xref: /openbmc/linux/fs/btrfs/ioctl.c (revision d2999e1b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 
63 #ifdef CONFIG_64BIT
64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
65  * structures are incorrect, as the timespec structure from userspace
66  * is 4 bytes too small. We define these alternatives here to teach
67  * the kernel about the 32-bit struct packing.
68  */
69 struct btrfs_ioctl_timespec_32 {
70 	__u64 sec;
71 	__u32 nsec;
72 } __attribute__ ((__packed__));
73 
74 struct btrfs_ioctl_received_subvol_args_32 {
75 	char	uuid[BTRFS_UUID_SIZE];	/* in */
76 	__u64	stransid;		/* in */
77 	__u64	rtransid;		/* out */
78 	struct btrfs_ioctl_timespec_32 stime; /* in */
79 	struct btrfs_ioctl_timespec_32 rtime; /* out */
80 	__u64	flags;			/* in */
81 	__u64	reserved[16];		/* in */
82 } __attribute__ ((__packed__));
83 
84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
85 				struct btrfs_ioctl_received_subvol_args_32)
86 #endif
87 
88 
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff);
91 
92 /* Mask out flags that are inappropriate for the given type of inode. */
93 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
94 {
95 	if (S_ISDIR(mode))
96 		return flags;
97 	else if (S_ISREG(mode))
98 		return flags & ~FS_DIRSYNC_FL;
99 	else
100 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
101 }
102 
103 /*
104  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
105  */
106 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
126 		iflags |= FS_COMPR_FL;
127 	else if (flags & BTRFS_INODE_NOCOMPRESS)
128 		iflags |= FS_NOCOMP_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
136 void btrfs_update_iflags(struct inode *inode)
137 {
138 	struct btrfs_inode *ip = BTRFS_I(inode);
139 
140 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
141 
142 	if (ip->flags & BTRFS_INODE_SYNC)
143 		inode->i_flags |= S_SYNC;
144 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
145 		inode->i_flags |= S_IMMUTABLE;
146 	if (ip->flags & BTRFS_INODE_APPEND)
147 		inode->i_flags |= S_APPEND;
148 	if (ip->flags & BTRFS_INODE_NOATIME)
149 		inode->i_flags |= S_NOATIME;
150 	if (ip->flags & BTRFS_INODE_DIRSYNC)
151 		inode->i_flags |= S_DIRSYNC;
152 }
153 
154 /*
155  * Inherit flags from the parent inode.
156  *
157  * Currently only the compression flags and the cow flags are inherited.
158  */
159 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
160 {
161 	unsigned int flags;
162 
163 	if (!dir)
164 		return;
165 
166 	flags = BTRFS_I(dir)->flags;
167 
168 	if (flags & BTRFS_INODE_NOCOMPRESS) {
169 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
170 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
171 	} else if (flags & BTRFS_INODE_COMPRESS) {
172 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
173 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
174 	}
175 
176 	if (flags & BTRFS_INODE_NODATACOW) {
177 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
178 		if (S_ISREG(inode->i_mode))
179 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
180 	}
181 
182 	btrfs_update_iflags(inode);
183 }
184 
185 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
186 {
187 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
188 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
189 
190 	if (copy_to_user(arg, &flags, sizeof(flags)))
191 		return -EFAULT;
192 	return 0;
193 }
194 
195 static int check_flags(unsigned int flags)
196 {
197 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
198 		      FS_NOATIME_FL | FS_NODUMP_FL | \
199 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
200 		      FS_NOCOMP_FL | FS_COMPR_FL |
201 		      FS_NOCOW_FL))
202 		return -EOPNOTSUPP;
203 
204 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
205 		return -EINVAL;
206 
207 	return 0;
208 }
209 
210 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
211 {
212 	struct inode *inode = file_inode(file);
213 	struct btrfs_inode *ip = BTRFS_I(inode);
214 	struct btrfs_root *root = ip->root;
215 	struct btrfs_trans_handle *trans;
216 	unsigned int flags, oldflags;
217 	int ret;
218 	u64 ip_oldflags;
219 	unsigned int i_oldflags;
220 	umode_t mode;
221 
222 	if (!inode_owner_or_capable(inode))
223 		return -EPERM;
224 
225 	if (btrfs_root_readonly(root))
226 		return -EROFS;
227 
228 	if (copy_from_user(&flags, arg, sizeof(flags)))
229 		return -EFAULT;
230 
231 	ret = check_flags(flags);
232 	if (ret)
233 		return ret;
234 
235 	ret = mnt_want_write_file(file);
236 	if (ret)
237 		return ret;
238 
239 	mutex_lock(&inode->i_mutex);
240 
241 	ip_oldflags = ip->flags;
242 	i_oldflags = inode->i_flags;
243 	mode = inode->i_mode;
244 
245 	flags = btrfs_mask_flags(inode->i_mode, flags);
246 	oldflags = btrfs_flags_to_ioctl(ip->flags);
247 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
248 		if (!capable(CAP_LINUX_IMMUTABLE)) {
249 			ret = -EPERM;
250 			goto out_unlock;
251 		}
252 	}
253 
254 	if (flags & FS_SYNC_FL)
255 		ip->flags |= BTRFS_INODE_SYNC;
256 	else
257 		ip->flags &= ~BTRFS_INODE_SYNC;
258 	if (flags & FS_IMMUTABLE_FL)
259 		ip->flags |= BTRFS_INODE_IMMUTABLE;
260 	else
261 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
262 	if (flags & FS_APPEND_FL)
263 		ip->flags |= BTRFS_INODE_APPEND;
264 	else
265 		ip->flags &= ~BTRFS_INODE_APPEND;
266 	if (flags & FS_NODUMP_FL)
267 		ip->flags |= BTRFS_INODE_NODUMP;
268 	else
269 		ip->flags &= ~BTRFS_INODE_NODUMP;
270 	if (flags & FS_NOATIME_FL)
271 		ip->flags |= BTRFS_INODE_NOATIME;
272 	else
273 		ip->flags &= ~BTRFS_INODE_NOATIME;
274 	if (flags & FS_DIRSYNC_FL)
275 		ip->flags |= BTRFS_INODE_DIRSYNC;
276 	else
277 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
278 	if (flags & FS_NOCOW_FL) {
279 		if (S_ISREG(mode)) {
280 			/*
281 			 * It's safe to turn csums off here, no extents exist.
282 			 * Otherwise we want the flag to reflect the real COW
283 			 * status of the file and will not set it.
284 			 */
285 			if (inode->i_size == 0)
286 				ip->flags |= BTRFS_INODE_NODATACOW
287 					   | BTRFS_INODE_NODATASUM;
288 		} else {
289 			ip->flags |= BTRFS_INODE_NODATACOW;
290 		}
291 	} else {
292 		/*
293 		 * Revert back under same assuptions as above
294 		 */
295 		if (S_ISREG(mode)) {
296 			if (inode->i_size == 0)
297 				ip->flags &= ~(BTRFS_INODE_NODATACOW
298 				             | BTRFS_INODE_NODATASUM);
299 		} else {
300 			ip->flags &= ~BTRFS_INODE_NODATACOW;
301 		}
302 	}
303 
304 	/*
305 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
306 	 * flag may be changed automatically if compression code won't make
307 	 * things smaller.
308 	 */
309 	if (flags & FS_NOCOMP_FL) {
310 		ip->flags &= ~BTRFS_INODE_COMPRESS;
311 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
312 
313 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
314 		if (ret && ret != -ENODATA)
315 			goto out_drop;
316 	} else if (flags & FS_COMPR_FL) {
317 		const char *comp;
318 
319 		ip->flags |= BTRFS_INODE_COMPRESS;
320 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
321 
322 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
323 			comp = "lzo";
324 		else
325 			comp = "zlib";
326 		ret = btrfs_set_prop(inode, "btrfs.compression",
327 				     comp, strlen(comp), 0);
328 		if (ret)
329 			goto out_drop;
330 
331 	} else {
332 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
333 	}
334 
335 	trans = btrfs_start_transaction(root, 1);
336 	if (IS_ERR(trans)) {
337 		ret = PTR_ERR(trans);
338 		goto out_drop;
339 	}
340 
341 	btrfs_update_iflags(inode);
342 	inode_inc_iversion(inode);
343 	inode->i_ctime = CURRENT_TIME;
344 	ret = btrfs_update_inode(trans, root, inode);
345 
346 	btrfs_end_transaction(trans, root);
347  out_drop:
348 	if (ret) {
349 		ip->flags = ip_oldflags;
350 		inode->i_flags = i_oldflags;
351 	}
352 
353  out_unlock:
354 	mutex_unlock(&inode->i_mutex);
355 	mnt_drop_write_file(file);
356 	return ret;
357 }
358 
359 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
360 {
361 	struct inode *inode = file_inode(file);
362 
363 	return put_user(inode->i_generation, arg);
364 }
365 
366 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
367 {
368 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
369 	struct btrfs_device *device;
370 	struct request_queue *q;
371 	struct fstrim_range range;
372 	u64 minlen = ULLONG_MAX;
373 	u64 num_devices = 0;
374 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
375 	int ret;
376 
377 	if (!capable(CAP_SYS_ADMIN))
378 		return -EPERM;
379 
380 	rcu_read_lock();
381 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
382 				dev_list) {
383 		if (!device->bdev)
384 			continue;
385 		q = bdev_get_queue(device->bdev);
386 		if (blk_queue_discard(q)) {
387 			num_devices++;
388 			minlen = min((u64)q->limits.discard_granularity,
389 				     minlen);
390 		}
391 	}
392 	rcu_read_unlock();
393 
394 	if (!num_devices)
395 		return -EOPNOTSUPP;
396 	if (copy_from_user(&range, arg, sizeof(range)))
397 		return -EFAULT;
398 	if (range.start > total_bytes ||
399 	    range.len < fs_info->sb->s_blocksize)
400 		return -EINVAL;
401 
402 	range.len = min(range.len, total_bytes - range.start);
403 	range.minlen = max(range.minlen, minlen);
404 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
405 	if (ret < 0)
406 		return ret;
407 
408 	if (copy_to_user(arg, &range, sizeof(range)))
409 		return -EFAULT;
410 
411 	return 0;
412 }
413 
414 int btrfs_is_empty_uuid(u8 *uuid)
415 {
416 	int i;
417 
418 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
419 		if (uuid[i])
420 			return 0;
421 	}
422 	return 1;
423 }
424 
425 static noinline int create_subvol(struct inode *dir,
426 				  struct dentry *dentry,
427 				  char *name, int namelen,
428 				  u64 *async_transid,
429 				  struct btrfs_qgroup_inherit *inherit)
430 {
431 	struct btrfs_trans_handle *trans;
432 	struct btrfs_key key;
433 	struct btrfs_root_item root_item;
434 	struct btrfs_inode_item *inode_item;
435 	struct extent_buffer *leaf;
436 	struct btrfs_root *root = BTRFS_I(dir)->root;
437 	struct btrfs_root *new_root;
438 	struct btrfs_block_rsv block_rsv;
439 	struct timespec cur_time = CURRENT_TIME;
440 	struct inode *inode;
441 	int ret;
442 	int err;
443 	u64 objectid;
444 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
445 	u64 index = 0;
446 	u64 qgroup_reserved;
447 	uuid_le new_uuid;
448 
449 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
450 	if (ret)
451 		return ret;
452 
453 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
454 	/*
455 	 * The same as the snapshot creation, please see the comment
456 	 * of create_snapshot().
457 	 */
458 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
459 					       8, &qgroup_reserved, false);
460 	if (ret)
461 		return ret;
462 
463 	trans = btrfs_start_transaction(root, 0);
464 	if (IS_ERR(trans)) {
465 		ret = PTR_ERR(trans);
466 		btrfs_subvolume_release_metadata(root, &block_rsv,
467 						 qgroup_reserved);
468 		return ret;
469 	}
470 	trans->block_rsv = &block_rsv;
471 	trans->bytes_reserved = block_rsv.size;
472 
473 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
474 	if (ret)
475 		goto fail;
476 
477 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
478 				      0, objectid, NULL, 0, 0, 0);
479 	if (IS_ERR(leaf)) {
480 		ret = PTR_ERR(leaf);
481 		goto fail;
482 	}
483 
484 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
485 	btrfs_set_header_bytenr(leaf, leaf->start);
486 	btrfs_set_header_generation(leaf, trans->transid);
487 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
488 	btrfs_set_header_owner(leaf, objectid);
489 
490 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
491 			    BTRFS_FSID_SIZE);
492 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
493 			    btrfs_header_chunk_tree_uuid(leaf),
494 			    BTRFS_UUID_SIZE);
495 	btrfs_mark_buffer_dirty(leaf);
496 
497 	memset(&root_item, 0, sizeof(root_item));
498 
499 	inode_item = &root_item.inode;
500 	btrfs_set_stack_inode_generation(inode_item, 1);
501 	btrfs_set_stack_inode_size(inode_item, 3);
502 	btrfs_set_stack_inode_nlink(inode_item, 1);
503 	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
504 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
505 
506 	btrfs_set_root_flags(&root_item, 0);
507 	btrfs_set_root_limit(&root_item, 0);
508 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
509 
510 	btrfs_set_root_bytenr(&root_item, leaf->start);
511 	btrfs_set_root_generation(&root_item, trans->transid);
512 	btrfs_set_root_level(&root_item, 0);
513 	btrfs_set_root_refs(&root_item, 1);
514 	btrfs_set_root_used(&root_item, leaf->len);
515 	btrfs_set_root_last_snapshot(&root_item, 0);
516 
517 	btrfs_set_root_generation_v2(&root_item,
518 			btrfs_root_generation(&root_item));
519 	uuid_le_gen(&new_uuid);
520 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
521 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
522 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
523 	root_item.ctime = root_item.otime;
524 	btrfs_set_root_ctransid(&root_item, trans->transid);
525 	btrfs_set_root_otransid(&root_item, trans->transid);
526 
527 	btrfs_tree_unlock(leaf);
528 	free_extent_buffer(leaf);
529 	leaf = NULL;
530 
531 	btrfs_set_root_dirid(&root_item, new_dirid);
532 
533 	key.objectid = objectid;
534 	key.offset = 0;
535 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
536 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
537 				&root_item);
538 	if (ret)
539 		goto fail;
540 
541 	key.offset = (u64)-1;
542 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
543 	if (IS_ERR(new_root)) {
544 		btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
545 		ret = PTR_ERR(new_root);
546 		goto fail;
547 	}
548 
549 	btrfs_record_root_in_trans(trans, new_root);
550 
551 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
552 	if (ret) {
553 		/* We potentially lose an unused inode item here */
554 		btrfs_abort_transaction(trans, root, ret);
555 		goto fail;
556 	}
557 
558 	/*
559 	 * insert the directory item
560 	 */
561 	ret = btrfs_set_inode_index(dir, &index);
562 	if (ret) {
563 		btrfs_abort_transaction(trans, root, ret);
564 		goto fail;
565 	}
566 
567 	ret = btrfs_insert_dir_item(trans, root,
568 				    name, namelen, dir, &key,
569 				    BTRFS_FT_DIR, index);
570 	if (ret) {
571 		btrfs_abort_transaction(trans, root, ret);
572 		goto fail;
573 	}
574 
575 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
576 	ret = btrfs_update_inode(trans, root, dir);
577 	BUG_ON(ret);
578 
579 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
580 				 objectid, root->root_key.objectid,
581 				 btrfs_ino(dir), index, name, namelen);
582 	BUG_ON(ret);
583 
584 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
585 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
586 				  objectid);
587 	if (ret)
588 		btrfs_abort_transaction(trans, root, ret);
589 
590 fail:
591 	trans->block_rsv = NULL;
592 	trans->bytes_reserved = 0;
593 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
594 
595 	if (async_transid) {
596 		*async_transid = trans->transid;
597 		err = btrfs_commit_transaction_async(trans, root, 1);
598 		if (err)
599 			err = btrfs_commit_transaction(trans, root);
600 	} else {
601 		err = btrfs_commit_transaction(trans, root);
602 	}
603 	if (err && !ret)
604 		ret = err;
605 
606 	if (!ret) {
607 		inode = btrfs_lookup_dentry(dir, dentry);
608 		if (IS_ERR(inode))
609 			return PTR_ERR(inode);
610 		d_instantiate(dentry, inode);
611 	}
612 	return ret;
613 }
614 
615 static void btrfs_wait_nocow_write(struct btrfs_root *root)
616 {
617 	s64 writers;
618 	DEFINE_WAIT(wait);
619 
620 	do {
621 		prepare_to_wait(&root->subv_writers->wait, &wait,
622 				TASK_UNINTERRUPTIBLE);
623 
624 		writers = percpu_counter_sum(&root->subv_writers->counter);
625 		if (writers)
626 			schedule();
627 
628 		finish_wait(&root->subv_writers->wait, &wait);
629 	} while (writers);
630 }
631 
632 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
633 			   struct dentry *dentry, char *name, int namelen,
634 			   u64 *async_transid, bool readonly,
635 			   struct btrfs_qgroup_inherit *inherit)
636 {
637 	struct inode *inode;
638 	struct btrfs_pending_snapshot *pending_snapshot;
639 	struct btrfs_trans_handle *trans;
640 	int ret;
641 
642 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
643 		return -EINVAL;
644 
645 	atomic_inc(&root->will_be_snapshoted);
646 	smp_mb__after_atomic();
647 	btrfs_wait_nocow_write(root);
648 
649 	ret = btrfs_start_delalloc_inodes(root, 0);
650 	if (ret)
651 		goto out;
652 
653 	btrfs_wait_ordered_extents(root, -1);
654 
655 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
656 	if (!pending_snapshot) {
657 		ret = -ENOMEM;
658 		goto out;
659 	}
660 
661 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
662 			     BTRFS_BLOCK_RSV_TEMP);
663 	/*
664 	 * 1 - parent dir inode
665 	 * 2 - dir entries
666 	 * 1 - root item
667 	 * 2 - root ref/backref
668 	 * 1 - root of snapshot
669 	 * 1 - UUID item
670 	 */
671 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
672 					&pending_snapshot->block_rsv, 8,
673 					&pending_snapshot->qgroup_reserved,
674 					false);
675 	if (ret)
676 		goto free;
677 
678 	pending_snapshot->dentry = dentry;
679 	pending_snapshot->root = root;
680 	pending_snapshot->readonly = readonly;
681 	pending_snapshot->dir = dir;
682 	pending_snapshot->inherit = inherit;
683 
684 	trans = btrfs_start_transaction(root, 0);
685 	if (IS_ERR(trans)) {
686 		ret = PTR_ERR(trans);
687 		goto fail;
688 	}
689 
690 	spin_lock(&root->fs_info->trans_lock);
691 	list_add(&pending_snapshot->list,
692 		 &trans->transaction->pending_snapshots);
693 	spin_unlock(&root->fs_info->trans_lock);
694 	if (async_transid) {
695 		*async_transid = trans->transid;
696 		ret = btrfs_commit_transaction_async(trans,
697 				     root->fs_info->extent_root, 1);
698 		if (ret)
699 			ret = btrfs_commit_transaction(trans, root);
700 	} else {
701 		ret = btrfs_commit_transaction(trans,
702 					       root->fs_info->extent_root);
703 	}
704 	if (ret)
705 		goto fail;
706 
707 	ret = pending_snapshot->error;
708 	if (ret)
709 		goto fail;
710 
711 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
712 	if (ret)
713 		goto fail;
714 
715 	/*
716 	 * If orphan cleanup did remove any orphans, it means the tree was
717 	 * modified and therefore the commit root is not the same as the
718 	 * current root anymore. This is a problem, because send uses the
719 	 * commit root and therefore can see inode items that don't exist
720 	 * in the current root anymore, and for example make calls to
721 	 * btrfs_iget, which will do tree lookups based on the current root
722 	 * and not on the commit root. Those lookups will fail, returning a
723 	 * -ESTALE error, and making send fail with that error. So make sure
724 	 * a send does not see any orphans we have just removed, and that it
725 	 * will see the same inodes regardless of whether a transaction
726 	 * commit happened before it started (meaning that the commit root
727 	 * will be the same as the current root) or not.
728 	 */
729 	if (readonly && pending_snapshot->snap->node !=
730 	    pending_snapshot->snap->commit_root) {
731 		trans = btrfs_join_transaction(pending_snapshot->snap);
732 		if (IS_ERR(trans) && PTR_ERR(trans) != -ENOENT) {
733 			ret = PTR_ERR(trans);
734 			goto fail;
735 		}
736 		if (!IS_ERR(trans)) {
737 			ret = btrfs_commit_transaction(trans,
738 						       pending_snapshot->snap);
739 			if (ret)
740 				goto fail;
741 		}
742 	}
743 
744 	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
745 	if (IS_ERR(inode)) {
746 		ret = PTR_ERR(inode);
747 		goto fail;
748 	}
749 
750 	d_instantiate(dentry, inode);
751 	ret = 0;
752 fail:
753 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
754 					 &pending_snapshot->block_rsv,
755 					 pending_snapshot->qgroup_reserved);
756 free:
757 	kfree(pending_snapshot);
758 out:
759 	atomic_dec(&root->will_be_snapshoted);
760 	return ret;
761 }
762 
763 /*  copy of check_sticky in fs/namei.c()
764 * It's inline, so penalty for filesystems that don't use sticky bit is
765 * minimal.
766 */
767 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
768 {
769 	kuid_t fsuid = current_fsuid();
770 
771 	if (!(dir->i_mode & S_ISVTX))
772 		return 0;
773 	if (uid_eq(inode->i_uid, fsuid))
774 		return 0;
775 	if (uid_eq(dir->i_uid, fsuid))
776 		return 0;
777 	return !capable(CAP_FOWNER);
778 }
779 
780 /*  copy of may_delete in fs/namei.c()
781  *	Check whether we can remove a link victim from directory dir, check
782  *  whether the type of victim is right.
783  *  1. We can't do it if dir is read-only (done in permission())
784  *  2. We should have write and exec permissions on dir
785  *  3. We can't remove anything from append-only dir
786  *  4. We can't do anything with immutable dir (done in permission())
787  *  5. If the sticky bit on dir is set we should either
788  *	a. be owner of dir, or
789  *	b. be owner of victim, or
790  *	c. have CAP_FOWNER capability
791  *  6. If the victim is append-only or immutable we can't do antyhing with
792  *     links pointing to it.
793  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
794  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
795  *  9. We can't remove a root or mountpoint.
796  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
797  *     nfs_async_unlink().
798  */
799 
800 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
801 {
802 	int error;
803 
804 	if (!victim->d_inode)
805 		return -ENOENT;
806 
807 	BUG_ON(victim->d_parent->d_inode != dir);
808 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
809 
810 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
811 	if (error)
812 		return error;
813 	if (IS_APPEND(dir))
814 		return -EPERM;
815 	if (btrfs_check_sticky(dir, victim->d_inode)||
816 		IS_APPEND(victim->d_inode)||
817 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
818 		return -EPERM;
819 	if (isdir) {
820 		if (!S_ISDIR(victim->d_inode->i_mode))
821 			return -ENOTDIR;
822 		if (IS_ROOT(victim))
823 			return -EBUSY;
824 	} else if (S_ISDIR(victim->d_inode->i_mode))
825 		return -EISDIR;
826 	if (IS_DEADDIR(dir))
827 		return -ENOENT;
828 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
829 		return -EBUSY;
830 	return 0;
831 }
832 
833 /* copy of may_create in fs/namei.c() */
834 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
835 {
836 	if (child->d_inode)
837 		return -EEXIST;
838 	if (IS_DEADDIR(dir))
839 		return -ENOENT;
840 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
841 }
842 
843 /*
844  * Create a new subvolume below @parent.  This is largely modeled after
845  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
846  * inside this filesystem so it's quite a bit simpler.
847  */
848 static noinline int btrfs_mksubvol(struct path *parent,
849 				   char *name, int namelen,
850 				   struct btrfs_root *snap_src,
851 				   u64 *async_transid, bool readonly,
852 				   struct btrfs_qgroup_inherit *inherit)
853 {
854 	struct inode *dir  = parent->dentry->d_inode;
855 	struct dentry *dentry;
856 	int error;
857 
858 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
859 	if (error == -EINTR)
860 		return error;
861 
862 	dentry = lookup_one_len(name, parent->dentry, namelen);
863 	error = PTR_ERR(dentry);
864 	if (IS_ERR(dentry))
865 		goto out_unlock;
866 
867 	error = -EEXIST;
868 	if (dentry->d_inode)
869 		goto out_dput;
870 
871 	error = btrfs_may_create(dir, dentry);
872 	if (error)
873 		goto out_dput;
874 
875 	/*
876 	 * even if this name doesn't exist, we may get hash collisions.
877 	 * check for them now when we can safely fail
878 	 */
879 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
880 					       dir->i_ino, name,
881 					       namelen);
882 	if (error)
883 		goto out_dput;
884 
885 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
886 
887 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
888 		goto out_up_read;
889 
890 	if (snap_src) {
891 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
892 					async_transid, readonly, inherit);
893 	} else {
894 		error = create_subvol(dir, dentry, name, namelen,
895 				      async_transid, inherit);
896 	}
897 	if (!error)
898 		fsnotify_mkdir(dir, dentry);
899 out_up_read:
900 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
901 out_dput:
902 	dput(dentry);
903 out_unlock:
904 	mutex_unlock(&dir->i_mutex);
905 	return error;
906 }
907 
908 /*
909  * When we're defragging a range, we don't want to kick it off again
910  * if it is really just waiting for delalloc to send it down.
911  * If we find a nice big extent or delalloc range for the bytes in the
912  * file you want to defrag, we return 0 to let you know to skip this
913  * part of the file
914  */
915 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
916 {
917 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
918 	struct extent_map *em = NULL;
919 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
920 	u64 end;
921 
922 	read_lock(&em_tree->lock);
923 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
924 	read_unlock(&em_tree->lock);
925 
926 	if (em) {
927 		end = extent_map_end(em);
928 		free_extent_map(em);
929 		if (end - offset > thresh)
930 			return 0;
931 	}
932 	/* if we already have a nice delalloc here, just stop */
933 	thresh /= 2;
934 	end = count_range_bits(io_tree, &offset, offset + thresh,
935 			       thresh, EXTENT_DELALLOC, 1);
936 	if (end >= thresh)
937 		return 0;
938 	return 1;
939 }
940 
941 /*
942  * helper function to walk through a file and find extents
943  * newer than a specific transid, and smaller than thresh.
944  *
945  * This is used by the defragging code to find new and small
946  * extents
947  */
948 static int find_new_extents(struct btrfs_root *root,
949 			    struct inode *inode, u64 newer_than,
950 			    u64 *off, int thresh)
951 {
952 	struct btrfs_path *path;
953 	struct btrfs_key min_key;
954 	struct extent_buffer *leaf;
955 	struct btrfs_file_extent_item *extent;
956 	int type;
957 	int ret;
958 	u64 ino = btrfs_ino(inode);
959 
960 	path = btrfs_alloc_path();
961 	if (!path)
962 		return -ENOMEM;
963 
964 	min_key.objectid = ino;
965 	min_key.type = BTRFS_EXTENT_DATA_KEY;
966 	min_key.offset = *off;
967 
968 	while (1) {
969 		path->keep_locks = 1;
970 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
971 		if (ret != 0)
972 			goto none;
973 		path->keep_locks = 0;
974 		btrfs_unlock_up_safe(path, 1);
975 process_slot:
976 		if (min_key.objectid != ino)
977 			goto none;
978 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
979 			goto none;
980 
981 		leaf = path->nodes[0];
982 		extent = btrfs_item_ptr(leaf, path->slots[0],
983 					struct btrfs_file_extent_item);
984 
985 		type = btrfs_file_extent_type(leaf, extent);
986 		if (type == BTRFS_FILE_EXTENT_REG &&
987 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
988 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
989 			*off = min_key.offset;
990 			btrfs_free_path(path);
991 			return 0;
992 		}
993 
994 		path->slots[0]++;
995 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
996 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
997 			goto process_slot;
998 		}
999 
1000 		if (min_key.offset == (u64)-1)
1001 			goto none;
1002 
1003 		min_key.offset++;
1004 		btrfs_release_path(path);
1005 	}
1006 none:
1007 	btrfs_free_path(path);
1008 	return -ENOENT;
1009 }
1010 
1011 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1012 {
1013 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1014 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1015 	struct extent_map *em;
1016 	u64 len = PAGE_CACHE_SIZE;
1017 
1018 	/*
1019 	 * hopefully we have this extent in the tree already, try without
1020 	 * the full extent lock
1021 	 */
1022 	read_lock(&em_tree->lock);
1023 	em = lookup_extent_mapping(em_tree, start, len);
1024 	read_unlock(&em_tree->lock);
1025 
1026 	if (!em) {
1027 		struct extent_state *cached = NULL;
1028 		u64 end = start + len - 1;
1029 
1030 		/* get the big lock and read metadata off disk */
1031 		lock_extent_bits(io_tree, start, end, 0, &cached);
1032 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1033 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1034 
1035 		if (IS_ERR(em))
1036 			return NULL;
1037 	}
1038 
1039 	return em;
1040 }
1041 
1042 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1043 {
1044 	struct extent_map *next;
1045 	bool ret = true;
1046 
1047 	/* this is the last extent */
1048 	if (em->start + em->len >= i_size_read(inode))
1049 		return false;
1050 
1051 	next = defrag_lookup_extent(inode, em->start + em->len);
1052 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE ||
1053 	    (em->block_start + em->block_len == next->block_start))
1054 		ret = false;
1055 
1056 	free_extent_map(next);
1057 	return ret;
1058 }
1059 
1060 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
1061 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1062 			       int compress)
1063 {
1064 	struct extent_map *em;
1065 	int ret = 1;
1066 	bool next_mergeable = true;
1067 
1068 	/*
1069 	 * make sure that once we start defragging an extent, we keep on
1070 	 * defragging it
1071 	 */
1072 	if (start < *defrag_end)
1073 		return 1;
1074 
1075 	*skip = 0;
1076 
1077 	em = defrag_lookup_extent(inode, start);
1078 	if (!em)
1079 		return 0;
1080 
1081 	/* this will cover holes, and inline extents */
1082 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1083 		ret = 0;
1084 		goto out;
1085 	}
1086 
1087 	next_mergeable = defrag_check_next_extent(inode, em);
1088 
1089 	/*
1090 	 * we hit a real extent, if it is big or the next extent is not a
1091 	 * real extent, don't bother defragging it
1092 	 */
1093 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1094 	    (em->len >= thresh || !next_mergeable))
1095 		ret = 0;
1096 out:
1097 	/*
1098 	 * last_len ends up being a counter of how many bytes we've defragged.
1099 	 * every time we choose not to defrag an extent, we reset *last_len
1100 	 * so that the next tiny extent will force a defrag.
1101 	 *
1102 	 * The end result of this is that tiny extents before a single big
1103 	 * extent will force at least part of that big extent to be defragged.
1104 	 */
1105 	if (ret) {
1106 		*defrag_end = extent_map_end(em);
1107 	} else {
1108 		*last_len = 0;
1109 		*skip = extent_map_end(em);
1110 		*defrag_end = 0;
1111 	}
1112 
1113 	free_extent_map(em);
1114 	return ret;
1115 }
1116 
1117 /*
1118  * it doesn't do much good to defrag one or two pages
1119  * at a time.  This pulls in a nice chunk of pages
1120  * to COW and defrag.
1121  *
1122  * It also makes sure the delalloc code has enough
1123  * dirty data to avoid making new small extents as part
1124  * of the defrag
1125  *
1126  * It's a good idea to start RA on this range
1127  * before calling this.
1128  */
1129 static int cluster_pages_for_defrag(struct inode *inode,
1130 				    struct page **pages,
1131 				    unsigned long start_index,
1132 				    unsigned long num_pages)
1133 {
1134 	unsigned long file_end;
1135 	u64 isize = i_size_read(inode);
1136 	u64 page_start;
1137 	u64 page_end;
1138 	u64 page_cnt;
1139 	int ret;
1140 	int i;
1141 	int i_done;
1142 	struct btrfs_ordered_extent *ordered;
1143 	struct extent_state *cached_state = NULL;
1144 	struct extent_io_tree *tree;
1145 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1146 
1147 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1148 	if (!isize || start_index > file_end)
1149 		return 0;
1150 
1151 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1152 
1153 	ret = btrfs_delalloc_reserve_space(inode,
1154 					   page_cnt << PAGE_CACHE_SHIFT);
1155 	if (ret)
1156 		return ret;
1157 	i_done = 0;
1158 	tree = &BTRFS_I(inode)->io_tree;
1159 
1160 	/* step one, lock all the pages */
1161 	for (i = 0; i < page_cnt; i++) {
1162 		struct page *page;
1163 again:
1164 		page = find_or_create_page(inode->i_mapping,
1165 					   start_index + i, mask);
1166 		if (!page)
1167 			break;
1168 
1169 		page_start = page_offset(page);
1170 		page_end = page_start + PAGE_CACHE_SIZE - 1;
1171 		while (1) {
1172 			lock_extent_bits(tree, page_start, page_end,
1173 					 0, &cached_state);
1174 			ordered = btrfs_lookup_ordered_extent(inode,
1175 							      page_start);
1176 			unlock_extent_cached(tree, page_start, page_end,
1177 					     &cached_state, GFP_NOFS);
1178 			if (!ordered)
1179 				break;
1180 
1181 			unlock_page(page);
1182 			btrfs_start_ordered_extent(inode, ordered, 1);
1183 			btrfs_put_ordered_extent(ordered);
1184 			lock_page(page);
1185 			/*
1186 			 * we unlocked the page above, so we need check if
1187 			 * it was released or not.
1188 			 */
1189 			if (page->mapping != inode->i_mapping) {
1190 				unlock_page(page);
1191 				page_cache_release(page);
1192 				goto again;
1193 			}
1194 		}
1195 
1196 		if (!PageUptodate(page)) {
1197 			btrfs_readpage(NULL, page);
1198 			lock_page(page);
1199 			if (!PageUptodate(page)) {
1200 				unlock_page(page);
1201 				page_cache_release(page);
1202 				ret = -EIO;
1203 				break;
1204 			}
1205 		}
1206 
1207 		if (page->mapping != inode->i_mapping) {
1208 			unlock_page(page);
1209 			page_cache_release(page);
1210 			goto again;
1211 		}
1212 
1213 		pages[i] = page;
1214 		i_done++;
1215 	}
1216 	if (!i_done || ret)
1217 		goto out;
1218 
1219 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1220 		goto out;
1221 
1222 	/*
1223 	 * so now we have a nice long stream of locked
1224 	 * and up to date pages, lets wait on them
1225 	 */
1226 	for (i = 0; i < i_done; i++)
1227 		wait_on_page_writeback(pages[i]);
1228 
1229 	page_start = page_offset(pages[0]);
1230 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1231 
1232 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1233 			 page_start, page_end - 1, 0, &cached_state);
1234 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1235 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1236 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1237 			  &cached_state, GFP_NOFS);
1238 
1239 	if (i_done != page_cnt) {
1240 		spin_lock(&BTRFS_I(inode)->lock);
1241 		BTRFS_I(inode)->outstanding_extents++;
1242 		spin_unlock(&BTRFS_I(inode)->lock);
1243 		btrfs_delalloc_release_space(inode,
1244 				     (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1245 	}
1246 
1247 
1248 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1249 			  &cached_state, GFP_NOFS);
1250 
1251 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1252 			     page_start, page_end - 1, &cached_state,
1253 			     GFP_NOFS);
1254 
1255 	for (i = 0; i < i_done; i++) {
1256 		clear_page_dirty_for_io(pages[i]);
1257 		ClearPageChecked(pages[i]);
1258 		set_page_extent_mapped(pages[i]);
1259 		set_page_dirty(pages[i]);
1260 		unlock_page(pages[i]);
1261 		page_cache_release(pages[i]);
1262 	}
1263 	return i_done;
1264 out:
1265 	for (i = 0; i < i_done; i++) {
1266 		unlock_page(pages[i]);
1267 		page_cache_release(pages[i]);
1268 	}
1269 	btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1270 	return ret;
1271 
1272 }
1273 
1274 int btrfs_defrag_file(struct inode *inode, struct file *file,
1275 		      struct btrfs_ioctl_defrag_range_args *range,
1276 		      u64 newer_than, unsigned long max_to_defrag)
1277 {
1278 	struct btrfs_root *root = BTRFS_I(inode)->root;
1279 	struct file_ra_state *ra = NULL;
1280 	unsigned long last_index;
1281 	u64 isize = i_size_read(inode);
1282 	u64 last_len = 0;
1283 	u64 skip = 0;
1284 	u64 defrag_end = 0;
1285 	u64 newer_off = range->start;
1286 	unsigned long i;
1287 	unsigned long ra_index = 0;
1288 	int ret;
1289 	int defrag_count = 0;
1290 	int compress_type = BTRFS_COMPRESS_ZLIB;
1291 	int extent_thresh = range->extent_thresh;
1292 	unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1293 	unsigned long cluster = max_cluster;
1294 	u64 new_align = ~((u64)128 * 1024 - 1);
1295 	struct page **pages = NULL;
1296 
1297 	if (isize == 0)
1298 		return 0;
1299 
1300 	if (range->start >= isize)
1301 		return -EINVAL;
1302 
1303 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1304 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1305 			return -EINVAL;
1306 		if (range->compress_type)
1307 			compress_type = range->compress_type;
1308 	}
1309 
1310 	if (extent_thresh == 0)
1311 		extent_thresh = 256 * 1024;
1312 
1313 	/*
1314 	 * if we were not given a file, allocate a readahead
1315 	 * context
1316 	 */
1317 	if (!file) {
1318 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1319 		if (!ra)
1320 			return -ENOMEM;
1321 		file_ra_state_init(ra, inode->i_mapping);
1322 	} else {
1323 		ra = &file->f_ra;
1324 	}
1325 
1326 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1327 			GFP_NOFS);
1328 	if (!pages) {
1329 		ret = -ENOMEM;
1330 		goto out_ra;
1331 	}
1332 
1333 	/* find the last page to defrag */
1334 	if (range->start + range->len > range->start) {
1335 		last_index = min_t(u64, isize - 1,
1336 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1337 	} else {
1338 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1339 	}
1340 
1341 	if (newer_than) {
1342 		ret = find_new_extents(root, inode, newer_than,
1343 				       &newer_off, 64 * 1024);
1344 		if (!ret) {
1345 			range->start = newer_off;
1346 			/*
1347 			 * we always align our defrag to help keep
1348 			 * the extents in the file evenly spaced
1349 			 */
1350 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1351 		} else
1352 			goto out_ra;
1353 	} else {
1354 		i = range->start >> PAGE_CACHE_SHIFT;
1355 	}
1356 	if (!max_to_defrag)
1357 		max_to_defrag = last_index + 1;
1358 
1359 	/*
1360 	 * make writeback starts from i, so the defrag range can be
1361 	 * written sequentially.
1362 	 */
1363 	if (i < inode->i_mapping->writeback_index)
1364 		inode->i_mapping->writeback_index = i;
1365 
1366 	while (i <= last_index && defrag_count < max_to_defrag &&
1367 	       (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1368 		PAGE_CACHE_SHIFT)) {
1369 		/*
1370 		 * make sure we stop running if someone unmounts
1371 		 * the FS
1372 		 */
1373 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1374 			break;
1375 
1376 		if (btrfs_defrag_cancelled(root->fs_info)) {
1377 			printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1378 			ret = -EAGAIN;
1379 			break;
1380 		}
1381 
1382 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1383 					 extent_thresh, &last_len, &skip,
1384 					 &defrag_end, range->flags &
1385 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1386 			unsigned long next;
1387 			/*
1388 			 * the should_defrag function tells us how much to skip
1389 			 * bump our counter by the suggested amount
1390 			 */
1391 			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1392 			i = max(i + 1, next);
1393 			continue;
1394 		}
1395 
1396 		if (!newer_than) {
1397 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1398 				   PAGE_CACHE_SHIFT) - i;
1399 			cluster = min(cluster, max_cluster);
1400 		} else {
1401 			cluster = max_cluster;
1402 		}
1403 
1404 		if (i + cluster > ra_index) {
1405 			ra_index = max(i, ra_index);
1406 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1407 				       cluster);
1408 			ra_index += max_cluster;
1409 		}
1410 
1411 		mutex_lock(&inode->i_mutex);
1412 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1413 			BTRFS_I(inode)->force_compress = compress_type;
1414 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1415 		if (ret < 0) {
1416 			mutex_unlock(&inode->i_mutex);
1417 			goto out_ra;
1418 		}
1419 
1420 		defrag_count += ret;
1421 		balance_dirty_pages_ratelimited(inode->i_mapping);
1422 		mutex_unlock(&inode->i_mutex);
1423 
1424 		if (newer_than) {
1425 			if (newer_off == (u64)-1)
1426 				break;
1427 
1428 			if (ret > 0)
1429 				i += ret;
1430 
1431 			newer_off = max(newer_off + 1,
1432 					(u64)i << PAGE_CACHE_SHIFT);
1433 
1434 			ret = find_new_extents(root, inode,
1435 					       newer_than, &newer_off,
1436 					       64 * 1024);
1437 			if (!ret) {
1438 				range->start = newer_off;
1439 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1440 			} else {
1441 				break;
1442 			}
1443 		} else {
1444 			if (ret > 0) {
1445 				i += ret;
1446 				last_len += ret << PAGE_CACHE_SHIFT;
1447 			} else {
1448 				i++;
1449 				last_len = 0;
1450 			}
1451 		}
1452 	}
1453 
1454 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1455 		filemap_flush(inode->i_mapping);
1456 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1457 			     &BTRFS_I(inode)->runtime_flags))
1458 			filemap_flush(inode->i_mapping);
1459 	}
1460 
1461 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1462 		/* the filemap_flush will queue IO into the worker threads, but
1463 		 * we have to make sure the IO is actually started and that
1464 		 * ordered extents get created before we return
1465 		 */
1466 		atomic_inc(&root->fs_info->async_submit_draining);
1467 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1468 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1469 			wait_event(root->fs_info->async_submit_wait,
1470 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1471 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1472 		}
1473 		atomic_dec(&root->fs_info->async_submit_draining);
1474 	}
1475 
1476 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1477 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1478 	}
1479 
1480 	ret = defrag_count;
1481 
1482 out_ra:
1483 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1484 		mutex_lock(&inode->i_mutex);
1485 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1486 		mutex_unlock(&inode->i_mutex);
1487 	}
1488 	if (!file)
1489 		kfree(ra);
1490 	kfree(pages);
1491 	return ret;
1492 }
1493 
1494 static noinline int btrfs_ioctl_resize(struct file *file,
1495 					void __user *arg)
1496 {
1497 	u64 new_size;
1498 	u64 old_size;
1499 	u64 devid = 1;
1500 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1501 	struct btrfs_ioctl_vol_args *vol_args;
1502 	struct btrfs_trans_handle *trans;
1503 	struct btrfs_device *device = NULL;
1504 	char *sizestr;
1505 	char *retptr;
1506 	char *devstr = NULL;
1507 	int ret = 0;
1508 	int mod = 0;
1509 
1510 	if (!capable(CAP_SYS_ADMIN))
1511 		return -EPERM;
1512 
1513 	ret = mnt_want_write_file(file);
1514 	if (ret)
1515 		return ret;
1516 
1517 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1518 			1)) {
1519 		mnt_drop_write_file(file);
1520 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1521 	}
1522 
1523 	mutex_lock(&root->fs_info->volume_mutex);
1524 	vol_args = memdup_user(arg, sizeof(*vol_args));
1525 	if (IS_ERR(vol_args)) {
1526 		ret = PTR_ERR(vol_args);
1527 		goto out;
1528 	}
1529 
1530 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1531 
1532 	sizestr = vol_args->name;
1533 	devstr = strchr(sizestr, ':');
1534 	if (devstr) {
1535 		sizestr = devstr + 1;
1536 		*devstr = '\0';
1537 		devstr = vol_args->name;
1538 		ret = kstrtoull(devstr, 10, &devid);
1539 		if (ret)
1540 			goto out_free;
1541 		if (!devid) {
1542 			ret = -EINVAL;
1543 			goto out_free;
1544 		}
1545 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1546 	}
1547 
1548 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1549 	if (!device) {
1550 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1551 		       devid);
1552 		ret = -ENODEV;
1553 		goto out_free;
1554 	}
1555 
1556 	if (!device->writeable) {
1557 		btrfs_info(root->fs_info,
1558 			   "resizer unable to apply on readonly device %llu",
1559 		       devid);
1560 		ret = -EPERM;
1561 		goto out_free;
1562 	}
1563 
1564 	if (!strcmp(sizestr, "max"))
1565 		new_size = device->bdev->bd_inode->i_size;
1566 	else {
1567 		if (sizestr[0] == '-') {
1568 			mod = -1;
1569 			sizestr++;
1570 		} else if (sizestr[0] == '+') {
1571 			mod = 1;
1572 			sizestr++;
1573 		}
1574 		new_size = memparse(sizestr, &retptr);
1575 		if (*retptr != '\0' || new_size == 0) {
1576 			ret = -EINVAL;
1577 			goto out_free;
1578 		}
1579 	}
1580 
1581 	if (device->is_tgtdev_for_dev_replace) {
1582 		ret = -EPERM;
1583 		goto out_free;
1584 	}
1585 
1586 	old_size = device->total_bytes;
1587 
1588 	if (mod < 0) {
1589 		if (new_size > old_size) {
1590 			ret = -EINVAL;
1591 			goto out_free;
1592 		}
1593 		new_size = old_size - new_size;
1594 	} else if (mod > 0) {
1595 		if (new_size > ULLONG_MAX - old_size) {
1596 			ret = -ERANGE;
1597 			goto out_free;
1598 		}
1599 		new_size = old_size + new_size;
1600 	}
1601 
1602 	if (new_size < 256 * 1024 * 1024) {
1603 		ret = -EINVAL;
1604 		goto out_free;
1605 	}
1606 	if (new_size > device->bdev->bd_inode->i_size) {
1607 		ret = -EFBIG;
1608 		goto out_free;
1609 	}
1610 
1611 	do_div(new_size, root->sectorsize);
1612 	new_size *= root->sectorsize;
1613 
1614 	printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1615 		      rcu_str_deref(device->name), new_size);
1616 
1617 	if (new_size > old_size) {
1618 		trans = btrfs_start_transaction(root, 0);
1619 		if (IS_ERR(trans)) {
1620 			ret = PTR_ERR(trans);
1621 			goto out_free;
1622 		}
1623 		ret = btrfs_grow_device(trans, device, new_size);
1624 		btrfs_commit_transaction(trans, root);
1625 	} else if (new_size < old_size) {
1626 		ret = btrfs_shrink_device(device, new_size);
1627 	} /* equal, nothing need to do */
1628 
1629 out_free:
1630 	kfree(vol_args);
1631 out:
1632 	mutex_unlock(&root->fs_info->volume_mutex);
1633 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1634 	mnt_drop_write_file(file);
1635 	return ret;
1636 }
1637 
1638 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1639 				char *name, unsigned long fd, int subvol,
1640 				u64 *transid, bool readonly,
1641 				struct btrfs_qgroup_inherit *inherit)
1642 {
1643 	int namelen;
1644 	int ret = 0;
1645 
1646 	ret = mnt_want_write_file(file);
1647 	if (ret)
1648 		goto out;
1649 
1650 	namelen = strlen(name);
1651 	if (strchr(name, '/')) {
1652 		ret = -EINVAL;
1653 		goto out_drop_write;
1654 	}
1655 
1656 	if (name[0] == '.' &&
1657 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1658 		ret = -EEXIST;
1659 		goto out_drop_write;
1660 	}
1661 
1662 	if (subvol) {
1663 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1664 				     NULL, transid, readonly, inherit);
1665 	} else {
1666 		struct fd src = fdget(fd);
1667 		struct inode *src_inode;
1668 		if (!src.file) {
1669 			ret = -EINVAL;
1670 			goto out_drop_write;
1671 		}
1672 
1673 		src_inode = file_inode(src.file);
1674 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1675 			btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1676 				   "Snapshot src from another FS");
1677 			ret = -EXDEV;
1678 		} else if (!inode_owner_or_capable(src_inode)) {
1679 			/*
1680 			 * Subvolume creation is not restricted, but snapshots
1681 			 * are limited to own subvolumes only
1682 			 */
1683 			ret = -EPERM;
1684 		} else {
1685 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1686 					     BTRFS_I(src_inode)->root,
1687 					     transid, readonly, inherit);
1688 		}
1689 		fdput(src);
1690 	}
1691 out_drop_write:
1692 	mnt_drop_write_file(file);
1693 out:
1694 	return ret;
1695 }
1696 
1697 static noinline int btrfs_ioctl_snap_create(struct file *file,
1698 					    void __user *arg, int subvol)
1699 {
1700 	struct btrfs_ioctl_vol_args *vol_args;
1701 	int ret;
1702 
1703 	vol_args = memdup_user(arg, sizeof(*vol_args));
1704 	if (IS_ERR(vol_args))
1705 		return PTR_ERR(vol_args);
1706 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1707 
1708 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1709 					      vol_args->fd, subvol,
1710 					      NULL, false, NULL);
1711 
1712 	kfree(vol_args);
1713 	return ret;
1714 }
1715 
1716 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1717 					       void __user *arg, int subvol)
1718 {
1719 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1720 	int ret;
1721 	u64 transid = 0;
1722 	u64 *ptr = NULL;
1723 	bool readonly = false;
1724 	struct btrfs_qgroup_inherit *inherit = NULL;
1725 
1726 	vol_args = memdup_user(arg, sizeof(*vol_args));
1727 	if (IS_ERR(vol_args))
1728 		return PTR_ERR(vol_args);
1729 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1730 
1731 	if (vol_args->flags &
1732 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1733 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1734 		ret = -EOPNOTSUPP;
1735 		goto out;
1736 	}
1737 
1738 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1739 		ptr = &transid;
1740 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1741 		readonly = true;
1742 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1743 		if (vol_args->size > PAGE_CACHE_SIZE) {
1744 			ret = -EINVAL;
1745 			goto out;
1746 		}
1747 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1748 		if (IS_ERR(inherit)) {
1749 			ret = PTR_ERR(inherit);
1750 			goto out;
1751 		}
1752 	}
1753 
1754 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1755 					      vol_args->fd, subvol, ptr,
1756 					      readonly, inherit);
1757 
1758 	if (ret == 0 && ptr &&
1759 	    copy_to_user(arg +
1760 			 offsetof(struct btrfs_ioctl_vol_args_v2,
1761 				  transid), ptr, sizeof(*ptr)))
1762 		ret = -EFAULT;
1763 out:
1764 	kfree(vol_args);
1765 	kfree(inherit);
1766 	return ret;
1767 }
1768 
1769 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1770 						void __user *arg)
1771 {
1772 	struct inode *inode = file_inode(file);
1773 	struct btrfs_root *root = BTRFS_I(inode)->root;
1774 	int ret = 0;
1775 	u64 flags = 0;
1776 
1777 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1778 		return -EINVAL;
1779 
1780 	down_read(&root->fs_info->subvol_sem);
1781 	if (btrfs_root_readonly(root))
1782 		flags |= BTRFS_SUBVOL_RDONLY;
1783 	up_read(&root->fs_info->subvol_sem);
1784 
1785 	if (copy_to_user(arg, &flags, sizeof(flags)))
1786 		ret = -EFAULT;
1787 
1788 	return ret;
1789 }
1790 
1791 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1792 					      void __user *arg)
1793 {
1794 	struct inode *inode = file_inode(file);
1795 	struct btrfs_root *root = BTRFS_I(inode)->root;
1796 	struct btrfs_trans_handle *trans;
1797 	u64 root_flags;
1798 	u64 flags;
1799 	int ret = 0;
1800 
1801 	if (!inode_owner_or_capable(inode))
1802 		return -EPERM;
1803 
1804 	ret = mnt_want_write_file(file);
1805 	if (ret)
1806 		goto out;
1807 
1808 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1809 		ret = -EINVAL;
1810 		goto out_drop_write;
1811 	}
1812 
1813 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1814 		ret = -EFAULT;
1815 		goto out_drop_write;
1816 	}
1817 
1818 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1819 		ret = -EINVAL;
1820 		goto out_drop_write;
1821 	}
1822 
1823 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1824 		ret = -EOPNOTSUPP;
1825 		goto out_drop_write;
1826 	}
1827 
1828 	down_write(&root->fs_info->subvol_sem);
1829 
1830 	/* nothing to do */
1831 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1832 		goto out_drop_sem;
1833 
1834 	root_flags = btrfs_root_flags(&root->root_item);
1835 	if (flags & BTRFS_SUBVOL_RDONLY) {
1836 		btrfs_set_root_flags(&root->root_item,
1837 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1838 	} else {
1839 		/*
1840 		 * Block RO -> RW transition if this subvolume is involved in
1841 		 * send
1842 		 */
1843 		spin_lock(&root->root_item_lock);
1844 		if (root->send_in_progress == 0) {
1845 			btrfs_set_root_flags(&root->root_item,
1846 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1847 			spin_unlock(&root->root_item_lock);
1848 		} else {
1849 			spin_unlock(&root->root_item_lock);
1850 			btrfs_warn(root->fs_info,
1851 			"Attempt to set subvolume %llu read-write during send",
1852 					root->root_key.objectid);
1853 			ret = -EPERM;
1854 			goto out_drop_sem;
1855 		}
1856 	}
1857 
1858 	trans = btrfs_start_transaction(root, 1);
1859 	if (IS_ERR(trans)) {
1860 		ret = PTR_ERR(trans);
1861 		goto out_reset;
1862 	}
1863 
1864 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1865 				&root->root_key, &root->root_item);
1866 
1867 	btrfs_commit_transaction(trans, root);
1868 out_reset:
1869 	if (ret)
1870 		btrfs_set_root_flags(&root->root_item, root_flags);
1871 out_drop_sem:
1872 	up_write(&root->fs_info->subvol_sem);
1873 out_drop_write:
1874 	mnt_drop_write_file(file);
1875 out:
1876 	return ret;
1877 }
1878 
1879 /*
1880  * helper to check if the subvolume references other subvolumes
1881  */
1882 static noinline int may_destroy_subvol(struct btrfs_root *root)
1883 {
1884 	struct btrfs_path *path;
1885 	struct btrfs_dir_item *di;
1886 	struct btrfs_key key;
1887 	u64 dir_id;
1888 	int ret;
1889 
1890 	path = btrfs_alloc_path();
1891 	if (!path)
1892 		return -ENOMEM;
1893 
1894 	/* Make sure this root isn't set as the default subvol */
1895 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1896 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1897 				   dir_id, "default", 7, 0);
1898 	if (di && !IS_ERR(di)) {
1899 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1900 		if (key.objectid == root->root_key.objectid) {
1901 			ret = -EPERM;
1902 			btrfs_err(root->fs_info, "deleting default subvolume "
1903 				  "%llu is not allowed", key.objectid);
1904 			goto out;
1905 		}
1906 		btrfs_release_path(path);
1907 	}
1908 
1909 	key.objectid = root->root_key.objectid;
1910 	key.type = BTRFS_ROOT_REF_KEY;
1911 	key.offset = (u64)-1;
1912 
1913 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1914 				&key, path, 0, 0);
1915 	if (ret < 0)
1916 		goto out;
1917 	BUG_ON(ret == 0);
1918 
1919 	ret = 0;
1920 	if (path->slots[0] > 0) {
1921 		path->slots[0]--;
1922 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1923 		if (key.objectid == root->root_key.objectid &&
1924 		    key.type == BTRFS_ROOT_REF_KEY)
1925 			ret = -ENOTEMPTY;
1926 	}
1927 out:
1928 	btrfs_free_path(path);
1929 	return ret;
1930 }
1931 
1932 static noinline int key_in_sk(struct btrfs_key *key,
1933 			      struct btrfs_ioctl_search_key *sk)
1934 {
1935 	struct btrfs_key test;
1936 	int ret;
1937 
1938 	test.objectid = sk->min_objectid;
1939 	test.type = sk->min_type;
1940 	test.offset = sk->min_offset;
1941 
1942 	ret = btrfs_comp_cpu_keys(key, &test);
1943 	if (ret < 0)
1944 		return 0;
1945 
1946 	test.objectid = sk->max_objectid;
1947 	test.type = sk->max_type;
1948 	test.offset = sk->max_offset;
1949 
1950 	ret = btrfs_comp_cpu_keys(key, &test);
1951 	if (ret > 0)
1952 		return 0;
1953 	return 1;
1954 }
1955 
1956 static noinline int copy_to_sk(struct btrfs_root *root,
1957 			       struct btrfs_path *path,
1958 			       struct btrfs_key *key,
1959 			       struct btrfs_ioctl_search_key *sk,
1960 			       size_t *buf_size,
1961 			       char __user *ubuf,
1962 			       unsigned long *sk_offset,
1963 			       int *num_found)
1964 {
1965 	u64 found_transid;
1966 	struct extent_buffer *leaf;
1967 	struct btrfs_ioctl_search_header sh;
1968 	unsigned long item_off;
1969 	unsigned long item_len;
1970 	int nritems;
1971 	int i;
1972 	int slot;
1973 	int ret = 0;
1974 
1975 	leaf = path->nodes[0];
1976 	slot = path->slots[0];
1977 	nritems = btrfs_header_nritems(leaf);
1978 
1979 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1980 		i = nritems;
1981 		goto advance_key;
1982 	}
1983 	found_transid = btrfs_header_generation(leaf);
1984 
1985 	for (i = slot; i < nritems; i++) {
1986 		item_off = btrfs_item_ptr_offset(leaf, i);
1987 		item_len = btrfs_item_size_nr(leaf, i);
1988 
1989 		btrfs_item_key_to_cpu(leaf, key, i);
1990 		if (!key_in_sk(key, sk))
1991 			continue;
1992 
1993 		if (sizeof(sh) + item_len > *buf_size) {
1994 			if (*num_found) {
1995 				ret = 1;
1996 				goto out;
1997 			}
1998 
1999 			/*
2000 			 * return one empty item back for v1, which does not
2001 			 * handle -EOVERFLOW
2002 			 */
2003 
2004 			*buf_size = sizeof(sh) + item_len;
2005 			item_len = 0;
2006 			ret = -EOVERFLOW;
2007 		}
2008 
2009 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2010 			ret = 1;
2011 			goto out;
2012 		}
2013 
2014 		sh.objectid = key->objectid;
2015 		sh.offset = key->offset;
2016 		sh.type = key->type;
2017 		sh.len = item_len;
2018 		sh.transid = found_transid;
2019 
2020 		/* copy search result header */
2021 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2022 			ret = -EFAULT;
2023 			goto out;
2024 		}
2025 
2026 		*sk_offset += sizeof(sh);
2027 
2028 		if (item_len) {
2029 			char __user *up = ubuf + *sk_offset;
2030 			/* copy the item */
2031 			if (read_extent_buffer_to_user(leaf, up,
2032 						       item_off, item_len)) {
2033 				ret = -EFAULT;
2034 				goto out;
2035 			}
2036 
2037 			*sk_offset += item_len;
2038 		}
2039 		(*num_found)++;
2040 
2041 		if (ret) /* -EOVERFLOW from above */
2042 			goto out;
2043 
2044 		if (*num_found >= sk->nr_items) {
2045 			ret = 1;
2046 			goto out;
2047 		}
2048 	}
2049 advance_key:
2050 	ret = 0;
2051 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
2052 		key->offset++;
2053 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
2054 		key->offset = 0;
2055 		key->type++;
2056 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
2057 		key->offset = 0;
2058 		key->type = 0;
2059 		key->objectid++;
2060 	} else
2061 		ret = 1;
2062 out:
2063 	/*
2064 	 *  0: all items from this leaf copied, continue with next
2065 	 *  1: * more items can be copied, but unused buffer is too small
2066 	 *     * all items were found
2067 	 *     Either way, it will stops the loop which iterates to the next
2068 	 *     leaf
2069 	 *  -EOVERFLOW: item was to large for buffer
2070 	 *  -EFAULT: could not copy extent buffer back to userspace
2071 	 */
2072 	return ret;
2073 }
2074 
2075 static noinline int search_ioctl(struct inode *inode,
2076 				 struct btrfs_ioctl_search_key *sk,
2077 				 size_t *buf_size,
2078 				 char __user *ubuf)
2079 {
2080 	struct btrfs_root *root;
2081 	struct btrfs_key key;
2082 	struct btrfs_path *path;
2083 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2084 	int ret;
2085 	int num_found = 0;
2086 	unsigned long sk_offset = 0;
2087 
2088 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2089 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2090 		return -EOVERFLOW;
2091 	}
2092 
2093 	path = btrfs_alloc_path();
2094 	if (!path)
2095 		return -ENOMEM;
2096 
2097 	if (sk->tree_id == 0) {
2098 		/* search the root of the inode that was passed */
2099 		root = BTRFS_I(inode)->root;
2100 	} else {
2101 		key.objectid = sk->tree_id;
2102 		key.type = BTRFS_ROOT_ITEM_KEY;
2103 		key.offset = (u64)-1;
2104 		root = btrfs_read_fs_root_no_name(info, &key);
2105 		if (IS_ERR(root)) {
2106 			printk(KERN_ERR "BTRFS: could not find root %llu\n",
2107 			       sk->tree_id);
2108 			btrfs_free_path(path);
2109 			return -ENOENT;
2110 		}
2111 	}
2112 
2113 	key.objectid = sk->min_objectid;
2114 	key.type = sk->min_type;
2115 	key.offset = sk->min_offset;
2116 
2117 	path->keep_locks = 1;
2118 
2119 	while (1) {
2120 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2121 		if (ret != 0) {
2122 			if (ret > 0)
2123 				ret = 0;
2124 			goto err;
2125 		}
2126 		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2127 				 &sk_offset, &num_found);
2128 		btrfs_release_path(path);
2129 		if (ret)
2130 			break;
2131 
2132 	}
2133 	if (ret > 0)
2134 		ret = 0;
2135 err:
2136 	sk->nr_items = num_found;
2137 	btrfs_free_path(path);
2138 	return ret;
2139 }
2140 
2141 static noinline int btrfs_ioctl_tree_search(struct file *file,
2142 					   void __user *argp)
2143 {
2144 	struct btrfs_ioctl_search_args __user *uargs;
2145 	struct btrfs_ioctl_search_key sk;
2146 	struct inode *inode;
2147 	int ret;
2148 	size_t buf_size;
2149 
2150 	if (!capable(CAP_SYS_ADMIN))
2151 		return -EPERM;
2152 
2153 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2154 
2155 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2156 		return -EFAULT;
2157 
2158 	buf_size = sizeof(uargs->buf);
2159 
2160 	inode = file_inode(file);
2161 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2162 
2163 	/*
2164 	 * In the origin implementation an overflow is handled by returning a
2165 	 * search header with a len of zero, so reset ret.
2166 	 */
2167 	if (ret == -EOVERFLOW)
2168 		ret = 0;
2169 
2170 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2171 		ret = -EFAULT;
2172 	return ret;
2173 }
2174 
2175 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2176 					       void __user *argp)
2177 {
2178 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2179 	struct btrfs_ioctl_search_args_v2 args;
2180 	struct inode *inode;
2181 	int ret;
2182 	size_t buf_size;
2183 	const size_t buf_limit = 16 * 1024 * 1024;
2184 
2185 	if (!capable(CAP_SYS_ADMIN))
2186 		return -EPERM;
2187 
2188 	/* copy search header and buffer size */
2189 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2190 	if (copy_from_user(&args, uarg, sizeof(args)))
2191 		return -EFAULT;
2192 
2193 	buf_size = args.buf_size;
2194 
2195 	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2196 		return -EOVERFLOW;
2197 
2198 	/* limit result size to 16MB */
2199 	if (buf_size > buf_limit)
2200 		buf_size = buf_limit;
2201 
2202 	inode = file_inode(file);
2203 	ret = search_ioctl(inode, &args.key, &buf_size,
2204 			   (char *)(&uarg->buf[0]));
2205 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2206 		ret = -EFAULT;
2207 	else if (ret == -EOVERFLOW &&
2208 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2209 		ret = -EFAULT;
2210 
2211 	return ret;
2212 }
2213 
2214 /*
2215  * Search INODE_REFs to identify path name of 'dirid' directory
2216  * in a 'tree_id' tree. and sets path name to 'name'.
2217  */
2218 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2219 				u64 tree_id, u64 dirid, char *name)
2220 {
2221 	struct btrfs_root *root;
2222 	struct btrfs_key key;
2223 	char *ptr;
2224 	int ret = -1;
2225 	int slot;
2226 	int len;
2227 	int total_len = 0;
2228 	struct btrfs_inode_ref *iref;
2229 	struct extent_buffer *l;
2230 	struct btrfs_path *path;
2231 
2232 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2233 		name[0]='\0';
2234 		return 0;
2235 	}
2236 
2237 	path = btrfs_alloc_path();
2238 	if (!path)
2239 		return -ENOMEM;
2240 
2241 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2242 
2243 	key.objectid = tree_id;
2244 	key.type = BTRFS_ROOT_ITEM_KEY;
2245 	key.offset = (u64)-1;
2246 	root = btrfs_read_fs_root_no_name(info, &key);
2247 	if (IS_ERR(root)) {
2248 		printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2249 		ret = -ENOENT;
2250 		goto out;
2251 	}
2252 
2253 	key.objectid = dirid;
2254 	key.type = BTRFS_INODE_REF_KEY;
2255 	key.offset = (u64)-1;
2256 
2257 	while (1) {
2258 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2259 		if (ret < 0)
2260 			goto out;
2261 		else if (ret > 0) {
2262 			ret = btrfs_previous_item(root, path, dirid,
2263 						  BTRFS_INODE_REF_KEY);
2264 			if (ret < 0)
2265 				goto out;
2266 			else if (ret > 0) {
2267 				ret = -ENOENT;
2268 				goto out;
2269 			}
2270 		}
2271 
2272 		l = path->nodes[0];
2273 		slot = path->slots[0];
2274 		btrfs_item_key_to_cpu(l, &key, slot);
2275 
2276 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2277 		len = btrfs_inode_ref_name_len(l, iref);
2278 		ptr -= len + 1;
2279 		total_len += len + 1;
2280 		if (ptr < name) {
2281 			ret = -ENAMETOOLONG;
2282 			goto out;
2283 		}
2284 
2285 		*(ptr + len) = '/';
2286 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2287 
2288 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2289 			break;
2290 
2291 		btrfs_release_path(path);
2292 		key.objectid = key.offset;
2293 		key.offset = (u64)-1;
2294 		dirid = key.objectid;
2295 	}
2296 	memmove(name, ptr, total_len);
2297 	name[total_len] = '\0';
2298 	ret = 0;
2299 out:
2300 	btrfs_free_path(path);
2301 	return ret;
2302 }
2303 
2304 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2305 					   void __user *argp)
2306 {
2307 	 struct btrfs_ioctl_ino_lookup_args *args;
2308 	 struct inode *inode;
2309 	 int ret;
2310 
2311 	if (!capable(CAP_SYS_ADMIN))
2312 		return -EPERM;
2313 
2314 	args = memdup_user(argp, sizeof(*args));
2315 	if (IS_ERR(args))
2316 		return PTR_ERR(args);
2317 
2318 	inode = file_inode(file);
2319 
2320 	if (args->treeid == 0)
2321 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2322 
2323 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2324 					args->treeid, args->objectid,
2325 					args->name);
2326 
2327 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2328 		ret = -EFAULT;
2329 
2330 	kfree(args);
2331 	return ret;
2332 }
2333 
2334 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2335 					     void __user *arg)
2336 {
2337 	struct dentry *parent = file->f_path.dentry;
2338 	struct dentry *dentry;
2339 	struct inode *dir = parent->d_inode;
2340 	struct inode *inode;
2341 	struct btrfs_root *root = BTRFS_I(dir)->root;
2342 	struct btrfs_root *dest = NULL;
2343 	struct btrfs_ioctl_vol_args *vol_args;
2344 	struct btrfs_trans_handle *trans;
2345 	struct btrfs_block_rsv block_rsv;
2346 	u64 root_flags;
2347 	u64 qgroup_reserved;
2348 	int namelen;
2349 	int ret;
2350 	int err = 0;
2351 
2352 	vol_args = memdup_user(arg, sizeof(*vol_args));
2353 	if (IS_ERR(vol_args))
2354 		return PTR_ERR(vol_args);
2355 
2356 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2357 	namelen = strlen(vol_args->name);
2358 	if (strchr(vol_args->name, '/') ||
2359 	    strncmp(vol_args->name, "..", namelen) == 0) {
2360 		err = -EINVAL;
2361 		goto out;
2362 	}
2363 
2364 	err = mnt_want_write_file(file);
2365 	if (err)
2366 		goto out;
2367 
2368 
2369 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2370 	if (err == -EINTR)
2371 		goto out_drop_write;
2372 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2373 	if (IS_ERR(dentry)) {
2374 		err = PTR_ERR(dentry);
2375 		goto out_unlock_dir;
2376 	}
2377 
2378 	if (!dentry->d_inode) {
2379 		err = -ENOENT;
2380 		goto out_dput;
2381 	}
2382 
2383 	inode = dentry->d_inode;
2384 	dest = BTRFS_I(inode)->root;
2385 	if (!capable(CAP_SYS_ADMIN)) {
2386 		/*
2387 		 * Regular user.  Only allow this with a special mount
2388 		 * option, when the user has write+exec access to the
2389 		 * subvol root, and when rmdir(2) would have been
2390 		 * allowed.
2391 		 *
2392 		 * Note that this is _not_ check that the subvol is
2393 		 * empty or doesn't contain data that we wouldn't
2394 		 * otherwise be able to delete.
2395 		 *
2396 		 * Users who want to delete empty subvols should try
2397 		 * rmdir(2).
2398 		 */
2399 		err = -EPERM;
2400 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2401 			goto out_dput;
2402 
2403 		/*
2404 		 * Do not allow deletion if the parent dir is the same
2405 		 * as the dir to be deleted.  That means the ioctl
2406 		 * must be called on the dentry referencing the root
2407 		 * of the subvol, not a random directory contained
2408 		 * within it.
2409 		 */
2410 		err = -EINVAL;
2411 		if (root == dest)
2412 			goto out_dput;
2413 
2414 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2415 		if (err)
2416 			goto out_dput;
2417 	}
2418 
2419 	/* check if subvolume may be deleted by a user */
2420 	err = btrfs_may_delete(dir, dentry, 1);
2421 	if (err)
2422 		goto out_dput;
2423 
2424 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2425 		err = -EINVAL;
2426 		goto out_dput;
2427 	}
2428 
2429 	mutex_lock(&inode->i_mutex);
2430 
2431 	/*
2432 	 * Don't allow to delete a subvolume with send in progress. This is
2433 	 * inside the i_mutex so the error handling that has to drop the bit
2434 	 * again is not run concurrently.
2435 	 */
2436 	spin_lock(&dest->root_item_lock);
2437 	root_flags = btrfs_root_flags(&dest->root_item);
2438 	if (dest->send_in_progress == 0) {
2439 		btrfs_set_root_flags(&dest->root_item,
2440 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2441 		spin_unlock(&dest->root_item_lock);
2442 	} else {
2443 		spin_unlock(&dest->root_item_lock);
2444 		btrfs_warn(root->fs_info,
2445 			"Attempt to delete subvolume %llu during send",
2446 			dest->root_key.objectid);
2447 		err = -EPERM;
2448 		goto out_dput;
2449 	}
2450 
2451 	err = d_invalidate(dentry);
2452 	if (err)
2453 		goto out_unlock;
2454 
2455 	down_write(&root->fs_info->subvol_sem);
2456 
2457 	err = may_destroy_subvol(dest);
2458 	if (err)
2459 		goto out_up_write;
2460 
2461 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2462 	/*
2463 	 * One for dir inode, two for dir entries, two for root
2464 	 * ref/backref.
2465 	 */
2466 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2467 					       5, &qgroup_reserved, true);
2468 	if (err)
2469 		goto out_up_write;
2470 
2471 	trans = btrfs_start_transaction(root, 0);
2472 	if (IS_ERR(trans)) {
2473 		err = PTR_ERR(trans);
2474 		goto out_release;
2475 	}
2476 	trans->block_rsv = &block_rsv;
2477 	trans->bytes_reserved = block_rsv.size;
2478 
2479 	ret = btrfs_unlink_subvol(trans, root, dir,
2480 				dest->root_key.objectid,
2481 				dentry->d_name.name,
2482 				dentry->d_name.len);
2483 	if (ret) {
2484 		err = ret;
2485 		btrfs_abort_transaction(trans, root, ret);
2486 		goto out_end_trans;
2487 	}
2488 
2489 	btrfs_record_root_in_trans(trans, dest);
2490 
2491 	memset(&dest->root_item.drop_progress, 0,
2492 		sizeof(dest->root_item.drop_progress));
2493 	dest->root_item.drop_level = 0;
2494 	btrfs_set_root_refs(&dest->root_item, 0);
2495 
2496 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2497 		ret = btrfs_insert_orphan_item(trans,
2498 					root->fs_info->tree_root,
2499 					dest->root_key.objectid);
2500 		if (ret) {
2501 			btrfs_abort_transaction(trans, root, ret);
2502 			err = ret;
2503 			goto out_end_trans;
2504 		}
2505 	}
2506 
2507 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2508 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2509 				  dest->root_key.objectid);
2510 	if (ret && ret != -ENOENT) {
2511 		btrfs_abort_transaction(trans, root, ret);
2512 		err = ret;
2513 		goto out_end_trans;
2514 	}
2515 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2516 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2517 					  dest->root_item.received_uuid,
2518 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2519 					  dest->root_key.objectid);
2520 		if (ret && ret != -ENOENT) {
2521 			btrfs_abort_transaction(trans, root, ret);
2522 			err = ret;
2523 			goto out_end_trans;
2524 		}
2525 	}
2526 
2527 out_end_trans:
2528 	trans->block_rsv = NULL;
2529 	trans->bytes_reserved = 0;
2530 	ret = btrfs_end_transaction(trans, root);
2531 	if (ret && !err)
2532 		err = ret;
2533 	inode->i_flags |= S_DEAD;
2534 out_release:
2535 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2536 out_up_write:
2537 	up_write(&root->fs_info->subvol_sem);
2538 out_unlock:
2539 	if (err) {
2540 		spin_lock(&dest->root_item_lock);
2541 		root_flags = btrfs_root_flags(&dest->root_item);
2542 		btrfs_set_root_flags(&dest->root_item,
2543 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2544 		spin_unlock(&dest->root_item_lock);
2545 	}
2546 	mutex_unlock(&inode->i_mutex);
2547 	if (!err) {
2548 		shrink_dcache_sb(root->fs_info->sb);
2549 		btrfs_invalidate_inodes(dest);
2550 		d_delete(dentry);
2551 		ASSERT(dest->send_in_progress == 0);
2552 
2553 		/* the last ref */
2554 		if (dest->cache_inode) {
2555 			iput(dest->cache_inode);
2556 			dest->cache_inode = NULL;
2557 		}
2558 	}
2559 out_dput:
2560 	dput(dentry);
2561 out_unlock_dir:
2562 	mutex_unlock(&dir->i_mutex);
2563 out_drop_write:
2564 	mnt_drop_write_file(file);
2565 out:
2566 	kfree(vol_args);
2567 	return err;
2568 }
2569 
2570 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2571 {
2572 	struct inode *inode = file_inode(file);
2573 	struct btrfs_root *root = BTRFS_I(inode)->root;
2574 	struct btrfs_ioctl_defrag_range_args *range;
2575 	int ret;
2576 
2577 	ret = mnt_want_write_file(file);
2578 	if (ret)
2579 		return ret;
2580 
2581 	if (btrfs_root_readonly(root)) {
2582 		ret = -EROFS;
2583 		goto out;
2584 	}
2585 
2586 	switch (inode->i_mode & S_IFMT) {
2587 	case S_IFDIR:
2588 		if (!capable(CAP_SYS_ADMIN)) {
2589 			ret = -EPERM;
2590 			goto out;
2591 		}
2592 		ret = btrfs_defrag_root(root);
2593 		if (ret)
2594 			goto out;
2595 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2596 		break;
2597 	case S_IFREG:
2598 		if (!(file->f_mode & FMODE_WRITE)) {
2599 			ret = -EINVAL;
2600 			goto out;
2601 		}
2602 
2603 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2604 		if (!range) {
2605 			ret = -ENOMEM;
2606 			goto out;
2607 		}
2608 
2609 		if (argp) {
2610 			if (copy_from_user(range, argp,
2611 					   sizeof(*range))) {
2612 				ret = -EFAULT;
2613 				kfree(range);
2614 				goto out;
2615 			}
2616 			/* compression requires us to start the IO */
2617 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2618 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2619 				range->extent_thresh = (u32)-1;
2620 			}
2621 		} else {
2622 			/* the rest are all set to zero by kzalloc */
2623 			range->len = (u64)-1;
2624 		}
2625 		ret = btrfs_defrag_file(file_inode(file), file,
2626 					range, 0, 0);
2627 		if (ret > 0)
2628 			ret = 0;
2629 		kfree(range);
2630 		break;
2631 	default:
2632 		ret = -EINVAL;
2633 	}
2634 out:
2635 	mnt_drop_write_file(file);
2636 	return ret;
2637 }
2638 
2639 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2640 {
2641 	struct btrfs_ioctl_vol_args *vol_args;
2642 	int ret;
2643 
2644 	if (!capable(CAP_SYS_ADMIN))
2645 		return -EPERM;
2646 
2647 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2648 			1)) {
2649 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2650 	}
2651 
2652 	mutex_lock(&root->fs_info->volume_mutex);
2653 	vol_args = memdup_user(arg, sizeof(*vol_args));
2654 	if (IS_ERR(vol_args)) {
2655 		ret = PTR_ERR(vol_args);
2656 		goto out;
2657 	}
2658 
2659 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2660 	ret = btrfs_init_new_device(root, vol_args->name);
2661 
2662 	kfree(vol_args);
2663 out:
2664 	mutex_unlock(&root->fs_info->volume_mutex);
2665 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2666 	return ret;
2667 }
2668 
2669 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2670 {
2671 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2672 	struct btrfs_ioctl_vol_args *vol_args;
2673 	int ret;
2674 
2675 	if (!capable(CAP_SYS_ADMIN))
2676 		return -EPERM;
2677 
2678 	ret = mnt_want_write_file(file);
2679 	if (ret)
2680 		return ret;
2681 
2682 	vol_args = memdup_user(arg, sizeof(*vol_args));
2683 	if (IS_ERR(vol_args)) {
2684 		ret = PTR_ERR(vol_args);
2685 		goto out;
2686 	}
2687 
2688 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2689 
2690 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2691 			1)) {
2692 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2693 		goto out;
2694 	}
2695 
2696 	mutex_lock(&root->fs_info->volume_mutex);
2697 	ret = btrfs_rm_device(root, vol_args->name);
2698 	mutex_unlock(&root->fs_info->volume_mutex);
2699 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2700 
2701 out:
2702 	kfree(vol_args);
2703 	mnt_drop_write_file(file);
2704 	return ret;
2705 }
2706 
2707 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2708 {
2709 	struct btrfs_ioctl_fs_info_args *fi_args;
2710 	struct btrfs_device *device;
2711 	struct btrfs_device *next;
2712 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2713 	int ret = 0;
2714 
2715 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2716 	if (!fi_args)
2717 		return -ENOMEM;
2718 
2719 	mutex_lock(&fs_devices->device_list_mutex);
2720 	fi_args->num_devices = fs_devices->num_devices;
2721 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2722 
2723 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2724 		if (device->devid > fi_args->max_id)
2725 			fi_args->max_id = device->devid;
2726 	}
2727 	mutex_unlock(&fs_devices->device_list_mutex);
2728 
2729 	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2730 	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2731 	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2732 
2733 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2734 		ret = -EFAULT;
2735 
2736 	kfree(fi_args);
2737 	return ret;
2738 }
2739 
2740 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2741 {
2742 	struct btrfs_ioctl_dev_info_args *di_args;
2743 	struct btrfs_device *dev;
2744 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2745 	int ret = 0;
2746 	char *s_uuid = NULL;
2747 
2748 	di_args = memdup_user(arg, sizeof(*di_args));
2749 	if (IS_ERR(di_args))
2750 		return PTR_ERR(di_args);
2751 
2752 	if (!btrfs_is_empty_uuid(di_args->uuid))
2753 		s_uuid = di_args->uuid;
2754 
2755 	mutex_lock(&fs_devices->device_list_mutex);
2756 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2757 
2758 	if (!dev) {
2759 		ret = -ENODEV;
2760 		goto out;
2761 	}
2762 
2763 	di_args->devid = dev->devid;
2764 	di_args->bytes_used = dev->bytes_used;
2765 	di_args->total_bytes = dev->total_bytes;
2766 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2767 	if (dev->name) {
2768 		struct rcu_string *name;
2769 
2770 		rcu_read_lock();
2771 		name = rcu_dereference(dev->name);
2772 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2773 		rcu_read_unlock();
2774 		di_args->path[sizeof(di_args->path) - 1] = 0;
2775 	} else {
2776 		di_args->path[0] = '\0';
2777 	}
2778 
2779 out:
2780 	mutex_unlock(&fs_devices->device_list_mutex);
2781 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2782 		ret = -EFAULT;
2783 
2784 	kfree(di_args);
2785 	return ret;
2786 }
2787 
2788 static struct page *extent_same_get_page(struct inode *inode, u64 off)
2789 {
2790 	struct page *page;
2791 	pgoff_t index;
2792 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2793 
2794 	index = off >> PAGE_CACHE_SHIFT;
2795 
2796 	page = grab_cache_page(inode->i_mapping, index);
2797 	if (!page)
2798 		return NULL;
2799 
2800 	if (!PageUptodate(page)) {
2801 		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2802 						 0))
2803 			return NULL;
2804 		lock_page(page);
2805 		if (!PageUptodate(page)) {
2806 			unlock_page(page);
2807 			page_cache_release(page);
2808 			return NULL;
2809 		}
2810 	}
2811 	unlock_page(page);
2812 
2813 	return page;
2814 }
2815 
2816 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2817 {
2818 	/* do any pending delalloc/csum calc on src, one way or
2819 	   another, and lock file content */
2820 	while (1) {
2821 		struct btrfs_ordered_extent *ordered;
2822 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2823 		ordered = btrfs_lookup_first_ordered_extent(inode,
2824 							    off + len - 1);
2825 		if ((!ordered ||
2826 		     ordered->file_offset + ordered->len <= off ||
2827 		     ordered->file_offset >= off + len) &&
2828 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2829 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2830 			if (ordered)
2831 				btrfs_put_ordered_extent(ordered);
2832 			break;
2833 		}
2834 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2835 		if (ordered)
2836 			btrfs_put_ordered_extent(ordered);
2837 		btrfs_wait_ordered_range(inode, off, len);
2838 	}
2839 }
2840 
2841 static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2842 				struct inode *inode2, u64 loff2, u64 len)
2843 {
2844 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2845 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2846 
2847 	mutex_unlock(&inode1->i_mutex);
2848 	mutex_unlock(&inode2->i_mutex);
2849 }
2850 
2851 static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2852 			      struct inode *inode2, u64 loff2, u64 len)
2853 {
2854 	if (inode1 < inode2) {
2855 		swap(inode1, inode2);
2856 		swap(loff1, loff2);
2857 	}
2858 
2859 	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2860 	lock_extent_range(inode1, loff1, len);
2861 	if (inode1 != inode2) {
2862 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2863 		lock_extent_range(inode2, loff2, len);
2864 	}
2865 }
2866 
2867 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2868 			  u64 dst_loff, u64 len)
2869 {
2870 	int ret = 0;
2871 	struct page *src_page, *dst_page;
2872 	unsigned int cmp_len = PAGE_CACHE_SIZE;
2873 	void *addr, *dst_addr;
2874 
2875 	while (len) {
2876 		if (len < PAGE_CACHE_SIZE)
2877 			cmp_len = len;
2878 
2879 		src_page = extent_same_get_page(src, loff);
2880 		if (!src_page)
2881 			return -EINVAL;
2882 		dst_page = extent_same_get_page(dst, dst_loff);
2883 		if (!dst_page) {
2884 			page_cache_release(src_page);
2885 			return -EINVAL;
2886 		}
2887 		addr = kmap_atomic(src_page);
2888 		dst_addr = kmap_atomic(dst_page);
2889 
2890 		flush_dcache_page(src_page);
2891 		flush_dcache_page(dst_page);
2892 
2893 		if (memcmp(addr, dst_addr, cmp_len))
2894 			ret = BTRFS_SAME_DATA_DIFFERS;
2895 
2896 		kunmap_atomic(addr);
2897 		kunmap_atomic(dst_addr);
2898 		page_cache_release(src_page);
2899 		page_cache_release(dst_page);
2900 
2901 		if (ret)
2902 			break;
2903 
2904 		loff += cmp_len;
2905 		dst_loff += cmp_len;
2906 		len -= cmp_len;
2907 	}
2908 
2909 	return ret;
2910 }
2911 
2912 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2913 {
2914 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2915 
2916 	if (off + len > inode->i_size || off + len < off)
2917 		return -EINVAL;
2918 	/* Check that we are block aligned - btrfs_clone() requires this */
2919 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2920 		return -EINVAL;
2921 
2922 	return 0;
2923 }
2924 
2925 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2926 			     struct inode *dst, u64 dst_loff)
2927 {
2928 	int ret;
2929 
2930 	/*
2931 	 * btrfs_clone() can't handle extents in the same file
2932 	 * yet. Once that works, we can drop this check and replace it
2933 	 * with a check for the same inode, but overlapping extents.
2934 	 */
2935 	if (src == dst)
2936 		return -EINVAL;
2937 
2938 	btrfs_double_lock(src, loff, dst, dst_loff, len);
2939 
2940 	ret = extent_same_check_offsets(src, loff, len);
2941 	if (ret)
2942 		goto out_unlock;
2943 
2944 	ret = extent_same_check_offsets(dst, dst_loff, len);
2945 	if (ret)
2946 		goto out_unlock;
2947 
2948 	/* don't make the dst file partly checksummed */
2949 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2950 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2951 		ret = -EINVAL;
2952 		goto out_unlock;
2953 	}
2954 
2955 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2956 	if (ret == 0)
2957 		ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2958 
2959 out_unlock:
2960 	btrfs_double_unlock(src, loff, dst, dst_loff, len);
2961 
2962 	return ret;
2963 }
2964 
2965 #define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
2966 
2967 static long btrfs_ioctl_file_extent_same(struct file *file,
2968 			struct btrfs_ioctl_same_args __user *argp)
2969 {
2970 	struct btrfs_ioctl_same_args *same;
2971 	struct btrfs_ioctl_same_extent_info *info;
2972 	struct inode *src = file_inode(file);
2973 	u64 off;
2974 	u64 len;
2975 	int i;
2976 	int ret;
2977 	unsigned long size;
2978 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2979 	bool is_admin = capable(CAP_SYS_ADMIN);
2980 	u16 count;
2981 
2982 	if (!(file->f_mode & FMODE_READ))
2983 		return -EINVAL;
2984 
2985 	ret = mnt_want_write_file(file);
2986 	if (ret)
2987 		return ret;
2988 
2989 	if (get_user(count, &argp->dest_count)) {
2990 		ret = -EFAULT;
2991 		goto out;
2992 	}
2993 
2994 	size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
2995 
2996 	same = memdup_user(argp, size);
2997 
2998 	if (IS_ERR(same)) {
2999 		ret = PTR_ERR(same);
3000 		goto out;
3001 	}
3002 
3003 	off = same->logical_offset;
3004 	len = same->length;
3005 
3006 	/*
3007 	 * Limit the total length we will dedupe for each operation.
3008 	 * This is intended to bound the total time spent in this
3009 	 * ioctl to something sane.
3010 	 */
3011 	if (len > BTRFS_MAX_DEDUPE_LEN)
3012 		len = BTRFS_MAX_DEDUPE_LEN;
3013 
3014 	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
3015 		/*
3016 		 * Btrfs does not support blocksize < page_size. As a
3017 		 * result, btrfs_cmp_data() won't correctly handle
3018 		 * this situation without an update.
3019 		 */
3020 		ret = -EINVAL;
3021 		goto out;
3022 	}
3023 
3024 	ret = -EISDIR;
3025 	if (S_ISDIR(src->i_mode))
3026 		goto out;
3027 
3028 	ret = -EACCES;
3029 	if (!S_ISREG(src->i_mode))
3030 		goto out;
3031 
3032 	/* pre-format output fields to sane values */
3033 	for (i = 0; i < count; i++) {
3034 		same->info[i].bytes_deduped = 0ULL;
3035 		same->info[i].status = 0;
3036 	}
3037 
3038 	for (i = 0, info = same->info; i < count; i++, info++) {
3039 		struct inode *dst;
3040 		struct fd dst_file = fdget(info->fd);
3041 		if (!dst_file.file) {
3042 			info->status = -EBADF;
3043 			continue;
3044 		}
3045 		dst = file_inode(dst_file.file);
3046 
3047 		if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
3048 			info->status = -EINVAL;
3049 		} else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
3050 			info->status = -EXDEV;
3051 		} else if (S_ISDIR(dst->i_mode)) {
3052 			info->status = -EISDIR;
3053 		} else if (!S_ISREG(dst->i_mode)) {
3054 			info->status = -EACCES;
3055 		} else {
3056 			info->status = btrfs_extent_same(src, off, len, dst,
3057 							info->logical_offset);
3058 			if (info->status == 0)
3059 				info->bytes_deduped += len;
3060 		}
3061 		fdput(dst_file);
3062 	}
3063 
3064 	ret = copy_to_user(argp, same, size);
3065 	if (ret)
3066 		ret = -EFAULT;
3067 
3068 out:
3069 	mnt_drop_write_file(file);
3070 	return ret;
3071 }
3072 
3073 /* Helper to check and see if this root currently has a ref on the given disk
3074  * bytenr.  If it does then we need to update the quota for this root.  This
3075  * doesn't do anything if quotas aren't enabled.
3076  */
3077 static int check_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3078 		     u64 disko)
3079 {
3080 	struct seq_list tree_mod_seq_elem = {};
3081 	struct ulist *roots;
3082 	struct ulist_iterator uiter;
3083 	struct ulist_node *root_node = NULL;
3084 	int ret;
3085 
3086 	if (!root->fs_info->quota_enabled)
3087 		return 1;
3088 
3089 	btrfs_get_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3090 	ret = btrfs_find_all_roots(trans, root->fs_info, disko,
3091 				   tree_mod_seq_elem.seq, &roots);
3092 	if (ret < 0)
3093 		goto out;
3094 	ret = 0;
3095 	ULIST_ITER_INIT(&uiter);
3096 	while ((root_node = ulist_next(roots, &uiter))) {
3097 		if (root_node->val == root->objectid) {
3098 			ret = 1;
3099 			break;
3100 		}
3101 	}
3102 	ulist_free(roots);
3103 out:
3104 	btrfs_put_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3105 	return ret;
3106 }
3107 
3108 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3109 				     struct inode *inode,
3110 				     u64 endoff,
3111 				     const u64 destoff,
3112 				     const u64 olen)
3113 {
3114 	struct btrfs_root *root = BTRFS_I(inode)->root;
3115 	int ret;
3116 
3117 	inode_inc_iversion(inode);
3118 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3119 	/*
3120 	 * We round up to the block size at eof when determining which
3121 	 * extents to clone above, but shouldn't round up the file size.
3122 	 */
3123 	if (endoff > destoff + olen)
3124 		endoff = destoff + olen;
3125 	if (endoff > inode->i_size)
3126 		btrfs_i_size_write(inode, endoff);
3127 
3128 	ret = btrfs_update_inode(trans, root, inode);
3129 	if (ret) {
3130 		btrfs_abort_transaction(trans, root, ret);
3131 		btrfs_end_transaction(trans, root);
3132 		goto out;
3133 	}
3134 	ret = btrfs_end_transaction(trans, root);
3135 out:
3136 	return ret;
3137 }
3138 
3139 static void clone_update_extent_map(struct inode *inode,
3140 				    const struct btrfs_trans_handle *trans,
3141 				    const struct btrfs_path *path,
3142 				    struct btrfs_file_extent_item *fi,
3143 				    const u64 hole_offset,
3144 				    const u64 hole_len)
3145 {
3146 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3147 	struct extent_map *em;
3148 	int ret;
3149 
3150 	em = alloc_extent_map();
3151 	if (!em) {
3152 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3153 			&BTRFS_I(inode)->runtime_flags);
3154 		return;
3155 	}
3156 
3157 	if (fi) {
3158 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3159 		em->generation = -1;
3160 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3161 		    BTRFS_FILE_EXTENT_INLINE)
3162 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3163 				&BTRFS_I(inode)->runtime_flags);
3164 	} else {
3165 		em->start = hole_offset;
3166 		em->len = hole_len;
3167 		em->ram_bytes = em->len;
3168 		em->orig_start = hole_offset;
3169 		em->block_start = EXTENT_MAP_HOLE;
3170 		em->block_len = 0;
3171 		em->orig_block_len = 0;
3172 		em->compress_type = BTRFS_COMPRESS_NONE;
3173 		em->generation = trans->transid;
3174 	}
3175 
3176 	while (1) {
3177 		write_lock(&em_tree->lock);
3178 		ret = add_extent_mapping(em_tree, em, 1);
3179 		write_unlock(&em_tree->lock);
3180 		if (ret != -EEXIST) {
3181 			free_extent_map(em);
3182 			break;
3183 		}
3184 		btrfs_drop_extent_cache(inode, em->start,
3185 					em->start + em->len - 1, 0);
3186 	}
3187 
3188 	if (unlikely(ret))
3189 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3190 			&BTRFS_I(inode)->runtime_flags);
3191 }
3192 
3193 /**
3194  * btrfs_clone() - clone a range from inode file to another
3195  *
3196  * @src: Inode to clone from
3197  * @inode: Inode to clone to
3198  * @off: Offset within source to start clone from
3199  * @olen: Original length, passed by user, of range to clone
3200  * @olen_aligned: Block-aligned value of olen, extent_same uses
3201  *               identical values here
3202  * @destoff: Offset within @inode to start clone
3203  */
3204 static int btrfs_clone(struct inode *src, struct inode *inode,
3205 		       const u64 off, const u64 olen, const u64 olen_aligned,
3206 		       const u64 destoff)
3207 {
3208 	struct btrfs_root *root = BTRFS_I(inode)->root;
3209 	struct btrfs_path *path = NULL;
3210 	struct extent_buffer *leaf;
3211 	struct btrfs_trans_handle *trans;
3212 	char *buf = NULL;
3213 	struct btrfs_key key;
3214 	u32 nritems;
3215 	int slot;
3216 	int ret;
3217 	int no_quota;
3218 	const u64 len = olen_aligned;
3219 	u64 last_disko = 0;
3220 	u64 last_dest_end = destoff;
3221 
3222 	ret = -ENOMEM;
3223 	buf = vmalloc(btrfs_level_size(root, 0));
3224 	if (!buf)
3225 		return ret;
3226 
3227 	path = btrfs_alloc_path();
3228 	if (!path) {
3229 		vfree(buf);
3230 		return ret;
3231 	}
3232 
3233 	path->reada = 2;
3234 	/* clone data */
3235 	key.objectid = btrfs_ino(src);
3236 	key.type = BTRFS_EXTENT_DATA_KEY;
3237 	key.offset = off;
3238 
3239 	while (1) {
3240 		/*
3241 		 * note the key will change type as we walk through the
3242 		 * tree.
3243 		 */
3244 		path->leave_spinning = 1;
3245 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3246 				0, 0);
3247 		if (ret < 0)
3248 			goto out;
3249 		/*
3250 		 * First search, if no extent item that starts at offset off was
3251 		 * found but the previous item is an extent item, it's possible
3252 		 * it might overlap our target range, therefore process it.
3253 		 */
3254 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3255 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3256 					      path->slots[0] - 1);
3257 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3258 				path->slots[0]--;
3259 		}
3260 
3261 		nritems = btrfs_header_nritems(path->nodes[0]);
3262 process_slot:
3263 		no_quota = 1;
3264 		if (path->slots[0] >= nritems) {
3265 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3266 			if (ret < 0)
3267 				goto out;
3268 			if (ret > 0)
3269 				break;
3270 			nritems = btrfs_header_nritems(path->nodes[0]);
3271 		}
3272 		leaf = path->nodes[0];
3273 		slot = path->slots[0];
3274 
3275 		btrfs_item_key_to_cpu(leaf, &key, slot);
3276 		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
3277 		    key.objectid != btrfs_ino(src))
3278 			break;
3279 
3280 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
3281 			struct btrfs_file_extent_item *extent;
3282 			int type;
3283 			u32 size;
3284 			struct btrfs_key new_key;
3285 			u64 disko = 0, diskl = 0;
3286 			u64 datao = 0, datal = 0;
3287 			u8 comp;
3288 			u64 drop_start;
3289 
3290 			extent = btrfs_item_ptr(leaf, slot,
3291 						struct btrfs_file_extent_item);
3292 			comp = btrfs_file_extent_compression(leaf, extent);
3293 			type = btrfs_file_extent_type(leaf, extent);
3294 			if (type == BTRFS_FILE_EXTENT_REG ||
3295 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3296 				disko = btrfs_file_extent_disk_bytenr(leaf,
3297 								      extent);
3298 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3299 								 extent);
3300 				datao = btrfs_file_extent_offset(leaf, extent);
3301 				datal = btrfs_file_extent_num_bytes(leaf,
3302 								    extent);
3303 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3304 				/* take upper bound, may be compressed */
3305 				datal = btrfs_file_extent_ram_bytes(leaf,
3306 								    extent);
3307 			}
3308 
3309 			/*
3310 			 * The first search might have left us at an extent
3311 			 * item that ends before our target range's start, can
3312 			 * happen if we have holes and NO_HOLES feature enabled.
3313 			 */
3314 			if (key.offset + datal <= off) {
3315 				path->slots[0]++;
3316 				goto process_slot;
3317 			} else if (key.offset >= off + len) {
3318 				break;
3319 			}
3320 
3321 			size = btrfs_item_size_nr(leaf, slot);
3322 			read_extent_buffer(leaf, buf,
3323 					   btrfs_item_ptr_offset(leaf, slot),
3324 					   size);
3325 
3326 			btrfs_release_path(path);
3327 			path->leave_spinning = 0;
3328 
3329 			memcpy(&new_key, &key, sizeof(new_key));
3330 			new_key.objectid = btrfs_ino(inode);
3331 			if (off <= key.offset)
3332 				new_key.offset = key.offset + destoff - off;
3333 			else
3334 				new_key.offset = destoff;
3335 
3336 			/*
3337 			 * Deal with a hole that doesn't have an extent item
3338 			 * that represents it (NO_HOLES feature enabled).
3339 			 * This hole is either in the middle of the cloning
3340 			 * range or at the beginning (fully overlaps it or
3341 			 * partially overlaps it).
3342 			 */
3343 			if (new_key.offset != last_dest_end)
3344 				drop_start = last_dest_end;
3345 			else
3346 				drop_start = new_key.offset;
3347 
3348 			/*
3349 			 * 1 - adjusting old extent (we may have to split it)
3350 			 * 1 - add new extent
3351 			 * 1 - inode update
3352 			 */
3353 			trans = btrfs_start_transaction(root, 3);
3354 			if (IS_ERR(trans)) {
3355 				ret = PTR_ERR(trans);
3356 				goto out;
3357 			}
3358 
3359 			if (type == BTRFS_FILE_EXTENT_REG ||
3360 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3361 				/*
3362 				 *    a  | --- range to clone ---|  b
3363 				 * | ------------- extent ------------- |
3364 				 */
3365 
3366 				/* subtract range b */
3367 				if (key.offset + datal > off + len)
3368 					datal = off + len - key.offset;
3369 
3370 				/* subtract range a */
3371 				if (off > key.offset) {
3372 					datao += off - key.offset;
3373 					datal -= off - key.offset;
3374 				}
3375 
3376 				ret = btrfs_drop_extents(trans, root, inode,
3377 							 drop_start,
3378 							 new_key.offset + datal,
3379 							 1);
3380 				if (ret) {
3381 					if (ret != -EOPNOTSUPP)
3382 						btrfs_abort_transaction(trans,
3383 								root, ret);
3384 					btrfs_end_transaction(trans, root);
3385 					goto out;
3386 				}
3387 
3388 				ret = btrfs_insert_empty_item(trans, root, path,
3389 							      &new_key, size);
3390 				if (ret) {
3391 					btrfs_abort_transaction(trans, root,
3392 								ret);
3393 					btrfs_end_transaction(trans, root);
3394 					goto out;
3395 				}
3396 
3397 				leaf = path->nodes[0];
3398 				slot = path->slots[0];
3399 				write_extent_buffer(leaf, buf,
3400 					    btrfs_item_ptr_offset(leaf, slot),
3401 					    size);
3402 
3403 				extent = btrfs_item_ptr(leaf, slot,
3404 						struct btrfs_file_extent_item);
3405 
3406 				/* disko == 0 means it's a hole */
3407 				if (!disko)
3408 					datao = 0;
3409 
3410 				btrfs_set_file_extent_offset(leaf, extent,
3411 							     datao);
3412 				btrfs_set_file_extent_num_bytes(leaf, extent,
3413 								datal);
3414 
3415 				/*
3416 				 * We need to look up the roots that point at
3417 				 * this bytenr and see if the new root does.  If
3418 				 * it does not we need to make sure we update
3419 				 * quotas appropriately.
3420 				 */
3421 				if (disko && root != BTRFS_I(src)->root &&
3422 				    disko != last_disko) {
3423 					no_quota = check_ref(trans, root,
3424 							     disko);
3425 					if (no_quota < 0) {
3426 						btrfs_abort_transaction(trans,
3427 									root,
3428 									ret);
3429 						btrfs_end_transaction(trans,
3430 								      root);
3431 						ret = no_quota;
3432 						goto out;
3433 					}
3434 				}
3435 
3436 				if (disko) {
3437 					inode_add_bytes(inode, datal);
3438 					ret = btrfs_inc_extent_ref(trans, root,
3439 							disko, diskl, 0,
3440 							root->root_key.objectid,
3441 							btrfs_ino(inode),
3442 							new_key.offset - datao,
3443 							no_quota);
3444 					if (ret) {
3445 						btrfs_abort_transaction(trans,
3446 									root,
3447 									ret);
3448 						btrfs_end_transaction(trans,
3449 								      root);
3450 						goto out;
3451 
3452 					}
3453 				}
3454 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3455 				u64 skip = 0;
3456 				u64 trim = 0;
3457 				u64 aligned_end = 0;
3458 
3459 				if (off > key.offset) {
3460 					skip = off - key.offset;
3461 					new_key.offset += skip;
3462 				}
3463 
3464 				if (key.offset + datal > off + len)
3465 					trim = key.offset + datal - (off + len);
3466 
3467 				if (comp && (skip || trim)) {
3468 					ret = -EINVAL;
3469 					btrfs_end_transaction(trans, root);
3470 					goto out;
3471 				}
3472 				size -= skip + trim;
3473 				datal -= skip + trim;
3474 
3475 				aligned_end = ALIGN(new_key.offset + datal,
3476 						    root->sectorsize);
3477 				ret = btrfs_drop_extents(trans, root, inode,
3478 							 drop_start,
3479 							 aligned_end,
3480 							 1);
3481 				if (ret) {
3482 					if (ret != -EOPNOTSUPP)
3483 						btrfs_abort_transaction(trans,
3484 							root, ret);
3485 					btrfs_end_transaction(trans, root);
3486 					goto out;
3487 				}
3488 
3489 				ret = btrfs_insert_empty_item(trans, root, path,
3490 							      &new_key, size);
3491 				if (ret) {
3492 					btrfs_abort_transaction(trans, root,
3493 								ret);
3494 					btrfs_end_transaction(trans, root);
3495 					goto out;
3496 				}
3497 
3498 				if (skip) {
3499 					u32 start =
3500 					  btrfs_file_extent_calc_inline_size(0);
3501 					memmove(buf+start, buf+start+skip,
3502 						datal);
3503 				}
3504 
3505 				leaf = path->nodes[0];
3506 				slot = path->slots[0];
3507 				write_extent_buffer(leaf, buf,
3508 					    btrfs_item_ptr_offset(leaf, slot),
3509 					    size);
3510 				inode_add_bytes(inode, datal);
3511 				extent = btrfs_item_ptr(leaf, slot,
3512 						struct btrfs_file_extent_item);
3513 			}
3514 
3515 			/* If we have an implicit hole (NO_HOLES feature). */
3516 			if (drop_start < new_key.offset)
3517 				clone_update_extent_map(inode, trans,
3518 						path, NULL, drop_start,
3519 						new_key.offset - drop_start);
3520 
3521 			clone_update_extent_map(inode, trans, path,
3522 						extent, 0, 0);
3523 
3524 			btrfs_mark_buffer_dirty(leaf);
3525 			btrfs_release_path(path);
3526 
3527 			last_dest_end = new_key.offset + datal;
3528 			ret = clone_finish_inode_update(trans, inode,
3529 							last_dest_end,
3530 							destoff, olen);
3531 			if (ret)
3532 				goto out;
3533 			if (new_key.offset + datal >= destoff + len)
3534 				break;
3535 		}
3536 		btrfs_release_path(path);
3537 		key.offset++;
3538 	}
3539 	ret = 0;
3540 
3541 	if (last_dest_end < destoff + len) {
3542 		/*
3543 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3544 		 * fully or partially overlaps our cloning range at its end.
3545 		 */
3546 		btrfs_release_path(path);
3547 
3548 		/*
3549 		 * 1 - remove extent(s)
3550 		 * 1 - inode update
3551 		 */
3552 		trans = btrfs_start_transaction(root, 2);
3553 		if (IS_ERR(trans)) {
3554 			ret = PTR_ERR(trans);
3555 			goto out;
3556 		}
3557 		ret = btrfs_drop_extents(trans, root, inode,
3558 					 last_dest_end, destoff + len, 1);
3559 		if (ret) {
3560 			if (ret != -EOPNOTSUPP)
3561 				btrfs_abort_transaction(trans, root, ret);
3562 			btrfs_end_transaction(trans, root);
3563 			goto out;
3564 		}
3565 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3566 						destoff, olen);
3567 		if (ret)
3568 			goto out;
3569 		clone_update_extent_map(inode, trans, path, NULL, last_dest_end,
3570 					destoff + len - last_dest_end);
3571 	}
3572 
3573 out:
3574 	btrfs_free_path(path);
3575 	vfree(buf);
3576 	return ret;
3577 }
3578 
3579 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3580 				       u64 off, u64 olen, u64 destoff)
3581 {
3582 	struct inode *inode = file_inode(file);
3583 	struct btrfs_root *root = BTRFS_I(inode)->root;
3584 	struct fd src_file;
3585 	struct inode *src;
3586 	int ret;
3587 	u64 len = olen;
3588 	u64 bs = root->fs_info->sb->s_blocksize;
3589 	int same_inode = 0;
3590 
3591 	/*
3592 	 * TODO:
3593 	 * - split compressed inline extents.  annoying: we need to
3594 	 *   decompress into destination's address_space (the file offset
3595 	 *   may change, so source mapping won't do), then recompress (or
3596 	 *   otherwise reinsert) a subrange.
3597 	 *
3598 	 * - split destination inode's inline extents.  The inline extents can
3599 	 *   be either compressed or non-compressed.
3600 	 */
3601 
3602 	/* the destination must be opened for writing */
3603 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3604 		return -EINVAL;
3605 
3606 	if (btrfs_root_readonly(root))
3607 		return -EROFS;
3608 
3609 	ret = mnt_want_write_file(file);
3610 	if (ret)
3611 		return ret;
3612 
3613 	src_file = fdget(srcfd);
3614 	if (!src_file.file) {
3615 		ret = -EBADF;
3616 		goto out_drop_write;
3617 	}
3618 
3619 	ret = -EXDEV;
3620 	if (src_file.file->f_path.mnt != file->f_path.mnt)
3621 		goto out_fput;
3622 
3623 	src = file_inode(src_file.file);
3624 
3625 	ret = -EINVAL;
3626 	if (src == inode)
3627 		same_inode = 1;
3628 
3629 	/* the src must be open for reading */
3630 	if (!(src_file.file->f_mode & FMODE_READ))
3631 		goto out_fput;
3632 
3633 	/* don't make the dst file partly checksummed */
3634 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3635 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3636 		goto out_fput;
3637 
3638 	ret = -EISDIR;
3639 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3640 		goto out_fput;
3641 
3642 	ret = -EXDEV;
3643 	if (src->i_sb != inode->i_sb)
3644 		goto out_fput;
3645 
3646 	if (!same_inode) {
3647 		if (inode < src) {
3648 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3649 			mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3650 		} else {
3651 			mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3652 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3653 		}
3654 	} else {
3655 		mutex_lock(&src->i_mutex);
3656 	}
3657 
3658 	/* determine range to clone */
3659 	ret = -EINVAL;
3660 	if (off + len > src->i_size || off + len < off)
3661 		goto out_unlock;
3662 	if (len == 0)
3663 		olen = len = src->i_size - off;
3664 	/* if we extend to eof, continue to block boundary */
3665 	if (off + len == src->i_size)
3666 		len = ALIGN(src->i_size, bs) - off;
3667 
3668 	/* verify the end result is block aligned */
3669 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3670 	    !IS_ALIGNED(destoff, bs))
3671 		goto out_unlock;
3672 
3673 	/* verify if ranges are overlapped within the same file */
3674 	if (same_inode) {
3675 		if (destoff + len > off && destoff < off + len)
3676 			goto out_unlock;
3677 	}
3678 
3679 	if (destoff > inode->i_size) {
3680 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3681 		if (ret)
3682 			goto out_unlock;
3683 	}
3684 
3685 	/*
3686 	 * Lock the target range too. Right after we replace the file extent
3687 	 * items in the fs tree (which now point to the cloned data), we might
3688 	 * have a worker replace them with extent items relative to a write
3689 	 * operation that was issued before this clone operation (i.e. confront
3690 	 * with inode.c:btrfs_finish_ordered_io).
3691 	 */
3692 	if (same_inode) {
3693 		u64 lock_start = min_t(u64, off, destoff);
3694 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3695 
3696 		lock_extent_range(src, lock_start, lock_len);
3697 	} else {
3698 		lock_extent_range(src, off, len);
3699 		lock_extent_range(inode, destoff, len);
3700 	}
3701 
3702 	ret = btrfs_clone(src, inode, off, olen, len, destoff);
3703 
3704 	if (same_inode) {
3705 		u64 lock_start = min_t(u64, off, destoff);
3706 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3707 
3708 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3709 	} else {
3710 		unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3711 		unlock_extent(&BTRFS_I(inode)->io_tree, destoff,
3712 			      destoff + len - 1);
3713 	}
3714 	/*
3715 	 * Truncate page cache pages so that future reads will see the cloned
3716 	 * data immediately and not the previous data.
3717 	 */
3718 	truncate_inode_pages_range(&inode->i_data, destoff,
3719 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3720 out_unlock:
3721 	if (!same_inode) {
3722 		if (inode < src) {
3723 			mutex_unlock(&src->i_mutex);
3724 			mutex_unlock(&inode->i_mutex);
3725 		} else {
3726 			mutex_unlock(&inode->i_mutex);
3727 			mutex_unlock(&src->i_mutex);
3728 		}
3729 	} else {
3730 		mutex_unlock(&src->i_mutex);
3731 	}
3732 out_fput:
3733 	fdput(src_file);
3734 out_drop_write:
3735 	mnt_drop_write_file(file);
3736 	return ret;
3737 }
3738 
3739 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3740 {
3741 	struct btrfs_ioctl_clone_range_args args;
3742 
3743 	if (copy_from_user(&args, argp, sizeof(args)))
3744 		return -EFAULT;
3745 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3746 				 args.src_length, args.dest_offset);
3747 }
3748 
3749 /*
3750  * there are many ways the trans_start and trans_end ioctls can lead
3751  * to deadlocks.  They should only be used by applications that
3752  * basically own the machine, and have a very in depth understanding
3753  * of all the possible deadlocks and enospc problems.
3754  */
3755 static long btrfs_ioctl_trans_start(struct file *file)
3756 {
3757 	struct inode *inode = file_inode(file);
3758 	struct btrfs_root *root = BTRFS_I(inode)->root;
3759 	struct btrfs_trans_handle *trans;
3760 	int ret;
3761 
3762 	ret = -EPERM;
3763 	if (!capable(CAP_SYS_ADMIN))
3764 		goto out;
3765 
3766 	ret = -EINPROGRESS;
3767 	if (file->private_data)
3768 		goto out;
3769 
3770 	ret = -EROFS;
3771 	if (btrfs_root_readonly(root))
3772 		goto out;
3773 
3774 	ret = mnt_want_write_file(file);
3775 	if (ret)
3776 		goto out;
3777 
3778 	atomic_inc(&root->fs_info->open_ioctl_trans);
3779 
3780 	ret = -ENOMEM;
3781 	trans = btrfs_start_ioctl_transaction(root);
3782 	if (IS_ERR(trans))
3783 		goto out_drop;
3784 
3785 	file->private_data = trans;
3786 	return 0;
3787 
3788 out_drop:
3789 	atomic_dec(&root->fs_info->open_ioctl_trans);
3790 	mnt_drop_write_file(file);
3791 out:
3792 	return ret;
3793 }
3794 
3795 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3796 {
3797 	struct inode *inode = file_inode(file);
3798 	struct btrfs_root *root = BTRFS_I(inode)->root;
3799 	struct btrfs_root *new_root;
3800 	struct btrfs_dir_item *di;
3801 	struct btrfs_trans_handle *trans;
3802 	struct btrfs_path *path;
3803 	struct btrfs_key location;
3804 	struct btrfs_disk_key disk_key;
3805 	u64 objectid = 0;
3806 	u64 dir_id;
3807 	int ret;
3808 
3809 	if (!capable(CAP_SYS_ADMIN))
3810 		return -EPERM;
3811 
3812 	ret = mnt_want_write_file(file);
3813 	if (ret)
3814 		return ret;
3815 
3816 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3817 		ret = -EFAULT;
3818 		goto out;
3819 	}
3820 
3821 	if (!objectid)
3822 		objectid = BTRFS_FS_TREE_OBJECTID;
3823 
3824 	location.objectid = objectid;
3825 	location.type = BTRFS_ROOT_ITEM_KEY;
3826 	location.offset = (u64)-1;
3827 
3828 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3829 	if (IS_ERR(new_root)) {
3830 		ret = PTR_ERR(new_root);
3831 		goto out;
3832 	}
3833 
3834 	path = btrfs_alloc_path();
3835 	if (!path) {
3836 		ret = -ENOMEM;
3837 		goto out;
3838 	}
3839 	path->leave_spinning = 1;
3840 
3841 	trans = btrfs_start_transaction(root, 1);
3842 	if (IS_ERR(trans)) {
3843 		btrfs_free_path(path);
3844 		ret = PTR_ERR(trans);
3845 		goto out;
3846 	}
3847 
3848 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3849 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3850 				   dir_id, "default", 7, 1);
3851 	if (IS_ERR_OR_NULL(di)) {
3852 		btrfs_free_path(path);
3853 		btrfs_end_transaction(trans, root);
3854 		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3855 			   "item, this isn't going to work");
3856 		ret = -ENOENT;
3857 		goto out;
3858 	}
3859 
3860 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3861 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3862 	btrfs_mark_buffer_dirty(path->nodes[0]);
3863 	btrfs_free_path(path);
3864 
3865 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3866 	btrfs_end_transaction(trans, root);
3867 out:
3868 	mnt_drop_write_file(file);
3869 	return ret;
3870 }
3871 
3872 void btrfs_get_block_group_info(struct list_head *groups_list,
3873 				struct btrfs_ioctl_space_info *space)
3874 {
3875 	struct btrfs_block_group_cache *block_group;
3876 
3877 	space->total_bytes = 0;
3878 	space->used_bytes = 0;
3879 	space->flags = 0;
3880 	list_for_each_entry(block_group, groups_list, list) {
3881 		space->flags = block_group->flags;
3882 		space->total_bytes += block_group->key.offset;
3883 		space->used_bytes +=
3884 			btrfs_block_group_used(&block_group->item);
3885 	}
3886 }
3887 
3888 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3889 {
3890 	struct btrfs_ioctl_space_args space_args;
3891 	struct btrfs_ioctl_space_info space;
3892 	struct btrfs_ioctl_space_info *dest;
3893 	struct btrfs_ioctl_space_info *dest_orig;
3894 	struct btrfs_ioctl_space_info __user *user_dest;
3895 	struct btrfs_space_info *info;
3896 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3897 		       BTRFS_BLOCK_GROUP_SYSTEM,
3898 		       BTRFS_BLOCK_GROUP_METADATA,
3899 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3900 	int num_types = 4;
3901 	int alloc_size;
3902 	int ret = 0;
3903 	u64 slot_count = 0;
3904 	int i, c;
3905 
3906 	if (copy_from_user(&space_args,
3907 			   (struct btrfs_ioctl_space_args __user *)arg,
3908 			   sizeof(space_args)))
3909 		return -EFAULT;
3910 
3911 	for (i = 0; i < num_types; i++) {
3912 		struct btrfs_space_info *tmp;
3913 
3914 		info = NULL;
3915 		rcu_read_lock();
3916 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3917 					list) {
3918 			if (tmp->flags == types[i]) {
3919 				info = tmp;
3920 				break;
3921 			}
3922 		}
3923 		rcu_read_unlock();
3924 
3925 		if (!info)
3926 			continue;
3927 
3928 		down_read(&info->groups_sem);
3929 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3930 			if (!list_empty(&info->block_groups[c]))
3931 				slot_count++;
3932 		}
3933 		up_read(&info->groups_sem);
3934 	}
3935 
3936 	/*
3937 	 * Global block reserve, exported as a space_info
3938 	 */
3939 	slot_count++;
3940 
3941 	/* space_slots == 0 means they are asking for a count */
3942 	if (space_args.space_slots == 0) {
3943 		space_args.total_spaces = slot_count;
3944 		goto out;
3945 	}
3946 
3947 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3948 
3949 	alloc_size = sizeof(*dest) * slot_count;
3950 
3951 	/* we generally have at most 6 or so space infos, one for each raid
3952 	 * level.  So, a whole page should be more than enough for everyone
3953 	 */
3954 	if (alloc_size > PAGE_CACHE_SIZE)
3955 		return -ENOMEM;
3956 
3957 	space_args.total_spaces = 0;
3958 	dest = kmalloc(alloc_size, GFP_NOFS);
3959 	if (!dest)
3960 		return -ENOMEM;
3961 	dest_orig = dest;
3962 
3963 	/* now we have a buffer to copy into */
3964 	for (i = 0; i < num_types; i++) {
3965 		struct btrfs_space_info *tmp;
3966 
3967 		if (!slot_count)
3968 			break;
3969 
3970 		info = NULL;
3971 		rcu_read_lock();
3972 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3973 					list) {
3974 			if (tmp->flags == types[i]) {
3975 				info = tmp;
3976 				break;
3977 			}
3978 		}
3979 		rcu_read_unlock();
3980 
3981 		if (!info)
3982 			continue;
3983 		down_read(&info->groups_sem);
3984 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3985 			if (!list_empty(&info->block_groups[c])) {
3986 				btrfs_get_block_group_info(
3987 					&info->block_groups[c], &space);
3988 				memcpy(dest, &space, sizeof(space));
3989 				dest++;
3990 				space_args.total_spaces++;
3991 				slot_count--;
3992 			}
3993 			if (!slot_count)
3994 				break;
3995 		}
3996 		up_read(&info->groups_sem);
3997 	}
3998 
3999 	/*
4000 	 * Add global block reserve
4001 	 */
4002 	if (slot_count) {
4003 		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4004 
4005 		spin_lock(&block_rsv->lock);
4006 		space.total_bytes = block_rsv->size;
4007 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4008 		spin_unlock(&block_rsv->lock);
4009 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4010 		memcpy(dest, &space, sizeof(space));
4011 		space_args.total_spaces++;
4012 	}
4013 
4014 	user_dest = (struct btrfs_ioctl_space_info __user *)
4015 		(arg + sizeof(struct btrfs_ioctl_space_args));
4016 
4017 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4018 		ret = -EFAULT;
4019 
4020 	kfree(dest_orig);
4021 out:
4022 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4023 		ret = -EFAULT;
4024 
4025 	return ret;
4026 }
4027 
4028 /*
4029  * there are many ways the trans_start and trans_end ioctls can lead
4030  * to deadlocks.  They should only be used by applications that
4031  * basically own the machine, and have a very in depth understanding
4032  * of all the possible deadlocks and enospc problems.
4033  */
4034 long btrfs_ioctl_trans_end(struct file *file)
4035 {
4036 	struct inode *inode = file_inode(file);
4037 	struct btrfs_root *root = BTRFS_I(inode)->root;
4038 	struct btrfs_trans_handle *trans;
4039 
4040 	trans = file->private_data;
4041 	if (!trans)
4042 		return -EINVAL;
4043 	file->private_data = NULL;
4044 
4045 	btrfs_end_transaction(trans, root);
4046 
4047 	atomic_dec(&root->fs_info->open_ioctl_trans);
4048 
4049 	mnt_drop_write_file(file);
4050 	return 0;
4051 }
4052 
4053 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4054 					    void __user *argp)
4055 {
4056 	struct btrfs_trans_handle *trans;
4057 	u64 transid;
4058 	int ret;
4059 
4060 	trans = btrfs_attach_transaction_barrier(root);
4061 	if (IS_ERR(trans)) {
4062 		if (PTR_ERR(trans) != -ENOENT)
4063 			return PTR_ERR(trans);
4064 
4065 		/* No running transaction, don't bother */
4066 		transid = root->fs_info->last_trans_committed;
4067 		goto out;
4068 	}
4069 	transid = trans->transid;
4070 	ret = btrfs_commit_transaction_async(trans, root, 0);
4071 	if (ret) {
4072 		btrfs_end_transaction(trans, root);
4073 		return ret;
4074 	}
4075 out:
4076 	if (argp)
4077 		if (copy_to_user(argp, &transid, sizeof(transid)))
4078 			return -EFAULT;
4079 	return 0;
4080 }
4081 
4082 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4083 					   void __user *argp)
4084 {
4085 	u64 transid;
4086 
4087 	if (argp) {
4088 		if (copy_from_user(&transid, argp, sizeof(transid)))
4089 			return -EFAULT;
4090 	} else {
4091 		transid = 0;  /* current trans */
4092 	}
4093 	return btrfs_wait_for_commit(root, transid);
4094 }
4095 
4096 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4097 {
4098 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4099 	struct btrfs_ioctl_scrub_args *sa;
4100 	int ret;
4101 
4102 	if (!capable(CAP_SYS_ADMIN))
4103 		return -EPERM;
4104 
4105 	sa = memdup_user(arg, sizeof(*sa));
4106 	if (IS_ERR(sa))
4107 		return PTR_ERR(sa);
4108 
4109 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4110 		ret = mnt_want_write_file(file);
4111 		if (ret)
4112 			goto out;
4113 	}
4114 
4115 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4116 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4117 			      0);
4118 
4119 	if (copy_to_user(arg, sa, sizeof(*sa)))
4120 		ret = -EFAULT;
4121 
4122 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4123 		mnt_drop_write_file(file);
4124 out:
4125 	kfree(sa);
4126 	return ret;
4127 }
4128 
4129 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4130 {
4131 	if (!capable(CAP_SYS_ADMIN))
4132 		return -EPERM;
4133 
4134 	return btrfs_scrub_cancel(root->fs_info);
4135 }
4136 
4137 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4138 				       void __user *arg)
4139 {
4140 	struct btrfs_ioctl_scrub_args *sa;
4141 	int ret;
4142 
4143 	if (!capable(CAP_SYS_ADMIN))
4144 		return -EPERM;
4145 
4146 	sa = memdup_user(arg, sizeof(*sa));
4147 	if (IS_ERR(sa))
4148 		return PTR_ERR(sa);
4149 
4150 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4151 
4152 	if (copy_to_user(arg, sa, sizeof(*sa)))
4153 		ret = -EFAULT;
4154 
4155 	kfree(sa);
4156 	return ret;
4157 }
4158 
4159 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4160 				      void __user *arg)
4161 {
4162 	struct btrfs_ioctl_get_dev_stats *sa;
4163 	int ret;
4164 
4165 	sa = memdup_user(arg, sizeof(*sa));
4166 	if (IS_ERR(sa))
4167 		return PTR_ERR(sa);
4168 
4169 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4170 		kfree(sa);
4171 		return -EPERM;
4172 	}
4173 
4174 	ret = btrfs_get_dev_stats(root, sa);
4175 
4176 	if (copy_to_user(arg, sa, sizeof(*sa)))
4177 		ret = -EFAULT;
4178 
4179 	kfree(sa);
4180 	return ret;
4181 }
4182 
4183 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4184 {
4185 	struct btrfs_ioctl_dev_replace_args *p;
4186 	int ret;
4187 
4188 	if (!capable(CAP_SYS_ADMIN))
4189 		return -EPERM;
4190 
4191 	p = memdup_user(arg, sizeof(*p));
4192 	if (IS_ERR(p))
4193 		return PTR_ERR(p);
4194 
4195 	switch (p->cmd) {
4196 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4197 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4198 			ret = -EROFS;
4199 			goto out;
4200 		}
4201 		if (atomic_xchg(
4202 			&root->fs_info->mutually_exclusive_operation_running,
4203 			1)) {
4204 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4205 		} else {
4206 			ret = btrfs_dev_replace_start(root, p);
4207 			atomic_set(
4208 			 &root->fs_info->mutually_exclusive_operation_running,
4209 			 0);
4210 		}
4211 		break;
4212 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4213 		btrfs_dev_replace_status(root->fs_info, p);
4214 		ret = 0;
4215 		break;
4216 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4217 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
4218 		break;
4219 	default:
4220 		ret = -EINVAL;
4221 		break;
4222 	}
4223 
4224 	if (copy_to_user(arg, p, sizeof(*p)))
4225 		ret = -EFAULT;
4226 out:
4227 	kfree(p);
4228 	return ret;
4229 }
4230 
4231 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4232 {
4233 	int ret = 0;
4234 	int i;
4235 	u64 rel_ptr;
4236 	int size;
4237 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4238 	struct inode_fs_paths *ipath = NULL;
4239 	struct btrfs_path *path;
4240 
4241 	if (!capable(CAP_DAC_READ_SEARCH))
4242 		return -EPERM;
4243 
4244 	path = btrfs_alloc_path();
4245 	if (!path) {
4246 		ret = -ENOMEM;
4247 		goto out;
4248 	}
4249 
4250 	ipa = memdup_user(arg, sizeof(*ipa));
4251 	if (IS_ERR(ipa)) {
4252 		ret = PTR_ERR(ipa);
4253 		ipa = NULL;
4254 		goto out;
4255 	}
4256 
4257 	size = min_t(u32, ipa->size, 4096);
4258 	ipath = init_ipath(size, root, path);
4259 	if (IS_ERR(ipath)) {
4260 		ret = PTR_ERR(ipath);
4261 		ipath = NULL;
4262 		goto out;
4263 	}
4264 
4265 	ret = paths_from_inode(ipa->inum, ipath);
4266 	if (ret < 0)
4267 		goto out;
4268 
4269 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4270 		rel_ptr = ipath->fspath->val[i] -
4271 			  (u64)(unsigned long)ipath->fspath->val;
4272 		ipath->fspath->val[i] = rel_ptr;
4273 	}
4274 
4275 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4276 			   (void *)(unsigned long)ipath->fspath, size);
4277 	if (ret) {
4278 		ret = -EFAULT;
4279 		goto out;
4280 	}
4281 
4282 out:
4283 	btrfs_free_path(path);
4284 	free_ipath(ipath);
4285 	kfree(ipa);
4286 
4287 	return ret;
4288 }
4289 
4290 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4291 {
4292 	struct btrfs_data_container *inodes = ctx;
4293 	const size_t c = 3 * sizeof(u64);
4294 
4295 	if (inodes->bytes_left >= c) {
4296 		inodes->bytes_left -= c;
4297 		inodes->val[inodes->elem_cnt] = inum;
4298 		inodes->val[inodes->elem_cnt + 1] = offset;
4299 		inodes->val[inodes->elem_cnt + 2] = root;
4300 		inodes->elem_cnt += 3;
4301 	} else {
4302 		inodes->bytes_missing += c - inodes->bytes_left;
4303 		inodes->bytes_left = 0;
4304 		inodes->elem_missed += 3;
4305 	}
4306 
4307 	return 0;
4308 }
4309 
4310 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4311 					void __user *arg)
4312 {
4313 	int ret = 0;
4314 	int size;
4315 	struct btrfs_ioctl_logical_ino_args *loi;
4316 	struct btrfs_data_container *inodes = NULL;
4317 	struct btrfs_path *path = NULL;
4318 
4319 	if (!capable(CAP_SYS_ADMIN))
4320 		return -EPERM;
4321 
4322 	loi = memdup_user(arg, sizeof(*loi));
4323 	if (IS_ERR(loi)) {
4324 		ret = PTR_ERR(loi);
4325 		loi = NULL;
4326 		goto out;
4327 	}
4328 
4329 	path = btrfs_alloc_path();
4330 	if (!path) {
4331 		ret = -ENOMEM;
4332 		goto out;
4333 	}
4334 
4335 	size = min_t(u32, loi->size, 64 * 1024);
4336 	inodes = init_data_container(size);
4337 	if (IS_ERR(inodes)) {
4338 		ret = PTR_ERR(inodes);
4339 		inodes = NULL;
4340 		goto out;
4341 	}
4342 
4343 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4344 					  build_ino_list, inodes);
4345 	if (ret == -EINVAL)
4346 		ret = -ENOENT;
4347 	if (ret < 0)
4348 		goto out;
4349 
4350 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4351 			   (void *)(unsigned long)inodes, size);
4352 	if (ret)
4353 		ret = -EFAULT;
4354 
4355 out:
4356 	btrfs_free_path(path);
4357 	vfree(inodes);
4358 	kfree(loi);
4359 
4360 	return ret;
4361 }
4362 
4363 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4364 			       struct btrfs_ioctl_balance_args *bargs)
4365 {
4366 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4367 
4368 	bargs->flags = bctl->flags;
4369 
4370 	if (atomic_read(&fs_info->balance_running))
4371 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4372 	if (atomic_read(&fs_info->balance_pause_req))
4373 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4374 	if (atomic_read(&fs_info->balance_cancel_req))
4375 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4376 
4377 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4378 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4379 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4380 
4381 	if (lock) {
4382 		spin_lock(&fs_info->balance_lock);
4383 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4384 		spin_unlock(&fs_info->balance_lock);
4385 	} else {
4386 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4387 	}
4388 }
4389 
4390 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4391 {
4392 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4393 	struct btrfs_fs_info *fs_info = root->fs_info;
4394 	struct btrfs_ioctl_balance_args *bargs;
4395 	struct btrfs_balance_control *bctl;
4396 	bool need_unlock; /* for mut. excl. ops lock */
4397 	int ret;
4398 
4399 	if (!capable(CAP_SYS_ADMIN))
4400 		return -EPERM;
4401 
4402 	ret = mnt_want_write_file(file);
4403 	if (ret)
4404 		return ret;
4405 
4406 again:
4407 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4408 		mutex_lock(&fs_info->volume_mutex);
4409 		mutex_lock(&fs_info->balance_mutex);
4410 		need_unlock = true;
4411 		goto locked;
4412 	}
4413 
4414 	/*
4415 	 * mut. excl. ops lock is locked.  Three possibilites:
4416 	 *   (1) some other op is running
4417 	 *   (2) balance is running
4418 	 *   (3) balance is paused -- special case (think resume)
4419 	 */
4420 	mutex_lock(&fs_info->balance_mutex);
4421 	if (fs_info->balance_ctl) {
4422 		/* this is either (2) or (3) */
4423 		if (!atomic_read(&fs_info->balance_running)) {
4424 			mutex_unlock(&fs_info->balance_mutex);
4425 			if (!mutex_trylock(&fs_info->volume_mutex))
4426 				goto again;
4427 			mutex_lock(&fs_info->balance_mutex);
4428 
4429 			if (fs_info->balance_ctl &&
4430 			    !atomic_read(&fs_info->balance_running)) {
4431 				/* this is (3) */
4432 				need_unlock = false;
4433 				goto locked;
4434 			}
4435 
4436 			mutex_unlock(&fs_info->balance_mutex);
4437 			mutex_unlock(&fs_info->volume_mutex);
4438 			goto again;
4439 		} else {
4440 			/* this is (2) */
4441 			mutex_unlock(&fs_info->balance_mutex);
4442 			ret = -EINPROGRESS;
4443 			goto out;
4444 		}
4445 	} else {
4446 		/* this is (1) */
4447 		mutex_unlock(&fs_info->balance_mutex);
4448 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4449 		goto out;
4450 	}
4451 
4452 locked:
4453 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4454 
4455 	if (arg) {
4456 		bargs = memdup_user(arg, sizeof(*bargs));
4457 		if (IS_ERR(bargs)) {
4458 			ret = PTR_ERR(bargs);
4459 			goto out_unlock;
4460 		}
4461 
4462 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4463 			if (!fs_info->balance_ctl) {
4464 				ret = -ENOTCONN;
4465 				goto out_bargs;
4466 			}
4467 
4468 			bctl = fs_info->balance_ctl;
4469 			spin_lock(&fs_info->balance_lock);
4470 			bctl->flags |= BTRFS_BALANCE_RESUME;
4471 			spin_unlock(&fs_info->balance_lock);
4472 
4473 			goto do_balance;
4474 		}
4475 	} else {
4476 		bargs = NULL;
4477 	}
4478 
4479 	if (fs_info->balance_ctl) {
4480 		ret = -EINPROGRESS;
4481 		goto out_bargs;
4482 	}
4483 
4484 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4485 	if (!bctl) {
4486 		ret = -ENOMEM;
4487 		goto out_bargs;
4488 	}
4489 
4490 	bctl->fs_info = fs_info;
4491 	if (arg) {
4492 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4493 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4494 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4495 
4496 		bctl->flags = bargs->flags;
4497 	} else {
4498 		/* balance everything - no filters */
4499 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4500 	}
4501 
4502 do_balance:
4503 	/*
4504 	 * Ownership of bctl and mutually_exclusive_operation_running
4505 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4506 	 * or, if restriper was paused all the way until unmount, in
4507 	 * free_fs_info.  mutually_exclusive_operation_running is
4508 	 * cleared in __cancel_balance.
4509 	 */
4510 	need_unlock = false;
4511 
4512 	ret = btrfs_balance(bctl, bargs);
4513 
4514 	if (arg) {
4515 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4516 			ret = -EFAULT;
4517 	}
4518 
4519 out_bargs:
4520 	kfree(bargs);
4521 out_unlock:
4522 	mutex_unlock(&fs_info->balance_mutex);
4523 	mutex_unlock(&fs_info->volume_mutex);
4524 	if (need_unlock)
4525 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4526 out:
4527 	mnt_drop_write_file(file);
4528 	return ret;
4529 }
4530 
4531 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4532 {
4533 	if (!capable(CAP_SYS_ADMIN))
4534 		return -EPERM;
4535 
4536 	switch (cmd) {
4537 	case BTRFS_BALANCE_CTL_PAUSE:
4538 		return btrfs_pause_balance(root->fs_info);
4539 	case BTRFS_BALANCE_CTL_CANCEL:
4540 		return btrfs_cancel_balance(root->fs_info);
4541 	}
4542 
4543 	return -EINVAL;
4544 }
4545 
4546 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4547 					 void __user *arg)
4548 {
4549 	struct btrfs_fs_info *fs_info = root->fs_info;
4550 	struct btrfs_ioctl_balance_args *bargs;
4551 	int ret = 0;
4552 
4553 	if (!capable(CAP_SYS_ADMIN))
4554 		return -EPERM;
4555 
4556 	mutex_lock(&fs_info->balance_mutex);
4557 	if (!fs_info->balance_ctl) {
4558 		ret = -ENOTCONN;
4559 		goto out;
4560 	}
4561 
4562 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4563 	if (!bargs) {
4564 		ret = -ENOMEM;
4565 		goto out;
4566 	}
4567 
4568 	update_ioctl_balance_args(fs_info, 1, bargs);
4569 
4570 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4571 		ret = -EFAULT;
4572 
4573 	kfree(bargs);
4574 out:
4575 	mutex_unlock(&fs_info->balance_mutex);
4576 	return ret;
4577 }
4578 
4579 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4580 {
4581 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4582 	struct btrfs_ioctl_quota_ctl_args *sa;
4583 	struct btrfs_trans_handle *trans = NULL;
4584 	int ret;
4585 	int err;
4586 
4587 	if (!capable(CAP_SYS_ADMIN))
4588 		return -EPERM;
4589 
4590 	ret = mnt_want_write_file(file);
4591 	if (ret)
4592 		return ret;
4593 
4594 	sa = memdup_user(arg, sizeof(*sa));
4595 	if (IS_ERR(sa)) {
4596 		ret = PTR_ERR(sa);
4597 		goto drop_write;
4598 	}
4599 
4600 	down_write(&root->fs_info->subvol_sem);
4601 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4602 	if (IS_ERR(trans)) {
4603 		ret = PTR_ERR(trans);
4604 		goto out;
4605 	}
4606 
4607 	switch (sa->cmd) {
4608 	case BTRFS_QUOTA_CTL_ENABLE:
4609 		ret = btrfs_quota_enable(trans, root->fs_info);
4610 		break;
4611 	case BTRFS_QUOTA_CTL_DISABLE:
4612 		ret = btrfs_quota_disable(trans, root->fs_info);
4613 		break;
4614 	default:
4615 		ret = -EINVAL;
4616 		break;
4617 	}
4618 
4619 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4620 	if (err && !ret)
4621 		ret = err;
4622 out:
4623 	kfree(sa);
4624 	up_write(&root->fs_info->subvol_sem);
4625 drop_write:
4626 	mnt_drop_write_file(file);
4627 	return ret;
4628 }
4629 
4630 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4631 {
4632 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4633 	struct btrfs_ioctl_qgroup_assign_args *sa;
4634 	struct btrfs_trans_handle *trans;
4635 	int ret;
4636 	int err;
4637 
4638 	if (!capable(CAP_SYS_ADMIN))
4639 		return -EPERM;
4640 
4641 	ret = mnt_want_write_file(file);
4642 	if (ret)
4643 		return ret;
4644 
4645 	sa = memdup_user(arg, sizeof(*sa));
4646 	if (IS_ERR(sa)) {
4647 		ret = PTR_ERR(sa);
4648 		goto drop_write;
4649 	}
4650 
4651 	trans = btrfs_join_transaction(root);
4652 	if (IS_ERR(trans)) {
4653 		ret = PTR_ERR(trans);
4654 		goto out;
4655 	}
4656 
4657 	/* FIXME: check if the IDs really exist */
4658 	if (sa->assign) {
4659 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4660 						sa->src, sa->dst);
4661 	} else {
4662 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4663 						sa->src, sa->dst);
4664 	}
4665 
4666 	err = btrfs_end_transaction(trans, root);
4667 	if (err && !ret)
4668 		ret = err;
4669 
4670 out:
4671 	kfree(sa);
4672 drop_write:
4673 	mnt_drop_write_file(file);
4674 	return ret;
4675 }
4676 
4677 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4678 {
4679 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4680 	struct btrfs_ioctl_qgroup_create_args *sa;
4681 	struct btrfs_trans_handle *trans;
4682 	int ret;
4683 	int err;
4684 
4685 	if (!capable(CAP_SYS_ADMIN))
4686 		return -EPERM;
4687 
4688 	ret = mnt_want_write_file(file);
4689 	if (ret)
4690 		return ret;
4691 
4692 	sa = memdup_user(arg, sizeof(*sa));
4693 	if (IS_ERR(sa)) {
4694 		ret = PTR_ERR(sa);
4695 		goto drop_write;
4696 	}
4697 
4698 	if (!sa->qgroupid) {
4699 		ret = -EINVAL;
4700 		goto out;
4701 	}
4702 
4703 	trans = btrfs_join_transaction(root);
4704 	if (IS_ERR(trans)) {
4705 		ret = PTR_ERR(trans);
4706 		goto out;
4707 	}
4708 
4709 	/* FIXME: check if the IDs really exist */
4710 	if (sa->create) {
4711 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
4712 					  NULL);
4713 	} else {
4714 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4715 	}
4716 
4717 	err = btrfs_end_transaction(trans, root);
4718 	if (err && !ret)
4719 		ret = err;
4720 
4721 out:
4722 	kfree(sa);
4723 drop_write:
4724 	mnt_drop_write_file(file);
4725 	return ret;
4726 }
4727 
4728 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4729 {
4730 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4731 	struct btrfs_ioctl_qgroup_limit_args *sa;
4732 	struct btrfs_trans_handle *trans;
4733 	int ret;
4734 	int err;
4735 	u64 qgroupid;
4736 
4737 	if (!capable(CAP_SYS_ADMIN))
4738 		return -EPERM;
4739 
4740 	ret = mnt_want_write_file(file);
4741 	if (ret)
4742 		return ret;
4743 
4744 	sa = memdup_user(arg, sizeof(*sa));
4745 	if (IS_ERR(sa)) {
4746 		ret = PTR_ERR(sa);
4747 		goto drop_write;
4748 	}
4749 
4750 	trans = btrfs_join_transaction(root);
4751 	if (IS_ERR(trans)) {
4752 		ret = PTR_ERR(trans);
4753 		goto out;
4754 	}
4755 
4756 	qgroupid = sa->qgroupid;
4757 	if (!qgroupid) {
4758 		/* take the current subvol as qgroup */
4759 		qgroupid = root->root_key.objectid;
4760 	}
4761 
4762 	/* FIXME: check if the IDs really exist */
4763 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4764 
4765 	err = btrfs_end_transaction(trans, root);
4766 	if (err && !ret)
4767 		ret = err;
4768 
4769 out:
4770 	kfree(sa);
4771 drop_write:
4772 	mnt_drop_write_file(file);
4773 	return ret;
4774 }
4775 
4776 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4777 {
4778 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4779 	struct btrfs_ioctl_quota_rescan_args *qsa;
4780 	int ret;
4781 
4782 	if (!capable(CAP_SYS_ADMIN))
4783 		return -EPERM;
4784 
4785 	ret = mnt_want_write_file(file);
4786 	if (ret)
4787 		return ret;
4788 
4789 	qsa = memdup_user(arg, sizeof(*qsa));
4790 	if (IS_ERR(qsa)) {
4791 		ret = PTR_ERR(qsa);
4792 		goto drop_write;
4793 	}
4794 
4795 	if (qsa->flags) {
4796 		ret = -EINVAL;
4797 		goto out;
4798 	}
4799 
4800 	ret = btrfs_qgroup_rescan(root->fs_info);
4801 
4802 out:
4803 	kfree(qsa);
4804 drop_write:
4805 	mnt_drop_write_file(file);
4806 	return ret;
4807 }
4808 
4809 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4810 {
4811 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4812 	struct btrfs_ioctl_quota_rescan_args *qsa;
4813 	int ret = 0;
4814 
4815 	if (!capable(CAP_SYS_ADMIN))
4816 		return -EPERM;
4817 
4818 	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4819 	if (!qsa)
4820 		return -ENOMEM;
4821 
4822 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4823 		qsa->flags = 1;
4824 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4825 	}
4826 
4827 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4828 		ret = -EFAULT;
4829 
4830 	kfree(qsa);
4831 	return ret;
4832 }
4833 
4834 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4835 {
4836 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4837 
4838 	if (!capable(CAP_SYS_ADMIN))
4839 		return -EPERM;
4840 
4841 	return btrfs_qgroup_wait_for_completion(root->fs_info);
4842 }
4843 
4844 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4845 					    struct btrfs_ioctl_received_subvol_args *sa)
4846 {
4847 	struct inode *inode = file_inode(file);
4848 	struct btrfs_root *root = BTRFS_I(inode)->root;
4849 	struct btrfs_root_item *root_item = &root->root_item;
4850 	struct btrfs_trans_handle *trans;
4851 	struct timespec ct = CURRENT_TIME;
4852 	int ret = 0;
4853 	int received_uuid_changed;
4854 
4855 	if (!inode_owner_or_capable(inode))
4856 		return -EPERM;
4857 
4858 	ret = mnt_want_write_file(file);
4859 	if (ret < 0)
4860 		return ret;
4861 
4862 	down_write(&root->fs_info->subvol_sem);
4863 
4864 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4865 		ret = -EINVAL;
4866 		goto out;
4867 	}
4868 
4869 	if (btrfs_root_readonly(root)) {
4870 		ret = -EROFS;
4871 		goto out;
4872 	}
4873 
4874 	/*
4875 	 * 1 - root item
4876 	 * 2 - uuid items (received uuid + subvol uuid)
4877 	 */
4878 	trans = btrfs_start_transaction(root, 3);
4879 	if (IS_ERR(trans)) {
4880 		ret = PTR_ERR(trans);
4881 		trans = NULL;
4882 		goto out;
4883 	}
4884 
4885 	sa->rtransid = trans->transid;
4886 	sa->rtime.sec = ct.tv_sec;
4887 	sa->rtime.nsec = ct.tv_nsec;
4888 
4889 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4890 				       BTRFS_UUID_SIZE);
4891 	if (received_uuid_changed &&
4892 	    !btrfs_is_empty_uuid(root_item->received_uuid))
4893 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4894 				    root_item->received_uuid,
4895 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4896 				    root->root_key.objectid);
4897 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4898 	btrfs_set_root_stransid(root_item, sa->stransid);
4899 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4900 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4901 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4902 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4903 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4904 
4905 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4906 				&root->root_key, &root->root_item);
4907 	if (ret < 0) {
4908 		btrfs_end_transaction(trans, root);
4909 		goto out;
4910 	}
4911 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4912 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4913 					  sa->uuid,
4914 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4915 					  root->root_key.objectid);
4916 		if (ret < 0 && ret != -EEXIST) {
4917 			btrfs_abort_transaction(trans, root, ret);
4918 			goto out;
4919 		}
4920 	}
4921 	ret = btrfs_commit_transaction(trans, root);
4922 	if (ret < 0) {
4923 		btrfs_abort_transaction(trans, root, ret);
4924 		goto out;
4925 	}
4926 
4927 out:
4928 	up_write(&root->fs_info->subvol_sem);
4929 	mnt_drop_write_file(file);
4930 	return ret;
4931 }
4932 
4933 #ifdef CONFIG_64BIT
4934 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4935 						void __user *arg)
4936 {
4937 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4938 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4939 	int ret = 0;
4940 
4941 	args32 = memdup_user(arg, sizeof(*args32));
4942 	if (IS_ERR(args32)) {
4943 		ret = PTR_ERR(args32);
4944 		args32 = NULL;
4945 		goto out;
4946 	}
4947 
4948 	args64 = kmalloc(sizeof(*args64), GFP_NOFS);
4949 	if (!args64) {
4950 		ret = -ENOMEM;
4951 		goto out;
4952 	}
4953 
4954 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4955 	args64->stransid = args32->stransid;
4956 	args64->rtransid = args32->rtransid;
4957 	args64->stime.sec = args32->stime.sec;
4958 	args64->stime.nsec = args32->stime.nsec;
4959 	args64->rtime.sec = args32->rtime.sec;
4960 	args64->rtime.nsec = args32->rtime.nsec;
4961 	args64->flags = args32->flags;
4962 
4963 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4964 	if (ret)
4965 		goto out;
4966 
4967 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4968 	args32->stransid = args64->stransid;
4969 	args32->rtransid = args64->rtransid;
4970 	args32->stime.sec = args64->stime.sec;
4971 	args32->stime.nsec = args64->stime.nsec;
4972 	args32->rtime.sec = args64->rtime.sec;
4973 	args32->rtime.nsec = args64->rtime.nsec;
4974 	args32->flags = args64->flags;
4975 
4976 	ret = copy_to_user(arg, args32, sizeof(*args32));
4977 	if (ret)
4978 		ret = -EFAULT;
4979 
4980 out:
4981 	kfree(args32);
4982 	kfree(args64);
4983 	return ret;
4984 }
4985 #endif
4986 
4987 static long btrfs_ioctl_set_received_subvol(struct file *file,
4988 					    void __user *arg)
4989 {
4990 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4991 	int ret = 0;
4992 
4993 	sa = memdup_user(arg, sizeof(*sa));
4994 	if (IS_ERR(sa)) {
4995 		ret = PTR_ERR(sa);
4996 		sa = NULL;
4997 		goto out;
4998 	}
4999 
5000 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5001 
5002 	if (ret)
5003 		goto out;
5004 
5005 	ret = copy_to_user(arg, sa, sizeof(*sa));
5006 	if (ret)
5007 		ret = -EFAULT;
5008 
5009 out:
5010 	kfree(sa);
5011 	return ret;
5012 }
5013 
5014 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5015 {
5016 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5017 	size_t len;
5018 	int ret;
5019 	char label[BTRFS_LABEL_SIZE];
5020 
5021 	spin_lock(&root->fs_info->super_lock);
5022 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5023 	spin_unlock(&root->fs_info->super_lock);
5024 
5025 	len = strnlen(label, BTRFS_LABEL_SIZE);
5026 
5027 	if (len == BTRFS_LABEL_SIZE) {
5028 		btrfs_warn(root->fs_info,
5029 			"label is too long, return the first %zu bytes", --len);
5030 	}
5031 
5032 	ret = copy_to_user(arg, label, len);
5033 
5034 	return ret ? -EFAULT : 0;
5035 }
5036 
5037 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5038 {
5039 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5040 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5041 	struct btrfs_trans_handle *trans;
5042 	char label[BTRFS_LABEL_SIZE];
5043 	int ret;
5044 
5045 	if (!capable(CAP_SYS_ADMIN))
5046 		return -EPERM;
5047 
5048 	if (copy_from_user(label, arg, sizeof(label)))
5049 		return -EFAULT;
5050 
5051 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5052 		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5053 		       BTRFS_LABEL_SIZE - 1);
5054 		return -EINVAL;
5055 	}
5056 
5057 	ret = mnt_want_write_file(file);
5058 	if (ret)
5059 		return ret;
5060 
5061 	trans = btrfs_start_transaction(root, 0);
5062 	if (IS_ERR(trans)) {
5063 		ret = PTR_ERR(trans);
5064 		goto out_unlock;
5065 	}
5066 
5067 	spin_lock(&root->fs_info->super_lock);
5068 	strcpy(super_block->label, label);
5069 	spin_unlock(&root->fs_info->super_lock);
5070 	ret = btrfs_commit_transaction(trans, root);
5071 
5072 out_unlock:
5073 	mnt_drop_write_file(file);
5074 	return ret;
5075 }
5076 
5077 #define INIT_FEATURE_FLAGS(suffix) \
5078 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5079 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5080 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5081 
5082 static int btrfs_ioctl_get_supported_features(struct file *file,
5083 					      void __user *arg)
5084 {
5085 	static struct btrfs_ioctl_feature_flags features[3] = {
5086 		INIT_FEATURE_FLAGS(SUPP),
5087 		INIT_FEATURE_FLAGS(SAFE_SET),
5088 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5089 	};
5090 
5091 	if (copy_to_user(arg, &features, sizeof(features)))
5092 		return -EFAULT;
5093 
5094 	return 0;
5095 }
5096 
5097 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5098 {
5099 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5100 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5101 	struct btrfs_ioctl_feature_flags features;
5102 
5103 	features.compat_flags = btrfs_super_compat_flags(super_block);
5104 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5105 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5106 
5107 	if (copy_to_user(arg, &features, sizeof(features)))
5108 		return -EFAULT;
5109 
5110 	return 0;
5111 }
5112 
5113 static int check_feature_bits(struct btrfs_root *root,
5114 			      enum btrfs_feature_set set,
5115 			      u64 change_mask, u64 flags, u64 supported_flags,
5116 			      u64 safe_set, u64 safe_clear)
5117 {
5118 	const char *type = btrfs_feature_set_names[set];
5119 	char *names;
5120 	u64 disallowed, unsupported;
5121 	u64 set_mask = flags & change_mask;
5122 	u64 clear_mask = ~flags & change_mask;
5123 
5124 	unsupported = set_mask & ~supported_flags;
5125 	if (unsupported) {
5126 		names = btrfs_printable_features(set, unsupported);
5127 		if (names) {
5128 			btrfs_warn(root->fs_info,
5129 			   "this kernel does not support the %s feature bit%s",
5130 			   names, strchr(names, ',') ? "s" : "");
5131 			kfree(names);
5132 		} else
5133 			btrfs_warn(root->fs_info,
5134 			   "this kernel does not support %s bits 0x%llx",
5135 			   type, unsupported);
5136 		return -EOPNOTSUPP;
5137 	}
5138 
5139 	disallowed = set_mask & ~safe_set;
5140 	if (disallowed) {
5141 		names = btrfs_printable_features(set, disallowed);
5142 		if (names) {
5143 			btrfs_warn(root->fs_info,
5144 			   "can't set the %s feature bit%s while mounted",
5145 			   names, strchr(names, ',') ? "s" : "");
5146 			kfree(names);
5147 		} else
5148 			btrfs_warn(root->fs_info,
5149 			   "can't set %s bits 0x%llx while mounted",
5150 			   type, disallowed);
5151 		return -EPERM;
5152 	}
5153 
5154 	disallowed = clear_mask & ~safe_clear;
5155 	if (disallowed) {
5156 		names = btrfs_printable_features(set, disallowed);
5157 		if (names) {
5158 			btrfs_warn(root->fs_info,
5159 			   "can't clear the %s feature bit%s while mounted",
5160 			   names, strchr(names, ',') ? "s" : "");
5161 			kfree(names);
5162 		} else
5163 			btrfs_warn(root->fs_info,
5164 			   "can't clear %s bits 0x%llx while mounted",
5165 			   type, disallowed);
5166 		return -EPERM;
5167 	}
5168 
5169 	return 0;
5170 }
5171 
5172 #define check_feature(root, change_mask, flags, mask_base)	\
5173 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5174 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5175 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5176 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5177 
5178 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5179 {
5180 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5181 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5182 	struct btrfs_ioctl_feature_flags flags[2];
5183 	struct btrfs_trans_handle *trans;
5184 	u64 newflags;
5185 	int ret;
5186 
5187 	if (!capable(CAP_SYS_ADMIN))
5188 		return -EPERM;
5189 
5190 	if (copy_from_user(flags, arg, sizeof(flags)))
5191 		return -EFAULT;
5192 
5193 	/* Nothing to do */
5194 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5195 	    !flags[0].incompat_flags)
5196 		return 0;
5197 
5198 	ret = check_feature(root, flags[0].compat_flags,
5199 			    flags[1].compat_flags, COMPAT);
5200 	if (ret)
5201 		return ret;
5202 
5203 	ret = check_feature(root, flags[0].compat_ro_flags,
5204 			    flags[1].compat_ro_flags, COMPAT_RO);
5205 	if (ret)
5206 		return ret;
5207 
5208 	ret = check_feature(root, flags[0].incompat_flags,
5209 			    flags[1].incompat_flags, INCOMPAT);
5210 	if (ret)
5211 		return ret;
5212 
5213 	trans = btrfs_start_transaction(root, 0);
5214 	if (IS_ERR(trans))
5215 		return PTR_ERR(trans);
5216 
5217 	spin_lock(&root->fs_info->super_lock);
5218 	newflags = btrfs_super_compat_flags(super_block);
5219 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5220 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5221 	btrfs_set_super_compat_flags(super_block, newflags);
5222 
5223 	newflags = btrfs_super_compat_ro_flags(super_block);
5224 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5225 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5226 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5227 
5228 	newflags = btrfs_super_incompat_flags(super_block);
5229 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5230 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5231 	btrfs_set_super_incompat_flags(super_block, newflags);
5232 	spin_unlock(&root->fs_info->super_lock);
5233 
5234 	return btrfs_commit_transaction(trans, root);
5235 }
5236 
5237 long btrfs_ioctl(struct file *file, unsigned int
5238 		cmd, unsigned long arg)
5239 {
5240 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5241 	void __user *argp = (void __user *)arg;
5242 
5243 	switch (cmd) {
5244 	case FS_IOC_GETFLAGS:
5245 		return btrfs_ioctl_getflags(file, argp);
5246 	case FS_IOC_SETFLAGS:
5247 		return btrfs_ioctl_setflags(file, argp);
5248 	case FS_IOC_GETVERSION:
5249 		return btrfs_ioctl_getversion(file, argp);
5250 	case FITRIM:
5251 		return btrfs_ioctl_fitrim(file, argp);
5252 	case BTRFS_IOC_SNAP_CREATE:
5253 		return btrfs_ioctl_snap_create(file, argp, 0);
5254 	case BTRFS_IOC_SNAP_CREATE_V2:
5255 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5256 	case BTRFS_IOC_SUBVOL_CREATE:
5257 		return btrfs_ioctl_snap_create(file, argp, 1);
5258 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5259 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5260 	case BTRFS_IOC_SNAP_DESTROY:
5261 		return btrfs_ioctl_snap_destroy(file, argp);
5262 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5263 		return btrfs_ioctl_subvol_getflags(file, argp);
5264 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5265 		return btrfs_ioctl_subvol_setflags(file, argp);
5266 	case BTRFS_IOC_DEFAULT_SUBVOL:
5267 		return btrfs_ioctl_default_subvol(file, argp);
5268 	case BTRFS_IOC_DEFRAG:
5269 		return btrfs_ioctl_defrag(file, NULL);
5270 	case BTRFS_IOC_DEFRAG_RANGE:
5271 		return btrfs_ioctl_defrag(file, argp);
5272 	case BTRFS_IOC_RESIZE:
5273 		return btrfs_ioctl_resize(file, argp);
5274 	case BTRFS_IOC_ADD_DEV:
5275 		return btrfs_ioctl_add_dev(root, argp);
5276 	case BTRFS_IOC_RM_DEV:
5277 		return btrfs_ioctl_rm_dev(file, argp);
5278 	case BTRFS_IOC_FS_INFO:
5279 		return btrfs_ioctl_fs_info(root, argp);
5280 	case BTRFS_IOC_DEV_INFO:
5281 		return btrfs_ioctl_dev_info(root, argp);
5282 	case BTRFS_IOC_BALANCE:
5283 		return btrfs_ioctl_balance(file, NULL);
5284 	case BTRFS_IOC_CLONE:
5285 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
5286 	case BTRFS_IOC_CLONE_RANGE:
5287 		return btrfs_ioctl_clone_range(file, argp);
5288 	case BTRFS_IOC_TRANS_START:
5289 		return btrfs_ioctl_trans_start(file);
5290 	case BTRFS_IOC_TRANS_END:
5291 		return btrfs_ioctl_trans_end(file);
5292 	case BTRFS_IOC_TREE_SEARCH:
5293 		return btrfs_ioctl_tree_search(file, argp);
5294 	case BTRFS_IOC_TREE_SEARCH_V2:
5295 		return btrfs_ioctl_tree_search_v2(file, argp);
5296 	case BTRFS_IOC_INO_LOOKUP:
5297 		return btrfs_ioctl_ino_lookup(file, argp);
5298 	case BTRFS_IOC_INO_PATHS:
5299 		return btrfs_ioctl_ino_to_path(root, argp);
5300 	case BTRFS_IOC_LOGICAL_INO:
5301 		return btrfs_ioctl_logical_to_ino(root, argp);
5302 	case BTRFS_IOC_SPACE_INFO:
5303 		return btrfs_ioctl_space_info(root, argp);
5304 	case BTRFS_IOC_SYNC: {
5305 		int ret;
5306 
5307 		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5308 		if (ret)
5309 			return ret;
5310 		ret = btrfs_sync_fs(file->f_dentry->d_sb, 1);
5311 		return ret;
5312 	}
5313 	case BTRFS_IOC_START_SYNC:
5314 		return btrfs_ioctl_start_sync(root, argp);
5315 	case BTRFS_IOC_WAIT_SYNC:
5316 		return btrfs_ioctl_wait_sync(root, argp);
5317 	case BTRFS_IOC_SCRUB:
5318 		return btrfs_ioctl_scrub(file, argp);
5319 	case BTRFS_IOC_SCRUB_CANCEL:
5320 		return btrfs_ioctl_scrub_cancel(root, argp);
5321 	case BTRFS_IOC_SCRUB_PROGRESS:
5322 		return btrfs_ioctl_scrub_progress(root, argp);
5323 	case BTRFS_IOC_BALANCE_V2:
5324 		return btrfs_ioctl_balance(file, argp);
5325 	case BTRFS_IOC_BALANCE_CTL:
5326 		return btrfs_ioctl_balance_ctl(root, arg);
5327 	case BTRFS_IOC_BALANCE_PROGRESS:
5328 		return btrfs_ioctl_balance_progress(root, argp);
5329 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5330 		return btrfs_ioctl_set_received_subvol(file, argp);
5331 #ifdef CONFIG_64BIT
5332 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5333 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5334 #endif
5335 	case BTRFS_IOC_SEND:
5336 		return btrfs_ioctl_send(file, argp);
5337 	case BTRFS_IOC_GET_DEV_STATS:
5338 		return btrfs_ioctl_get_dev_stats(root, argp);
5339 	case BTRFS_IOC_QUOTA_CTL:
5340 		return btrfs_ioctl_quota_ctl(file, argp);
5341 	case BTRFS_IOC_QGROUP_ASSIGN:
5342 		return btrfs_ioctl_qgroup_assign(file, argp);
5343 	case BTRFS_IOC_QGROUP_CREATE:
5344 		return btrfs_ioctl_qgroup_create(file, argp);
5345 	case BTRFS_IOC_QGROUP_LIMIT:
5346 		return btrfs_ioctl_qgroup_limit(file, argp);
5347 	case BTRFS_IOC_QUOTA_RESCAN:
5348 		return btrfs_ioctl_quota_rescan(file, argp);
5349 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5350 		return btrfs_ioctl_quota_rescan_status(file, argp);
5351 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5352 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5353 	case BTRFS_IOC_DEV_REPLACE:
5354 		return btrfs_ioctl_dev_replace(root, argp);
5355 	case BTRFS_IOC_GET_FSLABEL:
5356 		return btrfs_ioctl_get_fslabel(file, argp);
5357 	case BTRFS_IOC_SET_FSLABEL:
5358 		return btrfs_ioctl_set_fslabel(file, argp);
5359 	case BTRFS_IOC_FILE_EXTENT_SAME:
5360 		return btrfs_ioctl_file_extent_same(file, argp);
5361 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5362 		return btrfs_ioctl_get_supported_features(file, argp);
5363 	case BTRFS_IOC_GET_FEATURES:
5364 		return btrfs_ioctl_get_features(file, argp);
5365 	case BTRFS_IOC_SET_FEATURES:
5366 		return btrfs_ioctl_set_features(file, argp);
5367 	}
5368 
5369 	return -ENOTTY;
5370 }
5371