xref: /openbmc/linux/fs/btrfs/ioctl.c (revision c4ee0af3)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 
60 static int btrfs_clone(struct inode *src, struct inode *inode,
61 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff);
62 
63 /* Mask out flags that are inappropriate for the given type of inode. */
64 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
65 {
66 	if (S_ISDIR(mode))
67 		return flags;
68 	else if (S_ISREG(mode))
69 		return flags & ~FS_DIRSYNC_FL;
70 	else
71 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
72 }
73 
74 /*
75  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
76  */
77 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
78 {
79 	unsigned int iflags = 0;
80 
81 	if (flags & BTRFS_INODE_SYNC)
82 		iflags |= FS_SYNC_FL;
83 	if (flags & BTRFS_INODE_IMMUTABLE)
84 		iflags |= FS_IMMUTABLE_FL;
85 	if (flags & BTRFS_INODE_APPEND)
86 		iflags |= FS_APPEND_FL;
87 	if (flags & BTRFS_INODE_NODUMP)
88 		iflags |= FS_NODUMP_FL;
89 	if (flags & BTRFS_INODE_NOATIME)
90 		iflags |= FS_NOATIME_FL;
91 	if (flags & BTRFS_INODE_DIRSYNC)
92 		iflags |= FS_DIRSYNC_FL;
93 	if (flags & BTRFS_INODE_NODATACOW)
94 		iflags |= FS_NOCOW_FL;
95 
96 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
97 		iflags |= FS_COMPR_FL;
98 	else if (flags & BTRFS_INODE_NOCOMPRESS)
99 		iflags |= FS_NOCOMP_FL;
100 
101 	return iflags;
102 }
103 
104 /*
105  * Update inode->i_flags based on the btrfs internal flags.
106  */
107 void btrfs_update_iflags(struct inode *inode)
108 {
109 	struct btrfs_inode *ip = BTRFS_I(inode);
110 
111 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
112 
113 	if (ip->flags & BTRFS_INODE_SYNC)
114 		inode->i_flags |= S_SYNC;
115 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
116 		inode->i_flags |= S_IMMUTABLE;
117 	if (ip->flags & BTRFS_INODE_APPEND)
118 		inode->i_flags |= S_APPEND;
119 	if (ip->flags & BTRFS_INODE_NOATIME)
120 		inode->i_flags |= S_NOATIME;
121 	if (ip->flags & BTRFS_INODE_DIRSYNC)
122 		inode->i_flags |= S_DIRSYNC;
123 }
124 
125 /*
126  * Inherit flags from the parent inode.
127  *
128  * Currently only the compression flags and the cow flags are inherited.
129  */
130 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
131 {
132 	unsigned int flags;
133 
134 	if (!dir)
135 		return;
136 
137 	flags = BTRFS_I(dir)->flags;
138 
139 	if (flags & BTRFS_INODE_NOCOMPRESS) {
140 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
141 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
142 	} else if (flags & BTRFS_INODE_COMPRESS) {
143 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
144 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
145 	}
146 
147 	if (flags & BTRFS_INODE_NODATACOW) {
148 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
149 		if (S_ISREG(inode->i_mode))
150 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
151 	}
152 
153 	btrfs_update_iflags(inode);
154 }
155 
156 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
157 {
158 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
159 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
160 
161 	if (copy_to_user(arg, &flags, sizeof(flags)))
162 		return -EFAULT;
163 	return 0;
164 }
165 
166 static int check_flags(unsigned int flags)
167 {
168 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
169 		      FS_NOATIME_FL | FS_NODUMP_FL | \
170 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
171 		      FS_NOCOMP_FL | FS_COMPR_FL |
172 		      FS_NOCOW_FL))
173 		return -EOPNOTSUPP;
174 
175 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
176 		return -EINVAL;
177 
178 	return 0;
179 }
180 
181 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
182 {
183 	struct inode *inode = file_inode(file);
184 	struct btrfs_inode *ip = BTRFS_I(inode);
185 	struct btrfs_root *root = ip->root;
186 	struct btrfs_trans_handle *trans;
187 	unsigned int flags, oldflags;
188 	int ret;
189 	u64 ip_oldflags;
190 	unsigned int i_oldflags;
191 	umode_t mode;
192 
193 	if (btrfs_root_readonly(root))
194 		return -EROFS;
195 
196 	if (copy_from_user(&flags, arg, sizeof(flags)))
197 		return -EFAULT;
198 
199 	ret = check_flags(flags);
200 	if (ret)
201 		return ret;
202 
203 	if (!inode_owner_or_capable(inode))
204 		return -EACCES;
205 
206 	ret = mnt_want_write_file(file);
207 	if (ret)
208 		return ret;
209 
210 	mutex_lock(&inode->i_mutex);
211 
212 	ip_oldflags = ip->flags;
213 	i_oldflags = inode->i_flags;
214 	mode = inode->i_mode;
215 
216 	flags = btrfs_mask_flags(inode->i_mode, flags);
217 	oldflags = btrfs_flags_to_ioctl(ip->flags);
218 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
219 		if (!capable(CAP_LINUX_IMMUTABLE)) {
220 			ret = -EPERM;
221 			goto out_unlock;
222 		}
223 	}
224 
225 	if (flags & FS_SYNC_FL)
226 		ip->flags |= BTRFS_INODE_SYNC;
227 	else
228 		ip->flags &= ~BTRFS_INODE_SYNC;
229 	if (flags & FS_IMMUTABLE_FL)
230 		ip->flags |= BTRFS_INODE_IMMUTABLE;
231 	else
232 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
233 	if (flags & FS_APPEND_FL)
234 		ip->flags |= BTRFS_INODE_APPEND;
235 	else
236 		ip->flags &= ~BTRFS_INODE_APPEND;
237 	if (flags & FS_NODUMP_FL)
238 		ip->flags |= BTRFS_INODE_NODUMP;
239 	else
240 		ip->flags &= ~BTRFS_INODE_NODUMP;
241 	if (flags & FS_NOATIME_FL)
242 		ip->flags |= BTRFS_INODE_NOATIME;
243 	else
244 		ip->flags &= ~BTRFS_INODE_NOATIME;
245 	if (flags & FS_DIRSYNC_FL)
246 		ip->flags |= BTRFS_INODE_DIRSYNC;
247 	else
248 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
249 	if (flags & FS_NOCOW_FL) {
250 		if (S_ISREG(mode)) {
251 			/*
252 			 * It's safe to turn csums off here, no extents exist.
253 			 * Otherwise we want the flag to reflect the real COW
254 			 * status of the file and will not set it.
255 			 */
256 			if (inode->i_size == 0)
257 				ip->flags |= BTRFS_INODE_NODATACOW
258 					   | BTRFS_INODE_NODATASUM;
259 		} else {
260 			ip->flags |= BTRFS_INODE_NODATACOW;
261 		}
262 	} else {
263 		/*
264 		 * Revert back under same assuptions as above
265 		 */
266 		if (S_ISREG(mode)) {
267 			if (inode->i_size == 0)
268 				ip->flags &= ~(BTRFS_INODE_NODATACOW
269 				             | BTRFS_INODE_NODATASUM);
270 		} else {
271 			ip->flags &= ~BTRFS_INODE_NODATACOW;
272 		}
273 	}
274 
275 	/*
276 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
277 	 * flag may be changed automatically if compression code won't make
278 	 * things smaller.
279 	 */
280 	if (flags & FS_NOCOMP_FL) {
281 		ip->flags &= ~BTRFS_INODE_COMPRESS;
282 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
283 	} else if (flags & FS_COMPR_FL) {
284 		ip->flags |= BTRFS_INODE_COMPRESS;
285 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
286 	} else {
287 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
288 	}
289 
290 	trans = btrfs_start_transaction(root, 1);
291 	if (IS_ERR(trans)) {
292 		ret = PTR_ERR(trans);
293 		goto out_drop;
294 	}
295 
296 	btrfs_update_iflags(inode);
297 	inode_inc_iversion(inode);
298 	inode->i_ctime = CURRENT_TIME;
299 	ret = btrfs_update_inode(trans, root, inode);
300 
301 	btrfs_end_transaction(trans, root);
302  out_drop:
303 	if (ret) {
304 		ip->flags = ip_oldflags;
305 		inode->i_flags = i_oldflags;
306 	}
307 
308  out_unlock:
309 	mutex_unlock(&inode->i_mutex);
310 	mnt_drop_write_file(file);
311 	return ret;
312 }
313 
314 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
315 {
316 	struct inode *inode = file_inode(file);
317 
318 	return put_user(inode->i_generation, arg);
319 }
320 
321 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
322 {
323 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
324 	struct btrfs_device *device;
325 	struct request_queue *q;
326 	struct fstrim_range range;
327 	u64 minlen = ULLONG_MAX;
328 	u64 num_devices = 0;
329 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
330 	int ret;
331 
332 	if (!capable(CAP_SYS_ADMIN))
333 		return -EPERM;
334 
335 	rcu_read_lock();
336 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
337 				dev_list) {
338 		if (!device->bdev)
339 			continue;
340 		q = bdev_get_queue(device->bdev);
341 		if (blk_queue_discard(q)) {
342 			num_devices++;
343 			minlen = min((u64)q->limits.discard_granularity,
344 				     minlen);
345 		}
346 	}
347 	rcu_read_unlock();
348 
349 	if (!num_devices)
350 		return -EOPNOTSUPP;
351 	if (copy_from_user(&range, arg, sizeof(range)))
352 		return -EFAULT;
353 	if (range.start > total_bytes ||
354 	    range.len < fs_info->sb->s_blocksize)
355 		return -EINVAL;
356 
357 	range.len = min(range.len, total_bytes - range.start);
358 	range.minlen = max(range.minlen, minlen);
359 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
360 	if (ret < 0)
361 		return ret;
362 
363 	if (copy_to_user(arg, &range, sizeof(range)))
364 		return -EFAULT;
365 
366 	return 0;
367 }
368 
369 int btrfs_is_empty_uuid(u8 *uuid)
370 {
371 	int i;
372 
373 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
374 		if (uuid[i])
375 			return 0;
376 	}
377 	return 1;
378 }
379 
380 static noinline int create_subvol(struct inode *dir,
381 				  struct dentry *dentry,
382 				  char *name, int namelen,
383 				  u64 *async_transid,
384 				  struct btrfs_qgroup_inherit *inherit)
385 {
386 	struct btrfs_trans_handle *trans;
387 	struct btrfs_key key;
388 	struct btrfs_root_item root_item;
389 	struct btrfs_inode_item *inode_item;
390 	struct extent_buffer *leaf;
391 	struct btrfs_root *root = BTRFS_I(dir)->root;
392 	struct btrfs_root *new_root;
393 	struct btrfs_block_rsv block_rsv;
394 	struct timespec cur_time = CURRENT_TIME;
395 	int ret;
396 	int err;
397 	u64 objectid;
398 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
399 	u64 index = 0;
400 	u64 qgroup_reserved;
401 	uuid_le new_uuid;
402 
403 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
404 	if (ret)
405 		return ret;
406 
407 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
408 	/*
409 	 * The same as the snapshot creation, please see the comment
410 	 * of create_snapshot().
411 	 */
412 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
413 					       8, &qgroup_reserved, false);
414 	if (ret)
415 		return ret;
416 
417 	trans = btrfs_start_transaction(root, 0);
418 	if (IS_ERR(trans)) {
419 		ret = PTR_ERR(trans);
420 		goto out;
421 	}
422 	trans->block_rsv = &block_rsv;
423 	trans->bytes_reserved = block_rsv.size;
424 
425 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
426 	if (ret)
427 		goto fail;
428 
429 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
430 				      0, objectid, NULL, 0, 0, 0);
431 	if (IS_ERR(leaf)) {
432 		ret = PTR_ERR(leaf);
433 		goto fail;
434 	}
435 
436 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
437 	btrfs_set_header_bytenr(leaf, leaf->start);
438 	btrfs_set_header_generation(leaf, trans->transid);
439 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
440 	btrfs_set_header_owner(leaf, objectid);
441 
442 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
443 			    BTRFS_FSID_SIZE);
444 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
445 			    btrfs_header_chunk_tree_uuid(leaf),
446 			    BTRFS_UUID_SIZE);
447 	btrfs_mark_buffer_dirty(leaf);
448 
449 	memset(&root_item, 0, sizeof(root_item));
450 
451 	inode_item = &root_item.inode;
452 	btrfs_set_stack_inode_generation(inode_item, 1);
453 	btrfs_set_stack_inode_size(inode_item, 3);
454 	btrfs_set_stack_inode_nlink(inode_item, 1);
455 	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
456 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
457 
458 	btrfs_set_root_flags(&root_item, 0);
459 	btrfs_set_root_limit(&root_item, 0);
460 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
461 
462 	btrfs_set_root_bytenr(&root_item, leaf->start);
463 	btrfs_set_root_generation(&root_item, trans->transid);
464 	btrfs_set_root_level(&root_item, 0);
465 	btrfs_set_root_refs(&root_item, 1);
466 	btrfs_set_root_used(&root_item, leaf->len);
467 	btrfs_set_root_last_snapshot(&root_item, 0);
468 
469 	btrfs_set_root_generation_v2(&root_item,
470 			btrfs_root_generation(&root_item));
471 	uuid_le_gen(&new_uuid);
472 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
473 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
474 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
475 	root_item.ctime = root_item.otime;
476 	btrfs_set_root_ctransid(&root_item, trans->transid);
477 	btrfs_set_root_otransid(&root_item, trans->transid);
478 
479 	btrfs_tree_unlock(leaf);
480 	free_extent_buffer(leaf);
481 	leaf = NULL;
482 
483 	btrfs_set_root_dirid(&root_item, new_dirid);
484 
485 	key.objectid = objectid;
486 	key.offset = 0;
487 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
488 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
489 				&root_item);
490 	if (ret)
491 		goto fail;
492 
493 	key.offset = (u64)-1;
494 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
495 	if (IS_ERR(new_root)) {
496 		btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
497 		ret = PTR_ERR(new_root);
498 		goto fail;
499 	}
500 
501 	btrfs_record_root_in_trans(trans, new_root);
502 
503 	ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
504 	if (ret) {
505 		/* We potentially lose an unused inode item here */
506 		btrfs_abort_transaction(trans, root, ret);
507 		goto fail;
508 	}
509 
510 	/*
511 	 * insert the directory item
512 	 */
513 	ret = btrfs_set_inode_index(dir, &index);
514 	if (ret) {
515 		btrfs_abort_transaction(trans, root, ret);
516 		goto fail;
517 	}
518 
519 	ret = btrfs_insert_dir_item(trans, root,
520 				    name, namelen, dir, &key,
521 				    BTRFS_FT_DIR, index);
522 	if (ret) {
523 		btrfs_abort_transaction(trans, root, ret);
524 		goto fail;
525 	}
526 
527 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
528 	ret = btrfs_update_inode(trans, root, dir);
529 	BUG_ON(ret);
530 
531 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
532 				 objectid, root->root_key.objectid,
533 				 btrfs_ino(dir), index, name, namelen);
534 	BUG_ON(ret);
535 
536 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
537 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
538 				  objectid);
539 	if (ret)
540 		btrfs_abort_transaction(trans, root, ret);
541 
542 fail:
543 	trans->block_rsv = NULL;
544 	trans->bytes_reserved = 0;
545 	if (async_transid) {
546 		*async_transid = trans->transid;
547 		err = btrfs_commit_transaction_async(trans, root, 1);
548 		if (err)
549 			err = btrfs_commit_transaction(trans, root);
550 	} else {
551 		err = btrfs_commit_transaction(trans, root);
552 	}
553 	if (err && !ret)
554 		ret = err;
555 
556 	if (!ret)
557 		d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
558 out:
559 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
560 	return ret;
561 }
562 
563 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
564 			   struct dentry *dentry, char *name, int namelen,
565 			   u64 *async_transid, bool readonly,
566 			   struct btrfs_qgroup_inherit *inherit)
567 {
568 	struct inode *inode;
569 	struct btrfs_pending_snapshot *pending_snapshot;
570 	struct btrfs_trans_handle *trans;
571 	int ret;
572 
573 	if (!root->ref_cows)
574 		return -EINVAL;
575 
576 	ret = btrfs_start_delalloc_inodes(root, 0);
577 	if (ret)
578 		return ret;
579 
580 	btrfs_wait_ordered_extents(root, -1);
581 
582 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
583 	if (!pending_snapshot)
584 		return -ENOMEM;
585 
586 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
587 			     BTRFS_BLOCK_RSV_TEMP);
588 	/*
589 	 * 1 - parent dir inode
590 	 * 2 - dir entries
591 	 * 1 - root item
592 	 * 2 - root ref/backref
593 	 * 1 - root of snapshot
594 	 * 1 - UUID item
595 	 */
596 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
597 					&pending_snapshot->block_rsv, 8,
598 					&pending_snapshot->qgroup_reserved,
599 					false);
600 	if (ret)
601 		goto out;
602 
603 	pending_snapshot->dentry = dentry;
604 	pending_snapshot->root = root;
605 	pending_snapshot->readonly = readonly;
606 	pending_snapshot->dir = dir;
607 	pending_snapshot->inherit = inherit;
608 
609 	trans = btrfs_start_transaction(root, 0);
610 	if (IS_ERR(trans)) {
611 		ret = PTR_ERR(trans);
612 		goto fail;
613 	}
614 
615 	spin_lock(&root->fs_info->trans_lock);
616 	list_add(&pending_snapshot->list,
617 		 &trans->transaction->pending_snapshots);
618 	spin_unlock(&root->fs_info->trans_lock);
619 	if (async_transid) {
620 		*async_transid = trans->transid;
621 		ret = btrfs_commit_transaction_async(trans,
622 				     root->fs_info->extent_root, 1);
623 		if (ret)
624 			ret = btrfs_commit_transaction(trans, root);
625 	} else {
626 		ret = btrfs_commit_transaction(trans,
627 					       root->fs_info->extent_root);
628 	}
629 	if (ret)
630 		goto fail;
631 
632 	ret = pending_snapshot->error;
633 	if (ret)
634 		goto fail;
635 
636 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
637 	if (ret)
638 		goto fail;
639 
640 	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
641 	if (IS_ERR(inode)) {
642 		ret = PTR_ERR(inode);
643 		goto fail;
644 	}
645 	BUG_ON(!inode);
646 	d_instantiate(dentry, inode);
647 	ret = 0;
648 fail:
649 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
650 					 &pending_snapshot->block_rsv,
651 					 pending_snapshot->qgroup_reserved);
652 out:
653 	kfree(pending_snapshot);
654 	return ret;
655 }
656 
657 /*  copy of check_sticky in fs/namei.c()
658 * It's inline, so penalty for filesystems that don't use sticky bit is
659 * minimal.
660 */
661 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
662 {
663 	kuid_t fsuid = current_fsuid();
664 
665 	if (!(dir->i_mode & S_ISVTX))
666 		return 0;
667 	if (uid_eq(inode->i_uid, fsuid))
668 		return 0;
669 	if (uid_eq(dir->i_uid, fsuid))
670 		return 0;
671 	return !capable(CAP_FOWNER);
672 }
673 
674 /*  copy of may_delete in fs/namei.c()
675  *	Check whether we can remove a link victim from directory dir, check
676  *  whether the type of victim is right.
677  *  1. We can't do it if dir is read-only (done in permission())
678  *  2. We should have write and exec permissions on dir
679  *  3. We can't remove anything from append-only dir
680  *  4. We can't do anything with immutable dir (done in permission())
681  *  5. If the sticky bit on dir is set we should either
682  *	a. be owner of dir, or
683  *	b. be owner of victim, or
684  *	c. have CAP_FOWNER capability
685  *  6. If the victim is append-only or immutable we can't do antyhing with
686  *     links pointing to it.
687  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
688  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
689  *  9. We can't remove a root or mountpoint.
690  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
691  *     nfs_async_unlink().
692  */
693 
694 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
695 {
696 	int error;
697 
698 	if (!victim->d_inode)
699 		return -ENOENT;
700 
701 	BUG_ON(victim->d_parent->d_inode != dir);
702 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
703 
704 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
705 	if (error)
706 		return error;
707 	if (IS_APPEND(dir))
708 		return -EPERM;
709 	if (btrfs_check_sticky(dir, victim->d_inode)||
710 		IS_APPEND(victim->d_inode)||
711 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
712 		return -EPERM;
713 	if (isdir) {
714 		if (!S_ISDIR(victim->d_inode->i_mode))
715 			return -ENOTDIR;
716 		if (IS_ROOT(victim))
717 			return -EBUSY;
718 	} else if (S_ISDIR(victim->d_inode->i_mode))
719 		return -EISDIR;
720 	if (IS_DEADDIR(dir))
721 		return -ENOENT;
722 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
723 		return -EBUSY;
724 	return 0;
725 }
726 
727 /* copy of may_create in fs/namei.c() */
728 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
729 {
730 	if (child->d_inode)
731 		return -EEXIST;
732 	if (IS_DEADDIR(dir))
733 		return -ENOENT;
734 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
735 }
736 
737 /*
738  * Create a new subvolume below @parent.  This is largely modeled after
739  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
740  * inside this filesystem so it's quite a bit simpler.
741  */
742 static noinline int btrfs_mksubvol(struct path *parent,
743 				   char *name, int namelen,
744 				   struct btrfs_root *snap_src,
745 				   u64 *async_transid, bool readonly,
746 				   struct btrfs_qgroup_inherit *inherit)
747 {
748 	struct inode *dir  = parent->dentry->d_inode;
749 	struct dentry *dentry;
750 	int error;
751 
752 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
753 	if (error == -EINTR)
754 		return error;
755 
756 	dentry = lookup_one_len(name, parent->dentry, namelen);
757 	error = PTR_ERR(dentry);
758 	if (IS_ERR(dentry))
759 		goto out_unlock;
760 
761 	error = -EEXIST;
762 	if (dentry->d_inode)
763 		goto out_dput;
764 
765 	error = btrfs_may_create(dir, dentry);
766 	if (error)
767 		goto out_dput;
768 
769 	/*
770 	 * even if this name doesn't exist, we may get hash collisions.
771 	 * check for them now when we can safely fail
772 	 */
773 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
774 					       dir->i_ino, name,
775 					       namelen);
776 	if (error)
777 		goto out_dput;
778 
779 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
780 
781 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
782 		goto out_up_read;
783 
784 	if (snap_src) {
785 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
786 					async_transid, readonly, inherit);
787 	} else {
788 		error = create_subvol(dir, dentry, name, namelen,
789 				      async_transid, inherit);
790 	}
791 	if (!error)
792 		fsnotify_mkdir(dir, dentry);
793 out_up_read:
794 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
795 out_dput:
796 	dput(dentry);
797 out_unlock:
798 	mutex_unlock(&dir->i_mutex);
799 	return error;
800 }
801 
802 /*
803  * When we're defragging a range, we don't want to kick it off again
804  * if it is really just waiting for delalloc to send it down.
805  * If we find a nice big extent or delalloc range for the bytes in the
806  * file you want to defrag, we return 0 to let you know to skip this
807  * part of the file
808  */
809 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
810 {
811 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
812 	struct extent_map *em = NULL;
813 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
814 	u64 end;
815 
816 	read_lock(&em_tree->lock);
817 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
818 	read_unlock(&em_tree->lock);
819 
820 	if (em) {
821 		end = extent_map_end(em);
822 		free_extent_map(em);
823 		if (end - offset > thresh)
824 			return 0;
825 	}
826 	/* if we already have a nice delalloc here, just stop */
827 	thresh /= 2;
828 	end = count_range_bits(io_tree, &offset, offset + thresh,
829 			       thresh, EXTENT_DELALLOC, 1);
830 	if (end >= thresh)
831 		return 0;
832 	return 1;
833 }
834 
835 /*
836  * helper function to walk through a file and find extents
837  * newer than a specific transid, and smaller than thresh.
838  *
839  * This is used by the defragging code to find new and small
840  * extents
841  */
842 static int find_new_extents(struct btrfs_root *root,
843 			    struct inode *inode, u64 newer_than,
844 			    u64 *off, int thresh)
845 {
846 	struct btrfs_path *path;
847 	struct btrfs_key min_key;
848 	struct extent_buffer *leaf;
849 	struct btrfs_file_extent_item *extent;
850 	int type;
851 	int ret;
852 	u64 ino = btrfs_ino(inode);
853 
854 	path = btrfs_alloc_path();
855 	if (!path)
856 		return -ENOMEM;
857 
858 	min_key.objectid = ino;
859 	min_key.type = BTRFS_EXTENT_DATA_KEY;
860 	min_key.offset = *off;
861 
862 	path->keep_locks = 1;
863 
864 	while (1) {
865 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
866 		if (ret != 0)
867 			goto none;
868 		if (min_key.objectid != ino)
869 			goto none;
870 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
871 			goto none;
872 
873 		leaf = path->nodes[0];
874 		extent = btrfs_item_ptr(leaf, path->slots[0],
875 					struct btrfs_file_extent_item);
876 
877 		type = btrfs_file_extent_type(leaf, extent);
878 		if (type == BTRFS_FILE_EXTENT_REG &&
879 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
880 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
881 			*off = min_key.offset;
882 			btrfs_free_path(path);
883 			return 0;
884 		}
885 
886 		if (min_key.offset == (u64)-1)
887 			goto none;
888 
889 		min_key.offset++;
890 		btrfs_release_path(path);
891 	}
892 none:
893 	btrfs_free_path(path);
894 	return -ENOENT;
895 }
896 
897 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
898 {
899 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
900 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
901 	struct extent_map *em;
902 	u64 len = PAGE_CACHE_SIZE;
903 
904 	/*
905 	 * hopefully we have this extent in the tree already, try without
906 	 * the full extent lock
907 	 */
908 	read_lock(&em_tree->lock);
909 	em = lookup_extent_mapping(em_tree, start, len);
910 	read_unlock(&em_tree->lock);
911 
912 	if (!em) {
913 		/* get the big lock and read metadata off disk */
914 		lock_extent(io_tree, start, start + len - 1);
915 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
916 		unlock_extent(io_tree, start, start + len - 1);
917 
918 		if (IS_ERR(em))
919 			return NULL;
920 	}
921 
922 	return em;
923 }
924 
925 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
926 {
927 	struct extent_map *next;
928 	bool ret = true;
929 
930 	/* this is the last extent */
931 	if (em->start + em->len >= i_size_read(inode))
932 		return false;
933 
934 	next = defrag_lookup_extent(inode, em->start + em->len);
935 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
936 		ret = false;
937 
938 	free_extent_map(next);
939 	return ret;
940 }
941 
942 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
943 			       u64 *last_len, u64 *skip, u64 *defrag_end,
944 			       int compress)
945 {
946 	struct extent_map *em;
947 	int ret = 1;
948 	bool next_mergeable = true;
949 
950 	/*
951 	 * make sure that once we start defragging an extent, we keep on
952 	 * defragging it
953 	 */
954 	if (start < *defrag_end)
955 		return 1;
956 
957 	*skip = 0;
958 
959 	em = defrag_lookup_extent(inode, start);
960 	if (!em)
961 		return 0;
962 
963 	/* this will cover holes, and inline extents */
964 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
965 		ret = 0;
966 		goto out;
967 	}
968 
969 	next_mergeable = defrag_check_next_extent(inode, em);
970 
971 	/*
972 	 * we hit a real extent, if it is big or the next extent is not a
973 	 * real extent, don't bother defragging it
974 	 */
975 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
976 	    (em->len >= thresh || !next_mergeable))
977 		ret = 0;
978 out:
979 	/*
980 	 * last_len ends up being a counter of how many bytes we've defragged.
981 	 * every time we choose not to defrag an extent, we reset *last_len
982 	 * so that the next tiny extent will force a defrag.
983 	 *
984 	 * The end result of this is that tiny extents before a single big
985 	 * extent will force at least part of that big extent to be defragged.
986 	 */
987 	if (ret) {
988 		*defrag_end = extent_map_end(em);
989 	} else {
990 		*last_len = 0;
991 		*skip = extent_map_end(em);
992 		*defrag_end = 0;
993 	}
994 
995 	free_extent_map(em);
996 	return ret;
997 }
998 
999 /*
1000  * it doesn't do much good to defrag one or two pages
1001  * at a time.  This pulls in a nice chunk of pages
1002  * to COW and defrag.
1003  *
1004  * It also makes sure the delalloc code has enough
1005  * dirty data to avoid making new small extents as part
1006  * of the defrag
1007  *
1008  * It's a good idea to start RA on this range
1009  * before calling this.
1010  */
1011 static int cluster_pages_for_defrag(struct inode *inode,
1012 				    struct page **pages,
1013 				    unsigned long start_index,
1014 				    int num_pages)
1015 {
1016 	unsigned long file_end;
1017 	u64 isize = i_size_read(inode);
1018 	u64 page_start;
1019 	u64 page_end;
1020 	u64 page_cnt;
1021 	int ret;
1022 	int i;
1023 	int i_done;
1024 	struct btrfs_ordered_extent *ordered;
1025 	struct extent_state *cached_state = NULL;
1026 	struct extent_io_tree *tree;
1027 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1028 
1029 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1030 	if (!isize || start_index > file_end)
1031 		return 0;
1032 
1033 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1034 
1035 	ret = btrfs_delalloc_reserve_space(inode,
1036 					   page_cnt << PAGE_CACHE_SHIFT);
1037 	if (ret)
1038 		return ret;
1039 	i_done = 0;
1040 	tree = &BTRFS_I(inode)->io_tree;
1041 
1042 	/* step one, lock all the pages */
1043 	for (i = 0; i < page_cnt; i++) {
1044 		struct page *page;
1045 again:
1046 		page = find_or_create_page(inode->i_mapping,
1047 					   start_index + i, mask);
1048 		if (!page)
1049 			break;
1050 
1051 		page_start = page_offset(page);
1052 		page_end = page_start + PAGE_CACHE_SIZE - 1;
1053 		while (1) {
1054 			lock_extent(tree, page_start, page_end);
1055 			ordered = btrfs_lookup_ordered_extent(inode,
1056 							      page_start);
1057 			unlock_extent(tree, page_start, page_end);
1058 			if (!ordered)
1059 				break;
1060 
1061 			unlock_page(page);
1062 			btrfs_start_ordered_extent(inode, ordered, 1);
1063 			btrfs_put_ordered_extent(ordered);
1064 			lock_page(page);
1065 			/*
1066 			 * we unlocked the page above, so we need check if
1067 			 * it was released or not.
1068 			 */
1069 			if (page->mapping != inode->i_mapping) {
1070 				unlock_page(page);
1071 				page_cache_release(page);
1072 				goto again;
1073 			}
1074 		}
1075 
1076 		if (!PageUptodate(page)) {
1077 			btrfs_readpage(NULL, page);
1078 			lock_page(page);
1079 			if (!PageUptodate(page)) {
1080 				unlock_page(page);
1081 				page_cache_release(page);
1082 				ret = -EIO;
1083 				break;
1084 			}
1085 		}
1086 
1087 		if (page->mapping != inode->i_mapping) {
1088 			unlock_page(page);
1089 			page_cache_release(page);
1090 			goto again;
1091 		}
1092 
1093 		pages[i] = page;
1094 		i_done++;
1095 	}
1096 	if (!i_done || ret)
1097 		goto out;
1098 
1099 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1100 		goto out;
1101 
1102 	/*
1103 	 * so now we have a nice long stream of locked
1104 	 * and up to date pages, lets wait on them
1105 	 */
1106 	for (i = 0; i < i_done; i++)
1107 		wait_on_page_writeback(pages[i]);
1108 
1109 	page_start = page_offset(pages[0]);
1110 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1111 
1112 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1113 			 page_start, page_end - 1, 0, &cached_state);
1114 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1115 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1116 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1117 			  &cached_state, GFP_NOFS);
1118 
1119 	if (i_done != page_cnt) {
1120 		spin_lock(&BTRFS_I(inode)->lock);
1121 		BTRFS_I(inode)->outstanding_extents++;
1122 		spin_unlock(&BTRFS_I(inode)->lock);
1123 		btrfs_delalloc_release_space(inode,
1124 				     (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1125 	}
1126 
1127 
1128 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1129 			  &cached_state, GFP_NOFS);
1130 
1131 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1132 			     page_start, page_end - 1, &cached_state,
1133 			     GFP_NOFS);
1134 
1135 	for (i = 0; i < i_done; i++) {
1136 		clear_page_dirty_for_io(pages[i]);
1137 		ClearPageChecked(pages[i]);
1138 		set_page_extent_mapped(pages[i]);
1139 		set_page_dirty(pages[i]);
1140 		unlock_page(pages[i]);
1141 		page_cache_release(pages[i]);
1142 	}
1143 	return i_done;
1144 out:
1145 	for (i = 0; i < i_done; i++) {
1146 		unlock_page(pages[i]);
1147 		page_cache_release(pages[i]);
1148 	}
1149 	btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1150 	return ret;
1151 
1152 }
1153 
1154 int btrfs_defrag_file(struct inode *inode, struct file *file,
1155 		      struct btrfs_ioctl_defrag_range_args *range,
1156 		      u64 newer_than, unsigned long max_to_defrag)
1157 {
1158 	struct btrfs_root *root = BTRFS_I(inode)->root;
1159 	struct file_ra_state *ra = NULL;
1160 	unsigned long last_index;
1161 	u64 isize = i_size_read(inode);
1162 	u64 last_len = 0;
1163 	u64 skip = 0;
1164 	u64 defrag_end = 0;
1165 	u64 newer_off = range->start;
1166 	unsigned long i;
1167 	unsigned long ra_index = 0;
1168 	int ret;
1169 	int defrag_count = 0;
1170 	int compress_type = BTRFS_COMPRESS_ZLIB;
1171 	int extent_thresh = range->extent_thresh;
1172 	int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1173 	int cluster = max_cluster;
1174 	u64 new_align = ~((u64)128 * 1024 - 1);
1175 	struct page **pages = NULL;
1176 
1177 	if (isize == 0)
1178 		return 0;
1179 
1180 	if (range->start >= isize)
1181 		return -EINVAL;
1182 
1183 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1184 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1185 			return -EINVAL;
1186 		if (range->compress_type)
1187 			compress_type = range->compress_type;
1188 	}
1189 
1190 	if (extent_thresh == 0)
1191 		extent_thresh = 256 * 1024;
1192 
1193 	/*
1194 	 * if we were not given a file, allocate a readahead
1195 	 * context
1196 	 */
1197 	if (!file) {
1198 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1199 		if (!ra)
1200 			return -ENOMEM;
1201 		file_ra_state_init(ra, inode->i_mapping);
1202 	} else {
1203 		ra = &file->f_ra;
1204 	}
1205 
1206 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1207 			GFP_NOFS);
1208 	if (!pages) {
1209 		ret = -ENOMEM;
1210 		goto out_ra;
1211 	}
1212 
1213 	/* find the last page to defrag */
1214 	if (range->start + range->len > range->start) {
1215 		last_index = min_t(u64, isize - 1,
1216 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1217 	} else {
1218 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1219 	}
1220 
1221 	if (newer_than) {
1222 		ret = find_new_extents(root, inode, newer_than,
1223 				       &newer_off, 64 * 1024);
1224 		if (!ret) {
1225 			range->start = newer_off;
1226 			/*
1227 			 * we always align our defrag to help keep
1228 			 * the extents in the file evenly spaced
1229 			 */
1230 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1231 		} else
1232 			goto out_ra;
1233 	} else {
1234 		i = range->start >> PAGE_CACHE_SHIFT;
1235 	}
1236 	if (!max_to_defrag)
1237 		max_to_defrag = last_index + 1;
1238 
1239 	/*
1240 	 * make writeback starts from i, so the defrag range can be
1241 	 * written sequentially.
1242 	 */
1243 	if (i < inode->i_mapping->writeback_index)
1244 		inode->i_mapping->writeback_index = i;
1245 
1246 	while (i <= last_index && defrag_count < max_to_defrag &&
1247 	       (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1248 		PAGE_CACHE_SHIFT)) {
1249 		/*
1250 		 * make sure we stop running if someone unmounts
1251 		 * the FS
1252 		 */
1253 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1254 			break;
1255 
1256 		if (btrfs_defrag_cancelled(root->fs_info)) {
1257 			printk(KERN_DEBUG "btrfs: defrag_file cancelled\n");
1258 			ret = -EAGAIN;
1259 			break;
1260 		}
1261 
1262 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1263 					 extent_thresh, &last_len, &skip,
1264 					 &defrag_end, range->flags &
1265 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1266 			unsigned long next;
1267 			/*
1268 			 * the should_defrag function tells us how much to skip
1269 			 * bump our counter by the suggested amount
1270 			 */
1271 			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1272 			i = max(i + 1, next);
1273 			continue;
1274 		}
1275 
1276 		if (!newer_than) {
1277 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1278 				   PAGE_CACHE_SHIFT) - i;
1279 			cluster = min(cluster, max_cluster);
1280 		} else {
1281 			cluster = max_cluster;
1282 		}
1283 
1284 		if (i + cluster > ra_index) {
1285 			ra_index = max(i, ra_index);
1286 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1287 				       cluster);
1288 			ra_index += max_cluster;
1289 		}
1290 
1291 		mutex_lock(&inode->i_mutex);
1292 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1293 			BTRFS_I(inode)->force_compress = compress_type;
1294 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1295 		if (ret < 0) {
1296 			mutex_unlock(&inode->i_mutex);
1297 			goto out_ra;
1298 		}
1299 
1300 		defrag_count += ret;
1301 		balance_dirty_pages_ratelimited(inode->i_mapping);
1302 		mutex_unlock(&inode->i_mutex);
1303 
1304 		if (newer_than) {
1305 			if (newer_off == (u64)-1)
1306 				break;
1307 
1308 			if (ret > 0)
1309 				i += ret;
1310 
1311 			newer_off = max(newer_off + 1,
1312 					(u64)i << PAGE_CACHE_SHIFT);
1313 
1314 			ret = find_new_extents(root, inode,
1315 					       newer_than, &newer_off,
1316 					       64 * 1024);
1317 			if (!ret) {
1318 				range->start = newer_off;
1319 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1320 			} else {
1321 				break;
1322 			}
1323 		} else {
1324 			if (ret > 0) {
1325 				i += ret;
1326 				last_len += ret << PAGE_CACHE_SHIFT;
1327 			} else {
1328 				i++;
1329 				last_len = 0;
1330 			}
1331 		}
1332 	}
1333 
1334 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1335 		filemap_flush(inode->i_mapping);
1336 
1337 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1338 		/* the filemap_flush will queue IO into the worker threads, but
1339 		 * we have to make sure the IO is actually started and that
1340 		 * ordered extents get created before we return
1341 		 */
1342 		atomic_inc(&root->fs_info->async_submit_draining);
1343 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1344 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1345 			wait_event(root->fs_info->async_submit_wait,
1346 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1347 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1348 		}
1349 		atomic_dec(&root->fs_info->async_submit_draining);
1350 	}
1351 
1352 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1353 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1354 	}
1355 
1356 	ret = defrag_count;
1357 
1358 out_ra:
1359 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1360 		mutex_lock(&inode->i_mutex);
1361 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1362 		mutex_unlock(&inode->i_mutex);
1363 	}
1364 	if (!file)
1365 		kfree(ra);
1366 	kfree(pages);
1367 	return ret;
1368 }
1369 
1370 static noinline int btrfs_ioctl_resize(struct file *file,
1371 					void __user *arg)
1372 {
1373 	u64 new_size;
1374 	u64 old_size;
1375 	u64 devid = 1;
1376 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1377 	struct btrfs_ioctl_vol_args *vol_args;
1378 	struct btrfs_trans_handle *trans;
1379 	struct btrfs_device *device = NULL;
1380 	char *sizestr;
1381 	char *devstr = NULL;
1382 	int ret = 0;
1383 	int mod = 0;
1384 
1385 	if (!capable(CAP_SYS_ADMIN))
1386 		return -EPERM;
1387 
1388 	ret = mnt_want_write_file(file);
1389 	if (ret)
1390 		return ret;
1391 
1392 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1393 			1)) {
1394 		mnt_drop_write_file(file);
1395 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1396 	}
1397 
1398 	mutex_lock(&root->fs_info->volume_mutex);
1399 	vol_args = memdup_user(arg, sizeof(*vol_args));
1400 	if (IS_ERR(vol_args)) {
1401 		ret = PTR_ERR(vol_args);
1402 		goto out;
1403 	}
1404 
1405 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1406 
1407 	sizestr = vol_args->name;
1408 	devstr = strchr(sizestr, ':');
1409 	if (devstr) {
1410 		char *end;
1411 		sizestr = devstr + 1;
1412 		*devstr = '\0';
1413 		devstr = vol_args->name;
1414 		devid = simple_strtoull(devstr, &end, 10);
1415 		if (!devid) {
1416 			ret = -EINVAL;
1417 			goto out_free;
1418 		}
1419 		printk(KERN_INFO "btrfs: resizing devid %llu\n", devid);
1420 	}
1421 
1422 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1423 	if (!device) {
1424 		printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1425 		       devid);
1426 		ret = -ENODEV;
1427 		goto out_free;
1428 	}
1429 
1430 	if (!device->writeable) {
1431 		printk(KERN_INFO "btrfs: resizer unable to apply on "
1432 		       "readonly device %llu\n",
1433 		       devid);
1434 		ret = -EPERM;
1435 		goto out_free;
1436 	}
1437 
1438 	if (!strcmp(sizestr, "max"))
1439 		new_size = device->bdev->bd_inode->i_size;
1440 	else {
1441 		if (sizestr[0] == '-') {
1442 			mod = -1;
1443 			sizestr++;
1444 		} else if (sizestr[0] == '+') {
1445 			mod = 1;
1446 			sizestr++;
1447 		}
1448 		new_size = memparse(sizestr, NULL);
1449 		if (new_size == 0) {
1450 			ret = -EINVAL;
1451 			goto out_free;
1452 		}
1453 	}
1454 
1455 	if (device->is_tgtdev_for_dev_replace) {
1456 		ret = -EPERM;
1457 		goto out_free;
1458 	}
1459 
1460 	old_size = device->total_bytes;
1461 
1462 	if (mod < 0) {
1463 		if (new_size > old_size) {
1464 			ret = -EINVAL;
1465 			goto out_free;
1466 		}
1467 		new_size = old_size - new_size;
1468 	} else if (mod > 0) {
1469 		new_size = old_size + new_size;
1470 	}
1471 
1472 	if (new_size < 256 * 1024 * 1024) {
1473 		ret = -EINVAL;
1474 		goto out_free;
1475 	}
1476 	if (new_size > device->bdev->bd_inode->i_size) {
1477 		ret = -EFBIG;
1478 		goto out_free;
1479 	}
1480 
1481 	do_div(new_size, root->sectorsize);
1482 	new_size *= root->sectorsize;
1483 
1484 	printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1485 		      rcu_str_deref(device->name), new_size);
1486 
1487 	if (new_size > old_size) {
1488 		trans = btrfs_start_transaction(root, 0);
1489 		if (IS_ERR(trans)) {
1490 			ret = PTR_ERR(trans);
1491 			goto out_free;
1492 		}
1493 		ret = btrfs_grow_device(trans, device, new_size);
1494 		btrfs_commit_transaction(trans, root);
1495 	} else if (new_size < old_size) {
1496 		ret = btrfs_shrink_device(device, new_size);
1497 	} /* equal, nothing need to do */
1498 
1499 out_free:
1500 	kfree(vol_args);
1501 out:
1502 	mutex_unlock(&root->fs_info->volume_mutex);
1503 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1504 	mnt_drop_write_file(file);
1505 	return ret;
1506 }
1507 
1508 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1509 				char *name, unsigned long fd, int subvol,
1510 				u64 *transid, bool readonly,
1511 				struct btrfs_qgroup_inherit *inherit)
1512 {
1513 	int namelen;
1514 	int ret = 0;
1515 
1516 	ret = mnt_want_write_file(file);
1517 	if (ret)
1518 		goto out;
1519 
1520 	namelen = strlen(name);
1521 	if (strchr(name, '/')) {
1522 		ret = -EINVAL;
1523 		goto out_drop_write;
1524 	}
1525 
1526 	if (name[0] == '.' &&
1527 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1528 		ret = -EEXIST;
1529 		goto out_drop_write;
1530 	}
1531 
1532 	if (subvol) {
1533 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1534 				     NULL, transid, readonly, inherit);
1535 	} else {
1536 		struct fd src = fdget(fd);
1537 		struct inode *src_inode;
1538 		if (!src.file) {
1539 			ret = -EINVAL;
1540 			goto out_drop_write;
1541 		}
1542 
1543 		src_inode = file_inode(src.file);
1544 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1545 			printk(KERN_INFO "btrfs: Snapshot src from "
1546 			       "another FS\n");
1547 			ret = -EINVAL;
1548 		} else {
1549 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1550 					     BTRFS_I(src_inode)->root,
1551 					     transid, readonly, inherit);
1552 		}
1553 		fdput(src);
1554 	}
1555 out_drop_write:
1556 	mnt_drop_write_file(file);
1557 out:
1558 	return ret;
1559 }
1560 
1561 static noinline int btrfs_ioctl_snap_create(struct file *file,
1562 					    void __user *arg, int subvol)
1563 {
1564 	struct btrfs_ioctl_vol_args *vol_args;
1565 	int ret;
1566 
1567 	vol_args = memdup_user(arg, sizeof(*vol_args));
1568 	if (IS_ERR(vol_args))
1569 		return PTR_ERR(vol_args);
1570 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1571 
1572 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1573 					      vol_args->fd, subvol,
1574 					      NULL, false, NULL);
1575 
1576 	kfree(vol_args);
1577 	return ret;
1578 }
1579 
1580 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1581 					       void __user *arg, int subvol)
1582 {
1583 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1584 	int ret;
1585 	u64 transid = 0;
1586 	u64 *ptr = NULL;
1587 	bool readonly = false;
1588 	struct btrfs_qgroup_inherit *inherit = NULL;
1589 
1590 	vol_args = memdup_user(arg, sizeof(*vol_args));
1591 	if (IS_ERR(vol_args))
1592 		return PTR_ERR(vol_args);
1593 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1594 
1595 	if (vol_args->flags &
1596 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1597 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1598 		ret = -EOPNOTSUPP;
1599 		goto out;
1600 	}
1601 
1602 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1603 		ptr = &transid;
1604 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1605 		readonly = true;
1606 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1607 		if (vol_args->size > PAGE_CACHE_SIZE) {
1608 			ret = -EINVAL;
1609 			goto out;
1610 		}
1611 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1612 		if (IS_ERR(inherit)) {
1613 			ret = PTR_ERR(inherit);
1614 			goto out;
1615 		}
1616 	}
1617 
1618 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1619 					      vol_args->fd, subvol, ptr,
1620 					      readonly, inherit);
1621 
1622 	if (ret == 0 && ptr &&
1623 	    copy_to_user(arg +
1624 			 offsetof(struct btrfs_ioctl_vol_args_v2,
1625 				  transid), ptr, sizeof(*ptr)))
1626 		ret = -EFAULT;
1627 out:
1628 	kfree(vol_args);
1629 	kfree(inherit);
1630 	return ret;
1631 }
1632 
1633 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1634 						void __user *arg)
1635 {
1636 	struct inode *inode = file_inode(file);
1637 	struct btrfs_root *root = BTRFS_I(inode)->root;
1638 	int ret = 0;
1639 	u64 flags = 0;
1640 
1641 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1642 		return -EINVAL;
1643 
1644 	down_read(&root->fs_info->subvol_sem);
1645 	if (btrfs_root_readonly(root))
1646 		flags |= BTRFS_SUBVOL_RDONLY;
1647 	up_read(&root->fs_info->subvol_sem);
1648 
1649 	if (copy_to_user(arg, &flags, sizeof(flags)))
1650 		ret = -EFAULT;
1651 
1652 	return ret;
1653 }
1654 
1655 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1656 					      void __user *arg)
1657 {
1658 	struct inode *inode = file_inode(file);
1659 	struct btrfs_root *root = BTRFS_I(inode)->root;
1660 	struct btrfs_trans_handle *trans;
1661 	u64 root_flags;
1662 	u64 flags;
1663 	int ret = 0;
1664 
1665 	ret = mnt_want_write_file(file);
1666 	if (ret)
1667 		goto out;
1668 
1669 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1670 		ret = -EINVAL;
1671 		goto out_drop_write;
1672 	}
1673 
1674 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1675 		ret = -EFAULT;
1676 		goto out_drop_write;
1677 	}
1678 
1679 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1680 		ret = -EINVAL;
1681 		goto out_drop_write;
1682 	}
1683 
1684 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1685 		ret = -EOPNOTSUPP;
1686 		goto out_drop_write;
1687 	}
1688 
1689 	if (!inode_owner_or_capable(inode)) {
1690 		ret = -EACCES;
1691 		goto out_drop_write;
1692 	}
1693 
1694 	down_write(&root->fs_info->subvol_sem);
1695 
1696 	/* nothing to do */
1697 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1698 		goto out_drop_sem;
1699 
1700 	root_flags = btrfs_root_flags(&root->root_item);
1701 	if (flags & BTRFS_SUBVOL_RDONLY)
1702 		btrfs_set_root_flags(&root->root_item,
1703 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1704 	else
1705 		btrfs_set_root_flags(&root->root_item,
1706 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1707 
1708 	trans = btrfs_start_transaction(root, 1);
1709 	if (IS_ERR(trans)) {
1710 		ret = PTR_ERR(trans);
1711 		goto out_reset;
1712 	}
1713 
1714 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1715 				&root->root_key, &root->root_item);
1716 
1717 	btrfs_commit_transaction(trans, root);
1718 out_reset:
1719 	if (ret)
1720 		btrfs_set_root_flags(&root->root_item, root_flags);
1721 out_drop_sem:
1722 	up_write(&root->fs_info->subvol_sem);
1723 out_drop_write:
1724 	mnt_drop_write_file(file);
1725 out:
1726 	return ret;
1727 }
1728 
1729 /*
1730  * helper to check if the subvolume references other subvolumes
1731  */
1732 static noinline int may_destroy_subvol(struct btrfs_root *root)
1733 {
1734 	struct btrfs_path *path;
1735 	struct btrfs_dir_item *di;
1736 	struct btrfs_key key;
1737 	u64 dir_id;
1738 	int ret;
1739 
1740 	path = btrfs_alloc_path();
1741 	if (!path)
1742 		return -ENOMEM;
1743 
1744 	/* Make sure this root isn't set as the default subvol */
1745 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1746 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1747 				   dir_id, "default", 7, 0);
1748 	if (di && !IS_ERR(di)) {
1749 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1750 		if (key.objectid == root->root_key.objectid) {
1751 			ret = -ENOTEMPTY;
1752 			goto out;
1753 		}
1754 		btrfs_release_path(path);
1755 	}
1756 
1757 	key.objectid = root->root_key.objectid;
1758 	key.type = BTRFS_ROOT_REF_KEY;
1759 	key.offset = (u64)-1;
1760 
1761 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1762 				&key, path, 0, 0);
1763 	if (ret < 0)
1764 		goto out;
1765 	BUG_ON(ret == 0);
1766 
1767 	ret = 0;
1768 	if (path->slots[0] > 0) {
1769 		path->slots[0]--;
1770 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1771 		if (key.objectid == root->root_key.objectid &&
1772 		    key.type == BTRFS_ROOT_REF_KEY)
1773 			ret = -ENOTEMPTY;
1774 	}
1775 out:
1776 	btrfs_free_path(path);
1777 	return ret;
1778 }
1779 
1780 static noinline int key_in_sk(struct btrfs_key *key,
1781 			      struct btrfs_ioctl_search_key *sk)
1782 {
1783 	struct btrfs_key test;
1784 	int ret;
1785 
1786 	test.objectid = sk->min_objectid;
1787 	test.type = sk->min_type;
1788 	test.offset = sk->min_offset;
1789 
1790 	ret = btrfs_comp_cpu_keys(key, &test);
1791 	if (ret < 0)
1792 		return 0;
1793 
1794 	test.objectid = sk->max_objectid;
1795 	test.type = sk->max_type;
1796 	test.offset = sk->max_offset;
1797 
1798 	ret = btrfs_comp_cpu_keys(key, &test);
1799 	if (ret > 0)
1800 		return 0;
1801 	return 1;
1802 }
1803 
1804 static noinline int copy_to_sk(struct btrfs_root *root,
1805 			       struct btrfs_path *path,
1806 			       struct btrfs_key *key,
1807 			       struct btrfs_ioctl_search_key *sk,
1808 			       char *buf,
1809 			       unsigned long *sk_offset,
1810 			       int *num_found)
1811 {
1812 	u64 found_transid;
1813 	struct extent_buffer *leaf;
1814 	struct btrfs_ioctl_search_header sh;
1815 	unsigned long item_off;
1816 	unsigned long item_len;
1817 	int nritems;
1818 	int i;
1819 	int slot;
1820 	int ret = 0;
1821 
1822 	leaf = path->nodes[0];
1823 	slot = path->slots[0];
1824 	nritems = btrfs_header_nritems(leaf);
1825 
1826 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1827 		i = nritems;
1828 		goto advance_key;
1829 	}
1830 	found_transid = btrfs_header_generation(leaf);
1831 
1832 	for (i = slot; i < nritems; i++) {
1833 		item_off = btrfs_item_ptr_offset(leaf, i);
1834 		item_len = btrfs_item_size_nr(leaf, i);
1835 
1836 		btrfs_item_key_to_cpu(leaf, key, i);
1837 		if (!key_in_sk(key, sk))
1838 			continue;
1839 
1840 		if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1841 			item_len = 0;
1842 
1843 		if (sizeof(sh) + item_len + *sk_offset >
1844 		    BTRFS_SEARCH_ARGS_BUFSIZE) {
1845 			ret = 1;
1846 			goto overflow;
1847 		}
1848 
1849 		sh.objectid = key->objectid;
1850 		sh.offset = key->offset;
1851 		sh.type = key->type;
1852 		sh.len = item_len;
1853 		sh.transid = found_transid;
1854 
1855 		/* copy search result header */
1856 		memcpy(buf + *sk_offset, &sh, sizeof(sh));
1857 		*sk_offset += sizeof(sh);
1858 
1859 		if (item_len) {
1860 			char *p = buf + *sk_offset;
1861 			/* copy the item */
1862 			read_extent_buffer(leaf, p,
1863 					   item_off, item_len);
1864 			*sk_offset += item_len;
1865 		}
1866 		(*num_found)++;
1867 
1868 		if (*num_found >= sk->nr_items)
1869 			break;
1870 	}
1871 advance_key:
1872 	ret = 0;
1873 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1874 		key->offset++;
1875 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
1876 		key->offset = 0;
1877 		key->type++;
1878 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1879 		key->offset = 0;
1880 		key->type = 0;
1881 		key->objectid++;
1882 	} else
1883 		ret = 1;
1884 overflow:
1885 	return ret;
1886 }
1887 
1888 static noinline int search_ioctl(struct inode *inode,
1889 				 struct btrfs_ioctl_search_args *args)
1890 {
1891 	struct btrfs_root *root;
1892 	struct btrfs_key key;
1893 	struct btrfs_path *path;
1894 	struct btrfs_ioctl_search_key *sk = &args->key;
1895 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1896 	int ret;
1897 	int num_found = 0;
1898 	unsigned long sk_offset = 0;
1899 
1900 	path = btrfs_alloc_path();
1901 	if (!path)
1902 		return -ENOMEM;
1903 
1904 	if (sk->tree_id == 0) {
1905 		/* search the root of the inode that was passed */
1906 		root = BTRFS_I(inode)->root;
1907 	} else {
1908 		key.objectid = sk->tree_id;
1909 		key.type = BTRFS_ROOT_ITEM_KEY;
1910 		key.offset = (u64)-1;
1911 		root = btrfs_read_fs_root_no_name(info, &key);
1912 		if (IS_ERR(root)) {
1913 			printk(KERN_ERR "could not find root %llu\n",
1914 			       sk->tree_id);
1915 			btrfs_free_path(path);
1916 			return -ENOENT;
1917 		}
1918 	}
1919 
1920 	key.objectid = sk->min_objectid;
1921 	key.type = sk->min_type;
1922 	key.offset = sk->min_offset;
1923 
1924 	path->keep_locks = 1;
1925 
1926 	while (1) {
1927 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1928 		if (ret != 0) {
1929 			if (ret > 0)
1930 				ret = 0;
1931 			goto err;
1932 		}
1933 		ret = copy_to_sk(root, path, &key, sk, args->buf,
1934 				 &sk_offset, &num_found);
1935 		btrfs_release_path(path);
1936 		if (ret || num_found >= sk->nr_items)
1937 			break;
1938 
1939 	}
1940 	ret = 0;
1941 err:
1942 	sk->nr_items = num_found;
1943 	btrfs_free_path(path);
1944 	return ret;
1945 }
1946 
1947 static noinline int btrfs_ioctl_tree_search(struct file *file,
1948 					   void __user *argp)
1949 {
1950 	 struct btrfs_ioctl_search_args *args;
1951 	 struct inode *inode;
1952 	 int ret;
1953 
1954 	if (!capable(CAP_SYS_ADMIN))
1955 		return -EPERM;
1956 
1957 	args = memdup_user(argp, sizeof(*args));
1958 	if (IS_ERR(args))
1959 		return PTR_ERR(args);
1960 
1961 	inode = file_inode(file);
1962 	ret = search_ioctl(inode, args);
1963 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1964 		ret = -EFAULT;
1965 	kfree(args);
1966 	return ret;
1967 }
1968 
1969 /*
1970  * Search INODE_REFs to identify path name of 'dirid' directory
1971  * in a 'tree_id' tree. and sets path name to 'name'.
1972  */
1973 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1974 				u64 tree_id, u64 dirid, char *name)
1975 {
1976 	struct btrfs_root *root;
1977 	struct btrfs_key key;
1978 	char *ptr;
1979 	int ret = -1;
1980 	int slot;
1981 	int len;
1982 	int total_len = 0;
1983 	struct btrfs_inode_ref *iref;
1984 	struct extent_buffer *l;
1985 	struct btrfs_path *path;
1986 
1987 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1988 		name[0]='\0';
1989 		return 0;
1990 	}
1991 
1992 	path = btrfs_alloc_path();
1993 	if (!path)
1994 		return -ENOMEM;
1995 
1996 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1997 
1998 	key.objectid = tree_id;
1999 	key.type = BTRFS_ROOT_ITEM_KEY;
2000 	key.offset = (u64)-1;
2001 	root = btrfs_read_fs_root_no_name(info, &key);
2002 	if (IS_ERR(root)) {
2003 		printk(KERN_ERR "could not find root %llu\n", tree_id);
2004 		ret = -ENOENT;
2005 		goto out;
2006 	}
2007 
2008 	key.objectid = dirid;
2009 	key.type = BTRFS_INODE_REF_KEY;
2010 	key.offset = (u64)-1;
2011 
2012 	while (1) {
2013 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2014 		if (ret < 0)
2015 			goto out;
2016 		else if (ret > 0) {
2017 			ret = btrfs_previous_item(root, path, dirid,
2018 						  BTRFS_INODE_REF_KEY);
2019 			if (ret < 0)
2020 				goto out;
2021 			else if (ret > 0) {
2022 				ret = -ENOENT;
2023 				goto out;
2024 			}
2025 		}
2026 
2027 		l = path->nodes[0];
2028 		slot = path->slots[0];
2029 		btrfs_item_key_to_cpu(l, &key, slot);
2030 
2031 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2032 		len = btrfs_inode_ref_name_len(l, iref);
2033 		ptr -= len + 1;
2034 		total_len += len + 1;
2035 		if (ptr < name) {
2036 			ret = -ENAMETOOLONG;
2037 			goto out;
2038 		}
2039 
2040 		*(ptr + len) = '/';
2041 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2042 
2043 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2044 			break;
2045 
2046 		btrfs_release_path(path);
2047 		key.objectid = key.offset;
2048 		key.offset = (u64)-1;
2049 		dirid = key.objectid;
2050 	}
2051 	memmove(name, ptr, total_len);
2052 	name[total_len] = '\0';
2053 	ret = 0;
2054 out:
2055 	btrfs_free_path(path);
2056 	return ret;
2057 }
2058 
2059 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2060 					   void __user *argp)
2061 {
2062 	 struct btrfs_ioctl_ino_lookup_args *args;
2063 	 struct inode *inode;
2064 	 int ret;
2065 
2066 	if (!capable(CAP_SYS_ADMIN))
2067 		return -EPERM;
2068 
2069 	args = memdup_user(argp, sizeof(*args));
2070 	if (IS_ERR(args))
2071 		return PTR_ERR(args);
2072 
2073 	inode = file_inode(file);
2074 
2075 	if (args->treeid == 0)
2076 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2077 
2078 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2079 					args->treeid, args->objectid,
2080 					args->name);
2081 
2082 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2083 		ret = -EFAULT;
2084 
2085 	kfree(args);
2086 	return ret;
2087 }
2088 
2089 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2090 					     void __user *arg)
2091 {
2092 	struct dentry *parent = file->f_path.dentry;
2093 	struct dentry *dentry;
2094 	struct inode *dir = parent->d_inode;
2095 	struct inode *inode;
2096 	struct btrfs_root *root = BTRFS_I(dir)->root;
2097 	struct btrfs_root *dest = NULL;
2098 	struct btrfs_ioctl_vol_args *vol_args;
2099 	struct btrfs_trans_handle *trans;
2100 	struct btrfs_block_rsv block_rsv;
2101 	u64 qgroup_reserved;
2102 	int namelen;
2103 	int ret;
2104 	int err = 0;
2105 
2106 	vol_args = memdup_user(arg, sizeof(*vol_args));
2107 	if (IS_ERR(vol_args))
2108 		return PTR_ERR(vol_args);
2109 
2110 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2111 	namelen = strlen(vol_args->name);
2112 	if (strchr(vol_args->name, '/') ||
2113 	    strncmp(vol_args->name, "..", namelen) == 0) {
2114 		err = -EINVAL;
2115 		goto out;
2116 	}
2117 
2118 	err = mnt_want_write_file(file);
2119 	if (err)
2120 		goto out;
2121 
2122 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2123 	if (err == -EINTR)
2124 		goto out_drop_write;
2125 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2126 	if (IS_ERR(dentry)) {
2127 		err = PTR_ERR(dentry);
2128 		goto out_unlock_dir;
2129 	}
2130 
2131 	if (!dentry->d_inode) {
2132 		err = -ENOENT;
2133 		goto out_dput;
2134 	}
2135 
2136 	inode = dentry->d_inode;
2137 	dest = BTRFS_I(inode)->root;
2138 	if (!capable(CAP_SYS_ADMIN)) {
2139 		/*
2140 		 * Regular user.  Only allow this with a special mount
2141 		 * option, when the user has write+exec access to the
2142 		 * subvol root, and when rmdir(2) would have been
2143 		 * allowed.
2144 		 *
2145 		 * Note that this is _not_ check that the subvol is
2146 		 * empty or doesn't contain data that we wouldn't
2147 		 * otherwise be able to delete.
2148 		 *
2149 		 * Users who want to delete empty subvols should try
2150 		 * rmdir(2).
2151 		 */
2152 		err = -EPERM;
2153 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2154 			goto out_dput;
2155 
2156 		/*
2157 		 * Do not allow deletion if the parent dir is the same
2158 		 * as the dir to be deleted.  That means the ioctl
2159 		 * must be called on the dentry referencing the root
2160 		 * of the subvol, not a random directory contained
2161 		 * within it.
2162 		 */
2163 		err = -EINVAL;
2164 		if (root == dest)
2165 			goto out_dput;
2166 
2167 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2168 		if (err)
2169 			goto out_dput;
2170 	}
2171 
2172 	/* check if subvolume may be deleted by a user */
2173 	err = btrfs_may_delete(dir, dentry, 1);
2174 	if (err)
2175 		goto out_dput;
2176 
2177 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2178 		err = -EINVAL;
2179 		goto out_dput;
2180 	}
2181 
2182 	mutex_lock(&inode->i_mutex);
2183 	err = d_invalidate(dentry);
2184 	if (err)
2185 		goto out_unlock;
2186 
2187 	down_write(&root->fs_info->subvol_sem);
2188 
2189 	err = may_destroy_subvol(dest);
2190 	if (err)
2191 		goto out_up_write;
2192 
2193 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2194 	/*
2195 	 * One for dir inode, two for dir entries, two for root
2196 	 * ref/backref.
2197 	 */
2198 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2199 					       5, &qgroup_reserved, true);
2200 	if (err)
2201 		goto out_up_write;
2202 
2203 	trans = btrfs_start_transaction(root, 0);
2204 	if (IS_ERR(trans)) {
2205 		err = PTR_ERR(trans);
2206 		goto out_release;
2207 	}
2208 	trans->block_rsv = &block_rsv;
2209 	trans->bytes_reserved = block_rsv.size;
2210 
2211 	ret = btrfs_unlink_subvol(trans, root, dir,
2212 				dest->root_key.objectid,
2213 				dentry->d_name.name,
2214 				dentry->d_name.len);
2215 	if (ret) {
2216 		err = ret;
2217 		btrfs_abort_transaction(trans, root, ret);
2218 		goto out_end_trans;
2219 	}
2220 
2221 	btrfs_record_root_in_trans(trans, dest);
2222 
2223 	memset(&dest->root_item.drop_progress, 0,
2224 		sizeof(dest->root_item.drop_progress));
2225 	dest->root_item.drop_level = 0;
2226 	btrfs_set_root_refs(&dest->root_item, 0);
2227 
2228 	if (!xchg(&dest->orphan_item_inserted, 1)) {
2229 		ret = btrfs_insert_orphan_item(trans,
2230 					root->fs_info->tree_root,
2231 					dest->root_key.objectid);
2232 		if (ret) {
2233 			btrfs_abort_transaction(trans, root, ret);
2234 			err = ret;
2235 			goto out_end_trans;
2236 		}
2237 	}
2238 
2239 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2240 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2241 				  dest->root_key.objectid);
2242 	if (ret && ret != -ENOENT) {
2243 		btrfs_abort_transaction(trans, root, ret);
2244 		err = ret;
2245 		goto out_end_trans;
2246 	}
2247 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2248 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2249 					  dest->root_item.received_uuid,
2250 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2251 					  dest->root_key.objectid);
2252 		if (ret && ret != -ENOENT) {
2253 			btrfs_abort_transaction(trans, root, ret);
2254 			err = ret;
2255 			goto out_end_trans;
2256 		}
2257 	}
2258 
2259 out_end_trans:
2260 	trans->block_rsv = NULL;
2261 	trans->bytes_reserved = 0;
2262 	ret = btrfs_end_transaction(trans, root);
2263 	if (ret && !err)
2264 		err = ret;
2265 	inode->i_flags |= S_DEAD;
2266 out_release:
2267 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2268 out_up_write:
2269 	up_write(&root->fs_info->subvol_sem);
2270 out_unlock:
2271 	mutex_unlock(&inode->i_mutex);
2272 	if (!err) {
2273 		shrink_dcache_sb(root->fs_info->sb);
2274 		btrfs_invalidate_inodes(dest);
2275 		d_delete(dentry);
2276 
2277 		/* the last ref */
2278 		if (dest->cache_inode) {
2279 			iput(dest->cache_inode);
2280 			dest->cache_inode = NULL;
2281 		}
2282 	}
2283 out_dput:
2284 	dput(dentry);
2285 out_unlock_dir:
2286 	mutex_unlock(&dir->i_mutex);
2287 out_drop_write:
2288 	mnt_drop_write_file(file);
2289 out:
2290 	kfree(vol_args);
2291 	return err;
2292 }
2293 
2294 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2295 {
2296 	struct inode *inode = file_inode(file);
2297 	struct btrfs_root *root = BTRFS_I(inode)->root;
2298 	struct btrfs_ioctl_defrag_range_args *range;
2299 	int ret;
2300 
2301 	ret = mnt_want_write_file(file);
2302 	if (ret)
2303 		return ret;
2304 
2305 	if (btrfs_root_readonly(root)) {
2306 		ret = -EROFS;
2307 		goto out;
2308 	}
2309 
2310 	switch (inode->i_mode & S_IFMT) {
2311 	case S_IFDIR:
2312 		if (!capable(CAP_SYS_ADMIN)) {
2313 			ret = -EPERM;
2314 			goto out;
2315 		}
2316 		ret = btrfs_defrag_root(root);
2317 		if (ret)
2318 			goto out;
2319 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2320 		break;
2321 	case S_IFREG:
2322 		if (!(file->f_mode & FMODE_WRITE)) {
2323 			ret = -EINVAL;
2324 			goto out;
2325 		}
2326 
2327 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2328 		if (!range) {
2329 			ret = -ENOMEM;
2330 			goto out;
2331 		}
2332 
2333 		if (argp) {
2334 			if (copy_from_user(range, argp,
2335 					   sizeof(*range))) {
2336 				ret = -EFAULT;
2337 				kfree(range);
2338 				goto out;
2339 			}
2340 			/* compression requires us to start the IO */
2341 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2342 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2343 				range->extent_thresh = (u32)-1;
2344 			}
2345 		} else {
2346 			/* the rest are all set to zero by kzalloc */
2347 			range->len = (u64)-1;
2348 		}
2349 		ret = btrfs_defrag_file(file_inode(file), file,
2350 					range, 0, 0);
2351 		if (ret > 0)
2352 			ret = 0;
2353 		kfree(range);
2354 		break;
2355 	default:
2356 		ret = -EINVAL;
2357 	}
2358 out:
2359 	mnt_drop_write_file(file);
2360 	return ret;
2361 }
2362 
2363 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2364 {
2365 	struct btrfs_ioctl_vol_args *vol_args;
2366 	int ret;
2367 
2368 	if (!capable(CAP_SYS_ADMIN))
2369 		return -EPERM;
2370 
2371 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2372 			1)) {
2373 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2374 	}
2375 
2376 	mutex_lock(&root->fs_info->volume_mutex);
2377 	vol_args = memdup_user(arg, sizeof(*vol_args));
2378 	if (IS_ERR(vol_args)) {
2379 		ret = PTR_ERR(vol_args);
2380 		goto out;
2381 	}
2382 
2383 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2384 	ret = btrfs_init_new_device(root, vol_args->name);
2385 
2386 	kfree(vol_args);
2387 out:
2388 	mutex_unlock(&root->fs_info->volume_mutex);
2389 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2390 	return ret;
2391 }
2392 
2393 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2394 {
2395 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2396 	struct btrfs_ioctl_vol_args *vol_args;
2397 	int ret;
2398 
2399 	if (!capable(CAP_SYS_ADMIN))
2400 		return -EPERM;
2401 
2402 	ret = mnt_want_write_file(file);
2403 	if (ret)
2404 		return ret;
2405 
2406 	vol_args = memdup_user(arg, sizeof(*vol_args));
2407 	if (IS_ERR(vol_args)) {
2408 		ret = PTR_ERR(vol_args);
2409 		goto out;
2410 	}
2411 
2412 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2413 
2414 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2415 			1)) {
2416 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2417 		goto out;
2418 	}
2419 
2420 	mutex_lock(&root->fs_info->volume_mutex);
2421 	ret = btrfs_rm_device(root, vol_args->name);
2422 	mutex_unlock(&root->fs_info->volume_mutex);
2423 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2424 
2425 out:
2426 	kfree(vol_args);
2427 	mnt_drop_write_file(file);
2428 	return ret;
2429 }
2430 
2431 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2432 {
2433 	struct btrfs_ioctl_fs_info_args *fi_args;
2434 	struct btrfs_device *device;
2435 	struct btrfs_device *next;
2436 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2437 	int ret = 0;
2438 
2439 	if (!capable(CAP_SYS_ADMIN))
2440 		return -EPERM;
2441 
2442 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2443 	if (!fi_args)
2444 		return -ENOMEM;
2445 
2446 	mutex_lock(&fs_devices->device_list_mutex);
2447 	fi_args->num_devices = fs_devices->num_devices;
2448 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2449 
2450 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2451 		if (device->devid > fi_args->max_id)
2452 			fi_args->max_id = device->devid;
2453 	}
2454 	mutex_unlock(&fs_devices->device_list_mutex);
2455 
2456 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2457 		ret = -EFAULT;
2458 
2459 	kfree(fi_args);
2460 	return ret;
2461 }
2462 
2463 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2464 {
2465 	struct btrfs_ioctl_dev_info_args *di_args;
2466 	struct btrfs_device *dev;
2467 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2468 	int ret = 0;
2469 	char *s_uuid = NULL;
2470 
2471 	if (!capable(CAP_SYS_ADMIN))
2472 		return -EPERM;
2473 
2474 	di_args = memdup_user(arg, sizeof(*di_args));
2475 	if (IS_ERR(di_args))
2476 		return PTR_ERR(di_args);
2477 
2478 	if (!btrfs_is_empty_uuid(di_args->uuid))
2479 		s_uuid = di_args->uuid;
2480 
2481 	mutex_lock(&fs_devices->device_list_mutex);
2482 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2483 
2484 	if (!dev) {
2485 		ret = -ENODEV;
2486 		goto out;
2487 	}
2488 
2489 	di_args->devid = dev->devid;
2490 	di_args->bytes_used = dev->bytes_used;
2491 	di_args->total_bytes = dev->total_bytes;
2492 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2493 	if (dev->name) {
2494 		struct rcu_string *name;
2495 
2496 		rcu_read_lock();
2497 		name = rcu_dereference(dev->name);
2498 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2499 		rcu_read_unlock();
2500 		di_args->path[sizeof(di_args->path) - 1] = 0;
2501 	} else {
2502 		di_args->path[0] = '\0';
2503 	}
2504 
2505 out:
2506 	mutex_unlock(&fs_devices->device_list_mutex);
2507 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2508 		ret = -EFAULT;
2509 
2510 	kfree(di_args);
2511 	return ret;
2512 }
2513 
2514 static struct page *extent_same_get_page(struct inode *inode, u64 off)
2515 {
2516 	struct page *page;
2517 	pgoff_t index;
2518 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2519 
2520 	index = off >> PAGE_CACHE_SHIFT;
2521 
2522 	page = grab_cache_page(inode->i_mapping, index);
2523 	if (!page)
2524 		return NULL;
2525 
2526 	if (!PageUptodate(page)) {
2527 		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2528 						 0))
2529 			return NULL;
2530 		lock_page(page);
2531 		if (!PageUptodate(page)) {
2532 			unlock_page(page);
2533 			page_cache_release(page);
2534 			return NULL;
2535 		}
2536 	}
2537 	unlock_page(page);
2538 
2539 	return page;
2540 }
2541 
2542 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2543 {
2544 	/* do any pending delalloc/csum calc on src, one way or
2545 	   another, and lock file content */
2546 	while (1) {
2547 		struct btrfs_ordered_extent *ordered;
2548 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2549 		ordered = btrfs_lookup_first_ordered_extent(inode,
2550 							    off + len - 1);
2551 		if (!ordered &&
2552 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2553 				    off + len - 1, EXTENT_DELALLOC, 0, NULL))
2554 			break;
2555 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2556 		if (ordered)
2557 			btrfs_put_ordered_extent(ordered);
2558 		btrfs_wait_ordered_range(inode, off, len);
2559 	}
2560 }
2561 
2562 static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2563 				struct inode *inode2, u64 loff2, u64 len)
2564 {
2565 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2566 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2567 
2568 	mutex_unlock(&inode1->i_mutex);
2569 	mutex_unlock(&inode2->i_mutex);
2570 }
2571 
2572 static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2573 			      struct inode *inode2, u64 loff2, u64 len)
2574 {
2575 	if (inode1 < inode2) {
2576 		swap(inode1, inode2);
2577 		swap(loff1, loff2);
2578 	}
2579 
2580 	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2581 	lock_extent_range(inode1, loff1, len);
2582 	if (inode1 != inode2) {
2583 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2584 		lock_extent_range(inode2, loff2, len);
2585 	}
2586 }
2587 
2588 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2589 			  u64 dst_loff, u64 len)
2590 {
2591 	int ret = 0;
2592 	struct page *src_page, *dst_page;
2593 	unsigned int cmp_len = PAGE_CACHE_SIZE;
2594 	void *addr, *dst_addr;
2595 
2596 	while (len) {
2597 		if (len < PAGE_CACHE_SIZE)
2598 			cmp_len = len;
2599 
2600 		src_page = extent_same_get_page(src, loff);
2601 		if (!src_page)
2602 			return -EINVAL;
2603 		dst_page = extent_same_get_page(dst, dst_loff);
2604 		if (!dst_page) {
2605 			page_cache_release(src_page);
2606 			return -EINVAL;
2607 		}
2608 		addr = kmap_atomic(src_page);
2609 		dst_addr = kmap_atomic(dst_page);
2610 
2611 		flush_dcache_page(src_page);
2612 		flush_dcache_page(dst_page);
2613 
2614 		if (memcmp(addr, dst_addr, cmp_len))
2615 			ret = BTRFS_SAME_DATA_DIFFERS;
2616 
2617 		kunmap_atomic(addr);
2618 		kunmap_atomic(dst_addr);
2619 		page_cache_release(src_page);
2620 		page_cache_release(dst_page);
2621 
2622 		if (ret)
2623 			break;
2624 
2625 		loff += cmp_len;
2626 		dst_loff += cmp_len;
2627 		len -= cmp_len;
2628 	}
2629 
2630 	return ret;
2631 }
2632 
2633 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2634 {
2635 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2636 
2637 	if (off + len > inode->i_size || off + len < off)
2638 		return -EINVAL;
2639 	/* Check that we are block aligned - btrfs_clone() requires this */
2640 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2641 		return -EINVAL;
2642 
2643 	return 0;
2644 }
2645 
2646 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2647 			     struct inode *dst, u64 dst_loff)
2648 {
2649 	int ret;
2650 
2651 	/*
2652 	 * btrfs_clone() can't handle extents in the same file
2653 	 * yet. Once that works, we can drop this check and replace it
2654 	 * with a check for the same inode, but overlapping extents.
2655 	 */
2656 	if (src == dst)
2657 		return -EINVAL;
2658 
2659 	btrfs_double_lock(src, loff, dst, dst_loff, len);
2660 
2661 	ret = extent_same_check_offsets(src, loff, len);
2662 	if (ret)
2663 		goto out_unlock;
2664 
2665 	ret = extent_same_check_offsets(dst, dst_loff, len);
2666 	if (ret)
2667 		goto out_unlock;
2668 
2669 	/* don't make the dst file partly checksummed */
2670 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2671 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2672 		ret = -EINVAL;
2673 		goto out_unlock;
2674 	}
2675 
2676 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2677 	if (ret == 0)
2678 		ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2679 
2680 out_unlock:
2681 	btrfs_double_unlock(src, loff, dst, dst_loff, len);
2682 
2683 	return ret;
2684 }
2685 
2686 #define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
2687 
2688 static long btrfs_ioctl_file_extent_same(struct file *file,
2689 					 void __user *argp)
2690 {
2691 	struct btrfs_ioctl_same_args tmp;
2692 	struct btrfs_ioctl_same_args *same;
2693 	struct btrfs_ioctl_same_extent_info *info;
2694 	struct inode *src = file->f_dentry->d_inode;
2695 	struct file *dst_file = NULL;
2696 	struct inode *dst;
2697 	u64 off;
2698 	u64 len;
2699 	int i;
2700 	int ret;
2701 	unsigned long size;
2702 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2703 	bool is_admin = capable(CAP_SYS_ADMIN);
2704 
2705 	if (!(file->f_mode & FMODE_READ))
2706 		return -EINVAL;
2707 
2708 	ret = mnt_want_write_file(file);
2709 	if (ret)
2710 		return ret;
2711 
2712 	if (copy_from_user(&tmp,
2713 			   (struct btrfs_ioctl_same_args __user *)argp,
2714 			   sizeof(tmp))) {
2715 		ret = -EFAULT;
2716 		goto out;
2717 	}
2718 
2719 	size = sizeof(tmp) +
2720 		tmp.dest_count * sizeof(struct btrfs_ioctl_same_extent_info);
2721 
2722 	same = memdup_user((struct btrfs_ioctl_same_args __user *)argp, size);
2723 
2724 	if (IS_ERR(same)) {
2725 		ret = PTR_ERR(same);
2726 		goto out;
2727 	}
2728 
2729 	off = same->logical_offset;
2730 	len = same->length;
2731 
2732 	/*
2733 	 * Limit the total length we will dedupe for each operation.
2734 	 * This is intended to bound the total time spent in this
2735 	 * ioctl to something sane.
2736 	 */
2737 	if (len > BTRFS_MAX_DEDUPE_LEN)
2738 		len = BTRFS_MAX_DEDUPE_LEN;
2739 
2740 	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
2741 		/*
2742 		 * Btrfs does not support blocksize < page_size. As a
2743 		 * result, btrfs_cmp_data() won't correctly handle
2744 		 * this situation without an update.
2745 		 */
2746 		ret = -EINVAL;
2747 		goto out;
2748 	}
2749 
2750 	ret = -EISDIR;
2751 	if (S_ISDIR(src->i_mode))
2752 		goto out;
2753 
2754 	ret = -EACCES;
2755 	if (!S_ISREG(src->i_mode))
2756 		goto out;
2757 
2758 	/* pre-format output fields to sane values */
2759 	for (i = 0; i < same->dest_count; i++) {
2760 		same->info[i].bytes_deduped = 0ULL;
2761 		same->info[i].status = 0;
2762 	}
2763 
2764 	ret = 0;
2765 	for (i = 0; i < same->dest_count; i++) {
2766 		info = &same->info[i];
2767 
2768 		dst_file = fget(info->fd);
2769 		if (!dst_file) {
2770 			info->status = -EBADF;
2771 			goto next;
2772 		}
2773 
2774 		if (!(is_admin || (dst_file->f_mode & FMODE_WRITE))) {
2775 			info->status = -EINVAL;
2776 			goto next;
2777 		}
2778 
2779 		info->status = -EXDEV;
2780 		if (file->f_path.mnt != dst_file->f_path.mnt)
2781 			goto next;
2782 
2783 		dst = dst_file->f_dentry->d_inode;
2784 		if (src->i_sb != dst->i_sb)
2785 			goto next;
2786 
2787 		if (S_ISDIR(dst->i_mode)) {
2788 			info->status = -EISDIR;
2789 			goto next;
2790 		}
2791 
2792 		if (!S_ISREG(dst->i_mode)) {
2793 			info->status = -EACCES;
2794 			goto next;
2795 		}
2796 
2797 		info->status = btrfs_extent_same(src, off, len, dst,
2798 						info->logical_offset);
2799 		if (info->status == 0)
2800 			info->bytes_deduped += len;
2801 
2802 next:
2803 		if (dst_file)
2804 			fput(dst_file);
2805 	}
2806 
2807 	ret = copy_to_user(argp, same, size);
2808 	if (ret)
2809 		ret = -EFAULT;
2810 
2811 out:
2812 	mnt_drop_write_file(file);
2813 	return ret;
2814 }
2815 
2816 /**
2817  * btrfs_clone() - clone a range from inode file to another
2818  *
2819  * @src: Inode to clone from
2820  * @inode: Inode to clone to
2821  * @off: Offset within source to start clone from
2822  * @olen: Original length, passed by user, of range to clone
2823  * @olen_aligned: Block-aligned value of olen, extent_same uses
2824  *               identical values here
2825  * @destoff: Offset within @inode to start clone
2826  */
2827 static int btrfs_clone(struct inode *src, struct inode *inode,
2828 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff)
2829 {
2830 	struct btrfs_root *root = BTRFS_I(inode)->root;
2831 	struct btrfs_path *path = NULL;
2832 	struct extent_buffer *leaf;
2833 	struct btrfs_trans_handle *trans;
2834 	char *buf = NULL;
2835 	struct btrfs_key key;
2836 	u32 nritems;
2837 	int slot;
2838 	int ret;
2839 	u64 len = olen_aligned;
2840 
2841 	ret = -ENOMEM;
2842 	buf = vmalloc(btrfs_level_size(root, 0));
2843 	if (!buf)
2844 		return ret;
2845 
2846 	path = btrfs_alloc_path();
2847 	if (!path) {
2848 		vfree(buf);
2849 		return ret;
2850 	}
2851 
2852 	path->reada = 2;
2853 	/* clone data */
2854 	key.objectid = btrfs_ino(src);
2855 	key.type = BTRFS_EXTENT_DATA_KEY;
2856 	key.offset = 0;
2857 
2858 	while (1) {
2859 		/*
2860 		 * note the key will change type as we walk through the
2861 		 * tree.
2862 		 */
2863 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2864 				0, 0);
2865 		if (ret < 0)
2866 			goto out;
2867 
2868 		nritems = btrfs_header_nritems(path->nodes[0]);
2869 		if (path->slots[0] >= nritems) {
2870 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2871 			if (ret < 0)
2872 				goto out;
2873 			if (ret > 0)
2874 				break;
2875 			nritems = btrfs_header_nritems(path->nodes[0]);
2876 		}
2877 		leaf = path->nodes[0];
2878 		slot = path->slots[0];
2879 
2880 		btrfs_item_key_to_cpu(leaf, &key, slot);
2881 		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2882 		    key.objectid != btrfs_ino(src))
2883 			break;
2884 
2885 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2886 			struct btrfs_file_extent_item *extent;
2887 			int type;
2888 			u32 size;
2889 			struct btrfs_key new_key;
2890 			u64 disko = 0, diskl = 0;
2891 			u64 datao = 0, datal = 0;
2892 			u8 comp;
2893 			u64 endoff;
2894 
2895 			size = btrfs_item_size_nr(leaf, slot);
2896 			read_extent_buffer(leaf, buf,
2897 					   btrfs_item_ptr_offset(leaf, slot),
2898 					   size);
2899 
2900 			extent = btrfs_item_ptr(leaf, slot,
2901 						struct btrfs_file_extent_item);
2902 			comp = btrfs_file_extent_compression(leaf, extent);
2903 			type = btrfs_file_extent_type(leaf, extent);
2904 			if (type == BTRFS_FILE_EXTENT_REG ||
2905 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2906 				disko = btrfs_file_extent_disk_bytenr(leaf,
2907 								      extent);
2908 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
2909 								 extent);
2910 				datao = btrfs_file_extent_offset(leaf, extent);
2911 				datal = btrfs_file_extent_num_bytes(leaf,
2912 								    extent);
2913 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
2914 				/* take upper bound, may be compressed */
2915 				datal = btrfs_file_extent_ram_bytes(leaf,
2916 								    extent);
2917 			}
2918 			btrfs_release_path(path);
2919 
2920 			if (key.offset + datal <= off ||
2921 			    key.offset >= off + len - 1)
2922 				goto next;
2923 
2924 			memcpy(&new_key, &key, sizeof(new_key));
2925 			new_key.objectid = btrfs_ino(inode);
2926 			if (off <= key.offset)
2927 				new_key.offset = key.offset + destoff - off;
2928 			else
2929 				new_key.offset = destoff;
2930 
2931 			/*
2932 			 * 1 - adjusting old extent (we may have to split it)
2933 			 * 1 - add new extent
2934 			 * 1 - inode update
2935 			 */
2936 			trans = btrfs_start_transaction(root, 3);
2937 			if (IS_ERR(trans)) {
2938 				ret = PTR_ERR(trans);
2939 				goto out;
2940 			}
2941 
2942 			if (type == BTRFS_FILE_EXTENT_REG ||
2943 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2944 				/*
2945 				 *    a  | --- range to clone ---|  b
2946 				 * | ------------- extent ------------- |
2947 				 */
2948 
2949 				/* substract range b */
2950 				if (key.offset + datal > off + len)
2951 					datal = off + len - key.offset;
2952 
2953 				/* substract range a */
2954 				if (off > key.offset) {
2955 					datao += off - key.offset;
2956 					datal -= off - key.offset;
2957 				}
2958 
2959 				ret = btrfs_drop_extents(trans, root, inode,
2960 							 new_key.offset,
2961 							 new_key.offset + datal,
2962 							 1);
2963 				if (ret) {
2964 					btrfs_abort_transaction(trans, root,
2965 								ret);
2966 					btrfs_end_transaction(trans, root);
2967 					goto out;
2968 				}
2969 
2970 				ret = btrfs_insert_empty_item(trans, root, path,
2971 							      &new_key, size);
2972 				if (ret) {
2973 					btrfs_abort_transaction(trans, root,
2974 								ret);
2975 					btrfs_end_transaction(trans, root);
2976 					goto out;
2977 				}
2978 
2979 				leaf = path->nodes[0];
2980 				slot = path->slots[0];
2981 				write_extent_buffer(leaf, buf,
2982 					    btrfs_item_ptr_offset(leaf, slot),
2983 					    size);
2984 
2985 				extent = btrfs_item_ptr(leaf, slot,
2986 						struct btrfs_file_extent_item);
2987 
2988 				/* disko == 0 means it's a hole */
2989 				if (!disko)
2990 					datao = 0;
2991 
2992 				btrfs_set_file_extent_offset(leaf, extent,
2993 							     datao);
2994 				btrfs_set_file_extent_num_bytes(leaf, extent,
2995 								datal);
2996 				if (disko) {
2997 					inode_add_bytes(inode, datal);
2998 					ret = btrfs_inc_extent_ref(trans, root,
2999 							disko, diskl, 0,
3000 							root->root_key.objectid,
3001 							btrfs_ino(inode),
3002 							new_key.offset - datao,
3003 							0);
3004 					if (ret) {
3005 						btrfs_abort_transaction(trans,
3006 									root,
3007 									ret);
3008 						btrfs_end_transaction(trans,
3009 								      root);
3010 						goto out;
3011 
3012 					}
3013 				}
3014 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3015 				u64 skip = 0;
3016 				u64 trim = 0;
3017 				if (off > key.offset) {
3018 					skip = off - key.offset;
3019 					new_key.offset += skip;
3020 				}
3021 
3022 				if (key.offset + datal > off + len)
3023 					trim = key.offset + datal - (off + len);
3024 
3025 				if (comp && (skip || trim)) {
3026 					ret = -EINVAL;
3027 					btrfs_end_transaction(trans, root);
3028 					goto out;
3029 				}
3030 				size -= skip + trim;
3031 				datal -= skip + trim;
3032 
3033 				ret = btrfs_drop_extents(trans, root, inode,
3034 							 new_key.offset,
3035 							 new_key.offset + datal,
3036 							 1);
3037 				if (ret) {
3038 					btrfs_abort_transaction(trans, root,
3039 								ret);
3040 					btrfs_end_transaction(trans, root);
3041 					goto out;
3042 				}
3043 
3044 				ret = btrfs_insert_empty_item(trans, root, path,
3045 							      &new_key, size);
3046 				if (ret) {
3047 					btrfs_abort_transaction(trans, root,
3048 								ret);
3049 					btrfs_end_transaction(trans, root);
3050 					goto out;
3051 				}
3052 
3053 				if (skip) {
3054 					u32 start =
3055 					  btrfs_file_extent_calc_inline_size(0);
3056 					memmove(buf+start, buf+start+skip,
3057 						datal);
3058 				}
3059 
3060 				leaf = path->nodes[0];
3061 				slot = path->slots[0];
3062 				write_extent_buffer(leaf, buf,
3063 					    btrfs_item_ptr_offset(leaf, slot),
3064 					    size);
3065 				inode_add_bytes(inode, datal);
3066 			}
3067 
3068 			btrfs_mark_buffer_dirty(leaf);
3069 			btrfs_release_path(path);
3070 
3071 			inode_inc_iversion(inode);
3072 			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3073 
3074 			/*
3075 			 * we round up to the block size at eof when
3076 			 * determining which extents to clone above,
3077 			 * but shouldn't round up the file size
3078 			 */
3079 			endoff = new_key.offset + datal;
3080 			if (endoff > destoff+olen)
3081 				endoff = destoff+olen;
3082 			if (endoff > inode->i_size)
3083 				btrfs_i_size_write(inode, endoff);
3084 
3085 			ret = btrfs_update_inode(trans, root, inode);
3086 			if (ret) {
3087 				btrfs_abort_transaction(trans, root, ret);
3088 				btrfs_end_transaction(trans, root);
3089 				goto out;
3090 			}
3091 			ret = btrfs_end_transaction(trans, root);
3092 		}
3093 next:
3094 		btrfs_release_path(path);
3095 		key.offset++;
3096 	}
3097 	ret = 0;
3098 
3099 out:
3100 	btrfs_release_path(path);
3101 	btrfs_free_path(path);
3102 	vfree(buf);
3103 	return ret;
3104 }
3105 
3106 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3107 				       u64 off, u64 olen, u64 destoff)
3108 {
3109 	struct inode *inode = file_inode(file);
3110 	struct btrfs_root *root = BTRFS_I(inode)->root;
3111 	struct fd src_file;
3112 	struct inode *src;
3113 	int ret;
3114 	u64 len = olen;
3115 	u64 bs = root->fs_info->sb->s_blocksize;
3116 	int same_inode = 0;
3117 
3118 	/*
3119 	 * TODO:
3120 	 * - split compressed inline extents.  annoying: we need to
3121 	 *   decompress into destination's address_space (the file offset
3122 	 *   may change, so source mapping won't do), then recompress (or
3123 	 *   otherwise reinsert) a subrange.
3124 	 * - allow ranges within the same file to be cloned (provided
3125 	 *   they don't overlap)?
3126 	 */
3127 
3128 	/* the destination must be opened for writing */
3129 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3130 		return -EINVAL;
3131 
3132 	if (btrfs_root_readonly(root))
3133 		return -EROFS;
3134 
3135 	ret = mnt_want_write_file(file);
3136 	if (ret)
3137 		return ret;
3138 
3139 	src_file = fdget(srcfd);
3140 	if (!src_file.file) {
3141 		ret = -EBADF;
3142 		goto out_drop_write;
3143 	}
3144 
3145 	ret = -EXDEV;
3146 	if (src_file.file->f_path.mnt != file->f_path.mnt)
3147 		goto out_fput;
3148 
3149 	src = file_inode(src_file.file);
3150 
3151 	ret = -EINVAL;
3152 	if (src == inode)
3153 		same_inode = 1;
3154 
3155 	/* the src must be open for reading */
3156 	if (!(src_file.file->f_mode & FMODE_READ))
3157 		goto out_fput;
3158 
3159 	/* don't make the dst file partly checksummed */
3160 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3161 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3162 		goto out_fput;
3163 
3164 	ret = -EISDIR;
3165 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3166 		goto out_fput;
3167 
3168 	ret = -EXDEV;
3169 	if (src->i_sb != inode->i_sb)
3170 		goto out_fput;
3171 
3172 	if (!same_inode) {
3173 		if (inode < src) {
3174 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3175 			mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3176 		} else {
3177 			mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3178 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3179 		}
3180 	} else {
3181 		mutex_lock(&src->i_mutex);
3182 	}
3183 
3184 	/* determine range to clone */
3185 	ret = -EINVAL;
3186 	if (off + len > src->i_size || off + len < off)
3187 		goto out_unlock;
3188 	if (len == 0)
3189 		olen = len = src->i_size - off;
3190 	/* if we extend to eof, continue to block boundary */
3191 	if (off + len == src->i_size)
3192 		len = ALIGN(src->i_size, bs) - off;
3193 
3194 	/* verify the end result is block aligned */
3195 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3196 	    !IS_ALIGNED(destoff, bs))
3197 		goto out_unlock;
3198 
3199 	/* verify if ranges are overlapped within the same file */
3200 	if (same_inode) {
3201 		if (destoff + len > off && destoff < off + len)
3202 			goto out_unlock;
3203 	}
3204 
3205 	if (destoff > inode->i_size) {
3206 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3207 		if (ret)
3208 			goto out_unlock;
3209 	}
3210 
3211 	/* truncate page cache pages from target inode range */
3212 	truncate_inode_pages_range(&inode->i_data, destoff,
3213 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3214 
3215 	lock_extent_range(src, off, len);
3216 
3217 	ret = btrfs_clone(src, inode, off, olen, len, destoff);
3218 
3219 	unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3220 out_unlock:
3221 	mutex_unlock(&src->i_mutex);
3222 	if (!same_inode)
3223 		mutex_unlock(&inode->i_mutex);
3224 out_fput:
3225 	fdput(src_file);
3226 out_drop_write:
3227 	mnt_drop_write_file(file);
3228 	return ret;
3229 }
3230 
3231 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3232 {
3233 	struct btrfs_ioctl_clone_range_args args;
3234 
3235 	if (copy_from_user(&args, argp, sizeof(args)))
3236 		return -EFAULT;
3237 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3238 				 args.src_length, args.dest_offset);
3239 }
3240 
3241 /*
3242  * there are many ways the trans_start and trans_end ioctls can lead
3243  * to deadlocks.  They should only be used by applications that
3244  * basically own the machine, and have a very in depth understanding
3245  * of all the possible deadlocks and enospc problems.
3246  */
3247 static long btrfs_ioctl_trans_start(struct file *file)
3248 {
3249 	struct inode *inode = file_inode(file);
3250 	struct btrfs_root *root = BTRFS_I(inode)->root;
3251 	struct btrfs_trans_handle *trans;
3252 	int ret;
3253 
3254 	ret = -EPERM;
3255 	if (!capable(CAP_SYS_ADMIN))
3256 		goto out;
3257 
3258 	ret = -EINPROGRESS;
3259 	if (file->private_data)
3260 		goto out;
3261 
3262 	ret = -EROFS;
3263 	if (btrfs_root_readonly(root))
3264 		goto out;
3265 
3266 	ret = mnt_want_write_file(file);
3267 	if (ret)
3268 		goto out;
3269 
3270 	atomic_inc(&root->fs_info->open_ioctl_trans);
3271 
3272 	ret = -ENOMEM;
3273 	trans = btrfs_start_ioctl_transaction(root);
3274 	if (IS_ERR(trans))
3275 		goto out_drop;
3276 
3277 	file->private_data = trans;
3278 	return 0;
3279 
3280 out_drop:
3281 	atomic_dec(&root->fs_info->open_ioctl_trans);
3282 	mnt_drop_write_file(file);
3283 out:
3284 	return ret;
3285 }
3286 
3287 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3288 {
3289 	struct inode *inode = file_inode(file);
3290 	struct btrfs_root *root = BTRFS_I(inode)->root;
3291 	struct btrfs_root *new_root;
3292 	struct btrfs_dir_item *di;
3293 	struct btrfs_trans_handle *trans;
3294 	struct btrfs_path *path;
3295 	struct btrfs_key location;
3296 	struct btrfs_disk_key disk_key;
3297 	u64 objectid = 0;
3298 	u64 dir_id;
3299 	int ret;
3300 
3301 	if (!capable(CAP_SYS_ADMIN))
3302 		return -EPERM;
3303 
3304 	ret = mnt_want_write_file(file);
3305 	if (ret)
3306 		return ret;
3307 
3308 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3309 		ret = -EFAULT;
3310 		goto out;
3311 	}
3312 
3313 	if (!objectid)
3314 		objectid = BTRFS_FS_TREE_OBJECTID;
3315 
3316 	location.objectid = objectid;
3317 	location.type = BTRFS_ROOT_ITEM_KEY;
3318 	location.offset = (u64)-1;
3319 
3320 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3321 	if (IS_ERR(new_root)) {
3322 		ret = PTR_ERR(new_root);
3323 		goto out;
3324 	}
3325 
3326 	path = btrfs_alloc_path();
3327 	if (!path) {
3328 		ret = -ENOMEM;
3329 		goto out;
3330 	}
3331 	path->leave_spinning = 1;
3332 
3333 	trans = btrfs_start_transaction(root, 1);
3334 	if (IS_ERR(trans)) {
3335 		btrfs_free_path(path);
3336 		ret = PTR_ERR(trans);
3337 		goto out;
3338 	}
3339 
3340 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3341 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3342 				   dir_id, "default", 7, 1);
3343 	if (IS_ERR_OR_NULL(di)) {
3344 		btrfs_free_path(path);
3345 		btrfs_end_transaction(trans, root);
3346 		printk(KERN_ERR "Umm, you don't have the default dir item, "
3347 		       "this isn't going to work\n");
3348 		ret = -ENOENT;
3349 		goto out;
3350 	}
3351 
3352 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3353 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3354 	btrfs_mark_buffer_dirty(path->nodes[0]);
3355 	btrfs_free_path(path);
3356 
3357 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3358 	btrfs_end_transaction(trans, root);
3359 out:
3360 	mnt_drop_write_file(file);
3361 	return ret;
3362 }
3363 
3364 void btrfs_get_block_group_info(struct list_head *groups_list,
3365 				struct btrfs_ioctl_space_info *space)
3366 {
3367 	struct btrfs_block_group_cache *block_group;
3368 
3369 	space->total_bytes = 0;
3370 	space->used_bytes = 0;
3371 	space->flags = 0;
3372 	list_for_each_entry(block_group, groups_list, list) {
3373 		space->flags = block_group->flags;
3374 		space->total_bytes += block_group->key.offset;
3375 		space->used_bytes +=
3376 			btrfs_block_group_used(&block_group->item);
3377 	}
3378 }
3379 
3380 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3381 {
3382 	struct btrfs_ioctl_space_args space_args;
3383 	struct btrfs_ioctl_space_info space;
3384 	struct btrfs_ioctl_space_info *dest;
3385 	struct btrfs_ioctl_space_info *dest_orig;
3386 	struct btrfs_ioctl_space_info __user *user_dest;
3387 	struct btrfs_space_info *info;
3388 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3389 		       BTRFS_BLOCK_GROUP_SYSTEM,
3390 		       BTRFS_BLOCK_GROUP_METADATA,
3391 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3392 	int num_types = 4;
3393 	int alloc_size;
3394 	int ret = 0;
3395 	u64 slot_count = 0;
3396 	int i, c;
3397 
3398 	if (copy_from_user(&space_args,
3399 			   (struct btrfs_ioctl_space_args __user *)arg,
3400 			   sizeof(space_args)))
3401 		return -EFAULT;
3402 
3403 	for (i = 0; i < num_types; i++) {
3404 		struct btrfs_space_info *tmp;
3405 
3406 		info = NULL;
3407 		rcu_read_lock();
3408 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3409 					list) {
3410 			if (tmp->flags == types[i]) {
3411 				info = tmp;
3412 				break;
3413 			}
3414 		}
3415 		rcu_read_unlock();
3416 
3417 		if (!info)
3418 			continue;
3419 
3420 		down_read(&info->groups_sem);
3421 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3422 			if (!list_empty(&info->block_groups[c]))
3423 				slot_count++;
3424 		}
3425 		up_read(&info->groups_sem);
3426 	}
3427 
3428 	/* space_slots == 0 means they are asking for a count */
3429 	if (space_args.space_slots == 0) {
3430 		space_args.total_spaces = slot_count;
3431 		goto out;
3432 	}
3433 
3434 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3435 
3436 	alloc_size = sizeof(*dest) * slot_count;
3437 
3438 	/* we generally have at most 6 or so space infos, one for each raid
3439 	 * level.  So, a whole page should be more than enough for everyone
3440 	 */
3441 	if (alloc_size > PAGE_CACHE_SIZE)
3442 		return -ENOMEM;
3443 
3444 	space_args.total_spaces = 0;
3445 	dest = kmalloc(alloc_size, GFP_NOFS);
3446 	if (!dest)
3447 		return -ENOMEM;
3448 	dest_orig = dest;
3449 
3450 	/* now we have a buffer to copy into */
3451 	for (i = 0; i < num_types; i++) {
3452 		struct btrfs_space_info *tmp;
3453 
3454 		if (!slot_count)
3455 			break;
3456 
3457 		info = NULL;
3458 		rcu_read_lock();
3459 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3460 					list) {
3461 			if (tmp->flags == types[i]) {
3462 				info = tmp;
3463 				break;
3464 			}
3465 		}
3466 		rcu_read_unlock();
3467 
3468 		if (!info)
3469 			continue;
3470 		down_read(&info->groups_sem);
3471 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3472 			if (!list_empty(&info->block_groups[c])) {
3473 				btrfs_get_block_group_info(
3474 					&info->block_groups[c], &space);
3475 				memcpy(dest, &space, sizeof(space));
3476 				dest++;
3477 				space_args.total_spaces++;
3478 				slot_count--;
3479 			}
3480 			if (!slot_count)
3481 				break;
3482 		}
3483 		up_read(&info->groups_sem);
3484 	}
3485 
3486 	user_dest = (struct btrfs_ioctl_space_info __user *)
3487 		(arg + sizeof(struct btrfs_ioctl_space_args));
3488 
3489 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3490 		ret = -EFAULT;
3491 
3492 	kfree(dest_orig);
3493 out:
3494 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3495 		ret = -EFAULT;
3496 
3497 	return ret;
3498 }
3499 
3500 /*
3501  * there are many ways the trans_start and trans_end ioctls can lead
3502  * to deadlocks.  They should only be used by applications that
3503  * basically own the machine, and have a very in depth understanding
3504  * of all the possible deadlocks and enospc problems.
3505  */
3506 long btrfs_ioctl_trans_end(struct file *file)
3507 {
3508 	struct inode *inode = file_inode(file);
3509 	struct btrfs_root *root = BTRFS_I(inode)->root;
3510 	struct btrfs_trans_handle *trans;
3511 
3512 	trans = file->private_data;
3513 	if (!trans)
3514 		return -EINVAL;
3515 	file->private_data = NULL;
3516 
3517 	btrfs_end_transaction(trans, root);
3518 
3519 	atomic_dec(&root->fs_info->open_ioctl_trans);
3520 
3521 	mnt_drop_write_file(file);
3522 	return 0;
3523 }
3524 
3525 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3526 					    void __user *argp)
3527 {
3528 	struct btrfs_trans_handle *trans;
3529 	u64 transid;
3530 	int ret;
3531 
3532 	trans = btrfs_attach_transaction_barrier(root);
3533 	if (IS_ERR(trans)) {
3534 		if (PTR_ERR(trans) != -ENOENT)
3535 			return PTR_ERR(trans);
3536 
3537 		/* No running transaction, don't bother */
3538 		transid = root->fs_info->last_trans_committed;
3539 		goto out;
3540 	}
3541 	transid = trans->transid;
3542 	ret = btrfs_commit_transaction_async(trans, root, 0);
3543 	if (ret) {
3544 		btrfs_end_transaction(trans, root);
3545 		return ret;
3546 	}
3547 out:
3548 	if (argp)
3549 		if (copy_to_user(argp, &transid, sizeof(transid)))
3550 			return -EFAULT;
3551 	return 0;
3552 }
3553 
3554 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3555 					   void __user *argp)
3556 {
3557 	u64 transid;
3558 
3559 	if (argp) {
3560 		if (copy_from_user(&transid, argp, sizeof(transid)))
3561 			return -EFAULT;
3562 	} else {
3563 		transid = 0;  /* current trans */
3564 	}
3565 	return btrfs_wait_for_commit(root, transid);
3566 }
3567 
3568 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3569 {
3570 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3571 	struct btrfs_ioctl_scrub_args *sa;
3572 	int ret;
3573 
3574 	if (!capable(CAP_SYS_ADMIN))
3575 		return -EPERM;
3576 
3577 	sa = memdup_user(arg, sizeof(*sa));
3578 	if (IS_ERR(sa))
3579 		return PTR_ERR(sa);
3580 
3581 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3582 		ret = mnt_want_write_file(file);
3583 		if (ret)
3584 			goto out;
3585 	}
3586 
3587 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3588 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3589 			      0);
3590 
3591 	if (copy_to_user(arg, sa, sizeof(*sa)))
3592 		ret = -EFAULT;
3593 
3594 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3595 		mnt_drop_write_file(file);
3596 out:
3597 	kfree(sa);
3598 	return ret;
3599 }
3600 
3601 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3602 {
3603 	if (!capable(CAP_SYS_ADMIN))
3604 		return -EPERM;
3605 
3606 	return btrfs_scrub_cancel(root->fs_info);
3607 }
3608 
3609 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3610 				       void __user *arg)
3611 {
3612 	struct btrfs_ioctl_scrub_args *sa;
3613 	int ret;
3614 
3615 	if (!capable(CAP_SYS_ADMIN))
3616 		return -EPERM;
3617 
3618 	sa = memdup_user(arg, sizeof(*sa));
3619 	if (IS_ERR(sa))
3620 		return PTR_ERR(sa);
3621 
3622 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3623 
3624 	if (copy_to_user(arg, sa, sizeof(*sa)))
3625 		ret = -EFAULT;
3626 
3627 	kfree(sa);
3628 	return ret;
3629 }
3630 
3631 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3632 				      void __user *arg)
3633 {
3634 	struct btrfs_ioctl_get_dev_stats *sa;
3635 	int ret;
3636 
3637 	sa = memdup_user(arg, sizeof(*sa));
3638 	if (IS_ERR(sa))
3639 		return PTR_ERR(sa);
3640 
3641 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3642 		kfree(sa);
3643 		return -EPERM;
3644 	}
3645 
3646 	ret = btrfs_get_dev_stats(root, sa);
3647 
3648 	if (copy_to_user(arg, sa, sizeof(*sa)))
3649 		ret = -EFAULT;
3650 
3651 	kfree(sa);
3652 	return ret;
3653 }
3654 
3655 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3656 {
3657 	struct btrfs_ioctl_dev_replace_args *p;
3658 	int ret;
3659 
3660 	if (!capable(CAP_SYS_ADMIN))
3661 		return -EPERM;
3662 
3663 	p = memdup_user(arg, sizeof(*p));
3664 	if (IS_ERR(p))
3665 		return PTR_ERR(p);
3666 
3667 	switch (p->cmd) {
3668 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3669 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
3670 			ret = -EROFS;
3671 			goto out;
3672 		}
3673 		if (atomic_xchg(
3674 			&root->fs_info->mutually_exclusive_operation_running,
3675 			1)) {
3676 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3677 		} else {
3678 			ret = btrfs_dev_replace_start(root, p);
3679 			atomic_set(
3680 			 &root->fs_info->mutually_exclusive_operation_running,
3681 			 0);
3682 		}
3683 		break;
3684 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3685 		btrfs_dev_replace_status(root->fs_info, p);
3686 		ret = 0;
3687 		break;
3688 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3689 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
3690 		break;
3691 	default:
3692 		ret = -EINVAL;
3693 		break;
3694 	}
3695 
3696 	if (copy_to_user(arg, p, sizeof(*p)))
3697 		ret = -EFAULT;
3698 out:
3699 	kfree(p);
3700 	return ret;
3701 }
3702 
3703 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3704 {
3705 	int ret = 0;
3706 	int i;
3707 	u64 rel_ptr;
3708 	int size;
3709 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3710 	struct inode_fs_paths *ipath = NULL;
3711 	struct btrfs_path *path;
3712 
3713 	if (!capable(CAP_DAC_READ_SEARCH))
3714 		return -EPERM;
3715 
3716 	path = btrfs_alloc_path();
3717 	if (!path) {
3718 		ret = -ENOMEM;
3719 		goto out;
3720 	}
3721 
3722 	ipa = memdup_user(arg, sizeof(*ipa));
3723 	if (IS_ERR(ipa)) {
3724 		ret = PTR_ERR(ipa);
3725 		ipa = NULL;
3726 		goto out;
3727 	}
3728 
3729 	size = min_t(u32, ipa->size, 4096);
3730 	ipath = init_ipath(size, root, path);
3731 	if (IS_ERR(ipath)) {
3732 		ret = PTR_ERR(ipath);
3733 		ipath = NULL;
3734 		goto out;
3735 	}
3736 
3737 	ret = paths_from_inode(ipa->inum, ipath);
3738 	if (ret < 0)
3739 		goto out;
3740 
3741 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3742 		rel_ptr = ipath->fspath->val[i] -
3743 			  (u64)(unsigned long)ipath->fspath->val;
3744 		ipath->fspath->val[i] = rel_ptr;
3745 	}
3746 
3747 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3748 			   (void *)(unsigned long)ipath->fspath, size);
3749 	if (ret) {
3750 		ret = -EFAULT;
3751 		goto out;
3752 	}
3753 
3754 out:
3755 	btrfs_free_path(path);
3756 	free_ipath(ipath);
3757 	kfree(ipa);
3758 
3759 	return ret;
3760 }
3761 
3762 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3763 {
3764 	struct btrfs_data_container *inodes = ctx;
3765 	const size_t c = 3 * sizeof(u64);
3766 
3767 	if (inodes->bytes_left >= c) {
3768 		inodes->bytes_left -= c;
3769 		inodes->val[inodes->elem_cnt] = inum;
3770 		inodes->val[inodes->elem_cnt + 1] = offset;
3771 		inodes->val[inodes->elem_cnt + 2] = root;
3772 		inodes->elem_cnt += 3;
3773 	} else {
3774 		inodes->bytes_missing += c - inodes->bytes_left;
3775 		inodes->bytes_left = 0;
3776 		inodes->elem_missed += 3;
3777 	}
3778 
3779 	return 0;
3780 }
3781 
3782 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3783 					void __user *arg)
3784 {
3785 	int ret = 0;
3786 	int size;
3787 	struct btrfs_ioctl_logical_ino_args *loi;
3788 	struct btrfs_data_container *inodes = NULL;
3789 	struct btrfs_path *path = NULL;
3790 
3791 	if (!capable(CAP_SYS_ADMIN))
3792 		return -EPERM;
3793 
3794 	loi = memdup_user(arg, sizeof(*loi));
3795 	if (IS_ERR(loi)) {
3796 		ret = PTR_ERR(loi);
3797 		loi = NULL;
3798 		goto out;
3799 	}
3800 
3801 	path = btrfs_alloc_path();
3802 	if (!path) {
3803 		ret = -ENOMEM;
3804 		goto out;
3805 	}
3806 
3807 	size = min_t(u32, loi->size, 64 * 1024);
3808 	inodes = init_data_container(size);
3809 	if (IS_ERR(inodes)) {
3810 		ret = PTR_ERR(inodes);
3811 		inodes = NULL;
3812 		goto out;
3813 	}
3814 
3815 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3816 					  build_ino_list, inodes);
3817 	if (ret == -EINVAL)
3818 		ret = -ENOENT;
3819 	if (ret < 0)
3820 		goto out;
3821 
3822 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
3823 			   (void *)(unsigned long)inodes, size);
3824 	if (ret)
3825 		ret = -EFAULT;
3826 
3827 out:
3828 	btrfs_free_path(path);
3829 	vfree(inodes);
3830 	kfree(loi);
3831 
3832 	return ret;
3833 }
3834 
3835 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3836 			       struct btrfs_ioctl_balance_args *bargs)
3837 {
3838 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3839 
3840 	bargs->flags = bctl->flags;
3841 
3842 	if (atomic_read(&fs_info->balance_running))
3843 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3844 	if (atomic_read(&fs_info->balance_pause_req))
3845 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3846 	if (atomic_read(&fs_info->balance_cancel_req))
3847 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3848 
3849 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3850 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3851 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3852 
3853 	if (lock) {
3854 		spin_lock(&fs_info->balance_lock);
3855 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3856 		spin_unlock(&fs_info->balance_lock);
3857 	} else {
3858 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3859 	}
3860 }
3861 
3862 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3863 {
3864 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3865 	struct btrfs_fs_info *fs_info = root->fs_info;
3866 	struct btrfs_ioctl_balance_args *bargs;
3867 	struct btrfs_balance_control *bctl;
3868 	bool need_unlock; /* for mut. excl. ops lock */
3869 	int ret;
3870 
3871 	if (!capable(CAP_SYS_ADMIN))
3872 		return -EPERM;
3873 
3874 	ret = mnt_want_write_file(file);
3875 	if (ret)
3876 		return ret;
3877 
3878 again:
3879 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
3880 		mutex_lock(&fs_info->volume_mutex);
3881 		mutex_lock(&fs_info->balance_mutex);
3882 		need_unlock = true;
3883 		goto locked;
3884 	}
3885 
3886 	/*
3887 	 * mut. excl. ops lock is locked.  Three possibilites:
3888 	 *   (1) some other op is running
3889 	 *   (2) balance is running
3890 	 *   (3) balance is paused -- special case (think resume)
3891 	 */
3892 	mutex_lock(&fs_info->balance_mutex);
3893 	if (fs_info->balance_ctl) {
3894 		/* this is either (2) or (3) */
3895 		if (!atomic_read(&fs_info->balance_running)) {
3896 			mutex_unlock(&fs_info->balance_mutex);
3897 			if (!mutex_trylock(&fs_info->volume_mutex))
3898 				goto again;
3899 			mutex_lock(&fs_info->balance_mutex);
3900 
3901 			if (fs_info->balance_ctl &&
3902 			    !atomic_read(&fs_info->balance_running)) {
3903 				/* this is (3) */
3904 				need_unlock = false;
3905 				goto locked;
3906 			}
3907 
3908 			mutex_unlock(&fs_info->balance_mutex);
3909 			mutex_unlock(&fs_info->volume_mutex);
3910 			goto again;
3911 		} else {
3912 			/* this is (2) */
3913 			mutex_unlock(&fs_info->balance_mutex);
3914 			ret = -EINPROGRESS;
3915 			goto out;
3916 		}
3917 	} else {
3918 		/* this is (1) */
3919 		mutex_unlock(&fs_info->balance_mutex);
3920 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3921 		goto out;
3922 	}
3923 
3924 locked:
3925 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
3926 
3927 	if (arg) {
3928 		bargs = memdup_user(arg, sizeof(*bargs));
3929 		if (IS_ERR(bargs)) {
3930 			ret = PTR_ERR(bargs);
3931 			goto out_unlock;
3932 		}
3933 
3934 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
3935 			if (!fs_info->balance_ctl) {
3936 				ret = -ENOTCONN;
3937 				goto out_bargs;
3938 			}
3939 
3940 			bctl = fs_info->balance_ctl;
3941 			spin_lock(&fs_info->balance_lock);
3942 			bctl->flags |= BTRFS_BALANCE_RESUME;
3943 			spin_unlock(&fs_info->balance_lock);
3944 
3945 			goto do_balance;
3946 		}
3947 	} else {
3948 		bargs = NULL;
3949 	}
3950 
3951 	if (fs_info->balance_ctl) {
3952 		ret = -EINPROGRESS;
3953 		goto out_bargs;
3954 	}
3955 
3956 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3957 	if (!bctl) {
3958 		ret = -ENOMEM;
3959 		goto out_bargs;
3960 	}
3961 
3962 	bctl->fs_info = fs_info;
3963 	if (arg) {
3964 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3965 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3966 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3967 
3968 		bctl->flags = bargs->flags;
3969 	} else {
3970 		/* balance everything - no filters */
3971 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3972 	}
3973 
3974 do_balance:
3975 	/*
3976 	 * Ownership of bctl and mutually_exclusive_operation_running
3977 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
3978 	 * or, if restriper was paused all the way until unmount, in
3979 	 * free_fs_info.  mutually_exclusive_operation_running is
3980 	 * cleared in __cancel_balance.
3981 	 */
3982 	need_unlock = false;
3983 
3984 	ret = btrfs_balance(bctl, bargs);
3985 
3986 	if (arg) {
3987 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3988 			ret = -EFAULT;
3989 	}
3990 
3991 out_bargs:
3992 	kfree(bargs);
3993 out_unlock:
3994 	mutex_unlock(&fs_info->balance_mutex);
3995 	mutex_unlock(&fs_info->volume_mutex);
3996 	if (need_unlock)
3997 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3998 out:
3999 	mnt_drop_write_file(file);
4000 	return ret;
4001 }
4002 
4003 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4004 {
4005 	if (!capable(CAP_SYS_ADMIN))
4006 		return -EPERM;
4007 
4008 	switch (cmd) {
4009 	case BTRFS_BALANCE_CTL_PAUSE:
4010 		return btrfs_pause_balance(root->fs_info);
4011 	case BTRFS_BALANCE_CTL_CANCEL:
4012 		return btrfs_cancel_balance(root->fs_info);
4013 	}
4014 
4015 	return -EINVAL;
4016 }
4017 
4018 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4019 					 void __user *arg)
4020 {
4021 	struct btrfs_fs_info *fs_info = root->fs_info;
4022 	struct btrfs_ioctl_balance_args *bargs;
4023 	int ret = 0;
4024 
4025 	if (!capable(CAP_SYS_ADMIN))
4026 		return -EPERM;
4027 
4028 	mutex_lock(&fs_info->balance_mutex);
4029 	if (!fs_info->balance_ctl) {
4030 		ret = -ENOTCONN;
4031 		goto out;
4032 	}
4033 
4034 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4035 	if (!bargs) {
4036 		ret = -ENOMEM;
4037 		goto out;
4038 	}
4039 
4040 	update_ioctl_balance_args(fs_info, 1, bargs);
4041 
4042 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4043 		ret = -EFAULT;
4044 
4045 	kfree(bargs);
4046 out:
4047 	mutex_unlock(&fs_info->balance_mutex);
4048 	return ret;
4049 }
4050 
4051 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4052 {
4053 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4054 	struct btrfs_ioctl_quota_ctl_args *sa;
4055 	struct btrfs_trans_handle *trans = NULL;
4056 	int ret;
4057 	int err;
4058 
4059 	if (!capable(CAP_SYS_ADMIN))
4060 		return -EPERM;
4061 
4062 	ret = mnt_want_write_file(file);
4063 	if (ret)
4064 		return ret;
4065 
4066 	sa = memdup_user(arg, sizeof(*sa));
4067 	if (IS_ERR(sa)) {
4068 		ret = PTR_ERR(sa);
4069 		goto drop_write;
4070 	}
4071 
4072 	down_write(&root->fs_info->subvol_sem);
4073 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4074 	if (IS_ERR(trans)) {
4075 		ret = PTR_ERR(trans);
4076 		goto out;
4077 	}
4078 
4079 	switch (sa->cmd) {
4080 	case BTRFS_QUOTA_CTL_ENABLE:
4081 		ret = btrfs_quota_enable(trans, root->fs_info);
4082 		break;
4083 	case BTRFS_QUOTA_CTL_DISABLE:
4084 		ret = btrfs_quota_disable(trans, root->fs_info);
4085 		break;
4086 	default:
4087 		ret = -EINVAL;
4088 		break;
4089 	}
4090 
4091 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4092 	if (err && !ret)
4093 		ret = err;
4094 out:
4095 	kfree(sa);
4096 	up_write(&root->fs_info->subvol_sem);
4097 drop_write:
4098 	mnt_drop_write_file(file);
4099 	return ret;
4100 }
4101 
4102 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4103 {
4104 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4105 	struct btrfs_ioctl_qgroup_assign_args *sa;
4106 	struct btrfs_trans_handle *trans;
4107 	int ret;
4108 	int err;
4109 
4110 	if (!capable(CAP_SYS_ADMIN))
4111 		return -EPERM;
4112 
4113 	ret = mnt_want_write_file(file);
4114 	if (ret)
4115 		return ret;
4116 
4117 	sa = memdup_user(arg, sizeof(*sa));
4118 	if (IS_ERR(sa)) {
4119 		ret = PTR_ERR(sa);
4120 		goto drop_write;
4121 	}
4122 
4123 	trans = btrfs_join_transaction(root);
4124 	if (IS_ERR(trans)) {
4125 		ret = PTR_ERR(trans);
4126 		goto out;
4127 	}
4128 
4129 	/* FIXME: check if the IDs really exist */
4130 	if (sa->assign) {
4131 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4132 						sa->src, sa->dst);
4133 	} else {
4134 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4135 						sa->src, sa->dst);
4136 	}
4137 
4138 	err = btrfs_end_transaction(trans, root);
4139 	if (err && !ret)
4140 		ret = err;
4141 
4142 out:
4143 	kfree(sa);
4144 drop_write:
4145 	mnt_drop_write_file(file);
4146 	return ret;
4147 }
4148 
4149 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4150 {
4151 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4152 	struct btrfs_ioctl_qgroup_create_args *sa;
4153 	struct btrfs_trans_handle *trans;
4154 	int ret;
4155 	int err;
4156 
4157 	if (!capable(CAP_SYS_ADMIN))
4158 		return -EPERM;
4159 
4160 	ret = mnt_want_write_file(file);
4161 	if (ret)
4162 		return ret;
4163 
4164 	sa = memdup_user(arg, sizeof(*sa));
4165 	if (IS_ERR(sa)) {
4166 		ret = PTR_ERR(sa);
4167 		goto drop_write;
4168 	}
4169 
4170 	if (!sa->qgroupid) {
4171 		ret = -EINVAL;
4172 		goto out;
4173 	}
4174 
4175 	trans = btrfs_join_transaction(root);
4176 	if (IS_ERR(trans)) {
4177 		ret = PTR_ERR(trans);
4178 		goto out;
4179 	}
4180 
4181 	/* FIXME: check if the IDs really exist */
4182 	if (sa->create) {
4183 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
4184 					  NULL);
4185 	} else {
4186 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4187 	}
4188 
4189 	err = btrfs_end_transaction(trans, root);
4190 	if (err && !ret)
4191 		ret = err;
4192 
4193 out:
4194 	kfree(sa);
4195 drop_write:
4196 	mnt_drop_write_file(file);
4197 	return ret;
4198 }
4199 
4200 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4201 {
4202 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4203 	struct btrfs_ioctl_qgroup_limit_args *sa;
4204 	struct btrfs_trans_handle *trans;
4205 	int ret;
4206 	int err;
4207 	u64 qgroupid;
4208 
4209 	if (!capable(CAP_SYS_ADMIN))
4210 		return -EPERM;
4211 
4212 	ret = mnt_want_write_file(file);
4213 	if (ret)
4214 		return ret;
4215 
4216 	sa = memdup_user(arg, sizeof(*sa));
4217 	if (IS_ERR(sa)) {
4218 		ret = PTR_ERR(sa);
4219 		goto drop_write;
4220 	}
4221 
4222 	trans = btrfs_join_transaction(root);
4223 	if (IS_ERR(trans)) {
4224 		ret = PTR_ERR(trans);
4225 		goto out;
4226 	}
4227 
4228 	qgroupid = sa->qgroupid;
4229 	if (!qgroupid) {
4230 		/* take the current subvol as qgroup */
4231 		qgroupid = root->root_key.objectid;
4232 	}
4233 
4234 	/* FIXME: check if the IDs really exist */
4235 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4236 
4237 	err = btrfs_end_transaction(trans, root);
4238 	if (err && !ret)
4239 		ret = err;
4240 
4241 out:
4242 	kfree(sa);
4243 drop_write:
4244 	mnt_drop_write_file(file);
4245 	return ret;
4246 }
4247 
4248 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4249 {
4250 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4251 	struct btrfs_ioctl_quota_rescan_args *qsa;
4252 	int ret;
4253 
4254 	if (!capable(CAP_SYS_ADMIN))
4255 		return -EPERM;
4256 
4257 	ret = mnt_want_write_file(file);
4258 	if (ret)
4259 		return ret;
4260 
4261 	qsa = memdup_user(arg, sizeof(*qsa));
4262 	if (IS_ERR(qsa)) {
4263 		ret = PTR_ERR(qsa);
4264 		goto drop_write;
4265 	}
4266 
4267 	if (qsa->flags) {
4268 		ret = -EINVAL;
4269 		goto out;
4270 	}
4271 
4272 	ret = btrfs_qgroup_rescan(root->fs_info);
4273 
4274 out:
4275 	kfree(qsa);
4276 drop_write:
4277 	mnt_drop_write_file(file);
4278 	return ret;
4279 }
4280 
4281 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4282 {
4283 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4284 	struct btrfs_ioctl_quota_rescan_args *qsa;
4285 	int ret = 0;
4286 
4287 	if (!capable(CAP_SYS_ADMIN))
4288 		return -EPERM;
4289 
4290 	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4291 	if (!qsa)
4292 		return -ENOMEM;
4293 
4294 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4295 		qsa->flags = 1;
4296 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4297 	}
4298 
4299 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4300 		ret = -EFAULT;
4301 
4302 	kfree(qsa);
4303 	return ret;
4304 }
4305 
4306 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4307 {
4308 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4309 
4310 	if (!capable(CAP_SYS_ADMIN))
4311 		return -EPERM;
4312 
4313 	return btrfs_qgroup_wait_for_completion(root->fs_info);
4314 }
4315 
4316 static long btrfs_ioctl_set_received_subvol(struct file *file,
4317 					    void __user *arg)
4318 {
4319 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4320 	struct inode *inode = file_inode(file);
4321 	struct btrfs_root *root = BTRFS_I(inode)->root;
4322 	struct btrfs_root_item *root_item = &root->root_item;
4323 	struct btrfs_trans_handle *trans;
4324 	struct timespec ct = CURRENT_TIME;
4325 	int ret = 0;
4326 	int received_uuid_changed;
4327 
4328 	ret = mnt_want_write_file(file);
4329 	if (ret < 0)
4330 		return ret;
4331 
4332 	down_write(&root->fs_info->subvol_sem);
4333 
4334 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4335 		ret = -EINVAL;
4336 		goto out;
4337 	}
4338 
4339 	if (btrfs_root_readonly(root)) {
4340 		ret = -EROFS;
4341 		goto out;
4342 	}
4343 
4344 	if (!inode_owner_or_capable(inode)) {
4345 		ret = -EACCES;
4346 		goto out;
4347 	}
4348 
4349 	sa = memdup_user(arg, sizeof(*sa));
4350 	if (IS_ERR(sa)) {
4351 		ret = PTR_ERR(sa);
4352 		sa = NULL;
4353 		goto out;
4354 	}
4355 
4356 	/*
4357 	 * 1 - root item
4358 	 * 2 - uuid items (received uuid + subvol uuid)
4359 	 */
4360 	trans = btrfs_start_transaction(root, 3);
4361 	if (IS_ERR(trans)) {
4362 		ret = PTR_ERR(trans);
4363 		trans = NULL;
4364 		goto out;
4365 	}
4366 
4367 	sa->rtransid = trans->transid;
4368 	sa->rtime.sec = ct.tv_sec;
4369 	sa->rtime.nsec = ct.tv_nsec;
4370 
4371 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4372 				       BTRFS_UUID_SIZE);
4373 	if (received_uuid_changed &&
4374 	    !btrfs_is_empty_uuid(root_item->received_uuid))
4375 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4376 				    root_item->received_uuid,
4377 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4378 				    root->root_key.objectid);
4379 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4380 	btrfs_set_root_stransid(root_item, sa->stransid);
4381 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4382 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4383 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4384 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4385 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4386 
4387 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4388 				&root->root_key, &root->root_item);
4389 	if (ret < 0) {
4390 		btrfs_end_transaction(trans, root);
4391 		goto out;
4392 	}
4393 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4394 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4395 					  sa->uuid,
4396 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4397 					  root->root_key.objectid);
4398 		if (ret < 0 && ret != -EEXIST) {
4399 			btrfs_abort_transaction(trans, root, ret);
4400 			goto out;
4401 		}
4402 	}
4403 	ret = btrfs_commit_transaction(trans, root);
4404 	if (ret < 0) {
4405 		btrfs_abort_transaction(trans, root, ret);
4406 		goto out;
4407 	}
4408 
4409 	ret = copy_to_user(arg, sa, sizeof(*sa));
4410 	if (ret)
4411 		ret = -EFAULT;
4412 
4413 out:
4414 	kfree(sa);
4415 	up_write(&root->fs_info->subvol_sem);
4416 	mnt_drop_write_file(file);
4417 	return ret;
4418 }
4419 
4420 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
4421 {
4422 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4423 	size_t len;
4424 	int ret;
4425 	char label[BTRFS_LABEL_SIZE];
4426 
4427 	spin_lock(&root->fs_info->super_lock);
4428 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4429 	spin_unlock(&root->fs_info->super_lock);
4430 
4431 	len = strnlen(label, BTRFS_LABEL_SIZE);
4432 
4433 	if (len == BTRFS_LABEL_SIZE) {
4434 		pr_warn("btrfs: label is too long, return the first %zu bytes\n",
4435 			--len);
4436 	}
4437 
4438 	ret = copy_to_user(arg, label, len);
4439 
4440 	return ret ? -EFAULT : 0;
4441 }
4442 
4443 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4444 {
4445 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4446 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
4447 	struct btrfs_trans_handle *trans;
4448 	char label[BTRFS_LABEL_SIZE];
4449 	int ret;
4450 
4451 	if (!capable(CAP_SYS_ADMIN))
4452 		return -EPERM;
4453 
4454 	if (copy_from_user(label, arg, sizeof(label)))
4455 		return -EFAULT;
4456 
4457 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4458 		pr_err("btrfs: unable to set label with more than %d bytes\n",
4459 		       BTRFS_LABEL_SIZE - 1);
4460 		return -EINVAL;
4461 	}
4462 
4463 	ret = mnt_want_write_file(file);
4464 	if (ret)
4465 		return ret;
4466 
4467 	trans = btrfs_start_transaction(root, 0);
4468 	if (IS_ERR(trans)) {
4469 		ret = PTR_ERR(trans);
4470 		goto out_unlock;
4471 	}
4472 
4473 	spin_lock(&root->fs_info->super_lock);
4474 	strcpy(super_block->label, label);
4475 	spin_unlock(&root->fs_info->super_lock);
4476 	ret = btrfs_end_transaction(trans, root);
4477 
4478 out_unlock:
4479 	mnt_drop_write_file(file);
4480 	return ret;
4481 }
4482 
4483 long btrfs_ioctl(struct file *file, unsigned int
4484 		cmd, unsigned long arg)
4485 {
4486 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4487 	void __user *argp = (void __user *)arg;
4488 
4489 	switch (cmd) {
4490 	case FS_IOC_GETFLAGS:
4491 		return btrfs_ioctl_getflags(file, argp);
4492 	case FS_IOC_SETFLAGS:
4493 		return btrfs_ioctl_setflags(file, argp);
4494 	case FS_IOC_GETVERSION:
4495 		return btrfs_ioctl_getversion(file, argp);
4496 	case FITRIM:
4497 		return btrfs_ioctl_fitrim(file, argp);
4498 	case BTRFS_IOC_SNAP_CREATE:
4499 		return btrfs_ioctl_snap_create(file, argp, 0);
4500 	case BTRFS_IOC_SNAP_CREATE_V2:
4501 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4502 	case BTRFS_IOC_SUBVOL_CREATE:
4503 		return btrfs_ioctl_snap_create(file, argp, 1);
4504 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4505 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4506 	case BTRFS_IOC_SNAP_DESTROY:
4507 		return btrfs_ioctl_snap_destroy(file, argp);
4508 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4509 		return btrfs_ioctl_subvol_getflags(file, argp);
4510 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4511 		return btrfs_ioctl_subvol_setflags(file, argp);
4512 	case BTRFS_IOC_DEFAULT_SUBVOL:
4513 		return btrfs_ioctl_default_subvol(file, argp);
4514 	case BTRFS_IOC_DEFRAG:
4515 		return btrfs_ioctl_defrag(file, NULL);
4516 	case BTRFS_IOC_DEFRAG_RANGE:
4517 		return btrfs_ioctl_defrag(file, argp);
4518 	case BTRFS_IOC_RESIZE:
4519 		return btrfs_ioctl_resize(file, argp);
4520 	case BTRFS_IOC_ADD_DEV:
4521 		return btrfs_ioctl_add_dev(root, argp);
4522 	case BTRFS_IOC_RM_DEV:
4523 		return btrfs_ioctl_rm_dev(file, argp);
4524 	case BTRFS_IOC_FS_INFO:
4525 		return btrfs_ioctl_fs_info(root, argp);
4526 	case BTRFS_IOC_DEV_INFO:
4527 		return btrfs_ioctl_dev_info(root, argp);
4528 	case BTRFS_IOC_BALANCE:
4529 		return btrfs_ioctl_balance(file, NULL);
4530 	case BTRFS_IOC_CLONE:
4531 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
4532 	case BTRFS_IOC_CLONE_RANGE:
4533 		return btrfs_ioctl_clone_range(file, argp);
4534 	case BTRFS_IOC_TRANS_START:
4535 		return btrfs_ioctl_trans_start(file);
4536 	case BTRFS_IOC_TRANS_END:
4537 		return btrfs_ioctl_trans_end(file);
4538 	case BTRFS_IOC_TREE_SEARCH:
4539 		return btrfs_ioctl_tree_search(file, argp);
4540 	case BTRFS_IOC_INO_LOOKUP:
4541 		return btrfs_ioctl_ino_lookup(file, argp);
4542 	case BTRFS_IOC_INO_PATHS:
4543 		return btrfs_ioctl_ino_to_path(root, argp);
4544 	case BTRFS_IOC_LOGICAL_INO:
4545 		return btrfs_ioctl_logical_to_ino(root, argp);
4546 	case BTRFS_IOC_SPACE_INFO:
4547 		return btrfs_ioctl_space_info(root, argp);
4548 	case BTRFS_IOC_SYNC: {
4549 		int ret;
4550 
4551 		ret = btrfs_start_delalloc_roots(root->fs_info, 0);
4552 		if (ret)
4553 			return ret;
4554 		ret = btrfs_sync_fs(file->f_dentry->d_sb, 1);
4555 		return ret;
4556 	}
4557 	case BTRFS_IOC_START_SYNC:
4558 		return btrfs_ioctl_start_sync(root, argp);
4559 	case BTRFS_IOC_WAIT_SYNC:
4560 		return btrfs_ioctl_wait_sync(root, argp);
4561 	case BTRFS_IOC_SCRUB:
4562 		return btrfs_ioctl_scrub(file, argp);
4563 	case BTRFS_IOC_SCRUB_CANCEL:
4564 		return btrfs_ioctl_scrub_cancel(root, argp);
4565 	case BTRFS_IOC_SCRUB_PROGRESS:
4566 		return btrfs_ioctl_scrub_progress(root, argp);
4567 	case BTRFS_IOC_BALANCE_V2:
4568 		return btrfs_ioctl_balance(file, argp);
4569 	case BTRFS_IOC_BALANCE_CTL:
4570 		return btrfs_ioctl_balance_ctl(root, arg);
4571 	case BTRFS_IOC_BALANCE_PROGRESS:
4572 		return btrfs_ioctl_balance_progress(root, argp);
4573 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4574 		return btrfs_ioctl_set_received_subvol(file, argp);
4575 	case BTRFS_IOC_SEND:
4576 		return btrfs_ioctl_send(file, argp);
4577 	case BTRFS_IOC_GET_DEV_STATS:
4578 		return btrfs_ioctl_get_dev_stats(root, argp);
4579 	case BTRFS_IOC_QUOTA_CTL:
4580 		return btrfs_ioctl_quota_ctl(file, argp);
4581 	case BTRFS_IOC_QGROUP_ASSIGN:
4582 		return btrfs_ioctl_qgroup_assign(file, argp);
4583 	case BTRFS_IOC_QGROUP_CREATE:
4584 		return btrfs_ioctl_qgroup_create(file, argp);
4585 	case BTRFS_IOC_QGROUP_LIMIT:
4586 		return btrfs_ioctl_qgroup_limit(file, argp);
4587 	case BTRFS_IOC_QUOTA_RESCAN:
4588 		return btrfs_ioctl_quota_rescan(file, argp);
4589 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4590 		return btrfs_ioctl_quota_rescan_status(file, argp);
4591 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4592 		return btrfs_ioctl_quota_rescan_wait(file, argp);
4593 	case BTRFS_IOC_DEV_REPLACE:
4594 		return btrfs_ioctl_dev_replace(root, argp);
4595 	case BTRFS_IOC_GET_FSLABEL:
4596 		return btrfs_ioctl_get_fslabel(file, argp);
4597 	case BTRFS_IOC_SET_FSLABEL:
4598 		return btrfs_ioctl_set_fslabel(file, argp);
4599 	case BTRFS_IOC_FILE_EXTENT_SAME:
4600 		return btrfs_ioctl_file_extent_same(file, argp);
4601 	}
4602 
4603 	return -ENOTTY;
4604 }
4605