1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "transaction.h" 32 #include "btrfs_inode.h" 33 #include "print-tree.h" 34 #include "volumes.h" 35 #include "locking.h" 36 #include "inode-map.h" 37 #include "backref.h" 38 #include "rcu-string.h" 39 #include "send.h" 40 #include "dev-replace.h" 41 #include "props.h" 42 #include "sysfs.h" 43 #include "qgroup.h" 44 #include "tree-log.h" 45 #include "compression.h" 46 47 #ifdef CONFIG_64BIT 48 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 49 * structures are incorrect, as the timespec structure from userspace 50 * is 4 bytes too small. We define these alternatives here to teach 51 * the kernel about the 32-bit struct packing. 52 */ 53 struct btrfs_ioctl_timespec_32 { 54 __u64 sec; 55 __u32 nsec; 56 } __attribute__ ((__packed__)); 57 58 struct btrfs_ioctl_received_subvol_args_32 { 59 char uuid[BTRFS_UUID_SIZE]; /* in */ 60 __u64 stransid; /* in */ 61 __u64 rtransid; /* out */ 62 struct btrfs_ioctl_timespec_32 stime; /* in */ 63 struct btrfs_ioctl_timespec_32 rtime; /* out */ 64 __u64 flags; /* in */ 65 __u64 reserved[16]; /* in */ 66 } __attribute__ ((__packed__)); 67 68 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 69 struct btrfs_ioctl_received_subvol_args_32) 70 #endif 71 72 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 73 struct btrfs_ioctl_send_args_32 { 74 __s64 send_fd; /* in */ 75 __u64 clone_sources_count; /* in */ 76 compat_uptr_t clone_sources; /* in */ 77 __u64 parent_root; /* in */ 78 __u64 flags; /* in */ 79 __u64 reserved[4]; /* in */ 80 } __attribute__ ((__packed__)); 81 82 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 83 struct btrfs_ioctl_send_args_32) 84 #endif 85 86 static int btrfs_clone(struct inode *src, struct inode *inode, 87 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 88 int no_time_update); 89 90 /* Mask out flags that are inappropriate for the given type of inode. */ 91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 92 unsigned int flags) 93 { 94 if (S_ISDIR(inode->i_mode)) 95 return flags; 96 else if (S_ISREG(inode->i_mode)) 97 return flags & ~FS_DIRSYNC_FL; 98 else 99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 100 } 101 102 /* 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 104 * ioctl. 105 */ 106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 107 { 108 unsigned int iflags = 0; 109 110 if (flags & BTRFS_INODE_SYNC) 111 iflags |= FS_SYNC_FL; 112 if (flags & BTRFS_INODE_IMMUTABLE) 113 iflags |= FS_IMMUTABLE_FL; 114 if (flags & BTRFS_INODE_APPEND) 115 iflags |= FS_APPEND_FL; 116 if (flags & BTRFS_INODE_NODUMP) 117 iflags |= FS_NODUMP_FL; 118 if (flags & BTRFS_INODE_NOATIME) 119 iflags |= FS_NOATIME_FL; 120 if (flags & BTRFS_INODE_DIRSYNC) 121 iflags |= FS_DIRSYNC_FL; 122 if (flags & BTRFS_INODE_NODATACOW) 123 iflags |= FS_NOCOW_FL; 124 125 if (flags & BTRFS_INODE_NOCOMPRESS) 126 iflags |= FS_NOCOMP_FL; 127 else if (flags & BTRFS_INODE_COMPRESS) 128 iflags |= FS_COMPR_FL; 129 130 return iflags; 131 } 132 133 /* 134 * Update inode->i_flags based on the btrfs internal flags. 135 */ 136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 137 { 138 struct btrfs_inode *binode = BTRFS_I(inode); 139 unsigned int new_fl = 0; 140 141 if (binode->flags & BTRFS_INODE_SYNC) 142 new_fl |= S_SYNC; 143 if (binode->flags & BTRFS_INODE_IMMUTABLE) 144 new_fl |= S_IMMUTABLE; 145 if (binode->flags & BTRFS_INODE_APPEND) 146 new_fl |= S_APPEND; 147 if (binode->flags & BTRFS_INODE_NOATIME) 148 new_fl |= S_NOATIME; 149 if (binode->flags & BTRFS_INODE_DIRSYNC) 150 new_fl |= S_DIRSYNC; 151 152 set_mask_bits(&inode->i_flags, 153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 154 new_fl); 155 } 156 157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 158 { 159 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 161 162 if (copy_to_user(arg, &flags, sizeof(flags))) 163 return -EFAULT; 164 return 0; 165 } 166 167 /* Check if @flags are a supported and valid set of FS_*_FL flags */ 168 static int check_fsflags(unsigned int flags) 169 { 170 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 171 FS_NOATIME_FL | FS_NODUMP_FL | \ 172 FS_SYNC_FL | FS_DIRSYNC_FL | \ 173 FS_NOCOMP_FL | FS_COMPR_FL | 174 FS_NOCOW_FL)) 175 return -EOPNOTSUPP; 176 177 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 178 return -EINVAL; 179 180 return 0; 181 } 182 183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 184 { 185 struct inode *inode = file_inode(file); 186 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 187 struct btrfs_inode *binode = BTRFS_I(inode); 188 struct btrfs_root *root = binode->root; 189 struct btrfs_trans_handle *trans; 190 unsigned int fsflags; 191 int ret; 192 const char *comp = NULL; 193 u32 binode_flags = binode->flags; 194 195 if (!inode_owner_or_capable(inode)) 196 return -EPERM; 197 198 if (btrfs_root_readonly(root)) 199 return -EROFS; 200 201 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 202 return -EFAULT; 203 204 ret = check_fsflags(fsflags); 205 if (ret) 206 return ret; 207 208 ret = mnt_want_write_file(file); 209 if (ret) 210 return ret; 211 212 inode_lock(inode); 213 214 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 215 if ((fsflags ^ btrfs_inode_flags_to_fsflags(binode->flags)) & 216 (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 217 if (!capable(CAP_LINUX_IMMUTABLE)) { 218 ret = -EPERM; 219 goto out_unlock; 220 } 221 } 222 223 if (fsflags & FS_SYNC_FL) 224 binode_flags |= BTRFS_INODE_SYNC; 225 else 226 binode_flags &= ~BTRFS_INODE_SYNC; 227 if (fsflags & FS_IMMUTABLE_FL) 228 binode_flags |= BTRFS_INODE_IMMUTABLE; 229 else 230 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 231 if (fsflags & FS_APPEND_FL) 232 binode_flags |= BTRFS_INODE_APPEND; 233 else 234 binode_flags &= ~BTRFS_INODE_APPEND; 235 if (fsflags & FS_NODUMP_FL) 236 binode_flags |= BTRFS_INODE_NODUMP; 237 else 238 binode_flags &= ~BTRFS_INODE_NODUMP; 239 if (fsflags & FS_NOATIME_FL) 240 binode_flags |= BTRFS_INODE_NOATIME; 241 else 242 binode_flags &= ~BTRFS_INODE_NOATIME; 243 if (fsflags & FS_DIRSYNC_FL) 244 binode_flags |= BTRFS_INODE_DIRSYNC; 245 else 246 binode_flags &= ~BTRFS_INODE_DIRSYNC; 247 if (fsflags & FS_NOCOW_FL) { 248 if (S_ISREG(inode->i_mode)) { 249 /* 250 * It's safe to turn csums off here, no extents exist. 251 * Otherwise we want the flag to reflect the real COW 252 * status of the file and will not set it. 253 */ 254 if (inode->i_size == 0) 255 binode_flags |= BTRFS_INODE_NODATACOW | 256 BTRFS_INODE_NODATASUM; 257 } else { 258 binode_flags |= BTRFS_INODE_NODATACOW; 259 } 260 } else { 261 /* 262 * Revert back under same assumptions as above 263 */ 264 if (S_ISREG(inode->i_mode)) { 265 if (inode->i_size == 0) 266 binode_flags &= ~(BTRFS_INODE_NODATACOW | 267 BTRFS_INODE_NODATASUM); 268 } else { 269 binode_flags &= ~BTRFS_INODE_NODATACOW; 270 } 271 } 272 273 /* 274 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 275 * flag may be changed automatically if compression code won't make 276 * things smaller. 277 */ 278 if (fsflags & FS_NOCOMP_FL) { 279 binode_flags &= ~BTRFS_INODE_COMPRESS; 280 binode_flags |= BTRFS_INODE_NOCOMPRESS; 281 } else if (fsflags & FS_COMPR_FL) { 282 283 if (IS_SWAPFILE(inode)) { 284 ret = -ETXTBSY; 285 goto out_unlock; 286 } 287 288 binode_flags |= BTRFS_INODE_COMPRESS; 289 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 290 291 comp = btrfs_compress_type2str(fs_info->compress_type); 292 if (!comp || comp[0] == 0) 293 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 294 } else { 295 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 296 } 297 298 /* 299 * 1 for inode item 300 * 2 for properties 301 */ 302 trans = btrfs_start_transaction(root, 3); 303 if (IS_ERR(trans)) { 304 ret = PTR_ERR(trans); 305 goto out_unlock; 306 } 307 308 if (comp) { 309 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 310 strlen(comp), 0); 311 if (ret) { 312 btrfs_abort_transaction(trans, ret); 313 goto out_end_trans; 314 } 315 set_bit(BTRFS_INODE_COPY_EVERYTHING, 316 &BTRFS_I(inode)->runtime_flags); 317 } else { 318 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 319 0, 0); 320 if (ret && ret != -ENODATA) { 321 btrfs_abort_transaction(trans, ret); 322 goto out_end_trans; 323 } 324 } 325 326 binode->flags = binode_flags; 327 btrfs_sync_inode_flags_to_i_flags(inode); 328 inode_inc_iversion(inode); 329 inode->i_ctime = current_time(inode); 330 ret = btrfs_update_inode(trans, root, inode); 331 332 out_end_trans: 333 btrfs_end_transaction(trans); 334 out_unlock: 335 inode_unlock(inode); 336 mnt_drop_write_file(file); 337 return ret; 338 } 339 340 /* 341 * Translate btrfs internal inode flags to xflags as expected by the 342 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 343 * silently dropped. 344 */ 345 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 346 { 347 unsigned int xflags = 0; 348 349 if (flags & BTRFS_INODE_APPEND) 350 xflags |= FS_XFLAG_APPEND; 351 if (flags & BTRFS_INODE_IMMUTABLE) 352 xflags |= FS_XFLAG_IMMUTABLE; 353 if (flags & BTRFS_INODE_NOATIME) 354 xflags |= FS_XFLAG_NOATIME; 355 if (flags & BTRFS_INODE_NODUMP) 356 xflags |= FS_XFLAG_NODUMP; 357 if (flags & BTRFS_INODE_SYNC) 358 xflags |= FS_XFLAG_SYNC; 359 360 return xflags; 361 } 362 363 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 364 static int check_xflags(unsigned int flags) 365 { 366 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 367 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 368 return -EOPNOTSUPP; 369 return 0; 370 } 371 372 /* 373 * Set the xflags from the internal inode flags. The remaining items of fsxattr 374 * are zeroed. 375 */ 376 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 377 { 378 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 379 struct fsxattr fa; 380 381 memset(&fa, 0, sizeof(fa)); 382 fa.fsx_xflags = btrfs_inode_flags_to_xflags(binode->flags); 383 384 if (copy_to_user(arg, &fa, sizeof(fa))) 385 return -EFAULT; 386 387 return 0; 388 } 389 390 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 391 { 392 struct inode *inode = file_inode(file); 393 struct btrfs_inode *binode = BTRFS_I(inode); 394 struct btrfs_root *root = binode->root; 395 struct btrfs_trans_handle *trans; 396 struct fsxattr fa; 397 unsigned old_flags; 398 unsigned old_i_flags; 399 int ret = 0; 400 401 if (!inode_owner_or_capable(inode)) 402 return -EPERM; 403 404 if (btrfs_root_readonly(root)) 405 return -EROFS; 406 407 memset(&fa, 0, sizeof(fa)); 408 if (copy_from_user(&fa, arg, sizeof(fa))) 409 return -EFAULT; 410 411 ret = check_xflags(fa.fsx_xflags); 412 if (ret) 413 return ret; 414 415 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 416 return -EOPNOTSUPP; 417 418 ret = mnt_want_write_file(file); 419 if (ret) 420 return ret; 421 422 inode_lock(inode); 423 424 old_flags = binode->flags; 425 old_i_flags = inode->i_flags; 426 427 /* We need the capabilities to change append-only or immutable inode */ 428 if (((old_flags & (BTRFS_INODE_APPEND | BTRFS_INODE_IMMUTABLE)) || 429 (fa.fsx_xflags & (FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE))) && 430 !capable(CAP_LINUX_IMMUTABLE)) { 431 ret = -EPERM; 432 goto out_unlock; 433 } 434 435 if (fa.fsx_xflags & FS_XFLAG_SYNC) 436 binode->flags |= BTRFS_INODE_SYNC; 437 else 438 binode->flags &= ~BTRFS_INODE_SYNC; 439 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 440 binode->flags |= BTRFS_INODE_IMMUTABLE; 441 else 442 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 443 if (fa.fsx_xflags & FS_XFLAG_APPEND) 444 binode->flags |= BTRFS_INODE_APPEND; 445 else 446 binode->flags &= ~BTRFS_INODE_APPEND; 447 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 448 binode->flags |= BTRFS_INODE_NODUMP; 449 else 450 binode->flags &= ~BTRFS_INODE_NODUMP; 451 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 452 binode->flags |= BTRFS_INODE_NOATIME; 453 else 454 binode->flags &= ~BTRFS_INODE_NOATIME; 455 456 /* 1 item for the inode */ 457 trans = btrfs_start_transaction(root, 1); 458 if (IS_ERR(trans)) { 459 ret = PTR_ERR(trans); 460 goto out_unlock; 461 } 462 463 btrfs_sync_inode_flags_to_i_flags(inode); 464 inode_inc_iversion(inode); 465 inode->i_ctime = current_time(inode); 466 ret = btrfs_update_inode(trans, root, inode); 467 468 btrfs_end_transaction(trans); 469 470 out_unlock: 471 if (ret) { 472 binode->flags = old_flags; 473 inode->i_flags = old_i_flags; 474 } 475 476 inode_unlock(inode); 477 mnt_drop_write_file(file); 478 479 return ret; 480 } 481 482 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 483 { 484 struct inode *inode = file_inode(file); 485 486 return put_user(inode->i_generation, arg); 487 } 488 489 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 490 { 491 struct inode *inode = file_inode(file); 492 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 493 struct btrfs_device *device; 494 struct request_queue *q; 495 struct fstrim_range range; 496 u64 minlen = ULLONG_MAX; 497 u64 num_devices = 0; 498 int ret; 499 500 if (!capable(CAP_SYS_ADMIN)) 501 return -EPERM; 502 503 /* 504 * If the fs is mounted with nologreplay, which requires it to be 505 * mounted in RO mode as well, we can not allow discard on free space 506 * inside block groups, because log trees refer to extents that are not 507 * pinned in a block group's free space cache (pinning the extents is 508 * precisely the first phase of replaying a log tree). 509 */ 510 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 511 return -EROFS; 512 513 rcu_read_lock(); 514 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 515 dev_list) { 516 if (!device->bdev) 517 continue; 518 q = bdev_get_queue(device->bdev); 519 if (blk_queue_discard(q)) { 520 num_devices++; 521 minlen = min_t(u64, q->limits.discard_granularity, 522 minlen); 523 } 524 } 525 rcu_read_unlock(); 526 527 if (!num_devices) 528 return -EOPNOTSUPP; 529 if (copy_from_user(&range, arg, sizeof(range))) 530 return -EFAULT; 531 532 /* 533 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 534 * block group is in the logical address space, which can be any 535 * sectorsize aligned bytenr in the range [0, U64_MAX]. 536 */ 537 if (range.len < fs_info->sb->s_blocksize) 538 return -EINVAL; 539 540 range.minlen = max(range.minlen, minlen); 541 ret = btrfs_trim_fs(fs_info, &range); 542 if (ret < 0) 543 return ret; 544 545 if (copy_to_user(arg, &range, sizeof(range))) 546 return -EFAULT; 547 548 return 0; 549 } 550 551 int btrfs_is_empty_uuid(u8 *uuid) 552 { 553 int i; 554 555 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 556 if (uuid[i]) 557 return 0; 558 } 559 return 1; 560 } 561 562 static noinline int create_subvol(struct inode *dir, 563 struct dentry *dentry, 564 const char *name, int namelen, 565 u64 *async_transid, 566 struct btrfs_qgroup_inherit *inherit) 567 { 568 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 569 struct btrfs_trans_handle *trans; 570 struct btrfs_key key; 571 struct btrfs_root_item *root_item; 572 struct btrfs_inode_item *inode_item; 573 struct extent_buffer *leaf; 574 struct btrfs_root *root = BTRFS_I(dir)->root; 575 struct btrfs_root *new_root; 576 struct btrfs_block_rsv block_rsv; 577 struct timespec64 cur_time = current_time(dir); 578 struct inode *inode; 579 int ret; 580 int err; 581 u64 objectid; 582 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 583 u64 index = 0; 584 uuid_le new_uuid; 585 586 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 587 if (!root_item) 588 return -ENOMEM; 589 590 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 591 if (ret) 592 goto fail_free; 593 594 /* 595 * Don't create subvolume whose level is not zero. Or qgroup will be 596 * screwed up since it assumes subvolume qgroup's level to be 0. 597 */ 598 if (btrfs_qgroup_level(objectid)) { 599 ret = -ENOSPC; 600 goto fail_free; 601 } 602 603 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 604 /* 605 * The same as the snapshot creation, please see the comment 606 * of create_snapshot(). 607 */ 608 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 609 if (ret) 610 goto fail_free; 611 612 trans = btrfs_start_transaction(root, 0); 613 if (IS_ERR(trans)) { 614 ret = PTR_ERR(trans); 615 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 616 goto fail_free; 617 } 618 trans->block_rsv = &block_rsv; 619 trans->bytes_reserved = block_rsv.size; 620 621 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 622 if (ret) 623 goto fail; 624 625 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 626 if (IS_ERR(leaf)) { 627 ret = PTR_ERR(leaf); 628 goto fail; 629 } 630 631 btrfs_mark_buffer_dirty(leaf); 632 633 inode_item = &root_item->inode; 634 btrfs_set_stack_inode_generation(inode_item, 1); 635 btrfs_set_stack_inode_size(inode_item, 3); 636 btrfs_set_stack_inode_nlink(inode_item, 1); 637 btrfs_set_stack_inode_nbytes(inode_item, 638 fs_info->nodesize); 639 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 640 641 btrfs_set_root_flags(root_item, 0); 642 btrfs_set_root_limit(root_item, 0); 643 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 644 645 btrfs_set_root_bytenr(root_item, leaf->start); 646 btrfs_set_root_generation(root_item, trans->transid); 647 btrfs_set_root_level(root_item, 0); 648 btrfs_set_root_refs(root_item, 1); 649 btrfs_set_root_used(root_item, leaf->len); 650 btrfs_set_root_last_snapshot(root_item, 0); 651 652 btrfs_set_root_generation_v2(root_item, 653 btrfs_root_generation(root_item)); 654 uuid_le_gen(&new_uuid); 655 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 656 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 657 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 658 root_item->ctime = root_item->otime; 659 btrfs_set_root_ctransid(root_item, trans->transid); 660 btrfs_set_root_otransid(root_item, trans->transid); 661 662 btrfs_tree_unlock(leaf); 663 free_extent_buffer(leaf); 664 leaf = NULL; 665 666 btrfs_set_root_dirid(root_item, new_dirid); 667 668 key.objectid = objectid; 669 key.offset = 0; 670 key.type = BTRFS_ROOT_ITEM_KEY; 671 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 672 root_item); 673 if (ret) 674 goto fail; 675 676 key.offset = (u64)-1; 677 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 678 if (IS_ERR(new_root)) { 679 ret = PTR_ERR(new_root); 680 btrfs_abort_transaction(trans, ret); 681 goto fail; 682 } 683 684 btrfs_record_root_in_trans(trans, new_root); 685 686 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 687 if (ret) { 688 /* We potentially lose an unused inode item here */ 689 btrfs_abort_transaction(trans, ret); 690 goto fail; 691 } 692 693 mutex_lock(&new_root->objectid_mutex); 694 new_root->highest_objectid = new_dirid; 695 mutex_unlock(&new_root->objectid_mutex); 696 697 /* 698 * insert the directory item 699 */ 700 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 701 if (ret) { 702 btrfs_abort_transaction(trans, ret); 703 goto fail; 704 } 705 706 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 707 BTRFS_FT_DIR, index); 708 if (ret) { 709 btrfs_abort_transaction(trans, ret); 710 goto fail; 711 } 712 713 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 714 ret = btrfs_update_inode(trans, root, dir); 715 BUG_ON(ret); 716 717 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 718 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 719 BUG_ON(ret); 720 721 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 722 BTRFS_UUID_KEY_SUBVOL, objectid); 723 if (ret) 724 btrfs_abort_transaction(trans, ret); 725 726 fail: 727 kfree(root_item); 728 trans->block_rsv = NULL; 729 trans->bytes_reserved = 0; 730 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 731 732 if (async_transid) { 733 *async_transid = trans->transid; 734 err = btrfs_commit_transaction_async(trans, 1); 735 if (err) 736 err = btrfs_commit_transaction(trans); 737 } else { 738 err = btrfs_commit_transaction(trans); 739 } 740 if (err && !ret) 741 ret = err; 742 743 if (!ret) { 744 inode = btrfs_lookup_dentry(dir, dentry); 745 if (IS_ERR(inode)) 746 return PTR_ERR(inode); 747 d_instantiate(dentry, inode); 748 } 749 return ret; 750 751 fail_free: 752 kfree(root_item); 753 return ret; 754 } 755 756 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 757 struct dentry *dentry, 758 u64 *async_transid, bool readonly, 759 struct btrfs_qgroup_inherit *inherit) 760 { 761 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 762 struct inode *inode; 763 struct btrfs_pending_snapshot *pending_snapshot; 764 struct btrfs_trans_handle *trans; 765 int ret; 766 bool snapshot_force_cow = false; 767 768 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 769 return -EINVAL; 770 771 if (atomic_read(&root->nr_swapfiles)) { 772 btrfs_warn(fs_info, 773 "cannot snapshot subvolume with active swapfile"); 774 return -ETXTBSY; 775 } 776 777 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 778 if (!pending_snapshot) 779 return -ENOMEM; 780 781 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 782 GFP_KERNEL); 783 pending_snapshot->path = btrfs_alloc_path(); 784 if (!pending_snapshot->root_item || !pending_snapshot->path) { 785 ret = -ENOMEM; 786 goto free_pending; 787 } 788 789 /* 790 * Force new buffered writes to reserve space even when NOCOW is 791 * possible. This is to avoid later writeback (running dealloc) to 792 * fallback to COW mode and unexpectedly fail with ENOSPC. 793 */ 794 atomic_inc(&root->will_be_snapshotted); 795 smp_mb__after_atomic(); 796 /* wait for no snapshot writes */ 797 wait_event(root->subv_writers->wait, 798 percpu_counter_sum(&root->subv_writers->counter) == 0); 799 800 ret = btrfs_start_delalloc_snapshot(root); 801 if (ret) 802 goto dec_and_free; 803 804 /* 805 * All previous writes have started writeback in NOCOW mode, so now 806 * we force future writes to fallback to COW mode during snapshot 807 * creation. 808 */ 809 atomic_inc(&root->snapshot_force_cow); 810 snapshot_force_cow = true; 811 812 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 813 814 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 815 BTRFS_BLOCK_RSV_TEMP); 816 /* 817 * 1 - parent dir inode 818 * 2 - dir entries 819 * 1 - root item 820 * 2 - root ref/backref 821 * 1 - root of snapshot 822 * 1 - UUID item 823 */ 824 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 825 &pending_snapshot->block_rsv, 8, 826 false); 827 if (ret) 828 goto dec_and_free; 829 830 pending_snapshot->dentry = dentry; 831 pending_snapshot->root = root; 832 pending_snapshot->readonly = readonly; 833 pending_snapshot->dir = dir; 834 pending_snapshot->inherit = inherit; 835 836 trans = btrfs_start_transaction(root, 0); 837 if (IS_ERR(trans)) { 838 ret = PTR_ERR(trans); 839 goto fail; 840 } 841 842 spin_lock(&fs_info->trans_lock); 843 list_add(&pending_snapshot->list, 844 &trans->transaction->pending_snapshots); 845 spin_unlock(&fs_info->trans_lock); 846 if (async_transid) { 847 *async_transid = trans->transid; 848 ret = btrfs_commit_transaction_async(trans, 1); 849 if (ret) 850 ret = btrfs_commit_transaction(trans); 851 } else { 852 ret = btrfs_commit_transaction(trans); 853 } 854 if (ret) 855 goto fail; 856 857 ret = pending_snapshot->error; 858 if (ret) 859 goto fail; 860 861 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 862 if (ret) 863 goto fail; 864 865 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 866 if (IS_ERR(inode)) { 867 ret = PTR_ERR(inode); 868 goto fail; 869 } 870 871 d_instantiate(dentry, inode); 872 ret = 0; 873 fail: 874 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 875 dec_and_free: 876 if (snapshot_force_cow) 877 atomic_dec(&root->snapshot_force_cow); 878 if (atomic_dec_and_test(&root->will_be_snapshotted)) 879 wake_up_var(&root->will_be_snapshotted); 880 free_pending: 881 kfree(pending_snapshot->root_item); 882 btrfs_free_path(pending_snapshot->path); 883 kfree(pending_snapshot); 884 885 return ret; 886 } 887 888 /* copy of may_delete in fs/namei.c() 889 * Check whether we can remove a link victim from directory dir, check 890 * whether the type of victim is right. 891 * 1. We can't do it if dir is read-only (done in permission()) 892 * 2. We should have write and exec permissions on dir 893 * 3. We can't remove anything from append-only dir 894 * 4. We can't do anything with immutable dir (done in permission()) 895 * 5. If the sticky bit on dir is set we should either 896 * a. be owner of dir, or 897 * b. be owner of victim, or 898 * c. have CAP_FOWNER capability 899 * 6. If the victim is append-only or immutable we can't do anything with 900 * links pointing to it. 901 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 902 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 903 * 9. We can't remove a root or mountpoint. 904 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 905 * nfs_async_unlink(). 906 */ 907 908 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 909 { 910 int error; 911 912 if (d_really_is_negative(victim)) 913 return -ENOENT; 914 915 BUG_ON(d_inode(victim->d_parent) != dir); 916 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 917 918 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 919 if (error) 920 return error; 921 if (IS_APPEND(dir)) 922 return -EPERM; 923 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 924 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 925 return -EPERM; 926 if (isdir) { 927 if (!d_is_dir(victim)) 928 return -ENOTDIR; 929 if (IS_ROOT(victim)) 930 return -EBUSY; 931 } else if (d_is_dir(victim)) 932 return -EISDIR; 933 if (IS_DEADDIR(dir)) 934 return -ENOENT; 935 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 936 return -EBUSY; 937 return 0; 938 } 939 940 /* copy of may_create in fs/namei.c() */ 941 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 942 { 943 if (d_really_is_positive(child)) 944 return -EEXIST; 945 if (IS_DEADDIR(dir)) 946 return -ENOENT; 947 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 948 } 949 950 /* 951 * Create a new subvolume below @parent. This is largely modeled after 952 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 953 * inside this filesystem so it's quite a bit simpler. 954 */ 955 static noinline int btrfs_mksubvol(const struct path *parent, 956 const char *name, int namelen, 957 struct btrfs_root *snap_src, 958 u64 *async_transid, bool readonly, 959 struct btrfs_qgroup_inherit *inherit) 960 { 961 struct inode *dir = d_inode(parent->dentry); 962 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 963 struct dentry *dentry; 964 int error; 965 966 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 967 if (error == -EINTR) 968 return error; 969 970 dentry = lookup_one_len(name, parent->dentry, namelen); 971 error = PTR_ERR(dentry); 972 if (IS_ERR(dentry)) 973 goto out_unlock; 974 975 error = btrfs_may_create(dir, dentry); 976 if (error) 977 goto out_dput; 978 979 /* 980 * even if this name doesn't exist, we may get hash collisions. 981 * check for them now when we can safely fail 982 */ 983 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 984 dir->i_ino, name, 985 namelen); 986 if (error) 987 goto out_dput; 988 989 down_read(&fs_info->subvol_sem); 990 991 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 992 goto out_up_read; 993 994 if (snap_src) { 995 error = create_snapshot(snap_src, dir, dentry, 996 async_transid, readonly, inherit); 997 } else { 998 error = create_subvol(dir, dentry, name, namelen, 999 async_transid, inherit); 1000 } 1001 if (!error) 1002 fsnotify_mkdir(dir, dentry); 1003 out_up_read: 1004 up_read(&fs_info->subvol_sem); 1005 out_dput: 1006 dput(dentry); 1007 out_unlock: 1008 inode_unlock(dir); 1009 return error; 1010 } 1011 1012 /* 1013 * When we're defragging a range, we don't want to kick it off again 1014 * if it is really just waiting for delalloc to send it down. 1015 * If we find a nice big extent or delalloc range for the bytes in the 1016 * file you want to defrag, we return 0 to let you know to skip this 1017 * part of the file 1018 */ 1019 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1020 { 1021 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1022 struct extent_map *em = NULL; 1023 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1024 u64 end; 1025 1026 read_lock(&em_tree->lock); 1027 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1028 read_unlock(&em_tree->lock); 1029 1030 if (em) { 1031 end = extent_map_end(em); 1032 free_extent_map(em); 1033 if (end - offset > thresh) 1034 return 0; 1035 } 1036 /* if we already have a nice delalloc here, just stop */ 1037 thresh /= 2; 1038 end = count_range_bits(io_tree, &offset, offset + thresh, 1039 thresh, EXTENT_DELALLOC, 1); 1040 if (end >= thresh) 1041 return 0; 1042 return 1; 1043 } 1044 1045 /* 1046 * helper function to walk through a file and find extents 1047 * newer than a specific transid, and smaller than thresh. 1048 * 1049 * This is used by the defragging code to find new and small 1050 * extents 1051 */ 1052 static int find_new_extents(struct btrfs_root *root, 1053 struct inode *inode, u64 newer_than, 1054 u64 *off, u32 thresh) 1055 { 1056 struct btrfs_path *path; 1057 struct btrfs_key min_key; 1058 struct extent_buffer *leaf; 1059 struct btrfs_file_extent_item *extent; 1060 int type; 1061 int ret; 1062 u64 ino = btrfs_ino(BTRFS_I(inode)); 1063 1064 path = btrfs_alloc_path(); 1065 if (!path) 1066 return -ENOMEM; 1067 1068 min_key.objectid = ino; 1069 min_key.type = BTRFS_EXTENT_DATA_KEY; 1070 min_key.offset = *off; 1071 1072 while (1) { 1073 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1074 if (ret != 0) 1075 goto none; 1076 process_slot: 1077 if (min_key.objectid != ino) 1078 goto none; 1079 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1080 goto none; 1081 1082 leaf = path->nodes[0]; 1083 extent = btrfs_item_ptr(leaf, path->slots[0], 1084 struct btrfs_file_extent_item); 1085 1086 type = btrfs_file_extent_type(leaf, extent); 1087 if (type == BTRFS_FILE_EXTENT_REG && 1088 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1089 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1090 *off = min_key.offset; 1091 btrfs_free_path(path); 1092 return 0; 1093 } 1094 1095 path->slots[0]++; 1096 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1097 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1098 goto process_slot; 1099 } 1100 1101 if (min_key.offset == (u64)-1) 1102 goto none; 1103 1104 min_key.offset++; 1105 btrfs_release_path(path); 1106 } 1107 none: 1108 btrfs_free_path(path); 1109 return -ENOENT; 1110 } 1111 1112 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1113 { 1114 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1115 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1116 struct extent_map *em; 1117 u64 len = PAGE_SIZE; 1118 1119 /* 1120 * hopefully we have this extent in the tree already, try without 1121 * the full extent lock 1122 */ 1123 read_lock(&em_tree->lock); 1124 em = lookup_extent_mapping(em_tree, start, len); 1125 read_unlock(&em_tree->lock); 1126 1127 if (!em) { 1128 struct extent_state *cached = NULL; 1129 u64 end = start + len - 1; 1130 1131 /* get the big lock and read metadata off disk */ 1132 lock_extent_bits(io_tree, start, end, &cached); 1133 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 1134 unlock_extent_cached(io_tree, start, end, &cached); 1135 1136 if (IS_ERR(em)) 1137 return NULL; 1138 } 1139 1140 return em; 1141 } 1142 1143 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1144 { 1145 struct extent_map *next; 1146 bool ret = true; 1147 1148 /* this is the last extent */ 1149 if (em->start + em->len >= i_size_read(inode)) 1150 return false; 1151 1152 next = defrag_lookup_extent(inode, em->start + em->len); 1153 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1154 ret = false; 1155 else if ((em->block_start + em->block_len == next->block_start) && 1156 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1157 ret = false; 1158 1159 free_extent_map(next); 1160 return ret; 1161 } 1162 1163 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1164 u64 *last_len, u64 *skip, u64 *defrag_end, 1165 int compress) 1166 { 1167 struct extent_map *em; 1168 int ret = 1; 1169 bool next_mergeable = true; 1170 bool prev_mergeable = true; 1171 1172 /* 1173 * make sure that once we start defragging an extent, we keep on 1174 * defragging it 1175 */ 1176 if (start < *defrag_end) 1177 return 1; 1178 1179 *skip = 0; 1180 1181 em = defrag_lookup_extent(inode, start); 1182 if (!em) 1183 return 0; 1184 1185 /* this will cover holes, and inline extents */ 1186 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1187 ret = 0; 1188 goto out; 1189 } 1190 1191 if (!*defrag_end) 1192 prev_mergeable = false; 1193 1194 next_mergeable = defrag_check_next_extent(inode, em); 1195 /* 1196 * we hit a real extent, if it is big or the next extent is not a 1197 * real extent, don't bother defragging it 1198 */ 1199 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1200 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1201 ret = 0; 1202 out: 1203 /* 1204 * last_len ends up being a counter of how many bytes we've defragged. 1205 * every time we choose not to defrag an extent, we reset *last_len 1206 * so that the next tiny extent will force a defrag. 1207 * 1208 * The end result of this is that tiny extents before a single big 1209 * extent will force at least part of that big extent to be defragged. 1210 */ 1211 if (ret) { 1212 *defrag_end = extent_map_end(em); 1213 } else { 1214 *last_len = 0; 1215 *skip = extent_map_end(em); 1216 *defrag_end = 0; 1217 } 1218 1219 free_extent_map(em); 1220 return ret; 1221 } 1222 1223 /* 1224 * it doesn't do much good to defrag one or two pages 1225 * at a time. This pulls in a nice chunk of pages 1226 * to COW and defrag. 1227 * 1228 * It also makes sure the delalloc code has enough 1229 * dirty data to avoid making new small extents as part 1230 * of the defrag 1231 * 1232 * It's a good idea to start RA on this range 1233 * before calling this. 1234 */ 1235 static int cluster_pages_for_defrag(struct inode *inode, 1236 struct page **pages, 1237 unsigned long start_index, 1238 unsigned long num_pages) 1239 { 1240 unsigned long file_end; 1241 u64 isize = i_size_read(inode); 1242 u64 page_start; 1243 u64 page_end; 1244 u64 page_cnt; 1245 int ret; 1246 int i; 1247 int i_done; 1248 struct btrfs_ordered_extent *ordered; 1249 struct extent_state *cached_state = NULL; 1250 struct extent_io_tree *tree; 1251 struct extent_changeset *data_reserved = NULL; 1252 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1253 1254 file_end = (isize - 1) >> PAGE_SHIFT; 1255 if (!isize || start_index > file_end) 1256 return 0; 1257 1258 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1259 1260 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1261 start_index << PAGE_SHIFT, 1262 page_cnt << PAGE_SHIFT); 1263 if (ret) 1264 return ret; 1265 i_done = 0; 1266 tree = &BTRFS_I(inode)->io_tree; 1267 1268 /* step one, lock all the pages */ 1269 for (i = 0; i < page_cnt; i++) { 1270 struct page *page; 1271 again: 1272 page = find_or_create_page(inode->i_mapping, 1273 start_index + i, mask); 1274 if (!page) 1275 break; 1276 1277 page_start = page_offset(page); 1278 page_end = page_start + PAGE_SIZE - 1; 1279 while (1) { 1280 lock_extent_bits(tree, page_start, page_end, 1281 &cached_state); 1282 ordered = btrfs_lookup_ordered_extent(inode, 1283 page_start); 1284 unlock_extent_cached(tree, page_start, page_end, 1285 &cached_state); 1286 if (!ordered) 1287 break; 1288 1289 unlock_page(page); 1290 btrfs_start_ordered_extent(inode, ordered, 1); 1291 btrfs_put_ordered_extent(ordered); 1292 lock_page(page); 1293 /* 1294 * we unlocked the page above, so we need check if 1295 * it was released or not. 1296 */ 1297 if (page->mapping != inode->i_mapping) { 1298 unlock_page(page); 1299 put_page(page); 1300 goto again; 1301 } 1302 } 1303 1304 if (!PageUptodate(page)) { 1305 btrfs_readpage(NULL, page); 1306 lock_page(page); 1307 if (!PageUptodate(page)) { 1308 unlock_page(page); 1309 put_page(page); 1310 ret = -EIO; 1311 break; 1312 } 1313 } 1314 1315 if (page->mapping != inode->i_mapping) { 1316 unlock_page(page); 1317 put_page(page); 1318 goto again; 1319 } 1320 1321 pages[i] = page; 1322 i_done++; 1323 } 1324 if (!i_done || ret) 1325 goto out; 1326 1327 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1328 goto out; 1329 1330 /* 1331 * so now we have a nice long stream of locked 1332 * and up to date pages, lets wait on them 1333 */ 1334 for (i = 0; i < i_done; i++) 1335 wait_on_page_writeback(pages[i]); 1336 1337 page_start = page_offset(pages[0]); 1338 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1339 1340 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1341 page_start, page_end - 1, &cached_state); 1342 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1343 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1344 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1345 &cached_state); 1346 1347 if (i_done != page_cnt) { 1348 spin_lock(&BTRFS_I(inode)->lock); 1349 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1350 spin_unlock(&BTRFS_I(inode)->lock); 1351 btrfs_delalloc_release_space(inode, data_reserved, 1352 start_index << PAGE_SHIFT, 1353 (page_cnt - i_done) << PAGE_SHIFT, true); 1354 } 1355 1356 1357 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1358 &cached_state); 1359 1360 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1361 page_start, page_end - 1, &cached_state); 1362 1363 for (i = 0; i < i_done; i++) { 1364 clear_page_dirty_for_io(pages[i]); 1365 ClearPageChecked(pages[i]); 1366 set_page_extent_mapped(pages[i]); 1367 set_page_dirty(pages[i]); 1368 unlock_page(pages[i]); 1369 put_page(pages[i]); 1370 } 1371 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1372 false); 1373 extent_changeset_free(data_reserved); 1374 return i_done; 1375 out: 1376 for (i = 0; i < i_done; i++) { 1377 unlock_page(pages[i]); 1378 put_page(pages[i]); 1379 } 1380 btrfs_delalloc_release_space(inode, data_reserved, 1381 start_index << PAGE_SHIFT, 1382 page_cnt << PAGE_SHIFT, true); 1383 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1384 true); 1385 extent_changeset_free(data_reserved); 1386 return ret; 1387 1388 } 1389 1390 int btrfs_defrag_file(struct inode *inode, struct file *file, 1391 struct btrfs_ioctl_defrag_range_args *range, 1392 u64 newer_than, unsigned long max_to_defrag) 1393 { 1394 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1395 struct btrfs_root *root = BTRFS_I(inode)->root; 1396 struct file_ra_state *ra = NULL; 1397 unsigned long last_index; 1398 u64 isize = i_size_read(inode); 1399 u64 last_len = 0; 1400 u64 skip = 0; 1401 u64 defrag_end = 0; 1402 u64 newer_off = range->start; 1403 unsigned long i; 1404 unsigned long ra_index = 0; 1405 int ret; 1406 int defrag_count = 0; 1407 int compress_type = BTRFS_COMPRESS_ZLIB; 1408 u32 extent_thresh = range->extent_thresh; 1409 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1410 unsigned long cluster = max_cluster; 1411 u64 new_align = ~((u64)SZ_128K - 1); 1412 struct page **pages = NULL; 1413 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1414 1415 if (isize == 0) 1416 return 0; 1417 1418 if (range->start >= isize) 1419 return -EINVAL; 1420 1421 if (do_compress) { 1422 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1423 return -EINVAL; 1424 if (range->compress_type) 1425 compress_type = range->compress_type; 1426 } 1427 1428 if (extent_thresh == 0) 1429 extent_thresh = SZ_256K; 1430 1431 /* 1432 * If we were not given a file, allocate a readahead context. As 1433 * readahead is just an optimization, defrag will work without it so 1434 * we don't error out. 1435 */ 1436 if (!file) { 1437 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1438 if (ra) 1439 file_ra_state_init(ra, inode->i_mapping); 1440 } else { 1441 ra = &file->f_ra; 1442 } 1443 1444 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1445 if (!pages) { 1446 ret = -ENOMEM; 1447 goto out_ra; 1448 } 1449 1450 /* find the last page to defrag */ 1451 if (range->start + range->len > range->start) { 1452 last_index = min_t(u64, isize - 1, 1453 range->start + range->len - 1) >> PAGE_SHIFT; 1454 } else { 1455 last_index = (isize - 1) >> PAGE_SHIFT; 1456 } 1457 1458 if (newer_than) { 1459 ret = find_new_extents(root, inode, newer_than, 1460 &newer_off, SZ_64K); 1461 if (!ret) { 1462 range->start = newer_off; 1463 /* 1464 * we always align our defrag to help keep 1465 * the extents in the file evenly spaced 1466 */ 1467 i = (newer_off & new_align) >> PAGE_SHIFT; 1468 } else 1469 goto out_ra; 1470 } else { 1471 i = range->start >> PAGE_SHIFT; 1472 } 1473 if (!max_to_defrag) 1474 max_to_defrag = last_index - i + 1; 1475 1476 /* 1477 * make writeback starts from i, so the defrag range can be 1478 * written sequentially. 1479 */ 1480 if (i < inode->i_mapping->writeback_index) 1481 inode->i_mapping->writeback_index = i; 1482 1483 while (i <= last_index && defrag_count < max_to_defrag && 1484 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1485 /* 1486 * make sure we stop running if someone unmounts 1487 * the FS 1488 */ 1489 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1490 break; 1491 1492 if (btrfs_defrag_cancelled(fs_info)) { 1493 btrfs_debug(fs_info, "defrag_file cancelled"); 1494 ret = -EAGAIN; 1495 break; 1496 } 1497 1498 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1499 extent_thresh, &last_len, &skip, 1500 &defrag_end, do_compress)){ 1501 unsigned long next; 1502 /* 1503 * the should_defrag function tells us how much to skip 1504 * bump our counter by the suggested amount 1505 */ 1506 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1507 i = max(i + 1, next); 1508 continue; 1509 } 1510 1511 if (!newer_than) { 1512 cluster = (PAGE_ALIGN(defrag_end) >> 1513 PAGE_SHIFT) - i; 1514 cluster = min(cluster, max_cluster); 1515 } else { 1516 cluster = max_cluster; 1517 } 1518 1519 if (i + cluster > ra_index) { 1520 ra_index = max(i, ra_index); 1521 if (ra) 1522 page_cache_sync_readahead(inode->i_mapping, ra, 1523 file, ra_index, cluster); 1524 ra_index += cluster; 1525 } 1526 1527 inode_lock(inode); 1528 if (IS_SWAPFILE(inode)) { 1529 ret = -ETXTBSY; 1530 } else { 1531 if (do_compress) 1532 BTRFS_I(inode)->defrag_compress = compress_type; 1533 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1534 } 1535 if (ret < 0) { 1536 inode_unlock(inode); 1537 goto out_ra; 1538 } 1539 1540 defrag_count += ret; 1541 balance_dirty_pages_ratelimited(inode->i_mapping); 1542 inode_unlock(inode); 1543 1544 if (newer_than) { 1545 if (newer_off == (u64)-1) 1546 break; 1547 1548 if (ret > 0) 1549 i += ret; 1550 1551 newer_off = max(newer_off + 1, 1552 (u64)i << PAGE_SHIFT); 1553 1554 ret = find_new_extents(root, inode, newer_than, 1555 &newer_off, SZ_64K); 1556 if (!ret) { 1557 range->start = newer_off; 1558 i = (newer_off & new_align) >> PAGE_SHIFT; 1559 } else { 1560 break; 1561 } 1562 } else { 1563 if (ret > 0) { 1564 i += ret; 1565 last_len += ret << PAGE_SHIFT; 1566 } else { 1567 i++; 1568 last_len = 0; 1569 } 1570 } 1571 } 1572 1573 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1574 filemap_flush(inode->i_mapping); 1575 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1576 &BTRFS_I(inode)->runtime_flags)) 1577 filemap_flush(inode->i_mapping); 1578 } 1579 1580 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1581 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1582 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1583 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1584 } 1585 1586 ret = defrag_count; 1587 1588 out_ra: 1589 if (do_compress) { 1590 inode_lock(inode); 1591 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1592 inode_unlock(inode); 1593 } 1594 if (!file) 1595 kfree(ra); 1596 kfree(pages); 1597 return ret; 1598 } 1599 1600 static noinline int btrfs_ioctl_resize(struct file *file, 1601 void __user *arg) 1602 { 1603 struct inode *inode = file_inode(file); 1604 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1605 u64 new_size; 1606 u64 old_size; 1607 u64 devid = 1; 1608 struct btrfs_root *root = BTRFS_I(inode)->root; 1609 struct btrfs_ioctl_vol_args *vol_args; 1610 struct btrfs_trans_handle *trans; 1611 struct btrfs_device *device = NULL; 1612 char *sizestr; 1613 char *retptr; 1614 char *devstr = NULL; 1615 int ret = 0; 1616 int mod = 0; 1617 1618 if (!capable(CAP_SYS_ADMIN)) 1619 return -EPERM; 1620 1621 ret = mnt_want_write_file(file); 1622 if (ret) 1623 return ret; 1624 1625 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1626 mnt_drop_write_file(file); 1627 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1628 } 1629 1630 vol_args = memdup_user(arg, sizeof(*vol_args)); 1631 if (IS_ERR(vol_args)) { 1632 ret = PTR_ERR(vol_args); 1633 goto out; 1634 } 1635 1636 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1637 1638 sizestr = vol_args->name; 1639 devstr = strchr(sizestr, ':'); 1640 if (devstr) { 1641 sizestr = devstr + 1; 1642 *devstr = '\0'; 1643 devstr = vol_args->name; 1644 ret = kstrtoull(devstr, 10, &devid); 1645 if (ret) 1646 goto out_free; 1647 if (!devid) { 1648 ret = -EINVAL; 1649 goto out_free; 1650 } 1651 btrfs_info(fs_info, "resizing devid %llu", devid); 1652 } 1653 1654 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 1655 if (!device) { 1656 btrfs_info(fs_info, "resizer unable to find device %llu", 1657 devid); 1658 ret = -ENODEV; 1659 goto out_free; 1660 } 1661 1662 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1663 btrfs_info(fs_info, 1664 "resizer unable to apply on readonly device %llu", 1665 devid); 1666 ret = -EPERM; 1667 goto out_free; 1668 } 1669 1670 if (!strcmp(sizestr, "max")) 1671 new_size = device->bdev->bd_inode->i_size; 1672 else { 1673 if (sizestr[0] == '-') { 1674 mod = -1; 1675 sizestr++; 1676 } else if (sizestr[0] == '+') { 1677 mod = 1; 1678 sizestr++; 1679 } 1680 new_size = memparse(sizestr, &retptr); 1681 if (*retptr != '\0' || new_size == 0) { 1682 ret = -EINVAL; 1683 goto out_free; 1684 } 1685 } 1686 1687 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1688 ret = -EPERM; 1689 goto out_free; 1690 } 1691 1692 old_size = btrfs_device_get_total_bytes(device); 1693 1694 if (mod < 0) { 1695 if (new_size > old_size) { 1696 ret = -EINVAL; 1697 goto out_free; 1698 } 1699 new_size = old_size - new_size; 1700 } else if (mod > 0) { 1701 if (new_size > ULLONG_MAX - old_size) { 1702 ret = -ERANGE; 1703 goto out_free; 1704 } 1705 new_size = old_size + new_size; 1706 } 1707 1708 if (new_size < SZ_256M) { 1709 ret = -EINVAL; 1710 goto out_free; 1711 } 1712 if (new_size > device->bdev->bd_inode->i_size) { 1713 ret = -EFBIG; 1714 goto out_free; 1715 } 1716 1717 new_size = round_down(new_size, fs_info->sectorsize); 1718 1719 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1720 rcu_str_deref(device->name), new_size); 1721 1722 if (new_size > old_size) { 1723 trans = btrfs_start_transaction(root, 0); 1724 if (IS_ERR(trans)) { 1725 ret = PTR_ERR(trans); 1726 goto out_free; 1727 } 1728 ret = btrfs_grow_device(trans, device, new_size); 1729 btrfs_commit_transaction(trans); 1730 } else if (new_size < old_size) { 1731 ret = btrfs_shrink_device(device, new_size); 1732 } /* equal, nothing need to do */ 1733 1734 out_free: 1735 kfree(vol_args); 1736 out: 1737 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1738 mnt_drop_write_file(file); 1739 return ret; 1740 } 1741 1742 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1743 const char *name, unsigned long fd, int subvol, 1744 u64 *transid, bool readonly, 1745 struct btrfs_qgroup_inherit *inherit) 1746 { 1747 int namelen; 1748 int ret = 0; 1749 1750 if (!S_ISDIR(file_inode(file)->i_mode)) 1751 return -ENOTDIR; 1752 1753 ret = mnt_want_write_file(file); 1754 if (ret) 1755 goto out; 1756 1757 namelen = strlen(name); 1758 if (strchr(name, '/')) { 1759 ret = -EINVAL; 1760 goto out_drop_write; 1761 } 1762 1763 if (name[0] == '.' && 1764 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1765 ret = -EEXIST; 1766 goto out_drop_write; 1767 } 1768 1769 if (subvol) { 1770 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1771 NULL, transid, readonly, inherit); 1772 } else { 1773 struct fd src = fdget(fd); 1774 struct inode *src_inode; 1775 if (!src.file) { 1776 ret = -EINVAL; 1777 goto out_drop_write; 1778 } 1779 1780 src_inode = file_inode(src.file); 1781 if (src_inode->i_sb != file_inode(file)->i_sb) { 1782 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1783 "Snapshot src from another FS"); 1784 ret = -EXDEV; 1785 } else if (!inode_owner_or_capable(src_inode)) { 1786 /* 1787 * Subvolume creation is not restricted, but snapshots 1788 * are limited to own subvolumes only 1789 */ 1790 ret = -EPERM; 1791 } else { 1792 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1793 BTRFS_I(src_inode)->root, 1794 transid, readonly, inherit); 1795 } 1796 fdput(src); 1797 } 1798 out_drop_write: 1799 mnt_drop_write_file(file); 1800 out: 1801 return ret; 1802 } 1803 1804 static noinline int btrfs_ioctl_snap_create(struct file *file, 1805 void __user *arg, int subvol) 1806 { 1807 struct btrfs_ioctl_vol_args *vol_args; 1808 int ret; 1809 1810 if (!S_ISDIR(file_inode(file)->i_mode)) 1811 return -ENOTDIR; 1812 1813 vol_args = memdup_user(arg, sizeof(*vol_args)); 1814 if (IS_ERR(vol_args)) 1815 return PTR_ERR(vol_args); 1816 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1817 1818 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1819 vol_args->fd, subvol, 1820 NULL, false, NULL); 1821 1822 kfree(vol_args); 1823 return ret; 1824 } 1825 1826 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1827 void __user *arg, int subvol) 1828 { 1829 struct btrfs_ioctl_vol_args_v2 *vol_args; 1830 int ret; 1831 u64 transid = 0; 1832 u64 *ptr = NULL; 1833 bool readonly = false; 1834 struct btrfs_qgroup_inherit *inherit = NULL; 1835 1836 if (!S_ISDIR(file_inode(file)->i_mode)) 1837 return -ENOTDIR; 1838 1839 vol_args = memdup_user(arg, sizeof(*vol_args)); 1840 if (IS_ERR(vol_args)) 1841 return PTR_ERR(vol_args); 1842 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1843 1844 if (vol_args->flags & 1845 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1846 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1847 ret = -EOPNOTSUPP; 1848 goto free_args; 1849 } 1850 1851 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1852 ptr = &transid; 1853 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1854 readonly = true; 1855 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1856 if (vol_args->size > PAGE_SIZE) { 1857 ret = -EINVAL; 1858 goto free_args; 1859 } 1860 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1861 if (IS_ERR(inherit)) { 1862 ret = PTR_ERR(inherit); 1863 goto free_args; 1864 } 1865 } 1866 1867 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1868 vol_args->fd, subvol, ptr, 1869 readonly, inherit); 1870 if (ret) 1871 goto free_inherit; 1872 1873 if (ptr && copy_to_user(arg + 1874 offsetof(struct btrfs_ioctl_vol_args_v2, 1875 transid), 1876 ptr, sizeof(*ptr))) 1877 ret = -EFAULT; 1878 1879 free_inherit: 1880 kfree(inherit); 1881 free_args: 1882 kfree(vol_args); 1883 return ret; 1884 } 1885 1886 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1887 void __user *arg) 1888 { 1889 struct inode *inode = file_inode(file); 1890 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1891 struct btrfs_root *root = BTRFS_I(inode)->root; 1892 int ret = 0; 1893 u64 flags = 0; 1894 1895 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1896 return -EINVAL; 1897 1898 down_read(&fs_info->subvol_sem); 1899 if (btrfs_root_readonly(root)) 1900 flags |= BTRFS_SUBVOL_RDONLY; 1901 up_read(&fs_info->subvol_sem); 1902 1903 if (copy_to_user(arg, &flags, sizeof(flags))) 1904 ret = -EFAULT; 1905 1906 return ret; 1907 } 1908 1909 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1910 void __user *arg) 1911 { 1912 struct inode *inode = file_inode(file); 1913 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1914 struct btrfs_root *root = BTRFS_I(inode)->root; 1915 struct btrfs_trans_handle *trans; 1916 u64 root_flags; 1917 u64 flags; 1918 int ret = 0; 1919 1920 if (!inode_owner_or_capable(inode)) 1921 return -EPERM; 1922 1923 ret = mnt_want_write_file(file); 1924 if (ret) 1925 goto out; 1926 1927 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1928 ret = -EINVAL; 1929 goto out_drop_write; 1930 } 1931 1932 if (copy_from_user(&flags, arg, sizeof(flags))) { 1933 ret = -EFAULT; 1934 goto out_drop_write; 1935 } 1936 1937 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1938 ret = -EINVAL; 1939 goto out_drop_write; 1940 } 1941 1942 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1943 ret = -EOPNOTSUPP; 1944 goto out_drop_write; 1945 } 1946 1947 down_write(&fs_info->subvol_sem); 1948 1949 /* nothing to do */ 1950 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1951 goto out_drop_sem; 1952 1953 root_flags = btrfs_root_flags(&root->root_item); 1954 if (flags & BTRFS_SUBVOL_RDONLY) { 1955 btrfs_set_root_flags(&root->root_item, 1956 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1957 } else { 1958 /* 1959 * Block RO -> RW transition if this subvolume is involved in 1960 * send 1961 */ 1962 spin_lock(&root->root_item_lock); 1963 if (root->send_in_progress == 0) { 1964 btrfs_set_root_flags(&root->root_item, 1965 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1966 spin_unlock(&root->root_item_lock); 1967 } else { 1968 spin_unlock(&root->root_item_lock); 1969 btrfs_warn(fs_info, 1970 "Attempt to set subvolume %llu read-write during send", 1971 root->root_key.objectid); 1972 ret = -EPERM; 1973 goto out_drop_sem; 1974 } 1975 } 1976 1977 trans = btrfs_start_transaction(root, 1); 1978 if (IS_ERR(trans)) { 1979 ret = PTR_ERR(trans); 1980 goto out_reset; 1981 } 1982 1983 ret = btrfs_update_root(trans, fs_info->tree_root, 1984 &root->root_key, &root->root_item); 1985 if (ret < 0) { 1986 btrfs_end_transaction(trans); 1987 goto out_reset; 1988 } 1989 1990 ret = btrfs_commit_transaction(trans); 1991 1992 out_reset: 1993 if (ret) 1994 btrfs_set_root_flags(&root->root_item, root_flags); 1995 out_drop_sem: 1996 up_write(&fs_info->subvol_sem); 1997 out_drop_write: 1998 mnt_drop_write_file(file); 1999 out: 2000 return ret; 2001 } 2002 2003 static noinline int key_in_sk(struct btrfs_key *key, 2004 struct btrfs_ioctl_search_key *sk) 2005 { 2006 struct btrfs_key test; 2007 int ret; 2008 2009 test.objectid = sk->min_objectid; 2010 test.type = sk->min_type; 2011 test.offset = sk->min_offset; 2012 2013 ret = btrfs_comp_cpu_keys(key, &test); 2014 if (ret < 0) 2015 return 0; 2016 2017 test.objectid = sk->max_objectid; 2018 test.type = sk->max_type; 2019 test.offset = sk->max_offset; 2020 2021 ret = btrfs_comp_cpu_keys(key, &test); 2022 if (ret > 0) 2023 return 0; 2024 return 1; 2025 } 2026 2027 static noinline int copy_to_sk(struct btrfs_path *path, 2028 struct btrfs_key *key, 2029 struct btrfs_ioctl_search_key *sk, 2030 size_t *buf_size, 2031 char __user *ubuf, 2032 unsigned long *sk_offset, 2033 int *num_found) 2034 { 2035 u64 found_transid; 2036 struct extent_buffer *leaf; 2037 struct btrfs_ioctl_search_header sh; 2038 struct btrfs_key test; 2039 unsigned long item_off; 2040 unsigned long item_len; 2041 int nritems; 2042 int i; 2043 int slot; 2044 int ret = 0; 2045 2046 leaf = path->nodes[0]; 2047 slot = path->slots[0]; 2048 nritems = btrfs_header_nritems(leaf); 2049 2050 if (btrfs_header_generation(leaf) > sk->max_transid) { 2051 i = nritems; 2052 goto advance_key; 2053 } 2054 found_transid = btrfs_header_generation(leaf); 2055 2056 for (i = slot; i < nritems; i++) { 2057 item_off = btrfs_item_ptr_offset(leaf, i); 2058 item_len = btrfs_item_size_nr(leaf, i); 2059 2060 btrfs_item_key_to_cpu(leaf, key, i); 2061 if (!key_in_sk(key, sk)) 2062 continue; 2063 2064 if (sizeof(sh) + item_len > *buf_size) { 2065 if (*num_found) { 2066 ret = 1; 2067 goto out; 2068 } 2069 2070 /* 2071 * return one empty item back for v1, which does not 2072 * handle -EOVERFLOW 2073 */ 2074 2075 *buf_size = sizeof(sh) + item_len; 2076 item_len = 0; 2077 ret = -EOVERFLOW; 2078 } 2079 2080 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2081 ret = 1; 2082 goto out; 2083 } 2084 2085 sh.objectid = key->objectid; 2086 sh.offset = key->offset; 2087 sh.type = key->type; 2088 sh.len = item_len; 2089 sh.transid = found_transid; 2090 2091 /* copy search result header */ 2092 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2093 ret = -EFAULT; 2094 goto out; 2095 } 2096 2097 *sk_offset += sizeof(sh); 2098 2099 if (item_len) { 2100 char __user *up = ubuf + *sk_offset; 2101 /* copy the item */ 2102 if (read_extent_buffer_to_user(leaf, up, 2103 item_off, item_len)) { 2104 ret = -EFAULT; 2105 goto out; 2106 } 2107 2108 *sk_offset += item_len; 2109 } 2110 (*num_found)++; 2111 2112 if (ret) /* -EOVERFLOW from above */ 2113 goto out; 2114 2115 if (*num_found >= sk->nr_items) { 2116 ret = 1; 2117 goto out; 2118 } 2119 } 2120 advance_key: 2121 ret = 0; 2122 test.objectid = sk->max_objectid; 2123 test.type = sk->max_type; 2124 test.offset = sk->max_offset; 2125 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2126 ret = 1; 2127 else if (key->offset < (u64)-1) 2128 key->offset++; 2129 else if (key->type < (u8)-1) { 2130 key->offset = 0; 2131 key->type++; 2132 } else if (key->objectid < (u64)-1) { 2133 key->offset = 0; 2134 key->type = 0; 2135 key->objectid++; 2136 } else 2137 ret = 1; 2138 out: 2139 /* 2140 * 0: all items from this leaf copied, continue with next 2141 * 1: * more items can be copied, but unused buffer is too small 2142 * * all items were found 2143 * Either way, it will stops the loop which iterates to the next 2144 * leaf 2145 * -EOVERFLOW: item was to large for buffer 2146 * -EFAULT: could not copy extent buffer back to userspace 2147 */ 2148 return ret; 2149 } 2150 2151 static noinline int search_ioctl(struct inode *inode, 2152 struct btrfs_ioctl_search_key *sk, 2153 size_t *buf_size, 2154 char __user *ubuf) 2155 { 2156 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2157 struct btrfs_root *root; 2158 struct btrfs_key key; 2159 struct btrfs_path *path; 2160 int ret; 2161 int num_found = 0; 2162 unsigned long sk_offset = 0; 2163 2164 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2165 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2166 return -EOVERFLOW; 2167 } 2168 2169 path = btrfs_alloc_path(); 2170 if (!path) 2171 return -ENOMEM; 2172 2173 if (sk->tree_id == 0) { 2174 /* search the root of the inode that was passed */ 2175 root = BTRFS_I(inode)->root; 2176 } else { 2177 key.objectid = sk->tree_id; 2178 key.type = BTRFS_ROOT_ITEM_KEY; 2179 key.offset = (u64)-1; 2180 root = btrfs_read_fs_root_no_name(info, &key); 2181 if (IS_ERR(root)) { 2182 btrfs_free_path(path); 2183 return PTR_ERR(root); 2184 } 2185 } 2186 2187 key.objectid = sk->min_objectid; 2188 key.type = sk->min_type; 2189 key.offset = sk->min_offset; 2190 2191 while (1) { 2192 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2193 if (ret != 0) { 2194 if (ret > 0) 2195 ret = 0; 2196 goto err; 2197 } 2198 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2199 &sk_offset, &num_found); 2200 btrfs_release_path(path); 2201 if (ret) 2202 break; 2203 2204 } 2205 if (ret > 0) 2206 ret = 0; 2207 err: 2208 sk->nr_items = num_found; 2209 btrfs_free_path(path); 2210 return ret; 2211 } 2212 2213 static noinline int btrfs_ioctl_tree_search(struct file *file, 2214 void __user *argp) 2215 { 2216 struct btrfs_ioctl_search_args __user *uargs; 2217 struct btrfs_ioctl_search_key sk; 2218 struct inode *inode; 2219 int ret; 2220 size_t buf_size; 2221 2222 if (!capable(CAP_SYS_ADMIN)) 2223 return -EPERM; 2224 2225 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2226 2227 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2228 return -EFAULT; 2229 2230 buf_size = sizeof(uargs->buf); 2231 2232 inode = file_inode(file); 2233 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2234 2235 /* 2236 * In the origin implementation an overflow is handled by returning a 2237 * search header with a len of zero, so reset ret. 2238 */ 2239 if (ret == -EOVERFLOW) 2240 ret = 0; 2241 2242 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2243 ret = -EFAULT; 2244 return ret; 2245 } 2246 2247 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2248 void __user *argp) 2249 { 2250 struct btrfs_ioctl_search_args_v2 __user *uarg; 2251 struct btrfs_ioctl_search_args_v2 args; 2252 struct inode *inode; 2253 int ret; 2254 size_t buf_size; 2255 const size_t buf_limit = SZ_16M; 2256 2257 if (!capable(CAP_SYS_ADMIN)) 2258 return -EPERM; 2259 2260 /* copy search header and buffer size */ 2261 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2262 if (copy_from_user(&args, uarg, sizeof(args))) 2263 return -EFAULT; 2264 2265 buf_size = args.buf_size; 2266 2267 /* limit result size to 16MB */ 2268 if (buf_size > buf_limit) 2269 buf_size = buf_limit; 2270 2271 inode = file_inode(file); 2272 ret = search_ioctl(inode, &args.key, &buf_size, 2273 (char __user *)(&uarg->buf[0])); 2274 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2275 ret = -EFAULT; 2276 else if (ret == -EOVERFLOW && 2277 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2278 ret = -EFAULT; 2279 2280 return ret; 2281 } 2282 2283 /* 2284 * Search INODE_REFs to identify path name of 'dirid' directory 2285 * in a 'tree_id' tree. and sets path name to 'name'. 2286 */ 2287 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2288 u64 tree_id, u64 dirid, char *name) 2289 { 2290 struct btrfs_root *root; 2291 struct btrfs_key key; 2292 char *ptr; 2293 int ret = -1; 2294 int slot; 2295 int len; 2296 int total_len = 0; 2297 struct btrfs_inode_ref *iref; 2298 struct extent_buffer *l; 2299 struct btrfs_path *path; 2300 2301 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2302 name[0]='\0'; 2303 return 0; 2304 } 2305 2306 path = btrfs_alloc_path(); 2307 if (!path) 2308 return -ENOMEM; 2309 2310 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2311 2312 key.objectid = tree_id; 2313 key.type = BTRFS_ROOT_ITEM_KEY; 2314 key.offset = (u64)-1; 2315 root = btrfs_read_fs_root_no_name(info, &key); 2316 if (IS_ERR(root)) { 2317 ret = PTR_ERR(root); 2318 goto out; 2319 } 2320 2321 key.objectid = dirid; 2322 key.type = BTRFS_INODE_REF_KEY; 2323 key.offset = (u64)-1; 2324 2325 while (1) { 2326 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2327 if (ret < 0) 2328 goto out; 2329 else if (ret > 0) { 2330 ret = btrfs_previous_item(root, path, dirid, 2331 BTRFS_INODE_REF_KEY); 2332 if (ret < 0) 2333 goto out; 2334 else if (ret > 0) { 2335 ret = -ENOENT; 2336 goto out; 2337 } 2338 } 2339 2340 l = path->nodes[0]; 2341 slot = path->slots[0]; 2342 btrfs_item_key_to_cpu(l, &key, slot); 2343 2344 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2345 len = btrfs_inode_ref_name_len(l, iref); 2346 ptr -= len + 1; 2347 total_len += len + 1; 2348 if (ptr < name) { 2349 ret = -ENAMETOOLONG; 2350 goto out; 2351 } 2352 2353 *(ptr + len) = '/'; 2354 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2355 2356 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2357 break; 2358 2359 btrfs_release_path(path); 2360 key.objectid = key.offset; 2361 key.offset = (u64)-1; 2362 dirid = key.objectid; 2363 } 2364 memmove(name, ptr, total_len); 2365 name[total_len] = '\0'; 2366 ret = 0; 2367 out: 2368 btrfs_free_path(path); 2369 return ret; 2370 } 2371 2372 static int btrfs_search_path_in_tree_user(struct inode *inode, 2373 struct btrfs_ioctl_ino_lookup_user_args *args) 2374 { 2375 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2376 struct super_block *sb = inode->i_sb; 2377 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2378 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2379 u64 dirid = args->dirid; 2380 unsigned long item_off; 2381 unsigned long item_len; 2382 struct btrfs_inode_ref *iref; 2383 struct btrfs_root_ref *rref; 2384 struct btrfs_root *root; 2385 struct btrfs_path *path; 2386 struct btrfs_key key, key2; 2387 struct extent_buffer *leaf; 2388 struct inode *temp_inode; 2389 char *ptr; 2390 int slot; 2391 int len; 2392 int total_len = 0; 2393 int ret; 2394 2395 path = btrfs_alloc_path(); 2396 if (!path) 2397 return -ENOMEM; 2398 2399 /* 2400 * If the bottom subvolume does not exist directly under upper_limit, 2401 * construct the path in from the bottom up. 2402 */ 2403 if (dirid != upper_limit.objectid) { 2404 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2405 2406 key.objectid = treeid; 2407 key.type = BTRFS_ROOT_ITEM_KEY; 2408 key.offset = (u64)-1; 2409 root = btrfs_read_fs_root_no_name(fs_info, &key); 2410 if (IS_ERR(root)) { 2411 ret = PTR_ERR(root); 2412 goto out; 2413 } 2414 2415 key.objectid = dirid; 2416 key.type = BTRFS_INODE_REF_KEY; 2417 key.offset = (u64)-1; 2418 while (1) { 2419 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2420 if (ret < 0) { 2421 goto out; 2422 } else if (ret > 0) { 2423 ret = btrfs_previous_item(root, path, dirid, 2424 BTRFS_INODE_REF_KEY); 2425 if (ret < 0) { 2426 goto out; 2427 } else if (ret > 0) { 2428 ret = -ENOENT; 2429 goto out; 2430 } 2431 } 2432 2433 leaf = path->nodes[0]; 2434 slot = path->slots[0]; 2435 btrfs_item_key_to_cpu(leaf, &key, slot); 2436 2437 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2438 len = btrfs_inode_ref_name_len(leaf, iref); 2439 ptr -= len + 1; 2440 total_len += len + 1; 2441 if (ptr < args->path) { 2442 ret = -ENAMETOOLONG; 2443 goto out; 2444 } 2445 2446 *(ptr + len) = '/'; 2447 read_extent_buffer(leaf, ptr, 2448 (unsigned long)(iref + 1), len); 2449 2450 /* Check the read+exec permission of this directory */ 2451 ret = btrfs_previous_item(root, path, dirid, 2452 BTRFS_INODE_ITEM_KEY); 2453 if (ret < 0) { 2454 goto out; 2455 } else if (ret > 0) { 2456 ret = -ENOENT; 2457 goto out; 2458 } 2459 2460 leaf = path->nodes[0]; 2461 slot = path->slots[0]; 2462 btrfs_item_key_to_cpu(leaf, &key2, slot); 2463 if (key2.objectid != dirid) { 2464 ret = -ENOENT; 2465 goto out; 2466 } 2467 2468 temp_inode = btrfs_iget(sb, &key2, root, NULL); 2469 if (IS_ERR(temp_inode)) { 2470 ret = PTR_ERR(temp_inode); 2471 goto out; 2472 } 2473 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2474 iput(temp_inode); 2475 if (ret) { 2476 ret = -EACCES; 2477 goto out; 2478 } 2479 2480 if (key.offset == upper_limit.objectid) 2481 break; 2482 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2483 ret = -EACCES; 2484 goto out; 2485 } 2486 2487 btrfs_release_path(path); 2488 key.objectid = key.offset; 2489 key.offset = (u64)-1; 2490 dirid = key.objectid; 2491 } 2492 2493 memmove(args->path, ptr, total_len); 2494 args->path[total_len] = '\0'; 2495 btrfs_release_path(path); 2496 } 2497 2498 /* Get the bottom subvolume's name from ROOT_REF */ 2499 root = fs_info->tree_root; 2500 key.objectid = treeid; 2501 key.type = BTRFS_ROOT_REF_KEY; 2502 key.offset = args->treeid; 2503 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2504 if (ret < 0) { 2505 goto out; 2506 } else if (ret > 0) { 2507 ret = -ENOENT; 2508 goto out; 2509 } 2510 2511 leaf = path->nodes[0]; 2512 slot = path->slots[0]; 2513 btrfs_item_key_to_cpu(leaf, &key, slot); 2514 2515 item_off = btrfs_item_ptr_offset(leaf, slot); 2516 item_len = btrfs_item_size_nr(leaf, slot); 2517 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2518 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2519 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2520 ret = -EINVAL; 2521 goto out; 2522 } 2523 2524 /* Copy subvolume's name */ 2525 item_off += sizeof(struct btrfs_root_ref); 2526 item_len -= sizeof(struct btrfs_root_ref); 2527 read_extent_buffer(leaf, args->name, item_off, item_len); 2528 args->name[item_len] = 0; 2529 2530 out: 2531 btrfs_free_path(path); 2532 return ret; 2533 } 2534 2535 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2536 void __user *argp) 2537 { 2538 struct btrfs_ioctl_ino_lookup_args *args; 2539 struct inode *inode; 2540 int ret = 0; 2541 2542 args = memdup_user(argp, sizeof(*args)); 2543 if (IS_ERR(args)) 2544 return PTR_ERR(args); 2545 2546 inode = file_inode(file); 2547 2548 /* 2549 * Unprivileged query to obtain the containing subvolume root id. The 2550 * path is reset so it's consistent with btrfs_search_path_in_tree. 2551 */ 2552 if (args->treeid == 0) 2553 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2554 2555 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2556 args->name[0] = 0; 2557 goto out; 2558 } 2559 2560 if (!capable(CAP_SYS_ADMIN)) { 2561 ret = -EPERM; 2562 goto out; 2563 } 2564 2565 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2566 args->treeid, args->objectid, 2567 args->name); 2568 2569 out: 2570 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2571 ret = -EFAULT; 2572 2573 kfree(args); 2574 return ret; 2575 } 2576 2577 /* 2578 * Version of ino_lookup ioctl (unprivileged) 2579 * 2580 * The main differences from ino_lookup ioctl are: 2581 * 2582 * 1. Read + Exec permission will be checked using inode_permission() during 2583 * path construction. -EACCES will be returned in case of failure. 2584 * 2. Path construction will be stopped at the inode number which corresponds 2585 * to the fd with which this ioctl is called. If constructed path does not 2586 * exist under fd's inode, -EACCES will be returned. 2587 * 3. The name of bottom subvolume is also searched and filled. 2588 */ 2589 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2590 { 2591 struct btrfs_ioctl_ino_lookup_user_args *args; 2592 struct inode *inode; 2593 int ret; 2594 2595 args = memdup_user(argp, sizeof(*args)); 2596 if (IS_ERR(args)) 2597 return PTR_ERR(args); 2598 2599 inode = file_inode(file); 2600 2601 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2602 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2603 /* 2604 * The subvolume does not exist under fd with which this is 2605 * called 2606 */ 2607 kfree(args); 2608 return -EACCES; 2609 } 2610 2611 ret = btrfs_search_path_in_tree_user(inode, args); 2612 2613 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2614 ret = -EFAULT; 2615 2616 kfree(args); 2617 return ret; 2618 } 2619 2620 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2621 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2622 { 2623 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2624 struct btrfs_fs_info *fs_info; 2625 struct btrfs_root *root; 2626 struct btrfs_path *path; 2627 struct btrfs_key key; 2628 struct btrfs_root_item *root_item; 2629 struct btrfs_root_ref *rref; 2630 struct extent_buffer *leaf; 2631 unsigned long item_off; 2632 unsigned long item_len; 2633 struct inode *inode; 2634 int slot; 2635 int ret = 0; 2636 2637 path = btrfs_alloc_path(); 2638 if (!path) 2639 return -ENOMEM; 2640 2641 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2642 if (!subvol_info) { 2643 btrfs_free_path(path); 2644 return -ENOMEM; 2645 } 2646 2647 inode = file_inode(file); 2648 fs_info = BTRFS_I(inode)->root->fs_info; 2649 2650 /* Get root_item of inode's subvolume */ 2651 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2652 key.type = BTRFS_ROOT_ITEM_KEY; 2653 key.offset = (u64)-1; 2654 root = btrfs_read_fs_root_no_name(fs_info, &key); 2655 if (IS_ERR(root)) { 2656 ret = PTR_ERR(root); 2657 goto out; 2658 } 2659 root_item = &root->root_item; 2660 2661 subvol_info->treeid = key.objectid; 2662 2663 subvol_info->generation = btrfs_root_generation(root_item); 2664 subvol_info->flags = btrfs_root_flags(root_item); 2665 2666 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2667 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2668 BTRFS_UUID_SIZE); 2669 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2670 BTRFS_UUID_SIZE); 2671 2672 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2673 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2674 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2675 2676 subvol_info->otransid = btrfs_root_otransid(root_item); 2677 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2678 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2679 2680 subvol_info->stransid = btrfs_root_stransid(root_item); 2681 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2682 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2683 2684 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2685 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2686 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2687 2688 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2689 /* Search root tree for ROOT_BACKREF of this subvolume */ 2690 root = fs_info->tree_root; 2691 2692 key.type = BTRFS_ROOT_BACKREF_KEY; 2693 key.offset = 0; 2694 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2695 if (ret < 0) { 2696 goto out; 2697 } else if (path->slots[0] >= 2698 btrfs_header_nritems(path->nodes[0])) { 2699 ret = btrfs_next_leaf(root, path); 2700 if (ret < 0) { 2701 goto out; 2702 } else if (ret > 0) { 2703 ret = -EUCLEAN; 2704 goto out; 2705 } 2706 } 2707 2708 leaf = path->nodes[0]; 2709 slot = path->slots[0]; 2710 btrfs_item_key_to_cpu(leaf, &key, slot); 2711 if (key.objectid == subvol_info->treeid && 2712 key.type == BTRFS_ROOT_BACKREF_KEY) { 2713 subvol_info->parent_id = key.offset; 2714 2715 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2716 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2717 2718 item_off = btrfs_item_ptr_offset(leaf, slot) 2719 + sizeof(struct btrfs_root_ref); 2720 item_len = btrfs_item_size_nr(leaf, slot) 2721 - sizeof(struct btrfs_root_ref); 2722 read_extent_buffer(leaf, subvol_info->name, 2723 item_off, item_len); 2724 } else { 2725 ret = -ENOENT; 2726 goto out; 2727 } 2728 } 2729 2730 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2731 ret = -EFAULT; 2732 2733 out: 2734 btrfs_free_path(path); 2735 kzfree(subvol_info); 2736 return ret; 2737 } 2738 2739 /* 2740 * Return ROOT_REF information of the subvolume containing this inode 2741 * except the subvolume name. 2742 */ 2743 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2744 { 2745 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2746 struct btrfs_root_ref *rref; 2747 struct btrfs_root *root; 2748 struct btrfs_path *path; 2749 struct btrfs_key key; 2750 struct extent_buffer *leaf; 2751 struct inode *inode; 2752 u64 objectid; 2753 int slot; 2754 int ret; 2755 u8 found; 2756 2757 path = btrfs_alloc_path(); 2758 if (!path) 2759 return -ENOMEM; 2760 2761 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2762 if (IS_ERR(rootrefs)) { 2763 btrfs_free_path(path); 2764 return PTR_ERR(rootrefs); 2765 } 2766 2767 inode = file_inode(file); 2768 root = BTRFS_I(inode)->root->fs_info->tree_root; 2769 objectid = BTRFS_I(inode)->root->root_key.objectid; 2770 2771 key.objectid = objectid; 2772 key.type = BTRFS_ROOT_REF_KEY; 2773 key.offset = rootrefs->min_treeid; 2774 found = 0; 2775 2776 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2777 if (ret < 0) { 2778 goto out; 2779 } else if (path->slots[0] >= 2780 btrfs_header_nritems(path->nodes[0])) { 2781 ret = btrfs_next_leaf(root, path); 2782 if (ret < 0) { 2783 goto out; 2784 } else if (ret > 0) { 2785 ret = -EUCLEAN; 2786 goto out; 2787 } 2788 } 2789 while (1) { 2790 leaf = path->nodes[0]; 2791 slot = path->slots[0]; 2792 2793 btrfs_item_key_to_cpu(leaf, &key, slot); 2794 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2795 ret = 0; 2796 goto out; 2797 } 2798 2799 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2800 ret = -EOVERFLOW; 2801 goto out; 2802 } 2803 2804 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2805 rootrefs->rootref[found].treeid = key.offset; 2806 rootrefs->rootref[found].dirid = 2807 btrfs_root_ref_dirid(leaf, rref); 2808 found++; 2809 2810 ret = btrfs_next_item(root, path); 2811 if (ret < 0) { 2812 goto out; 2813 } else if (ret > 0) { 2814 ret = -EUCLEAN; 2815 goto out; 2816 } 2817 } 2818 2819 out: 2820 if (!ret || ret == -EOVERFLOW) { 2821 rootrefs->num_items = found; 2822 /* update min_treeid for next search */ 2823 if (found) 2824 rootrefs->min_treeid = 2825 rootrefs->rootref[found - 1].treeid + 1; 2826 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2827 ret = -EFAULT; 2828 } 2829 2830 kfree(rootrefs); 2831 btrfs_free_path(path); 2832 2833 return ret; 2834 } 2835 2836 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2837 void __user *arg) 2838 { 2839 struct dentry *parent = file->f_path.dentry; 2840 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2841 struct dentry *dentry; 2842 struct inode *dir = d_inode(parent); 2843 struct inode *inode; 2844 struct btrfs_root *root = BTRFS_I(dir)->root; 2845 struct btrfs_root *dest = NULL; 2846 struct btrfs_ioctl_vol_args *vol_args; 2847 int namelen; 2848 int err = 0; 2849 2850 if (!S_ISDIR(dir->i_mode)) 2851 return -ENOTDIR; 2852 2853 vol_args = memdup_user(arg, sizeof(*vol_args)); 2854 if (IS_ERR(vol_args)) 2855 return PTR_ERR(vol_args); 2856 2857 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2858 namelen = strlen(vol_args->name); 2859 if (strchr(vol_args->name, '/') || 2860 strncmp(vol_args->name, "..", namelen) == 0) { 2861 err = -EINVAL; 2862 goto out; 2863 } 2864 2865 err = mnt_want_write_file(file); 2866 if (err) 2867 goto out; 2868 2869 2870 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2871 if (err == -EINTR) 2872 goto out_drop_write; 2873 dentry = lookup_one_len(vol_args->name, parent, namelen); 2874 if (IS_ERR(dentry)) { 2875 err = PTR_ERR(dentry); 2876 goto out_unlock_dir; 2877 } 2878 2879 if (d_really_is_negative(dentry)) { 2880 err = -ENOENT; 2881 goto out_dput; 2882 } 2883 2884 inode = d_inode(dentry); 2885 dest = BTRFS_I(inode)->root; 2886 if (!capable(CAP_SYS_ADMIN)) { 2887 /* 2888 * Regular user. Only allow this with a special mount 2889 * option, when the user has write+exec access to the 2890 * subvol root, and when rmdir(2) would have been 2891 * allowed. 2892 * 2893 * Note that this is _not_ check that the subvol is 2894 * empty or doesn't contain data that we wouldn't 2895 * otherwise be able to delete. 2896 * 2897 * Users who want to delete empty subvols should try 2898 * rmdir(2). 2899 */ 2900 err = -EPERM; 2901 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2902 goto out_dput; 2903 2904 /* 2905 * Do not allow deletion if the parent dir is the same 2906 * as the dir to be deleted. That means the ioctl 2907 * must be called on the dentry referencing the root 2908 * of the subvol, not a random directory contained 2909 * within it. 2910 */ 2911 err = -EINVAL; 2912 if (root == dest) 2913 goto out_dput; 2914 2915 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2916 if (err) 2917 goto out_dput; 2918 } 2919 2920 /* check if subvolume may be deleted by a user */ 2921 err = btrfs_may_delete(dir, dentry, 1); 2922 if (err) 2923 goto out_dput; 2924 2925 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2926 err = -EINVAL; 2927 goto out_dput; 2928 } 2929 2930 inode_lock(inode); 2931 err = btrfs_delete_subvolume(dir, dentry); 2932 inode_unlock(inode); 2933 if (!err) 2934 d_delete(dentry); 2935 2936 out_dput: 2937 dput(dentry); 2938 out_unlock_dir: 2939 inode_unlock(dir); 2940 out_drop_write: 2941 mnt_drop_write_file(file); 2942 out: 2943 kfree(vol_args); 2944 return err; 2945 } 2946 2947 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2948 { 2949 struct inode *inode = file_inode(file); 2950 struct btrfs_root *root = BTRFS_I(inode)->root; 2951 struct btrfs_ioctl_defrag_range_args *range; 2952 int ret; 2953 2954 ret = mnt_want_write_file(file); 2955 if (ret) 2956 return ret; 2957 2958 if (btrfs_root_readonly(root)) { 2959 ret = -EROFS; 2960 goto out; 2961 } 2962 2963 switch (inode->i_mode & S_IFMT) { 2964 case S_IFDIR: 2965 if (!capable(CAP_SYS_ADMIN)) { 2966 ret = -EPERM; 2967 goto out; 2968 } 2969 ret = btrfs_defrag_root(root); 2970 break; 2971 case S_IFREG: 2972 /* 2973 * Note that this does not check the file descriptor for write 2974 * access. This prevents defragmenting executables that are 2975 * running and allows defrag on files open in read-only mode. 2976 */ 2977 if (!capable(CAP_SYS_ADMIN) && 2978 inode_permission(inode, MAY_WRITE)) { 2979 ret = -EPERM; 2980 goto out; 2981 } 2982 2983 range = kzalloc(sizeof(*range), GFP_KERNEL); 2984 if (!range) { 2985 ret = -ENOMEM; 2986 goto out; 2987 } 2988 2989 if (argp) { 2990 if (copy_from_user(range, argp, 2991 sizeof(*range))) { 2992 ret = -EFAULT; 2993 kfree(range); 2994 goto out; 2995 } 2996 /* compression requires us to start the IO */ 2997 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2998 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2999 range->extent_thresh = (u32)-1; 3000 } 3001 } else { 3002 /* the rest are all set to zero by kzalloc */ 3003 range->len = (u64)-1; 3004 } 3005 ret = btrfs_defrag_file(file_inode(file), file, 3006 range, BTRFS_OLDEST_GENERATION, 0); 3007 if (ret > 0) 3008 ret = 0; 3009 kfree(range); 3010 break; 3011 default: 3012 ret = -EINVAL; 3013 } 3014 out: 3015 mnt_drop_write_file(file); 3016 return ret; 3017 } 3018 3019 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3020 { 3021 struct btrfs_ioctl_vol_args *vol_args; 3022 int ret; 3023 3024 if (!capable(CAP_SYS_ADMIN)) 3025 return -EPERM; 3026 3027 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 3028 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3029 3030 vol_args = memdup_user(arg, sizeof(*vol_args)); 3031 if (IS_ERR(vol_args)) { 3032 ret = PTR_ERR(vol_args); 3033 goto out; 3034 } 3035 3036 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3037 ret = btrfs_init_new_device(fs_info, vol_args->name); 3038 3039 if (!ret) 3040 btrfs_info(fs_info, "disk added %s", vol_args->name); 3041 3042 kfree(vol_args); 3043 out: 3044 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3045 return ret; 3046 } 3047 3048 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3049 { 3050 struct inode *inode = file_inode(file); 3051 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3052 struct btrfs_ioctl_vol_args_v2 *vol_args; 3053 int ret; 3054 3055 if (!capable(CAP_SYS_ADMIN)) 3056 return -EPERM; 3057 3058 ret = mnt_want_write_file(file); 3059 if (ret) 3060 return ret; 3061 3062 vol_args = memdup_user(arg, sizeof(*vol_args)); 3063 if (IS_ERR(vol_args)) { 3064 ret = PTR_ERR(vol_args); 3065 goto err_drop; 3066 } 3067 3068 /* Check for compatibility reject unknown flags */ 3069 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) { 3070 ret = -EOPNOTSUPP; 3071 goto out; 3072 } 3073 3074 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3075 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3076 goto out; 3077 } 3078 3079 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3080 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3081 } else { 3082 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3083 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3084 } 3085 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3086 3087 if (!ret) { 3088 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3089 btrfs_info(fs_info, "device deleted: id %llu", 3090 vol_args->devid); 3091 else 3092 btrfs_info(fs_info, "device deleted: %s", 3093 vol_args->name); 3094 } 3095 out: 3096 kfree(vol_args); 3097 err_drop: 3098 mnt_drop_write_file(file); 3099 return ret; 3100 } 3101 3102 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3103 { 3104 struct inode *inode = file_inode(file); 3105 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3106 struct btrfs_ioctl_vol_args *vol_args; 3107 int ret; 3108 3109 if (!capable(CAP_SYS_ADMIN)) 3110 return -EPERM; 3111 3112 ret = mnt_want_write_file(file); 3113 if (ret) 3114 return ret; 3115 3116 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3117 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3118 goto out_drop_write; 3119 } 3120 3121 vol_args = memdup_user(arg, sizeof(*vol_args)); 3122 if (IS_ERR(vol_args)) { 3123 ret = PTR_ERR(vol_args); 3124 goto out; 3125 } 3126 3127 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3128 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3129 3130 if (!ret) 3131 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3132 kfree(vol_args); 3133 out: 3134 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3135 out_drop_write: 3136 mnt_drop_write_file(file); 3137 3138 return ret; 3139 } 3140 3141 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3142 void __user *arg) 3143 { 3144 struct btrfs_ioctl_fs_info_args *fi_args; 3145 struct btrfs_device *device; 3146 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3147 int ret = 0; 3148 3149 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 3150 if (!fi_args) 3151 return -ENOMEM; 3152 3153 rcu_read_lock(); 3154 fi_args->num_devices = fs_devices->num_devices; 3155 3156 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3157 if (device->devid > fi_args->max_id) 3158 fi_args->max_id = device->devid; 3159 } 3160 rcu_read_unlock(); 3161 3162 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3163 fi_args->nodesize = fs_info->nodesize; 3164 fi_args->sectorsize = fs_info->sectorsize; 3165 fi_args->clone_alignment = fs_info->sectorsize; 3166 3167 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3168 ret = -EFAULT; 3169 3170 kfree(fi_args); 3171 return ret; 3172 } 3173 3174 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3175 void __user *arg) 3176 { 3177 struct btrfs_ioctl_dev_info_args *di_args; 3178 struct btrfs_device *dev; 3179 int ret = 0; 3180 char *s_uuid = NULL; 3181 3182 di_args = memdup_user(arg, sizeof(*di_args)); 3183 if (IS_ERR(di_args)) 3184 return PTR_ERR(di_args); 3185 3186 if (!btrfs_is_empty_uuid(di_args->uuid)) 3187 s_uuid = di_args->uuid; 3188 3189 rcu_read_lock(); 3190 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3191 NULL, true); 3192 3193 if (!dev) { 3194 ret = -ENODEV; 3195 goto out; 3196 } 3197 3198 di_args->devid = dev->devid; 3199 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3200 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3201 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3202 if (dev->name) { 3203 strncpy(di_args->path, rcu_str_deref(dev->name), 3204 sizeof(di_args->path) - 1); 3205 di_args->path[sizeof(di_args->path) - 1] = 0; 3206 } else { 3207 di_args->path[0] = '\0'; 3208 } 3209 3210 out: 3211 rcu_read_unlock(); 3212 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3213 ret = -EFAULT; 3214 3215 kfree(di_args); 3216 return ret; 3217 } 3218 3219 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 3220 struct inode *inode2, u64 loff2, u64 len) 3221 { 3222 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3223 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3224 } 3225 3226 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 3227 struct inode *inode2, u64 loff2, u64 len) 3228 { 3229 if (inode1 < inode2) { 3230 swap(inode1, inode2); 3231 swap(loff1, loff2); 3232 } else if (inode1 == inode2 && loff2 < loff1) { 3233 swap(loff1, loff2); 3234 } 3235 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3236 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3237 } 3238 3239 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len, 3240 struct inode *dst, u64 dst_loff) 3241 { 3242 int ret; 3243 3244 /* 3245 * Lock destination range to serialize with concurrent readpages() and 3246 * source range to serialize with relocation. 3247 */ 3248 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 3249 ret = btrfs_clone(src, dst, loff, len, len, dst_loff, 1); 3250 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3251 3252 return ret; 3253 } 3254 3255 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3256 3257 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3258 struct inode *dst, u64 dst_loff) 3259 { 3260 int ret; 3261 u64 i, tail_len, chunk_count; 3262 struct btrfs_root *root_dst = BTRFS_I(dst)->root; 3263 3264 spin_lock(&root_dst->root_item_lock); 3265 if (root_dst->send_in_progress) { 3266 btrfs_warn_rl(root_dst->fs_info, 3267 "cannot deduplicate to root %llu while send operations are using it (%d in progress)", 3268 root_dst->root_key.objectid, 3269 root_dst->send_in_progress); 3270 spin_unlock(&root_dst->root_item_lock); 3271 return -EAGAIN; 3272 } 3273 root_dst->dedupe_in_progress++; 3274 spin_unlock(&root_dst->root_item_lock); 3275 3276 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 3277 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 3278 3279 for (i = 0; i < chunk_count; i++) { 3280 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 3281 dst, dst_loff); 3282 if (ret) 3283 goto out; 3284 3285 loff += BTRFS_MAX_DEDUPE_LEN; 3286 dst_loff += BTRFS_MAX_DEDUPE_LEN; 3287 } 3288 3289 if (tail_len > 0) 3290 ret = btrfs_extent_same_range(src, loff, tail_len, dst, 3291 dst_loff); 3292 out: 3293 spin_lock(&root_dst->root_item_lock); 3294 root_dst->dedupe_in_progress--; 3295 spin_unlock(&root_dst->root_item_lock); 3296 3297 return ret; 3298 } 3299 3300 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3301 struct inode *inode, 3302 u64 endoff, 3303 const u64 destoff, 3304 const u64 olen, 3305 int no_time_update) 3306 { 3307 struct btrfs_root *root = BTRFS_I(inode)->root; 3308 int ret; 3309 3310 inode_inc_iversion(inode); 3311 if (!no_time_update) 3312 inode->i_mtime = inode->i_ctime = current_time(inode); 3313 /* 3314 * We round up to the block size at eof when determining which 3315 * extents to clone above, but shouldn't round up the file size. 3316 */ 3317 if (endoff > destoff + olen) 3318 endoff = destoff + olen; 3319 if (endoff > inode->i_size) 3320 btrfs_i_size_write(BTRFS_I(inode), endoff); 3321 3322 ret = btrfs_update_inode(trans, root, inode); 3323 if (ret) { 3324 btrfs_abort_transaction(trans, ret); 3325 btrfs_end_transaction(trans); 3326 goto out; 3327 } 3328 ret = btrfs_end_transaction(trans); 3329 out: 3330 return ret; 3331 } 3332 3333 static void clone_update_extent_map(struct btrfs_inode *inode, 3334 const struct btrfs_trans_handle *trans, 3335 const struct btrfs_path *path, 3336 const u64 hole_offset, 3337 const u64 hole_len) 3338 { 3339 struct extent_map_tree *em_tree = &inode->extent_tree; 3340 struct extent_map *em; 3341 int ret; 3342 3343 em = alloc_extent_map(); 3344 if (!em) { 3345 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3346 return; 3347 } 3348 3349 if (path) { 3350 struct btrfs_file_extent_item *fi; 3351 3352 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3353 struct btrfs_file_extent_item); 3354 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3355 em->generation = -1; 3356 if (btrfs_file_extent_type(path->nodes[0], fi) == 3357 BTRFS_FILE_EXTENT_INLINE) 3358 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3359 &inode->runtime_flags); 3360 } else { 3361 em->start = hole_offset; 3362 em->len = hole_len; 3363 em->ram_bytes = em->len; 3364 em->orig_start = hole_offset; 3365 em->block_start = EXTENT_MAP_HOLE; 3366 em->block_len = 0; 3367 em->orig_block_len = 0; 3368 em->compress_type = BTRFS_COMPRESS_NONE; 3369 em->generation = trans->transid; 3370 } 3371 3372 while (1) { 3373 write_lock(&em_tree->lock); 3374 ret = add_extent_mapping(em_tree, em, 1); 3375 write_unlock(&em_tree->lock); 3376 if (ret != -EEXIST) { 3377 free_extent_map(em); 3378 break; 3379 } 3380 btrfs_drop_extent_cache(inode, em->start, 3381 em->start + em->len - 1, 0); 3382 } 3383 3384 if (ret) 3385 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3386 } 3387 3388 /* 3389 * Make sure we do not end up inserting an inline extent into a file that has 3390 * already other (non-inline) extents. If a file has an inline extent it can 3391 * not have any other extents and the (single) inline extent must start at the 3392 * file offset 0. Failing to respect these rules will lead to file corruption, 3393 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3394 * 3395 * We can have extents that have been already written to disk or we can have 3396 * dirty ranges still in delalloc, in which case the extent maps and items are 3397 * created only when we run delalloc, and the delalloc ranges might fall outside 3398 * the range we are currently locking in the inode's io tree. So we check the 3399 * inode's i_size because of that (i_size updates are done while holding the 3400 * i_mutex, which we are holding here). 3401 * We also check to see if the inode has a size not greater than "datal" but has 3402 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3403 * protected against such concurrent fallocate calls by the i_mutex). 3404 * 3405 * If the file has no extents but a size greater than datal, do not allow the 3406 * copy because we would need turn the inline extent into a non-inline one (even 3407 * with NO_HOLES enabled). If we find our destination inode only has one inline 3408 * extent, just overwrite it with the source inline extent if its size is less 3409 * than the source extent's size, or we could copy the source inline extent's 3410 * data into the destination inode's inline extent if the later is greater then 3411 * the former. 3412 */ 3413 static int clone_copy_inline_extent(struct inode *dst, 3414 struct btrfs_trans_handle *trans, 3415 struct btrfs_path *path, 3416 struct btrfs_key *new_key, 3417 const u64 drop_start, 3418 const u64 datal, 3419 const u64 skip, 3420 const u64 size, 3421 char *inline_data) 3422 { 3423 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3424 struct btrfs_root *root = BTRFS_I(dst)->root; 3425 const u64 aligned_end = ALIGN(new_key->offset + datal, 3426 fs_info->sectorsize); 3427 int ret; 3428 struct btrfs_key key; 3429 3430 if (new_key->offset > 0) 3431 return -EOPNOTSUPP; 3432 3433 key.objectid = btrfs_ino(BTRFS_I(dst)); 3434 key.type = BTRFS_EXTENT_DATA_KEY; 3435 key.offset = 0; 3436 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3437 if (ret < 0) { 3438 return ret; 3439 } else if (ret > 0) { 3440 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3441 ret = btrfs_next_leaf(root, path); 3442 if (ret < 0) 3443 return ret; 3444 else if (ret > 0) 3445 goto copy_inline_extent; 3446 } 3447 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3448 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3449 key.type == BTRFS_EXTENT_DATA_KEY) { 3450 ASSERT(key.offset > 0); 3451 return -EOPNOTSUPP; 3452 } 3453 } else if (i_size_read(dst) <= datal) { 3454 struct btrfs_file_extent_item *ei; 3455 u64 ext_len; 3456 3457 /* 3458 * If the file size is <= datal, make sure there are no other 3459 * extents following (can happen do to an fallocate call with 3460 * the flag FALLOC_FL_KEEP_SIZE). 3461 */ 3462 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3463 struct btrfs_file_extent_item); 3464 /* 3465 * If it's an inline extent, it can not have other extents 3466 * following it. 3467 */ 3468 if (btrfs_file_extent_type(path->nodes[0], ei) == 3469 BTRFS_FILE_EXTENT_INLINE) 3470 goto copy_inline_extent; 3471 3472 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3473 if (ext_len > aligned_end) 3474 return -EOPNOTSUPP; 3475 3476 ret = btrfs_next_item(root, path); 3477 if (ret < 0) { 3478 return ret; 3479 } else if (ret == 0) { 3480 btrfs_item_key_to_cpu(path->nodes[0], &key, 3481 path->slots[0]); 3482 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3483 key.type == BTRFS_EXTENT_DATA_KEY) 3484 return -EOPNOTSUPP; 3485 } 3486 } 3487 3488 copy_inline_extent: 3489 /* 3490 * We have no extent items, or we have an extent at offset 0 which may 3491 * or may not be inlined. All these cases are dealt the same way. 3492 */ 3493 if (i_size_read(dst) > datal) { 3494 /* 3495 * If the destination inode has an inline extent... 3496 * This would require copying the data from the source inline 3497 * extent into the beginning of the destination's inline extent. 3498 * But this is really complex, both extents can be compressed 3499 * or just one of them, which would require decompressing and 3500 * re-compressing data (which could increase the new compressed 3501 * size, not allowing the compressed data to fit anymore in an 3502 * inline extent). 3503 * So just don't support this case for now (it should be rare, 3504 * we are not really saving space when cloning inline extents). 3505 */ 3506 return -EOPNOTSUPP; 3507 } 3508 3509 btrfs_release_path(path); 3510 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3511 if (ret) 3512 return ret; 3513 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3514 if (ret) 3515 return ret; 3516 3517 if (skip) { 3518 const u32 start = btrfs_file_extent_calc_inline_size(0); 3519 3520 memmove(inline_data + start, inline_data + start + skip, datal); 3521 } 3522 3523 write_extent_buffer(path->nodes[0], inline_data, 3524 btrfs_item_ptr_offset(path->nodes[0], 3525 path->slots[0]), 3526 size); 3527 inode_add_bytes(dst, datal); 3528 3529 return 0; 3530 } 3531 3532 /** 3533 * btrfs_clone() - clone a range from inode file to another 3534 * 3535 * @src: Inode to clone from 3536 * @inode: Inode to clone to 3537 * @off: Offset within source to start clone from 3538 * @olen: Original length, passed by user, of range to clone 3539 * @olen_aligned: Block-aligned value of olen 3540 * @destoff: Offset within @inode to start clone 3541 * @no_time_update: Whether to update mtime/ctime on the target inode 3542 */ 3543 static int btrfs_clone(struct inode *src, struct inode *inode, 3544 const u64 off, const u64 olen, const u64 olen_aligned, 3545 const u64 destoff, int no_time_update) 3546 { 3547 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3548 struct btrfs_root *root = BTRFS_I(inode)->root; 3549 struct btrfs_path *path = NULL; 3550 struct extent_buffer *leaf; 3551 struct btrfs_trans_handle *trans; 3552 char *buf = NULL; 3553 struct btrfs_key key; 3554 u32 nritems; 3555 int slot; 3556 int ret; 3557 const u64 len = olen_aligned; 3558 u64 last_dest_end = destoff; 3559 3560 ret = -ENOMEM; 3561 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 3562 if (!buf) 3563 return ret; 3564 3565 path = btrfs_alloc_path(); 3566 if (!path) { 3567 kvfree(buf); 3568 return ret; 3569 } 3570 3571 path->reada = READA_FORWARD; 3572 /* clone data */ 3573 key.objectid = btrfs_ino(BTRFS_I(src)); 3574 key.type = BTRFS_EXTENT_DATA_KEY; 3575 key.offset = off; 3576 3577 while (1) { 3578 u64 next_key_min_offset = key.offset + 1; 3579 3580 /* 3581 * note the key will change type as we walk through the 3582 * tree. 3583 */ 3584 path->leave_spinning = 1; 3585 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3586 0, 0); 3587 if (ret < 0) 3588 goto out; 3589 /* 3590 * First search, if no extent item that starts at offset off was 3591 * found but the previous item is an extent item, it's possible 3592 * it might overlap our target range, therefore process it. 3593 */ 3594 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3595 btrfs_item_key_to_cpu(path->nodes[0], &key, 3596 path->slots[0] - 1); 3597 if (key.type == BTRFS_EXTENT_DATA_KEY) 3598 path->slots[0]--; 3599 } 3600 3601 nritems = btrfs_header_nritems(path->nodes[0]); 3602 process_slot: 3603 if (path->slots[0] >= nritems) { 3604 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3605 if (ret < 0) 3606 goto out; 3607 if (ret > 0) 3608 break; 3609 nritems = btrfs_header_nritems(path->nodes[0]); 3610 } 3611 leaf = path->nodes[0]; 3612 slot = path->slots[0]; 3613 3614 btrfs_item_key_to_cpu(leaf, &key, slot); 3615 if (key.type > BTRFS_EXTENT_DATA_KEY || 3616 key.objectid != btrfs_ino(BTRFS_I(src))) 3617 break; 3618 3619 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3620 struct btrfs_file_extent_item *extent; 3621 int type; 3622 u32 size; 3623 struct btrfs_key new_key; 3624 u64 disko = 0, diskl = 0; 3625 u64 datao = 0, datal = 0; 3626 u8 comp; 3627 u64 drop_start; 3628 3629 extent = btrfs_item_ptr(leaf, slot, 3630 struct btrfs_file_extent_item); 3631 comp = btrfs_file_extent_compression(leaf, extent); 3632 type = btrfs_file_extent_type(leaf, extent); 3633 if (type == BTRFS_FILE_EXTENT_REG || 3634 type == BTRFS_FILE_EXTENT_PREALLOC) { 3635 disko = btrfs_file_extent_disk_bytenr(leaf, 3636 extent); 3637 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3638 extent); 3639 datao = btrfs_file_extent_offset(leaf, extent); 3640 datal = btrfs_file_extent_num_bytes(leaf, 3641 extent); 3642 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3643 /* take upper bound, may be compressed */ 3644 datal = btrfs_file_extent_ram_bytes(leaf, 3645 extent); 3646 } 3647 3648 /* 3649 * The first search might have left us at an extent 3650 * item that ends before our target range's start, can 3651 * happen if we have holes and NO_HOLES feature enabled. 3652 */ 3653 if (key.offset + datal <= off) { 3654 path->slots[0]++; 3655 goto process_slot; 3656 } else if (key.offset >= off + len) { 3657 break; 3658 } 3659 next_key_min_offset = key.offset + datal; 3660 size = btrfs_item_size_nr(leaf, slot); 3661 read_extent_buffer(leaf, buf, 3662 btrfs_item_ptr_offset(leaf, slot), 3663 size); 3664 3665 btrfs_release_path(path); 3666 path->leave_spinning = 0; 3667 3668 memcpy(&new_key, &key, sizeof(new_key)); 3669 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 3670 if (off <= key.offset) 3671 new_key.offset = key.offset + destoff - off; 3672 else 3673 new_key.offset = destoff; 3674 3675 /* 3676 * Deal with a hole that doesn't have an extent item 3677 * that represents it (NO_HOLES feature enabled). 3678 * This hole is either in the middle of the cloning 3679 * range or at the beginning (fully overlaps it or 3680 * partially overlaps it). 3681 */ 3682 if (new_key.offset != last_dest_end) 3683 drop_start = last_dest_end; 3684 else 3685 drop_start = new_key.offset; 3686 3687 /* 3688 * 1 - adjusting old extent (we may have to split it) 3689 * 1 - add new extent 3690 * 1 - inode update 3691 */ 3692 trans = btrfs_start_transaction(root, 3); 3693 if (IS_ERR(trans)) { 3694 ret = PTR_ERR(trans); 3695 goto out; 3696 } 3697 3698 if (type == BTRFS_FILE_EXTENT_REG || 3699 type == BTRFS_FILE_EXTENT_PREALLOC) { 3700 /* 3701 * a | --- range to clone ---| b 3702 * | ------------- extent ------------- | 3703 */ 3704 3705 /* subtract range b */ 3706 if (key.offset + datal > off + len) 3707 datal = off + len - key.offset; 3708 3709 /* subtract range a */ 3710 if (off > key.offset) { 3711 datao += off - key.offset; 3712 datal -= off - key.offset; 3713 } 3714 3715 ret = btrfs_drop_extents(trans, root, inode, 3716 drop_start, 3717 new_key.offset + datal, 3718 1); 3719 if (ret) { 3720 if (ret != -EOPNOTSUPP) 3721 btrfs_abort_transaction(trans, 3722 ret); 3723 btrfs_end_transaction(trans); 3724 goto out; 3725 } 3726 3727 ret = btrfs_insert_empty_item(trans, root, path, 3728 &new_key, size); 3729 if (ret) { 3730 btrfs_abort_transaction(trans, ret); 3731 btrfs_end_transaction(trans); 3732 goto out; 3733 } 3734 3735 leaf = path->nodes[0]; 3736 slot = path->slots[0]; 3737 write_extent_buffer(leaf, buf, 3738 btrfs_item_ptr_offset(leaf, slot), 3739 size); 3740 3741 extent = btrfs_item_ptr(leaf, slot, 3742 struct btrfs_file_extent_item); 3743 3744 /* disko == 0 means it's a hole */ 3745 if (!disko) 3746 datao = 0; 3747 3748 btrfs_set_file_extent_offset(leaf, extent, 3749 datao); 3750 btrfs_set_file_extent_num_bytes(leaf, extent, 3751 datal); 3752 3753 if (disko) { 3754 struct btrfs_ref ref = { 0 }; 3755 inode_add_bytes(inode, datal); 3756 btrfs_init_generic_ref(&ref, 3757 BTRFS_ADD_DELAYED_REF, disko, 3758 diskl, 0); 3759 btrfs_init_data_ref(&ref, 3760 root->root_key.objectid, 3761 btrfs_ino(BTRFS_I(inode)), 3762 new_key.offset - datao); 3763 ret = btrfs_inc_extent_ref(trans, &ref); 3764 if (ret) { 3765 btrfs_abort_transaction(trans, 3766 ret); 3767 btrfs_end_transaction(trans); 3768 goto out; 3769 3770 } 3771 } 3772 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3773 u64 skip = 0; 3774 u64 trim = 0; 3775 3776 if (off > key.offset) { 3777 skip = off - key.offset; 3778 new_key.offset += skip; 3779 } 3780 3781 if (key.offset + datal > off + len) 3782 trim = key.offset + datal - (off + len); 3783 3784 if (comp && (skip || trim)) { 3785 ret = -EINVAL; 3786 btrfs_end_transaction(trans); 3787 goto out; 3788 } 3789 size -= skip + trim; 3790 datal -= skip + trim; 3791 3792 ret = clone_copy_inline_extent(inode, 3793 trans, path, 3794 &new_key, 3795 drop_start, 3796 datal, 3797 skip, size, buf); 3798 if (ret) { 3799 if (ret != -EOPNOTSUPP) 3800 btrfs_abort_transaction(trans, 3801 ret); 3802 btrfs_end_transaction(trans); 3803 goto out; 3804 } 3805 leaf = path->nodes[0]; 3806 slot = path->slots[0]; 3807 } 3808 3809 /* If we have an implicit hole (NO_HOLES feature). */ 3810 if (drop_start < new_key.offset) 3811 clone_update_extent_map(BTRFS_I(inode), trans, 3812 NULL, drop_start, 3813 new_key.offset - drop_start); 3814 3815 clone_update_extent_map(BTRFS_I(inode), trans, 3816 path, 0, 0); 3817 3818 btrfs_mark_buffer_dirty(leaf); 3819 btrfs_release_path(path); 3820 3821 last_dest_end = ALIGN(new_key.offset + datal, 3822 fs_info->sectorsize); 3823 ret = clone_finish_inode_update(trans, inode, 3824 last_dest_end, 3825 destoff, olen, 3826 no_time_update); 3827 if (ret) 3828 goto out; 3829 if (new_key.offset + datal >= destoff + len) 3830 break; 3831 } 3832 btrfs_release_path(path); 3833 key.offset = next_key_min_offset; 3834 3835 if (fatal_signal_pending(current)) { 3836 ret = -EINTR; 3837 goto out; 3838 } 3839 } 3840 ret = 0; 3841 3842 if (last_dest_end < destoff + len) { 3843 /* 3844 * We have an implicit hole (NO_HOLES feature is enabled) that 3845 * fully or partially overlaps our cloning range at its end. 3846 */ 3847 btrfs_release_path(path); 3848 3849 /* 3850 * 1 - remove extent(s) 3851 * 1 - inode update 3852 */ 3853 trans = btrfs_start_transaction(root, 2); 3854 if (IS_ERR(trans)) { 3855 ret = PTR_ERR(trans); 3856 goto out; 3857 } 3858 ret = btrfs_drop_extents(trans, root, inode, 3859 last_dest_end, destoff + len, 1); 3860 if (ret) { 3861 if (ret != -EOPNOTSUPP) 3862 btrfs_abort_transaction(trans, ret); 3863 btrfs_end_transaction(trans); 3864 goto out; 3865 } 3866 clone_update_extent_map(BTRFS_I(inode), trans, NULL, 3867 last_dest_end, 3868 destoff + len - last_dest_end); 3869 ret = clone_finish_inode_update(trans, inode, destoff + len, 3870 destoff, olen, no_time_update); 3871 } 3872 3873 out: 3874 btrfs_free_path(path); 3875 kvfree(buf); 3876 return ret; 3877 } 3878 3879 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3880 u64 off, u64 olen, u64 destoff) 3881 { 3882 struct inode *inode = file_inode(file); 3883 struct inode *src = file_inode(file_src); 3884 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3885 int ret; 3886 u64 len = olen; 3887 u64 bs = fs_info->sb->s_blocksize; 3888 3889 /* 3890 * TODO: 3891 * - split compressed inline extents. annoying: we need to 3892 * decompress into destination's address_space (the file offset 3893 * may change, so source mapping won't do), then recompress (or 3894 * otherwise reinsert) a subrange. 3895 * 3896 * - split destination inode's inline extents. The inline extents can 3897 * be either compressed or non-compressed. 3898 */ 3899 3900 /* 3901 * VFS's generic_remap_file_range_prep() protects us from cloning the 3902 * eof block into the middle of a file, which would result in corruption 3903 * if the file size is not blocksize aligned. So we don't need to check 3904 * for that case here. 3905 */ 3906 if (off + len == src->i_size) 3907 len = ALIGN(src->i_size, bs) - off; 3908 3909 if (destoff > inode->i_size) { 3910 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); 3911 3912 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3913 if (ret) 3914 return ret; 3915 /* 3916 * We may have truncated the last block if the inode's size is 3917 * not sector size aligned, so we need to wait for writeback to 3918 * complete before proceeding further, otherwise we can race 3919 * with cloning and attempt to increment a reference to an 3920 * extent that no longer exists (writeback completed right after 3921 * we found the previous extent covering eof and before we 3922 * attempted to increment its reference count). 3923 */ 3924 ret = btrfs_wait_ordered_range(inode, wb_start, 3925 destoff - wb_start); 3926 if (ret) 3927 return ret; 3928 } 3929 3930 /* 3931 * Lock destination range to serialize with concurrent readpages() and 3932 * source range to serialize with relocation. 3933 */ 3934 btrfs_double_extent_lock(src, off, inode, destoff, len); 3935 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3936 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3937 /* 3938 * Truncate page cache pages so that future reads will see the cloned 3939 * data immediately and not the previous data. 3940 */ 3941 truncate_inode_pages_range(&inode->i_data, 3942 round_down(destoff, PAGE_SIZE), 3943 round_up(destoff + len, PAGE_SIZE) - 1); 3944 3945 return ret; 3946 } 3947 3948 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, 3949 struct file *file_out, loff_t pos_out, 3950 loff_t *len, unsigned int remap_flags) 3951 { 3952 struct inode *inode_in = file_inode(file_in); 3953 struct inode *inode_out = file_inode(file_out); 3954 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize; 3955 bool same_inode = inode_out == inode_in; 3956 u64 wb_len; 3957 int ret; 3958 3959 if (!(remap_flags & REMAP_FILE_DEDUP)) { 3960 struct btrfs_root *root_out = BTRFS_I(inode_out)->root; 3961 3962 if (btrfs_root_readonly(root_out)) 3963 return -EROFS; 3964 3965 if (file_in->f_path.mnt != file_out->f_path.mnt || 3966 inode_in->i_sb != inode_out->i_sb) 3967 return -EXDEV; 3968 } 3969 3970 /* don't make the dst file partly checksummed */ 3971 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) != 3972 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) { 3973 return -EINVAL; 3974 } 3975 3976 /* 3977 * Now that the inodes are locked, we need to start writeback ourselves 3978 * and can not rely on the writeback from the VFS's generic helper 3979 * generic_remap_file_range_prep() because: 3980 * 3981 * 1) For compression we must call filemap_fdatawrite_range() range 3982 * twice (btrfs_fdatawrite_range() does it for us), and the generic 3983 * helper only calls it once; 3984 * 3985 * 2) filemap_fdatawrite_range(), called by the generic helper only 3986 * waits for the writeback to complete, i.e. for IO to be done, and 3987 * not for the ordered extents to complete. We need to wait for them 3988 * to complete so that new file extent items are in the fs tree. 3989 */ 3990 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) 3991 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs); 3992 else 3993 wb_len = ALIGN(*len, bs); 3994 3995 /* 3996 * Since we don't lock ranges, wait for ongoing lockless dio writes (as 3997 * any in progress could create its ordered extents after we wait for 3998 * existing ordered extents below). 3999 */ 4000 inode_dio_wait(inode_in); 4001 if (!same_inode) 4002 inode_dio_wait(inode_out); 4003 4004 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), 4005 wb_len); 4006 if (ret < 0) 4007 return ret; 4008 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), 4009 wb_len); 4010 if (ret < 0) 4011 return ret; 4012 4013 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 4014 len, remap_flags); 4015 } 4016 4017 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, 4018 struct file *dst_file, loff_t destoff, loff_t len, 4019 unsigned int remap_flags) 4020 { 4021 struct inode *src_inode = file_inode(src_file); 4022 struct inode *dst_inode = file_inode(dst_file); 4023 bool same_inode = dst_inode == src_inode; 4024 int ret; 4025 4026 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 4027 return -EINVAL; 4028 4029 if (same_inode) 4030 inode_lock(src_inode); 4031 else 4032 lock_two_nondirectories(src_inode, dst_inode); 4033 4034 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, 4035 &len, remap_flags); 4036 if (ret < 0 || len == 0) 4037 goto out_unlock; 4038 4039 if (remap_flags & REMAP_FILE_DEDUP) 4040 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff); 4041 else 4042 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); 4043 4044 out_unlock: 4045 if (same_inode) 4046 inode_unlock(src_inode); 4047 else 4048 unlock_two_nondirectories(src_inode, dst_inode); 4049 4050 return ret < 0 ? ret : len; 4051 } 4052 4053 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4054 { 4055 struct inode *inode = file_inode(file); 4056 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4057 struct btrfs_root *root = BTRFS_I(inode)->root; 4058 struct btrfs_root *new_root; 4059 struct btrfs_dir_item *di; 4060 struct btrfs_trans_handle *trans; 4061 struct btrfs_path *path; 4062 struct btrfs_key location; 4063 struct btrfs_disk_key disk_key; 4064 u64 objectid = 0; 4065 u64 dir_id; 4066 int ret; 4067 4068 if (!capable(CAP_SYS_ADMIN)) 4069 return -EPERM; 4070 4071 ret = mnt_want_write_file(file); 4072 if (ret) 4073 return ret; 4074 4075 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4076 ret = -EFAULT; 4077 goto out; 4078 } 4079 4080 if (!objectid) 4081 objectid = BTRFS_FS_TREE_OBJECTID; 4082 4083 location.objectid = objectid; 4084 location.type = BTRFS_ROOT_ITEM_KEY; 4085 location.offset = (u64)-1; 4086 4087 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 4088 if (IS_ERR(new_root)) { 4089 ret = PTR_ERR(new_root); 4090 goto out; 4091 } 4092 if (!is_fstree(new_root->root_key.objectid)) { 4093 ret = -ENOENT; 4094 goto out; 4095 } 4096 4097 path = btrfs_alloc_path(); 4098 if (!path) { 4099 ret = -ENOMEM; 4100 goto out; 4101 } 4102 path->leave_spinning = 1; 4103 4104 trans = btrfs_start_transaction(root, 1); 4105 if (IS_ERR(trans)) { 4106 btrfs_free_path(path); 4107 ret = PTR_ERR(trans); 4108 goto out; 4109 } 4110 4111 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4112 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4113 dir_id, "default", 7, 1); 4114 if (IS_ERR_OR_NULL(di)) { 4115 btrfs_free_path(path); 4116 btrfs_end_transaction(trans); 4117 btrfs_err(fs_info, 4118 "Umm, you don't have the default diritem, this isn't going to work"); 4119 ret = -ENOENT; 4120 goto out; 4121 } 4122 4123 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4124 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4125 btrfs_mark_buffer_dirty(path->nodes[0]); 4126 btrfs_free_path(path); 4127 4128 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4129 btrfs_end_transaction(trans); 4130 out: 4131 mnt_drop_write_file(file); 4132 return ret; 4133 } 4134 4135 static void get_block_group_info(struct list_head *groups_list, 4136 struct btrfs_ioctl_space_info *space) 4137 { 4138 struct btrfs_block_group_cache *block_group; 4139 4140 space->total_bytes = 0; 4141 space->used_bytes = 0; 4142 space->flags = 0; 4143 list_for_each_entry(block_group, groups_list, list) { 4144 space->flags = block_group->flags; 4145 space->total_bytes += block_group->key.offset; 4146 space->used_bytes += 4147 btrfs_block_group_used(&block_group->item); 4148 } 4149 } 4150 4151 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4152 void __user *arg) 4153 { 4154 struct btrfs_ioctl_space_args space_args; 4155 struct btrfs_ioctl_space_info space; 4156 struct btrfs_ioctl_space_info *dest; 4157 struct btrfs_ioctl_space_info *dest_orig; 4158 struct btrfs_ioctl_space_info __user *user_dest; 4159 struct btrfs_space_info *info; 4160 static const u64 types[] = { 4161 BTRFS_BLOCK_GROUP_DATA, 4162 BTRFS_BLOCK_GROUP_SYSTEM, 4163 BTRFS_BLOCK_GROUP_METADATA, 4164 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 4165 }; 4166 int num_types = 4; 4167 int alloc_size; 4168 int ret = 0; 4169 u64 slot_count = 0; 4170 int i, c; 4171 4172 if (copy_from_user(&space_args, 4173 (struct btrfs_ioctl_space_args __user *)arg, 4174 sizeof(space_args))) 4175 return -EFAULT; 4176 4177 for (i = 0; i < num_types; i++) { 4178 struct btrfs_space_info *tmp; 4179 4180 info = NULL; 4181 rcu_read_lock(); 4182 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4183 list) { 4184 if (tmp->flags == types[i]) { 4185 info = tmp; 4186 break; 4187 } 4188 } 4189 rcu_read_unlock(); 4190 4191 if (!info) 4192 continue; 4193 4194 down_read(&info->groups_sem); 4195 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4196 if (!list_empty(&info->block_groups[c])) 4197 slot_count++; 4198 } 4199 up_read(&info->groups_sem); 4200 } 4201 4202 /* 4203 * Global block reserve, exported as a space_info 4204 */ 4205 slot_count++; 4206 4207 /* space_slots == 0 means they are asking for a count */ 4208 if (space_args.space_slots == 0) { 4209 space_args.total_spaces = slot_count; 4210 goto out; 4211 } 4212 4213 slot_count = min_t(u64, space_args.space_slots, slot_count); 4214 4215 alloc_size = sizeof(*dest) * slot_count; 4216 4217 /* we generally have at most 6 or so space infos, one for each raid 4218 * level. So, a whole page should be more than enough for everyone 4219 */ 4220 if (alloc_size > PAGE_SIZE) 4221 return -ENOMEM; 4222 4223 space_args.total_spaces = 0; 4224 dest = kmalloc(alloc_size, GFP_KERNEL); 4225 if (!dest) 4226 return -ENOMEM; 4227 dest_orig = dest; 4228 4229 /* now we have a buffer to copy into */ 4230 for (i = 0; i < num_types; i++) { 4231 struct btrfs_space_info *tmp; 4232 4233 if (!slot_count) 4234 break; 4235 4236 info = NULL; 4237 rcu_read_lock(); 4238 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4239 list) { 4240 if (tmp->flags == types[i]) { 4241 info = tmp; 4242 break; 4243 } 4244 } 4245 rcu_read_unlock(); 4246 4247 if (!info) 4248 continue; 4249 down_read(&info->groups_sem); 4250 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4251 if (!list_empty(&info->block_groups[c])) { 4252 get_block_group_info(&info->block_groups[c], 4253 &space); 4254 memcpy(dest, &space, sizeof(space)); 4255 dest++; 4256 space_args.total_spaces++; 4257 slot_count--; 4258 } 4259 if (!slot_count) 4260 break; 4261 } 4262 up_read(&info->groups_sem); 4263 } 4264 4265 /* 4266 * Add global block reserve 4267 */ 4268 if (slot_count) { 4269 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4270 4271 spin_lock(&block_rsv->lock); 4272 space.total_bytes = block_rsv->size; 4273 space.used_bytes = block_rsv->size - block_rsv->reserved; 4274 spin_unlock(&block_rsv->lock); 4275 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4276 memcpy(dest, &space, sizeof(space)); 4277 space_args.total_spaces++; 4278 } 4279 4280 user_dest = (struct btrfs_ioctl_space_info __user *) 4281 (arg + sizeof(struct btrfs_ioctl_space_args)); 4282 4283 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4284 ret = -EFAULT; 4285 4286 kfree(dest_orig); 4287 out: 4288 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4289 ret = -EFAULT; 4290 4291 return ret; 4292 } 4293 4294 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4295 void __user *argp) 4296 { 4297 struct btrfs_trans_handle *trans; 4298 u64 transid; 4299 int ret; 4300 4301 trans = btrfs_attach_transaction_barrier(root); 4302 if (IS_ERR(trans)) { 4303 if (PTR_ERR(trans) != -ENOENT) 4304 return PTR_ERR(trans); 4305 4306 /* No running transaction, don't bother */ 4307 transid = root->fs_info->last_trans_committed; 4308 goto out; 4309 } 4310 transid = trans->transid; 4311 ret = btrfs_commit_transaction_async(trans, 0); 4312 if (ret) { 4313 btrfs_end_transaction(trans); 4314 return ret; 4315 } 4316 out: 4317 if (argp) 4318 if (copy_to_user(argp, &transid, sizeof(transid))) 4319 return -EFAULT; 4320 return 0; 4321 } 4322 4323 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4324 void __user *argp) 4325 { 4326 u64 transid; 4327 4328 if (argp) { 4329 if (copy_from_user(&transid, argp, sizeof(transid))) 4330 return -EFAULT; 4331 } else { 4332 transid = 0; /* current trans */ 4333 } 4334 return btrfs_wait_for_commit(fs_info, transid); 4335 } 4336 4337 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4338 { 4339 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4340 struct btrfs_ioctl_scrub_args *sa; 4341 int ret; 4342 4343 if (!capable(CAP_SYS_ADMIN)) 4344 return -EPERM; 4345 4346 sa = memdup_user(arg, sizeof(*sa)); 4347 if (IS_ERR(sa)) 4348 return PTR_ERR(sa); 4349 4350 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4351 ret = mnt_want_write_file(file); 4352 if (ret) 4353 goto out; 4354 } 4355 4356 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4357 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4358 0); 4359 4360 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4361 ret = -EFAULT; 4362 4363 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4364 mnt_drop_write_file(file); 4365 out: 4366 kfree(sa); 4367 return ret; 4368 } 4369 4370 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4371 { 4372 if (!capable(CAP_SYS_ADMIN)) 4373 return -EPERM; 4374 4375 return btrfs_scrub_cancel(fs_info); 4376 } 4377 4378 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4379 void __user *arg) 4380 { 4381 struct btrfs_ioctl_scrub_args *sa; 4382 int ret; 4383 4384 if (!capable(CAP_SYS_ADMIN)) 4385 return -EPERM; 4386 4387 sa = memdup_user(arg, sizeof(*sa)); 4388 if (IS_ERR(sa)) 4389 return PTR_ERR(sa); 4390 4391 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4392 4393 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4394 ret = -EFAULT; 4395 4396 kfree(sa); 4397 return ret; 4398 } 4399 4400 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4401 void __user *arg) 4402 { 4403 struct btrfs_ioctl_get_dev_stats *sa; 4404 int ret; 4405 4406 sa = memdup_user(arg, sizeof(*sa)); 4407 if (IS_ERR(sa)) 4408 return PTR_ERR(sa); 4409 4410 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4411 kfree(sa); 4412 return -EPERM; 4413 } 4414 4415 ret = btrfs_get_dev_stats(fs_info, sa); 4416 4417 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4418 ret = -EFAULT; 4419 4420 kfree(sa); 4421 return ret; 4422 } 4423 4424 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4425 void __user *arg) 4426 { 4427 struct btrfs_ioctl_dev_replace_args *p; 4428 int ret; 4429 4430 if (!capable(CAP_SYS_ADMIN)) 4431 return -EPERM; 4432 4433 p = memdup_user(arg, sizeof(*p)); 4434 if (IS_ERR(p)) 4435 return PTR_ERR(p); 4436 4437 switch (p->cmd) { 4438 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4439 if (sb_rdonly(fs_info->sb)) { 4440 ret = -EROFS; 4441 goto out; 4442 } 4443 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4444 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4445 } else { 4446 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4447 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4448 } 4449 break; 4450 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4451 btrfs_dev_replace_status(fs_info, p); 4452 ret = 0; 4453 break; 4454 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4455 p->result = btrfs_dev_replace_cancel(fs_info); 4456 ret = 0; 4457 break; 4458 default: 4459 ret = -EINVAL; 4460 break; 4461 } 4462 4463 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 4464 ret = -EFAULT; 4465 out: 4466 kfree(p); 4467 return ret; 4468 } 4469 4470 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4471 { 4472 int ret = 0; 4473 int i; 4474 u64 rel_ptr; 4475 int size; 4476 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4477 struct inode_fs_paths *ipath = NULL; 4478 struct btrfs_path *path; 4479 4480 if (!capable(CAP_DAC_READ_SEARCH)) 4481 return -EPERM; 4482 4483 path = btrfs_alloc_path(); 4484 if (!path) { 4485 ret = -ENOMEM; 4486 goto out; 4487 } 4488 4489 ipa = memdup_user(arg, sizeof(*ipa)); 4490 if (IS_ERR(ipa)) { 4491 ret = PTR_ERR(ipa); 4492 ipa = NULL; 4493 goto out; 4494 } 4495 4496 size = min_t(u32, ipa->size, 4096); 4497 ipath = init_ipath(size, root, path); 4498 if (IS_ERR(ipath)) { 4499 ret = PTR_ERR(ipath); 4500 ipath = NULL; 4501 goto out; 4502 } 4503 4504 ret = paths_from_inode(ipa->inum, ipath); 4505 if (ret < 0) 4506 goto out; 4507 4508 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4509 rel_ptr = ipath->fspath->val[i] - 4510 (u64)(unsigned long)ipath->fspath->val; 4511 ipath->fspath->val[i] = rel_ptr; 4512 } 4513 4514 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4515 ipath->fspath, size); 4516 if (ret) { 4517 ret = -EFAULT; 4518 goto out; 4519 } 4520 4521 out: 4522 btrfs_free_path(path); 4523 free_ipath(ipath); 4524 kfree(ipa); 4525 4526 return ret; 4527 } 4528 4529 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4530 { 4531 struct btrfs_data_container *inodes = ctx; 4532 const size_t c = 3 * sizeof(u64); 4533 4534 if (inodes->bytes_left >= c) { 4535 inodes->bytes_left -= c; 4536 inodes->val[inodes->elem_cnt] = inum; 4537 inodes->val[inodes->elem_cnt + 1] = offset; 4538 inodes->val[inodes->elem_cnt + 2] = root; 4539 inodes->elem_cnt += 3; 4540 } else { 4541 inodes->bytes_missing += c - inodes->bytes_left; 4542 inodes->bytes_left = 0; 4543 inodes->elem_missed += 3; 4544 } 4545 4546 return 0; 4547 } 4548 4549 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4550 void __user *arg, int version) 4551 { 4552 int ret = 0; 4553 int size; 4554 struct btrfs_ioctl_logical_ino_args *loi; 4555 struct btrfs_data_container *inodes = NULL; 4556 struct btrfs_path *path = NULL; 4557 bool ignore_offset; 4558 4559 if (!capable(CAP_SYS_ADMIN)) 4560 return -EPERM; 4561 4562 loi = memdup_user(arg, sizeof(*loi)); 4563 if (IS_ERR(loi)) 4564 return PTR_ERR(loi); 4565 4566 if (version == 1) { 4567 ignore_offset = false; 4568 size = min_t(u32, loi->size, SZ_64K); 4569 } else { 4570 /* All reserved bits must be 0 for now */ 4571 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4572 ret = -EINVAL; 4573 goto out_loi; 4574 } 4575 /* Only accept flags we have defined so far */ 4576 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4577 ret = -EINVAL; 4578 goto out_loi; 4579 } 4580 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4581 size = min_t(u32, loi->size, SZ_16M); 4582 } 4583 4584 path = btrfs_alloc_path(); 4585 if (!path) { 4586 ret = -ENOMEM; 4587 goto out; 4588 } 4589 4590 inodes = init_data_container(size); 4591 if (IS_ERR(inodes)) { 4592 ret = PTR_ERR(inodes); 4593 inodes = NULL; 4594 goto out; 4595 } 4596 4597 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4598 build_ino_list, inodes, ignore_offset); 4599 if (ret == -EINVAL) 4600 ret = -ENOENT; 4601 if (ret < 0) 4602 goto out; 4603 4604 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4605 size); 4606 if (ret) 4607 ret = -EFAULT; 4608 4609 out: 4610 btrfs_free_path(path); 4611 kvfree(inodes); 4612 out_loi: 4613 kfree(loi); 4614 4615 return ret; 4616 } 4617 4618 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4619 struct btrfs_ioctl_balance_args *bargs) 4620 { 4621 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4622 4623 bargs->flags = bctl->flags; 4624 4625 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4626 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4627 if (atomic_read(&fs_info->balance_pause_req)) 4628 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4629 if (atomic_read(&fs_info->balance_cancel_req)) 4630 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4631 4632 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4633 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4634 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4635 4636 spin_lock(&fs_info->balance_lock); 4637 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4638 spin_unlock(&fs_info->balance_lock); 4639 } 4640 4641 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4642 { 4643 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4644 struct btrfs_fs_info *fs_info = root->fs_info; 4645 struct btrfs_ioctl_balance_args *bargs; 4646 struct btrfs_balance_control *bctl; 4647 bool need_unlock; /* for mut. excl. ops lock */ 4648 int ret; 4649 4650 if (!capable(CAP_SYS_ADMIN)) 4651 return -EPERM; 4652 4653 ret = mnt_want_write_file(file); 4654 if (ret) 4655 return ret; 4656 4657 again: 4658 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4659 mutex_lock(&fs_info->balance_mutex); 4660 need_unlock = true; 4661 goto locked; 4662 } 4663 4664 /* 4665 * mut. excl. ops lock is locked. Three possibilities: 4666 * (1) some other op is running 4667 * (2) balance is running 4668 * (3) balance is paused -- special case (think resume) 4669 */ 4670 mutex_lock(&fs_info->balance_mutex); 4671 if (fs_info->balance_ctl) { 4672 /* this is either (2) or (3) */ 4673 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4674 mutex_unlock(&fs_info->balance_mutex); 4675 /* 4676 * Lock released to allow other waiters to continue, 4677 * we'll reexamine the status again. 4678 */ 4679 mutex_lock(&fs_info->balance_mutex); 4680 4681 if (fs_info->balance_ctl && 4682 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4683 /* this is (3) */ 4684 need_unlock = false; 4685 goto locked; 4686 } 4687 4688 mutex_unlock(&fs_info->balance_mutex); 4689 goto again; 4690 } else { 4691 /* this is (2) */ 4692 mutex_unlock(&fs_info->balance_mutex); 4693 ret = -EINPROGRESS; 4694 goto out; 4695 } 4696 } else { 4697 /* this is (1) */ 4698 mutex_unlock(&fs_info->balance_mutex); 4699 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4700 goto out; 4701 } 4702 4703 locked: 4704 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4705 4706 if (arg) { 4707 bargs = memdup_user(arg, sizeof(*bargs)); 4708 if (IS_ERR(bargs)) { 4709 ret = PTR_ERR(bargs); 4710 goto out_unlock; 4711 } 4712 4713 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4714 if (!fs_info->balance_ctl) { 4715 ret = -ENOTCONN; 4716 goto out_bargs; 4717 } 4718 4719 bctl = fs_info->balance_ctl; 4720 spin_lock(&fs_info->balance_lock); 4721 bctl->flags |= BTRFS_BALANCE_RESUME; 4722 spin_unlock(&fs_info->balance_lock); 4723 4724 goto do_balance; 4725 } 4726 } else { 4727 bargs = NULL; 4728 } 4729 4730 if (fs_info->balance_ctl) { 4731 ret = -EINPROGRESS; 4732 goto out_bargs; 4733 } 4734 4735 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4736 if (!bctl) { 4737 ret = -ENOMEM; 4738 goto out_bargs; 4739 } 4740 4741 if (arg) { 4742 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4743 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4744 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4745 4746 bctl->flags = bargs->flags; 4747 } else { 4748 /* balance everything - no filters */ 4749 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4750 } 4751 4752 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4753 ret = -EINVAL; 4754 goto out_bctl; 4755 } 4756 4757 do_balance: 4758 /* 4759 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to 4760 * btrfs_balance. bctl is freed in reset_balance_state, or, if 4761 * restriper was paused all the way until unmount, in free_fs_info. 4762 * The flag should be cleared after reset_balance_state. 4763 */ 4764 need_unlock = false; 4765 4766 ret = btrfs_balance(fs_info, bctl, bargs); 4767 bctl = NULL; 4768 4769 if ((ret == 0 || ret == -ECANCELED) && arg) { 4770 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4771 ret = -EFAULT; 4772 } 4773 4774 out_bctl: 4775 kfree(bctl); 4776 out_bargs: 4777 kfree(bargs); 4778 out_unlock: 4779 mutex_unlock(&fs_info->balance_mutex); 4780 if (need_unlock) 4781 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4782 out: 4783 mnt_drop_write_file(file); 4784 return ret; 4785 } 4786 4787 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4788 { 4789 if (!capable(CAP_SYS_ADMIN)) 4790 return -EPERM; 4791 4792 switch (cmd) { 4793 case BTRFS_BALANCE_CTL_PAUSE: 4794 return btrfs_pause_balance(fs_info); 4795 case BTRFS_BALANCE_CTL_CANCEL: 4796 return btrfs_cancel_balance(fs_info); 4797 } 4798 4799 return -EINVAL; 4800 } 4801 4802 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4803 void __user *arg) 4804 { 4805 struct btrfs_ioctl_balance_args *bargs; 4806 int ret = 0; 4807 4808 if (!capable(CAP_SYS_ADMIN)) 4809 return -EPERM; 4810 4811 mutex_lock(&fs_info->balance_mutex); 4812 if (!fs_info->balance_ctl) { 4813 ret = -ENOTCONN; 4814 goto out; 4815 } 4816 4817 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4818 if (!bargs) { 4819 ret = -ENOMEM; 4820 goto out; 4821 } 4822 4823 btrfs_update_ioctl_balance_args(fs_info, bargs); 4824 4825 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4826 ret = -EFAULT; 4827 4828 kfree(bargs); 4829 out: 4830 mutex_unlock(&fs_info->balance_mutex); 4831 return ret; 4832 } 4833 4834 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4835 { 4836 struct inode *inode = file_inode(file); 4837 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4838 struct btrfs_ioctl_quota_ctl_args *sa; 4839 int ret; 4840 4841 if (!capable(CAP_SYS_ADMIN)) 4842 return -EPERM; 4843 4844 ret = mnt_want_write_file(file); 4845 if (ret) 4846 return ret; 4847 4848 sa = memdup_user(arg, sizeof(*sa)); 4849 if (IS_ERR(sa)) { 4850 ret = PTR_ERR(sa); 4851 goto drop_write; 4852 } 4853 4854 down_write(&fs_info->subvol_sem); 4855 4856 switch (sa->cmd) { 4857 case BTRFS_QUOTA_CTL_ENABLE: 4858 ret = btrfs_quota_enable(fs_info); 4859 break; 4860 case BTRFS_QUOTA_CTL_DISABLE: 4861 ret = btrfs_quota_disable(fs_info); 4862 break; 4863 default: 4864 ret = -EINVAL; 4865 break; 4866 } 4867 4868 kfree(sa); 4869 up_write(&fs_info->subvol_sem); 4870 drop_write: 4871 mnt_drop_write_file(file); 4872 return ret; 4873 } 4874 4875 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4876 { 4877 struct inode *inode = file_inode(file); 4878 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4879 struct btrfs_root *root = BTRFS_I(inode)->root; 4880 struct btrfs_ioctl_qgroup_assign_args *sa; 4881 struct btrfs_trans_handle *trans; 4882 int ret; 4883 int err; 4884 4885 if (!capable(CAP_SYS_ADMIN)) 4886 return -EPERM; 4887 4888 ret = mnt_want_write_file(file); 4889 if (ret) 4890 return ret; 4891 4892 sa = memdup_user(arg, sizeof(*sa)); 4893 if (IS_ERR(sa)) { 4894 ret = PTR_ERR(sa); 4895 goto drop_write; 4896 } 4897 4898 trans = btrfs_join_transaction(root); 4899 if (IS_ERR(trans)) { 4900 ret = PTR_ERR(trans); 4901 goto out; 4902 } 4903 4904 if (sa->assign) { 4905 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4906 } else { 4907 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4908 } 4909 4910 /* update qgroup status and info */ 4911 err = btrfs_run_qgroups(trans); 4912 if (err < 0) 4913 btrfs_handle_fs_error(fs_info, err, 4914 "failed to update qgroup status and info"); 4915 err = btrfs_end_transaction(trans); 4916 if (err && !ret) 4917 ret = err; 4918 4919 out: 4920 kfree(sa); 4921 drop_write: 4922 mnt_drop_write_file(file); 4923 return ret; 4924 } 4925 4926 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4927 { 4928 struct inode *inode = file_inode(file); 4929 struct btrfs_root *root = BTRFS_I(inode)->root; 4930 struct btrfs_ioctl_qgroup_create_args *sa; 4931 struct btrfs_trans_handle *trans; 4932 int ret; 4933 int err; 4934 4935 if (!capable(CAP_SYS_ADMIN)) 4936 return -EPERM; 4937 4938 ret = mnt_want_write_file(file); 4939 if (ret) 4940 return ret; 4941 4942 sa = memdup_user(arg, sizeof(*sa)); 4943 if (IS_ERR(sa)) { 4944 ret = PTR_ERR(sa); 4945 goto drop_write; 4946 } 4947 4948 if (!sa->qgroupid) { 4949 ret = -EINVAL; 4950 goto out; 4951 } 4952 4953 trans = btrfs_join_transaction(root); 4954 if (IS_ERR(trans)) { 4955 ret = PTR_ERR(trans); 4956 goto out; 4957 } 4958 4959 if (sa->create) { 4960 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4961 } else { 4962 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4963 } 4964 4965 err = btrfs_end_transaction(trans); 4966 if (err && !ret) 4967 ret = err; 4968 4969 out: 4970 kfree(sa); 4971 drop_write: 4972 mnt_drop_write_file(file); 4973 return ret; 4974 } 4975 4976 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4977 { 4978 struct inode *inode = file_inode(file); 4979 struct btrfs_root *root = BTRFS_I(inode)->root; 4980 struct btrfs_ioctl_qgroup_limit_args *sa; 4981 struct btrfs_trans_handle *trans; 4982 int ret; 4983 int err; 4984 u64 qgroupid; 4985 4986 if (!capable(CAP_SYS_ADMIN)) 4987 return -EPERM; 4988 4989 ret = mnt_want_write_file(file); 4990 if (ret) 4991 return ret; 4992 4993 sa = memdup_user(arg, sizeof(*sa)); 4994 if (IS_ERR(sa)) { 4995 ret = PTR_ERR(sa); 4996 goto drop_write; 4997 } 4998 4999 trans = btrfs_join_transaction(root); 5000 if (IS_ERR(trans)) { 5001 ret = PTR_ERR(trans); 5002 goto out; 5003 } 5004 5005 qgroupid = sa->qgroupid; 5006 if (!qgroupid) { 5007 /* take the current subvol as qgroup */ 5008 qgroupid = root->root_key.objectid; 5009 } 5010 5011 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 5012 5013 err = btrfs_end_transaction(trans); 5014 if (err && !ret) 5015 ret = err; 5016 5017 out: 5018 kfree(sa); 5019 drop_write: 5020 mnt_drop_write_file(file); 5021 return ret; 5022 } 5023 5024 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5025 { 5026 struct inode *inode = file_inode(file); 5027 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5028 struct btrfs_ioctl_quota_rescan_args *qsa; 5029 int ret; 5030 5031 if (!capable(CAP_SYS_ADMIN)) 5032 return -EPERM; 5033 5034 ret = mnt_want_write_file(file); 5035 if (ret) 5036 return ret; 5037 5038 qsa = memdup_user(arg, sizeof(*qsa)); 5039 if (IS_ERR(qsa)) { 5040 ret = PTR_ERR(qsa); 5041 goto drop_write; 5042 } 5043 5044 if (qsa->flags) { 5045 ret = -EINVAL; 5046 goto out; 5047 } 5048 5049 ret = btrfs_qgroup_rescan(fs_info); 5050 5051 out: 5052 kfree(qsa); 5053 drop_write: 5054 mnt_drop_write_file(file); 5055 return ret; 5056 } 5057 5058 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5059 { 5060 struct inode *inode = file_inode(file); 5061 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5062 struct btrfs_ioctl_quota_rescan_args *qsa; 5063 int ret = 0; 5064 5065 if (!capable(CAP_SYS_ADMIN)) 5066 return -EPERM; 5067 5068 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5069 if (!qsa) 5070 return -ENOMEM; 5071 5072 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5073 qsa->flags = 1; 5074 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 5075 } 5076 5077 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5078 ret = -EFAULT; 5079 5080 kfree(qsa); 5081 return ret; 5082 } 5083 5084 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5085 { 5086 struct inode *inode = file_inode(file); 5087 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5088 5089 if (!capable(CAP_SYS_ADMIN)) 5090 return -EPERM; 5091 5092 return btrfs_qgroup_wait_for_completion(fs_info, true); 5093 } 5094 5095 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5096 struct btrfs_ioctl_received_subvol_args *sa) 5097 { 5098 struct inode *inode = file_inode(file); 5099 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5100 struct btrfs_root *root = BTRFS_I(inode)->root; 5101 struct btrfs_root_item *root_item = &root->root_item; 5102 struct btrfs_trans_handle *trans; 5103 struct timespec64 ct = current_time(inode); 5104 int ret = 0; 5105 int received_uuid_changed; 5106 5107 if (!inode_owner_or_capable(inode)) 5108 return -EPERM; 5109 5110 ret = mnt_want_write_file(file); 5111 if (ret < 0) 5112 return ret; 5113 5114 down_write(&fs_info->subvol_sem); 5115 5116 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5117 ret = -EINVAL; 5118 goto out; 5119 } 5120 5121 if (btrfs_root_readonly(root)) { 5122 ret = -EROFS; 5123 goto out; 5124 } 5125 5126 /* 5127 * 1 - root item 5128 * 2 - uuid items (received uuid + subvol uuid) 5129 */ 5130 trans = btrfs_start_transaction(root, 3); 5131 if (IS_ERR(trans)) { 5132 ret = PTR_ERR(trans); 5133 trans = NULL; 5134 goto out; 5135 } 5136 5137 sa->rtransid = trans->transid; 5138 sa->rtime.sec = ct.tv_sec; 5139 sa->rtime.nsec = ct.tv_nsec; 5140 5141 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5142 BTRFS_UUID_SIZE); 5143 if (received_uuid_changed && 5144 !btrfs_is_empty_uuid(root_item->received_uuid)) { 5145 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 5146 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5147 root->root_key.objectid); 5148 if (ret && ret != -ENOENT) { 5149 btrfs_abort_transaction(trans, ret); 5150 btrfs_end_transaction(trans); 5151 goto out; 5152 } 5153 } 5154 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5155 btrfs_set_root_stransid(root_item, sa->stransid); 5156 btrfs_set_root_rtransid(root_item, sa->rtransid); 5157 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5158 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5159 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5160 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5161 5162 ret = btrfs_update_root(trans, fs_info->tree_root, 5163 &root->root_key, &root->root_item); 5164 if (ret < 0) { 5165 btrfs_end_transaction(trans); 5166 goto out; 5167 } 5168 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5169 ret = btrfs_uuid_tree_add(trans, sa->uuid, 5170 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5171 root->root_key.objectid); 5172 if (ret < 0 && ret != -EEXIST) { 5173 btrfs_abort_transaction(trans, ret); 5174 btrfs_end_transaction(trans); 5175 goto out; 5176 } 5177 } 5178 ret = btrfs_commit_transaction(trans); 5179 out: 5180 up_write(&fs_info->subvol_sem); 5181 mnt_drop_write_file(file); 5182 return ret; 5183 } 5184 5185 #ifdef CONFIG_64BIT 5186 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5187 void __user *arg) 5188 { 5189 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5190 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5191 int ret = 0; 5192 5193 args32 = memdup_user(arg, sizeof(*args32)); 5194 if (IS_ERR(args32)) 5195 return PTR_ERR(args32); 5196 5197 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5198 if (!args64) { 5199 ret = -ENOMEM; 5200 goto out; 5201 } 5202 5203 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5204 args64->stransid = args32->stransid; 5205 args64->rtransid = args32->rtransid; 5206 args64->stime.sec = args32->stime.sec; 5207 args64->stime.nsec = args32->stime.nsec; 5208 args64->rtime.sec = args32->rtime.sec; 5209 args64->rtime.nsec = args32->rtime.nsec; 5210 args64->flags = args32->flags; 5211 5212 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5213 if (ret) 5214 goto out; 5215 5216 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5217 args32->stransid = args64->stransid; 5218 args32->rtransid = args64->rtransid; 5219 args32->stime.sec = args64->stime.sec; 5220 args32->stime.nsec = args64->stime.nsec; 5221 args32->rtime.sec = args64->rtime.sec; 5222 args32->rtime.nsec = args64->rtime.nsec; 5223 args32->flags = args64->flags; 5224 5225 ret = copy_to_user(arg, args32, sizeof(*args32)); 5226 if (ret) 5227 ret = -EFAULT; 5228 5229 out: 5230 kfree(args32); 5231 kfree(args64); 5232 return ret; 5233 } 5234 #endif 5235 5236 static long btrfs_ioctl_set_received_subvol(struct file *file, 5237 void __user *arg) 5238 { 5239 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5240 int ret = 0; 5241 5242 sa = memdup_user(arg, sizeof(*sa)); 5243 if (IS_ERR(sa)) 5244 return PTR_ERR(sa); 5245 5246 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5247 5248 if (ret) 5249 goto out; 5250 5251 ret = copy_to_user(arg, sa, sizeof(*sa)); 5252 if (ret) 5253 ret = -EFAULT; 5254 5255 out: 5256 kfree(sa); 5257 return ret; 5258 } 5259 5260 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5261 { 5262 struct inode *inode = file_inode(file); 5263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5264 size_t len; 5265 int ret; 5266 char label[BTRFS_LABEL_SIZE]; 5267 5268 spin_lock(&fs_info->super_lock); 5269 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5270 spin_unlock(&fs_info->super_lock); 5271 5272 len = strnlen(label, BTRFS_LABEL_SIZE); 5273 5274 if (len == BTRFS_LABEL_SIZE) { 5275 btrfs_warn(fs_info, 5276 "label is too long, return the first %zu bytes", 5277 --len); 5278 } 5279 5280 ret = copy_to_user(arg, label, len); 5281 5282 return ret ? -EFAULT : 0; 5283 } 5284 5285 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5286 { 5287 struct inode *inode = file_inode(file); 5288 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5289 struct btrfs_root *root = BTRFS_I(inode)->root; 5290 struct btrfs_super_block *super_block = fs_info->super_copy; 5291 struct btrfs_trans_handle *trans; 5292 char label[BTRFS_LABEL_SIZE]; 5293 int ret; 5294 5295 if (!capable(CAP_SYS_ADMIN)) 5296 return -EPERM; 5297 5298 if (copy_from_user(label, arg, sizeof(label))) 5299 return -EFAULT; 5300 5301 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5302 btrfs_err(fs_info, 5303 "unable to set label with more than %d bytes", 5304 BTRFS_LABEL_SIZE - 1); 5305 return -EINVAL; 5306 } 5307 5308 ret = mnt_want_write_file(file); 5309 if (ret) 5310 return ret; 5311 5312 trans = btrfs_start_transaction(root, 0); 5313 if (IS_ERR(trans)) { 5314 ret = PTR_ERR(trans); 5315 goto out_unlock; 5316 } 5317 5318 spin_lock(&fs_info->super_lock); 5319 strcpy(super_block->label, label); 5320 spin_unlock(&fs_info->super_lock); 5321 ret = btrfs_commit_transaction(trans); 5322 5323 out_unlock: 5324 mnt_drop_write_file(file); 5325 return ret; 5326 } 5327 5328 #define INIT_FEATURE_FLAGS(suffix) \ 5329 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5330 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5331 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5332 5333 int btrfs_ioctl_get_supported_features(void __user *arg) 5334 { 5335 static const struct btrfs_ioctl_feature_flags features[3] = { 5336 INIT_FEATURE_FLAGS(SUPP), 5337 INIT_FEATURE_FLAGS(SAFE_SET), 5338 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5339 }; 5340 5341 if (copy_to_user(arg, &features, sizeof(features))) 5342 return -EFAULT; 5343 5344 return 0; 5345 } 5346 5347 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5348 { 5349 struct inode *inode = file_inode(file); 5350 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5351 struct btrfs_super_block *super_block = fs_info->super_copy; 5352 struct btrfs_ioctl_feature_flags features; 5353 5354 features.compat_flags = btrfs_super_compat_flags(super_block); 5355 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5356 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5357 5358 if (copy_to_user(arg, &features, sizeof(features))) 5359 return -EFAULT; 5360 5361 return 0; 5362 } 5363 5364 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5365 enum btrfs_feature_set set, 5366 u64 change_mask, u64 flags, u64 supported_flags, 5367 u64 safe_set, u64 safe_clear) 5368 { 5369 const char *type = btrfs_feature_set_names[set]; 5370 char *names; 5371 u64 disallowed, unsupported; 5372 u64 set_mask = flags & change_mask; 5373 u64 clear_mask = ~flags & change_mask; 5374 5375 unsupported = set_mask & ~supported_flags; 5376 if (unsupported) { 5377 names = btrfs_printable_features(set, unsupported); 5378 if (names) { 5379 btrfs_warn(fs_info, 5380 "this kernel does not support the %s feature bit%s", 5381 names, strchr(names, ',') ? "s" : ""); 5382 kfree(names); 5383 } else 5384 btrfs_warn(fs_info, 5385 "this kernel does not support %s bits 0x%llx", 5386 type, unsupported); 5387 return -EOPNOTSUPP; 5388 } 5389 5390 disallowed = set_mask & ~safe_set; 5391 if (disallowed) { 5392 names = btrfs_printable_features(set, disallowed); 5393 if (names) { 5394 btrfs_warn(fs_info, 5395 "can't set the %s feature bit%s while mounted", 5396 names, strchr(names, ',') ? "s" : ""); 5397 kfree(names); 5398 } else 5399 btrfs_warn(fs_info, 5400 "can't set %s bits 0x%llx while mounted", 5401 type, disallowed); 5402 return -EPERM; 5403 } 5404 5405 disallowed = clear_mask & ~safe_clear; 5406 if (disallowed) { 5407 names = btrfs_printable_features(set, disallowed); 5408 if (names) { 5409 btrfs_warn(fs_info, 5410 "can't clear the %s feature bit%s while mounted", 5411 names, strchr(names, ',') ? "s" : ""); 5412 kfree(names); 5413 } else 5414 btrfs_warn(fs_info, 5415 "can't clear %s bits 0x%llx while mounted", 5416 type, disallowed); 5417 return -EPERM; 5418 } 5419 5420 return 0; 5421 } 5422 5423 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5424 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5425 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5426 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5427 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5428 5429 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5430 { 5431 struct inode *inode = file_inode(file); 5432 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5433 struct btrfs_root *root = BTRFS_I(inode)->root; 5434 struct btrfs_super_block *super_block = fs_info->super_copy; 5435 struct btrfs_ioctl_feature_flags flags[2]; 5436 struct btrfs_trans_handle *trans; 5437 u64 newflags; 5438 int ret; 5439 5440 if (!capable(CAP_SYS_ADMIN)) 5441 return -EPERM; 5442 5443 if (copy_from_user(flags, arg, sizeof(flags))) 5444 return -EFAULT; 5445 5446 /* Nothing to do */ 5447 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5448 !flags[0].incompat_flags) 5449 return 0; 5450 5451 ret = check_feature(fs_info, flags[0].compat_flags, 5452 flags[1].compat_flags, COMPAT); 5453 if (ret) 5454 return ret; 5455 5456 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5457 flags[1].compat_ro_flags, COMPAT_RO); 5458 if (ret) 5459 return ret; 5460 5461 ret = check_feature(fs_info, flags[0].incompat_flags, 5462 flags[1].incompat_flags, INCOMPAT); 5463 if (ret) 5464 return ret; 5465 5466 ret = mnt_want_write_file(file); 5467 if (ret) 5468 return ret; 5469 5470 trans = btrfs_start_transaction(root, 0); 5471 if (IS_ERR(trans)) { 5472 ret = PTR_ERR(trans); 5473 goto out_drop_write; 5474 } 5475 5476 spin_lock(&fs_info->super_lock); 5477 newflags = btrfs_super_compat_flags(super_block); 5478 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5479 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5480 btrfs_set_super_compat_flags(super_block, newflags); 5481 5482 newflags = btrfs_super_compat_ro_flags(super_block); 5483 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5484 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5485 btrfs_set_super_compat_ro_flags(super_block, newflags); 5486 5487 newflags = btrfs_super_incompat_flags(super_block); 5488 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5489 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5490 btrfs_set_super_incompat_flags(super_block, newflags); 5491 spin_unlock(&fs_info->super_lock); 5492 5493 ret = btrfs_commit_transaction(trans); 5494 out_drop_write: 5495 mnt_drop_write_file(file); 5496 5497 return ret; 5498 } 5499 5500 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 5501 { 5502 struct btrfs_ioctl_send_args *arg; 5503 int ret; 5504 5505 if (compat) { 5506 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5507 struct btrfs_ioctl_send_args_32 args32; 5508 5509 ret = copy_from_user(&args32, argp, sizeof(args32)); 5510 if (ret) 5511 return -EFAULT; 5512 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5513 if (!arg) 5514 return -ENOMEM; 5515 arg->send_fd = args32.send_fd; 5516 arg->clone_sources_count = args32.clone_sources_count; 5517 arg->clone_sources = compat_ptr(args32.clone_sources); 5518 arg->parent_root = args32.parent_root; 5519 arg->flags = args32.flags; 5520 memcpy(arg->reserved, args32.reserved, 5521 sizeof(args32.reserved)); 5522 #else 5523 return -ENOTTY; 5524 #endif 5525 } else { 5526 arg = memdup_user(argp, sizeof(*arg)); 5527 if (IS_ERR(arg)) 5528 return PTR_ERR(arg); 5529 } 5530 ret = btrfs_ioctl_send(file, arg); 5531 kfree(arg); 5532 return ret; 5533 } 5534 5535 long btrfs_ioctl(struct file *file, unsigned int 5536 cmd, unsigned long arg) 5537 { 5538 struct inode *inode = file_inode(file); 5539 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5540 struct btrfs_root *root = BTRFS_I(inode)->root; 5541 void __user *argp = (void __user *)arg; 5542 5543 switch (cmd) { 5544 case FS_IOC_GETFLAGS: 5545 return btrfs_ioctl_getflags(file, argp); 5546 case FS_IOC_SETFLAGS: 5547 return btrfs_ioctl_setflags(file, argp); 5548 case FS_IOC_GETVERSION: 5549 return btrfs_ioctl_getversion(file, argp); 5550 case FITRIM: 5551 return btrfs_ioctl_fitrim(file, argp); 5552 case BTRFS_IOC_SNAP_CREATE: 5553 return btrfs_ioctl_snap_create(file, argp, 0); 5554 case BTRFS_IOC_SNAP_CREATE_V2: 5555 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5556 case BTRFS_IOC_SUBVOL_CREATE: 5557 return btrfs_ioctl_snap_create(file, argp, 1); 5558 case BTRFS_IOC_SUBVOL_CREATE_V2: 5559 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5560 case BTRFS_IOC_SNAP_DESTROY: 5561 return btrfs_ioctl_snap_destroy(file, argp); 5562 case BTRFS_IOC_SUBVOL_GETFLAGS: 5563 return btrfs_ioctl_subvol_getflags(file, argp); 5564 case BTRFS_IOC_SUBVOL_SETFLAGS: 5565 return btrfs_ioctl_subvol_setflags(file, argp); 5566 case BTRFS_IOC_DEFAULT_SUBVOL: 5567 return btrfs_ioctl_default_subvol(file, argp); 5568 case BTRFS_IOC_DEFRAG: 5569 return btrfs_ioctl_defrag(file, NULL); 5570 case BTRFS_IOC_DEFRAG_RANGE: 5571 return btrfs_ioctl_defrag(file, argp); 5572 case BTRFS_IOC_RESIZE: 5573 return btrfs_ioctl_resize(file, argp); 5574 case BTRFS_IOC_ADD_DEV: 5575 return btrfs_ioctl_add_dev(fs_info, argp); 5576 case BTRFS_IOC_RM_DEV: 5577 return btrfs_ioctl_rm_dev(file, argp); 5578 case BTRFS_IOC_RM_DEV_V2: 5579 return btrfs_ioctl_rm_dev_v2(file, argp); 5580 case BTRFS_IOC_FS_INFO: 5581 return btrfs_ioctl_fs_info(fs_info, argp); 5582 case BTRFS_IOC_DEV_INFO: 5583 return btrfs_ioctl_dev_info(fs_info, argp); 5584 case BTRFS_IOC_BALANCE: 5585 return btrfs_ioctl_balance(file, NULL); 5586 case BTRFS_IOC_TREE_SEARCH: 5587 return btrfs_ioctl_tree_search(file, argp); 5588 case BTRFS_IOC_TREE_SEARCH_V2: 5589 return btrfs_ioctl_tree_search_v2(file, argp); 5590 case BTRFS_IOC_INO_LOOKUP: 5591 return btrfs_ioctl_ino_lookup(file, argp); 5592 case BTRFS_IOC_INO_PATHS: 5593 return btrfs_ioctl_ino_to_path(root, argp); 5594 case BTRFS_IOC_LOGICAL_INO: 5595 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5596 case BTRFS_IOC_LOGICAL_INO_V2: 5597 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5598 case BTRFS_IOC_SPACE_INFO: 5599 return btrfs_ioctl_space_info(fs_info, argp); 5600 case BTRFS_IOC_SYNC: { 5601 int ret; 5602 5603 ret = btrfs_start_delalloc_roots(fs_info, -1); 5604 if (ret) 5605 return ret; 5606 ret = btrfs_sync_fs(inode->i_sb, 1); 5607 /* 5608 * The transaction thread may want to do more work, 5609 * namely it pokes the cleaner kthread that will start 5610 * processing uncleaned subvols. 5611 */ 5612 wake_up_process(fs_info->transaction_kthread); 5613 return ret; 5614 } 5615 case BTRFS_IOC_START_SYNC: 5616 return btrfs_ioctl_start_sync(root, argp); 5617 case BTRFS_IOC_WAIT_SYNC: 5618 return btrfs_ioctl_wait_sync(fs_info, argp); 5619 case BTRFS_IOC_SCRUB: 5620 return btrfs_ioctl_scrub(file, argp); 5621 case BTRFS_IOC_SCRUB_CANCEL: 5622 return btrfs_ioctl_scrub_cancel(fs_info); 5623 case BTRFS_IOC_SCRUB_PROGRESS: 5624 return btrfs_ioctl_scrub_progress(fs_info, argp); 5625 case BTRFS_IOC_BALANCE_V2: 5626 return btrfs_ioctl_balance(file, argp); 5627 case BTRFS_IOC_BALANCE_CTL: 5628 return btrfs_ioctl_balance_ctl(fs_info, arg); 5629 case BTRFS_IOC_BALANCE_PROGRESS: 5630 return btrfs_ioctl_balance_progress(fs_info, argp); 5631 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5632 return btrfs_ioctl_set_received_subvol(file, argp); 5633 #ifdef CONFIG_64BIT 5634 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5635 return btrfs_ioctl_set_received_subvol_32(file, argp); 5636 #endif 5637 case BTRFS_IOC_SEND: 5638 return _btrfs_ioctl_send(file, argp, false); 5639 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5640 case BTRFS_IOC_SEND_32: 5641 return _btrfs_ioctl_send(file, argp, true); 5642 #endif 5643 case BTRFS_IOC_GET_DEV_STATS: 5644 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5645 case BTRFS_IOC_QUOTA_CTL: 5646 return btrfs_ioctl_quota_ctl(file, argp); 5647 case BTRFS_IOC_QGROUP_ASSIGN: 5648 return btrfs_ioctl_qgroup_assign(file, argp); 5649 case BTRFS_IOC_QGROUP_CREATE: 5650 return btrfs_ioctl_qgroup_create(file, argp); 5651 case BTRFS_IOC_QGROUP_LIMIT: 5652 return btrfs_ioctl_qgroup_limit(file, argp); 5653 case BTRFS_IOC_QUOTA_RESCAN: 5654 return btrfs_ioctl_quota_rescan(file, argp); 5655 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5656 return btrfs_ioctl_quota_rescan_status(file, argp); 5657 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5658 return btrfs_ioctl_quota_rescan_wait(file, argp); 5659 case BTRFS_IOC_DEV_REPLACE: 5660 return btrfs_ioctl_dev_replace(fs_info, argp); 5661 case BTRFS_IOC_GET_FSLABEL: 5662 return btrfs_ioctl_get_fslabel(file, argp); 5663 case BTRFS_IOC_SET_FSLABEL: 5664 return btrfs_ioctl_set_fslabel(file, argp); 5665 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5666 return btrfs_ioctl_get_supported_features(argp); 5667 case BTRFS_IOC_GET_FEATURES: 5668 return btrfs_ioctl_get_features(file, argp); 5669 case BTRFS_IOC_SET_FEATURES: 5670 return btrfs_ioctl_set_features(file, argp); 5671 case FS_IOC_FSGETXATTR: 5672 return btrfs_ioctl_fsgetxattr(file, argp); 5673 case FS_IOC_FSSETXATTR: 5674 return btrfs_ioctl_fssetxattr(file, argp); 5675 case BTRFS_IOC_GET_SUBVOL_INFO: 5676 return btrfs_ioctl_get_subvol_info(file, argp); 5677 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5678 return btrfs_ioctl_get_subvol_rootref(file, argp); 5679 case BTRFS_IOC_INO_LOOKUP_USER: 5680 return btrfs_ioctl_ino_lookup_user(file, argp); 5681 } 5682 5683 return -ENOTTY; 5684 } 5685 5686 #ifdef CONFIG_COMPAT 5687 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5688 { 5689 /* 5690 * These all access 32-bit values anyway so no further 5691 * handling is necessary. 5692 */ 5693 switch (cmd) { 5694 case FS_IOC32_GETFLAGS: 5695 cmd = FS_IOC_GETFLAGS; 5696 break; 5697 case FS_IOC32_SETFLAGS: 5698 cmd = FS_IOC_SETFLAGS; 5699 break; 5700 case FS_IOC32_GETVERSION: 5701 cmd = FS_IOC_GETVERSION; 5702 break; 5703 } 5704 5705 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5706 } 5707 #endif 5708