1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "export.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "volumes.h" 39 #include "locking.h" 40 #include "backref.h" 41 #include "rcu-string.h" 42 #include "send.h" 43 #include "dev-replace.h" 44 #include "props.h" 45 #include "sysfs.h" 46 #include "qgroup.h" 47 #include "tree-log.h" 48 #include "compression.h" 49 #include "space-info.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "subpage.h" 53 #include "fs.h" 54 #include "accessors.h" 55 #include "extent-tree.h" 56 #include "root-tree.h" 57 #include "defrag.h" 58 #include "dir-item.h" 59 #include "uuid-tree.h" 60 #include "ioctl.h" 61 #include "file.h" 62 #include "scrub.h" 63 #include "super.h" 64 65 #ifdef CONFIG_64BIT 66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 67 * structures are incorrect, as the timespec structure from userspace 68 * is 4 bytes too small. We define these alternatives here to teach 69 * the kernel about the 32-bit struct packing. 70 */ 71 struct btrfs_ioctl_timespec_32 { 72 __u64 sec; 73 __u32 nsec; 74 } __attribute__ ((__packed__)); 75 76 struct btrfs_ioctl_received_subvol_args_32 { 77 char uuid[BTRFS_UUID_SIZE]; /* in */ 78 __u64 stransid; /* in */ 79 __u64 rtransid; /* out */ 80 struct btrfs_ioctl_timespec_32 stime; /* in */ 81 struct btrfs_ioctl_timespec_32 rtime; /* out */ 82 __u64 flags; /* in */ 83 __u64 reserved[16]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 87 struct btrfs_ioctl_received_subvol_args_32) 88 #endif 89 90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 91 struct btrfs_ioctl_send_args_32 { 92 __s64 send_fd; /* in */ 93 __u64 clone_sources_count; /* in */ 94 compat_uptr_t clone_sources; /* in */ 95 __u64 parent_root; /* in */ 96 __u64 flags; /* in */ 97 __u32 version; /* in */ 98 __u8 reserved[28]; /* in */ 99 } __attribute__ ((__packed__)); 100 101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 102 struct btrfs_ioctl_send_args_32) 103 104 struct btrfs_ioctl_encoded_io_args_32 { 105 compat_uptr_t iov; 106 compat_ulong_t iovcnt; 107 __s64 offset; 108 __u64 flags; 109 __u64 len; 110 __u64 unencoded_len; 111 __u64 unencoded_offset; 112 __u32 compression; 113 __u32 encryption; 114 __u8 reserved[64]; 115 }; 116 117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 118 struct btrfs_ioctl_encoded_io_args_32) 119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 120 struct btrfs_ioctl_encoded_io_args_32) 121 #endif 122 123 /* Mask out flags that are inappropriate for the given type of inode. */ 124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 125 unsigned int flags) 126 { 127 if (S_ISDIR(inode->i_mode)) 128 return flags; 129 else if (S_ISREG(inode->i_mode)) 130 return flags & ~FS_DIRSYNC_FL; 131 else 132 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 133 } 134 135 /* 136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 137 * ioctl. 138 */ 139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 140 { 141 unsigned int iflags = 0; 142 u32 flags = binode->flags; 143 u32 ro_flags = binode->ro_flags; 144 145 if (flags & BTRFS_INODE_SYNC) 146 iflags |= FS_SYNC_FL; 147 if (flags & BTRFS_INODE_IMMUTABLE) 148 iflags |= FS_IMMUTABLE_FL; 149 if (flags & BTRFS_INODE_APPEND) 150 iflags |= FS_APPEND_FL; 151 if (flags & BTRFS_INODE_NODUMP) 152 iflags |= FS_NODUMP_FL; 153 if (flags & BTRFS_INODE_NOATIME) 154 iflags |= FS_NOATIME_FL; 155 if (flags & BTRFS_INODE_DIRSYNC) 156 iflags |= FS_DIRSYNC_FL; 157 if (flags & BTRFS_INODE_NODATACOW) 158 iflags |= FS_NOCOW_FL; 159 if (ro_flags & BTRFS_INODE_RO_VERITY) 160 iflags |= FS_VERITY_FL; 161 162 if (flags & BTRFS_INODE_NOCOMPRESS) 163 iflags |= FS_NOCOMP_FL; 164 else if (flags & BTRFS_INODE_COMPRESS) 165 iflags |= FS_COMPR_FL; 166 167 return iflags; 168 } 169 170 /* 171 * Update inode->i_flags based on the btrfs internal flags. 172 */ 173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 174 { 175 struct btrfs_inode *binode = BTRFS_I(inode); 176 unsigned int new_fl = 0; 177 178 if (binode->flags & BTRFS_INODE_SYNC) 179 new_fl |= S_SYNC; 180 if (binode->flags & BTRFS_INODE_IMMUTABLE) 181 new_fl |= S_IMMUTABLE; 182 if (binode->flags & BTRFS_INODE_APPEND) 183 new_fl |= S_APPEND; 184 if (binode->flags & BTRFS_INODE_NOATIME) 185 new_fl |= S_NOATIME; 186 if (binode->flags & BTRFS_INODE_DIRSYNC) 187 new_fl |= S_DIRSYNC; 188 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 189 new_fl |= S_VERITY; 190 191 set_mask_bits(&inode->i_flags, 192 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 193 S_VERITY, new_fl); 194 } 195 196 /* 197 * Check if @flags are a supported and valid set of FS_*_FL flags and that 198 * the old and new flags are not conflicting 199 */ 200 static int check_fsflags(unsigned int old_flags, unsigned int flags) 201 { 202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 203 FS_NOATIME_FL | FS_NODUMP_FL | \ 204 FS_SYNC_FL | FS_DIRSYNC_FL | \ 205 FS_NOCOMP_FL | FS_COMPR_FL | 206 FS_NOCOW_FL)) 207 return -EOPNOTSUPP; 208 209 /* COMPR and NOCOMP on new/old are valid */ 210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 211 return -EINVAL; 212 213 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 214 return -EINVAL; 215 216 /* NOCOW and compression options are mutually exclusive */ 217 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 218 return -EINVAL; 219 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 220 return -EINVAL; 221 222 return 0; 223 } 224 225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 226 unsigned int flags) 227 { 228 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 229 return -EPERM; 230 231 return 0; 232 } 233 234 /* 235 * Set flags/xflags from the internal inode flags. The remaining items of 236 * fsxattr are zeroed. 237 */ 238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 239 { 240 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 241 242 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 243 return 0; 244 } 245 246 int btrfs_fileattr_set(struct mnt_idmap *idmap, 247 struct dentry *dentry, struct fileattr *fa) 248 { 249 struct inode *inode = d_inode(dentry); 250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 251 struct btrfs_inode *binode = BTRFS_I(inode); 252 struct btrfs_root *root = binode->root; 253 struct btrfs_trans_handle *trans; 254 unsigned int fsflags, old_fsflags; 255 int ret; 256 const char *comp = NULL; 257 u32 binode_flags; 258 259 if (btrfs_root_readonly(root)) 260 return -EROFS; 261 262 if (fileattr_has_fsx(fa)) 263 return -EOPNOTSUPP; 264 265 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 266 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 267 ret = check_fsflags(old_fsflags, fsflags); 268 if (ret) 269 return ret; 270 271 ret = check_fsflags_compatible(fs_info, fsflags); 272 if (ret) 273 return ret; 274 275 binode_flags = binode->flags; 276 if (fsflags & FS_SYNC_FL) 277 binode_flags |= BTRFS_INODE_SYNC; 278 else 279 binode_flags &= ~BTRFS_INODE_SYNC; 280 if (fsflags & FS_IMMUTABLE_FL) 281 binode_flags |= BTRFS_INODE_IMMUTABLE; 282 else 283 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 284 if (fsflags & FS_APPEND_FL) 285 binode_flags |= BTRFS_INODE_APPEND; 286 else 287 binode_flags &= ~BTRFS_INODE_APPEND; 288 if (fsflags & FS_NODUMP_FL) 289 binode_flags |= BTRFS_INODE_NODUMP; 290 else 291 binode_flags &= ~BTRFS_INODE_NODUMP; 292 if (fsflags & FS_NOATIME_FL) 293 binode_flags |= BTRFS_INODE_NOATIME; 294 else 295 binode_flags &= ~BTRFS_INODE_NOATIME; 296 297 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 298 if (!fa->flags_valid) { 299 /* 1 item for the inode */ 300 trans = btrfs_start_transaction(root, 1); 301 if (IS_ERR(trans)) 302 return PTR_ERR(trans); 303 goto update_flags; 304 } 305 306 if (fsflags & FS_DIRSYNC_FL) 307 binode_flags |= BTRFS_INODE_DIRSYNC; 308 else 309 binode_flags &= ~BTRFS_INODE_DIRSYNC; 310 if (fsflags & FS_NOCOW_FL) { 311 if (S_ISREG(inode->i_mode)) { 312 /* 313 * It's safe to turn csums off here, no extents exist. 314 * Otherwise we want the flag to reflect the real COW 315 * status of the file and will not set it. 316 */ 317 if (inode->i_size == 0) 318 binode_flags |= BTRFS_INODE_NODATACOW | 319 BTRFS_INODE_NODATASUM; 320 } else { 321 binode_flags |= BTRFS_INODE_NODATACOW; 322 } 323 } else { 324 /* 325 * Revert back under same assumptions as above 326 */ 327 if (S_ISREG(inode->i_mode)) { 328 if (inode->i_size == 0) 329 binode_flags &= ~(BTRFS_INODE_NODATACOW | 330 BTRFS_INODE_NODATASUM); 331 } else { 332 binode_flags &= ~BTRFS_INODE_NODATACOW; 333 } 334 } 335 336 /* 337 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 338 * flag may be changed automatically if compression code won't make 339 * things smaller. 340 */ 341 if (fsflags & FS_NOCOMP_FL) { 342 binode_flags &= ~BTRFS_INODE_COMPRESS; 343 binode_flags |= BTRFS_INODE_NOCOMPRESS; 344 } else if (fsflags & FS_COMPR_FL) { 345 346 if (IS_SWAPFILE(inode)) 347 return -ETXTBSY; 348 349 binode_flags |= BTRFS_INODE_COMPRESS; 350 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 351 352 comp = btrfs_compress_type2str(fs_info->compress_type); 353 if (!comp || comp[0] == 0) 354 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 355 } else { 356 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 357 } 358 359 /* 360 * 1 for inode item 361 * 2 for properties 362 */ 363 trans = btrfs_start_transaction(root, 3); 364 if (IS_ERR(trans)) 365 return PTR_ERR(trans); 366 367 if (comp) { 368 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 369 strlen(comp), 0); 370 if (ret) { 371 btrfs_abort_transaction(trans, ret); 372 goto out_end_trans; 373 } 374 } else { 375 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 376 0, 0); 377 if (ret && ret != -ENODATA) { 378 btrfs_abort_transaction(trans, ret); 379 goto out_end_trans; 380 } 381 } 382 383 update_flags: 384 binode->flags = binode_flags; 385 btrfs_sync_inode_flags_to_i_flags(inode); 386 inode_inc_iversion(inode); 387 inode_set_ctime_current(inode); 388 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 389 390 out_end_trans: 391 btrfs_end_transaction(trans); 392 return ret; 393 } 394 395 /* 396 * Start exclusive operation @type, return true on success 397 */ 398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 399 enum btrfs_exclusive_operation type) 400 { 401 bool ret = false; 402 403 spin_lock(&fs_info->super_lock); 404 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 405 fs_info->exclusive_operation = type; 406 ret = true; 407 } 408 spin_unlock(&fs_info->super_lock); 409 410 return ret; 411 } 412 413 /* 414 * Conditionally allow to enter the exclusive operation in case it's compatible 415 * with the running one. This must be paired with btrfs_exclop_start_unlock and 416 * btrfs_exclop_finish. 417 * 418 * Compatibility: 419 * - the same type is already running 420 * - when trying to add a device and balance has been paused 421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 422 * must check the condition first that would allow none -> @type 423 */ 424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 425 enum btrfs_exclusive_operation type) 426 { 427 spin_lock(&fs_info->super_lock); 428 if (fs_info->exclusive_operation == type || 429 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 430 type == BTRFS_EXCLOP_DEV_ADD)) 431 return true; 432 433 spin_unlock(&fs_info->super_lock); 434 return false; 435 } 436 437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 438 { 439 spin_unlock(&fs_info->super_lock); 440 } 441 442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 443 { 444 spin_lock(&fs_info->super_lock); 445 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 446 spin_unlock(&fs_info->super_lock); 447 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 448 } 449 450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 451 enum btrfs_exclusive_operation op) 452 { 453 switch (op) { 454 case BTRFS_EXCLOP_BALANCE_PAUSED: 455 spin_lock(&fs_info->super_lock); 456 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 457 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || 458 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE || 459 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 460 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 461 spin_unlock(&fs_info->super_lock); 462 break; 463 case BTRFS_EXCLOP_BALANCE: 464 spin_lock(&fs_info->super_lock); 465 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 466 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 467 spin_unlock(&fs_info->super_lock); 468 break; 469 default: 470 btrfs_warn(fs_info, 471 "invalid exclop balance operation %d requested", op); 472 } 473 } 474 475 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 476 { 477 return put_user(inode->i_generation, arg); 478 } 479 480 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 481 void __user *arg) 482 { 483 struct btrfs_device *device; 484 struct fstrim_range range; 485 u64 minlen = ULLONG_MAX; 486 u64 num_devices = 0; 487 int ret; 488 489 if (!capable(CAP_SYS_ADMIN)) 490 return -EPERM; 491 492 /* 493 * btrfs_trim_block_group() depends on space cache, which is not 494 * available in zoned filesystem. So, disallow fitrim on a zoned 495 * filesystem for now. 496 */ 497 if (btrfs_is_zoned(fs_info)) 498 return -EOPNOTSUPP; 499 500 /* 501 * If the fs is mounted with nologreplay, which requires it to be 502 * mounted in RO mode as well, we can not allow discard on free space 503 * inside block groups, because log trees refer to extents that are not 504 * pinned in a block group's free space cache (pinning the extents is 505 * precisely the first phase of replaying a log tree). 506 */ 507 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 508 return -EROFS; 509 510 rcu_read_lock(); 511 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 512 dev_list) { 513 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 514 continue; 515 num_devices++; 516 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 517 minlen); 518 } 519 rcu_read_unlock(); 520 521 if (!num_devices) 522 return -EOPNOTSUPP; 523 if (copy_from_user(&range, arg, sizeof(range))) 524 return -EFAULT; 525 526 /* 527 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 528 * block group is in the logical address space, which can be any 529 * sectorsize aligned bytenr in the range [0, U64_MAX]. 530 */ 531 if (range.len < fs_info->sectorsize) 532 return -EINVAL; 533 534 range.minlen = max(range.minlen, minlen); 535 ret = btrfs_trim_fs(fs_info, &range); 536 537 if (copy_to_user(arg, &range, sizeof(range))) 538 return -EFAULT; 539 540 return ret; 541 } 542 543 int __pure btrfs_is_empty_uuid(u8 *uuid) 544 { 545 int i; 546 547 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 548 if (uuid[i]) 549 return 0; 550 } 551 return 1; 552 } 553 554 /* 555 * Calculate the number of transaction items to reserve for creating a subvolume 556 * or snapshot, not including the inode, directory entries, or parent directory. 557 */ 558 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) 559 { 560 /* 561 * 1 to add root block 562 * 1 to add root item 563 * 1 to add root ref 564 * 1 to add root backref 565 * 1 to add UUID item 566 * 1 to add qgroup info 567 * 1 to add qgroup limit 568 * 569 * Ideally the last two would only be accounted if qgroups are enabled, 570 * but that can change between now and the time we would insert them. 571 */ 572 unsigned int num_items = 7; 573 574 if (inherit) { 575 /* 2 to add qgroup relations for each inherited qgroup */ 576 num_items += 2 * inherit->num_qgroups; 577 } 578 return num_items; 579 } 580 581 static noinline int create_subvol(struct mnt_idmap *idmap, 582 struct inode *dir, struct dentry *dentry, 583 struct btrfs_qgroup_inherit *inherit) 584 { 585 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 586 struct btrfs_trans_handle *trans; 587 struct btrfs_key key; 588 struct btrfs_root_item *root_item; 589 struct btrfs_inode_item *inode_item; 590 struct extent_buffer *leaf; 591 struct btrfs_root *root = BTRFS_I(dir)->root; 592 struct btrfs_root *new_root; 593 struct btrfs_block_rsv block_rsv; 594 struct timespec64 cur_time = current_time(dir); 595 struct btrfs_new_inode_args new_inode_args = { 596 .dir = dir, 597 .dentry = dentry, 598 .subvol = true, 599 }; 600 unsigned int trans_num_items; 601 int ret; 602 dev_t anon_dev; 603 u64 objectid; 604 u64 qgroup_reserved = 0; 605 606 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 607 if (!root_item) 608 return -ENOMEM; 609 610 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 611 if (ret) 612 goto out_root_item; 613 614 /* 615 * Don't create subvolume whose level is not zero. Or qgroup will be 616 * screwed up since it assumes subvolume qgroup's level to be 0. 617 */ 618 if (btrfs_qgroup_level(objectid)) { 619 ret = -ENOSPC; 620 goto out_root_item; 621 } 622 623 ret = get_anon_bdev(&anon_dev); 624 if (ret < 0) 625 goto out_root_item; 626 627 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir); 628 if (!new_inode_args.inode) { 629 ret = -ENOMEM; 630 goto out_anon_dev; 631 } 632 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 633 if (ret) 634 goto out_inode; 635 trans_num_items += create_subvol_num_items(inherit); 636 637 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 638 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 639 trans_num_items, false); 640 if (ret) 641 goto out_new_inode_args; 642 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 643 644 trans = btrfs_start_transaction(root, 0); 645 if (IS_ERR(trans)) { 646 ret = PTR_ERR(trans); 647 goto out_release_rsv; 648 } 649 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root); 650 if (ret) 651 goto out; 652 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 653 qgroup_reserved = 0; 654 trans->block_rsv = &block_rsv; 655 trans->bytes_reserved = block_rsv.size; 656 /* Tree log can't currently deal with an inode which is a new root. */ 657 btrfs_set_log_full_commit(trans); 658 659 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 660 if (ret) 661 goto out; 662 663 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 664 BTRFS_NESTING_NORMAL); 665 if (IS_ERR(leaf)) { 666 ret = PTR_ERR(leaf); 667 goto out; 668 } 669 670 btrfs_mark_buffer_dirty(trans, leaf); 671 672 inode_item = &root_item->inode; 673 btrfs_set_stack_inode_generation(inode_item, 1); 674 btrfs_set_stack_inode_size(inode_item, 3); 675 btrfs_set_stack_inode_nlink(inode_item, 1); 676 btrfs_set_stack_inode_nbytes(inode_item, 677 fs_info->nodesize); 678 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 679 680 btrfs_set_root_flags(root_item, 0); 681 btrfs_set_root_limit(root_item, 0); 682 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 683 684 btrfs_set_root_bytenr(root_item, leaf->start); 685 btrfs_set_root_generation(root_item, trans->transid); 686 btrfs_set_root_level(root_item, 0); 687 btrfs_set_root_refs(root_item, 1); 688 btrfs_set_root_used(root_item, leaf->len); 689 btrfs_set_root_last_snapshot(root_item, 0); 690 691 btrfs_set_root_generation_v2(root_item, 692 btrfs_root_generation(root_item)); 693 generate_random_guid(root_item->uuid); 694 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 695 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 696 root_item->ctime = root_item->otime; 697 btrfs_set_root_ctransid(root_item, trans->transid); 698 btrfs_set_root_otransid(root_item, trans->transid); 699 700 btrfs_tree_unlock(leaf); 701 702 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 703 704 key.objectid = objectid; 705 key.offset = 0; 706 key.type = BTRFS_ROOT_ITEM_KEY; 707 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 708 root_item); 709 if (ret) { 710 /* 711 * Since we don't abort the transaction in this case, free the 712 * tree block so that we don't leak space and leave the 713 * filesystem in an inconsistent state (an extent item in the 714 * extent tree with a backreference for a root that does not 715 * exists). 716 */ 717 btrfs_tree_lock(leaf); 718 btrfs_clear_buffer_dirty(trans, leaf); 719 btrfs_tree_unlock(leaf); 720 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 721 free_extent_buffer(leaf); 722 goto out; 723 } 724 725 free_extent_buffer(leaf); 726 leaf = NULL; 727 728 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev); 729 if (IS_ERR(new_root)) { 730 ret = PTR_ERR(new_root); 731 btrfs_abort_transaction(trans, ret); 732 goto out; 733 } 734 /* anon_dev is owned by new_root now. */ 735 anon_dev = 0; 736 BTRFS_I(new_inode_args.inode)->root = new_root; 737 /* ... and new_root is owned by new_inode_args.inode now. */ 738 739 ret = btrfs_record_root_in_trans(trans, new_root); 740 if (ret) { 741 btrfs_abort_transaction(trans, ret); 742 goto out; 743 } 744 745 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 746 BTRFS_UUID_KEY_SUBVOL, objectid); 747 if (ret) { 748 btrfs_abort_transaction(trans, ret); 749 goto out; 750 } 751 752 ret = btrfs_create_new_inode(trans, &new_inode_args); 753 if (ret) { 754 btrfs_abort_transaction(trans, ret); 755 goto out; 756 } 757 758 d_instantiate_new(dentry, new_inode_args.inode); 759 new_inode_args.inode = NULL; 760 761 out: 762 trans->block_rsv = NULL; 763 trans->bytes_reserved = 0; 764 btrfs_end_transaction(trans); 765 out_release_rsv: 766 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 767 if (qgroup_reserved) 768 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 769 out_new_inode_args: 770 btrfs_new_inode_args_destroy(&new_inode_args); 771 out_inode: 772 iput(new_inode_args.inode); 773 out_anon_dev: 774 if (anon_dev) 775 free_anon_bdev(anon_dev); 776 out_root_item: 777 kfree(root_item); 778 return ret; 779 } 780 781 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 782 struct dentry *dentry, bool readonly, 783 struct btrfs_qgroup_inherit *inherit) 784 { 785 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 786 struct inode *inode; 787 struct btrfs_pending_snapshot *pending_snapshot; 788 unsigned int trans_num_items; 789 struct btrfs_trans_handle *trans; 790 struct btrfs_block_rsv *block_rsv; 791 u64 qgroup_reserved = 0; 792 int ret; 793 794 /* We do not support snapshotting right now. */ 795 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 796 btrfs_warn(fs_info, 797 "extent tree v2 doesn't support snapshotting yet"); 798 return -EOPNOTSUPP; 799 } 800 801 if (btrfs_root_refs(&root->root_item) == 0) 802 return -ENOENT; 803 804 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 805 return -EINVAL; 806 807 if (atomic_read(&root->nr_swapfiles)) { 808 btrfs_warn(fs_info, 809 "cannot snapshot subvolume with active swapfile"); 810 return -ETXTBSY; 811 } 812 813 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 814 if (!pending_snapshot) 815 return -ENOMEM; 816 817 ret = get_anon_bdev(&pending_snapshot->anon_dev); 818 if (ret < 0) 819 goto free_pending; 820 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 821 GFP_KERNEL); 822 pending_snapshot->path = btrfs_alloc_path(); 823 if (!pending_snapshot->root_item || !pending_snapshot->path) { 824 ret = -ENOMEM; 825 goto free_pending; 826 } 827 828 block_rsv = &pending_snapshot->block_rsv; 829 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP); 830 /* 831 * 1 to add dir item 832 * 1 to add dir index 833 * 1 to update parent inode item 834 */ 835 trans_num_items = create_subvol_num_items(inherit) + 3; 836 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv, 837 trans_num_items, false); 838 if (ret) 839 goto free_pending; 840 qgroup_reserved = block_rsv->qgroup_rsv_reserved; 841 842 pending_snapshot->dentry = dentry; 843 pending_snapshot->root = root; 844 pending_snapshot->readonly = readonly; 845 pending_snapshot->dir = dir; 846 pending_snapshot->inherit = inherit; 847 848 trans = btrfs_start_transaction(root, 0); 849 if (IS_ERR(trans)) { 850 ret = PTR_ERR(trans); 851 goto fail; 852 } 853 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root); 854 if (ret) { 855 btrfs_end_transaction(trans); 856 goto fail; 857 } 858 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 859 qgroup_reserved = 0; 860 861 trans->pending_snapshot = pending_snapshot; 862 863 ret = btrfs_commit_transaction(trans); 864 if (ret) 865 goto fail; 866 867 ret = pending_snapshot->error; 868 if (ret) 869 goto fail; 870 871 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 872 if (ret) 873 goto fail; 874 875 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 876 if (IS_ERR(inode)) { 877 ret = PTR_ERR(inode); 878 goto fail; 879 } 880 881 d_instantiate(dentry, inode); 882 ret = 0; 883 pending_snapshot->anon_dev = 0; 884 fail: 885 /* Prevent double freeing of anon_dev */ 886 if (ret && pending_snapshot->snap) 887 pending_snapshot->snap->anon_dev = 0; 888 btrfs_put_root(pending_snapshot->snap); 889 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL); 890 if (qgroup_reserved) 891 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 892 free_pending: 893 if (pending_snapshot->anon_dev) 894 free_anon_bdev(pending_snapshot->anon_dev); 895 kfree(pending_snapshot->root_item); 896 btrfs_free_path(pending_snapshot->path); 897 kfree(pending_snapshot); 898 899 return ret; 900 } 901 902 /* copy of may_delete in fs/namei.c() 903 * Check whether we can remove a link victim from directory dir, check 904 * whether the type of victim is right. 905 * 1. We can't do it if dir is read-only (done in permission()) 906 * 2. We should have write and exec permissions on dir 907 * 3. We can't remove anything from append-only dir 908 * 4. We can't do anything with immutable dir (done in permission()) 909 * 5. If the sticky bit on dir is set we should either 910 * a. be owner of dir, or 911 * b. be owner of victim, or 912 * c. have CAP_FOWNER capability 913 * 6. If the victim is append-only or immutable we can't do anything with 914 * links pointing to it. 915 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 916 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 917 * 9. We can't remove a root or mountpoint. 918 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 919 * nfs_async_unlink(). 920 */ 921 922 static int btrfs_may_delete(struct mnt_idmap *idmap, 923 struct inode *dir, struct dentry *victim, int isdir) 924 { 925 int error; 926 927 if (d_really_is_negative(victim)) 928 return -ENOENT; 929 930 BUG_ON(d_inode(victim->d_parent) != dir); 931 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 932 933 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 934 if (error) 935 return error; 936 if (IS_APPEND(dir)) 937 return -EPERM; 938 if (check_sticky(idmap, dir, d_inode(victim)) || 939 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 940 IS_SWAPFILE(d_inode(victim))) 941 return -EPERM; 942 if (isdir) { 943 if (!d_is_dir(victim)) 944 return -ENOTDIR; 945 if (IS_ROOT(victim)) 946 return -EBUSY; 947 } else if (d_is_dir(victim)) 948 return -EISDIR; 949 if (IS_DEADDIR(dir)) 950 return -ENOENT; 951 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 952 return -EBUSY; 953 return 0; 954 } 955 956 /* copy of may_create in fs/namei.c() */ 957 static inline int btrfs_may_create(struct mnt_idmap *idmap, 958 struct inode *dir, struct dentry *child) 959 { 960 if (d_really_is_positive(child)) 961 return -EEXIST; 962 if (IS_DEADDIR(dir)) 963 return -ENOENT; 964 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 965 return -EOVERFLOW; 966 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 967 } 968 969 /* 970 * Create a new subvolume below @parent. This is largely modeled after 971 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 972 * inside this filesystem so it's quite a bit simpler. 973 */ 974 static noinline int btrfs_mksubvol(const struct path *parent, 975 struct mnt_idmap *idmap, 976 const char *name, int namelen, 977 struct btrfs_root *snap_src, 978 bool readonly, 979 struct btrfs_qgroup_inherit *inherit) 980 { 981 struct inode *dir = d_inode(parent->dentry); 982 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 983 struct dentry *dentry; 984 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen); 985 int error; 986 987 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 988 if (error == -EINTR) 989 return error; 990 991 dentry = lookup_one(idmap, name, parent->dentry, namelen); 992 error = PTR_ERR(dentry); 993 if (IS_ERR(dentry)) 994 goto out_unlock; 995 996 error = btrfs_may_create(idmap, dir, dentry); 997 if (error) 998 goto out_dput; 999 1000 /* 1001 * even if this name doesn't exist, we may get hash collisions. 1002 * check for them now when we can safely fail 1003 */ 1004 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 1005 dir->i_ino, &name_str); 1006 if (error) 1007 goto out_dput; 1008 1009 down_read(&fs_info->subvol_sem); 1010 1011 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 1012 goto out_up_read; 1013 1014 if (snap_src) 1015 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 1016 else 1017 error = create_subvol(idmap, dir, dentry, inherit); 1018 1019 if (!error) 1020 fsnotify_mkdir(dir, dentry); 1021 out_up_read: 1022 up_read(&fs_info->subvol_sem); 1023 out_dput: 1024 dput(dentry); 1025 out_unlock: 1026 btrfs_inode_unlock(BTRFS_I(dir), 0); 1027 return error; 1028 } 1029 1030 static noinline int btrfs_mksnapshot(const struct path *parent, 1031 struct mnt_idmap *idmap, 1032 const char *name, int namelen, 1033 struct btrfs_root *root, 1034 bool readonly, 1035 struct btrfs_qgroup_inherit *inherit) 1036 { 1037 int ret; 1038 bool snapshot_force_cow = false; 1039 1040 /* 1041 * Force new buffered writes to reserve space even when NOCOW is 1042 * possible. This is to avoid later writeback (running dealloc) to 1043 * fallback to COW mode and unexpectedly fail with ENOSPC. 1044 */ 1045 btrfs_drew_read_lock(&root->snapshot_lock); 1046 1047 ret = btrfs_start_delalloc_snapshot(root, false); 1048 if (ret) 1049 goto out; 1050 1051 /* 1052 * All previous writes have started writeback in NOCOW mode, so now 1053 * we force future writes to fallback to COW mode during snapshot 1054 * creation. 1055 */ 1056 atomic_inc(&root->snapshot_force_cow); 1057 snapshot_force_cow = true; 1058 1059 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1060 1061 ret = btrfs_mksubvol(parent, idmap, name, namelen, 1062 root, readonly, inherit); 1063 out: 1064 if (snapshot_force_cow) 1065 atomic_dec(&root->snapshot_force_cow); 1066 btrfs_drew_read_unlock(&root->snapshot_lock); 1067 return ret; 1068 } 1069 1070 /* 1071 * Try to start exclusive operation @type or cancel it if it's running. 1072 * 1073 * Return: 1074 * 0 - normal mode, newly claimed op started 1075 * >0 - normal mode, something else is running, 1076 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1077 * ECANCELED - cancel mode, successful cancel 1078 * ENOTCONN - cancel mode, operation not running anymore 1079 */ 1080 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1081 enum btrfs_exclusive_operation type, bool cancel) 1082 { 1083 if (!cancel) { 1084 /* Start normal op */ 1085 if (!btrfs_exclop_start(fs_info, type)) 1086 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1087 /* Exclusive operation is now claimed */ 1088 return 0; 1089 } 1090 1091 /* Cancel running op */ 1092 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1093 /* 1094 * This blocks any exclop finish from setting it to NONE, so we 1095 * request cancellation. Either it runs and we will wait for it, 1096 * or it has finished and no waiting will happen. 1097 */ 1098 atomic_inc(&fs_info->reloc_cancel_req); 1099 btrfs_exclop_start_unlock(fs_info); 1100 1101 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1102 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1103 TASK_INTERRUPTIBLE); 1104 1105 return -ECANCELED; 1106 } 1107 1108 /* Something else is running or none */ 1109 return -ENOTCONN; 1110 } 1111 1112 static noinline int btrfs_ioctl_resize(struct file *file, 1113 void __user *arg) 1114 { 1115 BTRFS_DEV_LOOKUP_ARGS(args); 1116 struct inode *inode = file_inode(file); 1117 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1118 u64 new_size; 1119 u64 old_size; 1120 u64 devid = 1; 1121 struct btrfs_root *root = BTRFS_I(inode)->root; 1122 struct btrfs_ioctl_vol_args *vol_args; 1123 struct btrfs_trans_handle *trans; 1124 struct btrfs_device *device = NULL; 1125 char *sizestr; 1126 char *retptr; 1127 char *devstr = NULL; 1128 int ret = 0; 1129 int mod = 0; 1130 bool cancel; 1131 1132 if (!capable(CAP_SYS_ADMIN)) 1133 return -EPERM; 1134 1135 ret = mnt_want_write_file(file); 1136 if (ret) 1137 return ret; 1138 1139 /* 1140 * Read the arguments before checking exclusivity to be able to 1141 * distinguish regular resize and cancel 1142 */ 1143 vol_args = memdup_user(arg, sizeof(*vol_args)); 1144 if (IS_ERR(vol_args)) { 1145 ret = PTR_ERR(vol_args); 1146 goto out_drop; 1147 } 1148 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1149 sizestr = vol_args->name; 1150 cancel = (strcmp("cancel", sizestr) == 0); 1151 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1152 if (ret) 1153 goto out_free; 1154 /* Exclusive operation is now claimed */ 1155 1156 devstr = strchr(sizestr, ':'); 1157 if (devstr) { 1158 sizestr = devstr + 1; 1159 *devstr = '\0'; 1160 devstr = vol_args->name; 1161 ret = kstrtoull(devstr, 10, &devid); 1162 if (ret) 1163 goto out_finish; 1164 if (!devid) { 1165 ret = -EINVAL; 1166 goto out_finish; 1167 } 1168 btrfs_info(fs_info, "resizing devid %llu", devid); 1169 } 1170 1171 args.devid = devid; 1172 device = btrfs_find_device(fs_info->fs_devices, &args); 1173 if (!device) { 1174 btrfs_info(fs_info, "resizer unable to find device %llu", 1175 devid); 1176 ret = -ENODEV; 1177 goto out_finish; 1178 } 1179 1180 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1181 btrfs_info(fs_info, 1182 "resizer unable to apply on readonly device %llu", 1183 devid); 1184 ret = -EPERM; 1185 goto out_finish; 1186 } 1187 1188 if (!strcmp(sizestr, "max")) 1189 new_size = bdev_nr_bytes(device->bdev); 1190 else { 1191 if (sizestr[0] == '-') { 1192 mod = -1; 1193 sizestr++; 1194 } else if (sizestr[0] == '+') { 1195 mod = 1; 1196 sizestr++; 1197 } 1198 new_size = memparse(sizestr, &retptr); 1199 if (*retptr != '\0' || new_size == 0) { 1200 ret = -EINVAL; 1201 goto out_finish; 1202 } 1203 } 1204 1205 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1206 ret = -EPERM; 1207 goto out_finish; 1208 } 1209 1210 old_size = btrfs_device_get_total_bytes(device); 1211 1212 if (mod < 0) { 1213 if (new_size > old_size) { 1214 ret = -EINVAL; 1215 goto out_finish; 1216 } 1217 new_size = old_size - new_size; 1218 } else if (mod > 0) { 1219 if (new_size > ULLONG_MAX - old_size) { 1220 ret = -ERANGE; 1221 goto out_finish; 1222 } 1223 new_size = old_size + new_size; 1224 } 1225 1226 if (new_size < SZ_256M) { 1227 ret = -EINVAL; 1228 goto out_finish; 1229 } 1230 if (new_size > bdev_nr_bytes(device->bdev)) { 1231 ret = -EFBIG; 1232 goto out_finish; 1233 } 1234 1235 new_size = round_down(new_size, fs_info->sectorsize); 1236 1237 if (new_size > old_size) { 1238 trans = btrfs_start_transaction(root, 0); 1239 if (IS_ERR(trans)) { 1240 ret = PTR_ERR(trans); 1241 goto out_finish; 1242 } 1243 ret = btrfs_grow_device(trans, device, new_size); 1244 btrfs_commit_transaction(trans); 1245 } else if (new_size < old_size) { 1246 ret = btrfs_shrink_device(device, new_size); 1247 } /* equal, nothing need to do */ 1248 1249 if (ret == 0 && new_size != old_size) 1250 btrfs_info_in_rcu(fs_info, 1251 "resize device %s (devid %llu) from %llu to %llu", 1252 btrfs_dev_name(device), device->devid, 1253 old_size, new_size); 1254 out_finish: 1255 btrfs_exclop_finish(fs_info); 1256 out_free: 1257 kfree(vol_args); 1258 out_drop: 1259 mnt_drop_write_file(file); 1260 return ret; 1261 } 1262 1263 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1264 struct mnt_idmap *idmap, 1265 const char *name, unsigned long fd, int subvol, 1266 bool readonly, 1267 struct btrfs_qgroup_inherit *inherit) 1268 { 1269 int namelen; 1270 int ret = 0; 1271 1272 if (!S_ISDIR(file_inode(file)->i_mode)) 1273 return -ENOTDIR; 1274 1275 ret = mnt_want_write_file(file); 1276 if (ret) 1277 goto out; 1278 1279 namelen = strlen(name); 1280 if (strchr(name, '/')) { 1281 ret = -EINVAL; 1282 goto out_drop_write; 1283 } 1284 1285 if (name[0] == '.' && 1286 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1287 ret = -EEXIST; 1288 goto out_drop_write; 1289 } 1290 1291 if (subvol) { 1292 ret = btrfs_mksubvol(&file->f_path, idmap, name, 1293 namelen, NULL, readonly, inherit); 1294 } else { 1295 struct fd src = fdget(fd); 1296 struct inode *src_inode; 1297 if (!src.file) { 1298 ret = -EINVAL; 1299 goto out_drop_write; 1300 } 1301 1302 src_inode = file_inode(src.file); 1303 if (src_inode->i_sb != file_inode(file)->i_sb) { 1304 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1305 "Snapshot src from another FS"); 1306 ret = -EXDEV; 1307 } else if (!inode_owner_or_capable(idmap, src_inode)) { 1308 /* 1309 * Subvolume creation is not restricted, but snapshots 1310 * are limited to own subvolumes only 1311 */ 1312 ret = -EPERM; 1313 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1314 /* 1315 * Snapshots must be made with the src_inode referring 1316 * to the subvolume inode, otherwise the permission 1317 * checking above is useless because we may have 1318 * permission on a lower directory but not the subvol 1319 * itself. 1320 */ 1321 ret = -EINVAL; 1322 } else { 1323 ret = btrfs_mksnapshot(&file->f_path, idmap, 1324 name, namelen, 1325 BTRFS_I(src_inode)->root, 1326 readonly, inherit); 1327 } 1328 fdput(src); 1329 } 1330 out_drop_write: 1331 mnt_drop_write_file(file); 1332 out: 1333 return ret; 1334 } 1335 1336 static noinline int btrfs_ioctl_snap_create(struct file *file, 1337 void __user *arg, int subvol) 1338 { 1339 struct btrfs_ioctl_vol_args *vol_args; 1340 int ret; 1341 1342 if (!S_ISDIR(file_inode(file)->i_mode)) 1343 return -ENOTDIR; 1344 1345 vol_args = memdup_user(arg, sizeof(*vol_args)); 1346 if (IS_ERR(vol_args)) 1347 return PTR_ERR(vol_args); 1348 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1349 1350 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1351 vol_args->name, vol_args->fd, subvol, 1352 false, NULL); 1353 1354 kfree(vol_args); 1355 return ret; 1356 } 1357 1358 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1359 void __user *arg, int subvol) 1360 { 1361 struct btrfs_ioctl_vol_args_v2 *vol_args; 1362 int ret; 1363 bool readonly = false; 1364 struct btrfs_qgroup_inherit *inherit = NULL; 1365 1366 if (!S_ISDIR(file_inode(file)->i_mode)) 1367 return -ENOTDIR; 1368 1369 vol_args = memdup_user(arg, sizeof(*vol_args)); 1370 if (IS_ERR(vol_args)) 1371 return PTR_ERR(vol_args); 1372 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1373 1374 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1375 ret = -EOPNOTSUPP; 1376 goto free_args; 1377 } 1378 1379 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1380 readonly = true; 1381 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1382 u64 nums; 1383 1384 if (vol_args->size < sizeof(*inherit) || 1385 vol_args->size > PAGE_SIZE) { 1386 ret = -EINVAL; 1387 goto free_args; 1388 } 1389 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1390 if (IS_ERR(inherit)) { 1391 ret = PTR_ERR(inherit); 1392 goto free_args; 1393 } 1394 1395 if (inherit->num_qgroups > PAGE_SIZE || 1396 inherit->num_ref_copies > PAGE_SIZE || 1397 inherit->num_excl_copies > PAGE_SIZE) { 1398 ret = -EINVAL; 1399 goto free_inherit; 1400 } 1401 1402 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1403 2 * inherit->num_excl_copies; 1404 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1405 ret = -EINVAL; 1406 goto free_inherit; 1407 } 1408 } 1409 1410 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1411 vol_args->name, vol_args->fd, subvol, 1412 readonly, inherit); 1413 if (ret) 1414 goto free_inherit; 1415 free_inherit: 1416 kfree(inherit); 1417 free_args: 1418 kfree(vol_args); 1419 return ret; 1420 } 1421 1422 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 1423 void __user *arg) 1424 { 1425 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1426 struct btrfs_root *root = BTRFS_I(inode)->root; 1427 int ret = 0; 1428 u64 flags = 0; 1429 1430 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1431 return -EINVAL; 1432 1433 down_read(&fs_info->subvol_sem); 1434 if (btrfs_root_readonly(root)) 1435 flags |= BTRFS_SUBVOL_RDONLY; 1436 up_read(&fs_info->subvol_sem); 1437 1438 if (copy_to_user(arg, &flags, sizeof(flags))) 1439 ret = -EFAULT; 1440 1441 return ret; 1442 } 1443 1444 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1445 void __user *arg) 1446 { 1447 struct inode *inode = file_inode(file); 1448 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1449 struct btrfs_root *root = BTRFS_I(inode)->root; 1450 struct btrfs_trans_handle *trans; 1451 u64 root_flags; 1452 u64 flags; 1453 int ret = 0; 1454 1455 if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) 1456 return -EPERM; 1457 1458 ret = mnt_want_write_file(file); 1459 if (ret) 1460 goto out; 1461 1462 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1463 ret = -EINVAL; 1464 goto out_drop_write; 1465 } 1466 1467 if (copy_from_user(&flags, arg, sizeof(flags))) { 1468 ret = -EFAULT; 1469 goto out_drop_write; 1470 } 1471 1472 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1473 ret = -EOPNOTSUPP; 1474 goto out_drop_write; 1475 } 1476 1477 down_write(&fs_info->subvol_sem); 1478 1479 /* nothing to do */ 1480 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1481 goto out_drop_sem; 1482 1483 root_flags = btrfs_root_flags(&root->root_item); 1484 if (flags & BTRFS_SUBVOL_RDONLY) { 1485 btrfs_set_root_flags(&root->root_item, 1486 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1487 } else { 1488 /* 1489 * Block RO -> RW transition if this subvolume is involved in 1490 * send 1491 */ 1492 spin_lock(&root->root_item_lock); 1493 if (root->send_in_progress == 0) { 1494 btrfs_set_root_flags(&root->root_item, 1495 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1496 spin_unlock(&root->root_item_lock); 1497 } else { 1498 spin_unlock(&root->root_item_lock); 1499 btrfs_warn(fs_info, 1500 "Attempt to set subvolume %llu read-write during send", 1501 root->root_key.objectid); 1502 ret = -EPERM; 1503 goto out_drop_sem; 1504 } 1505 } 1506 1507 trans = btrfs_start_transaction(root, 1); 1508 if (IS_ERR(trans)) { 1509 ret = PTR_ERR(trans); 1510 goto out_reset; 1511 } 1512 1513 ret = btrfs_update_root(trans, fs_info->tree_root, 1514 &root->root_key, &root->root_item); 1515 if (ret < 0) { 1516 btrfs_end_transaction(trans); 1517 goto out_reset; 1518 } 1519 1520 ret = btrfs_commit_transaction(trans); 1521 1522 out_reset: 1523 if (ret) 1524 btrfs_set_root_flags(&root->root_item, root_flags); 1525 out_drop_sem: 1526 up_write(&fs_info->subvol_sem); 1527 out_drop_write: 1528 mnt_drop_write_file(file); 1529 out: 1530 return ret; 1531 } 1532 1533 static noinline int key_in_sk(struct btrfs_key *key, 1534 struct btrfs_ioctl_search_key *sk) 1535 { 1536 struct btrfs_key test; 1537 int ret; 1538 1539 test.objectid = sk->min_objectid; 1540 test.type = sk->min_type; 1541 test.offset = sk->min_offset; 1542 1543 ret = btrfs_comp_cpu_keys(key, &test); 1544 if (ret < 0) 1545 return 0; 1546 1547 test.objectid = sk->max_objectid; 1548 test.type = sk->max_type; 1549 test.offset = sk->max_offset; 1550 1551 ret = btrfs_comp_cpu_keys(key, &test); 1552 if (ret > 0) 1553 return 0; 1554 return 1; 1555 } 1556 1557 static noinline int copy_to_sk(struct btrfs_path *path, 1558 struct btrfs_key *key, 1559 struct btrfs_ioctl_search_key *sk, 1560 u64 *buf_size, 1561 char __user *ubuf, 1562 unsigned long *sk_offset, 1563 int *num_found) 1564 { 1565 u64 found_transid; 1566 struct extent_buffer *leaf; 1567 struct btrfs_ioctl_search_header sh; 1568 struct btrfs_key test; 1569 unsigned long item_off; 1570 unsigned long item_len; 1571 int nritems; 1572 int i; 1573 int slot; 1574 int ret = 0; 1575 1576 leaf = path->nodes[0]; 1577 slot = path->slots[0]; 1578 nritems = btrfs_header_nritems(leaf); 1579 1580 if (btrfs_header_generation(leaf) > sk->max_transid) { 1581 i = nritems; 1582 goto advance_key; 1583 } 1584 found_transid = btrfs_header_generation(leaf); 1585 1586 for (i = slot; i < nritems; i++) { 1587 item_off = btrfs_item_ptr_offset(leaf, i); 1588 item_len = btrfs_item_size(leaf, i); 1589 1590 btrfs_item_key_to_cpu(leaf, key, i); 1591 if (!key_in_sk(key, sk)) 1592 continue; 1593 1594 if (sizeof(sh) + item_len > *buf_size) { 1595 if (*num_found) { 1596 ret = 1; 1597 goto out; 1598 } 1599 1600 /* 1601 * return one empty item back for v1, which does not 1602 * handle -EOVERFLOW 1603 */ 1604 1605 *buf_size = sizeof(sh) + item_len; 1606 item_len = 0; 1607 ret = -EOVERFLOW; 1608 } 1609 1610 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1611 ret = 1; 1612 goto out; 1613 } 1614 1615 sh.objectid = key->objectid; 1616 sh.offset = key->offset; 1617 sh.type = key->type; 1618 sh.len = item_len; 1619 sh.transid = found_transid; 1620 1621 /* 1622 * Copy search result header. If we fault then loop again so we 1623 * can fault in the pages and -EFAULT there if there's a 1624 * problem. Otherwise we'll fault and then copy the buffer in 1625 * properly this next time through 1626 */ 1627 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 1628 ret = 0; 1629 goto out; 1630 } 1631 1632 *sk_offset += sizeof(sh); 1633 1634 if (item_len) { 1635 char __user *up = ubuf + *sk_offset; 1636 /* 1637 * Copy the item, same behavior as above, but reset the 1638 * * sk_offset so we copy the full thing again. 1639 */ 1640 if (read_extent_buffer_to_user_nofault(leaf, up, 1641 item_off, item_len)) { 1642 ret = 0; 1643 *sk_offset -= sizeof(sh); 1644 goto out; 1645 } 1646 1647 *sk_offset += item_len; 1648 } 1649 (*num_found)++; 1650 1651 if (ret) /* -EOVERFLOW from above */ 1652 goto out; 1653 1654 if (*num_found >= sk->nr_items) { 1655 ret = 1; 1656 goto out; 1657 } 1658 } 1659 advance_key: 1660 ret = 0; 1661 test.objectid = sk->max_objectid; 1662 test.type = sk->max_type; 1663 test.offset = sk->max_offset; 1664 if (btrfs_comp_cpu_keys(key, &test) >= 0) 1665 ret = 1; 1666 else if (key->offset < (u64)-1) 1667 key->offset++; 1668 else if (key->type < (u8)-1) { 1669 key->offset = 0; 1670 key->type++; 1671 } else if (key->objectid < (u64)-1) { 1672 key->offset = 0; 1673 key->type = 0; 1674 key->objectid++; 1675 } else 1676 ret = 1; 1677 out: 1678 /* 1679 * 0: all items from this leaf copied, continue with next 1680 * 1: * more items can be copied, but unused buffer is too small 1681 * * all items were found 1682 * Either way, it will stops the loop which iterates to the next 1683 * leaf 1684 * -EOVERFLOW: item was to large for buffer 1685 * -EFAULT: could not copy extent buffer back to userspace 1686 */ 1687 return ret; 1688 } 1689 1690 static noinline int search_ioctl(struct inode *inode, 1691 struct btrfs_ioctl_search_key *sk, 1692 u64 *buf_size, 1693 char __user *ubuf) 1694 { 1695 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 1696 struct btrfs_root *root; 1697 struct btrfs_key key; 1698 struct btrfs_path *path; 1699 int ret; 1700 int num_found = 0; 1701 unsigned long sk_offset = 0; 1702 1703 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 1704 *buf_size = sizeof(struct btrfs_ioctl_search_header); 1705 return -EOVERFLOW; 1706 } 1707 1708 path = btrfs_alloc_path(); 1709 if (!path) 1710 return -ENOMEM; 1711 1712 if (sk->tree_id == 0) { 1713 /* search the root of the inode that was passed */ 1714 root = btrfs_grab_root(BTRFS_I(inode)->root); 1715 } else { 1716 root = btrfs_get_fs_root(info, sk->tree_id, true); 1717 if (IS_ERR(root)) { 1718 btrfs_free_path(path); 1719 return PTR_ERR(root); 1720 } 1721 } 1722 1723 key.objectid = sk->min_objectid; 1724 key.type = sk->min_type; 1725 key.offset = sk->min_offset; 1726 1727 while (1) { 1728 ret = -EFAULT; 1729 /* 1730 * Ensure that the whole user buffer is faulted in at sub-page 1731 * granularity, otherwise the loop may live-lock. 1732 */ 1733 if (fault_in_subpage_writeable(ubuf + sk_offset, 1734 *buf_size - sk_offset)) 1735 break; 1736 1737 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 1738 if (ret != 0) { 1739 if (ret > 0) 1740 ret = 0; 1741 goto err; 1742 } 1743 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 1744 &sk_offset, &num_found); 1745 btrfs_release_path(path); 1746 if (ret) 1747 break; 1748 1749 } 1750 if (ret > 0) 1751 ret = 0; 1752 err: 1753 sk->nr_items = num_found; 1754 btrfs_put_root(root); 1755 btrfs_free_path(path); 1756 return ret; 1757 } 1758 1759 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 1760 void __user *argp) 1761 { 1762 struct btrfs_ioctl_search_args __user *uargs = argp; 1763 struct btrfs_ioctl_search_key sk; 1764 int ret; 1765 u64 buf_size; 1766 1767 if (!capable(CAP_SYS_ADMIN)) 1768 return -EPERM; 1769 1770 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 1771 return -EFAULT; 1772 1773 buf_size = sizeof(uargs->buf); 1774 1775 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 1776 1777 /* 1778 * In the origin implementation an overflow is handled by returning a 1779 * search header with a len of zero, so reset ret. 1780 */ 1781 if (ret == -EOVERFLOW) 1782 ret = 0; 1783 1784 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 1785 ret = -EFAULT; 1786 return ret; 1787 } 1788 1789 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 1790 void __user *argp) 1791 { 1792 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 1793 struct btrfs_ioctl_search_args_v2 args; 1794 int ret; 1795 u64 buf_size; 1796 const u64 buf_limit = SZ_16M; 1797 1798 if (!capable(CAP_SYS_ADMIN)) 1799 return -EPERM; 1800 1801 /* copy search header and buffer size */ 1802 if (copy_from_user(&args, uarg, sizeof(args))) 1803 return -EFAULT; 1804 1805 buf_size = args.buf_size; 1806 1807 /* limit result size to 16MB */ 1808 if (buf_size > buf_limit) 1809 buf_size = buf_limit; 1810 1811 ret = search_ioctl(inode, &args.key, &buf_size, 1812 (char __user *)(&uarg->buf[0])); 1813 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 1814 ret = -EFAULT; 1815 else if (ret == -EOVERFLOW && 1816 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 1817 ret = -EFAULT; 1818 1819 return ret; 1820 } 1821 1822 /* 1823 * Search INODE_REFs to identify path name of 'dirid' directory 1824 * in a 'tree_id' tree. and sets path name to 'name'. 1825 */ 1826 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1827 u64 tree_id, u64 dirid, char *name) 1828 { 1829 struct btrfs_root *root; 1830 struct btrfs_key key; 1831 char *ptr; 1832 int ret = -1; 1833 int slot; 1834 int len; 1835 int total_len = 0; 1836 struct btrfs_inode_ref *iref; 1837 struct extent_buffer *l; 1838 struct btrfs_path *path; 1839 1840 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1841 name[0]='\0'; 1842 return 0; 1843 } 1844 1845 path = btrfs_alloc_path(); 1846 if (!path) 1847 return -ENOMEM; 1848 1849 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 1850 1851 root = btrfs_get_fs_root(info, tree_id, true); 1852 if (IS_ERR(root)) { 1853 ret = PTR_ERR(root); 1854 root = NULL; 1855 goto out; 1856 } 1857 1858 key.objectid = dirid; 1859 key.type = BTRFS_INODE_REF_KEY; 1860 key.offset = (u64)-1; 1861 1862 while (1) { 1863 ret = btrfs_search_backwards(root, &key, path); 1864 if (ret < 0) 1865 goto out; 1866 else if (ret > 0) { 1867 ret = -ENOENT; 1868 goto out; 1869 } 1870 1871 l = path->nodes[0]; 1872 slot = path->slots[0]; 1873 1874 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1875 len = btrfs_inode_ref_name_len(l, iref); 1876 ptr -= len + 1; 1877 total_len += len + 1; 1878 if (ptr < name) { 1879 ret = -ENAMETOOLONG; 1880 goto out; 1881 } 1882 1883 *(ptr + len) = '/'; 1884 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 1885 1886 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1887 break; 1888 1889 btrfs_release_path(path); 1890 key.objectid = key.offset; 1891 key.offset = (u64)-1; 1892 dirid = key.objectid; 1893 } 1894 memmove(name, ptr, total_len); 1895 name[total_len] = '\0'; 1896 ret = 0; 1897 out: 1898 btrfs_put_root(root); 1899 btrfs_free_path(path); 1900 return ret; 1901 } 1902 1903 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap, 1904 struct inode *inode, 1905 struct btrfs_ioctl_ino_lookup_user_args *args) 1906 { 1907 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1908 struct super_block *sb = inode->i_sb; 1909 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 1910 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 1911 u64 dirid = args->dirid; 1912 unsigned long item_off; 1913 unsigned long item_len; 1914 struct btrfs_inode_ref *iref; 1915 struct btrfs_root_ref *rref; 1916 struct btrfs_root *root = NULL; 1917 struct btrfs_path *path; 1918 struct btrfs_key key, key2; 1919 struct extent_buffer *leaf; 1920 struct inode *temp_inode; 1921 char *ptr; 1922 int slot; 1923 int len; 1924 int total_len = 0; 1925 int ret; 1926 1927 path = btrfs_alloc_path(); 1928 if (!path) 1929 return -ENOMEM; 1930 1931 /* 1932 * If the bottom subvolume does not exist directly under upper_limit, 1933 * construct the path in from the bottom up. 1934 */ 1935 if (dirid != upper_limit.objectid) { 1936 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 1937 1938 root = btrfs_get_fs_root(fs_info, treeid, true); 1939 if (IS_ERR(root)) { 1940 ret = PTR_ERR(root); 1941 goto out; 1942 } 1943 1944 key.objectid = dirid; 1945 key.type = BTRFS_INODE_REF_KEY; 1946 key.offset = (u64)-1; 1947 while (1) { 1948 ret = btrfs_search_backwards(root, &key, path); 1949 if (ret < 0) 1950 goto out_put; 1951 else if (ret > 0) { 1952 ret = -ENOENT; 1953 goto out_put; 1954 } 1955 1956 leaf = path->nodes[0]; 1957 slot = path->slots[0]; 1958 1959 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 1960 len = btrfs_inode_ref_name_len(leaf, iref); 1961 ptr -= len + 1; 1962 total_len += len + 1; 1963 if (ptr < args->path) { 1964 ret = -ENAMETOOLONG; 1965 goto out_put; 1966 } 1967 1968 *(ptr + len) = '/'; 1969 read_extent_buffer(leaf, ptr, 1970 (unsigned long)(iref + 1), len); 1971 1972 /* Check the read+exec permission of this directory */ 1973 ret = btrfs_previous_item(root, path, dirid, 1974 BTRFS_INODE_ITEM_KEY); 1975 if (ret < 0) { 1976 goto out_put; 1977 } else if (ret > 0) { 1978 ret = -ENOENT; 1979 goto out_put; 1980 } 1981 1982 leaf = path->nodes[0]; 1983 slot = path->slots[0]; 1984 btrfs_item_key_to_cpu(leaf, &key2, slot); 1985 if (key2.objectid != dirid) { 1986 ret = -ENOENT; 1987 goto out_put; 1988 } 1989 1990 /* 1991 * We don't need the path anymore, so release it and 1992 * avoid deadlocks and lockdep warnings in case 1993 * btrfs_iget() needs to lookup the inode from its root 1994 * btree and lock the same leaf. 1995 */ 1996 btrfs_release_path(path); 1997 temp_inode = btrfs_iget(sb, key2.objectid, root); 1998 if (IS_ERR(temp_inode)) { 1999 ret = PTR_ERR(temp_inode); 2000 goto out_put; 2001 } 2002 ret = inode_permission(idmap, temp_inode, 2003 MAY_READ | MAY_EXEC); 2004 iput(temp_inode); 2005 if (ret) { 2006 ret = -EACCES; 2007 goto out_put; 2008 } 2009 2010 if (key.offset == upper_limit.objectid) 2011 break; 2012 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2013 ret = -EACCES; 2014 goto out_put; 2015 } 2016 2017 key.objectid = key.offset; 2018 key.offset = (u64)-1; 2019 dirid = key.objectid; 2020 } 2021 2022 memmove(args->path, ptr, total_len); 2023 args->path[total_len] = '\0'; 2024 btrfs_put_root(root); 2025 root = NULL; 2026 btrfs_release_path(path); 2027 } 2028 2029 /* Get the bottom subvolume's name from ROOT_REF */ 2030 key.objectid = treeid; 2031 key.type = BTRFS_ROOT_REF_KEY; 2032 key.offset = args->treeid; 2033 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2034 if (ret < 0) { 2035 goto out; 2036 } else if (ret > 0) { 2037 ret = -ENOENT; 2038 goto out; 2039 } 2040 2041 leaf = path->nodes[0]; 2042 slot = path->slots[0]; 2043 btrfs_item_key_to_cpu(leaf, &key, slot); 2044 2045 item_off = btrfs_item_ptr_offset(leaf, slot); 2046 item_len = btrfs_item_size(leaf, slot); 2047 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2048 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2049 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2050 ret = -EINVAL; 2051 goto out; 2052 } 2053 2054 /* Copy subvolume's name */ 2055 item_off += sizeof(struct btrfs_root_ref); 2056 item_len -= sizeof(struct btrfs_root_ref); 2057 read_extent_buffer(leaf, args->name, item_off, item_len); 2058 args->name[item_len] = 0; 2059 2060 out_put: 2061 btrfs_put_root(root); 2062 out: 2063 btrfs_free_path(path); 2064 return ret; 2065 } 2066 2067 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 2068 void __user *argp) 2069 { 2070 struct btrfs_ioctl_ino_lookup_args *args; 2071 int ret = 0; 2072 2073 args = memdup_user(argp, sizeof(*args)); 2074 if (IS_ERR(args)) 2075 return PTR_ERR(args); 2076 2077 /* 2078 * Unprivileged query to obtain the containing subvolume root id. The 2079 * path is reset so it's consistent with btrfs_search_path_in_tree. 2080 */ 2081 if (args->treeid == 0) 2082 args->treeid = root->root_key.objectid; 2083 2084 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2085 args->name[0] = 0; 2086 goto out; 2087 } 2088 2089 if (!capable(CAP_SYS_ADMIN)) { 2090 ret = -EPERM; 2091 goto out; 2092 } 2093 2094 ret = btrfs_search_path_in_tree(root->fs_info, 2095 args->treeid, args->objectid, 2096 args->name); 2097 2098 out: 2099 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2100 ret = -EFAULT; 2101 2102 kfree(args); 2103 return ret; 2104 } 2105 2106 /* 2107 * Version of ino_lookup ioctl (unprivileged) 2108 * 2109 * The main differences from ino_lookup ioctl are: 2110 * 2111 * 1. Read + Exec permission will be checked using inode_permission() during 2112 * path construction. -EACCES will be returned in case of failure. 2113 * 2. Path construction will be stopped at the inode number which corresponds 2114 * to the fd with which this ioctl is called. If constructed path does not 2115 * exist under fd's inode, -EACCES will be returned. 2116 * 3. The name of bottom subvolume is also searched and filled. 2117 */ 2118 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2119 { 2120 struct btrfs_ioctl_ino_lookup_user_args *args; 2121 struct inode *inode; 2122 int ret; 2123 2124 args = memdup_user(argp, sizeof(*args)); 2125 if (IS_ERR(args)) 2126 return PTR_ERR(args); 2127 2128 inode = file_inode(file); 2129 2130 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2131 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2132 /* 2133 * The subvolume does not exist under fd with which this is 2134 * called 2135 */ 2136 kfree(args); 2137 return -EACCES; 2138 } 2139 2140 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args); 2141 2142 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2143 ret = -EFAULT; 2144 2145 kfree(args); 2146 return ret; 2147 } 2148 2149 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2150 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2151 { 2152 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2153 struct btrfs_fs_info *fs_info; 2154 struct btrfs_root *root; 2155 struct btrfs_path *path; 2156 struct btrfs_key key; 2157 struct btrfs_root_item *root_item; 2158 struct btrfs_root_ref *rref; 2159 struct extent_buffer *leaf; 2160 unsigned long item_off; 2161 unsigned long item_len; 2162 int slot; 2163 int ret = 0; 2164 2165 path = btrfs_alloc_path(); 2166 if (!path) 2167 return -ENOMEM; 2168 2169 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2170 if (!subvol_info) { 2171 btrfs_free_path(path); 2172 return -ENOMEM; 2173 } 2174 2175 fs_info = BTRFS_I(inode)->root->fs_info; 2176 2177 /* Get root_item of inode's subvolume */ 2178 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2179 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2180 if (IS_ERR(root)) { 2181 ret = PTR_ERR(root); 2182 goto out_free; 2183 } 2184 root_item = &root->root_item; 2185 2186 subvol_info->treeid = key.objectid; 2187 2188 subvol_info->generation = btrfs_root_generation(root_item); 2189 subvol_info->flags = btrfs_root_flags(root_item); 2190 2191 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2192 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2193 BTRFS_UUID_SIZE); 2194 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2195 BTRFS_UUID_SIZE); 2196 2197 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2198 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2199 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2200 2201 subvol_info->otransid = btrfs_root_otransid(root_item); 2202 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2203 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2204 2205 subvol_info->stransid = btrfs_root_stransid(root_item); 2206 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2207 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2208 2209 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2210 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2211 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2212 2213 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2214 /* Search root tree for ROOT_BACKREF of this subvolume */ 2215 key.type = BTRFS_ROOT_BACKREF_KEY; 2216 key.offset = 0; 2217 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2218 if (ret < 0) { 2219 goto out; 2220 } else if (path->slots[0] >= 2221 btrfs_header_nritems(path->nodes[0])) { 2222 ret = btrfs_next_leaf(fs_info->tree_root, path); 2223 if (ret < 0) { 2224 goto out; 2225 } else if (ret > 0) { 2226 ret = -EUCLEAN; 2227 goto out; 2228 } 2229 } 2230 2231 leaf = path->nodes[0]; 2232 slot = path->slots[0]; 2233 btrfs_item_key_to_cpu(leaf, &key, slot); 2234 if (key.objectid == subvol_info->treeid && 2235 key.type == BTRFS_ROOT_BACKREF_KEY) { 2236 subvol_info->parent_id = key.offset; 2237 2238 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2239 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2240 2241 item_off = btrfs_item_ptr_offset(leaf, slot) 2242 + sizeof(struct btrfs_root_ref); 2243 item_len = btrfs_item_size(leaf, slot) 2244 - sizeof(struct btrfs_root_ref); 2245 read_extent_buffer(leaf, subvol_info->name, 2246 item_off, item_len); 2247 } else { 2248 ret = -ENOENT; 2249 goto out; 2250 } 2251 } 2252 2253 btrfs_free_path(path); 2254 path = NULL; 2255 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2256 ret = -EFAULT; 2257 2258 out: 2259 btrfs_put_root(root); 2260 out_free: 2261 btrfs_free_path(path); 2262 kfree(subvol_info); 2263 return ret; 2264 } 2265 2266 /* 2267 * Return ROOT_REF information of the subvolume containing this inode 2268 * except the subvolume name. 2269 */ 2270 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 2271 void __user *argp) 2272 { 2273 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2274 struct btrfs_root_ref *rref; 2275 struct btrfs_path *path; 2276 struct btrfs_key key; 2277 struct extent_buffer *leaf; 2278 u64 objectid; 2279 int slot; 2280 int ret; 2281 u8 found; 2282 2283 path = btrfs_alloc_path(); 2284 if (!path) 2285 return -ENOMEM; 2286 2287 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2288 if (IS_ERR(rootrefs)) { 2289 btrfs_free_path(path); 2290 return PTR_ERR(rootrefs); 2291 } 2292 2293 objectid = root->root_key.objectid; 2294 key.objectid = objectid; 2295 key.type = BTRFS_ROOT_REF_KEY; 2296 key.offset = rootrefs->min_treeid; 2297 found = 0; 2298 2299 root = root->fs_info->tree_root; 2300 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2301 if (ret < 0) { 2302 goto out; 2303 } else if (path->slots[0] >= 2304 btrfs_header_nritems(path->nodes[0])) { 2305 ret = btrfs_next_leaf(root, path); 2306 if (ret < 0) { 2307 goto out; 2308 } else if (ret > 0) { 2309 ret = -EUCLEAN; 2310 goto out; 2311 } 2312 } 2313 while (1) { 2314 leaf = path->nodes[0]; 2315 slot = path->slots[0]; 2316 2317 btrfs_item_key_to_cpu(leaf, &key, slot); 2318 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2319 ret = 0; 2320 goto out; 2321 } 2322 2323 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2324 ret = -EOVERFLOW; 2325 goto out; 2326 } 2327 2328 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2329 rootrefs->rootref[found].treeid = key.offset; 2330 rootrefs->rootref[found].dirid = 2331 btrfs_root_ref_dirid(leaf, rref); 2332 found++; 2333 2334 ret = btrfs_next_item(root, path); 2335 if (ret < 0) { 2336 goto out; 2337 } else if (ret > 0) { 2338 ret = -EUCLEAN; 2339 goto out; 2340 } 2341 } 2342 2343 out: 2344 btrfs_free_path(path); 2345 2346 if (!ret || ret == -EOVERFLOW) { 2347 rootrefs->num_items = found; 2348 /* update min_treeid for next search */ 2349 if (found) 2350 rootrefs->min_treeid = 2351 rootrefs->rootref[found - 1].treeid + 1; 2352 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2353 ret = -EFAULT; 2354 } 2355 2356 kfree(rootrefs); 2357 2358 return ret; 2359 } 2360 2361 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2362 void __user *arg, 2363 bool destroy_v2) 2364 { 2365 struct dentry *parent = file->f_path.dentry; 2366 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2367 struct dentry *dentry; 2368 struct inode *dir = d_inode(parent); 2369 struct inode *inode; 2370 struct btrfs_root *root = BTRFS_I(dir)->root; 2371 struct btrfs_root *dest = NULL; 2372 struct btrfs_ioctl_vol_args *vol_args = NULL; 2373 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2374 struct mnt_idmap *idmap = file_mnt_idmap(file); 2375 char *subvol_name, *subvol_name_ptr = NULL; 2376 int subvol_namelen; 2377 int err = 0; 2378 bool destroy_parent = false; 2379 2380 /* We don't support snapshots with extent tree v2 yet. */ 2381 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2382 btrfs_err(fs_info, 2383 "extent tree v2 doesn't support snapshot deletion yet"); 2384 return -EOPNOTSUPP; 2385 } 2386 2387 if (destroy_v2) { 2388 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2389 if (IS_ERR(vol_args2)) 2390 return PTR_ERR(vol_args2); 2391 2392 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2393 err = -EOPNOTSUPP; 2394 goto out; 2395 } 2396 2397 /* 2398 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2399 * name, same as v1 currently does. 2400 */ 2401 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2402 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2403 subvol_name = vol_args2->name; 2404 2405 err = mnt_want_write_file(file); 2406 if (err) 2407 goto out; 2408 } else { 2409 struct inode *old_dir; 2410 2411 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2412 err = -EINVAL; 2413 goto out; 2414 } 2415 2416 err = mnt_want_write_file(file); 2417 if (err) 2418 goto out; 2419 2420 dentry = btrfs_get_dentry(fs_info->sb, 2421 BTRFS_FIRST_FREE_OBJECTID, 2422 vol_args2->subvolid, 0); 2423 if (IS_ERR(dentry)) { 2424 err = PTR_ERR(dentry); 2425 goto out_drop_write; 2426 } 2427 2428 /* 2429 * Change the default parent since the subvolume being 2430 * deleted can be outside of the current mount point. 2431 */ 2432 parent = btrfs_get_parent(dentry); 2433 2434 /* 2435 * At this point dentry->d_name can point to '/' if the 2436 * subvolume we want to destroy is outsite of the 2437 * current mount point, so we need to release the 2438 * current dentry and execute the lookup to return a new 2439 * one with ->d_name pointing to the 2440 * <mount point>/subvol_name. 2441 */ 2442 dput(dentry); 2443 if (IS_ERR(parent)) { 2444 err = PTR_ERR(parent); 2445 goto out_drop_write; 2446 } 2447 old_dir = dir; 2448 dir = d_inode(parent); 2449 2450 /* 2451 * If v2 was used with SPEC_BY_ID, a new parent was 2452 * allocated since the subvolume can be outside of the 2453 * current mount point. Later on we need to release this 2454 * new parent dentry. 2455 */ 2456 destroy_parent = true; 2457 2458 /* 2459 * On idmapped mounts, deletion via subvolid is 2460 * restricted to subvolumes that are immediate 2461 * ancestors of the inode referenced by the file 2462 * descriptor in the ioctl. Otherwise the idmapping 2463 * could potentially be abused to delete subvolumes 2464 * anywhere in the filesystem the user wouldn't be able 2465 * to delete without an idmapped mount. 2466 */ 2467 if (old_dir != dir && idmap != &nop_mnt_idmap) { 2468 err = -EOPNOTSUPP; 2469 goto free_parent; 2470 } 2471 2472 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2473 fs_info, vol_args2->subvolid); 2474 if (IS_ERR(subvol_name_ptr)) { 2475 err = PTR_ERR(subvol_name_ptr); 2476 goto free_parent; 2477 } 2478 /* subvol_name_ptr is already nul terminated */ 2479 subvol_name = (char *)kbasename(subvol_name_ptr); 2480 } 2481 } else { 2482 vol_args = memdup_user(arg, sizeof(*vol_args)); 2483 if (IS_ERR(vol_args)) 2484 return PTR_ERR(vol_args); 2485 2486 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2487 subvol_name = vol_args->name; 2488 2489 err = mnt_want_write_file(file); 2490 if (err) 2491 goto out; 2492 } 2493 2494 subvol_namelen = strlen(subvol_name); 2495 2496 if (strchr(subvol_name, '/') || 2497 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2498 err = -EINVAL; 2499 goto free_subvol_name; 2500 } 2501 2502 if (!S_ISDIR(dir->i_mode)) { 2503 err = -ENOTDIR; 2504 goto free_subvol_name; 2505 } 2506 2507 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2508 if (err == -EINTR) 2509 goto free_subvol_name; 2510 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen); 2511 if (IS_ERR(dentry)) { 2512 err = PTR_ERR(dentry); 2513 goto out_unlock_dir; 2514 } 2515 2516 if (d_really_is_negative(dentry)) { 2517 err = -ENOENT; 2518 goto out_dput; 2519 } 2520 2521 inode = d_inode(dentry); 2522 dest = BTRFS_I(inode)->root; 2523 if (!capable(CAP_SYS_ADMIN)) { 2524 /* 2525 * Regular user. Only allow this with a special mount 2526 * option, when the user has write+exec access to the 2527 * subvol root, and when rmdir(2) would have been 2528 * allowed. 2529 * 2530 * Note that this is _not_ check that the subvol is 2531 * empty or doesn't contain data that we wouldn't 2532 * otherwise be able to delete. 2533 * 2534 * Users who want to delete empty subvols should try 2535 * rmdir(2). 2536 */ 2537 err = -EPERM; 2538 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2539 goto out_dput; 2540 2541 /* 2542 * Do not allow deletion if the parent dir is the same 2543 * as the dir to be deleted. That means the ioctl 2544 * must be called on the dentry referencing the root 2545 * of the subvol, not a random directory contained 2546 * within it. 2547 */ 2548 err = -EINVAL; 2549 if (root == dest) 2550 goto out_dput; 2551 2552 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC); 2553 if (err) 2554 goto out_dput; 2555 } 2556 2557 /* check if subvolume may be deleted by a user */ 2558 err = btrfs_may_delete(idmap, dir, dentry, 1); 2559 if (err) 2560 goto out_dput; 2561 2562 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2563 err = -EINVAL; 2564 goto out_dput; 2565 } 2566 2567 btrfs_inode_lock(BTRFS_I(inode), 0); 2568 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry); 2569 btrfs_inode_unlock(BTRFS_I(inode), 0); 2570 if (!err) 2571 d_delete_notify(dir, dentry); 2572 2573 out_dput: 2574 dput(dentry); 2575 out_unlock_dir: 2576 btrfs_inode_unlock(BTRFS_I(dir), 0); 2577 free_subvol_name: 2578 kfree(subvol_name_ptr); 2579 free_parent: 2580 if (destroy_parent) 2581 dput(parent); 2582 out_drop_write: 2583 mnt_drop_write_file(file); 2584 out: 2585 kfree(vol_args2); 2586 kfree(vol_args); 2587 return err; 2588 } 2589 2590 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2591 { 2592 struct inode *inode = file_inode(file); 2593 struct btrfs_root *root = BTRFS_I(inode)->root; 2594 struct btrfs_ioctl_defrag_range_args range = {0}; 2595 int ret; 2596 2597 ret = mnt_want_write_file(file); 2598 if (ret) 2599 return ret; 2600 2601 if (btrfs_root_readonly(root)) { 2602 ret = -EROFS; 2603 goto out; 2604 } 2605 2606 switch (inode->i_mode & S_IFMT) { 2607 case S_IFDIR: 2608 if (!capable(CAP_SYS_ADMIN)) { 2609 ret = -EPERM; 2610 goto out; 2611 } 2612 ret = btrfs_defrag_root(root); 2613 break; 2614 case S_IFREG: 2615 /* 2616 * Note that this does not check the file descriptor for write 2617 * access. This prevents defragmenting executables that are 2618 * running and allows defrag on files open in read-only mode. 2619 */ 2620 if (!capable(CAP_SYS_ADMIN) && 2621 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) { 2622 ret = -EPERM; 2623 goto out; 2624 } 2625 2626 if (argp) { 2627 if (copy_from_user(&range, argp, sizeof(range))) { 2628 ret = -EFAULT; 2629 goto out; 2630 } 2631 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) { 2632 ret = -EOPNOTSUPP; 2633 goto out; 2634 } 2635 /* compression requires us to start the IO */ 2636 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2637 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 2638 range.extent_thresh = (u32)-1; 2639 } 2640 } else { 2641 /* the rest are all set to zero by kzalloc */ 2642 range.len = (u64)-1; 2643 } 2644 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 2645 &range, BTRFS_OLDEST_GENERATION, 0); 2646 if (ret > 0) 2647 ret = 0; 2648 break; 2649 default: 2650 ret = -EINVAL; 2651 } 2652 out: 2653 mnt_drop_write_file(file); 2654 return ret; 2655 } 2656 2657 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2658 { 2659 struct btrfs_ioctl_vol_args *vol_args; 2660 bool restore_op = false; 2661 int ret; 2662 2663 if (!capable(CAP_SYS_ADMIN)) 2664 return -EPERM; 2665 2666 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2667 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 2668 return -EINVAL; 2669 } 2670 2671 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 2672 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 2673 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2674 2675 /* 2676 * We can do the device add because we have a paused balanced, 2677 * change the exclusive op type and remember we should bring 2678 * back the paused balance 2679 */ 2680 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 2681 btrfs_exclop_start_unlock(fs_info); 2682 restore_op = true; 2683 } 2684 2685 vol_args = memdup_user(arg, sizeof(*vol_args)); 2686 if (IS_ERR(vol_args)) { 2687 ret = PTR_ERR(vol_args); 2688 goto out; 2689 } 2690 2691 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2692 ret = btrfs_init_new_device(fs_info, vol_args->name); 2693 2694 if (!ret) 2695 btrfs_info(fs_info, "disk added %s", vol_args->name); 2696 2697 kfree(vol_args); 2698 out: 2699 if (restore_op) 2700 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 2701 else 2702 btrfs_exclop_finish(fs_info); 2703 return ret; 2704 } 2705 2706 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2707 { 2708 BTRFS_DEV_LOOKUP_ARGS(args); 2709 struct inode *inode = file_inode(file); 2710 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2711 struct btrfs_ioctl_vol_args_v2 *vol_args; 2712 struct block_device *bdev = NULL; 2713 void *holder; 2714 int ret; 2715 bool cancel = false; 2716 2717 if (!capable(CAP_SYS_ADMIN)) 2718 return -EPERM; 2719 2720 vol_args = memdup_user(arg, sizeof(*vol_args)); 2721 if (IS_ERR(vol_args)) 2722 return PTR_ERR(vol_args); 2723 2724 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 2725 ret = -EOPNOTSUPP; 2726 goto out; 2727 } 2728 2729 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2730 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2731 args.devid = vol_args->devid; 2732 } else if (!strcmp("cancel", vol_args->name)) { 2733 cancel = true; 2734 } else { 2735 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2736 if (ret) 2737 goto out; 2738 } 2739 2740 ret = mnt_want_write_file(file); 2741 if (ret) 2742 goto out; 2743 2744 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2745 cancel); 2746 if (ret) 2747 goto err_drop; 2748 2749 /* Exclusive operation is now claimed */ 2750 ret = btrfs_rm_device(fs_info, &args, &bdev, &holder); 2751 2752 btrfs_exclop_finish(fs_info); 2753 2754 if (!ret) { 2755 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2756 btrfs_info(fs_info, "device deleted: id %llu", 2757 vol_args->devid); 2758 else 2759 btrfs_info(fs_info, "device deleted: %s", 2760 vol_args->name); 2761 } 2762 err_drop: 2763 mnt_drop_write_file(file); 2764 if (bdev) 2765 blkdev_put(bdev, holder); 2766 out: 2767 btrfs_put_dev_args_from_path(&args); 2768 kfree(vol_args); 2769 return ret; 2770 } 2771 2772 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2773 { 2774 BTRFS_DEV_LOOKUP_ARGS(args); 2775 struct inode *inode = file_inode(file); 2776 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2777 struct btrfs_ioctl_vol_args *vol_args; 2778 struct block_device *bdev = NULL; 2779 void *holder; 2780 int ret; 2781 bool cancel = false; 2782 2783 if (!capable(CAP_SYS_ADMIN)) 2784 return -EPERM; 2785 2786 vol_args = memdup_user(arg, sizeof(*vol_args)); 2787 if (IS_ERR(vol_args)) 2788 return PTR_ERR(vol_args); 2789 2790 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2791 if (!strcmp("cancel", vol_args->name)) { 2792 cancel = true; 2793 } else { 2794 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2795 if (ret) 2796 goto out; 2797 } 2798 2799 ret = mnt_want_write_file(file); 2800 if (ret) 2801 goto out; 2802 2803 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2804 cancel); 2805 if (ret == 0) { 2806 ret = btrfs_rm_device(fs_info, &args, &bdev, &holder); 2807 if (!ret) 2808 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2809 btrfs_exclop_finish(fs_info); 2810 } 2811 2812 mnt_drop_write_file(file); 2813 if (bdev) 2814 blkdev_put(bdev, holder); 2815 out: 2816 btrfs_put_dev_args_from_path(&args); 2817 kfree(vol_args); 2818 return ret; 2819 } 2820 2821 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2822 void __user *arg) 2823 { 2824 struct btrfs_ioctl_fs_info_args *fi_args; 2825 struct btrfs_device *device; 2826 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2827 u64 flags_in; 2828 int ret = 0; 2829 2830 fi_args = memdup_user(arg, sizeof(*fi_args)); 2831 if (IS_ERR(fi_args)) 2832 return PTR_ERR(fi_args); 2833 2834 flags_in = fi_args->flags; 2835 memset(fi_args, 0, sizeof(*fi_args)); 2836 2837 rcu_read_lock(); 2838 fi_args->num_devices = fs_devices->num_devices; 2839 2840 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2841 if (device->devid > fi_args->max_id) 2842 fi_args->max_id = device->devid; 2843 } 2844 rcu_read_unlock(); 2845 2846 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 2847 fi_args->nodesize = fs_info->nodesize; 2848 fi_args->sectorsize = fs_info->sectorsize; 2849 fi_args->clone_alignment = fs_info->sectorsize; 2850 2851 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 2852 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 2853 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 2854 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 2855 } 2856 2857 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 2858 fi_args->generation = fs_info->generation; 2859 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 2860 } 2861 2862 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 2863 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 2864 sizeof(fi_args->metadata_uuid)); 2865 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 2866 } 2867 2868 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2869 ret = -EFAULT; 2870 2871 kfree(fi_args); 2872 return ret; 2873 } 2874 2875 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2876 void __user *arg) 2877 { 2878 BTRFS_DEV_LOOKUP_ARGS(args); 2879 struct btrfs_ioctl_dev_info_args *di_args; 2880 struct btrfs_device *dev; 2881 int ret = 0; 2882 2883 di_args = memdup_user(arg, sizeof(*di_args)); 2884 if (IS_ERR(di_args)) 2885 return PTR_ERR(di_args); 2886 2887 args.devid = di_args->devid; 2888 if (!btrfs_is_empty_uuid(di_args->uuid)) 2889 args.uuid = di_args->uuid; 2890 2891 rcu_read_lock(); 2892 dev = btrfs_find_device(fs_info->fs_devices, &args); 2893 if (!dev) { 2894 ret = -ENODEV; 2895 goto out; 2896 } 2897 2898 di_args->devid = dev->devid; 2899 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2900 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2901 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2902 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2903 if (dev->name) 2904 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path)); 2905 else 2906 di_args->path[0] = '\0'; 2907 2908 out: 2909 rcu_read_unlock(); 2910 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2911 ret = -EFAULT; 2912 2913 kfree(di_args); 2914 return ret; 2915 } 2916 2917 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2918 { 2919 struct inode *inode = file_inode(file); 2920 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2921 struct btrfs_root *root = BTRFS_I(inode)->root; 2922 struct btrfs_root *new_root; 2923 struct btrfs_dir_item *di; 2924 struct btrfs_trans_handle *trans; 2925 struct btrfs_path *path = NULL; 2926 struct btrfs_disk_key disk_key; 2927 struct fscrypt_str name = FSTR_INIT("default", 7); 2928 u64 objectid = 0; 2929 u64 dir_id; 2930 int ret; 2931 2932 if (!capable(CAP_SYS_ADMIN)) 2933 return -EPERM; 2934 2935 ret = mnt_want_write_file(file); 2936 if (ret) 2937 return ret; 2938 2939 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2940 ret = -EFAULT; 2941 goto out; 2942 } 2943 2944 if (!objectid) 2945 objectid = BTRFS_FS_TREE_OBJECTID; 2946 2947 new_root = btrfs_get_fs_root(fs_info, objectid, true); 2948 if (IS_ERR(new_root)) { 2949 ret = PTR_ERR(new_root); 2950 goto out; 2951 } 2952 if (!is_fstree(new_root->root_key.objectid)) { 2953 ret = -ENOENT; 2954 goto out_free; 2955 } 2956 2957 path = btrfs_alloc_path(); 2958 if (!path) { 2959 ret = -ENOMEM; 2960 goto out_free; 2961 } 2962 2963 trans = btrfs_start_transaction(root, 1); 2964 if (IS_ERR(trans)) { 2965 ret = PTR_ERR(trans); 2966 goto out_free; 2967 } 2968 2969 dir_id = btrfs_super_root_dir(fs_info->super_copy); 2970 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 2971 dir_id, &name, 1); 2972 if (IS_ERR_OR_NULL(di)) { 2973 btrfs_release_path(path); 2974 btrfs_end_transaction(trans); 2975 btrfs_err(fs_info, 2976 "Umm, you don't have the default diritem, this isn't going to work"); 2977 ret = -ENOENT; 2978 goto out_free; 2979 } 2980 2981 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2982 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2983 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 2984 btrfs_release_path(path); 2985 2986 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 2987 btrfs_end_transaction(trans); 2988 out_free: 2989 btrfs_put_root(new_root); 2990 btrfs_free_path(path); 2991 out: 2992 mnt_drop_write_file(file); 2993 return ret; 2994 } 2995 2996 static void get_block_group_info(struct list_head *groups_list, 2997 struct btrfs_ioctl_space_info *space) 2998 { 2999 struct btrfs_block_group *block_group; 3000 3001 space->total_bytes = 0; 3002 space->used_bytes = 0; 3003 space->flags = 0; 3004 list_for_each_entry(block_group, groups_list, list) { 3005 space->flags = block_group->flags; 3006 space->total_bytes += block_group->length; 3007 space->used_bytes += block_group->used; 3008 } 3009 } 3010 3011 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3012 void __user *arg) 3013 { 3014 struct btrfs_ioctl_space_args space_args = { 0 }; 3015 struct btrfs_ioctl_space_info space; 3016 struct btrfs_ioctl_space_info *dest; 3017 struct btrfs_ioctl_space_info *dest_orig; 3018 struct btrfs_ioctl_space_info __user *user_dest; 3019 struct btrfs_space_info *info; 3020 static const u64 types[] = { 3021 BTRFS_BLOCK_GROUP_DATA, 3022 BTRFS_BLOCK_GROUP_SYSTEM, 3023 BTRFS_BLOCK_GROUP_METADATA, 3024 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3025 }; 3026 int num_types = 4; 3027 int alloc_size; 3028 int ret = 0; 3029 u64 slot_count = 0; 3030 int i, c; 3031 3032 if (copy_from_user(&space_args, 3033 (struct btrfs_ioctl_space_args __user *)arg, 3034 sizeof(space_args))) 3035 return -EFAULT; 3036 3037 for (i = 0; i < num_types; i++) { 3038 struct btrfs_space_info *tmp; 3039 3040 info = NULL; 3041 list_for_each_entry(tmp, &fs_info->space_info, list) { 3042 if (tmp->flags == types[i]) { 3043 info = tmp; 3044 break; 3045 } 3046 } 3047 3048 if (!info) 3049 continue; 3050 3051 down_read(&info->groups_sem); 3052 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3053 if (!list_empty(&info->block_groups[c])) 3054 slot_count++; 3055 } 3056 up_read(&info->groups_sem); 3057 } 3058 3059 /* 3060 * Global block reserve, exported as a space_info 3061 */ 3062 slot_count++; 3063 3064 /* space_slots == 0 means they are asking for a count */ 3065 if (space_args.space_slots == 0) { 3066 space_args.total_spaces = slot_count; 3067 goto out; 3068 } 3069 3070 slot_count = min_t(u64, space_args.space_slots, slot_count); 3071 3072 alloc_size = sizeof(*dest) * slot_count; 3073 3074 /* we generally have at most 6 or so space infos, one for each raid 3075 * level. So, a whole page should be more than enough for everyone 3076 */ 3077 if (alloc_size > PAGE_SIZE) 3078 return -ENOMEM; 3079 3080 space_args.total_spaces = 0; 3081 dest = kmalloc(alloc_size, GFP_KERNEL); 3082 if (!dest) 3083 return -ENOMEM; 3084 dest_orig = dest; 3085 3086 /* now we have a buffer to copy into */ 3087 for (i = 0; i < num_types; i++) { 3088 struct btrfs_space_info *tmp; 3089 3090 if (!slot_count) 3091 break; 3092 3093 info = NULL; 3094 list_for_each_entry(tmp, &fs_info->space_info, list) { 3095 if (tmp->flags == types[i]) { 3096 info = tmp; 3097 break; 3098 } 3099 } 3100 3101 if (!info) 3102 continue; 3103 down_read(&info->groups_sem); 3104 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3105 if (!list_empty(&info->block_groups[c])) { 3106 get_block_group_info(&info->block_groups[c], 3107 &space); 3108 memcpy(dest, &space, sizeof(space)); 3109 dest++; 3110 space_args.total_spaces++; 3111 slot_count--; 3112 } 3113 if (!slot_count) 3114 break; 3115 } 3116 up_read(&info->groups_sem); 3117 } 3118 3119 /* 3120 * Add global block reserve 3121 */ 3122 if (slot_count) { 3123 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3124 3125 spin_lock(&block_rsv->lock); 3126 space.total_bytes = block_rsv->size; 3127 space.used_bytes = block_rsv->size - block_rsv->reserved; 3128 spin_unlock(&block_rsv->lock); 3129 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3130 memcpy(dest, &space, sizeof(space)); 3131 space_args.total_spaces++; 3132 } 3133 3134 user_dest = (struct btrfs_ioctl_space_info __user *) 3135 (arg + sizeof(struct btrfs_ioctl_space_args)); 3136 3137 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3138 ret = -EFAULT; 3139 3140 kfree(dest_orig); 3141 out: 3142 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3143 ret = -EFAULT; 3144 3145 return ret; 3146 } 3147 3148 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3149 void __user *argp) 3150 { 3151 struct btrfs_trans_handle *trans; 3152 u64 transid; 3153 3154 /* 3155 * Start orphan cleanup here for the given root in case it hasn't been 3156 * started already by other means. Errors are handled in the other 3157 * functions during transaction commit. 3158 */ 3159 btrfs_orphan_cleanup(root); 3160 3161 trans = btrfs_attach_transaction_barrier(root); 3162 if (IS_ERR(trans)) { 3163 if (PTR_ERR(trans) != -ENOENT) 3164 return PTR_ERR(trans); 3165 3166 /* No running transaction, don't bother */ 3167 transid = root->fs_info->last_trans_committed; 3168 goto out; 3169 } 3170 transid = trans->transid; 3171 btrfs_commit_transaction_async(trans); 3172 out: 3173 if (argp) 3174 if (copy_to_user(argp, &transid, sizeof(transid))) 3175 return -EFAULT; 3176 return 0; 3177 } 3178 3179 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3180 void __user *argp) 3181 { 3182 /* By default wait for the current transaction. */ 3183 u64 transid = 0; 3184 3185 if (argp) 3186 if (copy_from_user(&transid, argp, sizeof(transid))) 3187 return -EFAULT; 3188 3189 return btrfs_wait_for_commit(fs_info, transid); 3190 } 3191 3192 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3193 { 3194 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3195 struct btrfs_ioctl_scrub_args *sa; 3196 int ret; 3197 3198 if (!capable(CAP_SYS_ADMIN)) 3199 return -EPERM; 3200 3201 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3202 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 3203 return -EINVAL; 3204 } 3205 3206 sa = memdup_user(arg, sizeof(*sa)); 3207 if (IS_ERR(sa)) 3208 return PTR_ERR(sa); 3209 3210 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) { 3211 ret = -EOPNOTSUPP; 3212 goto out; 3213 } 3214 3215 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3216 ret = mnt_want_write_file(file); 3217 if (ret) 3218 goto out; 3219 } 3220 3221 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3222 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3223 0); 3224 3225 /* 3226 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3227 * error. This is important as it allows user space to know how much 3228 * progress scrub has done. For example, if scrub is canceled we get 3229 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3230 * space. Later user space can inspect the progress from the structure 3231 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3232 * previously (btrfs-progs does this). 3233 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3234 * then return -EFAULT to signal the structure was not copied or it may 3235 * be corrupt and unreliable due to a partial copy. 3236 */ 3237 if (copy_to_user(arg, sa, sizeof(*sa))) 3238 ret = -EFAULT; 3239 3240 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3241 mnt_drop_write_file(file); 3242 out: 3243 kfree(sa); 3244 return ret; 3245 } 3246 3247 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3248 { 3249 if (!capable(CAP_SYS_ADMIN)) 3250 return -EPERM; 3251 3252 return btrfs_scrub_cancel(fs_info); 3253 } 3254 3255 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3256 void __user *arg) 3257 { 3258 struct btrfs_ioctl_scrub_args *sa; 3259 int ret; 3260 3261 if (!capable(CAP_SYS_ADMIN)) 3262 return -EPERM; 3263 3264 sa = memdup_user(arg, sizeof(*sa)); 3265 if (IS_ERR(sa)) 3266 return PTR_ERR(sa); 3267 3268 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3269 3270 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3271 ret = -EFAULT; 3272 3273 kfree(sa); 3274 return ret; 3275 } 3276 3277 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3278 void __user *arg) 3279 { 3280 struct btrfs_ioctl_get_dev_stats *sa; 3281 int ret; 3282 3283 sa = memdup_user(arg, sizeof(*sa)); 3284 if (IS_ERR(sa)) 3285 return PTR_ERR(sa); 3286 3287 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3288 kfree(sa); 3289 return -EPERM; 3290 } 3291 3292 ret = btrfs_get_dev_stats(fs_info, sa); 3293 3294 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3295 ret = -EFAULT; 3296 3297 kfree(sa); 3298 return ret; 3299 } 3300 3301 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3302 void __user *arg) 3303 { 3304 struct btrfs_ioctl_dev_replace_args *p; 3305 int ret; 3306 3307 if (!capable(CAP_SYS_ADMIN)) 3308 return -EPERM; 3309 3310 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3311 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 3312 return -EINVAL; 3313 } 3314 3315 p = memdup_user(arg, sizeof(*p)); 3316 if (IS_ERR(p)) 3317 return PTR_ERR(p); 3318 3319 switch (p->cmd) { 3320 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3321 if (sb_rdonly(fs_info->sb)) { 3322 ret = -EROFS; 3323 goto out; 3324 } 3325 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3326 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3327 } else { 3328 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3329 btrfs_exclop_finish(fs_info); 3330 } 3331 break; 3332 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3333 btrfs_dev_replace_status(fs_info, p); 3334 ret = 0; 3335 break; 3336 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3337 p->result = btrfs_dev_replace_cancel(fs_info); 3338 ret = 0; 3339 break; 3340 default: 3341 ret = -EINVAL; 3342 break; 3343 } 3344 3345 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3346 ret = -EFAULT; 3347 out: 3348 kfree(p); 3349 return ret; 3350 } 3351 3352 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3353 { 3354 int ret = 0; 3355 int i; 3356 u64 rel_ptr; 3357 int size; 3358 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3359 struct inode_fs_paths *ipath = NULL; 3360 struct btrfs_path *path; 3361 3362 if (!capable(CAP_DAC_READ_SEARCH)) 3363 return -EPERM; 3364 3365 path = btrfs_alloc_path(); 3366 if (!path) { 3367 ret = -ENOMEM; 3368 goto out; 3369 } 3370 3371 ipa = memdup_user(arg, sizeof(*ipa)); 3372 if (IS_ERR(ipa)) { 3373 ret = PTR_ERR(ipa); 3374 ipa = NULL; 3375 goto out; 3376 } 3377 3378 size = min_t(u32, ipa->size, 4096); 3379 ipath = init_ipath(size, root, path); 3380 if (IS_ERR(ipath)) { 3381 ret = PTR_ERR(ipath); 3382 ipath = NULL; 3383 goto out; 3384 } 3385 3386 ret = paths_from_inode(ipa->inum, ipath); 3387 if (ret < 0) 3388 goto out; 3389 3390 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3391 rel_ptr = ipath->fspath->val[i] - 3392 (u64)(unsigned long)ipath->fspath->val; 3393 ipath->fspath->val[i] = rel_ptr; 3394 } 3395 3396 btrfs_free_path(path); 3397 path = NULL; 3398 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3399 ipath->fspath, size); 3400 if (ret) { 3401 ret = -EFAULT; 3402 goto out; 3403 } 3404 3405 out: 3406 btrfs_free_path(path); 3407 free_ipath(ipath); 3408 kfree(ipa); 3409 3410 return ret; 3411 } 3412 3413 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3414 void __user *arg, int version) 3415 { 3416 int ret = 0; 3417 int size; 3418 struct btrfs_ioctl_logical_ino_args *loi; 3419 struct btrfs_data_container *inodes = NULL; 3420 struct btrfs_path *path = NULL; 3421 bool ignore_offset; 3422 3423 if (!capable(CAP_SYS_ADMIN)) 3424 return -EPERM; 3425 3426 loi = memdup_user(arg, sizeof(*loi)); 3427 if (IS_ERR(loi)) 3428 return PTR_ERR(loi); 3429 3430 if (version == 1) { 3431 ignore_offset = false; 3432 size = min_t(u32, loi->size, SZ_64K); 3433 } else { 3434 /* All reserved bits must be 0 for now */ 3435 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3436 ret = -EINVAL; 3437 goto out_loi; 3438 } 3439 /* Only accept flags we have defined so far */ 3440 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3441 ret = -EINVAL; 3442 goto out_loi; 3443 } 3444 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3445 size = min_t(u32, loi->size, SZ_16M); 3446 } 3447 3448 inodes = init_data_container(size); 3449 if (IS_ERR(inodes)) { 3450 ret = PTR_ERR(inodes); 3451 goto out_loi; 3452 } 3453 3454 path = btrfs_alloc_path(); 3455 if (!path) { 3456 ret = -ENOMEM; 3457 goto out; 3458 } 3459 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3460 inodes, ignore_offset); 3461 btrfs_free_path(path); 3462 if (ret == -EINVAL) 3463 ret = -ENOENT; 3464 if (ret < 0) 3465 goto out; 3466 3467 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3468 size); 3469 if (ret) 3470 ret = -EFAULT; 3471 3472 out: 3473 kvfree(inodes); 3474 out_loi: 3475 kfree(loi); 3476 3477 return ret; 3478 } 3479 3480 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3481 struct btrfs_ioctl_balance_args *bargs) 3482 { 3483 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3484 3485 bargs->flags = bctl->flags; 3486 3487 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3488 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3489 if (atomic_read(&fs_info->balance_pause_req)) 3490 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3491 if (atomic_read(&fs_info->balance_cancel_req)) 3492 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3493 3494 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3495 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3496 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3497 3498 spin_lock(&fs_info->balance_lock); 3499 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3500 spin_unlock(&fs_info->balance_lock); 3501 } 3502 3503 /* 3504 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as 3505 * required. 3506 * 3507 * @fs_info: the filesystem 3508 * @excl_acquired: ptr to boolean value which is set to false in case balance 3509 * is being resumed 3510 * 3511 * Return 0 on success in which case both fs_info::balance is acquired as well 3512 * as exclusive ops are blocked. In case of failure return an error code. 3513 */ 3514 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) 3515 { 3516 int ret; 3517 3518 /* 3519 * Exclusive operation is locked. Three possibilities: 3520 * (1) some other op is running 3521 * (2) balance is running 3522 * (3) balance is paused -- special case (think resume) 3523 */ 3524 while (1) { 3525 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3526 *excl_acquired = true; 3527 mutex_lock(&fs_info->balance_mutex); 3528 return 0; 3529 } 3530 3531 mutex_lock(&fs_info->balance_mutex); 3532 if (fs_info->balance_ctl) { 3533 /* This is either (2) or (3) */ 3534 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3535 /* This is (2) */ 3536 ret = -EINPROGRESS; 3537 goto out_failure; 3538 3539 } else { 3540 mutex_unlock(&fs_info->balance_mutex); 3541 /* 3542 * Lock released to allow other waiters to 3543 * continue, we'll reexamine the status again. 3544 */ 3545 mutex_lock(&fs_info->balance_mutex); 3546 3547 if (fs_info->balance_ctl && 3548 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3549 /* This is (3) */ 3550 *excl_acquired = false; 3551 return 0; 3552 } 3553 } 3554 } else { 3555 /* This is (1) */ 3556 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3557 goto out_failure; 3558 } 3559 3560 mutex_unlock(&fs_info->balance_mutex); 3561 } 3562 3563 out_failure: 3564 mutex_unlock(&fs_info->balance_mutex); 3565 *excl_acquired = false; 3566 return ret; 3567 } 3568 3569 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3570 { 3571 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3572 struct btrfs_fs_info *fs_info = root->fs_info; 3573 struct btrfs_ioctl_balance_args *bargs; 3574 struct btrfs_balance_control *bctl; 3575 bool need_unlock = true; 3576 int ret; 3577 3578 if (!capable(CAP_SYS_ADMIN)) 3579 return -EPERM; 3580 3581 ret = mnt_want_write_file(file); 3582 if (ret) 3583 return ret; 3584 3585 bargs = memdup_user(arg, sizeof(*bargs)); 3586 if (IS_ERR(bargs)) { 3587 ret = PTR_ERR(bargs); 3588 bargs = NULL; 3589 goto out; 3590 } 3591 3592 ret = btrfs_try_lock_balance(fs_info, &need_unlock); 3593 if (ret) 3594 goto out; 3595 3596 lockdep_assert_held(&fs_info->balance_mutex); 3597 3598 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3599 if (!fs_info->balance_ctl) { 3600 ret = -ENOTCONN; 3601 goto out_unlock; 3602 } 3603 3604 bctl = fs_info->balance_ctl; 3605 spin_lock(&fs_info->balance_lock); 3606 bctl->flags |= BTRFS_BALANCE_RESUME; 3607 spin_unlock(&fs_info->balance_lock); 3608 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 3609 3610 goto do_balance; 3611 } 3612 3613 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3614 ret = -EINVAL; 3615 goto out_unlock; 3616 } 3617 3618 if (fs_info->balance_ctl) { 3619 ret = -EINPROGRESS; 3620 goto out_unlock; 3621 } 3622 3623 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3624 if (!bctl) { 3625 ret = -ENOMEM; 3626 goto out_unlock; 3627 } 3628 3629 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3630 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3631 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3632 3633 bctl->flags = bargs->flags; 3634 do_balance: 3635 /* 3636 * Ownership of bctl and exclusive operation goes to btrfs_balance. 3637 * bctl is freed in reset_balance_state, or, if restriper was paused 3638 * all the way until unmount, in free_fs_info. The flag should be 3639 * cleared after reset_balance_state. 3640 */ 3641 need_unlock = false; 3642 3643 ret = btrfs_balance(fs_info, bctl, bargs); 3644 bctl = NULL; 3645 3646 if (ret == 0 || ret == -ECANCELED) { 3647 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3648 ret = -EFAULT; 3649 } 3650 3651 kfree(bctl); 3652 out_unlock: 3653 mutex_unlock(&fs_info->balance_mutex); 3654 if (need_unlock) 3655 btrfs_exclop_finish(fs_info); 3656 out: 3657 mnt_drop_write_file(file); 3658 kfree(bargs); 3659 return ret; 3660 } 3661 3662 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 3663 { 3664 if (!capable(CAP_SYS_ADMIN)) 3665 return -EPERM; 3666 3667 switch (cmd) { 3668 case BTRFS_BALANCE_CTL_PAUSE: 3669 return btrfs_pause_balance(fs_info); 3670 case BTRFS_BALANCE_CTL_CANCEL: 3671 return btrfs_cancel_balance(fs_info); 3672 } 3673 3674 return -EINVAL; 3675 } 3676 3677 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 3678 void __user *arg) 3679 { 3680 struct btrfs_ioctl_balance_args *bargs; 3681 int ret = 0; 3682 3683 if (!capable(CAP_SYS_ADMIN)) 3684 return -EPERM; 3685 3686 mutex_lock(&fs_info->balance_mutex); 3687 if (!fs_info->balance_ctl) { 3688 ret = -ENOTCONN; 3689 goto out; 3690 } 3691 3692 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 3693 if (!bargs) { 3694 ret = -ENOMEM; 3695 goto out; 3696 } 3697 3698 btrfs_update_ioctl_balance_args(fs_info, bargs); 3699 3700 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3701 ret = -EFAULT; 3702 3703 kfree(bargs); 3704 out: 3705 mutex_unlock(&fs_info->balance_mutex); 3706 return ret; 3707 } 3708 3709 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3710 { 3711 struct inode *inode = file_inode(file); 3712 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3713 struct btrfs_ioctl_quota_ctl_args *sa; 3714 int ret; 3715 3716 if (!capable(CAP_SYS_ADMIN)) 3717 return -EPERM; 3718 3719 ret = mnt_want_write_file(file); 3720 if (ret) 3721 return ret; 3722 3723 sa = memdup_user(arg, sizeof(*sa)); 3724 if (IS_ERR(sa)) { 3725 ret = PTR_ERR(sa); 3726 goto drop_write; 3727 } 3728 3729 down_write(&fs_info->subvol_sem); 3730 3731 switch (sa->cmd) { 3732 case BTRFS_QUOTA_CTL_ENABLE: 3733 ret = btrfs_quota_enable(fs_info); 3734 break; 3735 case BTRFS_QUOTA_CTL_DISABLE: 3736 ret = btrfs_quota_disable(fs_info); 3737 break; 3738 default: 3739 ret = -EINVAL; 3740 break; 3741 } 3742 3743 kfree(sa); 3744 up_write(&fs_info->subvol_sem); 3745 drop_write: 3746 mnt_drop_write_file(file); 3747 return ret; 3748 } 3749 3750 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3751 { 3752 struct inode *inode = file_inode(file); 3753 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3754 struct btrfs_root *root = BTRFS_I(inode)->root; 3755 struct btrfs_ioctl_qgroup_assign_args *sa; 3756 struct btrfs_trans_handle *trans; 3757 int ret; 3758 int err; 3759 3760 if (!capable(CAP_SYS_ADMIN)) 3761 return -EPERM; 3762 3763 ret = mnt_want_write_file(file); 3764 if (ret) 3765 return ret; 3766 3767 sa = memdup_user(arg, sizeof(*sa)); 3768 if (IS_ERR(sa)) { 3769 ret = PTR_ERR(sa); 3770 goto drop_write; 3771 } 3772 3773 trans = btrfs_join_transaction(root); 3774 if (IS_ERR(trans)) { 3775 ret = PTR_ERR(trans); 3776 goto out; 3777 } 3778 3779 if (sa->assign) { 3780 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 3781 } else { 3782 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 3783 } 3784 3785 /* update qgroup status and info */ 3786 mutex_lock(&fs_info->qgroup_ioctl_lock); 3787 err = btrfs_run_qgroups(trans); 3788 mutex_unlock(&fs_info->qgroup_ioctl_lock); 3789 if (err < 0) 3790 btrfs_handle_fs_error(fs_info, err, 3791 "failed to update qgroup status and info"); 3792 err = btrfs_end_transaction(trans); 3793 if (err && !ret) 3794 ret = err; 3795 3796 out: 3797 kfree(sa); 3798 drop_write: 3799 mnt_drop_write_file(file); 3800 return ret; 3801 } 3802 3803 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3804 { 3805 struct inode *inode = file_inode(file); 3806 struct btrfs_root *root = BTRFS_I(inode)->root; 3807 struct btrfs_ioctl_qgroup_create_args *sa; 3808 struct btrfs_trans_handle *trans; 3809 int ret; 3810 int err; 3811 3812 if (!capable(CAP_SYS_ADMIN)) 3813 return -EPERM; 3814 3815 ret = mnt_want_write_file(file); 3816 if (ret) 3817 return ret; 3818 3819 sa = memdup_user(arg, sizeof(*sa)); 3820 if (IS_ERR(sa)) { 3821 ret = PTR_ERR(sa); 3822 goto drop_write; 3823 } 3824 3825 if (!sa->qgroupid) { 3826 ret = -EINVAL; 3827 goto out; 3828 } 3829 3830 if (sa->create && is_fstree(sa->qgroupid)) { 3831 ret = -EINVAL; 3832 goto out; 3833 } 3834 3835 trans = btrfs_join_transaction(root); 3836 if (IS_ERR(trans)) { 3837 ret = PTR_ERR(trans); 3838 goto out; 3839 } 3840 3841 if (sa->create) { 3842 ret = btrfs_create_qgroup(trans, sa->qgroupid); 3843 } else { 3844 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 3845 } 3846 3847 err = btrfs_end_transaction(trans); 3848 if (err && !ret) 3849 ret = err; 3850 3851 out: 3852 kfree(sa); 3853 drop_write: 3854 mnt_drop_write_file(file); 3855 return ret; 3856 } 3857 3858 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3859 { 3860 struct inode *inode = file_inode(file); 3861 struct btrfs_root *root = BTRFS_I(inode)->root; 3862 struct btrfs_ioctl_qgroup_limit_args *sa; 3863 struct btrfs_trans_handle *trans; 3864 int ret; 3865 int err; 3866 u64 qgroupid; 3867 3868 if (!capable(CAP_SYS_ADMIN)) 3869 return -EPERM; 3870 3871 ret = mnt_want_write_file(file); 3872 if (ret) 3873 return ret; 3874 3875 sa = memdup_user(arg, sizeof(*sa)); 3876 if (IS_ERR(sa)) { 3877 ret = PTR_ERR(sa); 3878 goto drop_write; 3879 } 3880 3881 trans = btrfs_join_transaction(root); 3882 if (IS_ERR(trans)) { 3883 ret = PTR_ERR(trans); 3884 goto out; 3885 } 3886 3887 qgroupid = sa->qgroupid; 3888 if (!qgroupid) { 3889 /* take the current subvol as qgroup */ 3890 qgroupid = root->root_key.objectid; 3891 } 3892 3893 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 3894 3895 err = btrfs_end_transaction(trans); 3896 if (err && !ret) 3897 ret = err; 3898 3899 out: 3900 kfree(sa); 3901 drop_write: 3902 mnt_drop_write_file(file); 3903 return ret; 3904 } 3905 3906 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 3907 { 3908 struct inode *inode = file_inode(file); 3909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3910 struct btrfs_ioctl_quota_rescan_args *qsa; 3911 int ret; 3912 3913 if (!capable(CAP_SYS_ADMIN)) 3914 return -EPERM; 3915 3916 ret = mnt_want_write_file(file); 3917 if (ret) 3918 return ret; 3919 3920 qsa = memdup_user(arg, sizeof(*qsa)); 3921 if (IS_ERR(qsa)) { 3922 ret = PTR_ERR(qsa); 3923 goto drop_write; 3924 } 3925 3926 if (qsa->flags) { 3927 ret = -EINVAL; 3928 goto out; 3929 } 3930 3931 ret = btrfs_qgroup_rescan(fs_info); 3932 3933 out: 3934 kfree(qsa); 3935 drop_write: 3936 mnt_drop_write_file(file); 3937 return ret; 3938 } 3939 3940 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 3941 void __user *arg) 3942 { 3943 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 3944 3945 if (!capable(CAP_SYS_ADMIN)) 3946 return -EPERM; 3947 3948 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 3949 qsa.flags = 1; 3950 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 3951 } 3952 3953 if (copy_to_user(arg, &qsa, sizeof(qsa))) 3954 return -EFAULT; 3955 3956 return 0; 3957 } 3958 3959 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 3960 void __user *arg) 3961 { 3962 if (!capable(CAP_SYS_ADMIN)) 3963 return -EPERM; 3964 3965 return btrfs_qgroup_wait_for_completion(fs_info, true); 3966 } 3967 3968 static long _btrfs_ioctl_set_received_subvol(struct file *file, 3969 struct mnt_idmap *idmap, 3970 struct btrfs_ioctl_received_subvol_args *sa) 3971 { 3972 struct inode *inode = file_inode(file); 3973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3974 struct btrfs_root *root = BTRFS_I(inode)->root; 3975 struct btrfs_root_item *root_item = &root->root_item; 3976 struct btrfs_trans_handle *trans; 3977 struct timespec64 ct = current_time(inode); 3978 int ret = 0; 3979 int received_uuid_changed; 3980 3981 if (!inode_owner_or_capable(idmap, inode)) 3982 return -EPERM; 3983 3984 ret = mnt_want_write_file(file); 3985 if (ret < 0) 3986 return ret; 3987 3988 down_write(&fs_info->subvol_sem); 3989 3990 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3991 ret = -EINVAL; 3992 goto out; 3993 } 3994 3995 if (btrfs_root_readonly(root)) { 3996 ret = -EROFS; 3997 goto out; 3998 } 3999 4000 /* 4001 * 1 - root item 4002 * 2 - uuid items (received uuid + subvol uuid) 4003 */ 4004 trans = btrfs_start_transaction(root, 3); 4005 if (IS_ERR(trans)) { 4006 ret = PTR_ERR(trans); 4007 trans = NULL; 4008 goto out; 4009 } 4010 4011 sa->rtransid = trans->transid; 4012 sa->rtime.sec = ct.tv_sec; 4013 sa->rtime.nsec = ct.tv_nsec; 4014 4015 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4016 BTRFS_UUID_SIZE); 4017 if (received_uuid_changed && 4018 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4019 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4020 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4021 root->root_key.objectid); 4022 if (ret && ret != -ENOENT) { 4023 btrfs_abort_transaction(trans, ret); 4024 btrfs_end_transaction(trans); 4025 goto out; 4026 } 4027 } 4028 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4029 btrfs_set_root_stransid(root_item, sa->stransid); 4030 btrfs_set_root_rtransid(root_item, sa->rtransid); 4031 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4032 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4033 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4034 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4035 4036 ret = btrfs_update_root(trans, fs_info->tree_root, 4037 &root->root_key, &root->root_item); 4038 if (ret < 0) { 4039 btrfs_end_transaction(trans); 4040 goto out; 4041 } 4042 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4043 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4044 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4045 root->root_key.objectid); 4046 if (ret < 0 && ret != -EEXIST) { 4047 btrfs_abort_transaction(trans, ret); 4048 btrfs_end_transaction(trans); 4049 goto out; 4050 } 4051 } 4052 ret = btrfs_commit_transaction(trans); 4053 out: 4054 up_write(&fs_info->subvol_sem); 4055 mnt_drop_write_file(file); 4056 return ret; 4057 } 4058 4059 #ifdef CONFIG_64BIT 4060 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4061 void __user *arg) 4062 { 4063 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4064 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4065 int ret = 0; 4066 4067 args32 = memdup_user(arg, sizeof(*args32)); 4068 if (IS_ERR(args32)) 4069 return PTR_ERR(args32); 4070 4071 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4072 if (!args64) { 4073 ret = -ENOMEM; 4074 goto out; 4075 } 4076 4077 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4078 args64->stransid = args32->stransid; 4079 args64->rtransid = args32->rtransid; 4080 args64->stime.sec = args32->stime.sec; 4081 args64->stime.nsec = args32->stime.nsec; 4082 args64->rtime.sec = args32->rtime.sec; 4083 args64->rtime.nsec = args32->rtime.nsec; 4084 args64->flags = args32->flags; 4085 4086 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64); 4087 if (ret) 4088 goto out; 4089 4090 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4091 args32->stransid = args64->stransid; 4092 args32->rtransid = args64->rtransid; 4093 args32->stime.sec = args64->stime.sec; 4094 args32->stime.nsec = args64->stime.nsec; 4095 args32->rtime.sec = args64->rtime.sec; 4096 args32->rtime.nsec = args64->rtime.nsec; 4097 args32->flags = args64->flags; 4098 4099 ret = copy_to_user(arg, args32, sizeof(*args32)); 4100 if (ret) 4101 ret = -EFAULT; 4102 4103 out: 4104 kfree(args32); 4105 kfree(args64); 4106 return ret; 4107 } 4108 #endif 4109 4110 static long btrfs_ioctl_set_received_subvol(struct file *file, 4111 void __user *arg) 4112 { 4113 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4114 int ret = 0; 4115 4116 sa = memdup_user(arg, sizeof(*sa)); 4117 if (IS_ERR(sa)) 4118 return PTR_ERR(sa); 4119 4120 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa); 4121 4122 if (ret) 4123 goto out; 4124 4125 ret = copy_to_user(arg, sa, sizeof(*sa)); 4126 if (ret) 4127 ret = -EFAULT; 4128 4129 out: 4130 kfree(sa); 4131 return ret; 4132 } 4133 4134 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4135 void __user *arg) 4136 { 4137 size_t len; 4138 int ret; 4139 char label[BTRFS_LABEL_SIZE]; 4140 4141 spin_lock(&fs_info->super_lock); 4142 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4143 spin_unlock(&fs_info->super_lock); 4144 4145 len = strnlen(label, BTRFS_LABEL_SIZE); 4146 4147 if (len == BTRFS_LABEL_SIZE) { 4148 btrfs_warn(fs_info, 4149 "label is too long, return the first %zu bytes", 4150 --len); 4151 } 4152 4153 ret = copy_to_user(arg, label, len); 4154 4155 return ret ? -EFAULT : 0; 4156 } 4157 4158 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4159 { 4160 struct inode *inode = file_inode(file); 4161 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4162 struct btrfs_root *root = BTRFS_I(inode)->root; 4163 struct btrfs_super_block *super_block = fs_info->super_copy; 4164 struct btrfs_trans_handle *trans; 4165 char label[BTRFS_LABEL_SIZE]; 4166 int ret; 4167 4168 if (!capable(CAP_SYS_ADMIN)) 4169 return -EPERM; 4170 4171 if (copy_from_user(label, arg, sizeof(label))) 4172 return -EFAULT; 4173 4174 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4175 btrfs_err(fs_info, 4176 "unable to set label with more than %d bytes", 4177 BTRFS_LABEL_SIZE - 1); 4178 return -EINVAL; 4179 } 4180 4181 ret = mnt_want_write_file(file); 4182 if (ret) 4183 return ret; 4184 4185 trans = btrfs_start_transaction(root, 0); 4186 if (IS_ERR(trans)) { 4187 ret = PTR_ERR(trans); 4188 goto out_unlock; 4189 } 4190 4191 spin_lock(&fs_info->super_lock); 4192 strcpy(super_block->label, label); 4193 spin_unlock(&fs_info->super_lock); 4194 ret = btrfs_commit_transaction(trans); 4195 4196 out_unlock: 4197 mnt_drop_write_file(file); 4198 return ret; 4199 } 4200 4201 #define INIT_FEATURE_FLAGS(suffix) \ 4202 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4203 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4204 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4205 4206 int btrfs_ioctl_get_supported_features(void __user *arg) 4207 { 4208 static const struct btrfs_ioctl_feature_flags features[3] = { 4209 INIT_FEATURE_FLAGS(SUPP), 4210 INIT_FEATURE_FLAGS(SAFE_SET), 4211 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4212 }; 4213 4214 if (copy_to_user(arg, &features, sizeof(features))) 4215 return -EFAULT; 4216 4217 return 0; 4218 } 4219 4220 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4221 void __user *arg) 4222 { 4223 struct btrfs_super_block *super_block = fs_info->super_copy; 4224 struct btrfs_ioctl_feature_flags features; 4225 4226 features.compat_flags = btrfs_super_compat_flags(super_block); 4227 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4228 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4229 4230 if (copy_to_user(arg, &features, sizeof(features))) 4231 return -EFAULT; 4232 4233 return 0; 4234 } 4235 4236 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4237 enum btrfs_feature_set set, 4238 u64 change_mask, u64 flags, u64 supported_flags, 4239 u64 safe_set, u64 safe_clear) 4240 { 4241 const char *type = btrfs_feature_set_name(set); 4242 char *names; 4243 u64 disallowed, unsupported; 4244 u64 set_mask = flags & change_mask; 4245 u64 clear_mask = ~flags & change_mask; 4246 4247 unsupported = set_mask & ~supported_flags; 4248 if (unsupported) { 4249 names = btrfs_printable_features(set, unsupported); 4250 if (names) { 4251 btrfs_warn(fs_info, 4252 "this kernel does not support the %s feature bit%s", 4253 names, strchr(names, ',') ? "s" : ""); 4254 kfree(names); 4255 } else 4256 btrfs_warn(fs_info, 4257 "this kernel does not support %s bits 0x%llx", 4258 type, unsupported); 4259 return -EOPNOTSUPP; 4260 } 4261 4262 disallowed = set_mask & ~safe_set; 4263 if (disallowed) { 4264 names = btrfs_printable_features(set, disallowed); 4265 if (names) { 4266 btrfs_warn(fs_info, 4267 "can't set the %s feature bit%s while mounted", 4268 names, strchr(names, ',') ? "s" : ""); 4269 kfree(names); 4270 } else 4271 btrfs_warn(fs_info, 4272 "can't set %s bits 0x%llx while mounted", 4273 type, disallowed); 4274 return -EPERM; 4275 } 4276 4277 disallowed = clear_mask & ~safe_clear; 4278 if (disallowed) { 4279 names = btrfs_printable_features(set, disallowed); 4280 if (names) { 4281 btrfs_warn(fs_info, 4282 "can't clear the %s feature bit%s while mounted", 4283 names, strchr(names, ',') ? "s" : ""); 4284 kfree(names); 4285 } else 4286 btrfs_warn(fs_info, 4287 "can't clear %s bits 0x%llx while mounted", 4288 type, disallowed); 4289 return -EPERM; 4290 } 4291 4292 return 0; 4293 } 4294 4295 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4296 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4297 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4298 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4299 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4300 4301 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4302 { 4303 struct inode *inode = file_inode(file); 4304 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4305 struct btrfs_root *root = BTRFS_I(inode)->root; 4306 struct btrfs_super_block *super_block = fs_info->super_copy; 4307 struct btrfs_ioctl_feature_flags flags[2]; 4308 struct btrfs_trans_handle *trans; 4309 u64 newflags; 4310 int ret; 4311 4312 if (!capable(CAP_SYS_ADMIN)) 4313 return -EPERM; 4314 4315 if (copy_from_user(flags, arg, sizeof(flags))) 4316 return -EFAULT; 4317 4318 /* Nothing to do */ 4319 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4320 !flags[0].incompat_flags) 4321 return 0; 4322 4323 ret = check_feature(fs_info, flags[0].compat_flags, 4324 flags[1].compat_flags, COMPAT); 4325 if (ret) 4326 return ret; 4327 4328 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4329 flags[1].compat_ro_flags, COMPAT_RO); 4330 if (ret) 4331 return ret; 4332 4333 ret = check_feature(fs_info, flags[0].incompat_flags, 4334 flags[1].incompat_flags, INCOMPAT); 4335 if (ret) 4336 return ret; 4337 4338 ret = mnt_want_write_file(file); 4339 if (ret) 4340 return ret; 4341 4342 trans = btrfs_start_transaction(root, 0); 4343 if (IS_ERR(trans)) { 4344 ret = PTR_ERR(trans); 4345 goto out_drop_write; 4346 } 4347 4348 spin_lock(&fs_info->super_lock); 4349 newflags = btrfs_super_compat_flags(super_block); 4350 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4351 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4352 btrfs_set_super_compat_flags(super_block, newflags); 4353 4354 newflags = btrfs_super_compat_ro_flags(super_block); 4355 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4356 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4357 btrfs_set_super_compat_ro_flags(super_block, newflags); 4358 4359 newflags = btrfs_super_incompat_flags(super_block); 4360 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4361 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4362 btrfs_set_super_incompat_flags(super_block, newflags); 4363 spin_unlock(&fs_info->super_lock); 4364 4365 ret = btrfs_commit_transaction(trans); 4366 out_drop_write: 4367 mnt_drop_write_file(file); 4368 4369 return ret; 4370 } 4371 4372 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat) 4373 { 4374 struct btrfs_ioctl_send_args *arg; 4375 int ret; 4376 4377 if (compat) { 4378 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4379 struct btrfs_ioctl_send_args_32 args32 = { 0 }; 4380 4381 ret = copy_from_user(&args32, argp, sizeof(args32)); 4382 if (ret) 4383 return -EFAULT; 4384 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4385 if (!arg) 4386 return -ENOMEM; 4387 arg->send_fd = args32.send_fd; 4388 arg->clone_sources_count = args32.clone_sources_count; 4389 arg->clone_sources = compat_ptr(args32.clone_sources); 4390 arg->parent_root = args32.parent_root; 4391 arg->flags = args32.flags; 4392 arg->version = args32.version; 4393 memcpy(arg->reserved, args32.reserved, 4394 sizeof(args32.reserved)); 4395 #else 4396 return -ENOTTY; 4397 #endif 4398 } else { 4399 arg = memdup_user(argp, sizeof(*arg)); 4400 if (IS_ERR(arg)) 4401 return PTR_ERR(arg); 4402 } 4403 ret = btrfs_ioctl_send(inode, arg); 4404 kfree(arg); 4405 return ret; 4406 } 4407 4408 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 4409 bool compat) 4410 { 4411 struct btrfs_ioctl_encoded_io_args args = { 0 }; 4412 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 4413 flags); 4414 size_t copy_end; 4415 struct iovec iovstack[UIO_FASTIOV]; 4416 struct iovec *iov = iovstack; 4417 struct iov_iter iter; 4418 loff_t pos; 4419 struct kiocb kiocb; 4420 ssize_t ret; 4421 4422 if (!capable(CAP_SYS_ADMIN)) { 4423 ret = -EPERM; 4424 goto out_acct; 4425 } 4426 4427 if (compat) { 4428 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4429 struct btrfs_ioctl_encoded_io_args_32 args32; 4430 4431 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 4432 flags); 4433 if (copy_from_user(&args32, argp, copy_end)) { 4434 ret = -EFAULT; 4435 goto out_acct; 4436 } 4437 args.iov = compat_ptr(args32.iov); 4438 args.iovcnt = args32.iovcnt; 4439 args.offset = args32.offset; 4440 args.flags = args32.flags; 4441 #else 4442 return -ENOTTY; 4443 #endif 4444 } else { 4445 copy_end = copy_end_kernel; 4446 if (copy_from_user(&args, argp, copy_end)) { 4447 ret = -EFAULT; 4448 goto out_acct; 4449 } 4450 } 4451 if (args.flags != 0) { 4452 ret = -EINVAL; 4453 goto out_acct; 4454 } 4455 4456 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4457 &iov, &iter); 4458 if (ret < 0) 4459 goto out_acct; 4460 4461 if (iov_iter_count(&iter) == 0) { 4462 ret = 0; 4463 goto out_iov; 4464 } 4465 pos = args.offset; 4466 ret = rw_verify_area(READ, file, &pos, args.len); 4467 if (ret < 0) 4468 goto out_iov; 4469 4470 init_sync_kiocb(&kiocb, file); 4471 kiocb.ki_pos = pos; 4472 4473 ret = btrfs_encoded_read(&kiocb, &iter, &args); 4474 if (ret >= 0) { 4475 fsnotify_access(file); 4476 if (copy_to_user(argp + copy_end, 4477 (char *)&args + copy_end_kernel, 4478 sizeof(args) - copy_end_kernel)) 4479 ret = -EFAULT; 4480 } 4481 4482 out_iov: 4483 kfree(iov); 4484 out_acct: 4485 if (ret > 0) 4486 add_rchar(current, ret); 4487 inc_syscr(current); 4488 return ret; 4489 } 4490 4491 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 4492 { 4493 struct btrfs_ioctl_encoded_io_args args; 4494 struct iovec iovstack[UIO_FASTIOV]; 4495 struct iovec *iov = iovstack; 4496 struct iov_iter iter; 4497 loff_t pos; 4498 struct kiocb kiocb; 4499 ssize_t ret; 4500 4501 if (!capable(CAP_SYS_ADMIN)) { 4502 ret = -EPERM; 4503 goto out_acct; 4504 } 4505 4506 if (!(file->f_mode & FMODE_WRITE)) { 4507 ret = -EBADF; 4508 goto out_acct; 4509 } 4510 4511 if (compat) { 4512 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4513 struct btrfs_ioctl_encoded_io_args_32 args32; 4514 4515 if (copy_from_user(&args32, argp, sizeof(args32))) { 4516 ret = -EFAULT; 4517 goto out_acct; 4518 } 4519 args.iov = compat_ptr(args32.iov); 4520 args.iovcnt = args32.iovcnt; 4521 args.offset = args32.offset; 4522 args.flags = args32.flags; 4523 args.len = args32.len; 4524 args.unencoded_len = args32.unencoded_len; 4525 args.unencoded_offset = args32.unencoded_offset; 4526 args.compression = args32.compression; 4527 args.encryption = args32.encryption; 4528 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 4529 #else 4530 return -ENOTTY; 4531 #endif 4532 } else { 4533 if (copy_from_user(&args, argp, sizeof(args))) { 4534 ret = -EFAULT; 4535 goto out_acct; 4536 } 4537 } 4538 4539 ret = -EINVAL; 4540 if (args.flags != 0) 4541 goto out_acct; 4542 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 4543 goto out_acct; 4544 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 4545 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 4546 goto out_acct; 4547 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 4548 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 4549 goto out_acct; 4550 if (args.unencoded_offset > args.unencoded_len) 4551 goto out_acct; 4552 if (args.len > args.unencoded_len - args.unencoded_offset) 4553 goto out_acct; 4554 4555 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4556 &iov, &iter); 4557 if (ret < 0) 4558 goto out_acct; 4559 4560 file_start_write(file); 4561 4562 if (iov_iter_count(&iter) == 0) { 4563 ret = 0; 4564 goto out_end_write; 4565 } 4566 pos = args.offset; 4567 ret = rw_verify_area(WRITE, file, &pos, args.len); 4568 if (ret < 0) 4569 goto out_end_write; 4570 4571 init_sync_kiocb(&kiocb, file); 4572 ret = kiocb_set_rw_flags(&kiocb, 0); 4573 if (ret) 4574 goto out_end_write; 4575 kiocb.ki_pos = pos; 4576 4577 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 4578 if (ret > 0) 4579 fsnotify_modify(file); 4580 4581 out_end_write: 4582 file_end_write(file); 4583 kfree(iov); 4584 out_acct: 4585 if (ret > 0) 4586 add_wchar(current, ret); 4587 inc_syscw(current); 4588 return ret; 4589 } 4590 4591 long btrfs_ioctl(struct file *file, unsigned int 4592 cmd, unsigned long arg) 4593 { 4594 struct inode *inode = file_inode(file); 4595 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4596 struct btrfs_root *root = BTRFS_I(inode)->root; 4597 void __user *argp = (void __user *)arg; 4598 4599 switch (cmd) { 4600 case FS_IOC_GETVERSION: 4601 return btrfs_ioctl_getversion(inode, argp); 4602 case FS_IOC_GETFSLABEL: 4603 return btrfs_ioctl_get_fslabel(fs_info, argp); 4604 case FS_IOC_SETFSLABEL: 4605 return btrfs_ioctl_set_fslabel(file, argp); 4606 case FITRIM: 4607 return btrfs_ioctl_fitrim(fs_info, argp); 4608 case BTRFS_IOC_SNAP_CREATE: 4609 return btrfs_ioctl_snap_create(file, argp, 0); 4610 case BTRFS_IOC_SNAP_CREATE_V2: 4611 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4612 case BTRFS_IOC_SUBVOL_CREATE: 4613 return btrfs_ioctl_snap_create(file, argp, 1); 4614 case BTRFS_IOC_SUBVOL_CREATE_V2: 4615 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4616 case BTRFS_IOC_SNAP_DESTROY: 4617 return btrfs_ioctl_snap_destroy(file, argp, false); 4618 case BTRFS_IOC_SNAP_DESTROY_V2: 4619 return btrfs_ioctl_snap_destroy(file, argp, true); 4620 case BTRFS_IOC_SUBVOL_GETFLAGS: 4621 return btrfs_ioctl_subvol_getflags(inode, argp); 4622 case BTRFS_IOC_SUBVOL_SETFLAGS: 4623 return btrfs_ioctl_subvol_setflags(file, argp); 4624 case BTRFS_IOC_DEFAULT_SUBVOL: 4625 return btrfs_ioctl_default_subvol(file, argp); 4626 case BTRFS_IOC_DEFRAG: 4627 return btrfs_ioctl_defrag(file, NULL); 4628 case BTRFS_IOC_DEFRAG_RANGE: 4629 return btrfs_ioctl_defrag(file, argp); 4630 case BTRFS_IOC_RESIZE: 4631 return btrfs_ioctl_resize(file, argp); 4632 case BTRFS_IOC_ADD_DEV: 4633 return btrfs_ioctl_add_dev(fs_info, argp); 4634 case BTRFS_IOC_RM_DEV: 4635 return btrfs_ioctl_rm_dev(file, argp); 4636 case BTRFS_IOC_RM_DEV_V2: 4637 return btrfs_ioctl_rm_dev_v2(file, argp); 4638 case BTRFS_IOC_FS_INFO: 4639 return btrfs_ioctl_fs_info(fs_info, argp); 4640 case BTRFS_IOC_DEV_INFO: 4641 return btrfs_ioctl_dev_info(fs_info, argp); 4642 case BTRFS_IOC_TREE_SEARCH: 4643 return btrfs_ioctl_tree_search(inode, argp); 4644 case BTRFS_IOC_TREE_SEARCH_V2: 4645 return btrfs_ioctl_tree_search_v2(inode, argp); 4646 case BTRFS_IOC_INO_LOOKUP: 4647 return btrfs_ioctl_ino_lookup(root, argp); 4648 case BTRFS_IOC_INO_PATHS: 4649 return btrfs_ioctl_ino_to_path(root, argp); 4650 case BTRFS_IOC_LOGICAL_INO: 4651 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4652 case BTRFS_IOC_LOGICAL_INO_V2: 4653 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4654 case BTRFS_IOC_SPACE_INFO: 4655 return btrfs_ioctl_space_info(fs_info, argp); 4656 case BTRFS_IOC_SYNC: { 4657 int ret; 4658 4659 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4660 if (ret) 4661 return ret; 4662 ret = btrfs_sync_fs(inode->i_sb, 1); 4663 /* 4664 * The transaction thread may want to do more work, 4665 * namely it pokes the cleaner kthread that will start 4666 * processing uncleaned subvols. 4667 */ 4668 wake_up_process(fs_info->transaction_kthread); 4669 return ret; 4670 } 4671 case BTRFS_IOC_START_SYNC: 4672 return btrfs_ioctl_start_sync(root, argp); 4673 case BTRFS_IOC_WAIT_SYNC: 4674 return btrfs_ioctl_wait_sync(fs_info, argp); 4675 case BTRFS_IOC_SCRUB: 4676 return btrfs_ioctl_scrub(file, argp); 4677 case BTRFS_IOC_SCRUB_CANCEL: 4678 return btrfs_ioctl_scrub_cancel(fs_info); 4679 case BTRFS_IOC_SCRUB_PROGRESS: 4680 return btrfs_ioctl_scrub_progress(fs_info, argp); 4681 case BTRFS_IOC_BALANCE_V2: 4682 return btrfs_ioctl_balance(file, argp); 4683 case BTRFS_IOC_BALANCE_CTL: 4684 return btrfs_ioctl_balance_ctl(fs_info, arg); 4685 case BTRFS_IOC_BALANCE_PROGRESS: 4686 return btrfs_ioctl_balance_progress(fs_info, argp); 4687 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4688 return btrfs_ioctl_set_received_subvol(file, argp); 4689 #ifdef CONFIG_64BIT 4690 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4691 return btrfs_ioctl_set_received_subvol_32(file, argp); 4692 #endif 4693 case BTRFS_IOC_SEND: 4694 return _btrfs_ioctl_send(inode, argp, false); 4695 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4696 case BTRFS_IOC_SEND_32: 4697 return _btrfs_ioctl_send(inode, argp, true); 4698 #endif 4699 case BTRFS_IOC_GET_DEV_STATS: 4700 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4701 case BTRFS_IOC_QUOTA_CTL: 4702 return btrfs_ioctl_quota_ctl(file, argp); 4703 case BTRFS_IOC_QGROUP_ASSIGN: 4704 return btrfs_ioctl_qgroup_assign(file, argp); 4705 case BTRFS_IOC_QGROUP_CREATE: 4706 return btrfs_ioctl_qgroup_create(file, argp); 4707 case BTRFS_IOC_QGROUP_LIMIT: 4708 return btrfs_ioctl_qgroup_limit(file, argp); 4709 case BTRFS_IOC_QUOTA_RESCAN: 4710 return btrfs_ioctl_quota_rescan(file, argp); 4711 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4712 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4713 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4714 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4715 case BTRFS_IOC_DEV_REPLACE: 4716 return btrfs_ioctl_dev_replace(fs_info, argp); 4717 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4718 return btrfs_ioctl_get_supported_features(argp); 4719 case BTRFS_IOC_GET_FEATURES: 4720 return btrfs_ioctl_get_features(fs_info, argp); 4721 case BTRFS_IOC_SET_FEATURES: 4722 return btrfs_ioctl_set_features(file, argp); 4723 case BTRFS_IOC_GET_SUBVOL_INFO: 4724 return btrfs_ioctl_get_subvol_info(inode, argp); 4725 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4726 return btrfs_ioctl_get_subvol_rootref(root, argp); 4727 case BTRFS_IOC_INO_LOOKUP_USER: 4728 return btrfs_ioctl_ino_lookup_user(file, argp); 4729 case FS_IOC_ENABLE_VERITY: 4730 return fsverity_ioctl_enable(file, (const void __user *)argp); 4731 case FS_IOC_MEASURE_VERITY: 4732 return fsverity_ioctl_measure(file, argp); 4733 case BTRFS_IOC_ENCODED_READ: 4734 return btrfs_ioctl_encoded_read(file, argp, false); 4735 case BTRFS_IOC_ENCODED_WRITE: 4736 return btrfs_ioctl_encoded_write(file, argp, false); 4737 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4738 case BTRFS_IOC_ENCODED_READ_32: 4739 return btrfs_ioctl_encoded_read(file, argp, true); 4740 case BTRFS_IOC_ENCODED_WRITE_32: 4741 return btrfs_ioctl_encoded_write(file, argp, true); 4742 #endif 4743 } 4744 4745 return -ENOTTY; 4746 } 4747 4748 #ifdef CONFIG_COMPAT 4749 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4750 { 4751 /* 4752 * These all access 32-bit values anyway so no further 4753 * handling is necessary. 4754 */ 4755 switch (cmd) { 4756 case FS_IOC32_GETVERSION: 4757 cmd = FS_IOC_GETVERSION; 4758 break; 4759 } 4760 4761 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4762 } 4763 #endif 4764