1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "export.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "volumes.h" 39 #include "locking.h" 40 #include "backref.h" 41 #include "rcu-string.h" 42 #include "send.h" 43 #include "dev-replace.h" 44 #include "props.h" 45 #include "sysfs.h" 46 #include "qgroup.h" 47 #include "tree-log.h" 48 #include "compression.h" 49 #include "space-info.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "subpage.h" 53 54 #ifdef CONFIG_64BIT 55 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 56 * structures are incorrect, as the timespec structure from userspace 57 * is 4 bytes too small. We define these alternatives here to teach 58 * the kernel about the 32-bit struct packing. 59 */ 60 struct btrfs_ioctl_timespec_32 { 61 __u64 sec; 62 __u32 nsec; 63 } __attribute__ ((__packed__)); 64 65 struct btrfs_ioctl_received_subvol_args_32 { 66 char uuid[BTRFS_UUID_SIZE]; /* in */ 67 __u64 stransid; /* in */ 68 __u64 rtransid; /* out */ 69 struct btrfs_ioctl_timespec_32 stime; /* in */ 70 struct btrfs_ioctl_timespec_32 rtime; /* out */ 71 __u64 flags; /* in */ 72 __u64 reserved[16]; /* in */ 73 } __attribute__ ((__packed__)); 74 75 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 76 struct btrfs_ioctl_received_subvol_args_32) 77 #endif 78 79 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 80 struct btrfs_ioctl_send_args_32 { 81 __s64 send_fd; /* in */ 82 __u64 clone_sources_count; /* in */ 83 compat_uptr_t clone_sources; /* in */ 84 __u64 parent_root; /* in */ 85 __u64 flags; /* in */ 86 __u32 version; /* in */ 87 __u8 reserved[28]; /* in */ 88 } __attribute__ ((__packed__)); 89 90 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 91 struct btrfs_ioctl_send_args_32) 92 93 struct btrfs_ioctl_encoded_io_args_32 { 94 compat_uptr_t iov; 95 compat_ulong_t iovcnt; 96 __s64 offset; 97 __u64 flags; 98 __u64 len; 99 __u64 unencoded_len; 100 __u64 unencoded_offset; 101 __u32 compression; 102 __u32 encryption; 103 __u8 reserved[64]; 104 }; 105 106 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 107 struct btrfs_ioctl_encoded_io_args_32) 108 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 109 struct btrfs_ioctl_encoded_io_args_32) 110 #endif 111 112 /* Mask out flags that are inappropriate for the given type of inode. */ 113 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 114 unsigned int flags) 115 { 116 if (S_ISDIR(inode->i_mode)) 117 return flags; 118 else if (S_ISREG(inode->i_mode)) 119 return flags & ~FS_DIRSYNC_FL; 120 else 121 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 122 } 123 124 /* 125 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 126 * ioctl. 127 */ 128 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 129 { 130 unsigned int iflags = 0; 131 u32 flags = binode->flags; 132 u32 ro_flags = binode->ro_flags; 133 134 if (flags & BTRFS_INODE_SYNC) 135 iflags |= FS_SYNC_FL; 136 if (flags & BTRFS_INODE_IMMUTABLE) 137 iflags |= FS_IMMUTABLE_FL; 138 if (flags & BTRFS_INODE_APPEND) 139 iflags |= FS_APPEND_FL; 140 if (flags & BTRFS_INODE_NODUMP) 141 iflags |= FS_NODUMP_FL; 142 if (flags & BTRFS_INODE_NOATIME) 143 iflags |= FS_NOATIME_FL; 144 if (flags & BTRFS_INODE_DIRSYNC) 145 iflags |= FS_DIRSYNC_FL; 146 if (flags & BTRFS_INODE_NODATACOW) 147 iflags |= FS_NOCOW_FL; 148 if (ro_flags & BTRFS_INODE_RO_VERITY) 149 iflags |= FS_VERITY_FL; 150 151 if (flags & BTRFS_INODE_NOCOMPRESS) 152 iflags |= FS_NOCOMP_FL; 153 else if (flags & BTRFS_INODE_COMPRESS) 154 iflags |= FS_COMPR_FL; 155 156 return iflags; 157 } 158 159 /* 160 * Update inode->i_flags based on the btrfs internal flags. 161 */ 162 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 163 { 164 struct btrfs_inode *binode = BTRFS_I(inode); 165 unsigned int new_fl = 0; 166 167 if (binode->flags & BTRFS_INODE_SYNC) 168 new_fl |= S_SYNC; 169 if (binode->flags & BTRFS_INODE_IMMUTABLE) 170 new_fl |= S_IMMUTABLE; 171 if (binode->flags & BTRFS_INODE_APPEND) 172 new_fl |= S_APPEND; 173 if (binode->flags & BTRFS_INODE_NOATIME) 174 new_fl |= S_NOATIME; 175 if (binode->flags & BTRFS_INODE_DIRSYNC) 176 new_fl |= S_DIRSYNC; 177 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 178 new_fl |= S_VERITY; 179 180 set_mask_bits(&inode->i_flags, 181 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 182 S_VERITY, new_fl); 183 } 184 185 /* 186 * Check if @flags are a supported and valid set of FS_*_FL flags and that 187 * the old and new flags are not conflicting 188 */ 189 static int check_fsflags(unsigned int old_flags, unsigned int flags) 190 { 191 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 192 FS_NOATIME_FL | FS_NODUMP_FL | \ 193 FS_SYNC_FL | FS_DIRSYNC_FL | \ 194 FS_NOCOMP_FL | FS_COMPR_FL | 195 FS_NOCOW_FL)) 196 return -EOPNOTSUPP; 197 198 /* COMPR and NOCOMP on new/old are valid */ 199 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 200 return -EINVAL; 201 202 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 203 return -EINVAL; 204 205 /* NOCOW and compression options are mutually exclusive */ 206 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 207 return -EINVAL; 208 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 209 return -EINVAL; 210 211 return 0; 212 } 213 214 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 215 unsigned int flags) 216 { 217 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 218 return -EPERM; 219 220 return 0; 221 } 222 223 /* 224 * Set flags/xflags from the internal inode flags. The remaining items of 225 * fsxattr are zeroed. 226 */ 227 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 228 { 229 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 230 231 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 232 return 0; 233 } 234 235 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 236 struct dentry *dentry, struct fileattr *fa) 237 { 238 struct inode *inode = d_inode(dentry); 239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 240 struct btrfs_inode *binode = BTRFS_I(inode); 241 struct btrfs_root *root = binode->root; 242 struct btrfs_trans_handle *trans; 243 unsigned int fsflags, old_fsflags; 244 int ret; 245 const char *comp = NULL; 246 u32 binode_flags; 247 248 if (btrfs_root_readonly(root)) 249 return -EROFS; 250 251 if (fileattr_has_fsx(fa)) 252 return -EOPNOTSUPP; 253 254 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 255 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 256 ret = check_fsflags(old_fsflags, fsflags); 257 if (ret) 258 return ret; 259 260 ret = check_fsflags_compatible(fs_info, fsflags); 261 if (ret) 262 return ret; 263 264 binode_flags = binode->flags; 265 if (fsflags & FS_SYNC_FL) 266 binode_flags |= BTRFS_INODE_SYNC; 267 else 268 binode_flags &= ~BTRFS_INODE_SYNC; 269 if (fsflags & FS_IMMUTABLE_FL) 270 binode_flags |= BTRFS_INODE_IMMUTABLE; 271 else 272 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 273 if (fsflags & FS_APPEND_FL) 274 binode_flags |= BTRFS_INODE_APPEND; 275 else 276 binode_flags &= ~BTRFS_INODE_APPEND; 277 if (fsflags & FS_NODUMP_FL) 278 binode_flags |= BTRFS_INODE_NODUMP; 279 else 280 binode_flags &= ~BTRFS_INODE_NODUMP; 281 if (fsflags & FS_NOATIME_FL) 282 binode_flags |= BTRFS_INODE_NOATIME; 283 else 284 binode_flags &= ~BTRFS_INODE_NOATIME; 285 286 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 287 if (!fa->flags_valid) { 288 /* 1 item for the inode */ 289 trans = btrfs_start_transaction(root, 1); 290 if (IS_ERR(trans)) 291 return PTR_ERR(trans); 292 goto update_flags; 293 } 294 295 if (fsflags & FS_DIRSYNC_FL) 296 binode_flags |= BTRFS_INODE_DIRSYNC; 297 else 298 binode_flags &= ~BTRFS_INODE_DIRSYNC; 299 if (fsflags & FS_NOCOW_FL) { 300 if (S_ISREG(inode->i_mode)) { 301 /* 302 * It's safe to turn csums off here, no extents exist. 303 * Otherwise we want the flag to reflect the real COW 304 * status of the file and will not set it. 305 */ 306 if (inode->i_size == 0) 307 binode_flags |= BTRFS_INODE_NODATACOW | 308 BTRFS_INODE_NODATASUM; 309 } else { 310 binode_flags |= BTRFS_INODE_NODATACOW; 311 } 312 } else { 313 /* 314 * Revert back under same assumptions as above 315 */ 316 if (S_ISREG(inode->i_mode)) { 317 if (inode->i_size == 0) 318 binode_flags &= ~(BTRFS_INODE_NODATACOW | 319 BTRFS_INODE_NODATASUM); 320 } else { 321 binode_flags &= ~BTRFS_INODE_NODATACOW; 322 } 323 } 324 325 /* 326 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 327 * flag may be changed automatically if compression code won't make 328 * things smaller. 329 */ 330 if (fsflags & FS_NOCOMP_FL) { 331 binode_flags &= ~BTRFS_INODE_COMPRESS; 332 binode_flags |= BTRFS_INODE_NOCOMPRESS; 333 } else if (fsflags & FS_COMPR_FL) { 334 335 if (IS_SWAPFILE(inode)) 336 return -ETXTBSY; 337 338 binode_flags |= BTRFS_INODE_COMPRESS; 339 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 340 341 comp = btrfs_compress_type2str(fs_info->compress_type); 342 if (!comp || comp[0] == 0) 343 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 344 } else { 345 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 346 } 347 348 /* 349 * 1 for inode item 350 * 2 for properties 351 */ 352 trans = btrfs_start_transaction(root, 3); 353 if (IS_ERR(trans)) 354 return PTR_ERR(trans); 355 356 if (comp) { 357 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 358 strlen(comp), 0); 359 if (ret) { 360 btrfs_abort_transaction(trans, ret); 361 goto out_end_trans; 362 } 363 } else { 364 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 365 0, 0); 366 if (ret && ret != -ENODATA) { 367 btrfs_abort_transaction(trans, ret); 368 goto out_end_trans; 369 } 370 } 371 372 update_flags: 373 binode->flags = binode_flags; 374 btrfs_sync_inode_flags_to_i_flags(inode); 375 inode_inc_iversion(inode); 376 inode->i_ctime = current_time(inode); 377 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 378 379 out_end_trans: 380 btrfs_end_transaction(trans); 381 return ret; 382 } 383 384 /* 385 * Start exclusive operation @type, return true on success 386 */ 387 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 388 enum btrfs_exclusive_operation type) 389 { 390 bool ret = false; 391 392 spin_lock(&fs_info->super_lock); 393 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 394 fs_info->exclusive_operation = type; 395 ret = true; 396 } 397 spin_unlock(&fs_info->super_lock); 398 399 return ret; 400 } 401 402 /* 403 * Conditionally allow to enter the exclusive operation in case it's compatible 404 * with the running one. This must be paired with btrfs_exclop_start_unlock and 405 * btrfs_exclop_finish. 406 * 407 * Compatibility: 408 * - the same type is already running 409 * - when trying to add a device and balance has been paused 410 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 411 * must check the condition first that would allow none -> @type 412 */ 413 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 414 enum btrfs_exclusive_operation type) 415 { 416 spin_lock(&fs_info->super_lock); 417 if (fs_info->exclusive_operation == type || 418 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 419 type == BTRFS_EXCLOP_DEV_ADD)) 420 return true; 421 422 spin_unlock(&fs_info->super_lock); 423 return false; 424 } 425 426 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 427 { 428 spin_unlock(&fs_info->super_lock); 429 } 430 431 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 432 { 433 spin_lock(&fs_info->super_lock); 434 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 435 spin_unlock(&fs_info->super_lock); 436 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 437 } 438 439 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 440 enum btrfs_exclusive_operation op) 441 { 442 switch (op) { 443 case BTRFS_EXCLOP_BALANCE_PAUSED: 444 spin_lock(&fs_info->super_lock); 445 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 446 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD); 447 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 448 spin_unlock(&fs_info->super_lock); 449 break; 450 case BTRFS_EXCLOP_BALANCE: 451 spin_lock(&fs_info->super_lock); 452 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 453 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 454 spin_unlock(&fs_info->super_lock); 455 break; 456 default: 457 btrfs_warn(fs_info, 458 "invalid exclop balance operation %d requested", op); 459 } 460 } 461 462 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 463 { 464 return put_user(inode->i_generation, arg); 465 } 466 467 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 468 void __user *arg) 469 { 470 struct btrfs_device *device; 471 struct request_queue *q; 472 struct fstrim_range range; 473 u64 minlen = ULLONG_MAX; 474 u64 num_devices = 0; 475 int ret; 476 477 if (!capable(CAP_SYS_ADMIN)) 478 return -EPERM; 479 480 /* 481 * btrfs_trim_block_group() depends on space cache, which is not 482 * available in zoned filesystem. So, disallow fitrim on a zoned 483 * filesystem for now. 484 */ 485 if (btrfs_is_zoned(fs_info)) 486 return -EOPNOTSUPP; 487 488 /* 489 * If the fs is mounted with nologreplay, which requires it to be 490 * mounted in RO mode as well, we can not allow discard on free space 491 * inside block groups, because log trees refer to extents that are not 492 * pinned in a block group's free space cache (pinning the extents is 493 * precisely the first phase of replaying a log tree). 494 */ 495 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 496 return -EROFS; 497 498 rcu_read_lock(); 499 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 500 dev_list) { 501 if (!device->bdev) 502 continue; 503 q = bdev_get_queue(device->bdev); 504 if (blk_queue_discard(q)) { 505 num_devices++; 506 minlen = min_t(u64, q->limits.discard_granularity, 507 minlen); 508 } 509 } 510 rcu_read_unlock(); 511 512 if (!num_devices) 513 return -EOPNOTSUPP; 514 if (copy_from_user(&range, arg, sizeof(range))) 515 return -EFAULT; 516 517 /* 518 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 519 * block group is in the logical address space, which can be any 520 * sectorsize aligned bytenr in the range [0, U64_MAX]. 521 */ 522 if (range.len < fs_info->sb->s_blocksize) 523 return -EINVAL; 524 525 range.minlen = max(range.minlen, minlen); 526 ret = btrfs_trim_fs(fs_info, &range); 527 if (ret < 0) 528 return ret; 529 530 if (copy_to_user(arg, &range, sizeof(range))) 531 return -EFAULT; 532 533 return 0; 534 } 535 536 int __pure btrfs_is_empty_uuid(u8 *uuid) 537 { 538 int i; 539 540 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 541 if (uuid[i]) 542 return 0; 543 } 544 return 1; 545 } 546 547 static noinline int create_subvol(struct user_namespace *mnt_userns, 548 struct inode *dir, struct dentry *dentry, 549 const char *name, int namelen, 550 struct btrfs_qgroup_inherit *inherit) 551 { 552 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 553 struct btrfs_trans_handle *trans; 554 struct btrfs_key key; 555 struct btrfs_root_item *root_item; 556 struct btrfs_inode_item *inode_item; 557 struct extent_buffer *leaf; 558 struct btrfs_root *root = BTRFS_I(dir)->root; 559 struct btrfs_root *new_root; 560 struct btrfs_block_rsv block_rsv; 561 struct timespec64 cur_time = current_time(dir); 562 struct inode *inode; 563 int ret; 564 dev_t anon_dev = 0; 565 u64 objectid; 566 u64 index = 0; 567 568 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 569 if (!root_item) 570 return -ENOMEM; 571 572 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 573 if (ret) 574 goto fail_free; 575 576 ret = get_anon_bdev(&anon_dev); 577 if (ret < 0) 578 goto fail_free; 579 580 /* 581 * Don't create subvolume whose level is not zero. Or qgroup will be 582 * screwed up since it assumes subvolume qgroup's level to be 0. 583 */ 584 if (btrfs_qgroup_level(objectid)) { 585 ret = -ENOSPC; 586 goto fail_free; 587 } 588 589 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 590 /* 591 * The same as the snapshot creation, please see the comment 592 * of create_snapshot(). 593 */ 594 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 595 if (ret) 596 goto fail_free; 597 598 trans = btrfs_start_transaction(root, 0); 599 if (IS_ERR(trans)) { 600 ret = PTR_ERR(trans); 601 btrfs_subvolume_release_metadata(root, &block_rsv); 602 goto fail_free; 603 } 604 trans->block_rsv = &block_rsv; 605 trans->bytes_reserved = block_rsv.size; 606 607 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 608 if (ret) 609 goto fail; 610 611 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 612 BTRFS_NESTING_NORMAL); 613 if (IS_ERR(leaf)) { 614 ret = PTR_ERR(leaf); 615 goto fail; 616 } 617 618 btrfs_mark_buffer_dirty(leaf); 619 620 inode_item = &root_item->inode; 621 btrfs_set_stack_inode_generation(inode_item, 1); 622 btrfs_set_stack_inode_size(inode_item, 3); 623 btrfs_set_stack_inode_nlink(inode_item, 1); 624 btrfs_set_stack_inode_nbytes(inode_item, 625 fs_info->nodesize); 626 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 627 628 btrfs_set_root_flags(root_item, 0); 629 btrfs_set_root_limit(root_item, 0); 630 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 631 632 btrfs_set_root_bytenr(root_item, leaf->start); 633 btrfs_set_root_generation(root_item, trans->transid); 634 btrfs_set_root_level(root_item, 0); 635 btrfs_set_root_refs(root_item, 1); 636 btrfs_set_root_used(root_item, leaf->len); 637 btrfs_set_root_last_snapshot(root_item, 0); 638 639 btrfs_set_root_generation_v2(root_item, 640 btrfs_root_generation(root_item)); 641 generate_random_guid(root_item->uuid); 642 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 643 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 644 root_item->ctime = root_item->otime; 645 btrfs_set_root_ctransid(root_item, trans->transid); 646 btrfs_set_root_otransid(root_item, trans->transid); 647 648 btrfs_tree_unlock(leaf); 649 650 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 651 652 key.objectid = objectid; 653 key.offset = 0; 654 key.type = BTRFS_ROOT_ITEM_KEY; 655 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 656 root_item); 657 if (ret) { 658 /* 659 * Since we don't abort the transaction in this case, free the 660 * tree block so that we don't leak space and leave the 661 * filesystem in an inconsistent state (an extent item in the 662 * extent tree with a backreference for a root that does not 663 * exists). 664 */ 665 btrfs_tree_lock(leaf); 666 btrfs_clean_tree_block(leaf); 667 btrfs_tree_unlock(leaf); 668 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 669 free_extent_buffer(leaf); 670 goto fail; 671 } 672 673 free_extent_buffer(leaf); 674 leaf = NULL; 675 676 key.offset = (u64)-1; 677 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 678 if (IS_ERR(new_root)) { 679 free_anon_bdev(anon_dev); 680 ret = PTR_ERR(new_root); 681 btrfs_abort_transaction(trans, ret); 682 goto fail; 683 } 684 /* Freeing will be done in btrfs_put_root() of new_root */ 685 anon_dev = 0; 686 687 ret = btrfs_record_root_in_trans(trans, new_root); 688 if (ret) { 689 btrfs_put_root(new_root); 690 btrfs_abort_transaction(trans, ret); 691 goto fail; 692 } 693 694 ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns); 695 btrfs_put_root(new_root); 696 if (ret) { 697 /* We potentially lose an unused inode item here */ 698 btrfs_abort_transaction(trans, ret); 699 goto fail; 700 } 701 702 /* 703 * insert the directory item 704 */ 705 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 706 if (ret) { 707 btrfs_abort_transaction(trans, ret); 708 goto fail; 709 } 710 711 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 712 BTRFS_FT_DIR, index); 713 if (ret) { 714 btrfs_abort_transaction(trans, ret); 715 goto fail; 716 } 717 718 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 719 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 720 if (ret) { 721 btrfs_abort_transaction(trans, ret); 722 goto fail; 723 } 724 725 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 726 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 727 if (ret) { 728 btrfs_abort_transaction(trans, ret); 729 goto fail; 730 } 731 732 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 733 BTRFS_UUID_KEY_SUBVOL, objectid); 734 if (ret) 735 btrfs_abort_transaction(trans, ret); 736 737 fail: 738 kfree(root_item); 739 trans->block_rsv = NULL; 740 trans->bytes_reserved = 0; 741 btrfs_subvolume_release_metadata(root, &block_rsv); 742 743 if (ret) 744 btrfs_end_transaction(trans); 745 else 746 ret = btrfs_commit_transaction(trans); 747 748 if (!ret) { 749 inode = btrfs_lookup_dentry(dir, dentry); 750 if (IS_ERR(inode)) 751 return PTR_ERR(inode); 752 d_instantiate(dentry, inode); 753 } 754 return ret; 755 756 fail_free: 757 if (anon_dev) 758 free_anon_bdev(anon_dev); 759 kfree(root_item); 760 return ret; 761 } 762 763 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 764 struct dentry *dentry, bool readonly, 765 struct btrfs_qgroup_inherit *inherit) 766 { 767 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 768 struct inode *inode; 769 struct btrfs_pending_snapshot *pending_snapshot; 770 struct btrfs_trans_handle *trans; 771 int ret; 772 773 /* We do not support snapshotting right now. */ 774 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 775 btrfs_warn(fs_info, 776 "extent tree v2 doesn't support snapshotting yet"); 777 return -EOPNOTSUPP; 778 } 779 780 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 781 return -EINVAL; 782 783 if (atomic_read(&root->nr_swapfiles)) { 784 btrfs_warn(fs_info, 785 "cannot snapshot subvolume with active swapfile"); 786 return -ETXTBSY; 787 } 788 789 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 790 if (!pending_snapshot) 791 return -ENOMEM; 792 793 ret = get_anon_bdev(&pending_snapshot->anon_dev); 794 if (ret < 0) 795 goto free_pending; 796 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 797 GFP_KERNEL); 798 pending_snapshot->path = btrfs_alloc_path(); 799 if (!pending_snapshot->root_item || !pending_snapshot->path) { 800 ret = -ENOMEM; 801 goto free_pending; 802 } 803 804 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 805 BTRFS_BLOCK_RSV_TEMP); 806 /* 807 * 1 - parent dir inode 808 * 2 - dir entries 809 * 1 - root item 810 * 2 - root ref/backref 811 * 1 - root of snapshot 812 * 1 - UUID item 813 */ 814 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 815 &pending_snapshot->block_rsv, 8, 816 false); 817 if (ret) 818 goto free_pending; 819 820 pending_snapshot->dentry = dentry; 821 pending_snapshot->root = root; 822 pending_snapshot->readonly = readonly; 823 pending_snapshot->dir = dir; 824 pending_snapshot->inherit = inherit; 825 826 trans = btrfs_start_transaction(root, 0); 827 if (IS_ERR(trans)) { 828 ret = PTR_ERR(trans); 829 goto fail; 830 } 831 832 trans->pending_snapshot = pending_snapshot; 833 834 ret = btrfs_commit_transaction(trans); 835 if (ret) 836 goto fail; 837 838 ret = pending_snapshot->error; 839 if (ret) 840 goto fail; 841 842 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 843 if (ret) 844 goto fail; 845 846 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 847 if (IS_ERR(inode)) { 848 ret = PTR_ERR(inode); 849 goto fail; 850 } 851 852 d_instantiate(dentry, inode); 853 ret = 0; 854 pending_snapshot->anon_dev = 0; 855 fail: 856 /* Prevent double freeing of anon_dev */ 857 if (ret && pending_snapshot->snap) 858 pending_snapshot->snap->anon_dev = 0; 859 btrfs_put_root(pending_snapshot->snap); 860 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 861 free_pending: 862 if (pending_snapshot->anon_dev) 863 free_anon_bdev(pending_snapshot->anon_dev); 864 kfree(pending_snapshot->root_item); 865 btrfs_free_path(pending_snapshot->path); 866 kfree(pending_snapshot); 867 868 return ret; 869 } 870 871 /* copy of may_delete in fs/namei.c() 872 * Check whether we can remove a link victim from directory dir, check 873 * whether the type of victim is right. 874 * 1. We can't do it if dir is read-only (done in permission()) 875 * 2. We should have write and exec permissions on dir 876 * 3. We can't remove anything from append-only dir 877 * 4. We can't do anything with immutable dir (done in permission()) 878 * 5. If the sticky bit on dir is set we should either 879 * a. be owner of dir, or 880 * b. be owner of victim, or 881 * c. have CAP_FOWNER capability 882 * 6. If the victim is append-only or immutable we can't do anything with 883 * links pointing to it. 884 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 885 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 886 * 9. We can't remove a root or mountpoint. 887 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 888 * nfs_async_unlink(). 889 */ 890 891 static int btrfs_may_delete(struct user_namespace *mnt_userns, 892 struct inode *dir, struct dentry *victim, int isdir) 893 { 894 int error; 895 896 if (d_really_is_negative(victim)) 897 return -ENOENT; 898 899 BUG_ON(d_inode(victim->d_parent) != dir); 900 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 901 902 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 903 if (error) 904 return error; 905 if (IS_APPEND(dir)) 906 return -EPERM; 907 if (check_sticky(mnt_userns, dir, d_inode(victim)) || 908 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 909 IS_SWAPFILE(d_inode(victim))) 910 return -EPERM; 911 if (isdir) { 912 if (!d_is_dir(victim)) 913 return -ENOTDIR; 914 if (IS_ROOT(victim)) 915 return -EBUSY; 916 } else if (d_is_dir(victim)) 917 return -EISDIR; 918 if (IS_DEADDIR(dir)) 919 return -ENOENT; 920 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 921 return -EBUSY; 922 return 0; 923 } 924 925 /* copy of may_create in fs/namei.c() */ 926 static inline int btrfs_may_create(struct user_namespace *mnt_userns, 927 struct inode *dir, struct dentry *child) 928 { 929 if (d_really_is_positive(child)) 930 return -EEXIST; 931 if (IS_DEADDIR(dir)) 932 return -ENOENT; 933 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 934 return -EOVERFLOW; 935 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 936 } 937 938 /* 939 * Create a new subvolume below @parent. This is largely modeled after 940 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 941 * inside this filesystem so it's quite a bit simpler. 942 */ 943 static noinline int btrfs_mksubvol(const struct path *parent, 944 struct user_namespace *mnt_userns, 945 const char *name, int namelen, 946 struct btrfs_root *snap_src, 947 bool readonly, 948 struct btrfs_qgroup_inherit *inherit) 949 { 950 struct inode *dir = d_inode(parent->dentry); 951 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 952 struct dentry *dentry; 953 int error; 954 955 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 956 if (error == -EINTR) 957 return error; 958 959 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen); 960 error = PTR_ERR(dentry); 961 if (IS_ERR(dentry)) 962 goto out_unlock; 963 964 error = btrfs_may_create(mnt_userns, dir, dentry); 965 if (error) 966 goto out_dput; 967 968 /* 969 * even if this name doesn't exist, we may get hash collisions. 970 * check for them now when we can safely fail 971 */ 972 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 973 dir->i_ino, name, 974 namelen); 975 if (error) 976 goto out_dput; 977 978 down_read(&fs_info->subvol_sem); 979 980 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 981 goto out_up_read; 982 983 if (snap_src) 984 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 985 else 986 error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit); 987 988 if (!error) 989 fsnotify_mkdir(dir, dentry); 990 out_up_read: 991 up_read(&fs_info->subvol_sem); 992 out_dput: 993 dput(dentry); 994 out_unlock: 995 btrfs_inode_unlock(dir, 0); 996 return error; 997 } 998 999 static noinline int btrfs_mksnapshot(const struct path *parent, 1000 struct user_namespace *mnt_userns, 1001 const char *name, int namelen, 1002 struct btrfs_root *root, 1003 bool readonly, 1004 struct btrfs_qgroup_inherit *inherit) 1005 { 1006 int ret; 1007 bool snapshot_force_cow = false; 1008 1009 /* 1010 * Force new buffered writes to reserve space even when NOCOW is 1011 * possible. This is to avoid later writeback (running dealloc) to 1012 * fallback to COW mode and unexpectedly fail with ENOSPC. 1013 */ 1014 btrfs_drew_read_lock(&root->snapshot_lock); 1015 1016 ret = btrfs_start_delalloc_snapshot(root, false); 1017 if (ret) 1018 goto out; 1019 1020 /* 1021 * All previous writes have started writeback in NOCOW mode, so now 1022 * we force future writes to fallback to COW mode during snapshot 1023 * creation. 1024 */ 1025 atomic_inc(&root->snapshot_force_cow); 1026 snapshot_force_cow = true; 1027 1028 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1029 1030 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen, 1031 root, readonly, inherit); 1032 out: 1033 if (snapshot_force_cow) 1034 atomic_dec(&root->snapshot_force_cow); 1035 btrfs_drew_read_unlock(&root->snapshot_lock); 1036 return ret; 1037 } 1038 1039 /* 1040 * Defrag specific helper to get an extent map. 1041 * 1042 * Differences between this and btrfs_get_extent() are: 1043 * 1044 * - No extent_map will be added to inode->extent_tree 1045 * To reduce memory usage in the long run. 1046 * 1047 * - Extra optimization to skip file extents older than @newer_than 1048 * By using btrfs_search_forward() we can skip entire file ranges that 1049 * have extents created in past transactions, because btrfs_search_forward() 1050 * will not visit leaves and nodes with a generation smaller than given 1051 * minimal generation threshold (@newer_than). 1052 * 1053 * Return valid em if we find a file extent matching the requirement. 1054 * Return NULL if we can not find a file extent matching the requirement. 1055 * 1056 * Return ERR_PTR() for error. 1057 */ 1058 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode, 1059 u64 start, u64 newer_than) 1060 { 1061 struct btrfs_root *root = inode->root; 1062 struct btrfs_file_extent_item *fi; 1063 struct btrfs_path path = { 0 }; 1064 struct extent_map *em; 1065 struct btrfs_key key; 1066 u64 ino = btrfs_ino(inode); 1067 int ret; 1068 1069 em = alloc_extent_map(); 1070 if (!em) { 1071 ret = -ENOMEM; 1072 goto err; 1073 } 1074 1075 key.objectid = ino; 1076 key.type = BTRFS_EXTENT_DATA_KEY; 1077 key.offset = start; 1078 1079 if (newer_than) { 1080 ret = btrfs_search_forward(root, &key, &path, newer_than); 1081 if (ret < 0) 1082 goto err; 1083 /* Can't find anything newer */ 1084 if (ret > 0) 1085 goto not_found; 1086 } else { 1087 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); 1088 if (ret < 0) 1089 goto err; 1090 } 1091 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { 1092 /* 1093 * If btrfs_search_slot() makes path to point beyond nritems, 1094 * we should not have an empty leaf, as this inode must at 1095 * least have its INODE_ITEM. 1096 */ 1097 ASSERT(btrfs_header_nritems(path.nodes[0])); 1098 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1; 1099 } 1100 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 1101 /* Perfect match, no need to go one slot back */ 1102 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY && 1103 key.offset == start) 1104 goto iterate; 1105 1106 /* We didn't find a perfect match, needs to go one slot back */ 1107 if (path.slots[0] > 0) { 1108 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 1109 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 1110 path.slots[0]--; 1111 } 1112 1113 iterate: 1114 /* Iterate through the path to find a file extent covering @start */ 1115 while (true) { 1116 u64 extent_end; 1117 1118 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) 1119 goto next; 1120 1121 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 1122 1123 /* 1124 * We may go one slot back to INODE_REF/XATTR item, then 1125 * need to go forward until we reach an EXTENT_DATA. 1126 * But we should still has the correct ino as key.objectid. 1127 */ 1128 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY) 1129 goto next; 1130 1131 /* It's beyond our target range, definitely not extent found */ 1132 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY) 1133 goto not_found; 1134 1135 /* 1136 * | |<- File extent ->| 1137 * \- start 1138 * 1139 * This means there is a hole between start and key.offset. 1140 */ 1141 if (key.offset > start) { 1142 em->start = start; 1143 em->orig_start = start; 1144 em->block_start = EXTENT_MAP_HOLE; 1145 em->len = key.offset - start; 1146 break; 1147 } 1148 1149 fi = btrfs_item_ptr(path.nodes[0], path.slots[0], 1150 struct btrfs_file_extent_item); 1151 extent_end = btrfs_file_extent_end(&path); 1152 1153 /* 1154 * |<- file extent ->| | 1155 * \- start 1156 * 1157 * We haven't reached start, search next slot. 1158 */ 1159 if (extent_end <= start) 1160 goto next; 1161 1162 /* Now this extent covers @start, convert it to em */ 1163 btrfs_extent_item_to_extent_map(inode, &path, fi, false, em); 1164 break; 1165 next: 1166 ret = btrfs_next_item(root, &path); 1167 if (ret < 0) 1168 goto err; 1169 if (ret > 0) 1170 goto not_found; 1171 } 1172 btrfs_release_path(&path); 1173 return em; 1174 1175 not_found: 1176 btrfs_release_path(&path); 1177 free_extent_map(em); 1178 return NULL; 1179 1180 err: 1181 btrfs_release_path(&path); 1182 free_extent_map(em); 1183 return ERR_PTR(ret); 1184 } 1185 1186 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, 1187 u64 newer_than, bool locked) 1188 { 1189 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1190 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1191 struct extent_map *em; 1192 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; 1193 1194 /* 1195 * hopefully we have this extent in the tree already, try without 1196 * the full extent lock 1197 */ 1198 read_lock(&em_tree->lock); 1199 em = lookup_extent_mapping(em_tree, start, sectorsize); 1200 read_unlock(&em_tree->lock); 1201 1202 /* 1203 * We can get a merged extent, in that case, we need to re-search 1204 * tree to get the original em for defrag. 1205 * 1206 * If @newer_than is 0 or em::generation < newer_than, we can trust 1207 * this em, as either we don't care about the generation, or the 1208 * merged extent map will be rejected anyway. 1209 */ 1210 if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) && 1211 newer_than && em->generation >= newer_than) { 1212 free_extent_map(em); 1213 em = NULL; 1214 } 1215 1216 if (!em) { 1217 struct extent_state *cached = NULL; 1218 u64 end = start + sectorsize - 1; 1219 1220 /* get the big lock and read metadata off disk */ 1221 if (!locked) 1222 lock_extent_bits(io_tree, start, end, &cached); 1223 em = defrag_get_extent(BTRFS_I(inode), start, newer_than); 1224 if (!locked) 1225 unlock_extent_cached(io_tree, start, end, &cached); 1226 1227 if (IS_ERR(em)) 1228 return NULL; 1229 } 1230 1231 return em; 1232 } 1233 1234 static u32 get_extent_max_capacity(const struct extent_map *em) 1235 { 1236 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1237 return BTRFS_MAX_COMPRESSED; 1238 return BTRFS_MAX_EXTENT_SIZE; 1239 } 1240 1241 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, 1242 bool locked) 1243 { 1244 struct extent_map *next; 1245 bool ret = false; 1246 1247 /* this is the last extent */ 1248 if (em->start + em->len >= i_size_read(inode)) 1249 return false; 1250 1251 /* 1252 * We want to check if the next extent can be merged with the current 1253 * one, which can be an extent created in a past generation, so we pass 1254 * a minimum generation of 0 to defrag_lookup_extent(). 1255 */ 1256 next = defrag_lookup_extent(inode, em->start + em->len, 0, locked); 1257 /* No more em or hole */ 1258 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1259 goto out; 1260 if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags)) 1261 goto out; 1262 /* 1263 * If the next extent is at its max capacity, defragging current extent 1264 * makes no sense, as the total number of extents won't change. 1265 */ 1266 if (next->len >= get_extent_max_capacity(em)) 1267 goto out; 1268 ret = true; 1269 out: 1270 free_extent_map(next); 1271 return ret; 1272 } 1273 1274 /* 1275 * Prepare one page to be defragged. 1276 * 1277 * This will ensure: 1278 * 1279 * - Returned page is locked and has been set up properly. 1280 * - No ordered extent exists in the page. 1281 * - The page is uptodate. 1282 * 1283 * NOTE: Caller should also wait for page writeback after the cluster is 1284 * prepared, here we don't do writeback wait for each page. 1285 */ 1286 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, 1287 pgoff_t index) 1288 { 1289 struct address_space *mapping = inode->vfs_inode.i_mapping; 1290 gfp_t mask = btrfs_alloc_write_mask(mapping); 1291 u64 page_start = (u64)index << PAGE_SHIFT; 1292 u64 page_end = page_start + PAGE_SIZE - 1; 1293 struct extent_state *cached_state = NULL; 1294 struct page *page; 1295 int ret; 1296 1297 again: 1298 page = find_or_create_page(mapping, index, mask); 1299 if (!page) 1300 return ERR_PTR(-ENOMEM); 1301 1302 /* 1303 * Since we can defragment files opened read-only, we can encounter 1304 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We 1305 * can't do I/O using huge pages yet, so return an error for now. 1306 * Filesystem transparent huge pages are typically only used for 1307 * executables that explicitly enable them, so this isn't very 1308 * restrictive. 1309 */ 1310 if (PageCompound(page)) { 1311 unlock_page(page); 1312 put_page(page); 1313 return ERR_PTR(-ETXTBSY); 1314 } 1315 1316 ret = set_page_extent_mapped(page); 1317 if (ret < 0) { 1318 unlock_page(page); 1319 put_page(page); 1320 return ERR_PTR(ret); 1321 } 1322 1323 /* Wait for any existing ordered extent in the range */ 1324 while (1) { 1325 struct btrfs_ordered_extent *ordered; 1326 1327 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 1328 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 1329 unlock_extent_cached(&inode->io_tree, page_start, page_end, 1330 &cached_state); 1331 if (!ordered) 1332 break; 1333 1334 unlock_page(page); 1335 btrfs_start_ordered_extent(ordered, 1); 1336 btrfs_put_ordered_extent(ordered); 1337 lock_page(page); 1338 /* 1339 * We unlocked the page above, so we need check if it was 1340 * released or not. 1341 */ 1342 if (page->mapping != mapping || !PagePrivate(page)) { 1343 unlock_page(page); 1344 put_page(page); 1345 goto again; 1346 } 1347 } 1348 1349 /* 1350 * Now the page range has no ordered extent any more. Read the page to 1351 * make it uptodate. 1352 */ 1353 if (!PageUptodate(page)) { 1354 btrfs_readpage(NULL, page); 1355 lock_page(page); 1356 if (page->mapping != mapping || !PagePrivate(page)) { 1357 unlock_page(page); 1358 put_page(page); 1359 goto again; 1360 } 1361 if (!PageUptodate(page)) { 1362 unlock_page(page); 1363 put_page(page); 1364 return ERR_PTR(-EIO); 1365 } 1366 } 1367 return page; 1368 } 1369 1370 struct defrag_target_range { 1371 struct list_head list; 1372 u64 start; 1373 u64 len; 1374 }; 1375 1376 /* 1377 * Collect all valid target extents. 1378 * 1379 * @start: file offset to lookup 1380 * @len: length to lookup 1381 * @extent_thresh: file extent size threshold, any extent size >= this value 1382 * will be ignored 1383 * @newer_than: only defrag extents newer than this value 1384 * @do_compress: whether the defrag is doing compression 1385 * if true, @extent_thresh will be ignored and all regular 1386 * file extents meeting @newer_than will be targets. 1387 * @locked: if the range has already held extent lock 1388 * @target_list: list of targets file extents 1389 */ 1390 static int defrag_collect_targets(struct btrfs_inode *inode, 1391 u64 start, u64 len, u32 extent_thresh, 1392 u64 newer_than, bool do_compress, 1393 bool locked, struct list_head *target_list, 1394 u64 *last_scanned_ret) 1395 { 1396 bool last_is_target = false; 1397 u64 cur = start; 1398 int ret = 0; 1399 1400 while (cur < start + len) { 1401 struct extent_map *em; 1402 struct defrag_target_range *new; 1403 bool next_mergeable = true; 1404 u64 range_len; 1405 1406 last_is_target = false; 1407 em = defrag_lookup_extent(&inode->vfs_inode, cur, 1408 newer_than, locked); 1409 if (!em) 1410 break; 1411 1412 /* Skip hole/inline/preallocated extents */ 1413 if (em->block_start >= EXTENT_MAP_LAST_BYTE || 1414 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1415 goto next; 1416 1417 /* Skip older extent */ 1418 if (em->generation < newer_than) 1419 goto next; 1420 1421 /* This em is under writeback, no need to defrag */ 1422 if (em->generation == (u64)-1) 1423 goto next; 1424 1425 /* 1426 * Our start offset might be in the middle of an existing extent 1427 * map, so take that into account. 1428 */ 1429 range_len = em->len - (cur - em->start); 1430 /* 1431 * If this range of the extent map is already flagged for delalloc, 1432 * skip it, because: 1433 * 1434 * 1) We could deadlock later, when trying to reserve space for 1435 * delalloc, because in case we can't immediately reserve space 1436 * the flusher can start delalloc and wait for the respective 1437 * ordered extents to complete. The deadlock would happen 1438 * because we do the space reservation while holding the range 1439 * locked, and starting writeback, or finishing an ordered 1440 * extent, requires locking the range; 1441 * 1442 * 2) If there's delalloc there, it means there's dirty pages for 1443 * which writeback has not started yet (we clean the delalloc 1444 * flag when starting writeback and after creating an ordered 1445 * extent). If we mark pages in an adjacent range for defrag, 1446 * then we will have a larger contiguous range for delalloc, 1447 * very likely resulting in a larger extent after writeback is 1448 * triggered (except in a case of free space fragmentation). 1449 */ 1450 if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1, 1451 EXTENT_DELALLOC, 0, NULL)) 1452 goto next; 1453 1454 /* 1455 * For do_compress case, we want to compress all valid file 1456 * extents, thus no @extent_thresh or mergeable check. 1457 */ 1458 if (do_compress) 1459 goto add; 1460 1461 /* Skip too large extent */ 1462 if (range_len >= extent_thresh) 1463 goto next; 1464 1465 /* 1466 * Skip extents already at its max capacity, this is mostly for 1467 * compressed extents, which max cap is only 128K. 1468 */ 1469 if (em->len >= get_extent_max_capacity(em)) 1470 goto next; 1471 1472 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, 1473 locked); 1474 if (!next_mergeable) { 1475 struct defrag_target_range *last; 1476 1477 /* Empty target list, no way to merge with last entry */ 1478 if (list_empty(target_list)) 1479 goto next; 1480 last = list_entry(target_list->prev, 1481 struct defrag_target_range, list); 1482 /* Not mergeable with last entry */ 1483 if (last->start + last->len != cur) 1484 goto next; 1485 1486 /* Mergeable, fall through to add it to @target_list. */ 1487 } 1488 1489 add: 1490 last_is_target = true; 1491 range_len = min(extent_map_end(em), start + len) - cur; 1492 /* 1493 * This one is a good target, check if it can be merged into 1494 * last range of the target list. 1495 */ 1496 if (!list_empty(target_list)) { 1497 struct defrag_target_range *last; 1498 1499 last = list_entry(target_list->prev, 1500 struct defrag_target_range, list); 1501 ASSERT(last->start + last->len <= cur); 1502 if (last->start + last->len == cur) { 1503 /* Mergeable, enlarge the last entry */ 1504 last->len += range_len; 1505 goto next; 1506 } 1507 /* Fall through to allocate a new entry */ 1508 } 1509 1510 /* Allocate new defrag_target_range */ 1511 new = kmalloc(sizeof(*new), GFP_NOFS); 1512 if (!new) { 1513 free_extent_map(em); 1514 ret = -ENOMEM; 1515 break; 1516 } 1517 new->start = cur; 1518 new->len = range_len; 1519 list_add_tail(&new->list, target_list); 1520 1521 next: 1522 cur = extent_map_end(em); 1523 free_extent_map(em); 1524 } 1525 if (ret < 0) { 1526 struct defrag_target_range *entry; 1527 struct defrag_target_range *tmp; 1528 1529 list_for_each_entry_safe(entry, tmp, target_list, list) { 1530 list_del_init(&entry->list); 1531 kfree(entry); 1532 } 1533 } 1534 if (!ret && last_scanned_ret) { 1535 /* 1536 * If the last extent is not a target, the caller can skip to 1537 * the end of that extent. 1538 * Otherwise, we can only go the end of the specified range. 1539 */ 1540 if (!last_is_target) 1541 *last_scanned_ret = max(cur, *last_scanned_ret); 1542 else 1543 *last_scanned_ret = max(start + len, *last_scanned_ret); 1544 } 1545 return ret; 1546 } 1547 1548 #define CLUSTER_SIZE (SZ_256K) 1549 static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1550 1551 /* 1552 * Defrag one contiguous target range. 1553 * 1554 * @inode: target inode 1555 * @target: target range to defrag 1556 * @pages: locked pages covering the defrag range 1557 * @nr_pages: number of locked pages 1558 * 1559 * Caller should ensure: 1560 * 1561 * - Pages are prepared 1562 * Pages should be locked, no ordered extent in the pages range, 1563 * no writeback. 1564 * 1565 * - Extent bits are locked 1566 */ 1567 static int defrag_one_locked_target(struct btrfs_inode *inode, 1568 struct defrag_target_range *target, 1569 struct page **pages, int nr_pages, 1570 struct extent_state **cached_state) 1571 { 1572 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1573 struct extent_changeset *data_reserved = NULL; 1574 const u64 start = target->start; 1575 const u64 len = target->len; 1576 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; 1577 unsigned long start_index = start >> PAGE_SHIFT; 1578 unsigned long first_index = page_index(pages[0]); 1579 int ret = 0; 1580 int i; 1581 1582 ASSERT(last_index - first_index + 1 <= nr_pages); 1583 1584 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); 1585 if (ret < 0) 1586 return ret; 1587 clear_extent_bit(&inode->io_tree, start, start + len - 1, 1588 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1589 EXTENT_DEFRAG, 0, 0, cached_state); 1590 set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state); 1591 1592 /* Update the page status */ 1593 for (i = start_index - first_index; i <= last_index - first_index; i++) { 1594 ClearPageChecked(pages[i]); 1595 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len); 1596 } 1597 btrfs_delalloc_release_extents(inode, len); 1598 extent_changeset_free(data_reserved); 1599 1600 return ret; 1601 } 1602 1603 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, 1604 u32 extent_thresh, u64 newer_than, bool do_compress, 1605 u64 *last_scanned_ret) 1606 { 1607 struct extent_state *cached_state = NULL; 1608 struct defrag_target_range *entry; 1609 struct defrag_target_range *tmp; 1610 LIST_HEAD(target_list); 1611 struct page **pages; 1612 const u32 sectorsize = inode->root->fs_info->sectorsize; 1613 u64 last_index = (start + len - 1) >> PAGE_SHIFT; 1614 u64 start_index = start >> PAGE_SHIFT; 1615 unsigned int nr_pages = last_index - start_index + 1; 1616 int ret = 0; 1617 int i; 1618 1619 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); 1620 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); 1621 1622 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 1623 if (!pages) 1624 return -ENOMEM; 1625 1626 /* Prepare all pages */ 1627 for (i = 0; i < nr_pages; i++) { 1628 pages[i] = defrag_prepare_one_page(inode, start_index + i); 1629 if (IS_ERR(pages[i])) { 1630 ret = PTR_ERR(pages[i]); 1631 pages[i] = NULL; 1632 goto free_pages; 1633 } 1634 } 1635 for (i = 0; i < nr_pages; i++) 1636 wait_on_page_writeback(pages[i]); 1637 1638 /* Lock the pages range */ 1639 lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT, 1640 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1641 &cached_state); 1642 /* 1643 * Now we have a consistent view about the extent map, re-check 1644 * which range really needs to be defragged. 1645 * 1646 * And this time we have extent locked already, pass @locked = true 1647 * so that we won't relock the extent range and cause deadlock. 1648 */ 1649 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1650 newer_than, do_compress, true, 1651 &target_list, last_scanned_ret); 1652 if (ret < 0) 1653 goto unlock_extent; 1654 1655 list_for_each_entry(entry, &target_list, list) { 1656 ret = defrag_one_locked_target(inode, entry, pages, nr_pages, 1657 &cached_state); 1658 if (ret < 0) 1659 break; 1660 } 1661 1662 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1663 list_del_init(&entry->list); 1664 kfree(entry); 1665 } 1666 unlock_extent: 1667 unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT, 1668 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1669 &cached_state); 1670 free_pages: 1671 for (i = 0; i < nr_pages; i++) { 1672 if (pages[i]) { 1673 unlock_page(pages[i]); 1674 put_page(pages[i]); 1675 } 1676 } 1677 kfree(pages); 1678 return ret; 1679 } 1680 1681 static int defrag_one_cluster(struct btrfs_inode *inode, 1682 struct file_ra_state *ra, 1683 u64 start, u32 len, u32 extent_thresh, 1684 u64 newer_than, bool do_compress, 1685 unsigned long *sectors_defragged, 1686 unsigned long max_sectors, 1687 u64 *last_scanned_ret) 1688 { 1689 const u32 sectorsize = inode->root->fs_info->sectorsize; 1690 struct defrag_target_range *entry; 1691 struct defrag_target_range *tmp; 1692 LIST_HEAD(target_list); 1693 int ret; 1694 1695 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1696 newer_than, do_compress, false, 1697 &target_list, NULL); 1698 if (ret < 0) 1699 goto out; 1700 1701 list_for_each_entry(entry, &target_list, list) { 1702 u32 range_len = entry->len; 1703 1704 /* Reached or beyond the limit */ 1705 if (max_sectors && *sectors_defragged >= max_sectors) { 1706 ret = 1; 1707 break; 1708 } 1709 1710 if (max_sectors) 1711 range_len = min_t(u32, range_len, 1712 (max_sectors - *sectors_defragged) * sectorsize); 1713 1714 /* 1715 * If defrag_one_range() has updated last_scanned_ret, 1716 * our range may already be invalid (e.g. hole punched). 1717 * Skip if our range is before last_scanned_ret, as there is 1718 * no need to defrag the range anymore. 1719 */ 1720 if (entry->start + range_len <= *last_scanned_ret) 1721 continue; 1722 1723 if (ra) 1724 page_cache_sync_readahead(inode->vfs_inode.i_mapping, 1725 ra, NULL, entry->start >> PAGE_SHIFT, 1726 ((entry->start + range_len - 1) >> PAGE_SHIFT) - 1727 (entry->start >> PAGE_SHIFT) + 1); 1728 /* 1729 * Here we may not defrag any range if holes are punched before 1730 * we locked the pages. 1731 * But that's fine, it only affects the @sectors_defragged 1732 * accounting. 1733 */ 1734 ret = defrag_one_range(inode, entry->start, range_len, 1735 extent_thresh, newer_than, do_compress, 1736 last_scanned_ret); 1737 if (ret < 0) 1738 break; 1739 *sectors_defragged += range_len >> 1740 inode->root->fs_info->sectorsize_bits; 1741 } 1742 out: 1743 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1744 list_del_init(&entry->list); 1745 kfree(entry); 1746 } 1747 if (ret >= 0) 1748 *last_scanned_ret = max(*last_scanned_ret, start + len); 1749 return ret; 1750 } 1751 1752 /* 1753 * Entry point to file defragmentation. 1754 * 1755 * @inode: inode to be defragged 1756 * @ra: readahead state (can be NUL) 1757 * @range: defrag options including range and flags 1758 * @newer_than: minimum transid to defrag 1759 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode 1760 * will be defragged. 1761 * 1762 * Return <0 for error. 1763 * Return >=0 for the number of sectors defragged, and range->start will be updated 1764 * to indicate the file offset where next defrag should be started at. 1765 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without 1766 * defragging all the range). 1767 */ 1768 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 1769 struct btrfs_ioctl_defrag_range_args *range, 1770 u64 newer_than, unsigned long max_to_defrag) 1771 { 1772 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1773 unsigned long sectors_defragged = 0; 1774 u64 isize = i_size_read(inode); 1775 u64 cur; 1776 u64 last_byte; 1777 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1778 bool ra_allocated = false; 1779 int compress_type = BTRFS_COMPRESS_ZLIB; 1780 int ret = 0; 1781 u32 extent_thresh = range->extent_thresh; 1782 pgoff_t start_index; 1783 1784 if (isize == 0) 1785 return 0; 1786 1787 if (range->start >= isize) 1788 return -EINVAL; 1789 1790 if (do_compress) { 1791 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1792 return -EINVAL; 1793 if (range->compress_type) 1794 compress_type = range->compress_type; 1795 } 1796 1797 if (extent_thresh == 0) 1798 extent_thresh = SZ_256K; 1799 1800 if (range->start + range->len > range->start) { 1801 /* Got a specific range */ 1802 last_byte = min(isize, range->start + range->len); 1803 } else { 1804 /* Defrag until file end */ 1805 last_byte = isize; 1806 } 1807 1808 /* Align the range */ 1809 cur = round_down(range->start, fs_info->sectorsize); 1810 last_byte = round_up(last_byte, fs_info->sectorsize) - 1; 1811 1812 /* 1813 * If we were not given a ra, allocate a readahead context. As 1814 * readahead is just an optimization, defrag will work without it so 1815 * we don't error out. 1816 */ 1817 if (!ra) { 1818 ra_allocated = true; 1819 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1820 if (ra) 1821 file_ra_state_init(ra, inode->i_mapping); 1822 } 1823 1824 /* 1825 * Make writeback start from the beginning of the range, so that the 1826 * defrag range can be written sequentially. 1827 */ 1828 start_index = cur >> PAGE_SHIFT; 1829 if (start_index < inode->i_mapping->writeback_index) 1830 inode->i_mapping->writeback_index = start_index; 1831 1832 while (cur < last_byte) { 1833 const unsigned long prev_sectors_defragged = sectors_defragged; 1834 u64 last_scanned = cur; 1835 u64 cluster_end; 1836 1837 if (btrfs_defrag_cancelled(fs_info)) { 1838 ret = -EAGAIN; 1839 break; 1840 } 1841 1842 /* We want the cluster end at page boundary when possible */ 1843 cluster_end = (((cur >> PAGE_SHIFT) + 1844 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; 1845 cluster_end = min(cluster_end, last_byte); 1846 1847 btrfs_inode_lock(inode, 0); 1848 if (IS_SWAPFILE(inode)) { 1849 ret = -ETXTBSY; 1850 btrfs_inode_unlock(inode, 0); 1851 break; 1852 } 1853 if (!(inode->i_sb->s_flags & SB_ACTIVE)) { 1854 btrfs_inode_unlock(inode, 0); 1855 break; 1856 } 1857 if (do_compress) 1858 BTRFS_I(inode)->defrag_compress = compress_type; 1859 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, 1860 cluster_end + 1 - cur, extent_thresh, 1861 newer_than, do_compress, §ors_defragged, 1862 max_to_defrag, &last_scanned); 1863 1864 if (sectors_defragged > prev_sectors_defragged) 1865 balance_dirty_pages_ratelimited(inode->i_mapping); 1866 1867 btrfs_inode_unlock(inode, 0); 1868 if (ret < 0) 1869 break; 1870 cur = max(cluster_end + 1, last_scanned); 1871 if (ret > 0) { 1872 ret = 0; 1873 break; 1874 } 1875 cond_resched(); 1876 } 1877 1878 if (ra_allocated) 1879 kfree(ra); 1880 /* 1881 * Update range.start for autodefrag, this will indicate where to start 1882 * in next run. 1883 */ 1884 range->start = cur; 1885 if (sectors_defragged) { 1886 /* 1887 * We have defragged some sectors, for compression case they 1888 * need to be written back immediately. 1889 */ 1890 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { 1891 filemap_flush(inode->i_mapping); 1892 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1893 &BTRFS_I(inode)->runtime_flags)) 1894 filemap_flush(inode->i_mapping); 1895 } 1896 if (range->compress_type == BTRFS_COMPRESS_LZO) 1897 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1898 else if (range->compress_type == BTRFS_COMPRESS_ZSTD) 1899 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1900 ret = sectors_defragged; 1901 } 1902 if (do_compress) { 1903 btrfs_inode_lock(inode, 0); 1904 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1905 btrfs_inode_unlock(inode, 0); 1906 } 1907 return ret; 1908 } 1909 1910 /* 1911 * Try to start exclusive operation @type or cancel it if it's running. 1912 * 1913 * Return: 1914 * 0 - normal mode, newly claimed op started 1915 * >0 - normal mode, something else is running, 1916 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1917 * ECANCELED - cancel mode, successful cancel 1918 * ENOTCONN - cancel mode, operation not running anymore 1919 */ 1920 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1921 enum btrfs_exclusive_operation type, bool cancel) 1922 { 1923 if (!cancel) { 1924 /* Start normal op */ 1925 if (!btrfs_exclop_start(fs_info, type)) 1926 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1927 /* Exclusive operation is now claimed */ 1928 return 0; 1929 } 1930 1931 /* Cancel running op */ 1932 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1933 /* 1934 * This blocks any exclop finish from setting it to NONE, so we 1935 * request cancellation. Either it runs and we will wait for it, 1936 * or it has finished and no waiting will happen. 1937 */ 1938 atomic_inc(&fs_info->reloc_cancel_req); 1939 btrfs_exclop_start_unlock(fs_info); 1940 1941 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1942 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1943 TASK_INTERRUPTIBLE); 1944 1945 return -ECANCELED; 1946 } 1947 1948 /* Something else is running or none */ 1949 return -ENOTCONN; 1950 } 1951 1952 static noinline int btrfs_ioctl_resize(struct file *file, 1953 void __user *arg) 1954 { 1955 BTRFS_DEV_LOOKUP_ARGS(args); 1956 struct inode *inode = file_inode(file); 1957 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1958 u64 new_size; 1959 u64 old_size; 1960 u64 devid = 1; 1961 struct btrfs_root *root = BTRFS_I(inode)->root; 1962 struct btrfs_ioctl_vol_args *vol_args; 1963 struct btrfs_trans_handle *trans; 1964 struct btrfs_device *device = NULL; 1965 char *sizestr; 1966 char *retptr; 1967 char *devstr = NULL; 1968 int ret = 0; 1969 int mod = 0; 1970 bool cancel; 1971 1972 if (!capable(CAP_SYS_ADMIN)) 1973 return -EPERM; 1974 1975 ret = mnt_want_write_file(file); 1976 if (ret) 1977 return ret; 1978 1979 /* 1980 * Read the arguments before checking exclusivity to be able to 1981 * distinguish regular resize and cancel 1982 */ 1983 vol_args = memdup_user(arg, sizeof(*vol_args)); 1984 if (IS_ERR(vol_args)) { 1985 ret = PTR_ERR(vol_args); 1986 goto out_drop; 1987 } 1988 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1989 sizestr = vol_args->name; 1990 cancel = (strcmp("cancel", sizestr) == 0); 1991 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1992 if (ret) 1993 goto out_free; 1994 /* Exclusive operation is now claimed */ 1995 1996 devstr = strchr(sizestr, ':'); 1997 if (devstr) { 1998 sizestr = devstr + 1; 1999 *devstr = '\0'; 2000 devstr = vol_args->name; 2001 ret = kstrtoull(devstr, 10, &devid); 2002 if (ret) 2003 goto out_finish; 2004 if (!devid) { 2005 ret = -EINVAL; 2006 goto out_finish; 2007 } 2008 btrfs_info(fs_info, "resizing devid %llu", devid); 2009 } 2010 2011 args.devid = devid; 2012 device = btrfs_find_device(fs_info->fs_devices, &args); 2013 if (!device) { 2014 btrfs_info(fs_info, "resizer unable to find device %llu", 2015 devid); 2016 ret = -ENODEV; 2017 goto out_finish; 2018 } 2019 2020 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2021 btrfs_info(fs_info, 2022 "resizer unable to apply on readonly device %llu", 2023 devid); 2024 ret = -EPERM; 2025 goto out_finish; 2026 } 2027 2028 if (!strcmp(sizestr, "max")) 2029 new_size = bdev_nr_bytes(device->bdev); 2030 else { 2031 if (sizestr[0] == '-') { 2032 mod = -1; 2033 sizestr++; 2034 } else if (sizestr[0] == '+') { 2035 mod = 1; 2036 sizestr++; 2037 } 2038 new_size = memparse(sizestr, &retptr); 2039 if (*retptr != '\0' || new_size == 0) { 2040 ret = -EINVAL; 2041 goto out_finish; 2042 } 2043 } 2044 2045 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2046 ret = -EPERM; 2047 goto out_finish; 2048 } 2049 2050 old_size = btrfs_device_get_total_bytes(device); 2051 2052 if (mod < 0) { 2053 if (new_size > old_size) { 2054 ret = -EINVAL; 2055 goto out_finish; 2056 } 2057 new_size = old_size - new_size; 2058 } else if (mod > 0) { 2059 if (new_size > ULLONG_MAX - old_size) { 2060 ret = -ERANGE; 2061 goto out_finish; 2062 } 2063 new_size = old_size + new_size; 2064 } 2065 2066 if (new_size < SZ_256M) { 2067 ret = -EINVAL; 2068 goto out_finish; 2069 } 2070 if (new_size > bdev_nr_bytes(device->bdev)) { 2071 ret = -EFBIG; 2072 goto out_finish; 2073 } 2074 2075 new_size = round_down(new_size, fs_info->sectorsize); 2076 2077 if (new_size > old_size) { 2078 trans = btrfs_start_transaction(root, 0); 2079 if (IS_ERR(trans)) { 2080 ret = PTR_ERR(trans); 2081 goto out_finish; 2082 } 2083 ret = btrfs_grow_device(trans, device, new_size); 2084 btrfs_commit_transaction(trans); 2085 } else if (new_size < old_size) { 2086 ret = btrfs_shrink_device(device, new_size); 2087 } /* equal, nothing need to do */ 2088 2089 if (ret == 0 && new_size != old_size) 2090 btrfs_info_in_rcu(fs_info, 2091 "resize device %s (devid %llu) from %llu to %llu", 2092 rcu_str_deref(device->name), device->devid, 2093 old_size, new_size); 2094 out_finish: 2095 btrfs_exclop_finish(fs_info); 2096 out_free: 2097 kfree(vol_args); 2098 out_drop: 2099 mnt_drop_write_file(file); 2100 return ret; 2101 } 2102 2103 static noinline int __btrfs_ioctl_snap_create(struct file *file, 2104 struct user_namespace *mnt_userns, 2105 const char *name, unsigned long fd, int subvol, 2106 bool readonly, 2107 struct btrfs_qgroup_inherit *inherit) 2108 { 2109 int namelen; 2110 int ret = 0; 2111 2112 if (!S_ISDIR(file_inode(file)->i_mode)) 2113 return -ENOTDIR; 2114 2115 ret = mnt_want_write_file(file); 2116 if (ret) 2117 goto out; 2118 2119 namelen = strlen(name); 2120 if (strchr(name, '/')) { 2121 ret = -EINVAL; 2122 goto out_drop_write; 2123 } 2124 2125 if (name[0] == '.' && 2126 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 2127 ret = -EEXIST; 2128 goto out_drop_write; 2129 } 2130 2131 if (subvol) { 2132 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name, 2133 namelen, NULL, readonly, inherit); 2134 } else { 2135 struct fd src = fdget(fd); 2136 struct inode *src_inode; 2137 if (!src.file) { 2138 ret = -EINVAL; 2139 goto out_drop_write; 2140 } 2141 2142 src_inode = file_inode(src.file); 2143 if (src_inode->i_sb != file_inode(file)->i_sb) { 2144 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 2145 "Snapshot src from another FS"); 2146 ret = -EXDEV; 2147 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) { 2148 /* 2149 * Subvolume creation is not restricted, but snapshots 2150 * are limited to own subvolumes only 2151 */ 2152 ret = -EPERM; 2153 } else { 2154 ret = btrfs_mksnapshot(&file->f_path, mnt_userns, 2155 name, namelen, 2156 BTRFS_I(src_inode)->root, 2157 readonly, inherit); 2158 } 2159 fdput(src); 2160 } 2161 out_drop_write: 2162 mnt_drop_write_file(file); 2163 out: 2164 return ret; 2165 } 2166 2167 static noinline int btrfs_ioctl_snap_create(struct file *file, 2168 void __user *arg, int subvol) 2169 { 2170 struct btrfs_ioctl_vol_args *vol_args; 2171 int ret; 2172 2173 if (!S_ISDIR(file_inode(file)->i_mode)) 2174 return -ENOTDIR; 2175 2176 vol_args = memdup_user(arg, sizeof(*vol_args)); 2177 if (IS_ERR(vol_args)) 2178 return PTR_ERR(vol_args); 2179 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2180 2181 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 2182 vol_args->name, vol_args->fd, subvol, 2183 false, NULL); 2184 2185 kfree(vol_args); 2186 return ret; 2187 } 2188 2189 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 2190 void __user *arg, int subvol) 2191 { 2192 struct btrfs_ioctl_vol_args_v2 *vol_args; 2193 int ret; 2194 bool readonly = false; 2195 struct btrfs_qgroup_inherit *inherit = NULL; 2196 2197 if (!S_ISDIR(file_inode(file)->i_mode)) 2198 return -ENOTDIR; 2199 2200 vol_args = memdup_user(arg, sizeof(*vol_args)); 2201 if (IS_ERR(vol_args)) 2202 return PTR_ERR(vol_args); 2203 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2204 2205 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 2206 ret = -EOPNOTSUPP; 2207 goto free_args; 2208 } 2209 2210 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 2211 readonly = true; 2212 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 2213 u64 nums; 2214 2215 if (vol_args->size < sizeof(*inherit) || 2216 vol_args->size > PAGE_SIZE) { 2217 ret = -EINVAL; 2218 goto free_args; 2219 } 2220 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 2221 if (IS_ERR(inherit)) { 2222 ret = PTR_ERR(inherit); 2223 goto free_args; 2224 } 2225 2226 if (inherit->num_qgroups > PAGE_SIZE || 2227 inherit->num_ref_copies > PAGE_SIZE || 2228 inherit->num_excl_copies > PAGE_SIZE) { 2229 ret = -EINVAL; 2230 goto free_inherit; 2231 } 2232 2233 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 2234 2 * inherit->num_excl_copies; 2235 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 2236 ret = -EINVAL; 2237 goto free_inherit; 2238 } 2239 } 2240 2241 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 2242 vol_args->name, vol_args->fd, subvol, 2243 readonly, inherit); 2244 if (ret) 2245 goto free_inherit; 2246 free_inherit: 2247 kfree(inherit); 2248 free_args: 2249 kfree(vol_args); 2250 return ret; 2251 } 2252 2253 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 2254 void __user *arg) 2255 { 2256 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2257 struct btrfs_root *root = BTRFS_I(inode)->root; 2258 int ret = 0; 2259 u64 flags = 0; 2260 2261 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 2262 return -EINVAL; 2263 2264 down_read(&fs_info->subvol_sem); 2265 if (btrfs_root_readonly(root)) 2266 flags |= BTRFS_SUBVOL_RDONLY; 2267 up_read(&fs_info->subvol_sem); 2268 2269 if (copy_to_user(arg, &flags, sizeof(flags))) 2270 ret = -EFAULT; 2271 2272 return ret; 2273 } 2274 2275 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 2276 void __user *arg) 2277 { 2278 struct inode *inode = file_inode(file); 2279 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2280 struct btrfs_root *root = BTRFS_I(inode)->root; 2281 struct btrfs_trans_handle *trans; 2282 u64 root_flags; 2283 u64 flags; 2284 int ret = 0; 2285 2286 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode)) 2287 return -EPERM; 2288 2289 ret = mnt_want_write_file(file); 2290 if (ret) 2291 goto out; 2292 2293 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2294 ret = -EINVAL; 2295 goto out_drop_write; 2296 } 2297 2298 if (copy_from_user(&flags, arg, sizeof(flags))) { 2299 ret = -EFAULT; 2300 goto out_drop_write; 2301 } 2302 2303 if (flags & ~BTRFS_SUBVOL_RDONLY) { 2304 ret = -EOPNOTSUPP; 2305 goto out_drop_write; 2306 } 2307 2308 down_write(&fs_info->subvol_sem); 2309 2310 /* nothing to do */ 2311 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 2312 goto out_drop_sem; 2313 2314 root_flags = btrfs_root_flags(&root->root_item); 2315 if (flags & BTRFS_SUBVOL_RDONLY) { 2316 btrfs_set_root_flags(&root->root_item, 2317 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 2318 } else { 2319 /* 2320 * Block RO -> RW transition if this subvolume is involved in 2321 * send 2322 */ 2323 spin_lock(&root->root_item_lock); 2324 if (root->send_in_progress == 0) { 2325 btrfs_set_root_flags(&root->root_item, 2326 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 2327 spin_unlock(&root->root_item_lock); 2328 } else { 2329 spin_unlock(&root->root_item_lock); 2330 btrfs_warn(fs_info, 2331 "Attempt to set subvolume %llu read-write during send", 2332 root->root_key.objectid); 2333 ret = -EPERM; 2334 goto out_drop_sem; 2335 } 2336 } 2337 2338 trans = btrfs_start_transaction(root, 1); 2339 if (IS_ERR(trans)) { 2340 ret = PTR_ERR(trans); 2341 goto out_reset; 2342 } 2343 2344 ret = btrfs_update_root(trans, fs_info->tree_root, 2345 &root->root_key, &root->root_item); 2346 if (ret < 0) { 2347 btrfs_end_transaction(trans); 2348 goto out_reset; 2349 } 2350 2351 ret = btrfs_commit_transaction(trans); 2352 2353 out_reset: 2354 if (ret) 2355 btrfs_set_root_flags(&root->root_item, root_flags); 2356 out_drop_sem: 2357 up_write(&fs_info->subvol_sem); 2358 out_drop_write: 2359 mnt_drop_write_file(file); 2360 out: 2361 return ret; 2362 } 2363 2364 static noinline int key_in_sk(struct btrfs_key *key, 2365 struct btrfs_ioctl_search_key *sk) 2366 { 2367 struct btrfs_key test; 2368 int ret; 2369 2370 test.objectid = sk->min_objectid; 2371 test.type = sk->min_type; 2372 test.offset = sk->min_offset; 2373 2374 ret = btrfs_comp_cpu_keys(key, &test); 2375 if (ret < 0) 2376 return 0; 2377 2378 test.objectid = sk->max_objectid; 2379 test.type = sk->max_type; 2380 test.offset = sk->max_offset; 2381 2382 ret = btrfs_comp_cpu_keys(key, &test); 2383 if (ret > 0) 2384 return 0; 2385 return 1; 2386 } 2387 2388 static noinline int copy_to_sk(struct btrfs_path *path, 2389 struct btrfs_key *key, 2390 struct btrfs_ioctl_search_key *sk, 2391 size_t *buf_size, 2392 char __user *ubuf, 2393 unsigned long *sk_offset, 2394 int *num_found) 2395 { 2396 u64 found_transid; 2397 struct extent_buffer *leaf; 2398 struct btrfs_ioctl_search_header sh; 2399 struct btrfs_key test; 2400 unsigned long item_off; 2401 unsigned long item_len; 2402 int nritems; 2403 int i; 2404 int slot; 2405 int ret = 0; 2406 2407 leaf = path->nodes[0]; 2408 slot = path->slots[0]; 2409 nritems = btrfs_header_nritems(leaf); 2410 2411 if (btrfs_header_generation(leaf) > sk->max_transid) { 2412 i = nritems; 2413 goto advance_key; 2414 } 2415 found_transid = btrfs_header_generation(leaf); 2416 2417 for (i = slot; i < nritems; i++) { 2418 item_off = btrfs_item_ptr_offset(leaf, i); 2419 item_len = btrfs_item_size(leaf, i); 2420 2421 btrfs_item_key_to_cpu(leaf, key, i); 2422 if (!key_in_sk(key, sk)) 2423 continue; 2424 2425 if (sizeof(sh) + item_len > *buf_size) { 2426 if (*num_found) { 2427 ret = 1; 2428 goto out; 2429 } 2430 2431 /* 2432 * return one empty item back for v1, which does not 2433 * handle -EOVERFLOW 2434 */ 2435 2436 *buf_size = sizeof(sh) + item_len; 2437 item_len = 0; 2438 ret = -EOVERFLOW; 2439 } 2440 2441 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2442 ret = 1; 2443 goto out; 2444 } 2445 2446 sh.objectid = key->objectid; 2447 sh.offset = key->offset; 2448 sh.type = key->type; 2449 sh.len = item_len; 2450 sh.transid = found_transid; 2451 2452 /* 2453 * Copy search result header. If we fault then loop again so we 2454 * can fault in the pages and -EFAULT there if there's a 2455 * problem. Otherwise we'll fault and then copy the buffer in 2456 * properly this next time through 2457 */ 2458 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2459 ret = 0; 2460 goto out; 2461 } 2462 2463 *sk_offset += sizeof(sh); 2464 2465 if (item_len) { 2466 char __user *up = ubuf + *sk_offset; 2467 /* 2468 * Copy the item, same behavior as above, but reset the 2469 * * sk_offset so we copy the full thing again. 2470 */ 2471 if (read_extent_buffer_to_user_nofault(leaf, up, 2472 item_off, item_len)) { 2473 ret = 0; 2474 *sk_offset -= sizeof(sh); 2475 goto out; 2476 } 2477 2478 *sk_offset += item_len; 2479 } 2480 (*num_found)++; 2481 2482 if (ret) /* -EOVERFLOW from above */ 2483 goto out; 2484 2485 if (*num_found >= sk->nr_items) { 2486 ret = 1; 2487 goto out; 2488 } 2489 } 2490 advance_key: 2491 ret = 0; 2492 test.objectid = sk->max_objectid; 2493 test.type = sk->max_type; 2494 test.offset = sk->max_offset; 2495 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2496 ret = 1; 2497 else if (key->offset < (u64)-1) 2498 key->offset++; 2499 else if (key->type < (u8)-1) { 2500 key->offset = 0; 2501 key->type++; 2502 } else if (key->objectid < (u64)-1) { 2503 key->offset = 0; 2504 key->type = 0; 2505 key->objectid++; 2506 } else 2507 ret = 1; 2508 out: 2509 /* 2510 * 0: all items from this leaf copied, continue with next 2511 * 1: * more items can be copied, but unused buffer is too small 2512 * * all items were found 2513 * Either way, it will stops the loop which iterates to the next 2514 * leaf 2515 * -EOVERFLOW: item was to large for buffer 2516 * -EFAULT: could not copy extent buffer back to userspace 2517 */ 2518 return ret; 2519 } 2520 2521 static noinline int search_ioctl(struct inode *inode, 2522 struct btrfs_ioctl_search_key *sk, 2523 size_t *buf_size, 2524 char __user *ubuf) 2525 { 2526 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2527 struct btrfs_root *root; 2528 struct btrfs_key key; 2529 struct btrfs_path *path; 2530 int ret; 2531 int num_found = 0; 2532 unsigned long sk_offset = 0; 2533 2534 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2535 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2536 return -EOVERFLOW; 2537 } 2538 2539 path = btrfs_alloc_path(); 2540 if (!path) 2541 return -ENOMEM; 2542 2543 if (sk->tree_id == 0) { 2544 /* search the root of the inode that was passed */ 2545 root = btrfs_grab_root(BTRFS_I(inode)->root); 2546 } else { 2547 root = btrfs_get_fs_root(info, sk->tree_id, true); 2548 if (IS_ERR(root)) { 2549 btrfs_free_path(path); 2550 return PTR_ERR(root); 2551 } 2552 } 2553 2554 key.objectid = sk->min_objectid; 2555 key.type = sk->min_type; 2556 key.offset = sk->min_offset; 2557 2558 while (1) { 2559 ret = -EFAULT; 2560 if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset)) 2561 break; 2562 2563 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2564 if (ret != 0) { 2565 if (ret > 0) 2566 ret = 0; 2567 goto err; 2568 } 2569 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2570 &sk_offset, &num_found); 2571 btrfs_release_path(path); 2572 if (ret) 2573 break; 2574 2575 } 2576 if (ret > 0) 2577 ret = 0; 2578 err: 2579 sk->nr_items = num_found; 2580 btrfs_put_root(root); 2581 btrfs_free_path(path); 2582 return ret; 2583 } 2584 2585 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 2586 void __user *argp) 2587 { 2588 struct btrfs_ioctl_search_args __user *uargs; 2589 struct btrfs_ioctl_search_key sk; 2590 int ret; 2591 size_t buf_size; 2592 2593 if (!capable(CAP_SYS_ADMIN)) 2594 return -EPERM; 2595 2596 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2597 2598 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2599 return -EFAULT; 2600 2601 buf_size = sizeof(uargs->buf); 2602 2603 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2604 2605 /* 2606 * In the origin implementation an overflow is handled by returning a 2607 * search header with a len of zero, so reset ret. 2608 */ 2609 if (ret == -EOVERFLOW) 2610 ret = 0; 2611 2612 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2613 ret = -EFAULT; 2614 return ret; 2615 } 2616 2617 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 2618 void __user *argp) 2619 { 2620 struct btrfs_ioctl_search_args_v2 __user *uarg; 2621 struct btrfs_ioctl_search_args_v2 args; 2622 int ret; 2623 size_t buf_size; 2624 const size_t buf_limit = SZ_16M; 2625 2626 if (!capable(CAP_SYS_ADMIN)) 2627 return -EPERM; 2628 2629 /* copy search header and buffer size */ 2630 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2631 if (copy_from_user(&args, uarg, sizeof(args))) 2632 return -EFAULT; 2633 2634 buf_size = args.buf_size; 2635 2636 /* limit result size to 16MB */ 2637 if (buf_size > buf_limit) 2638 buf_size = buf_limit; 2639 2640 ret = search_ioctl(inode, &args.key, &buf_size, 2641 (char __user *)(&uarg->buf[0])); 2642 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2643 ret = -EFAULT; 2644 else if (ret == -EOVERFLOW && 2645 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2646 ret = -EFAULT; 2647 2648 return ret; 2649 } 2650 2651 /* 2652 * Search INODE_REFs to identify path name of 'dirid' directory 2653 * in a 'tree_id' tree. and sets path name to 'name'. 2654 */ 2655 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2656 u64 tree_id, u64 dirid, char *name) 2657 { 2658 struct btrfs_root *root; 2659 struct btrfs_key key; 2660 char *ptr; 2661 int ret = -1; 2662 int slot; 2663 int len; 2664 int total_len = 0; 2665 struct btrfs_inode_ref *iref; 2666 struct extent_buffer *l; 2667 struct btrfs_path *path; 2668 2669 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2670 name[0]='\0'; 2671 return 0; 2672 } 2673 2674 path = btrfs_alloc_path(); 2675 if (!path) 2676 return -ENOMEM; 2677 2678 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2679 2680 root = btrfs_get_fs_root(info, tree_id, true); 2681 if (IS_ERR(root)) { 2682 ret = PTR_ERR(root); 2683 root = NULL; 2684 goto out; 2685 } 2686 2687 key.objectid = dirid; 2688 key.type = BTRFS_INODE_REF_KEY; 2689 key.offset = (u64)-1; 2690 2691 while (1) { 2692 ret = btrfs_search_backwards(root, &key, path); 2693 if (ret < 0) 2694 goto out; 2695 else if (ret > 0) { 2696 ret = -ENOENT; 2697 goto out; 2698 } 2699 2700 l = path->nodes[0]; 2701 slot = path->slots[0]; 2702 2703 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2704 len = btrfs_inode_ref_name_len(l, iref); 2705 ptr -= len + 1; 2706 total_len += len + 1; 2707 if (ptr < name) { 2708 ret = -ENAMETOOLONG; 2709 goto out; 2710 } 2711 2712 *(ptr + len) = '/'; 2713 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2714 2715 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2716 break; 2717 2718 btrfs_release_path(path); 2719 key.objectid = key.offset; 2720 key.offset = (u64)-1; 2721 dirid = key.objectid; 2722 } 2723 memmove(name, ptr, total_len); 2724 name[total_len] = '\0'; 2725 ret = 0; 2726 out: 2727 btrfs_put_root(root); 2728 btrfs_free_path(path); 2729 return ret; 2730 } 2731 2732 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns, 2733 struct inode *inode, 2734 struct btrfs_ioctl_ino_lookup_user_args *args) 2735 { 2736 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2737 struct super_block *sb = inode->i_sb; 2738 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2739 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2740 u64 dirid = args->dirid; 2741 unsigned long item_off; 2742 unsigned long item_len; 2743 struct btrfs_inode_ref *iref; 2744 struct btrfs_root_ref *rref; 2745 struct btrfs_root *root = NULL; 2746 struct btrfs_path *path; 2747 struct btrfs_key key, key2; 2748 struct extent_buffer *leaf; 2749 struct inode *temp_inode; 2750 char *ptr; 2751 int slot; 2752 int len; 2753 int total_len = 0; 2754 int ret; 2755 2756 path = btrfs_alloc_path(); 2757 if (!path) 2758 return -ENOMEM; 2759 2760 /* 2761 * If the bottom subvolume does not exist directly under upper_limit, 2762 * construct the path in from the bottom up. 2763 */ 2764 if (dirid != upper_limit.objectid) { 2765 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2766 2767 root = btrfs_get_fs_root(fs_info, treeid, true); 2768 if (IS_ERR(root)) { 2769 ret = PTR_ERR(root); 2770 goto out; 2771 } 2772 2773 key.objectid = dirid; 2774 key.type = BTRFS_INODE_REF_KEY; 2775 key.offset = (u64)-1; 2776 while (1) { 2777 ret = btrfs_search_backwards(root, &key, path); 2778 if (ret < 0) 2779 goto out_put; 2780 else if (ret > 0) { 2781 ret = -ENOENT; 2782 goto out_put; 2783 } 2784 2785 leaf = path->nodes[0]; 2786 slot = path->slots[0]; 2787 2788 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2789 len = btrfs_inode_ref_name_len(leaf, iref); 2790 ptr -= len + 1; 2791 total_len += len + 1; 2792 if (ptr < args->path) { 2793 ret = -ENAMETOOLONG; 2794 goto out_put; 2795 } 2796 2797 *(ptr + len) = '/'; 2798 read_extent_buffer(leaf, ptr, 2799 (unsigned long)(iref + 1), len); 2800 2801 /* Check the read+exec permission of this directory */ 2802 ret = btrfs_previous_item(root, path, dirid, 2803 BTRFS_INODE_ITEM_KEY); 2804 if (ret < 0) { 2805 goto out_put; 2806 } else if (ret > 0) { 2807 ret = -ENOENT; 2808 goto out_put; 2809 } 2810 2811 leaf = path->nodes[0]; 2812 slot = path->slots[0]; 2813 btrfs_item_key_to_cpu(leaf, &key2, slot); 2814 if (key2.objectid != dirid) { 2815 ret = -ENOENT; 2816 goto out_put; 2817 } 2818 2819 temp_inode = btrfs_iget(sb, key2.objectid, root); 2820 if (IS_ERR(temp_inode)) { 2821 ret = PTR_ERR(temp_inode); 2822 goto out_put; 2823 } 2824 ret = inode_permission(mnt_userns, temp_inode, 2825 MAY_READ | MAY_EXEC); 2826 iput(temp_inode); 2827 if (ret) { 2828 ret = -EACCES; 2829 goto out_put; 2830 } 2831 2832 if (key.offset == upper_limit.objectid) 2833 break; 2834 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2835 ret = -EACCES; 2836 goto out_put; 2837 } 2838 2839 btrfs_release_path(path); 2840 key.objectid = key.offset; 2841 key.offset = (u64)-1; 2842 dirid = key.objectid; 2843 } 2844 2845 memmove(args->path, ptr, total_len); 2846 args->path[total_len] = '\0'; 2847 btrfs_put_root(root); 2848 root = NULL; 2849 btrfs_release_path(path); 2850 } 2851 2852 /* Get the bottom subvolume's name from ROOT_REF */ 2853 key.objectid = treeid; 2854 key.type = BTRFS_ROOT_REF_KEY; 2855 key.offset = args->treeid; 2856 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2857 if (ret < 0) { 2858 goto out; 2859 } else if (ret > 0) { 2860 ret = -ENOENT; 2861 goto out; 2862 } 2863 2864 leaf = path->nodes[0]; 2865 slot = path->slots[0]; 2866 btrfs_item_key_to_cpu(leaf, &key, slot); 2867 2868 item_off = btrfs_item_ptr_offset(leaf, slot); 2869 item_len = btrfs_item_size(leaf, slot); 2870 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2871 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2872 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2873 ret = -EINVAL; 2874 goto out; 2875 } 2876 2877 /* Copy subvolume's name */ 2878 item_off += sizeof(struct btrfs_root_ref); 2879 item_len -= sizeof(struct btrfs_root_ref); 2880 read_extent_buffer(leaf, args->name, item_off, item_len); 2881 args->name[item_len] = 0; 2882 2883 out_put: 2884 btrfs_put_root(root); 2885 out: 2886 btrfs_free_path(path); 2887 return ret; 2888 } 2889 2890 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 2891 void __user *argp) 2892 { 2893 struct btrfs_ioctl_ino_lookup_args *args; 2894 int ret = 0; 2895 2896 args = memdup_user(argp, sizeof(*args)); 2897 if (IS_ERR(args)) 2898 return PTR_ERR(args); 2899 2900 /* 2901 * Unprivileged query to obtain the containing subvolume root id. The 2902 * path is reset so it's consistent with btrfs_search_path_in_tree. 2903 */ 2904 if (args->treeid == 0) 2905 args->treeid = root->root_key.objectid; 2906 2907 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2908 args->name[0] = 0; 2909 goto out; 2910 } 2911 2912 if (!capable(CAP_SYS_ADMIN)) { 2913 ret = -EPERM; 2914 goto out; 2915 } 2916 2917 ret = btrfs_search_path_in_tree(root->fs_info, 2918 args->treeid, args->objectid, 2919 args->name); 2920 2921 out: 2922 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2923 ret = -EFAULT; 2924 2925 kfree(args); 2926 return ret; 2927 } 2928 2929 /* 2930 * Version of ino_lookup ioctl (unprivileged) 2931 * 2932 * The main differences from ino_lookup ioctl are: 2933 * 2934 * 1. Read + Exec permission will be checked using inode_permission() during 2935 * path construction. -EACCES will be returned in case of failure. 2936 * 2. Path construction will be stopped at the inode number which corresponds 2937 * to the fd with which this ioctl is called. If constructed path does not 2938 * exist under fd's inode, -EACCES will be returned. 2939 * 3. The name of bottom subvolume is also searched and filled. 2940 */ 2941 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2942 { 2943 struct btrfs_ioctl_ino_lookup_user_args *args; 2944 struct inode *inode; 2945 int ret; 2946 2947 args = memdup_user(argp, sizeof(*args)); 2948 if (IS_ERR(args)) 2949 return PTR_ERR(args); 2950 2951 inode = file_inode(file); 2952 2953 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2954 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2955 /* 2956 * The subvolume does not exist under fd with which this is 2957 * called 2958 */ 2959 kfree(args); 2960 return -EACCES; 2961 } 2962 2963 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args); 2964 2965 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2966 ret = -EFAULT; 2967 2968 kfree(args); 2969 return ret; 2970 } 2971 2972 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2973 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2974 { 2975 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2976 struct btrfs_fs_info *fs_info; 2977 struct btrfs_root *root; 2978 struct btrfs_path *path; 2979 struct btrfs_key key; 2980 struct btrfs_root_item *root_item; 2981 struct btrfs_root_ref *rref; 2982 struct extent_buffer *leaf; 2983 unsigned long item_off; 2984 unsigned long item_len; 2985 int slot; 2986 int ret = 0; 2987 2988 path = btrfs_alloc_path(); 2989 if (!path) 2990 return -ENOMEM; 2991 2992 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2993 if (!subvol_info) { 2994 btrfs_free_path(path); 2995 return -ENOMEM; 2996 } 2997 2998 fs_info = BTRFS_I(inode)->root->fs_info; 2999 3000 /* Get root_item of inode's subvolume */ 3001 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 3002 root = btrfs_get_fs_root(fs_info, key.objectid, true); 3003 if (IS_ERR(root)) { 3004 ret = PTR_ERR(root); 3005 goto out_free; 3006 } 3007 root_item = &root->root_item; 3008 3009 subvol_info->treeid = key.objectid; 3010 3011 subvol_info->generation = btrfs_root_generation(root_item); 3012 subvol_info->flags = btrfs_root_flags(root_item); 3013 3014 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 3015 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 3016 BTRFS_UUID_SIZE); 3017 memcpy(subvol_info->received_uuid, root_item->received_uuid, 3018 BTRFS_UUID_SIZE); 3019 3020 subvol_info->ctransid = btrfs_root_ctransid(root_item); 3021 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 3022 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 3023 3024 subvol_info->otransid = btrfs_root_otransid(root_item); 3025 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 3026 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 3027 3028 subvol_info->stransid = btrfs_root_stransid(root_item); 3029 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 3030 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 3031 3032 subvol_info->rtransid = btrfs_root_rtransid(root_item); 3033 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 3034 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 3035 3036 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 3037 /* Search root tree for ROOT_BACKREF of this subvolume */ 3038 key.type = BTRFS_ROOT_BACKREF_KEY; 3039 key.offset = 0; 3040 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3041 if (ret < 0) { 3042 goto out; 3043 } else if (path->slots[0] >= 3044 btrfs_header_nritems(path->nodes[0])) { 3045 ret = btrfs_next_leaf(fs_info->tree_root, path); 3046 if (ret < 0) { 3047 goto out; 3048 } else if (ret > 0) { 3049 ret = -EUCLEAN; 3050 goto out; 3051 } 3052 } 3053 3054 leaf = path->nodes[0]; 3055 slot = path->slots[0]; 3056 btrfs_item_key_to_cpu(leaf, &key, slot); 3057 if (key.objectid == subvol_info->treeid && 3058 key.type == BTRFS_ROOT_BACKREF_KEY) { 3059 subvol_info->parent_id = key.offset; 3060 3061 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 3062 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 3063 3064 item_off = btrfs_item_ptr_offset(leaf, slot) 3065 + sizeof(struct btrfs_root_ref); 3066 item_len = btrfs_item_size(leaf, slot) 3067 - sizeof(struct btrfs_root_ref); 3068 read_extent_buffer(leaf, subvol_info->name, 3069 item_off, item_len); 3070 } else { 3071 ret = -ENOENT; 3072 goto out; 3073 } 3074 } 3075 3076 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 3077 ret = -EFAULT; 3078 3079 out: 3080 btrfs_put_root(root); 3081 out_free: 3082 btrfs_free_path(path); 3083 kfree(subvol_info); 3084 return ret; 3085 } 3086 3087 /* 3088 * Return ROOT_REF information of the subvolume containing this inode 3089 * except the subvolume name. 3090 */ 3091 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 3092 void __user *argp) 3093 { 3094 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 3095 struct btrfs_root_ref *rref; 3096 struct btrfs_path *path; 3097 struct btrfs_key key; 3098 struct extent_buffer *leaf; 3099 u64 objectid; 3100 int slot; 3101 int ret; 3102 u8 found; 3103 3104 path = btrfs_alloc_path(); 3105 if (!path) 3106 return -ENOMEM; 3107 3108 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 3109 if (IS_ERR(rootrefs)) { 3110 btrfs_free_path(path); 3111 return PTR_ERR(rootrefs); 3112 } 3113 3114 objectid = root->root_key.objectid; 3115 key.objectid = objectid; 3116 key.type = BTRFS_ROOT_REF_KEY; 3117 key.offset = rootrefs->min_treeid; 3118 found = 0; 3119 3120 root = root->fs_info->tree_root; 3121 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3122 if (ret < 0) { 3123 goto out; 3124 } else if (path->slots[0] >= 3125 btrfs_header_nritems(path->nodes[0])) { 3126 ret = btrfs_next_leaf(root, path); 3127 if (ret < 0) { 3128 goto out; 3129 } else if (ret > 0) { 3130 ret = -EUCLEAN; 3131 goto out; 3132 } 3133 } 3134 while (1) { 3135 leaf = path->nodes[0]; 3136 slot = path->slots[0]; 3137 3138 btrfs_item_key_to_cpu(leaf, &key, slot); 3139 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 3140 ret = 0; 3141 goto out; 3142 } 3143 3144 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 3145 ret = -EOVERFLOW; 3146 goto out; 3147 } 3148 3149 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 3150 rootrefs->rootref[found].treeid = key.offset; 3151 rootrefs->rootref[found].dirid = 3152 btrfs_root_ref_dirid(leaf, rref); 3153 found++; 3154 3155 ret = btrfs_next_item(root, path); 3156 if (ret < 0) { 3157 goto out; 3158 } else if (ret > 0) { 3159 ret = -EUCLEAN; 3160 goto out; 3161 } 3162 } 3163 3164 out: 3165 if (!ret || ret == -EOVERFLOW) { 3166 rootrefs->num_items = found; 3167 /* update min_treeid for next search */ 3168 if (found) 3169 rootrefs->min_treeid = 3170 rootrefs->rootref[found - 1].treeid + 1; 3171 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 3172 ret = -EFAULT; 3173 } 3174 3175 kfree(rootrefs); 3176 btrfs_free_path(path); 3177 3178 return ret; 3179 } 3180 3181 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 3182 void __user *arg, 3183 bool destroy_v2) 3184 { 3185 struct dentry *parent = file->f_path.dentry; 3186 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 3187 struct dentry *dentry; 3188 struct inode *dir = d_inode(parent); 3189 struct inode *inode; 3190 struct btrfs_root *root = BTRFS_I(dir)->root; 3191 struct btrfs_root *dest = NULL; 3192 struct btrfs_ioctl_vol_args *vol_args = NULL; 3193 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 3194 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 3195 char *subvol_name, *subvol_name_ptr = NULL; 3196 int subvol_namelen; 3197 int err = 0; 3198 bool destroy_parent = false; 3199 3200 /* We don't support snapshots with extent tree v2 yet. */ 3201 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3202 btrfs_err(fs_info, 3203 "extent tree v2 doesn't support snapshot deletion yet"); 3204 return -EOPNOTSUPP; 3205 } 3206 3207 if (destroy_v2) { 3208 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 3209 if (IS_ERR(vol_args2)) 3210 return PTR_ERR(vol_args2); 3211 3212 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 3213 err = -EOPNOTSUPP; 3214 goto out; 3215 } 3216 3217 /* 3218 * If SPEC_BY_ID is not set, we are looking for the subvolume by 3219 * name, same as v1 currently does. 3220 */ 3221 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 3222 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 3223 subvol_name = vol_args2->name; 3224 3225 err = mnt_want_write_file(file); 3226 if (err) 3227 goto out; 3228 } else { 3229 struct inode *old_dir; 3230 3231 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 3232 err = -EINVAL; 3233 goto out; 3234 } 3235 3236 err = mnt_want_write_file(file); 3237 if (err) 3238 goto out; 3239 3240 dentry = btrfs_get_dentry(fs_info->sb, 3241 BTRFS_FIRST_FREE_OBJECTID, 3242 vol_args2->subvolid, 0, 0); 3243 if (IS_ERR(dentry)) { 3244 err = PTR_ERR(dentry); 3245 goto out_drop_write; 3246 } 3247 3248 /* 3249 * Change the default parent since the subvolume being 3250 * deleted can be outside of the current mount point. 3251 */ 3252 parent = btrfs_get_parent(dentry); 3253 3254 /* 3255 * At this point dentry->d_name can point to '/' if the 3256 * subvolume we want to destroy is outsite of the 3257 * current mount point, so we need to release the 3258 * current dentry and execute the lookup to return a new 3259 * one with ->d_name pointing to the 3260 * <mount point>/subvol_name. 3261 */ 3262 dput(dentry); 3263 if (IS_ERR(parent)) { 3264 err = PTR_ERR(parent); 3265 goto out_drop_write; 3266 } 3267 old_dir = dir; 3268 dir = d_inode(parent); 3269 3270 /* 3271 * If v2 was used with SPEC_BY_ID, a new parent was 3272 * allocated since the subvolume can be outside of the 3273 * current mount point. Later on we need to release this 3274 * new parent dentry. 3275 */ 3276 destroy_parent = true; 3277 3278 /* 3279 * On idmapped mounts, deletion via subvolid is 3280 * restricted to subvolumes that are immediate 3281 * ancestors of the inode referenced by the file 3282 * descriptor in the ioctl. Otherwise the idmapping 3283 * could potentially be abused to delete subvolumes 3284 * anywhere in the filesystem the user wouldn't be able 3285 * to delete without an idmapped mount. 3286 */ 3287 if (old_dir != dir && mnt_userns != &init_user_ns) { 3288 err = -EOPNOTSUPP; 3289 goto free_parent; 3290 } 3291 3292 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 3293 fs_info, vol_args2->subvolid); 3294 if (IS_ERR(subvol_name_ptr)) { 3295 err = PTR_ERR(subvol_name_ptr); 3296 goto free_parent; 3297 } 3298 /* subvol_name_ptr is already nul terminated */ 3299 subvol_name = (char *)kbasename(subvol_name_ptr); 3300 } 3301 } else { 3302 vol_args = memdup_user(arg, sizeof(*vol_args)); 3303 if (IS_ERR(vol_args)) 3304 return PTR_ERR(vol_args); 3305 3306 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 3307 subvol_name = vol_args->name; 3308 3309 err = mnt_want_write_file(file); 3310 if (err) 3311 goto out; 3312 } 3313 3314 subvol_namelen = strlen(subvol_name); 3315 3316 if (strchr(subvol_name, '/') || 3317 strncmp(subvol_name, "..", subvol_namelen) == 0) { 3318 err = -EINVAL; 3319 goto free_subvol_name; 3320 } 3321 3322 if (!S_ISDIR(dir->i_mode)) { 3323 err = -ENOTDIR; 3324 goto free_subvol_name; 3325 } 3326 3327 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3328 if (err == -EINTR) 3329 goto free_subvol_name; 3330 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen); 3331 if (IS_ERR(dentry)) { 3332 err = PTR_ERR(dentry); 3333 goto out_unlock_dir; 3334 } 3335 3336 if (d_really_is_negative(dentry)) { 3337 err = -ENOENT; 3338 goto out_dput; 3339 } 3340 3341 inode = d_inode(dentry); 3342 dest = BTRFS_I(inode)->root; 3343 if (!capable(CAP_SYS_ADMIN)) { 3344 /* 3345 * Regular user. Only allow this with a special mount 3346 * option, when the user has write+exec access to the 3347 * subvol root, and when rmdir(2) would have been 3348 * allowed. 3349 * 3350 * Note that this is _not_ check that the subvol is 3351 * empty or doesn't contain data that we wouldn't 3352 * otherwise be able to delete. 3353 * 3354 * Users who want to delete empty subvols should try 3355 * rmdir(2). 3356 */ 3357 err = -EPERM; 3358 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3359 goto out_dput; 3360 3361 /* 3362 * Do not allow deletion if the parent dir is the same 3363 * as the dir to be deleted. That means the ioctl 3364 * must be called on the dentry referencing the root 3365 * of the subvol, not a random directory contained 3366 * within it. 3367 */ 3368 err = -EINVAL; 3369 if (root == dest) 3370 goto out_dput; 3371 3372 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC); 3373 if (err) 3374 goto out_dput; 3375 } 3376 3377 /* check if subvolume may be deleted by a user */ 3378 err = btrfs_may_delete(mnt_userns, dir, dentry, 1); 3379 if (err) 3380 goto out_dput; 3381 3382 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3383 err = -EINVAL; 3384 goto out_dput; 3385 } 3386 3387 btrfs_inode_lock(inode, 0); 3388 err = btrfs_delete_subvolume(dir, dentry); 3389 btrfs_inode_unlock(inode, 0); 3390 if (!err) 3391 d_delete_notify(dir, dentry); 3392 3393 out_dput: 3394 dput(dentry); 3395 out_unlock_dir: 3396 btrfs_inode_unlock(dir, 0); 3397 free_subvol_name: 3398 kfree(subvol_name_ptr); 3399 free_parent: 3400 if (destroy_parent) 3401 dput(parent); 3402 out_drop_write: 3403 mnt_drop_write_file(file); 3404 out: 3405 kfree(vol_args2); 3406 kfree(vol_args); 3407 return err; 3408 } 3409 3410 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3411 { 3412 struct inode *inode = file_inode(file); 3413 struct btrfs_root *root = BTRFS_I(inode)->root; 3414 struct btrfs_ioctl_defrag_range_args range = {0}; 3415 int ret; 3416 3417 ret = mnt_want_write_file(file); 3418 if (ret) 3419 return ret; 3420 3421 if (btrfs_root_readonly(root)) { 3422 ret = -EROFS; 3423 goto out; 3424 } 3425 3426 switch (inode->i_mode & S_IFMT) { 3427 case S_IFDIR: 3428 if (!capable(CAP_SYS_ADMIN)) { 3429 ret = -EPERM; 3430 goto out; 3431 } 3432 ret = btrfs_defrag_root(root); 3433 break; 3434 case S_IFREG: 3435 /* 3436 * Note that this does not check the file descriptor for write 3437 * access. This prevents defragmenting executables that are 3438 * running and allows defrag on files open in read-only mode. 3439 */ 3440 if (!capable(CAP_SYS_ADMIN) && 3441 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3442 ret = -EPERM; 3443 goto out; 3444 } 3445 3446 if (argp) { 3447 if (copy_from_user(&range, argp, sizeof(range))) { 3448 ret = -EFAULT; 3449 goto out; 3450 } 3451 /* compression requires us to start the IO */ 3452 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3453 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 3454 range.extent_thresh = (u32)-1; 3455 } 3456 } else { 3457 /* the rest are all set to zero by kzalloc */ 3458 range.len = (u64)-1; 3459 } 3460 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 3461 &range, BTRFS_OLDEST_GENERATION, 0); 3462 if (ret > 0) 3463 ret = 0; 3464 break; 3465 default: 3466 ret = -EINVAL; 3467 } 3468 out: 3469 mnt_drop_write_file(file); 3470 return ret; 3471 } 3472 3473 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3474 { 3475 struct btrfs_ioctl_vol_args *vol_args; 3476 bool restore_op = false; 3477 int ret; 3478 3479 if (!capable(CAP_SYS_ADMIN)) 3480 return -EPERM; 3481 3482 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3483 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 3484 return -EINVAL; 3485 } 3486 3487 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 3488 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3489 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3490 3491 /* 3492 * We can do the device add because we have a paused balanced, 3493 * change the exclusive op type and remember we should bring 3494 * back the paused balance 3495 */ 3496 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 3497 btrfs_exclop_start_unlock(fs_info); 3498 restore_op = true; 3499 } 3500 3501 vol_args = memdup_user(arg, sizeof(*vol_args)); 3502 if (IS_ERR(vol_args)) { 3503 ret = PTR_ERR(vol_args); 3504 goto out; 3505 } 3506 3507 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3508 ret = btrfs_init_new_device(fs_info, vol_args->name); 3509 3510 if (!ret) 3511 btrfs_info(fs_info, "disk added %s", vol_args->name); 3512 3513 kfree(vol_args); 3514 out: 3515 if (restore_op) 3516 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 3517 else 3518 btrfs_exclop_finish(fs_info); 3519 return ret; 3520 } 3521 3522 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3523 { 3524 BTRFS_DEV_LOOKUP_ARGS(args); 3525 struct inode *inode = file_inode(file); 3526 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3527 struct btrfs_ioctl_vol_args_v2 *vol_args; 3528 struct block_device *bdev = NULL; 3529 fmode_t mode; 3530 int ret; 3531 bool cancel = false; 3532 3533 if (!capable(CAP_SYS_ADMIN)) 3534 return -EPERM; 3535 3536 vol_args = memdup_user(arg, sizeof(*vol_args)); 3537 if (IS_ERR(vol_args)) 3538 return PTR_ERR(vol_args); 3539 3540 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3541 ret = -EOPNOTSUPP; 3542 goto out; 3543 } 3544 3545 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3546 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3547 args.devid = vol_args->devid; 3548 } else if (!strcmp("cancel", vol_args->name)) { 3549 cancel = true; 3550 } else { 3551 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3552 if (ret) 3553 goto out; 3554 } 3555 3556 ret = mnt_want_write_file(file); 3557 if (ret) 3558 goto out; 3559 3560 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3561 cancel); 3562 if (ret) 3563 goto err_drop; 3564 3565 /* Exclusive operation is now claimed */ 3566 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3567 3568 btrfs_exclop_finish(fs_info); 3569 3570 if (!ret) { 3571 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3572 btrfs_info(fs_info, "device deleted: id %llu", 3573 vol_args->devid); 3574 else 3575 btrfs_info(fs_info, "device deleted: %s", 3576 vol_args->name); 3577 } 3578 err_drop: 3579 mnt_drop_write_file(file); 3580 if (bdev) 3581 blkdev_put(bdev, mode); 3582 out: 3583 btrfs_put_dev_args_from_path(&args); 3584 kfree(vol_args); 3585 return ret; 3586 } 3587 3588 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3589 { 3590 BTRFS_DEV_LOOKUP_ARGS(args); 3591 struct inode *inode = file_inode(file); 3592 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3593 struct btrfs_ioctl_vol_args *vol_args; 3594 struct block_device *bdev = NULL; 3595 fmode_t mode; 3596 int ret; 3597 bool cancel = false; 3598 3599 if (!capable(CAP_SYS_ADMIN)) 3600 return -EPERM; 3601 3602 vol_args = memdup_user(arg, sizeof(*vol_args)); 3603 if (IS_ERR(vol_args)) 3604 return PTR_ERR(vol_args); 3605 3606 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3607 if (!strcmp("cancel", vol_args->name)) { 3608 cancel = true; 3609 } else { 3610 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3611 if (ret) 3612 goto out; 3613 } 3614 3615 ret = mnt_want_write_file(file); 3616 if (ret) 3617 goto out; 3618 3619 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3620 cancel); 3621 if (ret == 0) { 3622 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3623 if (!ret) 3624 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3625 btrfs_exclop_finish(fs_info); 3626 } 3627 3628 mnt_drop_write_file(file); 3629 if (bdev) 3630 blkdev_put(bdev, mode); 3631 out: 3632 btrfs_put_dev_args_from_path(&args); 3633 kfree(vol_args); 3634 return ret; 3635 } 3636 3637 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3638 void __user *arg) 3639 { 3640 struct btrfs_ioctl_fs_info_args *fi_args; 3641 struct btrfs_device *device; 3642 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3643 u64 flags_in; 3644 int ret = 0; 3645 3646 fi_args = memdup_user(arg, sizeof(*fi_args)); 3647 if (IS_ERR(fi_args)) 3648 return PTR_ERR(fi_args); 3649 3650 flags_in = fi_args->flags; 3651 memset(fi_args, 0, sizeof(*fi_args)); 3652 3653 rcu_read_lock(); 3654 fi_args->num_devices = fs_devices->num_devices; 3655 3656 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3657 if (device->devid > fi_args->max_id) 3658 fi_args->max_id = device->devid; 3659 } 3660 rcu_read_unlock(); 3661 3662 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3663 fi_args->nodesize = fs_info->nodesize; 3664 fi_args->sectorsize = fs_info->sectorsize; 3665 fi_args->clone_alignment = fs_info->sectorsize; 3666 3667 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3668 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3669 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3670 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3671 } 3672 3673 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3674 fi_args->generation = fs_info->generation; 3675 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3676 } 3677 3678 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3679 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3680 sizeof(fi_args->metadata_uuid)); 3681 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3682 } 3683 3684 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3685 ret = -EFAULT; 3686 3687 kfree(fi_args); 3688 return ret; 3689 } 3690 3691 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3692 void __user *arg) 3693 { 3694 BTRFS_DEV_LOOKUP_ARGS(args); 3695 struct btrfs_ioctl_dev_info_args *di_args; 3696 struct btrfs_device *dev; 3697 int ret = 0; 3698 3699 di_args = memdup_user(arg, sizeof(*di_args)); 3700 if (IS_ERR(di_args)) 3701 return PTR_ERR(di_args); 3702 3703 args.devid = di_args->devid; 3704 if (!btrfs_is_empty_uuid(di_args->uuid)) 3705 args.uuid = di_args->uuid; 3706 3707 rcu_read_lock(); 3708 dev = btrfs_find_device(fs_info->fs_devices, &args); 3709 if (!dev) { 3710 ret = -ENODEV; 3711 goto out; 3712 } 3713 3714 di_args->devid = dev->devid; 3715 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3716 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3717 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3718 if (dev->name) { 3719 strncpy(di_args->path, rcu_str_deref(dev->name), 3720 sizeof(di_args->path) - 1); 3721 di_args->path[sizeof(di_args->path) - 1] = 0; 3722 } else { 3723 di_args->path[0] = '\0'; 3724 } 3725 3726 out: 3727 rcu_read_unlock(); 3728 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3729 ret = -EFAULT; 3730 3731 kfree(di_args); 3732 return ret; 3733 } 3734 3735 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3736 { 3737 struct inode *inode = file_inode(file); 3738 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3739 struct btrfs_root *root = BTRFS_I(inode)->root; 3740 struct btrfs_root *new_root; 3741 struct btrfs_dir_item *di; 3742 struct btrfs_trans_handle *trans; 3743 struct btrfs_path *path = NULL; 3744 struct btrfs_disk_key disk_key; 3745 u64 objectid = 0; 3746 u64 dir_id; 3747 int ret; 3748 3749 if (!capable(CAP_SYS_ADMIN)) 3750 return -EPERM; 3751 3752 ret = mnt_want_write_file(file); 3753 if (ret) 3754 return ret; 3755 3756 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3757 ret = -EFAULT; 3758 goto out; 3759 } 3760 3761 if (!objectid) 3762 objectid = BTRFS_FS_TREE_OBJECTID; 3763 3764 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3765 if (IS_ERR(new_root)) { 3766 ret = PTR_ERR(new_root); 3767 goto out; 3768 } 3769 if (!is_fstree(new_root->root_key.objectid)) { 3770 ret = -ENOENT; 3771 goto out_free; 3772 } 3773 3774 path = btrfs_alloc_path(); 3775 if (!path) { 3776 ret = -ENOMEM; 3777 goto out_free; 3778 } 3779 3780 trans = btrfs_start_transaction(root, 1); 3781 if (IS_ERR(trans)) { 3782 ret = PTR_ERR(trans); 3783 goto out_free; 3784 } 3785 3786 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3787 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3788 dir_id, "default", 7, 1); 3789 if (IS_ERR_OR_NULL(di)) { 3790 btrfs_release_path(path); 3791 btrfs_end_transaction(trans); 3792 btrfs_err(fs_info, 3793 "Umm, you don't have the default diritem, this isn't going to work"); 3794 ret = -ENOENT; 3795 goto out_free; 3796 } 3797 3798 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3799 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3800 btrfs_mark_buffer_dirty(path->nodes[0]); 3801 btrfs_release_path(path); 3802 3803 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3804 btrfs_end_transaction(trans); 3805 out_free: 3806 btrfs_put_root(new_root); 3807 btrfs_free_path(path); 3808 out: 3809 mnt_drop_write_file(file); 3810 return ret; 3811 } 3812 3813 static void get_block_group_info(struct list_head *groups_list, 3814 struct btrfs_ioctl_space_info *space) 3815 { 3816 struct btrfs_block_group *block_group; 3817 3818 space->total_bytes = 0; 3819 space->used_bytes = 0; 3820 space->flags = 0; 3821 list_for_each_entry(block_group, groups_list, list) { 3822 space->flags = block_group->flags; 3823 space->total_bytes += block_group->length; 3824 space->used_bytes += block_group->used; 3825 } 3826 } 3827 3828 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3829 void __user *arg) 3830 { 3831 struct btrfs_ioctl_space_args space_args; 3832 struct btrfs_ioctl_space_info space; 3833 struct btrfs_ioctl_space_info *dest; 3834 struct btrfs_ioctl_space_info *dest_orig; 3835 struct btrfs_ioctl_space_info __user *user_dest; 3836 struct btrfs_space_info *info; 3837 static const u64 types[] = { 3838 BTRFS_BLOCK_GROUP_DATA, 3839 BTRFS_BLOCK_GROUP_SYSTEM, 3840 BTRFS_BLOCK_GROUP_METADATA, 3841 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3842 }; 3843 int num_types = 4; 3844 int alloc_size; 3845 int ret = 0; 3846 u64 slot_count = 0; 3847 int i, c; 3848 3849 if (copy_from_user(&space_args, 3850 (struct btrfs_ioctl_space_args __user *)arg, 3851 sizeof(space_args))) 3852 return -EFAULT; 3853 3854 for (i = 0; i < num_types; i++) { 3855 struct btrfs_space_info *tmp; 3856 3857 info = NULL; 3858 list_for_each_entry(tmp, &fs_info->space_info, list) { 3859 if (tmp->flags == types[i]) { 3860 info = tmp; 3861 break; 3862 } 3863 } 3864 3865 if (!info) 3866 continue; 3867 3868 down_read(&info->groups_sem); 3869 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3870 if (!list_empty(&info->block_groups[c])) 3871 slot_count++; 3872 } 3873 up_read(&info->groups_sem); 3874 } 3875 3876 /* 3877 * Global block reserve, exported as a space_info 3878 */ 3879 slot_count++; 3880 3881 /* space_slots == 0 means they are asking for a count */ 3882 if (space_args.space_slots == 0) { 3883 space_args.total_spaces = slot_count; 3884 goto out; 3885 } 3886 3887 slot_count = min_t(u64, space_args.space_slots, slot_count); 3888 3889 alloc_size = sizeof(*dest) * slot_count; 3890 3891 /* we generally have at most 6 or so space infos, one for each raid 3892 * level. So, a whole page should be more than enough for everyone 3893 */ 3894 if (alloc_size > PAGE_SIZE) 3895 return -ENOMEM; 3896 3897 space_args.total_spaces = 0; 3898 dest = kmalloc(alloc_size, GFP_KERNEL); 3899 if (!dest) 3900 return -ENOMEM; 3901 dest_orig = dest; 3902 3903 /* now we have a buffer to copy into */ 3904 for (i = 0; i < num_types; i++) { 3905 struct btrfs_space_info *tmp; 3906 3907 if (!slot_count) 3908 break; 3909 3910 info = NULL; 3911 list_for_each_entry(tmp, &fs_info->space_info, list) { 3912 if (tmp->flags == types[i]) { 3913 info = tmp; 3914 break; 3915 } 3916 } 3917 3918 if (!info) 3919 continue; 3920 down_read(&info->groups_sem); 3921 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3922 if (!list_empty(&info->block_groups[c])) { 3923 get_block_group_info(&info->block_groups[c], 3924 &space); 3925 memcpy(dest, &space, sizeof(space)); 3926 dest++; 3927 space_args.total_spaces++; 3928 slot_count--; 3929 } 3930 if (!slot_count) 3931 break; 3932 } 3933 up_read(&info->groups_sem); 3934 } 3935 3936 /* 3937 * Add global block reserve 3938 */ 3939 if (slot_count) { 3940 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3941 3942 spin_lock(&block_rsv->lock); 3943 space.total_bytes = block_rsv->size; 3944 space.used_bytes = block_rsv->size - block_rsv->reserved; 3945 spin_unlock(&block_rsv->lock); 3946 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3947 memcpy(dest, &space, sizeof(space)); 3948 space_args.total_spaces++; 3949 } 3950 3951 user_dest = (struct btrfs_ioctl_space_info __user *) 3952 (arg + sizeof(struct btrfs_ioctl_space_args)); 3953 3954 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3955 ret = -EFAULT; 3956 3957 kfree(dest_orig); 3958 out: 3959 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3960 ret = -EFAULT; 3961 3962 return ret; 3963 } 3964 3965 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3966 void __user *argp) 3967 { 3968 struct btrfs_trans_handle *trans; 3969 u64 transid; 3970 3971 trans = btrfs_attach_transaction_barrier(root); 3972 if (IS_ERR(trans)) { 3973 if (PTR_ERR(trans) != -ENOENT) 3974 return PTR_ERR(trans); 3975 3976 /* No running transaction, don't bother */ 3977 transid = root->fs_info->last_trans_committed; 3978 goto out; 3979 } 3980 transid = trans->transid; 3981 btrfs_commit_transaction_async(trans); 3982 out: 3983 if (argp) 3984 if (copy_to_user(argp, &transid, sizeof(transid))) 3985 return -EFAULT; 3986 return 0; 3987 } 3988 3989 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3990 void __user *argp) 3991 { 3992 u64 transid; 3993 3994 if (argp) { 3995 if (copy_from_user(&transid, argp, sizeof(transid))) 3996 return -EFAULT; 3997 } else { 3998 transid = 0; /* current trans */ 3999 } 4000 return btrfs_wait_for_commit(fs_info, transid); 4001 } 4002 4003 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4004 { 4005 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4006 struct btrfs_ioctl_scrub_args *sa; 4007 int ret; 4008 4009 if (!capable(CAP_SYS_ADMIN)) 4010 return -EPERM; 4011 4012 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 4013 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 4014 return -EINVAL; 4015 } 4016 4017 sa = memdup_user(arg, sizeof(*sa)); 4018 if (IS_ERR(sa)) 4019 return PTR_ERR(sa); 4020 4021 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4022 ret = mnt_want_write_file(file); 4023 if (ret) 4024 goto out; 4025 } 4026 4027 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4028 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4029 0); 4030 4031 /* 4032 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 4033 * error. This is important as it allows user space to know how much 4034 * progress scrub has done. For example, if scrub is canceled we get 4035 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 4036 * space. Later user space can inspect the progress from the structure 4037 * btrfs_ioctl_scrub_args and resume scrub from where it left off 4038 * previously (btrfs-progs does this). 4039 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 4040 * then return -EFAULT to signal the structure was not copied or it may 4041 * be corrupt and unreliable due to a partial copy. 4042 */ 4043 if (copy_to_user(arg, sa, sizeof(*sa))) 4044 ret = -EFAULT; 4045 4046 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4047 mnt_drop_write_file(file); 4048 out: 4049 kfree(sa); 4050 return ret; 4051 } 4052 4053 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4054 { 4055 if (!capable(CAP_SYS_ADMIN)) 4056 return -EPERM; 4057 4058 return btrfs_scrub_cancel(fs_info); 4059 } 4060 4061 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4062 void __user *arg) 4063 { 4064 struct btrfs_ioctl_scrub_args *sa; 4065 int ret; 4066 4067 if (!capable(CAP_SYS_ADMIN)) 4068 return -EPERM; 4069 4070 sa = memdup_user(arg, sizeof(*sa)); 4071 if (IS_ERR(sa)) 4072 return PTR_ERR(sa); 4073 4074 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4075 4076 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4077 ret = -EFAULT; 4078 4079 kfree(sa); 4080 return ret; 4081 } 4082 4083 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4084 void __user *arg) 4085 { 4086 struct btrfs_ioctl_get_dev_stats *sa; 4087 int ret; 4088 4089 sa = memdup_user(arg, sizeof(*sa)); 4090 if (IS_ERR(sa)) 4091 return PTR_ERR(sa); 4092 4093 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4094 kfree(sa); 4095 return -EPERM; 4096 } 4097 4098 ret = btrfs_get_dev_stats(fs_info, sa); 4099 4100 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4101 ret = -EFAULT; 4102 4103 kfree(sa); 4104 return ret; 4105 } 4106 4107 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4108 void __user *arg) 4109 { 4110 struct btrfs_ioctl_dev_replace_args *p; 4111 int ret; 4112 4113 if (!capable(CAP_SYS_ADMIN)) 4114 return -EPERM; 4115 4116 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 4117 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 4118 return -EINVAL; 4119 } 4120 4121 p = memdup_user(arg, sizeof(*p)); 4122 if (IS_ERR(p)) 4123 return PTR_ERR(p); 4124 4125 switch (p->cmd) { 4126 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4127 if (sb_rdonly(fs_info->sb)) { 4128 ret = -EROFS; 4129 goto out; 4130 } 4131 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 4132 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4133 } else { 4134 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4135 btrfs_exclop_finish(fs_info); 4136 } 4137 break; 4138 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4139 btrfs_dev_replace_status(fs_info, p); 4140 ret = 0; 4141 break; 4142 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4143 p->result = btrfs_dev_replace_cancel(fs_info); 4144 ret = 0; 4145 break; 4146 default: 4147 ret = -EINVAL; 4148 break; 4149 } 4150 4151 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 4152 ret = -EFAULT; 4153 out: 4154 kfree(p); 4155 return ret; 4156 } 4157 4158 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4159 { 4160 int ret = 0; 4161 int i; 4162 u64 rel_ptr; 4163 int size; 4164 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4165 struct inode_fs_paths *ipath = NULL; 4166 struct btrfs_path *path; 4167 4168 if (!capable(CAP_DAC_READ_SEARCH)) 4169 return -EPERM; 4170 4171 path = btrfs_alloc_path(); 4172 if (!path) { 4173 ret = -ENOMEM; 4174 goto out; 4175 } 4176 4177 ipa = memdup_user(arg, sizeof(*ipa)); 4178 if (IS_ERR(ipa)) { 4179 ret = PTR_ERR(ipa); 4180 ipa = NULL; 4181 goto out; 4182 } 4183 4184 size = min_t(u32, ipa->size, 4096); 4185 ipath = init_ipath(size, root, path); 4186 if (IS_ERR(ipath)) { 4187 ret = PTR_ERR(ipath); 4188 ipath = NULL; 4189 goto out; 4190 } 4191 4192 ret = paths_from_inode(ipa->inum, ipath); 4193 if (ret < 0) 4194 goto out; 4195 4196 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4197 rel_ptr = ipath->fspath->val[i] - 4198 (u64)(unsigned long)ipath->fspath->val; 4199 ipath->fspath->val[i] = rel_ptr; 4200 } 4201 4202 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4203 ipath->fspath, size); 4204 if (ret) { 4205 ret = -EFAULT; 4206 goto out; 4207 } 4208 4209 out: 4210 btrfs_free_path(path); 4211 free_ipath(ipath); 4212 kfree(ipa); 4213 4214 return ret; 4215 } 4216 4217 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4218 { 4219 struct btrfs_data_container *inodes = ctx; 4220 const size_t c = 3 * sizeof(u64); 4221 4222 if (inodes->bytes_left >= c) { 4223 inodes->bytes_left -= c; 4224 inodes->val[inodes->elem_cnt] = inum; 4225 inodes->val[inodes->elem_cnt + 1] = offset; 4226 inodes->val[inodes->elem_cnt + 2] = root; 4227 inodes->elem_cnt += 3; 4228 } else { 4229 inodes->bytes_missing += c - inodes->bytes_left; 4230 inodes->bytes_left = 0; 4231 inodes->elem_missed += 3; 4232 } 4233 4234 return 0; 4235 } 4236 4237 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4238 void __user *arg, int version) 4239 { 4240 int ret = 0; 4241 int size; 4242 struct btrfs_ioctl_logical_ino_args *loi; 4243 struct btrfs_data_container *inodes = NULL; 4244 struct btrfs_path *path = NULL; 4245 bool ignore_offset; 4246 4247 if (!capable(CAP_SYS_ADMIN)) 4248 return -EPERM; 4249 4250 loi = memdup_user(arg, sizeof(*loi)); 4251 if (IS_ERR(loi)) 4252 return PTR_ERR(loi); 4253 4254 if (version == 1) { 4255 ignore_offset = false; 4256 size = min_t(u32, loi->size, SZ_64K); 4257 } else { 4258 /* All reserved bits must be 0 for now */ 4259 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4260 ret = -EINVAL; 4261 goto out_loi; 4262 } 4263 /* Only accept flags we have defined so far */ 4264 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4265 ret = -EINVAL; 4266 goto out_loi; 4267 } 4268 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4269 size = min_t(u32, loi->size, SZ_16M); 4270 } 4271 4272 path = btrfs_alloc_path(); 4273 if (!path) { 4274 ret = -ENOMEM; 4275 goto out; 4276 } 4277 4278 inodes = init_data_container(size); 4279 if (IS_ERR(inodes)) { 4280 ret = PTR_ERR(inodes); 4281 inodes = NULL; 4282 goto out; 4283 } 4284 4285 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4286 build_ino_list, inodes, ignore_offset); 4287 if (ret == -EINVAL) 4288 ret = -ENOENT; 4289 if (ret < 0) 4290 goto out; 4291 4292 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4293 size); 4294 if (ret) 4295 ret = -EFAULT; 4296 4297 out: 4298 btrfs_free_path(path); 4299 kvfree(inodes); 4300 out_loi: 4301 kfree(loi); 4302 4303 return ret; 4304 } 4305 4306 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4307 struct btrfs_ioctl_balance_args *bargs) 4308 { 4309 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4310 4311 bargs->flags = bctl->flags; 4312 4313 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4314 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4315 if (atomic_read(&fs_info->balance_pause_req)) 4316 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4317 if (atomic_read(&fs_info->balance_cancel_req)) 4318 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4319 4320 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4321 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4322 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4323 4324 spin_lock(&fs_info->balance_lock); 4325 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4326 spin_unlock(&fs_info->balance_lock); 4327 } 4328 4329 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4330 { 4331 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4332 struct btrfs_fs_info *fs_info = root->fs_info; 4333 struct btrfs_ioctl_balance_args *bargs; 4334 struct btrfs_balance_control *bctl; 4335 bool need_unlock; /* for mut. excl. ops lock */ 4336 int ret; 4337 4338 if (!arg) 4339 btrfs_warn(fs_info, 4340 "IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18"); 4341 4342 if (!capable(CAP_SYS_ADMIN)) 4343 return -EPERM; 4344 4345 ret = mnt_want_write_file(file); 4346 if (ret) 4347 return ret; 4348 4349 again: 4350 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4351 mutex_lock(&fs_info->balance_mutex); 4352 need_unlock = true; 4353 goto locked; 4354 } 4355 4356 /* 4357 * mut. excl. ops lock is locked. Three possibilities: 4358 * (1) some other op is running 4359 * (2) balance is running 4360 * (3) balance is paused -- special case (think resume) 4361 */ 4362 mutex_lock(&fs_info->balance_mutex); 4363 if (fs_info->balance_ctl) { 4364 /* this is either (2) or (3) */ 4365 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4366 mutex_unlock(&fs_info->balance_mutex); 4367 /* 4368 * Lock released to allow other waiters to continue, 4369 * we'll reexamine the status again. 4370 */ 4371 mutex_lock(&fs_info->balance_mutex); 4372 4373 if (fs_info->balance_ctl && 4374 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4375 /* this is (3) */ 4376 need_unlock = false; 4377 goto locked; 4378 } 4379 4380 mutex_unlock(&fs_info->balance_mutex); 4381 goto again; 4382 } else { 4383 /* this is (2) */ 4384 mutex_unlock(&fs_info->balance_mutex); 4385 ret = -EINPROGRESS; 4386 goto out; 4387 } 4388 } else { 4389 /* this is (1) */ 4390 mutex_unlock(&fs_info->balance_mutex); 4391 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4392 goto out; 4393 } 4394 4395 locked: 4396 4397 if (arg) { 4398 bargs = memdup_user(arg, sizeof(*bargs)); 4399 if (IS_ERR(bargs)) { 4400 ret = PTR_ERR(bargs); 4401 goto out_unlock; 4402 } 4403 4404 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4405 if (!fs_info->balance_ctl) { 4406 ret = -ENOTCONN; 4407 goto out_bargs; 4408 } 4409 4410 bctl = fs_info->balance_ctl; 4411 spin_lock(&fs_info->balance_lock); 4412 bctl->flags |= BTRFS_BALANCE_RESUME; 4413 spin_unlock(&fs_info->balance_lock); 4414 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 4415 4416 goto do_balance; 4417 } 4418 } else { 4419 bargs = NULL; 4420 } 4421 4422 if (fs_info->balance_ctl) { 4423 ret = -EINPROGRESS; 4424 goto out_bargs; 4425 } 4426 4427 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4428 if (!bctl) { 4429 ret = -ENOMEM; 4430 goto out_bargs; 4431 } 4432 4433 if (arg) { 4434 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4435 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4436 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4437 4438 bctl->flags = bargs->flags; 4439 } else { 4440 /* balance everything - no filters */ 4441 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4442 } 4443 4444 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4445 ret = -EINVAL; 4446 goto out_bctl; 4447 } 4448 4449 do_balance: 4450 /* 4451 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4452 * bctl is freed in reset_balance_state, or, if restriper was paused 4453 * all the way until unmount, in free_fs_info. The flag should be 4454 * cleared after reset_balance_state. 4455 */ 4456 need_unlock = false; 4457 4458 ret = btrfs_balance(fs_info, bctl, bargs); 4459 bctl = NULL; 4460 4461 if ((ret == 0 || ret == -ECANCELED) && arg) { 4462 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4463 ret = -EFAULT; 4464 } 4465 4466 out_bctl: 4467 kfree(bctl); 4468 out_bargs: 4469 kfree(bargs); 4470 out_unlock: 4471 mutex_unlock(&fs_info->balance_mutex); 4472 if (need_unlock) 4473 btrfs_exclop_finish(fs_info); 4474 out: 4475 mnt_drop_write_file(file); 4476 return ret; 4477 } 4478 4479 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4480 { 4481 if (!capable(CAP_SYS_ADMIN)) 4482 return -EPERM; 4483 4484 switch (cmd) { 4485 case BTRFS_BALANCE_CTL_PAUSE: 4486 return btrfs_pause_balance(fs_info); 4487 case BTRFS_BALANCE_CTL_CANCEL: 4488 return btrfs_cancel_balance(fs_info); 4489 } 4490 4491 return -EINVAL; 4492 } 4493 4494 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4495 void __user *arg) 4496 { 4497 struct btrfs_ioctl_balance_args *bargs; 4498 int ret = 0; 4499 4500 if (!capable(CAP_SYS_ADMIN)) 4501 return -EPERM; 4502 4503 mutex_lock(&fs_info->balance_mutex); 4504 if (!fs_info->balance_ctl) { 4505 ret = -ENOTCONN; 4506 goto out; 4507 } 4508 4509 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4510 if (!bargs) { 4511 ret = -ENOMEM; 4512 goto out; 4513 } 4514 4515 btrfs_update_ioctl_balance_args(fs_info, bargs); 4516 4517 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4518 ret = -EFAULT; 4519 4520 kfree(bargs); 4521 out: 4522 mutex_unlock(&fs_info->balance_mutex); 4523 return ret; 4524 } 4525 4526 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4527 { 4528 struct inode *inode = file_inode(file); 4529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4530 struct btrfs_ioctl_quota_ctl_args *sa; 4531 int ret; 4532 4533 if (!capable(CAP_SYS_ADMIN)) 4534 return -EPERM; 4535 4536 ret = mnt_want_write_file(file); 4537 if (ret) 4538 return ret; 4539 4540 sa = memdup_user(arg, sizeof(*sa)); 4541 if (IS_ERR(sa)) { 4542 ret = PTR_ERR(sa); 4543 goto drop_write; 4544 } 4545 4546 down_write(&fs_info->subvol_sem); 4547 4548 switch (sa->cmd) { 4549 case BTRFS_QUOTA_CTL_ENABLE: 4550 ret = btrfs_quota_enable(fs_info); 4551 break; 4552 case BTRFS_QUOTA_CTL_DISABLE: 4553 ret = btrfs_quota_disable(fs_info); 4554 break; 4555 default: 4556 ret = -EINVAL; 4557 break; 4558 } 4559 4560 kfree(sa); 4561 up_write(&fs_info->subvol_sem); 4562 drop_write: 4563 mnt_drop_write_file(file); 4564 return ret; 4565 } 4566 4567 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4568 { 4569 struct inode *inode = file_inode(file); 4570 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4571 struct btrfs_root *root = BTRFS_I(inode)->root; 4572 struct btrfs_ioctl_qgroup_assign_args *sa; 4573 struct btrfs_trans_handle *trans; 4574 int ret; 4575 int err; 4576 4577 if (!capable(CAP_SYS_ADMIN)) 4578 return -EPERM; 4579 4580 ret = mnt_want_write_file(file); 4581 if (ret) 4582 return ret; 4583 4584 sa = memdup_user(arg, sizeof(*sa)); 4585 if (IS_ERR(sa)) { 4586 ret = PTR_ERR(sa); 4587 goto drop_write; 4588 } 4589 4590 trans = btrfs_join_transaction(root); 4591 if (IS_ERR(trans)) { 4592 ret = PTR_ERR(trans); 4593 goto out; 4594 } 4595 4596 if (sa->assign) { 4597 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4598 } else { 4599 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4600 } 4601 4602 /* update qgroup status and info */ 4603 err = btrfs_run_qgroups(trans); 4604 if (err < 0) 4605 btrfs_handle_fs_error(fs_info, err, 4606 "failed to update qgroup status and info"); 4607 err = btrfs_end_transaction(trans); 4608 if (err && !ret) 4609 ret = err; 4610 4611 out: 4612 kfree(sa); 4613 drop_write: 4614 mnt_drop_write_file(file); 4615 return ret; 4616 } 4617 4618 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4619 { 4620 struct inode *inode = file_inode(file); 4621 struct btrfs_root *root = BTRFS_I(inode)->root; 4622 struct btrfs_ioctl_qgroup_create_args *sa; 4623 struct btrfs_trans_handle *trans; 4624 int ret; 4625 int err; 4626 4627 if (!capable(CAP_SYS_ADMIN)) 4628 return -EPERM; 4629 4630 ret = mnt_want_write_file(file); 4631 if (ret) 4632 return ret; 4633 4634 sa = memdup_user(arg, sizeof(*sa)); 4635 if (IS_ERR(sa)) { 4636 ret = PTR_ERR(sa); 4637 goto drop_write; 4638 } 4639 4640 if (!sa->qgroupid) { 4641 ret = -EINVAL; 4642 goto out; 4643 } 4644 4645 trans = btrfs_join_transaction(root); 4646 if (IS_ERR(trans)) { 4647 ret = PTR_ERR(trans); 4648 goto out; 4649 } 4650 4651 if (sa->create) { 4652 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4653 } else { 4654 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4655 } 4656 4657 err = btrfs_end_transaction(trans); 4658 if (err && !ret) 4659 ret = err; 4660 4661 out: 4662 kfree(sa); 4663 drop_write: 4664 mnt_drop_write_file(file); 4665 return ret; 4666 } 4667 4668 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4669 { 4670 struct inode *inode = file_inode(file); 4671 struct btrfs_root *root = BTRFS_I(inode)->root; 4672 struct btrfs_ioctl_qgroup_limit_args *sa; 4673 struct btrfs_trans_handle *trans; 4674 int ret; 4675 int err; 4676 u64 qgroupid; 4677 4678 if (!capable(CAP_SYS_ADMIN)) 4679 return -EPERM; 4680 4681 ret = mnt_want_write_file(file); 4682 if (ret) 4683 return ret; 4684 4685 sa = memdup_user(arg, sizeof(*sa)); 4686 if (IS_ERR(sa)) { 4687 ret = PTR_ERR(sa); 4688 goto drop_write; 4689 } 4690 4691 trans = btrfs_join_transaction(root); 4692 if (IS_ERR(trans)) { 4693 ret = PTR_ERR(trans); 4694 goto out; 4695 } 4696 4697 qgroupid = sa->qgroupid; 4698 if (!qgroupid) { 4699 /* take the current subvol as qgroup */ 4700 qgroupid = root->root_key.objectid; 4701 } 4702 4703 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4704 4705 err = btrfs_end_transaction(trans); 4706 if (err && !ret) 4707 ret = err; 4708 4709 out: 4710 kfree(sa); 4711 drop_write: 4712 mnt_drop_write_file(file); 4713 return ret; 4714 } 4715 4716 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4717 { 4718 struct inode *inode = file_inode(file); 4719 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4720 struct btrfs_ioctl_quota_rescan_args *qsa; 4721 int ret; 4722 4723 if (!capable(CAP_SYS_ADMIN)) 4724 return -EPERM; 4725 4726 ret = mnt_want_write_file(file); 4727 if (ret) 4728 return ret; 4729 4730 qsa = memdup_user(arg, sizeof(*qsa)); 4731 if (IS_ERR(qsa)) { 4732 ret = PTR_ERR(qsa); 4733 goto drop_write; 4734 } 4735 4736 if (qsa->flags) { 4737 ret = -EINVAL; 4738 goto out; 4739 } 4740 4741 ret = btrfs_qgroup_rescan(fs_info); 4742 4743 out: 4744 kfree(qsa); 4745 drop_write: 4746 mnt_drop_write_file(file); 4747 return ret; 4748 } 4749 4750 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4751 void __user *arg) 4752 { 4753 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 4754 4755 if (!capable(CAP_SYS_ADMIN)) 4756 return -EPERM; 4757 4758 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4759 qsa.flags = 1; 4760 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 4761 } 4762 4763 if (copy_to_user(arg, &qsa, sizeof(qsa))) 4764 return -EFAULT; 4765 4766 return 0; 4767 } 4768 4769 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4770 void __user *arg) 4771 { 4772 if (!capable(CAP_SYS_ADMIN)) 4773 return -EPERM; 4774 4775 return btrfs_qgroup_wait_for_completion(fs_info, true); 4776 } 4777 4778 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4779 struct user_namespace *mnt_userns, 4780 struct btrfs_ioctl_received_subvol_args *sa) 4781 { 4782 struct inode *inode = file_inode(file); 4783 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4784 struct btrfs_root *root = BTRFS_I(inode)->root; 4785 struct btrfs_root_item *root_item = &root->root_item; 4786 struct btrfs_trans_handle *trans; 4787 struct timespec64 ct = current_time(inode); 4788 int ret = 0; 4789 int received_uuid_changed; 4790 4791 if (!inode_owner_or_capable(mnt_userns, inode)) 4792 return -EPERM; 4793 4794 ret = mnt_want_write_file(file); 4795 if (ret < 0) 4796 return ret; 4797 4798 down_write(&fs_info->subvol_sem); 4799 4800 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4801 ret = -EINVAL; 4802 goto out; 4803 } 4804 4805 if (btrfs_root_readonly(root)) { 4806 ret = -EROFS; 4807 goto out; 4808 } 4809 4810 /* 4811 * 1 - root item 4812 * 2 - uuid items (received uuid + subvol uuid) 4813 */ 4814 trans = btrfs_start_transaction(root, 3); 4815 if (IS_ERR(trans)) { 4816 ret = PTR_ERR(trans); 4817 trans = NULL; 4818 goto out; 4819 } 4820 4821 sa->rtransid = trans->transid; 4822 sa->rtime.sec = ct.tv_sec; 4823 sa->rtime.nsec = ct.tv_nsec; 4824 4825 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4826 BTRFS_UUID_SIZE); 4827 if (received_uuid_changed && 4828 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4829 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4830 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4831 root->root_key.objectid); 4832 if (ret && ret != -ENOENT) { 4833 btrfs_abort_transaction(trans, ret); 4834 btrfs_end_transaction(trans); 4835 goto out; 4836 } 4837 } 4838 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4839 btrfs_set_root_stransid(root_item, sa->stransid); 4840 btrfs_set_root_rtransid(root_item, sa->rtransid); 4841 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4842 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4843 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4844 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4845 4846 ret = btrfs_update_root(trans, fs_info->tree_root, 4847 &root->root_key, &root->root_item); 4848 if (ret < 0) { 4849 btrfs_end_transaction(trans); 4850 goto out; 4851 } 4852 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4853 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4854 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4855 root->root_key.objectid); 4856 if (ret < 0 && ret != -EEXIST) { 4857 btrfs_abort_transaction(trans, ret); 4858 btrfs_end_transaction(trans); 4859 goto out; 4860 } 4861 } 4862 ret = btrfs_commit_transaction(trans); 4863 out: 4864 up_write(&fs_info->subvol_sem); 4865 mnt_drop_write_file(file); 4866 return ret; 4867 } 4868 4869 #ifdef CONFIG_64BIT 4870 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4871 void __user *arg) 4872 { 4873 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4874 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4875 int ret = 0; 4876 4877 args32 = memdup_user(arg, sizeof(*args32)); 4878 if (IS_ERR(args32)) 4879 return PTR_ERR(args32); 4880 4881 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4882 if (!args64) { 4883 ret = -ENOMEM; 4884 goto out; 4885 } 4886 4887 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4888 args64->stransid = args32->stransid; 4889 args64->rtransid = args32->rtransid; 4890 args64->stime.sec = args32->stime.sec; 4891 args64->stime.nsec = args32->stime.nsec; 4892 args64->rtime.sec = args32->rtime.sec; 4893 args64->rtime.nsec = args32->rtime.nsec; 4894 args64->flags = args32->flags; 4895 4896 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64); 4897 if (ret) 4898 goto out; 4899 4900 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4901 args32->stransid = args64->stransid; 4902 args32->rtransid = args64->rtransid; 4903 args32->stime.sec = args64->stime.sec; 4904 args32->stime.nsec = args64->stime.nsec; 4905 args32->rtime.sec = args64->rtime.sec; 4906 args32->rtime.nsec = args64->rtime.nsec; 4907 args32->flags = args64->flags; 4908 4909 ret = copy_to_user(arg, args32, sizeof(*args32)); 4910 if (ret) 4911 ret = -EFAULT; 4912 4913 out: 4914 kfree(args32); 4915 kfree(args64); 4916 return ret; 4917 } 4918 #endif 4919 4920 static long btrfs_ioctl_set_received_subvol(struct file *file, 4921 void __user *arg) 4922 { 4923 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4924 int ret = 0; 4925 4926 sa = memdup_user(arg, sizeof(*sa)); 4927 if (IS_ERR(sa)) 4928 return PTR_ERR(sa); 4929 4930 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa); 4931 4932 if (ret) 4933 goto out; 4934 4935 ret = copy_to_user(arg, sa, sizeof(*sa)); 4936 if (ret) 4937 ret = -EFAULT; 4938 4939 out: 4940 kfree(sa); 4941 return ret; 4942 } 4943 4944 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4945 void __user *arg) 4946 { 4947 size_t len; 4948 int ret; 4949 char label[BTRFS_LABEL_SIZE]; 4950 4951 spin_lock(&fs_info->super_lock); 4952 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4953 spin_unlock(&fs_info->super_lock); 4954 4955 len = strnlen(label, BTRFS_LABEL_SIZE); 4956 4957 if (len == BTRFS_LABEL_SIZE) { 4958 btrfs_warn(fs_info, 4959 "label is too long, return the first %zu bytes", 4960 --len); 4961 } 4962 4963 ret = copy_to_user(arg, label, len); 4964 4965 return ret ? -EFAULT : 0; 4966 } 4967 4968 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4969 { 4970 struct inode *inode = file_inode(file); 4971 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4972 struct btrfs_root *root = BTRFS_I(inode)->root; 4973 struct btrfs_super_block *super_block = fs_info->super_copy; 4974 struct btrfs_trans_handle *trans; 4975 char label[BTRFS_LABEL_SIZE]; 4976 int ret; 4977 4978 if (!capable(CAP_SYS_ADMIN)) 4979 return -EPERM; 4980 4981 if (copy_from_user(label, arg, sizeof(label))) 4982 return -EFAULT; 4983 4984 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4985 btrfs_err(fs_info, 4986 "unable to set label with more than %d bytes", 4987 BTRFS_LABEL_SIZE - 1); 4988 return -EINVAL; 4989 } 4990 4991 ret = mnt_want_write_file(file); 4992 if (ret) 4993 return ret; 4994 4995 trans = btrfs_start_transaction(root, 0); 4996 if (IS_ERR(trans)) { 4997 ret = PTR_ERR(trans); 4998 goto out_unlock; 4999 } 5000 5001 spin_lock(&fs_info->super_lock); 5002 strcpy(super_block->label, label); 5003 spin_unlock(&fs_info->super_lock); 5004 ret = btrfs_commit_transaction(trans); 5005 5006 out_unlock: 5007 mnt_drop_write_file(file); 5008 return ret; 5009 } 5010 5011 #define INIT_FEATURE_FLAGS(suffix) \ 5012 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5013 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5014 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5015 5016 int btrfs_ioctl_get_supported_features(void __user *arg) 5017 { 5018 static const struct btrfs_ioctl_feature_flags features[3] = { 5019 INIT_FEATURE_FLAGS(SUPP), 5020 INIT_FEATURE_FLAGS(SAFE_SET), 5021 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5022 }; 5023 5024 if (copy_to_user(arg, &features, sizeof(features))) 5025 return -EFAULT; 5026 5027 return 0; 5028 } 5029 5030 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 5031 void __user *arg) 5032 { 5033 struct btrfs_super_block *super_block = fs_info->super_copy; 5034 struct btrfs_ioctl_feature_flags features; 5035 5036 features.compat_flags = btrfs_super_compat_flags(super_block); 5037 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5038 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5039 5040 if (copy_to_user(arg, &features, sizeof(features))) 5041 return -EFAULT; 5042 5043 return 0; 5044 } 5045 5046 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5047 enum btrfs_feature_set set, 5048 u64 change_mask, u64 flags, u64 supported_flags, 5049 u64 safe_set, u64 safe_clear) 5050 { 5051 const char *type = btrfs_feature_set_name(set); 5052 char *names; 5053 u64 disallowed, unsupported; 5054 u64 set_mask = flags & change_mask; 5055 u64 clear_mask = ~flags & change_mask; 5056 5057 unsupported = set_mask & ~supported_flags; 5058 if (unsupported) { 5059 names = btrfs_printable_features(set, unsupported); 5060 if (names) { 5061 btrfs_warn(fs_info, 5062 "this kernel does not support the %s feature bit%s", 5063 names, strchr(names, ',') ? "s" : ""); 5064 kfree(names); 5065 } else 5066 btrfs_warn(fs_info, 5067 "this kernel does not support %s bits 0x%llx", 5068 type, unsupported); 5069 return -EOPNOTSUPP; 5070 } 5071 5072 disallowed = set_mask & ~safe_set; 5073 if (disallowed) { 5074 names = btrfs_printable_features(set, disallowed); 5075 if (names) { 5076 btrfs_warn(fs_info, 5077 "can't set the %s feature bit%s while mounted", 5078 names, strchr(names, ',') ? "s" : ""); 5079 kfree(names); 5080 } else 5081 btrfs_warn(fs_info, 5082 "can't set %s bits 0x%llx while mounted", 5083 type, disallowed); 5084 return -EPERM; 5085 } 5086 5087 disallowed = clear_mask & ~safe_clear; 5088 if (disallowed) { 5089 names = btrfs_printable_features(set, disallowed); 5090 if (names) { 5091 btrfs_warn(fs_info, 5092 "can't clear the %s feature bit%s while mounted", 5093 names, strchr(names, ',') ? "s" : ""); 5094 kfree(names); 5095 } else 5096 btrfs_warn(fs_info, 5097 "can't clear %s bits 0x%llx while mounted", 5098 type, disallowed); 5099 return -EPERM; 5100 } 5101 5102 return 0; 5103 } 5104 5105 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5106 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5107 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5108 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5109 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5110 5111 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5112 { 5113 struct inode *inode = file_inode(file); 5114 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5115 struct btrfs_root *root = BTRFS_I(inode)->root; 5116 struct btrfs_super_block *super_block = fs_info->super_copy; 5117 struct btrfs_ioctl_feature_flags flags[2]; 5118 struct btrfs_trans_handle *trans; 5119 u64 newflags; 5120 int ret; 5121 5122 if (!capable(CAP_SYS_ADMIN)) 5123 return -EPERM; 5124 5125 if (copy_from_user(flags, arg, sizeof(flags))) 5126 return -EFAULT; 5127 5128 /* Nothing to do */ 5129 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5130 !flags[0].incompat_flags) 5131 return 0; 5132 5133 ret = check_feature(fs_info, flags[0].compat_flags, 5134 flags[1].compat_flags, COMPAT); 5135 if (ret) 5136 return ret; 5137 5138 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5139 flags[1].compat_ro_flags, COMPAT_RO); 5140 if (ret) 5141 return ret; 5142 5143 ret = check_feature(fs_info, flags[0].incompat_flags, 5144 flags[1].incompat_flags, INCOMPAT); 5145 if (ret) 5146 return ret; 5147 5148 ret = mnt_want_write_file(file); 5149 if (ret) 5150 return ret; 5151 5152 trans = btrfs_start_transaction(root, 0); 5153 if (IS_ERR(trans)) { 5154 ret = PTR_ERR(trans); 5155 goto out_drop_write; 5156 } 5157 5158 spin_lock(&fs_info->super_lock); 5159 newflags = btrfs_super_compat_flags(super_block); 5160 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5161 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5162 btrfs_set_super_compat_flags(super_block, newflags); 5163 5164 newflags = btrfs_super_compat_ro_flags(super_block); 5165 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5166 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5167 btrfs_set_super_compat_ro_flags(super_block, newflags); 5168 5169 newflags = btrfs_super_incompat_flags(super_block); 5170 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5171 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5172 btrfs_set_super_incompat_flags(super_block, newflags); 5173 spin_unlock(&fs_info->super_lock); 5174 5175 ret = btrfs_commit_transaction(trans); 5176 out_drop_write: 5177 mnt_drop_write_file(file); 5178 5179 return ret; 5180 } 5181 5182 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat) 5183 { 5184 struct btrfs_ioctl_send_args *arg; 5185 int ret; 5186 5187 if (compat) { 5188 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5189 struct btrfs_ioctl_send_args_32 args32; 5190 5191 ret = copy_from_user(&args32, argp, sizeof(args32)); 5192 if (ret) 5193 return -EFAULT; 5194 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5195 if (!arg) 5196 return -ENOMEM; 5197 arg->send_fd = args32.send_fd; 5198 arg->clone_sources_count = args32.clone_sources_count; 5199 arg->clone_sources = compat_ptr(args32.clone_sources); 5200 arg->parent_root = args32.parent_root; 5201 arg->flags = args32.flags; 5202 memcpy(arg->reserved, args32.reserved, 5203 sizeof(args32.reserved)); 5204 #else 5205 return -ENOTTY; 5206 #endif 5207 } else { 5208 arg = memdup_user(argp, sizeof(*arg)); 5209 if (IS_ERR(arg)) 5210 return PTR_ERR(arg); 5211 } 5212 ret = btrfs_ioctl_send(inode, arg); 5213 kfree(arg); 5214 return ret; 5215 } 5216 5217 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 5218 bool compat) 5219 { 5220 struct btrfs_ioctl_encoded_io_args args = { 0 }; 5221 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 5222 flags); 5223 size_t copy_end; 5224 struct iovec iovstack[UIO_FASTIOV]; 5225 struct iovec *iov = iovstack; 5226 struct iov_iter iter; 5227 loff_t pos; 5228 struct kiocb kiocb; 5229 ssize_t ret; 5230 5231 if (!capable(CAP_SYS_ADMIN)) { 5232 ret = -EPERM; 5233 goto out_acct; 5234 } 5235 5236 if (compat) { 5237 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5238 struct btrfs_ioctl_encoded_io_args_32 args32; 5239 5240 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 5241 flags); 5242 if (copy_from_user(&args32, argp, copy_end)) { 5243 ret = -EFAULT; 5244 goto out_acct; 5245 } 5246 args.iov = compat_ptr(args32.iov); 5247 args.iovcnt = args32.iovcnt; 5248 args.offset = args32.offset; 5249 args.flags = args32.flags; 5250 #else 5251 return -ENOTTY; 5252 #endif 5253 } else { 5254 copy_end = copy_end_kernel; 5255 if (copy_from_user(&args, argp, copy_end)) { 5256 ret = -EFAULT; 5257 goto out_acct; 5258 } 5259 } 5260 if (args.flags != 0) { 5261 ret = -EINVAL; 5262 goto out_acct; 5263 } 5264 5265 ret = import_iovec(READ, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 5266 &iov, &iter); 5267 if (ret < 0) 5268 goto out_acct; 5269 5270 if (iov_iter_count(&iter) == 0) { 5271 ret = 0; 5272 goto out_iov; 5273 } 5274 pos = args.offset; 5275 ret = rw_verify_area(READ, file, &pos, args.len); 5276 if (ret < 0) 5277 goto out_iov; 5278 5279 init_sync_kiocb(&kiocb, file); 5280 kiocb.ki_pos = pos; 5281 5282 ret = btrfs_encoded_read(&kiocb, &iter, &args); 5283 if (ret >= 0) { 5284 fsnotify_access(file); 5285 if (copy_to_user(argp + copy_end, 5286 (char *)&args + copy_end_kernel, 5287 sizeof(args) - copy_end_kernel)) 5288 ret = -EFAULT; 5289 } 5290 5291 out_iov: 5292 kfree(iov); 5293 out_acct: 5294 if (ret > 0) 5295 add_rchar(current, ret); 5296 inc_syscr(current); 5297 return ret; 5298 } 5299 5300 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 5301 { 5302 struct btrfs_ioctl_encoded_io_args args; 5303 struct iovec iovstack[UIO_FASTIOV]; 5304 struct iovec *iov = iovstack; 5305 struct iov_iter iter; 5306 loff_t pos; 5307 struct kiocb kiocb; 5308 ssize_t ret; 5309 5310 if (!capable(CAP_SYS_ADMIN)) { 5311 ret = -EPERM; 5312 goto out_acct; 5313 } 5314 5315 if (!(file->f_mode & FMODE_WRITE)) { 5316 ret = -EBADF; 5317 goto out_acct; 5318 } 5319 5320 if (compat) { 5321 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5322 struct btrfs_ioctl_encoded_io_args_32 args32; 5323 5324 if (copy_from_user(&args32, argp, sizeof(args32))) { 5325 ret = -EFAULT; 5326 goto out_acct; 5327 } 5328 args.iov = compat_ptr(args32.iov); 5329 args.iovcnt = args32.iovcnt; 5330 args.offset = args32.offset; 5331 args.flags = args32.flags; 5332 args.len = args32.len; 5333 args.unencoded_len = args32.unencoded_len; 5334 args.unencoded_offset = args32.unencoded_offset; 5335 args.compression = args32.compression; 5336 args.encryption = args32.encryption; 5337 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 5338 #else 5339 return -ENOTTY; 5340 #endif 5341 } else { 5342 if (copy_from_user(&args, argp, sizeof(args))) { 5343 ret = -EFAULT; 5344 goto out_acct; 5345 } 5346 } 5347 5348 ret = -EINVAL; 5349 if (args.flags != 0) 5350 goto out_acct; 5351 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 5352 goto out_acct; 5353 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 5354 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 5355 goto out_acct; 5356 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 5357 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 5358 goto out_acct; 5359 if (args.unencoded_offset > args.unencoded_len) 5360 goto out_acct; 5361 if (args.len > args.unencoded_len - args.unencoded_offset) 5362 goto out_acct; 5363 5364 ret = import_iovec(WRITE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 5365 &iov, &iter); 5366 if (ret < 0) 5367 goto out_acct; 5368 5369 file_start_write(file); 5370 5371 if (iov_iter_count(&iter) == 0) { 5372 ret = 0; 5373 goto out_end_write; 5374 } 5375 pos = args.offset; 5376 ret = rw_verify_area(WRITE, file, &pos, args.len); 5377 if (ret < 0) 5378 goto out_end_write; 5379 5380 init_sync_kiocb(&kiocb, file); 5381 ret = kiocb_set_rw_flags(&kiocb, 0); 5382 if (ret) 5383 goto out_end_write; 5384 kiocb.ki_pos = pos; 5385 5386 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 5387 if (ret > 0) 5388 fsnotify_modify(file); 5389 5390 out_end_write: 5391 file_end_write(file); 5392 kfree(iov); 5393 out_acct: 5394 if (ret > 0) 5395 add_wchar(current, ret); 5396 inc_syscw(current); 5397 return ret; 5398 } 5399 5400 long btrfs_ioctl(struct file *file, unsigned int 5401 cmd, unsigned long arg) 5402 { 5403 struct inode *inode = file_inode(file); 5404 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5405 struct btrfs_root *root = BTRFS_I(inode)->root; 5406 void __user *argp = (void __user *)arg; 5407 5408 switch (cmd) { 5409 case FS_IOC_GETVERSION: 5410 return btrfs_ioctl_getversion(inode, argp); 5411 case FS_IOC_GETFSLABEL: 5412 return btrfs_ioctl_get_fslabel(fs_info, argp); 5413 case FS_IOC_SETFSLABEL: 5414 return btrfs_ioctl_set_fslabel(file, argp); 5415 case FITRIM: 5416 return btrfs_ioctl_fitrim(fs_info, argp); 5417 case BTRFS_IOC_SNAP_CREATE: 5418 return btrfs_ioctl_snap_create(file, argp, 0); 5419 case BTRFS_IOC_SNAP_CREATE_V2: 5420 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5421 case BTRFS_IOC_SUBVOL_CREATE: 5422 return btrfs_ioctl_snap_create(file, argp, 1); 5423 case BTRFS_IOC_SUBVOL_CREATE_V2: 5424 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5425 case BTRFS_IOC_SNAP_DESTROY: 5426 return btrfs_ioctl_snap_destroy(file, argp, false); 5427 case BTRFS_IOC_SNAP_DESTROY_V2: 5428 return btrfs_ioctl_snap_destroy(file, argp, true); 5429 case BTRFS_IOC_SUBVOL_GETFLAGS: 5430 return btrfs_ioctl_subvol_getflags(inode, argp); 5431 case BTRFS_IOC_SUBVOL_SETFLAGS: 5432 return btrfs_ioctl_subvol_setflags(file, argp); 5433 case BTRFS_IOC_DEFAULT_SUBVOL: 5434 return btrfs_ioctl_default_subvol(file, argp); 5435 case BTRFS_IOC_DEFRAG: 5436 return btrfs_ioctl_defrag(file, NULL); 5437 case BTRFS_IOC_DEFRAG_RANGE: 5438 return btrfs_ioctl_defrag(file, argp); 5439 case BTRFS_IOC_RESIZE: 5440 return btrfs_ioctl_resize(file, argp); 5441 case BTRFS_IOC_ADD_DEV: 5442 return btrfs_ioctl_add_dev(fs_info, argp); 5443 case BTRFS_IOC_RM_DEV: 5444 return btrfs_ioctl_rm_dev(file, argp); 5445 case BTRFS_IOC_RM_DEV_V2: 5446 return btrfs_ioctl_rm_dev_v2(file, argp); 5447 case BTRFS_IOC_FS_INFO: 5448 return btrfs_ioctl_fs_info(fs_info, argp); 5449 case BTRFS_IOC_DEV_INFO: 5450 return btrfs_ioctl_dev_info(fs_info, argp); 5451 case BTRFS_IOC_BALANCE: 5452 return btrfs_ioctl_balance(file, NULL); 5453 case BTRFS_IOC_TREE_SEARCH: 5454 return btrfs_ioctl_tree_search(inode, argp); 5455 case BTRFS_IOC_TREE_SEARCH_V2: 5456 return btrfs_ioctl_tree_search_v2(inode, argp); 5457 case BTRFS_IOC_INO_LOOKUP: 5458 return btrfs_ioctl_ino_lookup(root, argp); 5459 case BTRFS_IOC_INO_PATHS: 5460 return btrfs_ioctl_ino_to_path(root, argp); 5461 case BTRFS_IOC_LOGICAL_INO: 5462 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5463 case BTRFS_IOC_LOGICAL_INO_V2: 5464 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5465 case BTRFS_IOC_SPACE_INFO: 5466 return btrfs_ioctl_space_info(fs_info, argp); 5467 case BTRFS_IOC_SYNC: { 5468 int ret; 5469 5470 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 5471 if (ret) 5472 return ret; 5473 ret = btrfs_sync_fs(inode->i_sb, 1); 5474 /* 5475 * The transaction thread may want to do more work, 5476 * namely it pokes the cleaner kthread that will start 5477 * processing uncleaned subvols. 5478 */ 5479 wake_up_process(fs_info->transaction_kthread); 5480 return ret; 5481 } 5482 case BTRFS_IOC_START_SYNC: 5483 return btrfs_ioctl_start_sync(root, argp); 5484 case BTRFS_IOC_WAIT_SYNC: 5485 return btrfs_ioctl_wait_sync(fs_info, argp); 5486 case BTRFS_IOC_SCRUB: 5487 return btrfs_ioctl_scrub(file, argp); 5488 case BTRFS_IOC_SCRUB_CANCEL: 5489 return btrfs_ioctl_scrub_cancel(fs_info); 5490 case BTRFS_IOC_SCRUB_PROGRESS: 5491 return btrfs_ioctl_scrub_progress(fs_info, argp); 5492 case BTRFS_IOC_BALANCE_V2: 5493 return btrfs_ioctl_balance(file, argp); 5494 case BTRFS_IOC_BALANCE_CTL: 5495 return btrfs_ioctl_balance_ctl(fs_info, arg); 5496 case BTRFS_IOC_BALANCE_PROGRESS: 5497 return btrfs_ioctl_balance_progress(fs_info, argp); 5498 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5499 return btrfs_ioctl_set_received_subvol(file, argp); 5500 #ifdef CONFIG_64BIT 5501 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5502 return btrfs_ioctl_set_received_subvol_32(file, argp); 5503 #endif 5504 case BTRFS_IOC_SEND: 5505 return _btrfs_ioctl_send(inode, argp, false); 5506 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5507 case BTRFS_IOC_SEND_32: 5508 return _btrfs_ioctl_send(inode, argp, true); 5509 #endif 5510 case BTRFS_IOC_GET_DEV_STATS: 5511 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5512 case BTRFS_IOC_QUOTA_CTL: 5513 return btrfs_ioctl_quota_ctl(file, argp); 5514 case BTRFS_IOC_QGROUP_ASSIGN: 5515 return btrfs_ioctl_qgroup_assign(file, argp); 5516 case BTRFS_IOC_QGROUP_CREATE: 5517 return btrfs_ioctl_qgroup_create(file, argp); 5518 case BTRFS_IOC_QGROUP_LIMIT: 5519 return btrfs_ioctl_qgroup_limit(file, argp); 5520 case BTRFS_IOC_QUOTA_RESCAN: 5521 return btrfs_ioctl_quota_rescan(file, argp); 5522 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5523 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5524 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5525 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5526 case BTRFS_IOC_DEV_REPLACE: 5527 return btrfs_ioctl_dev_replace(fs_info, argp); 5528 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5529 return btrfs_ioctl_get_supported_features(argp); 5530 case BTRFS_IOC_GET_FEATURES: 5531 return btrfs_ioctl_get_features(fs_info, argp); 5532 case BTRFS_IOC_SET_FEATURES: 5533 return btrfs_ioctl_set_features(file, argp); 5534 case BTRFS_IOC_GET_SUBVOL_INFO: 5535 return btrfs_ioctl_get_subvol_info(inode, argp); 5536 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5537 return btrfs_ioctl_get_subvol_rootref(root, argp); 5538 case BTRFS_IOC_INO_LOOKUP_USER: 5539 return btrfs_ioctl_ino_lookup_user(file, argp); 5540 case FS_IOC_ENABLE_VERITY: 5541 return fsverity_ioctl_enable(file, (const void __user *)argp); 5542 case FS_IOC_MEASURE_VERITY: 5543 return fsverity_ioctl_measure(file, argp); 5544 case BTRFS_IOC_ENCODED_READ: 5545 return btrfs_ioctl_encoded_read(file, argp, false); 5546 case BTRFS_IOC_ENCODED_WRITE: 5547 return btrfs_ioctl_encoded_write(file, argp, false); 5548 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5549 case BTRFS_IOC_ENCODED_READ_32: 5550 return btrfs_ioctl_encoded_read(file, argp, true); 5551 case BTRFS_IOC_ENCODED_WRITE_32: 5552 return btrfs_ioctl_encoded_write(file, argp, true); 5553 #endif 5554 } 5555 5556 return -ENOTTY; 5557 } 5558 5559 #ifdef CONFIG_COMPAT 5560 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5561 { 5562 /* 5563 * These all access 32-bit values anyway so no further 5564 * handling is necessary. 5565 */ 5566 switch (cmd) { 5567 case FS_IOC32_GETVERSION: 5568 cmd = FS_IOC_GETVERSION; 5569 break; 5570 } 5571 5572 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5573 } 5574 #endif 5575