1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "export.h" 32 #include "transaction.h" 33 #include "btrfs_inode.h" 34 #include "print-tree.h" 35 #include "volumes.h" 36 #include "locking.h" 37 #include "backref.h" 38 #include "rcu-string.h" 39 #include "send.h" 40 #include "dev-replace.h" 41 #include "props.h" 42 #include "sysfs.h" 43 #include "qgroup.h" 44 #include "tree-log.h" 45 #include "compression.h" 46 #include "space-info.h" 47 #include "delalloc-space.h" 48 #include "block-group.h" 49 50 #ifdef CONFIG_64BIT 51 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 52 * structures are incorrect, as the timespec structure from userspace 53 * is 4 bytes too small. We define these alternatives here to teach 54 * the kernel about the 32-bit struct packing. 55 */ 56 struct btrfs_ioctl_timespec_32 { 57 __u64 sec; 58 __u32 nsec; 59 } __attribute__ ((__packed__)); 60 61 struct btrfs_ioctl_received_subvol_args_32 { 62 char uuid[BTRFS_UUID_SIZE]; /* in */ 63 __u64 stransid; /* in */ 64 __u64 rtransid; /* out */ 65 struct btrfs_ioctl_timespec_32 stime; /* in */ 66 struct btrfs_ioctl_timespec_32 rtime; /* out */ 67 __u64 flags; /* in */ 68 __u64 reserved[16]; /* in */ 69 } __attribute__ ((__packed__)); 70 71 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 72 struct btrfs_ioctl_received_subvol_args_32) 73 #endif 74 75 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 76 struct btrfs_ioctl_send_args_32 { 77 __s64 send_fd; /* in */ 78 __u64 clone_sources_count; /* in */ 79 compat_uptr_t clone_sources; /* in */ 80 __u64 parent_root; /* in */ 81 __u64 flags; /* in */ 82 __u64 reserved[4]; /* in */ 83 } __attribute__ ((__packed__)); 84 85 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 86 struct btrfs_ioctl_send_args_32) 87 #endif 88 89 /* Mask out flags that are inappropriate for the given type of inode. */ 90 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 91 unsigned int flags) 92 { 93 if (S_ISDIR(inode->i_mode)) 94 return flags; 95 else if (S_ISREG(inode->i_mode)) 96 return flags & ~FS_DIRSYNC_FL; 97 else 98 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 99 } 100 101 /* 102 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 103 * ioctl. 104 */ 105 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 106 { 107 unsigned int iflags = 0; 108 109 if (flags & BTRFS_INODE_SYNC) 110 iflags |= FS_SYNC_FL; 111 if (flags & BTRFS_INODE_IMMUTABLE) 112 iflags |= FS_IMMUTABLE_FL; 113 if (flags & BTRFS_INODE_APPEND) 114 iflags |= FS_APPEND_FL; 115 if (flags & BTRFS_INODE_NODUMP) 116 iflags |= FS_NODUMP_FL; 117 if (flags & BTRFS_INODE_NOATIME) 118 iflags |= FS_NOATIME_FL; 119 if (flags & BTRFS_INODE_DIRSYNC) 120 iflags |= FS_DIRSYNC_FL; 121 if (flags & BTRFS_INODE_NODATACOW) 122 iflags |= FS_NOCOW_FL; 123 124 if (flags & BTRFS_INODE_NOCOMPRESS) 125 iflags |= FS_NOCOMP_FL; 126 else if (flags & BTRFS_INODE_COMPRESS) 127 iflags |= FS_COMPR_FL; 128 129 return iflags; 130 } 131 132 /* 133 * Update inode->i_flags based on the btrfs internal flags. 134 */ 135 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 136 { 137 struct btrfs_inode *binode = BTRFS_I(inode); 138 unsigned int new_fl = 0; 139 140 if (binode->flags & BTRFS_INODE_SYNC) 141 new_fl |= S_SYNC; 142 if (binode->flags & BTRFS_INODE_IMMUTABLE) 143 new_fl |= S_IMMUTABLE; 144 if (binode->flags & BTRFS_INODE_APPEND) 145 new_fl |= S_APPEND; 146 if (binode->flags & BTRFS_INODE_NOATIME) 147 new_fl |= S_NOATIME; 148 if (binode->flags & BTRFS_INODE_DIRSYNC) 149 new_fl |= S_DIRSYNC; 150 151 set_mask_bits(&inode->i_flags, 152 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 153 new_fl); 154 } 155 156 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 157 { 158 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 159 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 160 161 if (copy_to_user(arg, &flags, sizeof(flags))) 162 return -EFAULT; 163 return 0; 164 } 165 166 /* 167 * Check if @flags are a supported and valid set of FS_*_FL flags and that 168 * the old and new flags are not conflicting 169 */ 170 static int check_fsflags(unsigned int old_flags, unsigned int flags) 171 { 172 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 173 FS_NOATIME_FL | FS_NODUMP_FL | \ 174 FS_SYNC_FL | FS_DIRSYNC_FL | \ 175 FS_NOCOMP_FL | FS_COMPR_FL | 176 FS_NOCOW_FL)) 177 return -EOPNOTSUPP; 178 179 /* COMPR and NOCOMP on new/old are valid */ 180 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 181 return -EINVAL; 182 183 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 184 return -EINVAL; 185 186 /* NOCOW and compression options are mutually exclusive */ 187 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 188 return -EINVAL; 189 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 190 return -EINVAL; 191 192 return 0; 193 } 194 195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 196 unsigned int flags) 197 { 198 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 199 return -EPERM; 200 201 return 0; 202 } 203 204 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 205 { 206 struct inode *inode = file_inode(file); 207 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 208 struct btrfs_inode *binode = BTRFS_I(inode); 209 struct btrfs_root *root = binode->root; 210 struct btrfs_trans_handle *trans; 211 unsigned int fsflags, old_fsflags; 212 int ret; 213 const char *comp = NULL; 214 u32 binode_flags; 215 216 if (!inode_owner_or_capable(&init_user_ns, inode)) 217 return -EPERM; 218 219 if (btrfs_root_readonly(root)) 220 return -EROFS; 221 222 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 223 return -EFAULT; 224 225 ret = mnt_want_write_file(file); 226 if (ret) 227 return ret; 228 229 inode_lock(inode); 230 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 231 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 232 233 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 234 if (ret) 235 goto out_unlock; 236 237 ret = check_fsflags(old_fsflags, fsflags); 238 if (ret) 239 goto out_unlock; 240 241 ret = check_fsflags_compatible(fs_info, fsflags); 242 if (ret) 243 goto out_unlock; 244 245 binode_flags = binode->flags; 246 if (fsflags & FS_SYNC_FL) 247 binode_flags |= BTRFS_INODE_SYNC; 248 else 249 binode_flags &= ~BTRFS_INODE_SYNC; 250 if (fsflags & FS_IMMUTABLE_FL) 251 binode_flags |= BTRFS_INODE_IMMUTABLE; 252 else 253 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 254 if (fsflags & FS_APPEND_FL) 255 binode_flags |= BTRFS_INODE_APPEND; 256 else 257 binode_flags &= ~BTRFS_INODE_APPEND; 258 if (fsflags & FS_NODUMP_FL) 259 binode_flags |= BTRFS_INODE_NODUMP; 260 else 261 binode_flags &= ~BTRFS_INODE_NODUMP; 262 if (fsflags & FS_NOATIME_FL) 263 binode_flags |= BTRFS_INODE_NOATIME; 264 else 265 binode_flags &= ~BTRFS_INODE_NOATIME; 266 if (fsflags & FS_DIRSYNC_FL) 267 binode_flags |= BTRFS_INODE_DIRSYNC; 268 else 269 binode_flags &= ~BTRFS_INODE_DIRSYNC; 270 if (fsflags & FS_NOCOW_FL) { 271 if (S_ISREG(inode->i_mode)) { 272 /* 273 * It's safe to turn csums off here, no extents exist. 274 * Otherwise we want the flag to reflect the real COW 275 * status of the file and will not set it. 276 */ 277 if (inode->i_size == 0) 278 binode_flags |= BTRFS_INODE_NODATACOW | 279 BTRFS_INODE_NODATASUM; 280 } else { 281 binode_flags |= BTRFS_INODE_NODATACOW; 282 } 283 } else { 284 /* 285 * Revert back under same assumptions as above 286 */ 287 if (S_ISREG(inode->i_mode)) { 288 if (inode->i_size == 0) 289 binode_flags &= ~(BTRFS_INODE_NODATACOW | 290 BTRFS_INODE_NODATASUM); 291 } else { 292 binode_flags &= ~BTRFS_INODE_NODATACOW; 293 } 294 } 295 296 /* 297 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 298 * flag may be changed automatically if compression code won't make 299 * things smaller. 300 */ 301 if (fsflags & FS_NOCOMP_FL) { 302 binode_flags &= ~BTRFS_INODE_COMPRESS; 303 binode_flags |= BTRFS_INODE_NOCOMPRESS; 304 } else if (fsflags & FS_COMPR_FL) { 305 306 if (IS_SWAPFILE(inode)) { 307 ret = -ETXTBSY; 308 goto out_unlock; 309 } 310 311 binode_flags |= BTRFS_INODE_COMPRESS; 312 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 313 314 comp = btrfs_compress_type2str(fs_info->compress_type); 315 if (!comp || comp[0] == 0) 316 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 317 } else { 318 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 319 } 320 321 /* 322 * 1 for inode item 323 * 2 for properties 324 */ 325 trans = btrfs_start_transaction(root, 3); 326 if (IS_ERR(trans)) { 327 ret = PTR_ERR(trans); 328 goto out_unlock; 329 } 330 331 if (comp) { 332 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 333 strlen(comp), 0); 334 if (ret) { 335 btrfs_abort_transaction(trans, ret); 336 goto out_end_trans; 337 } 338 } else { 339 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 340 0, 0); 341 if (ret && ret != -ENODATA) { 342 btrfs_abort_transaction(trans, ret); 343 goto out_end_trans; 344 } 345 } 346 347 binode->flags = binode_flags; 348 btrfs_sync_inode_flags_to_i_flags(inode); 349 inode_inc_iversion(inode); 350 inode->i_ctime = current_time(inode); 351 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 352 353 out_end_trans: 354 btrfs_end_transaction(trans); 355 out_unlock: 356 inode_unlock(inode); 357 mnt_drop_write_file(file); 358 return ret; 359 } 360 361 /* 362 * Translate btrfs internal inode flags to xflags as expected by the 363 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 364 * silently dropped. 365 */ 366 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 367 { 368 unsigned int xflags = 0; 369 370 if (flags & BTRFS_INODE_APPEND) 371 xflags |= FS_XFLAG_APPEND; 372 if (flags & BTRFS_INODE_IMMUTABLE) 373 xflags |= FS_XFLAG_IMMUTABLE; 374 if (flags & BTRFS_INODE_NOATIME) 375 xflags |= FS_XFLAG_NOATIME; 376 if (flags & BTRFS_INODE_NODUMP) 377 xflags |= FS_XFLAG_NODUMP; 378 if (flags & BTRFS_INODE_SYNC) 379 xflags |= FS_XFLAG_SYNC; 380 381 return xflags; 382 } 383 384 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 385 static int check_xflags(unsigned int flags) 386 { 387 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 388 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 389 return -EOPNOTSUPP; 390 return 0; 391 } 392 393 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 394 enum btrfs_exclusive_operation type) 395 { 396 return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type); 397 } 398 399 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 400 { 401 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 402 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 403 } 404 405 /* 406 * Set the xflags from the internal inode flags. The remaining items of fsxattr 407 * are zeroed. 408 */ 409 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 410 { 411 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 412 struct fsxattr fa; 413 414 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags)); 415 if (copy_to_user(arg, &fa, sizeof(fa))) 416 return -EFAULT; 417 418 return 0; 419 } 420 421 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 422 { 423 struct inode *inode = file_inode(file); 424 struct btrfs_inode *binode = BTRFS_I(inode); 425 struct btrfs_root *root = binode->root; 426 struct btrfs_trans_handle *trans; 427 struct fsxattr fa, old_fa; 428 unsigned old_flags; 429 unsigned old_i_flags; 430 int ret = 0; 431 432 if (!inode_owner_or_capable(&init_user_ns, inode)) 433 return -EPERM; 434 435 if (btrfs_root_readonly(root)) 436 return -EROFS; 437 438 if (copy_from_user(&fa, arg, sizeof(fa))) 439 return -EFAULT; 440 441 ret = check_xflags(fa.fsx_xflags); 442 if (ret) 443 return ret; 444 445 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 446 return -EOPNOTSUPP; 447 448 ret = mnt_want_write_file(file); 449 if (ret) 450 return ret; 451 452 inode_lock(inode); 453 454 old_flags = binode->flags; 455 old_i_flags = inode->i_flags; 456 457 simple_fill_fsxattr(&old_fa, 458 btrfs_inode_flags_to_xflags(binode->flags)); 459 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 460 if (ret) 461 goto out_unlock; 462 463 if (fa.fsx_xflags & FS_XFLAG_SYNC) 464 binode->flags |= BTRFS_INODE_SYNC; 465 else 466 binode->flags &= ~BTRFS_INODE_SYNC; 467 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 468 binode->flags |= BTRFS_INODE_IMMUTABLE; 469 else 470 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 471 if (fa.fsx_xflags & FS_XFLAG_APPEND) 472 binode->flags |= BTRFS_INODE_APPEND; 473 else 474 binode->flags &= ~BTRFS_INODE_APPEND; 475 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 476 binode->flags |= BTRFS_INODE_NODUMP; 477 else 478 binode->flags &= ~BTRFS_INODE_NODUMP; 479 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 480 binode->flags |= BTRFS_INODE_NOATIME; 481 else 482 binode->flags &= ~BTRFS_INODE_NOATIME; 483 484 /* 1 item for the inode */ 485 trans = btrfs_start_transaction(root, 1); 486 if (IS_ERR(trans)) { 487 ret = PTR_ERR(trans); 488 goto out_unlock; 489 } 490 491 btrfs_sync_inode_flags_to_i_flags(inode); 492 inode_inc_iversion(inode); 493 inode->i_ctime = current_time(inode); 494 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 495 496 btrfs_end_transaction(trans); 497 498 out_unlock: 499 if (ret) { 500 binode->flags = old_flags; 501 inode->i_flags = old_i_flags; 502 } 503 504 inode_unlock(inode); 505 mnt_drop_write_file(file); 506 507 return ret; 508 } 509 510 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 511 { 512 struct inode *inode = file_inode(file); 513 514 return put_user(inode->i_generation, arg); 515 } 516 517 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 518 void __user *arg) 519 { 520 struct btrfs_device *device; 521 struct request_queue *q; 522 struct fstrim_range range; 523 u64 minlen = ULLONG_MAX; 524 u64 num_devices = 0; 525 int ret; 526 527 if (!capable(CAP_SYS_ADMIN)) 528 return -EPERM; 529 530 /* 531 * btrfs_trim_block_group() depends on space cache, which is not 532 * available in zoned filesystem. So, disallow fitrim on a zoned 533 * filesystem for now. 534 */ 535 if (btrfs_is_zoned(fs_info)) 536 return -EOPNOTSUPP; 537 538 /* 539 * If the fs is mounted with nologreplay, which requires it to be 540 * mounted in RO mode as well, we can not allow discard on free space 541 * inside block groups, because log trees refer to extents that are not 542 * pinned in a block group's free space cache (pinning the extents is 543 * precisely the first phase of replaying a log tree). 544 */ 545 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 546 return -EROFS; 547 548 rcu_read_lock(); 549 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 550 dev_list) { 551 if (!device->bdev) 552 continue; 553 q = bdev_get_queue(device->bdev); 554 if (blk_queue_discard(q)) { 555 num_devices++; 556 minlen = min_t(u64, q->limits.discard_granularity, 557 minlen); 558 } 559 } 560 rcu_read_unlock(); 561 562 if (!num_devices) 563 return -EOPNOTSUPP; 564 if (copy_from_user(&range, arg, sizeof(range))) 565 return -EFAULT; 566 567 /* 568 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 569 * block group is in the logical address space, which can be any 570 * sectorsize aligned bytenr in the range [0, U64_MAX]. 571 */ 572 if (range.len < fs_info->sb->s_blocksize) 573 return -EINVAL; 574 575 range.minlen = max(range.minlen, minlen); 576 ret = btrfs_trim_fs(fs_info, &range); 577 if (ret < 0) 578 return ret; 579 580 if (copy_to_user(arg, &range, sizeof(range))) 581 return -EFAULT; 582 583 return 0; 584 } 585 586 int __pure btrfs_is_empty_uuid(u8 *uuid) 587 { 588 int i; 589 590 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 591 if (uuid[i]) 592 return 0; 593 } 594 return 1; 595 } 596 597 static noinline int create_subvol(struct inode *dir, 598 struct dentry *dentry, 599 const char *name, int namelen, 600 struct btrfs_qgroup_inherit *inherit) 601 { 602 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 603 struct btrfs_trans_handle *trans; 604 struct btrfs_key key; 605 struct btrfs_root_item *root_item; 606 struct btrfs_inode_item *inode_item; 607 struct extent_buffer *leaf; 608 struct btrfs_root *root = BTRFS_I(dir)->root; 609 struct btrfs_root *new_root; 610 struct btrfs_block_rsv block_rsv; 611 struct timespec64 cur_time = current_time(dir); 612 struct inode *inode; 613 int ret; 614 int err; 615 dev_t anon_dev = 0; 616 u64 objectid; 617 u64 index = 0; 618 619 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 620 if (!root_item) 621 return -ENOMEM; 622 623 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 624 if (ret) 625 goto fail_free; 626 627 ret = get_anon_bdev(&anon_dev); 628 if (ret < 0) 629 goto fail_free; 630 631 /* 632 * Don't create subvolume whose level is not zero. Or qgroup will be 633 * screwed up since it assumes subvolume qgroup's level to be 0. 634 */ 635 if (btrfs_qgroup_level(objectid)) { 636 ret = -ENOSPC; 637 goto fail_free; 638 } 639 640 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 641 /* 642 * The same as the snapshot creation, please see the comment 643 * of create_snapshot(). 644 */ 645 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 646 if (ret) 647 goto fail_free; 648 649 trans = btrfs_start_transaction(root, 0); 650 if (IS_ERR(trans)) { 651 ret = PTR_ERR(trans); 652 btrfs_subvolume_release_metadata(root, &block_rsv); 653 goto fail_free; 654 } 655 trans->block_rsv = &block_rsv; 656 trans->bytes_reserved = block_rsv.size; 657 658 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 659 if (ret) 660 goto fail; 661 662 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 663 BTRFS_NESTING_NORMAL); 664 if (IS_ERR(leaf)) { 665 ret = PTR_ERR(leaf); 666 goto fail; 667 } 668 669 btrfs_mark_buffer_dirty(leaf); 670 671 inode_item = &root_item->inode; 672 btrfs_set_stack_inode_generation(inode_item, 1); 673 btrfs_set_stack_inode_size(inode_item, 3); 674 btrfs_set_stack_inode_nlink(inode_item, 1); 675 btrfs_set_stack_inode_nbytes(inode_item, 676 fs_info->nodesize); 677 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 678 679 btrfs_set_root_flags(root_item, 0); 680 btrfs_set_root_limit(root_item, 0); 681 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 682 683 btrfs_set_root_bytenr(root_item, leaf->start); 684 btrfs_set_root_generation(root_item, trans->transid); 685 btrfs_set_root_level(root_item, 0); 686 btrfs_set_root_refs(root_item, 1); 687 btrfs_set_root_used(root_item, leaf->len); 688 btrfs_set_root_last_snapshot(root_item, 0); 689 690 btrfs_set_root_generation_v2(root_item, 691 btrfs_root_generation(root_item)); 692 generate_random_guid(root_item->uuid); 693 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 694 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 695 root_item->ctime = root_item->otime; 696 btrfs_set_root_ctransid(root_item, trans->transid); 697 btrfs_set_root_otransid(root_item, trans->transid); 698 699 btrfs_tree_unlock(leaf); 700 free_extent_buffer(leaf); 701 leaf = NULL; 702 703 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 704 705 key.objectid = objectid; 706 key.offset = 0; 707 key.type = BTRFS_ROOT_ITEM_KEY; 708 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 709 root_item); 710 if (ret) 711 goto fail; 712 713 key.offset = (u64)-1; 714 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 715 if (IS_ERR(new_root)) { 716 free_anon_bdev(anon_dev); 717 ret = PTR_ERR(new_root); 718 btrfs_abort_transaction(trans, ret); 719 goto fail; 720 } 721 /* Freeing will be done in btrfs_put_root() of new_root */ 722 anon_dev = 0; 723 724 btrfs_record_root_in_trans(trans, new_root); 725 726 ret = btrfs_create_subvol_root(trans, new_root, root); 727 btrfs_put_root(new_root); 728 if (ret) { 729 /* We potentially lose an unused inode item here */ 730 btrfs_abort_transaction(trans, ret); 731 goto fail; 732 } 733 734 /* 735 * insert the directory item 736 */ 737 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 738 if (ret) { 739 btrfs_abort_transaction(trans, ret); 740 goto fail; 741 } 742 743 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 744 BTRFS_FT_DIR, index); 745 if (ret) { 746 btrfs_abort_transaction(trans, ret); 747 goto fail; 748 } 749 750 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 751 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 752 if (ret) { 753 btrfs_abort_transaction(trans, ret); 754 goto fail; 755 } 756 757 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 758 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 759 if (ret) { 760 btrfs_abort_transaction(trans, ret); 761 goto fail; 762 } 763 764 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 765 BTRFS_UUID_KEY_SUBVOL, objectid); 766 if (ret) 767 btrfs_abort_transaction(trans, ret); 768 769 fail: 770 kfree(root_item); 771 trans->block_rsv = NULL; 772 trans->bytes_reserved = 0; 773 btrfs_subvolume_release_metadata(root, &block_rsv); 774 775 err = btrfs_commit_transaction(trans); 776 if (err && !ret) 777 ret = err; 778 779 if (!ret) { 780 inode = btrfs_lookup_dentry(dir, dentry); 781 if (IS_ERR(inode)) 782 return PTR_ERR(inode); 783 d_instantiate(dentry, inode); 784 } 785 return ret; 786 787 fail_free: 788 if (anon_dev) 789 free_anon_bdev(anon_dev); 790 kfree(root_item); 791 return ret; 792 } 793 794 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 795 struct dentry *dentry, bool readonly, 796 struct btrfs_qgroup_inherit *inherit) 797 { 798 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 799 struct inode *inode; 800 struct btrfs_pending_snapshot *pending_snapshot; 801 struct btrfs_trans_handle *trans; 802 int ret; 803 804 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 805 return -EINVAL; 806 807 if (atomic_read(&root->nr_swapfiles)) { 808 btrfs_warn(fs_info, 809 "cannot snapshot subvolume with active swapfile"); 810 return -ETXTBSY; 811 } 812 813 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 814 if (!pending_snapshot) 815 return -ENOMEM; 816 817 ret = get_anon_bdev(&pending_snapshot->anon_dev); 818 if (ret < 0) 819 goto free_pending; 820 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 821 GFP_KERNEL); 822 pending_snapshot->path = btrfs_alloc_path(); 823 if (!pending_snapshot->root_item || !pending_snapshot->path) { 824 ret = -ENOMEM; 825 goto free_pending; 826 } 827 828 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 829 BTRFS_BLOCK_RSV_TEMP); 830 /* 831 * 1 - parent dir inode 832 * 2 - dir entries 833 * 1 - root item 834 * 2 - root ref/backref 835 * 1 - root of snapshot 836 * 1 - UUID item 837 */ 838 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 839 &pending_snapshot->block_rsv, 8, 840 false); 841 if (ret) 842 goto free_pending; 843 844 pending_snapshot->dentry = dentry; 845 pending_snapshot->root = root; 846 pending_snapshot->readonly = readonly; 847 pending_snapshot->dir = dir; 848 pending_snapshot->inherit = inherit; 849 850 trans = btrfs_start_transaction(root, 0); 851 if (IS_ERR(trans)) { 852 ret = PTR_ERR(trans); 853 goto fail; 854 } 855 856 spin_lock(&fs_info->trans_lock); 857 list_add(&pending_snapshot->list, 858 &trans->transaction->pending_snapshots); 859 spin_unlock(&fs_info->trans_lock); 860 861 ret = btrfs_commit_transaction(trans); 862 if (ret) 863 goto fail; 864 865 ret = pending_snapshot->error; 866 if (ret) 867 goto fail; 868 869 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 870 if (ret) 871 goto fail; 872 873 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 874 if (IS_ERR(inode)) { 875 ret = PTR_ERR(inode); 876 goto fail; 877 } 878 879 d_instantiate(dentry, inode); 880 ret = 0; 881 pending_snapshot->anon_dev = 0; 882 fail: 883 /* Prevent double freeing of anon_dev */ 884 if (ret && pending_snapshot->snap) 885 pending_snapshot->snap->anon_dev = 0; 886 btrfs_put_root(pending_snapshot->snap); 887 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 888 free_pending: 889 if (pending_snapshot->anon_dev) 890 free_anon_bdev(pending_snapshot->anon_dev); 891 kfree(pending_snapshot->root_item); 892 btrfs_free_path(pending_snapshot->path); 893 kfree(pending_snapshot); 894 895 return ret; 896 } 897 898 /* copy of may_delete in fs/namei.c() 899 * Check whether we can remove a link victim from directory dir, check 900 * whether the type of victim is right. 901 * 1. We can't do it if dir is read-only (done in permission()) 902 * 2. We should have write and exec permissions on dir 903 * 3. We can't remove anything from append-only dir 904 * 4. We can't do anything with immutable dir (done in permission()) 905 * 5. If the sticky bit on dir is set we should either 906 * a. be owner of dir, or 907 * b. be owner of victim, or 908 * c. have CAP_FOWNER capability 909 * 6. If the victim is append-only or immutable we can't do anything with 910 * links pointing to it. 911 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 912 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 913 * 9. We can't remove a root or mountpoint. 914 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 915 * nfs_async_unlink(). 916 */ 917 918 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 919 { 920 int error; 921 922 if (d_really_is_negative(victim)) 923 return -ENOENT; 924 925 BUG_ON(d_inode(victim->d_parent) != dir); 926 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 927 928 error = inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC); 929 if (error) 930 return error; 931 if (IS_APPEND(dir)) 932 return -EPERM; 933 if (check_sticky(&init_user_ns, dir, d_inode(victim)) || 934 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 935 IS_SWAPFILE(d_inode(victim))) 936 return -EPERM; 937 if (isdir) { 938 if (!d_is_dir(victim)) 939 return -ENOTDIR; 940 if (IS_ROOT(victim)) 941 return -EBUSY; 942 } else if (d_is_dir(victim)) 943 return -EISDIR; 944 if (IS_DEADDIR(dir)) 945 return -ENOENT; 946 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 947 return -EBUSY; 948 return 0; 949 } 950 951 /* copy of may_create in fs/namei.c() */ 952 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 953 { 954 if (d_really_is_positive(child)) 955 return -EEXIST; 956 if (IS_DEADDIR(dir)) 957 return -ENOENT; 958 return inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC); 959 } 960 961 /* 962 * Create a new subvolume below @parent. This is largely modeled after 963 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 964 * inside this filesystem so it's quite a bit simpler. 965 */ 966 static noinline int btrfs_mksubvol(const struct path *parent, 967 const char *name, int namelen, 968 struct btrfs_root *snap_src, 969 bool readonly, 970 struct btrfs_qgroup_inherit *inherit) 971 { 972 struct inode *dir = d_inode(parent->dentry); 973 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 974 struct dentry *dentry; 975 int error; 976 977 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 978 if (error == -EINTR) 979 return error; 980 981 dentry = lookup_one_len(name, parent->dentry, namelen); 982 error = PTR_ERR(dentry); 983 if (IS_ERR(dentry)) 984 goto out_unlock; 985 986 error = btrfs_may_create(dir, dentry); 987 if (error) 988 goto out_dput; 989 990 /* 991 * even if this name doesn't exist, we may get hash collisions. 992 * check for them now when we can safely fail 993 */ 994 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 995 dir->i_ino, name, 996 namelen); 997 if (error) 998 goto out_dput; 999 1000 down_read(&fs_info->subvol_sem); 1001 1002 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 1003 goto out_up_read; 1004 1005 if (snap_src) 1006 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 1007 else 1008 error = create_subvol(dir, dentry, name, namelen, inherit); 1009 1010 if (!error) 1011 fsnotify_mkdir(dir, dentry); 1012 out_up_read: 1013 up_read(&fs_info->subvol_sem); 1014 out_dput: 1015 dput(dentry); 1016 out_unlock: 1017 inode_unlock(dir); 1018 return error; 1019 } 1020 1021 static noinline int btrfs_mksnapshot(const struct path *parent, 1022 const char *name, int namelen, 1023 struct btrfs_root *root, 1024 bool readonly, 1025 struct btrfs_qgroup_inherit *inherit) 1026 { 1027 int ret; 1028 bool snapshot_force_cow = false; 1029 1030 /* 1031 * Force new buffered writes to reserve space even when NOCOW is 1032 * possible. This is to avoid later writeback (running dealloc) to 1033 * fallback to COW mode and unexpectedly fail with ENOSPC. 1034 */ 1035 btrfs_drew_read_lock(&root->snapshot_lock); 1036 1037 ret = btrfs_start_delalloc_snapshot(root); 1038 if (ret) 1039 goto out; 1040 1041 /* 1042 * All previous writes have started writeback in NOCOW mode, so now 1043 * we force future writes to fallback to COW mode during snapshot 1044 * creation. 1045 */ 1046 atomic_inc(&root->snapshot_force_cow); 1047 snapshot_force_cow = true; 1048 1049 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1050 1051 ret = btrfs_mksubvol(parent, name, namelen, 1052 root, readonly, inherit); 1053 out: 1054 if (snapshot_force_cow) 1055 atomic_dec(&root->snapshot_force_cow); 1056 btrfs_drew_read_unlock(&root->snapshot_lock); 1057 return ret; 1058 } 1059 1060 /* 1061 * When we're defragging a range, we don't want to kick it off again 1062 * if it is really just waiting for delalloc to send it down. 1063 * If we find a nice big extent or delalloc range for the bytes in the 1064 * file you want to defrag, we return 0 to let you know to skip this 1065 * part of the file 1066 */ 1067 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1068 { 1069 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1070 struct extent_map *em = NULL; 1071 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1072 u64 end; 1073 1074 read_lock(&em_tree->lock); 1075 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1076 read_unlock(&em_tree->lock); 1077 1078 if (em) { 1079 end = extent_map_end(em); 1080 free_extent_map(em); 1081 if (end - offset > thresh) 1082 return 0; 1083 } 1084 /* if we already have a nice delalloc here, just stop */ 1085 thresh /= 2; 1086 end = count_range_bits(io_tree, &offset, offset + thresh, 1087 thresh, EXTENT_DELALLOC, 1); 1088 if (end >= thresh) 1089 return 0; 1090 return 1; 1091 } 1092 1093 /* 1094 * helper function to walk through a file and find extents 1095 * newer than a specific transid, and smaller than thresh. 1096 * 1097 * This is used by the defragging code to find new and small 1098 * extents 1099 */ 1100 static int find_new_extents(struct btrfs_root *root, 1101 struct inode *inode, u64 newer_than, 1102 u64 *off, u32 thresh) 1103 { 1104 struct btrfs_path *path; 1105 struct btrfs_key min_key; 1106 struct extent_buffer *leaf; 1107 struct btrfs_file_extent_item *extent; 1108 int type; 1109 int ret; 1110 u64 ino = btrfs_ino(BTRFS_I(inode)); 1111 1112 path = btrfs_alloc_path(); 1113 if (!path) 1114 return -ENOMEM; 1115 1116 min_key.objectid = ino; 1117 min_key.type = BTRFS_EXTENT_DATA_KEY; 1118 min_key.offset = *off; 1119 1120 while (1) { 1121 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1122 if (ret != 0) 1123 goto none; 1124 process_slot: 1125 if (min_key.objectid != ino) 1126 goto none; 1127 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1128 goto none; 1129 1130 leaf = path->nodes[0]; 1131 extent = btrfs_item_ptr(leaf, path->slots[0], 1132 struct btrfs_file_extent_item); 1133 1134 type = btrfs_file_extent_type(leaf, extent); 1135 if (type == BTRFS_FILE_EXTENT_REG && 1136 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1137 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1138 *off = min_key.offset; 1139 btrfs_free_path(path); 1140 return 0; 1141 } 1142 1143 path->slots[0]++; 1144 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1145 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1146 goto process_slot; 1147 } 1148 1149 if (min_key.offset == (u64)-1) 1150 goto none; 1151 1152 min_key.offset++; 1153 btrfs_release_path(path); 1154 } 1155 none: 1156 btrfs_free_path(path); 1157 return -ENOENT; 1158 } 1159 1160 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1161 { 1162 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1163 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1164 struct extent_map *em; 1165 u64 len = PAGE_SIZE; 1166 1167 /* 1168 * hopefully we have this extent in the tree already, try without 1169 * the full extent lock 1170 */ 1171 read_lock(&em_tree->lock); 1172 em = lookup_extent_mapping(em_tree, start, len); 1173 read_unlock(&em_tree->lock); 1174 1175 if (!em) { 1176 struct extent_state *cached = NULL; 1177 u64 end = start + len - 1; 1178 1179 /* get the big lock and read metadata off disk */ 1180 lock_extent_bits(io_tree, start, end, &cached); 1181 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 1182 unlock_extent_cached(io_tree, start, end, &cached); 1183 1184 if (IS_ERR(em)) 1185 return NULL; 1186 } 1187 1188 return em; 1189 } 1190 1191 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1192 { 1193 struct extent_map *next; 1194 bool ret = true; 1195 1196 /* this is the last extent */ 1197 if (em->start + em->len >= i_size_read(inode)) 1198 return false; 1199 1200 next = defrag_lookup_extent(inode, em->start + em->len); 1201 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1202 ret = false; 1203 else if ((em->block_start + em->block_len == next->block_start) && 1204 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1205 ret = false; 1206 1207 free_extent_map(next); 1208 return ret; 1209 } 1210 1211 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1212 u64 *last_len, u64 *skip, u64 *defrag_end, 1213 int compress) 1214 { 1215 struct extent_map *em; 1216 int ret = 1; 1217 bool next_mergeable = true; 1218 bool prev_mergeable = true; 1219 1220 /* 1221 * make sure that once we start defragging an extent, we keep on 1222 * defragging it 1223 */ 1224 if (start < *defrag_end) 1225 return 1; 1226 1227 *skip = 0; 1228 1229 em = defrag_lookup_extent(inode, start); 1230 if (!em) 1231 return 0; 1232 1233 /* this will cover holes, and inline extents */ 1234 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1235 ret = 0; 1236 goto out; 1237 } 1238 1239 if (!*defrag_end) 1240 prev_mergeable = false; 1241 1242 next_mergeable = defrag_check_next_extent(inode, em); 1243 /* 1244 * we hit a real extent, if it is big or the next extent is not a 1245 * real extent, don't bother defragging it 1246 */ 1247 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1248 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1249 ret = 0; 1250 out: 1251 /* 1252 * last_len ends up being a counter of how many bytes we've defragged. 1253 * every time we choose not to defrag an extent, we reset *last_len 1254 * so that the next tiny extent will force a defrag. 1255 * 1256 * The end result of this is that tiny extents before a single big 1257 * extent will force at least part of that big extent to be defragged. 1258 */ 1259 if (ret) { 1260 *defrag_end = extent_map_end(em); 1261 } else { 1262 *last_len = 0; 1263 *skip = extent_map_end(em); 1264 *defrag_end = 0; 1265 } 1266 1267 free_extent_map(em); 1268 return ret; 1269 } 1270 1271 /* 1272 * it doesn't do much good to defrag one or two pages 1273 * at a time. This pulls in a nice chunk of pages 1274 * to COW and defrag. 1275 * 1276 * It also makes sure the delalloc code has enough 1277 * dirty data to avoid making new small extents as part 1278 * of the defrag 1279 * 1280 * It's a good idea to start RA on this range 1281 * before calling this. 1282 */ 1283 static int cluster_pages_for_defrag(struct inode *inode, 1284 struct page **pages, 1285 unsigned long start_index, 1286 unsigned long num_pages) 1287 { 1288 unsigned long file_end; 1289 u64 isize = i_size_read(inode); 1290 u64 page_start; 1291 u64 page_end; 1292 u64 page_cnt; 1293 u64 start = (u64)start_index << PAGE_SHIFT; 1294 u64 search_start; 1295 int ret; 1296 int i; 1297 int i_done; 1298 struct btrfs_ordered_extent *ordered; 1299 struct extent_state *cached_state = NULL; 1300 struct extent_io_tree *tree; 1301 struct extent_changeset *data_reserved = NULL; 1302 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1303 1304 file_end = (isize - 1) >> PAGE_SHIFT; 1305 if (!isize || start_index > file_end) 1306 return 0; 1307 1308 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1309 1310 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1311 start, page_cnt << PAGE_SHIFT); 1312 if (ret) 1313 return ret; 1314 i_done = 0; 1315 tree = &BTRFS_I(inode)->io_tree; 1316 1317 /* step one, lock all the pages */ 1318 for (i = 0; i < page_cnt; i++) { 1319 struct page *page; 1320 again: 1321 page = find_or_create_page(inode->i_mapping, 1322 start_index + i, mask); 1323 if (!page) 1324 break; 1325 1326 ret = set_page_extent_mapped(page); 1327 if (ret < 0) { 1328 unlock_page(page); 1329 put_page(page); 1330 break; 1331 } 1332 1333 page_start = page_offset(page); 1334 page_end = page_start + PAGE_SIZE - 1; 1335 while (1) { 1336 lock_extent_bits(tree, page_start, page_end, 1337 &cached_state); 1338 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), 1339 page_start); 1340 unlock_extent_cached(tree, page_start, page_end, 1341 &cached_state); 1342 if (!ordered) 1343 break; 1344 1345 unlock_page(page); 1346 btrfs_start_ordered_extent(ordered, 1); 1347 btrfs_put_ordered_extent(ordered); 1348 lock_page(page); 1349 /* 1350 * we unlocked the page above, so we need check if 1351 * it was released or not. 1352 */ 1353 if (page->mapping != inode->i_mapping) { 1354 unlock_page(page); 1355 put_page(page); 1356 goto again; 1357 } 1358 } 1359 1360 if (!PageUptodate(page)) { 1361 btrfs_readpage(NULL, page); 1362 lock_page(page); 1363 if (!PageUptodate(page)) { 1364 unlock_page(page); 1365 put_page(page); 1366 ret = -EIO; 1367 break; 1368 } 1369 } 1370 1371 if (page->mapping != inode->i_mapping) { 1372 unlock_page(page); 1373 put_page(page); 1374 goto again; 1375 } 1376 1377 pages[i] = page; 1378 i_done++; 1379 } 1380 if (!i_done || ret) 1381 goto out; 1382 1383 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1384 goto out; 1385 1386 /* 1387 * so now we have a nice long stream of locked 1388 * and up to date pages, lets wait on them 1389 */ 1390 for (i = 0; i < i_done; i++) 1391 wait_on_page_writeback(pages[i]); 1392 1393 page_start = page_offset(pages[0]); 1394 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1395 1396 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1397 page_start, page_end - 1, &cached_state); 1398 1399 /* 1400 * When defragmenting we skip ranges that have holes or inline extents, 1401 * (check should_defrag_range()), to avoid unnecessary IO and wasting 1402 * space. At btrfs_defrag_file(), we check if a range should be defragged 1403 * before locking the inode and then, if it should, we trigger a sync 1404 * page cache readahead - we lock the inode only after that to avoid 1405 * blocking for too long other tasks that possibly want to operate on 1406 * other file ranges. But before we were able to get the inode lock, 1407 * some other task may have punched a hole in the range, or we may have 1408 * now an inline extent, in which case we should not defrag. So check 1409 * for that here, where we have the inode and the range locked, and bail 1410 * out if that happened. 1411 */ 1412 search_start = page_start; 1413 while (search_start < page_end) { 1414 struct extent_map *em; 1415 1416 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start, 1417 page_end - search_start); 1418 if (IS_ERR(em)) { 1419 ret = PTR_ERR(em); 1420 goto out_unlock_range; 1421 } 1422 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1423 free_extent_map(em); 1424 /* Ok, 0 means we did not defrag anything */ 1425 ret = 0; 1426 goto out_unlock_range; 1427 } 1428 search_start = extent_map_end(em); 1429 free_extent_map(em); 1430 } 1431 1432 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1433 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1434 EXTENT_DEFRAG, 0, 0, &cached_state); 1435 1436 if (i_done != page_cnt) { 1437 spin_lock(&BTRFS_I(inode)->lock); 1438 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1439 spin_unlock(&BTRFS_I(inode)->lock); 1440 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1441 start, (page_cnt - i_done) << PAGE_SHIFT, true); 1442 } 1443 1444 1445 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1446 &cached_state); 1447 1448 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1449 page_start, page_end - 1, &cached_state); 1450 1451 for (i = 0; i < i_done; i++) { 1452 clear_page_dirty_for_io(pages[i]); 1453 ClearPageChecked(pages[i]); 1454 set_page_dirty(pages[i]); 1455 unlock_page(pages[i]); 1456 put_page(pages[i]); 1457 } 1458 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1459 extent_changeset_free(data_reserved); 1460 return i_done; 1461 1462 out_unlock_range: 1463 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1464 page_start, page_end - 1, &cached_state); 1465 out: 1466 for (i = 0; i < i_done; i++) { 1467 unlock_page(pages[i]); 1468 put_page(pages[i]); 1469 } 1470 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1471 start, page_cnt << PAGE_SHIFT, true); 1472 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1473 extent_changeset_free(data_reserved); 1474 return ret; 1475 1476 } 1477 1478 int btrfs_defrag_file(struct inode *inode, struct file *file, 1479 struct btrfs_ioctl_defrag_range_args *range, 1480 u64 newer_than, unsigned long max_to_defrag) 1481 { 1482 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1483 struct btrfs_root *root = BTRFS_I(inode)->root; 1484 struct file_ra_state *ra = NULL; 1485 unsigned long last_index; 1486 u64 isize = i_size_read(inode); 1487 u64 last_len = 0; 1488 u64 skip = 0; 1489 u64 defrag_end = 0; 1490 u64 newer_off = range->start; 1491 unsigned long i; 1492 unsigned long ra_index = 0; 1493 int ret; 1494 int defrag_count = 0; 1495 int compress_type = BTRFS_COMPRESS_ZLIB; 1496 u32 extent_thresh = range->extent_thresh; 1497 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1498 unsigned long cluster = max_cluster; 1499 u64 new_align = ~((u64)SZ_128K - 1); 1500 struct page **pages = NULL; 1501 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1502 1503 if (isize == 0) 1504 return 0; 1505 1506 if (range->start >= isize) 1507 return -EINVAL; 1508 1509 if (do_compress) { 1510 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1511 return -EINVAL; 1512 if (range->compress_type) 1513 compress_type = range->compress_type; 1514 } 1515 1516 if (extent_thresh == 0) 1517 extent_thresh = SZ_256K; 1518 1519 /* 1520 * If we were not given a file, allocate a readahead context. As 1521 * readahead is just an optimization, defrag will work without it so 1522 * we don't error out. 1523 */ 1524 if (!file) { 1525 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1526 if (ra) 1527 file_ra_state_init(ra, inode->i_mapping); 1528 } else { 1529 ra = &file->f_ra; 1530 } 1531 1532 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1533 if (!pages) { 1534 ret = -ENOMEM; 1535 goto out_ra; 1536 } 1537 1538 /* find the last page to defrag */ 1539 if (range->start + range->len > range->start) { 1540 last_index = min_t(u64, isize - 1, 1541 range->start + range->len - 1) >> PAGE_SHIFT; 1542 } else { 1543 last_index = (isize - 1) >> PAGE_SHIFT; 1544 } 1545 1546 if (newer_than) { 1547 ret = find_new_extents(root, inode, newer_than, 1548 &newer_off, SZ_64K); 1549 if (!ret) { 1550 range->start = newer_off; 1551 /* 1552 * we always align our defrag to help keep 1553 * the extents in the file evenly spaced 1554 */ 1555 i = (newer_off & new_align) >> PAGE_SHIFT; 1556 } else 1557 goto out_ra; 1558 } else { 1559 i = range->start >> PAGE_SHIFT; 1560 } 1561 if (!max_to_defrag) 1562 max_to_defrag = last_index - i + 1; 1563 1564 /* 1565 * make writeback starts from i, so the defrag range can be 1566 * written sequentially. 1567 */ 1568 if (i < inode->i_mapping->writeback_index) 1569 inode->i_mapping->writeback_index = i; 1570 1571 while (i <= last_index && defrag_count < max_to_defrag && 1572 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1573 /* 1574 * make sure we stop running if someone unmounts 1575 * the FS 1576 */ 1577 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1578 break; 1579 1580 if (btrfs_defrag_cancelled(fs_info)) { 1581 btrfs_debug(fs_info, "defrag_file cancelled"); 1582 ret = -EAGAIN; 1583 break; 1584 } 1585 1586 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1587 extent_thresh, &last_len, &skip, 1588 &defrag_end, do_compress)){ 1589 unsigned long next; 1590 /* 1591 * the should_defrag function tells us how much to skip 1592 * bump our counter by the suggested amount 1593 */ 1594 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1595 i = max(i + 1, next); 1596 continue; 1597 } 1598 1599 if (!newer_than) { 1600 cluster = (PAGE_ALIGN(defrag_end) >> 1601 PAGE_SHIFT) - i; 1602 cluster = min(cluster, max_cluster); 1603 } else { 1604 cluster = max_cluster; 1605 } 1606 1607 if (i + cluster > ra_index) { 1608 ra_index = max(i, ra_index); 1609 if (ra) 1610 page_cache_sync_readahead(inode->i_mapping, ra, 1611 file, ra_index, cluster); 1612 ra_index += cluster; 1613 } 1614 1615 inode_lock(inode); 1616 if (IS_SWAPFILE(inode)) { 1617 ret = -ETXTBSY; 1618 } else { 1619 if (do_compress) 1620 BTRFS_I(inode)->defrag_compress = compress_type; 1621 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1622 } 1623 if (ret < 0) { 1624 inode_unlock(inode); 1625 goto out_ra; 1626 } 1627 1628 defrag_count += ret; 1629 balance_dirty_pages_ratelimited(inode->i_mapping); 1630 inode_unlock(inode); 1631 1632 if (newer_than) { 1633 if (newer_off == (u64)-1) 1634 break; 1635 1636 if (ret > 0) 1637 i += ret; 1638 1639 newer_off = max(newer_off + 1, 1640 (u64)i << PAGE_SHIFT); 1641 1642 ret = find_new_extents(root, inode, newer_than, 1643 &newer_off, SZ_64K); 1644 if (!ret) { 1645 range->start = newer_off; 1646 i = (newer_off & new_align) >> PAGE_SHIFT; 1647 } else { 1648 break; 1649 } 1650 } else { 1651 if (ret > 0) { 1652 i += ret; 1653 last_len += ret << PAGE_SHIFT; 1654 } else { 1655 i++; 1656 last_len = 0; 1657 } 1658 } 1659 } 1660 1661 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1662 filemap_flush(inode->i_mapping); 1663 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1664 &BTRFS_I(inode)->runtime_flags)) 1665 filemap_flush(inode->i_mapping); 1666 } 1667 1668 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1669 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1670 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1671 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1672 } 1673 1674 ret = defrag_count; 1675 1676 out_ra: 1677 if (do_compress) { 1678 inode_lock(inode); 1679 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1680 inode_unlock(inode); 1681 } 1682 if (!file) 1683 kfree(ra); 1684 kfree(pages); 1685 return ret; 1686 } 1687 1688 static noinline int btrfs_ioctl_resize(struct file *file, 1689 void __user *arg) 1690 { 1691 struct inode *inode = file_inode(file); 1692 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1693 u64 new_size; 1694 u64 old_size; 1695 u64 devid = 1; 1696 struct btrfs_root *root = BTRFS_I(inode)->root; 1697 struct btrfs_ioctl_vol_args *vol_args; 1698 struct btrfs_trans_handle *trans; 1699 struct btrfs_device *device = NULL; 1700 char *sizestr; 1701 char *retptr; 1702 char *devstr = NULL; 1703 int ret = 0; 1704 int mod = 0; 1705 1706 if (!capable(CAP_SYS_ADMIN)) 1707 return -EPERM; 1708 1709 ret = mnt_want_write_file(file); 1710 if (ret) 1711 return ret; 1712 1713 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) { 1714 mnt_drop_write_file(file); 1715 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1716 } 1717 1718 vol_args = memdup_user(arg, sizeof(*vol_args)); 1719 if (IS_ERR(vol_args)) { 1720 ret = PTR_ERR(vol_args); 1721 goto out; 1722 } 1723 1724 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1725 1726 sizestr = vol_args->name; 1727 devstr = strchr(sizestr, ':'); 1728 if (devstr) { 1729 sizestr = devstr + 1; 1730 *devstr = '\0'; 1731 devstr = vol_args->name; 1732 ret = kstrtoull(devstr, 10, &devid); 1733 if (ret) 1734 goto out_free; 1735 if (!devid) { 1736 ret = -EINVAL; 1737 goto out_free; 1738 } 1739 btrfs_info(fs_info, "resizing devid %llu", devid); 1740 } 1741 1742 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); 1743 if (!device) { 1744 btrfs_info(fs_info, "resizer unable to find device %llu", 1745 devid); 1746 ret = -ENODEV; 1747 goto out_free; 1748 } 1749 1750 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1751 btrfs_info(fs_info, 1752 "resizer unable to apply on readonly device %llu", 1753 devid); 1754 ret = -EPERM; 1755 goto out_free; 1756 } 1757 1758 if (!strcmp(sizestr, "max")) 1759 new_size = device->bdev->bd_inode->i_size; 1760 else { 1761 if (sizestr[0] == '-') { 1762 mod = -1; 1763 sizestr++; 1764 } else if (sizestr[0] == '+') { 1765 mod = 1; 1766 sizestr++; 1767 } 1768 new_size = memparse(sizestr, &retptr); 1769 if (*retptr != '\0' || new_size == 0) { 1770 ret = -EINVAL; 1771 goto out_free; 1772 } 1773 } 1774 1775 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1776 ret = -EPERM; 1777 goto out_free; 1778 } 1779 1780 old_size = btrfs_device_get_total_bytes(device); 1781 1782 if (mod < 0) { 1783 if (new_size > old_size) { 1784 ret = -EINVAL; 1785 goto out_free; 1786 } 1787 new_size = old_size - new_size; 1788 } else if (mod > 0) { 1789 if (new_size > ULLONG_MAX - old_size) { 1790 ret = -ERANGE; 1791 goto out_free; 1792 } 1793 new_size = old_size + new_size; 1794 } 1795 1796 if (new_size < SZ_256M) { 1797 ret = -EINVAL; 1798 goto out_free; 1799 } 1800 if (new_size > device->bdev->bd_inode->i_size) { 1801 ret = -EFBIG; 1802 goto out_free; 1803 } 1804 1805 new_size = round_down(new_size, fs_info->sectorsize); 1806 1807 if (new_size > old_size) { 1808 trans = btrfs_start_transaction(root, 0); 1809 if (IS_ERR(trans)) { 1810 ret = PTR_ERR(trans); 1811 goto out_free; 1812 } 1813 ret = btrfs_grow_device(trans, device, new_size); 1814 btrfs_commit_transaction(trans); 1815 } else if (new_size < old_size) { 1816 ret = btrfs_shrink_device(device, new_size); 1817 } /* equal, nothing need to do */ 1818 1819 if (ret == 0 && new_size != old_size) 1820 btrfs_info_in_rcu(fs_info, 1821 "resize device %s (devid %llu) from %llu to %llu", 1822 rcu_str_deref(device->name), device->devid, 1823 old_size, new_size); 1824 out_free: 1825 kfree(vol_args); 1826 out: 1827 btrfs_exclop_finish(fs_info); 1828 mnt_drop_write_file(file); 1829 return ret; 1830 } 1831 1832 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1833 const char *name, unsigned long fd, int subvol, 1834 bool readonly, 1835 struct btrfs_qgroup_inherit *inherit) 1836 { 1837 int namelen; 1838 int ret = 0; 1839 1840 if (!S_ISDIR(file_inode(file)->i_mode)) 1841 return -ENOTDIR; 1842 1843 ret = mnt_want_write_file(file); 1844 if (ret) 1845 goto out; 1846 1847 namelen = strlen(name); 1848 if (strchr(name, '/')) { 1849 ret = -EINVAL; 1850 goto out_drop_write; 1851 } 1852 1853 if (name[0] == '.' && 1854 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1855 ret = -EEXIST; 1856 goto out_drop_write; 1857 } 1858 1859 if (subvol) { 1860 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1861 NULL, readonly, inherit); 1862 } else { 1863 struct fd src = fdget(fd); 1864 struct inode *src_inode; 1865 if (!src.file) { 1866 ret = -EINVAL; 1867 goto out_drop_write; 1868 } 1869 1870 src_inode = file_inode(src.file); 1871 if (src_inode->i_sb != file_inode(file)->i_sb) { 1872 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1873 "Snapshot src from another FS"); 1874 ret = -EXDEV; 1875 } else if (!inode_owner_or_capable(&init_user_ns, src_inode)) { 1876 /* 1877 * Subvolume creation is not restricted, but snapshots 1878 * are limited to own subvolumes only 1879 */ 1880 ret = -EPERM; 1881 } else { 1882 ret = btrfs_mksnapshot(&file->f_path, name, namelen, 1883 BTRFS_I(src_inode)->root, 1884 readonly, inherit); 1885 } 1886 fdput(src); 1887 } 1888 out_drop_write: 1889 mnt_drop_write_file(file); 1890 out: 1891 return ret; 1892 } 1893 1894 static noinline int btrfs_ioctl_snap_create(struct file *file, 1895 void __user *arg, int subvol) 1896 { 1897 struct btrfs_ioctl_vol_args *vol_args; 1898 int ret; 1899 1900 if (!S_ISDIR(file_inode(file)->i_mode)) 1901 return -ENOTDIR; 1902 1903 vol_args = memdup_user(arg, sizeof(*vol_args)); 1904 if (IS_ERR(vol_args)) 1905 return PTR_ERR(vol_args); 1906 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1907 1908 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1909 subvol, false, NULL); 1910 1911 kfree(vol_args); 1912 return ret; 1913 } 1914 1915 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1916 void __user *arg, int subvol) 1917 { 1918 struct btrfs_ioctl_vol_args_v2 *vol_args; 1919 int ret; 1920 bool readonly = false; 1921 struct btrfs_qgroup_inherit *inherit = NULL; 1922 1923 if (!S_ISDIR(file_inode(file)->i_mode)) 1924 return -ENOTDIR; 1925 1926 vol_args = memdup_user(arg, sizeof(*vol_args)); 1927 if (IS_ERR(vol_args)) 1928 return PTR_ERR(vol_args); 1929 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1930 1931 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1932 ret = -EOPNOTSUPP; 1933 goto free_args; 1934 } 1935 1936 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1937 readonly = true; 1938 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1939 u64 nums; 1940 1941 if (vol_args->size < sizeof(*inherit) || 1942 vol_args->size > PAGE_SIZE) { 1943 ret = -EINVAL; 1944 goto free_args; 1945 } 1946 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1947 if (IS_ERR(inherit)) { 1948 ret = PTR_ERR(inherit); 1949 goto free_args; 1950 } 1951 1952 if (inherit->num_qgroups > PAGE_SIZE || 1953 inherit->num_ref_copies > PAGE_SIZE || 1954 inherit->num_excl_copies > PAGE_SIZE) { 1955 ret = -EINVAL; 1956 goto free_inherit; 1957 } 1958 1959 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1960 2 * inherit->num_excl_copies; 1961 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1962 ret = -EINVAL; 1963 goto free_inherit; 1964 } 1965 } 1966 1967 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1968 subvol, readonly, inherit); 1969 if (ret) 1970 goto free_inherit; 1971 free_inherit: 1972 kfree(inherit); 1973 free_args: 1974 kfree(vol_args); 1975 return ret; 1976 } 1977 1978 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1979 void __user *arg) 1980 { 1981 struct inode *inode = file_inode(file); 1982 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1983 struct btrfs_root *root = BTRFS_I(inode)->root; 1984 int ret = 0; 1985 u64 flags = 0; 1986 1987 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1988 return -EINVAL; 1989 1990 down_read(&fs_info->subvol_sem); 1991 if (btrfs_root_readonly(root)) 1992 flags |= BTRFS_SUBVOL_RDONLY; 1993 up_read(&fs_info->subvol_sem); 1994 1995 if (copy_to_user(arg, &flags, sizeof(flags))) 1996 ret = -EFAULT; 1997 1998 return ret; 1999 } 2000 2001 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 2002 void __user *arg) 2003 { 2004 struct inode *inode = file_inode(file); 2005 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2006 struct btrfs_root *root = BTRFS_I(inode)->root; 2007 struct btrfs_trans_handle *trans; 2008 u64 root_flags; 2009 u64 flags; 2010 int ret = 0; 2011 2012 if (!inode_owner_or_capable(&init_user_ns, inode)) 2013 return -EPERM; 2014 2015 ret = mnt_want_write_file(file); 2016 if (ret) 2017 goto out; 2018 2019 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2020 ret = -EINVAL; 2021 goto out_drop_write; 2022 } 2023 2024 if (copy_from_user(&flags, arg, sizeof(flags))) { 2025 ret = -EFAULT; 2026 goto out_drop_write; 2027 } 2028 2029 if (flags & ~BTRFS_SUBVOL_RDONLY) { 2030 ret = -EOPNOTSUPP; 2031 goto out_drop_write; 2032 } 2033 2034 down_write(&fs_info->subvol_sem); 2035 2036 /* nothing to do */ 2037 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 2038 goto out_drop_sem; 2039 2040 root_flags = btrfs_root_flags(&root->root_item); 2041 if (flags & BTRFS_SUBVOL_RDONLY) { 2042 btrfs_set_root_flags(&root->root_item, 2043 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 2044 } else { 2045 /* 2046 * Block RO -> RW transition if this subvolume is involved in 2047 * send 2048 */ 2049 spin_lock(&root->root_item_lock); 2050 if (root->send_in_progress == 0) { 2051 btrfs_set_root_flags(&root->root_item, 2052 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 2053 spin_unlock(&root->root_item_lock); 2054 } else { 2055 spin_unlock(&root->root_item_lock); 2056 btrfs_warn(fs_info, 2057 "Attempt to set subvolume %llu read-write during send", 2058 root->root_key.objectid); 2059 ret = -EPERM; 2060 goto out_drop_sem; 2061 } 2062 } 2063 2064 trans = btrfs_start_transaction(root, 1); 2065 if (IS_ERR(trans)) { 2066 ret = PTR_ERR(trans); 2067 goto out_reset; 2068 } 2069 2070 ret = btrfs_update_root(trans, fs_info->tree_root, 2071 &root->root_key, &root->root_item); 2072 if (ret < 0) { 2073 btrfs_end_transaction(trans); 2074 goto out_reset; 2075 } 2076 2077 ret = btrfs_commit_transaction(trans); 2078 2079 out_reset: 2080 if (ret) 2081 btrfs_set_root_flags(&root->root_item, root_flags); 2082 out_drop_sem: 2083 up_write(&fs_info->subvol_sem); 2084 out_drop_write: 2085 mnt_drop_write_file(file); 2086 out: 2087 return ret; 2088 } 2089 2090 static noinline int key_in_sk(struct btrfs_key *key, 2091 struct btrfs_ioctl_search_key *sk) 2092 { 2093 struct btrfs_key test; 2094 int ret; 2095 2096 test.objectid = sk->min_objectid; 2097 test.type = sk->min_type; 2098 test.offset = sk->min_offset; 2099 2100 ret = btrfs_comp_cpu_keys(key, &test); 2101 if (ret < 0) 2102 return 0; 2103 2104 test.objectid = sk->max_objectid; 2105 test.type = sk->max_type; 2106 test.offset = sk->max_offset; 2107 2108 ret = btrfs_comp_cpu_keys(key, &test); 2109 if (ret > 0) 2110 return 0; 2111 return 1; 2112 } 2113 2114 static noinline int copy_to_sk(struct btrfs_path *path, 2115 struct btrfs_key *key, 2116 struct btrfs_ioctl_search_key *sk, 2117 size_t *buf_size, 2118 char __user *ubuf, 2119 unsigned long *sk_offset, 2120 int *num_found) 2121 { 2122 u64 found_transid; 2123 struct extent_buffer *leaf; 2124 struct btrfs_ioctl_search_header sh; 2125 struct btrfs_key test; 2126 unsigned long item_off; 2127 unsigned long item_len; 2128 int nritems; 2129 int i; 2130 int slot; 2131 int ret = 0; 2132 2133 leaf = path->nodes[0]; 2134 slot = path->slots[0]; 2135 nritems = btrfs_header_nritems(leaf); 2136 2137 if (btrfs_header_generation(leaf) > sk->max_transid) { 2138 i = nritems; 2139 goto advance_key; 2140 } 2141 found_transid = btrfs_header_generation(leaf); 2142 2143 for (i = slot; i < nritems; i++) { 2144 item_off = btrfs_item_ptr_offset(leaf, i); 2145 item_len = btrfs_item_size_nr(leaf, i); 2146 2147 btrfs_item_key_to_cpu(leaf, key, i); 2148 if (!key_in_sk(key, sk)) 2149 continue; 2150 2151 if (sizeof(sh) + item_len > *buf_size) { 2152 if (*num_found) { 2153 ret = 1; 2154 goto out; 2155 } 2156 2157 /* 2158 * return one empty item back for v1, which does not 2159 * handle -EOVERFLOW 2160 */ 2161 2162 *buf_size = sizeof(sh) + item_len; 2163 item_len = 0; 2164 ret = -EOVERFLOW; 2165 } 2166 2167 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2168 ret = 1; 2169 goto out; 2170 } 2171 2172 sh.objectid = key->objectid; 2173 sh.offset = key->offset; 2174 sh.type = key->type; 2175 sh.len = item_len; 2176 sh.transid = found_transid; 2177 2178 /* 2179 * Copy search result header. If we fault then loop again so we 2180 * can fault in the pages and -EFAULT there if there's a 2181 * problem. Otherwise we'll fault and then copy the buffer in 2182 * properly this next time through 2183 */ 2184 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2185 ret = 0; 2186 goto out; 2187 } 2188 2189 *sk_offset += sizeof(sh); 2190 2191 if (item_len) { 2192 char __user *up = ubuf + *sk_offset; 2193 /* 2194 * Copy the item, same behavior as above, but reset the 2195 * * sk_offset so we copy the full thing again. 2196 */ 2197 if (read_extent_buffer_to_user_nofault(leaf, up, 2198 item_off, item_len)) { 2199 ret = 0; 2200 *sk_offset -= sizeof(sh); 2201 goto out; 2202 } 2203 2204 *sk_offset += item_len; 2205 } 2206 (*num_found)++; 2207 2208 if (ret) /* -EOVERFLOW from above */ 2209 goto out; 2210 2211 if (*num_found >= sk->nr_items) { 2212 ret = 1; 2213 goto out; 2214 } 2215 } 2216 advance_key: 2217 ret = 0; 2218 test.objectid = sk->max_objectid; 2219 test.type = sk->max_type; 2220 test.offset = sk->max_offset; 2221 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2222 ret = 1; 2223 else if (key->offset < (u64)-1) 2224 key->offset++; 2225 else if (key->type < (u8)-1) { 2226 key->offset = 0; 2227 key->type++; 2228 } else if (key->objectid < (u64)-1) { 2229 key->offset = 0; 2230 key->type = 0; 2231 key->objectid++; 2232 } else 2233 ret = 1; 2234 out: 2235 /* 2236 * 0: all items from this leaf copied, continue with next 2237 * 1: * more items can be copied, but unused buffer is too small 2238 * * all items were found 2239 * Either way, it will stops the loop which iterates to the next 2240 * leaf 2241 * -EOVERFLOW: item was to large for buffer 2242 * -EFAULT: could not copy extent buffer back to userspace 2243 */ 2244 return ret; 2245 } 2246 2247 static noinline int search_ioctl(struct inode *inode, 2248 struct btrfs_ioctl_search_key *sk, 2249 size_t *buf_size, 2250 char __user *ubuf) 2251 { 2252 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2253 struct btrfs_root *root; 2254 struct btrfs_key key; 2255 struct btrfs_path *path; 2256 int ret; 2257 int num_found = 0; 2258 unsigned long sk_offset = 0; 2259 2260 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2261 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2262 return -EOVERFLOW; 2263 } 2264 2265 path = btrfs_alloc_path(); 2266 if (!path) 2267 return -ENOMEM; 2268 2269 if (sk->tree_id == 0) { 2270 /* search the root of the inode that was passed */ 2271 root = btrfs_grab_root(BTRFS_I(inode)->root); 2272 } else { 2273 root = btrfs_get_fs_root(info, sk->tree_id, true); 2274 if (IS_ERR(root)) { 2275 btrfs_free_path(path); 2276 return PTR_ERR(root); 2277 } 2278 } 2279 2280 key.objectid = sk->min_objectid; 2281 key.type = sk->min_type; 2282 key.offset = sk->min_offset; 2283 2284 while (1) { 2285 ret = fault_in_pages_writeable(ubuf + sk_offset, 2286 *buf_size - sk_offset); 2287 if (ret) 2288 break; 2289 2290 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2291 if (ret != 0) { 2292 if (ret > 0) 2293 ret = 0; 2294 goto err; 2295 } 2296 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2297 &sk_offset, &num_found); 2298 btrfs_release_path(path); 2299 if (ret) 2300 break; 2301 2302 } 2303 if (ret > 0) 2304 ret = 0; 2305 err: 2306 sk->nr_items = num_found; 2307 btrfs_put_root(root); 2308 btrfs_free_path(path); 2309 return ret; 2310 } 2311 2312 static noinline int btrfs_ioctl_tree_search(struct file *file, 2313 void __user *argp) 2314 { 2315 struct btrfs_ioctl_search_args __user *uargs; 2316 struct btrfs_ioctl_search_key sk; 2317 struct inode *inode; 2318 int ret; 2319 size_t buf_size; 2320 2321 if (!capable(CAP_SYS_ADMIN)) 2322 return -EPERM; 2323 2324 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2325 2326 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2327 return -EFAULT; 2328 2329 buf_size = sizeof(uargs->buf); 2330 2331 inode = file_inode(file); 2332 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2333 2334 /* 2335 * In the origin implementation an overflow is handled by returning a 2336 * search header with a len of zero, so reset ret. 2337 */ 2338 if (ret == -EOVERFLOW) 2339 ret = 0; 2340 2341 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2342 ret = -EFAULT; 2343 return ret; 2344 } 2345 2346 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2347 void __user *argp) 2348 { 2349 struct btrfs_ioctl_search_args_v2 __user *uarg; 2350 struct btrfs_ioctl_search_args_v2 args; 2351 struct inode *inode; 2352 int ret; 2353 size_t buf_size; 2354 const size_t buf_limit = SZ_16M; 2355 2356 if (!capable(CAP_SYS_ADMIN)) 2357 return -EPERM; 2358 2359 /* copy search header and buffer size */ 2360 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2361 if (copy_from_user(&args, uarg, sizeof(args))) 2362 return -EFAULT; 2363 2364 buf_size = args.buf_size; 2365 2366 /* limit result size to 16MB */ 2367 if (buf_size > buf_limit) 2368 buf_size = buf_limit; 2369 2370 inode = file_inode(file); 2371 ret = search_ioctl(inode, &args.key, &buf_size, 2372 (char __user *)(&uarg->buf[0])); 2373 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2374 ret = -EFAULT; 2375 else if (ret == -EOVERFLOW && 2376 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2377 ret = -EFAULT; 2378 2379 return ret; 2380 } 2381 2382 /* 2383 * Search INODE_REFs to identify path name of 'dirid' directory 2384 * in a 'tree_id' tree. and sets path name to 'name'. 2385 */ 2386 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2387 u64 tree_id, u64 dirid, char *name) 2388 { 2389 struct btrfs_root *root; 2390 struct btrfs_key key; 2391 char *ptr; 2392 int ret = -1; 2393 int slot; 2394 int len; 2395 int total_len = 0; 2396 struct btrfs_inode_ref *iref; 2397 struct extent_buffer *l; 2398 struct btrfs_path *path; 2399 2400 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2401 name[0]='\0'; 2402 return 0; 2403 } 2404 2405 path = btrfs_alloc_path(); 2406 if (!path) 2407 return -ENOMEM; 2408 2409 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2410 2411 root = btrfs_get_fs_root(info, tree_id, true); 2412 if (IS_ERR(root)) { 2413 ret = PTR_ERR(root); 2414 root = NULL; 2415 goto out; 2416 } 2417 2418 key.objectid = dirid; 2419 key.type = BTRFS_INODE_REF_KEY; 2420 key.offset = (u64)-1; 2421 2422 while (1) { 2423 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2424 if (ret < 0) 2425 goto out; 2426 else if (ret > 0) { 2427 ret = btrfs_previous_item(root, path, dirid, 2428 BTRFS_INODE_REF_KEY); 2429 if (ret < 0) 2430 goto out; 2431 else if (ret > 0) { 2432 ret = -ENOENT; 2433 goto out; 2434 } 2435 } 2436 2437 l = path->nodes[0]; 2438 slot = path->slots[0]; 2439 btrfs_item_key_to_cpu(l, &key, slot); 2440 2441 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2442 len = btrfs_inode_ref_name_len(l, iref); 2443 ptr -= len + 1; 2444 total_len += len + 1; 2445 if (ptr < name) { 2446 ret = -ENAMETOOLONG; 2447 goto out; 2448 } 2449 2450 *(ptr + len) = '/'; 2451 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2452 2453 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2454 break; 2455 2456 btrfs_release_path(path); 2457 key.objectid = key.offset; 2458 key.offset = (u64)-1; 2459 dirid = key.objectid; 2460 } 2461 memmove(name, ptr, total_len); 2462 name[total_len] = '\0'; 2463 ret = 0; 2464 out: 2465 btrfs_put_root(root); 2466 btrfs_free_path(path); 2467 return ret; 2468 } 2469 2470 static int btrfs_search_path_in_tree_user(struct inode *inode, 2471 struct btrfs_ioctl_ino_lookup_user_args *args) 2472 { 2473 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2474 struct super_block *sb = inode->i_sb; 2475 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2476 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2477 u64 dirid = args->dirid; 2478 unsigned long item_off; 2479 unsigned long item_len; 2480 struct btrfs_inode_ref *iref; 2481 struct btrfs_root_ref *rref; 2482 struct btrfs_root *root = NULL; 2483 struct btrfs_path *path; 2484 struct btrfs_key key, key2; 2485 struct extent_buffer *leaf; 2486 struct inode *temp_inode; 2487 char *ptr; 2488 int slot; 2489 int len; 2490 int total_len = 0; 2491 int ret; 2492 2493 path = btrfs_alloc_path(); 2494 if (!path) 2495 return -ENOMEM; 2496 2497 /* 2498 * If the bottom subvolume does not exist directly under upper_limit, 2499 * construct the path in from the bottom up. 2500 */ 2501 if (dirid != upper_limit.objectid) { 2502 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2503 2504 root = btrfs_get_fs_root(fs_info, treeid, true); 2505 if (IS_ERR(root)) { 2506 ret = PTR_ERR(root); 2507 goto out; 2508 } 2509 2510 key.objectid = dirid; 2511 key.type = BTRFS_INODE_REF_KEY; 2512 key.offset = (u64)-1; 2513 while (1) { 2514 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2515 if (ret < 0) { 2516 goto out_put; 2517 } else if (ret > 0) { 2518 ret = btrfs_previous_item(root, path, dirid, 2519 BTRFS_INODE_REF_KEY); 2520 if (ret < 0) { 2521 goto out_put; 2522 } else if (ret > 0) { 2523 ret = -ENOENT; 2524 goto out_put; 2525 } 2526 } 2527 2528 leaf = path->nodes[0]; 2529 slot = path->slots[0]; 2530 btrfs_item_key_to_cpu(leaf, &key, slot); 2531 2532 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2533 len = btrfs_inode_ref_name_len(leaf, iref); 2534 ptr -= len + 1; 2535 total_len += len + 1; 2536 if (ptr < args->path) { 2537 ret = -ENAMETOOLONG; 2538 goto out_put; 2539 } 2540 2541 *(ptr + len) = '/'; 2542 read_extent_buffer(leaf, ptr, 2543 (unsigned long)(iref + 1), len); 2544 2545 /* Check the read+exec permission of this directory */ 2546 ret = btrfs_previous_item(root, path, dirid, 2547 BTRFS_INODE_ITEM_KEY); 2548 if (ret < 0) { 2549 goto out_put; 2550 } else if (ret > 0) { 2551 ret = -ENOENT; 2552 goto out_put; 2553 } 2554 2555 leaf = path->nodes[0]; 2556 slot = path->slots[0]; 2557 btrfs_item_key_to_cpu(leaf, &key2, slot); 2558 if (key2.objectid != dirid) { 2559 ret = -ENOENT; 2560 goto out_put; 2561 } 2562 2563 temp_inode = btrfs_iget(sb, key2.objectid, root); 2564 if (IS_ERR(temp_inode)) { 2565 ret = PTR_ERR(temp_inode); 2566 goto out_put; 2567 } 2568 ret = inode_permission(&init_user_ns, temp_inode, 2569 MAY_READ | MAY_EXEC); 2570 iput(temp_inode); 2571 if (ret) { 2572 ret = -EACCES; 2573 goto out_put; 2574 } 2575 2576 if (key.offset == upper_limit.objectid) 2577 break; 2578 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2579 ret = -EACCES; 2580 goto out_put; 2581 } 2582 2583 btrfs_release_path(path); 2584 key.objectid = key.offset; 2585 key.offset = (u64)-1; 2586 dirid = key.objectid; 2587 } 2588 2589 memmove(args->path, ptr, total_len); 2590 args->path[total_len] = '\0'; 2591 btrfs_put_root(root); 2592 root = NULL; 2593 btrfs_release_path(path); 2594 } 2595 2596 /* Get the bottom subvolume's name from ROOT_REF */ 2597 key.objectid = treeid; 2598 key.type = BTRFS_ROOT_REF_KEY; 2599 key.offset = args->treeid; 2600 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2601 if (ret < 0) { 2602 goto out; 2603 } else if (ret > 0) { 2604 ret = -ENOENT; 2605 goto out; 2606 } 2607 2608 leaf = path->nodes[0]; 2609 slot = path->slots[0]; 2610 btrfs_item_key_to_cpu(leaf, &key, slot); 2611 2612 item_off = btrfs_item_ptr_offset(leaf, slot); 2613 item_len = btrfs_item_size_nr(leaf, slot); 2614 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2615 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2616 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2617 ret = -EINVAL; 2618 goto out; 2619 } 2620 2621 /* Copy subvolume's name */ 2622 item_off += sizeof(struct btrfs_root_ref); 2623 item_len -= sizeof(struct btrfs_root_ref); 2624 read_extent_buffer(leaf, args->name, item_off, item_len); 2625 args->name[item_len] = 0; 2626 2627 out_put: 2628 btrfs_put_root(root); 2629 out: 2630 btrfs_free_path(path); 2631 return ret; 2632 } 2633 2634 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2635 void __user *argp) 2636 { 2637 struct btrfs_ioctl_ino_lookup_args *args; 2638 struct inode *inode; 2639 int ret = 0; 2640 2641 args = memdup_user(argp, sizeof(*args)); 2642 if (IS_ERR(args)) 2643 return PTR_ERR(args); 2644 2645 inode = file_inode(file); 2646 2647 /* 2648 * Unprivileged query to obtain the containing subvolume root id. The 2649 * path is reset so it's consistent with btrfs_search_path_in_tree. 2650 */ 2651 if (args->treeid == 0) 2652 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2653 2654 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2655 args->name[0] = 0; 2656 goto out; 2657 } 2658 2659 if (!capable(CAP_SYS_ADMIN)) { 2660 ret = -EPERM; 2661 goto out; 2662 } 2663 2664 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2665 args->treeid, args->objectid, 2666 args->name); 2667 2668 out: 2669 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2670 ret = -EFAULT; 2671 2672 kfree(args); 2673 return ret; 2674 } 2675 2676 /* 2677 * Version of ino_lookup ioctl (unprivileged) 2678 * 2679 * The main differences from ino_lookup ioctl are: 2680 * 2681 * 1. Read + Exec permission will be checked using inode_permission() during 2682 * path construction. -EACCES will be returned in case of failure. 2683 * 2. Path construction will be stopped at the inode number which corresponds 2684 * to the fd with which this ioctl is called. If constructed path does not 2685 * exist under fd's inode, -EACCES will be returned. 2686 * 3. The name of bottom subvolume is also searched and filled. 2687 */ 2688 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2689 { 2690 struct btrfs_ioctl_ino_lookup_user_args *args; 2691 struct inode *inode; 2692 int ret; 2693 2694 args = memdup_user(argp, sizeof(*args)); 2695 if (IS_ERR(args)) 2696 return PTR_ERR(args); 2697 2698 inode = file_inode(file); 2699 2700 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2701 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2702 /* 2703 * The subvolume does not exist under fd with which this is 2704 * called 2705 */ 2706 kfree(args); 2707 return -EACCES; 2708 } 2709 2710 ret = btrfs_search_path_in_tree_user(inode, args); 2711 2712 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2713 ret = -EFAULT; 2714 2715 kfree(args); 2716 return ret; 2717 } 2718 2719 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2720 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2721 { 2722 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2723 struct btrfs_fs_info *fs_info; 2724 struct btrfs_root *root; 2725 struct btrfs_path *path; 2726 struct btrfs_key key; 2727 struct btrfs_root_item *root_item; 2728 struct btrfs_root_ref *rref; 2729 struct extent_buffer *leaf; 2730 unsigned long item_off; 2731 unsigned long item_len; 2732 struct inode *inode; 2733 int slot; 2734 int ret = 0; 2735 2736 path = btrfs_alloc_path(); 2737 if (!path) 2738 return -ENOMEM; 2739 2740 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2741 if (!subvol_info) { 2742 btrfs_free_path(path); 2743 return -ENOMEM; 2744 } 2745 2746 inode = file_inode(file); 2747 fs_info = BTRFS_I(inode)->root->fs_info; 2748 2749 /* Get root_item of inode's subvolume */ 2750 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2751 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2752 if (IS_ERR(root)) { 2753 ret = PTR_ERR(root); 2754 goto out_free; 2755 } 2756 root_item = &root->root_item; 2757 2758 subvol_info->treeid = key.objectid; 2759 2760 subvol_info->generation = btrfs_root_generation(root_item); 2761 subvol_info->flags = btrfs_root_flags(root_item); 2762 2763 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2764 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2765 BTRFS_UUID_SIZE); 2766 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2767 BTRFS_UUID_SIZE); 2768 2769 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2770 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2771 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2772 2773 subvol_info->otransid = btrfs_root_otransid(root_item); 2774 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2775 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2776 2777 subvol_info->stransid = btrfs_root_stransid(root_item); 2778 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2779 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2780 2781 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2782 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2783 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2784 2785 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2786 /* Search root tree for ROOT_BACKREF of this subvolume */ 2787 key.type = BTRFS_ROOT_BACKREF_KEY; 2788 key.offset = 0; 2789 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2790 if (ret < 0) { 2791 goto out; 2792 } else if (path->slots[0] >= 2793 btrfs_header_nritems(path->nodes[0])) { 2794 ret = btrfs_next_leaf(fs_info->tree_root, path); 2795 if (ret < 0) { 2796 goto out; 2797 } else if (ret > 0) { 2798 ret = -EUCLEAN; 2799 goto out; 2800 } 2801 } 2802 2803 leaf = path->nodes[0]; 2804 slot = path->slots[0]; 2805 btrfs_item_key_to_cpu(leaf, &key, slot); 2806 if (key.objectid == subvol_info->treeid && 2807 key.type == BTRFS_ROOT_BACKREF_KEY) { 2808 subvol_info->parent_id = key.offset; 2809 2810 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2811 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2812 2813 item_off = btrfs_item_ptr_offset(leaf, slot) 2814 + sizeof(struct btrfs_root_ref); 2815 item_len = btrfs_item_size_nr(leaf, slot) 2816 - sizeof(struct btrfs_root_ref); 2817 read_extent_buffer(leaf, subvol_info->name, 2818 item_off, item_len); 2819 } else { 2820 ret = -ENOENT; 2821 goto out; 2822 } 2823 } 2824 2825 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2826 ret = -EFAULT; 2827 2828 out: 2829 btrfs_put_root(root); 2830 out_free: 2831 btrfs_free_path(path); 2832 kfree(subvol_info); 2833 return ret; 2834 } 2835 2836 /* 2837 * Return ROOT_REF information of the subvolume containing this inode 2838 * except the subvolume name. 2839 */ 2840 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2841 { 2842 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2843 struct btrfs_root_ref *rref; 2844 struct btrfs_root *root; 2845 struct btrfs_path *path; 2846 struct btrfs_key key; 2847 struct extent_buffer *leaf; 2848 struct inode *inode; 2849 u64 objectid; 2850 int slot; 2851 int ret; 2852 u8 found; 2853 2854 path = btrfs_alloc_path(); 2855 if (!path) 2856 return -ENOMEM; 2857 2858 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2859 if (IS_ERR(rootrefs)) { 2860 btrfs_free_path(path); 2861 return PTR_ERR(rootrefs); 2862 } 2863 2864 inode = file_inode(file); 2865 root = BTRFS_I(inode)->root->fs_info->tree_root; 2866 objectid = BTRFS_I(inode)->root->root_key.objectid; 2867 2868 key.objectid = objectid; 2869 key.type = BTRFS_ROOT_REF_KEY; 2870 key.offset = rootrefs->min_treeid; 2871 found = 0; 2872 2873 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2874 if (ret < 0) { 2875 goto out; 2876 } else if (path->slots[0] >= 2877 btrfs_header_nritems(path->nodes[0])) { 2878 ret = btrfs_next_leaf(root, path); 2879 if (ret < 0) { 2880 goto out; 2881 } else if (ret > 0) { 2882 ret = -EUCLEAN; 2883 goto out; 2884 } 2885 } 2886 while (1) { 2887 leaf = path->nodes[0]; 2888 slot = path->slots[0]; 2889 2890 btrfs_item_key_to_cpu(leaf, &key, slot); 2891 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2892 ret = 0; 2893 goto out; 2894 } 2895 2896 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2897 ret = -EOVERFLOW; 2898 goto out; 2899 } 2900 2901 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2902 rootrefs->rootref[found].treeid = key.offset; 2903 rootrefs->rootref[found].dirid = 2904 btrfs_root_ref_dirid(leaf, rref); 2905 found++; 2906 2907 ret = btrfs_next_item(root, path); 2908 if (ret < 0) { 2909 goto out; 2910 } else if (ret > 0) { 2911 ret = -EUCLEAN; 2912 goto out; 2913 } 2914 } 2915 2916 out: 2917 if (!ret || ret == -EOVERFLOW) { 2918 rootrefs->num_items = found; 2919 /* update min_treeid for next search */ 2920 if (found) 2921 rootrefs->min_treeid = 2922 rootrefs->rootref[found - 1].treeid + 1; 2923 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2924 ret = -EFAULT; 2925 } 2926 2927 kfree(rootrefs); 2928 btrfs_free_path(path); 2929 2930 return ret; 2931 } 2932 2933 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2934 void __user *arg, 2935 bool destroy_v2) 2936 { 2937 struct dentry *parent = file->f_path.dentry; 2938 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2939 struct dentry *dentry; 2940 struct inode *dir = d_inode(parent); 2941 struct inode *inode; 2942 struct btrfs_root *root = BTRFS_I(dir)->root; 2943 struct btrfs_root *dest = NULL; 2944 struct btrfs_ioctl_vol_args *vol_args = NULL; 2945 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2946 char *subvol_name, *subvol_name_ptr = NULL; 2947 int subvol_namelen; 2948 int err = 0; 2949 bool destroy_parent = false; 2950 2951 if (destroy_v2) { 2952 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2953 if (IS_ERR(vol_args2)) 2954 return PTR_ERR(vol_args2); 2955 2956 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2957 err = -EOPNOTSUPP; 2958 goto out; 2959 } 2960 2961 /* 2962 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2963 * name, same as v1 currently does. 2964 */ 2965 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2966 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2967 subvol_name = vol_args2->name; 2968 2969 err = mnt_want_write_file(file); 2970 if (err) 2971 goto out; 2972 } else { 2973 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2974 err = -EINVAL; 2975 goto out; 2976 } 2977 2978 err = mnt_want_write_file(file); 2979 if (err) 2980 goto out; 2981 2982 dentry = btrfs_get_dentry(fs_info->sb, 2983 BTRFS_FIRST_FREE_OBJECTID, 2984 vol_args2->subvolid, 0, 0); 2985 if (IS_ERR(dentry)) { 2986 err = PTR_ERR(dentry); 2987 goto out_drop_write; 2988 } 2989 2990 /* 2991 * Change the default parent since the subvolume being 2992 * deleted can be outside of the current mount point. 2993 */ 2994 parent = btrfs_get_parent(dentry); 2995 2996 /* 2997 * At this point dentry->d_name can point to '/' if the 2998 * subvolume we want to destroy is outsite of the 2999 * current mount point, so we need to release the 3000 * current dentry and execute the lookup to return a new 3001 * one with ->d_name pointing to the 3002 * <mount point>/subvol_name. 3003 */ 3004 dput(dentry); 3005 if (IS_ERR(parent)) { 3006 err = PTR_ERR(parent); 3007 goto out_drop_write; 3008 } 3009 dir = d_inode(parent); 3010 3011 /* 3012 * If v2 was used with SPEC_BY_ID, a new parent was 3013 * allocated since the subvolume can be outside of the 3014 * current mount point. Later on we need to release this 3015 * new parent dentry. 3016 */ 3017 destroy_parent = true; 3018 3019 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 3020 fs_info, vol_args2->subvolid); 3021 if (IS_ERR(subvol_name_ptr)) { 3022 err = PTR_ERR(subvol_name_ptr); 3023 goto free_parent; 3024 } 3025 /* subvol_name_ptr is already NULL termined */ 3026 subvol_name = (char *)kbasename(subvol_name_ptr); 3027 } 3028 } else { 3029 vol_args = memdup_user(arg, sizeof(*vol_args)); 3030 if (IS_ERR(vol_args)) 3031 return PTR_ERR(vol_args); 3032 3033 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 3034 subvol_name = vol_args->name; 3035 3036 err = mnt_want_write_file(file); 3037 if (err) 3038 goto out; 3039 } 3040 3041 subvol_namelen = strlen(subvol_name); 3042 3043 if (strchr(subvol_name, '/') || 3044 strncmp(subvol_name, "..", subvol_namelen) == 0) { 3045 err = -EINVAL; 3046 goto free_subvol_name; 3047 } 3048 3049 if (!S_ISDIR(dir->i_mode)) { 3050 err = -ENOTDIR; 3051 goto free_subvol_name; 3052 } 3053 3054 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3055 if (err == -EINTR) 3056 goto free_subvol_name; 3057 dentry = lookup_one_len(subvol_name, parent, subvol_namelen); 3058 if (IS_ERR(dentry)) { 3059 err = PTR_ERR(dentry); 3060 goto out_unlock_dir; 3061 } 3062 3063 if (d_really_is_negative(dentry)) { 3064 err = -ENOENT; 3065 goto out_dput; 3066 } 3067 3068 inode = d_inode(dentry); 3069 dest = BTRFS_I(inode)->root; 3070 if (!capable(CAP_SYS_ADMIN)) { 3071 /* 3072 * Regular user. Only allow this with a special mount 3073 * option, when the user has write+exec access to the 3074 * subvol root, and when rmdir(2) would have been 3075 * allowed. 3076 * 3077 * Note that this is _not_ check that the subvol is 3078 * empty or doesn't contain data that we wouldn't 3079 * otherwise be able to delete. 3080 * 3081 * Users who want to delete empty subvols should try 3082 * rmdir(2). 3083 */ 3084 err = -EPERM; 3085 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3086 goto out_dput; 3087 3088 /* 3089 * Do not allow deletion if the parent dir is the same 3090 * as the dir to be deleted. That means the ioctl 3091 * must be called on the dentry referencing the root 3092 * of the subvol, not a random directory contained 3093 * within it. 3094 */ 3095 err = -EINVAL; 3096 if (root == dest) 3097 goto out_dput; 3098 3099 err = inode_permission(&init_user_ns, inode, 3100 MAY_WRITE | MAY_EXEC); 3101 if (err) 3102 goto out_dput; 3103 } 3104 3105 /* check if subvolume may be deleted by a user */ 3106 err = btrfs_may_delete(dir, dentry, 1); 3107 if (err) 3108 goto out_dput; 3109 3110 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3111 err = -EINVAL; 3112 goto out_dput; 3113 } 3114 3115 inode_lock(inode); 3116 err = btrfs_delete_subvolume(dir, dentry); 3117 inode_unlock(inode); 3118 if (!err) { 3119 fsnotify_rmdir(dir, dentry); 3120 d_delete(dentry); 3121 } 3122 3123 out_dput: 3124 dput(dentry); 3125 out_unlock_dir: 3126 inode_unlock(dir); 3127 free_subvol_name: 3128 kfree(subvol_name_ptr); 3129 free_parent: 3130 if (destroy_parent) 3131 dput(parent); 3132 out_drop_write: 3133 mnt_drop_write_file(file); 3134 out: 3135 kfree(vol_args2); 3136 kfree(vol_args); 3137 return err; 3138 } 3139 3140 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3141 { 3142 struct inode *inode = file_inode(file); 3143 struct btrfs_root *root = BTRFS_I(inode)->root; 3144 struct btrfs_ioctl_defrag_range_args *range; 3145 int ret; 3146 3147 ret = mnt_want_write_file(file); 3148 if (ret) 3149 return ret; 3150 3151 if (btrfs_root_readonly(root)) { 3152 ret = -EROFS; 3153 goto out; 3154 } 3155 3156 switch (inode->i_mode & S_IFMT) { 3157 case S_IFDIR: 3158 if (!capable(CAP_SYS_ADMIN)) { 3159 ret = -EPERM; 3160 goto out; 3161 } 3162 ret = btrfs_defrag_root(root); 3163 break; 3164 case S_IFREG: 3165 /* 3166 * Note that this does not check the file descriptor for write 3167 * access. This prevents defragmenting executables that are 3168 * running and allows defrag on files open in read-only mode. 3169 */ 3170 if (!capable(CAP_SYS_ADMIN) && 3171 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3172 ret = -EPERM; 3173 goto out; 3174 } 3175 3176 range = kzalloc(sizeof(*range), GFP_KERNEL); 3177 if (!range) { 3178 ret = -ENOMEM; 3179 goto out; 3180 } 3181 3182 if (argp) { 3183 if (copy_from_user(range, argp, 3184 sizeof(*range))) { 3185 ret = -EFAULT; 3186 kfree(range); 3187 goto out; 3188 } 3189 /* compression requires us to start the IO */ 3190 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3191 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 3192 range->extent_thresh = (u32)-1; 3193 } 3194 } else { 3195 /* the rest are all set to zero by kzalloc */ 3196 range->len = (u64)-1; 3197 } 3198 ret = btrfs_defrag_file(file_inode(file), file, 3199 range, BTRFS_OLDEST_GENERATION, 0); 3200 if (ret > 0) 3201 ret = 0; 3202 kfree(range); 3203 break; 3204 default: 3205 ret = -EINVAL; 3206 } 3207 out: 3208 mnt_drop_write_file(file); 3209 return ret; 3210 } 3211 3212 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3213 { 3214 struct btrfs_ioctl_vol_args *vol_args; 3215 int ret; 3216 3217 if (!capable(CAP_SYS_ADMIN)) 3218 return -EPERM; 3219 3220 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3221 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3222 3223 vol_args = memdup_user(arg, sizeof(*vol_args)); 3224 if (IS_ERR(vol_args)) { 3225 ret = PTR_ERR(vol_args); 3226 goto out; 3227 } 3228 3229 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3230 ret = btrfs_init_new_device(fs_info, vol_args->name); 3231 3232 if (!ret) 3233 btrfs_info(fs_info, "disk added %s", vol_args->name); 3234 3235 kfree(vol_args); 3236 out: 3237 btrfs_exclop_finish(fs_info); 3238 return ret; 3239 } 3240 3241 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3242 { 3243 struct inode *inode = file_inode(file); 3244 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3245 struct btrfs_ioctl_vol_args_v2 *vol_args; 3246 int ret; 3247 3248 if (!capable(CAP_SYS_ADMIN)) 3249 return -EPERM; 3250 3251 ret = mnt_want_write_file(file); 3252 if (ret) 3253 return ret; 3254 3255 vol_args = memdup_user(arg, sizeof(*vol_args)); 3256 if (IS_ERR(vol_args)) { 3257 ret = PTR_ERR(vol_args); 3258 goto err_drop; 3259 } 3260 3261 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3262 ret = -EOPNOTSUPP; 3263 goto out; 3264 } 3265 3266 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3267 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3268 goto out; 3269 } 3270 3271 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3272 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3273 } else { 3274 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3275 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3276 } 3277 btrfs_exclop_finish(fs_info); 3278 3279 if (!ret) { 3280 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3281 btrfs_info(fs_info, "device deleted: id %llu", 3282 vol_args->devid); 3283 else 3284 btrfs_info(fs_info, "device deleted: %s", 3285 vol_args->name); 3286 } 3287 out: 3288 kfree(vol_args); 3289 err_drop: 3290 mnt_drop_write_file(file); 3291 return ret; 3292 } 3293 3294 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3295 { 3296 struct inode *inode = file_inode(file); 3297 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3298 struct btrfs_ioctl_vol_args *vol_args; 3299 int ret; 3300 3301 if (!capable(CAP_SYS_ADMIN)) 3302 return -EPERM; 3303 3304 ret = mnt_want_write_file(file); 3305 if (ret) 3306 return ret; 3307 3308 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3309 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3310 goto out_drop_write; 3311 } 3312 3313 vol_args = memdup_user(arg, sizeof(*vol_args)); 3314 if (IS_ERR(vol_args)) { 3315 ret = PTR_ERR(vol_args); 3316 goto out; 3317 } 3318 3319 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3320 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3321 3322 if (!ret) 3323 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3324 kfree(vol_args); 3325 out: 3326 btrfs_exclop_finish(fs_info); 3327 out_drop_write: 3328 mnt_drop_write_file(file); 3329 3330 return ret; 3331 } 3332 3333 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3334 void __user *arg) 3335 { 3336 struct btrfs_ioctl_fs_info_args *fi_args; 3337 struct btrfs_device *device; 3338 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3339 u64 flags_in; 3340 int ret = 0; 3341 3342 fi_args = memdup_user(arg, sizeof(*fi_args)); 3343 if (IS_ERR(fi_args)) 3344 return PTR_ERR(fi_args); 3345 3346 flags_in = fi_args->flags; 3347 memset(fi_args, 0, sizeof(*fi_args)); 3348 3349 rcu_read_lock(); 3350 fi_args->num_devices = fs_devices->num_devices; 3351 3352 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3353 if (device->devid > fi_args->max_id) 3354 fi_args->max_id = device->devid; 3355 } 3356 rcu_read_unlock(); 3357 3358 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3359 fi_args->nodesize = fs_info->nodesize; 3360 fi_args->sectorsize = fs_info->sectorsize; 3361 fi_args->clone_alignment = fs_info->sectorsize; 3362 3363 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3364 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3365 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3366 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3367 } 3368 3369 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3370 fi_args->generation = fs_info->generation; 3371 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3372 } 3373 3374 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3375 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3376 sizeof(fi_args->metadata_uuid)); 3377 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3378 } 3379 3380 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3381 ret = -EFAULT; 3382 3383 kfree(fi_args); 3384 return ret; 3385 } 3386 3387 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3388 void __user *arg) 3389 { 3390 struct btrfs_ioctl_dev_info_args *di_args; 3391 struct btrfs_device *dev; 3392 int ret = 0; 3393 char *s_uuid = NULL; 3394 3395 di_args = memdup_user(arg, sizeof(*di_args)); 3396 if (IS_ERR(di_args)) 3397 return PTR_ERR(di_args); 3398 3399 if (!btrfs_is_empty_uuid(di_args->uuid)) 3400 s_uuid = di_args->uuid; 3401 3402 rcu_read_lock(); 3403 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3404 NULL); 3405 3406 if (!dev) { 3407 ret = -ENODEV; 3408 goto out; 3409 } 3410 3411 di_args->devid = dev->devid; 3412 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3413 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3414 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3415 if (dev->name) { 3416 strncpy(di_args->path, rcu_str_deref(dev->name), 3417 sizeof(di_args->path) - 1); 3418 di_args->path[sizeof(di_args->path) - 1] = 0; 3419 } else { 3420 di_args->path[0] = '\0'; 3421 } 3422 3423 out: 3424 rcu_read_unlock(); 3425 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3426 ret = -EFAULT; 3427 3428 kfree(di_args); 3429 return ret; 3430 } 3431 3432 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3433 { 3434 struct inode *inode = file_inode(file); 3435 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3436 struct btrfs_root *root = BTRFS_I(inode)->root; 3437 struct btrfs_root *new_root; 3438 struct btrfs_dir_item *di; 3439 struct btrfs_trans_handle *trans; 3440 struct btrfs_path *path = NULL; 3441 struct btrfs_disk_key disk_key; 3442 u64 objectid = 0; 3443 u64 dir_id; 3444 int ret; 3445 3446 if (!capable(CAP_SYS_ADMIN)) 3447 return -EPERM; 3448 3449 ret = mnt_want_write_file(file); 3450 if (ret) 3451 return ret; 3452 3453 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3454 ret = -EFAULT; 3455 goto out; 3456 } 3457 3458 if (!objectid) 3459 objectid = BTRFS_FS_TREE_OBJECTID; 3460 3461 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3462 if (IS_ERR(new_root)) { 3463 ret = PTR_ERR(new_root); 3464 goto out; 3465 } 3466 if (!is_fstree(new_root->root_key.objectid)) { 3467 ret = -ENOENT; 3468 goto out_free; 3469 } 3470 3471 path = btrfs_alloc_path(); 3472 if (!path) { 3473 ret = -ENOMEM; 3474 goto out_free; 3475 } 3476 3477 trans = btrfs_start_transaction(root, 1); 3478 if (IS_ERR(trans)) { 3479 ret = PTR_ERR(trans); 3480 goto out_free; 3481 } 3482 3483 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3484 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3485 dir_id, "default", 7, 1); 3486 if (IS_ERR_OR_NULL(di)) { 3487 btrfs_release_path(path); 3488 btrfs_end_transaction(trans); 3489 btrfs_err(fs_info, 3490 "Umm, you don't have the default diritem, this isn't going to work"); 3491 ret = -ENOENT; 3492 goto out_free; 3493 } 3494 3495 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3496 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3497 btrfs_mark_buffer_dirty(path->nodes[0]); 3498 btrfs_release_path(path); 3499 3500 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3501 btrfs_end_transaction(trans); 3502 out_free: 3503 btrfs_put_root(new_root); 3504 btrfs_free_path(path); 3505 out: 3506 mnt_drop_write_file(file); 3507 return ret; 3508 } 3509 3510 static void get_block_group_info(struct list_head *groups_list, 3511 struct btrfs_ioctl_space_info *space) 3512 { 3513 struct btrfs_block_group *block_group; 3514 3515 space->total_bytes = 0; 3516 space->used_bytes = 0; 3517 space->flags = 0; 3518 list_for_each_entry(block_group, groups_list, list) { 3519 space->flags = block_group->flags; 3520 space->total_bytes += block_group->length; 3521 space->used_bytes += block_group->used; 3522 } 3523 } 3524 3525 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3526 void __user *arg) 3527 { 3528 struct btrfs_ioctl_space_args space_args; 3529 struct btrfs_ioctl_space_info space; 3530 struct btrfs_ioctl_space_info *dest; 3531 struct btrfs_ioctl_space_info *dest_orig; 3532 struct btrfs_ioctl_space_info __user *user_dest; 3533 struct btrfs_space_info *info; 3534 static const u64 types[] = { 3535 BTRFS_BLOCK_GROUP_DATA, 3536 BTRFS_BLOCK_GROUP_SYSTEM, 3537 BTRFS_BLOCK_GROUP_METADATA, 3538 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3539 }; 3540 int num_types = 4; 3541 int alloc_size; 3542 int ret = 0; 3543 u64 slot_count = 0; 3544 int i, c; 3545 3546 if (copy_from_user(&space_args, 3547 (struct btrfs_ioctl_space_args __user *)arg, 3548 sizeof(space_args))) 3549 return -EFAULT; 3550 3551 for (i = 0; i < num_types; i++) { 3552 struct btrfs_space_info *tmp; 3553 3554 info = NULL; 3555 list_for_each_entry(tmp, &fs_info->space_info, list) { 3556 if (tmp->flags == types[i]) { 3557 info = tmp; 3558 break; 3559 } 3560 } 3561 3562 if (!info) 3563 continue; 3564 3565 down_read(&info->groups_sem); 3566 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3567 if (!list_empty(&info->block_groups[c])) 3568 slot_count++; 3569 } 3570 up_read(&info->groups_sem); 3571 } 3572 3573 /* 3574 * Global block reserve, exported as a space_info 3575 */ 3576 slot_count++; 3577 3578 /* space_slots == 0 means they are asking for a count */ 3579 if (space_args.space_slots == 0) { 3580 space_args.total_spaces = slot_count; 3581 goto out; 3582 } 3583 3584 slot_count = min_t(u64, space_args.space_slots, slot_count); 3585 3586 alloc_size = sizeof(*dest) * slot_count; 3587 3588 /* we generally have at most 6 or so space infos, one for each raid 3589 * level. So, a whole page should be more than enough for everyone 3590 */ 3591 if (alloc_size > PAGE_SIZE) 3592 return -ENOMEM; 3593 3594 space_args.total_spaces = 0; 3595 dest = kmalloc(alloc_size, GFP_KERNEL); 3596 if (!dest) 3597 return -ENOMEM; 3598 dest_orig = dest; 3599 3600 /* now we have a buffer to copy into */ 3601 for (i = 0; i < num_types; i++) { 3602 struct btrfs_space_info *tmp; 3603 3604 if (!slot_count) 3605 break; 3606 3607 info = NULL; 3608 list_for_each_entry(tmp, &fs_info->space_info, list) { 3609 if (tmp->flags == types[i]) { 3610 info = tmp; 3611 break; 3612 } 3613 } 3614 3615 if (!info) 3616 continue; 3617 down_read(&info->groups_sem); 3618 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3619 if (!list_empty(&info->block_groups[c])) { 3620 get_block_group_info(&info->block_groups[c], 3621 &space); 3622 memcpy(dest, &space, sizeof(space)); 3623 dest++; 3624 space_args.total_spaces++; 3625 slot_count--; 3626 } 3627 if (!slot_count) 3628 break; 3629 } 3630 up_read(&info->groups_sem); 3631 } 3632 3633 /* 3634 * Add global block reserve 3635 */ 3636 if (slot_count) { 3637 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3638 3639 spin_lock(&block_rsv->lock); 3640 space.total_bytes = block_rsv->size; 3641 space.used_bytes = block_rsv->size - block_rsv->reserved; 3642 spin_unlock(&block_rsv->lock); 3643 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3644 memcpy(dest, &space, sizeof(space)); 3645 space_args.total_spaces++; 3646 } 3647 3648 user_dest = (struct btrfs_ioctl_space_info __user *) 3649 (arg + sizeof(struct btrfs_ioctl_space_args)); 3650 3651 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3652 ret = -EFAULT; 3653 3654 kfree(dest_orig); 3655 out: 3656 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3657 ret = -EFAULT; 3658 3659 return ret; 3660 } 3661 3662 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3663 void __user *argp) 3664 { 3665 struct btrfs_trans_handle *trans; 3666 u64 transid; 3667 int ret; 3668 3669 trans = btrfs_attach_transaction_barrier(root); 3670 if (IS_ERR(trans)) { 3671 if (PTR_ERR(trans) != -ENOENT) 3672 return PTR_ERR(trans); 3673 3674 /* No running transaction, don't bother */ 3675 transid = root->fs_info->last_trans_committed; 3676 goto out; 3677 } 3678 transid = trans->transid; 3679 ret = btrfs_commit_transaction_async(trans, 0); 3680 if (ret) { 3681 btrfs_end_transaction(trans); 3682 return ret; 3683 } 3684 out: 3685 if (argp) 3686 if (copy_to_user(argp, &transid, sizeof(transid))) 3687 return -EFAULT; 3688 return 0; 3689 } 3690 3691 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3692 void __user *argp) 3693 { 3694 u64 transid; 3695 3696 if (argp) { 3697 if (copy_from_user(&transid, argp, sizeof(transid))) 3698 return -EFAULT; 3699 } else { 3700 transid = 0; /* current trans */ 3701 } 3702 return btrfs_wait_for_commit(fs_info, transid); 3703 } 3704 3705 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3706 { 3707 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3708 struct btrfs_ioctl_scrub_args *sa; 3709 int ret; 3710 3711 if (!capable(CAP_SYS_ADMIN)) 3712 return -EPERM; 3713 3714 sa = memdup_user(arg, sizeof(*sa)); 3715 if (IS_ERR(sa)) 3716 return PTR_ERR(sa); 3717 3718 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3719 ret = mnt_want_write_file(file); 3720 if (ret) 3721 goto out; 3722 } 3723 3724 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3725 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3726 0); 3727 3728 /* 3729 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3730 * error. This is important as it allows user space to know how much 3731 * progress scrub has done. For example, if scrub is canceled we get 3732 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3733 * space. Later user space can inspect the progress from the structure 3734 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3735 * previously (btrfs-progs does this). 3736 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3737 * then return -EFAULT to signal the structure was not copied or it may 3738 * be corrupt and unreliable due to a partial copy. 3739 */ 3740 if (copy_to_user(arg, sa, sizeof(*sa))) 3741 ret = -EFAULT; 3742 3743 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3744 mnt_drop_write_file(file); 3745 out: 3746 kfree(sa); 3747 return ret; 3748 } 3749 3750 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3751 { 3752 if (!capable(CAP_SYS_ADMIN)) 3753 return -EPERM; 3754 3755 return btrfs_scrub_cancel(fs_info); 3756 } 3757 3758 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3759 void __user *arg) 3760 { 3761 struct btrfs_ioctl_scrub_args *sa; 3762 int ret; 3763 3764 if (!capable(CAP_SYS_ADMIN)) 3765 return -EPERM; 3766 3767 sa = memdup_user(arg, sizeof(*sa)); 3768 if (IS_ERR(sa)) 3769 return PTR_ERR(sa); 3770 3771 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3772 3773 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3774 ret = -EFAULT; 3775 3776 kfree(sa); 3777 return ret; 3778 } 3779 3780 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3781 void __user *arg) 3782 { 3783 struct btrfs_ioctl_get_dev_stats *sa; 3784 int ret; 3785 3786 sa = memdup_user(arg, sizeof(*sa)); 3787 if (IS_ERR(sa)) 3788 return PTR_ERR(sa); 3789 3790 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3791 kfree(sa); 3792 return -EPERM; 3793 } 3794 3795 ret = btrfs_get_dev_stats(fs_info, sa); 3796 3797 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3798 ret = -EFAULT; 3799 3800 kfree(sa); 3801 return ret; 3802 } 3803 3804 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3805 void __user *arg) 3806 { 3807 struct btrfs_ioctl_dev_replace_args *p; 3808 int ret; 3809 3810 if (!capable(CAP_SYS_ADMIN)) 3811 return -EPERM; 3812 3813 p = memdup_user(arg, sizeof(*p)); 3814 if (IS_ERR(p)) 3815 return PTR_ERR(p); 3816 3817 switch (p->cmd) { 3818 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3819 if (sb_rdonly(fs_info->sb)) { 3820 ret = -EROFS; 3821 goto out; 3822 } 3823 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3824 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3825 } else { 3826 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3827 btrfs_exclop_finish(fs_info); 3828 } 3829 break; 3830 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3831 btrfs_dev_replace_status(fs_info, p); 3832 ret = 0; 3833 break; 3834 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3835 p->result = btrfs_dev_replace_cancel(fs_info); 3836 ret = 0; 3837 break; 3838 default: 3839 ret = -EINVAL; 3840 break; 3841 } 3842 3843 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3844 ret = -EFAULT; 3845 out: 3846 kfree(p); 3847 return ret; 3848 } 3849 3850 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3851 { 3852 int ret = 0; 3853 int i; 3854 u64 rel_ptr; 3855 int size; 3856 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3857 struct inode_fs_paths *ipath = NULL; 3858 struct btrfs_path *path; 3859 3860 if (!capable(CAP_DAC_READ_SEARCH)) 3861 return -EPERM; 3862 3863 path = btrfs_alloc_path(); 3864 if (!path) { 3865 ret = -ENOMEM; 3866 goto out; 3867 } 3868 3869 ipa = memdup_user(arg, sizeof(*ipa)); 3870 if (IS_ERR(ipa)) { 3871 ret = PTR_ERR(ipa); 3872 ipa = NULL; 3873 goto out; 3874 } 3875 3876 size = min_t(u32, ipa->size, 4096); 3877 ipath = init_ipath(size, root, path); 3878 if (IS_ERR(ipath)) { 3879 ret = PTR_ERR(ipath); 3880 ipath = NULL; 3881 goto out; 3882 } 3883 3884 ret = paths_from_inode(ipa->inum, ipath); 3885 if (ret < 0) 3886 goto out; 3887 3888 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3889 rel_ptr = ipath->fspath->val[i] - 3890 (u64)(unsigned long)ipath->fspath->val; 3891 ipath->fspath->val[i] = rel_ptr; 3892 } 3893 3894 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3895 ipath->fspath, size); 3896 if (ret) { 3897 ret = -EFAULT; 3898 goto out; 3899 } 3900 3901 out: 3902 btrfs_free_path(path); 3903 free_ipath(ipath); 3904 kfree(ipa); 3905 3906 return ret; 3907 } 3908 3909 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3910 { 3911 struct btrfs_data_container *inodes = ctx; 3912 const size_t c = 3 * sizeof(u64); 3913 3914 if (inodes->bytes_left >= c) { 3915 inodes->bytes_left -= c; 3916 inodes->val[inodes->elem_cnt] = inum; 3917 inodes->val[inodes->elem_cnt + 1] = offset; 3918 inodes->val[inodes->elem_cnt + 2] = root; 3919 inodes->elem_cnt += 3; 3920 } else { 3921 inodes->bytes_missing += c - inodes->bytes_left; 3922 inodes->bytes_left = 0; 3923 inodes->elem_missed += 3; 3924 } 3925 3926 return 0; 3927 } 3928 3929 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3930 void __user *arg, int version) 3931 { 3932 int ret = 0; 3933 int size; 3934 struct btrfs_ioctl_logical_ino_args *loi; 3935 struct btrfs_data_container *inodes = NULL; 3936 struct btrfs_path *path = NULL; 3937 bool ignore_offset; 3938 3939 if (!capable(CAP_SYS_ADMIN)) 3940 return -EPERM; 3941 3942 loi = memdup_user(arg, sizeof(*loi)); 3943 if (IS_ERR(loi)) 3944 return PTR_ERR(loi); 3945 3946 if (version == 1) { 3947 ignore_offset = false; 3948 size = min_t(u32, loi->size, SZ_64K); 3949 } else { 3950 /* All reserved bits must be 0 for now */ 3951 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3952 ret = -EINVAL; 3953 goto out_loi; 3954 } 3955 /* Only accept flags we have defined so far */ 3956 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3957 ret = -EINVAL; 3958 goto out_loi; 3959 } 3960 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3961 size = min_t(u32, loi->size, SZ_16M); 3962 } 3963 3964 path = btrfs_alloc_path(); 3965 if (!path) { 3966 ret = -ENOMEM; 3967 goto out; 3968 } 3969 3970 inodes = init_data_container(size); 3971 if (IS_ERR(inodes)) { 3972 ret = PTR_ERR(inodes); 3973 inodes = NULL; 3974 goto out; 3975 } 3976 3977 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3978 build_ino_list, inodes, ignore_offset); 3979 if (ret == -EINVAL) 3980 ret = -ENOENT; 3981 if (ret < 0) 3982 goto out; 3983 3984 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3985 size); 3986 if (ret) 3987 ret = -EFAULT; 3988 3989 out: 3990 btrfs_free_path(path); 3991 kvfree(inodes); 3992 out_loi: 3993 kfree(loi); 3994 3995 return ret; 3996 } 3997 3998 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3999 struct btrfs_ioctl_balance_args *bargs) 4000 { 4001 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4002 4003 bargs->flags = bctl->flags; 4004 4005 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4006 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4007 if (atomic_read(&fs_info->balance_pause_req)) 4008 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4009 if (atomic_read(&fs_info->balance_cancel_req)) 4010 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4011 4012 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4013 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4014 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4015 4016 spin_lock(&fs_info->balance_lock); 4017 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4018 spin_unlock(&fs_info->balance_lock); 4019 } 4020 4021 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4022 { 4023 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4024 struct btrfs_fs_info *fs_info = root->fs_info; 4025 struct btrfs_ioctl_balance_args *bargs; 4026 struct btrfs_balance_control *bctl; 4027 bool need_unlock; /* for mut. excl. ops lock */ 4028 int ret; 4029 4030 if (!capable(CAP_SYS_ADMIN)) 4031 return -EPERM; 4032 4033 ret = mnt_want_write_file(file); 4034 if (ret) 4035 return ret; 4036 4037 again: 4038 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4039 mutex_lock(&fs_info->balance_mutex); 4040 need_unlock = true; 4041 goto locked; 4042 } 4043 4044 /* 4045 * mut. excl. ops lock is locked. Three possibilities: 4046 * (1) some other op is running 4047 * (2) balance is running 4048 * (3) balance is paused -- special case (think resume) 4049 */ 4050 mutex_lock(&fs_info->balance_mutex); 4051 if (fs_info->balance_ctl) { 4052 /* this is either (2) or (3) */ 4053 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4054 mutex_unlock(&fs_info->balance_mutex); 4055 /* 4056 * Lock released to allow other waiters to continue, 4057 * we'll reexamine the status again. 4058 */ 4059 mutex_lock(&fs_info->balance_mutex); 4060 4061 if (fs_info->balance_ctl && 4062 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4063 /* this is (3) */ 4064 need_unlock = false; 4065 goto locked; 4066 } 4067 4068 mutex_unlock(&fs_info->balance_mutex); 4069 goto again; 4070 } else { 4071 /* this is (2) */ 4072 mutex_unlock(&fs_info->balance_mutex); 4073 ret = -EINPROGRESS; 4074 goto out; 4075 } 4076 } else { 4077 /* this is (1) */ 4078 mutex_unlock(&fs_info->balance_mutex); 4079 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4080 goto out; 4081 } 4082 4083 locked: 4084 4085 if (arg) { 4086 bargs = memdup_user(arg, sizeof(*bargs)); 4087 if (IS_ERR(bargs)) { 4088 ret = PTR_ERR(bargs); 4089 goto out_unlock; 4090 } 4091 4092 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4093 if (!fs_info->balance_ctl) { 4094 ret = -ENOTCONN; 4095 goto out_bargs; 4096 } 4097 4098 bctl = fs_info->balance_ctl; 4099 spin_lock(&fs_info->balance_lock); 4100 bctl->flags |= BTRFS_BALANCE_RESUME; 4101 spin_unlock(&fs_info->balance_lock); 4102 4103 goto do_balance; 4104 } 4105 } else { 4106 bargs = NULL; 4107 } 4108 4109 if (fs_info->balance_ctl) { 4110 ret = -EINPROGRESS; 4111 goto out_bargs; 4112 } 4113 4114 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4115 if (!bctl) { 4116 ret = -ENOMEM; 4117 goto out_bargs; 4118 } 4119 4120 if (arg) { 4121 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4122 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4123 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4124 4125 bctl->flags = bargs->flags; 4126 } else { 4127 /* balance everything - no filters */ 4128 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4129 } 4130 4131 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4132 ret = -EINVAL; 4133 goto out_bctl; 4134 } 4135 4136 do_balance: 4137 /* 4138 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4139 * bctl is freed in reset_balance_state, or, if restriper was paused 4140 * all the way until unmount, in free_fs_info. The flag should be 4141 * cleared after reset_balance_state. 4142 */ 4143 need_unlock = false; 4144 4145 ret = btrfs_balance(fs_info, bctl, bargs); 4146 bctl = NULL; 4147 4148 if ((ret == 0 || ret == -ECANCELED) && arg) { 4149 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4150 ret = -EFAULT; 4151 } 4152 4153 out_bctl: 4154 kfree(bctl); 4155 out_bargs: 4156 kfree(bargs); 4157 out_unlock: 4158 mutex_unlock(&fs_info->balance_mutex); 4159 if (need_unlock) 4160 btrfs_exclop_finish(fs_info); 4161 out: 4162 mnt_drop_write_file(file); 4163 return ret; 4164 } 4165 4166 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4167 { 4168 if (!capable(CAP_SYS_ADMIN)) 4169 return -EPERM; 4170 4171 switch (cmd) { 4172 case BTRFS_BALANCE_CTL_PAUSE: 4173 return btrfs_pause_balance(fs_info); 4174 case BTRFS_BALANCE_CTL_CANCEL: 4175 return btrfs_cancel_balance(fs_info); 4176 } 4177 4178 return -EINVAL; 4179 } 4180 4181 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4182 void __user *arg) 4183 { 4184 struct btrfs_ioctl_balance_args *bargs; 4185 int ret = 0; 4186 4187 if (!capable(CAP_SYS_ADMIN)) 4188 return -EPERM; 4189 4190 mutex_lock(&fs_info->balance_mutex); 4191 if (!fs_info->balance_ctl) { 4192 ret = -ENOTCONN; 4193 goto out; 4194 } 4195 4196 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4197 if (!bargs) { 4198 ret = -ENOMEM; 4199 goto out; 4200 } 4201 4202 btrfs_update_ioctl_balance_args(fs_info, bargs); 4203 4204 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4205 ret = -EFAULT; 4206 4207 kfree(bargs); 4208 out: 4209 mutex_unlock(&fs_info->balance_mutex); 4210 return ret; 4211 } 4212 4213 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4214 { 4215 struct inode *inode = file_inode(file); 4216 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4217 struct btrfs_ioctl_quota_ctl_args *sa; 4218 int ret; 4219 4220 if (!capable(CAP_SYS_ADMIN)) 4221 return -EPERM; 4222 4223 ret = mnt_want_write_file(file); 4224 if (ret) 4225 return ret; 4226 4227 sa = memdup_user(arg, sizeof(*sa)); 4228 if (IS_ERR(sa)) { 4229 ret = PTR_ERR(sa); 4230 goto drop_write; 4231 } 4232 4233 down_write(&fs_info->subvol_sem); 4234 4235 switch (sa->cmd) { 4236 case BTRFS_QUOTA_CTL_ENABLE: 4237 ret = btrfs_quota_enable(fs_info); 4238 break; 4239 case BTRFS_QUOTA_CTL_DISABLE: 4240 ret = btrfs_quota_disable(fs_info); 4241 break; 4242 default: 4243 ret = -EINVAL; 4244 break; 4245 } 4246 4247 kfree(sa); 4248 up_write(&fs_info->subvol_sem); 4249 drop_write: 4250 mnt_drop_write_file(file); 4251 return ret; 4252 } 4253 4254 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4255 { 4256 struct inode *inode = file_inode(file); 4257 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4258 struct btrfs_root *root = BTRFS_I(inode)->root; 4259 struct btrfs_ioctl_qgroup_assign_args *sa; 4260 struct btrfs_trans_handle *trans; 4261 int ret; 4262 int err; 4263 4264 if (!capable(CAP_SYS_ADMIN)) 4265 return -EPERM; 4266 4267 ret = mnt_want_write_file(file); 4268 if (ret) 4269 return ret; 4270 4271 sa = memdup_user(arg, sizeof(*sa)); 4272 if (IS_ERR(sa)) { 4273 ret = PTR_ERR(sa); 4274 goto drop_write; 4275 } 4276 4277 trans = btrfs_join_transaction(root); 4278 if (IS_ERR(trans)) { 4279 ret = PTR_ERR(trans); 4280 goto out; 4281 } 4282 4283 if (sa->assign) { 4284 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4285 } else { 4286 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4287 } 4288 4289 /* update qgroup status and info */ 4290 err = btrfs_run_qgroups(trans); 4291 if (err < 0) 4292 btrfs_handle_fs_error(fs_info, err, 4293 "failed to update qgroup status and info"); 4294 err = btrfs_end_transaction(trans); 4295 if (err && !ret) 4296 ret = err; 4297 4298 out: 4299 kfree(sa); 4300 drop_write: 4301 mnt_drop_write_file(file); 4302 return ret; 4303 } 4304 4305 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4306 { 4307 struct inode *inode = file_inode(file); 4308 struct btrfs_root *root = BTRFS_I(inode)->root; 4309 struct btrfs_ioctl_qgroup_create_args *sa; 4310 struct btrfs_trans_handle *trans; 4311 int ret; 4312 int err; 4313 4314 if (!capable(CAP_SYS_ADMIN)) 4315 return -EPERM; 4316 4317 ret = mnt_want_write_file(file); 4318 if (ret) 4319 return ret; 4320 4321 sa = memdup_user(arg, sizeof(*sa)); 4322 if (IS_ERR(sa)) { 4323 ret = PTR_ERR(sa); 4324 goto drop_write; 4325 } 4326 4327 if (!sa->qgroupid) { 4328 ret = -EINVAL; 4329 goto out; 4330 } 4331 4332 trans = btrfs_join_transaction(root); 4333 if (IS_ERR(trans)) { 4334 ret = PTR_ERR(trans); 4335 goto out; 4336 } 4337 4338 if (sa->create) { 4339 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4340 } else { 4341 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4342 } 4343 4344 err = btrfs_end_transaction(trans); 4345 if (err && !ret) 4346 ret = err; 4347 4348 out: 4349 kfree(sa); 4350 drop_write: 4351 mnt_drop_write_file(file); 4352 return ret; 4353 } 4354 4355 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4356 { 4357 struct inode *inode = file_inode(file); 4358 struct btrfs_root *root = BTRFS_I(inode)->root; 4359 struct btrfs_ioctl_qgroup_limit_args *sa; 4360 struct btrfs_trans_handle *trans; 4361 int ret; 4362 int err; 4363 u64 qgroupid; 4364 4365 if (!capable(CAP_SYS_ADMIN)) 4366 return -EPERM; 4367 4368 ret = mnt_want_write_file(file); 4369 if (ret) 4370 return ret; 4371 4372 sa = memdup_user(arg, sizeof(*sa)); 4373 if (IS_ERR(sa)) { 4374 ret = PTR_ERR(sa); 4375 goto drop_write; 4376 } 4377 4378 trans = btrfs_join_transaction(root); 4379 if (IS_ERR(trans)) { 4380 ret = PTR_ERR(trans); 4381 goto out; 4382 } 4383 4384 qgroupid = sa->qgroupid; 4385 if (!qgroupid) { 4386 /* take the current subvol as qgroup */ 4387 qgroupid = root->root_key.objectid; 4388 } 4389 4390 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4391 4392 err = btrfs_end_transaction(trans); 4393 if (err && !ret) 4394 ret = err; 4395 4396 out: 4397 kfree(sa); 4398 drop_write: 4399 mnt_drop_write_file(file); 4400 return ret; 4401 } 4402 4403 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4404 { 4405 struct inode *inode = file_inode(file); 4406 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4407 struct btrfs_ioctl_quota_rescan_args *qsa; 4408 int ret; 4409 4410 if (!capable(CAP_SYS_ADMIN)) 4411 return -EPERM; 4412 4413 ret = mnt_want_write_file(file); 4414 if (ret) 4415 return ret; 4416 4417 qsa = memdup_user(arg, sizeof(*qsa)); 4418 if (IS_ERR(qsa)) { 4419 ret = PTR_ERR(qsa); 4420 goto drop_write; 4421 } 4422 4423 if (qsa->flags) { 4424 ret = -EINVAL; 4425 goto out; 4426 } 4427 4428 ret = btrfs_qgroup_rescan(fs_info); 4429 4430 out: 4431 kfree(qsa); 4432 drop_write: 4433 mnt_drop_write_file(file); 4434 return ret; 4435 } 4436 4437 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4438 void __user *arg) 4439 { 4440 struct btrfs_ioctl_quota_rescan_args *qsa; 4441 int ret = 0; 4442 4443 if (!capable(CAP_SYS_ADMIN)) 4444 return -EPERM; 4445 4446 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4447 if (!qsa) 4448 return -ENOMEM; 4449 4450 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4451 qsa->flags = 1; 4452 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4453 } 4454 4455 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4456 ret = -EFAULT; 4457 4458 kfree(qsa); 4459 return ret; 4460 } 4461 4462 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4463 void __user *arg) 4464 { 4465 if (!capable(CAP_SYS_ADMIN)) 4466 return -EPERM; 4467 4468 return btrfs_qgroup_wait_for_completion(fs_info, true); 4469 } 4470 4471 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4472 struct btrfs_ioctl_received_subvol_args *sa) 4473 { 4474 struct inode *inode = file_inode(file); 4475 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4476 struct btrfs_root *root = BTRFS_I(inode)->root; 4477 struct btrfs_root_item *root_item = &root->root_item; 4478 struct btrfs_trans_handle *trans; 4479 struct timespec64 ct = current_time(inode); 4480 int ret = 0; 4481 int received_uuid_changed; 4482 4483 if (!inode_owner_or_capable(&init_user_ns, inode)) 4484 return -EPERM; 4485 4486 ret = mnt_want_write_file(file); 4487 if (ret < 0) 4488 return ret; 4489 4490 down_write(&fs_info->subvol_sem); 4491 4492 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4493 ret = -EINVAL; 4494 goto out; 4495 } 4496 4497 if (btrfs_root_readonly(root)) { 4498 ret = -EROFS; 4499 goto out; 4500 } 4501 4502 /* 4503 * 1 - root item 4504 * 2 - uuid items (received uuid + subvol uuid) 4505 */ 4506 trans = btrfs_start_transaction(root, 3); 4507 if (IS_ERR(trans)) { 4508 ret = PTR_ERR(trans); 4509 trans = NULL; 4510 goto out; 4511 } 4512 4513 sa->rtransid = trans->transid; 4514 sa->rtime.sec = ct.tv_sec; 4515 sa->rtime.nsec = ct.tv_nsec; 4516 4517 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4518 BTRFS_UUID_SIZE); 4519 if (received_uuid_changed && 4520 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4521 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4522 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4523 root->root_key.objectid); 4524 if (ret && ret != -ENOENT) { 4525 btrfs_abort_transaction(trans, ret); 4526 btrfs_end_transaction(trans); 4527 goto out; 4528 } 4529 } 4530 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4531 btrfs_set_root_stransid(root_item, sa->stransid); 4532 btrfs_set_root_rtransid(root_item, sa->rtransid); 4533 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4534 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4535 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4536 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4537 4538 ret = btrfs_update_root(trans, fs_info->tree_root, 4539 &root->root_key, &root->root_item); 4540 if (ret < 0) { 4541 btrfs_end_transaction(trans); 4542 goto out; 4543 } 4544 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4545 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4546 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4547 root->root_key.objectid); 4548 if (ret < 0 && ret != -EEXIST) { 4549 btrfs_abort_transaction(trans, ret); 4550 btrfs_end_transaction(trans); 4551 goto out; 4552 } 4553 } 4554 ret = btrfs_commit_transaction(trans); 4555 out: 4556 up_write(&fs_info->subvol_sem); 4557 mnt_drop_write_file(file); 4558 return ret; 4559 } 4560 4561 #ifdef CONFIG_64BIT 4562 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4563 void __user *arg) 4564 { 4565 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4566 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4567 int ret = 0; 4568 4569 args32 = memdup_user(arg, sizeof(*args32)); 4570 if (IS_ERR(args32)) 4571 return PTR_ERR(args32); 4572 4573 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4574 if (!args64) { 4575 ret = -ENOMEM; 4576 goto out; 4577 } 4578 4579 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4580 args64->stransid = args32->stransid; 4581 args64->rtransid = args32->rtransid; 4582 args64->stime.sec = args32->stime.sec; 4583 args64->stime.nsec = args32->stime.nsec; 4584 args64->rtime.sec = args32->rtime.sec; 4585 args64->rtime.nsec = args32->rtime.nsec; 4586 args64->flags = args32->flags; 4587 4588 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4589 if (ret) 4590 goto out; 4591 4592 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4593 args32->stransid = args64->stransid; 4594 args32->rtransid = args64->rtransid; 4595 args32->stime.sec = args64->stime.sec; 4596 args32->stime.nsec = args64->stime.nsec; 4597 args32->rtime.sec = args64->rtime.sec; 4598 args32->rtime.nsec = args64->rtime.nsec; 4599 args32->flags = args64->flags; 4600 4601 ret = copy_to_user(arg, args32, sizeof(*args32)); 4602 if (ret) 4603 ret = -EFAULT; 4604 4605 out: 4606 kfree(args32); 4607 kfree(args64); 4608 return ret; 4609 } 4610 #endif 4611 4612 static long btrfs_ioctl_set_received_subvol(struct file *file, 4613 void __user *arg) 4614 { 4615 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4616 int ret = 0; 4617 4618 sa = memdup_user(arg, sizeof(*sa)); 4619 if (IS_ERR(sa)) 4620 return PTR_ERR(sa); 4621 4622 ret = _btrfs_ioctl_set_received_subvol(file, sa); 4623 4624 if (ret) 4625 goto out; 4626 4627 ret = copy_to_user(arg, sa, sizeof(*sa)); 4628 if (ret) 4629 ret = -EFAULT; 4630 4631 out: 4632 kfree(sa); 4633 return ret; 4634 } 4635 4636 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4637 void __user *arg) 4638 { 4639 size_t len; 4640 int ret; 4641 char label[BTRFS_LABEL_SIZE]; 4642 4643 spin_lock(&fs_info->super_lock); 4644 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4645 spin_unlock(&fs_info->super_lock); 4646 4647 len = strnlen(label, BTRFS_LABEL_SIZE); 4648 4649 if (len == BTRFS_LABEL_SIZE) { 4650 btrfs_warn(fs_info, 4651 "label is too long, return the first %zu bytes", 4652 --len); 4653 } 4654 4655 ret = copy_to_user(arg, label, len); 4656 4657 return ret ? -EFAULT : 0; 4658 } 4659 4660 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4661 { 4662 struct inode *inode = file_inode(file); 4663 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4664 struct btrfs_root *root = BTRFS_I(inode)->root; 4665 struct btrfs_super_block *super_block = fs_info->super_copy; 4666 struct btrfs_trans_handle *trans; 4667 char label[BTRFS_LABEL_SIZE]; 4668 int ret; 4669 4670 if (!capable(CAP_SYS_ADMIN)) 4671 return -EPERM; 4672 4673 if (copy_from_user(label, arg, sizeof(label))) 4674 return -EFAULT; 4675 4676 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4677 btrfs_err(fs_info, 4678 "unable to set label with more than %d bytes", 4679 BTRFS_LABEL_SIZE - 1); 4680 return -EINVAL; 4681 } 4682 4683 ret = mnt_want_write_file(file); 4684 if (ret) 4685 return ret; 4686 4687 trans = btrfs_start_transaction(root, 0); 4688 if (IS_ERR(trans)) { 4689 ret = PTR_ERR(trans); 4690 goto out_unlock; 4691 } 4692 4693 spin_lock(&fs_info->super_lock); 4694 strcpy(super_block->label, label); 4695 spin_unlock(&fs_info->super_lock); 4696 ret = btrfs_commit_transaction(trans); 4697 4698 out_unlock: 4699 mnt_drop_write_file(file); 4700 return ret; 4701 } 4702 4703 #define INIT_FEATURE_FLAGS(suffix) \ 4704 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4705 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4706 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4707 4708 int btrfs_ioctl_get_supported_features(void __user *arg) 4709 { 4710 static const struct btrfs_ioctl_feature_flags features[3] = { 4711 INIT_FEATURE_FLAGS(SUPP), 4712 INIT_FEATURE_FLAGS(SAFE_SET), 4713 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4714 }; 4715 4716 if (copy_to_user(arg, &features, sizeof(features))) 4717 return -EFAULT; 4718 4719 return 0; 4720 } 4721 4722 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4723 void __user *arg) 4724 { 4725 struct btrfs_super_block *super_block = fs_info->super_copy; 4726 struct btrfs_ioctl_feature_flags features; 4727 4728 features.compat_flags = btrfs_super_compat_flags(super_block); 4729 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4730 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4731 4732 if (copy_to_user(arg, &features, sizeof(features))) 4733 return -EFAULT; 4734 4735 return 0; 4736 } 4737 4738 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4739 enum btrfs_feature_set set, 4740 u64 change_mask, u64 flags, u64 supported_flags, 4741 u64 safe_set, u64 safe_clear) 4742 { 4743 const char *type = btrfs_feature_set_name(set); 4744 char *names; 4745 u64 disallowed, unsupported; 4746 u64 set_mask = flags & change_mask; 4747 u64 clear_mask = ~flags & change_mask; 4748 4749 unsupported = set_mask & ~supported_flags; 4750 if (unsupported) { 4751 names = btrfs_printable_features(set, unsupported); 4752 if (names) { 4753 btrfs_warn(fs_info, 4754 "this kernel does not support the %s feature bit%s", 4755 names, strchr(names, ',') ? "s" : ""); 4756 kfree(names); 4757 } else 4758 btrfs_warn(fs_info, 4759 "this kernel does not support %s bits 0x%llx", 4760 type, unsupported); 4761 return -EOPNOTSUPP; 4762 } 4763 4764 disallowed = set_mask & ~safe_set; 4765 if (disallowed) { 4766 names = btrfs_printable_features(set, disallowed); 4767 if (names) { 4768 btrfs_warn(fs_info, 4769 "can't set the %s feature bit%s while mounted", 4770 names, strchr(names, ',') ? "s" : ""); 4771 kfree(names); 4772 } else 4773 btrfs_warn(fs_info, 4774 "can't set %s bits 0x%llx while mounted", 4775 type, disallowed); 4776 return -EPERM; 4777 } 4778 4779 disallowed = clear_mask & ~safe_clear; 4780 if (disallowed) { 4781 names = btrfs_printable_features(set, disallowed); 4782 if (names) { 4783 btrfs_warn(fs_info, 4784 "can't clear the %s feature bit%s while mounted", 4785 names, strchr(names, ',') ? "s" : ""); 4786 kfree(names); 4787 } else 4788 btrfs_warn(fs_info, 4789 "can't clear %s bits 0x%llx while mounted", 4790 type, disallowed); 4791 return -EPERM; 4792 } 4793 4794 return 0; 4795 } 4796 4797 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4798 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4799 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4800 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4801 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4802 4803 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4804 { 4805 struct inode *inode = file_inode(file); 4806 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4807 struct btrfs_root *root = BTRFS_I(inode)->root; 4808 struct btrfs_super_block *super_block = fs_info->super_copy; 4809 struct btrfs_ioctl_feature_flags flags[2]; 4810 struct btrfs_trans_handle *trans; 4811 u64 newflags; 4812 int ret; 4813 4814 if (!capable(CAP_SYS_ADMIN)) 4815 return -EPERM; 4816 4817 if (copy_from_user(flags, arg, sizeof(flags))) 4818 return -EFAULT; 4819 4820 /* Nothing to do */ 4821 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4822 !flags[0].incompat_flags) 4823 return 0; 4824 4825 ret = check_feature(fs_info, flags[0].compat_flags, 4826 flags[1].compat_flags, COMPAT); 4827 if (ret) 4828 return ret; 4829 4830 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4831 flags[1].compat_ro_flags, COMPAT_RO); 4832 if (ret) 4833 return ret; 4834 4835 ret = check_feature(fs_info, flags[0].incompat_flags, 4836 flags[1].incompat_flags, INCOMPAT); 4837 if (ret) 4838 return ret; 4839 4840 ret = mnt_want_write_file(file); 4841 if (ret) 4842 return ret; 4843 4844 trans = btrfs_start_transaction(root, 0); 4845 if (IS_ERR(trans)) { 4846 ret = PTR_ERR(trans); 4847 goto out_drop_write; 4848 } 4849 4850 spin_lock(&fs_info->super_lock); 4851 newflags = btrfs_super_compat_flags(super_block); 4852 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4853 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4854 btrfs_set_super_compat_flags(super_block, newflags); 4855 4856 newflags = btrfs_super_compat_ro_flags(super_block); 4857 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4858 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4859 btrfs_set_super_compat_ro_flags(super_block, newflags); 4860 4861 newflags = btrfs_super_incompat_flags(super_block); 4862 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4863 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4864 btrfs_set_super_incompat_flags(super_block, newflags); 4865 spin_unlock(&fs_info->super_lock); 4866 4867 ret = btrfs_commit_transaction(trans); 4868 out_drop_write: 4869 mnt_drop_write_file(file); 4870 4871 return ret; 4872 } 4873 4874 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4875 { 4876 struct btrfs_ioctl_send_args *arg; 4877 int ret; 4878 4879 if (compat) { 4880 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4881 struct btrfs_ioctl_send_args_32 args32; 4882 4883 ret = copy_from_user(&args32, argp, sizeof(args32)); 4884 if (ret) 4885 return -EFAULT; 4886 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4887 if (!arg) 4888 return -ENOMEM; 4889 arg->send_fd = args32.send_fd; 4890 arg->clone_sources_count = args32.clone_sources_count; 4891 arg->clone_sources = compat_ptr(args32.clone_sources); 4892 arg->parent_root = args32.parent_root; 4893 arg->flags = args32.flags; 4894 memcpy(arg->reserved, args32.reserved, 4895 sizeof(args32.reserved)); 4896 #else 4897 return -ENOTTY; 4898 #endif 4899 } else { 4900 arg = memdup_user(argp, sizeof(*arg)); 4901 if (IS_ERR(arg)) 4902 return PTR_ERR(arg); 4903 } 4904 ret = btrfs_ioctl_send(file, arg); 4905 kfree(arg); 4906 return ret; 4907 } 4908 4909 long btrfs_ioctl(struct file *file, unsigned int 4910 cmd, unsigned long arg) 4911 { 4912 struct inode *inode = file_inode(file); 4913 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4914 struct btrfs_root *root = BTRFS_I(inode)->root; 4915 void __user *argp = (void __user *)arg; 4916 4917 switch (cmd) { 4918 case FS_IOC_GETFLAGS: 4919 return btrfs_ioctl_getflags(file, argp); 4920 case FS_IOC_SETFLAGS: 4921 return btrfs_ioctl_setflags(file, argp); 4922 case FS_IOC_GETVERSION: 4923 return btrfs_ioctl_getversion(file, argp); 4924 case FS_IOC_GETFSLABEL: 4925 return btrfs_ioctl_get_fslabel(fs_info, argp); 4926 case FS_IOC_SETFSLABEL: 4927 return btrfs_ioctl_set_fslabel(file, argp); 4928 case FITRIM: 4929 return btrfs_ioctl_fitrim(fs_info, argp); 4930 case BTRFS_IOC_SNAP_CREATE: 4931 return btrfs_ioctl_snap_create(file, argp, 0); 4932 case BTRFS_IOC_SNAP_CREATE_V2: 4933 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4934 case BTRFS_IOC_SUBVOL_CREATE: 4935 return btrfs_ioctl_snap_create(file, argp, 1); 4936 case BTRFS_IOC_SUBVOL_CREATE_V2: 4937 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4938 case BTRFS_IOC_SNAP_DESTROY: 4939 return btrfs_ioctl_snap_destroy(file, argp, false); 4940 case BTRFS_IOC_SNAP_DESTROY_V2: 4941 return btrfs_ioctl_snap_destroy(file, argp, true); 4942 case BTRFS_IOC_SUBVOL_GETFLAGS: 4943 return btrfs_ioctl_subvol_getflags(file, argp); 4944 case BTRFS_IOC_SUBVOL_SETFLAGS: 4945 return btrfs_ioctl_subvol_setflags(file, argp); 4946 case BTRFS_IOC_DEFAULT_SUBVOL: 4947 return btrfs_ioctl_default_subvol(file, argp); 4948 case BTRFS_IOC_DEFRAG: 4949 return btrfs_ioctl_defrag(file, NULL); 4950 case BTRFS_IOC_DEFRAG_RANGE: 4951 return btrfs_ioctl_defrag(file, argp); 4952 case BTRFS_IOC_RESIZE: 4953 return btrfs_ioctl_resize(file, argp); 4954 case BTRFS_IOC_ADD_DEV: 4955 return btrfs_ioctl_add_dev(fs_info, argp); 4956 case BTRFS_IOC_RM_DEV: 4957 return btrfs_ioctl_rm_dev(file, argp); 4958 case BTRFS_IOC_RM_DEV_V2: 4959 return btrfs_ioctl_rm_dev_v2(file, argp); 4960 case BTRFS_IOC_FS_INFO: 4961 return btrfs_ioctl_fs_info(fs_info, argp); 4962 case BTRFS_IOC_DEV_INFO: 4963 return btrfs_ioctl_dev_info(fs_info, argp); 4964 case BTRFS_IOC_BALANCE: 4965 return btrfs_ioctl_balance(file, NULL); 4966 case BTRFS_IOC_TREE_SEARCH: 4967 return btrfs_ioctl_tree_search(file, argp); 4968 case BTRFS_IOC_TREE_SEARCH_V2: 4969 return btrfs_ioctl_tree_search_v2(file, argp); 4970 case BTRFS_IOC_INO_LOOKUP: 4971 return btrfs_ioctl_ino_lookup(file, argp); 4972 case BTRFS_IOC_INO_PATHS: 4973 return btrfs_ioctl_ino_to_path(root, argp); 4974 case BTRFS_IOC_LOGICAL_INO: 4975 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4976 case BTRFS_IOC_LOGICAL_INO_V2: 4977 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4978 case BTRFS_IOC_SPACE_INFO: 4979 return btrfs_ioctl_space_info(fs_info, argp); 4980 case BTRFS_IOC_SYNC: { 4981 int ret; 4982 4983 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4984 if (ret) 4985 return ret; 4986 ret = btrfs_sync_fs(inode->i_sb, 1); 4987 /* 4988 * The transaction thread may want to do more work, 4989 * namely it pokes the cleaner kthread that will start 4990 * processing uncleaned subvols. 4991 */ 4992 wake_up_process(fs_info->transaction_kthread); 4993 return ret; 4994 } 4995 case BTRFS_IOC_START_SYNC: 4996 return btrfs_ioctl_start_sync(root, argp); 4997 case BTRFS_IOC_WAIT_SYNC: 4998 return btrfs_ioctl_wait_sync(fs_info, argp); 4999 case BTRFS_IOC_SCRUB: 5000 return btrfs_ioctl_scrub(file, argp); 5001 case BTRFS_IOC_SCRUB_CANCEL: 5002 return btrfs_ioctl_scrub_cancel(fs_info); 5003 case BTRFS_IOC_SCRUB_PROGRESS: 5004 return btrfs_ioctl_scrub_progress(fs_info, argp); 5005 case BTRFS_IOC_BALANCE_V2: 5006 return btrfs_ioctl_balance(file, argp); 5007 case BTRFS_IOC_BALANCE_CTL: 5008 return btrfs_ioctl_balance_ctl(fs_info, arg); 5009 case BTRFS_IOC_BALANCE_PROGRESS: 5010 return btrfs_ioctl_balance_progress(fs_info, argp); 5011 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5012 return btrfs_ioctl_set_received_subvol(file, argp); 5013 #ifdef CONFIG_64BIT 5014 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5015 return btrfs_ioctl_set_received_subvol_32(file, argp); 5016 #endif 5017 case BTRFS_IOC_SEND: 5018 return _btrfs_ioctl_send(file, argp, false); 5019 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5020 case BTRFS_IOC_SEND_32: 5021 return _btrfs_ioctl_send(file, argp, true); 5022 #endif 5023 case BTRFS_IOC_GET_DEV_STATS: 5024 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5025 case BTRFS_IOC_QUOTA_CTL: 5026 return btrfs_ioctl_quota_ctl(file, argp); 5027 case BTRFS_IOC_QGROUP_ASSIGN: 5028 return btrfs_ioctl_qgroup_assign(file, argp); 5029 case BTRFS_IOC_QGROUP_CREATE: 5030 return btrfs_ioctl_qgroup_create(file, argp); 5031 case BTRFS_IOC_QGROUP_LIMIT: 5032 return btrfs_ioctl_qgroup_limit(file, argp); 5033 case BTRFS_IOC_QUOTA_RESCAN: 5034 return btrfs_ioctl_quota_rescan(file, argp); 5035 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5036 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5037 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5038 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5039 case BTRFS_IOC_DEV_REPLACE: 5040 return btrfs_ioctl_dev_replace(fs_info, argp); 5041 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5042 return btrfs_ioctl_get_supported_features(argp); 5043 case BTRFS_IOC_GET_FEATURES: 5044 return btrfs_ioctl_get_features(fs_info, argp); 5045 case BTRFS_IOC_SET_FEATURES: 5046 return btrfs_ioctl_set_features(file, argp); 5047 case FS_IOC_FSGETXATTR: 5048 return btrfs_ioctl_fsgetxattr(file, argp); 5049 case FS_IOC_FSSETXATTR: 5050 return btrfs_ioctl_fssetxattr(file, argp); 5051 case BTRFS_IOC_GET_SUBVOL_INFO: 5052 return btrfs_ioctl_get_subvol_info(file, argp); 5053 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5054 return btrfs_ioctl_get_subvol_rootref(file, argp); 5055 case BTRFS_IOC_INO_LOOKUP_USER: 5056 return btrfs_ioctl_ino_lookup_user(file, argp); 5057 } 5058 5059 return -ENOTTY; 5060 } 5061 5062 #ifdef CONFIG_COMPAT 5063 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5064 { 5065 /* 5066 * These all access 32-bit values anyway so no further 5067 * handling is necessary. 5068 */ 5069 switch (cmd) { 5070 case FS_IOC32_GETFLAGS: 5071 cmd = FS_IOC_GETFLAGS; 5072 break; 5073 case FS_IOC32_SETFLAGS: 5074 cmd = FS_IOC_SETFLAGS; 5075 break; 5076 case FS_IOC32_GETVERSION: 5077 cmd = FS_IOC_GETVERSION; 5078 break; 5079 } 5080 5081 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5082 } 5083 #endif 5084