1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include <linux/btrfs.h> 46 #include "compat.h" 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 #include "dev-replace.h" 59 60 /* Mask out flags that are inappropriate for the given type of inode. */ 61 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 62 { 63 if (S_ISDIR(mode)) 64 return flags; 65 else if (S_ISREG(mode)) 66 return flags & ~FS_DIRSYNC_FL; 67 else 68 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 69 } 70 71 /* 72 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 73 */ 74 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 75 { 76 unsigned int iflags = 0; 77 78 if (flags & BTRFS_INODE_SYNC) 79 iflags |= FS_SYNC_FL; 80 if (flags & BTRFS_INODE_IMMUTABLE) 81 iflags |= FS_IMMUTABLE_FL; 82 if (flags & BTRFS_INODE_APPEND) 83 iflags |= FS_APPEND_FL; 84 if (flags & BTRFS_INODE_NODUMP) 85 iflags |= FS_NODUMP_FL; 86 if (flags & BTRFS_INODE_NOATIME) 87 iflags |= FS_NOATIME_FL; 88 if (flags & BTRFS_INODE_DIRSYNC) 89 iflags |= FS_DIRSYNC_FL; 90 if (flags & BTRFS_INODE_NODATACOW) 91 iflags |= FS_NOCOW_FL; 92 93 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 94 iflags |= FS_COMPR_FL; 95 else if (flags & BTRFS_INODE_NOCOMPRESS) 96 iflags |= FS_NOCOMP_FL; 97 98 return iflags; 99 } 100 101 /* 102 * Update inode->i_flags based on the btrfs internal flags. 103 */ 104 void btrfs_update_iflags(struct inode *inode) 105 { 106 struct btrfs_inode *ip = BTRFS_I(inode); 107 108 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 109 110 if (ip->flags & BTRFS_INODE_SYNC) 111 inode->i_flags |= S_SYNC; 112 if (ip->flags & BTRFS_INODE_IMMUTABLE) 113 inode->i_flags |= S_IMMUTABLE; 114 if (ip->flags & BTRFS_INODE_APPEND) 115 inode->i_flags |= S_APPEND; 116 if (ip->flags & BTRFS_INODE_NOATIME) 117 inode->i_flags |= S_NOATIME; 118 if (ip->flags & BTRFS_INODE_DIRSYNC) 119 inode->i_flags |= S_DIRSYNC; 120 } 121 122 /* 123 * Inherit flags from the parent inode. 124 * 125 * Currently only the compression flags and the cow flags are inherited. 126 */ 127 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 128 { 129 unsigned int flags; 130 131 if (!dir) 132 return; 133 134 flags = BTRFS_I(dir)->flags; 135 136 if (flags & BTRFS_INODE_NOCOMPRESS) { 137 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 138 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 139 } else if (flags & BTRFS_INODE_COMPRESS) { 140 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 141 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 142 } 143 144 if (flags & BTRFS_INODE_NODATACOW) { 145 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 146 if (S_ISREG(inode->i_mode)) 147 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 148 } 149 150 btrfs_update_iflags(inode); 151 } 152 153 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 154 { 155 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 156 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 157 158 if (copy_to_user(arg, &flags, sizeof(flags))) 159 return -EFAULT; 160 return 0; 161 } 162 163 static int check_flags(unsigned int flags) 164 { 165 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 166 FS_NOATIME_FL | FS_NODUMP_FL | \ 167 FS_SYNC_FL | FS_DIRSYNC_FL | \ 168 FS_NOCOMP_FL | FS_COMPR_FL | 169 FS_NOCOW_FL)) 170 return -EOPNOTSUPP; 171 172 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 173 return -EINVAL; 174 175 return 0; 176 } 177 178 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 179 { 180 struct inode *inode = file_inode(file); 181 struct btrfs_inode *ip = BTRFS_I(inode); 182 struct btrfs_root *root = ip->root; 183 struct btrfs_trans_handle *trans; 184 unsigned int flags, oldflags; 185 int ret; 186 u64 ip_oldflags; 187 unsigned int i_oldflags; 188 umode_t mode; 189 190 if (btrfs_root_readonly(root)) 191 return -EROFS; 192 193 if (copy_from_user(&flags, arg, sizeof(flags))) 194 return -EFAULT; 195 196 ret = check_flags(flags); 197 if (ret) 198 return ret; 199 200 if (!inode_owner_or_capable(inode)) 201 return -EACCES; 202 203 ret = mnt_want_write_file(file); 204 if (ret) 205 return ret; 206 207 mutex_lock(&inode->i_mutex); 208 209 ip_oldflags = ip->flags; 210 i_oldflags = inode->i_flags; 211 mode = inode->i_mode; 212 213 flags = btrfs_mask_flags(inode->i_mode, flags); 214 oldflags = btrfs_flags_to_ioctl(ip->flags); 215 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 216 if (!capable(CAP_LINUX_IMMUTABLE)) { 217 ret = -EPERM; 218 goto out_unlock; 219 } 220 } 221 222 if (flags & FS_SYNC_FL) 223 ip->flags |= BTRFS_INODE_SYNC; 224 else 225 ip->flags &= ~BTRFS_INODE_SYNC; 226 if (flags & FS_IMMUTABLE_FL) 227 ip->flags |= BTRFS_INODE_IMMUTABLE; 228 else 229 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 230 if (flags & FS_APPEND_FL) 231 ip->flags |= BTRFS_INODE_APPEND; 232 else 233 ip->flags &= ~BTRFS_INODE_APPEND; 234 if (flags & FS_NODUMP_FL) 235 ip->flags |= BTRFS_INODE_NODUMP; 236 else 237 ip->flags &= ~BTRFS_INODE_NODUMP; 238 if (flags & FS_NOATIME_FL) 239 ip->flags |= BTRFS_INODE_NOATIME; 240 else 241 ip->flags &= ~BTRFS_INODE_NOATIME; 242 if (flags & FS_DIRSYNC_FL) 243 ip->flags |= BTRFS_INODE_DIRSYNC; 244 else 245 ip->flags &= ~BTRFS_INODE_DIRSYNC; 246 if (flags & FS_NOCOW_FL) { 247 if (S_ISREG(mode)) { 248 /* 249 * It's safe to turn csums off here, no extents exist. 250 * Otherwise we want the flag to reflect the real COW 251 * status of the file and will not set it. 252 */ 253 if (inode->i_size == 0) 254 ip->flags |= BTRFS_INODE_NODATACOW 255 | BTRFS_INODE_NODATASUM; 256 } else { 257 ip->flags |= BTRFS_INODE_NODATACOW; 258 } 259 } else { 260 /* 261 * Revert back under same assuptions as above 262 */ 263 if (S_ISREG(mode)) { 264 if (inode->i_size == 0) 265 ip->flags &= ~(BTRFS_INODE_NODATACOW 266 | BTRFS_INODE_NODATASUM); 267 } else { 268 ip->flags &= ~BTRFS_INODE_NODATACOW; 269 } 270 } 271 272 /* 273 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 274 * flag may be changed automatically if compression code won't make 275 * things smaller. 276 */ 277 if (flags & FS_NOCOMP_FL) { 278 ip->flags &= ~BTRFS_INODE_COMPRESS; 279 ip->flags |= BTRFS_INODE_NOCOMPRESS; 280 } else if (flags & FS_COMPR_FL) { 281 ip->flags |= BTRFS_INODE_COMPRESS; 282 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 283 } else { 284 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 285 } 286 287 trans = btrfs_start_transaction(root, 1); 288 if (IS_ERR(trans)) { 289 ret = PTR_ERR(trans); 290 goto out_drop; 291 } 292 293 btrfs_update_iflags(inode); 294 inode_inc_iversion(inode); 295 inode->i_ctime = CURRENT_TIME; 296 ret = btrfs_update_inode(trans, root, inode); 297 298 btrfs_end_transaction(trans, root); 299 out_drop: 300 if (ret) { 301 ip->flags = ip_oldflags; 302 inode->i_flags = i_oldflags; 303 } 304 305 out_unlock: 306 mutex_unlock(&inode->i_mutex); 307 mnt_drop_write_file(file); 308 return ret; 309 } 310 311 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 312 { 313 struct inode *inode = file_inode(file); 314 315 return put_user(inode->i_generation, arg); 316 } 317 318 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 319 { 320 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb); 321 struct btrfs_device *device; 322 struct request_queue *q; 323 struct fstrim_range range; 324 u64 minlen = ULLONG_MAX; 325 u64 num_devices = 0; 326 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 327 int ret; 328 329 if (!capable(CAP_SYS_ADMIN)) 330 return -EPERM; 331 332 rcu_read_lock(); 333 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 334 dev_list) { 335 if (!device->bdev) 336 continue; 337 q = bdev_get_queue(device->bdev); 338 if (blk_queue_discard(q)) { 339 num_devices++; 340 minlen = min((u64)q->limits.discard_granularity, 341 minlen); 342 } 343 } 344 rcu_read_unlock(); 345 346 if (!num_devices) 347 return -EOPNOTSUPP; 348 if (copy_from_user(&range, arg, sizeof(range))) 349 return -EFAULT; 350 if (range.start > total_bytes || 351 range.len < fs_info->sb->s_blocksize) 352 return -EINVAL; 353 354 range.len = min(range.len, total_bytes - range.start); 355 range.minlen = max(range.minlen, minlen); 356 ret = btrfs_trim_fs(fs_info->tree_root, &range); 357 if (ret < 0) 358 return ret; 359 360 if (copy_to_user(arg, &range, sizeof(range))) 361 return -EFAULT; 362 363 return 0; 364 } 365 366 static noinline int create_subvol(struct inode *dir, 367 struct dentry *dentry, 368 char *name, int namelen, 369 u64 *async_transid, 370 struct btrfs_qgroup_inherit *inherit) 371 { 372 struct btrfs_trans_handle *trans; 373 struct btrfs_key key; 374 struct btrfs_root_item root_item; 375 struct btrfs_inode_item *inode_item; 376 struct extent_buffer *leaf; 377 struct btrfs_root *root = BTRFS_I(dir)->root; 378 struct btrfs_root *new_root; 379 struct btrfs_block_rsv block_rsv; 380 struct timespec cur_time = CURRENT_TIME; 381 int ret; 382 int err; 383 u64 objectid; 384 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 385 u64 index = 0; 386 u64 qgroup_reserved; 387 uuid_le new_uuid; 388 389 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 390 if (ret) 391 return ret; 392 393 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 394 /* 395 * The same as the snapshot creation, please see the comment 396 * of create_snapshot(). 397 */ 398 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 399 7, &qgroup_reserved); 400 if (ret) 401 return ret; 402 403 trans = btrfs_start_transaction(root, 0); 404 if (IS_ERR(trans)) { 405 ret = PTR_ERR(trans); 406 goto out; 407 } 408 trans->block_rsv = &block_rsv; 409 trans->bytes_reserved = block_rsv.size; 410 411 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit); 412 if (ret) 413 goto fail; 414 415 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 416 0, objectid, NULL, 0, 0, 0); 417 if (IS_ERR(leaf)) { 418 ret = PTR_ERR(leaf); 419 goto fail; 420 } 421 422 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 423 btrfs_set_header_bytenr(leaf, leaf->start); 424 btrfs_set_header_generation(leaf, trans->transid); 425 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 426 btrfs_set_header_owner(leaf, objectid); 427 428 write_extent_buffer(leaf, root->fs_info->fsid, 429 (unsigned long)btrfs_header_fsid(leaf), 430 BTRFS_FSID_SIZE); 431 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 432 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 433 BTRFS_UUID_SIZE); 434 btrfs_mark_buffer_dirty(leaf); 435 436 memset(&root_item, 0, sizeof(root_item)); 437 438 inode_item = &root_item.inode; 439 inode_item->generation = cpu_to_le64(1); 440 inode_item->size = cpu_to_le64(3); 441 inode_item->nlink = cpu_to_le32(1); 442 inode_item->nbytes = cpu_to_le64(root->leafsize); 443 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 444 445 root_item.flags = 0; 446 root_item.byte_limit = 0; 447 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT); 448 449 btrfs_set_root_bytenr(&root_item, leaf->start); 450 btrfs_set_root_generation(&root_item, trans->transid); 451 btrfs_set_root_level(&root_item, 0); 452 btrfs_set_root_refs(&root_item, 1); 453 btrfs_set_root_used(&root_item, leaf->len); 454 btrfs_set_root_last_snapshot(&root_item, 0); 455 456 btrfs_set_root_generation_v2(&root_item, 457 btrfs_root_generation(&root_item)); 458 uuid_le_gen(&new_uuid); 459 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE); 460 root_item.otime.sec = cpu_to_le64(cur_time.tv_sec); 461 root_item.otime.nsec = cpu_to_le32(cur_time.tv_nsec); 462 root_item.ctime = root_item.otime; 463 btrfs_set_root_ctransid(&root_item, trans->transid); 464 btrfs_set_root_otransid(&root_item, trans->transid); 465 466 btrfs_tree_unlock(leaf); 467 free_extent_buffer(leaf); 468 leaf = NULL; 469 470 btrfs_set_root_dirid(&root_item, new_dirid); 471 472 key.objectid = objectid; 473 key.offset = 0; 474 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 475 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 476 &root_item); 477 if (ret) 478 goto fail; 479 480 key.offset = (u64)-1; 481 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 482 if (IS_ERR(new_root)) { 483 btrfs_abort_transaction(trans, root, PTR_ERR(new_root)); 484 ret = PTR_ERR(new_root); 485 goto fail; 486 } 487 488 btrfs_record_root_in_trans(trans, new_root); 489 490 ret = btrfs_create_subvol_root(trans, new_root, new_dirid); 491 if (ret) { 492 /* We potentially lose an unused inode item here */ 493 btrfs_abort_transaction(trans, root, ret); 494 goto fail; 495 } 496 497 /* 498 * insert the directory item 499 */ 500 ret = btrfs_set_inode_index(dir, &index); 501 if (ret) { 502 btrfs_abort_transaction(trans, root, ret); 503 goto fail; 504 } 505 506 ret = btrfs_insert_dir_item(trans, root, 507 name, namelen, dir, &key, 508 BTRFS_FT_DIR, index); 509 if (ret) { 510 btrfs_abort_transaction(trans, root, ret); 511 goto fail; 512 } 513 514 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 515 ret = btrfs_update_inode(trans, root, dir); 516 BUG_ON(ret); 517 518 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 519 objectid, root->root_key.objectid, 520 btrfs_ino(dir), index, name, namelen); 521 522 BUG_ON(ret); 523 524 fail: 525 trans->block_rsv = NULL; 526 trans->bytes_reserved = 0; 527 if (async_transid) { 528 *async_transid = trans->transid; 529 err = btrfs_commit_transaction_async(trans, root, 1); 530 if (err) 531 err = btrfs_commit_transaction(trans, root); 532 } else { 533 err = btrfs_commit_transaction(trans, root); 534 } 535 if (err && !ret) 536 ret = err; 537 538 if (!ret) 539 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry)); 540 out: 541 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 542 return ret; 543 } 544 545 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 546 struct dentry *dentry, char *name, int namelen, 547 u64 *async_transid, bool readonly, 548 struct btrfs_qgroup_inherit *inherit) 549 { 550 struct inode *inode; 551 struct btrfs_pending_snapshot *pending_snapshot; 552 struct btrfs_trans_handle *trans; 553 int ret; 554 555 if (!root->ref_cows) 556 return -EINVAL; 557 558 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 559 if (!pending_snapshot) 560 return -ENOMEM; 561 562 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 563 BTRFS_BLOCK_RSV_TEMP); 564 /* 565 * 1 - parent dir inode 566 * 2 - dir entries 567 * 1 - root item 568 * 2 - root ref/backref 569 * 1 - root of snapshot 570 */ 571 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 572 &pending_snapshot->block_rsv, 7, 573 &pending_snapshot->qgroup_reserved); 574 if (ret) 575 goto out; 576 577 pending_snapshot->dentry = dentry; 578 pending_snapshot->root = root; 579 pending_snapshot->readonly = readonly; 580 pending_snapshot->dir = dir; 581 pending_snapshot->inherit = inherit; 582 583 trans = btrfs_start_transaction(root, 0); 584 if (IS_ERR(trans)) { 585 ret = PTR_ERR(trans); 586 goto fail; 587 } 588 589 spin_lock(&root->fs_info->trans_lock); 590 list_add(&pending_snapshot->list, 591 &trans->transaction->pending_snapshots); 592 spin_unlock(&root->fs_info->trans_lock); 593 if (async_transid) { 594 *async_transid = trans->transid; 595 ret = btrfs_commit_transaction_async(trans, 596 root->fs_info->extent_root, 1); 597 if (ret) 598 ret = btrfs_commit_transaction(trans, root); 599 } else { 600 ret = btrfs_commit_transaction(trans, 601 root->fs_info->extent_root); 602 } 603 if (ret) 604 goto fail; 605 606 ret = pending_snapshot->error; 607 if (ret) 608 goto fail; 609 610 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 611 if (ret) 612 goto fail; 613 614 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry); 615 if (IS_ERR(inode)) { 616 ret = PTR_ERR(inode); 617 goto fail; 618 } 619 BUG_ON(!inode); 620 d_instantiate(dentry, inode); 621 ret = 0; 622 fail: 623 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root, 624 &pending_snapshot->block_rsv, 625 pending_snapshot->qgroup_reserved); 626 out: 627 kfree(pending_snapshot); 628 return ret; 629 } 630 631 /* copy of check_sticky in fs/namei.c() 632 * It's inline, so penalty for filesystems that don't use sticky bit is 633 * minimal. 634 */ 635 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode) 636 { 637 kuid_t fsuid = current_fsuid(); 638 639 if (!(dir->i_mode & S_ISVTX)) 640 return 0; 641 if (uid_eq(inode->i_uid, fsuid)) 642 return 0; 643 if (uid_eq(dir->i_uid, fsuid)) 644 return 0; 645 return !capable(CAP_FOWNER); 646 } 647 648 /* copy of may_delete in fs/namei.c() 649 * Check whether we can remove a link victim from directory dir, check 650 * whether the type of victim is right. 651 * 1. We can't do it if dir is read-only (done in permission()) 652 * 2. We should have write and exec permissions on dir 653 * 3. We can't remove anything from append-only dir 654 * 4. We can't do anything with immutable dir (done in permission()) 655 * 5. If the sticky bit on dir is set we should either 656 * a. be owner of dir, or 657 * b. be owner of victim, or 658 * c. have CAP_FOWNER capability 659 * 6. If the victim is append-only or immutable we can't do antyhing with 660 * links pointing to it. 661 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 662 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 663 * 9. We can't remove a root or mountpoint. 664 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 665 * nfs_async_unlink(). 666 */ 667 668 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir) 669 { 670 int error; 671 672 if (!victim->d_inode) 673 return -ENOENT; 674 675 BUG_ON(victim->d_parent->d_inode != dir); 676 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 677 678 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 679 if (error) 680 return error; 681 if (IS_APPEND(dir)) 682 return -EPERM; 683 if (btrfs_check_sticky(dir, victim->d_inode)|| 684 IS_APPEND(victim->d_inode)|| 685 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 686 return -EPERM; 687 if (isdir) { 688 if (!S_ISDIR(victim->d_inode->i_mode)) 689 return -ENOTDIR; 690 if (IS_ROOT(victim)) 691 return -EBUSY; 692 } else if (S_ISDIR(victim->d_inode->i_mode)) 693 return -EISDIR; 694 if (IS_DEADDIR(dir)) 695 return -ENOENT; 696 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 697 return -EBUSY; 698 return 0; 699 } 700 701 /* copy of may_create in fs/namei.c() */ 702 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 703 { 704 if (child->d_inode) 705 return -EEXIST; 706 if (IS_DEADDIR(dir)) 707 return -ENOENT; 708 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 709 } 710 711 /* 712 * Create a new subvolume below @parent. This is largely modeled after 713 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 714 * inside this filesystem so it's quite a bit simpler. 715 */ 716 static noinline int btrfs_mksubvol(struct path *parent, 717 char *name, int namelen, 718 struct btrfs_root *snap_src, 719 u64 *async_transid, bool readonly, 720 struct btrfs_qgroup_inherit *inherit) 721 { 722 struct inode *dir = parent->dentry->d_inode; 723 struct dentry *dentry; 724 int error; 725 726 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 727 if (error == -EINTR) 728 return error; 729 730 dentry = lookup_one_len(name, parent->dentry, namelen); 731 error = PTR_ERR(dentry); 732 if (IS_ERR(dentry)) 733 goto out_unlock; 734 735 error = -EEXIST; 736 if (dentry->d_inode) 737 goto out_dput; 738 739 error = btrfs_may_create(dir, dentry); 740 if (error) 741 goto out_dput; 742 743 /* 744 * even if this name doesn't exist, we may get hash collisions. 745 * check for them now when we can safely fail 746 */ 747 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 748 dir->i_ino, name, 749 namelen); 750 if (error) 751 goto out_dput; 752 753 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 754 755 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 756 goto out_up_read; 757 758 if (snap_src) { 759 error = create_snapshot(snap_src, dir, dentry, name, namelen, 760 async_transid, readonly, inherit); 761 } else { 762 error = create_subvol(dir, dentry, name, namelen, 763 async_transid, inherit); 764 } 765 if (!error) 766 fsnotify_mkdir(dir, dentry); 767 out_up_read: 768 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 769 out_dput: 770 dput(dentry); 771 out_unlock: 772 mutex_unlock(&dir->i_mutex); 773 return error; 774 } 775 776 /* 777 * When we're defragging a range, we don't want to kick it off again 778 * if it is really just waiting for delalloc to send it down. 779 * If we find a nice big extent or delalloc range for the bytes in the 780 * file you want to defrag, we return 0 to let you know to skip this 781 * part of the file 782 */ 783 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh) 784 { 785 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 786 struct extent_map *em = NULL; 787 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 788 u64 end; 789 790 read_lock(&em_tree->lock); 791 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 792 read_unlock(&em_tree->lock); 793 794 if (em) { 795 end = extent_map_end(em); 796 free_extent_map(em); 797 if (end - offset > thresh) 798 return 0; 799 } 800 /* if we already have a nice delalloc here, just stop */ 801 thresh /= 2; 802 end = count_range_bits(io_tree, &offset, offset + thresh, 803 thresh, EXTENT_DELALLOC, 1); 804 if (end >= thresh) 805 return 0; 806 return 1; 807 } 808 809 /* 810 * helper function to walk through a file and find extents 811 * newer than a specific transid, and smaller than thresh. 812 * 813 * This is used by the defragging code to find new and small 814 * extents 815 */ 816 static int find_new_extents(struct btrfs_root *root, 817 struct inode *inode, u64 newer_than, 818 u64 *off, int thresh) 819 { 820 struct btrfs_path *path; 821 struct btrfs_key min_key; 822 struct btrfs_key max_key; 823 struct extent_buffer *leaf; 824 struct btrfs_file_extent_item *extent; 825 int type; 826 int ret; 827 u64 ino = btrfs_ino(inode); 828 829 path = btrfs_alloc_path(); 830 if (!path) 831 return -ENOMEM; 832 833 min_key.objectid = ino; 834 min_key.type = BTRFS_EXTENT_DATA_KEY; 835 min_key.offset = *off; 836 837 max_key.objectid = ino; 838 max_key.type = (u8)-1; 839 max_key.offset = (u64)-1; 840 841 path->keep_locks = 1; 842 843 while(1) { 844 ret = btrfs_search_forward(root, &min_key, &max_key, 845 path, newer_than); 846 if (ret != 0) 847 goto none; 848 if (min_key.objectid != ino) 849 goto none; 850 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 851 goto none; 852 853 leaf = path->nodes[0]; 854 extent = btrfs_item_ptr(leaf, path->slots[0], 855 struct btrfs_file_extent_item); 856 857 type = btrfs_file_extent_type(leaf, extent); 858 if (type == BTRFS_FILE_EXTENT_REG && 859 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 860 check_defrag_in_cache(inode, min_key.offset, thresh)) { 861 *off = min_key.offset; 862 btrfs_free_path(path); 863 return 0; 864 } 865 866 if (min_key.offset == (u64)-1) 867 goto none; 868 869 min_key.offset++; 870 btrfs_release_path(path); 871 } 872 none: 873 btrfs_free_path(path); 874 return -ENOENT; 875 } 876 877 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 878 { 879 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 880 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 881 struct extent_map *em; 882 u64 len = PAGE_CACHE_SIZE; 883 884 /* 885 * hopefully we have this extent in the tree already, try without 886 * the full extent lock 887 */ 888 read_lock(&em_tree->lock); 889 em = lookup_extent_mapping(em_tree, start, len); 890 read_unlock(&em_tree->lock); 891 892 if (!em) { 893 /* get the big lock and read metadata off disk */ 894 lock_extent(io_tree, start, start + len - 1); 895 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 896 unlock_extent(io_tree, start, start + len - 1); 897 898 if (IS_ERR(em)) 899 return NULL; 900 } 901 902 return em; 903 } 904 905 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 906 { 907 struct extent_map *next; 908 bool ret = true; 909 910 /* this is the last extent */ 911 if (em->start + em->len >= i_size_read(inode)) 912 return false; 913 914 next = defrag_lookup_extent(inode, em->start + em->len); 915 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 916 ret = false; 917 918 free_extent_map(next); 919 return ret; 920 } 921 922 static int should_defrag_range(struct inode *inode, u64 start, int thresh, 923 u64 *last_len, u64 *skip, u64 *defrag_end, 924 int compress) 925 { 926 struct extent_map *em; 927 int ret = 1; 928 bool next_mergeable = true; 929 930 /* 931 * make sure that once we start defragging an extent, we keep on 932 * defragging it 933 */ 934 if (start < *defrag_end) 935 return 1; 936 937 *skip = 0; 938 939 em = defrag_lookup_extent(inode, start); 940 if (!em) 941 return 0; 942 943 /* this will cover holes, and inline extents */ 944 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 945 ret = 0; 946 goto out; 947 } 948 949 next_mergeable = defrag_check_next_extent(inode, em); 950 951 /* 952 * we hit a real extent, if it is big or the next extent is not a 953 * real extent, don't bother defragging it 954 */ 955 if (!compress && (*last_len == 0 || *last_len >= thresh) && 956 (em->len >= thresh || !next_mergeable)) 957 ret = 0; 958 out: 959 /* 960 * last_len ends up being a counter of how many bytes we've defragged. 961 * every time we choose not to defrag an extent, we reset *last_len 962 * so that the next tiny extent will force a defrag. 963 * 964 * The end result of this is that tiny extents before a single big 965 * extent will force at least part of that big extent to be defragged. 966 */ 967 if (ret) { 968 *defrag_end = extent_map_end(em); 969 } else { 970 *last_len = 0; 971 *skip = extent_map_end(em); 972 *defrag_end = 0; 973 } 974 975 free_extent_map(em); 976 return ret; 977 } 978 979 /* 980 * it doesn't do much good to defrag one or two pages 981 * at a time. This pulls in a nice chunk of pages 982 * to COW and defrag. 983 * 984 * It also makes sure the delalloc code has enough 985 * dirty data to avoid making new small extents as part 986 * of the defrag 987 * 988 * It's a good idea to start RA on this range 989 * before calling this. 990 */ 991 static int cluster_pages_for_defrag(struct inode *inode, 992 struct page **pages, 993 unsigned long start_index, 994 int num_pages) 995 { 996 unsigned long file_end; 997 u64 isize = i_size_read(inode); 998 u64 page_start; 999 u64 page_end; 1000 u64 page_cnt; 1001 int ret; 1002 int i; 1003 int i_done; 1004 struct btrfs_ordered_extent *ordered; 1005 struct extent_state *cached_state = NULL; 1006 struct extent_io_tree *tree; 1007 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1008 1009 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 1010 if (!isize || start_index > file_end) 1011 return 0; 1012 1013 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1014 1015 ret = btrfs_delalloc_reserve_space(inode, 1016 page_cnt << PAGE_CACHE_SHIFT); 1017 if (ret) 1018 return ret; 1019 i_done = 0; 1020 tree = &BTRFS_I(inode)->io_tree; 1021 1022 /* step one, lock all the pages */ 1023 for (i = 0; i < page_cnt; i++) { 1024 struct page *page; 1025 again: 1026 page = find_or_create_page(inode->i_mapping, 1027 start_index + i, mask); 1028 if (!page) 1029 break; 1030 1031 page_start = page_offset(page); 1032 page_end = page_start + PAGE_CACHE_SIZE - 1; 1033 while (1) { 1034 lock_extent(tree, page_start, page_end); 1035 ordered = btrfs_lookup_ordered_extent(inode, 1036 page_start); 1037 unlock_extent(tree, page_start, page_end); 1038 if (!ordered) 1039 break; 1040 1041 unlock_page(page); 1042 btrfs_start_ordered_extent(inode, ordered, 1); 1043 btrfs_put_ordered_extent(ordered); 1044 lock_page(page); 1045 /* 1046 * we unlocked the page above, so we need check if 1047 * it was released or not. 1048 */ 1049 if (page->mapping != inode->i_mapping) { 1050 unlock_page(page); 1051 page_cache_release(page); 1052 goto again; 1053 } 1054 } 1055 1056 if (!PageUptodate(page)) { 1057 btrfs_readpage(NULL, page); 1058 lock_page(page); 1059 if (!PageUptodate(page)) { 1060 unlock_page(page); 1061 page_cache_release(page); 1062 ret = -EIO; 1063 break; 1064 } 1065 } 1066 1067 if (page->mapping != inode->i_mapping) { 1068 unlock_page(page); 1069 page_cache_release(page); 1070 goto again; 1071 } 1072 1073 pages[i] = page; 1074 i_done++; 1075 } 1076 if (!i_done || ret) 1077 goto out; 1078 1079 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1080 goto out; 1081 1082 /* 1083 * so now we have a nice long stream of locked 1084 * and up to date pages, lets wait on them 1085 */ 1086 for (i = 0; i < i_done; i++) 1087 wait_on_page_writeback(pages[i]); 1088 1089 page_start = page_offset(pages[0]); 1090 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 1091 1092 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1093 page_start, page_end - 1, 0, &cached_state); 1094 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1095 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1096 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1097 &cached_state, GFP_NOFS); 1098 1099 if (i_done != page_cnt) { 1100 spin_lock(&BTRFS_I(inode)->lock); 1101 BTRFS_I(inode)->outstanding_extents++; 1102 spin_unlock(&BTRFS_I(inode)->lock); 1103 btrfs_delalloc_release_space(inode, 1104 (page_cnt - i_done) << PAGE_CACHE_SHIFT); 1105 } 1106 1107 1108 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1109 &cached_state, GFP_NOFS); 1110 1111 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1112 page_start, page_end - 1, &cached_state, 1113 GFP_NOFS); 1114 1115 for (i = 0; i < i_done; i++) { 1116 clear_page_dirty_for_io(pages[i]); 1117 ClearPageChecked(pages[i]); 1118 set_page_extent_mapped(pages[i]); 1119 set_page_dirty(pages[i]); 1120 unlock_page(pages[i]); 1121 page_cache_release(pages[i]); 1122 } 1123 return i_done; 1124 out: 1125 for (i = 0; i < i_done; i++) { 1126 unlock_page(pages[i]); 1127 page_cache_release(pages[i]); 1128 } 1129 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT); 1130 return ret; 1131 1132 } 1133 1134 int btrfs_defrag_file(struct inode *inode, struct file *file, 1135 struct btrfs_ioctl_defrag_range_args *range, 1136 u64 newer_than, unsigned long max_to_defrag) 1137 { 1138 struct btrfs_root *root = BTRFS_I(inode)->root; 1139 struct file_ra_state *ra = NULL; 1140 unsigned long last_index; 1141 u64 isize = i_size_read(inode); 1142 u64 last_len = 0; 1143 u64 skip = 0; 1144 u64 defrag_end = 0; 1145 u64 newer_off = range->start; 1146 unsigned long i; 1147 unsigned long ra_index = 0; 1148 int ret; 1149 int defrag_count = 0; 1150 int compress_type = BTRFS_COMPRESS_ZLIB; 1151 int extent_thresh = range->extent_thresh; 1152 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 1153 int cluster = max_cluster; 1154 u64 new_align = ~((u64)128 * 1024 - 1); 1155 struct page **pages = NULL; 1156 1157 if (isize == 0) 1158 return 0; 1159 1160 if (range->start >= isize) 1161 return -EINVAL; 1162 1163 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1164 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1165 return -EINVAL; 1166 if (range->compress_type) 1167 compress_type = range->compress_type; 1168 } 1169 1170 if (extent_thresh == 0) 1171 extent_thresh = 256 * 1024; 1172 1173 /* 1174 * if we were not given a file, allocate a readahead 1175 * context 1176 */ 1177 if (!file) { 1178 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1179 if (!ra) 1180 return -ENOMEM; 1181 file_ra_state_init(ra, inode->i_mapping); 1182 } else { 1183 ra = &file->f_ra; 1184 } 1185 1186 pages = kmalloc(sizeof(struct page *) * max_cluster, 1187 GFP_NOFS); 1188 if (!pages) { 1189 ret = -ENOMEM; 1190 goto out_ra; 1191 } 1192 1193 /* find the last page to defrag */ 1194 if (range->start + range->len > range->start) { 1195 last_index = min_t(u64, isize - 1, 1196 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1197 } else { 1198 last_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1199 } 1200 1201 if (newer_than) { 1202 ret = find_new_extents(root, inode, newer_than, 1203 &newer_off, 64 * 1024); 1204 if (!ret) { 1205 range->start = newer_off; 1206 /* 1207 * we always align our defrag to help keep 1208 * the extents in the file evenly spaced 1209 */ 1210 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1211 } else 1212 goto out_ra; 1213 } else { 1214 i = range->start >> PAGE_CACHE_SHIFT; 1215 } 1216 if (!max_to_defrag) 1217 max_to_defrag = last_index + 1; 1218 1219 /* 1220 * make writeback starts from i, so the defrag range can be 1221 * written sequentially. 1222 */ 1223 if (i < inode->i_mapping->writeback_index) 1224 inode->i_mapping->writeback_index = i; 1225 1226 while (i <= last_index && defrag_count < max_to_defrag && 1227 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> 1228 PAGE_CACHE_SHIFT)) { 1229 /* 1230 * make sure we stop running if someone unmounts 1231 * the FS 1232 */ 1233 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1234 break; 1235 1236 if (btrfs_defrag_cancelled(root->fs_info)) { 1237 printk(KERN_DEBUG "btrfs: defrag_file cancelled\n"); 1238 ret = -EAGAIN; 1239 break; 1240 } 1241 1242 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1243 extent_thresh, &last_len, &skip, 1244 &defrag_end, range->flags & 1245 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1246 unsigned long next; 1247 /* 1248 * the should_defrag function tells us how much to skip 1249 * bump our counter by the suggested amount 1250 */ 1251 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1252 i = max(i + 1, next); 1253 continue; 1254 } 1255 1256 if (!newer_than) { 1257 cluster = (PAGE_CACHE_ALIGN(defrag_end) >> 1258 PAGE_CACHE_SHIFT) - i; 1259 cluster = min(cluster, max_cluster); 1260 } else { 1261 cluster = max_cluster; 1262 } 1263 1264 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1265 BTRFS_I(inode)->force_compress = compress_type; 1266 1267 if (i + cluster > ra_index) { 1268 ra_index = max(i, ra_index); 1269 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1270 cluster); 1271 ra_index += max_cluster; 1272 } 1273 1274 mutex_lock(&inode->i_mutex); 1275 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1276 if (ret < 0) { 1277 mutex_unlock(&inode->i_mutex); 1278 goto out_ra; 1279 } 1280 1281 defrag_count += ret; 1282 balance_dirty_pages_ratelimited(inode->i_mapping); 1283 mutex_unlock(&inode->i_mutex); 1284 1285 if (newer_than) { 1286 if (newer_off == (u64)-1) 1287 break; 1288 1289 if (ret > 0) 1290 i += ret; 1291 1292 newer_off = max(newer_off + 1, 1293 (u64)i << PAGE_CACHE_SHIFT); 1294 1295 ret = find_new_extents(root, inode, 1296 newer_than, &newer_off, 1297 64 * 1024); 1298 if (!ret) { 1299 range->start = newer_off; 1300 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1301 } else { 1302 break; 1303 } 1304 } else { 1305 if (ret > 0) { 1306 i += ret; 1307 last_len += ret << PAGE_CACHE_SHIFT; 1308 } else { 1309 i++; 1310 last_len = 0; 1311 } 1312 } 1313 } 1314 1315 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) 1316 filemap_flush(inode->i_mapping); 1317 1318 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1319 /* the filemap_flush will queue IO into the worker threads, but 1320 * we have to make sure the IO is actually started and that 1321 * ordered extents get created before we return 1322 */ 1323 atomic_inc(&root->fs_info->async_submit_draining); 1324 while (atomic_read(&root->fs_info->nr_async_submits) || 1325 atomic_read(&root->fs_info->async_delalloc_pages)) { 1326 wait_event(root->fs_info->async_submit_wait, 1327 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1328 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1329 } 1330 atomic_dec(&root->fs_info->async_submit_draining); 1331 1332 mutex_lock(&inode->i_mutex); 1333 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1334 mutex_unlock(&inode->i_mutex); 1335 } 1336 1337 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1338 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1339 } 1340 1341 ret = defrag_count; 1342 1343 out_ra: 1344 if (!file) 1345 kfree(ra); 1346 kfree(pages); 1347 return ret; 1348 } 1349 1350 static noinline int btrfs_ioctl_resize(struct file *file, 1351 void __user *arg) 1352 { 1353 u64 new_size; 1354 u64 old_size; 1355 u64 devid = 1; 1356 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 1357 struct btrfs_ioctl_vol_args *vol_args; 1358 struct btrfs_trans_handle *trans; 1359 struct btrfs_device *device = NULL; 1360 char *sizestr; 1361 char *devstr = NULL; 1362 int ret = 0; 1363 int mod = 0; 1364 1365 if (!capable(CAP_SYS_ADMIN)) 1366 return -EPERM; 1367 1368 ret = mnt_want_write_file(file); 1369 if (ret) 1370 return ret; 1371 1372 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 1373 1)) { 1374 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n"); 1375 mnt_drop_write_file(file); 1376 return -EINVAL; 1377 } 1378 1379 mutex_lock(&root->fs_info->volume_mutex); 1380 vol_args = memdup_user(arg, sizeof(*vol_args)); 1381 if (IS_ERR(vol_args)) { 1382 ret = PTR_ERR(vol_args); 1383 goto out; 1384 } 1385 1386 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1387 1388 sizestr = vol_args->name; 1389 devstr = strchr(sizestr, ':'); 1390 if (devstr) { 1391 char *end; 1392 sizestr = devstr + 1; 1393 *devstr = '\0'; 1394 devstr = vol_args->name; 1395 devid = simple_strtoull(devstr, &end, 10); 1396 if (!devid) { 1397 ret = -EINVAL; 1398 goto out_free; 1399 } 1400 printk(KERN_INFO "btrfs: resizing devid %llu\n", 1401 (unsigned long long)devid); 1402 } 1403 1404 device = btrfs_find_device(root->fs_info, devid, NULL, NULL); 1405 if (!device) { 1406 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n", 1407 (unsigned long long)devid); 1408 ret = -ENODEV; 1409 goto out_free; 1410 } 1411 1412 if (!device->writeable) { 1413 printk(KERN_INFO "btrfs: resizer unable to apply on " 1414 "readonly device %llu\n", 1415 (unsigned long long)devid); 1416 ret = -EPERM; 1417 goto out_free; 1418 } 1419 1420 if (!strcmp(sizestr, "max")) 1421 new_size = device->bdev->bd_inode->i_size; 1422 else { 1423 if (sizestr[0] == '-') { 1424 mod = -1; 1425 sizestr++; 1426 } else if (sizestr[0] == '+') { 1427 mod = 1; 1428 sizestr++; 1429 } 1430 new_size = memparse(sizestr, NULL); 1431 if (new_size == 0) { 1432 ret = -EINVAL; 1433 goto out_free; 1434 } 1435 } 1436 1437 if (device->is_tgtdev_for_dev_replace) { 1438 ret = -EPERM; 1439 goto out_free; 1440 } 1441 1442 old_size = device->total_bytes; 1443 1444 if (mod < 0) { 1445 if (new_size > old_size) { 1446 ret = -EINVAL; 1447 goto out_free; 1448 } 1449 new_size = old_size - new_size; 1450 } else if (mod > 0) { 1451 new_size = old_size + new_size; 1452 } 1453 1454 if (new_size < 256 * 1024 * 1024) { 1455 ret = -EINVAL; 1456 goto out_free; 1457 } 1458 if (new_size > device->bdev->bd_inode->i_size) { 1459 ret = -EFBIG; 1460 goto out_free; 1461 } 1462 1463 do_div(new_size, root->sectorsize); 1464 new_size *= root->sectorsize; 1465 1466 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n", 1467 rcu_str_deref(device->name), 1468 (unsigned long long)new_size); 1469 1470 if (new_size > old_size) { 1471 trans = btrfs_start_transaction(root, 0); 1472 if (IS_ERR(trans)) { 1473 ret = PTR_ERR(trans); 1474 goto out_free; 1475 } 1476 ret = btrfs_grow_device(trans, device, new_size); 1477 btrfs_commit_transaction(trans, root); 1478 } else if (new_size < old_size) { 1479 ret = btrfs_shrink_device(device, new_size); 1480 } /* equal, nothing need to do */ 1481 1482 out_free: 1483 kfree(vol_args); 1484 out: 1485 mutex_unlock(&root->fs_info->volume_mutex); 1486 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 1487 mnt_drop_write_file(file); 1488 return ret; 1489 } 1490 1491 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1492 char *name, unsigned long fd, int subvol, 1493 u64 *transid, bool readonly, 1494 struct btrfs_qgroup_inherit *inherit) 1495 { 1496 int namelen; 1497 int ret = 0; 1498 1499 ret = mnt_want_write_file(file); 1500 if (ret) 1501 goto out; 1502 1503 namelen = strlen(name); 1504 if (strchr(name, '/')) { 1505 ret = -EINVAL; 1506 goto out_drop_write; 1507 } 1508 1509 if (name[0] == '.' && 1510 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1511 ret = -EEXIST; 1512 goto out_drop_write; 1513 } 1514 1515 if (subvol) { 1516 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1517 NULL, transid, readonly, inherit); 1518 } else { 1519 struct fd src = fdget(fd); 1520 struct inode *src_inode; 1521 if (!src.file) { 1522 ret = -EINVAL; 1523 goto out_drop_write; 1524 } 1525 1526 src_inode = file_inode(src.file); 1527 if (src_inode->i_sb != file_inode(file)->i_sb) { 1528 printk(KERN_INFO "btrfs: Snapshot src from " 1529 "another FS\n"); 1530 ret = -EINVAL; 1531 } else { 1532 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1533 BTRFS_I(src_inode)->root, 1534 transid, readonly, inherit); 1535 } 1536 fdput(src); 1537 } 1538 out_drop_write: 1539 mnt_drop_write_file(file); 1540 out: 1541 return ret; 1542 } 1543 1544 static noinline int btrfs_ioctl_snap_create(struct file *file, 1545 void __user *arg, int subvol) 1546 { 1547 struct btrfs_ioctl_vol_args *vol_args; 1548 int ret; 1549 1550 vol_args = memdup_user(arg, sizeof(*vol_args)); 1551 if (IS_ERR(vol_args)) 1552 return PTR_ERR(vol_args); 1553 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1554 1555 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1556 vol_args->fd, subvol, 1557 NULL, false, NULL); 1558 1559 kfree(vol_args); 1560 return ret; 1561 } 1562 1563 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1564 void __user *arg, int subvol) 1565 { 1566 struct btrfs_ioctl_vol_args_v2 *vol_args; 1567 int ret; 1568 u64 transid = 0; 1569 u64 *ptr = NULL; 1570 bool readonly = false; 1571 struct btrfs_qgroup_inherit *inherit = NULL; 1572 1573 vol_args = memdup_user(arg, sizeof(*vol_args)); 1574 if (IS_ERR(vol_args)) 1575 return PTR_ERR(vol_args); 1576 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1577 1578 if (vol_args->flags & 1579 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1580 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1581 ret = -EOPNOTSUPP; 1582 goto out; 1583 } 1584 1585 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1586 ptr = &transid; 1587 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1588 readonly = true; 1589 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1590 if (vol_args->size > PAGE_CACHE_SIZE) { 1591 ret = -EINVAL; 1592 goto out; 1593 } 1594 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1595 if (IS_ERR(inherit)) { 1596 ret = PTR_ERR(inherit); 1597 goto out; 1598 } 1599 } 1600 1601 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1602 vol_args->fd, subvol, ptr, 1603 readonly, inherit); 1604 1605 if (ret == 0 && ptr && 1606 copy_to_user(arg + 1607 offsetof(struct btrfs_ioctl_vol_args_v2, 1608 transid), ptr, sizeof(*ptr))) 1609 ret = -EFAULT; 1610 out: 1611 kfree(vol_args); 1612 kfree(inherit); 1613 return ret; 1614 } 1615 1616 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1617 void __user *arg) 1618 { 1619 struct inode *inode = file_inode(file); 1620 struct btrfs_root *root = BTRFS_I(inode)->root; 1621 int ret = 0; 1622 u64 flags = 0; 1623 1624 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1625 return -EINVAL; 1626 1627 down_read(&root->fs_info->subvol_sem); 1628 if (btrfs_root_readonly(root)) 1629 flags |= BTRFS_SUBVOL_RDONLY; 1630 up_read(&root->fs_info->subvol_sem); 1631 1632 if (copy_to_user(arg, &flags, sizeof(flags))) 1633 ret = -EFAULT; 1634 1635 return ret; 1636 } 1637 1638 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1639 void __user *arg) 1640 { 1641 struct inode *inode = file_inode(file); 1642 struct btrfs_root *root = BTRFS_I(inode)->root; 1643 struct btrfs_trans_handle *trans; 1644 u64 root_flags; 1645 u64 flags; 1646 int ret = 0; 1647 1648 ret = mnt_want_write_file(file); 1649 if (ret) 1650 goto out; 1651 1652 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1653 ret = -EINVAL; 1654 goto out_drop_write; 1655 } 1656 1657 if (copy_from_user(&flags, arg, sizeof(flags))) { 1658 ret = -EFAULT; 1659 goto out_drop_write; 1660 } 1661 1662 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1663 ret = -EINVAL; 1664 goto out_drop_write; 1665 } 1666 1667 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1668 ret = -EOPNOTSUPP; 1669 goto out_drop_write; 1670 } 1671 1672 if (!inode_owner_or_capable(inode)) { 1673 ret = -EACCES; 1674 goto out_drop_write; 1675 } 1676 1677 down_write(&root->fs_info->subvol_sem); 1678 1679 /* nothing to do */ 1680 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1681 goto out_drop_sem; 1682 1683 root_flags = btrfs_root_flags(&root->root_item); 1684 if (flags & BTRFS_SUBVOL_RDONLY) 1685 btrfs_set_root_flags(&root->root_item, 1686 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1687 else 1688 btrfs_set_root_flags(&root->root_item, 1689 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1690 1691 trans = btrfs_start_transaction(root, 1); 1692 if (IS_ERR(trans)) { 1693 ret = PTR_ERR(trans); 1694 goto out_reset; 1695 } 1696 1697 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1698 &root->root_key, &root->root_item); 1699 1700 btrfs_commit_transaction(trans, root); 1701 out_reset: 1702 if (ret) 1703 btrfs_set_root_flags(&root->root_item, root_flags); 1704 out_drop_sem: 1705 up_write(&root->fs_info->subvol_sem); 1706 out_drop_write: 1707 mnt_drop_write_file(file); 1708 out: 1709 return ret; 1710 } 1711 1712 /* 1713 * helper to check if the subvolume references other subvolumes 1714 */ 1715 static noinline int may_destroy_subvol(struct btrfs_root *root) 1716 { 1717 struct btrfs_path *path; 1718 struct btrfs_key key; 1719 int ret; 1720 1721 path = btrfs_alloc_path(); 1722 if (!path) 1723 return -ENOMEM; 1724 1725 key.objectid = root->root_key.objectid; 1726 key.type = BTRFS_ROOT_REF_KEY; 1727 key.offset = (u64)-1; 1728 1729 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1730 &key, path, 0, 0); 1731 if (ret < 0) 1732 goto out; 1733 BUG_ON(ret == 0); 1734 1735 ret = 0; 1736 if (path->slots[0] > 0) { 1737 path->slots[0]--; 1738 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1739 if (key.objectid == root->root_key.objectid && 1740 key.type == BTRFS_ROOT_REF_KEY) 1741 ret = -ENOTEMPTY; 1742 } 1743 out: 1744 btrfs_free_path(path); 1745 return ret; 1746 } 1747 1748 static noinline int key_in_sk(struct btrfs_key *key, 1749 struct btrfs_ioctl_search_key *sk) 1750 { 1751 struct btrfs_key test; 1752 int ret; 1753 1754 test.objectid = sk->min_objectid; 1755 test.type = sk->min_type; 1756 test.offset = sk->min_offset; 1757 1758 ret = btrfs_comp_cpu_keys(key, &test); 1759 if (ret < 0) 1760 return 0; 1761 1762 test.objectid = sk->max_objectid; 1763 test.type = sk->max_type; 1764 test.offset = sk->max_offset; 1765 1766 ret = btrfs_comp_cpu_keys(key, &test); 1767 if (ret > 0) 1768 return 0; 1769 return 1; 1770 } 1771 1772 static noinline int copy_to_sk(struct btrfs_root *root, 1773 struct btrfs_path *path, 1774 struct btrfs_key *key, 1775 struct btrfs_ioctl_search_key *sk, 1776 char *buf, 1777 unsigned long *sk_offset, 1778 int *num_found) 1779 { 1780 u64 found_transid; 1781 struct extent_buffer *leaf; 1782 struct btrfs_ioctl_search_header sh; 1783 unsigned long item_off; 1784 unsigned long item_len; 1785 int nritems; 1786 int i; 1787 int slot; 1788 int ret = 0; 1789 1790 leaf = path->nodes[0]; 1791 slot = path->slots[0]; 1792 nritems = btrfs_header_nritems(leaf); 1793 1794 if (btrfs_header_generation(leaf) > sk->max_transid) { 1795 i = nritems; 1796 goto advance_key; 1797 } 1798 found_transid = btrfs_header_generation(leaf); 1799 1800 for (i = slot; i < nritems; i++) { 1801 item_off = btrfs_item_ptr_offset(leaf, i); 1802 item_len = btrfs_item_size_nr(leaf, i); 1803 1804 btrfs_item_key_to_cpu(leaf, key, i); 1805 if (!key_in_sk(key, sk)) 1806 continue; 1807 1808 if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE) 1809 item_len = 0; 1810 1811 if (sizeof(sh) + item_len + *sk_offset > 1812 BTRFS_SEARCH_ARGS_BUFSIZE) { 1813 ret = 1; 1814 goto overflow; 1815 } 1816 1817 sh.objectid = key->objectid; 1818 sh.offset = key->offset; 1819 sh.type = key->type; 1820 sh.len = item_len; 1821 sh.transid = found_transid; 1822 1823 /* copy search result header */ 1824 memcpy(buf + *sk_offset, &sh, sizeof(sh)); 1825 *sk_offset += sizeof(sh); 1826 1827 if (item_len) { 1828 char *p = buf + *sk_offset; 1829 /* copy the item */ 1830 read_extent_buffer(leaf, p, 1831 item_off, item_len); 1832 *sk_offset += item_len; 1833 } 1834 (*num_found)++; 1835 1836 if (*num_found >= sk->nr_items) 1837 break; 1838 } 1839 advance_key: 1840 ret = 0; 1841 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 1842 key->offset++; 1843 else if (key->type < (u8)-1 && key->type < sk->max_type) { 1844 key->offset = 0; 1845 key->type++; 1846 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 1847 key->offset = 0; 1848 key->type = 0; 1849 key->objectid++; 1850 } else 1851 ret = 1; 1852 overflow: 1853 return ret; 1854 } 1855 1856 static noinline int search_ioctl(struct inode *inode, 1857 struct btrfs_ioctl_search_args *args) 1858 { 1859 struct btrfs_root *root; 1860 struct btrfs_key key; 1861 struct btrfs_key max_key; 1862 struct btrfs_path *path; 1863 struct btrfs_ioctl_search_key *sk = &args->key; 1864 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 1865 int ret; 1866 int num_found = 0; 1867 unsigned long sk_offset = 0; 1868 1869 path = btrfs_alloc_path(); 1870 if (!path) 1871 return -ENOMEM; 1872 1873 if (sk->tree_id == 0) { 1874 /* search the root of the inode that was passed */ 1875 root = BTRFS_I(inode)->root; 1876 } else { 1877 key.objectid = sk->tree_id; 1878 key.type = BTRFS_ROOT_ITEM_KEY; 1879 key.offset = (u64)-1; 1880 root = btrfs_read_fs_root_no_name(info, &key); 1881 if (IS_ERR(root)) { 1882 printk(KERN_ERR "could not find root %llu\n", 1883 sk->tree_id); 1884 btrfs_free_path(path); 1885 return -ENOENT; 1886 } 1887 } 1888 1889 key.objectid = sk->min_objectid; 1890 key.type = sk->min_type; 1891 key.offset = sk->min_offset; 1892 1893 max_key.objectid = sk->max_objectid; 1894 max_key.type = sk->max_type; 1895 max_key.offset = sk->max_offset; 1896 1897 path->keep_locks = 1; 1898 1899 while(1) { 1900 ret = btrfs_search_forward(root, &key, &max_key, path, 1901 sk->min_transid); 1902 if (ret != 0) { 1903 if (ret > 0) 1904 ret = 0; 1905 goto err; 1906 } 1907 ret = copy_to_sk(root, path, &key, sk, args->buf, 1908 &sk_offset, &num_found); 1909 btrfs_release_path(path); 1910 if (ret || num_found >= sk->nr_items) 1911 break; 1912 1913 } 1914 ret = 0; 1915 err: 1916 sk->nr_items = num_found; 1917 btrfs_free_path(path); 1918 return ret; 1919 } 1920 1921 static noinline int btrfs_ioctl_tree_search(struct file *file, 1922 void __user *argp) 1923 { 1924 struct btrfs_ioctl_search_args *args; 1925 struct inode *inode; 1926 int ret; 1927 1928 if (!capable(CAP_SYS_ADMIN)) 1929 return -EPERM; 1930 1931 args = memdup_user(argp, sizeof(*args)); 1932 if (IS_ERR(args)) 1933 return PTR_ERR(args); 1934 1935 inode = file_inode(file); 1936 ret = search_ioctl(inode, args); 1937 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1938 ret = -EFAULT; 1939 kfree(args); 1940 return ret; 1941 } 1942 1943 /* 1944 * Search INODE_REFs to identify path name of 'dirid' directory 1945 * in a 'tree_id' tree. and sets path name to 'name'. 1946 */ 1947 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1948 u64 tree_id, u64 dirid, char *name) 1949 { 1950 struct btrfs_root *root; 1951 struct btrfs_key key; 1952 char *ptr; 1953 int ret = -1; 1954 int slot; 1955 int len; 1956 int total_len = 0; 1957 struct btrfs_inode_ref *iref; 1958 struct extent_buffer *l; 1959 struct btrfs_path *path; 1960 1961 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1962 name[0]='\0'; 1963 return 0; 1964 } 1965 1966 path = btrfs_alloc_path(); 1967 if (!path) 1968 return -ENOMEM; 1969 1970 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 1971 1972 key.objectid = tree_id; 1973 key.type = BTRFS_ROOT_ITEM_KEY; 1974 key.offset = (u64)-1; 1975 root = btrfs_read_fs_root_no_name(info, &key); 1976 if (IS_ERR(root)) { 1977 printk(KERN_ERR "could not find root %llu\n", tree_id); 1978 ret = -ENOENT; 1979 goto out; 1980 } 1981 1982 key.objectid = dirid; 1983 key.type = BTRFS_INODE_REF_KEY; 1984 key.offset = (u64)-1; 1985 1986 while(1) { 1987 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1988 if (ret < 0) 1989 goto out; 1990 1991 l = path->nodes[0]; 1992 slot = path->slots[0]; 1993 if (ret > 0 && slot > 0) 1994 slot--; 1995 btrfs_item_key_to_cpu(l, &key, slot); 1996 1997 if (ret > 0 && (key.objectid != dirid || 1998 key.type != BTRFS_INODE_REF_KEY)) { 1999 ret = -ENOENT; 2000 goto out; 2001 } 2002 2003 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2004 len = btrfs_inode_ref_name_len(l, iref); 2005 ptr -= len + 1; 2006 total_len += len + 1; 2007 if (ptr < name) 2008 goto out; 2009 2010 *(ptr + len) = '/'; 2011 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len); 2012 2013 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2014 break; 2015 2016 btrfs_release_path(path); 2017 key.objectid = key.offset; 2018 key.offset = (u64)-1; 2019 dirid = key.objectid; 2020 } 2021 if (ptr < name) 2022 goto out; 2023 memmove(name, ptr, total_len); 2024 name[total_len]='\0'; 2025 ret = 0; 2026 out: 2027 btrfs_free_path(path); 2028 return ret; 2029 } 2030 2031 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2032 void __user *argp) 2033 { 2034 struct btrfs_ioctl_ino_lookup_args *args; 2035 struct inode *inode; 2036 int ret; 2037 2038 if (!capable(CAP_SYS_ADMIN)) 2039 return -EPERM; 2040 2041 args = memdup_user(argp, sizeof(*args)); 2042 if (IS_ERR(args)) 2043 return PTR_ERR(args); 2044 2045 inode = file_inode(file); 2046 2047 if (args->treeid == 0) 2048 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2049 2050 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2051 args->treeid, args->objectid, 2052 args->name); 2053 2054 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2055 ret = -EFAULT; 2056 2057 kfree(args); 2058 return ret; 2059 } 2060 2061 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2062 void __user *arg) 2063 { 2064 struct dentry *parent = fdentry(file); 2065 struct dentry *dentry; 2066 struct inode *dir = parent->d_inode; 2067 struct inode *inode; 2068 struct btrfs_root *root = BTRFS_I(dir)->root; 2069 struct btrfs_root *dest = NULL; 2070 struct btrfs_ioctl_vol_args *vol_args; 2071 struct btrfs_trans_handle *trans; 2072 struct btrfs_block_rsv block_rsv; 2073 u64 qgroup_reserved; 2074 int namelen; 2075 int ret; 2076 int err = 0; 2077 2078 vol_args = memdup_user(arg, sizeof(*vol_args)); 2079 if (IS_ERR(vol_args)) 2080 return PTR_ERR(vol_args); 2081 2082 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2083 namelen = strlen(vol_args->name); 2084 if (strchr(vol_args->name, '/') || 2085 strncmp(vol_args->name, "..", namelen) == 0) { 2086 err = -EINVAL; 2087 goto out; 2088 } 2089 2090 err = mnt_want_write_file(file); 2091 if (err) 2092 goto out; 2093 2094 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 2095 if (err == -EINTR) 2096 goto out; 2097 dentry = lookup_one_len(vol_args->name, parent, namelen); 2098 if (IS_ERR(dentry)) { 2099 err = PTR_ERR(dentry); 2100 goto out_unlock_dir; 2101 } 2102 2103 if (!dentry->d_inode) { 2104 err = -ENOENT; 2105 goto out_dput; 2106 } 2107 2108 inode = dentry->d_inode; 2109 dest = BTRFS_I(inode)->root; 2110 if (!capable(CAP_SYS_ADMIN)){ 2111 /* 2112 * Regular user. Only allow this with a special mount 2113 * option, when the user has write+exec access to the 2114 * subvol root, and when rmdir(2) would have been 2115 * allowed. 2116 * 2117 * Note that this is _not_ check that the subvol is 2118 * empty or doesn't contain data that we wouldn't 2119 * otherwise be able to delete. 2120 * 2121 * Users who want to delete empty subvols should try 2122 * rmdir(2). 2123 */ 2124 err = -EPERM; 2125 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 2126 goto out_dput; 2127 2128 /* 2129 * Do not allow deletion if the parent dir is the same 2130 * as the dir to be deleted. That means the ioctl 2131 * must be called on the dentry referencing the root 2132 * of the subvol, not a random directory contained 2133 * within it. 2134 */ 2135 err = -EINVAL; 2136 if (root == dest) 2137 goto out_dput; 2138 2139 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2140 if (err) 2141 goto out_dput; 2142 } 2143 2144 /* check if subvolume may be deleted by a user */ 2145 err = btrfs_may_delete(dir, dentry, 1); 2146 if (err) 2147 goto out_dput; 2148 2149 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2150 err = -EINVAL; 2151 goto out_dput; 2152 } 2153 2154 mutex_lock(&inode->i_mutex); 2155 err = d_invalidate(dentry); 2156 if (err) 2157 goto out_unlock; 2158 2159 down_write(&root->fs_info->subvol_sem); 2160 2161 err = may_destroy_subvol(dest); 2162 if (err) 2163 goto out_up_write; 2164 2165 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2166 /* 2167 * One for dir inode, two for dir entries, two for root 2168 * ref/backref. 2169 */ 2170 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2171 5, &qgroup_reserved); 2172 if (err) 2173 goto out_up_write; 2174 2175 trans = btrfs_start_transaction(root, 0); 2176 if (IS_ERR(trans)) { 2177 err = PTR_ERR(trans); 2178 goto out_release; 2179 } 2180 trans->block_rsv = &block_rsv; 2181 trans->bytes_reserved = block_rsv.size; 2182 2183 ret = btrfs_unlink_subvol(trans, root, dir, 2184 dest->root_key.objectid, 2185 dentry->d_name.name, 2186 dentry->d_name.len); 2187 if (ret) { 2188 err = ret; 2189 btrfs_abort_transaction(trans, root, ret); 2190 goto out_end_trans; 2191 } 2192 2193 btrfs_record_root_in_trans(trans, dest); 2194 2195 memset(&dest->root_item.drop_progress, 0, 2196 sizeof(dest->root_item.drop_progress)); 2197 dest->root_item.drop_level = 0; 2198 btrfs_set_root_refs(&dest->root_item, 0); 2199 2200 if (!xchg(&dest->orphan_item_inserted, 1)) { 2201 ret = btrfs_insert_orphan_item(trans, 2202 root->fs_info->tree_root, 2203 dest->root_key.objectid); 2204 if (ret) { 2205 btrfs_abort_transaction(trans, root, ret); 2206 err = ret; 2207 goto out_end_trans; 2208 } 2209 } 2210 out_end_trans: 2211 trans->block_rsv = NULL; 2212 trans->bytes_reserved = 0; 2213 ret = btrfs_end_transaction(trans, root); 2214 if (ret && !err) 2215 err = ret; 2216 inode->i_flags |= S_DEAD; 2217 out_release: 2218 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 2219 out_up_write: 2220 up_write(&root->fs_info->subvol_sem); 2221 out_unlock: 2222 mutex_unlock(&inode->i_mutex); 2223 if (!err) { 2224 shrink_dcache_sb(root->fs_info->sb); 2225 btrfs_invalidate_inodes(dest); 2226 d_delete(dentry); 2227 2228 /* the last ref */ 2229 if (dest->cache_inode) { 2230 iput(dest->cache_inode); 2231 dest->cache_inode = NULL; 2232 } 2233 } 2234 out_dput: 2235 dput(dentry); 2236 out_unlock_dir: 2237 mutex_unlock(&dir->i_mutex); 2238 mnt_drop_write_file(file); 2239 out: 2240 kfree(vol_args); 2241 return err; 2242 } 2243 2244 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2245 { 2246 struct inode *inode = file_inode(file); 2247 struct btrfs_root *root = BTRFS_I(inode)->root; 2248 struct btrfs_ioctl_defrag_range_args *range; 2249 int ret; 2250 2251 ret = mnt_want_write_file(file); 2252 if (ret) 2253 return ret; 2254 2255 if (btrfs_root_readonly(root)) { 2256 ret = -EROFS; 2257 goto out; 2258 } 2259 2260 switch (inode->i_mode & S_IFMT) { 2261 case S_IFDIR: 2262 if (!capable(CAP_SYS_ADMIN)) { 2263 ret = -EPERM; 2264 goto out; 2265 } 2266 ret = btrfs_defrag_root(root); 2267 if (ret) 2268 goto out; 2269 ret = btrfs_defrag_root(root->fs_info->extent_root); 2270 break; 2271 case S_IFREG: 2272 if (!(file->f_mode & FMODE_WRITE)) { 2273 ret = -EINVAL; 2274 goto out; 2275 } 2276 2277 range = kzalloc(sizeof(*range), GFP_KERNEL); 2278 if (!range) { 2279 ret = -ENOMEM; 2280 goto out; 2281 } 2282 2283 if (argp) { 2284 if (copy_from_user(range, argp, 2285 sizeof(*range))) { 2286 ret = -EFAULT; 2287 kfree(range); 2288 goto out; 2289 } 2290 /* compression requires us to start the IO */ 2291 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2292 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2293 range->extent_thresh = (u32)-1; 2294 } 2295 } else { 2296 /* the rest are all set to zero by kzalloc */ 2297 range->len = (u64)-1; 2298 } 2299 ret = btrfs_defrag_file(file_inode(file), file, 2300 range, 0, 0); 2301 if (ret > 0) 2302 ret = 0; 2303 kfree(range); 2304 break; 2305 default: 2306 ret = -EINVAL; 2307 } 2308 out: 2309 mnt_drop_write_file(file); 2310 return ret; 2311 } 2312 2313 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2314 { 2315 struct btrfs_ioctl_vol_args *vol_args; 2316 int ret; 2317 2318 if (!capable(CAP_SYS_ADMIN)) 2319 return -EPERM; 2320 2321 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2322 1)) { 2323 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n"); 2324 return -EINVAL; 2325 } 2326 2327 mutex_lock(&root->fs_info->volume_mutex); 2328 vol_args = memdup_user(arg, sizeof(*vol_args)); 2329 if (IS_ERR(vol_args)) { 2330 ret = PTR_ERR(vol_args); 2331 goto out; 2332 } 2333 2334 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2335 ret = btrfs_init_new_device(root, vol_args->name); 2336 2337 kfree(vol_args); 2338 out: 2339 mutex_unlock(&root->fs_info->volume_mutex); 2340 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2341 return ret; 2342 } 2343 2344 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2345 { 2346 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2347 struct btrfs_ioctl_vol_args *vol_args; 2348 int ret; 2349 2350 if (!capable(CAP_SYS_ADMIN)) 2351 return -EPERM; 2352 2353 ret = mnt_want_write_file(file); 2354 if (ret) 2355 return ret; 2356 2357 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2358 1)) { 2359 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n"); 2360 mnt_drop_write_file(file); 2361 return -EINVAL; 2362 } 2363 2364 mutex_lock(&root->fs_info->volume_mutex); 2365 vol_args = memdup_user(arg, sizeof(*vol_args)); 2366 if (IS_ERR(vol_args)) { 2367 ret = PTR_ERR(vol_args); 2368 goto out; 2369 } 2370 2371 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2372 ret = btrfs_rm_device(root, vol_args->name); 2373 2374 kfree(vol_args); 2375 out: 2376 mutex_unlock(&root->fs_info->volume_mutex); 2377 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2378 mnt_drop_write_file(file); 2379 return ret; 2380 } 2381 2382 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2383 { 2384 struct btrfs_ioctl_fs_info_args *fi_args; 2385 struct btrfs_device *device; 2386 struct btrfs_device *next; 2387 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2388 int ret = 0; 2389 2390 if (!capable(CAP_SYS_ADMIN)) 2391 return -EPERM; 2392 2393 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2394 if (!fi_args) 2395 return -ENOMEM; 2396 2397 fi_args->num_devices = fs_devices->num_devices; 2398 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2399 2400 mutex_lock(&fs_devices->device_list_mutex); 2401 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 2402 if (device->devid > fi_args->max_id) 2403 fi_args->max_id = device->devid; 2404 } 2405 mutex_unlock(&fs_devices->device_list_mutex); 2406 2407 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2408 ret = -EFAULT; 2409 2410 kfree(fi_args); 2411 return ret; 2412 } 2413 2414 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2415 { 2416 struct btrfs_ioctl_dev_info_args *di_args; 2417 struct btrfs_device *dev; 2418 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2419 int ret = 0; 2420 char *s_uuid = NULL; 2421 char empty_uuid[BTRFS_UUID_SIZE] = {0}; 2422 2423 if (!capable(CAP_SYS_ADMIN)) 2424 return -EPERM; 2425 2426 di_args = memdup_user(arg, sizeof(*di_args)); 2427 if (IS_ERR(di_args)) 2428 return PTR_ERR(di_args); 2429 2430 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0) 2431 s_uuid = di_args->uuid; 2432 2433 mutex_lock(&fs_devices->device_list_mutex); 2434 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL); 2435 2436 if (!dev) { 2437 ret = -ENODEV; 2438 goto out; 2439 } 2440 2441 di_args->devid = dev->devid; 2442 di_args->bytes_used = dev->bytes_used; 2443 di_args->total_bytes = dev->total_bytes; 2444 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2445 if (dev->name) { 2446 struct rcu_string *name; 2447 2448 rcu_read_lock(); 2449 name = rcu_dereference(dev->name); 2450 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2451 rcu_read_unlock(); 2452 di_args->path[sizeof(di_args->path) - 1] = 0; 2453 } else { 2454 di_args->path[0] = '\0'; 2455 } 2456 2457 out: 2458 mutex_unlock(&fs_devices->device_list_mutex); 2459 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2460 ret = -EFAULT; 2461 2462 kfree(di_args); 2463 return ret; 2464 } 2465 2466 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 2467 u64 off, u64 olen, u64 destoff) 2468 { 2469 struct inode *inode = file_inode(file); 2470 struct btrfs_root *root = BTRFS_I(inode)->root; 2471 struct fd src_file; 2472 struct inode *src; 2473 struct btrfs_trans_handle *trans; 2474 struct btrfs_path *path; 2475 struct extent_buffer *leaf; 2476 char *buf; 2477 struct btrfs_key key; 2478 u32 nritems; 2479 int slot; 2480 int ret; 2481 u64 len = olen; 2482 u64 bs = root->fs_info->sb->s_blocksize; 2483 2484 /* 2485 * TODO: 2486 * - split compressed inline extents. annoying: we need to 2487 * decompress into destination's address_space (the file offset 2488 * may change, so source mapping won't do), then recompress (or 2489 * otherwise reinsert) a subrange. 2490 * - allow ranges within the same file to be cloned (provided 2491 * they don't overlap)? 2492 */ 2493 2494 /* the destination must be opened for writing */ 2495 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 2496 return -EINVAL; 2497 2498 if (btrfs_root_readonly(root)) 2499 return -EROFS; 2500 2501 ret = mnt_want_write_file(file); 2502 if (ret) 2503 return ret; 2504 2505 src_file = fdget(srcfd); 2506 if (!src_file.file) { 2507 ret = -EBADF; 2508 goto out_drop_write; 2509 } 2510 2511 ret = -EXDEV; 2512 if (src_file.file->f_path.mnt != file->f_path.mnt) 2513 goto out_fput; 2514 2515 src = file_inode(src_file.file); 2516 2517 ret = -EINVAL; 2518 if (src == inode) 2519 goto out_fput; 2520 2521 /* the src must be open for reading */ 2522 if (!(src_file.file->f_mode & FMODE_READ)) 2523 goto out_fput; 2524 2525 /* don't make the dst file partly checksummed */ 2526 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 2527 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 2528 goto out_fput; 2529 2530 ret = -EISDIR; 2531 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 2532 goto out_fput; 2533 2534 ret = -EXDEV; 2535 if (src->i_sb != inode->i_sb) 2536 goto out_fput; 2537 2538 ret = -ENOMEM; 2539 buf = vmalloc(btrfs_level_size(root, 0)); 2540 if (!buf) 2541 goto out_fput; 2542 2543 path = btrfs_alloc_path(); 2544 if (!path) { 2545 vfree(buf); 2546 goto out_fput; 2547 } 2548 path->reada = 2; 2549 2550 if (inode < src) { 2551 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 2552 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 2553 } else { 2554 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 2555 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 2556 } 2557 2558 /* determine range to clone */ 2559 ret = -EINVAL; 2560 if (off + len > src->i_size || off + len < off) 2561 goto out_unlock; 2562 if (len == 0) 2563 olen = len = src->i_size - off; 2564 /* if we extend to eof, continue to block boundary */ 2565 if (off + len == src->i_size) 2566 len = ALIGN(src->i_size, bs) - off; 2567 2568 /* verify the end result is block aligned */ 2569 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 2570 !IS_ALIGNED(destoff, bs)) 2571 goto out_unlock; 2572 2573 if (destoff > inode->i_size) { 2574 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 2575 if (ret) 2576 goto out_unlock; 2577 } 2578 2579 /* truncate page cache pages from target inode range */ 2580 truncate_inode_pages_range(&inode->i_data, destoff, 2581 PAGE_CACHE_ALIGN(destoff + len) - 1); 2582 2583 /* do any pending delalloc/csum calc on src, one way or 2584 another, and lock file content */ 2585 while (1) { 2586 struct btrfs_ordered_extent *ordered; 2587 lock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 2588 ordered = btrfs_lookup_first_ordered_extent(src, off + len - 1); 2589 if (!ordered && 2590 !test_range_bit(&BTRFS_I(src)->io_tree, off, off + len - 1, 2591 EXTENT_DELALLOC, 0, NULL)) 2592 break; 2593 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 2594 if (ordered) 2595 btrfs_put_ordered_extent(ordered); 2596 btrfs_wait_ordered_range(src, off, len); 2597 } 2598 2599 /* clone data */ 2600 key.objectid = btrfs_ino(src); 2601 key.type = BTRFS_EXTENT_DATA_KEY; 2602 key.offset = 0; 2603 2604 while (1) { 2605 /* 2606 * note the key will change type as we walk through the 2607 * tree. 2608 */ 2609 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 2610 0, 0); 2611 if (ret < 0) 2612 goto out; 2613 2614 nritems = btrfs_header_nritems(path->nodes[0]); 2615 if (path->slots[0] >= nritems) { 2616 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 2617 if (ret < 0) 2618 goto out; 2619 if (ret > 0) 2620 break; 2621 nritems = btrfs_header_nritems(path->nodes[0]); 2622 } 2623 leaf = path->nodes[0]; 2624 slot = path->slots[0]; 2625 2626 btrfs_item_key_to_cpu(leaf, &key, slot); 2627 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || 2628 key.objectid != btrfs_ino(src)) 2629 break; 2630 2631 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { 2632 struct btrfs_file_extent_item *extent; 2633 int type; 2634 u32 size; 2635 struct btrfs_key new_key; 2636 u64 disko = 0, diskl = 0; 2637 u64 datao = 0, datal = 0; 2638 u8 comp; 2639 u64 endoff; 2640 2641 size = btrfs_item_size_nr(leaf, slot); 2642 read_extent_buffer(leaf, buf, 2643 btrfs_item_ptr_offset(leaf, slot), 2644 size); 2645 2646 extent = btrfs_item_ptr(leaf, slot, 2647 struct btrfs_file_extent_item); 2648 comp = btrfs_file_extent_compression(leaf, extent); 2649 type = btrfs_file_extent_type(leaf, extent); 2650 if (type == BTRFS_FILE_EXTENT_REG || 2651 type == BTRFS_FILE_EXTENT_PREALLOC) { 2652 disko = btrfs_file_extent_disk_bytenr(leaf, 2653 extent); 2654 diskl = btrfs_file_extent_disk_num_bytes(leaf, 2655 extent); 2656 datao = btrfs_file_extent_offset(leaf, extent); 2657 datal = btrfs_file_extent_num_bytes(leaf, 2658 extent); 2659 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2660 /* take upper bound, may be compressed */ 2661 datal = btrfs_file_extent_ram_bytes(leaf, 2662 extent); 2663 } 2664 btrfs_release_path(path); 2665 2666 if (key.offset + datal <= off || 2667 key.offset >= off + len - 1) 2668 goto next; 2669 2670 memcpy(&new_key, &key, sizeof(new_key)); 2671 new_key.objectid = btrfs_ino(inode); 2672 if (off <= key.offset) 2673 new_key.offset = key.offset + destoff - off; 2674 else 2675 new_key.offset = destoff; 2676 2677 /* 2678 * 1 - adjusting old extent (we may have to split it) 2679 * 1 - add new extent 2680 * 1 - inode update 2681 */ 2682 trans = btrfs_start_transaction(root, 3); 2683 if (IS_ERR(trans)) { 2684 ret = PTR_ERR(trans); 2685 goto out; 2686 } 2687 2688 if (type == BTRFS_FILE_EXTENT_REG || 2689 type == BTRFS_FILE_EXTENT_PREALLOC) { 2690 /* 2691 * a | --- range to clone ---| b 2692 * | ------------- extent ------------- | 2693 */ 2694 2695 /* substract range b */ 2696 if (key.offset + datal > off + len) 2697 datal = off + len - key.offset; 2698 2699 /* substract range a */ 2700 if (off > key.offset) { 2701 datao += off - key.offset; 2702 datal -= off - key.offset; 2703 } 2704 2705 ret = btrfs_drop_extents(trans, root, inode, 2706 new_key.offset, 2707 new_key.offset + datal, 2708 1); 2709 if (ret) { 2710 btrfs_abort_transaction(trans, root, 2711 ret); 2712 btrfs_end_transaction(trans, root); 2713 goto out; 2714 } 2715 2716 ret = btrfs_insert_empty_item(trans, root, path, 2717 &new_key, size); 2718 if (ret) { 2719 btrfs_abort_transaction(trans, root, 2720 ret); 2721 btrfs_end_transaction(trans, root); 2722 goto out; 2723 } 2724 2725 leaf = path->nodes[0]; 2726 slot = path->slots[0]; 2727 write_extent_buffer(leaf, buf, 2728 btrfs_item_ptr_offset(leaf, slot), 2729 size); 2730 2731 extent = btrfs_item_ptr(leaf, slot, 2732 struct btrfs_file_extent_item); 2733 2734 /* disko == 0 means it's a hole */ 2735 if (!disko) 2736 datao = 0; 2737 2738 btrfs_set_file_extent_offset(leaf, extent, 2739 datao); 2740 btrfs_set_file_extent_num_bytes(leaf, extent, 2741 datal); 2742 if (disko) { 2743 inode_add_bytes(inode, datal); 2744 ret = btrfs_inc_extent_ref(trans, root, 2745 disko, diskl, 0, 2746 root->root_key.objectid, 2747 btrfs_ino(inode), 2748 new_key.offset - datao, 2749 0); 2750 if (ret) { 2751 btrfs_abort_transaction(trans, 2752 root, 2753 ret); 2754 btrfs_end_transaction(trans, 2755 root); 2756 goto out; 2757 2758 } 2759 } 2760 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2761 u64 skip = 0; 2762 u64 trim = 0; 2763 if (off > key.offset) { 2764 skip = off - key.offset; 2765 new_key.offset += skip; 2766 } 2767 2768 if (key.offset + datal > off + len) 2769 trim = key.offset + datal - (off + len); 2770 2771 if (comp && (skip || trim)) { 2772 ret = -EINVAL; 2773 btrfs_end_transaction(trans, root); 2774 goto out; 2775 } 2776 size -= skip + trim; 2777 datal -= skip + trim; 2778 2779 ret = btrfs_drop_extents(trans, root, inode, 2780 new_key.offset, 2781 new_key.offset + datal, 2782 1); 2783 if (ret) { 2784 btrfs_abort_transaction(trans, root, 2785 ret); 2786 btrfs_end_transaction(trans, root); 2787 goto out; 2788 } 2789 2790 ret = btrfs_insert_empty_item(trans, root, path, 2791 &new_key, size); 2792 if (ret) { 2793 btrfs_abort_transaction(trans, root, 2794 ret); 2795 btrfs_end_transaction(trans, root); 2796 goto out; 2797 } 2798 2799 if (skip) { 2800 u32 start = 2801 btrfs_file_extent_calc_inline_size(0); 2802 memmove(buf+start, buf+start+skip, 2803 datal); 2804 } 2805 2806 leaf = path->nodes[0]; 2807 slot = path->slots[0]; 2808 write_extent_buffer(leaf, buf, 2809 btrfs_item_ptr_offset(leaf, slot), 2810 size); 2811 inode_add_bytes(inode, datal); 2812 } 2813 2814 btrfs_mark_buffer_dirty(leaf); 2815 btrfs_release_path(path); 2816 2817 inode_inc_iversion(inode); 2818 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2819 2820 /* 2821 * we round up to the block size at eof when 2822 * determining which extents to clone above, 2823 * but shouldn't round up the file size 2824 */ 2825 endoff = new_key.offset + datal; 2826 if (endoff > destoff+olen) 2827 endoff = destoff+olen; 2828 if (endoff > inode->i_size) 2829 btrfs_i_size_write(inode, endoff); 2830 2831 ret = btrfs_update_inode(trans, root, inode); 2832 if (ret) { 2833 btrfs_abort_transaction(trans, root, ret); 2834 btrfs_end_transaction(trans, root); 2835 goto out; 2836 } 2837 ret = btrfs_end_transaction(trans, root); 2838 } 2839 next: 2840 btrfs_release_path(path); 2841 key.offset++; 2842 } 2843 ret = 0; 2844 out: 2845 btrfs_release_path(path); 2846 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 2847 out_unlock: 2848 mutex_unlock(&src->i_mutex); 2849 mutex_unlock(&inode->i_mutex); 2850 vfree(buf); 2851 btrfs_free_path(path); 2852 out_fput: 2853 fdput(src_file); 2854 out_drop_write: 2855 mnt_drop_write_file(file); 2856 return ret; 2857 } 2858 2859 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 2860 { 2861 struct btrfs_ioctl_clone_range_args args; 2862 2863 if (copy_from_user(&args, argp, sizeof(args))) 2864 return -EFAULT; 2865 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 2866 args.src_length, args.dest_offset); 2867 } 2868 2869 /* 2870 * there are many ways the trans_start and trans_end ioctls can lead 2871 * to deadlocks. They should only be used by applications that 2872 * basically own the machine, and have a very in depth understanding 2873 * of all the possible deadlocks and enospc problems. 2874 */ 2875 static long btrfs_ioctl_trans_start(struct file *file) 2876 { 2877 struct inode *inode = file_inode(file); 2878 struct btrfs_root *root = BTRFS_I(inode)->root; 2879 struct btrfs_trans_handle *trans; 2880 int ret; 2881 2882 ret = -EPERM; 2883 if (!capable(CAP_SYS_ADMIN)) 2884 goto out; 2885 2886 ret = -EINPROGRESS; 2887 if (file->private_data) 2888 goto out; 2889 2890 ret = -EROFS; 2891 if (btrfs_root_readonly(root)) 2892 goto out; 2893 2894 ret = mnt_want_write_file(file); 2895 if (ret) 2896 goto out; 2897 2898 atomic_inc(&root->fs_info->open_ioctl_trans); 2899 2900 ret = -ENOMEM; 2901 trans = btrfs_start_ioctl_transaction(root); 2902 if (IS_ERR(trans)) 2903 goto out_drop; 2904 2905 file->private_data = trans; 2906 return 0; 2907 2908 out_drop: 2909 atomic_dec(&root->fs_info->open_ioctl_trans); 2910 mnt_drop_write_file(file); 2911 out: 2912 return ret; 2913 } 2914 2915 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2916 { 2917 struct inode *inode = file_inode(file); 2918 struct btrfs_root *root = BTRFS_I(inode)->root; 2919 struct btrfs_root *new_root; 2920 struct btrfs_dir_item *di; 2921 struct btrfs_trans_handle *trans; 2922 struct btrfs_path *path; 2923 struct btrfs_key location; 2924 struct btrfs_disk_key disk_key; 2925 u64 objectid = 0; 2926 u64 dir_id; 2927 int ret; 2928 2929 if (!capable(CAP_SYS_ADMIN)) 2930 return -EPERM; 2931 2932 ret = mnt_want_write_file(file); 2933 if (ret) 2934 return ret; 2935 2936 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2937 ret = -EFAULT; 2938 goto out; 2939 } 2940 2941 if (!objectid) 2942 objectid = root->root_key.objectid; 2943 2944 location.objectid = objectid; 2945 location.type = BTRFS_ROOT_ITEM_KEY; 2946 location.offset = (u64)-1; 2947 2948 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 2949 if (IS_ERR(new_root)) { 2950 ret = PTR_ERR(new_root); 2951 goto out; 2952 } 2953 2954 if (btrfs_root_refs(&new_root->root_item) == 0) { 2955 ret = -ENOENT; 2956 goto out; 2957 } 2958 2959 path = btrfs_alloc_path(); 2960 if (!path) { 2961 ret = -ENOMEM; 2962 goto out; 2963 } 2964 path->leave_spinning = 1; 2965 2966 trans = btrfs_start_transaction(root, 1); 2967 if (IS_ERR(trans)) { 2968 btrfs_free_path(path); 2969 ret = PTR_ERR(trans); 2970 goto out; 2971 } 2972 2973 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 2974 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 2975 dir_id, "default", 7, 1); 2976 if (IS_ERR_OR_NULL(di)) { 2977 btrfs_free_path(path); 2978 btrfs_end_transaction(trans, root); 2979 printk(KERN_ERR "Umm, you don't have the default dir item, " 2980 "this isn't going to work\n"); 2981 ret = -ENOENT; 2982 goto out; 2983 } 2984 2985 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2986 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2987 btrfs_mark_buffer_dirty(path->nodes[0]); 2988 btrfs_free_path(path); 2989 2990 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 2991 btrfs_end_transaction(trans, root); 2992 out: 2993 mnt_drop_write_file(file); 2994 return ret; 2995 } 2996 2997 void btrfs_get_block_group_info(struct list_head *groups_list, 2998 struct btrfs_ioctl_space_info *space) 2999 { 3000 struct btrfs_block_group_cache *block_group; 3001 3002 space->total_bytes = 0; 3003 space->used_bytes = 0; 3004 space->flags = 0; 3005 list_for_each_entry(block_group, groups_list, list) { 3006 space->flags = block_group->flags; 3007 space->total_bytes += block_group->key.offset; 3008 space->used_bytes += 3009 btrfs_block_group_used(&block_group->item); 3010 } 3011 } 3012 3013 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 3014 { 3015 struct btrfs_ioctl_space_args space_args; 3016 struct btrfs_ioctl_space_info space; 3017 struct btrfs_ioctl_space_info *dest; 3018 struct btrfs_ioctl_space_info *dest_orig; 3019 struct btrfs_ioctl_space_info __user *user_dest; 3020 struct btrfs_space_info *info; 3021 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3022 BTRFS_BLOCK_GROUP_SYSTEM, 3023 BTRFS_BLOCK_GROUP_METADATA, 3024 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3025 int num_types = 4; 3026 int alloc_size; 3027 int ret = 0; 3028 u64 slot_count = 0; 3029 int i, c; 3030 3031 if (copy_from_user(&space_args, 3032 (struct btrfs_ioctl_space_args __user *)arg, 3033 sizeof(space_args))) 3034 return -EFAULT; 3035 3036 for (i = 0; i < num_types; i++) { 3037 struct btrfs_space_info *tmp; 3038 3039 info = NULL; 3040 rcu_read_lock(); 3041 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 3042 list) { 3043 if (tmp->flags == types[i]) { 3044 info = tmp; 3045 break; 3046 } 3047 } 3048 rcu_read_unlock(); 3049 3050 if (!info) 3051 continue; 3052 3053 down_read(&info->groups_sem); 3054 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3055 if (!list_empty(&info->block_groups[c])) 3056 slot_count++; 3057 } 3058 up_read(&info->groups_sem); 3059 } 3060 3061 /* space_slots == 0 means they are asking for a count */ 3062 if (space_args.space_slots == 0) { 3063 space_args.total_spaces = slot_count; 3064 goto out; 3065 } 3066 3067 slot_count = min_t(u64, space_args.space_slots, slot_count); 3068 3069 alloc_size = sizeof(*dest) * slot_count; 3070 3071 /* we generally have at most 6 or so space infos, one for each raid 3072 * level. So, a whole page should be more than enough for everyone 3073 */ 3074 if (alloc_size > PAGE_CACHE_SIZE) 3075 return -ENOMEM; 3076 3077 space_args.total_spaces = 0; 3078 dest = kmalloc(alloc_size, GFP_NOFS); 3079 if (!dest) 3080 return -ENOMEM; 3081 dest_orig = dest; 3082 3083 /* now we have a buffer to copy into */ 3084 for (i = 0; i < num_types; i++) { 3085 struct btrfs_space_info *tmp; 3086 3087 if (!slot_count) 3088 break; 3089 3090 info = NULL; 3091 rcu_read_lock(); 3092 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 3093 list) { 3094 if (tmp->flags == types[i]) { 3095 info = tmp; 3096 break; 3097 } 3098 } 3099 rcu_read_unlock(); 3100 3101 if (!info) 3102 continue; 3103 down_read(&info->groups_sem); 3104 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3105 if (!list_empty(&info->block_groups[c])) { 3106 btrfs_get_block_group_info( 3107 &info->block_groups[c], &space); 3108 memcpy(dest, &space, sizeof(space)); 3109 dest++; 3110 space_args.total_spaces++; 3111 slot_count--; 3112 } 3113 if (!slot_count) 3114 break; 3115 } 3116 up_read(&info->groups_sem); 3117 } 3118 3119 user_dest = (struct btrfs_ioctl_space_info __user *) 3120 (arg + sizeof(struct btrfs_ioctl_space_args)); 3121 3122 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3123 ret = -EFAULT; 3124 3125 kfree(dest_orig); 3126 out: 3127 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3128 ret = -EFAULT; 3129 3130 return ret; 3131 } 3132 3133 /* 3134 * there are many ways the trans_start and trans_end ioctls can lead 3135 * to deadlocks. They should only be used by applications that 3136 * basically own the machine, and have a very in depth understanding 3137 * of all the possible deadlocks and enospc problems. 3138 */ 3139 long btrfs_ioctl_trans_end(struct file *file) 3140 { 3141 struct inode *inode = file_inode(file); 3142 struct btrfs_root *root = BTRFS_I(inode)->root; 3143 struct btrfs_trans_handle *trans; 3144 3145 trans = file->private_data; 3146 if (!trans) 3147 return -EINVAL; 3148 file->private_data = NULL; 3149 3150 btrfs_end_transaction(trans, root); 3151 3152 atomic_dec(&root->fs_info->open_ioctl_trans); 3153 3154 mnt_drop_write_file(file); 3155 return 0; 3156 } 3157 3158 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3159 void __user *argp) 3160 { 3161 struct btrfs_trans_handle *trans; 3162 u64 transid; 3163 int ret; 3164 3165 trans = btrfs_attach_transaction_barrier(root); 3166 if (IS_ERR(trans)) { 3167 if (PTR_ERR(trans) != -ENOENT) 3168 return PTR_ERR(trans); 3169 3170 /* No running transaction, don't bother */ 3171 transid = root->fs_info->last_trans_committed; 3172 goto out; 3173 } 3174 transid = trans->transid; 3175 ret = btrfs_commit_transaction_async(trans, root, 0); 3176 if (ret) { 3177 btrfs_end_transaction(trans, root); 3178 return ret; 3179 } 3180 out: 3181 if (argp) 3182 if (copy_to_user(argp, &transid, sizeof(transid))) 3183 return -EFAULT; 3184 return 0; 3185 } 3186 3187 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root, 3188 void __user *argp) 3189 { 3190 u64 transid; 3191 3192 if (argp) { 3193 if (copy_from_user(&transid, argp, sizeof(transid))) 3194 return -EFAULT; 3195 } else { 3196 transid = 0; /* current trans */ 3197 } 3198 return btrfs_wait_for_commit(root, transid); 3199 } 3200 3201 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3202 { 3203 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3204 struct btrfs_ioctl_scrub_args *sa; 3205 int ret; 3206 3207 if (!capable(CAP_SYS_ADMIN)) 3208 return -EPERM; 3209 3210 sa = memdup_user(arg, sizeof(*sa)); 3211 if (IS_ERR(sa)) 3212 return PTR_ERR(sa); 3213 3214 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3215 ret = mnt_want_write_file(file); 3216 if (ret) 3217 goto out; 3218 } 3219 3220 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end, 3221 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3222 0); 3223 3224 if (copy_to_user(arg, sa, sizeof(*sa))) 3225 ret = -EFAULT; 3226 3227 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3228 mnt_drop_write_file(file); 3229 out: 3230 kfree(sa); 3231 return ret; 3232 } 3233 3234 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 3235 { 3236 if (!capable(CAP_SYS_ADMIN)) 3237 return -EPERM; 3238 3239 return btrfs_scrub_cancel(root->fs_info); 3240 } 3241 3242 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 3243 void __user *arg) 3244 { 3245 struct btrfs_ioctl_scrub_args *sa; 3246 int ret; 3247 3248 if (!capable(CAP_SYS_ADMIN)) 3249 return -EPERM; 3250 3251 sa = memdup_user(arg, sizeof(*sa)); 3252 if (IS_ERR(sa)) 3253 return PTR_ERR(sa); 3254 3255 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 3256 3257 if (copy_to_user(arg, sa, sizeof(*sa))) 3258 ret = -EFAULT; 3259 3260 kfree(sa); 3261 return ret; 3262 } 3263 3264 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 3265 void __user *arg) 3266 { 3267 struct btrfs_ioctl_get_dev_stats *sa; 3268 int ret; 3269 3270 sa = memdup_user(arg, sizeof(*sa)); 3271 if (IS_ERR(sa)) 3272 return PTR_ERR(sa); 3273 3274 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3275 kfree(sa); 3276 return -EPERM; 3277 } 3278 3279 ret = btrfs_get_dev_stats(root, sa); 3280 3281 if (copy_to_user(arg, sa, sizeof(*sa))) 3282 ret = -EFAULT; 3283 3284 kfree(sa); 3285 return ret; 3286 } 3287 3288 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg) 3289 { 3290 struct btrfs_ioctl_dev_replace_args *p; 3291 int ret; 3292 3293 if (!capable(CAP_SYS_ADMIN)) 3294 return -EPERM; 3295 3296 p = memdup_user(arg, sizeof(*p)); 3297 if (IS_ERR(p)) 3298 return PTR_ERR(p); 3299 3300 switch (p->cmd) { 3301 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3302 if (atomic_xchg( 3303 &root->fs_info->mutually_exclusive_operation_running, 3304 1)) { 3305 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n"); 3306 ret = -EINPROGRESS; 3307 } else { 3308 ret = btrfs_dev_replace_start(root, p); 3309 atomic_set( 3310 &root->fs_info->mutually_exclusive_operation_running, 3311 0); 3312 } 3313 break; 3314 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3315 btrfs_dev_replace_status(root->fs_info, p); 3316 ret = 0; 3317 break; 3318 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3319 ret = btrfs_dev_replace_cancel(root->fs_info, p); 3320 break; 3321 default: 3322 ret = -EINVAL; 3323 break; 3324 } 3325 3326 if (copy_to_user(arg, p, sizeof(*p))) 3327 ret = -EFAULT; 3328 3329 kfree(p); 3330 return ret; 3331 } 3332 3333 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3334 { 3335 int ret = 0; 3336 int i; 3337 u64 rel_ptr; 3338 int size; 3339 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3340 struct inode_fs_paths *ipath = NULL; 3341 struct btrfs_path *path; 3342 3343 if (!capable(CAP_DAC_READ_SEARCH)) 3344 return -EPERM; 3345 3346 path = btrfs_alloc_path(); 3347 if (!path) { 3348 ret = -ENOMEM; 3349 goto out; 3350 } 3351 3352 ipa = memdup_user(arg, sizeof(*ipa)); 3353 if (IS_ERR(ipa)) { 3354 ret = PTR_ERR(ipa); 3355 ipa = NULL; 3356 goto out; 3357 } 3358 3359 size = min_t(u32, ipa->size, 4096); 3360 ipath = init_ipath(size, root, path); 3361 if (IS_ERR(ipath)) { 3362 ret = PTR_ERR(ipath); 3363 ipath = NULL; 3364 goto out; 3365 } 3366 3367 ret = paths_from_inode(ipa->inum, ipath); 3368 if (ret < 0) 3369 goto out; 3370 3371 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3372 rel_ptr = ipath->fspath->val[i] - 3373 (u64)(unsigned long)ipath->fspath->val; 3374 ipath->fspath->val[i] = rel_ptr; 3375 } 3376 3377 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 3378 (void *)(unsigned long)ipath->fspath, size); 3379 if (ret) { 3380 ret = -EFAULT; 3381 goto out; 3382 } 3383 3384 out: 3385 btrfs_free_path(path); 3386 free_ipath(ipath); 3387 kfree(ipa); 3388 3389 return ret; 3390 } 3391 3392 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3393 { 3394 struct btrfs_data_container *inodes = ctx; 3395 const size_t c = 3 * sizeof(u64); 3396 3397 if (inodes->bytes_left >= c) { 3398 inodes->bytes_left -= c; 3399 inodes->val[inodes->elem_cnt] = inum; 3400 inodes->val[inodes->elem_cnt + 1] = offset; 3401 inodes->val[inodes->elem_cnt + 2] = root; 3402 inodes->elem_cnt += 3; 3403 } else { 3404 inodes->bytes_missing += c - inodes->bytes_left; 3405 inodes->bytes_left = 0; 3406 inodes->elem_missed += 3; 3407 } 3408 3409 return 0; 3410 } 3411 3412 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 3413 void __user *arg) 3414 { 3415 int ret = 0; 3416 int size; 3417 struct btrfs_ioctl_logical_ino_args *loi; 3418 struct btrfs_data_container *inodes = NULL; 3419 struct btrfs_path *path = NULL; 3420 3421 if (!capable(CAP_SYS_ADMIN)) 3422 return -EPERM; 3423 3424 loi = memdup_user(arg, sizeof(*loi)); 3425 if (IS_ERR(loi)) { 3426 ret = PTR_ERR(loi); 3427 loi = NULL; 3428 goto out; 3429 } 3430 3431 path = btrfs_alloc_path(); 3432 if (!path) { 3433 ret = -ENOMEM; 3434 goto out; 3435 } 3436 3437 size = min_t(u32, loi->size, 64 * 1024); 3438 inodes = init_data_container(size); 3439 if (IS_ERR(inodes)) { 3440 ret = PTR_ERR(inodes); 3441 inodes = NULL; 3442 goto out; 3443 } 3444 3445 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 3446 build_ino_list, inodes); 3447 if (ret == -EINVAL) 3448 ret = -ENOENT; 3449 if (ret < 0) 3450 goto out; 3451 3452 ret = copy_to_user((void *)(unsigned long)loi->inodes, 3453 (void *)(unsigned long)inodes, size); 3454 if (ret) 3455 ret = -EFAULT; 3456 3457 out: 3458 btrfs_free_path(path); 3459 vfree(inodes); 3460 kfree(loi); 3461 3462 return ret; 3463 } 3464 3465 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 3466 struct btrfs_ioctl_balance_args *bargs) 3467 { 3468 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3469 3470 bargs->flags = bctl->flags; 3471 3472 if (atomic_read(&fs_info->balance_running)) 3473 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3474 if (atomic_read(&fs_info->balance_pause_req)) 3475 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3476 if (atomic_read(&fs_info->balance_cancel_req)) 3477 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3478 3479 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3480 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3481 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3482 3483 if (lock) { 3484 spin_lock(&fs_info->balance_lock); 3485 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3486 spin_unlock(&fs_info->balance_lock); 3487 } else { 3488 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3489 } 3490 } 3491 3492 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3493 { 3494 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3495 struct btrfs_fs_info *fs_info = root->fs_info; 3496 struct btrfs_ioctl_balance_args *bargs; 3497 struct btrfs_balance_control *bctl; 3498 bool need_unlock; /* for mut. excl. ops lock */ 3499 int ret; 3500 3501 if (!capable(CAP_SYS_ADMIN)) 3502 return -EPERM; 3503 3504 ret = mnt_want_write_file(file); 3505 if (ret) 3506 return ret; 3507 3508 again: 3509 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 3510 mutex_lock(&fs_info->volume_mutex); 3511 mutex_lock(&fs_info->balance_mutex); 3512 need_unlock = true; 3513 goto locked; 3514 } 3515 3516 /* 3517 * mut. excl. ops lock is locked. Three possibilites: 3518 * (1) some other op is running 3519 * (2) balance is running 3520 * (3) balance is paused -- special case (think resume) 3521 */ 3522 mutex_lock(&fs_info->balance_mutex); 3523 if (fs_info->balance_ctl) { 3524 /* this is either (2) or (3) */ 3525 if (!atomic_read(&fs_info->balance_running)) { 3526 mutex_unlock(&fs_info->balance_mutex); 3527 if (!mutex_trylock(&fs_info->volume_mutex)) 3528 goto again; 3529 mutex_lock(&fs_info->balance_mutex); 3530 3531 if (fs_info->balance_ctl && 3532 !atomic_read(&fs_info->balance_running)) { 3533 /* this is (3) */ 3534 need_unlock = false; 3535 goto locked; 3536 } 3537 3538 mutex_unlock(&fs_info->balance_mutex); 3539 mutex_unlock(&fs_info->volume_mutex); 3540 goto again; 3541 } else { 3542 /* this is (2) */ 3543 mutex_unlock(&fs_info->balance_mutex); 3544 ret = -EINPROGRESS; 3545 goto out; 3546 } 3547 } else { 3548 /* this is (1) */ 3549 mutex_unlock(&fs_info->balance_mutex); 3550 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n"); 3551 ret = -EINVAL; 3552 goto out; 3553 } 3554 3555 locked: 3556 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 3557 3558 if (arg) { 3559 bargs = memdup_user(arg, sizeof(*bargs)); 3560 if (IS_ERR(bargs)) { 3561 ret = PTR_ERR(bargs); 3562 goto out_unlock; 3563 } 3564 3565 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3566 if (!fs_info->balance_ctl) { 3567 ret = -ENOTCONN; 3568 goto out_bargs; 3569 } 3570 3571 bctl = fs_info->balance_ctl; 3572 spin_lock(&fs_info->balance_lock); 3573 bctl->flags |= BTRFS_BALANCE_RESUME; 3574 spin_unlock(&fs_info->balance_lock); 3575 3576 goto do_balance; 3577 } 3578 } else { 3579 bargs = NULL; 3580 } 3581 3582 if (fs_info->balance_ctl) { 3583 ret = -EINPROGRESS; 3584 goto out_bargs; 3585 } 3586 3587 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3588 if (!bctl) { 3589 ret = -ENOMEM; 3590 goto out_bargs; 3591 } 3592 3593 bctl->fs_info = fs_info; 3594 if (arg) { 3595 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3596 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3597 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3598 3599 bctl->flags = bargs->flags; 3600 } else { 3601 /* balance everything - no filters */ 3602 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 3603 } 3604 3605 do_balance: 3606 /* 3607 * Ownership of bctl and mutually_exclusive_operation_running 3608 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 3609 * or, if restriper was paused all the way until unmount, in 3610 * free_fs_info. mutually_exclusive_operation_running is 3611 * cleared in __cancel_balance. 3612 */ 3613 need_unlock = false; 3614 3615 ret = btrfs_balance(bctl, bargs); 3616 3617 if (arg) { 3618 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3619 ret = -EFAULT; 3620 } 3621 3622 out_bargs: 3623 kfree(bargs); 3624 out_unlock: 3625 mutex_unlock(&fs_info->balance_mutex); 3626 mutex_unlock(&fs_info->volume_mutex); 3627 if (need_unlock) 3628 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3629 out: 3630 mnt_drop_write_file(file); 3631 return ret; 3632 } 3633 3634 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 3635 { 3636 if (!capable(CAP_SYS_ADMIN)) 3637 return -EPERM; 3638 3639 switch (cmd) { 3640 case BTRFS_BALANCE_CTL_PAUSE: 3641 return btrfs_pause_balance(root->fs_info); 3642 case BTRFS_BALANCE_CTL_CANCEL: 3643 return btrfs_cancel_balance(root->fs_info); 3644 } 3645 3646 return -EINVAL; 3647 } 3648 3649 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 3650 void __user *arg) 3651 { 3652 struct btrfs_fs_info *fs_info = root->fs_info; 3653 struct btrfs_ioctl_balance_args *bargs; 3654 int ret = 0; 3655 3656 if (!capable(CAP_SYS_ADMIN)) 3657 return -EPERM; 3658 3659 mutex_lock(&fs_info->balance_mutex); 3660 if (!fs_info->balance_ctl) { 3661 ret = -ENOTCONN; 3662 goto out; 3663 } 3664 3665 bargs = kzalloc(sizeof(*bargs), GFP_NOFS); 3666 if (!bargs) { 3667 ret = -ENOMEM; 3668 goto out; 3669 } 3670 3671 update_ioctl_balance_args(fs_info, 1, bargs); 3672 3673 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3674 ret = -EFAULT; 3675 3676 kfree(bargs); 3677 out: 3678 mutex_unlock(&fs_info->balance_mutex); 3679 return ret; 3680 } 3681 3682 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3683 { 3684 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3685 struct btrfs_ioctl_quota_ctl_args *sa; 3686 struct btrfs_trans_handle *trans = NULL; 3687 int ret; 3688 int err; 3689 3690 if (!capable(CAP_SYS_ADMIN)) 3691 return -EPERM; 3692 3693 ret = mnt_want_write_file(file); 3694 if (ret) 3695 return ret; 3696 3697 sa = memdup_user(arg, sizeof(*sa)); 3698 if (IS_ERR(sa)) { 3699 ret = PTR_ERR(sa); 3700 goto drop_write; 3701 } 3702 3703 down_write(&root->fs_info->subvol_sem); 3704 trans = btrfs_start_transaction(root->fs_info->tree_root, 2); 3705 if (IS_ERR(trans)) { 3706 ret = PTR_ERR(trans); 3707 goto out; 3708 } 3709 3710 switch (sa->cmd) { 3711 case BTRFS_QUOTA_CTL_ENABLE: 3712 ret = btrfs_quota_enable(trans, root->fs_info); 3713 break; 3714 case BTRFS_QUOTA_CTL_DISABLE: 3715 ret = btrfs_quota_disable(trans, root->fs_info); 3716 break; 3717 default: 3718 ret = -EINVAL; 3719 break; 3720 } 3721 3722 if (copy_to_user(arg, sa, sizeof(*sa))) 3723 ret = -EFAULT; 3724 3725 err = btrfs_commit_transaction(trans, root->fs_info->tree_root); 3726 if (err && !ret) 3727 ret = err; 3728 out: 3729 kfree(sa); 3730 up_write(&root->fs_info->subvol_sem); 3731 drop_write: 3732 mnt_drop_write_file(file); 3733 return ret; 3734 } 3735 3736 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3737 { 3738 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3739 struct btrfs_ioctl_qgroup_assign_args *sa; 3740 struct btrfs_trans_handle *trans; 3741 int ret; 3742 int err; 3743 3744 if (!capable(CAP_SYS_ADMIN)) 3745 return -EPERM; 3746 3747 ret = mnt_want_write_file(file); 3748 if (ret) 3749 return ret; 3750 3751 sa = memdup_user(arg, sizeof(*sa)); 3752 if (IS_ERR(sa)) { 3753 ret = PTR_ERR(sa); 3754 goto drop_write; 3755 } 3756 3757 trans = btrfs_join_transaction(root); 3758 if (IS_ERR(trans)) { 3759 ret = PTR_ERR(trans); 3760 goto out; 3761 } 3762 3763 /* FIXME: check if the IDs really exist */ 3764 if (sa->assign) { 3765 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 3766 sa->src, sa->dst); 3767 } else { 3768 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 3769 sa->src, sa->dst); 3770 } 3771 3772 err = btrfs_end_transaction(trans, root); 3773 if (err && !ret) 3774 ret = err; 3775 3776 out: 3777 kfree(sa); 3778 drop_write: 3779 mnt_drop_write_file(file); 3780 return ret; 3781 } 3782 3783 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3784 { 3785 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3786 struct btrfs_ioctl_qgroup_create_args *sa; 3787 struct btrfs_trans_handle *trans; 3788 int ret; 3789 int err; 3790 3791 if (!capable(CAP_SYS_ADMIN)) 3792 return -EPERM; 3793 3794 ret = mnt_want_write_file(file); 3795 if (ret) 3796 return ret; 3797 3798 sa = memdup_user(arg, sizeof(*sa)); 3799 if (IS_ERR(sa)) { 3800 ret = PTR_ERR(sa); 3801 goto drop_write; 3802 } 3803 3804 if (!sa->qgroupid) { 3805 ret = -EINVAL; 3806 goto out; 3807 } 3808 3809 trans = btrfs_join_transaction(root); 3810 if (IS_ERR(trans)) { 3811 ret = PTR_ERR(trans); 3812 goto out; 3813 } 3814 3815 /* FIXME: check if the IDs really exist */ 3816 if (sa->create) { 3817 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid, 3818 NULL); 3819 } else { 3820 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 3821 } 3822 3823 err = btrfs_end_transaction(trans, root); 3824 if (err && !ret) 3825 ret = err; 3826 3827 out: 3828 kfree(sa); 3829 drop_write: 3830 mnt_drop_write_file(file); 3831 return ret; 3832 } 3833 3834 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3835 { 3836 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3837 struct btrfs_ioctl_qgroup_limit_args *sa; 3838 struct btrfs_trans_handle *trans; 3839 int ret; 3840 int err; 3841 u64 qgroupid; 3842 3843 if (!capable(CAP_SYS_ADMIN)) 3844 return -EPERM; 3845 3846 ret = mnt_want_write_file(file); 3847 if (ret) 3848 return ret; 3849 3850 sa = memdup_user(arg, sizeof(*sa)); 3851 if (IS_ERR(sa)) { 3852 ret = PTR_ERR(sa); 3853 goto drop_write; 3854 } 3855 3856 trans = btrfs_join_transaction(root); 3857 if (IS_ERR(trans)) { 3858 ret = PTR_ERR(trans); 3859 goto out; 3860 } 3861 3862 qgroupid = sa->qgroupid; 3863 if (!qgroupid) { 3864 /* take the current subvol as qgroup */ 3865 qgroupid = root->root_key.objectid; 3866 } 3867 3868 /* FIXME: check if the IDs really exist */ 3869 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 3870 3871 err = btrfs_end_transaction(trans, root); 3872 if (err && !ret) 3873 ret = err; 3874 3875 out: 3876 kfree(sa); 3877 drop_write: 3878 mnt_drop_write_file(file); 3879 return ret; 3880 } 3881 3882 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 3883 { 3884 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3885 struct btrfs_ioctl_quota_rescan_args *qsa; 3886 int ret; 3887 3888 if (!capable(CAP_SYS_ADMIN)) 3889 return -EPERM; 3890 3891 ret = mnt_want_write_file(file); 3892 if (ret) 3893 return ret; 3894 3895 qsa = memdup_user(arg, sizeof(*qsa)); 3896 if (IS_ERR(qsa)) { 3897 ret = PTR_ERR(qsa); 3898 goto drop_write; 3899 } 3900 3901 if (qsa->flags) { 3902 ret = -EINVAL; 3903 goto out; 3904 } 3905 3906 ret = btrfs_qgroup_rescan(root->fs_info); 3907 3908 out: 3909 kfree(qsa); 3910 drop_write: 3911 mnt_drop_write_file(file); 3912 return ret; 3913 } 3914 3915 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 3916 { 3917 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3918 struct btrfs_ioctl_quota_rescan_args *qsa; 3919 int ret = 0; 3920 3921 if (!capable(CAP_SYS_ADMIN)) 3922 return -EPERM; 3923 3924 qsa = kzalloc(sizeof(*qsa), GFP_NOFS); 3925 if (!qsa) 3926 return -ENOMEM; 3927 3928 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 3929 qsa->flags = 1; 3930 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid; 3931 } 3932 3933 if (copy_to_user(arg, qsa, sizeof(*qsa))) 3934 ret = -EFAULT; 3935 3936 kfree(qsa); 3937 return ret; 3938 } 3939 3940 static long btrfs_ioctl_set_received_subvol(struct file *file, 3941 void __user *arg) 3942 { 3943 struct btrfs_ioctl_received_subvol_args *sa = NULL; 3944 struct inode *inode = file_inode(file); 3945 struct btrfs_root *root = BTRFS_I(inode)->root; 3946 struct btrfs_root_item *root_item = &root->root_item; 3947 struct btrfs_trans_handle *trans; 3948 struct timespec ct = CURRENT_TIME; 3949 int ret = 0; 3950 3951 ret = mnt_want_write_file(file); 3952 if (ret < 0) 3953 return ret; 3954 3955 down_write(&root->fs_info->subvol_sem); 3956 3957 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 3958 ret = -EINVAL; 3959 goto out; 3960 } 3961 3962 if (btrfs_root_readonly(root)) { 3963 ret = -EROFS; 3964 goto out; 3965 } 3966 3967 if (!inode_owner_or_capable(inode)) { 3968 ret = -EACCES; 3969 goto out; 3970 } 3971 3972 sa = memdup_user(arg, sizeof(*sa)); 3973 if (IS_ERR(sa)) { 3974 ret = PTR_ERR(sa); 3975 sa = NULL; 3976 goto out; 3977 } 3978 3979 trans = btrfs_start_transaction(root, 1); 3980 if (IS_ERR(trans)) { 3981 ret = PTR_ERR(trans); 3982 trans = NULL; 3983 goto out; 3984 } 3985 3986 sa->rtransid = trans->transid; 3987 sa->rtime.sec = ct.tv_sec; 3988 sa->rtime.nsec = ct.tv_nsec; 3989 3990 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 3991 btrfs_set_root_stransid(root_item, sa->stransid); 3992 btrfs_set_root_rtransid(root_item, sa->rtransid); 3993 root_item->stime.sec = cpu_to_le64(sa->stime.sec); 3994 root_item->stime.nsec = cpu_to_le32(sa->stime.nsec); 3995 root_item->rtime.sec = cpu_to_le64(sa->rtime.sec); 3996 root_item->rtime.nsec = cpu_to_le32(sa->rtime.nsec); 3997 3998 ret = btrfs_update_root(trans, root->fs_info->tree_root, 3999 &root->root_key, &root->root_item); 4000 if (ret < 0) { 4001 btrfs_end_transaction(trans, root); 4002 trans = NULL; 4003 goto out; 4004 } else { 4005 ret = btrfs_commit_transaction(trans, root); 4006 if (ret < 0) 4007 goto out; 4008 } 4009 4010 ret = copy_to_user(arg, sa, sizeof(*sa)); 4011 if (ret) 4012 ret = -EFAULT; 4013 4014 out: 4015 kfree(sa); 4016 up_write(&root->fs_info->subvol_sem); 4017 mnt_drop_write_file(file); 4018 return ret; 4019 } 4020 4021 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 4022 { 4023 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 4024 const char *label = root->fs_info->super_copy->label; 4025 size_t len = strnlen(label, BTRFS_LABEL_SIZE); 4026 int ret; 4027 4028 if (len == BTRFS_LABEL_SIZE) { 4029 pr_warn("btrfs: label is too long, return the first %zu bytes\n", 4030 --len); 4031 } 4032 4033 mutex_lock(&root->fs_info->volume_mutex); 4034 ret = copy_to_user(arg, label, len); 4035 mutex_unlock(&root->fs_info->volume_mutex); 4036 4037 return ret ? -EFAULT : 0; 4038 } 4039 4040 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4041 { 4042 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 4043 struct btrfs_super_block *super_block = root->fs_info->super_copy; 4044 struct btrfs_trans_handle *trans; 4045 char label[BTRFS_LABEL_SIZE]; 4046 int ret; 4047 4048 if (!capable(CAP_SYS_ADMIN)) 4049 return -EPERM; 4050 4051 if (copy_from_user(label, arg, sizeof(label))) 4052 return -EFAULT; 4053 4054 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4055 pr_err("btrfs: unable to set label with more than %d bytes\n", 4056 BTRFS_LABEL_SIZE - 1); 4057 return -EINVAL; 4058 } 4059 4060 ret = mnt_want_write_file(file); 4061 if (ret) 4062 return ret; 4063 4064 mutex_lock(&root->fs_info->volume_mutex); 4065 trans = btrfs_start_transaction(root, 0); 4066 if (IS_ERR(trans)) { 4067 ret = PTR_ERR(trans); 4068 goto out_unlock; 4069 } 4070 4071 strcpy(super_block->label, label); 4072 ret = btrfs_end_transaction(trans, root); 4073 4074 out_unlock: 4075 mutex_unlock(&root->fs_info->volume_mutex); 4076 mnt_drop_write_file(file); 4077 return ret; 4078 } 4079 4080 long btrfs_ioctl(struct file *file, unsigned int 4081 cmd, unsigned long arg) 4082 { 4083 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4084 void __user *argp = (void __user *)arg; 4085 4086 switch (cmd) { 4087 case FS_IOC_GETFLAGS: 4088 return btrfs_ioctl_getflags(file, argp); 4089 case FS_IOC_SETFLAGS: 4090 return btrfs_ioctl_setflags(file, argp); 4091 case FS_IOC_GETVERSION: 4092 return btrfs_ioctl_getversion(file, argp); 4093 case FITRIM: 4094 return btrfs_ioctl_fitrim(file, argp); 4095 case BTRFS_IOC_SNAP_CREATE: 4096 return btrfs_ioctl_snap_create(file, argp, 0); 4097 case BTRFS_IOC_SNAP_CREATE_V2: 4098 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4099 case BTRFS_IOC_SUBVOL_CREATE: 4100 return btrfs_ioctl_snap_create(file, argp, 1); 4101 case BTRFS_IOC_SUBVOL_CREATE_V2: 4102 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4103 case BTRFS_IOC_SNAP_DESTROY: 4104 return btrfs_ioctl_snap_destroy(file, argp); 4105 case BTRFS_IOC_SUBVOL_GETFLAGS: 4106 return btrfs_ioctl_subvol_getflags(file, argp); 4107 case BTRFS_IOC_SUBVOL_SETFLAGS: 4108 return btrfs_ioctl_subvol_setflags(file, argp); 4109 case BTRFS_IOC_DEFAULT_SUBVOL: 4110 return btrfs_ioctl_default_subvol(file, argp); 4111 case BTRFS_IOC_DEFRAG: 4112 return btrfs_ioctl_defrag(file, NULL); 4113 case BTRFS_IOC_DEFRAG_RANGE: 4114 return btrfs_ioctl_defrag(file, argp); 4115 case BTRFS_IOC_RESIZE: 4116 return btrfs_ioctl_resize(file, argp); 4117 case BTRFS_IOC_ADD_DEV: 4118 return btrfs_ioctl_add_dev(root, argp); 4119 case BTRFS_IOC_RM_DEV: 4120 return btrfs_ioctl_rm_dev(file, argp); 4121 case BTRFS_IOC_FS_INFO: 4122 return btrfs_ioctl_fs_info(root, argp); 4123 case BTRFS_IOC_DEV_INFO: 4124 return btrfs_ioctl_dev_info(root, argp); 4125 case BTRFS_IOC_BALANCE: 4126 return btrfs_ioctl_balance(file, NULL); 4127 case BTRFS_IOC_CLONE: 4128 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 4129 case BTRFS_IOC_CLONE_RANGE: 4130 return btrfs_ioctl_clone_range(file, argp); 4131 case BTRFS_IOC_TRANS_START: 4132 return btrfs_ioctl_trans_start(file); 4133 case BTRFS_IOC_TRANS_END: 4134 return btrfs_ioctl_trans_end(file); 4135 case BTRFS_IOC_TREE_SEARCH: 4136 return btrfs_ioctl_tree_search(file, argp); 4137 case BTRFS_IOC_INO_LOOKUP: 4138 return btrfs_ioctl_ino_lookup(file, argp); 4139 case BTRFS_IOC_INO_PATHS: 4140 return btrfs_ioctl_ino_to_path(root, argp); 4141 case BTRFS_IOC_LOGICAL_INO: 4142 return btrfs_ioctl_logical_to_ino(root, argp); 4143 case BTRFS_IOC_SPACE_INFO: 4144 return btrfs_ioctl_space_info(root, argp); 4145 case BTRFS_IOC_SYNC: 4146 btrfs_sync_fs(file->f_dentry->d_sb, 1); 4147 return 0; 4148 case BTRFS_IOC_START_SYNC: 4149 return btrfs_ioctl_start_sync(root, argp); 4150 case BTRFS_IOC_WAIT_SYNC: 4151 return btrfs_ioctl_wait_sync(root, argp); 4152 case BTRFS_IOC_SCRUB: 4153 return btrfs_ioctl_scrub(file, argp); 4154 case BTRFS_IOC_SCRUB_CANCEL: 4155 return btrfs_ioctl_scrub_cancel(root, argp); 4156 case BTRFS_IOC_SCRUB_PROGRESS: 4157 return btrfs_ioctl_scrub_progress(root, argp); 4158 case BTRFS_IOC_BALANCE_V2: 4159 return btrfs_ioctl_balance(file, argp); 4160 case BTRFS_IOC_BALANCE_CTL: 4161 return btrfs_ioctl_balance_ctl(root, arg); 4162 case BTRFS_IOC_BALANCE_PROGRESS: 4163 return btrfs_ioctl_balance_progress(root, argp); 4164 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4165 return btrfs_ioctl_set_received_subvol(file, argp); 4166 case BTRFS_IOC_SEND: 4167 return btrfs_ioctl_send(file, argp); 4168 case BTRFS_IOC_GET_DEV_STATS: 4169 return btrfs_ioctl_get_dev_stats(root, argp); 4170 case BTRFS_IOC_QUOTA_CTL: 4171 return btrfs_ioctl_quota_ctl(file, argp); 4172 case BTRFS_IOC_QGROUP_ASSIGN: 4173 return btrfs_ioctl_qgroup_assign(file, argp); 4174 case BTRFS_IOC_QGROUP_CREATE: 4175 return btrfs_ioctl_qgroup_create(file, argp); 4176 case BTRFS_IOC_QGROUP_LIMIT: 4177 return btrfs_ioctl_qgroup_limit(file, argp); 4178 case BTRFS_IOC_QUOTA_RESCAN: 4179 return btrfs_ioctl_quota_rescan(file, argp); 4180 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4181 return btrfs_ioctl_quota_rescan_status(file, argp); 4182 case BTRFS_IOC_DEV_REPLACE: 4183 return btrfs_ioctl_dev_replace(root, argp); 4184 case BTRFS_IOC_GET_FSLABEL: 4185 return btrfs_ioctl_get_fslabel(file, argp); 4186 case BTRFS_IOC_SET_FSLABEL: 4187 return btrfs_ioctl_set_fslabel(file, argp); 4188 } 4189 4190 return -ENOTTY; 4191 } 4192