1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/fsnotify.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/mount.h> 19 #include <linux/mpage.h> 20 #include <linux/namei.h> 21 #include <linux/swap.h> 22 #include <linux/writeback.h> 23 #include <linux/compat.h> 24 #include <linux/bit_spinlock.h> 25 #include <linux/security.h> 26 #include <linux/xattr.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/blkdev.h> 30 #include <linux/uuid.h> 31 #include <linux/btrfs.h> 32 #include <linux/uaccess.h> 33 #include <linux/iversion.h> 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "print-tree.h" 39 #include "volumes.h" 40 #include "locking.h" 41 #include "inode-map.h" 42 #include "backref.h" 43 #include "rcu-string.h" 44 #include "send.h" 45 #include "dev-replace.h" 46 #include "props.h" 47 #include "sysfs.h" 48 #include "qgroup.h" 49 #include "tree-log.h" 50 #include "compression.h" 51 52 #ifdef CONFIG_64BIT 53 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 54 * structures are incorrect, as the timespec structure from userspace 55 * is 4 bytes too small. We define these alternatives here to teach 56 * the kernel about the 32-bit struct packing. 57 */ 58 struct btrfs_ioctl_timespec_32 { 59 __u64 sec; 60 __u32 nsec; 61 } __attribute__ ((__packed__)); 62 63 struct btrfs_ioctl_received_subvol_args_32 { 64 char uuid[BTRFS_UUID_SIZE]; /* in */ 65 __u64 stransid; /* in */ 66 __u64 rtransid; /* out */ 67 struct btrfs_ioctl_timespec_32 stime; /* in */ 68 struct btrfs_ioctl_timespec_32 rtime; /* out */ 69 __u64 flags; /* in */ 70 __u64 reserved[16]; /* in */ 71 } __attribute__ ((__packed__)); 72 73 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 74 struct btrfs_ioctl_received_subvol_args_32) 75 #endif 76 77 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 78 struct btrfs_ioctl_send_args_32 { 79 __s64 send_fd; /* in */ 80 __u64 clone_sources_count; /* in */ 81 compat_uptr_t clone_sources; /* in */ 82 __u64 parent_root; /* in */ 83 __u64 flags; /* in */ 84 __u64 reserved[4]; /* in */ 85 } __attribute__ ((__packed__)); 86 87 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 88 struct btrfs_ioctl_send_args_32) 89 #endif 90 91 static int btrfs_clone(struct inode *src, struct inode *inode, 92 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 93 int no_time_update); 94 95 /* Mask out flags that are inappropriate for the given type of inode. */ 96 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 97 unsigned int flags) 98 { 99 if (S_ISDIR(inode->i_mode)) 100 return flags; 101 else if (S_ISREG(inode->i_mode)) 102 return flags & ~FS_DIRSYNC_FL; 103 else 104 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 105 } 106 107 /* 108 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 109 * ioctl. 110 */ 111 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 112 { 113 unsigned int iflags = 0; 114 115 if (flags & BTRFS_INODE_SYNC) 116 iflags |= FS_SYNC_FL; 117 if (flags & BTRFS_INODE_IMMUTABLE) 118 iflags |= FS_IMMUTABLE_FL; 119 if (flags & BTRFS_INODE_APPEND) 120 iflags |= FS_APPEND_FL; 121 if (flags & BTRFS_INODE_NODUMP) 122 iflags |= FS_NODUMP_FL; 123 if (flags & BTRFS_INODE_NOATIME) 124 iflags |= FS_NOATIME_FL; 125 if (flags & BTRFS_INODE_DIRSYNC) 126 iflags |= FS_DIRSYNC_FL; 127 if (flags & BTRFS_INODE_NODATACOW) 128 iflags |= FS_NOCOW_FL; 129 130 if (flags & BTRFS_INODE_NOCOMPRESS) 131 iflags |= FS_NOCOMP_FL; 132 else if (flags & BTRFS_INODE_COMPRESS) 133 iflags |= FS_COMPR_FL; 134 135 return iflags; 136 } 137 138 /* 139 * Update inode->i_flags based on the btrfs internal flags. 140 */ 141 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 142 { 143 struct btrfs_inode *binode = BTRFS_I(inode); 144 unsigned int new_fl = 0; 145 146 if (binode->flags & BTRFS_INODE_SYNC) 147 new_fl |= S_SYNC; 148 if (binode->flags & BTRFS_INODE_IMMUTABLE) 149 new_fl |= S_IMMUTABLE; 150 if (binode->flags & BTRFS_INODE_APPEND) 151 new_fl |= S_APPEND; 152 if (binode->flags & BTRFS_INODE_NOATIME) 153 new_fl |= S_NOATIME; 154 if (binode->flags & BTRFS_INODE_DIRSYNC) 155 new_fl |= S_DIRSYNC; 156 157 set_mask_bits(&inode->i_flags, 158 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 159 new_fl); 160 } 161 162 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 163 { 164 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 165 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 166 167 if (copy_to_user(arg, &flags, sizeof(flags))) 168 return -EFAULT; 169 return 0; 170 } 171 172 /* Check if @flags are a supported and valid set of FS_*_FL flags */ 173 static int check_fsflags(unsigned int flags) 174 { 175 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 176 FS_NOATIME_FL | FS_NODUMP_FL | \ 177 FS_SYNC_FL | FS_DIRSYNC_FL | \ 178 FS_NOCOMP_FL | FS_COMPR_FL | 179 FS_NOCOW_FL)) 180 return -EOPNOTSUPP; 181 182 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 183 return -EINVAL; 184 185 return 0; 186 } 187 188 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 189 { 190 struct inode *inode = file_inode(file); 191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 192 struct btrfs_inode *binode = BTRFS_I(inode); 193 struct btrfs_root *root = binode->root; 194 struct btrfs_trans_handle *trans; 195 unsigned int fsflags, old_fsflags; 196 int ret; 197 u64 old_flags; 198 unsigned int old_i_flags; 199 umode_t mode; 200 201 if (!inode_owner_or_capable(inode)) 202 return -EPERM; 203 204 if (btrfs_root_readonly(root)) 205 return -EROFS; 206 207 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 208 return -EFAULT; 209 210 ret = check_fsflags(fsflags); 211 if (ret) 212 return ret; 213 214 ret = mnt_want_write_file(file); 215 if (ret) 216 return ret; 217 218 inode_lock(inode); 219 220 old_flags = binode->flags; 221 old_i_flags = inode->i_flags; 222 mode = inode->i_mode; 223 224 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 225 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 226 if ((fsflags ^ old_fsflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 227 if (!capable(CAP_LINUX_IMMUTABLE)) { 228 ret = -EPERM; 229 goto out_unlock; 230 } 231 } 232 233 if (fsflags & FS_SYNC_FL) 234 binode->flags |= BTRFS_INODE_SYNC; 235 else 236 binode->flags &= ~BTRFS_INODE_SYNC; 237 if (fsflags & FS_IMMUTABLE_FL) 238 binode->flags |= BTRFS_INODE_IMMUTABLE; 239 else 240 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 241 if (fsflags & FS_APPEND_FL) 242 binode->flags |= BTRFS_INODE_APPEND; 243 else 244 binode->flags &= ~BTRFS_INODE_APPEND; 245 if (fsflags & FS_NODUMP_FL) 246 binode->flags |= BTRFS_INODE_NODUMP; 247 else 248 binode->flags &= ~BTRFS_INODE_NODUMP; 249 if (fsflags & FS_NOATIME_FL) 250 binode->flags |= BTRFS_INODE_NOATIME; 251 else 252 binode->flags &= ~BTRFS_INODE_NOATIME; 253 if (fsflags & FS_DIRSYNC_FL) 254 binode->flags |= BTRFS_INODE_DIRSYNC; 255 else 256 binode->flags &= ~BTRFS_INODE_DIRSYNC; 257 if (fsflags & FS_NOCOW_FL) { 258 if (S_ISREG(mode)) { 259 /* 260 * It's safe to turn csums off here, no extents exist. 261 * Otherwise we want the flag to reflect the real COW 262 * status of the file and will not set it. 263 */ 264 if (inode->i_size == 0) 265 binode->flags |= BTRFS_INODE_NODATACOW 266 | BTRFS_INODE_NODATASUM; 267 } else { 268 binode->flags |= BTRFS_INODE_NODATACOW; 269 } 270 } else { 271 /* 272 * Revert back under same assumptions as above 273 */ 274 if (S_ISREG(mode)) { 275 if (inode->i_size == 0) 276 binode->flags &= ~(BTRFS_INODE_NODATACOW 277 | BTRFS_INODE_NODATASUM); 278 } else { 279 binode->flags &= ~BTRFS_INODE_NODATACOW; 280 } 281 } 282 283 /* 284 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 285 * flag may be changed automatically if compression code won't make 286 * things smaller. 287 */ 288 if (fsflags & FS_NOCOMP_FL) { 289 binode->flags &= ~BTRFS_INODE_COMPRESS; 290 binode->flags |= BTRFS_INODE_NOCOMPRESS; 291 292 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 293 if (ret && ret != -ENODATA) 294 goto out_drop; 295 } else if (fsflags & FS_COMPR_FL) { 296 const char *comp; 297 298 binode->flags |= BTRFS_INODE_COMPRESS; 299 binode->flags &= ~BTRFS_INODE_NOCOMPRESS; 300 301 comp = btrfs_compress_type2str(fs_info->compress_type); 302 if (!comp || comp[0] == 0) 303 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 304 305 ret = btrfs_set_prop(inode, "btrfs.compression", 306 comp, strlen(comp), 0); 307 if (ret) 308 goto out_drop; 309 310 } else { 311 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 312 if (ret && ret != -ENODATA) 313 goto out_drop; 314 binode->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 315 } 316 317 trans = btrfs_start_transaction(root, 1); 318 if (IS_ERR(trans)) { 319 ret = PTR_ERR(trans); 320 goto out_drop; 321 } 322 323 btrfs_sync_inode_flags_to_i_flags(inode); 324 inode_inc_iversion(inode); 325 inode->i_ctime = current_time(inode); 326 ret = btrfs_update_inode(trans, root, inode); 327 328 btrfs_end_transaction(trans); 329 out_drop: 330 if (ret) { 331 binode->flags = old_flags; 332 inode->i_flags = old_i_flags; 333 } 334 335 out_unlock: 336 inode_unlock(inode); 337 mnt_drop_write_file(file); 338 return ret; 339 } 340 341 /* 342 * Translate btrfs internal inode flags to xflags as expected by the 343 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 344 * silently dropped. 345 */ 346 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 347 { 348 unsigned int xflags = 0; 349 350 if (flags & BTRFS_INODE_APPEND) 351 xflags |= FS_XFLAG_APPEND; 352 if (flags & BTRFS_INODE_IMMUTABLE) 353 xflags |= FS_XFLAG_IMMUTABLE; 354 if (flags & BTRFS_INODE_NOATIME) 355 xflags |= FS_XFLAG_NOATIME; 356 if (flags & BTRFS_INODE_NODUMP) 357 xflags |= FS_XFLAG_NODUMP; 358 if (flags & BTRFS_INODE_SYNC) 359 xflags |= FS_XFLAG_SYNC; 360 361 return xflags; 362 } 363 364 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 365 static int check_xflags(unsigned int flags) 366 { 367 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 368 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 369 return -EOPNOTSUPP; 370 return 0; 371 } 372 373 /* 374 * Set the xflags from the internal inode flags. The remaining items of fsxattr 375 * are zeroed. 376 */ 377 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 378 { 379 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 380 struct fsxattr fa; 381 382 memset(&fa, 0, sizeof(fa)); 383 fa.fsx_xflags = btrfs_inode_flags_to_xflags(binode->flags); 384 385 if (copy_to_user(arg, &fa, sizeof(fa))) 386 return -EFAULT; 387 388 return 0; 389 } 390 391 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 392 { 393 struct inode *inode = file_inode(file); 394 struct btrfs_inode *binode = BTRFS_I(inode); 395 struct btrfs_root *root = binode->root; 396 struct btrfs_trans_handle *trans; 397 struct fsxattr fa; 398 unsigned old_flags; 399 unsigned old_i_flags; 400 int ret = 0; 401 402 if (!inode_owner_or_capable(inode)) 403 return -EPERM; 404 405 if (btrfs_root_readonly(root)) 406 return -EROFS; 407 408 memset(&fa, 0, sizeof(fa)); 409 if (copy_from_user(&fa, arg, sizeof(fa))) 410 return -EFAULT; 411 412 ret = check_xflags(fa.fsx_xflags); 413 if (ret) 414 return ret; 415 416 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 417 return -EOPNOTSUPP; 418 419 ret = mnt_want_write_file(file); 420 if (ret) 421 return ret; 422 423 inode_lock(inode); 424 425 old_flags = binode->flags; 426 old_i_flags = inode->i_flags; 427 428 /* We need the capabilities to change append-only or immutable inode */ 429 if (((old_flags & (BTRFS_INODE_APPEND | BTRFS_INODE_IMMUTABLE)) || 430 (fa.fsx_xflags & (FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE))) && 431 !capable(CAP_LINUX_IMMUTABLE)) { 432 ret = -EPERM; 433 goto out_unlock; 434 } 435 436 if (fa.fsx_xflags & FS_XFLAG_SYNC) 437 binode->flags |= BTRFS_INODE_SYNC; 438 else 439 binode->flags &= ~BTRFS_INODE_SYNC; 440 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 441 binode->flags |= BTRFS_INODE_IMMUTABLE; 442 else 443 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 444 if (fa.fsx_xflags & FS_XFLAG_APPEND) 445 binode->flags |= BTRFS_INODE_APPEND; 446 else 447 binode->flags &= ~BTRFS_INODE_APPEND; 448 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 449 binode->flags |= BTRFS_INODE_NODUMP; 450 else 451 binode->flags &= ~BTRFS_INODE_NODUMP; 452 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 453 binode->flags |= BTRFS_INODE_NOATIME; 454 else 455 binode->flags &= ~BTRFS_INODE_NOATIME; 456 457 /* 1 item for the inode */ 458 trans = btrfs_start_transaction(root, 1); 459 if (IS_ERR(trans)) { 460 ret = PTR_ERR(trans); 461 goto out_unlock; 462 } 463 464 btrfs_sync_inode_flags_to_i_flags(inode); 465 inode_inc_iversion(inode); 466 inode->i_ctime = current_time(inode); 467 ret = btrfs_update_inode(trans, root, inode); 468 469 btrfs_end_transaction(trans); 470 471 out_unlock: 472 if (ret) { 473 binode->flags = old_flags; 474 inode->i_flags = old_i_flags; 475 } 476 477 inode_unlock(inode); 478 mnt_drop_write_file(file); 479 480 return ret; 481 } 482 483 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 484 { 485 struct inode *inode = file_inode(file); 486 487 return put_user(inode->i_generation, arg); 488 } 489 490 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 491 { 492 struct inode *inode = file_inode(file); 493 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 494 struct btrfs_device *device; 495 struct request_queue *q; 496 struct fstrim_range range; 497 u64 minlen = ULLONG_MAX; 498 u64 num_devices = 0; 499 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 500 int ret; 501 502 if (!capable(CAP_SYS_ADMIN)) 503 return -EPERM; 504 505 rcu_read_lock(); 506 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 507 dev_list) { 508 if (!device->bdev) 509 continue; 510 q = bdev_get_queue(device->bdev); 511 if (blk_queue_discard(q)) { 512 num_devices++; 513 minlen = min_t(u64, q->limits.discard_granularity, 514 minlen); 515 } 516 } 517 rcu_read_unlock(); 518 519 if (!num_devices) 520 return -EOPNOTSUPP; 521 if (copy_from_user(&range, arg, sizeof(range))) 522 return -EFAULT; 523 if (range.start > total_bytes || 524 range.len < fs_info->sb->s_blocksize) 525 return -EINVAL; 526 527 range.len = min(range.len, total_bytes - range.start); 528 range.minlen = max(range.minlen, minlen); 529 ret = btrfs_trim_fs(fs_info, &range); 530 if (ret < 0) 531 return ret; 532 533 if (copy_to_user(arg, &range, sizeof(range))) 534 return -EFAULT; 535 536 return 0; 537 } 538 539 int btrfs_is_empty_uuid(u8 *uuid) 540 { 541 int i; 542 543 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 544 if (uuid[i]) 545 return 0; 546 } 547 return 1; 548 } 549 550 static noinline int create_subvol(struct inode *dir, 551 struct dentry *dentry, 552 const char *name, int namelen, 553 u64 *async_transid, 554 struct btrfs_qgroup_inherit *inherit) 555 { 556 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 557 struct btrfs_trans_handle *trans; 558 struct btrfs_key key; 559 struct btrfs_root_item *root_item; 560 struct btrfs_inode_item *inode_item; 561 struct extent_buffer *leaf; 562 struct btrfs_root *root = BTRFS_I(dir)->root; 563 struct btrfs_root *new_root; 564 struct btrfs_block_rsv block_rsv; 565 struct timespec64 cur_time = current_time(dir); 566 struct inode *inode; 567 int ret; 568 int err; 569 u64 objectid; 570 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 571 u64 index = 0; 572 uuid_le new_uuid; 573 574 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 575 if (!root_item) 576 return -ENOMEM; 577 578 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 579 if (ret) 580 goto fail_free; 581 582 /* 583 * Don't create subvolume whose level is not zero. Or qgroup will be 584 * screwed up since it assumes subvolume qgroup's level to be 0. 585 */ 586 if (btrfs_qgroup_level(objectid)) { 587 ret = -ENOSPC; 588 goto fail_free; 589 } 590 591 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 592 /* 593 * The same as the snapshot creation, please see the comment 594 * of create_snapshot(). 595 */ 596 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 597 if (ret) 598 goto fail_free; 599 600 trans = btrfs_start_transaction(root, 0); 601 if (IS_ERR(trans)) { 602 ret = PTR_ERR(trans); 603 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 604 goto fail_free; 605 } 606 trans->block_rsv = &block_rsv; 607 trans->bytes_reserved = block_rsv.size; 608 609 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit); 610 if (ret) 611 goto fail; 612 613 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 614 if (IS_ERR(leaf)) { 615 ret = PTR_ERR(leaf); 616 goto fail; 617 } 618 619 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 620 btrfs_set_header_bytenr(leaf, leaf->start); 621 btrfs_set_header_generation(leaf, trans->transid); 622 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 623 btrfs_set_header_owner(leaf, objectid); 624 625 write_extent_buffer_fsid(leaf, fs_info->fsid); 626 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 627 btrfs_mark_buffer_dirty(leaf); 628 629 inode_item = &root_item->inode; 630 btrfs_set_stack_inode_generation(inode_item, 1); 631 btrfs_set_stack_inode_size(inode_item, 3); 632 btrfs_set_stack_inode_nlink(inode_item, 1); 633 btrfs_set_stack_inode_nbytes(inode_item, 634 fs_info->nodesize); 635 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 636 637 btrfs_set_root_flags(root_item, 0); 638 btrfs_set_root_limit(root_item, 0); 639 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 640 641 btrfs_set_root_bytenr(root_item, leaf->start); 642 btrfs_set_root_generation(root_item, trans->transid); 643 btrfs_set_root_level(root_item, 0); 644 btrfs_set_root_refs(root_item, 1); 645 btrfs_set_root_used(root_item, leaf->len); 646 btrfs_set_root_last_snapshot(root_item, 0); 647 648 btrfs_set_root_generation_v2(root_item, 649 btrfs_root_generation(root_item)); 650 uuid_le_gen(&new_uuid); 651 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 652 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 653 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 654 root_item->ctime = root_item->otime; 655 btrfs_set_root_ctransid(root_item, trans->transid); 656 btrfs_set_root_otransid(root_item, trans->transid); 657 658 btrfs_tree_unlock(leaf); 659 free_extent_buffer(leaf); 660 leaf = NULL; 661 662 btrfs_set_root_dirid(root_item, new_dirid); 663 664 key.objectid = objectid; 665 key.offset = 0; 666 key.type = BTRFS_ROOT_ITEM_KEY; 667 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 668 root_item); 669 if (ret) 670 goto fail; 671 672 key.offset = (u64)-1; 673 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 674 if (IS_ERR(new_root)) { 675 ret = PTR_ERR(new_root); 676 btrfs_abort_transaction(trans, ret); 677 goto fail; 678 } 679 680 btrfs_record_root_in_trans(trans, new_root); 681 682 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 683 if (ret) { 684 /* We potentially lose an unused inode item here */ 685 btrfs_abort_transaction(trans, ret); 686 goto fail; 687 } 688 689 mutex_lock(&new_root->objectid_mutex); 690 new_root->highest_objectid = new_dirid; 691 mutex_unlock(&new_root->objectid_mutex); 692 693 /* 694 * insert the directory item 695 */ 696 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 697 if (ret) { 698 btrfs_abort_transaction(trans, ret); 699 goto fail; 700 } 701 702 ret = btrfs_insert_dir_item(trans, root, 703 name, namelen, BTRFS_I(dir), &key, 704 BTRFS_FT_DIR, index); 705 if (ret) { 706 btrfs_abort_transaction(trans, ret); 707 goto fail; 708 } 709 710 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 711 ret = btrfs_update_inode(trans, root, dir); 712 BUG_ON(ret); 713 714 ret = btrfs_add_root_ref(trans, fs_info, 715 objectid, root->root_key.objectid, 716 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 717 BUG_ON(ret); 718 719 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 720 BTRFS_UUID_KEY_SUBVOL, objectid); 721 if (ret) 722 btrfs_abort_transaction(trans, ret); 723 724 fail: 725 kfree(root_item); 726 trans->block_rsv = NULL; 727 trans->bytes_reserved = 0; 728 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 729 730 if (async_transid) { 731 *async_transid = trans->transid; 732 err = btrfs_commit_transaction_async(trans, 1); 733 if (err) 734 err = btrfs_commit_transaction(trans); 735 } else { 736 err = btrfs_commit_transaction(trans); 737 } 738 if (err && !ret) 739 ret = err; 740 741 if (!ret) { 742 inode = btrfs_lookup_dentry(dir, dentry); 743 if (IS_ERR(inode)) 744 return PTR_ERR(inode); 745 d_instantiate(dentry, inode); 746 } 747 return ret; 748 749 fail_free: 750 kfree(root_item); 751 return ret; 752 } 753 754 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 755 struct dentry *dentry, 756 u64 *async_transid, bool readonly, 757 struct btrfs_qgroup_inherit *inherit) 758 { 759 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 760 struct inode *inode; 761 struct btrfs_pending_snapshot *pending_snapshot; 762 struct btrfs_trans_handle *trans; 763 int ret; 764 765 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 766 return -EINVAL; 767 768 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 769 if (!pending_snapshot) 770 return -ENOMEM; 771 772 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 773 GFP_KERNEL); 774 pending_snapshot->path = btrfs_alloc_path(); 775 if (!pending_snapshot->root_item || !pending_snapshot->path) { 776 ret = -ENOMEM; 777 goto free_pending; 778 } 779 780 atomic_inc(&root->will_be_snapshotted); 781 smp_mb__after_atomic(); 782 /* wait for no snapshot writes */ 783 wait_event(root->subv_writers->wait, 784 percpu_counter_sum(&root->subv_writers->counter) == 0); 785 786 ret = btrfs_start_delalloc_inodes(root); 787 if (ret) 788 goto dec_and_free; 789 790 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 791 792 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 793 BTRFS_BLOCK_RSV_TEMP); 794 /* 795 * 1 - parent dir inode 796 * 2 - dir entries 797 * 1 - root item 798 * 2 - root ref/backref 799 * 1 - root of snapshot 800 * 1 - UUID item 801 */ 802 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 803 &pending_snapshot->block_rsv, 8, 804 false); 805 if (ret) 806 goto dec_and_free; 807 808 pending_snapshot->dentry = dentry; 809 pending_snapshot->root = root; 810 pending_snapshot->readonly = readonly; 811 pending_snapshot->dir = dir; 812 pending_snapshot->inherit = inherit; 813 814 trans = btrfs_start_transaction(root, 0); 815 if (IS_ERR(trans)) { 816 ret = PTR_ERR(trans); 817 goto fail; 818 } 819 820 spin_lock(&fs_info->trans_lock); 821 list_add(&pending_snapshot->list, 822 &trans->transaction->pending_snapshots); 823 spin_unlock(&fs_info->trans_lock); 824 if (async_transid) { 825 *async_transid = trans->transid; 826 ret = btrfs_commit_transaction_async(trans, 1); 827 if (ret) 828 ret = btrfs_commit_transaction(trans); 829 } else { 830 ret = btrfs_commit_transaction(trans); 831 } 832 if (ret) 833 goto fail; 834 835 ret = pending_snapshot->error; 836 if (ret) 837 goto fail; 838 839 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 840 if (ret) 841 goto fail; 842 843 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 844 if (IS_ERR(inode)) { 845 ret = PTR_ERR(inode); 846 goto fail; 847 } 848 849 d_instantiate(dentry, inode); 850 ret = 0; 851 fail: 852 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 853 dec_and_free: 854 if (atomic_dec_and_test(&root->will_be_snapshotted)) 855 wake_up_var(&root->will_be_snapshotted); 856 free_pending: 857 kfree(pending_snapshot->root_item); 858 btrfs_free_path(pending_snapshot->path); 859 kfree(pending_snapshot); 860 861 return ret; 862 } 863 864 /* copy of may_delete in fs/namei.c() 865 * Check whether we can remove a link victim from directory dir, check 866 * whether the type of victim is right. 867 * 1. We can't do it if dir is read-only (done in permission()) 868 * 2. We should have write and exec permissions on dir 869 * 3. We can't remove anything from append-only dir 870 * 4. We can't do anything with immutable dir (done in permission()) 871 * 5. If the sticky bit on dir is set we should either 872 * a. be owner of dir, or 873 * b. be owner of victim, or 874 * c. have CAP_FOWNER capability 875 * 6. If the victim is append-only or immutable we can't do anything with 876 * links pointing to it. 877 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 878 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 879 * 9. We can't remove a root or mountpoint. 880 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 881 * nfs_async_unlink(). 882 */ 883 884 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 885 { 886 int error; 887 888 if (d_really_is_negative(victim)) 889 return -ENOENT; 890 891 BUG_ON(d_inode(victim->d_parent) != dir); 892 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 893 894 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 895 if (error) 896 return error; 897 if (IS_APPEND(dir)) 898 return -EPERM; 899 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 900 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 901 return -EPERM; 902 if (isdir) { 903 if (!d_is_dir(victim)) 904 return -ENOTDIR; 905 if (IS_ROOT(victim)) 906 return -EBUSY; 907 } else if (d_is_dir(victim)) 908 return -EISDIR; 909 if (IS_DEADDIR(dir)) 910 return -ENOENT; 911 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 912 return -EBUSY; 913 return 0; 914 } 915 916 /* copy of may_create in fs/namei.c() */ 917 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 918 { 919 if (d_really_is_positive(child)) 920 return -EEXIST; 921 if (IS_DEADDIR(dir)) 922 return -ENOENT; 923 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 924 } 925 926 /* 927 * Create a new subvolume below @parent. This is largely modeled after 928 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 929 * inside this filesystem so it's quite a bit simpler. 930 */ 931 static noinline int btrfs_mksubvol(const struct path *parent, 932 const char *name, int namelen, 933 struct btrfs_root *snap_src, 934 u64 *async_transid, bool readonly, 935 struct btrfs_qgroup_inherit *inherit) 936 { 937 struct inode *dir = d_inode(parent->dentry); 938 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 939 struct dentry *dentry; 940 int error; 941 942 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 943 if (error == -EINTR) 944 return error; 945 946 dentry = lookup_one_len(name, parent->dentry, namelen); 947 error = PTR_ERR(dentry); 948 if (IS_ERR(dentry)) 949 goto out_unlock; 950 951 error = btrfs_may_create(dir, dentry); 952 if (error) 953 goto out_dput; 954 955 /* 956 * even if this name doesn't exist, we may get hash collisions. 957 * check for them now when we can safely fail 958 */ 959 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 960 dir->i_ino, name, 961 namelen); 962 if (error) 963 goto out_dput; 964 965 down_read(&fs_info->subvol_sem); 966 967 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 968 goto out_up_read; 969 970 if (snap_src) { 971 error = create_snapshot(snap_src, dir, dentry, 972 async_transid, readonly, inherit); 973 } else { 974 error = create_subvol(dir, dentry, name, namelen, 975 async_transid, inherit); 976 } 977 if (!error) 978 fsnotify_mkdir(dir, dentry); 979 out_up_read: 980 up_read(&fs_info->subvol_sem); 981 out_dput: 982 dput(dentry); 983 out_unlock: 984 inode_unlock(dir); 985 return error; 986 } 987 988 /* 989 * When we're defragging a range, we don't want to kick it off again 990 * if it is really just waiting for delalloc to send it down. 991 * If we find a nice big extent or delalloc range for the bytes in the 992 * file you want to defrag, we return 0 to let you know to skip this 993 * part of the file 994 */ 995 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 996 { 997 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 998 struct extent_map *em = NULL; 999 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1000 u64 end; 1001 1002 read_lock(&em_tree->lock); 1003 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1004 read_unlock(&em_tree->lock); 1005 1006 if (em) { 1007 end = extent_map_end(em); 1008 free_extent_map(em); 1009 if (end - offset > thresh) 1010 return 0; 1011 } 1012 /* if we already have a nice delalloc here, just stop */ 1013 thresh /= 2; 1014 end = count_range_bits(io_tree, &offset, offset + thresh, 1015 thresh, EXTENT_DELALLOC, 1); 1016 if (end >= thresh) 1017 return 0; 1018 return 1; 1019 } 1020 1021 /* 1022 * helper function to walk through a file and find extents 1023 * newer than a specific transid, and smaller than thresh. 1024 * 1025 * This is used by the defragging code to find new and small 1026 * extents 1027 */ 1028 static int find_new_extents(struct btrfs_root *root, 1029 struct inode *inode, u64 newer_than, 1030 u64 *off, u32 thresh) 1031 { 1032 struct btrfs_path *path; 1033 struct btrfs_key min_key; 1034 struct extent_buffer *leaf; 1035 struct btrfs_file_extent_item *extent; 1036 int type; 1037 int ret; 1038 u64 ino = btrfs_ino(BTRFS_I(inode)); 1039 1040 path = btrfs_alloc_path(); 1041 if (!path) 1042 return -ENOMEM; 1043 1044 min_key.objectid = ino; 1045 min_key.type = BTRFS_EXTENT_DATA_KEY; 1046 min_key.offset = *off; 1047 1048 while (1) { 1049 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1050 if (ret != 0) 1051 goto none; 1052 process_slot: 1053 if (min_key.objectid != ino) 1054 goto none; 1055 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1056 goto none; 1057 1058 leaf = path->nodes[0]; 1059 extent = btrfs_item_ptr(leaf, path->slots[0], 1060 struct btrfs_file_extent_item); 1061 1062 type = btrfs_file_extent_type(leaf, extent); 1063 if (type == BTRFS_FILE_EXTENT_REG && 1064 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1065 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1066 *off = min_key.offset; 1067 btrfs_free_path(path); 1068 return 0; 1069 } 1070 1071 path->slots[0]++; 1072 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1073 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1074 goto process_slot; 1075 } 1076 1077 if (min_key.offset == (u64)-1) 1078 goto none; 1079 1080 min_key.offset++; 1081 btrfs_release_path(path); 1082 } 1083 none: 1084 btrfs_free_path(path); 1085 return -ENOENT; 1086 } 1087 1088 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1089 { 1090 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1091 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1092 struct extent_map *em; 1093 u64 len = PAGE_SIZE; 1094 1095 /* 1096 * hopefully we have this extent in the tree already, try without 1097 * the full extent lock 1098 */ 1099 read_lock(&em_tree->lock); 1100 em = lookup_extent_mapping(em_tree, start, len); 1101 read_unlock(&em_tree->lock); 1102 1103 if (!em) { 1104 struct extent_state *cached = NULL; 1105 u64 end = start + len - 1; 1106 1107 /* get the big lock and read metadata off disk */ 1108 lock_extent_bits(io_tree, start, end, &cached); 1109 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 1110 unlock_extent_cached(io_tree, start, end, &cached); 1111 1112 if (IS_ERR(em)) 1113 return NULL; 1114 } 1115 1116 return em; 1117 } 1118 1119 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1120 { 1121 struct extent_map *next; 1122 bool ret = true; 1123 1124 /* this is the last extent */ 1125 if (em->start + em->len >= i_size_read(inode)) 1126 return false; 1127 1128 next = defrag_lookup_extent(inode, em->start + em->len); 1129 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1130 ret = false; 1131 else if ((em->block_start + em->block_len == next->block_start) && 1132 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1133 ret = false; 1134 1135 free_extent_map(next); 1136 return ret; 1137 } 1138 1139 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1140 u64 *last_len, u64 *skip, u64 *defrag_end, 1141 int compress) 1142 { 1143 struct extent_map *em; 1144 int ret = 1; 1145 bool next_mergeable = true; 1146 bool prev_mergeable = true; 1147 1148 /* 1149 * make sure that once we start defragging an extent, we keep on 1150 * defragging it 1151 */ 1152 if (start < *defrag_end) 1153 return 1; 1154 1155 *skip = 0; 1156 1157 em = defrag_lookup_extent(inode, start); 1158 if (!em) 1159 return 0; 1160 1161 /* this will cover holes, and inline extents */ 1162 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1163 ret = 0; 1164 goto out; 1165 } 1166 1167 if (!*defrag_end) 1168 prev_mergeable = false; 1169 1170 next_mergeable = defrag_check_next_extent(inode, em); 1171 /* 1172 * we hit a real extent, if it is big or the next extent is not a 1173 * real extent, don't bother defragging it 1174 */ 1175 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1176 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1177 ret = 0; 1178 out: 1179 /* 1180 * last_len ends up being a counter of how many bytes we've defragged. 1181 * every time we choose not to defrag an extent, we reset *last_len 1182 * so that the next tiny extent will force a defrag. 1183 * 1184 * The end result of this is that tiny extents before a single big 1185 * extent will force at least part of that big extent to be defragged. 1186 */ 1187 if (ret) { 1188 *defrag_end = extent_map_end(em); 1189 } else { 1190 *last_len = 0; 1191 *skip = extent_map_end(em); 1192 *defrag_end = 0; 1193 } 1194 1195 free_extent_map(em); 1196 return ret; 1197 } 1198 1199 /* 1200 * it doesn't do much good to defrag one or two pages 1201 * at a time. This pulls in a nice chunk of pages 1202 * to COW and defrag. 1203 * 1204 * It also makes sure the delalloc code has enough 1205 * dirty data to avoid making new small extents as part 1206 * of the defrag 1207 * 1208 * It's a good idea to start RA on this range 1209 * before calling this. 1210 */ 1211 static int cluster_pages_for_defrag(struct inode *inode, 1212 struct page **pages, 1213 unsigned long start_index, 1214 unsigned long num_pages) 1215 { 1216 unsigned long file_end; 1217 u64 isize = i_size_read(inode); 1218 u64 page_start; 1219 u64 page_end; 1220 u64 page_cnt; 1221 int ret; 1222 int i; 1223 int i_done; 1224 struct btrfs_ordered_extent *ordered; 1225 struct extent_state *cached_state = NULL; 1226 struct extent_io_tree *tree; 1227 struct extent_changeset *data_reserved = NULL; 1228 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1229 1230 file_end = (isize - 1) >> PAGE_SHIFT; 1231 if (!isize || start_index > file_end) 1232 return 0; 1233 1234 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1235 1236 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1237 start_index << PAGE_SHIFT, 1238 page_cnt << PAGE_SHIFT); 1239 if (ret) 1240 return ret; 1241 i_done = 0; 1242 tree = &BTRFS_I(inode)->io_tree; 1243 1244 /* step one, lock all the pages */ 1245 for (i = 0; i < page_cnt; i++) { 1246 struct page *page; 1247 again: 1248 page = find_or_create_page(inode->i_mapping, 1249 start_index + i, mask); 1250 if (!page) 1251 break; 1252 1253 page_start = page_offset(page); 1254 page_end = page_start + PAGE_SIZE - 1; 1255 while (1) { 1256 lock_extent_bits(tree, page_start, page_end, 1257 &cached_state); 1258 ordered = btrfs_lookup_ordered_extent(inode, 1259 page_start); 1260 unlock_extent_cached(tree, page_start, page_end, 1261 &cached_state); 1262 if (!ordered) 1263 break; 1264 1265 unlock_page(page); 1266 btrfs_start_ordered_extent(inode, ordered, 1); 1267 btrfs_put_ordered_extent(ordered); 1268 lock_page(page); 1269 /* 1270 * we unlocked the page above, so we need check if 1271 * it was released or not. 1272 */ 1273 if (page->mapping != inode->i_mapping) { 1274 unlock_page(page); 1275 put_page(page); 1276 goto again; 1277 } 1278 } 1279 1280 if (!PageUptodate(page)) { 1281 btrfs_readpage(NULL, page); 1282 lock_page(page); 1283 if (!PageUptodate(page)) { 1284 unlock_page(page); 1285 put_page(page); 1286 ret = -EIO; 1287 break; 1288 } 1289 } 1290 1291 if (page->mapping != inode->i_mapping) { 1292 unlock_page(page); 1293 put_page(page); 1294 goto again; 1295 } 1296 1297 pages[i] = page; 1298 i_done++; 1299 } 1300 if (!i_done || ret) 1301 goto out; 1302 1303 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1304 goto out; 1305 1306 /* 1307 * so now we have a nice long stream of locked 1308 * and up to date pages, lets wait on them 1309 */ 1310 for (i = 0; i < i_done; i++) 1311 wait_on_page_writeback(pages[i]); 1312 1313 page_start = page_offset(pages[0]); 1314 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1315 1316 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1317 page_start, page_end - 1, &cached_state); 1318 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1319 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1320 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1321 &cached_state); 1322 1323 if (i_done != page_cnt) { 1324 spin_lock(&BTRFS_I(inode)->lock); 1325 BTRFS_I(inode)->outstanding_extents++; 1326 spin_unlock(&BTRFS_I(inode)->lock); 1327 btrfs_delalloc_release_space(inode, data_reserved, 1328 start_index << PAGE_SHIFT, 1329 (page_cnt - i_done) << PAGE_SHIFT, true); 1330 } 1331 1332 1333 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1334 &cached_state); 1335 1336 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1337 page_start, page_end - 1, &cached_state); 1338 1339 for (i = 0; i < i_done; i++) { 1340 clear_page_dirty_for_io(pages[i]); 1341 ClearPageChecked(pages[i]); 1342 set_page_extent_mapped(pages[i]); 1343 set_page_dirty(pages[i]); 1344 unlock_page(pages[i]); 1345 put_page(pages[i]); 1346 } 1347 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1348 false); 1349 extent_changeset_free(data_reserved); 1350 return i_done; 1351 out: 1352 for (i = 0; i < i_done; i++) { 1353 unlock_page(pages[i]); 1354 put_page(pages[i]); 1355 } 1356 btrfs_delalloc_release_space(inode, data_reserved, 1357 start_index << PAGE_SHIFT, 1358 page_cnt << PAGE_SHIFT, true); 1359 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1360 true); 1361 extent_changeset_free(data_reserved); 1362 return ret; 1363 1364 } 1365 1366 int btrfs_defrag_file(struct inode *inode, struct file *file, 1367 struct btrfs_ioctl_defrag_range_args *range, 1368 u64 newer_than, unsigned long max_to_defrag) 1369 { 1370 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1371 struct btrfs_root *root = BTRFS_I(inode)->root; 1372 struct file_ra_state *ra = NULL; 1373 unsigned long last_index; 1374 u64 isize = i_size_read(inode); 1375 u64 last_len = 0; 1376 u64 skip = 0; 1377 u64 defrag_end = 0; 1378 u64 newer_off = range->start; 1379 unsigned long i; 1380 unsigned long ra_index = 0; 1381 int ret; 1382 int defrag_count = 0; 1383 int compress_type = BTRFS_COMPRESS_ZLIB; 1384 u32 extent_thresh = range->extent_thresh; 1385 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1386 unsigned long cluster = max_cluster; 1387 u64 new_align = ~((u64)SZ_128K - 1); 1388 struct page **pages = NULL; 1389 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1390 1391 if (isize == 0) 1392 return 0; 1393 1394 if (range->start >= isize) 1395 return -EINVAL; 1396 1397 if (do_compress) { 1398 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1399 return -EINVAL; 1400 if (range->compress_type) 1401 compress_type = range->compress_type; 1402 } 1403 1404 if (extent_thresh == 0) 1405 extent_thresh = SZ_256K; 1406 1407 /* 1408 * If we were not given a file, allocate a readahead context. As 1409 * readahead is just an optimization, defrag will work without it so 1410 * we don't error out. 1411 */ 1412 if (!file) { 1413 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1414 if (ra) 1415 file_ra_state_init(ra, inode->i_mapping); 1416 } else { 1417 ra = &file->f_ra; 1418 } 1419 1420 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1421 if (!pages) { 1422 ret = -ENOMEM; 1423 goto out_ra; 1424 } 1425 1426 /* find the last page to defrag */ 1427 if (range->start + range->len > range->start) { 1428 last_index = min_t(u64, isize - 1, 1429 range->start + range->len - 1) >> PAGE_SHIFT; 1430 } else { 1431 last_index = (isize - 1) >> PAGE_SHIFT; 1432 } 1433 1434 if (newer_than) { 1435 ret = find_new_extents(root, inode, newer_than, 1436 &newer_off, SZ_64K); 1437 if (!ret) { 1438 range->start = newer_off; 1439 /* 1440 * we always align our defrag to help keep 1441 * the extents in the file evenly spaced 1442 */ 1443 i = (newer_off & new_align) >> PAGE_SHIFT; 1444 } else 1445 goto out_ra; 1446 } else { 1447 i = range->start >> PAGE_SHIFT; 1448 } 1449 if (!max_to_defrag) 1450 max_to_defrag = last_index - i + 1; 1451 1452 /* 1453 * make writeback starts from i, so the defrag range can be 1454 * written sequentially. 1455 */ 1456 if (i < inode->i_mapping->writeback_index) 1457 inode->i_mapping->writeback_index = i; 1458 1459 while (i <= last_index && defrag_count < max_to_defrag && 1460 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1461 /* 1462 * make sure we stop running if someone unmounts 1463 * the FS 1464 */ 1465 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1466 break; 1467 1468 if (btrfs_defrag_cancelled(fs_info)) { 1469 btrfs_debug(fs_info, "defrag_file cancelled"); 1470 ret = -EAGAIN; 1471 break; 1472 } 1473 1474 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1475 extent_thresh, &last_len, &skip, 1476 &defrag_end, do_compress)){ 1477 unsigned long next; 1478 /* 1479 * the should_defrag function tells us how much to skip 1480 * bump our counter by the suggested amount 1481 */ 1482 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1483 i = max(i + 1, next); 1484 continue; 1485 } 1486 1487 if (!newer_than) { 1488 cluster = (PAGE_ALIGN(defrag_end) >> 1489 PAGE_SHIFT) - i; 1490 cluster = min(cluster, max_cluster); 1491 } else { 1492 cluster = max_cluster; 1493 } 1494 1495 if (i + cluster > ra_index) { 1496 ra_index = max(i, ra_index); 1497 if (ra) 1498 page_cache_sync_readahead(inode->i_mapping, ra, 1499 file, ra_index, cluster); 1500 ra_index += cluster; 1501 } 1502 1503 inode_lock(inode); 1504 if (do_compress) 1505 BTRFS_I(inode)->defrag_compress = compress_type; 1506 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1507 if (ret < 0) { 1508 inode_unlock(inode); 1509 goto out_ra; 1510 } 1511 1512 defrag_count += ret; 1513 balance_dirty_pages_ratelimited(inode->i_mapping); 1514 inode_unlock(inode); 1515 1516 if (newer_than) { 1517 if (newer_off == (u64)-1) 1518 break; 1519 1520 if (ret > 0) 1521 i += ret; 1522 1523 newer_off = max(newer_off + 1, 1524 (u64)i << PAGE_SHIFT); 1525 1526 ret = find_new_extents(root, inode, newer_than, 1527 &newer_off, SZ_64K); 1528 if (!ret) { 1529 range->start = newer_off; 1530 i = (newer_off & new_align) >> PAGE_SHIFT; 1531 } else { 1532 break; 1533 } 1534 } else { 1535 if (ret > 0) { 1536 i += ret; 1537 last_len += ret << PAGE_SHIFT; 1538 } else { 1539 i++; 1540 last_len = 0; 1541 } 1542 } 1543 } 1544 1545 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1546 filemap_flush(inode->i_mapping); 1547 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1548 &BTRFS_I(inode)->runtime_flags)) 1549 filemap_flush(inode->i_mapping); 1550 } 1551 1552 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1553 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1554 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1555 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1556 } 1557 1558 ret = defrag_count; 1559 1560 out_ra: 1561 if (do_compress) { 1562 inode_lock(inode); 1563 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1564 inode_unlock(inode); 1565 } 1566 if (!file) 1567 kfree(ra); 1568 kfree(pages); 1569 return ret; 1570 } 1571 1572 static noinline int btrfs_ioctl_resize(struct file *file, 1573 void __user *arg) 1574 { 1575 struct inode *inode = file_inode(file); 1576 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1577 u64 new_size; 1578 u64 old_size; 1579 u64 devid = 1; 1580 struct btrfs_root *root = BTRFS_I(inode)->root; 1581 struct btrfs_ioctl_vol_args *vol_args; 1582 struct btrfs_trans_handle *trans; 1583 struct btrfs_device *device = NULL; 1584 char *sizestr; 1585 char *retptr; 1586 char *devstr = NULL; 1587 int ret = 0; 1588 int mod = 0; 1589 1590 if (!capable(CAP_SYS_ADMIN)) 1591 return -EPERM; 1592 1593 ret = mnt_want_write_file(file); 1594 if (ret) 1595 return ret; 1596 1597 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1598 mnt_drop_write_file(file); 1599 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1600 } 1601 1602 vol_args = memdup_user(arg, sizeof(*vol_args)); 1603 if (IS_ERR(vol_args)) { 1604 ret = PTR_ERR(vol_args); 1605 goto out; 1606 } 1607 1608 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1609 1610 sizestr = vol_args->name; 1611 devstr = strchr(sizestr, ':'); 1612 if (devstr) { 1613 sizestr = devstr + 1; 1614 *devstr = '\0'; 1615 devstr = vol_args->name; 1616 ret = kstrtoull(devstr, 10, &devid); 1617 if (ret) 1618 goto out_free; 1619 if (!devid) { 1620 ret = -EINVAL; 1621 goto out_free; 1622 } 1623 btrfs_info(fs_info, "resizing devid %llu", devid); 1624 } 1625 1626 device = btrfs_find_device(fs_info, devid, NULL, NULL); 1627 if (!device) { 1628 btrfs_info(fs_info, "resizer unable to find device %llu", 1629 devid); 1630 ret = -ENODEV; 1631 goto out_free; 1632 } 1633 1634 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1635 btrfs_info(fs_info, 1636 "resizer unable to apply on readonly device %llu", 1637 devid); 1638 ret = -EPERM; 1639 goto out_free; 1640 } 1641 1642 if (!strcmp(sizestr, "max")) 1643 new_size = device->bdev->bd_inode->i_size; 1644 else { 1645 if (sizestr[0] == '-') { 1646 mod = -1; 1647 sizestr++; 1648 } else if (sizestr[0] == '+') { 1649 mod = 1; 1650 sizestr++; 1651 } 1652 new_size = memparse(sizestr, &retptr); 1653 if (*retptr != '\0' || new_size == 0) { 1654 ret = -EINVAL; 1655 goto out_free; 1656 } 1657 } 1658 1659 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1660 ret = -EPERM; 1661 goto out_free; 1662 } 1663 1664 old_size = btrfs_device_get_total_bytes(device); 1665 1666 if (mod < 0) { 1667 if (new_size > old_size) { 1668 ret = -EINVAL; 1669 goto out_free; 1670 } 1671 new_size = old_size - new_size; 1672 } else if (mod > 0) { 1673 if (new_size > ULLONG_MAX - old_size) { 1674 ret = -ERANGE; 1675 goto out_free; 1676 } 1677 new_size = old_size + new_size; 1678 } 1679 1680 if (new_size < SZ_256M) { 1681 ret = -EINVAL; 1682 goto out_free; 1683 } 1684 if (new_size > device->bdev->bd_inode->i_size) { 1685 ret = -EFBIG; 1686 goto out_free; 1687 } 1688 1689 new_size = round_down(new_size, fs_info->sectorsize); 1690 1691 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1692 rcu_str_deref(device->name), new_size); 1693 1694 if (new_size > old_size) { 1695 trans = btrfs_start_transaction(root, 0); 1696 if (IS_ERR(trans)) { 1697 ret = PTR_ERR(trans); 1698 goto out_free; 1699 } 1700 ret = btrfs_grow_device(trans, device, new_size); 1701 btrfs_commit_transaction(trans); 1702 } else if (new_size < old_size) { 1703 ret = btrfs_shrink_device(device, new_size); 1704 } /* equal, nothing need to do */ 1705 1706 out_free: 1707 kfree(vol_args); 1708 out: 1709 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1710 mnt_drop_write_file(file); 1711 return ret; 1712 } 1713 1714 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1715 const char *name, unsigned long fd, int subvol, 1716 u64 *transid, bool readonly, 1717 struct btrfs_qgroup_inherit *inherit) 1718 { 1719 int namelen; 1720 int ret = 0; 1721 1722 if (!S_ISDIR(file_inode(file)->i_mode)) 1723 return -ENOTDIR; 1724 1725 ret = mnt_want_write_file(file); 1726 if (ret) 1727 goto out; 1728 1729 namelen = strlen(name); 1730 if (strchr(name, '/')) { 1731 ret = -EINVAL; 1732 goto out_drop_write; 1733 } 1734 1735 if (name[0] == '.' && 1736 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1737 ret = -EEXIST; 1738 goto out_drop_write; 1739 } 1740 1741 if (subvol) { 1742 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1743 NULL, transid, readonly, inherit); 1744 } else { 1745 struct fd src = fdget(fd); 1746 struct inode *src_inode; 1747 if (!src.file) { 1748 ret = -EINVAL; 1749 goto out_drop_write; 1750 } 1751 1752 src_inode = file_inode(src.file); 1753 if (src_inode->i_sb != file_inode(file)->i_sb) { 1754 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1755 "Snapshot src from another FS"); 1756 ret = -EXDEV; 1757 } else if (!inode_owner_or_capable(src_inode)) { 1758 /* 1759 * Subvolume creation is not restricted, but snapshots 1760 * are limited to own subvolumes only 1761 */ 1762 ret = -EPERM; 1763 } else { 1764 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1765 BTRFS_I(src_inode)->root, 1766 transid, readonly, inherit); 1767 } 1768 fdput(src); 1769 } 1770 out_drop_write: 1771 mnt_drop_write_file(file); 1772 out: 1773 return ret; 1774 } 1775 1776 static noinline int btrfs_ioctl_snap_create(struct file *file, 1777 void __user *arg, int subvol) 1778 { 1779 struct btrfs_ioctl_vol_args *vol_args; 1780 int ret; 1781 1782 if (!S_ISDIR(file_inode(file)->i_mode)) 1783 return -ENOTDIR; 1784 1785 vol_args = memdup_user(arg, sizeof(*vol_args)); 1786 if (IS_ERR(vol_args)) 1787 return PTR_ERR(vol_args); 1788 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1789 1790 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1791 vol_args->fd, subvol, 1792 NULL, false, NULL); 1793 1794 kfree(vol_args); 1795 return ret; 1796 } 1797 1798 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1799 void __user *arg, int subvol) 1800 { 1801 struct btrfs_ioctl_vol_args_v2 *vol_args; 1802 int ret; 1803 u64 transid = 0; 1804 u64 *ptr = NULL; 1805 bool readonly = false; 1806 struct btrfs_qgroup_inherit *inherit = NULL; 1807 1808 if (!S_ISDIR(file_inode(file)->i_mode)) 1809 return -ENOTDIR; 1810 1811 vol_args = memdup_user(arg, sizeof(*vol_args)); 1812 if (IS_ERR(vol_args)) 1813 return PTR_ERR(vol_args); 1814 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1815 1816 if (vol_args->flags & 1817 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1818 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1819 ret = -EOPNOTSUPP; 1820 goto free_args; 1821 } 1822 1823 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1824 ptr = &transid; 1825 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1826 readonly = true; 1827 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1828 if (vol_args->size > PAGE_SIZE) { 1829 ret = -EINVAL; 1830 goto free_args; 1831 } 1832 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1833 if (IS_ERR(inherit)) { 1834 ret = PTR_ERR(inherit); 1835 goto free_args; 1836 } 1837 } 1838 1839 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1840 vol_args->fd, subvol, ptr, 1841 readonly, inherit); 1842 if (ret) 1843 goto free_inherit; 1844 1845 if (ptr && copy_to_user(arg + 1846 offsetof(struct btrfs_ioctl_vol_args_v2, 1847 transid), 1848 ptr, sizeof(*ptr))) 1849 ret = -EFAULT; 1850 1851 free_inherit: 1852 kfree(inherit); 1853 free_args: 1854 kfree(vol_args); 1855 return ret; 1856 } 1857 1858 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1859 void __user *arg) 1860 { 1861 struct inode *inode = file_inode(file); 1862 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1863 struct btrfs_root *root = BTRFS_I(inode)->root; 1864 int ret = 0; 1865 u64 flags = 0; 1866 1867 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1868 return -EINVAL; 1869 1870 down_read(&fs_info->subvol_sem); 1871 if (btrfs_root_readonly(root)) 1872 flags |= BTRFS_SUBVOL_RDONLY; 1873 up_read(&fs_info->subvol_sem); 1874 1875 if (copy_to_user(arg, &flags, sizeof(flags))) 1876 ret = -EFAULT; 1877 1878 return ret; 1879 } 1880 1881 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1882 void __user *arg) 1883 { 1884 struct inode *inode = file_inode(file); 1885 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1886 struct btrfs_root *root = BTRFS_I(inode)->root; 1887 struct btrfs_trans_handle *trans; 1888 u64 root_flags; 1889 u64 flags; 1890 int ret = 0; 1891 1892 if (!inode_owner_or_capable(inode)) 1893 return -EPERM; 1894 1895 ret = mnt_want_write_file(file); 1896 if (ret) 1897 goto out; 1898 1899 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1900 ret = -EINVAL; 1901 goto out_drop_write; 1902 } 1903 1904 if (copy_from_user(&flags, arg, sizeof(flags))) { 1905 ret = -EFAULT; 1906 goto out_drop_write; 1907 } 1908 1909 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1910 ret = -EINVAL; 1911 goto out_drop_write; 1912 } 1913 1914 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1915 ret = -EOPNOTSUPP; 1916 goto out_drop_write; 1917 } 1918 1919 down_write(&fs_info->subvol_sem); 1920 1921 /* nothing to do */ 1922 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1923 goto out_drop_sem; 1924 1925 root_flags = btrfs_root_flags(&root->root_item); 1926 if (flags & BTRFS_SUBVOL_RDONLY) { 1927 btrfs_set_root_flags(&root->root_item, 1928 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1929 } else { 1930 /* 1931 * Block RO -> RW transition if this subvolume is involved in 1932 * send 1933 */ 1934 spin_lock(&root->root_item_lock); 1935 if (root->send_in_progress == 0) { 1936 btrfs_set_root_flags(&root->root_item, 1937 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1938 spin_unlock(&root->root_item_lock); 1939 } else { 1940 spin_unlock(&root->root_item_lock); 1941 btrfs_warn(fs_info, 1942 "Attempt to set subvolume %llu read-write during send", 1943 root->root_key.objectid); 1944 ret = -EPERM; 1945 goto out_drop_sem; 1946 } 1947 } 1948 1949 trans = btrfs_start_transaction(root, 1); 1950 if (IS_ERR(trans)) { 1951 ret = PTR_ERR(trans); 1952 goto out_reset; 1953 } 1954 1955 ret = btrfs_update_root(trans, fs_info->tree_root, 1956 &root->root_key, &root->root_item); 1957 if (ret < 0) { 1958 btrfs_end_transaction(trans); 1959 goto out_reset; 1960 } 1961 1962 ret = btrfs_commit_transaction(trans); 1963 1964 out_reset: 1965 if (ret) 1966 btrfs_set_root_flags(&root->root_item, root_flags); 1967 out_drop_sem: 1968 up_write(&fs_info->subvol_sem); 1969 out_drop_write: 1970 mnt_drop_write_file(file); 1971 out: 1972 return ret; 1973 } 1974 1975 static noinline int key_in_sk(struct btrfs_key *key, 1976 struct btrfs_ioctl_search_key *sk) 1977 { 1978 struct btrfs_key test; 1979 int ret; 1980 1981 test.objectid = sk->min_objectid; 1982 test.type = sk->min_type; 1983 test.offset = sk->min_offset; 1984 1985 ret = btrfs_comp_cpu_keys(key, &test); 1986 if (ret < 0) 1987 return 0; 1988 1989 test.objectid = sk->max_objectid; 1990 test.type = sk->max_type; 1991 test.offset = sk->max_offset; 1992 1993 ret = btrfs_comp_cpu_keys(key, &test); 1994 if (ret > 0) 1995 return 0; 1996 return 1; 1997 } 1998 1999 static noinline int copy_to_sk(struct btrfs_path *path, 2000 struct btrfs_key *key, 2001 struct btrfs_ioctl_search_key *sk, 2002 size_t *buf_size, 2003 char __user *ubuf, 2004 unsigned long *sk_offset, 2005 int *num_found) 2006 { 2007 u64 found_transid; 2008 struct extent_buffer *leaf; 2009 struct btrfs_ioctl_search_header sh; 2010 struct btrfs_key test; 2011 unsigned long item_off; 2012 unsigned long item_len; 2013 int nritems; 2014 int i; 2015 int slot; 2016 int ret = 0; 2017 2018 leaf = path->nodes[0]; 2019 slot = path->slots[0]; 2020 nritems = btrfs_header_nritems(leaf); 2021 2022 if (btrfs_header_generation(leaf) > sk->max_transid) { 2023 i = nritems; 2024 goto advance_key; 2025 } 2026 found_transid = btrfs_header_generation(leaf); 2027 2028 for (i = slot; i < nritems; i++) { 2029 item_off = btrfs_item_ptr_offset(leaf, i); 2030 item_len = btrfs_item_size_nr(leaf, i); 2031 2032 btrfs_item_key_to_cpu(leaf, key, i); 2033 if (!key_in_sk(key, sk)) 2034 continue; 2035 2036 if (sizeof(sh) + item_len > *buf_size) { 2037 if (*num_found) { 2038 ret = 1; 2039 goto out; 2040 } 2041 2042 /* 2043 * return one empty item back for v1, which does not 2044 * handle -EOVERFLOW 2045 */ 2046 2047 *buf_size = sizeof(sh) + item_len; 2048 item_len = 0; 2049 ret = -EOVERFLOW; 2050 } 2051 2052 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2053 ret = 1; 2054 goto out; 2055 } 2056 2057 sh.objectid = key->objectid; 2058 sh.offset = key->offset; 2059 sh.type = key->type; 2060 sh.len = item_len; 2061 sh.transid = found_transid; 2062 2063 /* copy search result header */ 2064 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2065 ret = -EFAULT; 2066 goto out; 2067 } 2068 2069 *sk_offset += sizeof(sh); 2070 2071 if (item_len) { 2072 char __user *up = ubuf + *sk_offset; 2073 /* copy the item */ 2074 if (read_extent_buffer_to_user(leaf, up, 2075 item_off, item_len)) { 2076 ret = -EFAULT; 2077 goto out; 2078 } 2079 2080 *sk_offset += item_len; 2081 } 2082 (*num_found)++; 2083 2084 if (ret) /* -EOVERFLOW from above */ 2085 goto out; 2086 2087 if (*num_found >= sk->nr_items) { 2088 ret = 1; 2089 goto out; 2090 } 2091 } 2092 advance_key: 2093 ret = 0; 2094 test.objectid = sk->max_objectid; 2095 test.type = sk->max_type; 2096 test.offset = sk->max_offset; 2097 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2098 ret = 1; 2099 else if (key->offset < (u64)-1) 2100 key->offset++; 2101 else if (key->type < (u8)-1) { 2102 key->offset = 0; 2103 key->type++; 2104 } else if (key->objectid < (u64)-1) { 2105 key->offset = 0; 2106 key->type = 0; 2107 key->objectid++; 2108 } else 2109 ret = 1; 2110 out: 2111 /* 2112 * 0: all items from this leaf copied, continue with next 2113 * 1: * more items can be copied, but unused buffer is too small 2114 * * all items were found 2115 * Either way, it will stops the loop which iterates to the next 2116 * leaf 2117 * -EOVERFLOW: item was to large for buffer 2118 * -EFAULT: could not copy extent buffer back to userspace 2119 */ 2120 return ret; 2121 } 2122 2123 static noinline int search_ioctl(struct inode *inode, 2124 struct btrfs_ioctl_search_key *sk, 2125 size_t *buf_size, 2126 char __user *ubuf) 2127 { 2128 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2129 struct btrfs_root *root; 2130 struct btrfs_key key; 2131 struct btrfs_path *path; 2132 int ret; 2133 int num_found = 0; 2134 unsigned long sk_offset = 0; 2135 2136 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2137 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2138 return -EOVERFLOW; 2139 } 2140 2141 path = btrfs_alloc_path(); 2142 if (!path) 2143 return -ENOMEM; 2144 2145 if (sk->tree_id == 0) { 2146 /* search the root of the inode that was passed */ 2147 root = BTRFS_I(inode)->root; 2148 } else { 2149 key.objectid = sk->tree_id; 2150 key.type = BTRFS_ROOT_ITEM_KEY; 2151 key.offset = (u64)-1; 2152 root = btrfs_read_fs_root_no_name(info, &key); 2153 if (IS_ERR(root)) { 2154 btrfs_free_path(path); 2155 return PTR_ERR(root); 2156 } 2157 } 2158 2159 key.objectid = sk->min_objectid; 2160 key.type = sk->min_type; 2161 key.offset = sk->min_offset; 2162 2163 while (1) { 2164 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2165 if (ret != 0) { 2166 if (ret > 0) 2167 ret = 0; 2168 goto err; 2169 } 2170 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2171 &sk_offset, &num_found); 2172 btrfs_release_path(path); 2173 if (ret) 2174 break; 2175 2176 } 2177 if (ret > 0) 2178 ret = 0; 2179 err: 2180 sk->nr_items = num_found; 2181 btrfs_free_path(path); 2182 return ret; 2183 } 2184 2185 static noinline int btrfs_ioctl_tree_search(struct file *file, 2186 void __user *argp) 2187 { 2188 struct btrfs_ioctl_search_args __user *uargs; 2189 struct btrfs_ioctl_search_key sk; 2190 struct inode *inode; 2191 int ret; 2192 size_t buf_size; 2193 2194 if (!capable(CAP_SYS_ADMIN)) 2195 return -EPERM; 2196 2197 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2198 2199 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2200 return -EFAULT; 2201 2202 buf_size = sizeof(uargs->buf); 2203 2204 inode = file_inode(file); 2205 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2206 2207 /* 2208 * In the origin implementation an overflow is handled by returning a 2209 * search header with a len of zero, so reset ret. 2210 */ 2211 if (ret == -EOVERFLOW) 2212 ret = 0; 2213 2214 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2215 ret = -EFAULT; 2216 return ret; 2217 } 2218 2219 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2220 void __user *argp) 2221 { 2222 struct btrfs_ioctl_search_args_v2 __user *uarg; 2223 struct btrfs_ioctl_search_args_v2 args; 2224 struct inode *inode; 2225 int ret; 2226 size_t buf_size; 2227 const size_t buf_limit = SZ_16M; 2228 2229 if (!capable(CAP_SYS_ADMIN)) 2230 return -EPERM; 2231 2232 /* copy search header and buffer size */ 2233 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2234 if (copy_from_user(&args, uarg, sizeof(args))) 2235 return -EFAULT; 2236 2237 buf_size = args.buf_size; 2238 2239 /* limit result size to 16MB */ 2240 if (buf_size > buf_limit) 2241 buf_size = buf_limit; 2242 2243 inode = file_inode(file); 2244 ret = search_ioctl(inode, &args.key, &buf_size, 2245 (char __user *)(&uarg->buf[0])); 2246 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2247 ret = -EFAULT; 2248 else if (ret == -EOVERFLOW && 2249 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2250 ret = -EFAULT; 2251 2252 return ret; 2253 } 2254 2255 /* 2256 * Search INODE_REFs to identify path name of 'dirid' directory 2257 * in a 'tree_id' tree. and sets path name to 'name'. 2258 */ 2259 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2260 u64 tree_id, u64 dirid, char *name) 2261 { 2262 struct btrfs_root *root; 2263 struct btrfs_key key; 2264 char *ptr; 2265 int ret = -1; 2266 int slot; 2267 int len; 2268 int total_len = 0; 2269 struct btrfs_inode_ref *iref; 2270 struct extent_buffer *l; 2271 struct btrfs_path *path; 2272 2273 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2274 name[0]='\0'; 2275 return 0; 2276 } 2277 2278 path = btrfs_alloc_path(); 2279 if (!path) 2280 return -ENOMEM; 2281 2282 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2283 2284 key.objectid = tree_id; 2285 key.type = BTRFS_ROOT_ITEM_KEY; 2286 key.offset = (u64)-1; 2287 root = btrfs_read_fs_root_no_name(info, &key); 2288 if (IS_ERR(root)) { 2289 ret = PTR_ERR(root); 2290 goto out; 2291 } 2292 2293 key.objectid = dirid; 2294 key.type = BTRFS_INODE_REF_KEY; 2295 key.offset = (u64)-1; 2296 2297 while (1) { 2298 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2299 if (ret < 0) 2300 goto out; 2301 else if (ret > 0) { 2302 ret = btrfs_previous_item(root, path, dirid, 2303 BTRFS_INODE_REF_KEY); 2304 if (ret < 0) 2305 goto out; 2306 else if (ret > 0) { 2307 ret = -ENOENT; 2308 goto out; 2309 } 2310 } 2311 2312 l = path->nodes[0]; 2313 slot = path->slots[0]; 2314 btrfs_item_key_to_cpu(l, &key, slot); 2315 2316 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2317 len = btrfs_inode_ref_name_len(l, iref); 2318 ptr -= len + 1; 2319 total_len += len + 1; 2320 if (ptr < name) { 2321 ret = -ENAMETOOLONG; 2322 goto out; 2323 } 2324 2325 *(ptr + len) = '/'; 2326 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2327 2328 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2329 break; 2330 2331 btrfs_release_path(path); 2332 key.objectid = key.offset; 2333 key.offset = (u64)-1; 2334 dirid = key.objectid; 2335 } 2336 memmove(name, ptr, total_len); 2337 name[total_len] = '\0'; 2338 ret = 0; 2339 out: 2340 btrfs_free_path(path); 2341 return ret; 2342 } 2343 2344 static int btrfs_search_path_in_tree_user(struct inode *inode, 2345 struct btrfs_ioctl_ino_lookup_user_args *args) 2346 { 2347 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2348 struct super_block *sb = inode->i_sb; 2349 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2350 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2351 u64 dirid = args->dirid; 2352 unsigned long item_off; 2353 unsigned long item_len; 2354 struct btrfs_inode_ref *iref; 2355 struct btrfs_root_ref *rref; 2356 struct btrfs_root *root; 2357 struct btrfs_path *path; 2358 struct btrfs_key key, key2; 2359 struct extent_buffer *leaf; 2360 struct inode *temp_inode; 2361 char *ptr; 2362 int slot; 2363 int len; 2364 int total_len = 0; 2365 int ret; 2366 2367 path = btrfs_alloc_path(); 2368 if (!path) 2369 return -ENOMEM; 2370 2371 /* 2372 * If the bottom subvolume does not exist directly under upper_limit, 2373 * construct the path in from the bottom up. 2374 */ 2375 if (dirid != upper_limit.objectid) { 2376 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2377 2378 key.objectid = treeid; 2379 key.type = BTRFS_ROOT_ITEM_KEY; 2380 key.offset = (u64)-1; 2381 root = btrfs_read_fs_root_no_name(fs_info, &key); 2382 if (IS_ERR(root)) { 2383 ret = PTR_ERR(root); 2384 goto out; 2385 } 2386 2387 key.objectid = dirid; 2388 key.type = BTRFS_INODE_REF_KEY; 2389 key.offset = (u64)-1; 2390 while (1) { 2391 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2392 if (ret < 0) { 2393 goto out; 2394 } else if (ret > 0) { 2395 ret = btrfs_previous_item(root, path, dirid, 2396 BTRFS_INODE_REF_KEY); 2397 if (ret < 0) { 2398 goto out; 2399 } else if (ret > 0) { 2400 ret = -ENOENT; 2401 goto out; 2402 } 2403 } 2404 2405 leaf = path->nodes[0]; 2406 slot = path->slots[0]; 2407 btrfs_item_key_to_cpu(leaf, &key, slot); 2408 2409 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2410 len = btrfs_inode_ref_name_len(leaf, iref); 2411 ptr -= len + 1; 2412 total_len += len + 1; 2413 if (ptr < args->path) { 2414 ret = -ENAMETOOLONG; 2415 goto out; 2416 } 2417 2418 *(ptr + len) = '/'; 2419 read_extent_buffer(leaf, ptr, 2420 (unsigned long)(iref + 1), len); 2421 2422 /* Check the read+exec permission of this directory */ 2423 ret = btrfs_previous_item(root, path, dirid, 2424 BTRFS_INODE_ITEM_KEY); 2425 if (ret < 0) { 2426 goto out; 2427 } else if (ret > 0) { 2428 ret = -ENOENT; 2429 goto out; 2430 } 2431 2432 leaf = path->nodes[0]; 2433 slot = path->slots[0]; 2434 btrfs_item_key_to_cpu(leaf, &key2, slot); 2435 if (key2.objectid != dirid) { 2436 ret = -ENOENT; 2437 goto out; 2438 } 2439 2440 temp_inode = btrfs_iget(sb, &key2, root, NULL); 2441 if (IS_ERR(temp_inode)) { 2442 ret = PTR_ERR(temp_inode); 2443 goto out; 2444 } 2445 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2446 iput(temp_inode); 2447 if (ret) { 2448 ret = -EACCES; 2449 goto out; 2450 } 2451 2452 if (key.offset == upper_limit.objectid) 2453 break; 2454 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2455 ret = -EACCES; 2456 goto out; 2457 } 2458 2459 btrfs_release_path(path); 2460 key.objectid = key.offset; 2461 key.offset = (u64)-1; 2462 dirid = key.objectid; 2463 } 2464 2465 memmove(args->path, ptr, total_len); 2466 args->path[total_len] = '\0'; 2467 btrfs_release_path(path); 2468 } 2469 2470 /* Get the bottom subvolume's name from ROOT_REF */ 2471 root = fs_info->tree_root; 2472 key.objectid = treeid; 2473 key.type = BTRFS_ROOT_REF_KEY; 2474 key.offset = args->treeid; 2475 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2476 if (ret < 0) { 2477 goto out; 2478 } else if (ret > 0) { 2479 ret = -ENOENT; 2480 goto out; 2481 } 2482 2483 leaf = path->nodes[0]; 2484 slot = path->slots[0]; 2485 btrfs_item_key_to_cpu(leaf, &key, slot); 2486 2487 item_off = btrfs_item_ptr_offset(leaf, slot); 2488 item_len = btrfs_item_size_nr(leaf, slot); 2489 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2490 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2491 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2492 ret = -EINVAL; 2493 goto out; 2494 } 2495 2496 /* Copy subvolume's name */ 2497 item_off += sizeof(struct btrfs_root_ref); 2498 item_len -= sizeof(struct btrfs_root_ref); 2499 read_extent_buffer(leaf, args->name, item_off, item_len); 2500 args->name[item_len] = 0; 2501 2502 out: 2503 btrfs_free_path(path); 2504 return ret; 2505 } 2506 2507 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2508 void __user *argp) 2509 { 2510 struct btrfs_ioctl_ino_lookup_args *args; 2511 struct inode *inode; 2512 int ret = 0; 2513 2514 args = memdup_user(argp, sizeof(*args)); 2515 if (IS_ERR(args)) 2516 return PTR_ERR(args); 2517 2518 inode = file_inode(file); 2519 2520 /* 2521 * Unprivileged query to obtain the containing subvolume root id. The 2522 * path is reset so it's consistent with btrfs_search_path_in_tree. 2523 */ 2524 if (args->treeid == 0) 2525 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2526 2527 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2528 args->name[0] = 0; 2529 goto out; 2530 } 2531 2532 if (!capable(CAP_SYS_ADMIN)) { 2533 ret = -EPERM; 2534 goto out; 2535 } 2536 2537 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2538 args->treeid, args->objectid, 2539 args->name); 2540 2541 out: 2542 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2543 ret = -EFAULT; 2544 2545 kfree(args); 2546 return ret; 2547 } 2548 2549 /* 2550 * Version of ino_lookup ioctl (unprivileged) 2551 * 2552 * The main differences from ino_lookup ioctl are: 2553 * 2554 * 1. Read + Exec permission will be checked using inode_permission() during 2555 * path construction. -EACCES will be returned in case of failure. 2556 * 2. Path construction will be stopped at the inode number which corresponds 2557 * to the fd with which this ioctl is called. If constructed path does not 2558 * exist under fd's inode, -EACCES will be returned. 2559 * 3. The name of bottom subvolume is also searched and filled. 2560 */ 2561 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2562 { 2563 struct btrfs_ioctl_ino_lookup_user_args *args; 2564 struct inode *inode; 2565 int ret; 2566 2567 args = memdup_user(argp, sizeof(*args)); 2568 if (IS_ERR(args)) 2569 return PTR_ERR(args); 2570 2571 inode = file_inode(file); 2572 2573 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2574 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2575 /* 2576 * The subvolume does not exist under fd with which this is 2577 * called 2578 */ 2579 kfree(args); 2580 return -EACCES; 2581 } 2582 2583 ret = btrfs_search_path_in_tree_user(inode, args); 2584 2585 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2586 ret = -EFAULT; 2587 2588 kfree(args); 2589 return ret; 2590 } 2591 2592 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2593 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2594 { 2595 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2596 struct btrfs_fs_info *fs_info; 2597 struct btrfs_root *root; 2598 struct btrfs_path *path; 2599 struct btrfs_key key; 2600 struct btrfs_root_item *root_item; 2601 struct btrfs_root_ref *rref; 2602 struct extent_buffer *leaf; 2603 unsigned long item_off; 2604 unsigned long item_len; 2605 struct inode *inode; 2606 int slot; 2607 int ret = 0; 2608 2609 path = btrfs_alloc_path(); 2610 if (!path) 2611 return -ENOMEM; 2612 2613 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2614 if (!subvol_info) { 2615 btrfs_free_path(path); 2616 return -ENOMEM; 2617 } 2618 2619 inode = file_inode(file); 2620 fs_info = BTRFS_I(inode)->root->fs_info; 2621 2622 /* Get root_item of inode's subvolume */ 2623 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2624 key.type = BTRFS_ROOT_ITEM_KEY; 2625 key.offset = (u64)-1; 2626 root = btrfs_read_fs_root_no_name(fs_info, &key); 2627 if (IS_ERR(root)) { 2628 ret = PTR_ERR(root); 2629 goto out; 2630 } 2631 root_item = &root->root_item; 2632 2633 subvol_info->treeid = key.objectid; 2634 2635 subvol_info->generation = btrfs_root_generation(root_item); 2636 subvol_info->flags = btrfs_root_flags(root_item); 2637 2638 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2639 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2640 BTRFS_UUID_SIZE); 2641 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2642 BTRFS_UUID_SIZE); 2643 2644 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2645 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2646 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2647 2648 subvol_info->otransid = btrfs_root_otransid(root_item); 2649 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2650 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2651 2652 subvol_info->stransid = btrfs_root_stransid(root_item); 2653 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2654 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2655 2656 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2657 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2658 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2659 2660 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2661 /* Search root tree for ROOT_BACKREF of this subvolume */ 2662 root = fs_info->tree_root; 2663 2664 key.type = BTRFS_ROOT_BACKREF_KEY; 2665 key.offset = 0; 2666 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2667 if (ret < 0) { 2668 goto out; 2669 } else if (path->slots[0] >= 2670 btrfs_header_nritems(path->nodes[0])) { 2671 ret = btrfs_next_leaf(root, path); 2672 if (ret < 0) { 2673 goto out; 2674 } else if (ret > 0) { 2675 ret = -EUCLEAN; 2676 goto out; 2677 } 2678 } 2679 2680 leaf = path->nodes[0]; 2681 slot = path->slots[0]; 2682 btrfs_item_key_to_cpu(leaf, &key, slot); 2683 if (key.objectid == subvol_info->treeid && 2684 key.type == BTRFS_ROOT_BACKREF_KEY) { 2685 subvol_info->parent_id = key.offset; 2686 2687 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2688 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2689 2690 item_off = btrfs_item_ptr_offset(leaf, slot) 2691 + sizeof(struct btrfs_root_ref); 2692 item_len = btrfs_item_size_nr(leaf, slot) 2693 - sizeof(struct btrfs_root_ref); 2694 read_extent_buffer(leaf, subvol_info->name, 2695 item_off, item_len); 2696 } else { 2697 ret = -ENOENT; 2698 goto out; 2699 } 2700 } 2701 2702 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2703 ret = -EFAULT; 2704 2705 out: 2706 btrfs_free_path(path); 2707 kzfree(subvol_info); 2708 return ret; 2709 } 2710 2711 /* 2712 * Return ROOT_REF information of the subvolume containing this inode 2713 * except the subvolume name. 2714 */ 2715 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2716 { 2717 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2718 struct btrfs_root_ref *rref; 2719 struct btrfs_root *root; 2720 struct btrfs_path *path; 2721 struct btrfs_key key; 2722 struct extent_buffer *leaf; 2723 struct inode *inode; 2724 u64 objectid; 2725 int slot; 2726 int ret; 2727 u8 found; 2728 2729 path = btrfs_alloc_path(); 2730 if (!path) 2731 return -ENOMEM; 2732 2733 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2734 if (IS_ERR(rootrefs)) { 2735 btrfs_free_path(path); 2736 return PTR_ERR(rootrefs); 2737 } 2738 2739 inode = file_inode(file); 2740 root = BTRFS_I(inode)->root->fs_info->tree_root; 2741 objectid = BTRFS_I(inode)->root->root_key.objectid; 2742 2743 key.objectid = objectid; 2744 key.type = BTRFS_ROOT_REF_KEY; 2745 key.offset = rootrefs->min_treeid; 2746 found = 0; 2747 2748 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2749 if (ret < 0) { 2750 goto out; 2751 } else if (path->slots[0] >= 2752 btrfs_header_nritems(path->nodes[0])) { 2753 ret = btrfs_next_leaf(root, path); 2754 if (ret < 0) { 2755 goto out; 2756 } else if (ret > 0) { 2757 ret = -EUCLEAN; 2758 goto out; 2759 } 2760 } 2761 while (1) { 2762 leaf = path->nodes[0]; 2763 slot = path->slots[0]; 2764 2765 btrfs_item_key_to_cpu(leaf, &key, slot); 2766 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2767 ret = 0; 2768 goto out; 2769 } 2770 2771 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2772 ret = -EOVERFLOW; 2773 goto out; 2774 } 2775 2776 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2777 rootrefs->rootref[found].treeid = key.offset; 2778 rootrefs->rootref[found].dirid = 2779 btrfs_root_ref_dirid(leaf, rref); 2780 found++; 2781 2782 ret = btrfs_next_item(root, path); 2783 if (ret < 0) { 2784 goto out; 2785 } else if (ret > 0) { 2786 ret = -EUCLEAN; 2787 goto out; 2788 } 2789 } 2790 2791 out: 2792 if (!ret || ret == -EOVERFLOW) { 2793 rootrefs->num_items = found; 2794 /* update min_treeid for next search */ 2795 if (found) 2796 rootrefs->min_treeid = 2797 rootrefs->rootref[found - 1].treeid + 1; 2798 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2799 ret = -EFAULT; 2800 } 2801 2802 kfree(rootrefs); 2803 btrfs_free_path(path); 2804 2805 return ret; 2806 } 2807 2808 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2809 void __user *arg) 2810 { 2811 struct dentry *parent = file->f_path.dentry; 2812 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2813 struct dentry *dentry; 2814 struct inode *dir = d_inode(parent); 2815 struct inode *inode; 2816 struct btrfs_root *root = BTRFS_I(dir)->root; 2817 struct btrfs_root *dest = NULL; 2818 struct btrfs_ioctl_vol_args *vol_args; 2819 int namelen; 2820 int err = 0; 2821 2822 if (!S_ISDIR(dir->i_mode)) 2823 return -ENOTDIR; 2824 2825 vol_args = memdup_user(arg, sizeof(*vol_args)); 2826 if (IS_ERR(vol_args)) 2827 return PTR_ERR(vol_args); 2828 2829 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2830 namelen = strlen(vol_args->name); 2831 if (strchr(vol_args->name, '/') || 2832 strncmp(vol_args->name, "..", namelen) == 0) { 2833 err = -EINVAL; 2834 goto out; 2835 } 2836 2837 err = mnt_want_write_file(file); 2838 if (err) 2839 goto out; 2840 2841 2842 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2843 if (err == -EINTR) 2844 goto out_drop_write; 2845 dentry = lookup_one_len(vol_args->name, parent, namelen); 2846 if (IS_ERR(dentry)) { 2847 err = PTR_ERR(dentry); 2848 goto out_unlock_dir; 2849 } 2850 2851 if (d_really_is_negative(dentry)) { 2852 err = -ENOENT; 2853 goto out_dput; 2854 } 2855 2856 inode = d_inode(dentry); 2857 dest = BTRFS_I(inode)->root; 2858 if (!capable(CAP_SYS_ADMIN)) { 2859 /* 2860 * Regular user. Only allow this with a special mount 2861 * option, when the user has write+exec access to the 2862 * subvol root, and when rmdir(2) would have been 2863 * allowed. 2864 * 2865 * Note that this is _not_ check that the subvol is 2866 * empty or doesn't contain data that we wouldn't 2867 * otherwise be able to delete. 2868 * 2869 * Users who want to delete empty subvols should try 2870 * rmdir(2). 2871 */ 2872 err = -EPERM; 2873 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2874 goto out_dput; 2875 2876 /* 2877 * Do not allow deletion if the parent dir is the same 2878 * as the dir to be deleted. That means the ioctl 2879 * must be called on the dentry referencing the root 2880 * of the subvol, not a random directory contained 2881 * within it. 2882 */ 2883 err = -EINVAL; 2884 if (root == dest) 2885 goto out_dput; 2886 2887 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2888 if (err) 2889 goto out_dput; 2890 } 2891 2892 /* check if subvolume may be deleted by a user */ 2893 err = btrfs_may_delete(dir, dentry, 1); 2894 if (err) 2895 goto out_dput; 2896 2897 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2898 err = -EINVAL; 2899 goto out_dput; 2900 } 2901 2902 inode_lock(inode); 2903 err = btrfs_delete_subvolume(dir, dentry); 2904 inode_unlock(inode); 2905 if (!err) 2906 d_delete(dentry); 2907 2908 out_dput: 2909 dput(dentry); 2910 out_unlock_dir: 2911 inode_unlock(dir); 2912 out_drop_write: 2913 mnt_drop_write_file(file); 2914 out: 2915 kfree(vol_args); 2916 return err; 2917 } 2918 2919 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2920 { 2921 struct inode *inode = file_inode(file); 2922 struct btrfs_root *root = BTRFS_I(inode)->root; 2923 struct btrfs_ioctl_defrag_range_args *range; 2924 int ret; 2925 2926 ret = mnt_want_write_file(file); 2927 if (ret) 2928 return ret; 2929 2930 if (btrfs_root_readonly(root)) { 2931 ret = -EROFS; 2932 goto out; 2933 } 2934 2935 switch (inode->i_mode & S_IFMT) { 2936 case S_IFDIR: 2937 if (!capable(CAP_SYS_ADMIN)) { 2938 ret = -EPERM; 2939 goto out; 2940 } 2941 ret = btrfs_defrag_root(root); 2942 break; 2943 case S_IFREG: 2944 if (!(file->f_mode & FMODE_WRITE)) { 2945 ret = -EINVAL; 2946 goto out; 2947 } 2948 2949 range = kzalloc(sizeof(*range), GFP_KERNEL); 2950 if (!range) { 2951 ret = -ENOMEM; 2952 goto out; 2953 } 2954 2955 if (argp) { 2956 if (copy_from_user(range, argp, 2957 sizeof(*range))) { 2958 ret = -EFAULT; 2959 kfree(range); 2960 goto out; 2961 } 2962 /* compression requires us to start the IO */ 2963 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2964 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2965 range->extent_thresh = (u32)-1; 2966 } 2967 } else { 2968 /* the rest are all set to zero by kzalloc */ 2969 range->len = (u64)-1; 2970 } 2971 ret = btrfs_defrag_file(file_inode(file), file, 2972 range, BTRFS_OLDEST_GENERATION, 0); 2973 if (ret > 0) 2974 ret = 0; 2975 kfree(range); 2976 break; 2977 default: 2978 ret = -EINVAL; 2979 } 2980 out: 2981 mnt_drop_write_file(file); 2982 return ret; 2983 } 2984 2985 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2986 { 2987 struct btrfs_ioctl_vol_args *vol_args; 2988 int ret; 2989 2990 if (!capable(CAP_SYS_ADMIN)) 2991 return -EPERM; 2992 2993 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 2994 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2995 2996 vol_args = memdup_user(arg, sizeof(*vol_args)); 2997 if (IS_ERR(vol_args)) { 2998 ret = PTR_ERR(vol_args); 2999 goto out; 3000 } 3001 3002 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3003 ret = btrfs_init_new_device(fs_info, vol_args->name); 3004 3005 if (!ret) 3006 btrfs_info(fs_info, "disk added %s", vol_args->name); 3007 3008 kfree(vol_args); 3009 out: 3010 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3011 return ret; 3012 } 3013 3014 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3015 { 3016 struct inode *inode = file_inode(file); 3017 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3018 struct btrfs_ioctl_vol_args_v2 *vol_args; 3019 int ret; 3020 3021 if (!capable(CAP_SYS_ADMIN)) 3022 return -EPERM; 3023 3024 ret = mnt_want_write_file(file); 3025 if (ret) 3026 return ret; 3027 3028 vol_args = memdup_user(arg, sizeof(*vol_args)); 3029 if (IS_ERR(vol_args)) { 3030 ret = PTR_ERR(vol_args); 3031 goto err_drop; 3032 } 3033 3034 /* Check for compatibility reject unknown flags */ 3035 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) { 3036 ret = -EOPNOTSUPP; 3037 goto out; 3038 } 3039 3040 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3041 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3042 goto out; 3043 } 3044 3045 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3046 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3047 } else { 3048 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3049 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3050 } 3051 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3052 3053 if (!ret) { 3054 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3055 btrfs_info(fs_info, "device deleted: id %llu", 3056 vol_args->devid); 3057 else 3058 btrfs_info(fs_info, "device deleted: %s", 3059 vol_args->name); 3060 } 3061 out: 3062 kfree(vol_args); 3063 err_drop: 3064 mnt_drop_write_file(file); 3065 return ret; 3066 } 3067 3068 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3069 { 3070 struct inode *inode = file_inode(file); 3071 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3072 struct btrfs_ioctl_vol_args *vol_args; 3073 int ret; 3074 3075 if (!capable(CAP_SYS_ADMIN)) 3076 return -EPERM; 3077 3078 ret = mnt_want_write_file(file); 3079 if (ret) 3080 return ret; 3081 3082 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3083 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3084 goto out_drop_write; 3085 } 3086 3087 vol_args = memdup_user(arg, sizeof(*vol_args)); 3088 if (IS_ERR(vol_args)) { 3089 ret = PTR_ERR(vol_args); 3090 goto out; 3091 } 3092 3093 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3094 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3095 3096 if (!ret) 3097 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3098 kfree(vol_args); 3099 out: 3100 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3101 out_drop_write: 3102 mnt_drop_write_file(file); 3103 3104 return ret; 3105 } 3106 3107 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3108 void __user *arg) 3109 { 3110 struct btrfs_ioctl_fs_info_args *fi_args; 3111 struct btrfs_device *device; 3112 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3113 int ret = 0; 3114 3115 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 3116 if (!fi_args) 3117 return -ENOMEM; 3118 3119 rcu_read_lock(); 3120 fi_args->num_devices = fs_devices->num_devices; 3121 3122 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3123 if (device->devid > fi_args->max_id) 3124 fi_args->max_id = device->devid; 3125 } 3126 rcu_read_unlock(); 3127 3128 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid)); 3129 fi_args->nodesize = fs_info->nodesize; 3130 fi_args->sectorsize = fs_info->sectorsize; 3131 fi_args->clone_alignment = fs_info->sectorsize; 3132 3133 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3134 ret = -EFAULT; 3135 3136 kfree(fi_args); 3137 return ret; 3138 } 3139 3140 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3141 void __user *arg) 3142 { 3143 struct btrfs_ioctl_dev_info_args *di_args; 3144 struct btrfs_device *dev; 3145 int ret = 0; 3146 char *s_uuid = NULL; 3147 3148 di_args = memdup_user(arg, sizeof(*di_args)); 3149 if (IS_ERR(di_args)) 3150 return PTR_ERR(di_args); 3151 3152 if (!btrfs_is_empty_uuid(di_args->uuid)) 3153 s_uuid = di_args->uuid; 3154 3155 rcu_read_lock(); 3156 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL); 3157 3158 if (!dev) { 3159 ret = -ENODEV; 3160 goto out; 3161 } 3162 3163 di_args->devid = dev->devid; 3164 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3165 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3166 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3167 if (dev->name) { 3168 struct rcu_string *name; 3169 3170 name = rcu_dereference(dev->name); 3171 strncpy(di_args->path, name->str, sizeof(di_args->path) - 1); 3172 di_args->path[sizeof(di_args->path) - 1] = 0; 3173 } else { 3174 di_args->path[0] = '\0'; 3175 } 3176 3177 out: 3178 rcu_read_unlock(); 3179 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3180 ret = -EFAULT; 3181 3182 kfree(di_args); 3183 return ret; 3184 } 3185 3186 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 3187 { 3188 struct page *page; 3189 3190 page = grab_cache_page(inode->i_mapping, index); 3191 if (!page) 3192 return ERR_PTR(-ENOMEM); 3193 3194 if (!PageUptodate(page)) { 3195 int ret; 3196 3197 ret = btrfs_readpage(NULL, page); 3198 if (ret) 3199 return ERR_PTR(ret); 3200 lock_page(page); 3201 if (!PageUptodate(page)) { 3202 unlock_page(page); 3203 put_page(page); 3204 return ERR_PTR(-EIO); 3205 } 3206 if (page->mapping != inode->i_mapping) { 3207 unlock_page(page); 3208 put_page(page); 3209 return ERR_PTR(-EAGAIN); 3210 } 3211 } 3212 3213 return page; 3214 } 3215 3216 static int gather_extent_pages(struct inode *inode, struct page **pages, 3217 int num_pages, u64 off) 3218 { 3219 int i; 3220 pgoff_t index = off >> PAGE_SHIFT; 3221 3222 for (i = 0; i < num_pages; i++) { 3223 again: 3224 pages[i] = extent_same_get_page(inode, index + i); 3225 if (IS_ERR(pages[i])) { 3226 int err = PTR_ERR(pages[i]); 3227 3228 if (err == -EAGAIN) 3229 goto again; 3230 pages[i] = NULL; 3231 return err; 3232 } 3233 } 3234 return 0; 3235 } 3236 3237 static int lock_extent_range(struct inode *inode, u64 off, u64 len, 3238 bool retry_range_locking) 3239 { 3240 /* 3241 * Do any pending delalloc/csum calculations on inode, one way or 3242 * another, and lock file content. 3243 * The locking order is: 3244 * 3245 * 1) pages 3246 * 2) range in the inode's io tree 3247 */ 3248 while (1) { 3249 struct btrfs_ordered_extent *ordered; 3250 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 3251 ordered = btrfs_lookup_first_ordered_extent(inode, 3252 off + len - 1); 3253 if ((!ordered || 3254 ordered->file_offset + ordered->len <= off || 3255 ordered->file_offset >= off + len) && 3256 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 3257 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 3258 if (ordered) 3259 btrfs_put_ordered_extent(ordered); 3260 break; 3261 } 3262 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 3263 if (ordered) 3264 btrfs_put_ordered_extent(ordered); 3265 if (!retry_range_locking) 3266 return -EAGAIN; 3267 btrfs_wait_ordered_range(inode, off, len); 3268 } 3269 return 0; 3270 } 3271 3272 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 3273 { 3274 inode_unlock(inode1); 3275 inode_unlock(inode2); 3276 } 3277 3278 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 3279 { 3280 if (inode1 < inode2) 3281 swap(inode1, inode2); 3282 3283 inode_lock_nested(inode1, I_MUTEX_PARENT); 3284 inode_lock_nested(inode2, I_MUTEX_CHILD); 3285 } 3286 3287 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 3288 struct inode *inode2, u64 loff2, u64 len) 3289 { 3290 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3291 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3292 } 3293 3294 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 3295 struct inode *inode2, u64 loff2, u64 len, 3296 bool retry_range_locking) 3297 { 3298 int ret; 3299 3300 if (inode1 < inode2) { 3301 swap(inode1, inode2); 3302 swap(loff1, loff2); 3303 } 3304 ret = lock_extent_range(inode1, loff1, len, retry_range_locking); 3305 if (ret) 3306 return ret; 3307 ret = lock_extent_range(inode2, loff2, len, retry_range_locking); 3308 if (ret) 3309 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, 3310 loff1 + len - 1); 3311 return ret; 3312 } 3313 3314 struct cmp_pages { 3315 int num_pages; 3316 struct page **src_pages; 3317 struct page **dst_pages; 3318 }; 3319 3320 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 3321 { 3322 int i; 3323 struct page *pg; 3324 3325 for (i = 0; i < cmp->num_pages; i++) { 3326 pg = cmp->src_pages[i]; 3327 if (pg) { 3328 unlock_page(pg); 3329 put_page(pg); 3330 cmp->src_pages[i] = NULL; 3331 } 3332 pg = cmp->dst_pages[i]; 3333 if (pg) { 3334 unlock_page(pg); 3335 put_page(pg); 3336 cmp->dst_pages[i] = NULL; 3337 } 3338 } 3339 } 3340 3341 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 3342 struct inode *dst, u64 dst_loff, 3343 u64 len, struct cmp_pages *cmp) 3344 { 3345 int ret; 3346 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT; 3347 3348 cmp->num_pages = num_pages; 3349 3350 ret = gather_extent_pages(src, cmp->src_pages, num_pages, loff); 3351 if (ret) 3352 goto out; 3353 3354 ret = gather_extent_pages(dst, cmp->dst_pages, num_pages, dst_loff); 3355 3356 out: 3357 if (ret) 3358 btrfs_cmp_data_free(cmp); 3359 return ret; 3360 } 3361 3362 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp) 3363 { 3364 int ret = 0; 3365 int i; 3366 struct page *src_page, *dst_page; 3367 unsigned int cmp_len = PAGE_SIZE; 3368 void *addr, *dst_addr; 3369 3370 i = 0; 3371 while (len) { 3372 if (len < PAGE_SIZE) 3373 cmp_len = len; 3374 3375 BUG_ON(i >= cmp->num_pages); 3376 3377 src_page = cmp->src_pages[i]; 3378 dst_page = cmp->dst_pages[i]; 3379 ASSERT(PageLocked(src_page)); 3380 ASSERT(PageLocked(dst_page)); 3381 3382 addr = kmap_atomic(src_page); 3383 dst_addr = kmap_atomic(dst_page); 3384 3385 flush_dcache_page(src_page); 3386 flush_dcache_page(dst_page); 3387 3388 if (memcmp(addr, dst_addr, cmp_len)) 3389 ret = -EBADE; 3390 3391 kunmap_atomic(addr); 3392 kunmap_atomic(dst_addr); 3393 3394 if (ret) 3395 break; 3396 3397 len -= cmp_len; 3398 i++; 3399 } 3400 3401 return ret; 3402 } 3403 3404 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 3405 u64 olen) 3406 { 3407 u64 len = *plen; 3408 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 3409 3410 if (off + olen > inode->i_size || off + olen < off) 3411 return -EINVAL; 3412 3413 /* if we extend to eof, continue to block boundary */ 3414 if (off + len == inode->i_size) 3415 *plen = len = ALIGN(inode->i_size, bs) - off; 3416 3417 /* Check that we are block aligned - btrfs_clone() requires this */ 3418 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 3419 return -EINVAL; 3420 3421 return 0; 3422 } 3423 3424 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 olen, 3425 struct inode *dst, u64 dst_loff, 3426 struct cmp_pages *cmp) 3427 { 3428 int ret; 3429 u64 len = olen; 3430 bool same_inode = (src == dst); 3431 u64 same_lock_start = 0; 3432 u64 same_lock_len = 0; 3433 3434 ret = extent_same_check_offsets(src, loff, &len, olen); 3435 if (ret) 3436 return ret; 3437 3438 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3439 if (ret) 3440 return ret; 3441 3442 if (same_inode) { 3443 /* 3444 * Single inode case wants the same checks, except we 3445 * don't want our length pushed out past i_size as 3446 * comparing that data range makes no sense. 3447 * 3448 * extent_same_check_offsets() will do this for an 3449 * unaligned length at i_size, so catch it here and 3450 * reject the request. 3451 * 3452 * This effectively means we require aligned extents 3453 * for the single-inode case, whereas the other cases 3454 * allow an unaligned length so long as it ends at 3455 * i_size. 3456 */ 3457 if (len != olen) 3458 return -EINVAL; 3459 3460 /* Check for overlapping ranges */ 3461 if (dst_loff + len > loff && dst_loff < loff + len) 3462 return -EINVAL; 3463 3464 same_lock_start = min_t(u64, loff, dst_loff); 3465 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3466 } 3467 3468 again: 3469 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, cmp); 3470 if (ret) 3471 return ret; 3472 3473 if (same_inode) 3474 ret = lock_extent_range(src, same_lock_start, same_lock_len, 3475 false); 3476 else 3477 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len, 3478 false); 3479 /* 3480 * If one of the inodes has dirty pages in the respective range or 3481 * ordered extents, we need to flush dellaloc and wait for all ordered 3482 * extents in the range. We must unlock the pages and the ranges in the 3483 * io trees to avoid deadlocks when flushing delalloc (requires locking 3484 * pages) and when waiting for ordered extents to complete (they require 3485 * range locking). 3486 */ 3487 if (ret == -EAGAIN) { 3488 /* 3489 * Ranges in the io trees already unlocked. Now unlock all 3490 * pages before waiting for all IO to complete. 3491 */ 3492 btrfs_cmp_data_free(cmp); 3493 if (same_inode) { 3494 btrfs_wait_ordered_range(src, same_lock_start, 3495 same_lock_len); 3496 } else { 3497 btrfs_wait_ordered_range(src, loff, len); 3498 btrfs_wait_ordered_range(dst, dst_loff, len); 3499 } 3500 goto again; 3501 } 3502 ASSERT(ret == 0); 3503 if (WARN_ON(ret)) { 3504 /* ranges in the io trees already unlocked */ 3505 btrfs_cmp_data_free(cmp); 3506 return ret; 3507 } 3508 3509 /* pass original length for comparison so we stay within i_size */ 3510 ret = btrfs_cmp_data(olen, cmp); 3511 if (ret == 0) 3512 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3513 3514 if (same_inode) 3515 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3516 same_lock_start + same_lock_len - 1); 3517 else 3518 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3519 3520 btrfs_cmp_data_free(cmp); 3521 3522 return ret; 3523 } 3524 3525 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3526 3527 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3528 struct inode *dst, u64 dst_loff) 3529 { 3530 int ret; 3531 struct cmp_pages cmp; 3532 int num_pages = PAGE_ALIGN(BTRFS_MAX_DEDUPE_LEN) >> PAGE_SHIFT; 3533 bool same_inode = (src == dst); 3534 u64 i, tail_len, chunk_count; 3535 3536 if (olen == 0) 3537 return 0; 3538 3539 if (same_inode) 3540 inode_lock(src); 3541 else 3542 btrfs_double_inode_lock(src, dst); 3543 3544 /* don't make the dst file partly checksummed */ 3545 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3546 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3547 ret = -EINVAL; 3548 goto out_unlock; 3549 } 3550 3551 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 3552 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 3553 if (chunk_count == 0) 3554 num_pages = PAGE_ALIGN(tail_len) >> PAGE_SHIFT; 3555 3556 /* 3557 * If deduping ranges in the same inode, locking rules make it 3558 * mandatory to always lock pages in ascending order to avoid deadlocks 3559 * with concurrent tasks (such as starting writeback/delalloc). 3560 */ 3561 if (same_inode && dst_loff < loff) 3562 swap(loff, dst_loff); 3563 3564 /* 3565 * We must gather up all the pages before we initiate our extent 3566 * locking. We use an array for the page pointers. Size of the array is 3567 * bounded by len, which is in turn bounded by BTRFS_MAX_DEDUPE_LEN. 3568 */ 3569 cmp.src_pages = kvmalloc_array(num_pages, sizeof(struct page *), 3570 GFP_KERNEL | __GFP_ZERO); 3571 cmp.dst_pages = kvmalloc_array(num_pages, sizeof(struct page *), 3572 GFP_KERNEL | __GFP_ZERO); 3573 if (!cmp.src_pages || !cmp.dst_pages) { 3574 ret = -ENOMEM; 3575 goto out_free; 3576 } 3577 3578 for (i = 0; i < chunk_count; i++) { 3579 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 3580 dst, dst_loff, &cmp); 3581 if (ret) 3582 goto out_free; 3583 3584 loff += BTRFS_MAX_DEDUPE_LEN; 3585 dst_loff += BTRFS_MAX_DEDUPE_LEN; 3586 } 3587 3588 if (tail_len > 0) 3589 ret = btrfs_extent_same_range(src, loff, tail_len, dst, 3590 dst_loff, &cmp); 3591 3592 out_free: 3593 kvfree(cmp.src_pages); 3594 kvfree(cmp.dst_pages); 3595 3596 out_unlock: 3597 if (same_inode) 3598 inode_unlock(src); 3599 else 3600 btrfs_double_inode_unlock(src, dst); 3601 3602 return ret; 3603 } 3604 3605 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen, 3606 struct file *dst_file, u64 dst_loff) 3607 { 3608 struct inode *src = file_inode(src_file); 3609 struct inode *dst = file_inode(dst_file); 3610 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3611 ssize_t res; 3612 3613 if (WARN_ON_ONCE(bs < PAGE_SIZE)) { 3614 /* 3615 * Btrfs does not support blocksize < page_size. As a 3616 * result, btrfs_cmp_data() won't correctly handle 3617 * this situation without an update. 3618 */ 3619 return -EINVAL; 3620 } 3621 3622 res = btrfs_extent_same(src, loff, olen, dst, dst_loff); 3623 if (res) 3624 return res; 3625 return olen; 3626 } 3627 3628 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3629 struct inode *inode, 3630 u64 endoff, 3631 const u64 destoff, 3632 const u64 olen, 3633 int no_time_update) 3634 { 3635 struct btrfs_root *root = BTRFS_I(inode)->root; 3636 int ret; 3637 3638 inode_inc_iversion(inode); 3639 if (!no_time_update) 3640 inode->i_mtime = inode->i_ctime = current_time(inode); 3641 /* 3642 * We round up to the block size at eof when determining which 3643 * extents to clone above, but shouldn't round up the file size. 3644 */ 3645 if (endoff > destoff + olen) 3646 endoff = destoff + olen; 3647 if (endoff > inode->i_size) 3648 btrfs_i_size_write(BTRFS_I(inode), endoff); 3649 3650 ret = btrfs_update_inode(trans, root, inode); 3651 if (ret) { 3652 btrfs_abort_transaction(trans, ret); 3653 btrfs_end_transaction(trans); 3654 goto out; 3655 } 3656 ret = btrfs_end_transaction(trans); 3657 out: 3658 return ret; 3659 } 3660 3661 static void clone_update_extent_map(struct btrfs_inode *inode, 3662 const struct btrfs_trans_handle *trans, 3663 const struct btrfs_path *path, 3664 const u64 hole_offset, 3665 const u64 hole_len) 3666 { 3667 struct extent_map_tree *em_tree = &inode->extent_tree; 3668 struct extent_map *em; 3669 int ret; 3670 3671 em = alloc_extent_map(); 3672 if (!em) { 3673 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3674 return; 3675 } 3676 3677 if (path) { 3678 struct btrfs_file_extent_item *fi; 3679 3680 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3681 struct btrfs_file_extent_item); 3682 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3683 em->generation = -1; 3684 if (btrfs_file_extent_type(path->nodes[0], fi) == 3685 BTRFS_FILE_EXTENT_INLINE) 3686 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3687 &inode->runtime_flags); 3688 } else { 3689 em->start = hole_offset; 3690 em->len = hole_len; 3691 em->ram_bytes = em->len; 3692 em->orig_start = hole_offset; 3693 em->block_start = EXTENT_MAP_HOLE; 3694 em->block_len = 0; 3695 em->orig_block_len = 0; 3696 em->compress_type = BTRFS_COMPRESS_NONE; 3697 em->generation = trans->transid; 3698 } 3699 3700 while (1) { 3701 write_lock(&em_tree->lock); 3702 ret = add_extent_mapping(em_tree, em, 1); 3703 write_unlock(&em_tree->lock); 3704 if (ret != -EEXIST) { 3705 free_extent_map(em); 3706 break; 3707 } 3708 btrfs_drop_extent_cache(inode, em->start, 3709 em->start + em->len - 1, 0); 3710 } 3711 3712 if (ret) 3713 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3714 } 3715 3716 /* 3717 * Make sure we do not end up inserting an inline extent into a file that has 3718 * already other (non-inline) extents. If a file has an inline extent it can 3719 * not have any other extents and the (single) inline extent must start at the 3720 * file offset 0. Failing to respect these rules will lead to file corruption, 3721 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3722 * 3723 * We can have extents that have been already written to disk or we can have 3724 * dirty ranges still in delalloc, in which case the extent maps and items are 3725 * created only when we run delalloc, and the delalloc ranges might fall outside 3726 * the range we are currently locking in the inode's io tree. So we check the 3727 * inode's i_size because of that (i_size updates are done while holding the 3728 * i_mutex, which we are holding here). 3729 * We also check to see if the inode has a size not greater than "datal" but has 3730 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3731 * protected against such concurrent fallocate calls by the i_mutex). 3732 * 3733 * If the file has no extents but a size greater than datal, do not allow the 3734 * copy because we would need turn the inline extent into a non-inline one (even 3735 * with NO_HOLES enabled). If we find our destination inode only has one inline 3736 * extent, just overwrite it with the source inline extent if its size is less 3737 * than the source extent's size, or we could copy the source inline extent's 3738 * data into the destination inode's inline extent if the later is greater then 3739 * the former. 3740 */ 3741 static int clone_copy_inline_extent(struct inode *dst, 3742 struct btrfs_trans_handle *trans, 3743 struct btrfs_path *path, 3744 struct btrfs_key *new_key, 3745 const u64 drop_start, 3746 const u64 datal, 3747 const u64 skip, 3748 const u64 size, 3749 char *inline_data) 3750 { 3751 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3752 struct btrfs_root *root = BTRFS_I(dst)->root; 3753 const u64 aligned_end = ALIGN(new_key->offset + datal, 3754 fs_info->sectorsize); 3755 int ret; 3756 struct btrfs_key key; 3757 3758 if (new_key->offset > 0) 3759 return -EOPNOTSUPP; 3760 3761 key.objectid = btrfs_ino(BTRFS_I(dst)); 3762 key.type = BTRFS_EXTENT_DATA_KEY; 3763 key.offset = 0; 3764 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3765 if (ret < 0) { 3766 return ret; 3767 } else if (ret > 0) { 3768 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3769 ret = btrfs_next_leaf(root, path); 3770 if (ret < 0) 3771 return ret; 3772 else if (ret > 0) 3773 goto copy_inline_extent; 3774 } 3775 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3776 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3777 key.type == BTRFS_EXTENT_DATA_KEY) { 3778 ASSERT(key.offset > 0); 3779 return -EOPNOTSUPP; 3780 } 3781 } else if (i_size_read(dst) <= datal) { 3782 struct btrfs_file_extent_item *ei; 3783 u64 ext_len; 3784 3785 /* 3786 * If the file size is <= datal, make sure there are no other 3787 * extents following (can happen do to an fallocate call with 3788 * the flag FALLOC_FL_KEEP_SIZE). 3789 */ 3790 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3791 struct btrfs_file_extent_item); 3792 /* 3793 * If it's an inline extent, it can not have other extents 3794 * following it. 3795 */ 3796 if (btrfs_file_extent_type(path->nodes[0], ei) == 3797 BTRFS_FILE_EXTENT_INLINE) 3798 goto copy_inline_extent; 3799 3800 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3801 if (ext_len > aligned_end) 3802 return -EOPNOTSUPP; 3803 3804 ret = btrfs_next_item(root, path); 3805 if (ret < 0) { 3806 return ret; 3807 } else if (ret == 0) { 3808 btrfs_item_key_to_cpu(path->nodes[0], &key, 3809 path->slots[0]); 3810 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3811 key.type == BTRFS_EXTENT_DATA_KEY) 3812 return -EOPNOTSUPP; 3813 } 3814 } 3815 3816 copy_inline_extent: 3817 /* 3818 * We have no extent items, or we have an extent at offset 0 which may 3819 * or may not be inlined. All these cases are dealt the same way. 3820 */ 3821 if (i_size_read(dst) > datal) { 3822 /* 3823 * If the destination inode has an inline extent... 3824 * This would require copying the data from the source inline 3825 * extent into the beginning of the destination's inline extent. 3826 * But this is really complex, both extents can be compressed 3827 * or just one of them, which would require decompressing and 3828 * re-compressing data (which could increase the new compressed 3829 * size, not allowing the compressed data to fit anymore in an 3830 * inline extent). 3831 * So just don't support this case for now (it should be rare, 3832 * we are not really saving space when cloning inline extents). 3833 */ 3834 return -EOPNOTSUPP; 3835 } 3836 3837 btrfs_release_path(path); 3838 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3839 if (ret) 3840 return ret; 3841 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3842 if (ret) 3843 return ret; 3844 3845 if (skip) { 3846 const u32 start = btrfs_file_extent_calc_inline_size(0); 3847 3848 memmove(inline_data + start, inline_data + start + skip, datal); 3849 } 3850 3851 write_extent_buffer(path->nodes[0], inline_data, 3852 btrfs_item_ptr_offset(path->nodes[0], 3853 path->slots[0]), 3854 size); 3855 inode_add_bytes(dst, datal); 3856 3857 return 0; 3858 } 3859 3860 /** 3861 * btrfs_clone() - clone a range from inode file to another 3862 * 3863 * @src: Inode to clone from 3864 * @inode: Inode to clone to 3865 * @off: Offset within source to start clone from 3866 * @olen: Original length, passed by user, of range to clone 3867 * @olen_aligned: Block-aligned value of olen 3868 * @destoff: Offset within @inode to start clone 3869 * @no_time_update: Whether to update mtime/ctime on the target inode 3870 */ 3871 static int btrfs_clone(struct inode *src, struct inode *inode, 3872 const u64 off, const u64 olen, const u64 olen_aligned, 3873 const u64 destoff, int no_time_update) 3874 { 3875 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3876 struct btrfs_root *root = BTRFS_I(inode)->root; 3877 struct btrfs_path *path = NULL; 3878 struct extent_buffer *leaf; 3879 struct btrfs_trans_handle *trans; 3880 char *buf = NULL; 3881 struct btrfs_key key; 3882 u32 nritems; 3883 int slot; 3884 int ret; 3885 const u64 len = olen_aligned; 3886 u64 last_dest_end = destoff; 3887 3888 ret = -ENOMEM; 3889 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 3890 if (!buf) 3891 return ret; 3892 3893 path = btrfs_alloc_path(); 3894 if (!path) { 3895 kvfree(buf); 3896 return ret; 3897 } 3898 3899 path->reada = READA_FORWARD; 3900 /* clone data */ 3901 key.objectid = btrfs_ino(BTRFS_I(src)); 3902 key.type = BTRFS_EXTENT_DATA_KEY; 3903 key.offset = off; 3904 3905 while (1) { 3906 u64 next_key_min_offset = key.offset + 1; 3907 3908 /* 3909 * note the key will change type as we walk through the 3910 * tree. 3911 */ 3912 path->leave_spinning = 1; 3913 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3914 0, 0); 3915 if (ret < 0) 3916 goto out; 3917 /* 3918 * First search, if no extent item that starts at offset off was 3919 * found but the previous item is an extent item, it's possible 3920 * it might overlap our target range, therefore process it. 3921 */ 3922 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3923 btrfs_item_key_to_cpu(path->nodes[0], &key, 3924 path->slots[0] - 1); 3925 if (key.type == BTRFS_EXTENT_DATA_KEY) 3926 path->slots[0]--; 3927 } 3928 3929 nritems = btrfs_header_nritems(path->nodes[0]); 3930 process_slot: 3931 if (path->slots[0] >= nritems) { 3932 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3933 if (ret < 0) 3934 goto out; 3935 if (ret > 0) 3936 break; 3937 nritems = btrfs_header_nritems(path->nodes[0]); 3938 } 3939 leaf = path->nodes[0]; 3940 slot = path->slots[0]; 3941 3942 btrfs_item_key_to_cpu(leaf, &key, slot); 3943 if (key.type > BTRFS_EXTENT_DATA_KEY || 3944 key.objectid != btrfs_ino(BTRFS_I(src))) 3945 break; 3946 3947 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3948 struct btrfs_file_extent_item *extent; 3949 int type; 3950 u32 size; 3951 struct btrfs_key new_key; 3952 u64 disko = 0, diskl = 0; 3953 u64 datao = 0, datal = 0; 3954 u8 comp; 3955 u64 drop_start; 3956 3957 extent = btrfs_item_ptr(leaf, slot, 3958 struct btrfs_file_extent_item); 3959 comp = btrfs_file_extent_compression(leaf, extent); 3960 type = btrfs_file_extent_type(leaf, extent); 3961 if (type == BTRFS_FILE_EXTENT_REG || 3962 type == BTRFS_FILE_EXTENT_PREALLOC) { 3963 disko = btrfs_file_extent_disk_bytenr(leaf, 3964 extent); 3965 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3966 extent); 3967 datao = btrfs_file_extent_offset(leaf, extent); 3968 datal = btrfs_file_extent_num_bytes(leaf, 3969 extent); 3970 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3971 /* take upper bound, may be compressed */ 3972 datal = btrfs_file_extent_ram_bytes(leaf, 3973 extent); 3974 } 3975 3976 /* 3977 * The first search might have left us at an extent 3978 * item that ends before our target range's start, can 3979 * happen if we have holes and NO_HOLES feature enabled. 3980 */ 3981 if (key.offset + datal <= off) { 3982 path->slots[0]++; 3983 goto process_slot; 3984 } else if (key.offset >= off + len) { 3985 break; 3986 } 3987 next_key_min_offset = key.offset + datal; 3988 size = btrfs_item_size_nr(leaf, slot); 3989 read_extent_buffer(leaf, buf, 3990 btrfs_item_ptr_offset(leaf, slot), 3991 size); 3992 3993 btrfs_release_path(path); 3994 path->leave_spinning = 0; 3995 3996 memcpy(&new_key, &key, sizeof(new_key)); 3997 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 3998 if (off <= key.offset) 3999 new_key.offset = key.offset + destoff - off; 4000 else 4001 new_key.offset = destoff; 4002 4003 /* 4004 * Deal with a hole that doesn't have an extent item 4005 * that represents it (NO_HOLES feature enabled). 4006 * This hole is either in the middle of the cloning 4007 * range or at the beginning (fully overlaps it or 4008 * partially overlaps it). 4009 */ 4010 if (new_key.offset != last_dest_end) 4011 drop_start = last_dest_end; 4012 else 4013 drop_start = new_key.offset; 4014 4015 /* 4016 * 1 - adjusting old extent (we may have to split it) 4017 * 1 - add new extent 4018 * 1 - inode update 4019 */ 4020 trans = btrfs_start_transaction(root, 3); 4021 if (IS_ERR(trans)) { 4022 ret = PTR_ERR(trans); 4023 goto out; 4024 } 4025 4026 if (type == BTRFS_FILE_EXTENT_REG || 4027 type == BTRFS_FILE_EXTENT_PREALLOC) { 4028 /* 4029 * a | --- range to clone ---| b 4030 * | ------------- extent ------------- | 4031 */ 4032 4033 /* subtract range b */ 4034 if (key.offset + datal > off + len) 4035 datal = off + len - key.offset; 4036 4037 /* subtract range a */ 4038 if (off > key.offset) { 4039 datao += off - key.offset; 4040 datal -= off - key.offset; 4041 } 4042 4043 ret = btrfs_drop_extents(trans, root, inode, 4044 drop_start, 4045 new_key.offset + datal, 4046 1); 4047 if (ret) { 4048 if (ret != -EOPNOTSUPP) 4049 btrfs_abort_transaction(trans, 4050 ret); 4051 btrfs_end_transaction(trans); 4052 goto out; 4053 } 4054 4055 ret = btrfs_insert_empty_item(trans, root, path, 4056 &new_key, size); 4057 if (ret) { 4058 btrfs_abort_transaction(trans, ret); 4059 btrfs_end_transaction(trans); 4060 goto out; 4061 } 4062 4063 leaf = path->nodes[0]; 4064 slot = path->slots[0]; 4065 write_extent_buffer(leaf, buf, 4066 btrfs_item_ptr_offset(leaf, slot), 4067 size); 4068 4069 extent = btrfs_item_ptr(leaf, slot, 4070 struct btrfs_file_extent_item); 4071 4072 /* disko == 0 means it's a hole */ 4073 if (!disko) 4074 datao = 0; 4075 4076 btrfs_set_file_extent_offset(leaf, extent, 4077 datao); 4078 btrfs_set_file_extent_num_bytes(leaf, extent, 4079 datal); 4080 4081 if (disko) { 4082 inode_add_bytes(inode, datal); 4083 ret = btrfs_inc_extent_ref(trans, 4084 root, 4085 disko, diskl, 0, 4086 root->root_key.objectid, 4087 btrfs_ino(BTRFS_I(inode)), 4088 new_key.offset - datao); 4089 if (ret) { 4090 btrfs_abort_transaction(trans, 4091 ret); 4092 btrfs_end_transaction(trans); 4093 goto out; 4094 4095 } 4096 } 4097 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 4098 u64 skip = 0; 4099 u64 trim = 0; 4100 4101 if (off > key.offset) { 4102 skip = off - key.offset; 4103 new_key.offset += skip; 4104 } 4105 4106 if (key.offset + datal > off + len) 4107 trim = key.offset + datal - (off + len); 4108 4109 if (comp && (skip || trim)) { 4110 ret = -EINVAL; 4111 btrfs_end_transaction(trans); 4112 goto out; 4113 } 4114 size -= skip + trim; 4115 datal -= skip + trim; 4116 4117 ret = clone_copy_inline_extent(inode, 4118 trans, path, 4119 &new_key, 4120 drop_start, 4121 datal, 4122 skip, size, buf); 4123 if (ret) { 4124 if (ret != -EOPNOTSUPP) 4125 btrfs_abort_transaction(trans, 4126 ret); 4127 btrfs_end_transaction(trans); 4128 goto out; 4129 } 4130 leaf = path->nodes[0]; 4131 slot = path->slots[0]; 4132 } 4133 4134 /* If we have an implicit hole (NO_HOLES feature). */ 4135 if (drop_start < new_key.offset) 4136 clone_update_extent_map(BTRFS_I(inode), trans, 4137 NULL, drop_start, 4138 new_key.offset - drop_start); 4139 4140 clone_update_extent_map(BTRFS_I(inode), trans, 4141 path, 0, 0); 4142 4143 btrfs_mark_buffer_dirty(leaf); 4144 btrfs_release_path(path); 4145 4146 last_dest_end = ALIGN(new_key.offset + datal, 4147 fs_info->sectorsize); 4148 ret = clone_finish_inode_update(trans, inode, 4149 last_dest_end, 4150 destoff, olen, 4151 no_time_update); 4152 if (ret) 4153 goto out; 4154 if (new_key.offset + datal >= destoff + len) 4155 break; 4156 } 4157 btrfs_release_path(path); 4158 key.offset = next_key_min_offset; 4159 4160 if (fatal_signal_pending(current)) { 4161 ret = -EINTR; 4162 goto out; 4163 } 4164 } 4165 ret = 0; 4166 4167 if (last_dest_end < destoff + len) { 4168 /* 4169 * We have an implicit hole (NO_HOLES feature is enabled) that 4170 * fully or partially overlaps our cloning range at its end. 4171 */ 4172 btrfs_release_path(path); 4173 4174 /* 4175 * 1 - remove extent(s) 4176 * 1 - inode update 4177 */ 4178 trans = btrfs_start_transaction(root, 2); 4179 if (IS_ERR(trans)) { 4180 ret = PTR_ERR(trans); 4181 goto out; 4182 } 4183 ret = btrfs_drop_extents(trans, root, inode, 4184 last_dest_end, destoff + len, 1); 4185 if (ret) { 4186 if (ret != -EOPNOTSUPP) 4187 btrfs_abort_transaction(trans, ret); 4188 btrfs_end_transaction(trans); 4189 goto out; 4190 } 4191 clone_update_extent_map(BTRFS_I(inode), trans, NULL, 4192 last_dest_end, 4193 destoff + len - last_dest_end); 4194 ret = clone_finish_inode_update(trans, inode, destoff + len, 4195 destoff, olen, no_time_update); 4196 } 4197 4198 out: 4199 btrfs_free_path(path); 4200 kvfree(buf); 4201 return ret; 4202 } 4203 4204 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 4205 u64 off, u64 olen, u64 destoff) 4206 { 4207 struct inode *inode = file_inode(file); 4208 struct inode *src = file_inode(file_src); 4209 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4210 struct btrfs_root *root = BTRFS_I(inode)->root; 4211 int ret; 4212 u64 len = olen; 4213 u64 bs = fs_info->sb->s_blocksize; 4214 int same_inode = src == inode; 4215 4216 /* 4217 * TODO: 4218 * - split compressed inline extents. annoying: we need to 4219 * decompress into destination's address_space (the file offset 4220 * may change, so source mapping won't do), then recompress (or 4221 * otherwise reinsert) a subrange. 4222 * 4223 * - split destination inode's inline extents. The inline extents can 4224 * be either compressed or non-compressed. 4225 */ 4226 4227 if (btrfs_root_readonly(root)) 4228 return -EROFS; 4229 4230 if (file_src->f_path.mnt != file->f_path.mnt || 4231 src->i_sb != inode->i_sb) 4232 return -EXDEV; 4233 4234 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 4235 return -EISDIR; 4236 4237 if (!same_inode) { 4238 btrfs_double_inode_lock(src, inode); 4239 } else { 4240 inode_lock(src); 4241 } 4242 4243 /* don't make the dst file partly checksummed */ 4244 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 4245 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 4246 ret = -EINVAL; 4247 goto out_unlock; 4248 } 4249 4250 /* determine range to clone */ 4251 ret = -EINVAL; 4252 if (off + len > src->i_size || off + len < off) 4253 goto out_unlock; 4254 if (len == 0) 4255 olen = len = src->i_size - off; 4256 /* if we extend to eof, continue to block boundary */ 4257 if (off + len == src->i_size) 4258 len = ALIGN(src->i_size, bs) - off; 4259 4260 if (len == 0) { 4261 ret = 0; 4262 goto out_unlock; 4263 } 4264 4265 /* verify the end result is block aligned */ 4266 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 4267 !IS_ALIGNED(destoff, bs)) 4268 goto out_unlock; 4269 4270 /* verify if ranges are overlapped within the same file */ 4271 if (same_inode) { 4272 if (destoff + len > off && destoff < off + len) 4273 goto out_unlock; 4274 } 4275 4276 if (destoff > inode->i_size) { 4277 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 4278 if (ret) 4279 goto out_unlock; 4280 } 4281 4282 /* 4283 * Lock the target range too. Right after we replace the file extent 4284 * items in the fs tree (which now point to the cloned data), we might 4285 * have a worker replace them with extent items relative to a write 4286 * operation that was issued before this clone operation (i.e. confront 4287 * with inode.c:btrfs_finish_ordered_io). 4288 */ 4289 if (same_inode) { 4290 u64 lock_start = min_t(u64, off, destoff); 4291 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 4292 4293 ret = lock_extent_range(src, lock_start, lock_len, true); 4294 } else { 4295 ret = btrfs_double_extent_lock(src, off, inode, destoff, len, 4296 true); 4297 } 4298 ASSERT(ret == 0); 4299 if (WARN_ON(ret)) { 4300 /* ranges in the io trees already unlocked */ 4301 goto out_unlock; 4302 } 4303 4304 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 4305 4306 if (same_inode) { 4307 u64 lock_start = min_t(u64, off, destoff); 4308 u64 lock_end = max_t(u64, off, destoff) + len - 1; 4309 4310 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 4311 } else { 4312 btrfs_double_extent_unlock(src, off, inode, destoff, len); 4313 } 4314 /* 4315 * Truncate page cache pages so that future reads will see the cloned 4316 * data immediately and not the previous data. 4317 */ 4318 truncate_inode_pages_range(&inode->i_data, 4319 round_down(destoff, PAGE_SIZE), 4320 round_up(destoff + len, PAGE_SIZE) - 1); 4321 out_unlock: 4322 if (!same_inode) 4323 btrfs_double_inode_unlock(src, inode); 4324 else 4325 inode_unlock(src); 4326 return ret; 4327 } 4328 4329 int btrfs_clone_file_range(struct file *src_file, loff_t off, 4330 struct file *dst_file, loff_t destoff, u64 len) 4331 { 4332 return btrfs_clone_files(dst_file, src_file, off, len, destoff); 4333 } 4334 4335 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4336 { 4337 struct inode *inode = file_inode(file); 4338 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4339 struct btrfs_root *root = BTRFS_I(inode)->root; 4340 struct btrfs_root *new_root; 4341 struct btrfs_dir_item *di; 4342 struct btrfs_trans_handle *trans; 4343 struct btrfs_path *path; 4344 struct btrfs_key location; 4345 struct btrfs_disk_key disk_key; 4346 u64 objectid = 0; 4347 u64 dir_id; 4348 int ret; 4349 4350 if (!capable(CAP_SYS_ADMIN)) 4351 return -EPERM; 4352 4353 ret = mnt_want_write_file(file); 4354 if (ret) 4355 return ret; 4356 4357 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4358 ret = -EFAULT; 4359 goto out; 4360 } 4361 4362 if (!objectid) 4363 objectid = BTRFS_FS_TREE_OBJECTID; 4364 4365 location.objectid = objectid; 4366 location.type = BTRFS_ROOT_ITEM_KEY; 4367 location.offset = (u64)-1; 4368 4369 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 4370 if (IS_ERR(new_root)) { 4371 ret = PTR_ERR(new_root); 4372 goto out; 4373 } 4374 if (!is_fstree(new_root->objectid)) { 4375 ret = -ENOENT; 4376 goto out; 4377 } 4378 4379 path = btrfs_alloc_path(); 4380 if (!path) { 4381 ret = -ENOMEM; 4382 goto out; 4383 } 4384 path->leave_spinning = 1; 4385 4386 trans = btrfs_start_transaction(root, 1); 4387 if (IS_ERR(trans)) { 4388 btrfs_free_path(path); 4389 ret = PTR_ERR(trans); 4390 goto out; 4391 } 4392 4393 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4394 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4395 dir_id, "default", 7, 1); 4396 if (IS_ERR_OR_NULL(di)) { 4397 btrfs_free_path(path); 4398 btrfs_end_transaction(trans); 4399 btrfs_err(fs_info, 4400 "Umm, you don't have the default diritem, this isn't going to work"); 4401 ret = -ENOENT; 4402 goto out; 4403 } 4404 4405 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4406 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4407 btrfs_mark_buffer_dirty(path->nodes[0]); 4408 btrfs_free_path(path); 4409 4410 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4411 btrfs_end_transaction(trans); 4412 out: 4413 mnt_drop_write_file(file); 4414 return ret; 4415 } 4416 4417 static void get_block_group_info(struct list_head *groups_list, 4418 struct btrfs_ioctl_space_info *space) 4419 { 4420 struct btrfs_block_group_cache *block_group; 4421 4422 space->total_bytes = 0; 4423 space->used_bytes = 0; 4424 space->flags = 0; 4425 list_for_each_entry(block_group, groups_list, list) { 4426 space->flags = block_group->flags; 4427 space->total_bytes += block_group->key.offset; 4428 space->used_bytes += 4429 btrfs_block_group_used(&block_group->item); 4430 } 4431 } 4432 4433 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4434 void __user *arg) 4435 { 4436 struct btrfs_ioctl_space_args space_args; 4437 struct btrfs_ioctl_space_info space; 4438 struct btrfs_ioctl_space_info *dest; 4439 struct btrfs_ioctl_space_info *dest_orig; 4440 struct btrfs_ioctl_space_info __user *user_dest; 4441 struct btrfs_space_info *info; 4442 static const u64 types[] = { 4443 BTRFS_BLOCK_GROUP_DATA, 4444 BTRFS_BLOCK_GROUP_SYSTEM, 4445 BTRFS_BLOCK_GROUP_METADATA, 4446 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 4447 }; 4448 int num_types = 4; 4449 int alloc_size; 4450 int ret = 0; 4451 u64 slot_count = 0; 4452 int i, c; 4453 4454 if (copy_from_user(&space_args, 4455 (struct btrfs_ioctl_space_args __user *)arg, 4456 sizeof(space_args))) 4457 return -EFAULT; 4458 4459 for (i = 0; i < num_types; i++) { 4460 struct btrfs_space_info *tmp; 4461 4462 info = NULL; 4463 rcu_read_lock(); 4464 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4465 list) { 4466 if (tmp->flags == types[i]) { 4467 info = tmp; 4468 break; 4469 } 4470 } 4471 rcu_read_unlock(); 4472 4473 if (!info) 4474 continue; 4475 4476 down_read(&info->groups_sem); 4477 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4478 if (!list_empty(&info->block_groups[c])) 4479 slot_count++; 4480 } 4481 up_read(&info->groups_sem); 4482 } 4483 4484 /* 4485 * Global block reserve, exported as a space_info 4486 */ 4487 slot_count++; 4488 4489 /* space_slots == 0 means they are asking for a count */ 4490 if (space_args.space_slots == 0) { 4491 space_args.total_spaces = slot_count; 4492 goto out; 4493 } 4494 4495 slot_count = min_t(u64, space_args.space_slots, slot_count); 4496 4497 alloc_size = sizeof(*dest) * slot_count; 4498 4499 /* we generally have at most 6 or so space infos, one for each raid 4500 * level. So, a whole page should be more than enough for everyone 4501 */ 4502 if (alloc_size > PAGE_SIZE) 4503 return -ENOMEM; 4504 4505 space_args.total_spaces = 0; 4506 dest = kmalloc(alloc_size, GFP_KERNEL); 4507 if (!dest) 4508 return -ENOMEM; 4509 dest_orig = dest; 4510 4511 /* now we have a buffer to copy into */ 4512 for (i = 0; i < num_types; i++) { 4513 struct btrfs_space_info *tmp; 4514 4515 if (!slot_count) 4516 break; 4517 4518 info = NULL; 4519 rcu_read_lock(); 4520 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4521 list) { 4522 if (tmp->flags == types[i]) { 4523 info = tmp; 4524 break; 4525 } 4526 } 4527 rcu_read_unlock(); 4528 4529 if (!info) 4530 continue; 4531 down_read(&info->groups_sem); 4532 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4533 if (!list_empty(&info->block_groups[c])) { 4534 get_block_group_info(&info->block_groups[c], 4535 &space); 4536 memcpy(dest, &space, sizeof(space)); 4537 dest++; 4538 space_args.total_spaces++; 4539 slot_count--; 4540 } 4541 if (!slot_count) 4542 break; 4543 } 4544 up_read(&info->groups_sem); 4545 } 4546 4547 /* 4548 * Add global block reserve 4549 */ 4550 if (slot_count) { 4551 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4552 4553 spin_lock(&block_rsv->lock); 4554 space.total_bytes = block_rsv->size; 4555 space.used_bytes = block_rsv->size - block_rsv->reserved; 4556 spin_unlock(&block_rsv->lock); 4557 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4558 memcpy(dest, &space, sizeof(space)); 4559 space_args.total_spaces++; 4560 } 4561 4562 user_dest = (struct btrfs_ioctl_space_info __user *) 4563 (arg + sizeof(struct btrfs_ioctl_space_args)); 4564 4565 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4566 ret = -EFAULT; 4567 4568 kfree(dest_orig); 4569 out: 4570 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4571 ret = -EFAULT; 4572 4573 return ret; 4574 } 4575 4576 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4577 void __user *argp) 4578 { 4579 struct btrfs_trans_handle *trans; 4580 u64 transid; 4581 int ret; 4582 4583 trans = btrfs_attach_transaction_barrier(root); 4584 if (IS_ERR(trans)) { 4585 if (PTR_ERR(trans) != -ENOENT) 4586 return PTR_ERR(trans); 4587 4588 /* No running transaction, don't bother */ 4589 transid = root->fs_info->last_trans_committed; 4590 goto out; 4591 } 4592 transid = trans->transid; 4593 ret = btrfs_commit_transaction_async(trans, 0); 4594 if (ret) { 4595 btrfs_end_transaction(trans); 4596 return ret; 4597 } 4598 out: 4599 if (argp) 4600 if (copy_to_user(argp, &transid, sizeof(transid))) 4601 return -EFAULT; 4602 return 0; 4603 } 4604 4605 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4606 void __user *argp) 4607 { 4608 u64 transid; 4609 4610 if (argp) { 4611 if (copy_from_user(&transid, argp, sizeof(transid))) 4612 return -EFAULT; 4613 } else { 4614 transid = 0; /* current trans */ 4615 } 4616 return btrfs_wait_for_commit(fs_info, transid); 4617 } 4618 4619 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4620 { 4621 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4622 struct btrfs_ioctl_scrub_args *sa; 4623 int ret; 4624 4625 if (!capable(CAP_SYS_ADMIN)) 4626 return -EPERM; 4627 4628 sa = memdup_user(arg, sizeof(*sa)); 4629 if (IS_ERR(sa)) 4630 return PTR_ERR(sa); 4631 4632 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4633 ret = mnt_want_write_file(file); 4634 if (ret) 4635 goto out; 4636 } 4637 4638 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4639 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4640 0); 4641 4642 if (copy_to_user(arg, sa, sizeof(*sa))) 4643 ret = -EFAULT; 4644 4645 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4646 mnt_drop_write_file(file); 4647 out: 4648 kfree(sa); 4649 return ret; 4650 } 4651 4652 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4653 { 4654 if (!capable(CAP_SYS_ADMIN)) 4655 return -EPERM; 4656 4657 return btrfs_scrub_cancel(fs_info); 4658 } 4659 4660 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4661 void __user *arg) 4662 { 4663 struct btrfs_ioctl_scrub_args *sa; 4664 int ret; 4665 4666 if (!capable(CAP_SYS_ADMIN)) 4667 return -EPERM; 4668 4669 sa = memdup_user(arg, sizeof(*sa)); 4670 if (IS_ERR(sa)) 4671 return PTR_ERR(sa); 4672 4673 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4674 4675 if (copy_to_user(arg, sa, sizeof(*sa))) 4676 ret = -EFAULT; 4677 4678 kfree(sa); 4679 return ret; 4680 } 4681 4682 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4683 void __user *arg) 4684 { 4685 struct btrfs_ioctl_get_dev_stats *sa; 4686 int ret; 4687 4688 sa = memdup_user(arg, sizeof(*sa)); 4689 if (IS_ERR(sa)) 4690 return PTR_ERR(sa); 4691 4692 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4693 kfree(sa); 4694 return -EPERM; 4695 } 4696 4697 ret = btrfs_get_dev_stats(fs_info, sa); 4698 4699 if (copy_to_user(arg, sa, sizeof(*sa))) 4700 ret = -EFAULT; 4701 4702 kfree(sa); 4703 return ret; 4704 } 4705 4706 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4707 void __user *arg) 4708 { 4709 struct btrfs_ioctl_dev_replace_args *p; 4710 int ret; 4711 4712 if (!capable(CAP_SYS_ADMIN)) 4713 return -EPERM; 4714 4715 p = memdup_user(arg, sizeof(*p)); 4716 if (IS_ERR(p)) 4717 return PTR_ERR(p); 4718 4719 switch (p->cmd) { 4720 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4721 if (sb_rdonly(fs_info->sb)) { 4722 ret = -EROFS; 4723 goto out; 4724 } 4725 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4726 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4727 } else { 4728 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4729 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4730 } 4731 break; 4732 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4733 btrfs_dev_replace_status(fs_info, p); 4734 ret = 0; 4735 break; 4736 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4737 p->result = btrfs_dev_replace_cancel(fs_info); 4738 ret = 0; 4739 break; 4740 default: 4741 ret = -EINVAL; 4742 break; 4743 } 4744 4745 if (copy_to_user(arg, p, sizeof(*p))) 4746 ret = -EFAULT; 4747 out: 4748 kfree(p); 4749 return ret; 4750 } 4751 4752 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4753 { 4754 int ret = 0; 4755 int i; 4756 u64 rel_ptr; 4757 int size; 4758 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4759 struct inode_fs_paths *ipath = NULL; 4760 struct btrfs_path *path; 4761 4762 if (!capable(CAP_DAC_READ_SEARCH)) 4763 return -EPERM; 4764 4765 path = btrfs_alloc_path(); 4766 if (!path) { 4767 ret = -ENOMEM; 4768 goto out; 4769 } 4770 4771 ipa = memdup_user(arg, sizeof(*ipa)); 4772 if (IS_ERR(ipa)) { 4773 ret = PTR_ERR(ipa); 4774 ipa = NULL; 4775 goto out; 4776 } 4777 4778 size = min_t(u32, ipa->size, 4096); 4779 ipath = init_ipath(size, root, path); 4780 if (IS_ERR(ipath)) { 4781 ret = PTR_ERR(ipath); 4782 ipath = NULL; 4783 goto out; 4784 } 4785 4786 ret = paths_from_inode(ipa->inum, ipath); 4787 if (ret < 0) 4788 goto out; 4789 4790 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4791 rel_ptr = ipath->fspath->val[i] - 4792 (u64)(unsigned long)ipath->fspath->val; 4793 ipath->fspath->val[i] = rel_ptr; 4794 } 4795 4796 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4797 ipath->fspath, size); 4798 if (ret) { 4799 ret = -EFAULT; 4800 goto out; 4801 } 4802 4803 out: 4804 btrfs_free_path(path); 4805 free_ipath(ipath); 4806 kfree(ipa); 4807 4808 return ret; 4809 } 4810 4811 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4812 { 4813 struct btrfs_data_container *inodes = ctx; 4814 const size_t c = 3 * sizeof(u64); 4815 4816 if (inodes->bytes_left >= c) { 4817 inodes->bytes_left -= c; 4818 inodes->val[inodes->elem_cnt] = inum; 4819 inodes->val[inodes->elem_cnt + 1] = offset; 4820 inodes->val[inodes->elem_cnt + 2] = root; 4821 inodes->elem_cnt += 3; 4822 } else { 4823 inodes->bytes_missing += c - inodes->bytes_left; 4824 inodes->bytes_left = 0; 4825 inodes->elem_missed += 3; 4826 } 4827 4828 return 0; 4829 } 4830 4831 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4832 void __user *arg, int version) 4833 { 4834 int ret = 0; 4835 int size; 4836 struct btrfs_ioctl_logical_ino_args *loi; 4837 struct btrfs_data_container *inodes = NULL; 4838 struct btrfs_path *path = NULL; 4839 bool ignore_offset; 4840 4841 if (!capable(CAP_SYS_ADMIN)) 4842 return -EPERM; 4843 4844 loi = memdup_user(arg, sizeof(*loi)); 4845 if (IS_ERR(loi)) 4846 return PTR_ERR(loi); 4847 4848 if (version == 1) { 4849 ignore_offset = false; 4850 size = min_t(u32, loi->size, SZ_64K); 4851 } else { 4852 /* All reserved bits must be 0 for now */ 4853 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4854 ret = -EINVAL; 4855 goto out_loi; 4856 } 4857 /* Only accept flags we have defined so far */ 4858 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4859 ret = -EINVAL; 4860 goto out_loi; 4861 } 4862 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4863 size = min_t(u32, loi->size, SZ_16M); 4864 } 4865 4866 path = btrfs_alloc_path(); 4867 if (!path) { 4868 ret = -ENOMEM; 4869 goto out; 4870 } 4871 4872 inodes = init_data_container(size); 4873 if (IS_ERR(inodes)) { 4874 ret = PTR_ERR(inodes); 4875 inodes = NULL; 4876 goto out; 4877 } 4878 4879 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4880 build_ino_list, inodes, ignore_offset); 4881 if (ret == -EINVAL) 4882 ret = -ENOENT; 4883 if (ret < 0) 4884 goto out; 4885 4886 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4887 size); 4888 if (ret) 4889 ret = -EFAULT; 4890 4891 out: 4892 btrfs_free_path(path); 4893 kvfree(inodes); 4894 out_loi: 4895 kfree(loi); 4896 4897 return ret; 4898 } 4899 4900 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4901 struct btrfs_ioctl_balance_args *bargs) 4902 { 4903 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4904 4905 bargs->flags = bctl->flags; 4906 4907 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4908 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4909 if (atomic_read(&fs_info->balance_pause_req)) 4910 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4911 if (atomic_read(&fs_info->balance_cancel_req)) 4912 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4913 4914 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4915 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4916 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4917 4918 spin_lock(&fs_info->balance_lock); 4919 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4920 spin_unlock(&fs_info->balance_lock); 4921 } 4922 4923 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4924 { 4925 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4926 struct btrfs_fs_info *fs_info = root->fs_info; 4927 struct btrfs_ioctl_balance_args *bargs; 4928 struct btrfs_balance_control *bctl; 4929 bool need_unlock; /* for mut. excl. ops lock */ 4930 int ret; 4931 4932 if (!capable(CAP_SYS_ADMIN)) 4933 return -EPERM; 4934 4935 ret = mnt_want_write_file(file); 4936 if (ret) 4937 return ret; 4938 4939 again: 4940 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4941 mutex_lock(&fs_info->balance_mutex); 4942 need_unlock = true; 4943 goto locked; 4944 } 4945 4946 /* 4947 * mut. excl. ops lock is locked. Three possibilities: 4948 * (1) some other op is running 4949 * (2) balance is running 4950 * (3) balance is paused -- special case (think resume) 4951 */ 4952 mutex_lock(&fs_info->balance_mutex); 4953 if (fs_info->balance_ctl) { 4954 /* this is either (2) or (3) */ 4955 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4956 mutex_unlock(&fs_info->balance_mutex); 4957 /* 4958 * Lock released to allow other waiters to continue, 4959 * we'll reexamine the status again. 4960 */ 4961 mutex_lock(&fs_info->balance_mutex); 4962 4963 if (fs_info->balance_ctl && 4964 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4965 /* this is (3) */ 4966 need_unlock = false; 4967 goto locked; 4968 } 4969 4970 mutex_unlock(&fs_info->balance_mutex); 4971 goto again; 4972 } else { 4973 /* this is (2) */ 4974 mutex_unlock(&fs_info->balance_mutex); 4975 ret = -EINPROGRESS; 4976 goto out; 4977 } 4978 } else { 4979 /* this is (1) */ 4980 mutex_unlock(&fs_info->balance_mutex); 4981 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4982 goto out; 4983 } 4984 4985 locked: 4986 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4987 4988 if (arg) { 4989 bargs = memdup_user(arg, sizeof(*bargs)); 4990 if (IS_ERR(bargs)) { 4991 ret = PTR_ERR(bargs); 4992 goto out_unlock; 4993 } 4994 4995 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4996 if (!fs_info->balance_ctl) { 4997 ret = -ENOTCONN; 4998 goto out_bargs; 4999 } 5000 5001 bctl = fs_info->balance_ctl; 5002 spin_lock(&fs_info->balance_lock); 5003 bctl->flags |= BTRFS_BALANCE_RESUME; 5004 spin_unlock(&fs_info->balance_lock); 5005 5006 goto do_balance; 5007 } 5008 } else { 5009 bargs = NULL; 5010 } 5011 5012 if (fs_info->balance_ctl) { 5013 ret = -EINPROGRESS; 5014 goto out_bargs; 5015 } 5016 5017 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 5018 if (!bctl) { 5019 ret = -ENOMEM; 5020 goto out_bargs; 5021 } 5022 5023 if (arg) { 5024 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 5025 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 5026 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 5027 5028 bctl->flags = bargs->flags; 5029 } else { 5030 /* balance everything - no filters */ 5031 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 5032 } 5033 5034 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 5035 ret = -EINVAL; 5036 goto out_bctl; 5037 } 5038 5039 do_balance: 5040 /* 5041 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to 5042 * btrfs_balance. bctl is freed in reset_balance_state, or, if 5043 * restriper was paused all the way until unmount, in free_fs_info. 5044 * The flag should be cleared after reset_balance_state. 5045 */ 5046 need_unlock = false; 5047 5048 ret = btrfs_balance(fs_info, bctl, bargs); 5049 bctl = NULL; 5050 5051 if (arg) { 5052 if (copy_to_user(arg, bargs, sizeof(*bargs))) 5053 ret = -EFAULT; 5054 } 5055 5056 out_bctl: 5057 kfree(bctl); 5058 out_bargs: 5059 kfree(bargs); 5060 out_unlock: 5061 mutex_unlock(&fs_info->balance_mutex); 5062 if (need_unlock) 5063 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 5064 out: 5065 mnt_drop_write_file(file); 5066 return ret; 5067 } 5068 5069 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 5070 { 5071 if (!capable(CAP_SYS_ADMIN)) 5072 return -EPERM; 5073 5074 switch (cmd) { 5075 case BTRFS_BALANCE_CTL_PAUSE: 5076 return btrfs_pause_balance(fs_info); 5077 case BTRFS_BALANCE_CTL_CANCEL: 5078 return btrfs_cancel_balance(fs_info); 5079 } 5080 5081 return -EINVAL; 5082 } 5083 5084 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 5085 void __user *arg) 5086 { 5087 struct btrfs_ioctl_balance_args *bargs; 5088 int ret = 0; 5089 5090 if (!capable(CAP_SYS_ADMIN)) 5091 return -EPERM; 5092 5093 mutex_lock(&fs_info->balance_mutex); 5094 if (!fs_info->balance_ctl) { 5095 ret = -ENOTCONN; 5096 goto out; 5097 } 5098 5099 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 5100 if (!bargs) { 5101 ret = -ENOMEM; 5102 goto out; 5103 } 5104 5105 btrfs_update_ioctl_balance_args(fs_info, bargs); 5106 5107 if (copy_to_user(arg, bargs, sizeof(*bargs))) 5108 ret = -EFAULT; 5109 5110 kfree(bargs); 5111 out: 5112 mutex_unlock(&fs_info->balance_mutex); 5113 return ret; 5114 } 5115 5116 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 5117 { 5118 struct inode *inode = file_inode(file); 5119 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5120 struct btrfs_ioctl_quota_ctl_args *sa; 5121 struct btrfs_trans_handle *trans = NULL; 5122 int ret; 5123 int err; 5124 5125 if (!capable(CAP_SYS_ADMIN)) 5126 return -EPERM; 5127 5128 ret = mnt_want_write_file(file); 5129 if (ret) 5130 return ret; 5131 5132 sa = memdup_user(arg, sizeof(*sa)); 5133 if (IS_ERR(sa)) { 5134 ret = PTR_ERR(sa); 5135 goto drop_write; 5136 } 5137 5138 down_write(&fs_info->subvol_sem); 5139 trans = btrfs_start_transaction(fs_info->tree_root, 2); 5140 if (IS_ERR(trans)) { 5141 ret = PTR_ERR(trans); 5142 goto out; 5143 } 5144 5145 switch (sa->cmd) { 5146 case BTRFS_QUOTA_CTL_ENABLE: 5147 ret = btrfs_quota_enable(trans, fs_info); 5148 break; 5149 case BTRFS_QUOTA_CTL_DISABLE: 5150 ret = btrfs_quota_disable(trans, fs_info); 5151 break; 5152 default: 5153 ret = -EINVAL; 5154 break; 5155 } 5156 5157 err = btrfs_commit_transaction(trans); 5158 if (err && !ret) 5159 ret = err; 5160 out: 5161 kfree(sa); 5162 up_write(&fs_info->subvol_sem); 5163 drop_write: 5164 mnt_drop_write_file(file); 5165 return ret; 5166 } 5167 5168 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 5169 { 5170 struct inode *inode = file_inode(file); 5171 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5172 struct btrfs_root *root = BTRFS_I(inode)->root; 5173 struct btrfs_ioctl_qgroup_assign_args *sa; 5174 struct btrfs_trans_handle *trans; 5175 int ret; 5176 int err; 5177 5178 if (!capable(CAP_SYS_ADMIN)) 5179 return -EPERM; 5180 5181 ret = mnt_want_write_file(file); 5182 if (ret) 5183 return ret; 5184 5185 sa = memdup_user(arg, sizeof(*sa)); 5186 if (IS_ERR(sa)) { 5187 ret = PTR_ERR(sa); 5188 goto drop_write; 5189 } 5190 5191 trans = btrfs_join_transaction(root); 5192 if (IS_ERR(trans)) { 5193 ret = PTR_ERR(trans); 5194 goto out; 5195 } 5196 5197 if (sa->assign) { 5198 ret = btrfs_add_qgroup_relation(trans, fs_info, 5199 sa->src, sa->dst); 5200 } else { 5201 ret = btrfs_del_qgroup_relation(trans, fs_info, 5202 sa->src, sa->dst); 5203 } 5204 5205 /* update qgroup status and info */ 5206 err = btrfs_run_qgroups(trans, fs_info); 5207 if (err < 0) 5208 btrfs_handle_fs_error(fs_info, err, 5209 "failed to update qgroup status and info"); 5210 err = btrfs_end_transaction(trans); 5211 if (err && !ret) 5212 ret = err; 5213 5214 out: 5215 kfree(sa); 5216 drop_write: 5217 mnt_drop_write_file(file); 5218 return ret; 5219 } 5220 5221 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 5222 { 5223 struct inode *inode = file_inode(file); 5224 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5225 struct btrfs_root *root = BTRFS_I(inode)->root; 5226 struct btrfs_ioctl_qgroup_create_args *sa; 5227 struct btrfs_trans_handle *trans; 5228 int ret; 5229 int err; 5230 5231 if (!capable(CAP_SYS_ADMIN)) 5232 return -EPERM; 5233 5234 ret = mnt_want_write_file(file); 5235 if (ret) 5236 return ret; 5237 5238 sa = memdup_user(arg, sizeof(*sa)); 5239 if (IS_ERR(sa)) { 5240 ret = PTR_ERR(sa); 5241 goto drop_write; 5242 } 5243 5244 if (!sa->qgroupid) { 5245 ret = -EINVAL; 5246 goto out; 5247 } 5248 5249 trans = btrfs_join_transaction(root); 5250 if (IS_ERR(trans)) { 5251 ret = PTR_ERR(trans); 5252 goto out; 5253 } 5254 5255 if (sa->create) { 5256 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid); 5257 } else { 5258 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid); 5259 } 5260 5261 err = btrfs_end_transaction(trans); 5262 if (err && !ret) 5263 ret = err; 5264 5265 out: 5266 kfree(sa); 5267 drop_write: 5268 mnt_drop_write_file(file); 5269 return ret; 5270 } 5271 5272 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 5273 { 5274 struct inode *inode = file_inode(file); 5275 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5276 struct btrfs_root *root = BTRFS_I(inode)->root; 5277 struct btrfs_ioctl_qgroup_limit_args *sa; 5278 struct btrfs_trans_handle *trans; 5279 int ret; 5280 int err; 5281 u64 qgroupid; 5282 5283 if (!capable(CAP_SYS_ADMIN)) 5284 return -EPERM; 5285 5286 ret = mnt_want_write_file(file); 5287 if (ret) 5288 return ret; 5289 5290 sa = memdup_user(arg, sizeof(*sa)); 5291 if (IS_ERR(sa)) { 5292 ret = PTR_ERR(sa); 5293 goto drop_write; 5294 } 5295 5296 trans = btrfs_join_transaction(root); 5297 if (IS_ERR(trans)) { 5298 ret = PTR_ERR(trans); 5299 goto out; 5300 } 5301 5302 qgroupid = sa->qgroupid; 5303 if (!qgroupid) { 5304 /* take the current subvol as qgroup */ 5305 qgroupid = root->root_key.objectid; 5306 } 5307 5308 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim); 5309 5310 err = btrfs_end_transaction(trans); 5311 if (err && !ret) 5312 ret = err; 5313 5314 out: 5315 kfree(sa); 5316 drop_write: 5317 mnt_drop_write_file(file); 5318 return ret; 5319 } 5320 5321 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5322 { 5323 struct inode *inode = file_inode(file); 5324 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5325 struct btrfs_ioctl_quota_rescan_args *qsa; 5326 int ret; 5327 5328 if (!capable(CAP_SYS_ADMIN)) 5329 return -EPERM; 5330 5331 ret = mnt_want_write_file(file); 5332 if (ret) 5333 return ret; 5334 5335 qsa = memdup_user(arg, sizeof(*qsa)); 5336 if (IS_ERR(qsa)) { 5337 ret = PTR_ERR(qsa); 5338 goto drop_write; 5339 } 5340 5341 if (qsa->flags) { 5342 ret = -EINVAL; 5343 goto out; 5344 } 5345 5346 ret = btrfs_qgroup_rescan(fs_info); 5347 5348 out: 5349 kfree(qsa); 5350 drop_write: 5351 mnt_drop_write_file(file); 5352 return ret; 5353 } 5354 5355 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5356 { 5357 struct inode *inode = file_inode(file); 5358 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5359 struct btrfs_ioctl_quota_rescan_args *qsa; 5360 int ret = 0; 5361 5362 if (!capable(CAP_SYS_ADMIN)) 5363 return -EPERM; 5364 5365 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5366 if (!qsa) 5367 return -ENOMEM; 5368 5369 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5370 qsa->flags = 1; 5371 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 5372 } 5373 5374 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5375 ret = -EFAULT; 5376 5377 kfree(qsa); 5378 return ret; 5379 } 5380 5381 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5382 { 5383 struct inode *inode = file_inode(file); 5384 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5385 5386 if (!capable(CAP_SYS_ADMIN)) 5387 return -EPERM; 5388 5389 return btrfs_qgroup_wait_for_completion(fs_info, true); 5390 } 5391 5392 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5393 struct btrfs_ioctl_received_subvol_args *sa) 5394 { 5395 struct inode *inode = file_inode(file); 5396 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5397 struct btrfs_root *root = BTRFS_I(inode)->root; 5398 struct btrfs_root_item *root_item = &root->root_item; 5399 struct btrfs_trans_handle *trans; 5400 struct timespec64 ct = current_time(inode); 5401 int ret = 0; 5402 int received_uuid_changed; 5403 5404 if (!inode_owner_or_capable(inode)) 5405 return -EPERM; 5406 5407 ret = mnt_want_write_file(file); 5408 if (ret < 0) 5409 return ret; 5410 5411 down_write(&fs_info->subvol_sem); 5412 5413 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5414 ret = -EINVAL; 5415 goto out; 5416 } 5417 5418 if (btrfs_root_readonly(root)) { 5419 ret = -EROFS; 5420 goto out; 5421 } 5422 5423 /* 5424 * 1 - root item 5425 * 2 - uuid items (received uuid + subvol uuid) 5426 */ 5427 trans = btrfs_start_transaction(root, 3); 5428 if (IS_ERR(trans)) { 5429 ret = PTR_ERR(trans); 5430 trans = NULL; 5431 goto out; 5432 } 5433 5434 sa->rtransid = trans->transid; 5435 sa->rtime.sec = ct.tv_sec; 5436 sa->rtime.nsec = ct.tv_nsec; 5437 5438 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5439 BTRFS_UUID_SIZE); 5440 if (received_uuid_changed && 5441 !btrfs_is_empty_uuid(root_item->received_uuid)) { 5442 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 5443 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5444 root->root_key.objectid); 5445 if (ret && ret != -ENOENT) { 5446 btrfs_abort_transaction(trans, ret); 5447 btrfs_end_transaction(trans); 5448 goto out; 5449 } 5450 } 5451 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5452 btrfs_set_root_stransid(root_item, sa->stransid); 5453 btrfs_set_root_rtransid(root_item, sa->rtransid); 5454 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5455 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5456 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5457 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5458 5459 ret = btrfs_update_root(trans, fs_info->tree_root, 5460 &root->root_key, &root->root_item); 5461 if (ret < 0) { 5462 btrfs_end_transaction(trans); 5463 goto out; 5464 } 5465 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5466 ret = btrfs_uuid_tree_add(trans, sa->uuid, 5467 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5468 root->root_key.objectid); 5469 if (ret < 0 && ret != -EEXIST) { 5470 btrfs_abort_transaction(trans, ret); 5471 btrfs_end_transaction(trans); 5472 goto out; 5473 } 5474 } 5475 ret = btrfs_commit_transaction(trans); 5476 out: 5477 up_write(&fs_info->subvol_sem); 5478 mnt_drop_write_file(file); 5479 return ret; 5480 } 5481 5482 #ifdef CONFIG_64BIT 5483 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5484 void __user *arg) 5485 { 5486 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5487 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5488 int ret = 0; 5489 5490 args32 = memdup_user(arg, sizeof(*args32)); 5491 if (IS_ERR(args32)) 5492 return PTR_ERR(args32); 5493 5494 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5495 if (!args64) { 5496 ret = -ENOMEM; 5497 goto out; 5498 } 5499 5500 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5501 args64->stransid = args32->stransid; 5502 args64->rtransid = args32->rtransid; 5503 args64->stime.sec = args32->stime.sec; 5504 args64->stime.nsec = args32->stime.nsec; 5505 args64->rtime.sec = args32->rtime.sec; 5506 args64->rtime.nsec = args32->rtime.nsec; 5507 args64->flags = args32->flags; 5508 5509 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5510 if (ret) 5511 goto out; 5512 5513 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5514 args32->stransid = args64->stransid; 5515 args32->rtransid = args64->rtransid; 5516 args32->stime.sec = args64->stime.sec; 5517 args32->stime.nsec = args64->stime.nsec; 5518 args32->rtime.sec = args64->rtime.sec; 5519 args32->rtime.nsec = args64->rtime.nsec; 5520 args32->flags = args64->flags; 5521 5522 ret = copy_to_user(arg, args32, sizeof(*args32)); 5523 if (ret) 5524 ret = -EFAULT; 5525 5526 out: 5527 kfree(args32); 5528 kfree(args64); 5529 return ret; 5530 } 5531 #endif 5532 5533 static long btrfs_ioctl_set_received_subvol(struct file *file, 5534 void __user *arg) 5535 { 5536 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5537 int ret = 0; 5538 5539 sa = memdup_user(arg, sizeof(*sa)); 5540 if (IS_ERR(sa)) 5541 return PTR_ERR(sa); 5542 5543 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5544 5545 if (ret) 5546 goto out; 5547 5548 ret = copy_to_user(arg, sa, sizeof(*sa)); 5549 if (ret) 5550 ret = -EFAULT; 5551 5552 out: 5553 kfree(sa); 5554 return ret; 5555 } 5556 5557 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5558 { 5559 struct inode *inode = file_inode(file); 5560 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5561 size_t len; 5562 int ret; 5563 char label[BTRFS_LABEL_SIZE]; 5564 5565 spin_lock(&fs_info->super_lock); 5566 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5567 spin_unlock(&fs_info->super_lock); 5568 5569 len = strnlen(label, BTRFS_LABEL_SIZE); 5570 5571 if (len == BTRFS_LABEL_SIZE) { 5572 btrfs_warn(fs_info, 5573 "label is too long, return the first %zu bytes", 5574 --len); 5575 } 5576 5577 ret = copy_to_user(arg, label, len); 5578 5579 return ret ? -EFAULT : 0; 5580 } 5581 5582 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5583 { 5584 struct inode *inode = file_inode(file); 5585 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5586 struct btrfs_root *root = BTRFS_I(inode)->root; 5587 struct btrfs_super_block *super_block = fs_info->super_copy; 5588 struct btrfs_trans_handle *trans; 5589 char label[BTRFS_LABEL_SIZE]; 5590 int ret; 5591 5592 if (!capable(CAP_SYS_ADMIN)) 5593 return -EPERM; 5594 5595 if (copy_from_user(label, arg, sizeof(label))) 5596 return -EFAULT; 5597 5598 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5599 btrfs_err(fs_info, 5600 "unable to set label with more than %d bytes", 5601 BTRFS_LABEL_SIZE - 1); 5602 return -EINVAL; 5603 } 5604 5605 ret = mnt_want_write_file(file); 5606 if (ret) 5607 return ret; 5608 5609 trans = btrfs_start_transaction(root, 0); 5610 if (IS_ERR(trans)) { 5611 ret = PTR_ERR(trans); 5612 goto out_unlock; 5613 } 5614 5615 spin_lock(&fs_info->super_lock); 5616 strcpy(super_block->label, label); 5617 spin_unlock(&fs_info->super_lock); 5618 ret = btrfs_commit_transaction(trans); 5619 5620 out_unlock: 5621 mnt_drop_write_file(file); 5622 return ret; 5623 } 5624 5625 #define INIT_FEATURE_FLAGS(suffix) \ 5626 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5627 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5628 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5629 5630 int btrfs_ioctl_get_supported_features(void __user *arg) 5631 { 5632 static const struct btrfs_ioctl_feature_flags features[3] = { 5633 INIT_FEATURE_FLAGS(SUPP), 5634 INIT_FEATURE_FLAGS(SAFE_SET), 5635 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5636 }; 5637 5638 if (copy_to_user(arg, &features, sizeof(features))) 5639 return -EFAULT; 5640 5641 return 0; 5642 } 5643 5644 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5645 { 5646 struct inode *inode = file_inode(file); 5647 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5648 struct btrfs_super_block *super_block = fs_info->super_copy; 5649 struct btrfs_ioctl_feature_flags features; 5650 5651 features.compat_flags = btrfs_super_compat_flags(super_block); 5652 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5653 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5654 5655 if (copy_to_user(arg, &features, sizeof(features))) 5656 return -EFAULT; 5657 5658 return 0; 5659 } 5660 5661 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5662 enum btrfs_feature_set set, 5663 u64 change_mask, u64 flags, u64 supported_flags, 5664 u64 safe_set, u64 safe_clear) 5665 { 5666 const char *type = btrfs_feature_set_names[set]; 5667 char *names; 5668 u64 disallowed, unsupported; 5669 u64 set_mask = flags & change_mask; 5670 u64 clear_mask = ~flags & change_mask; 5671 5672 unsupported = set_mask & ~supported_flags; 5673 if (unsupported) { 5674 names = btrfs_printable_features(set, unsupported); 5675 if (names) { 5676 btrfs_warn(fs_info, 5677 "this kernel does not support the %s feature bit%s", 5678 names, strchr(names, ',') ? "s" : ""); 5679 kfree(names); 5680 } else 5681 btrfs_warn(fs_info, 5682 "this kernel does not support %s bits 0x%llx", 5683 type, unsupported); 5684 return -EOPNOTSUPP; 5685 } 5686 5687 disallowed = set_mask & ~safe_set; 5688 if (disallowed) { 5689 names = btrfs_printable_features(set, disallowed); 5690 if (names) { 5691 btrfs_warn(fs_info, 5692 "can't set the %s feature bit%s while mounted", 5693 names, strchr(names, ',') ? "s" : ""); 5694 kfree(names); 5695 } else 5696 btrfs_warn(fs_info, 5697 "can't set %s bits 0x%llx while mounted", 5698 type, disallowed); 5699 return -EPERM; 5700 } 5701 5702 disallowed = clear_mask & ~safe_clear; 5703 if (disallowed) { 5704 names = btrfs_printable_features(set, disallowed); 5705 if (names) { 5706 btrfs_warn(fs_info, 5707 "can't clear the %s feature bit%s while mounted", 5708 names, strchr(names, ',') ? "s" : ""); 5709 kfree(names); 5710 } else 5711 btrfs_warn(fs_info, 5712 "can't clear %s bits 0x%llx while mounted", 5713 type, disallowed); 5714 return -EPERM; 5715 } 5716 5717 return 0; 5718 } 5719 5720 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5721 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5722 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5723 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5724 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5725 5726 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5727 { 5728 struct inode *inode = file_inode(file); 5729 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5730 struct btrfs_root *root = BTRFS_I(inode)->root; 5731 struct btrfs_super_block *super_block = fs_info->super_copy; 5732 struct btrfs_ioctl_feature_flags flags[2]; 5733 struct btrfs_trans_handle *trans; 5734 u64 newflags; 5735 int ret; 5736 5737 if (!capable(CAP_SYS_ADMIN)) 5738 return -EPERM; 5739 5740 if (copy_from_user(flags, arg, sizeof(flags))) 5741 return -EFAULT; 5742 5743 /* Nothing to do */ 5744 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5745 !flags[0].incompat_flags) 5746 return 0; 5747 5748 ret = check_feature(fs_info, flags[0].compat_flags, 5749 flags[1].compat_flags, COMPAT); 5750 if (ret) 5751 return ret; 5752 5753 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5754 flags[1].compat_ro_flags, COMPAT_RO); 5755 if (ret) 5756 return ret; 5757 5758 ret = check_feature(fs_info, flags[0].incompat_flags, 5759 flags[1].incompat_flags, INCOMPAT); 5760 if (ret) 5761 return ret; 5762 5763 ret = mnt_want_write_file(file); 5764 if (ret) 5765 return ret; 5766 5767 trans = btrfs_start_transaction(root, 0); 5768 if (IS_ERR(trans)) { 5769 ret = PTR_ERR(trans); 5770 goto out_drop_write; 5771 } 5772 5773 spin_lock(&fs_info->super_lock); 5774 newflags = btrfs_super_compat_flags(super_block); 5775 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5776 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5777 btrfs_set_super_compat_flags(super_block, newflags); 5778 5779 newflags = btrfs_super_compat_ro_flags(super_block); 5780 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5781 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5782 btrfs_set_super_compat_ro_flags(super_block, newflags); 5783 5784 newflags = btrfs_super_incompat_flags(super_block); 5785 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5786 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5787 btrfs_set_super_incompat_flags(super_block, newflags); 5788 spin_unlock(&fs_info->super_lock); 5789 5790 ret = btrfs_commit_transaction(trans); 5791 out_drop_write: 5792 mnt_drop_write_file(file); 5793 5794 return ret; 5795 } 5796 5797 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 5798 { 5799 struct btrfs_ioctl_send_args *arg; 5800 int ret; 5801 5802 if (compat) { 5803 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5804 struct btrfs_ioctl_send_args_32 args32; 5805 5806 ret = copy_from_user(&args32, argp, sizeof(args32)); 5807 if (ret) 5808 return -EFAULT; 5809 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5810 if (!arg) 5811 return -ENOMEM; 5812 arg->send_fd = args32.send_fd; 5813 arg->clone_sources_count = args32.clone_sources_count; 5814 arg->clone_sources = compat_ptr(args32.clone_sources); 5815 arg->parent_root = args32.parent_root; 5816 arg->flags = args32.flags; 5817 memcpy(arg->reserved, args32.reserved, 5818 sizeof(args32.reserved)); 5819 #else 5820 return -ENOTTY; 5821 #endif 5822 } else { 5823 arg = memdup_user(argp, sizeof(*arg)); 5824 if (IS_ERR(arg)) 5825 return PTR_ERR(arg); 5826 } 5827 ret = btrfs_ioctl_send(file, arg); 5828 kfree(arg); 5829 return ret; 5830 } 5831 5832 long btrfs_ioctl(struct file *file, unsigned int 5833 cmd, unsigned long arg) 5834 { 5835 struct inode *inode = file_inode(file); 5836 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5837 struct btrfs_root *root = BTRFS_I(inode)->root; 5838 void __user *argp = (void __user *)arg; 5839 5840 switch (cmd) { 5841 case FS_IOC_GETFLAGS: 5842 return btrfs_ioctl_getflags(file, argp); 5843 case FS_IOC_SETFLAGS: 5844 return btrfs_ioctl_setflags(file, argp); 5845 case FS_IOC_GETVERSION: 5846 return btrfs_ioctl_getversion(file, argp); 5847 case FITRIM: 5848 return btrfs_ioctl_fitrim(file, argp); 5849 case BTRFS_IOC_SNAP_CREATE: 5850 return btrfs_ioctl_snap_create(file, argp, 0); 5851 case BTRFS_IOC_SNAP_CREATE_V2: 5852 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5853 case BTRFS_IOC_SUBVOL_CREATE: 5854 return btrfs_ioctl_snap_create(file, argp, 1); 5855 case BTRFS_IOC_SUBVOL_CREATE_V2: 5856 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5857 case BTRFS_IOC_SNAP_DESTROY: 5858 return btrfs_ioctl_snap_destroy(file, argp); 5859 case BTRFS_IOC_SUBVOL_GETFLAGS: 5860 return btrfs_ioctl_subvol_getflags(file, argp); 5861 case BTRFS_IOC_SUBVOL_SETFLAGS: 5862 return btrfs_ioctl_subvol_setflags(file, argp); 5863 case BTRFS_IOC_DEFAULT_SUBVOL: 5864 return btrfs_ioctl_default_subvol(file, argp); 5865 case BTRFS_IOC_DEFRAG: 5866 return btrfs_ioctl_defrag(file, NULL); 5867 case BTRFS_IOC_DEFRAG_RANGE: 5868 return btrfs_ioctl_defrag(file, argp); 5869 case BTRFS_IOC_RESIZE: 5870 return btrfs_ioctl_resize(file, argp); 5871 case BTRFS_IOC_ADD_DEV: 5872 return btrfs_ioctl_add_dev(fs_info, argp); 5873 case BTRFS_IOC_RM_DEV: 5874 return btrfs_ioctl_rm_dev(file, argp); 5875 case BTRFS_IOC_RM_DEV_V2: 5876 return btrfs_ioctl_rm_dev_v2(file, argp); 5877 case BTRFS_IOC_FS_INFO: 5878 return btrfs_ioctl_fs_info(fs_info, argp); 5879 case BTRFS_IOC_DEV_INFO: 5880 return btrfs_ioctl_dev_info(fs_info, argp); 5881 case BTRFS_IOC_BALANCE: 5882 return btrfs_ioctl_balance(file, NULL); 5883 case BTRFS_IOC_TREE_SEARCH: 5884 return btrfs_ioctl_tree_search(file, argp); 5885 case BTRFS_IOC_TREE_SEARCH_V2: 5886 return btrfs_ioctl_tree_search_v2(file, argp); 5887 case BTRFS_IOC_INO_LOOKUP: 5888 return btrfs_ioctl_ino_lookup(file, argp); 5889 case BTRFS_IOC_INO_PATHS: 5890 return btrfs_ioctl_ino_to_path(root, argp); 5891 case BTRFS_IOC_LOGICAL_INO: 5892 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5893 case BTRFS_IOC_LOGICAL_INO_V2: 5894 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5895 case BTRFS_IOC_SPACE_INFO: 5896 return btrfs_ioctl_space_info(fs_info, argp); 5897 case BTRFS_IOC_SYNC: { 5898 int ret; 5899 5900 ret = btrfs_start_delalloc_roots(fs_info, -1); 5901 if (ret) 5902 return ret; 5903 ret = btrfs_sync_fs(inode->i_sb, 1); 5904 /* 5905 * The transaction thread may want to do more work, 5906 * namely it pokes the cleaner kthread that will start 5907 * processing uncleaned subvols. 5908 */ 5909 wake_up_process(fs_info->transaction_kthread); 5910 return ret; 5911 } 5912 case BTRFS_IOC_START_SYNC: 5913 return btrfs_ioctl_start_sync(root, argp); 5914 case BTRFS_IOC_WAIT_SYNC: 5915 return btrfs_ioctl_wait_sync(fs_info, argp); 5916 case BTRFS_IOC_SCRUB: 5917 return btrfs_ioctl_scrub(file, argp); 5918 case BTRFS_IOC_SCRUB_CANCEL: 5919 return btrfs_ioctl_scrub_cancel(fs_info); 5920 case BTRFS_IOC_SCRUB_PROGRESS: 5921 return btrfs_ioctl_scrub_progress(fs_info, argp); 5922 case BTRFS_IOC_BALANCE_V2: 5923 return btrfs_ioctl_balance(file, argp); 5924 case BTRFS_IOC_BALANCE_CTL: 5925 return btrfs_ioctl_balance_ctl(fs_info, arg); 5926 case BTRFS_IOC_BALANCE_PROGRESS: 5927 return btrfs_ioctl_balance_progress(fs_info, argp); 5928 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5929 return btrfs_ioctl_set_received_subvol(file, argp); 5930 #ifdef CONFIG_64BIT 5931 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5932 return btrfs_ioctl_set_received_subvol_32(file, argp); 5933 #endif 5934 case BTRFS_IOC_SEND: 5935 return _btrfs_ioctl_send(file, argp, false); 5936 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5937 case BTRFS_IOC_SEND_32: 5938 return _btrfs_ioctl_send(file, argp, true); 5939 #endif 5940 case BTRFS_IOC_GET_DEV_STATS: 5941 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5942 case BTRFS_IOC_QUOTA_CTL: 5943 return btrfs_ioctl_quota_ctl(file, argp); 5944 case BTRFS_IOC_QGROUP_ASSIGN: 5945 return btrfs_ioctl_qgroup_assign(file, argp); 5946 case BTRFS_IOC_QGROUP_CREATE: 5947 return btrfs_ioctl_qgroup_create(file, argp); 5948 case BTRFS_IOC_QGROUP_LIMIT: 5949 return btrfs_ioctl_qgroup_limit(file, argp); 5950 case BTRFS_IOC_QUOTA_RESCAN: 5951 return btrfs_ioctl_quota_rescan(file, argp); 5952 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5953 return btrfs_ioctl_quota_rescan_status(file, argp); 5954 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5955 return btrfs_ioctl_quota_rescan_wait(file, argp); 5956 case BTRFS_IOC_DEV_REPLACE: 5957 return btrfs_ioctl_dev_replace(fs_info, argp); 5958 case BTRFS_IOC_GET_FSLABEL: 5959 return btrfs_ioctl_get_fslabel(file, argp); 5960 case BTRFS_IOC_SET_FSLABEL: 5961 return btrfs_ioctl_set_fslabel(file, argp); 5962 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5963 return btrfs_ioctl_get_supported_features(argp); 5964 case BTRFS_IOC_GET_FEATURES: 5965 return btrfs_ioctl_get_features(file, argp); 5966 case BTRFS_IOC_SET_FEATURES: 5967 return btrfs_ioctl_set_features(file, argp); 5968 case FS_IOC_FSGETXATTR: 5969 return btrfs_ioctl_fsgetxattr(file, argp); 5970 case FS_IOC_FSSETXATTR: 5971 return btrfs_ioctl_fssetxattr(file, argp); 5972 case BTRFS_IOC_GET_SUBVOL_INFO: 5973 return btrfs_ioctl_get_subvol_info(file, argp); 5974 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5975 return btrfs_ioctl_get_subvol_rootref(file, argp); 5976 case BTRFS_IOC_INO_LOOKUP_USER: 5977 return btrfs_ioctl_ino_lookup_user(file, argp); 5978 } 5979 5980 return -ENOTTY; 5981 } 5982 5983 #ifdef CONFIG_COMPAT 5984 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5985 { 5986 /* 5987 * These all access 32-bit values anyway so no further 5988 * handling is necessary. 5989 */ 5990 switch (cmd) { 5991 case FS_IOC32_GETFLAGS: 5992 cmd = FS_IOC_GETFLAGS; 5993 break; 5994 case FS_IOC32_SETFLAGS: 5995 cmd = FS_IOC_SETFLAGS; 5996 break; 5997 case FS_IOC32_GETVERSION: 5998 cmd = FS_IOC_GETVERSION; 5999 break; 6000 } 6001 6002 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 6003 } 6004 #endif 6005