xref: /openbmc/linux/fs/btrfs/ioctl.c (revision b8fecfdf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "export.h"
32 #include "transaction.h"
33 #include "btrfs_inode.h"
34 #include "print-tree.h"
35 #include "volumes.h"
36 #include "locking.h"
37 #include "inode-map.h"
38 #include "backref.h"
39 #include "rcu-string.h"
40 #include "send.h"
41 #include "dev-replace.h"
42 #include "props.h"
43 #include "sysfs.h"
44 #include "qgroup.h"
45 #include "tree-log.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "delalloc-space.h"
49 #include "block-group.h"
50 
51 #ifdef CONFIG_64BIT
52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
53  * structures are incorrect, as the timespec structure from userspace
54  * is 4 bytes too small. We define these alternatives here to teach
55  * the kernel about the 32-bit struct packing.
56  */
57 struct btrfs_ioctl_timespec_32 {
58 	__u64 sec;
59 	__u32 nsec;
60 } __attribute__ ((__packed__));
61 
62 struct btrfs_ioctl_received_subvol_args_32 {
63 	char	uuid[BTRFS_UUID_SIZE];	/* in */
64 	__u64	stransid;		/* in */
65 	__u64	rtransid;		/* out */
66 	struct btrfs_ioctl_timespec_32 stime; /* in */
67 	struct btrfs_ioctl_timespec_32 rtime; /* out */
68 	__u64	flags;			/* in */
69 	__u64	reserved[16];		/* in */
70 } __attribute__ ((__packed__));
71 
72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
73 				struct btrfs_ioctl_received_subvol_args_32)
74 #endif
75 
76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
77 struct btrfs_ioctl_send_args_32 {
78 	__s64 send_fd;			/* in */
79 	__u64 clone_sources_count;	/* in */
80 	compat_uptr_t clone_sources;	/* in */
81 	__u64 parent_root;		/* in */
82 	__u64 flags;			/* in */
83 	__u64 reserved[4];		/* in */
84 } __attribute__ ((__packed__));
85 
86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
87 			       struct btrfs_ioctl_send_args_32)
88 #endif
89 
90 /* Mask out flags that are inappropriate for the given type of inode. */
91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 		unsigned int flags)
93 {
94 	if (S_ISDIR(inode->i_mode))
95 		return flags;
96 	else if (S_ISREG(inode->i_mode))
97 		return flags & ~FS_DIRSYNC_FL;
98 	else
99 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100 }
101 
102 /*
103  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104  * ioctl.
105  */
106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if (flags & BTRFS_INODE_NOCOMPRESS)
126 		iflags |= FS_NOCOMP_FL;
127 	else if (flags & BTRFS_INODE_COMPRESS)
128 		iflags |= FS_COMPR_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
137 {
138 	struct btrfs_inode *binode = BTRFS_I(inode);
139 	unsigned int new_fl = 0;
140 
141 	if (binode->flags & BTRFS_INODE_SYNC)
142 		new_fl |= S_SYNC;
143 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 		new_fl |= S_IMMUTABLE;
145 	if (binode->flags & BTRFS_INODE_APPEND)
146 		new_fl |= S_APPEND;
147 	if (binode->flags & BTRFS_INODE_NOATIME)
148 		new_fl |= S_NOATIME;
149 	if (binode->flags & BTRFS_INODE_DIRSYNC)
150 		new_fl |= S_DIRSYNC;
151 
152 	set_mask_bits(&inode->i_flags,
153 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 		      new_fl);
155 }
156 
157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
158 {
159 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
160 	unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
161 
162 	if (copy_to_user(arg, &flags, sizeof(flags)))
163 		return -EFAULT;
164 	return 0;
165 }
166 
167 /*
168  * Check if @flags are a supported and valid set of FS_*_FL flags and that
169  * the old and new flags are not conflicting
170  */
171 static int check_fsflags(unsigned int old_flags, unsigned int flags)
172 {
173 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
174 		      FS_NOATIME_FL | FS_NODUMP_FL | \
175 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
176 		      FS_NOCOMP_FL | FS_COMPR_FL |
177 		      FS_NOCOW_FL))
178 		return -EOPNOTSUPP;
179 
180 	/* COMPR and NOCOMP on new/old are valid */
181 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
182 		return -EINVAL;
183 
184 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
185 		return -EINVAL;
186 
187 	/* NOCOW and compression options are mutually exclusive */
188 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
189 		return -EINVAL;
190 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
191 		return -EINVAL;
192 
193 	return 0;
194 }
195 
196 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
197 {
198 	struct inode *inode = file_inode(file);
199 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
200 	struct btrfs_inode *binode = BTRFS_I(inode);
201 	struct btrfs_root *root = binode->root;
202 	struct btrfs_trans_handle *trans;
203 	unsigned int fsflags, old_fsflags;
204 	int ret;
205 	const char *comp = NULL;
206 	u32 binode_flags;
207 
208 	if (!inode_owner_or_capable(inode))
209 		return -EPERM;
210 
211 	if (btrfs_root_readonly(root))
212 		return -EROFS;
213 
214 	if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
215 		return -EFAULT;
216 
217 	ret = mnt_want_write_file(file);
218 	if (ret)
219 		return ret;
220 
221 	inode_lock(inode);
222 	fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
223 	old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
224 
225 	ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
226 	if (ret)
227 		goto out_unlock;
228 
229 	ret = check_fsflags(old_fsflags, fsflags);
230 	if (ret)
231 		goto out_unlock;
232 
233 	binode_flags = binode->flags;
234 	if (fsflags & FS_SYNC_FL)
235 		binode_flags |= BTRFS_INODE_SYNC;
236 	else
237 		binode_flags &= ~BTRFS_INODE_SYNC;
238 	if (fsflags & FS_IMMUTABLE_FL)
239 		binode_flags |= BTRFS_INODE_IMMUTABLE;
240 	else
241 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
242 	if (fsflags & FS_APPEND_FL)
243 		binode_flags |= BTRFS_INODE_APPEND;
244 	else
245 		binode_flags &= ~BTRFS_INODE_APPEND;
246 	if (fsflags & FS_NODUMP_FL)
247 		binode_flags |= BTRFS_INODE_NODUMP;
248 	else
249 		binode_flags &= ~BTRFS_INODE_NODUMP;
250 	if (fsflags & FS_NOATIME_FL)
251 		binode_flags |= BTRFS_INODE_NOATIME;
252 	else
253 		binode_flags &= ~BTRFS_INODE_NOATIME;
254 	if (fsflags & FS_DIRSYNC_FL)
255 		binode_flags |= BTRFS_INODE_DIRSYNC;
256 	else
257 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
258 	if (fsflags & FS_NOCOW_FL) {
259 		if (S_ISREG(inode->i_mode)) {
260 			/*
261 			 * It's safe to turn csums off here, no extents exist.
262 			 * Otherwise we want the flag to reflect the real COW
263 			 * status of the file and will not set it.
264 			 */
265 			if (inode->i_size == 0)
266 				binode_flags |= BTRFS_INODE_NODATACOW |
267 						BTRFS_INODE_NODATASUM;
268 		} else {
269 			binode_flags |= BTRFS_INODE_NODATACOW;
270 		}
271 	} else {
272 		/*
273 		 * Revert back under same assumptions as above
274 		 */
275 		if (S_ISREG(inode->i_mode)) {
276 			if (inode->i_size == 0)
277 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
278 						  BTRFS_INODE_NODATASUM);
279 		} else {
280 			binode_flags &= ~BTRFS_INODE_NODATACOW;
281 		}
282 	}
283 
284 	/*
285 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
286 	 * flag may be changed automatically if compression code won't make
287 	 * things smaller.
288 	 */
289 	if (fsflags & FS_NOCOMP_FL) {
290 		binode_flags &= ~BTRFS_INODE_COMPRESS;
291 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
292 	} else if (fsflags & FS_COMPR_FL) {
293 
294 		if (IS_SWAPFILE(inode)) {
295 			ret = -ETXTBSY;
296 			goto out_unlock;
297 		}
298 
299 		binode_flags |= BTRFS_INODE_COMPRESS;
300 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
301 
302 		comp = btrfs_compress_type2str(fs_info->compress_type);
303 		if (!comp || comp[0] == 0)
304 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
305 	} else {
306 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
307 	}
308 
309 	/*
310 	 * 1 for inode item
311 	 * 2 for properties
312 	 */
313 	trans = btrfs_start_transaction(root, 3);
314 	if (IS_ERR(trans)) {
315 		ret = PTR_ERR(trans);
316 		goto out_unlock;
317 	}
318 
319 	if (comp) {
320 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
321 				     strlen(comp), 0);
322 		if (ret) {
323 			btrfs_abort_transaction(trans, ret);
324 			goto out_end_trans;
325 		}
326 	} else {
327 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
328 				     0, 0);
329 		if (ret && ret != -ENODATA) {
330 			btrfs_abort_transaction(trans, ret);
331 			goto out_end_trans;
332 		}
333 	}
334 
335 	binode->flags = binode_flags;
336 	btrfs_sync_inode_flags_to_i_flags(inode);
337 	inode_inc_iversion(inode);
338 	inode->i_ctime = current_time(inode);
339 	ret = btrfs_update_inode(trans, root, inode);
340 
341  out_end_trans:
342 	btrfs_end_transaction(trans);
343  out_unlock:
344 	inode_unlock(inode);
345 	mnt_drop_write_file(file);
346 	return ret;
347 }
348 
349 /*
350  * Translate btrfs internal inode flags to xflags as expected by the
351  * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
352  * silently dropped.
353  */
354 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
355 {
356 	unsigned int xflags = 0;
357 
358 	if (flags & BTRFS_INODE_APPEND)
359 		xflags |= FS_XFLAG_APPEND;
360 	if (flags & BTRFS_INODE_IMMUTABLE)
361 		xflags |= FS_XFLAG_IMMUTABLE;
362 	if (flags & BTRFS_INODE_NOATIME)
363 		xflags |= FS_XFLAG_NOATIME;
364 	if (flags & BTRFS_INODE_NODUMP)
365 		xflags |= FS_XFLAG_NODUMP;
366 	if (flags & BTRFS_INODE_SYNC)
367 		xflags |= FS_XFLAG_SYNC;
368 
369 	return xflags;
370 }
371 
372 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
373 static int check_xflags(unsigned int flags)
374 {
375 	if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
376 		      FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
377 		return -EOPNOTSUPP;
378 	return 0;
379 }
380 
381 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
382 			enum btrfs_exclusive_operation type)
383 {
384 	return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type);
385 }
386 
387 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
388 {
389 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
390 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
391 }
392 
393 /*
394  * Set the xflags from the internal inode flags. The remaining items of fsxattr
395  * are zeroed.
396  */
397 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
398 {
399 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
400 	struct fsxattr fa;
401 
402 	simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
403 	if (copy_to_user(arg, &fa, sizeof(fa)))
404 		return -EFAULT;
405 
406 	return 0;
407 }
408 
409 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
410 {
411 	struct inode *inode = file_inode(file);
412 	struct btrfs_inode *binode = BTRFS_I(inode);
413 	struct btrfs_root *root = binode->root;
414 	struct btrfs_trans_handle *trans;
415 	struct fsxattr fa, old_fa;
416 	unsigned old_flags;
417 	unsigned old_i_flags;
418 	int ret = 0;
419 
420 	if (!inode_owner_or_capable(inode))
421 		return -EPERM;
422 
423 	if (btrfs_root_readonly(root))
424 		return -EROFS;
425 
426 	if (copy_from_user(&fa, arg, sizeof(fa)))
427 		return -EFAULT;
428 
429 	ret = check_xflags(fa.fsx_xflags);
430 	if (ret)
431 		return ret;
432 
433 	if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
434 		return -EOPNOTSUPP;
435 
436 	ret = mnt_want_write_file(file);
437 	if (ret)
438 		return ret;
439 
440 	inode_lock(inode);
441 
442 	old_flags = binode->flags;
443 	old_i_flags = inode->i_flags;
444 
445 	simple_fill_fsxattr(&old_fa,
446 			    btrfs_inode_flags_to_xflags(binode->flags));
447 	ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
448 	if (ret)
449 		goto out_unlock;
450 
451 	if (fa.fsx_xflags & FS_XFLAG_SYNC)
452 		binode->flags |= BTRFS_INODE_SYNC;
453 	else
454 		binode->flags &= ~BTRFS_INODE_SYNC;
455 	if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
456 		binode->flags |= BTRFS_INODE_IMMUTABLE;
457 	else
458 		binode->flags &= ~BTRFS_INODE_IMMUTABLE;
459 	if (fa.fsx_xflags & FS_XFLAG_APPEND)
460 		binode->flags |= BTRFS_INODE_APPEND;
461 	else
462 		binode->flags &= ~BTRFS_INODE_APPEND;
463 	if (fa.fsx_xflags & FS_XFLAG_NODUMP)
464 		binode->flags |= BTRFS_INODE_NODUMP;
465 	else
466 		binode->flags &= ~BTRFS_INODE_NODUMP;
467 	if (fa.fsx_xflags & FS_XFLAG_NOATIME)
468 		binode->flags |= BTRFS_INODE_NOATIME;
469 	else
470 		binode->flags &= ~BTRFS_INODE_NOATIME;
471 
472 	/* 1 item for the inode */
473 	trans = btrfs_start_transaction(root, 1);
474 	if (IS_ERR(trans)) {
475 		ret = PTR_ERR(trans);
476 		goto out_unlock;
477 	}
478 
479 	btrfs_sync_inode_flags_to_i_flags(inode);
480 	inode_inc_iversion(inode);
481 	inode->i_ctime = current_time(inode);
482 	ret = btrfs_update_inode(trans, root, inode);
483 
484 	btrfs_end_transaction(trans);
485 
486 out_unlock:
487 	if (ret) {
488 		binode->flags = old_flags;
489 		inode->i_flags = old_i_flags;
490 	}
491 
492 	inode_unlock(inode);
493 	mnt_drop_write_file(file);
494 
495 	return ret;
496 }
497 
498 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
499 {
500 	struct inode *inode = file_inode(file);
501 
502 	return put_user(inode->i_generation, arg);
503 }
504 
505 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
506 					void __user *arg)
507 {
508 	struct btrfs_device *device;
509 	struct request_queue *q;
510 	struct fstrim_range range;
511 	u64 minlen = ULLONG_MAX;
512 	u64 num_devices = 0;
513 	int ret;
514 
515 	if (!capable(CAP_SYS_ADMIN))
516 		return -EPERM;
517 
518 	/*
519 	 * If the fs is mounted with nologreplay, which requires it to be
520 	 * mounted in RO mode as well, we can not allow discard on free space
521 	 * inside block groups, because log trees refer to extents that are not
522 	 * pinned in a block group's free space cache (pinning the extents is
523 	 * precisely the first phase of replaying a log tree).
524 	 */
525 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
526 		return -EROFS;
527 
528 	rcu_read_lock();
529 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
530 				dev_list) {
531 		if (!device->bdev)
532 			continue;
533 		q = bdev_get_queue(device->bdev);
534 		if (blk_queue_discard(q)) {
535 			num_devices++;
536 			minlen = min_t(u64, q->limits.discard_granularity,
537 				     minlen);
538 		}
539 	}
540 	rcu_read_unlock();
541 
542 	if (!num_devices)
543 		return -EOPNOTSUPP;
544 	if (copy_from_user(&range, arg, sizeof(range)))
545 		return -EFAULT;
546 
547 	/*
548 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
549 	 * block group is in the logical address space, which can be any
550 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
551 	 */
552 	if (range.len < fs_info->sb->s_blocksize)
553 		return -EINVAL;
554 
555 	range.minlen = max(range.minlen, minlen);
556 	ret = btrfs_trim_fs(fs_info, &range);
557 	if (ret < 0)
558 		return ret;
559 
560 	if (copy_to_user(arg, &range, sizeof(range)))
561 		return -EFAULT;
562 
563 	return 0;
564 }
565 
566 int __pure btrfs_is_empty_uuid(u8 *uuid)
567 {
568 	int i;
569 
570 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
571 		if (uuid[i])
572 			return 0;
573 	}
574 	return 1;
575 }
576 
577 static noinline int create_subvol(struct inode *dir,
578 				  struct dentry *dentry,
579 				  const char *name, int namelen,
580 				  struct btrfs_qgroup_inherit *inherit)
581 {
582 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
583 	struct btrfs_trans_handle *trans;
584 	struct btrfs_key key;
585 	struct btrfs_root_item *root_item;
586 	struct btrfs_inode_item *inode_item;
587 	struct extent_buffer *leaf;
588 	struct btrfs_root *root = BTRFS_I(dir)->root;
589 	struct btrfs_root *new_root;
590 	struct btrfs_block_rsv block_rsv;
591 	struct timespec64 cur_time = current_time(dir);
592 	struct inode *inode;
593 	int ret;
594 	int err;
595 	dev_t anon_dev = 0;
596 	u64 objectid;
597 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
598 	u64 index = 0;
599 
600 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
601 	if (!root_item)
602 		return -ENOMEM;
603 
604 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
605 	if (ret)
606 		goto fail_free;
607 
608 	ret = get_anon_bdev(&anon_dev);
609 	if (ret < 0)
610 		goto fail_free;
611 
612 	/*
613 	 * Don't create subvolume whose level is not zero. Or qgroup will be
614 	 * screwed up since it assumes subvolume qgroup's level to be 0.
615 	 */
616 	if (btrfs_qgroup_level(objectid)) {
617 		ret = -ENOSPC;
618 		goto fail_free;
619 	}
620 
621 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
622 	/*
623 	 * The same as the snapshot creation, please see the comment
624 	 * of create_snapshot().
625 	 */
626 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
627 	if (ret)
628 		goto fail_free;
629 
630 	trans = btrfs_start_transaction(root, 0);
631 	if (IS_ERR(trans)) {
632 		ret = PTR_ERR(trans);
633 		btrfs_subvolume_release_metadata(root, &block_rsv);
634 		goto fail_free;
635 	}
636 	trans->block_rsv = &block_rsv;
637 	trans->bytes_reserved = block_rsv.size;
638 
639 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
640 	if (ret)
641 		goto fail;
642 
643 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
644 				      BTRFS_NESTING_NORMAL);
645 	if (IS_ERR(leaf)) {
646 		ret = PTR_ERR(leaf);
647 		goto fail;
648 	}
649 
650 	btrfs_mark_buffer_dirty(leaf);
651 
652 	inode_item = &root_item->inode;
653 	btrfs_set_stack_inode_generation(inode_item, 1);
654 	btrfs_set_stack_inode_size(inode_item, 3);
655 	btrfs_set_stack_inode_nlink(inode_item, 1);
656 	btrfs_set_stack_inode_nbytes(inode_item,
657 				     fs_info->nodesize);
658 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
659 
660 	btrfs_set_root_flags(root_item, 0);
661 	btrfs_set_root_limit(root_item, 0);
662 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
663 
664 	btrfs_set_root_bytenr(root_item, leaf->start);
665 	btrfs_set_root_generation(root_item, trans->transid);
666 	btrfs_set_root_level(root_item, 0);
667 	btrfs_set_root_refs(root_item, 1);
668 	btrfs_set_root_used(root_item, leaf->len);
669 	btrfs_set_root_last_snapshot(root_item, 0);
670 
671 	btrfs_set_root_generation_v2(root_item,
672 			btrfs_root_generation(root_item));
673 	generate_random_guid(root_item->uuid);
674 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
675 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
676 	root_item->ctime = root_item->otime;
677 	btrfs_set_root_ctransid(root_item, trans->transid);
678 	btrfs_set_root_otransid(root_item, trans->transid);
679 
680 	btrfs_tree_unlock(leaf);
681 	free_extent_buffer(leaf);
682 	leaf = NULL;
683 
684 	btrfs_set_root_dirid(root_item, new_dirid);
685 
686 	key.objectid = objectid;
687 	key.offset = 0;
688 	key.type = BTRFS_ROOT_ITEM_KEY;
689 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
690 				root_item);
691 	if (ret)
692 		goto fail;
693 
694 	key.offset = (u64)-1;
695 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
696 	if (IS_ERR(new_root)) {
697 		free_anon_bdev(anon_dev);
698 		ret = PTR_ERR(new_root);
699 		btrfs_abort_transaction(trans, ret);
700 		goto fail;
701 	}
702 	/* Freeing will be done in btrfs_put_root() of new_root */
703 	anon_dev = 0;
704 
705 	btrfs_record_root_in_trans(trans, new_root);
706 
707 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
708 	btrfs_put_root(new_root);
709 	if (ret) {
710 		/* We potentially lose an unused inode item here */
711 		btrfs_abort_transaction(trans, ret);
712 		goto fail;
713 	}
714 
715 	mutex_lock(&new_root->objectid_mutex);
716 	new_root->highest_objectid = new_dirid;
717 	mutex_unlock(&new_root->objectid_mutex);
718 
719 	/*
720 	 * insert the directory item
721 	 */
722 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
723 	if (ret) {
724 		btrfs_abort_transaction(trans, ret);
725 		goto fail;
726 	}
727 
728 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
729 				    BTRFS_FT_DIR, index);
730 	if (ret) {
731 		btrfs_abort_transaction(trans, ret);
732 		goto fail;
733 	}
734 
735 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
736 	ret = btrfs_update_inode(trans, root, dir);
737 	if (ret) {
738 		btrfs_abort_transaction(trans, ret);
739 		goto fail;
740 	}
741 
742 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
743 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
744 	if (ret) {
745 		btrfs_abort_transaction(trans, ret);
746 		goto fail;
747 	}
748 
749 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
750 				  BTRFS_UUID_KEY_SUBVOL, objectid);
751 	if (ret)
752 		btrfs_abort_transaction(trans, ret);
753 
754 fail:
755 	kfree(root_item);
756 	trans->block_rsv = NULL;
757 	trans->bytes_reserved = 0;
758 	btrfs_subvolume_release_metadata(root, &block_rsv);
759 
760 	err = btrfs_commit_transaction(trans);
761 	if (err && !ret)
762 		ret = err;
763 
764 	if (!ret) {
765 		inode = btrfs_lookup_dentry(dir, dentry);
766 		if (IS_ERR(inode))
767 			return PTR_ERR(inode);
768 		d_instantiate(dentry, inode);
769 	}
770 	return ret;
771 
772 fail_free:
773 	if (anon_dev)
774 		free_anon_bdev(anon_dev);
775 	kfree(root_item);
776 	return ret;
777 }
778 
779 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
780 			   struct dentry *dentry, bool readonly,
781 			   struct btrfs_qgroup_inherit *inherit)
782 {
783 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
784 	struct inode *inode;
785 	struct btrfs_pending_snapshot *pending_snapshot;
786 	struct btrfs_trans_handle *trans;
787 	int ret;
788 
789 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
790 		return -EINVAL;
791 
792 	if (atomic_read(&root->nr_swapfiles)) {
793 		btrfs_warn(fs_info,
794 			   "cannot snapshot subvolume with active swapfile");
795 		return -ETXTBSY;
796 	}
797 
798 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
799 	if (!pending_snapshot)
800 		return -ENOMEM;
801 
802 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
803 	if (ret < 0)
804 		goto free_pending;
805 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
806 			GFP_KERNEL);
807 	pending_snapshot->path = btrfs_alloc_path();
808 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
809 		ret = -ENOMEM;
810 		goto free_pending;
811 	}
812 
813 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
814 			     BTRFS_BLOCK_RSV_TEMP);
815 	/*
816 	 * 1 - parent dir inode
817 	 * 2 - dir entries
818 	 * 1 - root item
819 	 * 2 - root ref/backref
820 	 * 1 - root of snapshot
821 	 * 1 - UUID item
822 	 */
823 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
824 					&pending_snapshot->block_rsv, 8,
825 					false);
826 	if (ret)
827 		goto free_pending;
828 
829 	pending_snapshot->dentry = dentry;
830 	pending_snapshot->root = root;
831 	pending_snapshot->readonly = readonly;
832 	pending_snapshot->dir = dir;
833 	pending_snapshot->inherit = inherit;
834 
835 	trans = btrfs_start_transaction(root, 0);
836 	if (IS_ERR(trans)) {
837 		ret = PTR_ERR(trans);
838 		goto fail;
839 	}
840 
841 	spin_lock(&fs_info->trans_lock);
842 	list_add(&pending_snapshot->list,
843 		 &trans->transaction->pending_snapshots);
844 	spin_unlock(&fs_info->trans_lock);
845 
846 	ret = btrfs_commit_transaction(trans);
847 	if (ret)
848 		goto fail;
849 
850 	ret = pending_snapshot->error;
851 	if (ret)
852 		goto fail;
853 
854 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
855 	if (ret)
856 		goto fail;
857 
858 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
859 	if (IS_ERR(inode)) {
860 		ret = PTR_ERR(inode);
861 		goto fail;
862 	}
863 
864 	d_instantiate(dentry, inode);
865 	ret = 0;
866 	pending_snapshot->anon_dev = 0;
867 fail:
868 	/* Prevent double freeing of anon_dev */
869 	if (ret && pending_snapshot->snap)
870 		pending_snapshot->snap->anon_dev = 0;
871 	btrfs_put_root(pending_snapshot->snap);
872 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
873 free_pending:
874 	if (pending_snapshot->anon_dev)
875 		free_anon_bdev(pending_snapshot->anon_dev);
876 	kfree(pending_snapshot->root_item);
877 	btrfs_free_path(pending_snapshot->path);
878 	kfree(pending_snapshot);
879 
880 	return ret;
881 }
882 
883 /*  copy of may_delete in fs/namei.c()
884  *	Check whether we can remove a link victim from directory dir, check
885  *  whether the type of victim is right.
886  *  1. We can't do it if dir is read-only (done in permission())
887  *  2. We should have write and exec permissions on dir
888  *  3. We can't remove anything from append-only dir
889  *  4. We can't do anything with immutable dir (done in permission())
890  *  5. If the sticky bit on dir is set we should either
891  *	a. be owner of dir, or
892  *	b. be owner of victim, or
893  *	c. have CAP_FOWNER capability
894  *  6. If the victim is append-only or immutable we can't do anything with
895  *     links pointing to it.
896  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
897  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
898  *  9. We can't remove a root or mountpoint.
899  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
900  *     nfs_async_unlink().
901  */
902 
903 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
904 {
905 	int error;
906 
907 	if (d_really_is_negative(victim))
908 		return -ENOENT;
909 
910 	BUG_ON(d_inode(victim->d_parent) != dir);
911 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
912 
913 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
914 	if (error)
915 		return error;
916 	if (IS_APPEND(dir))
917 		return -EPERM;
918 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
919 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
920 		return -EPERM;
921 	if (isdir) {
922 		if (!d_is_dir(victim))
923 			return -ENOTDIR;
924 		if (IS_ROOT(victim))
925 			return -EBUSY;
926 	} else if (d_is_dir(victim))
927 		return -EISDIR;
928 	if (IS_DEADDIR(dir))
929 		return -ENOENT;
930 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
931 		return -EBUSY;
932 	return 0;
933 }
934 
935 /* copy of may_create in fs/namei.c() */
936 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
937 {
938 	if (d_really_is_positive(child))
939 		return -EEXIST;
940 	if (IS_DEADDIR(dir))
941 		return -ENOENT;
942 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
943 }
944 
945 /*
946  * Create a new subvolume below @parent.  This is largely modeled after
947  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
948  * inside this filesystem so it's quite a bit simpler.
949  */
950 static noinline int btrfs_mksubvol(const struct path *parent,
951 				   const char *name, int namelen,
952 				   struct btrfs_root *snap_src,
953 				   bool readonly,
954 				   struct btrfs_qgroup_inherit *inherit)
955 {
956 	struct inode *dir = d_inode(parent->dentry);
957 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
958 	struct dentry *dentry;
959 	int error;
960 
961 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
962 	if (error == -EINTR)
963 		return error;
964 
965 	dentry = lookup_one_len(name, parent->dentry, namelen);
966 	error = PTR_ERR(dentry);
967 	if (IS_ERR(dentry))
968 		goto out_unlock;
969 
970 	error = btrfs_may_create(dir, dentry);
971 	if (error)
972 		goto out_dput;
973 
974 	/*
975 	 * even if this name doesn't exist, we may get hash collisions.
976 	 * check for them now when we can safely fail
977 	 */
978 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
979 					       dir->i_ino, name,
980 					       namelen);
981 	if (error)
982 		goto out_dput;
983 
984 	down_read(&fs_info->subvol_sem);
985 
986 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
987 		goto out_up_read;
988 
989 	if (snap_src)
990 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
991 	else
992 		error = create_subvol(dir, dentry, name, namelen, inherit);
993 
994 	if (!error)
995 		fsnotify_mkdir(dir, dentry);
996 out_up_read:
997 	up_read(&fs_info->subvol_sem);
998 out_dput:
999 	dput(dentry);
1000 out_unlock:
1001 	inode_unlock(dir);
1002 	return error;
1003 }
1004 
1005 static noinline int btrfs_mksnapshot(const struct path *parent,
1006 				   const char *name, int namelen,
1007 				   struct btrfs_root *root,
1008 				   bool readonly,
1009 				   struct btrfs_qgroup_inherit *inherit)
1010 {
1011 	int ret;
1012 	bool snapshot_force_cow = false;
1013 
1014 	/*
1015 	 * Force new buffered writes to reserve space even when NOCOW is
1016 	 * possible. This is to avoid later writeback (running dealloc) to
1017 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1018 	 */
1019 	btrfs_drew_read_lock(&root->snapshot_lock);
1020 
1021 	ret = btrfs_start_delalloc_snapshot(root);
1022 	if (ret)
1023 		goto out;
1024 
1025 	/*
1026 	 * All previous writes have started writeback in NOCOW mode, so now
1027 	 * we force future writes to fallback to COW mode during snapshot
1028 	 * creation.
1029 	 */
1030 	atomic_inc(&root->snapshot_force_cow);
1031 	snapshot_force_cow = true;
1032 
1033 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1034 
1035 	ret = btrfs_mksubvol(parent, name, namelen,
1036 			     root, readonly, inherit);
1037 out:
1038 	if (snapshot_force_cow)
1039 		atomic_dec(&root->snapshot_force_cow);
1040 	btrfs_drew_read_unlock(&root->snapshot_lock);
1041 	return ret;
1042 }
1043 
1044 /*
1045  * When we're defragging a range, we don't want to kick it off again
1046  * if it is really just waiting for delalloc to send it down.
1047  * If we find a nice big extent or delalloc range for the bytes in the
1048  * file you want to defrag, we return 0 to let you know to skip this
1049  * part of the file
1050  */
1051 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1052 {
1053 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1054 	struct extent_map *em = NULL;
1055 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1056 	u64 end;
1057 
1058 	read_lock(&em_tree->lock);
1059 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1060 	read_unlock(&em_tree->lock);
1061 
1062 	if (em) {
1063 		end = extent_map_end(em);
1064 		free_extent_map(em);
1065 		if (end - offset > thresh)
1066 			return 0;
1067 	}
1068 	/* if we already have a nice delalloc here, just stop */
1069 	thresh /= 2;
1070 	end = count_range_bits(io_tree, &offset, offset + thresh,
1071 			       thresh, EXTENT_DELALLOC, 1);
1072 	if (end >= thresh)
1073 		return 0;
1074 	return 1;
1075 }
1076 
1077 /*
1078  * helper function to walk through a file and find extents
1079  * newer than a specific transid, and smaller than thresh.
1080  *
1081  * This is used by the defragging code to find new and small
1082  * extents
1083  */
1084 static int find_new_extents(struct btrfs_root *root,
1085 			    struct inode *inode, u64 newer_than,
1086 			    u64 *off, u32 thresh)
1087 {
1088 	struct btrfs_path *path;
1089 	struct btrfs_key min_key;
1090 	struct extent_buffer *leaf;
1091 	struct btrfs_file_extent_item *extent;
1092 	int type;
1093 	int ret;
1094 	u64 ino = btrfs_ino(BTRFS_I(inode));
1095 
1096 	path = btrfs_alloc_path();
1097 	if (!path)
1098 		return -ENOMEM;
1099 
1100 	min_key.objectid = ino;
1101 	min_key.type = BTRFS_EXTENT_DATA_KEY;
1102 	min_key.offset = *off;
1103 
1104 	while (1) {
1105 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1106 		if (ret != 0)
1107 			goto none;
1108 process_slot:
1109 		if (min_key.objectid != ino)
1110 			goto none;
1111 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1112 			goto none;
1113 
1114 		leaf = path->nodes[0];
1115 		extent = btrfs_item_ptr(leaf, path->slots[0],
1116 					struct btrfs_file_extent_item);
1117 
1118 		type = btrfs_file_extent_type(leaf, extent);
1119 		if (type == BTRFS_FILE_EXTENT_REG &&
1120 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1121 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1122 			*off = min_key.offset;
1123 			btrfs_free_path(path);
1124 			return 0;
1125 		}
1126 
1127 		path->slots[0]++;
1128 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1129 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1130 			goto process_slot;
1131 		}
1132 
1133 		if (min_key.offset == (u64)-1)
1134 			goto none;
1135 
1136 		min_key.offset++;
1137 		btrfs_release_path(path);
1138 	}
1139 none:
1140 	btrfs_free_path(path);
1141 	return -ENOENT;
1142 }
1143 
1144 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1145 {
1146 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1147 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1148 	struct extent_map *em;
1149 	u64 len = PAGE_SIZE;
1150 
1151 	/*
1152 	 * hopefully we have this extent in the tree already, try without
1153 	 * the full extent lock
1154 	 */
1155 	read_lock(&em_tree->lock);
1156 	em = lookup_extent_mapping(em_tree, start, len);
1157 	read_unlock(&em_tree->lock);
1158 
1159 	if (!em) {
1160 		struct extent_state *cached = NULL;
1161 		u64 end = start + len - 1;
1162 
1163 		/* get the big lock and read metadata off disk */
1164 		lock_extent_bits(io_tree, start, end, &cached);
1165 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1166 		unlock_extent_cached(io_tree, start, end, &cached);
1167 
1168 		if (IS_ERR(em))
1169 			return NULL;
1170 	}
1171 
1172 	return em;
1173 }
1174 
1175 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1176 {
1177 	struct extent_map *next;
1178 	bool ret = true;
1179 
1180 	/* this is the last extent */
1181 	if (em->start + em->len >= i_size_read(inode))
1182 		return false;
1183 
1184 	next = defrag_lookup_extent(inode, em->start + em->len);
1185 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1186 		ret = false;
1187 	else if ((em->block_start + em->block_len == next->block_start) &&
1188 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1189 		ret = false;
1190 
1191 	free_extent_map(next);
1192 	return ret;
1193 }
1194 
1195 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1196 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1197 			       int compress)
1198 {
1199 	struct extent_map *em;
1200 	int ret = 1;
1201 	bool next_mergeable = true;
1202 	bool prev_mergeable = true;
1203 
1204 	/*
1205 	 * make sure that once we start defragging an extent, we keep on
1206 	 * defragging it
1207 	 */
1208 	if (start < *defrag_end)
1209 		return 1;
1210 
1211 	*skip = 0;
1212 
1213 	em = defrag_lookup_extent(inode, start);
1214 	if (!em)
1215 		return 0;
1216 
1217 	/* this will cover holes, and inline extents */
1218 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1219 		ret = 0;
1220 		goto out;
1221 	}
1222 
1223 	if (!*defrag_end)
1224 		prev_mergeable = false;
1225 
1226 	next_mergeable = defrag_check_next_extent(inode, em);
1227 	/*
1228 	 * we hit a real extent, if it is big or the next extent is not a
1229 	 * real extent, don't bother defragging it
1230 	 */
1231 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1232 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1233 		ret = 0;
1234 out:
1235 	/*
1236 	 * last_len ends up being a counter of how many bytes we've defragged.
1237 	 * every time we choose not to defrag an extent, we reset *last_len
1238 	 * so that the next tiny extent will force a defrag.
1239 	 *
1240 	 * The end result of this is that tiny extents before a single big
1241 	 * extent will force at least part of that big extent to be defragged.
1242 	 */
1243 	if (ret) {
1244 		*defrag_end = extent_map_end(em);
1245 	} else {
1246 		*last_len = 0;
1247 		*skip = extent_map_end(em);
1248 		*defrag_end = 0;
1249 	}
1250 
1251 	free_extent_map(em);
1252 	return ret;
1253 }
1254 
1255 /*
1256  * it doesn't do much good to defrag one or two pages
1257  * at a time.  This pulls in a nice chunk of pages
1258  * to COW and defrag.
1259  *
1260  * It also makes sure the delalloc code has enough
1261  * dirty data to avoid making new small extents as part
1262  * of the defrag
1263  *
1264  * It's a good idea to start RA on this range
1265  * before calling this.
1266  */
1267 static int cluster_pages_for_defrag(struct inode *inode,
1268 				    struct page **pages,
1269 				    unsigned long start_index,
1270 				    unsigned long num_pages)
1271 {
1272 	unsigned long file_end;
1273 	u64 isize = i_size_read(inode);
1274 	u64 page_start;
1275 	u64 page_end;
1276 	u64 page_cnt;
1277 	u64 start = (u64)start_index << PAGE_SHIFT;
1278 	int ret;
1279 	int i;
1280 	int i_done;
1281 	struct btrfs_ordered_extent *ordered;
1282 	struct extent_state *cached_state = NULL;
1283 	struct extent_io_tree *tree;
1284 	struct extent_changeset *data_reserved = NULL;
1285 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1286 
1287 	file_end = (isize - 1) >> PAGE_SHIFT;
1288 	if (!isize || start_index > file_end)
1289 		return 0;
1290 
1291 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1292 
1293 	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1294 			start, page_cnt << PAGE_SHIFT);
1295 	if (ret)
1296 		return ret;
1297 	i_done = 0;
1298 	tree = &BTRFS_I(inode)->io_tree;
1299 
1300 	/* step one, lock all the pages */
1301 	for (i = 0; i < page_cnt; i++) {
1302 		struct page *page;
1303 again:
1304 		page = find_or_create_page(inode->i_mapping,
1305 					   start_index + i, mask);
1306 		if (!page)
1307 			break;
1308 
1309 		page_start = page_offset(page);
1310 		page_end = page_start + PAGE_SIZE - 1;
1311 		while (1) {
1312 			lock_extent_bits(tree, page_start, page_end,
1313 					 &cached_state);
1314 			ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1315 							      page_start);
1316 			unlock_extent_cached(tree, page_start, page_end,
1317 					     &cached_state);
1318 			if (!ordered)
1319 				break;
1320 
1321 			unlock_page(page);
1322 			btrfs_start_ordered_extent(ordered, 1);
1323 			btrfs_put_ordered_extent(ordered);
1324 			lock_page(page);
1325 			/*
1326 			 * we unlocked the page above, so we need check if
1327 			 * it was released or not.
1328 			 */
1329 			if (page->mapping != inode->i_mapping) {
1330 				unlock_page(page);
1331 				put_page(page);
1332 				goto again;
1333 			}
1334 		}
1335 
1336 		if (!PageUptodate(page)) {
1337 			btrfs_readpage(NULL, page);
1338 			lock_page(page);
1339 			if (!PageUptodate(page)) {
1340 				unlock_page(page);
1341 				put_page(page);
1342 				ret = -EIO;
1343 				break;
1344 			}
1345 		}
1346 
1347 		if (page->mapping != inode->i_mapping) {
1348 			unlock_page(page);
1349 			put_page(page);
1350 			goto again;
1351 		}
1352 
1353 		pages[i] = page;
1354 		i_done++;
1355 	}
1356 	if (!i_done || ret)
1357 		goto out;
1358 
1359 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1360 		goto out;
1361 
1362 	/*
1363 	 * so now we have a nice long stream of locked
1364 	 * and up to date pages, lets wait on them
1365 	 */
1366 	for (i = 0; i < i_done; i++)
1367 		wait_on_page_writeback(pages[i]);
1368 
1369 	page_start = page_offset(pages[0]);
1370 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1371 
1372 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1373 			 page_start, page_end - 1, &cached_state);
1374 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1375 			  page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1376 			  EXTENT_DEFRAG, 0, 0, &cached_state);
1377 
1378 	if (i_done != page_cnt) {
1379 		spin_lock(&BTRFS_I(inode)->lock);
1380 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1381 		spin_unlock(&BTRFS_I(inode)->lock);
1382 		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1383 				start, (page_cnt - i_done) << PAGE_SHIFT, true);
1384 	}
1385 
1386 
1387 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1388 			  &cached_state);
1389 
1390 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1391 			     page_start, page_end - 1, &cached_state);
1392 
1393 	for (i = 0; i < i_done; i++) {
1394 		clear_page_dirty_for_io(pages[i]);
1395 		ClearPageChecked(pages[i]);
1396 		set_page_extent_mapped(pages[i]);
1397 		set_page_dirty(pages[i]);
1398 		unlock_page(pages[i]);
1399 		put_page(pages[i]);
1400 	}
1401 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1402 	extent_changeset_free(data_reserved);
1403 	return i_done;
1404 out:
1405 	for (i = 0; i < i_done; i++) {
1406 		unlock_page(pages[i]);
1407 		put_page(pages[i]);
1408 	}
1409 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1410 			start, page_cnt << PAGE_SHIFT, true);
1411 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1412 	extent_changeset_free(data_reserved);
1413 	return ret;
1414 
1415 }
1416 
1417 int btrfs_defrag_file(struct inode *inode, struct file *file,
1418 		      struct btrfs_ioctl_defrag_range_args *range,
1419 		      u64 newer_than, unsigned long max_to_defrag)
1420 {
1421 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1422 	struct btrfs_root *root = BTRFS_I(inode)->root;
1423 	struct file_ra_state *ra = NULL;
1424 	unsigned long last_index;
1425 	u64 isize = i_size_read(inode);
1426 	u64 last_len = 0;
1427 	u64 skip = 0;
1428 	u64 defrag_end = 0;
1429 	u64 newer_off = range->start;
1430 	unsigned long i;
1431 	unsigned long ra_index = 0;
1432 	int ret;
1433 	int defrag_count = 0;
1434 	int compress_type = BTRFS_COMPRESS_ZLIB;
1435 	u32 extent_thresh = range->extent_thresh;
1436 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1437 	unsigned long cluster = max_cluster;
1438 	u64 new_align = ~((u64)SZ_128K - 1);
1439 	struct page **pages = NULL;
1440 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1441 
1442 	if (isize == 0)
1443 		return 0;
1444 
1445 	if (range->start >= isize)
1446 		return -EINVAL;
1447 
1448 	if (do_compress) {
1449 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1450 			return -EINVAL;
1451 		if (range->compress_type)
1452 			compress_type = range->compress_type;
1453 	}
1454 
1455 	if (extent_thresh == 0)
1456 		extent_thresh = SZ_256K;
1457 
1458 	/*
1459 	 * If we were not given a file, allocate a readahead context. As
1460 	 * readahead is just an optimization, defrag will work without it so
1461 	 * we don't error out.
1462 	 */
1463 	if (!file) {
1464 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1465 		if (ra)
1466 			file_ra_state_init(ra, inode->i_mapping);
1467 	} else {
1468 		ra = &file->f_ra;
1469 	}
1470 
1471 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1472 	if (!pages) {
1473 		ret = -ENOMEM;
1474 		goto out_ra;
1475 	}
1476 
1477 	/* find the last page to defrag */
1478 	if (range->start + range->len > range->start) {
1479 		last_index = min_t(u64, isize - 1,
1480 			 range->start + range->len - 1) >> PAGE_SHIFT;
1481 	} else {
1482 		last_index = (isize - 1) >> PAGE_SHIFT;
1483 	}
1484 
1485 	if (newer_than) {
1486 		ret = find_new_extents(root, inode, newer_than,
1487 				       &newer_off, SZ_64K);
1488 		if (!ret) {
1489 			range->start = newer_off;
1490 			/*
1491 			 * we always align our defrag to help keep
1492 			 * the extents in the file evenly spaced
1493 			 */
1494 			i = (newer_off & new_align) >> PAGE_SHIFT;
1495 		} else
1496 			goto out_ra;
1497 	} else {
1498 		i = range->start >> PAGE_SHIFT;
1499 	}
1500 	if (!max_to_defrag)
1501 		max_to_defrag = last_index - i + 1;
1502 
1503 	/*
1504 	 * make writeback starts from i, so the defrag range can be
1505 	 * written sequentially.
1506 	 */
1507 	if (i < inode->i_mapping->writeback_index)
1508 		inode->i_mapping->writeback_index = i;
1509 
1510 	while (i <= last_index && defrag_count < max_to_defrag &&
1511 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1512 		/*
1513 		 * make sure we stop running if someone unmounts
1514 		 * the FS
1515 		 */
1516 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1517 			break;
1518 
1519 		if (btrfs_defrag_cancelled(fs_info)) {
1520 			btrfs_debug(fs_info, "defrag_file cancelled");
1521 			ret = -EAGAIN;
1522 			break;
1523 		}
1524 
1525 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1526 					 extent_thresh, &last_len, &skip,
1527 					 &defrag_end, do_compress)){
1528 			unsigned long next;
1529 			/*
1530 			 * the should_defrag function tells us how much to skip
1531 			 * bump our counter by the suggested amount
1532 			 */
1533 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1534 			i = max(i + 1, next);
1535 			continue;
1536 		}
1537 
1538 		if (!newer_than) {
1539 			cluster = (PAGE_ALIGN(defrag_end) >>
1540 				   PAGE_SHIFT) - i;
1541 			cluster = min(cluster, max_cluster);
1542 		} else {
1543 			cluster = max_cluster;
1544 		}
1545 
1546 		if (i + cluster > ra_index) {
1547 			ra_index = max(i, ra_index);
1548 			if (ra)
1549 				page_cache_sync_readahead(inode->i_mapping, ra,
1550 						file, ra_index, cluster);
1551 			ra_index += cluster;
1552 		}
1553 
1554 		inode_lock(inode);
1555 		if (IS_SWAPFILE(inode)) {
1556 			ret = -ETXTBSY;
1557 		} else {
1558 			if (do_compress)
1559 				BTRFS_I(inode)->defrag_compress = compress_type;
1560 			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1561 		}
1562 		if (ret < 0) {
1563 			inode_unlock(inode);
1564 			goto out_ra;
1565 		}
1566 
1567 		defrag_count += ret;
1568 		balance_dirty_pages_ratelimited(inode->i_mapping);
1569 		inode_unlock(inode);
1570 
1571 		if (newer_than) {
1572 			if (newer_off == (u64)-1)
1573 				break;
1574 
1575 			if (ret > 0)
1576 				i += ret;
1577 
1578 			newer_off = max(newer_off + 1,
1579 					(u64)i << PAGE_SHIFT);
1580 
1581 			ret = find_new_extents(root, inode, newer_than,
1582 					       &newer_off, SZ_64K);
1583 			if (!ret) {
1584 				range->start = newer_off;
1585 				i = (newer_off & new_align) >> PAGE_SHIFT;
1586 			} else {
1587 				break;
1588 			}
1589 		} else {
1590 			if (ret > 0) {
1591 				i += ret;
1592 				last_len += ret << PAGE_SHIFT;
1593 			} else {
1594 				i++;
1595 				last_len = 0;
1596 			}
1597 		}
1598 	}
1599 
1600 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1601 		filemap_flush(inode->i_mapping);
1602 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1603 			     &BTRFS_I(inode)->runtime_flags))
1604 			filemap_flush(inode->i_mapping);
1605 	}
1606 
1607 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1608 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1609 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1610 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1611 	}
1612 
1613 	ret = defrag_count;
1614 
1615 out_ra:
1616 	if (do_compress) {
1617 		inode_lock(inode);
1618 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1619 		inode_unlock(inode);
1620 	}
1621 	if (!file)
1622 		kfree(ra);
1623 	kfree(pages);
1624 	return ret;
1625 }
1626 
1627 static noinline int btrfs_ioctl_resize(struct file *file,
1628 					void __user *arg)
1629 {
1630 	struct inode *inode = file_inode(file);
1631 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1632 	u64 new_size;
1633 	u64 old_size;
1634 	u64 devid = 1;
1635 	struct btrfs_root *root = BTRFS_I(inode)->root;
1636 	struct btrfs_ioctl_vol_args *vol_args;
1637 	struct btrfs_trans_handle *trans;
1638 	struct btrfs_device *device = NULL;
1639 	char *sizestr;
1640 	char *retptr;
1641 	char *devstr = NULL;
1642 	int ret = 0;
1643 	int mod = 0;
1644 
1645 	if (!capable(CAP_SYS_ADMIN))
1646 		return -EPERM;
1647 
1648 	ret = mnt_want_write_file(file);
1649 	if (ret)
1650 		return ret;
1651 
1652 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) {
1653 		mnt_drop_write_file(file);
1654 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1655 	}
1656 
1657 	vol_args = memdup_user(arg, sizeof(*vol_args));
1658 	if (IS_ERR(vol_args)) {
1659 		ret = PTR_ERR(vol_args);
1660 		goto out;
1661 	}
1662 
1663 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1664 
1665 	sizestr = vol_args->name;
1666 	devstr = strchr(sizestr, ':');
1667 	if (devstr) {
1668 		sizestr = devstr + 1;
1669 		*devstr = '\0';
1670 		devstr = vol_args->name;
1671 		ret = kstrtoull(devstr, 10, &devid);
1672 		if (ret)
1673 			goto out_free;
1674 		if (!devid) {
1675 			ret = -EINVAL;
1676 			goto out_free;
1677 		}
1678 		btrfs_info(fs_info, "resizing devid %llu", devid);
1679 	}
1680 
1681 	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1682 	if (!device) {
1683 		btrfs_info(fs_info, "resizer unable to find device %llu",
1684 			   devid);
1685 		ret = -ENODEV;
1686 		goto out_free;
1687 	}
1688 
1689 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1690 		btrfs_info(fs_info,
1691 			   "resizer unable to apply on readonly device %llu",
1692 		       devid);
1693 		ret = -EPERM;
1694 		goto out_free;
1695 	}
1696 
1697 	if (!strcmp(sizestr, "max"))
1698 		new_size = device->bdev->bd_inode->i_size;
1699 	else {
1700 		if (sizestr[0] == '-') {
1701 			mod = -1;
1702 			sizestr++;
1703 		} else if (sizestr[0] == '+') {
1704 			mod = 1;
1705 			sizestr++;
1706 		}
1707 		new_size = memparse(sizestr, &retptr);
1708 		if (*retptr != '\0' || new_size == 0) {
1709 			ret = -EINVAL;
1710 			goto out_free;
1711 		}
1712 	}
1713 
1714 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1715 		ret = -EPERM;
1716 		goto out_free;
1717 	}
1718 
1719 	old_size = btrfs_device_get_total_bytes(device);
1720 
1721 	if (mod < 0) {
1722 		if (new_size > old_size) {
1723 			ret = -EINVAL;
1724 			goto out_free;
1725 		}
1726 		new_size = old_size - new_size;
1727 	} else if (mod > 0) {
1728 		if (new_size > ULLONG_MAX - old_size) {
1729 			ret = -ERANGE;
1730 			goto out_free;
1731 		}
1732 		new_size = old_size + new_size;
1733 	}
1734 
1735 	if (new_size < SZ_256M) {
1736 		ret = -EINVAL;
1737 		goto out_free;
1738 	}
1739 	if (new_size > device->bdev->bd_inode->i_size) {
1740 		ret = -EFBIG;
1741 		goto out_free;
1742 	}
1743 
1744 	new_size = round_down(new_size, fs_info->sectorsize);
1745 
1746 	if (new_size > old_size) {
1747 		trans = btrfs_start_transaction(root, 0);
1748 		if (IS_ERR(trans)) {
1749 			ret = PTR_ERR(trans);
1750 			goto out_free;
1751 		}
1752 		ret = btrfs_grow_device(trans, device, new_size);
1753 		btrfs_commit_transaction(trans);
1754 	} else if (new_size < old_size) {
1755 		ret = btrfs_shrink_device(device, new_size);
1756 	} /* equal, nothing need to do */
1757 
1758 	if (ret == 0 && new_size != old_size)
1759 		btrfs_info_in_rcu(fs_info,
1760 			"resize device %s (devid %llu) from %llu to %llu",
1761 			rcu_str_deref(device->name), device->devid,
1762 			old_size, new_size);
1763 out_free:
1764 	kfree(vol_args);
1765 out:
1766 	btrfs_exclop_finish(fs_info);
1767 	mnt_drop_write_file(file);
1768 	return ret;
1769 }
1770 
1771 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1772 				const char *name, unsigned long fd, int subvol,
1773 				bool readonly,
1774 				struct btrfs_qgroup_inherit *inherit)
1775 {
1776 	int namelen;
1777 	int ret = 0;
1778 
1779 	if (!S_ISDIR(file_inode(file)->i_mode))
1780 		return -ENOTDIR;
1781 
1782 	ret = mnt_want_write_file(file);
1783 	if (ret)
1784 		goto out;
1785 
1786 	namelen = strlen(name);
1787 	if (strchr(name, '/')) {
1788 		ret = -EINVAL;
1789 		goto out_drop_write;
1790 	}
1791 
1792 	if (name[0] == '.' &&
1793 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1794 		ret = -EEXIST;
1795 		goto out_drop_write;
1796 	}
1797 
1798 	if (subvol) {
1799 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1800 				     NULL, readonly, inherit);
1801 	} else {
1802 		struct fd src = fdget(fd);
1803 		struct inode *src_inode;
1804 		if (!src.file) {
1805 			ret = -EINVAL;
1806 			goto out_drop_write;
1807 		}
1808 
1809 		src_inode = file_inode(src.file);
1810 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1811 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1812 				   "Snapshot src from another FS");
1813 			ret = -EXDEV;
1814 		} else if (!inode_owner_or_capable(src_inode)) {
1815 			/*
1816 			 * Subvolume creation is not restricted, but snapshots
1817 			 * are limited to own subvolumes only
1818 			 */
1819 			ret = -EPERM;
1820 		} else {
1821 			ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1822 					     BTRFS_I(src_inode)->root,
1823 					     readonly, inherit);
1824 		}
1825 		fdput(src);
1826 	}
1827 out_drop_write:
1828 	mnt_drop_write_file(file);
1829 out:
1830 	return ret;
1831 }
1832 
1833 static noinline int btrfs_ioctl_snap_create(struct file *file,
1834 					    void __user *arg, int subvol)
1835 {
1836 	struct btrfs_ioctl_vol_args *vol_args;
1837 	int ret;
1838 
1839 	if (!S_ISDIR(file_inode(file)->i_mode))
1840 		return -ENOTDIR;
1841 
1842 	vol_args = memdup_user(arg, sizeof(*vol_args));
1843 	if (IS_ERR(vol_args))
1844 		return PTR_ERR(vol_args);
1845 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1846 
1847 	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1848 					subvol, false, NULL);
1849 
1850 	kfree(vol_args);
1851 	return ret;
1852 }
1853 
1854 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1855 					       void __user *arg, int subvol)
1856 {
1857 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1858 	int ret;
1859 	bool readonly = false;
1860 	struct btrfs_qgroup_inherit *inherit = NULL;
1861 
1862 	if (!S_ISDIR(file_inode(file)->i_mode))
1863 		return -ENOTDIR;
1864 
1865 	vol_args = memdup_user(arg, sizeof(*vol_args));
1866 	if (IS_ERR(vol_args))
1867 		return PTR_ERR(vol_args);
1868 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1869 
1870 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1871 		ret = -EOPNOTSUPP;
1872 		goto free_args;
1873 	}
1874 
1875 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1876 		readonly = true;
1877 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1878 		if (vol_args->size > PAGE_SIZE) {
1879 			ret = -EINVAL;
1880 			goto free_args;
1881 		}
1882 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1883 		if (IS_ERR(inherit)) {
1884 			ret = PTR_ERR(inherit);
1885 			goto free_args;
1886 		}
1887 	}
1888 
1889 	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1890 					subvol, readonly, inherit);
1891 	if (ret)
1892 		goto free_inherit;
1893 free_inherit:
1894 	kfree(inherit);
1895 free_args:
1896 	kfree(vol_args);
1897 	return ret;
1898 }
1899 
1900 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1901 						void __user *arg)
1902 {
1903 	struct inode *inode = file_inode(file);
1904 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1905 	struct btrfs_root *root = BTRFS_I(inode)->root;
1906 	int ret = 0;
1907 	u64 flags = 0;
1908 
1909 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1910 		return -EINVAL;
1911 
1912 	down_read(&fs_info->subvol_sem);
1913 	if (btrfs_root_readonly(root))
1914 		flags |= BTRFS_SUBVOL_RDONLY;
1915 	up_read(&fs_info->subvol_sem);
1916 
1917 	if (copy_to_user(arg, &flags, sizeof(flags)))
1918 		ret = -EFAULT;
1919 
1920 	return ret;
1921 }
1922 
1923 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1924 					      void __user *arg)
1925 {
1926 	struct inode *inode = file_inode(file);
1927 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1928 	struct btrfs_root *root = BTRFS_I(inode)->root;
1929 	struct btrfs_trans_handle *trans;
1930 	u64 root_flags;
1931 	u64 flags;
1932 	int ret = 0;
1933 
1934 	if (!inode_owner_or_capable(inode))
1935 		return -EPERM;
1936 
1937 	ret = mnt_want_write_file(file);
1938 	if (ret)
1939 		goto out;
1940 
1941 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1942 		ret = -EINVAL;
1943 		goto out_drop_write;
1944 	}
1945 
1946 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1947 		ret = -EFAULT;
1948 		goto out_drop_write;
1949 	}
1950 
1951 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1952 		ret = -EOPNOTSUPP;
1953 		goto out_drop_write;
1954 	}
1955 
1956 	down_write(&fs_info->subvol_sem);
1957 
1958 	/* nothing to do */
1959 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1960 		goto out_drop_sem;
1961 
1962 	root_flags = btrfs_root_flags(&root->root_item);
1963 	if (flags & BTRFS_SUBVOL_RDONLY) {
1964 		btrfs_set_root_flags(&root->root_item,
1965 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1966 	} else {
1967 		/*
1968 		 * Block RO -> RW transition if this subvolume is involved in
1969 		 * send
1970 		 */
1971 		spin_lock(&root->root_item_lock);
1972 		if (root->send_in_progress == 0) {
1973 			btrfs_set_root_flags(&root->root_item,
1974 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1975 			spin_unlock(&root->root_item_lock);
1976 		} else {
1977 			spin_unlock(&root->root_item_lock);
1978 			btrfs_warn(fs_info,
1979 				   "Attempt to set subvolume %llu read-write during send",
1980 				   root->root_key.objectid);
1981 			ret = -EPERM;
1982 			goto out_drop_sem;
1983 		}
1984 	}
1985 
1986 	trans = btrfs_start_transaction(root, 1);
1987 	if (IS_ERR(trans)) {
1988 		ret = PTR_ERR(trans);
1989 		goto out_reset;
1990 	}
1991 
1992 	ret = btrfs_update_root(trans, fs_info->tree_root,
1993 				&root->root_key, &root->root_item);
1994 	if (ret < 0) {
1995 		btrfs_end_transaction(trans);
1996 		goto out_reset;
1997 	}
1998 
1999 	ret = btrfs_commit_transaction(trans);
2000 
2001 out_reset:
2002 	if (ret)
2003 		btrfs_set_root_flags(&root->root_item, root_flags);
2004 out_drop_sem:
2005 	up_write(&fs_info->subvol_sem);
2006 out_drop_write:
2007 	mnt_drop_write_file(file);
2008 out:
2009 	return ret;
2010 }
2011 
2012 static noinline int key_in_sk(struct btrfs_key *key,
2013 			      struct btrfs_ioctl_search_key *sk)
2014 {
2015 	struct btrfs_key test;
2016 	int ret;
2017 
2018 	test.objectid = sk->min_objectid;
2019 	test.type = sk->min_type;
2020 	test.offset = sk->min_offset;
2021 
2022 	ret = btrfs_comp_cpu_keys(key, &test);
2023 	if (ret < 0)
2024 		return 0;
2025 
2026 	test.objectid = sk->max_objectid;
2027 	test.type = sk->max_type;
2028 	test.offset = sk->max_offset;
2029 
2030 	ret = btrfs_comp_cpu_keys(key, &test);
2031 	if (ret > 0)
2032 		return 0;
2033 	return 1;
2034 }
2035 
2036 static noinline int copy_to_sk(struct btrfs_path *path,
2037 			       struct btrfs_key *key,
2038 			       struct btrfs_ioctl_search_key *sk,
2039 			       size_t *buf_size,
2040 			       char __user *ubuf,
2041 			       unsigned long *sk_offset,
2042 			       int *num_found)
2043 {
2044 	u64 found_transid;
2045 	struct extent_buffer *leaf;
2046 	struct btrfs_ioctl_search_header sh;
2047 	struct btrfs_key test;
2048 	unsigned long item_off;
2049 	unsigned long item_len;
2050 	int nritems;
2051 	int i;
2052 	int slot;
2053 	int ret = 0;
2054 
2055 	leaf = path->nodes[0];
2056 	slot = path->slots[0];
2057 	nritems = btrfs_header_nritems(leaf);
2058 
2059 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2060 		i = nritems;
2061 		goto advance_key;
2062 	}
2063 	found_transid = btrfs_header_generation(leaf);
2064 
2065 	for (i = slot; i < nritems; i++) {
2066 		item_off = btrfs_item_ptr_offset(leaf, i);
2067 		item_len = btrfs_item_size_nr(leaf, i);
2068 
2069 		btrfs_item_key_to_cpu(leaf, key, i);
2070 		if (!key_in_sk(key, sk))
2071 			continue;
2072 
2073 		if (sizeof(sh) + item_len > *buf_size) {
2074 			if (*num_found) {
2075 				ret = 1;
2076 				goto out;
2077 			}
2078 
2079 			/*
2080 			 * return one empty item back for v1, which does not
2081 			 * handle -EOVERFLOW
2082 			 */
2083 
2084 			*buf_size = sizeof(sh) + item_len;
2085 			item_len = 0;
2086 			ret = -EOVERFLOW;
2087 		}
2088 
2089 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2090 			ret = 1;
2091 			goto out;
2092 		}
2093 
2094 		sh.objectid = key->objectid;
2095 		sh.offset = key->offset;
2096 		sh.type = key->type;
2097 		sh.len = item_len;
2098 		sh.transid = found_transid;
2099 
2100 		/*
2101 		 * Copy search result header. If we fault then loop again so we
2102 		 * can fault in the pages and -EFAULT there if there's a
2103 		 * problem. Otherwise we'll fault and then copy the buffer in
2104 		 * properly this next time through
2105 		 */
2106 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2107 			ret = 0;
2108 			goto out;
2109 		}
2110 
2111 		*sk_offset += sizeof(sh);
2112 
2113 		if (item_len) {
2114 			char __user *up = ubuf + *sk_offset;
2115 			/*
2116 			 * Copy the item, same behavior as above, but reset the
2117 			 * * sk_offset so we copy the full thing again.
2118 			 */
2119 			if (read_extent_buffer_to_user_nofault(leaf, up,
2120 						item_off, item_len)) {
2121 				ret = 0;
2122 				*sk_offset -= sizeof(sh);
2123 				goto out;
2124 			}
2125 
2126 			*sk_offset += item_len;
2127 		}
2128 		(*num_found)++;
2129 
2130 		if (ret) /* -EOVERFLOW from above */
2131 			goto out;
2132 
2133 		if (*num_found >= sk->nr_items) {
2134 			ret = 1;
2135 			goto out;
2136 		}
2137 	}
2138 advance_key:
2139 	ret = 0;
2140 	test.objectid = sk->max_objectid;
2141 	test.type = sk->max_type;
2142 	test.offset = sk->max_offset;
2143 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2144 		ret = 1;
2145 	else if (key->offset < (u64)-1)
2146 		key->offset++;
2147 	else if (key->type < (u8)-1) {
2148 		key->offset = 0;
2149 		key->type++;
2150 	} else if (key->objectid < (u64)-1) {
2151 		key->offset = 0;
2152 		key->type = 0;
2153 		key->objectid++;
2154 	} else
2155 		ret = 1;
2156 out:
2157 	/*
2158 	 *  0: all items from this leaf copied, continue with next
2159 	 *  1: * more items can be copied, but unused buffer is too small
2160 	 *     * all items were found
2161 	 *     Either way, it will stops the loop which iterates to the next
2162 	 *     leaf
2163 	 *  -EOVERFLOW: item was to large for buffer
2164 	 *  -EFAULT: could not copy extent buffer back to userspace
2165 	 */
2166 	return ret;
2167 }
2168 
2169 static noinline int search_ioctl(struct inode *inode,
2170 				 struct btrfs_ioctl_search_key *sk,
2171 				 size_t *buf_size,
2172 				 char __user *ubuf)
2173 {
2174 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2175 	struct btrfs_root *root;
2176 	struct btrfs_key key;
2177 	struct btrfs_path *path;
2178 	int ret;
2179 	int num_found = 0;
2180 	unsigned long sk_offset = 0;
2181 
2182 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2183 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2184 		return -EOVERFLOW;
2185 	}
2186 
2187 	path = btrfs_alloc_path();
2188 	if (!path)
2189 		return -ENOMEM;
2190 
2191 	if (sk->tree_id == 0) {
2192 		/* search the root of the inode that was passed */
2193 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2194 	} else {
2195 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2196 		if (IS_ERR(root)) {
2197 			btrfs_free_path(path);
2198 			return PTR_ERR(root);
2199 		}
2200 	}
2201 
2202 	key.objectid = sk->min_objectid;
2203 	key.type = sk->min_type;
2204 	key.offset = sk->min_offset;
2205 
2206 	while (1) {
2207 		ret = fault_in_pages_writeable(ubuf + sk_offset,
2208 					       *buf_size - sk_offset);
2209 		if (ret)
2210 			break;
2211 
2212 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2213 		if (ret != 0) {
2214 			if (ret > 0)
2215 				ret = 0;
2216 			goto err;
2217 		}
2218 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2219 				 &sk_offset, &num_found);
2220 		btrfs_release_path(path);
2221 		if (ret)
2222 			break;
2223 
2224 	}
2225 	if (ret > 0)
2226 		ret = 0;
2227 err:
2228 	sk->nr_items = num_found;
2229 	btrfs_put_root(root);
2230 	btrfs_free_path(path);
2231 	return ret;
2232 }
2233 
2234 static noinline int btrfs_ioctl_tree_search(struct file *file,
2235 					   void __user *argp)
2236 {
2237 	struct btrfs_ioctl_search_args __user *uargs;
2238 	struct btrfs_ioctl_search_key sk;
2239 	struct inode *inode;
2240 	int ret;
2241 	size_t buf_size;
2242 
2243 	if (!capable(CAP_SYS_ADMIN))
2244 		return -EPERM;
2245 
2246 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2247 
2248 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2249 		return -EFAULT;
2250 
2251 	buf_size = sizeof(uargs->buf);
2252 
2253 	inode = file_inode(file);
2254 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2255 
2256 	/*
2257 	 * In the origin implementation an overflow is handled by returning a
2258 	 * search header with a len of zero, so reset ret.
2259 	 */
2260 	if (ret == -EOVERFLOW)
2261 		ret = 0;
2262 
2263 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2264 		ret = -EFAULT;
2265 	return ret;
2266 }
2267 
2268 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2269 					       void __user *argp)
2270 {
2271 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2272 	struct btrfs_ioctl_search_args_v2 args;
2273 	struct inode *inode;
2274 	int ret;
2275 	size_t buf_size;
2276 	const size_t buf_limit = SZ_16M;
2277 
2278 	if (!capable(CAP_SYS_ADMIN))
2279 		return -EPERM;
2280 
2281 	/* copy search header and buffer size */
2282 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2283 	if (copy_from_user(&args, uarg, sizeof(args)))
2284 		return -EFAULT;
2285 
2286 	buf_size = args.buf_size;
2287 
2288 	/* limit result size to 16MB */
2289 	if (buf_size > buf_limit)
2290 		buf_size = buf_limit;
2291 
2292 	inode = file_inode(file);
2293 	ret = search_ioctl(inode, &args.key, &buf_size,
2294 			   (char __user *)(&uarg->buf[0]));
2295 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2296 		ret = -EFAULT;
2297 	else if (ret == -EOVERFLOW &&
2298 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2299 		ret = -EFAULT;
2300 
2301 	return ret;
2302 }
2303 
2304 /*
2305  * Search INODE_REFs to identify path name of 'dirid' directory
2306  * in a 'tree_id' tree. and sets path name to 'name'.
2307  */
2308 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2309 				u64 tree_id, u64 dirid, char *name)
2310 {
2311 	struct btrfs_root *root;
2312 	struct btrfs_key key;
2313 	char *ptr;
2314 	int ret = -1;
2315 	int slot;
2316 	int len;
2317 	int total_len = 0;
2318 	struct btrfs_inode_ref *iref;
2319 	struct extent_buffer *l;
2320 	struct btrfs_path *path;
2321 
2322 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2323 		name[0]='\0';
2324 		return 0;
2325 	}
2326 
2327 	path = btrfs_alloc_path();
2328 	if (!path)
2329 		return -ENOMEM;
2330 
2331 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2332 
2333 	root = btrfs_get_fs_root(info, tree_id, true);
2334 	if (IS_ERR(root)) {
2335 		ret = PTR_ERR(root);
2336 		root = NULL;
2337 		goto out;
2338 	}
2339 
2340 	key.objectid = dirid;
2341 	key.type = BTRFS_INODE_REF_KEY;
2342 	key.offset = (u64)-1;
2343 
2344 	while (1) {
2345 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2346 		if (ret < 0)
2347 			goto out;
2348 		else if (ret > 0) {
2349 			ret = btrfs_previous_item(root, path, dirid,
2350 						  BTRFS_INODE_REF_KEY);
2351 			if (ret < 0)
2352 				goto out;
2353 			else if (ret > 0) {
2354 				ret = -ENOENT;
2355 				goto out;
2356 			}
2357 		}
2358 
2359 		l = path->nodes[0];
2360 		slot = path->slots[0];
2361 		btrfs_item_key_to_cpu(l, &key, slot);
2362 
2363 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2364 		len = btrfs_inode_ref_name_len(l, iref);
2365 		ptr -= len + 1;
2366 		total_len += len + 1;
2367 		if (ptr < name) {
2368 			ret = -ENAMETOOLONG;
2369 			goto out;
2370 		}
2371 
2372 		*(ptr + len) = '/';
2373 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2374 
2375 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2376 			break;
2377 
2378 		btrfs_release_path(path);
2379 		key.objectid = key.offset;
2380 		key.offset = (u64)-1;
2381 		dirid = key.objectid;
2382 	}
2383 	memmove(name, ptr, total_len);
2384 	name[total_len] = '\0';
2385 	ret = 0;
2386 out:
2387 	btrfs_put_root(root);
2388 	btrfs_free_path(path);
2389 	return ret;
2390 }
2391 
2392 static int btrfs_search_path_in_tree_user(struct inode *inode,
2393 				struct btrfs_ioctl_ino_lookup_user_args *args)
2394 {
2395 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2396 	struct super_block *sb = inode->i_sb;
2397 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2398 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2399 	u64 dirid = args->dirid;
2400 	unsigned long item_off;
2401 	unsigned long item_len;
2402 	struct btrfs_inode_ref *iref;
2403 	struct btrfs_root_ref *rref;
2404 	struct btrfs_root *root = NULL;
2405 	struct btrfs_path *path;
2406 	struct btrfs_key key, key2;
2407 	struct extent_buffer *leaf;
2408 	struct inode *temp_inode;
2409 	char *ptr;
2410 	int slot;
2411 	int len;
2412 	int total_len = 0;
2413 	int ret;
2414 
2415 	path = btrfs_alloc_path();
2416 	if (!path)
2417 		return -ENOMEM;
2418 
2419 	/*
2420 	 * If the bottom subvolume does not exist directly under upper_limit,
2421 	 * construct the path in from the bottom up.
2422 	 */
2423 	if (dirid != upper_limit.objectid) {
2424 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2425 
2426 		root = btrfs_get_fs_root(fs_info, treeid, true);
2427 		if (IS_ERR(root)) {
2428 			ret = PTR_ERR(root);
2429 			goto out;
2430 		}
2431 
2432 		key.objectid = dirid;
2433 		key.type = BTRFS_INODE_REF_KEY;
2434 		key.offset = (u64)-1;
2435 		while (1) {
2436 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2437 			if (ret < 0) {
2438 				goto out_put;
2439 			} else if (ret > 0) {
2440 				ret = btrfs_previous_item(root, path, dirid,
2441 							  BTRFS_INODE_REF_KEY);
2442 				if (ret < 0) {
2443 					goto out_put;
2444 				} else if (ret > 0) {
2445 					ret = -ENOENT;
2446 					goto out_put;
2447 				}
2448 			}
2449 
2450 			leaf = path->nodes[0];
2451 			slot = path->slots[0];
2452 			btrfs_item_key_to_cpu(leaf, &key, slot);
2453 
2454 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2455 			len = btrfs_inode_ref_name_len(leaf, iref);
2456 			ptr -= len + 1;
2457 			total_len += len + 1;
2458 			if (ptr < args->path) {
2459 				ret = -ENAMETOOLONG;
2460 				goto out_put;
2461 			}
2462 
2463 			*(ptr + len) = '/';
2464 			read_extent_buffer(leaf, ptr,
2465 					(unsigned long)(iref + 1), len);
2466 
2467 			/* Check the read+exec permission of this directory */
2468 			ret = btrfs_previous_item(root, path, dirid,
2469 						  BTRFS_INODE_ITEM_KEY);
2470 			if (ret < 0) {
2471 				goto out_put;
2472 			} else if (ret > 0) {
2473 				ret = -ENOENT;
2474 				goto out_put;
2475 			}
2476 
2477 			leaf = path->nodes[0];
2478 			slot = path->slots[0];
2479 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2480 			if (key2.objectid != dirid) {
2481 				ret = -ENOENT;
2482 				goto out_put;
2483 			}
2484 
2485 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2486 			if (IS_ERR(temp_inode)) {
2487 				ret = PTR_ERR(temp_inode);
2488 				goto out_put;
2489 			}
2490 			ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2491 			iput(temp_inode);
2492 			if (ret) {
2493 				ret = -EACCES;
2494 				goto out_put;
2495 			}
2496 
2497 			if (key.offset == upper_limit.objectid)
2498 				break;
2499 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2500 				ret = -EACCES;
2501 				goto out_put;
2502 			}
2503 
2504 			btrfs_release_path(path);
2505 			key.objectid = key.offset;
2506 			key.offset = (u64)-1;
2507 			dirid = key.objectid;
2508 		}
2509 
2510 		memmove(args->path, ptr, total_len);
2511 		args->path[total_len] = '\0';
2512 		btrfs_put_root(root);
2513 		root = NULL;
2514 		btrfs_release_path(path);
2515 	}
2516 
2517 	/* Get the bottom subvolume's name from ROOT_REF */
2518 	key.objectid = treeid;
2519 	key.type = BTRFS_ROOT_REF_KEY;
2520 	key.offset = args->treeid;
2521 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2522 	if (ret < 0) {
2523 		goto out;
2524 	} else if (ret > 0) {
2525 		ret = -ENOENT;
2526 		goto out;
2527 	}
2528 
2529 	leaf = path->nodes[0];
2530 	slot = path->slots[0];
2531 	btrfs_item_key_to_cpu(leaf, &key, slot);
2532 
2533 	item_off = btrfs_item_ptr_offset(leaf, slot);
2534 	item_len = btrfs_item_size_nr(leaf, slot);
2535 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2536 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2537 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2538 		ret = -EINVAL;
2539 		goto out;
2540 	}
2541 
2542 	/* Copy subvolume's name */
2543 	item_off += sizeof(struct btrfs_root_ref);
2544 	item_len -= sizeof(struct btrfs_root_ref);
2545 	read_extent_buffer(leaf, args->name, item_off, item_len);
2546 	args->name[item_len] = 0;
2547 
2548 out_put:
2549 	btrfs_put_root(root);
2550 out:
2551 	btrfs_free_path(path);
2552 	return ret;
2553 }
2554 
2555 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2556 					   void __user *argp)
2557 {
2558 	struct btrfs_ioctl_ino_lookup_args *args;
2559 	struct inode *inode;
2560 	int ret = 0;
2561 
2562 	args = memdup_user(argp, sizeof(*args));
2563 	if (IS_ERR(args))
2564 		return PTR_ERR(args);
2565 
2566 	inode = file_inode(file);
2567 
2568 	/*
2569 	 * Unprivileged query to obtain the containing subvolume root id. The
2570 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2571 	 */
2572 	if (args->treeid == 0)
2573 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2574 
2575 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2576 		args->name[0] = 0;
2577 		goto out;
2578 	}
2579 
2580 	if (!capable(CAP_SYS_ADMIN)) {
2581 		ret = -EPERM;
2582 		goto out;
2583 	}
2584 
2585 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2586 					args->treeid, args->objectid,
2587 					args->name);
2588 
2589 out:
2590 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2591 		ret = -EFAULT;
2592 
2593 	kfree(args);
2594 	return ret;
2595 }
2596 
2597 /*
2598  * Version of ino_lookup ioctl (unprivileged)
2599  *
2600  * The main differences from ino_lookup ioctl are:
2601  *
2602  *   1. Read + Exec permission will be checked using inode_permission() during
2603  *      path construction. -EACCES will be returned in case of failure.
2604  *   2. Path construction will be stopped at the inode number which corresponds
2605  *      to the fd with which this ioctl is called. If constructed path does not
2606  *      exist under fd's inode, -EACCES will be returned.
2607  *   3. The name of bottom subvolume is also searched and filled.
2608  */
2609 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2610 {
2611 	struct btrfs_ioctl_ino_lookup_user_args *args;
2612 	struct inode *inode;
2613 	int ret;
2614 
2615 	args = memdup_user(argp, sizeof(*args));
2616 	if (IS_ERR(args))
2617 		return PTR_ERR(args);
2618 
2619 	inode = file_inode(file);
2620 
2621 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2622 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2623 		/*
2624 		 * The subvolume does not exist under fd with which this is
2625 		 * called
2626 		 */
2627 		kfree(args);
2628 		return -EACCES;
2629 	}
2630 
2631 	ret = btrfs_search_path_in_tree_user(inode, args);
2632 
2633 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2634 		ret = -EFAULT;
2635 
2636 	kfree(args);
2637 	return ret;
2638 }
2639 
2640 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2641 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2642 {
2643 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2644 	struct btrfs_fs_info *fs_info;
2645 	struct btrfs_root *root;
2646 	struct btrfs_path *path;
2647 	struct btrfs_key key;
2648 	struct btrfs_root_item *root_item;
2649 	struct btrfs_root_ref *rref;
2650 	struct extent_buffer *leaf;
2651 	unsigned long item_off;
2652 	unsigned long item_len;
2653 	struct inode *inode;
2654 	int slot;
2655 	int ret = 0;
2656 
2657 	path = btrfs_alloc_path();
2658 	if (!path)
2659 		return -ENOMEM;
2660 
2661 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2662 	if (!subvol_info) {
2663 		btrfs_free_path(path);
2664 		return -ENOMEM;
2665 	}
2666 
2667 	inode = file_inode(file);
2668 	fs_info = BTRFS_I(inode)->root->fs_info;
2669 
2670 	/* Get root_item of inode's subvolume */
2671 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2672 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2673 	if (IS_ERR(root)) {
2674 		ret = PTR_ERR(root);
2675 		goto out_free;
2676 	}
2677 	root_item = &root->root_item;
2678 
2679 	subvol_info->treeid = key.objectid;
2680 
2681 	subvol_info->generation = btrfs_root_generation(root_item);
2682 	subvol_info->flags = btrfs_root_flags(root_item);
2683 
2684 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2685 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2686 						    BTRFS_UUID_SIZE);
2687 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2688 						    BTRFS_UUID_SIZE);
2689 
2690 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2691 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2692 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2693 
2694 	subvol_info->otransid = btrfs_root_otransid(root_item);
2695 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2696 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2697 
2698 	subvol_info->stransid = btrfs_root_stransid(root_item);
2699 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2700 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2701 
2702 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2703 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2704 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2705 
2706 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2707 		/* Search root tree for ROOT_BACKREF of this subvolume */
2708 		key.type = BTRFS_ROOT_BACKREF_KEY;
2709 		key.offset = 0;
2710 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2711 		if (ret < 0) {
2712 			goto out;
2713 		} else if (path->slots[0] >=
2714 			   btrfs_header_nritems(path->nodes[0])) {
2715 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2716 			if (ret < 0) {
2717 				goto out;
2718 			} else if (ret > 0) {
2719 				ret = -EUCLEAN;
2720 				goto out;
2721 			}
2722 		}
2723 
2724 		leaf = path->nodes[0];
2725 		slot = path->slots[0];
2726 		btrfs_item_key_to_cpu(leaf, &key, slot);
2727 		if (key.objectid == subvol_info->treeid &&
2728 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2729 			subvol_info->parent_id = key.offset;
2730 
2731 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2732 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2733 
2734 			item_off = btrfs_item_ptr_offset(leaf, slot)
2735 					+ sizeof(struct btrfs_root_ref);
2736 			item_len = btrfs_item_size_nr(leaf, slot)
2737 					- sizeof(struct btrfs_root_ref);
2738 			read_extent_buffer(leaf, subvol_info->name,
2739 					   item_off, item_len);
2740 		} else {
2741 			ret = -ENOENT;
2742 			goto out;
2743 		}
2744 	}
2745 
2746 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2747 		ret = -EFAULT;
2748 
2749 out:
2750 	btrfs_put_root(root);
2751 out_free:
2752 	btrfs_free_path(path);
2753 	kfree(subvol_info);
2754 	return ret;
2755 }
2756 
2757 /*
2758  * Return ROOT_REF information of the subvolume containing this inode
2759  * except the subvolume name.
2760  */
2761 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2762 {
2763 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2764 	struct btrfs_root_ref *rref;
2765 	struct btrfs_root *root;
2766 	struct btrfs_path *path;
2767 	struct btrfs_key key;
2768 	struct extent_buffer *leaf;
2769 	struct inode *inode;
2770 	u64 objectid;
2771 	int slot;
2772 	int ret;
2773 	u8 found;
2774 
2775 	path = btrfs_alloc_path();
2776 	if (!path)
2777 		return -ENOMEM;
2778 
2779 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2780 	if (IS_ERR(rootrefs)) {
2781 		btrfs_free_path(path);
2782 		return PTR_ERR(rootrefs);
2783 	}
2784 
2785 	inode = file_inode(file);
2786 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2787 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2788 
2789 	key.objectid = objectid;
2790 	key.type = BTRFS_ROOT_REF_KEY;
2791 	key.offset = rootrefs->min_treeid;
2792 	found = 0;
2793 
2794 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2795 	if (ret < 0) {
2796 		goto out;
2797 	} else if (path->slots[0] >=
2798 		   btrfs_header_nritems(path->nodes[0])) {
2799 		ret = btrfs_next_leaf(root, path);
2800 		if (ret < 0) {
2801 			goto out;
2802 		} else if (ret > 0) {
2803 			ret = -EUCLEAN;
2804 			goto out;
2805 		}
2806 	}
2807 	while (1) {
2808 		leaf = path->nodes[0];
2809 		slot = path->slots[0];
2810 
2811 		btrfs_item_key_to_cpu(leaf, &key, slot);
2812 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2813 			ret = 0;
2814 			goto out;
2815 		}
2816 
2817 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2818 			ret = -EOVERFLOW;
2819 			goto out;
2820 		}
2821 
2822 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2823 		rootrefs->rootref[found].treeid = key.offset;
2824 		rootrefs->rootref[found].dirid =
2825 				  btrfs_root_ref_dirid(leaf, rref);
2826 		found++;
2827 
2828 		ret = btrfs_next_item(root, path);
2829 		if (ret < 0) {
2830 			goto out;
2831 		} else if (ret > 0) {
2832 			ret = -EUCLEAN;
2833 			goto out;
2834 		}
2835 	}
2836 
2837 out:
2838 	if (!ret || ret == -EOVERFLOW) {
2839 		rootrefs->num_items = found;
2840 		/* update min_treeid for next search */
2841 		if (found)
2842 			rootrefs->min_treeid =
2843 				rootrefs->rootref[found - 1].treeid + 1;
2844 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2845 			ret = -EFAULT;
2846 	}
2847 
2848 	kfree(rootrefs);
2849 	btrfs_free_path(path);
2850 
2851 	return ret;
2852 }
2853 
2854 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2855 					     void __user *arg,
2856 					     bool destroy_v2)
2857 {
2858 	struct dentry *parent = file->f_path.dentry;
2859 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2860 	struct dentry *dentry;
2861 	struct inode *dir = d_inode(parent);
2862 	struct inode *inode;
2863 	struct btrfs_root *root = BTRFS_I(dir)->root;
2864 	struct btrfs_root *dest = NULL;
2865 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2866 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2867 	char *subvol_name, *subvol_name_ptr = NULL;
2868 	int subvol_namelen;
2869 	int err = 0;
2870 	bool destroy_parent = false;
2871 
2872 	if (destroy_v2) {
2873 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2874 		if (IS_ERR(vol_args2))
2875 			return PTR_ERR(vol_args2);
2876 
2877 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2878 			err = -EOPNOTSUPP;
2879 			goto out;
2880 		}
2881 
2882 		/*
2883 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2884 		 * name, same as v1 currently does.
2885 		 */
2886 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2887 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2888 			subvol_name = vol_args2->name;
2889 
2890 			err = mnt_want_write_file(file);
2891 			if (err)
2892 				goto out;
2893 		} else {
2894 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2895 				err = -EINVAL;
2896 				goto out;
2897 			}
2898 
2899 			err = mnt_want_write_file(file);
2900 			if (err)
2901 				goto out;
2902 
2903 			dentry = btrfs_get_dentry(fs_info->sb,
2904 					BTRFS_FIRST_FREE_OBJECTID,
2905 					vol_args2->subvolid, 0, 0);
2906 			if (IS_ERR(dentry)) {
2907 				err = PTR_ERR(dentry);
2908 				goto out_drop_write;
2909 			}
2910 
2911 			/*
2912 			 * Change the default parent since the subvolume being
2913 			 * deleted can be outside of the current mount point.
2914 			 */
2915 			parent = btrfs_get_parent(dentry);
2916 
2917 			/*
2918 			 * At this point dentry->d_name can point to '/' if the
2919 			 * subvolume we want to destroy is outsite of the
2920 			 * current mount point, so we need to release the
2921 			 * current dentry and execute the lookup to return a new
2922 			 * one with ->d_name pointing to the
2923 			 * <mount point>/subvol_name.
2924 			 */
2925 			dput(dentry);
2926 			if (IS_ERR(parent)) {
2927 				err = PTR_ERR(parent);
2928 				goto out_drop_write;
2929 			}
2930 			dir = d_inode(parent);
2931 
2932 			/*
2933 			 * If v2 was used with SPEC_BY_ID, a new parent was
2934 			 * allocated since the subvolume can be outside of the
2935 			 * current mount point. Later on we need to release this
2936 			 * new parent dentry.
2937 			 */
2938 			destroy_parent = true;
2939 
2940 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2941 						fs_info, vol_args2->subvolid);
2942 			if (IS_ERR(subvol_name_ptr)) {
2943 				err = PTR_ERR(subvol_name_ptr);
2944 				goto free_parent;
2945 			}
2946 			/* subvol_name_ptr is already NULL termined */
2947 			subvol_name = (char *)kbasename(subvol_name_ptr);
2948 		}
2949 	} else {
2950 		vol_args = memdup_user(arg, sizeof(*vol_args));
2951 		if (IS_ERR(vol_args))
2952 			return PTR_ERR(vol_args);
2953 
2954 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2955 		subvol_name = vol_args->name;
2956 
2957 		err = mnt_want_write_file(file);
2958 		if (err)
2959 			goto out;
2960 	}
2961 
2962 	subvol_namelen = strlen(subvol_name);
2963 
2964 	if (strchr(subvol_name, '/') ||
2965 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2966 		err = -EINVAL;
2967 		goto free_subvol_name;
2968 	}
2969 
2970 	if (!S_ISDIR(dir->i_mode)) {
2971 		err = -ENOTDIR;
2972 		goto free_subvol_name;
2973 	}
2974 
2975 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2976 	if (err == -EINTR)
2977 		goto free_subvol_name;
2978 	dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
2979 	if (IS_ERR(dentry)) {
2980 		err = PTR_ERR(dentry);
2981 		goto out_unlock_dir;
2982 	}
2983 
2984 	if (d_really_is_negative(dentry)) {
2985 		err = -ENOENT;
2986 		goto out_dput;
2987 	}
2988 
2989 	inode = d_inode(dentry);
2990 	dest = BTRFS_I(inode)->root;
2991 	if (!capable(CAP_SYS_ADMIN)) {
2992 		/*
2993 		 * Regular user.  Only allow this with a special mount
2994 		 * option, when the user has write+exec access to the
2995 		 * subvol root, and when rmdir(2) would have been
2996 		 * allowed.
2997 		 *
2998 		 * Note that this is _not_ check that the subvol is
2999 		 * empty or doesn't contain data that we wouldn't
3000 		 * otherwise be able to delete.
3001 		 *
3002 		 * Users who want to delete empty subvols should try
3003 		 * rmdir(2).
3004 		 */
3005 		err = -EPERM;
3006 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3007 			goto out_dput;
3008 
3009 		/*
3010 		 * Do not allow deletion if the parent dir is the same
3011 		 * as the dir to be deleted.  That means the ioctl
3012 		 * must be called on the dentry referencing the root
3013 		 * of the subvol, not a random directory contained
3014 		 * within it.
3015 		 */
3016 		err = -EINVAL;
3017 		if (root == dest)
3018 			goto out_dput;
3019 
3020 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
3021 		if (err)
3022 			goto out_dput;
3023 	}
3024 
3025 	/* check if subvolume may be deleted by a user */
3026 	err = btrfs_may_delete(dir, dentry, 1);
3027 	if (err)
3028 		goto out_dput;
3029 
3030 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3031 		err = -EINVAL;
3032 		goto out_dput;
3033 	}
3034 
3035 	inode_lock(inode);
3036 	err = btrfs_delete_subvolume(dir, dentry);
3037 	inode_unlock(inode);
3038 	if (!err) {
3039 		fsnotify_rmdir(dir, dentry);
3040 		d_delete(dentry);
3041 	}
3042 
3043 out_dput:
3044 	dput(dentry);
3045 out_unlock_dir:
3046 	inode_unlock(dir);
3047 free_subvol_name:
3048 	kfree(subvol_name_ptr);
3049 free_parent:
3050 	if (destroy_parent)
3051 		dput(parent);
3052 out_drop_write:
3053 	mnt_drop_write_file(file);
3054 out:
3055 	kfree(vol_args2);
3056 	kfree(vol_args);
3057 	return err;
3058 }
3059 
3060 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3061 {
3062 	struct inode *inode = file_inode(file);
3063 	struct btrfs_root *root = BTRFS_I(inode)->root;
3064 	struct btrfs_ioctl_defrag_range_args *range;
3065 	int ret;
3066 
3067 	ret = mnt_want_write_file(file);
3068 	if (ret)
3069 		return ret;
3070 
3071 	if (btrfs_root_readonly(root)) {
3072 		ret = -EROFS;
3073 		goto out;
3074 	}
3075 
3076 	switch (inode->i_mode & S_IFMT) {
3077 	case S_IFDIR:
3078 		if (!capable(CAP_SYS_ADMIN)) {
3079 			ret = -EPERM;
3080 			goto out;
3081 		}
3082 		ret = btrfs_defrag_root(root);
3083 		break;
3084 	case S_IFREG:
3085 		/*
3086 		 * Note that this does not check the file descriptor for write
3087 		 * access. This prevents defragmenting executables that are
3088 		 * running and allows defrag on files open in read-only mode.
3089 		 */
3090 		if (!capable(CAP_SYS_ADMIN) &&
3091 		    inode_permission(inode, MAY_WRITE)) {
3092 			ret = -EPERM;
3093 			goto out;
3094 		}
3095 
3096 		range = kzalloc(sizeof(*range), GFP_KERNEL);
3097 		if (!range) {
3098 			ret = -ENOMEM;
3099 			goto out;
3100 		}
3101 
3102 		if (argp) {
3103 			if (copy_from_user(range, argp,
3104 					   sizeof(*range))) {
3105 				ret = -EFAULT;
3106 				kfree(range);
3107 				goto out;
3108 			}
3109 			/* compression requires us to start the IO */
3110 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3111 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3112 				range->extent_thresh = (u32)-1;
3113 			}
3114 		} else {
3115 			/* the rest are all set to zero by kzalloc */
3116 			range->len = (u64)-1;
3117 		}
3118 		ret = btrfs_defrag_file(file_inode(file), file,
3119 					range, BTRFS_OLDEST_GENERATION, 0);
3120 		if (ret > 0)
3121 			ret = 0;
3122 		kfree(range);
3123 		break;
3124 	default:
3125 		ret = -EINVAL;
3126 	}
3127 out:
3128 	mnt_drop_write_file(file);
3129 	return ret;
3130 }
3131 
3132 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3133 {
3134 	struct btrfs_ioctl_vol_args *vol_args;
3135 	int ret;
3136 
3137 	if (!capable(CAP_SYS_ADMIN))
3138 		return -EPERM;
3139 
3140 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3141 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3142 
3143 	vol_args = memdup_user(arg, sizeof(*vol_args));
3144 	if (IS_ERR(vol_args)) {
3145 		ret = PTR_ERR(vol_args);
3146 		goto out;
3147 	}
3148 
3149 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3150 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3151 
3152 	if (!ret)
3153 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3154 
3155 	kfree(vol_args);
3156 out:
3157 	btrfs_exclop_finish(fs_info);
3158 	return ret;
3159 }
3160 
3161 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3162 {
3163 	struct inode *inode = file_inode(file);
3164 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3165 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3166 	int ret;
3167 
3168 	if (!capable(CAP_SYS_ADMIN))
3169 		return -EPERM;
3170 
3171 	ret = mnt_want_write_file(file);
3172 	if (ret)
3173 		return ret;
3174 
3175 	vol_args = memdup_user(arg, sizeof(*vol_args));
3176 	if (IS_ERR(vol_args)) {
3177 		ret = PTR_ERR(vol_args);
3178 		goto err_drop;
3179 	}
3180 
3181 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3182 		ret = -EOPNOTSUPP;
3183 		goto out;
3184 	}
3185 
3186 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3187 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3188 		goto out;
3189 	}
3190 
3191 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3192 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3193 	} else {
3194 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3195 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3196 	}
3197 	btrfs_exclop_finish(fs_info);
3198 
3199 	if (!ret) {
3200 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3201 			btrfs_info(fs_info, "device deleted: id %llu",
3202 					vol_args->devid);
3203 		else
3204 			btrfs_info(fs_info, "device deleted: %s",
3205 					vol_args->name);
3206 	}
3207 out:
3208 	kfree(vol_args);
3209 err_drop:
3210 	mnt_drop_write_file(file);
3211 	return ret;
3212 }
3213 
3214 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3215 {
3216 	struct inode *inode = file_inode(file);
3217 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3218 	struct btrfs_ioctl_vol_args *vol_args;
3219 	int ret;
3220 
3221 	if (!capable(CAP_SYS_ADMIN))
3222 		return -EPERM;
3223 
3224 	ret = mnt_want_write_file(file);
3225 	if (ret)
3226 		return ret;
3227 
3228 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3229 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3230 		goto out_drop_write;
3231 	}
3232 
3233 	vol_args = memdup_user(arg, sizeof(*vol_args));
3234 	if (IS_ERR(vol_args)) {
3235 		ret = PTR_ERR(vol_args);
3236 		goto out;
3237 	}
3238 
3239 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3240 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3241 
3242 	if (!ret)
3243 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3244 	kfree(vol_args);
3245 out:
3246 	btrfs_exclop_finish(fs_info);
3247 out_drop_write:
3248 	mnt_drop_write_file(file);
3249 
3250 	return ret;
3251 }
3252 
3253 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3254 				void __user *arg)
3255 {
3256 	struct btrfs_ioctl_fs_info_args *fi_args;
3257 	struct btrfs_device *device;
3258 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3259 	u64 flags_in;
3260 	int ret = 0;
3261 
3262 	fi_args = memdup_user(arg, sizeof(*fi_args));
3263 	if (IS_ERR(fi_args))
3264 		return PTR_ERR(fi_args);
3265 
3266 	flags_in = fi_args->flags;
3267 	memset(fi_args, 0, sizeof(*fi_args));
3268 
3269 	rcu_read_lock();
3270 	fi_args->num_devices = fs_devices->num_devices;
3271 
3272 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3273 		if (device->devid > fi_args->max_id)
3274 			fi_args->max_id = device->devid;
3275 	}
3276 	rcu_read_unlock();
3277 
3278 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3279 	fi_args->nodesize = fs_info->nodesize;
3280 	fi_args->sectorsize = fs_info->sectorsize;
3281 	fi_args->clone_alignment = fs_info->sectorsize;
3282 
3283 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3284 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3285 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3286 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3287 	}
3288 
3289 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3290 		fi_args->generation = fs_info->generation;
3291 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3292 	}
3293 
3294 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3295 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3296 		       sizeof(fi_args->metadata_uuid));
3297 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3298 	}
3299 
3300 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3301 		ret = -EFAULT;
3302 
3303 	kfree(fi_args);
3304 	return ret;
3305 }
3306 
3307 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3308 				 void __user *arg)
3309 {
3310 	struct btrfs_ioctl_dev_info_args *di_args;
3311 	struct btrfs_device *dev;
3312 	int ret = 0;
3313 	char *s_uuid = NULL;
3314 
3315 	di_args = memdup_user(arg, sizeof(*di_args));
3316 	if (IS_ERR(di_args))
3317 		return PTR_ERR(di_args);
3318 
3319 	if (!btrfs_is_empty_uuid(di_args->uuid))
3320 		s_uuid = di_args->uuid;
3321 
3322 	rcu_read_lock();
3323 	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3324 				NULL, true);
3325 
3326 	if (!dev) {
3327 		ret = -ENODEV;
3328 		goto out;
3329 	}
3330 
3331 	di_args->devid = dev->devid;
3332 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3333 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3334 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3335 	if (dev->name) {
3336 		strncpy(di_args->path, rcu_str_deref(dev->name),
3337 				sizeof(di_args->path) - 1);
3338 		di_args->path[sizeof(di_args->path) - 1] = 0;
3339 	} else {
3340 		di_args->path[0] = '\0';
3341 	}
3342 
3343 out:
3344 	rcu_read_unlock();
3345 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3346 		ret = -EFAULT;
3347 
3348 	kfree(di_args);
3349 	return ret;
3350 }
3351 
3352 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3353 {
3354 	struct inode *inode = file_inode(file);
3355 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3356 	struct btrfs_root *root = BTRFS_I(inode)->root;
3357 	struct btrfs_root *new_root;
3358 	struct btrfs_dir_item *di;
3359 	struct btrfs_trans_handle *trans;
3360 	struct btrfs_path *path = NULL;
3361 	struct btrfs_disk_key disk_key;
3362 	u64 objectid = 0;
3363 	u64 dir_id;
3364 	int ret;
3365 
3366 	if (!capable(CAP_SYS_ADMIN))
3367 		return -EPERM;
3368 
3369 	ret = mnt_want_write_file(file);
3370 	if (ret)
3371 		return ret;
3372 
3373 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3374 		ret = -EFAULT;
3375 		goto out;
3376 	}
3377 
3378 	if (!objectid)
3379 		objectid = BTRFS_FS_TREE_OBJECTID;
3380 
3381 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3382 	if (IS_ERR(new_root)) {
3383 		ret = PTR_ERR(new_root);
3384 		goto out;
3385 	}
3386 	if (!is_fstree(new_root->root_key.objectid)) {
3387 		ret = -ENOENT;
3388 		goto out_free;
3389 	}
3390 
3391 	path = btrfs_alloc_path();
3392 	if (!path) {
3393 		ret = -ENOMEM;
3394 		goto out_free;
3395 	}
3396 	path->leave_spinning = 1;
3397 
3398 	trans = btrfs_start_transaction(root, 1);
3399 	if (IS_ERR(trans)) {
3400 		ret = PTR_ERR(trans);
3401 		goto out_free;
3402 	}
3403 
3404 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3405 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3406 				   dir_id, "default", 7, 1);
3407 	if (IS_ERR_OR_NULL(di)) {
3408 		btrfs_release_path(path);
3409 		btrfs_end_transaction(trans);
3410 		btrfs_err(fs_info,
3411 			  "Umm, you don't have the default diritem, this isn't going to work");
3412 		ret = -ENOENT;
3413 		goto out_free;
3414 	}
3415 
3416 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3417 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3418 	btrfs_mark_buffer_dirty(path->nodes[0]);
3419 	btrfs_release_path(path);
3420 
3421 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3422 	btrfs_end_transaction(trans);
3423 out_free:
3424 	btrfs_put_root(new_root);
3425 	btrfs_free_path(path);
3426 out:
3427 	mnt_drop_write_file(file);
3428 	return ret;
3429 }
3430 
3431 static void get_block_group_info(struct list_head *groups_list,
3432 				 struct btrfs_ioctl_space_info *space)
3433 {
3434 	struct btrfs_block_group *block_group;
3435 
3436 	space->total_bytes = 0;
3437 	space->used_bytes = 0;
3438 	space->flags = 0;
3439 	list_for_each_entry(block_group, groups_list, list) {
3440 		space->flags = block_group->flags;
3441 		space->total_bytes += block_group->length;
3442 		space->used_bytes += block_group->used;
3443 	}
3444 }
3445 
3446 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3447 				   void __user *arg)
3448 {
3449 	struct btrfs_ioctl_space_args space_args;
3450 	struct btrfs_ioctl_space_info space;
3451 	struct btrfs_ioctl_space_info *dest;
3452 	struct btrfs_ioctl_space_info *dest_orig;
3453 	struct btrfs_ioctl_space_info __user *user_dest;
3454 	struct btrfs_space_info *info;
3455 	static const u64 types[] = {
3456 		BTRFS_BLOCK_GROUP_DATA,
3457 		BTRFS_BLOCK_GROUP_SYSTEM,
3458 		BTRFS_BLOCK_GROUP_METADATA,
3459 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3460 	};
3461 	int num_types = 4;
3462 	int alloc_size;
3463 	int ret = 0;
3464 	u64 slot_count = 0;
3465 	int i, c;
3466 
3467 	if (copy_from_user(&space_args,
3468 			   (struct btrfs_ioctl_space_args __user *)arg,
3469 			   sizeof(space_args)))
3470 		return -EFAULT;
3471 
3472 	for (i = 0; i < num_types; i++) {
3473 		struct btrfs_space_info *tmp;
3474 
3475 		info = NULL;
3476 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3477 			if (tmp->flags == types[i]) {
3478 				info = tmp;
3479 				break;
3480 			}
3481 		}
3482 
3483 		if (!info)
3484 			continue;
3485 
3486 		down_read(&info->groups_sem);
3487 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3488 			if (!list_empty(&info->block_groups[c]))
3489 				slot_count++;
3490 		}
3491 		up_read(&info->groups_sem);
3492 	}
3493 
3494 	/*
3495 	 * Global block reserve, exported as a space_info
3496 	 */
3497 	slot_count++;
3498 
3499 	/* space_slots == 0 means they are asking for a count */
3500 	if (space_args.space_slots == 0) {
3501 		space_args.total_spaces = slot_count;
3502 		goto out;
3503 	}
3504 
3505 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3506 
3507 	alloc_size = sizeof(*dest) * slot_count;
3508 
3509 	/* we generally have at most 6 or so space infos, one for each raid
3510 	 * level.  So, a whole page should be more than enough for everyone
3511 	 */
3512 	if (alloc_size > PAGE_SIZE)
3513 		return -ENOMEM;
3514 
3515 	space_args.total_spaces = 0;
3516 	dest = kmalloc(alloc_size, GFP_KERNEL);
3517 	if (!dest)
3518 		return -ENOMEM;
3519 	dest_orig = dest;
3520 
3521 	/* now we have a buffer to copy into */
3522 	for (i = 0; i < num_types; i++) {
3523 		struct btrfs_space_info *tmp;
3524 
3525 		if (!slot_count)
3526 			break;
3527 
3528 		info = NULL;
3529 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3530 			if (tmp->flags == types[i]) {
3531 				info = tmp;
3532 				break;
3533 			}
3534 		}
3535 
3536 		if (!info)
3537 			continue;
3538 		down_read(&info->groups_sem);
3539 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3540 			if (!list_empty(&info->block_groups[c])) {
3541 				get_block_group_info(&info->block_groups[c],
3542 						     &space);
3543 				memcpy(dest, &space, sizeof(space));
3544 				dest++;
3545 				space_args.total_spaces++;
3546 				slot_count--;
3547 			}
3548 			if (!slot_count)
3549 				break;
3550 		}
3551 		up_read(&info->groups_sem);
3552 	}
3553 
3554 	/*
3555 	 * Add global block reserve
3556 	 */
3557 	if (slot_count) {
3558 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3559 
3560 		spin_lock(&block_rsv->lock);
3561 		space.total_bytes = block_rsv->size;
3562 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3563 		spin_unlock(&block_rsv->lock);
3564 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3565 		memcpy(dest, &space, sizeof(space));
3566 		space_args.total_spaces++;
3567 	}
3568 
3569 	user_dest = (struct btrfs_ioctl_space_info __user *)
3570 		(arg + sizeof(struct btrfs_ioctl_space_args));
3571 
3572 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3573 		ret = -EFAULT;
3574 
3575 	kfree(dest_orig);
3576 out:
3577 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3578 		ret = -EFAULT;
3579 
3580 	return ret;
3581 }
3582 
3583 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3584 					    void __user *argp)
3585 {
3586 	struct btrfs_trans_handle *trans;
3587 	u64 transid;
3588 	int ret;
3589 
3590 	trans = btrfs_attach_transaction_barrier(root);
3591 	if (IS_ERR(trans)) {
3592 		if (PTR_ERR(trans) != -ENOENT)
3593 			return PTR_ERR(trans);
3594 
3595 		/* No running transaction, don't bother */
3596 		transid = root->fs_info->last_trans_committed;
3597 		goto out;
3598 	}
3599 	transid = trans->transid;
3600 	ret = btrfs_commit_transaction_async(trans, 0);
3601 	if (ret) {
3602 		btrfs_end_transaction(trans);
3603 		return ret;
3604 	}
3605 out:
3606 	if (argp)
3607 		if (copy_to_user(argp, &transid, sizeof(transid)))
3608 			return -EFAULT;
3609 	return 0;
3610 }
3611 
3612 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3613 					   void __user *argp)
3614 {
3615 	u64 transid;
3616 
3617 	if (argp) {
3618 		if (copy_from_user(&transid, argp, sizeof(transid)))
3619 			return -EFAULT;
3620 	} else {
3621 		transid = 0;  /* current trans */
3622 	}
3623 	return btrfs_wait_for_commit(fs_info, transid);
3624 }
3625 
3626 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3627 {
3628 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3629 	struct btrfs_ioctl_scrub_args *sa;
3630 	int ret;
3631 
3632 	if (!capable(CAP_SYS_ADMIN))
3633 		return -EPERM;
3634 
3635 	sa = memdup_user(arg, sizeof(*sa));
3636 	if (IS_ERR(sa))
3637 		return PTR_ERR(sa);
3638 
3639 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3640 		ret = mnt_want_write_file(file);
3641 		if (ret)
3642 			goto out;
3643 	}
3644 
3645 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3646 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3647 			      0);
3648 
3649 	/*
3650 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3651 	 * error. This is important as it allows user space to know how much
3652 	 * progress scrub has done. For example, if scrub is canceled we get
3653 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3654 	 * space. Later user space can inspect the progress from the structure
3655 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3656 	 * previously (btrfs-progs does this).
3657 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3658 	 * then return -EFAULT to signal the structure was not copied or it may
3659 	 * be corrupt and unreliable due to a partial copy.
3660 	 */
3661 	if (copy_to_user(arg, sa, sizeof(*sa)))
3662 		ret = -EFAULT;
3663 
3664 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3665 		mnt_drop_write_file(file);
3666 out:
3667 	kfree(sa);
3668 	return ret;
3669 }
3670 
3671 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3672 {
3673 	if (!capable(CAP_SYS_ADMIN))
3674 		return -EPERM;
3675 
3676 	return btrfs_scrub_cancel(fs_info);
3677 }
3678 
3679 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3680 				       void __user *arg)
3681 {
3682 	struct btrfs_ioctl_scrub_args *sa;
3683 	int ret;
3684 
3685 	if (!capable(CAP_SYS_ADMIN))
3686 		return -EPERM;
3687 
3688 	sa = memdup_user(arg, sizeof(*sa));
3689 	if (IS_ERR(sa))
3690 		return PTR_ERR(sa);
3691 
3692 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3693 
3694 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3695 		ret = -EFAULT;
3696 
3697 	kfree(sa);
3698 	return ret;
3699 }
3700 
3701 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3702 				      void __user *arg)
3703 {
3704 	struct btrfs_ioctl_get_dev_stats *sa;
3705 	int ret;
3706 
3707 	sa = memdup_user(arg, sizeof(*sa));
3708 	if (IS_ERR(sa))
3709 		return PTR_ERR(sa);
3710 
3711 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3712 		kfree(sa);
3713 		return -EPERM;
3714 	}
3715 
3716 	ret = btrfs_get_dev_stats(fs_info, sa);
3717 
3718 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3719 		ret = -EFAULT;
3720 
3721 	kfree(sa);
3722 	return ret;
3723 }
3724 
3725 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3726 				    void __user *arg)
3727 {
3728 	struct btrfs_ioctl_dev_replace_args *p;
3729 	int ret;
3730 
3731 	if (!capable(CAP_SYS_ADMIN))
3732 		return -EPERM;
3733 
3734 	p = memdup_user(arg, sizeof(*p));
3735 	if (IS_ERR(p))
3736 		return PTR_ERR(p);
3737 
3738 	switch (p->cmd) {
3739 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3740 		if (sb_rdonly(fs_info->sb)) {
3741 			ret = -EROFS;
3742 			goto out;
3743 		}
3744 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3745 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3746 		} else {
3747 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3748 			btrfs_exclop_finish(fs_info);
3749 		}
3750 		break;
3751 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3752 		btrfs_dev_replace_status(fs_info, p);
3753 		ret = 0;
3754 		break;
3755 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3756 		p->result = btrfs_dev_replace_cancel(fs_info);
3757 		ret = 0;
3758 		break;
3759 	default:
3760 		ret = -EINVAL;
3761 		break;
3762 	}
3763 
3764 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3765 		ret = -EFAULT;
3766 out:
3767 	kfree(p);
3768 	return ret;
3769 }
3770 
3771 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3772 {
3773 	int ret = 0;
3774 	int i;
3775 	u64 rel_ptr;
3776 	int size;
3777 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3778 	struct inode_fs_paths *ipath = NULL;
3779 	struct btrfs_path *path;
3780 
3781 	if (!capable(CAP_DAC_READ_SEARCH))
3782 		return -EPERM;
3783 
3784 	path = btrfs_alloc_path();
3785 	if (!path) {
3786 		ret = -ENOMEM;
3787 		goto out;
3788 	}
3789 
3790 	ipa = memdup_user(arg, sizeof(*ipa));
3791 	if (IS_ERR(ipa)) {
3792 		ret = PTR_ERR(ipa);
3793 		ipa = NULL;
3794 		goto out;
3795 	}
3796 
3797 	size = min_t(u32, ipa->size, 4096);
3798 	ipath = init_ipath(size, root, path);
3799 	if (IS_ERR(ipath)) {
3800 		ret = PTR_ERR(ipath);
3801 		ipath = NULL;
3802 		goto out;
3803 	}
3804 
3805 	ret = paths_from_inode(ipa->inum, ipath);
3806 	if (ret < 0)
3807 		goto out;
3808 
3809 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3810 		rel_ptr = ipath->fspath->val[i] -
3811 			  (u64)(unsigned long)ipath->fspath->val;
3812 		ipath->fspath->val[i] = rel_ptr;
3813 	}
3814 
3815 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3816 			   ipath->fspath, size);
3817 	if (ret) {
3818 		ret = -EFAULT;
3819 		goto out;
3820 	}
3821 
3822 out:
3823 	btrfs_free_path(path);
3824 	free_ipath(ipath);
3825 	kfree(ipa);
3826 
3827 	return ret;
3828 }
3829 
3830 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3831 {
3832 	struct btrfs_data_container *inodes = ctx;
3833 	const size_t c = 3 * sizeof(u64);
3834 
3835 	if (inodes->bytes_left >= c) {
3836 		inodes->bytes_left -= c;
3837 		inodes->val[inodes->elem_cnt] = inum;
3838 		inodes->val[inodes->elem_cnt + 1] = offset;
3839 		inodes->val[inodes->elem_cnt + 2] = root;
3840 		inodes->elem_cnt += 3;
3841 	} else {
3842 		inodes->bytes_missing += c - inodes->bytes_left;
3843 		inodes->bytes_left = 0;
3844 		inodes->elem_missed += 3;
3845 	}
3846 
3847 	return 0;
3848 }
3849 
3850 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3851 					void __user *arg, int version)
3852 {
3853 	int ret = 0;
3854 	int size;
3855 	struct btrfs_ioctl_logical_ino_args *loi;
3856 	struct btrfs_data_container *inodes = NULL;
3857 	struct btrfs_path *path = NULL;
3858 	bool ignore_offset;
3859 
3860 	if (!capable(CAP_SYS_ADMIN))
3861 		return -EPERM;
3862 
3863 	loi = memdup_user(arg, sizeof(*loi));
3864 	if (IS_ERR(loi))
3865 		return PTR_ERR(loi);
3866 
3867 	if (version == 1) {
3868 		ignore_offset = false;
3869 		size = min_t(u32, loi->size, SZ_64K);
3870 	} else {
3871 		/* All reserved bits must be 0 for now */
3872 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3873 			ret = -EINVAL;
3874 			goto out_loi;
3875 		}
3876 		/* Only accept flags we have defined so far */
3877 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3878 			ret = -EINVAL;
3879 			goto out_loi;
3880 		}
3881 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3882 		size = min_t(u32, loi->size, SZ_16M);
3883 	}
3884 
3885 	path = btrfs_alloc_path();
3886 	if (!path) {
3887 		ret = -ENOMEM;
3888 		goto out;
3889 	}
3890 
3891 	inodes = init_data_container(size);
3892 	if (IS_ERR(inodes)) {
3893 		ret = PTR_ERR(inodes);
3894 		inodes = NULL;
3895 		goto out;
3896 	}
3897 
3898 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3899 					  build_ino_list, inodes, ignore_offset);
3900 	if (ret == -EINVAL)
3901 		ret = -ENOENT;
3902 	if (ret < 0)
3903 		goto out;
3904 
3905 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3906 			   size);
3907 	if (ret)
3908 		ret = -EFAULT;
3909 
3910 out:
3911 	btrfs_free_path(path);
3912 	kvfree(inodes);
3913 out_loi:
3914 	kfree(loi);
3915 
3916 	return ret;
3917 }
3918 
3919 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3920 			       struct btrfs_ioctl_balance_args *bargs)
3921 {
3922 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3923 
3924 	bargs->flags = bctl->flags;
3925 
3926 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3927 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3928 	if (atomic_read(&fs_info->balance_pause_req))
3929 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3930 	if (atomic_read(&fs_info->balance_cancel_req))
3931 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3932 
3933 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3934 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3935 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3936 
3937 	spin_lock(&fs_info->balance_lock);
3938 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3939 	spin_unlock(&fs_info->balance_lock);
3940 }
3941 
3942 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3943 {
3944 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3945 	struct btrfs_fs_info *fs_info = root->fs_info;
3946 	struct btrfs_ioctl_balance_args *bargs;
3947 	struct btrfs_balance_control *bctl;
3948 	bool need_unlock; /* for mut. excl. ops lock */
3949 	int ret;
3950 
3951 	if (!capable(CAP_SYS_ADMIN))
3952 		return -EPERM;
3953 
3954 	ret = mnt_want_write_file(file);
3955 	if (ret)
3956 		return ret;
3957 
3958 again:
3959 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3960 		mutex_lock(&fs_info->balance_mutex);
3961 		need_unlock = true;
3962 		goto locked;
3963 	}
3964 
3965 	/*
3966 	 * mut. excl. ops lock is locked.  Three possibilities:
3967 	 *   (1) some other op is running
3968 	 *   (2) balance is running
3969 	 *   (3) balance is paused -- special case (think resume)
3970 	 */
3971 	mutex_lock(&fs_info->balance_mutex);
3972 	if (fs_info->balance_ctl) {
3973 		/* this is either (2) or (3) */
3974 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3975 			mutex_unlock(&fs_info->balance_mutex);
3976 			/*
3977 			 * Lock released to allow other waiters to continue,
3978 			 * we'll reexamine the status again.
3979 			 */
3980 			mutex_lock(&fs_info->balance_mutex);
3981 
3982 			if (fs_info->balance_ctl &&
3983 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3984 				/* this is (3) */
3985 				need_unlock = false;
3986 				goto locked;
3987 			}
3988 
3989 			mutex_unlock(&fs_info->balance_mutex);
3990 			goto again;
3991 		} else {
3992 			/* this is (2) */
3993 			mutex_unlock(&fs_info->balance_mutex);
3994 			ret = -EINPROGRESS;
3995 			goto out;
3996 		}
3997 	} else {
3998 		/* this is (1) */
3999 		mutex_unlock(&fs_info->balance_mutex);
4000 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4001 		goto out;
4002 	}
4003 
4004 locked:
4005 
4006 	if (arg) {
4007 		bargs = memdup_user(arg, sizeof(*bargs));
4008 		if (IS_ERR(bargs)) {
4009 			ret = PTR_ERR(bargs);
4010 			goto out_unlock;
4011 		}
4012 
4013 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4014 			if (!fs_info->balance_ctl) {
4015 				ret = -ENOTCONN;
4016 				goto out_bargs;
4017 			}
4018 
4019 			bctl = fs_info->balance_ctl;
4020 			spin_lock(&fs_info->balance_lock);
4021 			bctl->flags |= BTRFS_BALANCE_RESUME;
4022 			spin_unlock(&fs_info->balance_lock);
4023 
4024 			goto do_balance;
4025 		}
4026 	} else {
4027 		bargs = NULL;
4028 	}
4029 
4030 	if (fs_info->balance_ctl) {
4031 		ret = -EINPROGRESS;
4032 		goto out_bargs;
4033 	}
4034 
4035 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4036 	if (!bctl) {
4037 		ret = -ENOMEM;
4038 		goto out_bargs;
4039 	}
4040 
4041 	if (arg) {
4042 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4043 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4044 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4045 
4046 		bctl->flags = bargs->flags;
4047 	} else {
4048 		/* balance everything - no filters */
4049 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4050 	}
4051 
4052 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4053 		ret = -EINVAL;
4054 		goto out_bctl;
4055 	}
4056 
4057 do_balance:
4058 	/*
4059 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4060 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4061 	 * all the way until unmount, in free_fs_info.  The flag should be
4062 	 * cleared after reset_balance_state.
4063 	 */
4064 	need_unlock = false;
4065 
4066 	ret = btrfs_balance(fs_info, bctl, bargs);
4067 	bctl = NULL;
4068 
4069 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4070 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4071 			ret = -EFAULT;
4072 	}
4073 
4074 out_bctl:
4075 	kfree(bctl);
4076 out_bargs:
4077 	kfree(bargs);
4078 out_unlock:
4079 	mutex_unlock(&fs_info->balance_mutex);
4080 	if (need_unlock)
4081 		btrfs_exclop_finish(fs_info);
4082 out:
4083 	mnt_drop_write_file(file);
4084 	return ret;
4085 }
4086 
4087 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4088 {
4089 	if (!capable(CAP_SYS_ADMIN))
4090 		return -EPERM;
4091 
4092 	switch (cmd) {
4093 	case BTRFS_BALANCE_CTL_PAUSE:
4094 		return btrfs_pause_balance(fs_info);
4095 	case BTRFS_BALANCE_CTL_CANCEL:
4096 		return btrfs_cancel_balance(fs_info);
4097 	}
4098 
4099 	return -EINVAL;
4100 }
4101 
4102 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4103 					 void __user *arg)
4104 {
4105 	struct btrfs_ioctl_balance_args *bargs;
4106 	int ret = 0;
4107 
4108 	if (!capable(CAP_SYS_ADMIN))
4109 		return -EPERM;
4110 
4111 	mutex_lock(&fs_info->balance_mutex);
4112 	if (!fs_info->balance_ctl) {
4113 		ret = -ENOTCONN;
4114 		goto out;
4115 	}
4116 
4117 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4118 	if (!bargs) {
4119 		ret = -ENOMEM;
4120 		goto out;
4121 	}
4122 
4123 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4124 
4125 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4126 		ret = -EFAULT;
4127 
4128 	kfree(bargs);
4129 out:
4130 	mutex_unlock(&fs_info->balance_mutex);
4131 	return ret;
4132 }
4133 
4134 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4135 {
4136 	struct inode *inode = file_inode(file);
4137 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4138 	struct btrfs_ioctl_quota_ctl_args *sa;
4139 	int ret;
4140 
4141 	if (!capable(CAP_SYS_ADMIN))
4142 		return -EPERM;
4143 
4144 	ret = mnt_want_write_file(file);
4145 	if (ret)
4146 		return ret;
4147 
4148 	sa = memdup_user(arg, sizeof(*sa));
4149 	if (IS_ERR(sa)) {
4150 		ret = PTR_ERR(sa);
4151 		goto drop_write;
4152 	}
4153 
4154 	down_write(&fs_info->subvol_sem);
4155 
4156 	switch (sa->cmd) {
4157 	case BTRFS_QUOTA_CTL_ENABLE:
4158 		ret = btrfs_quota_enable(fs_info);
4159 		break;
4160 	case BTRFS_QUOTA_CTL_DISABLE:
4161 		ret = btrfs_quota_disable(fs_info);
4162 		break;
4163 	default:
4164 		ret = -EINVAL;
4165 		break;
4166 	}
4167 
4168 	kfree(sa);
4169 	up_write(&fs_info->subvol_sem);
4170 drop_write:
4171 	mnt_drop_write_file(file);
4172 	return ret;
4173 }
4174 
4175 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4176 {
4177 	struct inode *inode = file_inode(file);
4178 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4179 	struct btrfs_root *root = BTRFS_I(inode)->root;
4180 	struct btrfs_ioctl_qgroup_assign_args *sa;
4181 	struct btrfs_trans_handle *trans;
4182 	int ret;
4183 	int err;
4184 
4185 	if (!capable(CAP_SYS_ADMIN))
4186 		return -EPERM;
4187 
4188 	ret = mnt_want_write_file(file);
4189 	if (ret)
4190 		return ret;
4191 
4192 	sa = memdup_user(arg, sizeof(*sa));
4193 	if (IS_ERR(sa)) {
4194 		ret = PTR_ERR(sa);
4195 		goto drop_write;
4196 	}
4197 
4198 	trans = btrfs_join_transaction(root);
4199 	if (IS_ERR(trans)) {
4200 		ret = PTR_ERR(trans);
4201 		goto out;
4202 	}
4203 
4204 	if (sa->assign) {
4205 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4206 	} else {
4207 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4208 	}
4209 
4210 	/* update qgroup status and info */
4211 	err = btrfs_run_qgroups(trans);
4212 	if (err < 0)
4213 		btrfs_handle_fs_error(fs_info, err,
4214 				      "failed to update qgroup status and info");
4215 	err = btrfs_end_transaction(trans);
4216 	if (err && !ret)
4217 		ret = err;
4218 
4219 out:
4220 	kfree(sa);
4221 drop_write:
4222 	mnt_drop_write_file(file);
4223 	return ret;
4224 }
4225 
4226 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4227 {
4228 	struct inode *inode = file_inode(file);
4229 	struct btrfs_root *root = BTRFS_I(inode)->root;
4230 	struct btrfs_ioctl_qgroup_create_args *sa;
4231 	struct btrfs_trans_handle *trans;
4232 	int ret;
4233 	int err;
4234 
4235 	if (!capable(CAP_SYS_ADMIN))
4236 		return -EPERM;
4237 
4238 	ret = mnt_want_write_file(file);
4239 	if (ret)
4240 		return ret;
4241 
4242 	sa = memdup_user(arg, sizeof(*sa));
4243 	if (IS_ERR(sa)) {
4244 		ret = PTR_ERR(sa);
4245 		goto drop_write;
4246 	}
4247 
4248 	if (!sa->qgroupid) {
4249 		ret = -EINVAL;
4250 		goto out;
4251 	}
4252 
4253 	trans = btrfs_join_transaction(root);
4254 	if (IS_ERR(trans)) {
4255 		ret = PTR_ERR(trans);
4256 		goto out;
4257 	}
4258 
4259 	if (sa->create) {
4260 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4261 	} else {
4262 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4263 	}
4264 
4265 	err = btrfs_end_transaction(trans);
4266 	if (err && !ret)
4267 		ret = err;
4268 
4269 out:
4270 	kfree(sa);
4271 drop_write:
4272 	mnt_drop_write_file(file);
4273 	return ret;
4274 }
4275 
4276 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4277 {
4278 	struct inode *inode = file_inode(file);
4279 	struct btrfs_root *root = BTRFS_I(inode)->root;
4280 	struct btrfs_ioctl_qgroup_limit_args *sa;
4281 	struct btrfs_trans_handle *trans;
4282 	int ret;
4283 	int err;
4284 	u64 qgroupid;
4285 
4286 	if (!capable(CAP_SYS_ADMIN))
4287 		return -EPERM;
4288 
4289 	ret = mnt_want_write_file(file);
4290 	if (ret)
4291 		return ret;
4292 
4293 	sa = memdup_user(arg, sizeof(*sa));
4294 	if (IS_ERR(sa)) {
4295 		ret = PTR_ERR(sa);
4296 		goto drop_write;
4297 	}
4298 
4299 	trans = btrfs_join_transaction(root);
4300 	if (IS_ERR(trans)) {
4301 		ret = PTR_ERR(trans);
4302 		goto out;
4303 	}
4304 
4305 	qgroupid = sa->qgroupid;
4306 	if (!qgroupid) {
4307 		/* take the current subvol as qgroup */
4308 		qgroupid = root->root_key.objectid;
4309 	}
4310 
4311 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4312 
4313 	err = btrfs_end_transaction(trans);
4314 	if (err && !ret)
4315 		ret = err;
4316 
4317 out:
4318 	kfree(sa);
4319 drop_write:
4320 	mnt_drop_write_file(file);
4321 	return ret;
4322 }
4323 
4324 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4325 {
4326 	struct inode *inode = file_inode(file);
4327 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4328 	struct btrfs_ioctl_quota_rescan_args *qsa;
4329 	int ret;
4330 
4331 	if (!capable(CAP_SYS_ADMIN))
4332 		return -EPERM;
4333 
4334 	ret = mnt_want_write_file(file);
4335 	if (ret)
4336 		return ret;
4337 
4338 	qsa = memdup_user(arg, sizeof(*qsa));
4339 	if (IS_ERR(qsa)) {
4340 		ret = PTR_ERR(qsa);
4341 		goto drop_write;
4342 	}
4343 
4344 	if (qsa->flags) {
4345 		ret = -EINVAL;
4346 		goto out;
4347 	}
4348 
4349 	ret = btrfs_qgroup_rescan(fs_info);
4350 
4351 out:
4352 	kfree(qsa);
4353 drop_write:
4354 	mnt_drop_write_file(file);
4355 	return ret;
4356 }
4357 
4358 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4359 						void __user *arg)
4360 {
4361 	struct btrfs_ioctl_quota_rescan_args *qsa;
4362 	int ret = 0;
4363 
4364 	if (!capable(CAP_SYS_ADMIN))
4365 		return -EPERM;
4366 
4367 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4368 	if (!qsa)
4369 		return -ENOMEM;
4370 
4371 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4372 		qsa->flags = 1;
4373 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4374 	}
4375 
4376 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4377 		ret = -EFAULT;
4378 
4379 	kfree(qsa);
4380 	return ret;
4381 }
4382 
4383 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4384 						void __user *arg)
4385 {
4386 	if (!capable(CAP_SYS_ADMIN))
4387 		return -EPERM;
4388 
4389 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4390 }
4391 
4392 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4393 					    struct btrfs_ioctl_received_subvol_args *sa)
4394 {
4395 	struct inode *inode = file_inode(file);
4396 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4397 	struct btrfs_root *root = BTRFS_I(inode)->root;
4398 	struct btrfs_root_item *root_item = &root->root_item;
4399 	struct btrfs_trans_handle *trans;
4400 	struct timespec64 ct = current_time(inode);
4401 	int ret = 0;
4402 	int received_uuid_changed;
4403 
4404 	if (!inode_owner_or_capable(inode))
4405 		return -EPERM;
4406 
4407 	ret = mnt_want_write_file(file);
4408 	if (ret < 0)
4409 		return ret;
4410 
4411 	down_write(&fs_info->subvol_sem);
4412 
4413 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4414 		ret = -EINVAL;
4415 		goto out;
4416 	}
4417 
4418 	if (btrfs_root_readonly(root)) {
4419 		ret = -EROFS;
4420 		goto out;
4421 	}
4422 
4423 	/*
4424 	 * 1 - root item
4425 	 * 2 - uuid items (received uuid + subvol uuid)
4426 	 */
4427 	trans = btrfs_start_transaction(root, 3);
4428 	if (IS_ERR(trans)) {
4429 		ret = PTR_ERR(trans);
4430 		trans = NULL;
4431 		goto out;
4432 	}
4433 
4434 	sa->rtransid = trans->transid;
4435 	sa->rtime.sec = ct.tv_sec;
4436 	sa->rtime.nsec = ct.tv_nsec;
4437 
4438 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4439 				       BTRFS_UUID_SIZE);
4440 	if (received_uuid_changed &&
4441 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4442 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4443 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4444 					  root->root_key.objectid);
4445 		if (ret && ret != -ENOENT) {
4446 		        btrfs_abort_transaction(trans, ret);
4447 		        btrfs_end_transaction(trans);
4448 		        goto out;
4449 		}
4450 	}
4451 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4452 	btrfs_set_root_stransid(root_item, sa->stransid);
4453 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4454 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4455 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4456 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4457 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4458 
4459 	ret = btrfs_update_root(trans, fs_info->tree_root,
4460 				&root->root_key, &root->root_item);
4461 	if (ret < 0) {
4462 		btrfs_end_transaction(trans);
4463 		goto out;
4464 	}
4465 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4466 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4467 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4468 					  root->root_key.objectid);
4469 		if (ret < 0 && ret != -EEXIST) {
4470 			btrfs_abort_transaction(trans, ret);
4471 			btrfs_end_transaction(trans);
4472 			goto out;
4473 		}
4474 	}
4475 	ret = btrfs_commit_transaction(trans);
4476 out:
4477 	up_write(&fs_info->subvol_sem);
4478 	mnt_drop_write_file(file);
4479 	return ret;
4480 }
4481 
4482 #ifdef CONFIG_64BIT
4483 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4484 						void __user *arg)
4485 {
4486 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4487 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4488 	int ret = 0;
4489 
4490 	args32 = memdup_user(arg, sizeof(*args32));
4491 	if (IS_ERR(args32))
4492 		return PTR_ERR(args32);
4493 
4494 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4495 	if (!args64) {
4496 		ret = -ENOMEM;
4497 		goto out;
4498 	}
4499 
4500 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4501 	args64->stransid = args32->stransid;
4502 	args64->rtransid = args32->rtransid;
4503 	args64->stime.sec = args32->stime.sec;
4504 	args64->stime.nsec = args32->stime.nsec;
4505 	args64->rtime.sec = args32->rtime.sec;
4506 	args64->rtime.nsec = args32->rtime.nsec;
4507 	args64->flags = args32->flags;
4508 
4509 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4510 	if (ret)
4511 		goto out;
4512 
4513 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4514 	args32->stransid = args64->stransid;
4515 	args32->rtransid = args64->rtransid;
4516 	args32->stime.sec = args64->stime.sec;
4517 	args32->stime.nsec = args64->stime.nsec;
4518 	args32->rtime.sec = args64->rtime.sec;
4519 	args32->rtime.nsec = args64->rtime.nsec;
4520 	args32->flags = args64->flags;
4521 
4522 	ret = copy_to_user(arg, args32, sizeof(*args32));
4523 	if (ret)
4524 		ret = -EFAULT;
4525 
4526 out:
4527 	kfree(args32);
4528 	kfree(args64);
4529 	return ret;
4530 }
4531 #endif
4532 
4533 static long btrfs_ioctl_set_received_subvol(struct file *file,
4534 					    void __user *arg)
4535 {
4536 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4537 	int ret = 0;
4538 
4539 	sa = memdup_user(arg, sizeof(*sa));
4540 	if (IS_ERR(sa))
4541 		return PTR_ERR(sa);
4542 
4543 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4544 
4545 	if (ret)
4546 		goto out;
4547 
4548 	ret = copy_to_user(arg, sa, sizeof(*sa));
4549 	if (ret)
4550 		ret = -EFAULT;
4551 
4552 out:
4553 	kfree(sa);
4554 	return ret;
4555 }
4556 
4557 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4558 					void __user *arg)
4559 {
4560 	size_t len;
4561 	int ret;
4562 	char label[BTRFS_LABEL_SIZE];
4563 
4564 	spin_lock(&fs_info->super_lock);
4565 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4566 	spin_unlock(&fs_info->super_lock);
4567 
4568 	len = strnlen(label, BTRFS_LABEL_SIZE);
4569 
4570 	if (len == BTRFS_LABEL_SIZE) {
4571 		btrfs_warn(fs_info,
4572 			   "label is too long, return the first %zu bytes",
4573 			   --len);
4574 	}
4575 
4576 	ret = copy_to_user(arg, label, len);
4577 
4578 	return ret ? -EFAULT : 0;
4579 }
4580 
4581 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4582 {
4583 	struct inode *inode = file_inode(file);
4584 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4585 	struct btrfs_root *root = BTRFS_I(inode)->root;
4586 	struct btrfs_super_block *super_block = fs_info->super_copy;
4587 	struct btrfs_trans_handle *trans;
4588 	char label[BTRFS_LABEL_SIZE];
4589 	int ret;
4590 
4591 	if (!capable(CAP_SYS_ADMIN))
4592 		return -EPERM;
4593 
4594 	if (copy_from_user(label, arg, sizeof(label)))
4595 		return -EFAULT;
4596 
4597 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4598 		btrfs_err(fs_info,
4599 			  "unable to set label with more than %d bytes",
4600 			  BTRFS_LABEL_SIZE - 1);
4601 		return -EINVAL;
4602 	}
4603 
4604 	ret = mnt_want_write_file(file);
4605 	if (ret)
4606 		return ret;
4607 
4608 	trans = btrfs_start_transaction(root, 0);
4609 	if (IS_ERR(trans)) {
4610 		ret = PTR_ERR(trans);
4611 		goto out_unlock;
4612 	}
4613 
4614 	spin_lock(&fs_info->super_lock);
4615 	strcpy(super_block->label, label);
4616 	spin_unlock(&fs_info->super_lock);
4617 	ret = btrfs_commit_transaction(trans);
4618 
4619 out_unlock:
4620 	mnt_drop_write_file(file);
4621 	return ret;
4622 }
4623 
4624 #define INIT_FEATURE_FLAGS(suffix) \
4625 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4626 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4627 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4628 
4629 int btrfs_ioctl_get_supported_features(void __user *arg)
4630 {
4631 	static const struct btrfs_ioctl_feature_flags features[3] = {
4632 		INIT_FEATURE_FLAGS(SUPP),
4633 		INIT_FEATURE_FLAGS(SAFE_SET),
4634 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4635 	};
4636 
4637 	if (copy_to_user(arg, &features, sizeof(features)))
4638 		return -EFAULT;
4639 
4640 	return 0;
4641 }
4642 
4643 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4644 					void __user *arg)
4645 {
4646 	struct btrfs_super_block *super_block = fs_info->super_copy;
4647 	struct btrfs_ioctl_feature_flags features;
4648 
4649 	features.compat_flags = btrfs_super_compat_flags(super_block);
4650 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4651 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4652 
4653 	if (copy_to_user(arg, &features, sizeof(features)))
4654 		return -EFAULT;
4655 
4656 	return 0;
4657 }
4658 
4659 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4660 			      enum btrfs_feature_set set,
4661 			      u64 change_mask, u64 flags, u64 supported_flags,
4662 			      u64 safe_set, u64 safe_clear)
4663 {
4664 	const char *type = btrfs_feature_set_name(set);
4665 	char *names;
4666 	u64 disallowed, unsupported;
4667 	u64 set_mask = flags & change_mask;
4668 	u64 clear_mask = ~flags & change_mask;
4669 
4670 	unsupported = set_mask & ~supported_flags;
4671 	if (unsupported) {
4672 		names = btrfs_printable_features(set, unsupported);
4673 		if (names) {
4674 			btrfs_warn(fs_info,
4675 				   "this kernel does not support the %s feature bit%s",
4676 				   names, strchr(names, ',') ? "s" : "");
4677 			kfree(names);
4678 		} else
4679 			btrfs_warn(fs_info,
4680 				   "this kernel does not support %s bits 0x%llx",
4681 				   type, unsupported);
4682 		return -EOPNOTSUPP;
4683 	}
4684 
4685 	disallowed = set_mask & ~safe_set;
4686 	if (disallowed) {
4687 		names = btrfs_printable_features(set, disallowed);
4688 		if (names) {
4689 			btrfs_warn(fs_info,
4690 				   "can't set the %s feature bit%s while mounted",
4691 				   names, strchr(names, ',') ? "s" : "");
4692 			kfree(names);
4693 		} else
4694 			btrfs_warn(fs_info,
4695 				   "can't set %s bits 0x%llx while mounted",
4696 				   type, disallowed);
4697 		return -EPERM;
4698 	}
4699 
4700 	disallowed = clear_mask & ~safe_clear;
4701 	if (disallowed) {
4702 		names = btrfs_printable_features(set, disallowed);
4703 		if (names) {
4704 			btrfs_warn(fs_info,
4705 				   "can't clear the %s feature bit%s while mounted",
4706 				   names, strchr(names, ',') ? "s" : "");
4707 			kfree(names);
4708 		} else
4709 			btrfs_warn(fs_info,
4710 				   "can't clear %s bits 0x%llx while mounted",
4711 				   type, disallowed);
4712 		return -EPERM;
4713 	}
4714 
4715 	return 0;
4716 }
4717 
4718 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4719 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4720 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4721 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4722 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4723 
4724 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4725 {
4726 	struct inode *inode = file_inode(file);
4727 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4728 	struct btrfs_root *root = BTRFS_I(inode)->root;
4729 	struct btrfs_super_block *super_block = fs_info->super_copy;
4730 	struct btrfs_ioctl_feature_flags flags[2];
4731 	struct btrfs_trans_handle *trans;
4732 	u64 newflags;
4733 	int ret;
4734 
4735 	if (!capable(CAP_SYS_ADMIN))
4736 		return -EPERM;
4737 
4738 	if (copy_from_user(flags, arg, sizeof(flags)))
4739 		return -EFAULT;
4740 
4741 	/* Nothing to do */
4742 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4743 	    !flags[0].incompat_flags)
4744 		return 0;
4745 
4746 	ret = check_feature(fs_info, flags[0].compat_flags,
4747 			    flags[1].compat_flags, COMPAT);
4748 	if (ret)
4749 		return ret;
4750 
4751 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4752 			    flags[1].compat_ro_flags, COMPAT_RO);
4753 	if (ret)
4754 		return ret;
4755 
4756 	ret = check_feature(fs_info, flags[0].incompat_flags,
4757 			    flags[1].incompat_flags, INCOMPAT);
4758 	if (ret)
4759 		return ret;
4760 
4761 	ret = mnt_want_write_file(file);
4762 	if (ret)
4763 		return ret;
4764 
4765 	trans = btrfs_start_transaction(root, 0);
4766 	if (IS_ERR(trans)) {
4767 		ret = PTR_ERR(trans);
4768 		goto out_drop_write;
4769 	}
4770 
4771 	spin_lock(&fs_info->super_lock);
4772 	newflags = btrfs_super_compat_flags(super_block);
4773 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4774 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4775 	btrfs_set_super_compat_flags(super_block, newflags);
4776 
4777 	newflags = btrfs_super_compat_ro_flags(super_block);
4778 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4779 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4780 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4781 
4782 	newflags = btrfs_super_incompat_flags(super_block);
4783 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4784 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4785 	btrfs_set_super_incompat_flags(super_block, newflags);
4786 	spin_unlock(&fs_info->super_lock);
4787 
4788 	ret = btrfs_commit_transaction(trans);
4789 out_drop_write:
4790 	mnt_drop_write_file(file);
4791 
4792 	return ret;
4793 }
4794 
4795 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4796 {
4797 	struct btrfs_ioctl_send_args *arg;
4798 	int ret;
4799 
4800 	if (compat) {
4801 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4802 		struct btrfs_ioctl_send_args_32 args32;
4803 
4804 		ret = copy_from_user(&args32, argp, sizeof(args32));
4805 		if (ret)
4806 			return -EFAULT;
4807 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4808 		if (!arg)
4809 			return -ENOMEM;
4810 		arg->send_fd = args32.send_fd;
4811 		arg->clone_sources_count = args32.clone_sources_count;
4812 		arg->clone_sources = compat_ptr(args32.clone_sources);
4813 		arg->parent_root = args32.parent_root;
4814 		arg->flags = args32.flags;
4815 		memcpy(arg->reserved, args32.reserved,
4816 		       sizeof(args32.reserved));
4817 #else
4818 		return -ENOTTY;
4819 #endif
4820 	} else {
4821 		arg = memdup_user(argp, sizeof(*arg));
4822 		if (IS_ERR(arg))
4823 			return PTR_ERR(arg);
4824 	}
4825 	ret = btrfs_ioctl_send(file, arg);
4826 	kfree(arg);
4827 	return ret;
4828 }
4829 
4830 long btrfs_ioctl(struct file *file, unsigned int
4831 		cmd, unsigned long arg)
4832 {
4833 	struct inode *inode = file_inode(file);
4834 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4835 	struct btrfs_root *root = BTRFS_I(inode)->root;
4836 	void __user *argp = (void __user *)arg;
4837 
4838 	switch (cmd) {
4839 	case FS_IOC_GETFLAGS:
4840 		return btrfs_ioctl_getflags(file, argp);
4841 	case FS_IOC_SETFLAGS:
4842 		return btrfs_ioctl_setflags(file, argp);
4843 	case FS_IOC_GETVERSION:
4844 		return btrfs_ioctl_getversion(file, argp);
4845 	case FS_IOC_GETFSLABEL:
4846 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4847 	case FS_IOC_SETFSLABEL:
4848 		return btrfs_ioctl_set_fslabel(file, argp);
4849 	case FITRIM:
4850 		return btrfs_ioctl_fitrim(fs_info, argp);
4851 	case BTRFS_IOC_SNAP_CREATE:
4852 		return btrfs_ioctl_snap_create(file, argp, 0);
4853 	case BTRFS_IOC_SNAP_CREATE_V2:
4854 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4855 	case BTRFS_IOC_SUBVOL_CREATE:
4856 		return btrfs_ioctl_snap_create(file, argp, 1);
4857 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4858 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4859 	case BTRFS_IOC_SNAP_DESTROY:
4860 		return btrfs_ioctl_snap_destroy(file, argp, false);
4861 	case BTRFS_IOC_SNAP_DESTROY_V2:
4862 		return btrfs_ioctl_snap_destroy(file, argp, true);
4863 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4864 		return btrfs_ioctl_subvol_getflags(file, argp);
4865 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4866 		return btrfs_ioctl_subvol_setflags(file, argp);
4867 	case BTRFS_IOC_DEFAULT_SUBVOL:
4868 		return btrfs_ioctl_default_subvol(file, argp);
4869 	case BTRFS_IOC_DEFRAG:
4870 		return btrfs_ioctl_defrag(file, NULL);
4871 	case BTRFS_IOC_DEFRAG_RANGE:
4872 		return btrfs_ioctl_defrag(file, argp);
4873 	case BTRFS_IOC_RESIZE:
4874 		return btrfs_ioctl_resize(file, argp);
4875 	case BTRFS_IOC_ADD_DEV:
4876 		return btrfs_ioctl_add_dev(fs_info, argp);
4877 	case BTRFS_IOC_RM_DEV:
4878 		return btrfs_ioctl_rm_dev(file, argp);
4879 	case BTRFS_IOC_RM_DEV_V2:
4880 		return btrfs_ioctl_rm_dev_v2(file, argp);
4881 	case BTRFS_IOC_FS_INFO:
4882 		return btrfs_ioctl_fs_info(fs_info, argp);
4883 	case BTRFS_IOC_DEV_INFO:
4884 		return btrfs_ioctl_dev_info(fs_info, argp);
4885 	case BTRFS_IOC_BALANCE:
4886 		return btrfs_ioctl_balance(file, NULL);
4887 	case BTRFS_IOC_TREE_SEARCH:
4888 		return btrfs_ioctl_tree_search(file, argp);
4889 	case BTRFS_IOC_TREE_SEARCH_V2:
4890 		return btrfs_ioctl_tree_search_v2(file, argp);
4891 	case BTRFS_IOC_INO_LOOKUP:
4892 		return btrfs_ioctl_ino_lookup(file, argp);
4893 	case BTRFS_IOC_INO_PATHS:
4894 		return btrfs_ioctl_ino_to_path(root, argp);
4895 	case BTRFS_IOC_LOGICAL_INO:
4896 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4897 	case BTRFS_IOC_LOGICAL_INO_V2:
4898 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4899 	case BTRFS_IOC_SPACE_INFO:
4900 		return btrfs_ioctl_space_info(fs_info, argp);
4901 	case BTRFS_IOC_SYNC: {
4902 		int ret;
4903 
4904 		ret = btrfs_start_delalloc_roots(fs_info, U64_MAX);
4905 		if (ret)
4906 			return ret;
4907 		ret = btrfs_sync_fs(inode->i_sb, 1);
4908 		/*
4909 		 * The transaction thread may want to do more work,
4910 		 * namely it pokes the cleaner kthread that will start
4911 		 * processing uncleaned subvols.
4912 		 */
4913 		wake_up_process(fs_info->transaction_kthread);
4914 		return ret;
4915 	}
4916 	case BTRFS_IOC_START_SYNC:
4917 		return btrfs_ioctl_start_sync(root, argp);
4918 	case BTRFS_IOC_WAIT_SYNC:
4919 		return btrfs_ioctl_wait_sync(fs_info, argp);
4920 	case BTRFS_IOC_SCRUB:
4921 		return btrfs_ioctl_scrub(file, argp);
4922 	case BTRFS_IOC_SCRUB_CANCEL:
4923 		return btrfs_ioctl_scrub_cancel(fs_info);
4924 	case BTRFS_IOC_SCRUB_PROGRESS:
4925 		return btrfs_ioctl_scrub_progress(fs_info, argp);
4926 	case BTRFS_IOC_BALANCE_V2:
4927 		return btrfs_ioctl_balance(file, argp);
4928 	case BTRFS_IOC_BALANCE_CTL:
4929 		return btrfs_ioctl_balance_ctl(fs_info, arg);
4930 	case BTRFS_IOC_BALANCE_PROGRESS:
4931 		return btrfs_ioctl_balance_progress(fs_info, argp);
4932 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4933 		return btrfs_ioctl_set_received_subvol(file, argp);
4934 #ifdef CONFIG_64BIT
4935 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4936 		return btrfs_ioctl_set_received_subvol_32(file, argp);
4937 #endif
4938 	case BTRFS_IOC_SEND:
4939 		return _btrfs_ioctl_send(file, argp, false);
4940 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4941 	case BTRFS_IOC_SEND_32:
4942 		return _btrfs_ioctl_send(file, argp, true);
4943 #endif
4944 	case BTRFS_IOC_GET_DEV_STATS:
4945 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4946 	case BTRFS_IOC_QUOTA_CTL:
4947 		return btrfs_ioctl_quota_ctl(file, argp);
4948 	case BTRFS_IOC_QGROUP_ASSIGN:
4949 		return btrfs_ioctl_qgroup_assign(file, argp);
4950 	case BTRFS_IOC_QGROUP_CREATE:
4951 		return btrfs_ioctl_qgroup_create(file, argp);
4952 	case BTRFS_IOC_QGROUP_LIMIT:
4953 		return btrfs_ioctl_qgroup_limit(file, argp);
4954 	case BTRFS_IOC_QUOTA_RESCAN:
4955 		return btrfs_ioctl_quota_rescan(file, argp);
4956 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4957 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4958 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4959 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4960 	case BTRFS_IOC_DEV_REPLACE:
4961 		return btrfs_ioctl_dev_replace(fs_info, argp);
4962 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4963 		return btrfs_ioctl_get_supported_features(argp);
4964 	case BTRFS_IOC_GET_FEATURES:
4965 		return btrfs_ioctl_get_features(fs_info, argp);
4966 	case BTRFS_IOC_SET_FEATURES:
4967 		return btrfs_ioctl_set_features(file, argp);
4968 	case FS_IOC_FSGETXATTR:
4969 		return btrfs_ioctl_fsgetxattr(file, argp);
4970 	case FS_IOC_FSSETXATTR:
4971 		return btrfs_ioctl_fssetxattr(file, argp);
4972 	case BTRFS_IOC_GET_SUBVOL_INFO:
4973 		return btrfs_ioctl_get_subvol_info(file, argp);
4974 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4975 		return btrfs_ioctl_get_subvol_rootref(file, argp);
4976 	case BTRFS_IOC_INO_LOOKUP_USER:
4977 		return btrfs_ioctl_ino_lookup_user(file, argp);
4978 	}
4979 
4980 	return -ENOTTY;
4981 }
4982 
4983 #ifdef CONFIG_COMPAT
4984 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4985 {
4986 	/*
4987 	 * These all access 32-bit values anyway so no further
4988 	 * handling is necessary.
4989 	 */
4990 	switch (cmd) {
4991 	case FS_IOC32_GETFLAGS:
4992 		cmd = FS_IOC_GETFLAGS;
4993 		break;
4994 	case FS_IOC32_SETFLAGS:
4995 		cmd = FS_IOC_SETFLAGS;
4996 		break;
4997 	case FS_IOC32_GETVERSION:
4998 		cmd = FS_IOC_GETVERSION;
4999 		break;
5000 	}
5001 
5002 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5003 }
5004 #endif
5005