (root->fs_info->sb->s_flags & MS_RDONLY) { 4198 ret = -EROFS; 4199 goto out; 4200 } 4201 if (atomic_xchg( 4202 &root->fs_info->mutually_exclusive_operation_running, 4203 1)) { 4204 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4205 } else { 4206 ret = btrfs_dev_replace_start(root, p); 4207 atomic_set( 4208 &root->fs_info->mutually_exclusive_operation_running, 4209 0); 4210 } 4211 break; 4212 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4213 btrfs_dev_replace_status(root->fs_info, p); 4214 ret = 0; 4215 break; 4216 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4217 ret = btrfs_dev_replace_cancel(root->fs_info, p); 4218 break; 4219 default: 4220 ret = -EINVAL; 4221 break; 4222 } 4223 4224 if (copy_to_user(arg, p, sizeof(*p))) 4225 ret = -EFAULT; 4226 out: 4227 kfree(p); 4228 return ret; 4229 } 4230 4231 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4232 { 4233 int ret = 0; 4234 int i; 4235 u64 rel_ptr; 4236 int size; 4237 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4238 struct inode_fs_paths *ipath = NULL; 4239 struct btrfs_path *path; 4240 4241 if (!capable(CAP_DAC_READ_SEARCH)) 4242 return -EPERM; 4243 4244 path = btrfs_alloc_path(); 4245 if (!path) { 4246 ret = -ENOMEM; 4247 goto out; 4248 } 4249 4250 ipa = memdup_user(arg, sizeof(*ipa)); 4251 if (IS_ERR(ipa)) { 4252 ret = PTR_ERR(ipa); 4253 ipa = NULL; 4254 goto out; 4255 } 4256 4257 size = min_t(u32, ipa->size, 4096); 4258 ipath = init_ipath(size, root, path); 4259 if (IS_ERR(ipath)) { 4260 ret = PTR_ERR(ipath); 4261 ipath = NULL; 4262 goto out; 4263 } 4264 4265 ret = paths_from_inode(ipa->inum, ipath); 4266 if (ret < 0) 4267 goto out; 4268 4269 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4270 rel_ptr = ipath->fspath->val[i] - 4271 (u64)(unsigned long)ipath->fspath->val; 4272 ipath->fspath->val[i] = rel_ptr; 4273 } 4274 4275 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 4276 (void *)(unsigned long)ipath->fspath, size); 4277 if (ret) { 4278 ret = -EFAULT; 4279 goto out; 4280 } 4281 4282 out: 4283 btrfs_free_path(path); 4284 free_ipath(ipath); 4285 kfree(ipa); 4286 4287 return ret; 4288 } 4289 4290 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4291 { 4292 struct btrfs_data_container *inodes = ctx; 4293 const size_t c = 3 * sizeof(u64); 4294 4295 if (inodes->bytes_left >= c) { 4296 inodes->bytes_left -= c; 4297 inodes->val[inodes->elem_cnt] = inum; 4298 inodes->val[inodes->elem_cnt + 1] = offset; 4299 inodes->val[inodes->elem_cnt + 2] = root; 4300 inodes->elem_cnt += 3; 4301 } else { 4302 inodes->bytes_missing += c - inodes->bytes_left; 4303 inodes->bytes_left = 0; 4304 inodes->elem_missed += 3; 4305 } 4306 4307 return 0; 4308 } 4309 4310 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 4311 void __user *arg) 4312 { 4313 int ret = 0; 4314 int size; 4315 struct btrfs_ioctl_logical_ino_args *loi; 4316 struct btrfs_data_container *inodes = NULL; 4317 struct btrfs_path *path = NULL; 4318 4319 if (!capable(CAP_SYS_ADMIN)) 4320 return -EPERM; 4321 4322 loi = memdup_user(arg, sizeof(*loi)); 4323 if (IS_ERR(loi)) { 4324 ret = PTR_ERR(loi); 4325 loi = NULL; 4326 goto out; 4327 } 4328 4329 path = btrfs_alloc_path(); 4330 if (!path) { 4331 ret = -ENOMEM; 4332 goto out; 4333 } 4334 4335 size = min_t(u32, loi->size, 64 * 1024); 4336 inodes = init_data_container(size); 4337 if (IS_ERR(inodes)) { 4338 ret = PTR_ERR(inodes); 4339 inodes = NULL; 4340 goto out; 4341 } 4342 4343 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 4344 build_ino_list, inodes); 4345 if (ret == -EINVAL) 4346 ret = -ENOENT; 4347 if (ret < 0) 4348 goto out; 4349 4350 ret = copy_to_user((void *)(unsigned long)loi->inodes, 4351 (void *)(unsigned long)inodes, size); 4352 if (ret) 4353 ret = -EFAULT; 4354 4355 out: 4356 btrfs_free_path(path); 4357 vfree(inodes); 4358 kfree(loi); 4359 4360 return ret; 4361 } 4362 4363 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4364 struct btrfs_ioctl_balance_args *bargs) 4365 { 4366 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4367 4368 bargs->flags = bctl->flags; 4369 4370 if (atomic_read(&fs_info->balance_running)) 4371 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4372 if (atomic_read(&fs_info->balance_pause_req)) 4373 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4374 if (atomic_read(&fs_info->balance_cancel_req)) 4375 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4376 4377 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4378 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4379 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4380 4381 if (lock) { 4382 spin_lock(&fs_info->balance_lock); 4383 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4384 spin_unlock(&fs_info->balance_lock); 4385 } else { 4386 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4387 } 4388 } 4389 4390 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4391 { 4392 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4393 struct btrfs_fs_info *fs_info = root->fs_info; 4394 struct btrfs_ioctl_balance_args *bargs; 4395 struct btrfs_balance_control *bctl; 4396 bool need_unlock; /* for mut. excl. ops lock */ 4397 int ret; 4398 4399 if (!capable(CAP_SYS_ADMIN)) 4400 return -EPERM; 4401 4402 ret = mnt_want_write_file(file); 4403 if (ret) 4404 return ret; 4405 4406 again: 4407 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 4408 mutex_lock(&fs_info->volume_mutex); 4409 mutex_lock(&fs_info->balance_mutex); 4410 need_unlock = true; 4411 goto locked; 4412 } 4413 4414 /* 4415 * mut. excl. ops lock is locked. Three possibilites: 4416 * (1) some other op is running 4417 * (2) balance is running 4418 * (3) balance is paused -- special case (think resume) 4419 */ 4420 mutex_lock(&fs_info->balance_mutex); 4421 if (fs_info->balance_ctl) { 4422 /* this is either (2) or (3) */ 4423 if (!atomic_read(&fs_info->balance_running)) { 4424 mutex_unlock(&fs_info->balance_mutex); 4425 if (!mutex_trylock(&fs_info->volume_mutex)) 4426 goto again; 4427 mutex_lock(&fs_info->balance_mutex); 4428 4429 if (fs_info->balance_ctl && 4430 !atomic_read(&fs_info->balance_running)) { 4431 /* this is (3) */ 4432 need_unlock = false; 4433 goto locked; 4434 } 4435 4436 mutex_unlock(&fs_info->balance_mutex); 4437 mutex_unlock(&fs_info->volume_mutex); 4438 goto again; 4439 } else { 4440 /* this is (2) */ 4441 mutex_unlock(&fs_info->balance_mutex); 4442 ret = -EINPROGRESS; 4443 goto out; 4444 } 4445 } else { 4446 /* this is (1) */ 4447 mutex_unlock(&fs_info->balance_mutex); 4448 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4449 goto out; 4450 } 4451 4452 locked: 4453 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 4454 4455 if (arg) { 4456 bargs = memdup_user(arg, sizeof(*bargs)); 4457 if (IS_ERR(bargs)) { 4458 ret = PTR_ERR(bargs); 4459 goto out_unlock; 4460 } 4461 4462 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4463 if (!fs_info->balance_ctl) { 4464 ret = -ENOTCONN; 4465 goto out_bargs; 4466 } 4467 4468 bctl = fs_info->balance_ctl; 4469 spin_lock(&fs_info->balance_lock); 4470 bctl->flags |= BTRFS_BALANCE_RESUME; 4471 spin_unlock(&fs_info->balance_lock); 4472 4473 goto do_balance; 4474 } 4475 } else { 4476 bargs = NULL; 4477 } 4478 4479 if (fs_info->balance_ctl) { 4480 ret = -EINPROGRESS; 4481 goto out_bargs; 4482 } 4483 4484 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4485 if (!bctl) { 4486 ret = -ENOMEM; 4487 goto out_bargs; 4488 } 4489 4490 bctl->fs_info = fs_info; 4491 if (arg) { 4492 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4493 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4494 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4495 4496 bctl->flags = bargs->flags; 4497 } else { 4498 /* balance everything - no filters */ 4499 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4500 } 4501 4502 do_balance: 4503 /* 4504 * Ownership of bctl and mutually_exclusive_operation_running 4505 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4506 * or, if restriper was paused all the way until unmount, in 4507 * free_fs_info. mutually_exclusive_operation_running is 4508 * cleared in __cancel_balance. 4509 */ 4510 need_unlock = false; 4511 4512 ret = btrfs_balance(bctl, bargs); 4513 4514 if (arg) { 4515 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4516 ret = -EFAULT; 4517 } 4518 4519 out_bargs: 4520 kfree(bargs); 4521 out_unlock: 4522 mutex_unlock(&fs_info->balance_mutex); 4523 mutex_unlock(&fs_info->volume_mutex); 4524 if (need_unlock) 4525 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 4526 out: 4527 mnt_drop_write_file(file); 4528 return ret; 4529 } 4530 4531 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 4532 { 4533 if (!capable(CAP_SYS_ADMIN)) 4534 return -EPERM; 4535 4536 switch (cmd) { 4537 case BTRFS_BALANCE_CTL_PAUSE: 4538 return btrfs_pause_balance(root->fs_info); 4539 case BTRFS_BALANCE_CTL_CANCEL: 4540 return btrfs_cancel_balance(root->fs_info); 4541 } 4542 4543 return -EINVAL; 4544 } 4545 4546 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 4547 void __user *arg) 4548 { 4549 struct btrfs_fs_info *fs_info = root->fs_info; 4550 struct btrfs_ioctl_balance_args *bargs; 4551 int ret = 0; 4552 4553 if (!capable(CAP_SYS_ADMIN)) 4554 return -EPERM; 4555 4556 mutex_lock(&fs_info->balance_mutex); 4557 if (!fs_info->balance_ctl) { 4558 ret = -ENOTCONN; 4559 goto out; 4560 } 4561 4562 bargs = kzalloc(sizeof(*bargs), GFP_NOFS); 4563 if (!bargs) { 4564 ret = -ENOMEM; 4565 goto out; 4566 } 4567 4568 update_ioctl_balance_args(fs_info, 1, bargs); 4569 4570 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4571 ret = -EFAULT; 4572 4573 kfree(bargs); 4574 out: 4575 mutex_unlock(&fs_info->balance_mutex); 4576 return ret; 4577 } 4578 4579 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4580 { 4581 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4582 struct btrfs_ioctl_quota_ctl_args *sa; 4583 struct btrfs_trans_handle *trans = NULL; 4584 int ret; 4585 int err; 4586 4587 if (!capable(CAP_SYS_ADMIN)) 4588 return -EPERM; 4589 4590 ret = mnt_want_write_file(file); 4591 if (ret) 4592 return ret; 4593 4594 sa = memdup_user(arg, sizeof(*sa)); 4595 if (IS_ERR(sa)) { 4596 ret = PTR_ERR(sa); 4597 goto drop_write; 4598 } 4599 4600 down_write(&root->fs_info->subvol_sem); 4601 trans = btrfs_start_transaction(root->fs_info->tree_root, 2); 4602 if (IS_ERR(trans)) { 4603 ret = PTR_ERR(trans); 4604 goto out; 4605 } 4606 4607 switch (sa->cmd) { 4608 case BTRFS_QUOTA_CTL_ENABLE: 4609 ret = btrfs_quota_enable(trans, root->fs_info); 4610 break; 4611 case BTRFS_QUOTA_CTL_DISABLE: 4612 ret = btrfs_quota_disable(trans, root->fs_info); 4613 break; 4614 default: 4615 ret = -EINVAL; 4616 break; 4617 } 4618 4619 err = btrfs_commit_transaction(trans, root->fs_info->tree_root); 4620 if (err && !ret) 4621 ret = err; 4622 out: 4623 kfree(sa); 4624 up_write(&root->fs_info->subvol_sem); 4625 drop_write: 4626 mnt_drop_write_file(file); 4627 return ret; 4628 } 4629 4630 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4631 { 4632 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4633 struct btrfs_ioctl_qgroup_assign_args *sa; 4634 struct btrfs_trans_handle *trans; 4635 int ret; 4636 int err; 4637 4638 if (!capable(CAP_SYS_ADMIN)) 4639 return -EPERM; 4640 4641 ret = mnt_want_write_file(file); 4642 if (ret) 4643 return ret; 4644 4645 sa = memdup_user(arg, sizeof(*sa)); 4646 if (IS_ERR(sa)) { 4647 ret = PTR_ERR(sa); 4648 goto drop_write; 4649 } 4650 4651 trans = btrfs_join_transaction(root); 4652 if (IS_ERR(trans)) { 4653 ret = PTR_ERR(trans); 4654 goto out; 4655 } 4656 4657 /* FIXME: check if the IDs really exist */ 4658 if (sa->assign) { 4659 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 4660 sa->src, sa->dst); 4661 } else { 4662 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 4663 sa->src, sa->dst); 4664 } 4665 4666 err = btrfs_end_transaction(trans, root); 4667 if (err && !ret) 4668 ret = err; 4669 4670 out: 4671 kfree(sa); 4672 drop_write: 4673 mnt_drop_write_file(file); 4674 return ret; 4675 } 4676 4677 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4678 { 4679 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4680 struct btrfs_ioctl_qgroup_create_args *sa; 4681 struct btrfs_trans_handle *trans; 4682 int ret; 4683 int err; 4684 4685 if (!capable(CAP_SYS_ADMIN)) 4686 return -EPERM; 4687 4688 ret = mnt_want_write_file(file); 4689 if (ret) 4690 return ret; 4691 4692 sa = memdup_user(arg, sizeof(*sa)); 4693 if (IS_ERR(sa)) { 4694 ret = PTR_ERR(sa); 4695 goto drop_write; 4696 } 4697 4698 if (!sa->qgroupid) { 4699 ret = -EINVAL; 4700 goto out; 4701 } 4702 4703 trans = btrfs_join_transaction(root); 4704 if (IS_ERR(trans)) { 4705 ret = PTR_ERR(trans); 4706 goto out; 4707 } 4708 4709 /* FIXME: check if the IDs really exist */ 4710 if (sa->create) { 4711 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid, 4712 NULL); 4713 } else { 4714 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 4715 } 4716 4717 err = btrfs_end_transaction(trans, root); 4718 if (err && !ret) 4719 ret = err; 4720 4721 out: 4722 kfree(sa); 4723 drop_write: 4724 mnt_drop_write_file(file); 4725 return ret; 4726 } 4727 4728 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4729 { 4730 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4731 struct btrfs_ioctl_qgroup_limit_args *sa; 4732 struct btrfs_trans_handle *trans; 4733 int ret; 4734 int err; 4735 u64 qgroupid; 4736 4737 if (!capable(CAP_SYS_ADMIN)) 4738 return -EPERM; 4739 4740 ret = mnt_want_write_file(file); 4741 if (ret) 4742 return ret; 4743 4744 sa = memdup_user(arg, sizeof(*sa)); 4745 if (IS_ERR(sa)) { 4746 ret = PTR_ERR(sa); 4747 goto drop_write; 4748 } 4749 4750 trans = btrfs_join_transaction(root); 4751 if (IS_ERR(trans)) { 4752 ret = PTR_ERR(trans); 4753 goto out; 4754 } 4755 4756 qgroupid = sa->qgroupid; 4757 if (!qgroupid) { 4758 /* take the current subvol as qgroup */ 4759 qgroupid = root->root_key.objectid; 4760 } 4761 4762 /* FIXME: check if the IDs really exist */ 4763 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 4764 4765 err = btrfs_end_transaction(trans, root); 4766 if (err && !ret) 4767 ret = err; 4768 4769 out: 4770 kfree(sa); 4771 drop_write: 4772 mnt_drop_write_file(file); 4773 return ret; 4774 } 4775 4776 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4777 { 4778 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4779 struct btrfs_ioctl_quota_rescan_args *qsa; 4780 int ret; 4781 4782 if (!capable(CAP_SYS_ADMIN)) 4783 return -EPERM; 4784 4785 ret = mnt_want_write_file(file); 4786 if (ret) 4787 return ret; 4788 4789 qsa = memdup_user(arg, sizeof(*qsa)); 4790 if (IS_ERR(qsa)) { 4791 ret = PTR_ERR(qsa); 4792 goto drop_write; 4793 } 4794 4795 if (qsa->flags) { 4796 ret = -EINVAL; 4797 goto out; 4798 } 4799 4800 ret = btrfs_qgroup_rescan(root->fs_info); 4801 4802 out: 4803 kfree(qsa); 4804 drop_write: 4805 mnt_drop_write_file(file); 4806 return ret; 4807 } 4808 4809 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 4810 { 4811 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4812 struct btrfs_ioctl_quota_rescan_args *qsa; 4813 int ret = 0; 4814 4815 if (!capable(CAP_SYS_ADMIN)) 4816 return -EPERM; 4817 4818 qsa = kzalloc(sizeof(*qsa), GFP_NOFS); 4819 if (!qsa) 4820 return -ENOMEM; 4821 4822 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4823 qsa->flags = 1; 4824 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid; 4825 } 4826 4827 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4828 ret = -EFAULT; 4829 4830 kfree(qsa); 4831 return ret; 4832 } 4833 4834 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 4835 { 4836 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4837 4838 if (!capable(CAP_SYS_ADMIN)) 4839 return -EPERM; 4840 4841 return btrfs_qgroup_wait_for_completion(root->fs_info); 4842 } 4843 4844 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4845 struct btrfs_ioctl_received_subvol_args *sa) 4846 { 4847 struct inode *inode = file_inode(file); 4848 struct btrfs_root *root = BTRFS_I(inode)->root; 4849 struct btrfs_root_item *root_item = &root->root_item; 4850 struct btrfs_trans_handle *trans; 4851 struct timespec ct = CURRENT_TIME; 4852 int ret = 0; 4853 int received_uuid_changed; 4854 4855 if (!inode_owner_or_capable(inode)) 4856 return -EPERM; 4857 4858 ret = mnt_want_write_file(file); 4859 if (ret < 0) 4860 return ret; 4861 4862 down_write(&root->fs_info->subvol_sem); 4863 4864 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 4865 ret = -EINVAL; 4866 goto out; 4867 } 4868 4869 if (btrfs_root_readonly(root)) { 4870 ret = -EROFS; 4871 goto out; 4872 } 4873 4874 /* 4875 * 1 - root item 4876 * 2 - uuid items (received uuid + subvol uuid) 4877 */ 4878 trans = btrfs_start_transaction(root, 3); 4879 if (IS_ERR(trans)) { 4880 ret = PTR_ERR(trans); 4881 trans = NULL; 4882 goto out; 4883 } 4884 4885 sa->rtransid = trans->transid; 4886 sa->rtime.sec = ct.tv_sec; 4887 sa->rtime.nsec = ct.tv_nsec; 4888 4889 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4890 BTRFS_UUID_SIZE); 4891 if (received_uuid_changed && 4892 !btrfs_is_empty_uuid(root_item->received_uuid)) 4893 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 4894 root_item->received_uuid, 4895 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4896 root->root_key.objectid); 4897 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4898 btrfs_set_root_stransid(root_item, sa->stransid); 4899 btrfs_set_root_rtransid(root_item, sa->rtransid); 4900 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4901 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4902 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4903 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4904 4905 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4906 &root->root_key, &root->root_item); 4907 if (ret < 0) { 4908 btrfs_end_transaction(trans, root); 4909 goto out; 4910 } 4911 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4912 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 4913 sa->uuid, 4914 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4915 root->root_key.objectid); 4916 if (ret < 0 && ret != -EEXIST) { 4917 btrfs_abort_transaction(trans, root, ret); 4918 goto out; 4919 } 4920 } 4921 ret = btrfs_commit_transaction(trans, root); 4922 if (ret < 0) { 4923 btrfs_abort_transaction(trans, root, ret); 4924 goto out; 4925 } 4926 4927 out: 4928 up_write(&root->fs_info->subvol_sem); 4929 mnt_drop_write_file(file); 4930 return ret; 4931 } 4932 4933 #ifdef CONFIG_64BIT 4934 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4935 void __user *arg) 4936 { 4937 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4938 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4939 int ret = 0; 4940 4941 args32 = memdup_user(arg, sizeof(*args32)); 4942 if (IS_ERR(args32)) { 4943 ret = PTR_ERR(args32); 4944 args32 = NULL; 4945 goto out; 4946 } 4947 4948 args64 = kmalloc(sizeof(*args64), GFP_NOFS); 4949 if (!args64) { 4950 ret = -ENOMEM; 4951 goto out; 4952 } 4953 4954 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4955 args64->stransid = args32->stransid; 4956 args64->rtransid = args32->rtransid; 4957 args64->stime.sec = args32->stime.sec; 4958 args64->stime.nsec = args32->stime.nsec; 4959 args64->rtime.sec = args32->rtime.sec; 4960 args64->rtime.nsec = args32->rtime.nsec; 4961 args64->flags = args32->flags; 4962 4963 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4964 if (ret) 4965 goto out; 4966 4967 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4968 args32->stransid = args64->stransid; 4969 args32->rtransid = args64->rtransid; 4970 args32->stime.sec = args64->stime.sec; 4971 args32->stime.nsec = args64->stime.nsec; 4972 args32->rtime.sec = args64->rtime.sec; 4973 args32->rtime.nsec = args64->rtime.nsec; 4974 args32->flags = args64->flags; 4975 4976 ret = copy_to_user(arg, args32, sizeof(*args32)); 4977 if (ret) 4978 ret = -EFAULT; 4979 4980 out: 4981 kfree(args32); 4982 kfree(args64); 4983 return ret; 4984 } 4985 #endif 4986 4987 static long btrfs_ioctl_set_received_subvol(struct file *file, 4988 void __user *arg) 4989 { 4990 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4991 int ret = 0; 4992 4993 sa = memdup_user(arg, sizeof(*sa)); 4994 if (IS_ERR(sa)) { 4995 ret = PTR_ERR(sa); 4996 sa = NULL; 4997 goto out; 4998 } 4999 5000 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5001 5002 if (ret) 5003 goto out; 5004 5005 ret = copy_to_user(arg, sa, sizeof(*sa)); 5006 if (ret) 5007 ret = -EFAULT; 5008 5009 out: 5010 kfree(sa); 5011 return ret; 5012 } 5013 5014 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5015 { 5016 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5017 size_t len; 5018 int ret; 5019 char label[BTRFS_LABEL_SIZE]; 5020 5021 spin_lock(&root->fs_info->super_lock); 5022 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5023 spin_unlock(&root->fs_info->super_lock); 5024 5025 len = strnlen(label, BTRFS_LABEL_SIZE); 5026 5027 if (len == BTRFS_LABEL_SIZE) { 5028 btrfs_warn(root->fs_info, 5029 "label is too long, return the first %zu bytes", --len); 5030 } 5031 5032 ret = copy_to_user(arg, label, len); 5033 5034 return ret ? -EFAULT : 0; 5035 } 5036 5037 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5038 { 5039 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5040 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5041 struct btrfs_trans_handle *trans; 5042 char label[BTRFS_LABEL_SIZE]; 5043 int ret; 5044 5045 if (!capable(CAP_SYS_ADMIN)) 5046 return -EPERM; 5047 5048 if (copy_from_user(label, arg, sizeof(label))) 5049 return -EFAULT; 5050 5051 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5052 btrfs_err(root->fs_info, "unable to set label with more than %d bytes", 5053 BTRFS_LABEL_SIZE - 1); 5054 return -EINVAL; 5055 } 5056 5057 ret = mnt_want_write_file(file); 5058 if (ret) 5059 return ret; 5060 5061 trans = btrfs_start_transaction(root, 0); 5062 if (IS_ERR(trans)) { 5063 ret = PTR_ERR(trans); 5064 goto out_unlock; 5065 } 5066 5067 spin_lock(&root->fs_info->super_lock); 5068 strcpy(super_block->label, label); 5069 spin_unlock(&root->fs_info->super_lock); 5070 ret = btrfs_commit_transaction(trans, root); 5071 5072 out_unlock: 5073 mnt_drop_write_file(file); 5074 return ret; 5075 } 5076 5077 #define INIT_FEATURE_FLAGS(suffix) \ 5078 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5079 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5080 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5081 5082 static int btrfs_ioctl_get_supported_features(struct file *file, 5083 void __user *arg) 5084 { 5085 static struct btrfs_ioctl_feature_flags features[3] = { 5086 INIT_FEATURE_FLAGS(SUPP), 5087 INIT_FEATURE_FLAGS(SAFE_SET), 5088 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5089 }; 5090 5091 if (copy_to_user(arg, &features, sizeof(features))) 5092 return -EFAULT; 5093 5094 return 0; 5095 } 5096 5097 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5098 { 5099 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5100 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5101 struct btrfs_ioctl_feature_flags features; 5102 5103 features.compat_flags = btrfs_super_compat_flags(super_block); 5104 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5105 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5106 5107 if (copy_to_user(arg, &features, sizeof(features))) 5108 return -EFAULT; 5109 5110 return 0; 5111 } 5112 5113 static int check_feature_bits(struct btrfs_root *root, 5114 enum btrfs_feature_set set, 5115 u64 change_mask, u64 flags, u64 supported_flags, 5116 u64 safe_set, u64 safe_clear) 5117 { 5118 const char *type = btrfs_feature_set_names[set]; 5119 char *names; 5120 u64 disallowed, unsupported; 5121 u64 set_mask = flags & change_mask; 5122 u64 clear_mask = ~flags & change_mask; 5123 5124 unsupported = set_mask & ~supported_flags; 5125 if (unsupported) { 5126 names = btrfs_printable_features(set, unsupported); 5127 if (names) { 5128 btrfs_warn(root->fs_info, 5129 "this kernel does not support the %s feature bit%s", 5130 names, strchr(names, ',') ? "s" : ""); 5131 kfree(names); 5132 } else 5133 btrfs_warn(root->fs_info, 5134 "this kernel does not support %s bits 0x%llx", 5135 type, unsupported); 5136 return -EOPNOTSUPP; 5137 } 5138 5139 disallowed = set_mask & ~safe_set; 5140 if (disallowed) { 5141 names = btrfs_printable_features(set, disallowed); 5142 if (names) { 5143 btrfs_warn(root->fs_info, 5144 "can't set the %s feature bit%s while mounted", 5145 names, strchr(names, ',') ? "s" : ""); 5146 kfree(names); 5147 } else 5148 btrfs_warn(root->fs_info, 5149 "can't set %s bits 0x%llx while mounted", 5150 type, disallowed); 5151 return -EPERM; 5152 } 5153 5154 disallowed = clear_mask & ~safe_clear; 5155 if (disallowed) { 5156 names = btrfs_printable_features(set, disallowed); 5157 if (names) { 5158 btrfs_warn(root->fs_info, 5159 "can't clear the %s feature bit%s while mounted", 5160 names, strchr(names, ',') ? "s" : ""); 5161 kfree(names); 5162 } else 5163 btrfs_warn(root->fs_info, 5164 "can't clear %s bits 0x%llx while mounted", 5165 type, disallowed); 5166 return -EPERM; 5167 } 5168 5169 return 0; 5170 } 5171 5172 #define check_feature(root, change_mask, flags, mask_base) \ 5173 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \ 5174 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5175 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5176 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5177 5178 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5179 { 5180 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5181 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5182 struct btrfs_ioctl_feature_flags flags[2]; 5183 struct btrfs_trans_handle *trans; 5184 u64 newflags; 5185 int ret; 5186 5187 if (!capable(CAP_SYS_ADMIN)) 5188 return -EPERM; 5189 5190 if (copy_from_user(flags, arg, sizeof(flags))) 5191 return -EFAULT; 5192 5193 /* Nothing to do */ 5194 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5195 !flags[0].incompat_flags) 5196 return 0; 5197 5198 ret = check_feature(root, flags[0].compat_flags, 5199 flags[1].compat_flags, COMPAT); 5200 if (ret) 5201 return ret; 5202 5203 ret = check_feature(root, flags[0].compat_ro_flags, 5204 flags[1].compat_ro_flags, COMPAT_RO); 5205 if (ret) 5206 return ret; 5207 5208 ret = check_feature(root, flags[0].incompat_flags, 5209 flags[1].incompat_flags, INCOMPAT); 5210 if (ret) 5211 return ret; 5212 5213 trans = btrfs_start_transaction(root, 0); 5214 if (IS_ERR(trans)) 5215 return PTR_ERR(trans); 5216 5217 spin_lock(&root->fs_info->super_lock); 5218 newflags = btrfs_super_compat_flags(super_block); 5219 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5220 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5221 btrfs_set_super_compat_flags(super_block, newflags); 5222 5223 newflags = btrfs_super_compat_ro_flags(super_block); 5224 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5225 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5226 btrfs_set_super_compat_ro_flags(super_block, newflags); 5227 5228 newflags = btrfs_super_incompat_flags(super_block); 5229 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5230 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5231 btrfs_set_super_incompat_flags(super_block, newflags); 5232 spin_unlock(&root->fs_info->super_lock); 5233 5234 return btrfs_commit_transaction(trans, root); 5235 } 5236 5237 long btrfs_ioctl(struct file *file, unsigned int 5238 cmd, unsigned long arg) 5239 { 5240 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5241 void __user *argp = (void __user *)arg; 5242 5243 switch (cmd) { 5244 case FS_IOC_GETFLAGS: 5245 return btrfs_ioctl_getflags(file, argp); 5246 case FS_IOC_SETFLAGS: 5247 return btrfs_ioctl_setflags(file, argp); 5248 case FS_IOC_GETVERSION: 5249 return btrfs_ioctl_getversion(file, argp); 5250 case FITRIM: 5251 return btrfs_ioctl_fitrim(file, argp); 5252 case BTRFS_IOC_SNAP_CREATE: 5253 return btrfs_ioctl_snap_create(file, argp, 0); 5254 case BTRFS_IOC_SNAP_CREATE_V2: 5255 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5256 case BTRFS_IOC_SUBVOL_CREATE: 5257 return btrfs_ioctl_snap_create(file, argp, 1); 5258 case BTRFS_IOC_SUBVOL_CREATE_V2: 5259 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5260 case BTRFS_IOC_SNAP_DESTROY: 5261 return btrfs_ioctl_snap_destroy(file, argp); 5262 case BTRFS_IOC_SUBVOL_GETFLAGS: 5263 return btrfs_ioctl_subvol_getflags(file, argp); 5264 case BTRFS_IOC_SUBVOL_SETFLAGS: 5265 return btrfs_ioctl_subvol_setflags(file, argp); 5266 case BTRFS_IOC_DEFAULT_SUBVOL: 5267 return btrfs_ioctl_default_subvol(file, argp); 5268 case BTRFS_IOC_DEFRAG: 5269 return btrfs_ioctl_defrag(file, NULL); 5270 case BTRFS_IOC_DEFRAG_RANGE: 5271 return btrfs_ioctl_defrag(file, argp); 5272 case BTRFS_IOC_RESIZE: 5273 return btrfs_ioctl_resize(file, argp); 5274 case BTRFS_IOC_ADD_DEV: 5275 return btrfs_ioctl_add_dev(root, argp); 5276 case BTRFS_IOC_RM_DEV: 5277 return btrfs_ioctl_rm_dev(file, argp); 5278 case BTRFS_IOC_FS_INFO: 5279 return btrfs_ioctl_fs_info(root, argp); 5280 case BTRFS_IOC_DEV_INFO: 5281 return btrfs_ioctl_dev_info(root, argp); 5282 case BTRFS_IOC_BALANCE: 5283 return btrfs_ioctl_balance(file, NULL); 5284 case BTRFS_IOC_CLONE: 5285 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 5286 case BTRFS_IOC_CLONE_RANGE: 5287 return btrfs_ioctl_clone_range(file, argp); 5288 case BTRFS_IOC_TRANS_START: 5289 return btrfs_ioctl_trans_start(file); 5290 case BTRFS_IOC_TRANS_END: 5291 return btrfs_ioctl_trans_end(file); 5292 case BTRFS_IOC_TREE_SEARCH: 5293 return btrfs_ioctl_tree_search(file, argp); 5294 case BTRFS_IOC_TREE_SEARCH_V2: 5295 return btrfs_ioctl_tree_search_v2(file, argp); 5296 case BTRFS_IOC_INO_LOOKUP: 5297 return btrfs_ioctl_ino_lookup(file, argp); 5298 case BTRFS_IOC_INO_PATHS: 5299 return btrfs_ioctl_ino_to_path(root, argp); 5300 case BTRFS_IOC_LOGICAL_INO: 5301 return btrfs_ioctl_logical_to_ino(root, argp); 5302 case BTRFS_IOC_SPACE_INFO: 5303 return btrfs_ioctl_space_info(root, argp); 5304 case BTRFS_IOC_SYNC: { 5305 int ret; 5306 5307 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1); 5308 if (ret) 5309 return ret; 5310 ret = btrfs_sync_fs(file->f_dentry->d_sb, 1); 5311 return ret; 5312 } 5313 case BTRFS_IOC_START_SYNC: 5314 return btrfs_ioctl_start_sync(root, argp); 5315 case BTRFS_IOC_WAIT_SYNC: 5316 return btrfs_ioctl_wait_sync(root, argp); 5317 case BTRFS_IOC_SCRUB: 5318 return btrfs_ioctl_scrub(file, argp); 5319 case BTRFS_IOC_SCRUB_CANCEL: 5320 return btrfs_ioctl_scrub_cancel(root, argp); 5321 case BTRFS_IOC_SCRUB_PROGRESS: 5322 return btrfs_ioctl_scrub_progress(root, argp); 5323 case BTRFS_IOC_BALANCE_V2: 5324 return btrfs_ioctl_balance(file, argp); 5325 case BTRFS_IOC_BALANCE_CTL: 5326 return btrfs_ioctl_balance_ctl(root, arg); 5327 case BTRFS_IOC_BALANCE_PROGRESS: 5328 return btrfs_ioctl_balance_progress(root, argp); 5329 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5330 return btrfs_ioctl_set_received_subvol(file, argp); 5331 #ifdef CONFIG_64BIT 5332 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5333 return btrfs_ioctl_set_received_subvol_32(file, argp); 5334 #endif 5335 case BTRFS_IOC_SEND: 5336 return btrfs_ioctl_send(file, argp); 5337 case BTRFS_IOC_GET_DEV_STATS: 5338 return btrfs_ioctl_get_dev_stats(root, argp); 5339 case BTRFS_IOC_QUOTA_CTL: 5340 return btrfs_ioctl_quota_ctl(file, argp); 5341 case BTRFS_IOC_QGROUP_ASSIGN: 5342 return btrfs_ioctl_qgroup_assign(file, argp); 5343 case BTRFS_IOC_QGROUP_CREATE: 5344 return btrfs_ioctl_qgroup_create(file, argp); 5345 case BTRFS_IOC_QGROUP_LIMIT: 5346 return btrfs_ioctl_qgroup_limit(file, argp); 5347 case BTRFS_IOC_QUOTA_RESCAN: 5348 return btrfs_ioctl_quota_rescan(file, argp); 5349 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5350 return btrfs_ioctl_quota_rescan_status(file, argp); 5351 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5352 return btrfs_ioctl_quota_rescan_wait(file, argp); 5353 case BTRFS_IOC_DEV_REPLACE: 5354 return btrfs_ioctl_dev_replace(root, argp); 5355 case BTRFS_IOC_GET_FSLABEL: 5356 return btrfs_ioctl_get_fslabel(file, argp); 5357 case BTRFS_IOC_SET_FSLABEL: 5358 return btrfs_ioctl_set_fslabel(file, argp); 5359 case BTRFS_IOC_FILE_EXTENT_SAME: 5360 return btrfs_ioctl_file_extent_same(file, argp); 5361 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5362 return btrfs_ioctl_get_supported_features(file, argp); 5363 case BTRFS_IOC_GET_FEATURES: 5364 return btrfs_ioctl_get_features(file, argp); 5365 case BTRFS_IOC_SET_FEATURES: 5366 return btrfs_ioctl_set_features(file, argp); 5367 } 5368 5369 return -ENOTTY; 5370 } 5371