xref: /openbmc/linux/fs/btrfs/ioctl.c (revision b7019ac5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "btrfs_inode.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "locking.h"
36 #include "inode-map.h"
37 #include "backref.h"
38 #include "rcu-string.h"
39 #include "send.h"
40 #include "dev-replace.h"
41 #include "props.h"
42 #include "sysfs.h"
43 #include "qgroup.h"
44 #include "tree-log.h"
45 #include "compression.h"
46 
47 #ifdef CONFIG_64BIT
48 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
49  * structures are incorrect, as the timespec structure from userspace
50  * is 4 bytes too small. We define these alternatives here to teach
51  * the kernel about the 32-bit struct packing.
52  */
53 struct btrfs_ioctl_timespec_32 {
54 	__u64 sec;
55 	__u32 nsec;
56 } __attribute__ ((__packed__));
57 
58 struct btrfs_ioctl_received_subvol_args_32 {
59 	char	uuid[BTRFS_UUID_SIZE];	/* in */
60 	__u64	stransid;		/* in */
61 	__u64	rtransid;		/* out */
62 	struct btrfs_ioctl_timespec_32 stime; /* in */
63 	struct btrfs_ioctl_timespec_32 rtime; /* out */
64 	__u64	flags;			/* in */
65 	__u64	reserved[16];		/* in */
66 } __attribute__ ((__packed__));
67 
68 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
69 				struct btrfs_ioctl_received_subvol_args_32)
70 #endif
71 
72 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
73 struct btrfs_ioctl_send_args_32 {
74 	__s64 send_fd;			/* in */
75 	__u64 clone_sources_count;	/* in */
76 	compat_uptr_t clone_sources;	/* in */
77 	__u64 parent_root;		/* in */
78 	__u64 flags;			/* in */
79 	__u64 reserved[4];		/* in */
80 } __attribute__ ((__packed__));
81 
82 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
83 			       struct btrfs_ioctl_send_args_32)
84 #endif
85 
86 static int btrfs_clone(struct inode *src, struct inode *inode,
87 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
88 		       int no_time_update);
89 
90 /* Mask out flags that are inappropriate for the given type of inode. */
91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 		unsigned int flags)
93 {
94 	if (S_ISDIR(inode->i_mode))
95 		return flags;
96 	else if (S_ISREG(inode->i_mode))
97 		return flags & ~FS_DIRSYNC_FL;
98 	else
99 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100 }
101 
102 /*
103  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104  * ioctl.
105  */
106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if (flags & BTRFS_INODE_NOCOMPRESS)
126 		iflags |= FS_NOCOMP_FL;
127 	else if (flags & BTRFS_INODE_COMPRESS)
128 		iflags |= FS_COMPR_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
137 {
138 	struct btrfs_inode *binode = BTRFS_I(inode);
139 	unsigned int new_fl = 0;
140 
141 	if (binode->flags & BTRFS_INODE_SYNC)
142 		new_fl |= S_SYNC;
143 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 		new_fl |= S_IMMUTABLE;
145 	if (binode->flags & BTRFS_INODE_APPEND)
146 		new_fl |= S_APPEND;
147 	if (binode->flags & BTRFS_INODE_NOATIME)
148 		new_fl |= S_NOATIME;
149 	if (binode->flags & BTRFS_INODE_DIRSYNC)
150 		new_fl |= S_DIRSYNC;
151 
152 	set_mask_bits(&inode->i_flags,
153 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 		      new_fl);
155 }
156 
157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
158 {
159 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
160 	unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
161 
162 	if (copy_to_user(arg, &flags, sizeof(flags)))
163 		return -EFAULT;
164 	return 0;
165 }
166 
167 /* Check if @flags are a supported and valid set of FS_*_FL flags */
168 static int check_fsflags(unsigned int flags)
169 {
170 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
171 		      FS_NOATIME_FL | FS_NODUMP_FL | \
172 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
173 		      FS_NOCOMP_FL | FS_COMPR_FL |
174 		      FS_NOCOW_FL))
175 		return -EOPNOTSUPP;
176 
177 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
178 		return -EINVAL;
179 
180 	return 0;
181 }
182 
183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
184 {
185 	struct inode *inode = file_inode(file);
186 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
187 	struct btrfs_inode *binode = BTRFS_I(inode);
188 	struct btrfs_root *root = binode->root;
189 	struct btrfs_trans_handle *trans;
190 	unsigned int fsflags;
191 	int ret;
192 	const char *comp = NULL;
193 	u32 binode_flags = binode->flags;
194 
195 	if (!inode_owner_or_capable(inode))
196 		return -EPERM;
197 
198 	if (btrfs_root_readonly(root))
199 		return -EROFS;
200 
201 	if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
202 		return -EFAULT;
203 
204 	ret = check_fsflags(fsflags);
205 	if (ret)
206 		return ret;
207 
208 	ret = mnt_want_write_file(file);
209 	if (ret)
210 		return ret;
211 
212 	inode_lock(inode);
213 
214 	fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
215 	if ((fsflags ^ btrfs_inode_flags_to_fsflags(binode->flags)) &
216 	    (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
217 		if (!capable(CAP_LINUX_IMMUTABLE)) {
218 			ret = -EPERM;
219 			goto out_unlock;
220 		}
221 	}
222 
223 	if (fsflags & FS_SYNC_FL)
224 		binode_flags |= BTRFS_INODE_SYNC;
225 	else
226 		binode_flags &= ~BTRFS_INODE_SYNC;
227 	if (fsflags & FS_IMMUTABLE_FL)
228 		binode_flags |= BTRFS_INODE_IMMUTABLE;
229 	else
230 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
231 	if (fsflags & FS_APPEND_FL)
232 		binode_flags |= BTRFS_INODE_APPEND;
233 	else
234 		binode_flags &= ~BTRFS_INODE_APPEND;
235 	if (fsflags & FS_NODUMP_FL)
236 		binode_flags |= BTRFS_INODE_NODUMP;
237 	else
238 		binode_flags &= ~BTRFS_INODE_NODUMP;
239 	if (fsflags & FS_NOATIME_FL)
240 		binode_flags |= BTRFS_INODE_NOATIME;
241 	else
242 		binode_flags &= ~BTRFS_INODE_NOATIME;
243 	if (fsflags & FS_DIRSYNC_FL)
244 		binode_flags |= BTRFS_INODE_DIRSYNC;
245 	else
246 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
247 	if (fsflags & FS_NOCOW_FL) {
248 		if (S_ISREG(inode->i_mode)) {
249 			/*
250 			 * It's safe to turn csums off here, no extents exist.
251 			 * Otherwise we want the flag to reflect the real COW
252 			 * status of the file and will not set it.
253 			 */
254 			if (inode->i_size == 0)
255 				binode_flags |= BTRFS_INODE_NODATACOW |
256 						BTRFS_INODE_NODATASUM;
257 		} else {
258 			binode_flags |= BTRFS_INODE_NODATACOW;
259 		}
260 	} else {
261 		/*
262 		 * Revert back under same assumptions as above
263 		 */
264 		if (S_ISREG(inode->i_mode)) {
265 			if (inode->i_size == 0)
266 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
267 						  BTRFS_INODE_NODATASUM);
268 		} else {
269 			binode_flags &= ~BTRFS_INODE_NODATACOW;
270 		}
271 	}
272 
273 	/*
274 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
275 	 * flag may be changed automatically if compression code won't make
276 	 * things smaller.
277 	 */
278 	if (fsflags & FS_NOCOMP_FL) {
279 		binode_flags &= ~BTRFS_INODE_COMPRESS;
280 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
281 	} else if (fsflags & FS_COMPR_FL) {
282 
283 		if (IS_SWAPFILE(inode)) {
284 			ret = -ETXTBSY;
285 			goto out_unlock;
286 		}
287 
288 		binode_flags |= BTRFS_INODE_COMPRESS;
289 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
290 
291 		comp = btrfs_compress_type2str(fs_info->compress_type);
292 		if (!comp || comp[0] == 0)
293 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
294 	} else {
295 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
296 	}
297 
298 	/*
299 	 * 1 for inode item
300 	 * 2 for properties
301 	 */
302 	trans = btrfs_start_transaction(root, 3);
303 	if (IS_ERR(trans)) {
304 		ret = PTR_ERR(trans);
305 		goto out_unlock;
306 	}
307 
308 	if (comp) {
309 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
310 				     strlen(comp), 0);
311 		if (ret) {
312 			btrfs_abort_transaction(trans, ret);
313 			goto out_end_trans;
314 		}
315 		set_bit(BTRFS_INODE_COPY_EVERYTHING,
316 			&BTRFS_I(inode)->runtime_flags);
317 	} else {
318 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
319 				     0, 0);
320 		if (ret && ret != -ENODATA) {
321 			btrfs_abort_transaction(trans, ret);
322 			goto out_end_trans;
323 		}
324 	}
325 
326 	binode->flags = binode_flags;
327 	btrfs_sync_inode_flags_to_i_flags(inode);
328 	inode_inc_iversion(inode);
329 	inode->i_ctime = current_time(inode);
330 	ret = btrfs_update_inode(trans, root, inode);
331 
332  out_end_trans:
333 	btrfs_end_transaction(trans);
334  out_unlock:
335 	inode_unlock(inode);
336 	mnt_drop_write_file(file);
337 	return ret;
338 }
339 
340 /*
341  * Translate btrfs internal inode flags to xflags as expected by the
342  * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
343  * silently dropped.
344  */
345 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
346 {
347 	unsigned int xflags = 0;
348 
349 	if (flags & BTRFS_INODE_APPEND)
350 		xflags |= FS_XFLAG_APPEND;
351 	if (flags & BTRFS_INODE_IMMUTABLE)
352 		xflags |= FS_XFLAG_IMMUTABLE;
353 	if (flags & BTRFS_INODE_NOATIME)
354 		xflags |= FS_XFLAG_NOATIME;
355 	if (flags & BTRFS_INODE_NODUMP)
356 		xflags |= FS_XFLAG_NODUMP;
357 	if (flags & BTRFS_INODE_SYNC)
358 		xflags |= FS_XFLAG_SYNC;
359 
360 	return xflags;
361 }
362 
363 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
364 static int check_xflags(unsigned int flags)
365 {
366 	if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
367 		      FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
368 		return -EOPNOTSUPP;
369 	return 0;
370 }
371 
372 /*
373  * Set the xflags from the internal inode flags. The remaining items of fsxattr
374  * are zeroed.
375  */
376 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
377 {
378 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
379 	struct fsxattr fa;
380 
381 	memset(&fa, 0, sizeof(fa));
382 	fa.fsx_xflags = btrfs_inode_flags_to_xflags(binode->flags);
383 
384 	if (copy_to_user(arg, &fa, sizeof(fa)))
385 		return -EFAULT;
386 
387 	return 0;
388 }
389 
390 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
391 {
392 	struct inode *inode = file_inode(file);
393 	struct btrfs_inode *binode = BTRFS_I(inode);
394 	struct btrfs_root *root = binode->root;
395 	struct btrfs_trans_handle *trans;
396 	struct fsxattr fa;
397 	unsigned old_flags;
398 	unsigned old_i_flags;
399 	int ret = 0;
400 
401 	if (!inode_owner_or_capable(inode))
402 		return -EPERM;
403 
404 	if (btrfs_root_readonly(root))
405 		return -EROFS;
406 
407 	memset(&fa, 0, sizeof(fa));
408 	if (copy_from_user(&fa, arg, sizeof(fa)))
409 		return -EFAULT;
410 
411 	ret = check_xflags(fa.fsx_xflags);
412 	if (ret)
413 		return ret;
414 
415 	if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
416 		return -EOPNOTSUPP;
417 
418 	ret = mnt_want_write_file(file);
419 	if (ret)
420 		return ret;
421 
422 	inode_lock(inode);
423 
424 	old_flags = binode->flags;
425 	old_i_flags = inode->i_flags;
426 
427 	/* We need the capabilities to change append-only or immutable inode */
428 	if (((old_flags & (BTRFS_INODE_APPEND | BTRFS_INODE_IMMUTABLE)) ||
429 	     (fa.fsx_xflags & (FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE))) &&
430 	    !capable(CAP_LINUX_IMMUTABLE)) {
431 		ret = -EPERM;
432 		goto out_unlock;
433 	}
434 
435 	if (fa.fsx_xflags & FS_XFLAG_SYNC)
436 		binode->flags |= BTRFS_INODE_SYNC;
437 	else
438 		binode->flags &= ~BTRFS_INODE_SYNC;
439 	if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
440 		binode->flags |= BTRFS_INODE_IMMUTABLE;
441 	else
442 		binode->flags &= ~BTRFS_INODE_IMMUTABLE;
443 	if (fa.fsx_xflags & FS_XFLAG_APPEND)
444 		binode->flags |= BTRFS_INODE_APPEND;
445 	else
446 		binode->flags &= ~BTRFS_INODE_APPEND;
447 	if (fa.fsx_xflags & FS_XFLAG_NODUMP)
448 		binode->flags |= BTRFS_INODE_NODUMP;
449 	else
450 		binode->flags &= ~BTRFS_INODE_NODUMP;
451 	if (fa.fsx_xflags & FS_XFLAG_NOATIME)
452 		binode->flags |= BTRFS_INODE_NOATIME;
453 	else
454 		binode->flags &= ~BTRFS_INODE_NOATIME;
455 
456 	/* 1 item for the inode */
457 	trans = btrfs_start_transaction(root, 1);
458 	if (IS_ERR(trans)) {
459 		ret = PTR_ERR(trans);
460 		goto out_unlock;
461 	}
462 
463 	btrfs_sync_inode_flags_to_i_flags(inode);
464 	inode_inc_iversion(inode);
465 	inode->i_ctime = current_time(inode);
466 	ret = btrfs_update_inode(trans, root, inode);
467 
468 	btrfs_end_transaction(trans);
469 
470 out_unlock:
471 	if (ret) {
472 		binode->flags = old_flags;
473 		inode->i_flags = old_i_flags;
474 	}
475 
476 	inode_unlock(inode);
477 	mnt_drop_write_file(file);
478 
479 	return ret;
480 }
481 
482 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
483 {
484 	struct inode *inode = file_inode(file);
485 
486 	return put_user(inode->i_generation, arg);
487 }
488 
489 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
490 {
491 	struct inode *inode = file_inode(file);
492 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
493 	struct btrfs_device *device;
494 	struct request_queue *q;
495 	struct fstrim_range range;
496 	u64 minlen = ULLONG_MAX;
497 	u64 num_devices = 0;
498 	int ret;
499 
500 	if (!capable(CAP_SYS_ADMIN))
501 		return -EPERM;
502 
503 	/*
504 	 * If the fs is mounted with nologreplay, which requires it to be
505 	 * mounted in RO mode as well, we can not allow discard on free space
506 	 * inside block groups, because log trees refer to extents that are not
507 	 * pinned in a block group's free space cache (pinning the extents is
508 	 * precisely the first phase of replaying a log tree).
509 	 */
510 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
511 		return -EROFS;
512 
513 	rcu_read_lock();
514 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
515 				dev_list) {
516 		if (!device->bdev)
517 			continue;
518 		q = bdev_get_queue(device->bdev);
519 		if (blk_queue_discard(q)) {
520 			num_devices++;
521 			minlen = min_t(u64, q->limits.discard_granularity,
522 				     minlen);
523 		}
524 	}
525 	rcu_read_unlock();
526 
527 	if (!num_devices)
528 		return -EOPNOTSUPP;
529 	if (copy_from_user(&range, arg, sizeof(range)))
530 		return -EFAULT;
531 
532 	/*
533 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
534 	 * block group is in the logical address space, which can be any
535 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
536 	 */
537 	if (range.len < fs_info->sb->s_blocksize)
538 		return -EINVAL;
539 
540 	range.minlen = max(range.minlen, minlen);
541 	ret = btrfs_trim_fs(fs_info, &range);
542 	if (ret < 0)
543 		return ret;
544 
545 	if (copy_to_user(arg, &range, sizeof(range)))
546 		return -EFAULT;
547 
548 	return 0;
549 }
550 
551 int btrfs_is_empty_uuid(u8 *uuid)
552 {
553 	int i;
554 
555 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
556 		if (uuid[i])
557 			return 0;
558 	}
559 	return 1;
560 }
561 
562 static noinline int create_subvol(struct inode *dir,
563 				  struct dentry *dentry,
564 				  const char *name, int namelen,
565 				  u64 *async_transid,
566 				  struct btrfs_qgroup_inherit *inherit)
567 {
568 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
569 	struct btrfs_trans_handle *trans;
570 	struct btrfs_key key;
571 	struct btrfs_root_item *root_item;
572 	struct btrfs_inode_item *inode_item;
573 	struct extent_buffer *leaf;
574 	struct btrfs_root *root = BTRFS_I(dir)->root;
575 	struct btrfs_root *new_root;
576 	struct btrfs_block_rsv block_rsv;
577 	struct timespec64 cur_time = current_time(dir);
578 	struct inode *inode;
579 	int ret;
580 	int err;
581 	u64 objectid;
582 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
583 	u64 index = 0;
584 	uuid_le new_uuid;
585 
586 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
587 	if (!root_item)
588 		return -ENOMEM;
589 
590 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
591 	if (ret)
592 		goto fail_free;
593 
594 	/*
595 	 * Don't create subvolume whose level is not zero. Or qgroup will be
596 	 * screwed up since it assumes subvolume qgroup's level to be 0.
597 	 */
598 	if (btrfs_qgroup_level(objectid)) {
599 		ret = -ENOSPC;
600 		goto fail_free;
601 	}
602 
603 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
604 	/*
605 	 * The same as the snapshot creation, please see the comment
606 	 * of create_snapshot().
607 	 */
608 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
609 	if (ret)
610 		goto fail_free;
611 
612 	trans = btrfs_start_transaction(root, 0);
613 	if (IS_ERR(trans)) {
614 		ret = PTR_ERR(trans);
615 		btrfs_subvolume_release_metadata(fs_info, &block_rsv);
616 		goto fail_free;
617 	}
618 	trans->block_rsv = &block_rsv;
619 	trans->bytes_reserved = block_rsv.size;
620 
621 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
622 	if (ret)
623 		goto fail;
624 
625 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
626 	if (IS_ERR(leaf)) {
627 		ret = PTR_ERR(leaf);
628 		goto fail;
629 	}
630 
631 	btrfs_mark_buffer_dirty(leaf);
632 
633 	inode_item = &root_item->inode;
634 	btrfs_set_stack_inode_generation(inode_item, 1);
635 	btrfs_set_stack_inode_size(inode_item, 3);
636 	btrfs_set_stack_inode_nlink(inode_item, 1);
637 	btrfs_set_stack_inode_nbytes(inode_item,
638 				     fs_info->nodesize);
639 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
640 
641 	btrfs_set_root_flags(root_item, 0);
642 	btrfs_set_root_limit(root_item, 0);
643 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
644 
645 	btrfs_set_root_bytenr(root_item, leaf->start);
646 	btrfs_set_root_generation(root_item, trans->transid);
647 	btrfs_set_root_level(root_item, 0);
648 	btrfs_set_root_refs(root_item, 1);
649 	btrfs_set_root_used(root_item, leaf->len);
650 	btrfs_set_root_last_snapshot(root_item, 0);
651 
652 	btrfs_set_root_generation_v2(root_item,
653 			btrfs_root_generation(root_item));
654 	uuid_le_gen(&new_uuid);
655 	memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
656 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
657 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
658 	root_item->ctime = root_item->otime;
659 	btrfs_set_root_ctransid(root_item, trans->transid);
660 	btrfs_set_root_otransid(root_item, trans->transid);
661 
662 	btrfs_tree_unlock(leaf);
663 	free_extent_buffer(leaf);
664 	leaf = NULL;
665 
666 	btrfs_set_root_dirid(root_item, new_dirid);
667 
668 	key.objectid = objectid;
669 	key.offset = 0;
670 	key.type = BTRFS_ROOT_ITEM_KEY;
671 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
672 				root_item);
673 	if (ret)
674 		goto fail;
675 
676 	key.offset = (u64)-1;
677 	new_root = btrfs_read_fs_root_no_name(fs_info, &key);
678 	if (IS_ERR(new_root)) {
679 		ret = PTR_ERR(new_root);
680 		btrfs_abort_transaction(trans, ret);
681 		goto fail;
682 	}
683 
684 	btrfs_record_root_in_trans(trans, new_root);
685 
686 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
687 	if (ret) {
688 		/* We potentially lose an unused inode item here */
689 		btrfs_abort_transaction(trans, ret);
690 		goto fail;
691 	}
692 
693 	mutex_lock(&new_root->objectid_mutex);
694 	new_root->highest_objectid = new_dirid;
695 	mutex_unlock(&new_root->objectid_mutex);
696 
697 	/*
698 	 * insert the directory item
699 	 */
700 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
701 	if (ret) {
702 		btrfs_abort_transaction(trans, ret);
703 		goto fail;
704 	}
705 
706 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
707 				    BTRFS_FT_DIR, index);
708 	if (ret) {
709 		btrfs_abort_transaction(trans, ret);
710 		goto fail;
711 	}
712 
713 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
714 	ret = btrfs_update_inode(trans, root, dir);
715 	BUG_ON(ret);
716 
717 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
718 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
719 	BUG_ON(ret);
720 
721 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
722 				  BTRFS_UUID_KEY_SUBVOL, objectid);
723 	if (ret)
724 		btrfs_abort_transaction(trans, ret);
725 
726 fail:
727 	kfree(root_item);
728 	trans->block_rsv = NULL;
729 	trans->bytes_reserved = 0;
730 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
731 
732 	if (async_transid) {
733 		*async_transid = trans->transid;
734 		err = btrfs_commit_transaction_async(trans, 1);
735 		if (err)
736 			err = btrfs_commit_transaction(trans);
737 	} else {
738 		err = btrfs_commit_transaction(trans);
739 	}
740 	if (err && !ret)
741 		ret = err;
742 
743 	if (!ret) {
744 		inode = btrfs_lookup_dentry(dir, dentry);
745 		if (IS_ERR(inode))
746 			return PTR_ERR(inode);
747 		d_instantiate(dentry, inode);
748 	}
749 	return ret;
750 
751 fail_free:
752 	kfree(root_item);
753 	return ret;
754 }
755 
756 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
757 			   struct dentry *dentry,
758 			   u64 *async_transid, bool readonly,
759 			   struct btrfs_qgroup_inherit *inherit)
760 {
761 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
762 	struct inode *inode;
763 	struct btrfs_pending_snapshot *pending_snapshot;
764 	struct btrfs_trans_handle *trans;
765 	int ret;
766 	bool snapshot_force_cow = false;
767 
768 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
769 		return -EINVAL;
770 
771 	if (atomic_read(&root->nr_swapfiles)) {
772 		btrfs_warn(fs_info,
773 			   "cannot snapshot subvolume with active swapfile");
774 		return -ETXTBSY;
775 	}
776 
777 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
778 	if (!pending_snapshot)
779 		return -ENOMEM;
780 
781 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
782 			GFP_KERNEL);
783 	pending_snapshot->path = btrfs_alloc_path();
784 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
785 		ret = -ENOMEM;
786 		goto free_pending;
787 	}
788 
789 	/*
790 	 * Force new buffered writes to reserve space even when NOCOW is
791 	 * possible. This is to avoid later writeback (running dealloc) to
792 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
793 	 */
794 	atomic_inc(&root->will_be_snapshotted);
795 	smp_mb__after_atomic();
796 	/* wait for no snapshot writes */
797 	wait_event(root->subv_writers->wait,
798 		   percpu_counter_sum(&root->subv_writers->counter) == 0);
799 
800 	ret = btrfs_start_delalloc_snapshot(root);
801 	if (ret)
802 		goto dec_and_free;
803 
804 	/*
805 	 * All previous writes have started writeback in NOCOW mode, so now
806 	 * we force future writes to fallback to COW mode during snapshot
807 	 * creation.
808 	 */
809 	atomic_inc(&root->snapshot_force_cow);
810 	snapshot_force_cow = true;
811 
812 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
813 
814 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
815 			     BTRFS_BLOCK_RSV_TEMP);
816 	/*
817 	 * 1 - parent dir inode
818 	 * 2 - dir entries
819 	 * 1 - root item
820 	 * 2 - root ref/backref
821 	 * 1 - root of snapshot
822 	 * 1 - UUID item
823 	 */
824 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
825 					&pending_snapshot->block_rsv, 8,
826 					false);
827 	if (ret)
828 		goto dec_and_free;
829 
830 	pending_snapshot->dentry = dentry;
831 	pending_snapshot->root = root;
832 	pending_snapshot->readonly = readonly;
833 	pending_snapshot->dir = dir;
834 	pending_snapshot->inherit = inherit;
835 
836 	trans = btrfs_start_transaction(root, 0);
837 	if (IS_ERR(trans)) {
838 		ret = PTR_ERR(trans);
839 		goto fail;
840 	}
841 
842 	spin_lock(&fs_info->trans_lock);
843 	list_add(&pending_snapshot->list,
844 		 &trans->transaction->pending_snapshots);
845 	spin_unlock(&fs_info->trans_lock);
846 	if (async_transid) {
847 		*async_transid = trans->transid;
848 		ret = btrfs_commit_transaction_async(trans, 1);
849 		if (ret)
850 			ret = btrfs_commit_transaction(trans);
851 	} else {
852 		ret = btrfs_commit_transaction(trans);
853 	}
854 	if (ret)
855 		goto fail;
856 
857 	ret = pending_snapshot->error;
858 	if (ret)
859 		goto fail;
860 
861 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
862 	if (ret)
863 		goto fail;
864 
865 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
866 	if (IS_ERR(inode)) {
867 		ret = PTR_ERR(inode);
868 		goto fail;
869 	}
870 
871 	d_instantiate(dentry, inode);
872 	ret = 0;
873 fail:
874 	btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
875 dec_and_free:
876 	if (snapshot_force_cow)
877 		atomic_dec(&root->snapshot_force_cow);
878 	if (atomic_dec_and_test(&root->will_be_snapshotted))
879 		wake_up_var(&root->will_be_snapshotted);
880 free_pending:
881 	kfree(pending_snapshot->root_item);
882 	btrfs_free_path(pending_snapshot->path);
883 	kfree(pending_snapshot);
884 
885 	return ret;
886 }
887 
888 /*  copy of may_delete in fs/namei.c()
889  *	Check whether we can remove a link victim from directory dir, check
890  *  whether the type of victim is right.
891  *  1. We can't do it if dir is read-only (done in permission())
892  *  2. We should have write and exec permissions on dir
893  *  3. We can't remove anything from append-only dir
894  *  4. We can't do anything with immutable dir (done in permission())
895  *  5. If the sticky bit on dir is set we should either
896  *	a. be owner of dir, or
897  *	b. be owner of victim, or
898  *	c. have CAP_FOWNER capability
899  *  6. If the victim is append-only or immutable we can't do anything with
900  *     links pointing to it.
901  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
902  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
903  *  9. We can't remove a root or mountpoint.
904  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
905  *     nfs_async_unlink().
906  */
907 
908 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
909 {
910 	int error;
911 
912 	if (d_really_is_negative(victim))
913 		return -ENOENT;
914 
915 	BUG_ON(d_inode(victim->d_parent) != dir);
916 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
917 
918 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
919 	if (error)
920 		return error;
921 	if (IS_APPEND(dir))
922 		return -EPERM;
923 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
924 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
925 		return -EPERM;
926 	if (isdir) {
927 		if (!d_is_dir(victim))
928 			return -ENOTDIR;
929 		if (IS_ROOT(victim))
930 			return -EBUSY;
931 	} else if (d_is_dir(victim))
932 		return -EISDIR;
933 	if (IS_DEADDIR(dir))
934 		return -ENOENT;
935 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
936 		return -EBUSY;
937 	return 0;
938 }
939 
940 /* copy of may_create in fs/namei.c() */
941 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
942 {
943 	if (d_really_is_positive(child))
944 		return -EEXIST;
945 	if (IS_DEADDIR(dir))
946 		return -ENOENT;
947 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
948 }
949 
950 /*
951  * Create a new subvolume below @parent.  This is largely modeled after
952  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
953  * inside this filesystem so it's quite a bit simpler.
954  */
955 static noinline int btrfs_mksubvol(const struct path *parent,
956 				   const char *name, int namelen,
957 				   struct btrfs_root *snap_src,
958 				   u64 *async_transid, bool readonly,
959 				   struct btrfs_qgroup_inherit *inherit)
960 {
961 	struct inode *dir = d_inode(parent->dentry);
962 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
963 	struct dentry *dentry;
964 	int error;
965 
966 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
967 	if (error == -EINTR)
968 		return error;
969 
970 	dentry = lookup_one_len(name, parent->dentry, namelen);
971 	error = PTR_ERR(dentry);
972 	if (IS_ERR(dentry))
973 		goto out_unlock;
974 
975 	error = btrfs_may_create(dir, dentry);
976 	if (error)
977 		goto out_dput;
978 
979 	/*
980 	 * even if this name doesn't exist, we may get hash collisions.
981 	 * check for them now when we can safely fail
982 	 */
983 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
984 					       dir->i_ino, name,
985 					       namelen);
986 	if (error)
987 		goto out_dput;
988 
989 	down_read(&fs_info->subvol_sem);
990 
991 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
992 		goto out_up_read;
993 
994 	if (snap_src) {
995 		error = create_snapshot(snap_src, dir, dentry,
996 					async_transid, readonly, inherit);
997 	} else {
998 		error = create_subvol(dir, dentry, name, namelen,
999 				      async_transid, inherit);
1000 	}
1001 	if (!error)
1002 		fsnotify_mkdir(dir, dentry);
1003 out_up_read:
1004 	up_read(&fs_info->subvol_sem);
1005 out_dput:
1006 	dput(dentry);
1007 out_unlock:
1008 	inode_unlock(dir);
1009 	return error;
1010 }
1011 
1012 /*
1013  * When we're defragging a range, we don't want to kick it off again
1014  * if it is really just waiting for delalloc to send it down.
1015  * If we find a nice big extent or delalloc range for the bytes in the
1016  * file you want to defrag, we return 0 to let you know to skip this
1017  * part of the file
1018  */
1019 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1020 {
1021 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1022 	struct extent_map *em = NULL;
1023 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1024 	u64 end;
1025 
1026 	read_lock(&em_tree->lock);
1027 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1028 	read_unlock(&em_tree->lock);
1029 
1030 	if (em) {
1031 		end = extent_map_end(em);
1032 		free_extent_map(em);
1033 		if (end - offset > thresh)
1034 			return 0;
1035 	}
1036 	/* if we already have a nice delalloc here, just stop */
1037 	thresh /= 2;
1038 	end = count_range_bits(io_tree, &offset, offset + thresh,
1039 			       thresh, EXTENT_DELALLOC, 1);
1040 	if (end >= thresh)
1041 		return 0;
1042 	return 1;
1043 }
1044 
1045 /*
1046  * helper function to walk through a file and find extents
1047  * newer than a specific transid, and smaller than thresh.
1048  *
1049  * This is used by the defragging code to find new and small
1050  * extents
1051  */
1052 static int find_new_extents(struct btrfs_root *root,
1053 			    struct inode *inode, u64 newer_than,
1054 			    u64 *off, u32 thresh)
1055 {
1056 	struct btrfs_path *path;
1057 	struct btrfs_key min_key;
1058 	struct extent_buffer *leaf;
1059 	struct btrfs_file_extent_item *extent;
1060 	int type;
1061 	int ret;
1062 	u64 ino = btrfs_ino(BTRFS_I(inode));
1063 
1064 	path = btrfs_alloc_path();
1065 	if (!path)
1066 		return -ENOMEM;
1067 
1068 	min_key.objectid = ino;
1069 	min_key.type = BTRFS_EXTENT_DATA_KEY;
1070 	min_key.offset = *off;
1071 
1072 	while (1) {
1073 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1074 		if (ret != 0)
1075 			goto none;
1076 process_slot:
1077 		if (min_key.objectid != ino)
1078 			goto none;
1079 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1080 			goto none;
1081 
1082 		leaf = path->nodes[0];
1083 		extent = btrfs_item_ptr(leaf, path->slots[0],
1084 					struct btrfs_file_extent_item);
1085 
1086 		type = btrfs_file_extent_type(leaf, extent);
1087 		if (type == BTRFS_FILE_EXTENT_REG &&
1088 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1089 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1090 			*off = min_key.offset;
1091 			btrfs_free_path(path);
1092 			return 0;
1093 		}
1094 
1095 		path->slots[0]++;
1096 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1097 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1098 			goto process_slot;
1099 		}
1100 
1101 		if (min_key.offset == (u64)-1)
1102 			goto none;
1103 
1104 		min_key.offset++;
1105 		btrfs_release_path(path);
1106 	}
1107 none:
1108 	btrfs_free_path(path);
1109 	return -ENOENT;
1110 }
1111 
1112 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1113 {
1114 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1115 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1116 	struct extent_map *em;
1117 	u64 len = PAGE_SIZE;
1118 
1119 	/*
1120 	 * hopefully we have this extent in the tree already, try without
1121 	 * the full extent lock
1122 	 */
1123 	read_lock(&em_tree->lock);
1124 	em = lookup_extent_mapping(em_tree, start, len);
1125 	read_unlock(&em_tree->lock);
1126 
1127 	if (!em) {
1128 		struct extent_state *cached = NULL;
1129 		u64 end = start + len - 1;
1130 
1131 		/* get the big lock and read metadata off disk */
1132 		lock_extent_bits(io_tree, start, end, &cached);
1133 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
1134 		unlock_extent_cached(io_tree, start, end, &cached);
1135 
1136 		if (IS_ERR(em))
1137 			return NULL;
1138 	}
1139 
1140 	return em;
1141 }
1142 
1143 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1144 {
1145 	struct extent_map *next;
1146 	bool ret = true;
1147 
1148 	/* this is the last extent */
1149 	if (em->start + em->len >= i_size_read(inode))
1150 		return false;
1151 
1152 	next = defrag_lookup_extent(inode, em->start + em->len);
1153 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1154 		ret = false;
1155 	else if ((em->block_start + em->block_len == next->block_start) &&
1156 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1157 		ret = false;
1158 
1159 	free_extent_map(next);
1160 	return ret;
1161 }
1162 
1163 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1164 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1165 			       int compress)
1166 {
1167 	struct extent_map *em;
1168 	int ret = 1;
1169 	bool next_mergeable = true;
1170 	bool prev_mergeable = true;
1171 
1172 	/*
1173 	 * make sure that once we start defragging an extent, we keep on
1174 	 * defragging it
1175 	 */
1176 	if (start < *defrag_end)
1177 		return 1;
1178 
1179 	*skip = 0;
1180 
1181 	em = defrag_lookup_extent(inode, start);
1182 	if (!em)
1183 		return 0;
1184 
1185 	/* this will cover holes, and inline extents */
1186 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1187 		ret = 0;
1188 		goto out;
1189 	}
1190 
1191 	if (!*defrag_end)
1192 		prev_mergeable = false;
1193 
1194 	next_mergeable = defrag_check_next_extent(inode, em);
1195 	/*
1196 	 * we hit a real extent, if it is big or the next extent is not a
1197 	 * real extent, don't bother defragging it
1198 	 */
1199 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1200 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1201 		ret = 0;
1202 out:
1203 	/*
1204 	 * last_len ends up being a counter of how many bytes we've defragged.
1205 	 * every time we choose not to defrag an extent, we reset *last_len
1206 	 * so that the next tiny extent will force a defrag.
1207 	 *
1208 	 * The end result of this is that tiny extents before a single big
1209 	 * extent will force at least part of that big extent to be defragged.
1210 	 */
1211 	if (ret) {
1212 		*defrag_end = extent_map_end(em);
1213 	} else {
1214 		*last_len = 0;
1215 		*skip = extent_map_end(em);
1216 		*defrag_end = 0;
1217 	}
1218 
1219 	free_extent_map(em);
1220 	return ret;
1221 }
1222 
1223 /*
1224  * it doesn't do much good to defrag one or two pages
1225  * at a time.  This pulls in a nice chunk of pages
1226  * to COW and defrag.
1227  *
1228  * It also makes sure the delalloc code has enough
1229  * dirty data to avoid making new small extents as part
1230  * of the defrag
1231  *
1232  * It's a good idea to start RA on this range
1233  * before calling this.
1234  */
1235 static int cluster_pages_for_defrag(struct inode *inode,
1236 				    struct page **pages,
1237 				    unsigned long start_index,
1238 				    unsigned long num_pages)
1239 {
1240 	unsigned long file_end;
1241 	u64 isize = i_size_read(inode);
1242 	u64 page_start;
1243 	u64 page_end;
1244 	u64 page_cnt;
1245 	int ret;
1246 	int i;
1247 	int i_done;
1248 	struct btrfs_ordered_extent *ordered;
1249 	struct extent_state *cached_state = NULL;
1250 	struct extent_io_tree *tree;
1251 	struct extent_changeset *data_reserved = NULL;
1252 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1253 
1254 	file_end = (isize - 1) >> PAGE_SHIFT;
1255 	if (!isize || start_index > file_end)
1256 		return 0;
1257 
1258 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1259 
1260 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1261 			start_index << PAGE_SHIFT,
1262 			page_cnt << PAGE_SHIFT);
1263 	if (ret)
1264 		return ret;
1265 	i_done = 0;
1266 	tree = &BTRFS_I(inode)->io_tree;
1267 
1268 	/* step one, lock all the pages */
1269 	for (i = 0; i < page_cnt; i++) {
1270 		struct page *page;
1271 again:
1272 		page = find_or_create_page(inode->i_mapping,
1273 					   start_index + i, mask);
1274 		if (!page)
1275 			break;
1276 
1277 		page_start = page_offset(page);
1278 		page_end = page_start + PAGE_SIZE - 1;
1279 		while (1) {
1280 			lock_extent_bits(tree, page_start, page_end,
1281 					 &cached_state);
1282 			ordered = btrfs_lookup_ordered_extent(inode,
1283 							      page_start);
1284 			unlock_extent_cached(tree, page_start, page_end,
1285 					     &cached_state);
1286 			if (!ordered)
1287 				break;
1288 
1289 			unlock_page(page);
1290 			btrfs_start_ordered_extent(inode, ordered, 1);
1291 			btrfs_put_ordered_extent(ordered);
1292 			lock_page(page);
1293 			/*
1294 			 * we unlocked the page above, so we need check if
1295 			 * it was released or not.
1296 			 */
1297 			if (page->mapping != inode->i_mapping) {
1298 				unlock_page(page);
1299 				put_page(page);
1300 				goto again;
1301 			}
1302 		}
1303 
1304 		if (!PageUptodate(page)) {
1305 			btrfs_readpage(NULL, page);
1306 			lock_page(page);
1307 			if (!PageUptodate(page)) {
1308 				unlock_page(page);
1309 				put_page(page);
1310 				ret = -EIO;
1311 				break;
1312 			}
1313 		}
1314 
1315 		if (page->mapping != inode->i_mapping) {
1316 			unlock_page(page);
1317 			put_page(page);
1318 			goto again;
1319 		}
1320 
1321 		pages[i] = page;
1322 		i_done++;
1323 	}
1324 	if (!i_done || ret)
1325 		goto out;
1326 
1327 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1328 		goto out;
1329 
1330 	/*
1331 	 * so now we have a nice long stream of locked
1332 	 * and up to date pages, lets wait on them
1333 	 */
1334 	for (i = 0; i < i_done; i++)
1335 		wait_on_page_writeback(pages[i]);
1336 
1337 	page_start = page_offset(pages[0]);
1338 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1339 
1340 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1341 			 page_start, page_end - 1, &cached_state);
1342 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1343 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1344 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1345 			  &cached_state);
1346 
1347 	if (i_done != page_cnt) {
1348 		spin_lock(&BTRFS_I(inode)->lock);
1349 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1350 		spin_unlock(&BTRFS_I(inode)->lock);
1351 		btrfs_delalloc_release_space(inode, data_reserved,
1352 				start_index << PAGE_SHIFT,
1353 				(page_cnt - i_done) << PAGE_SHIFT, true);
1354 	}
1355 
1356 
1357 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1358 			  &cached_state);
1359 
1360 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1361 			     page_start, page_end - 1, &cached_state);
1362 
1363 	for (i = 0; i < i_done; i++) {
1364 		clear_page_dirty_for_io(pages[i]);
1365 		ClearPageChecked(pages[i]);
1366 		set_page_extent_mapped(pages[i]);
1367 		set_page_dirty(pages[i]);
1368 		unlock_page(pages[i]);
1369 		put_page(pages[i]);
1370 	}
1371 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1372 				       false);
1373 	extent_changeset_free(data_reserved);
1374 	return i_done;
1375 out:
1376 	for (i = 0; i < i_done; i++) {
1377 		unlock_page(pages[i]);
1378 		put_page(pages[i]);
1379 	}
1380 	btrfs_delalloc_release_space(inode, data_reserved,
1381 			start_index << PAGE_SHIFT,
1382 			page_cnt << PAGE_SHIFT, true);
1383 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1384 				       true);
1385 	extent_changeset_free(data_reserved);
1386 	return ret;
1387 
1388 }
1389 
1390 int btrfs_defrag_file(struct inode *inode, struct file *file,
1391 		      struct btrfs_ioctl_defrag_range_args *range,
1392 		      u64 newer_than, unsigned long max_to_defrag)
1393 {
1394 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1395 	struct btrfs_root *root = BTRFS_I(inode)->root;
1396 	struct file_ra_state *ra = NULL;
1397 	unsigned long last_index;
1398 	u64 isize = i_size_read(inode);
1399 	u64 last_len = 0;
1400 	u64 skip = 0;
1401 	u64 defrag_end = 0;
1402 	u64 newer_off = range->start;
1403 	unsigned long i;
1404 	unsigned long ra_index = 0;
1405 	int ret;
1406 	int defrag_count = 0;
1407 	int compress_type = BTRFS_COMPRESS_ZLIB;
1408 	u32 extent_thresh = range->extent_thresh;
1409 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1410 	unsigned long cluster = max_cluster;
1411 	u64 new_align = ~((u64)SZ_128K - 1);
1412 	struct page **pages = NULL;
1413 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1414 
1415 	if (isize == 0)
1416 		return 0;
1417 
1418 	if (range->start >= isize)
1419 		return -EINVAL;
1420 
1421 	if (do_compress) {
1422 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1423 			return -EINVAL;
1424 		if (range->compress_type)
1425 			compress_type = range->compress_type;
1426 	}
1427 
1428 	if (extent_thresh == 0)
1429 		extent_thresh = SZ_256K;
1430 
1431 	/*
1432 	 * If we were not given a file, allocate a readahead context. As
1433 	 * readahead is just an optimization, defrag will work without it so
1434 	 * we don't error out.
1435 	 */
1436 	if (!file) {
1437 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1438 		if (ra)
1439 			file_ra_state_init(ra, inode->i_mapping);
1440 	} else {
1441 		ra = &file->f_ra;
1442 	}
1443 
1444 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1445 	if (!pages) {
1446 		ret = -ENOMEM;
1447 		goto out_ra;
1448 	}
1449 
1450 	/* find the last page to defrag */
1451 	if (range->start + range->len > range->start) {
1452 		last_index = min_t(u64, isize - 1,
1453 			 range->start + range->len - 1) >> PAGE_SHIFT;
1454 	} else {
1455 		last_index = (isize - 1) >> PAGE_SHIFT;
1456 	}
1457 
1458 	if (newer_than) {
1459 		ret = find_new_extents(root, inode, newer_than,
1460 				       &newer_off, SZ_64K);
1461 		if (!ret) {
1462 			range->start = newer_off;
1463 			/*
1464 			 * we always align our defrag to help keep
1465 			 * the extents in the file evenly spaced
1466 			 */
1467 			i = (newer_off & new_align) >> PAGE_SHIFT;
1468 		} else
1469 			goto out_ra;
1470 	} else {
1471 		i = range->start >> PAGE_SHIFT;
1472 	}
1473 	if (!max_to_defrag)
1474 		max_to_defrag = last_index - i + 1;
1475 
1476 	/*
1477 	 * make writeback starts from i, so the defrag range can be
1478 	 * written sequentially.
1479 	 */
1480 	if (i < inode->i_mapping->writeback_index)
1481 		inode->i_mapping->writeback_index = i;
1482 
1483 	while (i <= last_index && defrag_count < max_to_defrag &&
1484 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1485 		/*
1486 		 * make sure we stop running if someone unmounts
1487 		 * the FS
1488 		 */
1489 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1490 			break;
1491 
1492 		if (btrfs_defrag_cancelled(fs_info)) {
1493 			btrfs_debug(fs_info, "defrag_file cancelled");
1494 			ret = -EAGAIN;
1495 			break;
1496 		}
1497 
1498 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1499 					 extent_thresh, &last_len, &skip,
1500 					 &defrag_end, do_compress)){
1501 			unsigned long next;
1502 			/*
1503 			 * the should_defrag function tells us how much to skip
1504 			 * bump our counter by the suggested amount
1505 			 */
1506 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1507 			i = max(i + 1, next);
1508 			continue;
1509 		}
1510 
1511 		if (!newer_than) {
1512 			cluster = (PAGE_ALIGN(defrag_end) >>
1513 				   PAGE_SHIFT) - i;
1514 			cluster = min(cluster, max_cluster);
1515 		} else {
1516 			cluster = max_cluster;
1517 		}
1518 
1519 		if (i + cluster > ra_index) {
1520 			ra_index = max(i, ra_index);
1521 			if (ra)
1522 				page_cache_sync_readahead(inode->i_mapping, ra,
1523 						file, ra_index, cluster);
1524 			ra_index += cluster;
1525 		}
1526 
1527 		inode_lock(inode);
1528 		if (IS_SWAPFILE(inode)) {
1529 			ret = -ETXTBSY;
1530 		} else {
1531 			if (do_compress)
1532 				BTRFS_I(inode)->defrag_compress = compress_type;
1533 			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1534 		}
1535 		if (ret < 0) {
1536 			inode_unlock(inode);
1537 			goto out_ra;
1538 		}
1539 
1540 		defrag_count += ret;
1541 		balance_dirty_pages_ratelimited(inode->i_mapping);
1542 		inode_unlock(inode);
1543 
1544 		if (newer_than) {
1545 			if (newer_off == (u64)-1)
1546 				break;
1547 
1548 			if (ret > 0)
1549 				i += ret;
1550 
1551 			newer_off = max(newer_off + 1,
1552 					(u64)i << PAGE_SHIFT);
1553 
1554 			ret = find_new_extents(root, inode, newer_than,
1555 					       &newer_off, SZ_64K);
1556 			if (!ret) {
1557 				range->start = newer_off;
1558 				i = (newer_off & new_align) >> PAGE_SHIFT;
1559 			} else {
1560 				break;
1561 			}
1562 		} else {
1563 			if (ret > 0) {
1564 				i += ret;
1565 				last_len += ret << PAGE_SHIFT;
1566 			} else {
1567 				i++;
1568 				last_len = 0;
1569 			}
1570 		}
1571 	}
1572 
1573 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1574 		filemap_flush(inode->i_mapping);
1575 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1576 			     &BTRFS_I(inode)->runtime_flags))
1577 			filemap_flush(inode->i_mapping);
1578 	}
1579 
1580 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1581 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1582 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1583 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1584 	}
1585 
1586 	ret = defrag_count;
1587 
1588 out_ra:
1589 	if (do_compress) {
1590 		inode_lock(inode);
1591 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1592 		inode_unlock(inode);
1593 	}
1594 	if (!file)
1595 		kfree(ra);
1596 	kfree(pages);
1597 	return ret;
1598 }
1599 
1600 static noinline int btrfs_ioctl_resize(struct file *file,
1601 					void __user *arg)
1602 {
1603 	struct inode *inode = file_inode(file);
1604 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1605 	u64 new_size;
1606 	u64 old_size;
1607 	u64 devid = 1;
1608 	struct btrfs_root *root = BTRFS_I(inode)->root;
1609 	struct btrfs_ioctl_vol_args *vol_args;
1610 	struct btrfs_trans_handle *trans;
1611 	struct btrfs_device *device = NULL;
1612 	char *sizestr;
1613 	char *retptr;
1614 	char *devstr = NULL;
1615 	int ret = 0;
1616 	int mod = 0;
1617 
1618 	if (!capable(CAP_SYS_ADMIN))
1619 		return -EPERM;
1620 
1621 	ret = mnt_want_write_file(file);
1622 	if (ret)
1623 		return ret;
1624 
1625 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1626 		mnt_drop_write_file(file);
1627 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1628 	}
1629 
1630 	vol_args = memdup_user(arg, sizeof(*vol_args));
1631 	if (IS_ERR(vol_args)) {
1632 		ret = PTR_ERR(vol_args);
1633 		goto out;
1634 	}
1635 
1636 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1637 
1638 	sizestr = vol_args->name;
1639 	devstr = strchr(sizestr, ':');
1640 	if (devstr) {
1641 		sizestr = devstr + 1;
1642 		*devstr = '\0';
1643 		devstr = vol_args->name;
1644 		ret = kstrtoull(devstr, 10, &devid);
1645 		if (ret)
1646 			goto out_free;
1647 		if (!devid) {
1648 			ret = -EINVAL;
1649 			goto out_free;
1650 		}
1651 		btrfs_info(fs_info, "resizing devid %llu", devid);
1652 	}
1653 
1654 	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1655 	if (!device) {
1656 		btrfs_info(fs_info, "resizer unable to find device %llu",
1657 			   devid);
1658 		ret = -ENODEV;
1659 		goto out_free;
1660 	}
1661 
1662 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1663 		btrfs_info(fs_info,
1664 			   "resizer unable to apply on readonly device %llu",
1665 		       devid);
1666 		ret = -EPERM;
1667 		goto out_free;
1668 	}
1669 
1670 	if (!strcmp(sizestr, "max"))
1671 		new_size = device->bdev->bd_inode->i_size;
1672 	else {
1673 		if (sizestr[0] == '-') {
1674 			mod = -1;
1675 			sizestr++;
1676 		} else if (sizestr[0] == '+') {
1677 			mod = 1;
1678 			sizestr++;
1679 		}
1680 		new_size = memparse(sizestr, &retptr);
1681 		if (*retptr != '\0' || new_size == 0) {
1682 			ret = -EINVAL;
1683 			goto out_free;
1684 		}
1685 	}
1686 
1687 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1688 		ret = -EPERM;
1689 		goto out_free;
1690 	}
1691 
1692 	old_size = btrfs_device_get_total_bytes(device);
1693 
1694 	if (mod < 0) {
1695 		if (new_size > old_size) {
1696 			ret = -EINVAL;
1697 			goto out_free;
1698 		}
1699 		new_size = old_size - new_size;
1700 	} else if (mod > 0) {
1701 		if (new_size > ULLONG_MAX - old_size) {
1702 			ret = -ERANGE;
1703 			goto out_free;
1704 		}
1705 		new_size = old_size + new_size;
1706 	}
1707 
1708 	if (new_size < SZ_256M) {
1709 		ret = -EINVAL;
1710 		goto out_free;
1711 	}
1712 	if (new_size > device->bdev->bd_inode->i_size) {
1713 		ret = -EFBIG;
1714 		goto out_free;
1715 	}
1716 
1717 	new_size = round_down(new_size, fs_info->sectorsize);
1718 
1719 	btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1720 			  rcu_str_deref(device->name), new_size);
1721 
1722 	if (new_size > old_size) {
1723 		trans = btrfs_start_transaction(root, 0);
1724 		if (IS_ERR(trans)) {
1725 			ret = PTR_ERR(trans);
1726 			goto out_free;
1727 		}
1728 		ret = btrfs_grow_device(trans, device, new_size);
1729 		btrfs_commit_transaction(trans);
1730 	} else if (new_size < old_size) {
1731 		ret = btrfs_shrink_device(device, new_size);
1732 	} /* equal, nothing need to do */
1733 
1734 out_free:
1735 	kfree(vol_args);
1736 out:
1737 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1738 	mnt_drop_write_file(file);
1739 	return ret;
1740 }
1741 
1742 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1743 				const char *name, unsigned long fd, int subvol,
1744 				u64 *transid, bool readonly,
1745 				struct btrfs_qgroup_inherit *inherit)
1746 {
1747 	int namelen;
1748 	int ret = 0;
1749 
1750 	if (!S_ISDIR(file_inode(file)->i_mode))
1751 		return -ENOTDIR;
1752 
1753 	ret = mnt_want_write_file(file);
1754 	if (ret)
1755 		goto out;
1756 
1757 	namelen = strlen(name);
1758 	if (strchr(name, '/')) {
1759 		ret = -EINVAL;
1760 		goto out_drop_write;
1761 	}
1762 
1763 	if (name[0] == '.' &&
1764 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1765 		ret = -EEXIST;
1766 		goto out_drop_write;
1767 	}
1768 
1769 	if (subvol) {
1770 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1771 				     NULL, transid, readonly, inherit);
1772 	} else {
1773 		struct fd src = fdget(fd);
1774 		struct inode *src_inode;
1775 		if (!src.file) {
1776 			ret = -EINVAL;
1777 			goto out_drop_write;
1778 		}
1779 
1780 		src_inode = file_inode(src.file);
1781 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1782 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1783 				   "Snapshot src from another FS");
1784 			ret = -EXDEV;
1785 		} else if (!inode_owner_or_capable(src_inode)) {
1786 			/*
1787 			 * Subvolume creation is not restricted, but snapshots
1788 			 * are limited to own subvolumes only
1789 			 */
1790 			ret = -EPERM;
1791 		} else {
1792 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1793 					     BTRFS_I(src_inode)->root,
1794 					     transid, readonly, inherit);
1795 		}
1796 		fdput(src);
1797 	}
1798 out_drop_write:
1799 	mnt_drop_write_file(file);
1800 out:
1801 	return ret;
1802 }
1803 
1804 static noinline int btrfs_ioctl_snap_create(struct file *file,
1805 					    void __user *arg, int subvol)
1806 {
1807 	struct btrfs_ioctl_vol_args *vol_args;
1808 	int ret;
1809 
1810 	if (!S_ISDIR(file_inode(file)->i_mode))
1811 		return -ENOTDIR;
1812 
1813 	vol_args = memdup_user(arg, sizeof(*vol_args));
1814 	if (IS_ERR(vol_args))
1815 		return PTR_ERR(vol_args);
1816 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1817 
1818 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1819 					      vol_args->fd, subvol,
1820 					      NULL, false, NULL);
1821 
1822 	kfree(vol_args);
1823 	return ret;
1824 }
1825 
1826 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1827 					       void __user *arg, int subvol)
1828 {
1829 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1830 	int ret;
1831 	u64 transid = 0;
1832 	u64 *ptr = NULL;
1833 	bool readonly = false;
1834 	struct btrfs_qgroup_inherit *inherit = NULL;
1835 
1836 	if (!S_ISDIR(file_inode(file)->i_mode))
1837 		return -ENOTDIR;
1838 
1839 	vol_args = memdup_user(arg, sizeof(*vol_args));
1840 	if (IS_ERR(vol_args))
1841 		return PTR_ERR(vol_args);
1842 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1843 
1844 	if (vol_args->flags &
1845 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1846 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1847 		ret = -EOPNOTSUPP;
1848 		goto free_args;
1849 	}
1850 
1851 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1852 		ptr = &transid;
1853 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1854 		readonly = true;
1855 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1856 		if (vol_args->size > PAGE_SIZE) {
1857 			ret = -EINVAL;
1858 			goto free_args;
1859 		}
1860 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1861 		if (IS_ERR(inherit)) {
1862 			ret = PTR_ERR(inherit);
1863 			goto free_args;
1864 		}
1865 	}
1866 
1867 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1868 					      vol_args->fd, subvol, ptr,
1869 					      readonly, inherit);
1870 	if (ret)
1871 		goto free_inherit;
1872 
1873 	if (ptr && copy_to_user(arg +
1874 				offsetof(struct btrfs_ioctl_vol_args_v2,
1875 					transid),
1876 				ptr, sizeof(*ptr)))
1877 		ret = -EFAULT;
1878 
1879 free_inherit:
1880 	kfree(inherit);
1881 free_args:
1882 	kfree(vol_args);
1883 	return ret;
1884 }
1885 
1886 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1887 						void __user *arg)
1888 {
1889 	struct inode *inode = file_inode(file);
1890 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1891 	struct btrfs_root *root = BTRFS_I(inode)->root;
1892 	int ret = 0;
1893 	u64 flags = 0;
1894 
1895 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1896 		return -EINVAL;
1897 
1898 	down_read(&fs_info->subvol_sem);
1899 	if (btrfs_root_readonly(root))
1900 		flags |= BTRFS_SUBVOL_RDONLY;
1901 	up_read(&fs_info->subvol_sem);
1902 
1903 	if (copy_to_user(arg, &flags, sizeof(flags)))
1904 		ret = -EFAULT;
1905 
1906 	return ret;
1907 }
1908 
1909 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1910 					      void __user *arg)
1911 {
1912 	struct inode *inode = file_inode(file);
1913 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1914 	struct btrfs_root *root = BTRFS_I(inode)->root;
1915 	struct btrfs_trans_handle *trans;
1916 	u64 root_flags;
1917 	u64 flags;
1918 	int ret = 0;
1919 
1920 	if (!inode_owner_or_capable(inode))
1921 		return -EPERM;
1922 
1923 	ret = mnt_want_write_file(file);
1924 	if (ret)
1925 		goto out;
1926 
1927 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1928 		ret = -EINVAL;
1929 		goto out_drop_write;
1930 	}
1931 
1932 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1933 		ret = -EFAULT;
1934 		goto out_drop_write;
1935 	}
1936 
1937 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1938 		ret = -EINVAL;
1939 		goto out_drop_write;
1940 	}
1941 
1942 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1943 		ret = -EOPNOTSUPP;
1944 		goto out_drop_write;
1945 	}
1946 
1947 	down_write(&fs_info->subvol_sem);
1948 
1949 	/* nothing to do */
1950 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1951 		goto out_drop_sem;
1952 
1953 	root_flags = btrfs_root_flags(&root->root_item);
1954 	if (flags & BTRFS_SUBVOL_RDONLY) {
1955 		btrfs_set_root_flags(&root->root_item,
1956 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1957 	} else {
1958 		/*
1959 		 * Block RO -> RW transition if this subvolume is involved in
1960 		 * send
1961 		 */
1962 		spin_lock(&root->root_item_lock);
1963 		if (root->send_in_progress == 0) {
1964 			btrfs_set_root_flags(&root->root_item,
1965 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1966 			spin_unlock(&root->root_item_lock);
1967 		} else {
1968 			spin_unlock(&root->root_item_lock);
1969 			btrfs_warn(fs_info,
1970 				   "Attempt to set subvolume %llu read-write during send",
1971 				   root->root_key.objectid);
1972 			ret = -EPERM;
1973 			goto out_drop_sem;
1974 		}
1975 	}
1976 
1977 	trans = btrfs_start_transaction(root, 1);
1978 	if (IS_ERR(trans)) {
1979 		ret = PTR_ERR(trans);
1980 		goto out_reset;
1981 	}
1982 
1983 	ret = btrfs_update_root(trans, fs_info->tree_root,
1984 				&root->root_key, &root->root_item);
1985 	if (ret < 0) {
1986 		btrfs_end_transaction(trans);
1987 		goto out_reset;
1988 	}
1989 
1990 	ret = btrfs_commit_transaction(trans);
1991 
1992 out_reset:
1993 	if (ret)
1994 		btrfs_set_root_flags(&root->root_item, root_flags);
1995 out_drop_sem:
1996 	up_write(&fs_info->subvol_sem);
1997 out_drop_write:
1998 	mnt_drop_write_file(file);
1999 out:
2000 	return ret;
2001 }
2002 
2003 static noinline int key_in_sk(struct btrfs_key *key,
2004 			      struct btrfs_ioctl_search_key *sk)
2005 {
2006 	struct btrfs_key test;
2007 	int ret;
2008 
2009 	test.objectid = sk->min_objectid;
2010 	test.type = sk->min_type;
2011 	test.offset = sk->min_offset;
2012 
2013 	ret = btrfs_comp_cpu_keys(key, &test);
2014 	if (ret < 0)
2015 		return 0;
2016 
2017 	test.objectid = sk->max_objectid;
2018 	test.type = sk->max_type;
2019 	test.offset = sk->max_offset;
2020 
2021 	ret = btrfs_comp_cpu_keys(key, &test);
2022 	if (ret > 0)
2023 		return 0;
2024 	return 1;
2025 }
2026 
2027 static noinline int copy_to_sk(struct btrfs_path *path,
2028 			       struct btrfs_key *key,
2029 			       struct btrfs_ioctl_search_key *sk,
2030 			       size_t *buf_size,
2031 			       char __user *ubuf,
2032 			       unsigned long *sk_offset,
2033 			       int *num_found)
2034 {
2035 	u64 found_transid;
2036 	struct extent_buffer *leaf;
2037 	struct btrfs_ioctl_search_header sh;
2038 	struct btrfs_key test;
2039 	unsigned long item_off;
2040 	unsigned long item_len;
2041 	int nritems;
2042 	int i;
2043 	int slot;
2044 	int ret = 0;
2045 
2046 	leaf = path->nodes[0];
2047 	slot = path->slots[0];
2048 	nritems = btrfs_header_nritems(leaf);
2049 
2050 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2051 		i = nritems;
2052 		goto advance_key;
2053 	}
2054 	found_transid = btrfs_header_generation(leaf);
2055 
2056 	for (i = slot; i < nritems; i++) {
2057 		item_off = btrfs_item_ptr_offset(leaf, i);
2058 		item_len = btrfs_item_size_nr(leaf, i);
2059 
2060 		btrfs_item_key_to_cpu(leaf, key, i);
2061 		if (!key_in_sk(key, sk))
2062 			continue;
2063 
2064 		if (sizeof(sh) + item_len > *buf_size) {
2065 			if (*num_found) {
2066 				ret = 1;
2067 				goto out;
2068 			}
2069 
2070 			/*
2071 			 * return one empty item back for v1, which does not
2072 			 * handle -EOVERFLOW
2073 			 */
2074 
2075 			*buf_size = sizeof(sh) + item_len;
2076 			item_len = 0;
2077 			ret = -EOVERFLOW;
2078 		}
2079 
2080 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2081 			ret = 1;
2082 			goto out;
2083 		}
2084 
2085 		sh.objectid = key->objectid;
2086 		sh.offset = key->offset;
2087 		sh.type = key->type;
2088 		sh.len = item_len;
2089 		sh.transid = found_transid;
2090 
2091 		/* copy search result header */
2092 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2093 			ret = -EFAULT;
2094 			goto out;
2095 		}
2096 
2097 		*sk_offset += sizeof(sh);
2098 
2099 		if (item_len) {
2100 			char __user *up = ubuf + *sk_offset;
2101 			/* copy the item */
2102 			if (read_extent_buffer_to_user(leaf, up,
2103 						       item_off, item_len)) {
2104 				ret = -EFAULT;
2105 				goto out;
2106 			}
2107 
2108 			*sk_offset += item_len;
2109 		}
2110 		(*num_found)++;
2111 
2112 		if (ret) /* -EOVERFLOW from above */
2113 			goto out;
2114 
2115 		if (*num_found >= sk->nr_items) {
2116 			ret = 1;
2117 			goto out;
2118 		}
2119 	}
2120 advance_key:
2121 	ret = 0;
2122 	test.objectid = sk->max_objectid;
2123 	test.type = sk->max_type;
2124 	test.offset = sk->max_offset;
2125 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2126 		ret = 1;
2127 	else if (key->offset < (u64)-1)
2128 		key->offset++;
2129 	else if (key->type < (u8)-1) {
2130 		key->offset = 0;
2131 		key->type++;
2132 	} else if (key->objectid < (u64)-1) {
2133 		key->offset = 0;
2134 		key->type = 0;
2135 		key->objectid++;
2136 	} else
2137 		ret = 1;
2138 out:
2139 	/*
2140 	 *  0: all items from this leaf copied, continue with next
2141 	 *  1: * more items can be copied, but unused buffer is too small
2142 	 *     * all items were found
2143 	 *     Either way, it will stops the loop which iterates to the next
2144 	 *     leaf
2145 	 *  -EOVERFLOW: item was to large for buffer
2146 	 *  -EFAULT: could not copy extent buffer back to userspace
2147 	 */
2148 	return ret;
2149 }
2150 
2151 static noinline int search_ioctl(struct inode *inode,
2152 				 struct btrfs_ioctl_search_key *sk,
2153 				 size_t *buf_size,
2154 				 char __user *ubuf)
2155 {
2156 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2157 	struct btrfs_root *root;
2158 	struct btrfs_key key;
2159 	struct btrfs_path *path;
2160 	int ret;
2161 	int num_found = 0;
2162 	unsigned long sk_offset = 0;
2163 
2164 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2165 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2166 		return -EOVERFLOW;
2167 	}
2168 
2169 	path = btrfs_alloc_path();
2170 	if (!path)
2171 		return -ENOMEM;
2172 
2173 	if (sk->tree_id == 0) {
2174 		/* search the root of the inode that was passed */
2175 		root = BTRFS_I(inode)->root;
2176 	} else {
2177 		key.objectid = sk->tree_id;
2178 		key.type = BTRFS_ROOT_ITEM_KEY;
2179 		key.offset = (u64)-1;
2180 		root = btrfs_read_fs_root_no_name(info, &key);
2181 		if (IS_ERR(root)) {
2182 			btrfs_free_path(path);
2183 			return PTR_ERR(root);
2184 		}
2185 	}
2186 
2187 	key.objectid = sk->min_objectid;
2188 	key.type = sk->min_type;
2189 	key.offset = sk->min_offset;
2190 
2191 	while (1) {
2192 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2193 		if (ret != 0) {
2194 			if (ret > 0)
2195 				ret = 0;
2196 			goto err;
2197 		}
2198 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2199 				 &sk_offset, &num_found);
2200 		btrfs_release_path(path);
2201 		if (ret)
2202 			break;
2203 
2204 	}
2205 	if (ret > 0)
2206 		ret = 0;
2207 err:
2208 	sk->nr_items = num_found;
2209 	btrfs_free_path(path);
2210 	return ret;
2211 }
2212 
2213 static noinline int btrfs_ioctl_tree_search(struct file *file,
2214 					   void __user *argp)
2215 {
2216 	struct btrfs_ioctl_search_args __user *uargs;
2217 	struct btrfs_ioctl_search_key sk;
2218 	struct inode *inode;
2219 	int ret;
2220 	size_t buf_size;
2221 
2222 	if (!capable(CAP_SYS_ADMIN))
2223 		return -EPERM;
2224 
2225 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2226 
2227 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2228 		return -EFAULT;
2229 
2230 	buf_size = sizeof(uargs->buf);
2231 
2232 	inode = file_inode(file);
2233 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2234 
2235 	/*
2236 	 * In the origin implementation an overflow is handled by returning a
2237 	 * search header with a len of zero, so reset ret.
2238 	 */
2239 	if (ret == -EOVERFLOW)
2240 		ret = 0;
2241 
2242 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2243 		ret = -EFAULT;
2244 	return ret;
2245 }
2246 
2247 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2248 					       void __user *argp)
2249 {
2250 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2251 	struct btrfs_ioctl_search_args_v2 args;
2252 	struct inode *inode;
2253 	int ret;
2254 	size_t buf_size;
2255 	const size_t buf_limit = SZ_16M;
2256 
2257 	if (!capable(CAP_SYS_ADMIN))
2258 		return -EPERM;
2259 
2260 	/* copy search header and buffer size */
2261 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2262 	if (copy_from_user(&args, uarg, sizeof(args)))
2263 		return -EFAULT;
2264 
2265 	buf_size = args.buf_size;
2266 
2267 	/* limit result size to 16MB */
2268 	if (buf_size > buf_limit)
2269 		buf_size = buf_limit;
2270 
2271 	inode = file_inode(file);
2272 	ret = search_ioctl(inode, &args.key, &buf_size,
2273 			   (char __user *)(&uarg->buf[0]));
2274 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2275 		ret = -EFAULT;
2276 	else if (ret == -EOVERFLOW &&
2277 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2278 		ret = -EFAULT;
2279 
2280 	return ret;
2281 }
2282 
2283 /*
2284  * Search INODE_REFs to identify path name of 'dirid' directory
2285  * in a 'tree_id' tree. and sets path name to 'name'.
2286  */
2287 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2288 				u64 tree_id, u64 dirid, char *name)
2289 {
2290 	struct btrfs_root *root;
2291 	struct btrfs_key key;
2292 	char *ptr;
2293 	int ret = -1;
2294 	int slot;
2295 	int len;
2296 	int total_len = 0;
2297 	struct btrfs_inode_ref *iref;
2298 	struct extent_buffer *l;
2299 	struct btrfs_path *path;
2300 
2301 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2302 		name[0]='\0';
2303 		return 0;
2304 	}
2305 
2306 	path = btrfs_alloc_path();
2307 	if (!path)
2308 		return -ENOMEM;
2309 
2310 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2311 
2312 	key.objectid = tree_id;
2313 	key.type = BTRFS_ROOT_ITEM_KEY;
2314 	key.offset = (u64)-1;
2315 	root = btrfs_read_fs_root_no_name(info, &key);
2316 	if (IS_ERR(root)) {
2317 		ret = PTR_ERR(root);
2318 		goto out;
2319 	}
2320 
2321 	key.objectid = dirid;
2322 	key.type = BTRFS_INODE_REF_KEY;
2323 	key.offset = (u64)-1;
2324 
2325 	while (1) {
2326 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2327 		if (ret < 0)
2328 			goto out;
2329 		else if (ret > 0) {
2330 			ret = btrfs_previous_item(root, path, dirid,
2331 						  BTRFS_INODE_REF_KEY);
2332 			if (ret < 0)
2333 				goto out;
2334 			else if (ret > 0) {
2335 				ret = -ENOENT;
2336 				goto out;
2337 			}
2338 		}
2339 
2340 		l = path->nodes[0];
2341 		slot = path->slots[0];
2342 		btrfs_item_key_to_cpu(l, &key, slot);
2343 
2344 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2345 		len = btrfs_inode_ref_name_len(l, iref);
2346 		ptr -= len + 1;
2347 		total_len += len + 1;
2348 		if (ptr < name) {
2349 			ret = -ENAMETOOLONG;
2350 			goto out;
2351 		}
2352 
2353 		*(ptr + len) = '/';
2354 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2355 
2356 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2357 			break;
2358 
2359 		btrfs_release_path(path);
2360 		key.objectid = key.offset;
2361 		key.offset = (u64)-1;
2362 		dirid = key.objectid;
2363 	}
2364 	memmove(name, ptr, total_len);
2365 	name[total_len] = '\0';
2366 	ret = 0;
2367 out:
2368 	btrfs_free_path(path);
2369 	return ret;
2370 }
2371 
2372 static int btrfs_search_path_in_tree_user(struct inode *inode,
2373 				struct btrfs_ioctl_ino_lookup_user_args *args)
2374 {
2375 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2376 	struct super_block *sb = inode->i_sb;
2377 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2378 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2379 	u64 dirid = args->dirid;
2380 	unsigned long item_off;
2381 	unsigned long item_len;
2382 	struct btrfs_inode_ref *iref;
2383 	struct btrfs_root_ref *rref;
2384 	struct btrfs_root *root;
2385 	struct btrfs_path *path;
2386 	struct btrfs_key key, key2;
2387 	struct extent_buffer *leaf;
2388 	struct inode *temp_inode;
2389 	char *ptr;
2390 	int slot;
2391 	int len;
2392 	int total_len = 0;
2393 	int ret;
2394 
2395 	path = btrfs_alloc_path();
2396 	if (!path)
2397 		return -ENOMEM;
2398 
2399 	/*
2400 	 * If the bottom subvolume does not exist directly under upper_limit,
2401 	 * construct the path in from the bottom up.
2402 	 */
2403 	if (dirid != upper_limit.objectid) {
2404 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2405 
2406 		key.objectid = treeid;
2407 		key.type = BTRFS_ROOT_ITEM_KEY;
2408 		key.offset = (u64)-1;
2409 		root = btrfs_read_fs_root_no_name(fs_info, &key);
2410 		if (IS_ERR(root)) {
2411 			ret = PTR_ERR(root);
2412 			goto out;
2413 		}
2414 
2415 		key.objectid = dirid;
2416 		key.type = BTRFS_INODE_REF_KEY;
2417 		key.offset = (u64)-1;
2418 		while (1) {
2419 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2420 			if (ret < 0) {
2421 				goto out;
2422 			} else if (ret > 0) {
2423 				ret = btrfs_previous_item(root, path, dirid,
2424 							  BTRFS_INODE_REF_KEY);
2425 				if (ret < 0) {
2426 					goto out;
2427 				} else if (ret > 0) {
2428 					ret = -ENOENT;
2429 					goto out;
2430 				}
2431 			}
2432 
2433 			leaf = path->nodes[0];
2434 			slot = path->slots[0];
2435 			btrfs_item_key_to_cpu(leaf, &key, slot);
2436 
2437 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2438 			len = btrfs_inode_ref_name_len(leaf, iref);
2439 			ptr -= len + 1;
2440 			total_len += len + 1;
2441 			if (ptr < args->path) {
2442 				ret = -ENAMETOOLONG;
2443 				goto out;
2444 			}
2445 
2446 			*(ptr + len) = '/';
2447 			read_extent_buffer(leaf, ptr,
2448 					(unsigned long)(iref + 1), len);
2449 
2450 			/* Check the read+exec permission of this directory */
2451 			ret = btrfs_previous_item(root, path, dirid,
2452 						  BTRFS_INODE_ITEM_KEY);
2453 			if (ret < 0) {
2454 				goto out;
2455 			} else if (ret > 0) {
2456 				ret = -ENOENT;
2457 				goto out;
2458 			}
2459 
2460 			leaf = path->nodes[0];
2461 			slot = path->slots[0];
2462 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2463 			if (key2.objectid != dirid) {
2464 				ret = -ENOENT;
2465 				goto out;
2466 			}
2467 
2468 			temp_inode = btrfs_iget(sb, &key2, root, NULL);
2469 			if (IS_ERR(temp_inode)) {
2470 				ret = PTR_ERR(temp_inode);
2471 				goto out;
2472 			}
2473 			ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2474 			iput(temp_inode);
2475 			if (ret) {
2476 				ret = -EACCES;
2477 				goto out;
2478 			}
2479 
2480 			if (key.offset == upper_limit.objectid)
2481 				break;
2482 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2483 				ret = -EACCES;
2484 				goto out;
2485 			}
2486 
2487 			btrfs_release_path(path);
2488 			key.objectid = key.offset;
2489 			key.offset = (u64)-1;
2490 			dirid = key.objectid;
2491 		}
2492 
2493 		memmove(args->path, ptr, total_len);
2494 		args->path[total_len] = '\0';
2495 		btrfs_release_path(path);
2496 	}
2497 
2498 	/* Get the bottom subvolume's name from ROOT_REF */
2499 	root = fs_info->tree_root;
2500 	key.objectid = treeid;
2501 	key.type = BTRFS_ROOT_REF_KEY;
2502 	key.offset = args->treeid;
2503 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2504 	if (ret < 0) {
2505 		goto out;
2506 	} else if (ret > 0) {
2507 		ret = -ENOENT;
2508 		goto out;
2509 	}
2510 
2511 	leaf = path->nodes[0];
2512 	slot = path->slots[0];
2513 	btrfs_item_key_to_cpu(leaf, &key, slot);
2514 
2515 	item_off = btrfs_item_ptr_offset(leaf, slot);
2516 	item_len = btrfs_item_size_nr(leaf, slot);
2517 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2518 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2519 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2520 		ret = -EINVAL;
2521 		goto out;
2522 	}
2523 
2524 	/* Copy subvolume's name */
2525 	item_off += sizeof(struct btrfs_root_ref);
2526 	item_len -= sizeof(struct btrfs_root_ref);
2527 	read_extent_buffer(leaf, args->name, item_off, item_len);
2528 	args->name[item_len] = 0;
2529 
2530 out:
2531 	btrfs_free_path(path);
2532 	return ret;
2533 }
2534 
2535 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2536 					   void __user *argp)
2537 {
2538 	struct btrfs_ioctl_ino_lookup_args *args;
2539 	struct inode *inode;
2540 	int ret = 0;
2541 
2542 	args = memdup_user(argp, sizeof(*args));
2543 	if (IS_ERR(args))
2544 		return PTR_ERR(args);
2545 
2546 	inode = file_inode(file);
2547 
2548 	/*
2549 	 * Unprivileged query to obtain the containing subvolume root id. The
2550 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2551 	 */
2552 	if (args->treeid == 0)
2553 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2554 
2555 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2556 		args->name[0] = 0;
2557 		goto out;
2558 	}
2559 
2560 	if (!capable(CAP_SYS_ADMIN)) {
2561 		ret = -EPERM;
2562 		goto out;
2563 	}
2564 
2565 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2566 					args->treeid, args->objectid,
2567 					args->name);
2568 
2569 out:
2570 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2571 		ret = -EFAULT;
2572 
2573 	kfree(args);
2574 	return ret;
2575 }
2576 
2577 /*
2578  * Version of ino_lookup ioctl (unprivileged)
2579  *
2580  * The main differences from ino_lookup ioctl are:
2581  *
2582  *   1. Read + Exec permission will be checked using inode_permission() during
2583  *      path construction. -EACCES will be returned in case of failure.
2584  *   2. Path construction will be stopped at the inode number which corresponds
2585  *      to the fd with which this ioctl is called. If constructed path does not
2586  *      exist under fd's inode, -EACCES will be returned.
2587  *   3. The name of bottom subvolume is also searched and filled.
2588  */
2589 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2590 {
2591 	struct btrfs_ioctl_ino_lookup_user_args *args;
2592 	struct inode *inode;
2593 	int ret;
2594 
2595 	args = memdup_user(argp, sizeof(*args));
2596 	if (IS_ERR(args))
2597 		return PTR_ERR(args);
2598 
2599 	inode = file_inode(file);
2600 
2601 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2602 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2603 		/*
2604 		 * The subvolume does not exist under fd with which this is
2605 		 * called
2606 		 */
2607 		kfree(args);
2608 		return -EACCES;
2609 	}
2610 
2611 	ret = btrfs_search_path_in_tree_user(inode, args);
2612 
2613 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2614 		ret = -EFAULT;
2615 
2616 	kfree(args);
2617 	return ret;
2618 }
2619 
2620 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2621 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2622 {
2623 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2624 	struct btrfs_fs_info *fs_info;
2625 	struct btrfs_root *root;
2626 	struct btrfs_path *path;
2627 	struct btrfs_key key;
2628 	struct btrfs_root_item *root_item;
2629 	struct btrfs_root_ref *rref;
2630 	struct extent_buffer *leaf;
2631 	unsigned long item_off;
2632 	unsigned long item_len;
2633 	struct inode *inode;
2634 	int slot;
2635 	int ret = 0;
2636 
2637 	path = btrfs_alloc_path();
2638 	if (!path)
2639 		return -ENOMEM;
2640 
2641 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2642 	if (!subvol_info) {
2643 		btrfs_free_path(path);
2644 		return -ENOMEM;
2645 	}
2646 
2647 	inode = file_inode(file);
2648 	fs_info = BTRFS_I(inode)->root->fs_info;
2649 
2650 	/* Get root_item of inode's subvolume */
2651 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2652 	key.type = BTRFS_ROOT_ITEM_KEY;
2653 	key.offset = (u64)-1;
2654 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2655 	if (IS_ERR(root)) {
2656 		ret = PTR_ERR(root);
2657 		goto out;
2658 	}
2659 	root_item = &root->root_item;
2660 
2661 	subvol_info->treeid = key.objectid;
2662 
2663 	subvol_info->generation = btrfs_root_generation(root_item);
2664 	subvol_info->flags = btrfs_root_flags(root_item);
2665 
2666 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2667 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2668 						    BTRFS_UUID_SIZE);
2669 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2670 						    BTRFS_UUID_SIZE);
2671 
2672 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2673 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2674 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2675 
2676 	subvol_info->otransid = btrfs_root_otransid(root_item);
2677 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2678 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2679 
2680 	subvol_info->stransid = btrfs_root_stransid(root_item);
2681 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2682 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2683 
2684 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2685 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2686 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2687 
2688 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2689 		/* Search root tree for ROOT_BACKREF of this subvolume */
2690 		root = fs_info->tree_root;
2691 
2692 		key.type = BTRFS_ROOT_BACKREF_KEY;
2693 		key.offset = 0;
2694 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2695 		if (ret < 0) {
2696 			goto out;
2697 		} else if (path->slots[0] >=
2698 			   btrfs_header_nritems(path->nodes[0])) {
2699 			ret = btrfs_next_leaf(root, path);
2700 			if (ret < 0) {
2701 				goto out;
2702 			} else if (ret > 0) {
2703 				ret = -EUCLEAN;
2704 				goto out;
2705 			}
2706 		}
2707 
2708 		leaf = path->nodes[0];
2709 		slot = path->slots[0];
2710 		btrfs_item_key_to_cpu(leaf, &key, slot);
2711 		if (key.objectid == subvol_info->treeid &&
2712 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2713 			subvol_info->parent_id = key.offset;
2714 
2715 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2716 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2717 
2718 			item_off = btrfs_item_ptr_offset(leaf, slot)
2719 					+ sizeof(struct btrfs_root_ref);
2720 			item_len = btrfs_item_size_nr(leaf, slot)
2721 					- sizeof(struct btrfs_root_ref);
2722 			read_extent_buffer(leaf, subvol_info->name,
2723 					   item_off, item_len);
2724 		} else {
2725 			ret = -ENOENT;
2726 			goto out;
2727 		}
2728 	}
2729 
2730 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2731 		ret = -EFAULT;
2732 
2733 out:
2734 	btrfs_free_path(path);
2735 	kzfree(subvol_info);
2736 	return ret;
2737 }
2738 
2739 /*
2740  * Return ROOT_REF information of the subvolume containing this inode
2741  * except the subvolume name.
2742  */
2743 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2744 {
2745 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2746 	struct btrfs_root_ref *rref;
2747 	struct btrfs_root *root;
2748 	struct btrfs_path *path;
2749 	struct btrfs_key key;
2750 	struct extent_buffer *leaf;
2751 	struct inode *inode;
2752 	u64 objectid;
2753 	int slot;
2754 	int ret;
2755 	u8 found;
2756 
2757 	path = btrfs_alloc_path();
2758 	if (!path)
2759 		return -ENOMEM;
2760 
2761 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2762 	if (IS_ERR(rootrefs)) {
2763 		btrfs_free_path(path);
2764 		return PTR_ERR(rootrefs);
2765 	}
2766 
2767 	inode = file_inode(file);
2768 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2769 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2770 
2771 	key.objectid = objectid;
2772 	key.type = BTRFS_ROOT_REF_KEY;
2773 	key.offset = rootrefs->min_treeid;
2774 	found = 0;
2775 
2776 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2777 	if (ret < 0) {
2778 		goto out;
2779 	} else if (path->slots[0] >=
2780 		   btrfs_header_nritems(path->nodes[0])) {
2781 		ret = btrfs_next_leaf(root, path);
2782 		if (ret < 0) {
2783 			goto out;
2784 		} else if (ret > 0) {
2785 			ret = -EUCLEAN;
2786 			goto out;
2787 		}
2788 	}
2789 	while (1) {
2790 		leaf = path->nodes[0];
2791 		slot = path->slots[0];
2792 
2793 		btrfs_item_key_to_cpu(leaf, &key, slot);
2794 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2795 			ret = 0;
2796 			goto out;
2797 		}
2798 
2799 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2800 			ret = -EOVERFLOW;
2801 			goto out;
2802 		}
2803 
2804 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2805 		rootrefs->rootref[found].treeid = key.offset;
2806 		rootrefs->rootref[found].dirid =
2807 				  btrfs_root_ref_dirid(leaf, rref);
2808 		found++;
2809 
2810 		ret = btrfs_next_item(root, path);
2811 		if (ret < 0) {
2812 			goto out;
2813 		} else if (ret > 0) {
2814 			ret = -EUCLEAN;
2815 			goto out;
2816 		}
2817 	}
2818 
2819 out:
2820 	if (!ret || ret == -EOVERFLOW) {
2821 		rootrefs->num_items = found;
2822 		/* update min_treeid for next search */
2823 		if (found)
2824 			rootrefs->min_treeid =
2825 				rootrefs->rootref[found - 1].treeid + 1;
2826 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2827 			ret = -EFAULT;
2828 	}
2829 
2830 	kfree(rootrefs);
2831 	btrfs_free_path(path);
2832 
2833 	return ret;
2834 }
2835 
2836 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2837 					     void __user *arg)
2838 {
2839 	struct dentry *parent = file->f_path.dentry;
2840 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2841 	struct dentry *dentry;
2842 	struct inode *dir = d_inode(parent);
2843 	struct inode *inode;
2844 	struct btrfs_root *root = BTRFS_I(dir)->root;
2845 	struct btrfs_root *dest = NULL;
2846 	struct btrfs_ioctl_vol_args *vol_args;
2847 	int namelen;
2848 	int err = 0;
2849 
2850 	if (!S_ISDIR(dir->i_mode))
2851 		return -ENOTDIR;
2852 
2853 	vol_args = memdup_user(arg, sizeof(*vol_args));
2854 	if (IS_ERR(vol_args))
2855 		return PTR_ERR(vol_args);
2856 
2857 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2858 	namelen = strlen(vol_args->name);
2859 	if (strchr(vol_args->name, '/') ||
2860 	    strncmp(vol_args->name, "..", namelen) == 0) {
2861 		err = -EINVAL;
2862 		goto out;
2863 	}
2864 
2865 	err = mnt_want_write_file(file);
2866 	if (err)
2867 		goto out;
2868 
2869 
2870 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2871 	if (err == -EINTR)
2872 		goto out_drop_write;
2873 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2874 	if (IS_ERR(dentry)) {
2875 		err = PTR_ERR(dentry);
2876 		goto out_unlock_dir;
2877 	}
2878 
2879 	if (d_really_is_negative(dentry)) {
2880 		err = -ENOENT;
2881 		goto out_dput;
2882 	}
2883 
2884 	inode = d_inode(dentry);
2885 	dest = BTRFS_I(inode)->root;
2886 	if (!capable(CAP_SYS_ADMIN)) {
2887 		/*
2888 		 * Regular user.  Only allow this with a special mount
2889 		 * option, when the user has write+exec access to the
2890 		 * subvol root, and when rmdir(2) would have been
2891 		 * allowed.
2892 		 *
2893 		 * Note that this is _not_ check that the subvol is
2894 		 * empty or doesn't contain data that we wouldn't
2895 		 * otherwise be able to delete.
2896 		 *
2897 		 * Users who want to delete empty subvols should try
2898 		 * rmdir(2).
2899 		 */
2900 		err = -EPERM;
2901 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2902 			goto out_dput;
2903 
2904 		/*
2905 		 * Do not allow deletion if the parent dir is the same
2906 		 * as the dir to be deleted.  That means the ioctl
2907 		 * must be called on the dentry referencing the root
2908 		 * of the subvol, not a random directory contained
2909 		 * within it.
2910 		 */
2911 		err = -EINVAL;
2912 		if (root == dest)
2913 			goto out_dput;
2914 
2915 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2916 		if (err)
2917 			goto out_dput;
2918 	}
2919 
2920 	/* check if subvolume may be deleted by a user */
2921 	err = btrfs_may_delete(dir, dentry, 1);
2922 	if (err)
2923 		goto out_dput;
2924 
2925 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2926 		err = -EINVAL;
2927 		goto out_dput;
2928 	}
2929 
2930 	inode_lock(inode);
2931 	err = btrfs_delete_subvolume(dir, dentry);
2932 	inode_unlock(inode);
2933 	if (!err)
2934 		d_delete(dentry);
2935 
2936 out_dput:
2937 	dput(dentry);
2938 out_unlock_dir:
2939 	inode_unlock(dir);
2940 out_drop_write:
2941 	mnt_drop_write_file(file);
2942 out:
2943 	kfree(vol_args);
2944 	return err;
2945 }
2946 
2947 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2948 {
2949 	struct inode *inode = file_inode(file);
2950 	struct btrfs_root *root = BTRFS_I(inode)->root;
2951 	struct btrfs_ioctl_defrag_range_args *range;
2952 	int ret;
2953 
2954 	ret = mnt_want_write_file(file);
2955 	if (ret)
2956 		return ret;
2957 
2958 	if (btrfs_root_readonly(root)) {
2959 		ret = -EROFS;
2960 		goto out;
2961 	}
2962 
2963 	switch (inode->i_mode & S_IFMT) {
2964 	case S_IFDIR:
2965 		if (!capable(CAP_SYS_ADMIN)) {
2966 			ret = -EPERM;
2967 			goto out;
2968 		}
2969 		ret = btrfs_defrag_root(root);
2970 		break;
2971 	case S_IFREG:
2972 		/*
2973 		 * Note that this does not check the file descriptor for write
2974 		 * access. This prevents defragmenting executables that are
2975 		 * running and allows defrag on files open in read-only mode.
2976 		 */
2977 		if (!capable(CAP_SYS_ADMIN) &&
2978 		    inode_permission(inode, MAY_WRITE)) {
2979 			ret = -EPERM;
2980 			goto out;
2981 		}
2982 
2983 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2984 		if (!range) {
2985 			ret = -ENOMEM;
2986 			goto out;
2987 		}
2988 
2989 		if (argp) {
2990 			if (copy_from_user(range, argp,
2991 					   sizeof(*range))) {
2992 				ret = -EFAULT;
2993 				kfree(range);
2994 				goto out;
2995 			}
2996 			/* compression requires us to start the IO */
2997 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2998 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2999 				range->extent_thresh = (u32)-1;
3000 			}
3001 		} else {
3002 			/* the rest are all set to zero by kzalloc */
3003 			range->len = (u64)-1;
3004 		}
3005 		ret = btrfs_defrag_file(file_inode(file), file,
3006 					range, BTRFS_OLDEST_GENERATION, 0);
3007 		if (ret > 0)
3008 			ret = 0;
3009 		kfree(range);
3010 		break;
3011 	default:
3012 		ret = -EINVAL;
3013 	}
3014 out:
3015 	mnt_drop_write_file(file);
3016 	return ret;
3017 }
3018 
3019 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3020 {
3021 	struct btrfs_ioctl_vol_args *vol_args;
3022 	int ret;
3023 
3024 	if (!capable(CAP_SYS_ADMIN))
3025 		return -EPERM;
3026 
3027 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3028 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3029 
3030 	vol_args = memdup_user(arg, sizeof(*vol_args));
3031 	if (IS_ERR(vol_args)) {
3032 		ret = PTR_ERR(vol_args);
3033 		goto out;
3034 	}
3035 
3036 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3037 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3038 
3039 	if (!ret)
3040 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3041 
3042 	kfree(vol_args);
3043 out:
3044 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3045 	return ret;
3046 }
3047 
3048 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3049 {
3050 	struct inode *inode = file_inode(file);
3051 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3052 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3053 	int ret;
3054 
3055 	if (!capable(CAP_SYS_ADMIN))
3056 		return -EPERM;
3057 
3058 	ret = mnt_want_write_file(file);
3059 	if (ret)
3060 		return ret;
3061 
3062 	vol_args = memdup_user(arg, sizeof(*vol_args));
3063 	if (IS_ERR(vol_args)) {
3064 		ret = PTR_ERR(vol_args);
3065 		goto err_drop;
3066 	}
3067 
3068 	/* Check for compatibility reject unknown flags */
3069 	if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) {
3070 		ret = -EOPNOTSUPP;
3071 		goto out;
3072 	}
3073 
3074 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3075 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3076 		goto out;
3077 	}
3078 
3079 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3080 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3081 	} else {
3082 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3083 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3084 	}
3085 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3086 
3087 	if (!ret) {
3088 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3089 			btrfs_info(fs_info, "device deleted: id %llu",
3090 					vol_args->devid);
3091 		else
3092 			btrfs_info(fs_info, "device deleted: %s",
3093 					vol_args->name);
3094 	}
3095 out:
3096 	kfree(vol_args);
3097 err_drop:
3098 	mnt_drop_write_file(file);
3099 	return ret;
3100 }
3101 
3102 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3103 {
3104 	struct inode *inode = file_inode(file);
3105 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3106 	struct btrfs_ioctl_vol_args *vol_args;
3107 	int ret;
3108 
3109 	if (!capable(CAP_SYS_ADMIN))
3110 		return -EPERM;
3111 
3112 	ret = mnt_want_write_file(file);
3113 	if (ret)
3114 		return ret;
3115 
3116 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3117 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3118 		goto out_drop_write;
3119 	}
3120 
3121 	vol_args = memdup_user(arg, sizeof(*vol_args));
3122 	if (IS_ERR(vol_args)) {
3123 		ret = PTR_ERR(vol_args);
3124 		goto out;
3125 	}
3126 
3127 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3128 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3129 
3130 	if (!ret)
3131 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3132 	kfree(vol_args);
3133 out:
3134 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3135 out_drop_write:
3136 	mnt_drop_write_file(file);
3137 
3138 	return ret;
3139 }
3140 
3141 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3142 				void __user *arg)
3143 {
3144 	struct btrfs_ioctl_fs_info_args *fi_args;
3145 	struct btrfs_device *device;
3146 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3147 	int ret = 0;
3148 
3149 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
3150 	if (!fi_args)
3151 		return -ENOMEM;
3152 
3153 	rcu_read_lock();
3154 	fi_args->num_devices = fs_devices->num_devices;
3155 
3156 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3157 		if (device->devid > fi_args->max_id)
3158 			fi_args->max_id = device->devid;
3159 	}
3160 	rcu_read_unlock();
3161 
3162 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3163 	fi_args->nodesize = fs_info->nodesize;
3164 	fi_args->sectorsize = fs_info->sectorsize;
3165 	fi_args->clone_alignment = fs_info->sectorsize;
3166 
3167 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3168 		ret = -EFAULT;
3169 
3170 	kfree(fi_args);
3171 	return ret;
3172 }
3173 
3174 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3175 				 void __user *arg)
3176 {
3177 	struct btrfs_ioctl_dev_info_args *di_args;
3178 	struct btrfs_device *dev;
3179 	int ret = 0;
3180 	char *s_uuid = NULL;
3181 
3182 	di_args = memdup_user(arg, sizeof(*di_args));
3183 	if (IS_ERR(di_args))
3184 		return PTR_ERR(di_args);
3185 
3186 	if (!btrfs_is_empty_uuid(di_args->uuid))
3187 		s_uuid = di_args->uuid;
3188 
3189 	rcu_read_lock();
3190 	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3191 				NULL, true);
3192 
3193 	if (!dev) {
3194 		ret = -ENODEV;
3195 		goto out;
3196 	}
3197 
3198 	di_args->devid = dev->devid;
3199 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3200 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3201 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3202 	if (dev->name) {
3203 		strncpy(di_args->path, rcu_str_deref(dev->name),
3204 				sizeof(di_args->path) - 1);
3205 		di_args->path[sizeof(di_args->path) - 1] = 0;
3206 	} else {
3207 		di_args->path[0] = '\0';
3208 	}
3209 
3210 out:
3211 	rcu_read_unlock();
3212 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3213 		ret = -EFAULT;
3214 
3215 	kfree(di_args);
3216 	return ret;
3217 }
3218 
3219 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
3220 				       struct inode *inode2, u64 loff2, u64 len)
3221 {
3222 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3223 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3224 }
3225 
3226 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
3227 				     struct inode *inode2, u64 loff2, u64 len)
3228 {
3229 	if (inode1 < inode2) {
3230 		swap(inode1, inode2);
3231 		swap(loff1, loff2);
3232 	} else if (inode1 == inode2 && loff2 < loff1) {
3233 		swap(loff1, loff2);
3234 	}
3235 	lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3236 	lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3237 }
3238 
3239 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len,
3240 				   struct inode *dst, u64 dst_loff)
3241 {
3242 	int ret;
3243 
3244 	/*
3245 	 * Lock destination range to serialize with concurrent readpages() and
3246 	 * source range to serialize with relocation.
3247 	 */
3248 	btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
3249 	ret = btrfs_clone(src, dst, loff, len, len, dst_loff, 1);
3250 	btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3251 
3252 	return ret;
3253 }
3254 
3255 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3256 
3257 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3258 			     struct inode *dst, u64 dst_loff)
3259 {
3260 	int ret;
3261 	u64 i, tail_len, chunk_count;
3262 	struct btrfs_root *root_dst = BTRFS_I(dst)->root;
3263 
3264 	spin_lock(&root_dst->root_item_lock);
3265 	if (root_dst->send_in_progress) {
3266 		btrfs_warn_rl(root_dst->fs_info,
3267 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
3268 			      root_dst->root_key.objectid,
3269 			      root_dst->send_in_progress);
3270 		spin_unlock(&root_dst->root_item_lock);
3271 		return -EAGAIN;
3272 	}
3273 	root_dst->dedupe_in_progress++;
3274 	spin_unlock(&root_dst->root_item_lock);
3275 
3276 	tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
3277 	chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
3278 
3279 	for (i = 0; i < chunk_count; i++) {
3280 		ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
3281 					      dst, dst_loff);
3282 		if (ret)
3283 			goto out;
3284 
3285 		loff += BTRFS_MAX_DEDUPE_LEN;
3286 		dst_loff += BTRFS_MAX_DEDUPE_LEN;
3287 	}
3288 
3289 	if (tail_len > 0)
3290 		ret = btrfs_extent_same_range(src, loff, tail_len, dst,
3291 					      dst_loff);
3292 out:
3293 	spin_lock(&root_dst->root_item_lock);
3294 	root_dst->dedupe_in_progress--;
3295 	spin_unlock(&root_dst->root_item_lock);
3296 
3297 	return ret;
3298 }
3299 
3300 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3301 				     struct inode *inode,
3302 				     u64 endoff,
3303 				     const u64 destoff,
3304 				     const u64 olen,
3305 				     int no_time_update)
3306 {
3307 	struct btrfs_root *root = BTRFS_I(inode)->root;
3308 	int ret;
3309 
3310 	inode_inc_iversion(inode);
3311 	if (!no_time_update)
3312 		inode->i_mtime = inode->i_ctime = current_time(inode);
3313 	/*
3314 	 * We round up to the block size at eof when determining which
3315 	 * extents to clone above, but shouldn't round up the file size.
3316 	 */
3317 	if (endoff > destoff + olen)
3318 		endoff = destoff + olen;
3319 	if (endoff > inode->i_size)
3320 		btrfs_i_size_write(BTRFS_I(inode), endoff);
3321 
3322 	ret = btrfs_update_inode(trans, root, inode);
3323 	if (ret) {
3324 		btrfs_abort_transaction(trans, ret);
3325 		btrfs_end_transaction(trans);
3326 		goto out;
3327 	}
3328 	ret = btrfs_end_transaction(trans);
3329 out:
3330 	return ret;
3331 }
3332 
3333 static void clone_update_extent_map(struct btrfs_inode *inode,
3334 				    const struct btrfs_trans_handle *trans,
3335 				    const struct btrfs_path *path,
3336 				    const u64 hole_offset,
3337 				    const u64 hole_len)
3338 {
3339 	struct extent_map_tree *em_tree = &inode->extent_tree;
3340 	struct extent_map *em;
3341 	int ret;
3342 
3343 	em = alloc_extent_map();
3344 	if (!em) {
3345 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3346 		return;
3347 	}
3348 
3349 	if (path) {
3350 		struct btrfs_file_extent_item *fi;
3351 
3352 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3353 				    struct btrfs_file_extent_item);
3354 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3355 		em->generation = -1;
3356 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3357 		    BTRFS_FILE_EXTENT_INLINE)
3358 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3359 					&inode->runtime_flags);
3360 	} else {
3361 		em->start = hole_offset;
3362 		em->len = hole_len;
3363 		em->ram_bytes = em->len;
3364 		em->orig_start = hole_offset;
3365 		em->block_start = EXTENT_MAP_HOLE;
3366 		em->block_len = 0;
3367 		em->orig_block_len = 0;
3368 		em->compress_type = BTRFS_COMPRESS_NONE;
3369 		em->generation = trans->transid;
3370 	}
3371 
3372 	while (1) {
3373 		write_lock(&em_tree->lock);
3374 		ret = add_extent_mapping(em_tree, em, 1);
3375 		write_unlock(&em_tree->lock);
3376 		if (ret != -EEXIST) {
3377 			free_extent_map(em);
3378 			break;
3379 		}
3380 		btrfs_drop_extent_cache(inode, em->start,
3381 					em->start + em->len - 1, 0);
3382 	}
3383 
3384 	if (ret)
3385 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3386 }
3387 
3388 /*
3389  * Make sure we do not end up inserting an inline extent into a file that has
3390  * already other (non-inline) extents. If a file has an inline extent it can
3391  * not have any other extents and the (single) inline extent must start at the
3392  * file offset 0. Failing to respect these rules will lead to file corruption,
3393  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3394  *
3395  * We can have extents that have been already written to disk or we can have
3396  * dirty ranges still in delalloc, in which case the extent maps and items are
3397  * created only when we run delalloc, and the delalloc ranges might fall outside
3398  * the range we are currently locking in the inode's io tree. So we check the
3399  * inode's i_size because of that (i_size updates are done while holding the
3400  * i_mutex, which we are holding here).
3401  * We also check to see if the inode has a size not greater than "datal" but has
3402  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3403  * protected against such concurrent fallocate calls by the i_mutex).
3404  *
3405  * If the file has no extents but a size greater than datal, do not allow the
3406  * copy because we would need turn the inline extent into a non-inline one (even
3407  * with NO_HOLES enabled). If we find our destination inode only has one inline
3408  * extent, just overwrite it with the source inline extent if its size is less
3409  * than the source extent's size, or we could copy the source inline extent's
3410  * data into the destination inode's inline extent if the later is greater then
3411  * the former.
3412  */
3413 static int clone_copy_inline_extent(struct inode *dst,
3414 				    struct btrfs_trans_handle *trans,
3415 				    struct btrfs_path *path,
3416 				    struct btrfs_key *new_key,
3417 				    const u64 drop_start,
3418 				    const u64 datal,
3419 				    const u64 skip,
3420 				    const u64 size,
3421 				    char *inline_data)
3422 {
3423 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3424 	struct btrfs_root *root = BTRFS_I(dst)->root;
3425 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3426 				      fs_info->sectorsize);
3427 	int ret;
3428 	struct btrfs_key key;
3429 
3430 	if (new_key->offset > 0)
3431 		return -EOPNOTSUPP;
3432 
3433 	key.objectid = btrfs_ino(BTRFS_I(dst));
3434 	key.type = BTRFS_EXTENT_DATA_KEY;
3435 	key.offset = 0;
3436 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3437 	if (ret < 0) {
3438 		return ret;
3439 	} else if (ret > 0) {
3440 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3441 			ret = btrfs_next_leaf(root, path);
3442 			if (ret < 0)
3443 				return ret;
3444 			else if (ret > 0)
3445 				goto copy_inline_extent;
3446 		}
3447 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3448 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3449 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3450 			ASSERT(key.offset > 0);
3451 			return -EOPNOTSUPP;
3452 		}
3453 	} else if (i_size_read(dst) <= datal) {
3454 		struct btrfs_file_extent_item *ei;
3455 		u64 ext_len;
3456 
3457 		/*
3458 		 * If the file size is <= datal, make sure there are no other
3459 		 * extents following (can happen do to an fallocate call with
3460 		 * the flag FALLOC_FL_KEEP_SIZE).
3461 		 */
3462 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3463 				    struct btrfs_file_extent_item);
3464 		/*
3465 		 * If it's an inline extent, it can not have other extents
3466 		 * following it.
3467 		 */
3468 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3469 		    BTRFS_FILE_EXTENT_INLINE)
3470 			goto copy_inline_extent;
3471 
3472 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3473 		if (ext_len > aligned_end)
3474 			return -EOPNOTSUPP;
3475 
3476 		ret = btrfs_next_item(root, path);
3477 		if (ret < 0) {
3478 			return ret;
3479 		} else if (ret == 0) {
3480 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3481 					      path->slots[0]);
3482 			if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3483 			    key.type == BTRFS_EXTENT_DATA_KEY)
3484 				return -EOPNOTSUPP;
3485 		}
3486 	}
3487 
3488 copy_inline_extent:
3489 	/*
3490 	 * We have no extent items, or we have an extent at offset 0 which may
3491 	 * or may not be inlined. All these cases are dealt the same way.
3492 	 */
3493 	if (i_size_read(dst) > datal) {
3494 		/*
3495 		 * If the destination inode has an inline extent...
3496 		 * This would require copying the data from the source inline
3497 		 * extent into the beginning of the destination's inline extent.
3498 		 * But this is really complex, both extents can be compressed
3499 		 * or just one of them, which would require decompressing and
3500 		 * re-compressing data (which could increase the new compressed
3501 		 * size, not allowing the compressed data to fit anymore in an
3502 		 * inline extent).
3503 		 * So just don't support this case for now (it should be rare,
3504 		 * we are not really saving space when cloning inline extents).
3505 		 */
3506 		return -EOPNOTSUPP;
3507 	}
3508 
3509 	btrfs_release_path(path);
3510 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3511 	if (ret)
3512 		return ret;
3513 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3514 	if (ret)
3515 		return ret;
3516 
3517 	if (skip) {
3518 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3519 
3520 		memmove(inline_data + start, inline_data + start + skip, datal);
3521 	}
3522 
3523 	write_extent_buffer(path->nodes[0], inline_data,
3524 			    btrfs_item_ptr_offset(path->nodes[0],
3525 						  path->slots[0]),
3526 			    size);
3527 	inode_add_bytes(dst, datal);
3528 
3529 	return 0;
3530 }
3531 
3532 /**
3533  * btrfs_clone() - clone a range from inode file to another
3534  *
3535  * @src: Inode to clone from
3536  * @inode: Inode to clone to
3537  * @off: Offset within source to start clone from
3538  * @olen: Original length, passed by user, of range to clone
3539  * @olen_aligned: Block-aligned value of olen
3540  * @destoff: Offset within @inode to start clone
3541  * @no_time_update: Whether to update mtime/ctime on the target inode
3542  */
3543 static int btrfs_clone(struct inode *src, struct inode *inode,
3544 		       const u64 off, const u64 olen, const u64 olen_aligned,
3545 		       const u64 destoff, int no_time_update)
3546 {
3547 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3548 	struct btrfs_root *root = BTRFS_I(inode)->root;
3549 	struct btrfs_path *path = NULL;
3550 	struct extent_buffer *leaf;
3551 	struct btrfs_trans_handle *trans;
3552 	char *buf = NULL;
3553 	struct btrfs_key key;
3554 	u32 nritems;
3555 	int slot;
3556 	int ret;
3557 	const u64 len = olen_aligned;
3558 	u64 last_dest_end = destoff;
3559 
3560 	ret = -ENOMEM;
3561 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3562 	if (!buf)
3563 		return ret;
3564 
3565 	path = btrfs_alloc_path();
3566 	if (!path) {
3567 		kvfree(buf);
3568 		return ret;
3569 	}
3570 
3571 	path->reada = READA_FORWARD;
3572 	/* clone data */
3573 	key.objectid = btrfs_ino(BTRFS_I(src));
3574 	key.type = BTRFS_EXTENT_DATA_KEY;
3575 	key.offset = off;
3576 
3577 	while (1) {
3578 		u64 next_key_min_offset = key.offset + 1;
3579 
3580 		/*
3581 		 * note the key will change type as we walk through the
3582 		 * tree.
3583 		 */
3584 		path->leave_spinning = 1;
3585 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3586 				0, 0);
3587 		if (ret < 0)
3588 			goto out;
3589 		/*
3590 		 * First search, if no extent item that starts at offset off was
3591 		 * found but the previous item is an extent item, it's possible
3592 		 * it might overlap our target range, therefore process it.
3593 		 */
3594 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3595 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3596 					      path->slots[0] - 1);
3597 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3598 				path->slots[0]--;
3599 		}
3600 
3601 		nritems = btrfs_header_nritems(path->nodes[0]);
3602 process_slot:
3603 		if (path->slots[0] >= nritems) {
3604 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3605 			if (ret < 0)
3606 				goto out;
3607 			if (ret > 0)
3608 				break;
3609 			nritems = btrfs_header_nritems(path->nodes[0]);
3610 		}
3611 		leaf = path->nodes[0];
3612 		slot = path->slots[0];
3613 
3614 		btrfs_item_key_to_cpu(leaf, &key, slot);
3615 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3616 		    key.objectid != btrfs_ino(BTRFS_I(src)))
3617 			break;
3618 
3619 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3620 			struct btrfs_file_extent_item *extent;
3621 			int type;
3622 			u32 size;
3623 			struct btrfs_key new_key;
3624 			u64 disko = 0, diskl = 0;
3625 			u64 datao = 0, datal = 0;
3626 			u8 comp;
3627 			u64 drop_start;
3628 
3629 			extent = btrfs_item_ptr(leaf, slot,
3630 						struct btrfs_file_extent_item);
3631 			comp = btrfs_file_extent_compression(leaf, extent);
3632 			type = btrfs_file_extent_type(leaf, extent);
3633 			if (type == BTRFS_FILE_EXTENT_REG ||
3634 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3635 				disko = btrfs_file_extent_disk_bytenr(leaf,
3636 								      extent);
3637 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3638 								 extent);
3639 				datao = btrfs_file_extent_offset(leaf, extent);
3640 				datal = btrfs_file_extent_num_bytes(leaf,
3641 								    extent);
3642 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3643 				/* take upper bound, may be compressed */
3644 				datal = btrfs_file_extent_ram_bytes(leaf,
3645 								    extent);
3646 			}
3647 
3648 			/*
3649 			 * The first search might have left us at an extent
3650 			 * item that ends before our target range's start, can
3651 			 * happen if we have holes and NO_HOLES feature enabled.
3652 			 */
3653 			if (key.offset + datal <= off) {
3654 				path->slots[0]++;
3655 				goto process_slot;
3656 			} else if (key.offset >= off + len) {
3657 				break;
3658 			}
3659 			next_key_min_offset = key.offset + datal;
3660 			size = btrfs_item_size_nr(leaf, slot);
3661 			read_extent_buffer(leaf, buf,
3662 					   btrfs_item_ptr_offset(leaf, slot),
3663 					   size);
3664 
3665 			btrfs_release_path(path);
3666 			path->leave_spinning = 0;
3667 
3668 			memcpy(&new_key, &key, sizeof(new_key));
3669 			new_key.objectid = btrfs_ino(BTRFS_I(inode));
3670 			if (off <= key.offset)
3671 				new_key.offset = key.offset + destoff - off;
3672 			else
3673 				new_key.offset = destoff;
3674 
3675 			/*
3676 			 * Deal with a hole that doesn't have an extent item
3677 			 * that represents it (NO_HOLES feature enabled).
3678 			 * This hole is either in the middle of the cloning
3679 			 * range or at the beginning (fully overlaps it or
3680 			 * partially overlaps it).
3681 			 */
3682 			if (new_key.offset != last_dest_end)
3683 				drop_start = last_dest_end;
3684 			else
3685 				drop_start = new_key.offset;
3686 
3687 			/*
3688 			 * 1 - adjusting old extent (we may have to split it)
3689 			 * 1 - add new extent
3690 			 * 1 - inode update
3691 			 */
3692 			trans = btrfs_start_transaction(root, 3);
3693 			if (IS_ERR(trans)) {
3694 				ret = PTR_ERR(trans);
3695 				goto out;
3696 			}
3697 
3698 			if (type == BTRFS_FILE_EXTENT_REG ||
3699 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3700 				/*
3701 				 *    a  | --- range to clone ---|  b
3702 				 * | ------------- extent ------------- |
3703 				 */
3704 
3705 				/* subtract range b */
3706 				if (key.offset + datal > off + len)
3707 					datal = off + len - key.offset;
3708 
3709 				/* subtract range a */
3710 				if (off > key.offset) {
3711 					datao += off - key.offset;
3712 					datal -= off - key.offset;
3713 				}
3714 
3715 				ret = btrfs_drop_extents(trans, root, inode,
3716 							 drop_start,
3717 							 new_key.offset + datal,
3718 							 1);
3719 				if (ret) {
3720 					if (ret != -EOPNOTSUPP)
3721 						btrfs_abort_transaction(trans,
3722 									ret);
3723 					btrfs_end_transaction(trans);
3724 					goto out;
3725 				}
3726 
3727 				ret = btrfs_insert_empty_item(trans, root, path,
3728 							      &new_key, size);
3729 				if (ret) {
3730 					btrfs_abort_transaction(trans, ret);
3731 					btrfs_end_transaction(trans);
3732 					goto out;
3733 				}
3734 
3735 				leaf = path->nodes[0];
3736 				slot = path->slots[0];
3737 				write_extent_buffer(leaf, buf,
3738 					    btrfs_item_ptr_offset(leaf, slot),
3739 					    size);
3740 
3741 				extent = btrfs_item_ptr(leaf, slot,
3742 						struct btrfs_file_extent_item);
3743 
3744 				/* disko == 0 means it's a hole */
3745 				if (!disko)
3746 					datao = 0;
3747 
3748 				btrfs_set_file_extent_offset(leaf, extent,
3749 							     datao);
3750 				btrfs_set_file_extent_num_bytes(leaf, extent,
3751 								datal);
3752 
3753 				if (disko) {
3754 					struct btrfs_ref ref = { 0 };
3755 					inode_add_bytes(inode, datal);
3756 					btrfs_init_generic_ref(&ref,
3757 						BTRFS_ADD_DELAYED_REF, disko,
3758 						diskl, 0);
3759 					btrfs_init_data_ref(&ref,
3760 						root->root_key.objectid,
3761 						btrfs_ino(BTRFS_I(inode)),
3762 						new_key.offset - datao);
3763 					ret = btrfs_inc_extent_ref(trans, &ref);
3764 					if (ret) {
3765 						btrfs_abort_transaction(trans,
3766 									ret);
3767 						btrfs_end_transaction(trans);
3768 						goto out;
3769 
3770 					}
3771 				}
3772 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3773 				u64 skip = 0;
3774 				u64 trim = 0;
3775 
3776 				if (off > key.offset) {
3777 					skip = off - key.offset;
3778 					new_key.offset += skip;
3779 				}
3780 
3781 				if (key.offset + datal > off + len)
3782 					trim = key.offset + datal - (off + len);
3783 
3784 				if (comp && (skip || trim)) {
3785 					ret = -EINVAL;
3786 					btrfs_end_transaction(trans);
3787 					goto out;
3788 				}
3789 				size -= skip + trim;
3790 				datal -= skip + trim;
3791 
3792 				ret = clone_copy_inline_extent(inode,
3793 							       trans, path,
3794 							       &new_key,
3795 							       drop_start,
3796 							       datal,
3797 							       skip, size, buf);
3798 				if (ret) {
3799 					if (ret != -EOPNOTSUPP)
3800 						btrfs_abort_transaction(trans,
3801 									ret);
3802 					btrfs_end_transaction(trans);
3803 					goto out;
3804 				}
3805 				leaf = path->nodes[0];
3806 				slot = path->slots[0];
3807 			}
3808 
3809 			/* If we have an implicit hole (NO_HOLES feature). */
3810 			if (drop_start < new_key.offset)
3811 				clone_update_extent_map(BTRFS_I(inode), trans,
3812 						NULL, drop_start,
3813 						new_key.offset - drop_start);
3814 
3815 			clone_update_extent_map(BTRFS_I(inode), trans,
3816 					path, 0, 0);
3817 
3818 			btrfs_mark_buffer_dirty(leaf);
3819 			btrfs_release_path(path);
3820 
3821 			last_dest_end = ALIGN(new_key.offset + datal,
3822 					      fs_info->sectorsize);
3823 			ret = clone_finish_inode_update(trans, inode,
3824 							last_dest_end,
3825 							destoff, olen,
3826 							no_time_update);
3827 			if (ret)
3828 				goto out;
3829 			if (new_key.offset + datal >= destoff + len)
3830 				break;
3831 		}
3832 		btrfs_release_path(path);
3833 		key.offset = next_key_min_offset;
3834 
3835 		if (fatal_signal_pending(current)) {
3836 			ret = -EINTR;
3837 			goto out;
3838 		}
3839 	}
3840 	ret = 0;
3841 
3842 	if (last_dest_end < destoff + len) {
3843 		/*
3844 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3845 		 * fully or partially overlaps our cloning range at its end.
3846 		 */
3847 		btrfs_release_path(path);
3848 
3849 		/*
3850 		 * 1 - remove extent(s)
3851 		 * 1 - inode update
3852 		 */
3853 		trans = btrfs_start_transaction(root, 2);
3854 		if (IS_ERR(trans)) {
3855 			ret = PTR_ERR(trans);
3856 			goto out;
3857 		}
3858 		ret = btrfs_drop_extents(trans, root, inode,
3859 					 last_dest_end, destoff + len, 1);
3860 		if (ret) {
3861 			if (ret != -EOPNOTSUPP)
3862 				btrfs_abort_transaction(trans, ret);
3863 			btrfs_end_transaction(trans);
3864 			goto out;
3865 		}
3866 		clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3867 				last_dest_end,
3868 				destoff + len - last_dest_end);
3869 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3870 						destoff, olen, no_time_update);
3871 	}
3872 
3873 out:
3874 	btrfs_free_path(path);
3875 	kvfree(buf);
3876 	return ret;
3877 }
3878 
3879 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3880 					u64 off, u64 olen, u64 destoff)
3881 {
3882 	struct inode *inode = file_inode(file);
3883 	struct inode *src = file_inode(file_src);
3884 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3885 	int ret;
3886 	u64 len = olen;
3887 	u64 bs = fs_info->sb->s_blocksize;
3888 
3889 	/*
3890 	 * TODO:
3891 	 * - split compressed inline extents.  annoying: we need to
3892 	 *   decompress into destination's address_space (the file offset
3893 	 *   may change, so source mapping won't do), then recompress (or
3894 	 *   otherwise reinsert) a subrange.
3895 	 *
3896 	 * - split destination inode's inline extents.  The inline extents can
3897 	 *   be either compressed or non-compressed.
3898 	 */
3899 
3900 	/*
3901 	 * VFS's generic_remap_file_range_prep() protects us from cloning the
3902 	 * eof block into the middle of a file, which would result in corruption
3903 	 * if the file size is not blocksize aligned. So we don't need to check
3904 	 * for that case here.
3905 	 */
3906 	if (off + len == src->i_size)
3907 		len = ALIGN(src->i_size, bs) - off;
3908 
3909 	if (destoff > inode->i_size) {
3910 		const u64 wb_start = ALIGN_DOWN(inode->i_size, bs);
3911 
3912 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3913 		if (ret)
3914 			return ret;
3915 		/*
3916 		 * We may have truncated the last block if the inode's size is
3917 		 * not sector size aligned, so we need to wait for writeback to
3918 		 * complete before proceeding further, otherwise we can race
3919 		 * with cloning and attempt to increment a reference to an
3920 		 * extent that no longer exists (writeback completed right after
3921 		 * we found the previous extent covering eof and before we
3922 		 * attempted to increment its reference count).
3923 		 */
3924 		ret = btrfs_wait_ordered_range(inode, wb_start,
3925 					       destoff - wb_start);
3926 		if (ret)
3927 			return ret;
3928 	}
3929 
3930 	/*
3931 	 * Lock destination range to serialize with concurrent readpages() and
3932 	 * source range to serialize with relocation.
3933 	 */
3934 	btrfs_double_extent_lock(src, off, inode, destoff, len);
3935 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3936 	btrfs_double_extent_unlock(src, off, inode, destoff, len);
3937 	/*
3938 	 * Truncate page cache pages so that future reads will see the cloned
3939 	 * data immediately and not the previous data.
3940 	 */
3941 	truncate_inode_pages_range(&inode->i_data,
3942 				round_down(destoff, PAGE_SIZE),
3943 				round_up(destoff + len, PAGE_SIZE) - 1);
3944 
3945 	return ret;
3946 }
3947 
3948 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in,
3949 				       struct file *file_out, loff_t pos_out,
3950 				       loff_t *len, unsigned int remap_flags)
3951 {
3952 	struct inode *inode_in = file_inode(file_in);
3953 	struct inode *inode_out = file_inode(file_out);
3954 	u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize;
3955 	bool same_inode = inode_out == inode_in;
3956 	u64 wb_len;
3957 	int ret;
3958 
3959 	if (!(remap_flags & REMAP_FILE_DEDUP)) {
3960 		struct btrfs_root *root_out = BTRFS_I(inode_out)->root;
3961 
3962 		if (btrfs_root_readonly(root_out))
3963 			return -EROFS;
3964 
3965 		if (file_in->f_path.mnt != file_out->f_path.mnt ||
3966 		    inode_in->i_sb != inode_out->i_sb)
3967 			return -EXDEV;
3968 	}
3969 
3970 	/* don't make the dst file partly checksummed */
3971 	if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) !=
3972 	    (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) {
3973 		return -EINVAL;
3974 	}
3975 
3976 	/*
3977 	 * Now that the inodes are locked, we need to start writeback ourselves
3978 	 * and can not rely on the writeback from the VFS's generic helper
3979 	 * generic_remap_file_range_prep() because:
3980 	 *
3981 	 * 1) For compression we must call filemap_fdatawrite_range() range
3982 	 *    twice (btrfs_fdatawrite_range() does it for us), and the generic
3983 	 *    helper only calls it once;
3984 	 *
3985 	 * 2) filemap_fdatawrite_range(), called by the generic helper only
3986 	 *    waits for the writeback to complete, i.e. for IO to be done, and
3987 	 *    not for the ordered extents to complete. We need to wait for them
3988 	 *    to complete so that new file extent items are in the fs tree.
3989 	 */
3990 	if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP))
3991 		wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs);
3992 	else
3993 		wb_len = ALIGN(*len, bs);
3994 
3995 	/*
3996 	 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
3997 	 * any in progress could create its ordered extents after we wait for
3998 	 * existing ordered extents below).
3999 	 */
4000 	inode_dio_wait(inode_in);
4001 	if (!same_inode)
4002 		inode_dio_wait(inode_out);
4003 
4004 	ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs),
4005 				       wb_len);
4006 	if (ret < 0)
4007 		return ret;
4008 	ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs),
4009 				       wb_len);
4010 	if (ret < 0)
4011 		return ret;
4012 
4013 	return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
4014 					    len, remap_flags);
4015 }
4016 
4017 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
4018 		struct file *dst_file, loff_t destoff, loff_t len,
4019 		unsigned int remap_flags)
4020 {
4021 	struct inode *src_inode = file_inode(src_file);
4022 	struct inode *dst_inode = file_inode(dst_file);
4023 	bool same_inode = dst_inode == src_inode;
4024 	int ret;
4025 
4026 	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
4027 		return -EINVAL;
4028 
4029 	if (same_inode)
4030 		inode_lock(src_inode);
4031 	else
4032 		lock_two_nondirectories(src_inode, dst_inode);
4033 
4034 	ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff,
4035 					  &len, remap_flags);
4036 	if (ret < 0 || len == 0)
4037 		goto out_unlock;
4038 
4039 	if (remap_flags & REMAP_FILE_DEDUP)
4040 		ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff);
4041 	else
4042 		ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
4043 
4044 out_unlock:
4045 	if (same_inode)
4046 		inode_unlock(src_inode);
4047 	else
4048 		unlock_two_nondirectories(src_inode, dst_inode);
4049 
4050 	return ret < 0 ? ret : len;
4051 }
4052 
4053 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4054 {
4055 	struct inode *inode = file_inode(file);
4056 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4057 	struct btrfs_root *root = BTRFS_I(inode)->root;
4058 	struct btrfs_root *new_root;
4059 	struct btrfs_dir_item *di;
4060 	struct btrfs_trans_handle *trans;
4061 	struct btrfs_path *path;
4062 	struct btrfs_key location;
4063 	struct btrfs_disk_key disk_key;
4064 	u64 objectid = 0;
4065 	u64 dir_id;
4066 	int ret;
4067 
4068 	if (!capable(CAP_SYS_ADMIN))
4069 		return -EPERM;
4070 
4071 	ret = mnt_want_write_file(file);
4072 	if (ret)
4073 		return ret;
4074 
4075 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4076 		ret = -EFAULT;
4077 		goto out;
4078 	}
4079 
4080 	if (!objectid)
4081 		objectid = BTRFS_FS_TREE_OBJECTID;
4082 
4083 	location.objectid = objectid;
4084 	location.type = BTRFS_ROOT_ITEM_KEY;
4085 	location.offset = (u64)-1;
4086 
4087 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4088 	if (IS_ERR(new_root)) {
4089 		ret = PTR_ERR(new_root);
4090 		goto out;
4091 	}
4092 	if (!is_fstree(new_root->root_key.objectid)) {
4093 		ret = -ENOENT;
4094 		goto out;
4095 	}
4096 
4097 	path = btrfs_alloc_path();
4098 	if (!path) {
4099 		ret = -ENOMEM;
4100 		goto out;
4101 	}
4102 	path->leave_spinning = 1;
4103 
4104 	trans = btrfs_start_transaction(root, 1);
4105 	if (IS_ERR(trans)) {
4106 		btrfs_free_path(path);
4107 		ret = PTR_ERR(trans);
4108 		goto out;
4109 	}
4110 
4111 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4112 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4113 				   dir_id, "default", 7, 1);
4114 	if (IS_ERR_OR_NULL(di)) {
4115 		btrfs_free_path(path);
4116 		btrfs_end_transaction(trans);
4117 		btrfs_err(fs_info,
4118 			  "Umm, you don't have the default diritem, this isn't going to work");
4119 		ret = -ENOENT;
4120 		goto out;
4121 	}
4122 
4123 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4124 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4125 	btrfs_mark_buffer_dirty(path->nodes[0]);
4126 	btrfs_free_path(path);
4127 
4128 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4129 	btrfs_end_transaction(trans);
4130 out:
4131 	mnt_drop_write_file(file);
4132 	return ret;
4133 }
4134 
4135 static void get_block_group_info(struct list_head *groups_list,
4136 				 struct btrfs_ioctl_space_info *space)
4137 {
4138 	struct btrfs_block_group_cache *block_group;
4139 
4140 	space->total_bytes = 0;
4141 	space->used_bytes = 0;
4142 	space->flags = 0;
4143 	list_for_each_entry(block_group, groups_list, list) {
4144 		space->flags = block_group->flags;
4145 		space->total_bytes += block_group->key.offset;
4146 		space->used_bytes +=
4147 			btrfs_block_group_used(&block_group->item);
4148 	}
4149 }
4150 
4151 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4152 				   void __user *arg)
4153 {
4154 	struct btrfs_ioctl_space_args space_args;
4155 	struct btrfs_ioctl_space_info space;
4156 	struct btrfs_ioctl_space_info *dest;
4157 	struct btrfs_ioctl_space_info *dest_orig;
4158 	struct btrfs_ioctl_space_info __user *user_dest;
4159 	struct btrfs_space_info *info;
4160 	static const u64 types[] = {
4161 		BTRFS_BLOCK_GROUP_DATA,
4162 		BTRFS_BLOCK_GROUP_SYSTEM,
4163 		BTRFS_BLOCK_GROUP_METADATA,
4164 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4165 	};
4166 	int num_types = 4;
4167 	int alloc_size;
4168 	int ret = 0;
4169 	u64 slot_count = 0;
4170 	int i, c;
4171 
4172 	if (copy_from_user(&space_args,
4173 			   (struct btrfs_ioctl_space_args __user *)arg,
4174 			   sizeof(space_args)))
4175 		return -EFAULT;
4176 
4177 	for (i = 0; i < num_types; i++) {
4178 		struct btrfs_space_info *tmp;
4179 
4180 		info = NULL;
4181 		rcu_read_lock();
4182 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4183 					list) {
4184 			if (tmp->flags == types[i]) {
4185 				info = tmp;
4186 				break;
4187 			}
4188 		}
4189 		rcu_read_unlock();
4190 
4191 		if (!info)
4192 			continue;
4193 
4194 		down_read(&info->groups_sem);
4195 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4196 			if (!list_empty(&info->block_groups[c]))
4197 				slot_count++;
4198 		}
4199 		up_read(&info->groups_sem);
4200 	}
4201 
4202 	/*
4203 	 * Global block reserve, exported as a space_info
4204 	 */
4205 	slot_count++;
4206 
4207 	/* space_slots == 0 means they are asking for a count */
4208 	if (space_args.space_slots == 0) {
4209 		space_args.total_spaces = slot_count;
4210 		goto out;
4211 	}
4212 
4213 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4214 
4215 	alloc_size = sizeof(*dest) * slot_count;
4216 
4217 	/* we generally have at most 6 or so space infos, one for each raid
4218 	 * level.  So, a whole page should be more than enough for everyone
4219 	 */
4220 	if (alloc_size > PAGE_SIZE)
4221 		return -ENOMEM;
4222 
4223 	space_args.total_spaces = 0;
4224 	dest = kmalloc(alloc_size, GFP_KERNEL);
4225 	if (!dest)
4226 		return -ENOMEM;
4227 	dest_orig = dest;
4228 
4229 	/* now we have a buffer to copy into */
4230 	for (i = 0; i < num_types; i++) {
4231 		struct btrfs_space_info *tmp;
4232 
4233 		if (!slot_count)
4234 			break;
4235 
4236 		info = NULL;
4237 		rcu_read_lock();
4238 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4239 					list) {
4240 			if (tmp->flags == types[i]) {
4241 				info = tmp;
4242 				break;
4243 			}
4244 		}
4245 		rcu_read_unlock();
4246 
4247 		if (!info)
4248 			continue;
4249 		down_read(&info->groups_sem);
4250 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4251 			if (!list_empty(&info->block_groups[c])) {
4252 				get_block_group_info(&info->block_groups[c],
4253 						     &space);
4254 				memcpy(dest, &space, sizeof(space));
4255 				dest++;
4256 				space_args.total_spaces++;
4257 				slot_count--;
4258 			}
4259 			if (!slot_count)
4260 				break;
4261 		}
4262 		up_read(&info->groups_sem);
4263 	}
4264 
4265 	/*
4266 	 * Add global block reserve
4267 	 */
4268 	if (slot_count) {
4269 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4270 
4271 		spin_lock(&block_rsv->lock);
4272 		space.total_bytes = block_rsv->size;
4273 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4274 		spin_unlock(&block_rsv->lock);
4275 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4276 		memcpy(dest, &space, sizeof(space));
4277 		space_args.total_spaces++;
4278 	}
4279 
4280 	user_dest = (struct btrfs_ioctl_space_info __user *)
4281 		(arg + sizeof(struct btrfs_ioctl_space_args));
4282 
4283 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4284 		ret = -EFAULT;
4285 
4286 	kfree(dest_orig);
4287 out:
4288 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4289 		ret = -EFAULT;
4290 
4291 	return ret;
4292 }
4293 
4294 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4295 					    void __user *argp)
4296 {
4297 	struct btrfs_trans_handle *trans;
4298 	u64 transid;
4299 	int ret;
4300 
4301 	trans = btrfs_attach_transaction_barrier(root);
4302 	if (IS_ERR(trans)) {
4303 		if (PTR_ERR(trans) != -ENOENT)
4304 			return PTR_ERR(trans);
4305 
4306 		/* No running transaction, don't bother */
4307 		transid = root->fs_info->last_trans_committed;
4308 		goto out;
4309 	}
4310 	transid = trans->transid;
4311 	ret = btrfs_commit_transaction_async(trans, 0);
4312 	if (ret) {
4313 		btrfs_end_transaction(trans);
4314 		return ret;
4315 	}
4316 out:
4317 	if (argp)
4318 		if (copy_to_user(argp, &transid, sizeof(transid)))
4319 			return -EFAULT;
4320 	return 0;
4321 }
4322 
4323 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4324 					   void __user *argp)
4325 {
4326 	u64 transid;
4327 
4328 	if (argp) {
4329 		if (copy_from_user(&transid, argp, sizeof(transid)))
4330 			return -EFAULT;
4331 	} else {
4332 		transid = 0;  /* current trans */
4333 	}
4334 	return btrfs_wait_for_commit(fs_info, transid);
4335 }
4336 
4337 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4338 {
4339 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4340 	struct btrfs_ioctl_scrub_args *sa;
4341 	int ret;
4342 
4343 	if (!capable(CAP_SYS_ADMIN))
4344 		return -EPERM;
4345 
4346 	sa = memdup_user(arg, sizeof(*sa));
4347 	if (IS_ERR(sa))
4348 		return PTR_ERR(sa);
4349 
4350 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4351 		ret = mnt_want_write_file(file);
4352 		if (ret)
4353 			goto out;
4354 	}
4355 
4356 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4357 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4358 			      0);
4359 
4360 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4361 		ret = -EFAULT;
4362 
4363 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4364 		mnt_drop_write_file(file);
4365 out:
4366 	kfree(sa);
4367 	return ret;
4368 }
4369 
4370 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4371 {
4372 	if (!capable(CAP_SYS_ADMIN))
4373 		return -EPERM;
4374 
4375 	return btrfs_scrub_cancel(fs_info);
4376 }
4377 
4378 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4379 				       void __user *arg)
4380 {
4381 	struct btrfs_ioctl_scrub_args *sa;
4382 	int ret;
4383 
4384 	if (!capable(CAP_SYS_ADMIN))
4385 		return -EPERM;
4386 
4387 	sa = memdup_user(arg, sizeof(*sa));
4388 	if (IS_ERR(sa))
4389 		return PTR_ERR(sa);
4390 
4391 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4392 
4393 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4394 		ret = -EFAULT;
4395 
4396 	kfree(sa);
4397 	return ret;
4398 }
4399 
4400 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4401 				      void __user *arg)
4402 {
4403 	struct btrfs_ioctl_get_dev_stats *sa;
4404 	int ret;
4405 
4406 	sa = memdup_user(arg, sizeof(*sa));
4407 	if (IS_ERR(sa))
4408 		return PTR_ERR(sa);
4409 
4410 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4411 		kfree(sa);
4412 		return -EPERM;
4413 	}
4414 
4415 	ret = btrfs_get_dev_stats(fs_info, sa);
4416 
4417 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4418 		ret = -EFAULT;
4419 
4420 	kfree(sa);
4421 	return ret;
4422 }
4423 
4424 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4425 				    void __user *arg)
4426 {
4427 	struct btrfs_ioctl_dev_replace_args *p;
4428 	int ret;
4429 
4430 	if (!capable(CAP_SYS_ADMIN))
4431 		return -EPERM;
4432 
4433 	p = memdup_user(arg, sizeof(*p));
4434 	if (IS_ERR(p))
4435 		return PTR_ERR(p);
4436 
4437 	switch (p->cmd) {
4438 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4439 		if (sb_rdonly(fs_info->sb)) {
4440 			ret = -EROFS;
4441 			goto out;
4442 		}
4443 		if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4444 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4445 		} else {
4446 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4447 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4448 		}
4449 		break;
4450 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4451 		btrfs_dev_replace_status(fs_info, p);
4452 		ret = 0;
4453 		break;
4454 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4455 		p->result = btrfs_dev_replace_cancel(fs_info);
4456 		ret = 0;
4457 		break;
4458 	default:
4459 		ret = -EINVAL;
4460 		break;
4461 	}
4462 
4463 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
4464 		ret = -EFAULT;
4465 out:
4466 	kfree(p);
4467 	return ret;
4468 }
4469 
4470 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4471 {
4472 	int ret = 0;
4473 	int i;
4474 	u64 rel_ptr;
4475 	int size;
4476 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4477 	struct inode_fs_paths *ipath = NULL;
4478 	struct btrfs_path *path;
4479 
4480 	if (!capable(CAP_DAC_READ_SEARCH))
4481 		return -EPERM;
4482 
4483 	path = btrfs_alloc_path();
4484 	if (!path) {
4485 		ret = -ENOMEM;
4486 		goto out;
4487 	}
4488 
4489 	ipa = memdup_user(arg, sizeof(*ipa));
4490 	if (IS_ERR(ipa)) {
4491 		ret = PTR_ERR(ipa);
4492 		ipa = NULL;
4493 		goto out;
4494 	}
4495 
4496 	size = min_t(u32, ipa->size, 4096);
4497 	ipath = init_ipath(size, root, path);
4498 	if (IS_ERR(ipath)) {
4499 		ret = PTR_ERR(ipath);
4500 		ipath = NULL;
4501 		goto out;
4502 	}
4503 
4504 	ret = paths_from_inode(ipa->inum, ipath);
4505 	if (ret < 0)
4506 		goto out;
4507 
4508 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4509 		rel_ptr = ipath->fspath->val[i] -
4510 			  (u64)(unsigned long)ipath->fspath->val;
4511 		ipath->fspath->val[i] = rel_ptr;
4512 	}
4513 
4514 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4515 			   ipath->fspath, size);
4516 	if (ret) {
4517 		ret = -EFAULT;
4518 		goto out;
4519 	}
4520 
4521 out:
4522 	btrfs_free_path(path);
4523 	free_ipath(ipath);
4524 	kfree(ipa);
4525 
4526 	return ret;
4527 }
4528 
4529 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4530 {
4531 	struct btrfs_data_container *inodes = ctx;
4532 	const size_t c = 3 * sizeof(u64);
4533 
4534 	if (inodes->bytes_left >= c) {
4535 		inodes->bytes_left -= c;
4536 		inodes->val[inodes->elem_cnt] = inum;
4537 		inodes->val[inodes->elem_cnt + 1] = offset;
4538 		inodes->val[inodes->elem_cnt + 2] = root;
4539 		inodes->elem_cnt += 3;
4540 	} else {
4541 		inodes->bytes_missing += c - inodes->bytes_left;
4542 		inodes->bytes_left = 0;
4543 		inodes->elem_missed += 3;
4544 	}
4545 
4546 	return 0;
4547 }
4548 
4549 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4550 					void __user *arg, int version)
4551 {
4552 	int ret = 0;
4553 	int size;
4554 	struct btrfs_ioctl_logical_ino_args *loi;
4555 	struct btrfs_data_container *inodes = NULL;
4556 	struct btrfs_path *path = NULL;
4557 	bool ignore_offset;
4558 
4559 	if (!capable(CAP_SYS_ADMIN))
4560 		return -EPERM;
4561 
4562 	loi = memdup_user(arg, sizeof(*loi));
4563 	if (IS_ERR(loi))
4564 		return PTR_ERR(loi);
4565 
4566 	if (version == 1) {
4567 		ignore_offset = false;
4568 		size = min_t(u32, loi->size, SZ_64K);
4569 	} else {
4570 		/* All reserved bits must be 0 for now */
4571 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4572 			ret = -EINVAL;
4573 			goto out_loi;
4574 		}
4575 		/* Only accept flags we have defined so far */
4576 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4577 			ret = -EINVAL;
4578 			goto out_loi;
4579 		}
4580 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4581 		size = min_t(u32, loi->size, SZ_16M);
4582 	}
4583 
4584 	path = btrfs_alloc_path();
4585 	if (!path) {
4586 		ret = -ENOMEM;
4587 		goto out;
4588 	}
4589 
4590 	inodes = init_data_container(size);
4591 	if (IS_ERR(inodes)) {
4592 		ret = PTR_ERR(inodes);
4593 		inodes = NULL;
4594 		goto out;
4595 	}
4596 
4597 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4598 					  build_ino_list, inodes, ignore_offset);
4599 	if (ret == -EINVAL)
4600 		ret = -ENOENT;
4601 	if (ret < 0)
4602 		goto out;
4603 
4604 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4605 			   size);
4606 	if (ret)
4607 		ret = -EFAULT;
4608 
4609 out:
4610 	btrfs_free_path(path);
4611 	kvfree(inodes);
4612 out_loi:
4613 	kfree(loi);
4614 
4615 	return ret;
4616 }
4617 
4618 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4619 			       struct btrfs_ioctl_balance_args *bargs)
4620 {
4621 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4622 
4623 	bargs->flags = bctl->flags;
4624 
4625 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4626 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4627 	if (atomic_read(&fs_info->balance_pause_req))
4628 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4629 	if (atomic_read(&fs_info->balance_cancel_req))
4630 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4631 
4632 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4633 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4634 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4635 
4636 	spin_lock(&fs_info->balance_lock);
4637 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4638 	spin_unlock(&fs_info->balance_lock);
4639 }
4640 
4641 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4642 {
4643 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4644 	struct btrfs_fs_info *fs_info = root->fs_info;
4645 	struct btrfs_ioctl_balance_args *bargs;
4646 	struct btrfs_balance_control *bctl;
4647 	bool need_unlock; /* for mut. excl. ops lock */
4648 	int ret;
4649 
4650 	if (!capable(CAP_SYS_ADMIN))
4651 		return -EPERM;
4652 
4653 	ret = mnt_want_write_file(file);
4654 	if (ret)
4655 		return ret;
4656 
4657 again:
4658 	if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4659 		mutex_lock(&fs_info->balance_mutex);
4660 		need_unlock = true;
4661 		goto locked;
4662 	}
4663 
4664 	/*
4665 	 * mut. excl. ops lock is locked.  Three possibilities:
4666 	 *   (1) some other op is running
4667 	 *   (2) balance is running
4668 	 *   (3) balance is paused -- special case (think resume)
4669 	 */
4670 	mutex_lock(&fs_info->balance_mutex);
4671 	if (fs_info->balance_ctl) {
4672 		/* this is either (2) or (3) */
4673 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4674 			mutex_unlock(&fs_info->balance_mutex);
4675 			/*
4676 			 * Lock released to allow other waiters to continue,
4677 			 * we'll reexamine the status again.
4678 			 */
4679 			mutex_lock(&fs_info->balance_mutex);
4680 
4681 			if (fs_info->balance_ctl &&
4682 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4683 				/* this is (3) */
4684 				need_unlock = false;
4685 				goto locked;
4686 			}
4687 
4688 			mutex_unlock(&fs_info->balance_mutex);
4689 			goto again;
4690 		} else {
4691 			/* this is (2) */
4692 			mutex_unlock(&fs_info->balance_mutex);
4693 			ret = -EINPROGRESS;
4694 			goto out;
4695 		}
4696 	} else {
4697 		/* this is (1) */
4698 		mutex_unlock(&fs_info->balance_mutex);
4699 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4700 		goto out;
4701 	}
4702 
4703 locked:
4704 	BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4705 
4706 	if (arg) {
4707 		bargs = memdup_user(arg, sizeof(*bargs));
4708 		if (IS_ERR(bargs)) {
4709 			ret = PTR_ERR(bargs);
4710 			goto out_unlock;
4711 		}
4712 
4713 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4714 			if (!fs_info->balance_ctl) {
4715 				ret = -ENOTCONN;
4716 				goto out_bargs;
4717 			}
4718 
4719 			bctl = fs_info->balance_ctl;
4720 			spin_lock(&fs_info->balance_lock);
4721 			bctl->flags |= BTRFS_BALANCE_RESUME;
4722 			spin_unlock(&fs_info->balance_lock);
4723 
4724 			goto do_balance;
4725 		}
4726 	} else {
4727 		bargs = NULL;
4728 	}
4729 
4730 	if (fs_info->balance_ctl) {
4731 		ret = -EINPROGRESS;
4732 		goto out_bargs;
4733 	}
4734 
4735 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4736 	if (!bctl) {
4737 		ret = -ENOMEM;
4738 		goto out_bargs;
4739 	}
4740 
4741 	if (arg) {
4742 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4743 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4744 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4745 
4746 		bctl->flags = bargs->flags;
4747 	} else {
4748 		/* balance everything - no filters */
4749 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4750 	}
4751 
4752 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4753 		ret = -EINVAL;
4754 		goto out_bctl;
4755 	}
4756 
4757 do_balance:
4758 	/*
4759 	 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
4760 	 * btrfs_balance.  bctl is freed in reset_balance_state, or, if
4761 	 * restriper was paused all the way until unmount, in free_fs_info.
4762 	 * The flag should be cleared after reset_balance_state.
4763 	 */
4764 	need_unlock = false;
4765 
4766 	ret = btrfs_balance(fs_info, bctl, bargs);
4767 	bctl = NULL;
4768 
4769 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4770 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4771 			ret = -EFAULT;
4772 	}
4773 
4774 out_bctl:
4775 	kfree(bctl);
4776 out_bargs:
4777 	kfree(bargs);
4778 out_unlock:
4779 	mutex_unlock(&fs_info->balance_mutex);
4780 	if (need_unlock)
4781 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4782 out:
4783 	mnt_drop_write_file(file);
4784 	return ret;
4785 }
4786 
4787 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4788 {
4789 	if (!capable(CAP_SYS_ADMIN))
4790 		return -EPERM;
4791 
4792 	switch (cmd) {
4793 	case BTRFS_BALANCE_CTL_PAUSE:
4794 		return btrfs_pause_balance(fs_info);
4795 	case BTRFS_BALANCE_CTL_CANCEL:
4796 		return btrfs_cancel_balance(fs_info);
4797 	}
4798 
4799 	return -EINVAL;
4800 }
4801 
4802 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4803 					 void __user *arg)
4804 {
4805 	struct btrfs_ioctl_balance_args *bargs;
4806 	int ret = 0;
4807 
4808 	if (!capable(CAP_SYS_ADMIN))
4809 		return -EPERM;
4810 
4811 	mutex_lock(&fs_info->balance_mutex);
4812 	if (!fs_info->balance_ctl) {
4813 		ret = -ENOTCONN;
4814 		goto out;
4815 	}
4816 
4817 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4818 	if (!bargs) {
4819 		ret = -ENOMEM;
4820 		goto out;
4821 	}
4822 
4823 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4824 
4825 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4826 		ret = -EFAULT;
4827 
4828 	kfree(bargs);
4829 out:
4830 	mutex_unlock(&fs_info->balance_mutex);
4831 	return ret;
4832 }
4833 
4834 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4835 {
4836 	struct inode *inode = file_inode(file);
4837 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4838 	struct btrfs_ioctl_quota_ctl_args *sa;
4839 	int ret;
4840 
4841 	if (!capable(CAP_SYS_ADMIN))
4842 		return -EPERM;
4843 
4844 	ret = mnt_want_write_file(file);
4845 	if (ret)
4846 		return ret;
4847 
4848 	sa = memdup_user(arg, sizeof(*sa));
4849 	if (IS_ERR(sa)) {
4850 		ret = PTR_ERR(sa);
4851 		goto drop_write;
4852 	}
4853 
4854 	down_write(&fs_info->subvol_sem);
4855 
4856 	switch (sa->cmd) {
4857 	case BTRFS_QUOTA_CTL_ENABLE:
4858 		ret = btrfs_quota_enable(fs_info);
4859 		break;
4860 	case BTRFS_QUOTA_CTL_DISABLE:
4861 		ret = btrfs_quota_disable(fs_info);
4862 		break;
4863 	default:
4864 		ret = -EINVAL;
4865 		break;
4866 	}
4867 
4868 	kfree(sa);
4869 	up_write(&fs_info->subvol_sem);
4870 drop_write:
4871 	mnt_drop_write_file(file);
4872 	return ret;
4873 }
4874 
4875 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4876 {
4877 	struct inode *inode = file_inode(file);
4878 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4879 	struct btrfs_root *root = BTRFS_I(inode)->root;
4880 	struct btrfs_ioctl_qgroup_assign_args *sa;
4881 	struct btrfs_trans_handle *trans;
4882 	int ret;
4883 	int err;
4884 
4885 	if (!capable(CAP_SYS_ADMIN))
4886 		return -EPERM;
4887 
4888 	ret = mnt_want_write_file(file);
4889 	if (ret)
4890 		return ret;
4891 
4892 	sa = memdup_user(arg, sizeof(*sa));
4893 	if (IS_ERR(sa)) {
4894 		ret = PTR_ERR(sa);
4895 		goto drop_write;
4896 	}
4897 
4898 	trans = btrfs_join_transaction(root);
4899 	if (IS_ERR(trans)) {
4900 		ret = PTR_ERR(trans);
4901 		goto out;
4902 	}
4903 
4904 	if (sa->assign) {
4905 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4906 	} else {
4907 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4908 	}
4909 
4910 	/* update qgroup status and info */
4911 	err = btrfs_run_qgroups(trans);
4912 	if (err < 0)
4913 		btrfs_handle_fs_error(fs_info, err,
4914 				      "failed to update qgroup status and info");
4915 	err = btrfs_end_transaction(trans);
4916 	if (err && !ret)
4917 		ret = err;
4918 
4919 out:
4920 	kfree(sa);
4921 drop_write:
4922 	mnt_drop_write_file(file);
4923 	return ret;
4924 }
4925 
4926 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4927 {
4928 	struct inode *inode = file_inode(file);
4929 	struct btrfs_root *root = BTRFS_I(inode)->root;
4930 	struct btrfs_ioctl_qgroup_create_args *sa;
4931 	struct btrfs_trans_handle *trans;
4932 	int ret;
4933 	int err;
4934 
4935 	if (!capable(CAP_SYS_ADMIN))
4936 		return -EPERM;
4937 
4938 	ret = mnt_want_write_file(file);
4939 	if (ret)
4940 		return ret;
4941 
4942 	sa = memdup_user(arg, sizeof(*sa));
4943 	if (IS_ERR(sa)) {
4944 		ret = PTR_ERR(sa);
4945 		goto drop_write;
4946 	}
4947 
4948 	if (!sa->qgroupid) {
4949 		ret = -EINVAL;
4950 		goto out;
4951 	}
4952 
4953 	trans = btrfs_join_transaction(root);
4954 	if (IS_ERR(trans)) {
4955 		ret = PTR_ERR(trans);
4956 		goto out;
4957 	}
4958 
4959 	if (sa->create) {
4960 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4961 	} else {
4962 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4963 	}
4964 
4965 	err = btrfs_end_transaction(trans);
4966 	if (err && !ret)
4967 		ret = err;
4968 
4969 out:
4970 	kfree(sa);
4971 drop_write:
4972 	mnt_drop_write_file(file);
4973 	return ret;
4974 }
4975 
4976 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4977 {
4978 	struct inode *inode = file_inode(file);
4979 	struct btrfs_root *root = BTRFS_I(inode)->root;
4980 	struct btrfs_ioctl_qgroup_limit_args *sa;
4981 	struct btrfs_trans_handle *trans;
4982 	int ret;
4983 	int err;
4984 	u64 qgroupid;
4985 
4986 	if (!capable(CAP_SYS_ADMIN))
4987 		return -EPERM;
4988 
4989 	ret = mnt_want_write_file(file);
4990 	if (ret)
4991 		return ret;
4992 
4993 	sa = memdup_user(arg, sizeof(*sa));
4994 	if (IS_ERR(sa)) {
4995 		ret = PTR_ERR(sa);
4996 		goto drop_write;
4997 	}
4998 
4999 	trans = btrfs_join_transaction(root);
5000 	if (IS_ERR(trans)) {
5001 		ret = PTR_ERR(trans);
5002 		goto out;
5003 	}
5004 
5005 	qgroupid = sa->qgroupid;
5006 	if (!qgroupid) {
5007 		/* take the current subvol as qgroup */
5008 		qgroupid = root->root_key.objectid;
5009 	}
5010 
5011 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
5012 
5013 	err = btrfs_end_transaction(trans);
5014 	if (err && !ret)
5015 		ret = err;
5016 
5017 out:
5018 	kfree(sa);
5019 drop_write:
5020 	mnt_drop_write_file(file);
5021 	return ret;
5022 }
5023 
5024 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5025 {
5026 	struct inode *inode = file_inode(file);
5027 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5028 	struct btrfs_ioctl_quota_rescan_args *qsa;
5029 	int ret;
5030 
5031 	if (!capable(CAP_SYS_ADMIN))
5032 		return -EPERM;
5033 
5034 	ret = mnt_want_write_file(file);
5035 	if (ret)
5036 		return ret;
5037 
5038 	qsa = memdup_user(arg, sizeof(*qsa));
5039 	if (IS_ERR(qsa)) {
5040 		ret = PTR_ERR(qsa);
5041 		goto drop_write;
5042 	}
5043 
5044 	if (qsa->flags) {
5045 		ret = -EINVAL;
5046 		goto out;
5047 	}
5048 
5049 	ret = btrfs_qgroup_rescan(fs_info);
5050 
5051 out:
5052 	kfree(qsa);
5053 drop_write:
5054 	mnt_drop_write_file(file);
5055 	return ret;
5056 }
5057 
5058 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5059 {
5060 	struct inode *inode = file_inode(file);
5061 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5062 	struct btrfs_ioctl_quota_rescan_args *qsa;
5063 	int ret = 0;
5064 
5065 	if (!capable(CAP_SYS_ADMIN))
5066 		return -EPERM;
5067 
5068 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5069 	if (!qsa)
5070 		return -ENOMEM;
5071 
5072 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5073 		qsa->flags = 1;
5074 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5075 	}
5076 
5077 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5078 		ret = -EFAULT;
5079 
5080 	kfree(qsa);
5081 	return ret;
5082 }
5083 
5084 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5085 {
5086 	struct inode *inode = file_inode(file);
5087 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5088 
5089 	if (!capable(CAP_SYS_ADMIN))
5090 		return -EPERM;
5091 
5092 	return btrfs_qgroup_wait_for_completion(fs_info, true);
5093 }
5094 
5095 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5096 					    struct btrfs_ioctl_received_subvol_args *sa)
5097 {
5098 	struct inode *inode = file_inode(file);
5099 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5100 	struct btrfs_root *root = BTRFS_I(inode)->root;
5101 	struct btrfs_root_item *root_item = &root->root_item;
5102 	struct btrfs_trans_handle *trans;
5103 	struct timespec64 ct = current_time(inode);
5104 	int ret = 0;
5105 	int received_uuid_changed;
5106 
5107 	if (!inode_owner_or_capable(inode))
5108 		return -EPERM;
5109 
5110 	ret = mnt_want_write_file(file);
5111 	if (ret < 0)
5112 		return ret;
5113 
5114 	down_write(&fs_info->subvol_sem);
5115 
5116 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5117 		ret = -EINVAL;
5118 		goto out;
5119 	}
5120 
5121 	if (btrfs_root_readonly(root)) {
5122 		ret = -EROFS;
5123 		goto out;
5124 	}
5125 
5126 	/*
5127 	 * 1 - root item
5128 	 * 2 - uuid items (received uuid + subvol uuid)
5129 	 */
5130 	trans = btrfs_start_transaction(root, 3);
5131 	if (IS_ERR(trans)) {
5132 		ret = PTR_ERR(trans);
5133 		trans = NULL;
5134 		goto out;
5135 	}
5136 
5137 	sa->rtransid = trans->transid;
5138 	sa->rtime.sec = ct.tv_sec;
5139 	sa->rtime.nsec = ct.tv_nsec;
5140 
5141 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5142 				       BTRFS_UUID_SIZE);
5143 	if (received_uuid_changed &&
5144 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
5145 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
5146 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5147 					  root->root_key.objectid);
5148 		if (ret && ret != -ENOENT) {
5149 		        btrfs_abort_transaction(trans, ret);
5150 		        btrfs_end_transaction(trans);
5151 		        goto out;
5152 		}
5153 	}
5154 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5155 	btrfs_set_root_stransid(root_item, sa->stransid);
5156 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5157 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5158 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5159 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5160 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5161 
5162 	ret = btrfs_update_root(trans, fs_info->tree_root,
5163 				&root->root_key, &root->root_item);
5164 	if (ret < 0) {
5165 		btrfs_end_transaction(trans);
5166 		goto out;
5167 	}
5168 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5169 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
5170 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5171 					  root->root_key.objectid);
5172 		if (ret < 0 && ret != -EEXIST) {
5173 			btrfs_abort_transaction(trans, ret);
5174 			btrfs_end_transaction(trans);
5175 			goto out;
5176 		}
5177 	}
5178 	ret = btrfs_commit_transaction(trans);
5179 out:
5180 	up_write(&fs_info->subvol_sem);
5181 	mnt_drop_write_file(file);
5182 	return ret;
5183 }
5184 
5185 #ifdef CONFIG_64BIT
5186 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5187 						void __user *arg)
5188 {
5189 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5190 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5191 	int ret = 0;
5192 
5193 	args32 = memdup_user(arg, sizeof(*args32));
5194 	if (IS_ERR(args32))
5195 		return PTR_ERR(args32);
5196 
5197 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5198 	if (!args64) {
5199 		ret = -ENOMEM;
5200 		goto out;
5201 	}
5202 
5203 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5204 	args64->stransid = args32->stransid;
5205 	args64->rtransid = args32->rtransid;
5206 	args64->stime.sec = args32->stime.sec;
5207 	args64->stime.nsec = args32->stime.nsec;
5208 	args64->rtime.sec = args32->rtime.sec;
5209 	args64->rtime.nsec = args32->rtime.nsec;
5210 	args64->flags = args32->flags;
5211 
5212 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5213 	if (ret)
5214 		goto out;
5215 
5216 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5217 	args32->stransid = args64->stransid;
5218 	args32->rtransid = args64->rtransid;
5219 	args32->stime.sec = args64->stime.sec;
5220 	args32->stime.nsec = args64->stime.nsec;
5221 	args32->rtime.sec = args64->rtime.sec;
5222 	args32->rtime.nsec = args64->rtime.nsec;
5223 	args32->flags = args64->flags;
5224 
5225 	ret = copy_to_user(arg, args32, sizeof(*args32));
5226 	if (ret)
5227 		ret = -EFAULT;
5228 
5229 out:
5230 	kfree(args32);
5231 	kfree(args64);
5232 	return ret;
5233 }
5234 #endif
5235 
5236 static long btrfs_ioctl_set_received_subvol(struct file *file,
5237 					    void __user *arg)
5238 {
5239 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5240 	int ret = 0;
5241 
5242 	sa = memdup_user(arg, sizeof(*sa));
5243 	if (IS_ERR(sa))
5244 		return PTR_ERR(sa);
5245 
5246 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5247 
5248 	if (ret)
5249 		goto out;
5250 
5251 	ret = copy_to_user(arg, sa, sizeof(*sa));
5252 	if (ret)
5253 		ret = -EFAULT;
5254 
5255 out:
5256 	kfree(sa);
5257 	return ret;
5258 }
5259 
5260 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5261 {
5262 	struct inode *inode = file_inode(file);
5263 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5264 	size_t len;
5265 	int ret;
5266 	char label[BTRFS_LABEL_SIZE];
5267 
5268 	spin_lock(&fs_info->super_lock);
5269 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5270 	spin_unlock(&fs_info->super_lock);
5271 
5272 	len = strnlen(label, BTRFS_LABEL_SIZE);
5273 
5274 	if (len == BTRFS_LABEL_SIZE) {
5275 		btrfs_warn(fs_info,
5276 			   "label is too long, return the first %zu bytes",
5277 			   --len);
5278 	}
5279 
5280 	ret = copy_to_user(arg, label, len);
5281 
5282 	return ret ? -EFAULT : 0;
5283 }
5284 
5285 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5286 {
5287 	struct inode *inode = file_inode(file);
5288 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5289 	struct btrfs_root *root = BTRFS_I(inode)->root;
5290 	struct btrfs_super_block *super_block = fs_info->super_copy;
5291 	struct btrfs_trans_handle *trans;
5292 	char label[BTRFS_LABEL_SIZE];
5293 	int ret;
5294 
5295 	if (!capable(CAP_SYS_ADMIN))
5296 		return -EPERM;
5297 
5298 	if (copy_from_user(label, arg, sizeof(label)))
5299 		return -EFAULT;
5300 
5301 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5302 		btrfs_err(fs_info,
5303 			  "unable to set label with more than %d bytes",
5304 			  BTRFS_LABEL_SIZE - 1);
5305 		return -EINVAL;
5306 	}
5307 
5308 	ret = mnt_want_write_file(file);
5309 	if (ret)
5310 		return ret;
5311 
5312 	trans = btrfs_start_transaction(root, 0);
5313 	if (IS_ERR(trans)) {
5314 		ret = PTR_ERR(trans);
5315 		goto out_unlock;
5316 	}
5317 
5318 	spin_lock(&fs_info->super_lock);
5319 	strcpy(super_block->label, label);
5320 	spin_unlock(&fs_info->super_lock);
5321 	ret = btrfs_commit_transaction(trans);
5322 
5323 out_unlock:
5324 	mnt_drop_write_file(file);
5325 	return ret;
5326 }
5327 
5328 #define INIT_FEATURE_FLAGS(suffix) \
5329 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5330 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5331 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5332 
5333 int btrfs_ioctl_get_supported_features(void __user *arg)
5334 {
5335 	static const struct btrfs_ioctl_feature_flags features[3] = {
5336 		INIT_FEATURE_FLAGS(SUPP),
5337 		INIT_FEATURE_FLAGS(SAFE_SET),
5338 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5339 	};
5340 
5341 	if (copy_to_user(arg, &features, sizeof(features)))
5342 		return -EFAULT;
5343 
5344 	return 0;
5345 }
5346 
5347 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5348 {
5349 	struct inode *inode = file_inode(file);
5350 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5351 	struct btrfs_super_block *super_block = fs_info->super_copy;
5352 	struct btrfs_ioctl_feature_flags features;
5353 
5354 	features.compat_flags = btrfs_super_compat_flags(super_block);
5355 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5356 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5357 
5358 	if (copy_to_user(arg, &features, sizeof(features)))
5359 		return -EFAULT;
5360 
5361 	return 0;
5362 }
5363 
5364 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5365 			      enum btrfs_feature_set set,
5366 			      u64 change_mask, u64 flags, u64 supported_flags,
5367 			      u64 safe_set, u64 safe_clear)
5368 {
5369 	const char *type = btrfs_feature_set_names[set];
5370 	char *names;
5371 	u64 disallowed, unsupported;
5372 	u64 set_mask = flags & change_mask;
5373 	u64 clear_mask = ~flags & change_mask;
5374 
5375 	unsupported = set_mask & ~supported_flags;
5376 	if (unsupported) {
5377 		names = btrfs_printable_features(set, unsupported);
5378 		if (names) {
5379 			btrfs_warn(fs_info,
5380 				   "this kernel does not support the %s feature bit%s",
5381 				   names, strchr(names, ',') ? "s" : "");
5382 			kfree(names);
5383 		} else
5384 			btrfs_warn(fs_info,
5385 				   "this kernel does not support %s bits 0x%llx",
5386 				   type, unsupported);
5387 		return -EOPNOTSUPP;
5388 	}
5389 
5390 	disallowed = set_mask & ~safe_set;
5391 	if (disallowed) {
5392 		names = btrfs_printable_features(set, disallowed);
5393 		if (names) {
5394 			btrfs_warn(fs_info,
5395 				   "can't set the %s feature bit%s while mounted",
5396 				   names, strchr(names, ',') ? "s" : "");
5397 			kfree(names);
5398 		} else
5399 			btrfs_warn(fs_info,
5400 				   "can't set %s bits 0x%llx while mounted",
5401 				   type, disallowed);
5402 		return -EPERM;
5403 	}
5404 
5405 	disallowed = clear_mask & ~safe_clear;
5406 	if (disallowed) {
5407 		names = btrfs_printable_features(set, disallowed);
5408 		if (names) {
5409 			btrfs_warn(fs_info,
5410 				   "can't clear the %s feature bit%s while mounted",
5411 				   names, strchr(names, ',') ? "s" : "");
5412 			kfree(names);
5413 		} else
5414 			btrfs_warn(fs_info,
5415 				   "can't clear %s bits 0x%llx while mounted",
5416 				   type, disallowed);
5417 		return -EPERM;
5418 	}
5419 
5420 	return 0;
5421 }
5422 
5423 #define check_feature(fs_info, change_mask, flags, mask_base)	\
5424 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
5425 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5426 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5427 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5428 
5429 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5430 {
5431 	struct inode *inode = file_inode(file);
5432 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5433 	struct btrfs_root *root = BTRFS_I(inode)->root;
5434 	struct btrfs_super_block *super_block = fs_info->super_copy;
5435 	struct btrfs_ioctl_feature_flags flags[2];
5436 	struct btrfs_trans_handle *trans;
5437 	u64 newflags;
5438 	int ret;
5439 
5440 	if (!capable(CAP_SYS_ADMIN))
5441 		return -EPERM;
5442 
5443 	if (copy_from_user(flags, arg, sizeof(flags)))
5444 		return -EFAULT;
5445 
5446 	/* Nothing to do */
5447 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5448 	    !flags[0].incompat_flags)
5449 		return 0;
5450 
5451 	ret = check_feature(fs_info, flags[0].compat_flags,
5452 			    flags[1].compat_flags, COMPAT);
5453 	if (ret)
5454 		return ret;
5455 
5456 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
5457 			    flags[1].compat_ro_flags, COMPAT_RO);
5458 	if (ret)
5459 		return ret;
5460 
5461 	ret = check_feature(fs_info, flags[0].incompat_flags,
5462 			    flags[1].incompat_flags, INCOMPAT);
5463 	if (ret)
5464 		return ret;
5465 
5466 	ret = mnt_want_write_file(file);
5467 	if (ret)
5468 		return ret;
5469 
5470 	trans = btrfs_start_transaction(root, 0);
5471 	if (IS_ERR(trans)) {
5472 		ret = PTR_ERR(trans);
5473 		goto out_drop_write;
5474 	}
5475 
5476 	spin_lock(&fs_info->super_lock);
5477 	newflags = btrfs_super_compat_flags(super_block);
5478 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5479 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5480 	btrfs_set_super_compat_flags(super_block, newflags);
5481 
5482 	newflags = btrfs_super_compat_ro_flags(super_block);
5483 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5484 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5485 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5486 
5487 	newflags = btrfs_super_incompat_flags(super_block);
5488 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5489 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5490 	btrfs_set_super_incompat_flags(super_block, newflags);
5491 	spin_unlock(&fs_info->super_lock);
5492 
5493 	ret = btrfs_commit_transaction(trans);
5494 out_drop_write:
5495 	mnt_drop_write_file(file);
5496 
5497 	return ret;
5498 }
5499 
5500 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5501 {
5502 	struct btrfs_ioctl_send_args *arg;
5503 	int ret;
5504 
5505 	if (compat) {
5506 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5507 		struct btrfs_ioctl_send_args_32 args32;
5508 
5509 		ret = copy_from_user(&args32, argp, sizeof(args32));
5510 		if (ret)
5511 			return -EFAULT;
5512 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5513 		if (!arg)
5514 			return -ENOMEM;
5515 		arg->send_fd = args32.send_fd;
5516 		arg->clone_sources_count = args32.clone_sources_count;
5517 		arg->clone_sources = compat_ptr(args32.clone_sources);
5518 		arg->parent_root = args32.parent_root;
5519 		arg->flags = args32.flags;
5520 		memcpy(arg->reserved, args32.reserved,
5521 		       sizeof(args32.reserved));
5522 #else
5523 		return -ENOTTY;
5524 #endif
5525 	} else {
5526 		arg = memdup_user(argp, sizeof(*arg));
5527 		if (IS_ERR(arg))
5528 			return PTR_ERR(arg);
5529 	}
5530 	ret = btrfs_ioctl_send(file, arg);
5531 	kfree(arg);
5532 	return ret;
5533 }
5534 
5535 long btrfs_ioctl(struct file *file, unsigned int
5536 		cmd, unsigned long arg)
5537 {
5538 	struct inode *inode = file_inode(file);
5539 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5540 	struct btrfs_root *root = BTRFS_I(inode)->root;
5541 	void __user *argp = (void __user *)arg;
5542 
5543 	switch (cmd) {
5544 	case FS_IOC_GETFLAGS:
5545 		return btrfs_ioctl_getflags(file, argp);
5546 	case FS_IOC_SETFLAGS:
5547 		return btrfs_ioctl_setflags(file, argp);
5548 	case FS_IOC_GETVERSION:
5549 		return btrfs_ioctl_getversion(file, argp);
5550 	case FITRIM:
5551 		return btrfs_ioctl_fitrim(file, argp);
5552 	case BTRFS_IOC_SNAP_CREATE:
5553 		return btrfs_ioctl_snap_create(file, argp, 0);
5554 	case BTRFS_IOC_SNAP_CREATE_V2:
5555 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5556 	case BTRFS_IOC_SUBVOL_CREATE:
5557 		return btrfs_ioctl_snap_create(file, argp, 1);
5558 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5559 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5560 	case BTRFS_IOC_SNAP_DESTROY:
5561 		return btrfs_ioctl_snap_destroy(file, argp);
5562 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5563 		return btrfs_ioctl_subvol_getflags(file, argp);
5564 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5565 		return btrfs_ioctl_subvol_setflags(file, argp);
5566 	case BTRFS_IOC_DEFAULT_SUBVOL:
5567 		return btrfs_ioctl_default_subvol(file, argp);
5568 	case BTRFS_IOC_DEFRAG:
5569 		return btrfs_ioctl_defrag(file, NULL);
5570 	case BTRFS_IOC_DEFRAG_RANGE:
5571 		return btrfs_ioctl_defrag(file, argp);
5572 	case BTRFS_IOC_RESIZE:
5573 		return btrfs_ioctl_resize(file, argp);
5574 	case BTRFS_IOC_ADD_DEV:
5575 		return btrfs_ioctl_add_dev(fs_info, argp);
5576 	case BTRFS_IOC_RM_DEV:
5577 		return btrfs_ioctl_rm_dev(file, argp);
5578 	case BTRFS_IOC_RM_DEV_V2:
5579 		return btrfs_ioctl_rm_dev_v2(file, argp);
5580 	case BTRFS_IOC_FS_INFO:
5581 		return btrfs_ioctl_fs_info(fs_info, argp);
5582 	case BTRFS_IOC_DEV_INFO:
5583 		return btrfs_ioctl_dev_info(fs_info, argp);
5584 	case BTRFS_IOC_BALANCE:
5585 		return btrfs_ioctl_balance(file, NULL);
5586 	case BTRFS_IOC_TREE_SEARCH:
5587 		return btrfs_ioctl_tree_search(file, argp);
5588 	case BTRFS_IOC_TREE_SEARCH_V2:
5589 		return btrfs_ioctl_tree_search_v2(file, argp);
5590 	case BTRFS_IOC_INO_LOOKUP:
5591 		return btrfs_ioctl_ino_lookup(file, argp);
5592 	case BTRFS_IOC_INO_PATHS:
5593 		return btrfs_ioctl_ino_to_path(root, argp);
5594 	case BTRFS_IOC_LOGICAL_INO:
5595 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5596 	case BTRFS_IOC_LOGICAL_INO_V2:
5597 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5598 	case BTRFS_IOC_SPACE_INFO:
5599 		return btrfs_ioctl_space_info(fs_info, argp);
5600 	case BTRFS_IOC_SYNC: {
5601 		int ret;
5602 
5603 		ret = btrfs_start_delalloc_roots(fs_info, -1);
5604 		if (ret)
5605 			return ret;
5606 		ret = btrfs_sync_fs(inode->i_sb, 1);
5607 		/*
5608 		 * The transaction thread may want to do more work,
5609 		 * namely it pokes the cleaner kthread that will start
5610 		 * processing uncleaned subvols.
5611 		 */
5612 		wake_up_process(fs_info->transaction_kthread);
5613 		return ret;
5614 	}
5615 	case BTRFS_IOC_START_SYNC:
5616 		return btrfs_ioctl_start_sync(root, argp);
5617 	case BTRFS_IOC_WAIT_SYNC:
5618 		return btrfs_ioctl_wait_sync(fs_info, argp);
5619 	case BTRFS_IOC_SCRUB:
5620 		return btrfs_ioctl_scrub(file, argp);
5621 	case BTRFS_IOC_SCRUB_CANCEL:
5622 		return btrfs_ioctl_scrub_cancel(fs_info);
5623 	case BTRFS_IOC_SCRUB_PROGRESS:
5624 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5625 	case BTRFS_IOC_BALANCE_V2:
5626 		return btrfs_ioctl_balance(file, argp);
5627 	case BTRFS_IOC_BALANCE_CTL:
5628 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5629 	case BTRFS_IOC_BALANCE_PROGRESS:
5630 		return btrfs_ioctl_balance_progress(fs_info, argp);
5631 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5632 		return btrfs_ioctl_set_received_subvol(file, argp);
5633 #ifdef CONFIG_64BIT
5634 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5635 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5636 #endif
5637 	case BTRFS_IOC_SEND:
5638 		return _btrfs_ioctl_send(file, argp, false);
5639 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5640 	case BTRFS_IOC_SEND_32:
5641 		return _btrfs_ioctl_send(file, argp, true);
5642 #endif
5643 	case BTRFS_IOC_GET_DEV_STATS:
5644 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5645 	case BTRFS_IOC_QUOTA_CTL:
5646 		return btrfs_ioctl_quota_ctl(file, argp);
5647 	case BTRFS_IOC_QGROUP_ASSIGN:
5648 		return btrfs_ioctl_qgroup_assign(file, argp);
5649 	case BTRFS_IOC_QGROUP_CREATE:
5650 		return btrfs_ioctl_qgroup_create(file, argp);
5651 	case BTRFS_IOC_QGROUP_LIMIT:
5652 		return btrfs_ioctl_qgroup_limit(file, argp);
5653 	case BTRFS_IOC_QUOTA_RESCAN:
5654 		return btrfs_ioctl_quota_rescan(file, argp);
5655 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5656 		return btrfs_ioctl_quota_rescan_status(file, argp);
5657 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5658 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5659 	case BTRFS_IOC_DEV_REPLACE:
5660 		return btrfs_ioctl_dev_replace(fs_info, argp);
5661 	case BTRFS_IOC_GET_FSLABEL:
5662 		return btrfs_ioctl_get_fslabel(file, argp);
5663 	case BTRFS_IOC_SET_FSLABEL:
5664 		return btrfs_ioctl_set_fslabel(file, argp);
5665 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5666 		return btrfs_ioctl_get_supported_features(argp);
5667 	case BTRFS_IOC_GET_FEATURES:
5668 		return btrfs_ioctl_get_features(file, argp);
5669 	case BTRFS_IOC_SET_FEATURES:
5670 		return btrfs_ioctl_set_features(file, argp);
5671 	case FS_IOC_FSGETXATTR:
5672 		return btrfs_ioctl_fsgetxattr(file, argp);
5673 	case FS_IOC_FSSETXATTR:
5674 		return btrfs_ioctl_fssetxattr(file, argp);
5675 	case BTRFS_IOC_GET_SUBVOL_INFO:
5676 		return btrfs_ioctl_get_subvol_info(file, argp);
5677 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5678 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5679 	case BTRFS_IOC_INO_LOOKUP_USER:
5680 		return btrfs_ioctl_ino_lookup_user(file, argp);
5681 	}
5682 
5683 	return -ENOTTY;
5684 }
5685 
5686 #ifdef CONFIG_COMPAT
5687 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5688 {
5689 	/*
5690 	 * These all access 32-bit values anyway so no further
5691 	 * handling is necessary.
5692 	 */
5693 	switch (cmd) {
5694 	case FS_IOC32_GETFLAGS:
5695 		cmd = FS_IOC_GETFLAGS;
5696 		break;
5697 	case FS_IOC32_SETFLAGS:
5698 		cmd = FS_IOC_SETFLAGS;
5699 		break;
5700 	case FS_IOC32_GETVERSION:
5701 		cmd = FS_IOC_GETVERSION;
5702 		break;
5703 	}
5704 
5705 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5706 }
5707 #endif
5708