1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "export.h" 32 #include "transaction.h" 33 #include "btrfs_inode.h" 34 #include "print-tree.h" 35 #include "volumes.h" 36 #include "locking.h" 37 #include "backref.h" 38 #include "rcu-string.h" 39 #include "send.h" 40 #include "dev-replace.h" 41 #include "props.h" 42 #include "sysfs.h" 43 #include "qgroup.h" 44 #include "tree-log.h" 45 #include "compression.h" 46 #include "space-info.h" 47 #include "delalloc-space.h" 48 #include "block-group.h" 49 50 #ifdef CONFIG_64BIT 51 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 52 * structures are incorrect, as the timespec structure from userspace 53 * is 4 bytes too small. We define these alternatives here to teach 54 * the kernel about the 32-bit struct packing. 55 */ 56 struct btrfs_ioctl_timespec_32 { 57 __u64 sec; 58 __u32 nsec; 59 } __attribute__ ((__packed__)); 60 61 struct btrfs_ioctl_received_subvol_args_32 { 62 char uuid[BTRFS_UUID_SIZE]; /* in */ 63 __u64 stransid; /* in */ 64 __u64 rtransid; /* out */ 65 struct btrfs_ioctl_timespec_32 stime; /* in */ 66 struct btrfs_ioctl_timespec_32 rtime; /* out */ 67 __u64 flags; /* in */ 68 __u64 reserved[16]; /* in */ 69 } __attribute__ ((__packed__)); 70 71 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 72 struct btrfs_ioctl_received_subvol_args_32) 73 #endif 74 75 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 76 struct btrfs_ioctl_send_args_32 { 77 __s64 send_fd; /* in */ 78 __u64 clone_sources_count; /* in */ 79 compat_uptr_t clone_sources; /* in */ 80 __u64 parent_root; /* in */ 81 __u64 flags; /* in */ 82 __u64 reserved[4]; /* in */ 83 } __attribute__ ((__packed__)); 84 85 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 86 struct btrfs_ioctl_send_args_32) 87 #endif 88 89 /* Mask out flags that are inappropriate for the given type of inode. */ 90 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 91 unsigned int flags) 92 { 93 if (S_ISDIR(inode->i_mode)) 94 return flags; 95 else if (S_ISREG(inode->i_mode)) 96 return flags & ~FS_DIRSYNC_FL; 97 else 98 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 99 } 100 101 /* 102 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 103 * ioctl. 104 */ 105 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 106 { 107 unsigned int iflags = 0; 108 109 if (flags & BTRFS_INODE_SYNC) 110 iflags |= FS_SYNC_FL; 111 if (flags & BTRFS_INODE_IMMUTABLE) 112 iflags |= FS_IMMUTABLE_FL; 113 if (flags & BTRFS_INODE_APPEND) 114 iflags |= FS_APPEND_FL; 115 if (flags & BTRFS_INODE_NODUMP) 116 iflags |= FS_NODUMP_FL; 117 if (flags & BTRFS_INODE_NOATIME) 118 iflags |= FS_NOATIME_FL; 119 if (flags & BTRFS_INODE_DIRSYNC) 120 iflags |= FS_DIRSYNC_FL; 121 if (flags & BTRFS_INODE_NODATACOW) 122 iflags |= FS_NOCOW_FL; 123 124 if (flags & BTRFS_INODE_NOCOMPRESS) 125 iflags |= FS_NOCOMP_FL; 126 else if (flags & BTRFS_INODE_COMPRESS) 127 iflags |= FS_COMPR_FL; 128 129 return iflags; 130 } 131 132 /* 133 * Update inode->i_flags based on the btrfs internal flags. 134 */ 135 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 136 { 137 struct btrfs_inode *binode = BTRFS_I(inode); 138 unsigned int new_fl = 0; 139 140 if (binode->flags & BTRFS_INODE_SYNC) 141 new_fl |= S_SYNC; 142 if (binode->flags & BTRFS_INODE_IMMUTABLE) 143 new_fl |= S_IMMUTABLE; 144 if (binode->flags & BTRFS_INODE_APPEND) 145 new_fl |= S_APPEND; 146 if (binode->flags & BTRFS_INODE_NOATIME) 147 new_fl |= S_NOATIME; 148 if (binode->flags & BTRFS_INODE_DIRSYNC) 149 new_fl |= S_DIRSYNC; 150 151 set_mask_bits(&inode->i_flags, 152 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 153 new_fl); 154 } 155 156 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 157 { 158 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 159 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 160 161 if (copy_to_user(arg, &flags, sizeof(flags))) 162 return -EFAULT; 163 return 0; 164 } 165 166 /* 167 * Check if @flags are a supported and valid set of FS_*_FL flags and that 168 * the old and new flags are not conflicting 169 */ 170 static int check_fsflags(unsigned int old_flags, unsigned int flags) 171 { 172 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 173 FS_NOATIME_FL | FS_NODUMP_FL | \ 174 FS_SYNC_FL | FS_DIRSYNC_FL | \ 175 FS_NOCOMP_FL | FS_COMPR_FL | 176 FS_NOCOW_FL)) 177 return -EOPNOTSUPP; 178 179 /* COMPR and NOCOMP on new/old are valid */ 180 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 181 return -EINVAL; 182 183 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 184 return -EINVAL; 185 186 /* NOCOW and compression options are mutually exclusive */ 187 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 188 return -EINVAL; 189 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 190 return -EINVAL; 191 192 return 0; 193 } 194 195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 196 unsigned int flags) 197 { 198 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 199 return -EPERM; 200 201 return 0; 202 } 203 204 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 205 { 206 struct inode *inode = file_inode(file); 207 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 208 struct btrfs_inode *binode = BTRFS_I(inode); 209 struct btrfs_root *root = binode->root; 210 struct btrfs_trans_handle *trans; 211 unsigned int fsflags, old_fsflags; 212 int ret; 213 const char *comp = NULL; 214 u32 binode_flags; 215 216 if (!inode_owner_or_capable(inode)) 217 return -EPERM; 218 219 if (btrfs_root_readonly(root)) 220 return -EROFS; 221 222 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 223 return -EFAULT; 224 225 ret = mnt_want_write_file(file); 226 if (ret) 227 return ret; 228 229 inode_lock(inode); 230 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 231 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 232 233 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 234 if (ret) 235 goto out_unlock; 236 237 ret = check_fsflags(old_fsflags, fsflags); 238 if (ret) 239 goto out_unlock; 240 241 ret = check_fsflags_compatible(fs_info, fsflags); 242 if (ret) 243 goto out_unlock; 244 245 binode_flags = binode->flags; 246 if (fsflags & FS_SYNC_FL) 247 binode_flags |= BTRFS_INODE_SYNC; 248 else 249 binode_flags &= ~BTRFS_INODE_SYNC; 250 if (fsflags & FS_IMMUTABLE_FL) 251 binode_flags |= BTRFS_INODE_IMMUTABLE; 252 else 253 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 254 if (fsflags & FS_APPEND_FL) 255 binode_flags |= BTRFS_INODE_APPEND; 256 else 257 binode_flags &= ~BTRFS_INODE_APPEND; 258 if (fsflags & FS_NODUMP_FL) 259 binode_flags |= BTRFS_INODE_NODUMP; 260 else 261 binode_flags &= ~BTRFS_INODE_NODUMP; 262 if (fsflags & FS_NOATIME_FL) 263 binode_flags |= BTRFS_INODE_NOATIME; 264 else 265 binode_flags &= ~BTRFS_INODE_NOATIME; 266 if (fsflags & FS_DIRSYNC_FL) 267 binode_flags |= BTRFS_INODE_DIRSYNC; 268 else 269 binode_flags &= ~BTRFS_INODE_DIRSYNC; 270 if (fsflags & FS_NOCOW_FL) { 271 if (S_ISREG(inode->i_mode)) { 272 /* 273 * It's safe to turn csums off here, no extents exist. 274 * Otherwise we want the flag to reflect the real COW 275 * status of the file and will not set it. 276 */ 277 if (inode->i_size == 0) 278 binode_flags |= BTRFS_INODE_NODATACOW | 279 BTRFS_INODE_NODATASUM; 280 } else { 281 binode_flags |= BTRFS_INODE_NODATACOW; 282 } 283 } else { 284 /* 285 * Revert back under same assumptions as above 286 */ 287 if (S_ISREG(inode->i_mode)) { 288 if (inode->i_size == 0) 289 binode_flags &= ~(BTRFS_INODE_NODATACOW | 290 BTRFS_INODE_NODATASUM); 291 } else { 292 binode_flags &= ~BTRFS_INODE_NODATACOW; 293 } 294 } 295 296 /* 297 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 298 * flag may be changed automatically if compression code won't make 299 * things smaller. 300 */ 301 if (fsflags & FS_NOCOMP_FL) { 302 binode_flags &= ~BTRFS_INODE_COMPRESS; 303 binode_flags |= BTRFS_INODE_NOCOMPRESS; 304 } else if (fsflags & FS_COMPR_FL) { 305 306 if (IS_SWAPFILE(inode)) { 307 ret = -ETXTBSY; 308 goto out_unlock; 309 } 310 311 binode_flags |= BTRFS_INODE_COMPRESS; 312 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 313 314 comp = btrfs_compress_type2str(fs_info->compress_type); 315 if (!comp || comp[0] == 0) 316 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 317 } else { 318 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 319 } 320 321 /* 322 * 1 for inode item 323 * 2 for properties 324 */ 325 trans = btrfs_start_transaction(root, 3); 326 if (IS_ERR(trans)) { 327 ret = PTR_ERR(trans); 328 goto out_unlock; 329 } 330 331 if (comp) { 332 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 333 strlen(comp), 0); 334 if (ret) { 335 btrfs_abort_transaction(trans, ret); 336 goto out_end_trans; 337 } 338 } else { 339 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 340 0, 0); 341 if (ret && ret != -ENODATA) { 342 btrfs_abort_transaction(trans, ret); 343 goto out_end_trans; 344 } 345 } 346 347 binode->flags = binode_flags; 348 btrfs_sync_inode_flags_to_i_flags(inode); 349 inode_inc_iversion(inode); 350 inode->i_ctime = current_time(inode); 351 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 352 353 out_end_trans: 354 btrfs_end_transaction(trans); 355 out_unlock: 356 inode_unlock(inode); 357 mnt_drop_write_file(file); 358 return ret; 359 } 360 361 /* 362 * Translate btrfs internal inode flags to xflags as expected by the 363 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 364 * silently dropped. 365 */ 366 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 367 { 368 unsigned int xflags = 0; 369 370 if (flags & BTRFS_INODE_APPEND) 371 xflags |= FS_XFLAG_APPEND; 372 if (flags & BTRFS_INODE_IMMUTABLE) 373 xflags |= FS_XFLAG_IMMUTABLE; 374 if (flags & BTRFS_INODE_NOATIME) 375 xflags |= FS_XFLAG_NOATIME; 376 if (flags & BTRFS_INODE_NODUMP) 377 xflags |= FS_XFLAG_NODUMP; 378 if (flags & BTRFS_INODE_SYNC) 379 xflags |= FS_XFLAG_SYNC; 380 381 return xflags; 382 } 383 384 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 385 static int check_xflags(unsigned int flags) 386 { 387 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 388 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 389 return -EOPNOTSUPP; 390 return 0; 391 } 392 393 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 394 enum btrfs_exclusive_operation type) 395 { 396 return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type); 397 } 398 399 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 400 { 401 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 402 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 403 } 404 405 /* 406 * Set the xflags from the internal inode flags. The remaining items of fsxattr 407 * are zeroed. 408 */ 409 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 410 { 411 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 412 struct fsxattr fa; 413 414 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags)); 415 if (copy_to_user(arg, &fa, sizeof(fa))) 416 return -EFAULT; 417 418 return 0; 419 } 420 421 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 422 { 423 struct inode *inode = file_inode(file); 424 struct btrfs_inode *binode = BTRFS_I(inode); 425 struct btrfs_root *root = binode->root; 426 struct btrfs_trans_handle *trans; 427 struct fsxattr fa, old_fa; 428 unsigned old_flags; 429 unsigned old_i_flags; 430 int ret = 0; 431 432 if (!inode_owner_or_capable(inode)) 433 return -EPERM; 434 435 if (btrfs_root_readonly(root)) 436 return -EROFS; 437 438 if (copy_from_user(&fa, arg, sizeof(fa))) 439 return -EFAULT; 440 441 ret = check_xflags(fa.fsx_xflags); 442 if (ret) 443 return ret; 444 445 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 446 return -EOPNOTSUPP; 447 448 ret = mnt_want_write_file(file); 449 if (ret) 450 return ret; 451 452 inode_lock(inode); 453 454 old_flags = binode->flags; 455 old_i_flags = inode->i_flags; 456 457 simple_fill_fsxattr(&old_fa, 458 btrfs_inode_flags_to_xflags(binode->flags)); 459 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 460 if (ret) 461 goto out_unlock; 462 463 if (fa.fsx_xflags & FS_XFLAG_SYNC) 464 binode->flags |= BTRFS_INODE_SYNC; 465 else 466 binode->flags &= ~BTRFS_INODE_SYNC; 467 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 468 binode->flags |= BTRFS_INODE_IMMUTABLE; 469 else 470 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 471 if (fa.fsx_xflags & FS_XFLAG_APPEND) 472 binode->flags |= BTRFS_INODE_APPEND; 473 else 474 binode->flags &= ~BTRFS_INODE_APPEND; 475 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 476 binode->flags |= BTRFS_INODE_NODUMP; 477 else 478 binode->flags &= ~BTRFS_INODE_NODUMP; 479 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 480 binode->flags |= BTRFS_INODE_NOATIME; 481 else 482 binode->flags &= ~BTRFS_INODE_NOATIME; 483 484 /* 1 item for the inode */ 485 trans = btrfs_start_transaction(root, 1); 486 if (IS_ERR(trans)) { 487 ret = PTR_ERR(trans); 488 goto out_unlock; 489 } 490 491 btrfs_sync_inode_flags_to_i_flags(inode); 492 inode_inc_iversion(inode); 493 inode->i_ctime = current_time(inode); 494 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 495 496 btrfs_end_transaction(trans); 497 498 out_unlock: 499 if (ret) { 500 binode->flags = old_flags; 501 inode->i_flags = old_i_flags; 502 } 503 504 inode_unlock(inode); 505 mnt_drop_write_file(file); 506 507 return ret; 508 } 509 510 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 511 { 512 struct inode *inode = file_inode(file); 513 514 return put_user(inode->i_generation, arg); 515 } 516 517 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 518 void __user *arg) 519 { 520 struct btrfs_device *device; 521 struct request_queue *q; 522 struct fstrim_range range; 523 u64 minlen = ULLONG_MAX; 524 u64 num_devices = 0; 525 int ret; 526 527 if (!capable(CAP_SYS_ADMIN)) 528 return -EPERM; 529 530 /* 531 * If the fs is mounted with nologreplay, which requires it to be 532 * mounted in RO mode as well, we can not allow discard on free space 533 * inside block groups, because log trees refer to extents that are not 534 * pinned in a block group's free space cache (pinning the extents is 535 * precisely the first phase of replaying a log tree). 536 */ 537 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 538 return -EROFS; 539 540 rcu_read_lock(); 541 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 542 dev_list) { 543 if (!device->bdev) 544 continue; 545 q = bdev_get_queue(device->bdev); 546 if (blk_queue_discard(q)) { 547 num_devices++; 548 minlen = min_t(u64, q->limits.discard_granularity, 549 minlen); 550 } 551 } 552 rcu_read_unlock(); 553 554 if (!num_devices) 555 return -EOPNOTSUPP; 556 if (copy_from_user(&range, arg, sizeof(range))) 557 return -EFAULT; 558 559 /* 560 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 561 * block group is in the logical address space, which can be any 562 * sectorsize aligned bytenr in the range [0, U64_MAX]. 563 */ 564 if (range.len < fs_info->sb->s_blocksize) 565 return -EINVAL; 566 567 range.minlen = max(range.minlen, minlen); 568 ret = btrfs_trim_fs(fs_info, &range); 569 if (ret < 0) 570 return ret; 571 572 if (copy_to_user(arg, &range, sizeof(range))) 573 return -EFAULT; 574 575 return 0; 576 } 577 578 int __pure btrfs_is_empty_uuid(u8 *uuid) 579 { 580 int i; 581 582 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 583 if (uuid[i]) 584 return 0; 585 } 586 return 1; 587 } 588 589 static noinline int create_subvol(struct inode *dir, 590 struct dentry *dentry, 591 const char *name, int namelen, 592 struct btrfs_qgroup_inherit *inherit) 593 { 594 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 595 struct btrfs_trans_handle *trans; 596 struct btrfs_key key; 597 struct btrfs_root_item *root_item; 598 struct btrfs_inode_item *inode_item; 599 struct extent_buffer *leaf; 600 struct btrfs_root *root = BTRFS_I(dir)->root; 601 struct btrfs_root *new_root; 602 struct btrfs_block_rsv block_rsv; 603 struct timespec64 cur_time = current_time(dir); 604 struct inode *inode; 605 int ret; 606 int err; 607 dev_t anon_dev = 0; 608 u64 objectid; 609 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 610 u64 index = 0; 611 612 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 613 if (!root_item) 614 return -ENOMEM; 615 616 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 617 if (ret) 618 goto fail_free; 619 620 ret = get_anon_bdev(&anon_dev); 621 if (ret < 0) 622 goto fail_free; 623 624 /* 625 * Don't create subvolume whose level is not zero. Or qgroup will be 626 * screwed up since it assumes subvolume qgroup's level to be 0. 627 */ 628 if (btrfs_qgroup_level(objectid)) { 629 ret = -ENOSPC; 630 goto fail_free; 631 } 632 633 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 634 /* 635 * The same as the snapshot creation, please see the comment 636 * of create_snapshot(). 637 */ 638 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 639 if (ret) 640 goto fail_free; 641 642 trans = btrfs_start_transaction(root, 0); 643 if (IS_ERR(trans)) { 644 ret = PTR_ERR(trans); 645 btrfs_subvolume_release_metadata(root, &block_rsv); 646 goto fail_free; 647 } 648 trans->block_rsv = &block_rsv; 649 trans->bytes_reserved = block_rsv.size; 650 651 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 652 if (ret) 653 goto fail; 654 655 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 656 BTRFS_NESTING_NORMAL); 657 if (IS_ERR(leaf)) { 658 ret = PTR_ERR(leaf); 659 goto fail; 660 } 661 662 btrfs_mark_buffer_dirty(leaf); 663 664 inode_item = &root_item->inode; 665 btrfs_set_stack_inode_generation(inode_item, 1); 666 btrfs_set_stack_inode_size(inode_item, 3); 667 btrfs_set_stack_inode_nlink(inode_item, 1); 668 btrfs_set_stack_inode_nbytes(inode_item, 669 fs_info->nodesize); 670 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 671 672 btrfs_set_root_flags(root_item, 0); 673 btrfs_set_root_limit(root_item, 0); 674 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 675 676 btrfs_set_root_bytenr(root_item, leaf->start); 677 btrfs_set_root_generation(root_item, trans->transid); 678 btrfs_set_root_level(root_item, 0); 679 btrfs_set_root_refs(root_item, 1); 680 btrfs_set_root_used(root_item, leaf->len); 681 btrfs_set_root_last_snapshot(root_item, 0); 682 683 btrfs_set_root_generation_v2(root_item, 684 btrfs_root_generation(root_item)); 685 generate_random_guid(root_item->uuid); 686 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 687 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 688 root_item->ctime = root_item->otime; 689 btrfs_set_root_ctransid(root_item, trans->transid); 690 btrfs_set_root_otransid(root_item, trans->transid); 691 692 btrfs_tree_unlock(leaf); 693 free_extent_buffer(leaf); 694 leaf = NULL; 695 696 btrfs_set_root_dirid(root_item, new_dirid); 697 698 key.objectid = objectid; 699 key.offset = 0; 700 key.type = BTRFS_ROOT_ITEM_KEY; 701 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 702 root_item); 703 if (ret) 704 goto fail; 705 706 key.offset = (u64)-1; 707 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 708 if (IS_ERR(new_root)) { 709 free_anon_bdev(anon_dev); 710 ret = PTR_ERR(new_root); 711 btrfs_abort_transaction(trans, ret); 712 goto fail; 713 } 714 /* Freeing will be done in btrfs_put_root() of new_root */ 715 anon_dev = 0; 716 717 btrfs_record_root_in_trans(trans, new_root); 718 719 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 720 btrfs_put_root(new_root); 721 if (ret) { 722 /* We potentially lose an unused inode item here */ 723 btrfs_abort_transaction(trans, ret); 724 goto fail; 725 } 726 727 mutex_lock(&new_root->objectid_mutex); 728 new_root->highest_objectid = new_dirid; 729 mutex_unlock(&new_root->objectid_mutex); 730 731 /* 732 * insert the directory item 733 */ 734 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 735 if (ret) { 736 btrfs_abort_transaction(trans, ret); 737 goto fail; 738 } 739 740 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 741 BTRFS_FT_DIR, index); 742 if (ret) { 743 btrfs_abort_transaction(trans, ret); 744 goto fail; 745 } 746 747 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 748 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 749 if (ret) { 750 btrfs_abort_transaction(trans, ret); 751 goto fail; 752 } 753 754 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 755 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 756 if (ret) { 757 btrfs_abort_transaction(trans, ret); 758 goto fail; 759 } 760 761 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 762 BTRFS_UUID_KEY_SUBVOL, objectid); 763 if (ret) 764 btrfs_abort_transaction(trans, ret); 765 766 fail: 767 kfree(root_item); 768 trans->block_rsv = NULL; 769 trans->bytes_reserved = 0; 770 btrfs_subvolume_release_metadata(root, &block_rsv); 771 772 err = btrfs_commit_transaction(trans); 773 if (err && !ret) 774 ret = err; 775 776 if (!ret) { 777 inode = btrfs_lookup_dentry(dir, dentry); 778 if (IS_ERR(inode)) 779 return PTR_ERR(inode); 780 d_instantiate(dentry, inode); 781 } 782 return ret; 783 784 fail_free: 785 if (anon_dev) 786 free_anon_bdev(anon_dev); 787 kfree(root_item); 788 return ret; 789 } 790 791 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 792 struct dentry *dentry, bool readonly, 793 struct btrfs_qgroup_inherit *inherit) 794 { 795 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 796 struct inode *inode; 797 struct btrfs_pending_snapshot *pending_snapshot; 798 struct btrfs_trans_handle *trans; 799 int ret; 800 801 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 802 return -EINVAL; 803 804 if (atomic_read(&root->nr_swapfiles)) { 805 btrfs_warn(fs_info, 806 "cannot snapshot subvolume with active swapfile"); 807 return -ETXTBSY; 808 } 809 810 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 811 if (!pending_snapshot) 812 return -ENOMEM; 813 814 ret = get_anon_bdev(&pending_snapshot->anon_dev); 815 if (ret < 0) 816 goto free_pending; 817 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 818 GFP_KERNEL); 819 pending_snapshot->path = btrfs_alloc_path(); 820 if (!pending_snapshot->root_item || !pending_snapshot->path) { 821 ret = -ENOMEM; 822 goto free_pending; 823 } 824 825 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 826 BTRFS_BLOCK_RSV_TEMP); 827 /* 828 * 1 - parent dir inode 829 * 2 - dir entries 830 * 1 - root item 831 * 2 - root ref/backref 832 * 1 - root of snapshot 833 * 1 - UUID item 834 */ 835 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 836 &pending_snapshot->block_rsv, 8, 837 false); 838 if (ret) 839 goto free_pending; 840 841 pending_snapshot->dentry = dentry; 842 pending_snapshot->root = root; 843 pending_snapshot->readonly = readonly; 844 pending_snapshot->dir = dir; 845 pending_snapshot->inherit = inherit; 846 847 trans = btrfs_start_transaction(root, 0); 848 if (IS_ERR(trans)) { 849 ret = PTR_ERR(trans); 850 goto fail; 851 } 852 853 spin_lock(&fs_info->trans_lock); 854 list_add(&pending_snapshot->list, 855 &trans->transaction->pending_snapshots); 856 spin_unlock(&fs_info->trans_lock); 857 858 ret = btrfs_commit_transaction(trans); 859 if (ret) 860 goto fail; 861 862 ret = pending_snapshot->error; 863 if (ret) 864 goto fail; 865 866 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 867 if (ret) 868 goto fail; 869 870 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 871 if (IS_ERR(inode)) { 872 ret = PTR_ERR(inode); 873 goto fail; 874 } 875 876 d_instantiate(dentry, inode); 877 ret = 0; 878 pending_snapshot->anon_dev = 0; 879 fail: 880 /* Prevent double freeing of anon_dev */ 881 if (ret && pending_snapshot->snap) 882 pending_snapshot->snap->anon_dev = 0; 883 btrfs_put_root(pending_snapshot->snap); 884 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 885 free_pending: 886 if (pending_snapshot->anon_dev) 887 free_anon_bdev(pending_snapshot->anon_dev); 888 kfree(pending_snapshot->root_item); 889 btrfs_free_path(pending_snapshot->path); 890 kfree(pending_snapshot); 891 892 return ret; 893 } 894 895 /* copy of may_delete in fs/namei.c() 896 * Check whether we can remove a link victim from directory dir, check 897 * whether the type of victim is right. 898 * 1. We can't do it if dir is read-only (done in permission()) 899 * 2. We should have write and exec permissions on dir 900 * 3. We can't remove anything from append-only dir 901 * 4. We can't do anything with immutable dir (done in permission()) 902 * 5. If the sticky bit on dir is set we should either 903 * a. be owner of dir, or 904 * b. be owner of victim, or 905 * c. have CAP_FOWNER capability 906 * 6. If the victim is append-only or immutable we can't do anything with 907 * links pointing to it. 908 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 909 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 910 * 9. We can't remove a root or mountpoint. 911 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 912 * nfs_async_unlink(). 913 */ 914 915 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 916 { 917 int error; 918 919 if (d_really_is_negative(victim)) 920 return -ENOENT; 921 922 BUG_ON(d_inode(victim->d_parent) != dir); 923 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 924 925 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 926 if (error) 927 return error; 928 if (IS_APPEND(dir)) 929 return -EPERM; 930 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 931 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 932 return -EPERM; 933 if (isdir) { 934 if (!d_is_dir(victim)) 935 return -ENOTDIR; 936 if (IS_ROOT(victim)) 937 return -EBUSY; 938 } else if (d_is_dir(victim)) 939 return -EISDIR; 940 if (IS_DEADDIR(dir)) 941 return -ENOENT; 942 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 943 return -EBUSY; 944 return 0; 945 } 946 947 /* copy of may_create in fs/namei.c() */ 948 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 949 { 950 if (d_really_is_positive(child)) 951 return -EEXIST; 952 if (IS_DEADDIR(dir)) 953 return -ENOENT; 954 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 955 } 956 957 /* 958 * Create a new subvolume below @parent. This is largely modeled after 959 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 960 * inside this filesystem so it's quite a bit simpler. 961 */ 962 static noinline int btrfs_mksubvol(const struct path *parent, 963 const char *name, int namelen, 964 struct btrfs_root *snap_src, 965 bool readonly, 966 struct btrfs_qgroup_inherit *inherit) 967 { 968 struct inode *dir = d_inode(parent->dentry); 969 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 970 struct dentry *dentry; 971 int error; 972 973 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 974 if (error == -EINTR) 975 return error; 976 977 dentry = lookup_one_len(name, parent->dentry, namelen); 978 error = PTR_ERR(dentry); 979 if (IS_ERR(dentry)) 980 goto out_unlock; 981 982 error = btrfs_may_create(dir, dentry); 983 if (error) 984 goto out_dput; 985 986 /* 987 * even if this name doesn't exist, we may get hash collisions. 988 * check for them now when we can safely fail 989 */ 990 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 991 dir->i_ino, name, 992 namelen); 993 if (error) 994 goto out_dput; 995 996 down_read(&fs_info->subvol_sem); 997 998 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 999 goto out_up_read; 1000 1001 if (snap_src) 1002 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 1003 else 1004 error = create_subvol(dir, dentry, name, namelen, inherit); 1005 1006 if (!error) 1007 fsnotify_mkdir(dir, dentry); 1008 out_up_read: 1009 up_read(&fs_info->subvol_sem); 1010 out_dput: 1011 dput(dentry); 1012 out_unlock: 1013 inode_unlock(dir); 1014 return error; 1015 } 1016 1017 static noinline int btrfs_mksnapshot(const struct path *parent, 1018 const char *name, int namelen, 1019 struct btrfs_root *root, 1020 bool readonly, 1021 struct btrfs_qgroup_inherit *inherit) 1022 { 1023 int ret; 1024 bool snapshot_force_cow = false; 1025 1026 /* 1027 * Force new buffered writes to reserve space even when NOCOW is 1028 * possible. This is to avoid later writeback (running dealloc) to 1029 * fallback to COW mode and unexpectedly fail with ENOSPC. 1030 */ 1031 btrfs_drew_read_lock(&root->snapshot_lock); 1032 1033 ret = btrfs_start_delalloc_snapshot(root); 1034 if (ret) 1035 goto out; 1036 1037 /* 1038 * All previous writes have started writeback in NOCOW mode, so now 1039 * we force future writes to fallback to COW mode during snapshot 1040 * creation. 1041 */ 1042 atomic_inc(&root->snapshot_force_cow); 1043 snapshot_force_cow = true; 1044 1045 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1046 1047 ret = btrfs_mksubvol(parent, name, namelen, 1048 root, readonly, inherit); 1049 out: 1050 if (snapshot_force_cow) 1051 atomic_dec(&root->snapshot_force_cow); 1052 btrfs_drew_read_unlock(&root->snapshot_lock); 1053 return ret; 1054 } 1055 1056 /* 1057 * When we're defragging a range, we don't want to kick it off again 1058 * if it is really just waiting for delalloc to send it down. 1059 * If we find a nice big extent or delalloc range for the bytes in the 1060 * file you want to defrag, we return 0 to let you know to skip this 1061 * part of the file 1062 */ 1063 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1064 { 1065 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1066 struct extent_map *em = NULL; 1067 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1068 u64 end; 1069 1070 read_lock(&em_tree->lock); 1071 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1072 read_unlock(&em_tree->lock); 1073 1074 if (em) { 1075 end = extent_map_end(em); 1076 free_extent_map(em); 1077 if (end - offset > thresh) 1078 return 0; 1079 } 1080 /* if we already have a nice delalloc here, just stop */ 1081 thresh /= 2; 1082 end = count_range_bits(io_tree, &offset, offset + thresh, 1083 thresh, EXTENT_DELALLOC, 1); 1084 if (end >= thresh) 1085 return 0; 1086 return 1; 1087 } 1088 1089 /* 1090 * helper function to walk through a file and find extents 1091 * newer than a specific transid, and smaller than thresh. 1092 * 1093 * This is used by the defragging code to find new and small 1094 * extents 1095 */ 1096 static int find_new_extents(struct btrfs_root *root, 1097 struct inode *inode, u64 newer_than, 1098 u64 *off, u32 thresh) 1099 { 1100 struct btrfs_path *path; 1101 struct btrfs_key min_key; 1102 struct extent_buffer *leaf; 1103 struct btrfs_file_extent_item *extent; 1104 int type; 1105 int ret; 1106 u64 ino = btrfs_ino(BTRFS_I(inode)); 1107 1108 path = btrfs_alloc_path(); 1109 if (!path) 1110 return -ENOMEM; 1111 1112 min_key.objectid = ino; 1113 min_key.type = BTRFS_EXTENT_DATA_KEY; 1114 min_key.offset = *off; 1115 1116 while (1) { 1117 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1118 if (ret != 0) 1119 goto none; 1120 process_slot: 1121 if (min_key.objectid != ino) 1122 goto none; 1123 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1124 goto none; 1125 1126 leaf = path->nodes[0]; 1127 extent = btrfs_item_ptr(leaf, path->slots[0], 1128 struct btrfs_file_extent_item); 1129 1130 type = btrfs_file_extent_type(leaf, extent); 1131 if (type == BTRFS_FILE_EXTENT_REG && 1132 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1133 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1134 *off = min_key.offset; 1135 btrfs_free_path(path); 1136 return 0; 1137 } 1138 1139 path->slots[0]++; 1140 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1141 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1142 goto process_slot; 1143 } 1144 1145 if (min_key.offset == (u64)-1) 1146 goto none; 1147 1148 min_key.offset++; 1149 btrfs_release_path(path); 1150 } 1151 none: 1152 btrfs_free_path(path); 1153 return -ENOENT; 1154 } 1155 1156 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1157 { 1158 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1159 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1160 struct extent_map *em; 1161 u64 len = PAGE_SIZE; 1162 1163 /* 1164 * hopefully we have this extent in the tree already, try without 1165 * the full extent lock 1166 */ 1167 read_lock(&em_tree->lock); 1168 em = lookup_extent_mapping(em_tree, start, len); 1169 read_unlock(&em_tree->lock); 1170 1171 if (!em) { 1172 struct extent_state *cached = NULL; 1173 u64 end = start + len - 1; 1174 1175 /* get the big lock and read metadata off disk */ 1176 lock_extent_bits(io_tree, start, end, &cached); 1177 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 1178 unlock_extent_cached(io_tree, start, end, &cached); 1179 1180 if (IS_ERR(em)) 1181 return NULL; 1182 } 1183 1184 return em; 1185 } 1186 1187 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1188 { 1189 struct extent_map *next; 1190 bool ret = true; 1191 1192 /* this is the last extent */ 1193 if (em->start + em->len >= i_size_read(inode)) 1194 return false; 1195 1196 next = defrag_lookup_extent(inode, em->start + em->len); 1197 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1198 ret = false; 1199 else if ((em->block_start + em->block_len == next->block_start) && 1200 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1201 ret = false; 1202 1203 free_extent_map(next); 1204 return ret; 1205 } 1206 1207 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1208 u64 *last_len, u64 *skip, u64 *defrag_end, 1209 int compress) 1210 { 1211 struct extent_map *em; 1212 int ret = 1; 1213 bool next_mergeable = true; 1214 bool prev_mergeable = true; 1215 1216 /* 1217 * make sure that once we start defragging an extent, we keep on 1218 * defragging it 1219 */ 1220 if (start < *defrag_end) 1221 return 1; 1222 1223 *skip = 0; 1224 1225 em = defrag_lookup_extent(inode, start); 1226 if (!em) 1227 return 0; 1228 1229 /* this will cover holes, and inline extents */ 1230 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1231 ret = 0; 1232 goto out; 1233 } 1234 1235 if (!*defrag_end) 1236 prev_mergeable = false; 1237 1238 next_mergeable = defrag_check_next_extent(inode, em); 1239 /* 1240 * we hit a real extent, if it is big or the next extent is not a 1241 * real extent, don't bother defragging it 1242 */ 1243 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1244 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1245 ret = 0; 1246 out: 1247 /* 1248 * last_len ends up being a counter of how many bytes we've defragged. 1249 * every time we choose not to defrag an extent, we reset *last_len 1250 * so that the next tiny extent will force a defrag. 1251 * 1252 * The end result of this is that tiny extents before a single big 1253 * extent will force at least part of that big extent to be defragged. 1254 */ 1255 if (ret) { 1256 *defrag_end = extent_map_end(em); 1257 } else { 1258 *last_len = 0; 1259 *skip = extent_map_end(em); 1260 *defrag_end = 0; 1261 } 1262 1263 free_extent_map(em); 1264 return ret; 1265 } 1266 1267 /* 1268 * it doesn't do much good to defrag one or two pages 1269 * at a time. This pulls in a nice chunk of pages 1270 * to COW and defrag. 1271 * 1272 * It also makes sure the delalloc code has enough 1273 * dirty data to avoid making new small extents as part 1274 * of the defrag 1275 * 1276 * It's a good idea to start RA on this range 1277 * before calling this. 1278 */ 1279 static int cluster_pages_for_defrag(struct inode *inode, 1280 struct page **pages, 1281 unsigned long start_index, 1282 unsigned long num_pages) 1283 { 1284 unsigned long file_end; 1285 u64 isize = i_size_read(inode); 1286 u64 page_start; 1287 u64 page_end; 1288 u64 page_cnt; 1289 u64 start = (u64)start_index << PAGE_SHIFT; 1290 u64 search_start; 1291 int ret; 1292 int i; 1293 int i_done; 1294 struct btrfs_ordered_extent *ordered; 1295 struct extent_state *cached_state = NULL; 1296 struct extent_io_tree *tree; 1297 struct extent_changeset *data_reserved = NULL; 1298 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1299 1300 file_end = (isize - 1) >> PAGE_SHIFT; 1301 if (!isize || start_index > file_end) 1302 return 0; 1303 1304 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1305 1306 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1307 start, page_cnt << PAGE_SHIFT); 1308 if (ret) 1309 return ret; 1310 i_done = 0; 1311 tree = &BTRFS_I(inode)->io_tree; 1312 1313 /* step one, lock all the pages */ 1314 for (i = 0; i < page_cnt; i++) { 1315 struct page *page; 1316 again: 1317 page = find_or_create_page(inode->i_mapping, 1318 start_index + i, mask); 1319 if (!page) 1320 break; 1321 1322 page_start = page_offset(page); 1323 page_end = page_start + PAGE_SIZE - 1; 1324 while (1) { 1325 lock_extent_bits(tree, page_start, page_end, 1326 &cached_state); 1327 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), 1328 page_start); 1329 unlock_extent_cached(tree, page_start, page_end, 1330 &cached_state); 1331 if (!ordered) 1332 break; 1333 1334 unlock_page(page); 1335 btrfs_start_ordered_extent(ordered, 1); 1336 btrfs_put_ordered_extent(ordered); 1337 lock_page(page); 1338 /* 1339 * we unlocked the page above, so we need check if 1340 * it was released or not. 1341 */ 1342 if (page->mapping != inode->i_mapping) { 1343 unlock_page(page); 1344 put_page(page); 1345 goto again; 1346 } 1347 } 1348 1349 if (!PageUptodate(page)) { 1350 btrfs_readpage(NULL, page); 1351 lock_page(page); 1352 if (!PageUptodate(page)) { 1353 unlock_page(page); 1354 put_page(page); 1355 ret = -EIO; 1356 break; 1357 } 1358 } 1359 1360 if (page->mapping != inode->i_mapping) { 1361 unlock_page(page); 1362 put_page(page); 1363 goto again; 1364 } 1365 1366 pages[i] = page; 1367 i_done++; 1368 } 1369 if (!i_done || ret) 1370 goto out; 1371 1372 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1373 goto out; 1374 1375 /* 1376 * so now we have a nice long stream of locked 1377 * and up to date pages, lets wait on them 1378 */ 1379 for (i = 0; i < i_done; i++) 1380 wait_on_page_writeback(pages[i]); 1381 1382 page_start = page_offset(pages[0]); 1383 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1384 1385 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1386 page_start, page_end - 1, &cached_state); 1387 1388 /* 1389 * When defragmenting we skip ranges that have holes or inline extents, 1390 * (check should_defrag_range()), to avoid unnecessary IO and wasting 1391 * space. At btrfs_defrag_file(), we check if a range should be defragged 1392 * before locking the inode and then, if it should, we trigger a sync 1393 * page cache readahead - we lock the inode only after that to avoid 1394 * blocking for too long other tasks that possibly want to operate on 1395 * other file ranges. But before we were able to get the inode lock, 1396 * some other task may have punched a hole in the range, or we may have 1397 * now an inline extent, in which case we should not defrag. So check 1398 * for that here, where we have the inode and the range locked, and bail 1399 * out if that happened. 1400 */ 1401 search_start = page_start; 1402 while (search_start < page_end) { 1403 struct extent_map *em; 1404 1405 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start, 1406 page_end - search_start); 1407 if (IS_ERR(em)) { 1408 ret = PTR_ERR(em); 1409 goto out_unlock_range; 1410 } 1411 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1412 free_extent_map(em); 1413 /* Ok, 0 means we did not defrag anything */ 1414 ret = 0; 1415 goto out_unlock_range; 1416 } 1417 search_start = extent_map_end(em); 1418 free_extent_map(em); 1419 } 1420 1421 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1422 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1423 EXTENT_DEFRAG, 0, 0, &cached_state); 1424 1425 if (i_done != page_cnt) { 1426 spin_lock(&BTRFS_I(inode)->lock); 1427 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1428 spin_unlock(&BTRFS_I(inode)->lock); 1429 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1430 start, (page_cnt - i_done) << PAGE_SHIFT, true); 1431 } 1432 1433 1434 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1435 &cached_state); 1436 1437 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1438 page_start, page_end - 1, &cached_state); 1439 1440 for (i = 0; i < i_done; i++) { 1441 clear_page_dirty_for_io(pages[i]); 1442 ClearPageChecked(pages[i]); 1443 set_page_extent_mapped(pages[i]); 1444 set_page_dirty(pages[i]); 1445 unlock_page(pages[i]); 1446 put_page(pages[i]); 1447 } 1448 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1449 extent_changeset_free(data_reserved); 1450 return i_done; 1451 1452 out_unlock_range: 1453 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1454 page_start, page_end - 1, &cached_state); 1455 out: 1456 for (i = 0; i < i_done; i++) { 1457 unlock_page(pages[i]); 1458 put_page(pages[i]); 1459 } 1460 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1461 start, page_cnt << PAGE_SHIFT, true); 1462 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1463 extent_changeset_free(data_reserved); 1464 return ret; 1465 1466 } 1467 1468 int btrfs_defrag_file(struct inode *inode, struct file *file, 1469 struct btrfs_ioctl_defrag_range_args *range, 1470 u64 newer_than, unsigned long max_to_defrag) 1471 { 1472 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1473 struct btrfs_root *root = BTRFS_I(inode)->root; 1474 struct file_ra_state *ra = NULL; 1475 unsigned long last_index; 1476 u64 isize = i_size_read(inode); 1477 u64 last_len = 0; 1478 u64 skip = 0; 1479 u64 defrag_end = 0; 1480 u64 newer_off = range->start; 1481 unsigned long i; 1482 unsigned long ra_index = 0; 1483 int ret; 1484 int defrag_count = 0; 1485 int compress_type = BTRFS_COMPRESS_ZLIB; 1486 u32 extent_thresh = range->extent_thresh; 1487 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1488 unsigned long cluster = max_cluster; 1489 u64 new_align = ~((u64)SZ_128K - 1); 1490 struct page **pages = NULL; 1491 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1492 1493 if (isize == 0) 1494 return 0; 1495 1496 if (range->start >= isize) 1497 return -EINVAL; 1498 1499 if (do_compress) { 1500 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1501 return -EINVAL; 1502 if (range->compress_type) 1503 compress_type = range->compress_type; 1504 } 1505 1506 if (extent_thresh == 0) 1507 extent_thresh = SZ_256K; 1508 1509 /* 1510 * If we were not given a file, allocate a readahead context. As 1511 * readahead is just an optimization, defrag will work without it so 1512 * we don't error out. 1513 */ 1514 if (!file) { 1515 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1516 if (ra) 1517 file_ra_state_init(ra, inode->i_mapping); 1518 } else { 1519 ra = &file->f_ra; 1520 } 1521 1522 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1523 if (!pages) { 1524 ret = -ENOMEM; 1525 goto out_ra; 1526 } 1527 1528 /* find the last page to defrag */ 1529 if (range->start + range->len > range->start) { 1530 last_index = min_t(u64, isize - 1, 1531 range->start + range->len - 1) >> PAGE_SHIFT; 1532 } else { 1533 last_index = (isize - 1) >> PAGE_SHIFT; 1534 } 1535 1536 if (newer_than) { 1537 ret = find_new_extents(root, inode, newer_than, 1538 &newer_off, SZ_64K); 1539 if (!ret) { 1540 range->start = newer_off; 1541 /* 1542 * we always align our defrag to help keep 1543 * the extents in the file evenly spaced 1544 */ 1545 i = (newer_off & new_align) >> PAGE_SHIFT; 1546 } else 1547 goto out_ra; 1548 } else { 1549 i = range->start >> PAGE_SHIFT; 1550 } 1551 if (!max_to_defrag) 1552 max_to_defrag = last_index - i + 1; 1553 1554 /* 1555 * make writeback starts from i, so the defrag range can be 1556 * written sequentially. 1557 */ 1558 if (i < inode->i_mapping->writeback_index) 1559 inode->i_mapping->writeback_index = i; 1560 1561 while (i <= last_index && defrag_count < max_to_defrag && 1562 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1563 /* 1564 * make sure we stop running if someone unmounts 1565 * the FS 1566 */ 1567 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1568 break; 1569 1570 if (btrfs_defrag_cancelled(fs_info)) { 1571 btrfs_debug(fs_info, "defrag_file cancelled"); 1572 ret = -EAGAIN; 1573 break; 1574 } 1575 1576 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1577 extent_thresh, &last_len, &skip, 1578 &defrag_end, do_compress)){ 1579 unsigned long next; 1580 /* 1581 * the should_defrag function tells us how much to skip 1582 * bump our counter by the suggested amount 1583 */ 1584 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1585 i = max(i + 1, next); 1586 continue; 1587 } 1588 1589 if (!newer_than) { 1590 cluster = (PAGE_ALIGN(defrag_end) >> 1591 PAGE_SHIFT) - i; 1592 cluster = min(cluster, max_cluster); 1593 } else { 1594 cluster = max_cluster; 1595 } 1596 1597 if (i + cluster > ra_index) { 1598 ra_index = max(i, ra_index); 1599 if (ra) 1600 page_cache_sync_readahead(inode->i_mapping, ra, 1601 file, ra_index, cluster); 1602 ra_index += cluster; 1603 } 1604 1605 inode_lock(inode); 1606 if (IS_SWAPFILE(inode)) { 1607 ret = -ETXTBSY; 1608 } else { 1609 if (do_compress) 1610 BTRFS_I(inode)->defrag_compress = compress_type; 1611 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1612 } 1613 if (ret < 0) { 1614 inode_unlock(inode); 1615 goto out_ra; 1616 } 1617 1618 defrag_count += ret; 1619 balance_dirty_pages_ratelimited(inode->i_mapping); 1620 inode_unlock(inode); 1621 1622 if (newer_than) { 1623 if (newer_off == (u64)-1) 1624 break; 1625 1626 if (ret > 0) 1627 i += ret; 1628 1629 newer_off = max(newer_off + 1, 1630 (u64)i << PAGE_SHIFT); 1631 1632 ret = find_new_extents(root, inode, newer_than, 1633 &newer_off, SZ_64K); 1634 if (!ret) { 1635 range->start = newer_off; 1636 i = (newer_off & new_align) >> PAGE_SHIFT; 1637 } else { 1638 break; 1639 } 1640 } else { 1641 if (ret > 0) { 1642 i += ret; 1643 last_len += ret << PAGE_SHIFT; 1644 } else { 1645 i++; 1646 last_len = 0; 1647 } 1648 } 1649 } 1650 1651 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1652 filemap_flush(inode->i_mapping); 1653 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1654 &BTRFS_I(inode)->runtime_flags)) 1655 filemap_flush(inode->i_mapping); 1656 } 1657 1658 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1659 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1660 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1661 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1662 } 1663 1664 ret = defrag_count; 1665 1666 out_ra: 1667 if (do_compress) { 1668 inode_lock(inode); 1669 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1670 inode_unlock(inode); 1671 } 1672 if (!file) 1673 kfree(ra); 1674 kfree(pages); 1675 return ret; 1676 } 1677 1678 static noinline int btrfs_ioctl_resize(struct file *file, 1679 void __user *arg) 1680 { 1681 struct inode *inode = file_inode(file); 1682 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1683 u64 new_size; 1684 u64 old_size; 1685 u64 devid = 1; 1686 struct btrfs_root *root = BTRFS_I(inode)->root; 1687 struct btrfs_ioctl_vol_args *vol_args; 1688 struct btrfs_trans_handle *trans; 1689 struct btrfs_device *device = NULL; 1690 char *sizestr; 1691 char *retptr; 1692 char *devstr = NULL; 1693 int ret = 0; 1694 int mod = 0; 1695 1696 if (!capable(CAP_SYS_ADMIN)) 1697 return -EPERM; 1698 1699 ret = mnt_want_write_file(file); 1700 if (ret) 1701 return ret; 1702 1703 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) { 1704 mnt_drop_write_file(file); 1705 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1706 } 1707 1708 vol_args = memdup_user(arg, sizeof(*vol_args)); 1709 if (IS_ERR(vol_args)) { 1710 ret = PTR_ERR(vol_args); 1711 goto out; 1712 } 1713 1714 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1715 1716 sizestr = vol_args->name; 1717 devstr = strchr(sizestr, ':'); 1718 if (devstr) { 1719 sizestr = devstr + 1; 1720 *devstr = '\0'; 1721 devstr = vol_args->name; 1722 ret = kstrtoull(devstr, 10, &devid); 1723 if (ret) 1724 goto out_free; 1725 if (!devid) { 1726 ret = -EINVAL; 1727 goto out_free; 1728 } 1729 btrfs_info(fs_info, "resizing devid %llu", devid); 1730 } 1731 1732 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); 1733 if (!device) { 1734 btrfs_info(fs_info, "resizer unable to find device %llu", 1735 devid); 1736 ret = -ENODEV; 1737 goto out_free; 1738 } 1739 1740 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1741 btrfs_info(fs_info, 1742 "resizer unable to apply on readonly device %llu", 1743 devid); 1744 ret = -EPERM; 1745 goto out_free; 1746 } 1747 1748 if (!strcmp(sizestr, "max")) 1749 new_size = device->bdev->bd_inode->i_size; 1750 else { 1751 if (sizestr[0] == '-') { 1752 mod = -1; 1753 sizestr++; 1754 } else if (sizestr[0] == '+') { 1755 mod = 1; 1756 sizestr++; 1757 } 1758 new_size = memparse(sizestr, &retptr); 1759 if (*retptr != '\0' || new_size == 0) { 1760 ret = -EINVAL; 1761 goto out_free; 1762 } 1763 } 1764 1765 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1766 ret = -EPERM; 1767 goto out_free; 1768 } 1769 1770 old_size = btrfs_device_get_total_bytes(device); 1771 1772 if (mod < 0) { 1773 if (new_size > old_size) { 1774 ret = -EINVAL; 1775 goto out_free; 1776 } 1777 new_size = old_size - new_size; 1778 } else if (mod > 0) { 1779 if (new_size > ULLONG_MAX - old_size) { 1780 ret = -ERANGE; 1781 goto out_free; 1782 } 1783 new_size = old_size + new_size; 1784 } 1785 1786 if (new_size < SZ_256M) { 1787 ret = -EINVAL; 1788 goto out_free; 1789 } 1790 if (new_size > device->bdev->bd_inode->i_size) { 1791 ret = -EFBIG; 1792 goto out_free; 1793 } 1794 1795 new_size = round_down(new_size, fs_info->sectorsize); 1796 1797 if (new_size > old_size) { 1798 trans = btrfs_start_transaction(root, 0); 1799 if (IS_ERR(trans)) { 1800 ret = PTR_ERR(trans); 1801 goto out_free; 1802 } 1803 ret = btrfs_grow_device(trans, device, new_size); 1804 btrfs_commit_transaction(trans); 1805 } else if (new_size < old_size) { 1806 ret = btrfs_shrink_device(device, new_size); 1807 } /* equal, nothing need to do */ 1808 1809 if (ret == 0 && new_size != old_size) 1810 btrfs_info_in_rcu(fs_info, 1811 "resize device %s (devid %llu) from %llu to %llu", 1812 rcu_str_deref(device->name), device->devid, 1813 old_size, new_size); 1814 out_free: 1815 kfree(vol_args); 1816 out: 1817 btrfs_exclop_finish(fs_info); 1818 mnt_drop_write_file(file); 1819 return ret; 1820 } 1821 1822 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1823 const char *name, unsigned long fd, int subvol, 1824 bool readonly, 1825 struct btrfs_qgroup_inherit *inherit) 1826 { 1827 int namelen; 1828 int ret = 0; 1829 1830 if (!S_ISDIR(file_inode(file)->i_mode)) 1831 return -ENOTDIR; 1832 1833 ret = mnt_want_write_file(file); 1834 if (ret) 1835 goto out; 1836 1837 namelen = strlen(name); 1838 if (strchr(name, '/')) { 1839 ret = -EINVAL; 1840 goto out_drop_write; 1841 } 1842 1843 if (name[0] == '.' && 1844 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1845 ret = -EEXIST; 1846 goto out_drop_write; 1847 } 1848 1849 if (subvol) { 1850 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1851 NULL, readonly, inherit); 1852 } else { 1853 struct fd src = fdget(fd); 1854 struct inode *src_inode; 1855 if (!src.file) { 1856 ret = -EINVAL; 1857 goto out_drop_write; 1858 } 1859 1860 src_inode = file_inode(src.file); 1861 if (src_inode->i_sb != file_inode(file)->i_sb) { 1862 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1863 "Snapshot src from another FS"); 1864 ret = -EXDEV; 1865 } else if (!inode_owner_or_capable(src_inode)) { 1866 /* 1867 * Subvolume creation is not restricted, but snapshots 1868 * are limited to own subvolumes only 1869 */ 1870 ret = -EPERM; 1871 } else { 1872 ret = btrfs_mksnapshot(&file->f_path, name, namelen, 1873 BTRFS_I(src_inode)->root, 1874 readonly, inherit); 1875 } 1876 fdput(src); 1877 } 1878 out_drop_write: 1879 mnt_drop_write_file(file); 1880 out: 1881 return ret; 1882 } 1883 1884 static noinline int btrfs_ioctl_snap_create(struct file *file, 1885 void __user *arg, int subvol) 1886 { 1887 struct btrfs_ioctl_vol_args *vol_args; 1888 int ret; 1889 1890 if (!S_ISDIR(file_inode(file)->i_mode)) 1891 return -ENOTDIR; 1892 1893 vol_args = memdup_user(arg, sizeof(*vol_args)); 1894 if (IS_ERR(vol_args)) 1895 return PTR_ERR(vol_args); 1896 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1897 1898 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1899 subvol, false, NULL); 1900 1901 kfree(vol_args); 1902 return ret; 1903 } 1904 1905 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1906 void __user *arg, int subvol) 1907 { 1908 struct btrfs_ioctl_vol_args_v2 *vol_args; 1909 int ret; 1910 bool readonly = false; 1911 struct btrfs_qgroup_inherit *inherit = NULL; 1912 1913 if (!S_ISDIR(file_inode(file)->i_mode)) 1914 return -ENOTDIR; 1915 1916 vol_args = memdup_user(arg, sizeof(*vol_args)); 1917 if (IS_ERR(vol_args)) 1918 return PTR_ERR(vol_args); 1919 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1920 1921 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1922 ret = -EOPNOTSUPP; 1923 goto free_args; 1924 } 1925 1926 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1927 readonly = true; 1928 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1929 if (vol_args->size > PAGE_SIZE) { 1930 ret = -EINVAL; 1931 goto free_args; 1932 } 1933 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1934 if (IS_ERR(inherit)) { 1935 ret = PTR_ERR(inherit); 1936 goto free_args; 1937 } 1938 } 1939 1940 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1941 subvol, readonly, inherit); 1942 if (ret) 1943 goto free_inherit; 1944 free_inherit: 1945 kfree(inherit); 1946 free_args: 1947 kfree(vol_args); 1948 return ret; 1949 } 1950 1951 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1952 void __user *arg) 1953 { 1954 struct inode *inode = file_inode(file); 1955 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1956 struct btrfs_root *root = BTRFS_I(inode)->root; 1957 int ret = 0; 1958 u64 flags = 0; 1959 1960 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1961 return -EINVAL; 1962 1963 down_read(&fs_info->subvol_sem); 1964 if (btrfs_root_readonly(root)) 1965 flags |= BTRFS_SUBVOL_RDONLY; 1966 up_read(&fs_info->subvol_sem); 1967 1968 if (copy_to_user(arg, &flags, sizeof(flags))) 1969 ret = -EFAULT; 1970 1971 return ret; 1972 } 1973 1974 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1975 void __user *arg) 1976 { 1977 struct inode *inode = file_inode(file); 1978 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1979 struct btrfs_root *root = BTRFS_I(inode)->root; 1980 struct btrfs_trans_handle *trans; 1981 u64 root_flags; 1982 u64 flags; 1983 int ret = 0; 1984 1985 if (!inode_owner_or_capable(inode)) 1986 return -EPERM; 1987 1988 ret = mnt_want_write_file(file); 1989 if (ret) 1990 goto out; 1991 1992 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1993 ret = -EINVAL; 1994 goto out_drop_write; 1995 } 1996 1997 if (copy_from_user(&flags, arg, sizeof(flags))) { 1998 ret = -EFAULT; 1999 goto out_drop_write; 2000 } 2001 2002 if (flags & ~BTRFS_SUBVOL_RDONLY) { 2003 ret = -EOPNOTSUPP; 2004 goto out_drop_write; 2005 } 2006 2007 down_write(&fs_info->subvol_sem); 2008 2009 /* nothing to do */ 2010 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 2011 goto out_drop_sem; 2012 2013 root_flags = btrfs_root_flags(&root->root_item); 2014 if (flags & BTRFS_SUBVOL_RDONLY) { 2015 btrfs_set_root_flags(&root->root_item, 2016 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 2017 } else { 2018 /* 2019 * Block RO -> RW transition if this subvolume is involved in 2020 * send 2021 */ 2022 spin_lock(&root->root_item_lock); 2023 if (root->send_in_progress == 0) { 2024 btrfs_set_root_flags(&root->root_item, 2025 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 2026 spin_unlock(&root->root_item_lock); 2027 } else { 2028 spin_unlock(&root->root_item_lock); 2029 btrfs_warn(fs_info, 2030 "Attempt to set subvolume %llu read-write during send", 2031 root->root_key.objectid); 2032 ret = -EPERM; 2033 goto out_drop_sem; 2034 } 2035 } 2036 2037 trans = btrfs_start_transaction(root, 1); 2038 if (IS_ERR(trans)) { 2039 ret = PTR_ERR(trans); 2040 goto out_reset; 2041 } 2042 2043 ret = btrfs_update_root(trans, fs_info->tree_root, 2044 &root->root_key, &root->root_item); 2045 if (ret < 0) { 2046 btrfs_end_transaction(trans); 2047 goto out_reset; 2048 } 2049 2050 ret = btrfs_commit_transaction(trans); 2051 2052 out_reset: 2053 if (ret) 2054 btrfs_set_root_flags(&root->root_item, root_flags); 2055 out_drop_sem: 2056 up_write(&fs_info->subvol_sem); 2057 out_drop_write: 2058 mnt_drop_write_file(file); 2059 out: 2060 return ret; 2061 } 2062 2063 static noinline int key_in_sk(struct btrfs_key *key, 2064 struct btrfs_ioctl_search_key *sk) 2065 { 2066 struct btrfs_key test; 2067 int ret; 2068 2069 test.objectid = sk->min_objectid; 2070 test.type = sk->min_type; 2071 test.offset = sk->min_offset; 2072 2073 ret = btrfs_comp_cpu_keys(key, &test); 2074 if (ret < 0) 2075 return 0; 2076 2077 test.objectid = sk->max_objectid; 2078 test.type = sk->max_type; 2079 test.offset = sk->max_offset; 2080 2081 ret = btrfs_comp_cpu_keys(key, &test); 2082 if (ret > 0) 2083 return 0; 2084 return 1; 2085 } 2086 2087 static noinline int copy_to_sk(struct btrfs_path *path, 2088 struct btrfs_key *key, 2089 struct btrfs_ioctl_search_key *sk, 2090 size_t *buf_size, 2091 char __user *ubuf, 2092 unsigned long *sk_offset, 2093 int *num_found) 2094 { 2095 u64 found_transid; 2096 struct extent_buffer *leaf; 2097 struct btrfs_ioctl_search_header sh; 2098 struct btrfs_key test; 2099 unsigned long item_off; 2100 unsigned long item_len; 2101 int nritems; 2102 int i; 2103 int slot; 2104 int ret = 0; 2105 2106 leaf = path->nodes[0]; 2107 slot = path->slots[0]; 2108 nritems = btrfs_header_nritems(leaf); 2109 2110 if (btrfs_header_generation(leaf) > sk->max_transid) { 2111 i = nritems; 2112 goto advance_key; 2113 } 2114 found_transid = btrfs_header_generation(leaf); 2115 2116 for (i = slot; i < nritems; i++) { 2117 item_off = btrfs_item_ptr_offset(leaf, i); 2118 item_len = btrfs_item_size_nr(leaf, i); 2119 2120 btrfs_item_key_to_cpu(leaf, key, i); 2121 if (!key_in_sk(key, sk)) 2122 continue; 2123 2124 if (sizeof(sh) + item_len > *buf_size) { 2125 if (*num_found) { 2126 ret = 1; 2127 goto out; 2128 } 2129 2130 /* 2131 * return one empty item back for v1, which does not 2132 * handle -EOVERFLOW 2133 */ 2134 2135 *buf_size = sizeof(sh) + item_len; 2136 item_len = 0; 2137 ret = -EOVERFLOW; 2138 } 2139 2140 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2141 ret = 1; 2142 goto out; 2143 } 2144 2145 sh.objectid = key->objectid; 2146 sh.offset = key->offset; 2147 sh.type = key->type; 2148 sh.len = item_len; 2149 sh.transid = found_transid; 2150 2151 /* 2152 * Copy search result header. If we fault then loop again so we 2153 * can fault in the pages and -EFAULT there if there's a 2154 * problem. Otherwise we'll fault and then copy the buffer in 2155 * properly this next time through 2156 */ 2157 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2158 ret = 0; 2159 goto out; 2160 } 2161 2162 *sk_offset += sizeof(sh); 2163 2164 if (item_len) { 2165 char __user *up = ubuf + *sk_offset; 2166 /* 2167 * Copy the item, same behavior as above, but reset the 2168 * * sk_offset so we copy the full thing again. 2169 */ 2170 if (read_extent_buffer_to_user_nofault(leaf, up, 2171 item_off, item_len)) { 2172 ret = 0; 2173 *sk_offset -= sizeof(sh); 2174 goto out; 2175 } 2176 2177 *sk_offset += item_len; 2178 } 2179 (*num_found)++; 2180 2181 if (ret) /* -EOVERFLOW from above */ 2182 goto out; 2183 2184 if (*num_found >= sk->nr_items) { 2185 ret = 1; 2186 goto out; 2187 } 2188 } 2189 advance_key: 2190 ret = 0; 2191 test.objectid = sk->max_objectid; 2192 test.type = sk->max_type; 2193 test.offset = sk->max_offset; 2194 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2195 ret = 1; 2196 else if (key->offset < (u64)-1) 2197 key->offset++; 2198 else if (key->type < (u8)-1) { 2199 key->offset = 0; 2200 key->type++; 2201 } else if (key->objectid < (u64)-1) { 2202 key->offset = 0; 2203 key->type = 0; 2204 key->objectid++; 2205 } else 2206 ret = 1; 2207 out: 2208 /* 2209 * 0: all items from this leaf copied, continue with next 2210 * 1: * more items can be copied, but unused buffer is too small 2211 * * all items were found 2212 * Either way, it will stops the loop which iterates to the next 2213 * leaf 2214 * -EOVERFLOW: item was to large for buffer 2215 * -EFAULT: could not copy extent buffer back to userspace 2216 */ 2217 return ret; 2218 } 2219 2220 static noinline int search_ioctl(struct inode *inode, 2221 struct btrfs_ioctl_search_key *sk, 2222 size_t *buf_size, 2223 char __user *ubuf) 2224 { 2225 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2226 struct btrfs_root *root; 2227 struct btrfs_key key; 2228 struct btrfs_path *path; 2229 int ret; 2230 int num_found = 0; 2231 unsigned long sk_offset = 0; 2232 2233 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2234 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2235 return -EOVERFLOW; 2236 } 2237 2238 path = btrfs_alloc_path(); 2239 if (!path) 2240 return -ENOMEM; 2241 2242 if (sk->tree_id == 0) { 2243 /* search the root of the inode that was passed */ 2244 root = btrfs_grab_root(BTRFS_I(inode)->root); 2245 } else { 2246 root = btrfs_get_fs_root(info, sk->tree_id, true); 2247 if (IS_ERR(root)) { 2248 btrfs_free_path(path); 2249 return PTR_ERR(root); 2250 } 2251 } 2252 2253 key.objectid = sk->min_objectid; 2254 key.type = sk->min_type; 2255 key.offset = sk->min_offset; 2256 2257 while (1) { 2258 ret = fault_in_pages_writeable(ubuf + sk_offset, 2259 *buf_size - sk_offset); 2260 if (ret) 2261 break; 2262 2263 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2264 if (ret != 0) { 2265 if (ret > 0) 2266 ret = 0; 2267 goto err; 2268 } 2269 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2270 &sk_offset, &num_found); 2271 btrfs_release_path(path); 2272 if (ret) 2273 break; 2274 2275 } 2276 if (ret > 0) 2277 ret = 0; 2278 err: 2279 sk->nr_items = num_found; 2280 btrfs_put_root(root); 2281 btrfs_free_path(path); 2282 return ret; 2283 } 2284 2285 static noinline int btrfs_ioctl_tree_search(struct file *file, 2286 void __user *argp) 2287 { 2288 struct btrfs_ioctl_search_args __user *uargs; 2289 struct btrfs_ioctl_search_key sk; 2290 struct inode *inode; 2291 int ret; 2292 size_t buf_size; 2293 2294 if (!capable(CAP_SYS_ADMIN)) 2295 return -EPERM; 2296 2297 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2298 2299 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2300 return -EFAULT; 2301 2302 buf_size = sizeof(uargs->buf); 2303 2304 inode = file_inode(file); 2305 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2306 2307 /* 2308 * In the origin implementation an overflow is handled by returning a 2309 * search header with a len of zero, so reset ret. 2310 */ 2311 if (ret == -EOVERFLOW) 2312 ret = 0; 2313 2314 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2315 ret = -EFAULT; 2316 return ret; 2317 } 2318 2319 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2320 void __user *argp) 2321 { 2322 struct btrfs_ioctl_search_args_v2 __user *uarg; 2323 struct btrfs_ioctl_search_args_v2 args; 2324 struct inode *inode; 2325 int ret; 2326 size_t buf_size; 2327 const size_t buf_limit = SZ_16M; 2328 2329 if (!capable(CAP_SYS_ADMIN)) 2330 return -EPERM; 2331 2332 /* copy search header and buffer size */ 2333 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2334 if (copy_from_user(&args, uarg, sizeof(args))) 2335 return -EFAULT; 2336 2337 buf_size = args.buf_size; 2338 2339 /* limit result size to 16MB */ 2340 if (buf_size > buf_limit) 2341 buf_size = buf_limit; 2342 2343 inode = file_inode(file); 2344 ret = search_ioctl(inode, &args.key, &buf_size, 2345 (char __user *)(&uarg->buf[0])); 2346 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2347 ret = -EFAULT; 2348 else if (ret == -EOVERFLOW && 2349 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2350 ret = -EFAULT; 2351 2352 return ret; 2353 } 2354 2355 /* 2356 * Search INODE_REFs to identify path name of 'dirid' directory 2357 * in a 'tree_id' tree. and sets path name to 'name'. 2358 */ 2359 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2360 u64 tree_id, u64 dirid, char *name) 2361 { 2362 struct btrfs_root *root; 2363 struct btrfs_key key; 2364 char *ptr; 2365 int ret = -1; 2366 int slot; 2367 int len; 2368 int total_len = 0; 2369 struct btrfs_inode_ref *iref; 2370 struct extent_buffer *l; 2371 struct btrfs_path *path; 2372 2373 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2374 name[0]='\0'; 2375 return 0; 2376 } 2377 2378 path = btrfs_alloc_path(); 2379 if (!path) 2380 return -ENOMEM; 2381 2382 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2383 2384 root = btrfs_get_fs_root(info, tree_id, true); 2385 if (IS_ERR(root)) { 2386 ret = PTR_ERR(root); 2387 root = NULL; 2388 goto out; 2389 } 2390 2391 key.objectid = dirid; 2392 key.type = BTRFS_INODE_REF_KEY; 2393 key.offset = (u64)-1; 2394 2395 while (1) { 2396 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2397 if (ret < 0) 2398 goto out; 2399 else if (ret > 0) { 2400 ret = btrfs_previous_item(root, path, dirid, 2401 BTRFS_INODE_REF_KEY); 2402 if (ret < 0) 2403 goto out; 2404 else if (ret > 0) { 2405 ret = -ENOENT; 2406 goto out; 2407 } 2408 } 2409 2410 l = path->nodes[0]; 2411 slot = path->slots[0]; 2412 btrfs_item_key_to_cpu(l, &key, slot); 2413 2414 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2415 len = btrfs_inode_ref_name_len(l, iref); 2416 ptr -= len + 1; 2417 total_len += len + 1; 2418 if (ptr < name) { 2419 ret = -ENAMETOOLONG; 2420 goto out; 2421 } 2422 2423 *(ptr + len) = '/'; 2424 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2425 2426 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2427 break; 2428 2429 btrfs_release_path(path); 2430 key.objectid = key.offset; 2431 key.offset = (u64)-1; 2432 dirid = key.objectid; 2433 } 2434 memmove(name, ptr, total_len); 2435 name[total_len] = '\0'; 2436 ret = 0; 2437 out: 2438 btrfs_put_root(root); 2439 btrfs_free_path(path); 2440 return ret; 2441 } 2442 2443 static int btrfs_search_path_in_tree_user(struct inode *inode, 2444 struct btrfs_ioctl_ino_lookup_user_args *args) 2445 { 2446 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2447 struct super_block *sb = inode->i_sb; 2448 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2449 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2450 u64 dirid = args->dirid; 2451 unsigned long item_off; 2452 unsigned long item_len; 2453 struct btrfs_inode_ref *iref; 2454 struct btrfs_root_ref *rref; 2455 struct btrfs_root *root = NULL; 2456 struct btrfs_path *path; 2457 struct btrfs_key key, key2; 2458 struct extent_buffer *leaf; 2459 struct inode *temp_inode; 2460 char *ptr; 2461 int slot; 2462 int len; 2463 int total_len = 0; 2464 int ret; 2465 2466 path = btrfs_alloc_path(); 2467 if (!path) 2468 return -ENOMEM; 2469 2470 /* 2471 * If the bottom subvolume does not exist directly under upper_limit, 2472 * construct the path in from the bottom up. 2473 */ 2474 if (dirid != upper_limit.objectid) { 2475 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2476 2477 root = btrfs_get_fs_root(fs_info, treeid, true); 2478 if (IS_ERR(root)) { 2479 ret = PTR_ERR(root); 2480 goto out; 2481 } 2482 2483 key.objectid = dirid; 2484 key.type = BTRFS_INODE_REF_KEY; 2485 key.offset = (u64)-1; 2486 while (1) { 2487 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2488 if (ret < 0) { 2489 goto out_put; 2490 } else if (ret > 0) { 2491 ret = btrfs_previous_item(root, path, dirid, 2492 BTRFS_INODE_REF_KEY); 2493 if (ret < 0) { 2494 goto out_put; 2495 } else if (ret > 0) { 2496 ret = -ENOENT; 2497 goto out_put; 2498 } 2499 } 2500 2501 leaf = path->nodes[0]; 2502 slot = path->slots[0]; 2503 btrfs_item_key_to_cpu(leaf, &key, slot); 2504 2505 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2506 len = btrfs_inode_ref_name_len(leaf, iref); 2507 ptr -= len + 1; 2508 total_len += len + 1; 2509 if (ptr < args->path) { 2510 ret = -ENAMETOOLONG; 2511 goto out_put; 2512 } 2513 2514 *(ptr + len) = '/'; 2515 read_extent_buffer(leaf, ptr, 2516 (unsigned long)(iref + 1), len); 2517 2518 /* Check the read+exec permission of this directory */ 2519 ret = btrfs_previous_item(root, path, dirid, 2520 BTRFS_INODE_ITEM_KEY); 2521 if (ret < 0) { 2522 goto out_put; 2523 } else if (ret > 0) { 2524 ret = -ENOENT; 2525 goto out_put; 2526 } 2527 2528 leaf = path->nodes[0]; 2529 slot = path->slots[0]; 2530 btrfs_item_key_to_cpu(leaf, &key2, slot); 2531 if (key2.objectid != dirid) { 2532 ret = -ENOENT; 2533 goto out_put; 2534 } 2535 2536 temp_inode = btrfs_iget(sb, key2.objectid, root); 2537 if (IS_ERR(temp_inode)) { 2538 ret = PTR_ERR(temp_inode); 2539 goto out_put; 2540 } 2541 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2542 iput(temp_inode); 2543 if (ret) { 2544 ret = -EACCES; 2545 goto out_put; 2546 } 2547 2548 if (key.offset == upper_limit.objectid) 2549 break; 2550 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2551 ret = -EACCES; 2552 goto out_put; 2553 } 2554 2555 btrfs_release_path(path); 2556 key.objectid = key.offset; 2557 key.offset = (u64)-1; 2558 dirid = key.objectid; 2559 } 2560 2561 memmove(args->path, ptr, total_len); 2562 args->path[total_len] = '\0'; 2563 btrfs_put_root(root); 2564 root = NULL; 2565 btrfs_release_path(path); 2566 } 2567 2568 /* Get the bottom subvolume's name from ROOT_REF */ 2569 key.objectid = treeid; 2570 key.type = BTRFS_ROOT_REF_KEY; 2571 key.offset = args->treeid; 2572 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2573 if (ret < 0) { 2574 goto out; 2575 } else if (ret > 0) { 2576 ret = -ENOENT; 2577 goto out; 2578 } 2579 2580 leaf = path->nodes[0]; 2581 slot = path->slots[0]; 2582 btrfs_item_key_to_cpu(leaf, &key, slot); 2583 2584 item_off = btrfs_item_ptr_offset(leaf, slot); 2585 item_len = btrfs_item_size_nr(leaf, slot); 2586 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2587 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2588 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2589 ret = -EINVAL; 2590 goto out; 2591 } 2592 2593 /* Copy subvolume's name */ 2594 item_off += sizeof(struct btrfs_root_ref); 2595 item_len -= sizeof(struct btrfs_root_ref); 2596 read_extent_buffer(leaf, args->name, item_off, item_len); 2597 args->name[item_len] = 0; 2598 2599 out_put: 2600 btrfs_put_root(root); 2601 out: 2602 btrfs_free_path(path); 2603 return ret; 2604 } 2605 2606 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2607 void __user *argp) 2608 { 2609 struct btrfs_ioctl_ino_lookup_args *args; 2610 struct inode *inode; 2611 int ret = 0; 2612 2613 args = memdup_user(argp, sizeof(*args)); 2614 if (IS_ERR(args)) 2615 return PTR_ERR(args); 2616 2617 inode = file_inode(file); 2618 2619 /* 2620 * Unprivileged query to obtain the containing subvolume root id. The 2621 * path is reset so it's consistent with btrfs_search_path_in_tree. 2622 */ 2623 if (args->treeid == 0) 2624 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2625 2626 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2627 args->name[0] = 0; 2628 goto out; 2629 } 2630 2631 if (!capable(CAP_SYS_ADMIN)) { 2632 ret = -EPERM; 2633 goto out; 2634 } 2635 2636 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2637 args->treeid, args->objectid, 2638 args->name); 2639 2640 out: 2641 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2642 ret = -EFAULT; 2643 2644 kfree(args); 2645 return ret; 2646 } 2647 2648 /* 2649 * Version of ino_lookup ioctl (unprivileged) 2650 * 2651 * The main differences from ino_lookup ioctl are: 2652 * 2653 * 1. Read + Exec permission will be checked using inode_permission() during 2654 * path construction. -EACCES will be returned in case of failure. 2655 * 2. Path construction will be stopped at the inode number which corresponds 2656 * to the fd with which this ioctl is called. If constructed path does not 2657 * exist under fd's inode, -EACCES will be returned. 2658 * 3. The name of bottom subvolume is also searched and filled. 2659 */ 2660 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2661 { 2662 struct btrfs_ioctl_ino_lookup_user_args *args; 2663 struct inode *inode; 2664 int ret; 2665 2666 args = memdup_user(argp, sizeof(*args)); 2667 if (IS_ERR(args)) 2668 return PTR_ERR(args); 2669 2670 inode = file_inode(file); 2671 2672 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2673 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2674 /* 2675 * The subvolume does not exist under fd with which this is 2676 * called 2677 */ 2678 kfree(args); 2679 return -EACCES; 2680 } 2681 2682 ret = btrfs_search_path_in_tree_user(inode, args); 2683 2684 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2685 ret = -EFAULT; 2686 2687 kfree(args); 2688 return ret; 2689 } 2690 2691 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2692 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2693 { 2694 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2695 struct btrfs_fs_info *fs_info; 2696 struct btrfs_root *root; 2697 struct btrfs_path *path; 2698 struct btrfs_key key; 2699 struct btrfs_root_item *root_item; 2700 struct btrfs_root_ref *rref; 2701 struct extent_buffer *leaf; 2702 unsigned long item_off; 2703 unsigned long item_len; 2704 struct inode *inode; 2705 int slot; 2706 int ret = 0; 2707 2708 path = btrfs_alloc_path(); 2709 if (!path) 2710 return -ENOMEM; 2711 2712 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2713 if (!subvol_info) { 2714 btrfs_free_path(path); 2715 return -ENOMEM; 2716 } 2717 2718 inode = file_inode(file); 2719 fs_info = BTRFS_I(inode)->root->fs_info; 2720 2721 /* Get root_item of inode's subvolume */ 2722 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2723 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2724 if (IS_ERR(root)) { 2725 ret = PTR_ERR(root); 2726 goto out_free; 2727 } 2728 root_item = &root->root_item; 2729 2730 subvol_info->treeid = key.objectid; 2731 2732 subvol_info->generation = btrfs_root_generation(root_item); 2733 subvol_info->flags = btrfs_root_flags(root_item); 2734 2735 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2736 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2737 BTRFS_UUID_SIZE); 2738 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2739 BTRFS_UUID_SIZE); 2740 2741 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2742 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2743 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2744 2745 subvol_info->otransid = btrfs_root_otransid(root_item); 2746 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2747 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2748 2749 subvol_info->stransid = btrfs_root_stransid(root_item); 2750 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2751 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2752 2753 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2754 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2755 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2756 2757 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2758 /* Search root tree for ROOT_BACKREF of this subvolume */ 2759 key.type = BTRFS_ROOT_BACKREF_KEY; 2760 key.offset = 0; 2761 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2762 if (ret < 0) { 2763 goto out; 2764 } else if (path->slots[0] >= 2765 btrfs_header_nritems(path->nodes[0])) { 2766 ret = btrfs_next_leaf(fs_info->tree_root, path); 2767 if (ret < 0) { 2768 goto out; 2769 } else if (ret > 0) { 2770 ret = -EUCLEAN; 2771 goto out; 2772 } 2773 } 2774 2775 leaf = path->nodes[0]; 2776 slot = path->slots[0]; 2777 btrfs_item_key_to_cpu(leaf, &key, slot); 2778 if (key.objectid == subvol_info->treeid && 2779 key.type == BTRFS_ROOT_BACKREF_KEY) { 2780 subvol_info->parent_id = key.offset; 2781 2782 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2783 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2784 2785 item_off = btrfs_item_ptr_offset(leaf, slot) 2786 + sizeof(struct btrfs_root_ref); 2787 item_len = btrfs_item_size_nr(leaf, slot) 2788 - sizeof(struct btrfs_root_ref); 2789 read_extent_buffer(leaf, subvol_info->name, 2790 item_off, item_len); 2791 } else { 2792 ret = -ENOENT; 2793 goto out; 2794 } 2795 } 2796 2797 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2798 ret = -EFAULT; 2799 2800 out: 2801 btrfs_put_root(root); 2802 out_free: 2803 btrfs_free_path(path); 2804 kfree(subvol_info); 2805 return ret; 2806 } 2807 2808 /* 2809 * Return ROOT_REF information of the subvolume containing this inode 2810 * except the subvolume name. 2811 */ 2812 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2813 { 2814 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2815 struct btrfs_root_ref *rref; 2816 struct btrfs_root *root; 2817 struct btrfs_path *path; 2818 struct btrfs_key key; 2819 struct extent_buffer *leaf; 2820 struct inode *inode; 2821 u64 objectid; 2822 int slot; 2823 int ret; 2824 u8 found; 2825 2826 path = btrfs_alloc_path(); 2827 if (!path) 2828 return -ENOMEM; 2829 2830 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2831 if (IS_ERR(rootrefs)) { 2832 btrfs_free_path(path); 2833 return PTR_ERR(rootrefs); 2834 } 2835 2836 inode = file_inode(file); 2837 root = BTRFS_I(inode)->root->fs_info->tree_root; 2838 objectid = BTRFS_I(inode)->root->root_key.objectid; 2839 2840 key.objectid = objectid; 2841 key.type = BTRFS_ROOT_REF_KEY; 2842 key.offset = rootrefs->min_treeid; 2843 found = 0; 2844 2845 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2846 if (ret < 0) { 2847 goto out; 2848 } else if (path->slots[0] >= 2849 btrfs_header_nritems(path->nodes[0])) { 2850 ret = btrfs_next_leaf(root, path); 2851 if (ret < 0) { 2852 goto out; 2853 } else if (ret > 0) { 2854 ret = -EUCLEAN; 2855 goto out; 2856 } 2857 } 2858 while (1) { 2859 leaf = path->nodes[0]; 2860 slot = path->slots[0]; 2861 2862 btrfs_item_key_to_cpu(leaf, &key, slot); 2863 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2864 ret = 0; 2865 goto out; 2866 } 2867 2868 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2869 ret = -EOVERFLOW; 2870 goto out; 2871 } 2872 2873 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2874 rootrefs->rootref[found].treeid = key.offset; 2875 rootrefs->rootref[found].dirid = 2876 btrfs_root_ref_dirid(leaf, rref); 2877 found++; 2878 2879 ret = btrfs_next_item(root, path); 2880 if (ret < 0) { 2881 goto out; 2882 } else if (ret > 0) { 2883 ret = -EUCLEAN; 2884 goto out; 2885 } 2886 } 2887 2888 out: 2889 if (!ret || ret == -EOVERFLOW) { 2890 rootrefs->num_items = found; 2891 /* update min_treeid for next search */ 2892 if (found) 2893 rootrefs->min_treeid = 2894 rootrefs->rootref[found - 1].treeid + 1; 2895 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2896 ret = -EFAULT; 2897 } 2898 2899 kfree(rootrefs); 2900 btrfs_free_path(path); 2901 2902 return ret; 2903 } 2904 2905 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2906 void __user *arg, 2907 bool destroy_v2) 2908 { 2909 struct dentry *parent = file->f_path.dentry; 2910 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2911 struct dentry *dentry; 2912 struct inode *dir = d_inode(parent); 2913 struct inode *inode; 2914 struct btrfs_root *root = BTRFS_I(dir)->root; 2915 struct btrfs_root *dest = NULL; 2916 struct btrfs_ioctl_vol_args *vol_args = NULL; 2917 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2918 char *subvol_name, *subvol_name_ptr = NULL; 2919 int subvol_namelen; 2920 int err = 0; 2921 bool destroy_parent = false; 2922 2923 if (destroy_v2) { 2924 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2925 if (IS_ERR(vol_args2)) 2926 return PTR_ERR(vol_args2); 2927 2928 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2929 err = -EOPNOTSUPP; 2930 goto out; 2931 } 2932 2933 /* 2934 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2935 * name, same as v1 currently does. 2936 */ 2937 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2938 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2939 subvol_name = vol_args2->name; 2940 2941 err = mnt_want_write_file(file); 2942 if (err) 2943 goto out; 2944 } else { 2945 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2946 err = -EINVAL; 2947 goto out; 2948 } 2949 2950 err = mnt_want_write_file(file); 2951 if (err) 2952 goto out; 2953 2954 dentry = btrfs_get_dentry(fs_info->sb, 2955 BTRFS_FIRST_FREE_OBJECTID, 2956 vol_args2->subvolid, 0, 0); 2957 if (IS_ERR(dentry)) { 2958 err = PTR_ERR(dentry); 2959 goto out_drop_write; 2960 } 2961 2962 /* 2963 * Change the default parent since the subvolume being 2964 * deleted can be outside of the current mount point. 2965 */ 2966 parent = btrfs_get_parent(dentry); 2967 2968 /* 2969 * At this point dentry->d_name can point to '/' if the 2970 * subvolume we want to destroy is outsite of the 2971 * current mount point, so we need to release the 2972 * current dentry and execute the lookup to return a new 2973 * one with ->d_name pointing to the 2974 * <mount point>/subvol_name. 2975 */ 2976 dput(dentry); 2977 if (IS_ERR(parent)) { 2978 err = PTR_ERR(parent); 2979 goto out_drop_write; 2980 } 2981 dir = d_inode(parent); 2982 2983 /* 2984 * If v2 was used with SPEC_BY_ID, a new parent was 2985 * allocated since the subvolume can be outside of the 2986 * current mount point. Later on we need to release this 2987 * new parent dentry. 2988 */ 2989 destroy_parent = true; 2990 2991 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2992 fs_info, vol_args2->subvolid); 2993 if (IS_ERR(subvol_name_ptr)) { 2994 err = PTR_ERR(subvol_name_ptr); 2995 goto free_parent; 2996 } 2997 /* subvol_name_ptr is already NULL termined */ 2998 subvol_name = (char *)kbasename(subvol_name_ptr); 2999 } 3000 } else { 3001 vol_args = memdup_user(arg, sizeof(*vol_args)); 3002 if (IS_ERR(vol_args)) 3003 return PTR_ERR(vol_args); 3004 3005 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 3006 subvol_name = vol_args->name; 3007 3008 err = mnt_want_write_file(file); 3009 if (err) 3010 goto out; 3011 } 3012 3013 subvol_namelen = strlen(subvol_name); 3014 3015 if (strchr(subvol_name, '/') || 3016 strncmp(subvol_name, "..", subvol_namelen) == 0) { 3017 err = -EINVAL; 3018 goto free_subvol_name; 3019 } 3020 3021 if (!S_ISDIR(dir->i_mode)) { 3022 err = -ENOTDIR; 3023 goto free_subvol_name; 3024 } 3025 3026 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3027 if (err == -EINTR) 3028 goto free_subvol_name; 3029 dentry = lookup_one_len(subvol_name, parent, subvol_namelen); 3030 if (IS_ERR(dentry)) { 3031 err = PTR_ERR(dentry); 3032 goto out_unlock_dir; 3033 } 3034 3035 if (d_really_is_negative(dentry)) { 3036 err = -ENOENT; 3037 goto out_dput; 3038 } 3039 3040 inode = d_inode(dentry); 3041 dest = BTRFS_I(inode)->root; 3042 if (!capable(CAP_SYS_ADMIN)) { 3043 /* 3044 * Regular user. Only allow this with a special mount 3045 * option, when the user has write+exec access to the 3046 * subvol root, and when rmdir(2) would have been 3047 * allowed. 3048 * 3049 * Note that this is _not_ check that the subvol is 3050 * empty or doesn't contain data that we wouldn't 3051 * otherwise be able to delete. 3052 * 3053 * Users who want to delete empty subvols should try 3054 * rmdir(2). 3055 */ 3056 err = -EPERM; 3057 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3058 goto out_dput; 3059 3060 /* 3061 * Do not allow deletion if the parent dir is the same 3062 * as the dir to be deleted. That means the ioctl 3063 * must be called on the dentry referencing the root 3064 * of the subvol, not a random directory contained 3065 * within it. 3066 */ 3067 err = -EINVAL; 3068 if (root == dest) 3069 goto out_dput; 3070 3071 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 3072 if (err) 3073 goto out_dput; 3074 } 3075 3076 /* check if subvolume may be deleted by a user */ 3077 err = btrfs_may_delete(dir, dentry, 1); 3078 if (err) 3079 goto out_dput; 3080 3081 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3082 err = -EINVAL; 3083 goto out_dput; 3084 } 3085 3086 inode_lock(inode); 3087 err = btrfs_delete_subvolume(dir, dentry); 3088 inode_unlock(inode); 3089 if (!err) { 3090 fsnotify_rmdir(dir, dentry); 3091 d_delete(dentry); 3092 } 3093 3094 out_dput: 3095 dput(dentry); 3096 out_unlock_dir: 3097 inode_unlock(dir); 3098 free_subvol_name: 3099 kfree(subvol_name_ptr); 3100 free_parent: 3101 if (destroy_parent) 3102 dput(parent); 3103 out_drop_write: 3104 mnt_drop_write_file(file); 3105 out: 3106 kfree(vol_args2); 3107 kfree(vol_args); 3108 return err; 3109 } 3110 3111 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3112 { 3113 struct inode *inode = file_inode(file); 3114 struct btrfs_root *root = BTRFS_I(inode)->root; 3115 struct btrfs_ioctl_defrag_range_args *range; 3116 int ret; 3117 3118 ret = mnt_want_write_file(file); 3119 if (ret) 3120 return ret; 3121 3122 if (btrfs_root_readonly(root)) { 3123 ret = -EROFS; 3124 goto out; 3125 } 3126 3127 switch (inode->i_mode & S_IFMT) { 3128 case S_IFDIR: 3129 if (!capable(CAP_SYS_ADMIN)) { 3130 ret = -EPERM; 3131 goto out; 3132 } 3133 ret = btrfs_defrag_root(root); 3134 break; 3135 case S_IFREG: 3136 /* 3137 * Note that this does not check the file descriptor for write 3138 * access. This prevents defragmenting executables that are 3139 * running and allows defrag on files open in read-only mode. 3140 */ 3141 if (!capable(CAP_SYS_ADMIN) && 3142 inode_permission(inode, MAY_WRITE)) { 3143 ret = -EPERM; 3144 goto out; 3145 } 3146 3147 range = kzalloc(sizeof(*range), GFP_KERNEL); 3148 if (!range) { 3149 ret = -ENOMEM; 3150 goto out; 3151 } 3152 3153 if (argp) { 3154 if (copy_from_user(range, argp, 3155 sizeof(*range))) { 3156 ret = -EFAULT; 3157 kfree(range); 3158 goto out; 3159 } 3160 /* compression requires us to start the IO */ 3161 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3162 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 3163 range->extent_thresh = (u32)-1; 3164 } 3165 } else { 3166 /* the rest are all set to zero by kzalloc */ 3167 range->len = (u64)-1; 3168 } 3169 ret = btrfs_defrag_file(file_inode(file), file, 3170 range, BTRFS_OLDEST_GENERATION, 0); 3171 if (ret > 0) 3172 ret = 0; 3173 kfree(range); 3174 break; 3175 default: 3176 ret = -EINVAL; 3177 } 3178 out: 3179 mnt_drop_write_file(file); 3180 return ret; 3181 } 3182 3183 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3184 { 3185 struct btrfs_ioctl_vol_args *vol_args; 3186 int ret; 3187 3188 if (!capable(CAP_SYS_ADMIN)) 3189 return -EPERM; 3190 3191 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3192 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3193 3194 vol_args = memdup_user(arg, sizeof(*vol_args)); 3195 if (IS_ERR(vol_args)) { 3196 ret = PTR_ERR(vol_args); 3197 goto out; 3198 } 3199 3200 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3201 ret = btrfs_init_new_device(fs_info, vol_args->name); 3202 3203 if (!ret) 3204 btrfs_info(fs_info, "disk added %s", vol_args->name); 3205 3206 kfree(vol_args); 3207 out: 3208 btrfs_exclop_finish(fs_info); 3209 return ret; 3210 } 3211 3212 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3213 { 3214 struct inode *inode = file_inode(file); 3215 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3216 struct btrfs_ioctl_vol_args_v2 *vol_args; 3217 int ret; 3218 3219 if (!capable(CAP_SYS_ADMIN)) 3220 return -EPERM; 3221 3222 ret = mnt_want_write_file(file); 3223 if (ret) 3224 return ret; 3225 3226 vol_args = memdup_user(arg, sizeof(*vol_args)); 3227 if (IS_ERR(vol_args)) { 3228 ret = PTR_ERR(vol_args); 3229 goto err_drop; 3230 } 3231 3232 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3233 ret = -EOPNOTSUPP; 3234 goto out; 3235 } 3236 3237 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3238 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3239 goto out; 3240 } 3241 3242 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3243 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3244 } else { 3245 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3246 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3247 } 3248 btrfs_exclop_finish(fs_info); 3249 3250 if (!ret) { 3251 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3252 btrfs_info(fs_info, "device deleted: id %llu", 3253 vol_args->devid); 3254 else 3255 btrfs_info(fs_info, "device deleted: %s", 3256 vol_args->name); 3257 } 3258 out: 3259 kfree(vol_args); 3260 err_drop: 3261 mnt_drop_write_file(file); 3262 return ret; 3263 } 3264 3265 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3266 { 3267 struct inode *inode = file_inode(file); 3268 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3269 struct btrfs_ioctl_vol_args *vol_args; 3270 int ret; 3271 3272 if (!capable(CAP_SYS_ADMIN)) 3273 return -EPERM; 3274 3275 ret = mnt_want_write_file(file); 3276 if (ret) 3277 return ret; 3278 3279 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3280 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3281 goto out_drop_write; 3282 } 3283 3284 vol_args = memdup_user(arg, sizeof(*vol_args)); 3285 if (IS_ERR(vol_args)) { 3286 ret = PTR_ERR(vol_args); 3287 goto out; 3288 } 3289 3290 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3291 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3292 3293 if (!ret) 3294 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3295 kfree(vol_args); 3296 out: 3297 btrfs_exclop_finish(fs_info); 3298 out_drop_write: 3299 mnt_drop_write_file(file); 3300 3301 return ret; 3302 } 3303 3304 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3305 void __user *arg) 3306 { 3307 struct btrfs_ioctl_fs_info_args *fi_args; 3308 struct btrfs_device *device; 3309 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3310 u64 flags_in; 3311 int ret = 0; 3312 3313 fi_args = memdup_user(arg, sizeof(*fi_args)); 3314 if (IS_ERR(fi_args)) 3315 return PTR_ERR(fi_args); 3316 3317 flags_in = fi_args->flags; 3318 memset(fi_args, 0, sizeof(*fi_args)); 3319 3320 rcu_read_lock(); 3321 fi_args->num_devices = fs_devices->num_devices; 3322 3323 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3324 if (device->devid > fi_args->max_id) 3325 fi_args->max_id = device->devid; 3326 } 3327 rcu_read_unlock(); 3328 3329 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3330 fi_args->nodesize = fs_info->nodesize; 3331 fi_args->sectorsize = fs_info->sectorsize; 3332 fi_args->clone_alignment = fs_info->sectorsize; 3333 3334 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3335 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3336 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3337 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3338 } 3339 3340 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3341 fi_args->generation = fs_info->generation; 3342 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3343 } 3344 3345 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3346 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3347 sizeof(fi_args->metadata_uuid)); 3348 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3349 } 3350 3351 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3352 ret = -EFAULT; 3353 3354 kfree(fi_args); 3355 return ret; 3356 } 3357 3358 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3359 void __user *arg) 3360 { 3361 struct btrfs_ioctl_dev_info_args *di_args; 3362 struct btrfs_device *dev; 3363 int ret = 0; 3364 char *s_uuid = NULL; 3365 3366 di_args = memdup_user(arg, sizeof(*di_args)); 3367 if (IS_ERR(di_args)) 3368 return PTR_ERR(di_args); 3369 3370 if (!btrfs_is_empty_uuid(di_args->uuid)) 3371 s_uuid = di_args->uuid; 3372 3373 rcu_read_lock(); 3374 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3375 NULL); 3376 3377 if (!dev) { 3378 ret = -ENODEV; 3379 goto out; 3380 } 3381 3382 di_args->devid = dev->devid; 3383 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3384 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3385 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3386 if (dev->name) { 3387 strncpy(di_args->path, rcu_str_deref(dev->name), 3388 sizeof(di_args->path) - 1); 3389 di_args->path[sizeof(di_args->path) - 1] = 0; 3390 } else { 3391 di_args->path[0] = '\0'; 3392 } 3393 3394 out: 3395 rcu_read_unlock(); 3396 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3397 ret = -EFAULT; 3398 3399 kfree(di_args); 3400 return ret; 3401 } 3402 3403 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3404 { 3405 struct inode *inode = file_inode(file); 3406 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3407 struct btrfs_root *root = BTRFS_I(inode)->root; 3408 struct btrfs_root *new_root; 3409 struct btrfs_dir_item *di; 3410 struct btrfs_trans_handle *trans; 3411 struct btrfs_path *path = NULL; 3412 struct btrfs_disk_key disk_key; 3413 u64 objectid = 0; 3414 u64 dir_id; 3415 int ret; 3416 3417 if (!capable(CAP_SYS_ADMIN)) 3418 return -EPERM; 3419 3420 ret = mnt_want_write_file(file); 3421 if (ret) 3422 return ret; 3423 3424 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3425 ret = -EFAULT; 3426 goto out; 3427 } 3428 3429 if (!objectid) 3430 objectid = BTRFS_FS_TREE_OBJECTID; 3431 3432 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3433 if (IS_ERR(new_root)) { 3434 ret = PTR_ERR(new_root); 3435 goto out; 3436 } 3437 if (!is_fstree(new_root->root_key.objectid)) { 3438 ret = -ENOENT; 3439 goto out_free; 3440 } 3441 3442 path = btrfs_alloc_path(); 3443 if (!path) { 3444 ret = -ENOMEM; 3445 goto out_free; 3446 } 3447 3448 trans = btrfs_start_transaction(root, 1); 3449 if (IS_ERR(trans)) { 3450 ret = PTR_ERR(trans); 3451 goto out_free; 3452 } 3453 3454 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3455 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3456 dir_id, "default", 7, 1); 3457 if (IS_ERR_OR_NULL(di)) { 3458 btrfs_release_path(path); 3459 btrfs_end_transaction(trans); 3460 btrfs_err(fs_info, 3461 "Umm, you don't have the default diritem, this isn't going to work"); 3462 ret = -ENOENT; 3463 goto out_free; 3464 } 3465 3466 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3467 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3468 btrfs_mark_buffer_dirty(path->nodes[0]); 3469 btrfs_release_path(path); 3470 3471 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3472 btrfs_end_transaction(trans); 3473 out_free: 3474 btrfs_put_root(new_root); 3475 btrfs_free_path(path); 3476 out: 3477 mnt_drop_write_file(file); 3478 return ret; 3479 } 3480 3481 static void get_block_group_info(struct list_head *groups_list, 3482 struct btrfs_ioctl_space_info *space) 3483 { 3484 struct btrfs_block_group *block_group; 3485 3486 space->total_bytes = 0; 3487 space->used_bytes = 0; 3488 space->flags = 0; 3489 list_for_each_entry(block_group, groups_list, list) { 3490 space->flags = block_group->flags; 3491 space->total_bytes += block_group->length; 3492 space->used_bytes += block_group->used; 3493 } 3494 } 3495 3496 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3497 void __user *arg) 3498 { 3499 struct btrfs_ioctl_space_args space_args; 3500 struct btrfs_ioctl_space_info space; 3501 struct btrfs_ioctl_space_info *dest; 3502 struct btrfs_ioctl_space_info *dest_orig; 3503 struct btrfs_ioctl_space_info __user *user_dest; 3504 struct btrfs_space_info *info; 3505 static const u64 types[] = { 3506 BTRFS_BLOCK_GROUP_DATA, 3507 BTRFS_BLOCK_GROUP_SYSTEM, 3508 BTRFS_BLOCK_GROUP_METADATA, 3509 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3510 }; 3511 int num_types = 4; 3512 int alloc_size; 3513 int ret = 0; 3514 u64 slot_count = 0; 3515 int i, c; 3516 3517 if (copy_from_user(&space_args, 3518 (struct btrfs_ioctl_space_args __user *)arg, 3519 sizeof(space_args))) 3520 return -EFAULT; 3521 3522 for (i = 0; i < num_types; i++) { 3523 struct btrfs_space_info *tmp; 3524 3525 info = NULL; 3526 list_for_each_entry(tmp, &fs_info->space_info, list) { 3527 if (tmp->flags == types[i]) { 3528 info = tmp; 3529 break; 3530 } 3531 } 3532 3533 if (!info) 3534 continue; 3535 3536 down_read(&info->groups_sem); 3537 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3538 if (!list_empty(&info->block_groups[c])) 3539 slot_count++; 3540 } 3541 up_read(&info->groups_sem); 3542 } 3543 3544 /* 3545 * Global block reserve, exported as a space_info 3546 */ 3547 slot_count++; 3548 3549 /* space_slots == 0 means they are asking for a count */ 3550 if (space_args.space_slots == 0) { 3551 space_args.total_spaces = slot_count; 3552 goto out; 3553 } 3554 3555 slot_count = min_t(u64, space_args.space_slots, slot_count); 3556 3557 alloc_size = sizeof(*dest) * slot_count; 3558 3559 /* we generally have at most 6 or so space infos, one for each raid 3560 * level. So, a whole page should be more than enough for everyone 3561 */ 3562 if (alloc_size > PAGE_SIZE) 3563 return -ENOMEM; 3564 3565 space_args.total_spaces = 0; 3566 dest = kmalloc(alloc_size, GFP_KERNEL); 3567 if (!dest) 3568 return -ENOMEM; 3569 dest_orig = dest; 3570 3571 /* now we have a buffer to copy into */ 3572 for (i = 0; i < num_types; i++) { 3573 struct btrfs_space_info *tmp; 3574 3575 if (!slot_count) 3576 break; 3577 3578 info = NULL; 3579 list_for_each_entry(tmp, &fs_info->space_info, list) { 3580 if (tmp->flags == types[i]) { 3581 info = tmp; 3582 break; 3583 } 3584 } 3585 3586 if (!info) 3587 continue; 3588 down_read(&info->groups_sem); 3589 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3590 if (!list_empty(&info->block_groups[c])) { 3591 get_block_group_info(&info->block_groups[c], 3592 &space); 3593 memcpy(dest, &space, sizeof(space)); 3594 dest++; 3595 space_args.total_spaces++; 3596 slot_count--; 3597 } 3598 if (!slot_count) 3599 break; 3600 } 3601 up_read(&info->groups_sem); 3602 } 3603 3604 /* 3605 * Add global block reserve 3606 */ 3607 if (slot_count) { 3608 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3609 3610 spin_lock(&block_rsv->lock); 3611 space.total_bytes = block_rsv->size; 3612 space.used_bytes = block_rsv->size - block_rsv->reserved; 3613 spin_unlock(&block_rsv->lock); 3614 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3615 memcpy(dest, &space, sizeof(space)); 3616 space_args.total_spaces++; 3617 } 3618 3619 user_dest = (struct btrfs_ioctl_space_info __user *) 3620 (arg + sizeof(struct btrfs_ioctl_space_args)); 3621 3622 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3623 ret = -EFAULT; 3624 3625 kfree(dest_orig); 3626 out: 3627 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3628 ret = -EFAULT; 3629 3630 return ret; 3631 } 3632 3633 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3634 void __user *argp) 3635 { 3636 struct btrfs_trans_handle *trans; 3637 u64 transid; 3638 int ret; 3639 3640 trans = btrfs_attach_transaction_barrier(root); 3641 if (IS_ERR(trans)) { 3642 if (PTR_ERR(trans) != -ENOENT) 3643 return PTR_ERR(trans); 3644 3645 /* No running transaction, don't bother */ 3646 transid = root->fs_info->last_trans_committed; 3647 goto out; 3648 } 3649 transid = trans->transid; 3650 ret = btrfs_commit_transaction_async(trans, 0); 3651 if (ret) { 3652 btrfs_end_transaction(trans); 3653 return ret; 3654 } 3655 out: 3656 if (argp) 3657 if (copy_to_user(argp, &transid, sizeof(transid))) 3658 return -EFAULT; 3659 return 0; 3660 } 3661 3662 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3663 void __user *argp) 3664 { 3665 u64 transid; 3666 3667 if (argp) { 3668 if (copy_from_user(&transid, argp, sizeof(transid))) 3669 return -EFAULT; 3670 } else { 3671 transid = 0; /* current trans */ 3672 } 3673 return btrfs_wait_for_commit(fs_info, transid); 3674 } 3675 3676 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3677 { 3678 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3679 struct btrfs_ioctl_scrub_args *sa; 3680 int ret; 3681 3682 if (!capable(CAP_SYS_ADMIN)) 3683 return -EPERM; 3684 3685 sa = memdup_user(arg, sizeof(*sa)); 3686 if (IS_ERR(sa)) 3687 return PTR_ERR(sa); 3688 3689 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3690 ret = mnt_want_write_file(file); 3691 if (ret) 3692 goto out; 3693 } 3694 3695 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3696 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3697 0); 3698 3699 /* 3700 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3701 * error. This is important as it allows user space to know how much 3702 * progress scrub has done. For example, if scrub is canceled we get 3703 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3704 * space. Later user space can inspect the progress from the structure 3705 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3706 * previously (btrfs-progs does this). 3707 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3708 * then return -EFAULT to signal the structure was not copied or it may 3709 * be corrupt and unreliable due to a partial copy. 3710 */ 3711 if (copy_to_user(arg, sa, sizeof(*sa))) 3712 ret = -EFAULT; 3713 3714 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3715 mnt_drop_write_file(file); 3716 out: 3717 kfree(sa); 3718 return ret; 3719 } 3720 3721 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3722 { 3723 if (!capable(CAP_SYS_ADMIN)) 3724 return -EPERM; 3725 3726 return btrfs_scrub_cancel(fs_info); 3727 } 3728 3729 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3730 void __user *arg) 3731 { 3732 struct btrfs_ioctl_scrub_args *sa; 3733 int ret; 3734 3735 if (!capable(CAP_SYS_ADMIN)) 3736 return -EPERM; 3737 3738 sa = memdup_user(arg, sizeof(*sa)); 3739 if (IS_ERR(sa)) 3740 return PTR_ERR(sa); 3741 3742 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3743 3744 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3745 ret = -EFAULT; 3746 3747 kfree(sa); 3748 return ret; 3749 } 3750 3751 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3752 void __user *arg) 3753 { 3754 struct btrfs_ioctl_get_dev_stats *sa; 3755 int ret; 3756 3757 sa = memdup_user(arg, sizeof(*sa)); 3758 if (IS_ERR(sa)) 3759 return PTR_ERR(sa); 3760 3761 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3762 kfree(sa); 3763 return -EPERM; 3764 } 3765 3766 ret = btrfs_get_dev_stats(fs_info, sa); 3767 3768 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3769 ret = -EFAULT; 3770 3771 kfree(sa); 3772 return ret; 3773 } 3774 3775 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3776 void __user *arg) 3777 { 3778 struct btrfs_ioctl_dev_replace_args *p; 3779 int ret; 3780 3781 if (!capable(CAP_SYS_ADMIN)) 3782 return -EPERM; 3783 3784 p = memdup_user(arg, sizeof(*p)); 3785 if (IS_ERR(p)) 3786 return PTR_ERR(p); 3787 3788 switch (p->cmd) { 3789 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3790 if (sb_rdonly(fs_info->sb)) { 3791 ret = -EROFS; 3792 goto out; 3793 } 3794 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3795 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3796 } else { 3797 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3798 btrfs_exclop_finish(fs_info); 3799 } 3800 break; 3801 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3802 btrfs_dev_replace_status(fs_info, p); 3803 ret = 0; 3804 break; 3805 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3806 p->result = btrfs_dev_replace_cancel(fs_info); 3807 ret = 0; 3808 break; 3809 default: 3810 ret = -EINVAL; 3811 break; 3812 } 3813 3814 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3815 ret = -EFAULT; 3816 out: 3817 kfree(p); 3818 return ret; 3819 } 3820 3821 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3822 { 3823 int ret = 0; 3824 int i; 3825 u64 rel_ptr; 3826 int size; 3827 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3828 struct inode_fs_paths *ipath = NULL; 3829 struct btrfs_path *path; 3830 3831 if (!capable(CAP_DAC_READ_SEARCH)) 3832 return -EPERM; 3833 3834 path = btrfs_alloc_path(); 3835 if (!path) { 3836 ret = -ENOMEM; 3837 goto out; 3838 } 3839 3840 ipa = memdup_user(arg, sizeof(*ipa)); 3841 if (IS_ERR(ipa)) { 3842 ret = PTR_ERR(ipa); 3843 ipa = NULL; 3844 goto out; 3845 } 3846 3847 size = min_t(u32, ipa->size, 4096); 3848 ipath = init_ipath(size, root, path); 3849 if (IS_ERR(ipath)) { 3850 ret = PTR_ERR(ipath); 3851 ipath = NULL; 3852 goto out; 3853 } 3854 3855 ret = paths_from_inode(ipa->inum, ipath); 3856 if (ret < 0) 3857 goto out; 3858 3859 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3860 rel_ptr = ipath->fspath->val[i] - 3861 (u64)(unsigned long)ipath->fspath->val; 3862 ipath->fspath->val[i] = rel_ptr; 3863 } 3864 3865 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3866 ipath->fspath, size); 3867 if (ret) { 3868 ret = -EFAULT; 3869 goto out; 3870 } 3871 3872 out: 3873 btrfs_free_path(path); 3874 free_ipath(ipath); 3875 kfree(ipa); 3876 3877 return ret; 3878 } 3879 3880 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3881 { 3882 struct btrfs_data_container *inodes = ctx; 3883 const size_t c = 3 * sizeof(u64); 3884 3885 if (inodes->bytes_left >= c) { 3886 inodes->bytes_left -= c; 3887 inodes->val[inodes->elem_cnt] = inum; 3888 inodes->val[inodes->elem_cnt + 1] = offset; 3889 inodes->val[inodes->elem_cnt + 2] = root; 3890 inodes->elem_cnt += 3; 3891 } else { 3892 inodes->bytes_missing += c - inodes->bytes_left; 3893 inodes->bytes_left = 0; 3894 inodes->elem_missed += 3; 3895 } 3896 3897 return 0; 3898 } 3899 3900 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3901 void __user *arg, int version) 3902 { 3903 int ret = 0; 3904 int size; 3905 struct btrfs_ioctl_logical_ino_args *loi; 3906 struct btrfs_data_container *inodes = NULL; 3907 struct btrfs_path *path = NULL; 3908 bool ignore_offset; 3909 3910 if (!capable(CAP_SYS_ADMIN)) 3911 return -EPERM; 3912 3913 loi = memdup_user(arg, sizeof(*loi)); 3914 if (IS_ERR(loi)) 3915 return PTR_ERR(loi); 3916 3917 if (version == 1) { 3918 ignore_offset = false; 3919 size = min_t(u32, loi->size, SZ_64K); 3920 } else { 3921 /* All reserved bits must be 0 for now */ 3922 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3923 ret = -EINVAL; 3924 goto out_loi; 3925 } 3926 /* Only accept flags we have defined so far */ 3927 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3928 ret = -EINVAL; 3929 goto out_loi; 3930 } 3931 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3932 size = min_t(u32, loi->size, SZ_16M); 3933 } 3934 3935 path = btrfs_alloc_path(); 3936 if (!path) { 3937 ret = -ENOMEM; 3938 goto out; 3939 } 3940 3941 inodes = init_data_container(size); 3942 if (IS_ERR(inodes)) { 3943 ret = PTR_ERR(inodes); 3944 inodes = NULL; 3945 goto out; 3946 } 3947 3948 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3949 build_ino_list, inodes, ignore_offset); 3950 if (ret == -EINVAL) 3951 ret = -ENOENT; 3952 if (ret < 0) 3953 goto out; 3954 3955 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3956 size); 3957 if (ret) 3958 ret = -EFAULT; 3959 3960 out: 3961 btrfs_free_path(path); 3962 kvfree(inodes); 3963 out_loi: 3964 kfree(loi); 3965 3966 return ret; 3967 } 3968 3969 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3970 struct btrfs_ioctl_balance_args *bargs) 3971 { 3972 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3973 3974 bargs->flags = bctl->flags; 3975 3976 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3977 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3978 if (atomic_read(&fs_info->balance_pause_req)) 3979 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3980 if (atomic_read(&fs_info->balance_cancel_req)) 3981 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3982 3983 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3984 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3985 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3986 3987 spin_lock(&fs_info->balance_lock); 3988 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3989 spin_unlock(&fs_info->balance_lock); 3990 } 3991 3992 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3993 { 3994 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3995 struct btrfs_fs_info *fs_info = root->fs_info; 3996 struct btrfs_ioctl_balance_args *bargs; 3997 struct btrfs_balance_control *bctl; 3998 bool need_unlock; /* for mut. excl. ops lock */ 3999 int ret; 4000 4001 if (!capable(CAP_SYS_ADMIN)) 4002 return -EPERM; 4003 4004 ret = mnt_want_write_file(file); 4005 if (ret) 4006 return ret; 4007 4008 again: 4009 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4010 mutex_lock(&fs_info->balance_mutex); 4011 need_unlock = true; 4012 goto locked; 4013 } 4014 4015 /* 4016 * mut. excl. ops lock is locked. Three possibilities: 4017 * (1) some other op is running 4018 * (2) balance is running 4019 * (3) balance is paused -- special case (think resume) 4020 */ 4021 mutex_lock(&fs_info->balance_mutex); 4022 if (fs_info->balance_ctl) { 4023 /* this is either (2) or (3) */ 4024 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4025 mutex_unlock(&fs_info->balance_mutex); 4026 /* 4027 * Lock released to allow other waiters to continue, 4028 * we'll reexamine the status again. 4029 */ 4030 mutex_lock(&fs_info->balance_mutex); 4031 4032 if (fs_info->balance_ctl && 4033 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4034 /* this is (3) */ 4035 need_unlock = false; 4036 goto locked; 4037 } 4038 4039 mutex_unlock(&fs_info->balance_mutex); 4040 goto again; 4041 } else { 4042 /* this is (2) */ 4043 mutex_unlock(&fs_info->balance_mutex); 4044 ret = -EINPROGRESS; 4045 goto out; 4046 } 4047 } else { 4048 /* this is (1) */ 4049 mutex_unlock(&fs_info->balance_mutex); 4050 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4051 goto out; 4052 } 4053 4054 locked: 4055 4056 if (arg) { 4057 bargs = memdup_user(arg, sizeof(*bargs)); 4058 if (IS_ERR(bargs)) { 4059 ret = PTR_ERR(bargs); 4060 goto out_unlock; 4061 } 4062 4063 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4064 if (!fs_info->balance_ctl) { 4065 ret = -ENOTCONN; 4066 goto out_bargs; 4067 } 4068 4069 bctl = fs_info->balance_ctl; 4070 spin_lock(&fs_info->balance_lock); 4071 bctl->flags |= BTRFS_BALANCE_RESUME; 4072 spin_unlock(&fs_info->balance_lock); 4073 4074 goto do_balance; 4075 } 4076 } else { 4077 bargs = NULL; 4078 } 4079 4080 if (fs_info->balance_ctl) { 4081 ret = -EINPROGRESS; 4082 goto out_bargs; 4083 } 4084 4085 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4086 if (!bctl) { 4087 ret = -ENOMEM; 4088 goto out_bargs; 4089 } 4090 4091 if (arg) { 4092 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4093 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4094 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4095 4096 bctl->flags = bargs->flags; 4097 } else { 4098 /* balance everything - no filters */ 4099 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4100 } 4101 4102 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4103 ret = -EINVAL; 4104 goto out_bctl; 4105 } 4106 4107 do_balance: 4108 /* 4109 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4110 * bctl is freed in reset_balance_state, or, if restriper was paused 4111 * all the way until unmount, in free_fs_info. The flag should be 4112 * cleared after reset_balance_state. 4113 */ 4114 need_unlock = false; 4115 4116 ret = btrfs_balance(fs_info, bctl, bargs); 4117 bctl = NULL; 4118 4119 if ((ret == 0 || ret == -ECANCELED) && arg) { 4120 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4121 ret = -EFAULT; 4122 } 4123 4124 out_bctl: 4125 kfree(bctl); 4126 out_bargs: 4127 kfree(bargs); 4128 out_unlock: 4129 mutex_unlock(&fs_info->balance_mutex); 4130 if (need_unlock) 4131 btrfs_exclop_finish(fs_info); 4132 out: 4133 mnt_drop_write_file(file); 4134 return ret; 4135 } 4136 4137 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4138 { 4139 if (!capable(CAP_SYS_ADMIN)) 4140 return -EPERM; 4141 4142 switch (cmd) { 4143 case BTRFS_BALANCE_CTL_PAUSE: 4144 return btrfs_pause_balance(fs_info); 4145 case BTRFS_BALANCE_CTL_CANCEL: 4146 return btrfs_cancel_balance(fs_info); 4147 } 4148 4149 return -EINVAL; 4150 } 4151 4152 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4153 void __user *arg) 4154 { 4155 struct btrfs_ioctl_balance_args *bargs; 4156 int ret = 0; 4157 4158 if (!capable(CAP_SYS_ADMIN)) 4159 return -EPERM; 4160 4161 mutex_lock(&fs_info->balance_mutex); 4162 if (!fs_info->balance_ctl) { 4163 ret = -ENOTCONN; 4164 goto out; 4165 } 4166 4167 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4168 if (!bargs) { 4169 ret = -ENOMEM; 4170 goto out; 4171 } 4172 4173 btrfs_update_ioctl_balance_args(fs_info, bargs); 4174 4175 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4176 ret = -EFAULT; 4177 4178 kfree(bargs); 4179 out: 4180 mutex_unlock(&fs_info->balance_mutex); 4181 return ret; 4182 } 4183 4184 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4185 { 4186 struct inode *inode = file_inode(file); 4187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4188 struct btrfs_ioctl_quota_ctl_args *sa; 4189 int ret; 4190 4191 if (!capable(CAP_SYS_ADMIN)) 4192 return -EPERM; 4193 4194 ret = mnt_want_write_file(file); 4195 if (ret) 4196 return ret; 4197 4198 sa = memdup_user(arg, sizeof(*sa)); 4199 if (IS_ERR(sa)) { 4200 ret = PTR_ERR(sa); 4201 goto drop_write; 4202 } 4203 4204 down_write(&fs_info->subvol_sem); 4205 4206 switch (sa->cmd) { 4207 case BTRFS_QUOTA_CTL_ENABLE: 4208 ret = btrfs_quota_enable(fs_info); 4209 break; 4210 case BTRFS_QUOTA_CTL_DISABLE: 4211 ret = btrfs_quota_disable(fs_info); 4212 break; 4213 default: 4214 ret = -EINVAL; 4215 break; 4216 } 4217 4218 kfree(sa); 4219 up_write(&fs_info->subvol_sem); 4220 drop_write: 4221 mnt_drop_write_file(file); 4222 return ret; 4223 } 4224 4225 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4226 { 4227 struct inode *inode = file_inode(file); 4228 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4229 struct btrfs_root *root = BTRFS_I(inode)->root; 4230 struct btrfs_ioctl_qgroup_assign_args *sa; 4231 struct btrfs_trans_handle *trans; 4232 int ret; 4233 int err; 4234 4235 if (!capable(CAP_SYS_ADMIN)) 4236 return -EPERM; 4237 4238 ret = mnt_want_write_file(file); 4239 if (ret) 4240 return ret; 4241 4242 sa = memdup_user(arg, sizeof(*sa)); 4243 if (IS_ERR(sa)) { 4244 ret = PTR_ERR(sa); 4245 goto drop_write; 4246 } 4247 4248 trans = btrfs_join_transaction(root); 4249 if (IS_ERR(trans)) { 4250 ret = PTR_ERR(trans); 4251 goto out; 4252 } 4253 4254 if (sa->assign) { 4255 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4256 } else { 4257 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4258 } 4259 4260 /* update qgroup status and info */ 4261 err = btrfs_run_qgroups(trans); 4262 if (err < 0) 4263 btrfs_handle_fs_error(fs_info, err, 4264 "failed to update qgroup status and info"); 4265 err = btrfs_end_transaction(trans); 4266 if (err && !ret) 4267 ret = err; 4268 4269 out: 4270 kfree(sa); 4271 drop_write: 4272 mnt_drop_write_file(file); 4273 return ret; 4274 } 4275 4276 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4277 { 4278 struct inode *inode = file_inode(file); 4279 struct btrfs_root *root = BTRFS_I(inode)->root; 4280 struct btrfs_ioctl_qgroup_create_args *sa; 4281 struct btrfs_trans_handle *trans; 4282 int ret; 4283 int err; 4284 4285 if (!capable(CAP_SYS_ADMIN)) 4286 return -EPERM; 4287 4288 ret = mnt_want_write_file(file); 4289 if (ret) 4290 return ret; 4291 4292 sa = memdup_user(arg, sizeof(*sa)); 4293 if (IS_ERR(sa)) { 4294 ret = PTR_ERR(sa); 4295 goto drop_write; 4296 } 4297 4298 if (!sa->qgroupid) { 4299 ret = -EINVAL; 4300 goto out; 4301 } 4302 4303 trans = btrfs_join_transaction(root); 4304 if (IS_ERR(trans)) { 4305 ret = PTR_ERR(trans); 4306 goto out; 4307 } 4308 4309 if (sa->create) { 4310 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4311 } else { 4312 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4313 } 4314 4315 err = btrfs_end_transaction(trans); 4316 if (err && !ret) 4317 ret = err; 4318 4319 out: 4320 kfree(sa); 4321 drop_write: 4322 mnt_drop_write_file(file); 4323 return ret; 4324 } 4325 4326 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4327 { 4328 struct inode *inode = file_inode(file); 4329 struct btrfs_root *root = BTRFS_I(inode)->root; 4330 struct btrfs_ioctl_qgroup_limit_args *sa; 4331 struct btrfs_trans_handle *trans; 4332 int ret; 4333 int err; 4334 u64 qgroupid; 4335 4336 if (!capable(CAP_SYS_ADMIN)) 4337 return -EPERM; 4338 4339 ret = mnt_want_write_file(file); 4340 if (ret) 4341 return ret; 4342 4343 sa = memdup_user(arg, sizeof(*sa)); 4344 if (IS_ERR(sa)) { 4345 ret = PTR_ERR(sa); 4346 goto drop_write; 4347 } 4348 4349 trans = btrfs_join_transaction(root); 4350 if (IS_ERR(trans)) { 4351 ret = PTR_ERR(trans); 4352 goto out; 4353 } 4354 4355 qgroupid = sa->qgroupid; 4356 if (!qgroupid) { 4357 /* take the current subvol as qgroup */ 4358 qgroupid = root->root_key.objectid; 4359 } 4360 4361 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4362 4363 err = btrfs_end_transaction(trans); 4364 if (err && !ret) 4365 ret = err; 4366 4367 out: 4368 kfree(sa); 4369 drop_write: 4370 mnt_drop_write_file(file); 4371 return ret; 4372 } 4373 4374 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4375 { 4376 struct inode *inode = file_inode(file); 4377 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4378 struct btrfs_ioctl_quota_rescan_args *qsa; 4379 int ret; 4380 4381 if (!capable(CAP_SYS_ADMIN)) 4382 return -EPERM; 4383 4384 ret = mnt_want_write_file(file); 4385 if (ret) 4386 return ret; 4387 4388 qsa = memdup_user(arg, sizeof(*qsa)); 4389 if (IS_ERR(qsa)) { 4390 ret = PTR_ERR(qsa); 4391 goto drop_write; 4392 } 4393 4394 if (qsa->flags) { 4395 ret = -EINVAL; 4396 goto out; 4397 } 4398 4399 ret = btrfs_qgroup_rescan(fs_info); 4400 4401 out: 4402 kfree(qsa); 4403 drop_write: 4404 mnt_drop_write_file(file); 4405 return ret; 4406 } 4407 4408 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4409 void __user *arg) 4410 { 4411 struct btrfs_ioctl_quota_rescan_args *qsa; 4412 int ret = 0; 4413 4414 if (!capable(CAP_SYS_ADMIN)) 4415 return -EPERM; 4416 4417 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4418 if (!qsa) 4419 return -ENOMEM; 4420 4421 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4422 qsa->flags = 1; 4423 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4424 } 4425 4426 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4427 ret = -EFAULT; 4428 4429 kfree(qsa); 4430 return ret; 4431 } 4432 4433 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4434 void __user *arg) 4435 { 4436 if (!capable(CAP_SYS_ADMIN)) 4437 return -EPERM; 4438 4439 return btrfs_qgroup_wait_for_completion(fs_info, true); 4440 } 4441 4442 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4443 struct btrfs_ioctl_received_subvol_args *sa) 4444 { 4445 struct inode *inode = file_inode(file); 4446 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4447 struct btrfs_root *root = BTRFS_I(inode)->root; 4448 struct btrfs_root_item *root_item = &root->root_item; 4449 struct btrfs_trans_handle *trans; 4450 struct timespec64 ct = current_time(inode); 4451 int ret = 0; 4452 int received_uuid_changed; 4453 4454 if (!inode_owner_or_capable(inode)) 4455 return -EPERM; 4456 4457 ret = mnt_want_write_file(file); 4458 if (ret < 0) 4459 return ret; 4460 4461 down_write(&fs_info->subvol_sem); 4462 4463 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4464 ret = -EINVAL; 4465 goto out; 4466 } 4467 4468 if (btrfs_root_readonly(root)) { 4469 ret = -EROFS; 4470 goto out; 4471 } 4472 4473 /* 4474 * 1 - root item 4475 * 2 - uuid items (received uuid + subvol uuid) 4476 */ 4477 trans = btrfs_start_transaction(root, 3); 4478 if (IS_ERR(trans)) { 4479 ret = PTR_ERR(trans); 4480 trans = NULL; 4481 goto out; 4482 } 4483 4484 sa->rtransid = trans->transid; 4485 sa->rtime.sec = ct.tv_sec; 4486 sa->rtime.nsec = ct.tv_nsec; 4487 4488 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4489 BTRFS_UUID_SIZE); 4490 if (received_uuid_changed && 4491 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4492 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4493 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4494 root->root_key.objectid); 4495 if (ret && ret != -ENOENT) { 4496 btrfs_abort_transaction(trans, ret); 4497 btrfs_end_transaction(trans); 4498 goto out; 4499 } 4500 } 4501 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4502 btrfs_set_root_stransid(root_item, sa->stransid); 4503 btrfs_set_root_rtransid(root_item, sa->rtransid); 4504 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4505 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4506 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4507 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4508 4509 ret = btrfs_update_root(trans, fs_info->tree_root, 4510 &root->root_key, &root->root_item); 4511 if (ret < 0) { 4512 btrfs_end_transaction(trans); 4513 goto out; 4514 } 4515 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4516 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4517 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4518 root->root_key.objectid); 4519 if (ret < 0 && ret != -EEXIST) { 4520 btrfs_abort_transaction(trans, ret); 4521 btrfs_end_transaction(trans); 4522 goto out; 4523 } 4524 } 4525 ret = btrfs_commit_transaction(trans); 4526 out: 4527 up_write(&fs_info->subvol_sem); 4528 mnt_drop_write_file(file); 4529 return ret; 4530 } 4531 4532 #ifdef CONFIG_64BIT 4533 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4534 void __user *arg) 4535 { 4536 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4537 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4538 int ret = 0; 4539 4540 args32 = memdup_user(arg, sizeof(*args32)); 4541 if (IS_ERR(args32)) 4542 return PTR_ERR(args32); 4543 4544 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4545 if (!args64) { 4546 ret = -ENOMEM; 4547 goto out; 4548 } 4549 4550 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4551 args64->stransid = args32->stransid; 4552 args64->rtransid = args32->rtransid; 4553 args64->stime.sec = args32->stime.sec; 4554 args64->stime.nsec = args32->stime.nsec; 4555 args64->rtime.sec = args32->rtime.sec; 4556 args64->rtime.nsec = args32->rtime.nsec; 4557 args64->flags = args32->flags; 4558 4559 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4560 if (ret) 4561 goto out; 4562 4563 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4564 args32->stransid = args64->stransid; 4565 args32->rtransid = args64->rtransid; 4566 args32->stime.sec = args64->stime.sec; 4567 args32->stime.nsec = args64->stime.nsec; 4568 args32->rtime.sec = args64->rtime.sec; 4569 args32->rtime.nsec = args64->rtime.nsec; 4570 args32->flags = args64->flags; 4571 4572 ret = copy_to_user(arg, args32, sizeof(*args32)); 4573 if (ret) 4574 ret = -EFAULT; 4575 4576 out: 4577 kfree(args32); 4578 kfree(args64); 4579 return ret; 4580 } 4581 #endif 4582 4583 static long btrfs_ioctl_set_received_subvol(struct file *file, 4584 void __user *arg) 4585 { 4586 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4587 int ret = 0; 4588 4589 sa = memdup_user(arg, sizeof(*sa)); 4590 if (IS_ERR(sa)) 4591 return PTR_ERR(sa); 4592 4593 ret = _btrfs_ioctl_set_received_subvol(file, sa); 4594 4595 if (ret) 4596 goto out; 4597 4598 ret = copy_to_user(arg, sa, sizeof(*sa)); 4599 if (ret) 4600 ret = -EFAULT; 4601 4602 out: 4603 kfree(sa); 4604 return ret; 4605 } 4606 4607 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4608 void __user *arg) 4609 { 4610 size_t len; 4611 int ret; 4612 char label[BTRFS_LABEL_SIZE]; 4613 4614 spin_lock(&fs_info->super_lock); 4615 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4616 spin_unlock(&fs_info->super_lock); 4617 4618 len = strnlen(label, BTRFS_LABEL_SIZE); 4619 4620 if (len == BTRFS_LABEL_SIZE) { 4621 btrfs_warn(fs_info, 4622 "label is too long, return the first %zu bytes", 4623 --len); 4624 } 4625 4626 ret = copy_to_user(arg, label, len); 4627 4628 return ret ? -EFAULT : 0; 4629 } 4630 4631 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4632 { 4633 struct inode *inode = file_inode(file); 4634 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4635 struct btrfs_root *root = BTRFS_I(inode)->root; 4636 struct btrfs_super_block *super_block = fs_info->super_copy; 4637 struct btrfs_trans_handle *trans; 4638 char label[BTRFS_LABEL_SIZE]; 4639 int ret; 4640 4641 if (!capable(CAP_SYS_ADMIN)) 4642 return -EPERM; 4643 4644 if (copy_from_user(label, arg, sizeof(label))) 4645 return -EFAULT; 4646 4647 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4648 btrfs_err(fs_info, 4649 "unable to set label with more than %d bytes", 4650 BTRFS_LABEL_SIZE - 1); 4651 return -EINVAL; 4652 } 4653 4654 ret = mnt_want_write_file(file); 4655 if (ret) 4656 return ret; 4657 4658 trans = btrfs_start_transaction(root, 0); 4659 if (IS_ERR(trans)) { 4660 ret = PTR_ERR(trans); 4661 goto out_unlock; 4662 } 4663 4664 spin_lock(&fs_info->super_lock); 4665 strcpy(super_block->label, label); 4666 spin_unlock(&fs_info->super_lock); 4667 ret = btrfs_commit_transaction(trans); 4668 4669 out_unlock: 4670 mnt_drop_write_file(file); 4671 return ret; 4672 } 4673 4674 #define INIT_FEATURE_FLAGS(suffix) \ 4675 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4676 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4677 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4678 4679 int btrfs_ioctl_get_supported_features(void __user *arg) 4680 { 4681 static const struct btrfs_ioctl_feature_flags features[3] = { 4682 INIT_FEATURE_FLAGS(SUPP), 4683 INIT_FEATURE_FLAGS(SAFE_SET), 4684 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4685 }; 4686 4687 if (copy_to_user(arg, &features, sizeof(features))) 4688 return -EFAULT; 4689 4690 return 0; 4691 } 4692 4693 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4694 void __user *arg) 4695 { 4696 struct btrfs_super_block *super_block = fs_info->super_copy; 4697 struct btrfs_ioctl_feature_flags features; 4698 4699 features.compat_flags = btrfs_super_compat_flags(super_block); 4700 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4701 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4702 4703 if (copy_to_user(arg, &features, sizeof(features))) 4704 return -EFAULT; 4705 4706 return 0; 4707 } 4708 4709 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4710 enum btrfs_feature_set set, 4711 u64 change_mask, u64 flags, u64 supported_flags, 4712 u64 safe_set, u64 safe_clear) 4713 { 4714 const char *type = btrfs_feature_set_name(set); 4715 char *names; 4716 u64 disallowed, unsupported; 4717 u64 set_mask = flags & change_mask; 4718 u64 clear_mask = ~flags & change_mask; 4719 4720 unsupported = set_mask & ~supported_flags; 4721 if (unsupported) { 4722 names = btrfs_printable_features(set, unsupported); 4723 if (names) { 4724 btrfs_warn(fs_info, 4725 "this kernel does not support the %s feature bit%s", 4726 names, strchr(names, ',') ? "s" : ""); 4727 kfree(names); 4728 } else 4729 btrfs_warn(fs_info, 4730 "this kernel does not support %s bits 0x%llx", 4731 type, unsupported); 4732 return -EOPNOTSUPP; 4733 } 4734 4735 disallowed = set_mask & ~safe_set; 4736 if (disallowed) { 4737 names = btrfs_printable_features(set, disallowed); 4738 if (names) { 4739 btrfs_warn(fs_info, 4740 "can't set the %s feature bit%s while mounted", 4741 names, strchr(names, ',') ? "s" : ""); 4742 kfree(names); 4743 } else 4744 btrfs_warn(fs_info, 4745 "can't set %s bits 0x%llx while mounted", 4746 type, disallowed); 4747 return -EPERM; 4748 } 4749 4750 disallowed = clear_mask & ~safe_clear; 4751 if (disallowed) { 4752 names = btrfs_printable_features(set, disallowed); 4753 if (names) { 4754 btrfs_warn(fs_info, 4755 "can't clear the %s feature bit%s while mounted", 4756 names, strchr(names, ',') ? "s" : ""); 4757 kfree(names); 4758 } else 4759 btrfs_warn(fs_info, 4760 "can't clear %s bits 0x%llx while mounted", 4761 type, disallowed); 4762 return -EPERM; 4763 } 4764 4765 return 0; 4766 } 4767 4768 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4769 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4770 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4771 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4772 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4773 4774 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4775 { 4776 struct inode *inode = file_inode(file); 4777 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4778 struct btrfs_root *root = BTRFS_I(inode)->root; 4779 struct btrfs_super_block *super_block = fs_info->super_copy; 4780 struct btrfs_ioctl_feature_flags flags[2]; 4781 struct btrfs_trans_handle *trans; 4782 u64 newflags; 4783 int ret; 4784 4785 if (!capable(CAP_SYS_ADMIN)) 4786 return -EPERM; 4787 4788 if (copy_from_user(flags, arg, sizeof(flags))) 4789 return -EFAULT; 4790 4791 /* Nothing to do */ 4792 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4793 !flags[0].incompat_flags) 4794 return 0; 4795 4796 ret = check_feature(fs_info, flags[0].compat_flags, 4797 flags[1].compat_flags, COMPAT); 4798 if (ret) 4799 return ret; 4800 4801 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4802 flags[1].compat_ro_flags, COMPAT_RO); 4803 if (ret) 4804 return ret; 4805 4806 ret = check_feature(fs_info, flags[0].incompat_flags, 4807 flags[1].incompat_flags, INCOMPAT); 4808 if (ret) 4809 return ret; 4810 4811 ret = mnt_want_write_file(file); 4812 if (ret) 4813 return ret; 4814 4815 trans = btrfs_start_transaction(root, 0); 4816 if (IS_ERR(trans)) { 4817 ret = PTR_ERR(trans); 4818 goto out_drop_write; 4819 } 4820 4821 spin_lock(&fs_info->super_lock); 4822 newflags = btrfs_super_compat_flags(super_block); 4823 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4824 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4825 btrfs_set_super_compat_flags(super_block, newflags); 4826 4827 newflags = btrfs_super_compat_ro_flags(super_block); 4828 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4829 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4830 btrfs_set_super_compat_ro_flags(super_block, newflags); 4831 4832 newflags = btrfs_super_incompat_flags(super_block); 4833 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4834 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4835 btrfs_set_super_incompat_flags(super_block, newflags); 4836 spin_unlock(&fs_info->super_lock); 4837 4838 ret = btrfs_commit_transaction(trans); 4839 out_drop_write: 4840 mnt_drop_write_file(file); 4841 4842 return ret; 4843 } 4844 4845 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4846 { 4847 struct btrfs_ioctl_send_args *arg; 4848 int ret; 4849 4850 if (compat) { 4851 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4852 struct btrfs_ioctl_send_args_32 args32; 4853 4854 ret = copy_from_user(&args32, argp, sizeof(args32)); 4855 if (ret) 4856 return -EFAULT; 4857 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4858 if (!arg) 4859 return -ENOMEM; 4860 arg->send_fd = args32.send_fd; 4861 arg->clone_sources_count = args32.clone_sources_count; 4862 arg->clone_sources = compat_ptr(args32.clone_sources); 4863 arg->parent_root = args32.parent_root; 4864 arg->flags = args32.flags; 4865 memcpy(arg->reserved, args32.reserved, 4866 sizeof(args32.reserved)); 4867 #else 4868 return -ENOTTY; 4869 #endif 4870 } else { 4871 arg = memdup_user(argp, sizeof(*arg)); 4872 if (IS_ERR(arg)) 4873 return PTR_ERR(arg); 4874 } 4875 ret = btrfs_ioctl_send(file, arg); 4876 kfree(arg); 4877 return ret; 4878 } 4879 4880 long btrfs_ioctl(struct file *file, unsigned int 4881 cmd, unsigned long arg) 4882 { 4883 struct inode *inode = file_inode(file); 4884 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4885 struct btrfs_root *root = BTRFS_I(inode)->root; 4886 void __user *argp = (void __user *)arg; 4887 4888 switch (cmd) { 4889 case FS_IOC_GETFLAGS: 4890 return btrfs_ioctl_getflags(file, argp); 4891 case FS_IOC_SETFLAGS: 4892 return btrfs_ioctl_setflags(file, argp); 4893 case FS_IOC_GETVERSION: 4894 return btrfs_ioctl_getversion(file, argp); 4895 case FS_IOC_GETFSLABEL: 4896 return btrfs_ioctl_get_fslabel(fs_info, argp); 4897 case FS_IOC_SETFSLABEL: 4898 return btrfs_ioctl_set_fslabel(file, argp); 4899 case FITRIM: 4900 return btrfs_ioctl_fitrim(fs_info, argp); 4901 case BTRFS_IOC_SNAP_CREATE: 4902 return btrfs_ioctl_snap_create(file, argp, 0); 4903 case BTRFS_IOC_SNAP_CREATE_V2: 4904 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4905 case BTRFS_IOC_SUBVOL_CREATE: 4906 return btrfs_ioctl_snap_create(file, argp, 1); 4907 case BTRFS_IOC_SUBVOL_CREATE_V2: 4908 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4909 case BTRFS_IOC_SNAP_DESTROY: 4910 return btrfs_ioctl_snap_destroy(file, argp, false); 4911 case BTRFS_IOC_SNAP_DESTROY_V2: 4912 return btrfs_ioctl_snap_destroy(file, argp, true); 4913 case BTRFS_IOC_SUBVOL_GETFLAGS: 4914 return btrfs_ioctl_subvol_getflags(file, argp); 4915 case BTRFS_IOC_SUBVOL_SETFLAGS: 4916 return btrfs_ioctl_subvol_setflags(file, argp); 4917 case BTRFS_IOC_DEFAULT_SUBVOL: 4918 return btrfs_ioctl_default_subvol(file, argp); 4919 case BTRFS_IOC_DEFRAG: 4920 return btrfs_ioctl_defrag(file, NULL); 4921 case BTRFS_IOC_DEFRAG_RANGE: 4922 return btrfs_ioctl_defrag(file, argp); 4923 case BTRFS_IOC_RESIZE: 4924 return btrfs_ioctl_resize(file, argp); 4925 case BTRFS_IOC_ADD_DEV: 4926 return btrfs_ioctl_add_dev(fs_info, argp); 4927 case BTRFS_IOC_RM_DEV: 4928 return btrfs_ioctl_rm_dev(file, argp); 4929 case BTRFS_IOC_RM_DEV_V2: 4930 return btrfs_ioctl_rm_dev_v2(file, argp); 4931 case BTRFS_IOC_FS_INFO: 4932 return btrfs_ioctl_fs_info(fs_info, argp); 4933 case BTRFS_IOC_DEV_INFO: 4934 return btrfs_ioctl_dev_info(fs_info, argp); 4935 case BTRFS_IOC_BALANCE: 4936 return btrfs_ioctl_balance(file, NULL); 4937 case BTRFS_IOC_TREE_SEARCH: 4938 return btrfs_ioctl_tree_search(file, argp); 4939 case BTRFS_IOC_TREE_SEARCH_V2: 4940 return btrfs_ioctl_tree_search_v2(file, argp); 4941 case BTRFS_IOC_INO_LOOKUP: 4942 return btrfs_ioctl_ino_lookup(file, argp); 4943 case BTRFS_IOC_INO_PATHS: 4944 return btrfs_ioctl_ino_to_path(root, argp); 4945 case BTRFS_IOC_LOGICAL_INO: 4946 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4947 case BTRFS_IOC_LOGICAL_INO_V2: 4948 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4949 case BTRFS_IOC_SPACE_INFO: 4950 return btrfs_ioctl_space_info(fs_info, argp); 4951 case BTRFS_IOC_SYNC: { 4952 int ret; 4953 4954 ret = btrfs_start_delalloc_roots(fs_info, U64_MAX, false); 4955 if (ret) 4956 return ret; 4957 ret = btrfs_sync_fs(inode->i_sb, 1); 4958 /* 4959 * The transaction thread may want to do more work, 4960 * namely it pokes the cleaner kthread that will start 4961 * processing uncleaned subvols. 4962 */ 4963 wake_up_process(fs_info->transaction_kthread); 4964 return ret; 4965 } 4966 case BTRFS_IOC_START_SYNC: 4967 return btrfs_ioctl_start_sync(root, argp); 4968 case BTRFS_IOC_WAIT_SYNC: 4969 return btrfs_ioctl_wait_sync(fs_info, argp); 4970 case BTRFS_IOC_SCRUB: 4971 return btrfs_ioctl_scrub(file, argp); 4972 case BTRFS_IOC_SCRUB_CANCEL: 4973 return btrfs_ioctl_scrub_cancel(fs_info); 4974 case BTRFS_IOC_SCRUB_PROGRESS: 4975 return btrfs_ioctl_scrub_progress(fs_info, argp); 4976 case BTRFS_IOC_BALANCE_V2: 4977 return btrfs_ioctl_balance(file, argp); 4978 case BTRFS_IOC_BALANCE_CTL: 4979 return btrfs_ioctl_balance_ctl(fs_info, arg); 4980 case BTRFS_IOC_BALANCE_PROGRESS: 4981 return btrfs_ioctl_balance_progress(fs_info, argp); 4982 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4983 return btrfs_ioctl_set_received_subvol(file, argp); 4984 #ifdef CONFIG_64BIT 4985 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4986 return btrfs_ioctl_set_received_subvol_32(file, argp); 4987 #endif 4988 case BTRFS_IOC_SEND: 4989 return _btrfs_ioctl_send(file, argp, false); 4990 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4991 case BTRFS_IOC_SEND_32: 4992 return _btrfs_ioctl_send(file, argp, true); 4993 #endif 4994 case BTRFS_IOC_GET_DEV_STATS: 4995 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4996 case BTRFS_IOC_QUOTA_CTL: 4997 return btrfs_ioctl_quota_ctl(file, argp); 4998 case BTRFS_IOC_QGROUP_ASSIGN: 4999 return btrfs_ioctl_qgroup_assign(file, argp); 5000 case BTRFS_IOC_QGROUP_CREATE: 5001 return btrfs_ioctl_qgroup_create(file, argp); 5002 case BTRFS_IOC_QGROUP_LIMIT: 5003 return btrfs_ioctl_qgroup_limit(file, argp); 5004 case BTRFS_IOC_QUOTA_RESCAN: 5005 return btrfs_ioctl_quota_rescan(file, argp); 5006 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5007 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5008 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5009 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5010 case BTRFS_IOC_DEV_REPLACE: 5011 return btrfs_ioctl_dev_replace(fs_info, argp); 5012 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5013 return btrfs_ioctl_get_supported_features(argp); 5014 case BTRFS_IOC_GET_FEATURES: 5015 return btrfs_ioctl_get_features(fs_info, argp); 5016 case BTRFS_IOC_SET_FEATURES: 5017 return btrfs_ioctl_set_features(file, argp); 5018 case FS_IOC_FSGETXATTR: 5019 return btrfs_ioctl_fsgetxattr(file, argp); 5020 case FS_IOC_FSSETXATTR: 5021 return btrfs_ioctl_fssetxattr(file, argp); 5022 case BTRFS_IOC_GET_SUBVOL_INFO: 5023 return btrfs_ioctl_get_subvol_info(file, argp); 5024 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5025 return btrfs_ioctl_get_subvol_rootref(file, argp); 5026 case BTRFS_IOC_INO_LOOKUP_USER: 5027 return btrfs_ioctl_ino_lookup_user(file, argp); 5028 } 5029 5030 return -ENOTTY; 5031 } 5032 5033 #ifdef CONFIG_COMPAT 5034 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5035 { 5036 /* 5037 * These all access 32-bit values anyway so no further 5038 * handling is necessary. 5039 */ 5040 switch (cmd) { 5041 case FS_IOC32_GETFLAGS: 5042 cmd = FS_IOC_GETFLAGS; 5043 break; 5044 case FS_IOC32_SETFLAGS: 5045 cmd = FS_IOC_SETFLAGS; 5046 break; 5047 case FS_IOC32_GETVERSION: 5048 cmd = FS_IOC_GETVERSION; 5049 break; 5050 } 5051 5052 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5053 } 5054 #endif 5055