xref: /openbmc/linux/fs/btrfs/ioctl.c (revision b4bd2aaf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "rcu-string.h"
42 #include "send.h"
43 #include "dev-replace.h"
44 #include "props.h"
45 #include "sysfs.h"
46 #include "qgroup.h"
47 #include "tree-log.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "subpage.h"
53 
54 #ifdef CONFIG_64BIT
55 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
56  * structures are incorrect, as the timespec structure from userspace
57  * is 4 bytes too small. We define these alternatives here to teach
58  * the kernel about the 32-bit struct packing.
59  */
60 struct btrfs_ioctl_timespec_32 {
61 	__u64 sec;
62 	__u32 nsec;
63 } __attribute__ ((__packed__));
64 
65 struct btrfs_ioctl_received_subvol_args_32 {
66 	char	uuid[BTRFS_UUID_SIZE];	/* in */
67 	__u64	stransid;		/* in */
68 	__u64	rtransid;		/* out */
69 	struct btrfs_ioctl_timespec_32 stime; /* in */
70 	struct btrfs_ioctl_timespec_32 rtime; /* out */
71 	__u64	flags;			/* in */
72 	__u64	reserved[16];		/* in */
73 } __attribute__ ((__packed__));
74 
75 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
76 				struct btrfs_ioctl_received_subvol_args_32)
77 #endif
78 
79 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
80 struct btrfs_ioctl_send_args_32 {
81 	__s64 send_fd;			/* in */
82 	__u64 clone_sources_count;	/* in */
83 	compat_uptr_t clone_sources;	/* in */
84 	__u64 parent_root;		/* in */
85 	__u64 flags;			/* in */
86 	__u32 version;			/* in */
87 	__u8  reserved[28];		/* in */
88 } __attribute__ ((__packed__));
89 
90 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
91 			       struct btrfs_ioctl_send_args_32)
92 
93 struct btrfs_ioctl_encoded_io_args_32 {
94 	compat_uptr_t iov;
95 	compat_ulong_t iovcnt;
96 	__s64 offset;
97 	__u64 flags;
98 	__u64 len;
99 	__u64 unencoded_len;
100 	__u64 unencoded_offset;
101 	__u32 compression;
102 	__u32 encryption;
103 	__u8 reserved[64];
104 };
105 
106 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
107 				       struct btrfs_ioctl_encoded_io_args_32)
108 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
109 					struct btrfs_ioctl_encoded_io_args_32)
110 #endif
111 
112 /* Mask out flags that are inappropriate for the given type of inode. */
113 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
114 		unsigned int flags)
115 {
116 	if (S_ISDIR(inode->i_mode))
117 		return flags;
118 	else if (S_ISREG(inode->i_mode))
119 		return flags & ~FS_DIRSYNC_FL;
120 	else
121 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
122 }
123 
124 /*
125  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
126  * ioctl.
127  */
128 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
129 {
130 	unsigned int iflags = 0;
131 	u32 flags = binode->flags;
132 	u32 ro_flags = binode->ro_flags;
133 
134 	if (flags & BTRFS_INODE_SYNC)
135 		iflags |= FS_SYNC_FL;
136 	if (flags & BTRFS_INODE_IMMUTABLE)
137 		iflags |= FS_IMMUTABLE_FL;
138 	if (flags & BTRFS_INODE_APPEND)
139 		iflags |= FS_APPEND_FL;
140 	if (flags & BTRFS_INODE_NODUMP)
141 		iflags |= FS_NODUMP_FL;
142 	if (flags & BTRFS_INODE_NOATIME)
143 		iflags |= FS_NOATIME_FL;
144 	if (flags & BTRFS_INODE_DIRSYNC)
145 		iflags |= FS_DIRSYNC_FL;
146 	if (flags & BTRFS_INODE_NODATACOW)
147 		iflags |= FS_NOCOW_FL;
148 	if (ro_flags & BTRFS_INODE_RO_VERITY)
149 		iflags |= FS_VERITY_FL;
150 
151 	if (flags & BTRFS_INODE_NOCOMPRESS)
152 		iflags |= FS_NOCOMP_FL;
153 	else if (flags & BTRFS_INODE_COMPRESS)
154 		iflags |= FS_COMPR_FL;
155 
156 	return iflags;
157 }
158 
159 /*
160  * Update inode->i_flags based on the btrfs internal flags.
161  */
162 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
163 {
164 	struct btrfs_inode *binode = BTRFS_I(inode);
165 	unsigned int new_fl = 0;
166 
167 	if (binode->flags & BTRFS_INODE_SYNC)
168 		new_fl |= S_SYNC;
169 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
170 		new_fl |= S_IMMUTABLE;
171 	if (binode->flags & BTRFS_INODE_APPEND)
172 		new_fl |= S_APPEND;
173 	if (binode->flags & BTRFS_INODE_NOATIME)
174 		new_fl |= S_NOATIME;
175 	if (binode->flags & BTRFS_INODE_DIRSYNC)
176 		new_fl |= S_DIRSYNC;
177 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
178 		new_fl |= S_VERITY;
179 
180 	set_mask_bits(&inode->i_flags,
181 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
182 		      S_VERITY, new_fl);
183 }
184 
185 /*
186  * Check if @flags are a supported and valid set of FS_*_FL flags and that
187  * the old and new flags are not conflicting
188  */
189 static int check_fsflags(unsigned int old_flags, unsigned int flags)
190 {
191 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
192 		      FS_NOATIME_FL | FS_NODUMP_FL | \
193 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
194 		      FS_NOCOMP_FL | FS_COMPR_FL |
195 		      FS_NOCOW_FL))
196 		return -EOPNOTSUPP;
197 
198 	/* COMPR and NOCOMP on new/old are valid */
199 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
200 		return -EINVAL;
201 
202 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
203 		return -EINVAL;
204 
205 	/* NOCOW and compression options are mutually exclusive */
206 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
207 		return -EINVAL;
208 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
209 		return -EINVAL;
210 
211 	return 0;
212 }
213 
214 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
215 				    unsigned int flags)
216 {
217 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
218 		return -EPERM;
219 
220 	return 0;
221 }
222 
223 /*
224  * Set flags/xflags from the internal inode flags. The remaining items of
225  * fsxattr are zeroed.
226  */
227 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
228 {
229 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
230 
231 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
232 	return 0;
233 }
234 
235 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
236 		       struct dentry *dentry, struct fileattr *fa)
237 {
238 	struct inode *inode = d_inode(dentry);
239 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
240 	struct btrfs_inode *binode = BTRFS_I(inode);
241 	struct btrfs_root *root = binode->root;
242 	struct btrfs_trans_handle *trans;
243 	unsigned int fsflags, old_fsflags;
244 	int ret;
245 	const char *comp = NULL;
246 	u32 binode_flags;
247 
248 	if (btrfs_root_readonly(root))
249 		return -EROFS;
250 
251 	if (fileattr_has_fsx(fa))
252 		return -EOPNOTSUPP;
253 
254 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
255 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
256 	ret = check_fsflags(old_fsflags, fsflags);
257 	if (ret)
258 		return ret;
259 
260 	ret = check_fsflags_compatible(fs_info, fsflags);
261 	if (ret)
262 		return ret;
263 
264 	binode_flags = binode->flags;
265 	if (fsflags & FS_SYNC_FL)
266 		binode_flags |= BTRFS_INODE_SYNC;
267 	else
268 		binode_flags &= ~BTRFS_INODE_SYNC;
269 	if (fsflags & FS_IMMUTABLE_FL)
270 		binode_flags |= BTRFS_INODE_IMMUTABLE;
271 	else
272 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
273 	if (fsflags & FS_APPEND_FL)
274 		binode_flags |= BTRFS_INODE_APPEND;
275 	else
276 		binode_flags &= ~BTRFS_INODE_APPEND;
277 	if (fsflags & FS_NODUMP_FL)
278 		binode_flags |= BTRFS_INODE_NODUMP;
279 	else
280 		binode_flags &= ~BTRFS_INODE_NODUMP;
281 	if (fsflags & FS_NOATIME_FL)
282 		binode_flags |= BTRFS_INODE_NOATIME;
283 	else
284 		binode_flags &= ~BTRFS_INODE_NOATIME;
285 
286 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
287 	if (!fa->flags_valid) {
288 		/* 1 item for the inode */
289 		trans = btrfs_start_transaction(root, 1);
290 		if (IS_ERR(trans))
291 			return PTR_ERR(trans);
292 		goto update_flags;
293 	}
294 
295 	if (fsflags & FS_DIRSYNC_FL)
296 		binode_flags |= BTRFS_INODE_DIRSYNC;
297 	else
298 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
299 	if (fsflags & FS_NOCOW_FL) {
300 		if (S_ISREG(inode->i_mode)) {
301 			/*
302 			 * It's safe to turn csums off here, no extents exist.
303 			 * Otherwise we want the flag to reflect the real COW
304 			 * status of the file and will not set it.
305 			 */
306 			if (inode->i_size == 0)
307 				binode_flags |= BTRFS_INODE_NODATACOW |
308 						BTRFS_INODE_NODATASUM;
309 		} else {
310 			binode_flags |= BTRFS_INODE_NODATACOW;
311 		}
312 	} else {
313 		/*
314 		 * Revert back under same assumptions as above
315 		 */
316 		if (S_ISREG(inode->i_mode)) {
317 			if (inode->i_size == 0)
318 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
319 						  BTRFS_INODE_NODATASUM);
320 		} else {
321 			binode_flags &= ~BTRFS_INODE_NODATACOW;
322 		}
323 	}
324 
325 	/*
326 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
327 	 * flag may be changed automatically if compression code won't make
328 	 * things smaller.
329 	 */
330 	if (fsflags & FS_NOCOMP_FL) {
331 		binode_flags &= ~BTRFS_INODE_COMPRESS;
332 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
333 	} else if (fsflags & FS_COMPR_FL) {
334 
335 		if (IS_SWAPFILE(inode))
336 			return -ETXTBSY;
337 
338 		binode_flags |= BTRFS_INODE_COMPRESS;
339 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
340 
341 		comp = btrfs_compress_type2str(fs_info->compress_type);
342 		if (!comp || comp[0] == 0)
343 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
344 	} else {
345 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
346 	}
347 
348 	/*
349 	 * 1 for inode item
350 	 * 2 for properties
351 	 */
352 	trans = btrfs_start_transaction(root, 3);
353 	if (IS_ERR(trans))
354 		return PTR_ERR(trans);
355 
356 	if (comp) {
357 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
358 				     strlen(comp), 0);
359 		if (ret) {
360 			btrfs_abort_transaction(trans, ret);
361 			goto out_end_trans;
362 		}
363 	} else {
364 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
365 				     0, 0);
366 		if (ret && ret != -ENODATA) {
367 			btrfs_abort_transaction(trans, ret);
368 			goto out_end_trans;
369 		}
370 	}
371 
372 update_flags:
373 	binode->flags = binode_flags;
374 	btrfs_sync_inode_flags_to_i_flags(inode);
375 	inode_inc_iversion(inode);
376 	inode->i_ctime = current_time(inode);
377 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
378 
379  out_end_trans:
380 	btrfs_end_transaction(trans);
381 	return ret;
382 }
383 
384 /*
385  * Start exclusive operation @type, return true on success
386  */
387 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
388 			enum btrfs_exclusive_operation type)
389 {
390 	bool ret = false;
391 
392 	spin_lock(&fs_info->super_lock);
393 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
394 		fs_info->exclusive_operation = type;
395 		ret = true;
396 	}
397 	spin_unlock(&fs_info->super_lock);
398 
399 	return ret;
400 }
401 
402 /*
403  * Conditionally allow to enter the exclusive operation in case it's compatible
404  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
405  * btrfs_exclop_finish.
406  *
407  * Compatibility:
408  * - the same type is already running
409  * - when trying to add a device and balance has been paused
410  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
411  *   must check the condition first that would allow none -> @type
412  */
413 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
414 				 enum btrfs_exclusive_operation type)
415 {
416 	spin_lock(&fs_info->super_lock);
417 	if (fs_info->exclusive_operation == type ||
418 	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
419 	     type == BTRFS_EXCLOP_DEV_ADD))
420 		return true;
421 
422 	spin_unlock(&fs_info->super_lock);
423 	return false;
424 }
425 
426 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
427 {
428 	spin_unlock(&fs_info->super_lock);
429 }
430 
431 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
432 {
433 	spin_lock(&fs_info->super_lock);
434 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
435 	spin_unlock(&fs_info->super_lock);
436 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
437 }
438 
439 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
440 			  enum btrfs_exclusive_operation op)
441 {
442 	switch (op) {
443 	case BTRFS_EXCLOP_BALANCE_PAUSED:
444 		spin_lock(&fs_info->super_lock);
445 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
446 		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD);
447 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
448 		spin_unlock(&fs_info->super_lock);
449 		break;
450 	case BTRFS_EXCLOP_BALANCE:
451 		spin_lock(&fs_info->super_lock);
452 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
453 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
454 		spin_unlock(&fs_info->super_lock);
455 		break;
456 	default:
457 		btrfs_warn(fs_info,
458 			"invalid exclop balance operation %d requested", op);
459 	}
460 }
461 
462 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
463 {
464 	return put_user(inode->i_generation, arg);
465 }
466 
467 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
468 					void __user *arg)
469 {
470 	struct btrfs_device *device;
471 	struct request_queue *q;
472 	struct fstrim_range range;
473 	u64 minlen = ULLONG_MAX;
474 	u64 num_devices = 0;
475 	int ret;
476 
477 	if (!capable(CAP_SYS_ADMIN))
478 		return -EPERM;
479 
480 	/*
481 	 * btrfs_trim_block_group() depends on space cache, which is not
482 	 * available in zoned filesystem. So, disallow fitrim on a zoned
483 	 * filesystem for now.
484 	 */
485 	if (btrfs_is_zoned(fs_info))
486 		return -EOPNOTSUPP;
487 
488 	/*
489 	 * If the fs is mounted with nologreplay, which requires it to be
490 	 * mounted in RO mode as well, we can not allow discard on free space
491 	 * inside block groups, because log trees refer to extents that are not
492 	 * pinned in a block group's free space cache (pinning the extents is
493 	 * precisely the first phase of replaying a log tree).
494 	 */
495 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
496 		return -EROFS;
497 
498 	rcu_read_lock();
499 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
500 				dev_list) {
501 		if (!device->bdev)
502 			continue;
503 		q = bdev_get_queue(device->bdev);
504 		if (blk_queue_discard(q)) {
505 			num_devices++;
506 			minlen = min_t(u64, q->limits.discard_granularity,
507 				     minlen);
508 		}
509 	}
510 	rcu_read_unlock();
511 
512 	if (!num_devices)
513 		return -EOPNOTSUPP;
514 	if (copy_from_user(&range, arg, sizeof(range)))
515 		return -EFAULT;
516 
517 	/*
518 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
519 	 * block group is in the logical address space, which can be any
520 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
521 	 */
522 	if (range.len < fs_info->sb->s_blocksize)
523 		return -EINVAL;
524 
525 	range.minlen = max(range.minlen, minlen);
526 	ret = btrfs_trim_fs(fs_info, &range);
527 	if (ret < 0)
528 		return ret;
529 
530 	if (copy_to_user(arg, &range, sizeof(range)))
531 		return -EFAULT;
532 
533 	return 0;
534 }
535 
536 int __pure btrfs_is_empty_uuid(u8 *uuid)
537 {
538 	int i;
539 
540 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
541 		if (uuid[i])
542 			return 0;
543 	}
544 	return 1;
545 }
546 
547 static noinline int create_subvol(struct user_namespace *mnt_userns,
548 				  struct inode *dir, struct dentry *dentry,
549 				  const char *name, int namelen,
550 				  struct btrfs_qgroup_inherit *inherit)
551 {
552 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
553 	struct btrfs_trans_handle *trans;
554 	struct btrfs_key key;
555 	struct btrfs_root_item *root_item;
556 	struct btrfs_inode_item *inode_item;
557 	struct extent_buffer *leaf;
558 	struct btrfs_root *root = BTRFS_I(dir)->root;
559 	struct btrfs_root *new_root;
560 	struct btrfs_block_rsv block_rsv;
561 	struct timespec64 cur_time = current_time(dir);
562 	struct inode *inode;
563 	int ret;
564 	dev_t anon_dev = 0;
565 	u64 objectid;
566 	u64 index = 0;
567 
568 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
569 	if (!root_item)
570 		return -ENOMEM;
571 
572 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
573 	if (ret)
574 		goto fail_free;
575 
576 	ret = get_anon_bdev(&anon_dev);
577 	if (ret < 0)
578 		goto fail_free;
579 
580 	/*
581 	 * Don't create subvolume whose level is not zero. Or qgroup will be
582 	 * screwed up since it assumes subvolume qgroup's level to be 0.
583 	 */
584 	if (btrfs_qgroup_level(objectid)) {
585 		ret = -ENOSPC;
586 		goto fail_free;
587 	}
588 
589 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
590 	/*
591 	 * The same as the snapshot creation, please see the comment
592 	 * of create_snapshot().
593 	 */
594 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
595 	if (ret)
596 		goto fail_free;
597 
598 	trans = btrfs_start_transaction(root, 0);
599 	if (IS_ERR(trans)) {
600 		ret = PTR_ERR(trans);
601 		btrfs_subvolume_release_metadata(root, &block_rsv);
602 		goto fail_free;
603 	}
604 	trans->block_rsv = &block_rsv;
605 	trans->bytes_reserved = block_rsv.size;
606 
607 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
608 	if (ret)
609 		goto fail;
610 
611 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
612 				      BTRFS_NESTING_NORMAL);
613 	if (IS_ERR(leaf)) {
614 		ret = PTR_ERR(leaf);
615 		goto fail;
616 	}
617 
618 	btrfs_mark_buffer_dirty(leaf);
619 
620 	inode_item = &root_item->inode;
621 	btrfs_set_stack_inode_generation(inode_item, 1);
622 	btrfs_set_stack_inode_size(inode_item, 3);
623 	btrfs_set_stack_inode_nlink(inode_item, 1);
624 	btrfs_set_stack_inode_nbytes(inode_item,
625 				     fs_info->nodesize);
626 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
627 
628 	btrfs_set_root_flags(root_item, 0);
629 	btrfs_set_root_limit(root_item, 0);
630 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
631 
632 	btrfs_set_root_bytenr(root_item, leaf->start);
633 	btrfs_set_root_generation(root_item, trans->transid);
634 	btrfs_set_root_level(root_item, 0);
635 	btrfs_set_root_refs(root_item, 1);
636 	btrfs_set_root_used(root_item, leaf->len);
637 	btrfs_set_root_last_snapshot(root_item, 0);
638 
639 	btrfs_set_root_generation_v2(root_item,
640 			btrfs_root_generation(root_item));
641 	generate_random_guid(root_item->uuid);
642 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
643 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
644 	root_item->ctime = root_item->otime;
645 	btrfs_set_root_ctransid(root_item, trans->transid);
646 	btrfs_set_root_otransid(root_item, trans->transid);
647 
648 	btrfs_tree_unlock(leaf);
649 
650 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
651 
652 	key.objectid = objectid;
653 	key.offset = 0;
654 	key.type = BTRFS_ROOT_ITEM_KEY;
655 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
656 				root_item);
657 	if (ret) {
658 		/*
659 		 * Since we don't abort the transaction in this case, free the
660 		 * tree block so that we don't leak space and leave the
661 		 * filesystem in an inconsistent state (an extent item in the
662 		 * extent tree with a backreference for a root that does not
663 		 * exists).
664 		 */
665 		btrfs_tree_lock(leaf);
666 		btrfs_clean_tree_block(leaf);
667 		btrfs_tree_unlock(leaf);
668 		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
669 		free_extent_buffer(leaf);
670 		goto fail;
671 	}
672 
673 	free_extent_buffer(leaf);
674 	leaf = NULL;
675 
676 	key.offset = (u64)-1;
677 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
678 	if (IS_ERR(new_root)) {
679 		free_anon_bdev(anon_dev);
680 		ret = PTR_ERR(new_root);
681 		btrfs_abort_transaction(trans, ret);
682 		goto fail;
683 	}
684 	/* Freeing will be done in btrfs_put_root() of new_root */
685 	anon_dev = 0;
686 
687 	ret = btrfs_record_root_in_trans(trans, new_root);
688 	if (ret) {
689 		btrfs_put_root(new_root);
690 		btrfs_abort_transaction(trans, ret);
691 		goto fail;
692 	}
693 
694 	ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns);
695 	btrfs_put_root(new_root);
696 	if (ret) {
697 		/* We potentially lose an unused inode item here */
698 		btrfs_abort_transaction(trans, ret);
699 		goto fail;
700 	}
701 
702 	/*
703 	 * insert the directory item
704 	 */
705 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
706 	if (ret) {
707 		btrfs_abort_transaction(trans, ret);
708 		goto fail;
709 	}
710 
711 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
712 				    BTRFS_FT_DIR, index);
713 	if (ret) {
714 		btrfs_abort_transaction(trans, ret);
715 		goto fail;
716 	}
717 
718 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
719 	ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
720 	if (ret) {
721 		btrfs_abort_transaction(trans, ret);
722 		goto fail;
723 	}
724 
725 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
726 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
727 	if (ret) {
728 		btrfs_abort_transaction(trans, ret);
729 		goto fail;
730 	}
731 
732 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
733 				  BTRFS_UUID_KEY_SUBVOL, objectid);
734 	if (ret)
735 		btrfs_abort_transaction(trans, ret);
736 
737 fail:
738 	kfree(root_item);
739 	trans->block_rsv = NULL;
740 	trans->bytes_reserved = 0;
741 	btrfs_subvolume_release_metadata(root, &block_rsv);
742 
743 	if (ret)
744 		btrfs_end_transaction(trans);
745 	else
746 		ret = btrfs_commit_transaction(trans);
747 
748 	if (!ret) {
749 		inode = btrfs_lookup_dentry(dir, dentry);
750 		if (IS_ERR(inode))
751 			return PTR_ERR(inode);
752 		d_instantiate(dentry, inode);
753 	}
754 	return ret;
755 
756 fail_free:
757 	if (anon_dev)
758 		free_anon_bdev(anon_dev);
759 	kfree(root_item);
760 	return ret;
761 }
762 
763 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
764 			   struct dentry *dentry, bool readonly,
765 			   struct btrfs_qgroup_inherit *inherit)
766 {
767 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
768 	struct inode *inode;
769 	struct btrfs_pending_snapshot *pending_snapshot;
770 	struct btrfs_trans_handle *trans;
771 	int ret;
772 
773 	/* We do not support snapshotting right now. */
774 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
775 		btrfs_warn(fs_info,
776 			   "extent tree v2 doesn't support snapshotting yet");
777 		return -EOPNOTSUPP;
778 	}
779 
780 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
781 		return -EINVAL;
782 
783 	if (atomic_read(&root->nr_swapfiles)) {
784 		btrfs_warn(fs_info,
785 			   "cannot snapshot subvolume with active swapfile");
786 		return -ETXTBSY;
787 	}
788 
789 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
790 	if (!pending_snapshot)
791 		return -ENOMEM;
792 
793 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
794 	if (ret < 0)
795 		goto free_pending;
796 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
797 			GFP_KERNEL);
798 	pending_snapshot->path = btrfs_alloc_path();
799 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
800 		ret = -ENOMEM;
801 		goto free_pending;
802 	}
803 
804 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
805 			     BTRFS_BLOCK_RSV_TEMP);
806 	/*
807 	 * 1 - parent dir inode
808 	 * 2 - dir entries
809 	 * 1 - root item
810 	 * 2 - root ref/backref
811 	 * 1 - root of snapshot
812 	 * 1 - UUID item
813 	 */
814 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
815 					&pending_snapshot->block_rsv, 8,
816 					false);
817 	if (ret)
818 		goto free_pending;
819 
820 	pending_snapshot->dentry = dentry;
821 	pending_snapshot->root = root;
822 	pending_snapshot->readonly = readonly;
823 	pending_snapshot->dir = dir;
824 	pending_snapshot->inherit = inherit;
825 
826 	trans = btrfs_start_transaction(root, 0);
827 	if (IS_ERR(trans)) {
828 		ret = PTR_ERR(trans);
829 		goto fail;
830 	}
831 
832 	trans->pending_snapshot = pending_snapshot;
833 
834 	ret = btrfs_commit_transaction(trans);
835 	if (ret)
836 		goto fail;
837 
838 	ret = pending_snapshot->error;
839 	if (ret)
840 		goto fail;
841 
842 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
843 	if (ret)
844 		goto fail;
845 
846 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
847 	if (IS_ERR(inode)) {
848 		ret = PTR_ERR(inode);
849 		goto fail;
850 	}
851 
852 	d_instantiate(dentry, inode);
853 	ret = 0;
854 	pending_snapshot->anon_dev = 0;
855 fail:
856 	/* Prevent double freeing of anon_dev */
857 	if (ret && pending_snapshot->snap)
858 		pending_snapshot->snap->anon_dev = 0;
859 	btrfs_put_root(pending_snapshot->snap);
860 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
861 free_pending:
862 	if (pending_snapshot->anon_dev)
863 		free_anon_bdev(pending_snapshot->anon_dev);
864 	kfree(pending_snapshot->root_item);
865 	btrfs_free_path(pending_snapshot->path);
866 	kfree(pending_snapshot);
867 
868 	return ret;
869 }
870 
871 /*  copy of may_delete in fs/namei.c()
872  *	Check whether we can remove a link victim from directory dir, check
873  *  whether the type of victim is right.
874  *  1. We can't do it if dir is read-only (done in permission())
875  *  2. We should have write and exec permissions on dir
876  *  3. We can't remove anything from append-only dir
877  *  4. We can't do anything with immutable dir (done in permission())
878  *  5. If the sticky bit on dir is set we should either
879  *	a. be owner of dir, or
880  *	b. be owner of victim, or
881  *	c. have CAP_FOWNER capability
882  *  6. If the victim is append-only or immutable we can't do anything with
883  *     links pointing to it.
884  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
885  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
886  *  9. We can't remove a root or mountpoint.
887  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
888  *     nfs_async_unlink().
889  */
890 
891 static int btrfs_may_delete(struct user_namespace *mnt_userns,
892 			    struct inode *dir, struct dentry *victim, int isdir)
893 {
894 	int error;
895 
896 	if (d_really_is_negative(victim))
897 		return -ENOENT;
898 
899 	BUG_ON(d_inode(victim->d_parent) != dir);
900 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
901 
902 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
903 	if (error)
904 		return error;
905 	if (IS_APPEND(dir))
906 		return -EPERM;
907 	if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
908 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
909 	    IS_SWAPFILE(d_inode(victim)))
910 		return -EPERM;
911 	if (isdir) {
912 		if (!d_is_dir(victim))
913 			return -ENOTDIR;
914 		if (IS_ROOT(victim))
915 			return -EBUSY;
916 	} else if (d_is_dir(victim))
917 		return -EISDIR;
918 	if (IS_DEADDIR(dir))
919 		return -ENOENT;
920 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
921 		return -EBUSY;
922 	return 0;
923 }
924 
925 /* copy of may_create in fs/namei.c() */
926 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
927 				   struct inode *dir, struct dentry *child)
928 {
929 	if (d_really_is_positive(child))
930 		return -EEXIST;
931 	if (IS_DEADDIR(dir))
932 		return -ENOENT;
933 	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
934 		return -EOVERFLOW;
935 	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
936 }
937 
938 /*
939  * Create a new subvolume below @parent.  This is largely modeled after
940  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
941  * inside this filesystem so it's quite a bit simpler.
942  */
943 static noinline int btrfs_mksubvol(const struct path *parent,
944 				   struct user_namespace *mnt_userns,
945 				   const char *name, int namelen,
946 				   struct btrfs_root *snap_src,
947 				   bool readonly,
948 				   struct btrfs_qgroup_inherit *inherit)
949 {
950 	struct inode *dir = d_inode(parent->dentry);
951 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
952 	struct dentry *dentry;
953 	int error;
954 
955 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
956 	if (error == -EINTR)
957 		return error;
958 
959 	dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
960 	error = PTR_ERR(dentry);
961 	if (IS_ERR(dentry))
962 		goto out_unlock;
963 
964 	error = btrfs_may_create(mnt_userns, dir, dentry);
965 	if (error)
966 		goto out_dput;
967 
968 	/*
969 	 * even if this name doesn't exist, we may get hash collisions.
970 	 * check for them now when we can safely fail
971 	 */
972 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
973 					       dir->i_ino, name,
974 					       namelen);
975 	if (error)
976 		goto out_dput;
977 
978 	down_read(&fs_info->subvol_sem);
979 
980 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
981 		goto out_up_read;
982 
983 	if (snap_src)
984 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
985 	else
986 		error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit);
987 
988 	if (!error)
989 		fsnotify_mkdir(dir, dentry);
990 out_up_read:
991 	up_read(&fs_info->subvol_sem);
992 out_dput:
993 	dput(dentry);
994 out_unlock:
995 	btrfs_inode_unlock(dir, 0);
996 	return error;
997 }
998 
999 static noinline int btrfs_mksnapshot(const struct path *parent,
1000 				   struct user_namespace *mnt_userns,
1001 				   const char *name, int namelen,
1002 				   struct btrfs_root *root,
1003 				   bool readonly,
1004 				   struct btrfs_qgroup_inherit *inherit)
1005 {
1006 	int ret;
1007 	bool snapshot_force_cow = false;
1008 
1009 	/*
1010 	 * Force new buffered writes to reserve space even when NOCOW is
1011 	 * possible. This is to avoid later writeback (running dealloc) to
1012 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1013 	 */
1014 	btrfs_drew_read_lock(&root->snapshot_lock);
1015 
1016 	ret = btrfs_start_delalloc_snapshot(root, false);
1017 	if (ret)
1018 		goto out;
1019 
1020 	/*
1021 	 * All previous writes have started writeback in NOCOW mode, so now
1022 	 * we force future writes to fallback to COW mode during snapshot
1023 	 * creation.
1024 	 */
1025 	atomic_inc(&root->snapshot_force_cow);
1026 	snapshot_force_cow = true;
1027 
1028 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1029 
1030 	ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
1031 			     root, readonly, inherit);
1032 out:
1033 	if (snapshot_force_cow)
1034 		atomic_dec(&root->snapshot_force_cow);
1035 	btrfs_drew_read_unlock(&root->snapshot_lock);
1036 	return ret;
1037 }
1038 
1039 /*
1040  * Defrag specific helper to get an extent map.
1041  *
1042  * Differences between this and btrfs_get_extent() are:
1043  *
1044  * - No extent_map will be added to inode->extent_tree
1045  *   To reduce memory usage in the long run.
1046  *
1047  * - Extra optimization to skip file extents older than @newer_than
1048  *   By using btrfs_search_forward() we can skip entire file ranges that
1049  *   have extents created in past transactions, because btrfs_search_forward()
1050  *   will not visit leaves and nodes with a generation smaller than given
1051  *   minimal generation threshold (@newer_than).
1052  *
1053  * Return valid em if we find a file extent matching the requirement.
1054  * Return NULL if we can not find a file extent matching the requirement.
1055  *
1056  * Return ERR_PTR() for error.
1057  */
1058 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
1059 					    u64 start, u64 newer_than)
1060 {
1061 	struct btrfs_root *root = inode->root;
1062 	struct btrfs_file_extent_item *fi;
1063 	struct btrfs_path path = { 0 };
1064 	struct extent_map *em;
1065 	struct btrfs_key key;
1066 	u64 ino = btrfs_ino(inode);
1067 	int ret;
1068 
1069 	em = alloc_extent_map();
1070 	if (!em) {
1071 		ret = -ENOMEM;
1072 		goto err;
1073 	}
1074 
1075 	key.objectid = ino;
1076 	key.type = BTRFS_EXTENT_DATA_KEY;
1077 	key.offset = start;
1078 
1079 	if (newer_than) {
1080 		ret = btrfs_search_forward(root, &key, &path, newer_than);
1081 		if (ret < 0)
1082 			goto err;
1083 		/* Can't find anything newer */
1084 		if (ret > 0)
1085 			goto not_found;
1086 	} else {
1087 		ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
1088 		if (ret < 0)
1089 			goto err;
1090 	}
1091 	if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
1092 		/*
1093 		 * If btrfs_search_slot() makes path to point beyond nritems,
1094 		 * we should not have an empty leaf, as this inode must at
1095 		 * least have its INODE_ITEM.
1096 		 */
1097 		ASSERT(btrfs_header_nritems(path.nodes[0]));
1098 		path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
1099 	}
1100 	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1101 	/* Perfect match, no need to go one slot back */
1102 	if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
1103 	    key.offset == start)
1104 		goto iterate;
1105 
1106 	/* We didn't find a perfect match, needs to go one slot back */
1107 	if (path.slots[0] > 0) {
1108 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1109 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
1110 			path.slots[0]--;
1111 	}
1112 
1113 iterate:
1114 	/* Iterate through the path to find a file extent covering @start */
1115 	while (true) {
1116 		u64 extent_end;
1117 
1118 		if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
1119 			goto next;
1120 
1121 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1122 
1123 		/*
1124 		 * We may go one slot back to INODE_REF/XATTR item, then
1125 		 * need to go forward until we reach an EXTENT_DATA.
1126 		 * But we should still has the correct ino as key.objectid.
1127 		 */
1128 		if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
1129 			goto next;
1130 
1131 		/* It's beyond our target range, definitely not extent found */
1132 		if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
1133 			goto not_found;
1134 
1135 		/*
1136 		 *	|	|<- File extent ->|
1137 		 *	\- start
1138 		 *
1139 		 * This means there is a hole between start and key.offset.
1140 		 */
1141 		if (key.offset > start) {
1142 			em->start = start;
1143 			em->orig_start = start;
1144 			em->block_start = EXTENT_MAP_HOLE;
1145 			em->len = key.offset - start;
1146 			break;
1147 		}
1148 
1149 		fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
1150 				    struct btrfs_file_extent_item);
1151 		extent_end = btrfs_file_extent_end(&path);
1152 
1153 		/*
1154 		 *	|<- file extent ->|	|
1155 		 *				\- start
1156 		 *
1157 		 * We haven't reached start, search next slot.
1158 		 */
1159 		if (extent_end <= start)
1160 			goto next;
1161 
1162 		/* Now this extent covers @start, convert it to em */
1163 		btrfs_extent_item_to_extent_map(inode, &path, fi, false, em);
1164 		break;
1165 next:
1166 		ret = btrfs_next_item(root, &path);
1167 		if (ret < 0)
1168 			goto err;
1169 		if (ret > 0)
1170 			goto not_found;
1171 	}
1172 	btrfs_release_path(&path);
1173 	return em;
1174 
1175 not_found:
1176 	btrfs_release_path(&path);
1177 	free_extent_map(em);
1178 	return NULL;
1179 
1180 err:
1181 	btrfs_release_path(&path);
1182 	free_extent_map(em);
1183 	return ERR_PTR(ret);
1184 }
1185 
1186 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
1187 					       u64 newer_than, bool locked)
1188 {
1189 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1190 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1191 	struct extent_map *em;
1192 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
1193 
1194 	/*
1195 	 * hopefully we have this extent in the tree already, try without
1196 	 * the full extent lock
1197 	 */
1198 	read_lock(&em_tree->lock);
1199 	em = lookup_extent_mapping(em_tree, start, sectorsize);
1200 	read_unlock(&em_tree->lock);
1201 
1202 	/*
1203 	 * We can get a merged extent, in that case, we need to re-search
1204 	 * tree to get the original em for defrag.
1205 	 *
1206 	 * If @newer_than is 0 or em::generation < newer_than, we can trust
1207 	 * this em, as either we don't care about the generation, or the
1208 	 * merged extent map will be rejected anyway.
1209 	 */
1210 	if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
1211 	    newer_than && em->generation >= newer_than) {
1212 		free_extent_map(em);
1213 		em = NULL;
1214 	}
1215 
1216 	if (!em) {
1217 		struct extent_state *cached = NULL;
1218 		u64 end = start + sectorsize - 1;
1219 
1220 		/* get the big lock and read metadata off disk */
1221 		if (!locked)
1222 			lock_extent_bits(io_tree, start, end, &cached);
1223 		em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
1224 		if (!locked)
1225 			unlock_extent_cached(io_tree, start, end, &cached);
1226 
1227 		if (IS_ERR(em))
1228 			return NULL;
1229 	}
1230 
1231 	return em;
1232 }
1233 
1234 static u32 get_extent_max_capacity(const struct extent_map *em)
1235 {
1236 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1237 		return BTRFS_MAX_COMPRESSED;
1238 	return BTRFS_MAX_EXTENT_SIZE;
1239 }
1240 
1241 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
1242 				     bool locked)
1243 {
1244 	struct extent_map *next;
1245 	bool ret = false;
1246 
1247 	/* this is the last extent */
1248 	if (em->start + em->len >= i_size_read(inode))
1249 		return false;
1250 
1251 	/*
1252 	 * We want to check if the next extent can be merged with the current
1253 	 * one, which can be an extent created in a past generation, so we pass
1254 	 * a minimum generation of 0 to defrag_lookup_extent().
1255 	 */
1256 	next = defrag_lookup_extent(inode, em->start + em->len, 0, locked);
1257 	/* No more em or hole */
1258 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1259 		goto out;
1260 	if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
1261 		goto out;
1262 	/*
1263 	 * If the next extent is at its max capacity, defragging current extent
1264 	 * makes no sense, as the total number of extents won't change.
1265 	 */
1266 	if (next->len >= get_extent_max_capacity(em))
1267 		goto out;
1268 	ret = true;
1269 out:
1270 	free_extent_map(next);
1271 	return ret;
1272 }
1273 
1274 /*
1275  * Prepare one page to be defragged.
1276  *
1277  * This will ensure:
1278  *
1279  * - Returned page is locked and has been set up properly.
1280  * - No ordered extent exists in the page.
1281  * - The page is uptodate.
1282  *
1283  * NOTE: Caller should also wait for page writeback after the cluster is
1284  * prepared, here we don't do writeback wait for each page.
1285  */
1286 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
1287 					    pgoff_t index)
1288 {
1289 	struct address_space *mapping = inode->vfs_inode.i_mapping;
1290 	gfp_t mask = btrfs_alloc_write_mask(mapping);
1291 	u64 page_start = (u64)index << PAGE_SHIFT;
1292 	u64 page_end = page_start + PAGE_SIZE - 1;
1293 	struct extent_state *cached_state = NULL;
1294 	struct page *page;
1295 	int ret;
1296 
1297 again:
1298 	page = find_or_create_page(mapping, index, mask);
1299 	if (!page)
1300 		return ERR_PTR(-ENOMEM);
1301 
1302 	/*
1303 	 * Since we can defragment files opened read-only, we can encounter
1304 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
1305 	 * can't do I/O using huge pages yet, so return an error for now.
1306 	 * Filesystem transparent huge pages are typically only used for
1307 	 * executables that explicitly enable them, so this isn't very
1308 	 * restrictive.
1309 	 */
1310 	if (PageCompound(page)) {
1311 		unlock_page(page);
1312 		put_page(page);
1313 		return ERR_PTR(-ETXTBSY);
1314 	}
1315 
1316 	ret = set_page_extent_mapped(page);
1317 	if (ret < 0) {
1318 		unlock_page(page);
1319 		put_page(page);
1320 		return ERR_PTR(ret);
1321 	}
1322 
1323 	/* Wait for any existing ordered extent in the range */
1324 	while (1) {
1325 		struct btrfs_ordered_extent *ordered;
1326 
1327 		lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
1328 		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
1329 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
1330 				     &cached_state);
1331 		if (!ordered)
1332 			break;
1333 
1334 		unlock_page(page);
1335 		btrfs_start_ordered_extent(ordered, 1);
1336 		btrfs_put_ordered_extent(ordered);
1337 		lock_page(page);
1338 		/*
1339 		 * We unlocked the page above, so we need check if it was
1340 		 * released or not.
1341 		 */
1342 		if (page->mapping != mapping || !PagePrivate(page)) {
1343 			unlock_page(page);
1344 			put_page(page);
1345 			goto again;
1346 		}
1347 	}
1348 
1349 	/*
1350 	 * Now the page range has no ordered extent any more.  Read the page to
1351 	 * make it uptodate.
1352 	 */
1353 	if (!PageUptodate(page)) {
1354 		btrfs_readpage(NULL, page);
1355 		lock_page(page);
1356 		if (page->mapping != mapping || !PagePrivate(page)) {
1357 			unlock_page(page);
1358 			put_page(page);
1359 			goto again;
1360 		}
1361 		if (!PageUptodate(page)) {
1362 			unlock_page(page);
1363 			put_page(page);
1364 			return ERR_PTR(-EIO);
1365 		}
1366 	}
1367 	return page;
1368 }
1369 
1370 struct defrag_target_range {
1371 	struct list_head list;
1372 	u64 start;
1373 	u64 len;
1374 };
1375 
1376 /*
1377  * Collect all valid target extents.
1378  *
1379  * @start:	   file offset to lookup
1380  * @len:	   length to lookup
1381  * @extent_thresh: file extent size threshold, any extent size >= this value
1382  *		   will be ignored
1383  * @newer_than:    only defrag extents newer than this value
1384  * @do_compress:   whether the defrag is doing compression
1385  *		   if true, @extent_thresh will be ignored and all regular
1386  *		   file extents meeting @newer_than will be targets.
1387  * @locked:	   if the range has already held extent lock
1388  * @target_list:   list of targets file extents
1389  */
1390 static int defrag_collect_targets(struct btrfs_inode *inode,
1391 				  u64 start, u64 len, u32 extent_thresh,
1392 				  u64 newer_than, bool do_compress,
1393 				  bool locked, struct list_head *target_list,
1394 				  u64 *last_scanned_ret)
1395 {
1396 	bool last_is_target = false;
1397 	u64 cur = start;
1398 	int ret = 0;
1399 
1400 	while (cur < start + len) {
1401 		struct extent_map *em;
1402 		struct defrag_target_range *new;
1403 		bool next_mergeable = true;
1404 		u64 range_len;
1405 
1406 		last_is_target = false;
1407 		em = defrag_lookup_extent(&inode->vfs_inode, cur,
1408 					  newer_than, locked);
1409 		if (!em)
1410 			break;
1411 
1412 		/* Skip hole/inline/preallocated extents */
1413 		if (em->block_start >= EXTENT_MAP_LAST_BYTE ||
1414 		    test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1415 			goto next;
1416 
1417 		/* Skip older extent */
1418 		if (em->generation < newer_than)
1419 			goto next;
1420 
1421 		/* This em is under writeback, no need to defrag */
1422 		if (em->generation == (u64)-1)
1423 			goto next;
1424 
1425 		/*
1426 		 * Our start offset might be in the middle of an existing extent
1427 		 * map, so take that into account.
1428 		 */
1429 		range_len = em->len - (cur - em->start);
1430 		/*
1431 		 * If this range of the extent map is already flagged for delalloc,
1432 		 * skip it, because:
1433 		 *
1434 		 * 1) We could deadlock later, when trying to reserve space for
1435 		 *    delalloc, because in case we can't immediately reserve space
1436 		 *    the flusher can start delalloc and wait for the respective
1437 		 *    ordered extents to complete. The deadlock would happen
1438 		 *    because we do the space reservation while holding the range
1439 		 *    locked, and starting writeback, or finishing an ordered
1440 		 *    extent, requires locking the range;
1441 		 *
1442 		 * 2) If there's delalloc there, it means there's dirty pages for
1443 		 *    which writeback has not started yet (we clean the delalloc
1444 		 *    flag when starting writeback and after creating an ordered
1445 		 *    extent). If we mark pages in an adjacent range for defrag,
1446 		 *    then we will have a larger contiguous range for delalloc,
1447 		 *    very likely resulting in a larger extent after writeback is
1448 		 *    triggered (except in a case of free space fragmentation).
1449 		 */
1450 		if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
1451 				   EXTENT_DELALLOC, 0, NULL))
1452 			goto next;
1453 
1454 		/*
1455 		 * For do_compress case, we want to compress all valid file
1456 		 * extents, thus no @extent_thresh or mergeable check.
1457 		 */
1458 		if (do_compress)
1459 			goto add;
1460 
1461 		/* Skip too large extent */
1462 		if (range_len >= extent_thresh)
1463 			goto next;
1464 
1465 		/*
1466 		 * Skip extents already at its max capacity, this is mostly for
1467 		 * compressed extents, which max cap is only 128K.
1468 		 */
1469 		if (em->len >= get_extent_max_capacity(em))
1470 			goto next;
1471 
1472 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1473 							  locked);
1474 		if (!next_mergeable) {
1475 			struct defrag_target_range *last;
1476 
1477 			/* Empty target list, no way to merge with last entry */
1478 			if (list_empty(target_list))
1479 				goto next;
1480 			last = list_entry(target_list->prev,
1481 					  struct defrag_target_range, list);
1482 			/* Not mergeable with last entry */
1483 			if (last->start + last->len != cur)
1484 				goto next;
1485 
1486 			/* Mergeable, fall through to add it to @target_list. */
1487 		}
1488 
1489 add:
1490 		last_is_target = true;
1491 		range_len = min(extent_map_end(em), start + len) - cur;
1492 		/*
1493 		 * This one is a good target, check if it can be merged into
1494 		 * last range of the target list.
1495 		 */
1496 		if (!list_empty(target_list)) {
1497 			struct defrag_target_range *last;
1498 
1499 			last = list_entry(target_list->prev,
1500 					  struct defrag_target_range, list);
1501 			ASSERT(last->start + last->len <= cur);
1502 			if (last->start + last->len == cur) {
1503 				/* Mergeable, enlarge the last entry */
1504 				last->len += range_len;
1505 				goto next;
1506 			}
1507 			/* Fall through to allocate a new entry */
1508 		}
1509 
1510 		/* Allocate new defrag_target_range */
1511 		new = kmalloc(sizeof(*new), GFP_NOFS);
1512 		if (!new) {
1513 			free_extent_map(em);
1514 			ret = -ENOMEM;
1515 			break;
1516 		}
1517 		new->start = cur;
1518 		new->len = range_len;
1519 		list_add_tail(&new->list, target_list);
1520 
1521 next:
1522 		cur = extent_map_end(em);
1523 		free_extent_map(em);
1524 	}
1525 	if (ret < 0) {
1526 		struct defrag_target_range *entry;
1527 		struct defrag_target_range *tmp;
1528 
1529 		list_for_each_entry_safe(entry, tmp, target_list, list) {
1530 			list_del_init(&entry->list);
1531 			kfree(entry);
1532 		}
1533 	}
1534 	if (!ret && last_scanned_ret) {
1535 		/*
1536 		 * If the last extent is not a target, the caller can skip to
1537 		 * the end of that extent.
1538 		 * Otherwise, we can only go the end of the specified range.
1539 		 */
1540 		if (!last_is_target)
1541 			*last_scanned_ret = max(cur, *last_scanned_ret);
1542 		else
1543 			*last_scanned_ret = max(start + len, *last_scanned_ret);
1544 	}
1545 	return ret;
1546 }
1547 
1548 #define CLUSTER_SIZE	(SZ_256K)
1549 static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1550 
1551 /*
1552  * Defrag one contiguous target range.
1553  *
1554  * @inode:	target inode
1555  * @target:	target range to defrag
1556  * @pages:	locked pages covering the defrag range
1557  * @nr_pages:	number of locked pages
1558  *
1559  * Caller should ensure:
1560  *
1561  * - Pages are prepared
1562  *   Pages should be locked, no ordered extent in the pages range,
1563  *   no writeback.
1564  *
1565  * - Extent bits are locked
1566  */
1567 static int defrag_one_locked_target(struct btrfs_inode *inode,
1568 				    struct defrag_target_range *target,
1569 				    struct page **pages, int nr_pages,
1570 				    struct extent_state **cached_state)
1571 {
1572 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1573 	struct extent_changeset *data_reserved = NULL;
1574 	const u64 start = target->start;
1575 	const u64 len = target->len;
1576 	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1577 	unsigned long start_index = start >> PAGE_SHIFT;
1578 	unsigned long first_index = page_index(pages[0]);
1579 	int ret = 0;
1580 	int i;
1581 
1582 	ASSERT(last_index - first_index + 1 <= nr_pages);
1583 
1584 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1585 	if (ret < 0)
1586 		return ret;
1587 	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1588 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1589 			 EXTENT_DEFRAG, 0, 0, cached_state);
1590 	set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1591 
1592 	/* Update the page status */
1593 	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1594 		ClearPageChecked(pages[i]);
1595 		btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1596 	}
1597 	btrfs_delalloc_release_extents(inode, len);
1598 	extent_changeset_free(data_reserved);
1599 
1600 	return ret;
1601 }
1602 
1603 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1604 			    u32 extent_thresh, u64 newer_than, bool do_compress,
1605 			    u64 *last_scanned_ret)
1606 {
1607 	struct extent_state *cached_state = NULL;
1608 	struct defrag_target_range *entry;
1609 	struct defrag_target_range *tmp;
1610 	LIST_HEAD(target_list);
1611 	struct page **pages;
1612 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1613 	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1614 	u64 start_index = start >> PAGE_SHIFT;
1615 	unsigned int nr_pages = last_index - start_index + 1;
1616 	int ret = 0;
1617 	int i;
1618 
1619 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1620 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1621 
1622 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1623 	if (!pages)
1624 		return -ENOMEM;
1625 
1626 	/* Prepare all pages */
1627 	for (i = 0; i < nr_pages; i++) {
1628 		pages[i] = defrag_prepare_one_page(inode, start_index + i);
1629 		if (IS_ERR(pages[i])) {
1630 			ret = PTR_ERR(pages[i]);
1631 			pages[i] = NULL;
1632 			goto free_pages;
1633 		}
1634 	}
1635 	for (i = 0; i < nr_pages; i++)
1636 		wait_on_page_writeback(pages[i]);
1637 
1638 	/* Lock the pages range */
1639 	lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT,
1640 			 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1641 			 &cached_state);
1642 	/*
1643 	 * Now we have a consistent view about the extent map, re-check
1644 	 * which range really needs to be defragged.
1645 	 *
1646 	 * And this time we have extent locked already, pass @locked = true
1647 	 * so that we won't relock the extent range and cause deadlock.
1648 	 */
1649 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1650 				     newer_than, do_compress, true,
1651 				     &target_list, last_scanned_ret);
1652 	if (ret < 0)
1653 		goto unlock_extent;
1654 
1655 	list_for_each_entry(entry, &target_list, list) {
1656 		ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1657 					       &cached_state);
1658 		if (ret < 0)
1659 			break;
1660 	}
1661 
1662 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1663 		list_del_init(&entry->list);
1664 		kfree(entry);
1665 	}
1666 unlock_extent:
1667 	unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT,
1668 			     (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1669 			     &cached_state);
1670 free_pages:
1671 	for (i = 0; i < nr_pages; i++) {
1672 		if (pages[i]) {
1673 			unlock_page(pages[i]);
1674 			put_page(pages[i]);
1675 		}
1676 	}
1677 	kfree(pages);
1678 	return ret;
1679 }
1680 
1681 static int defrag_one_cluster(struct btrfs_inode *inode,
1682 			      struct file_ra_state *ra,
1683 			      u64 start, u32 len, u32 extent_thresh,
1684 			      u64 newer_than, bool do_compress,
1685 			      unsigned long *sectors_defragged,
1686 			      unsigned long max_sectors,
1687 			      u64 *last_scanned_ret)
1688 {
1689 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1690 	struct defrag_target_range *entry;
1691 	struct defrag_target_range *tmp;
1692 	LIST_HEAD(target_list);
1693 	int ret;
1694 
1695 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1696 				     newer_than, do_compress, false,
1697 				     &target_list, NULL);
1698 	if (ret < 0)
1699 		goto out;
1700 
1701 	list_for_each_entry(entry, &target_list, list) {
1702 		u32 range_len = entry->len;
1703 
1704 		/* Reached or beyond the limit */
1705 		if (max_sectors && *sectors_defragged >= max_sectors) {
1706 			ret = 1;
1707 			break;
1708 		}
1709 
1710 		if (max_sectors)
1711 			range_len = min_t(u32, range_len,
1712 				(max_sectors - *sectors_defragged) * sectorsize);
1713 
1714 		/*
1715 		 * If defrag_one_range() has updated last_scanned_ret,
1716 		 * our range may already be invalid (e.g. hole punched).
1717 		 * Skip if our range is before last_scanned_ret, as there is
1718 		 * no need to defrag the range anymore.
1719 		 */
1720 		if (entry->start + range_len <= *last_scanned_ret)
1721 			continue;
1722 
1723 		if (ra)
1724 			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1725 				ra, NULL, entry->start >> PAGE_SHIFT,
1726 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1727 				(entry->start >> PAGE_SHIFT) + 1);
1728 		/*
1729 		 * Here we may not defrag any range if holes are punched before
1730 		 * we locked the pages.
1731 		 * But that's fine, it only affects the @sectors_defragged
1732 		 * accounting.
1733 		 */
1734 		ret = defrag_one_range(inode, entry->start, range_len,
1735 				       extent_thresh, newer_than, do_compress,
1736 				       last_scanned_ret);
1737 		if (ret < 0)
1738 			break;
1739 		*sectors_defragged += range_len >>
1740 				      inode->root->fs_info->sectorsize_bits;
1741 	}
1742 out:
1743 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1744 		list_del_init(&entry->list);
1745 		kfree(entry);
1746 	}
1747 	if (ret >= 0)
1748 		*last_scanned_ret = max(*last_scanned_ret, start + len);
1749 	return ret;
1750 }
1751 
1752 /*
1753  * Entry point to file defragmentation.
1754  *
1755  * @inode:	   inode to be defragged
1756  * @ra:		   readahead state (can be NUL)
1757  * @range:	   defrag options including range and flags
1758  * @newer_than:	   minimum transid to defrag
1759  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1760  *		   will be defragged.
1761  *
1762  * Return <0 for error.
1763  * Return >=0 for the number of sectors defragged, and range->start will be updated
1764  * to indicate the file offset where next defrag should be started at.
1765  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1766  *  defragging all the range).
1767  */
1768 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1769 		      struct btrfs_ioctl_defrag_range_args *range,
1770 		      u64 newer_than, unsigned long max_to_defrag)
1771 {
1772 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1773 	unsigned long sectors_defragged = 0;
1774 	u64 isize = i_size_read(inode);
1775 	u64 cur;
1776 	u64 last_byte;
1777 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1778 	bool ra_allocated = false;
1779 	int compress_type = BTRFS_COMPRESS_ZLIB;
1780 	int ret = 0;
1781 	u32 extent_thresh = range->extent_thresh;
1782 	pgoff_t start_index;
1783 
1784 	if (isize == 0)
1785 		return 0;
1786 
1787 	if (range->start >= isize)
1788 		return -EINVAL;
1789 
1790 	if (do_compress) {
1791 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1792 			return -EINVAL;
1793 		if (range->compress_type)
1794 			compress_type = range->compress_type;
1795 	}
1796 
1797 	if (extent_thresh == 0)
1798 		extent_thresh = SZ_256K;
1799 
1800 	if (range->start + range->len > range->start) {
1801 		/* Got a specific range */
1802 		last_byte = min(isize, range->start + range->len);
1803 	} else {
1804 		/* Defrag until file end */
1805 		last_byte = isize;
1806 	}
1807 
1808 	/* Align the range */
1809 	cur = round_down(range->start, fs_info->sectorsize);
1810 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1811 
1812 	/*
1813 	 * If we were not given a ra, allocate a readahead context. As
1814 	 * readahead is just an optimization, defrag will work without it so
1815 	 * we don't error out.
1816 	 */
1817 	if (!ra) {
1818 		ra_allocated = true;
1819 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1820 		if (ra)
1821 			file_ra_state_init(ra, inode->i_mapping);
1822 	}
1823 
1824 	/*
1825 	 * Make writeback start from the beginning of the range, so that the
1826 	 * defrag range can be written sequentially.
1827 	 */
1828 	start_index = cur >> PAGE_SHIFT;
1829 	if (start_index < inode->i_mapping->writeback_index)
1830 		inode->i_mapping->writeback_index = start_index;
1831 
1832 	while (cur < last_byte) {
1833 		const unsigned long prev_sectors_defragged = sectors_defragged;
1834 		u64 last_scanned = cur;
1835 		u64 cluster_end;
1836 
1837 		if (btrfs_defrag_cancelled(fs_info)) {
1838 			ret = -EAGAIN;
1839 			break;
1840 		}
1841 
1842 		/* We want the cluster end at page boundary when possible */
1843 		cluster_end = (((cur >> PAGE_SHIFT) +
1844 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1845 		cluster_end = min(cluster_end, last_byte);
1846 
1847 		btrfs_inode_lock(inode, 0);
1848 		if (IS_SWAPFILE(inode)) {
1849 			ret = -ETXTBSY;
1850 			btrfs_inode_unlock(inode, 0);
1851 			break;
1852 		}
1853 		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1854 			btrfs_inode_unlock(inode, 0);
1855 			break;
1856 		}
1857 		if (do_compress)
1858 			BTRFS_I(inode)->defrag_compress = compress_type;
1859 		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1860 				cluster_end + 1 - cur, extent_thresh,
1861 				newer_than, do_compress, &sectors_defragged,
1862 				max_to_defrag, &last_scanned);
1863 
1864 		if (sectors_defragged > prev_sectors_defragged)
1865 			balance_dirty_pages_ratelimited(inode->i_mapping);
1866 
1867 		btrfs_inode_unlock(inode, 0);
1868 		if (ret < 0)
1869 			break;
1870 		cur = max(cluster_end + 1, last_scanned);
1871 		if (ret > 0) {
1872 			ret = 0;
1873 			break;
1874 		}
1875 		cond_resched();
1876 	}
1877 
1878 	if (ra_allocated)
1879 		kfree(ra);
1880 	/*
1881 	 * Update range.start for autodefrag, this will indicate where to start
1882 	 * in next run.
1883 	 */
1884 	range->start = cur;
1885 	if (sectors_defragged) {
1886 		/*
1887 		 * We have defragged some sectors, for compression case they
1888 		 * need to be written back immediately.
1889 		 */
1890 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1891 			filemap_flush(inode->i_mapping);
1892 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1893 				     &BTRFS_I(inode)->runtime_flags))
1894 				filemap_flush(inode->i_mapping);
1895 		}
1896 		if (range->compress_type == BTRFS_COMPRESS_LZO)
1897 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1898 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1899 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1900 		ret = sectors_defragged;
1901 	}
1902 	if (do_compress) {
1903 		btrfs_inode_lock(inode, 0);
1904 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1905 		btrfs_inode_unlock(inode, 0);
1906 	}
1907 	return ret;
1908 }
1909 
1910 /*
1911  * Try to start exclusive operation @type or cancel it if it's running.
1912  *
1913  * Return:
1914  *   0        - normal mode, newly claimed op started
1915  *  >0        - normal mode, something else is running,
1916  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1917  * ECANCELED  - cancel mode, successful cancel
1918  * ENOTCONN   - cancel mode, operation not running anymore
1919  */
1920 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1921 			enum btrfs_exclusive_operation type, bool cancel)
1922 {
1923 	if (!cancel) {
1924 		/* Start normal op */
1925 		if (!btrfs_exclop_start(fs_info, type))
1926 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1927 		/* Exclusive operation is now claimed */
1928 		return 0;
1929 	}
1930 
1931 	/* Cancel running op */
1932 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1933 		/*
1934 		 * This blocks any exclop finish from setting it to NONE, so we
1935 		 * request cancellation. Either it runs and we will wait for it,
1936 		 * or it has finished and no waiting will happen.
1937 		 */
1938 		atomic_inc(&fs_info->reloc_cancel_req);
1939 		btrfs_exclop_start_unlock(fs_info);
1940 
1941 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1942 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1943 				    TASK_INTERRUPTIBLE);
1944 
1945 		return -ECANCELED;
1946 	}
1947 
1948 	/* Something else is running or none */
1949 	return -ENOTCONN;
1950 }
1951 
1952 static noinline int btrfs_ioctl_resize(struct file *file,
1953 					void __user *arg)
1954 {
1955 	BTRFS_DEV_LOOKUP_ARGS(args);
1956 	struct inode *inode = file_inode(file);
1957 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1958 	u64 new_size;
1959 	u64 old_size;
1960 	u64 devid = 1;
1961 	struct btrfs_root *root = BTRFS_I(inode)->root;
1962 	struct btrfs_ioctl_vol_args *vol_args;
1963 	struct btrfs_trans_handle *trans;
1964 	struct btrfs_device *device = NULL;
1965 	char *sizestr;
1966 	char *retptr;
1967 	char *devstr = NULL;
1968 	int ret = 0;
1969 	int mod = 0;
1970 	bool cancel;
1971 
1972 	if (!capable(CAP_SYS_ADMIN))
1973 		return -EPERM;
1974 
1975 	ret = mnt_want_write_file(file);
1976 	if (ret)
1977 		return ret;
1978 
1979 	/*
1980 	 * Read the arguments before checking exclusivity to be able to
1981 	 * distinguish regular resize and cancel
1982 	 */
1983 	vol_args = memdup_user(arg, sizeof(*vol_args));
1984 	if (IS_ERR(vol_args)) {
1985 		ret = PTR_ERR(vol_args);
1986 		goto out_drop;
1987 	}
1988 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1989 	sizestr = vol_args->name;
1990 	cancel = (strcmp("cancel", sizestr) == 0);
1991 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1992 	if (ret)
1993 		goto out_free;
1994 	/* Exclusive operation is now claimed */
1995 
1996 	devstr = strchr(sizestr, ':');
1997 	if (devstr) {
1998 		sizestr = devstr + 1;
1999 		*devstr = '\0';
2000 		devstr = vol_args->name;
2001 		ret = kstrtoull(devstr, 10, &devid);
2002 		if (ret)
2003 			goto out_finish;
2004 		if (!devid) {
2005 			ret = -EINVAL;
2006 			goto out_finish;
2007 		}
2008 		btrfs_info(fs_info, "resizing devid %llu", devid);
2009 	}
2010 
2011 	args.devid = devid;
2012 	device = btrfs_find_device(fs_info->fs_devices, &args);
2013 	if (!device) {
2014 		btrfs_info(fs_info, "resizer unable to find device %llu",
2015 			   devid);
2016 		ret = -ENODEV;
2017 		goto out_finish;
2018 	}
2019 
2020 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2021 		btrfs_info(fs_info,
2022 			   "resizer unable to apply on readonly device %llu",
2023 		       devid);
2024 		ret = -EPERM;
2025 		goto out_finish;
2026 	}
2027 
2028 	if (!strcmp(sizestr, "max"))
2029 		new_size = bdev_nr_bytes(device->bdev);
2030 	else {
2031 		if (sizestr[0] == '-') {
2032 			mod = -1;
2033 			sizestr++;
2034 		} else if (sizestr[0] == '+') {
2035 			mod = 1;
2036 			sizestr++;
2037 		}
2038 		new_size = memparse(sizestr, &retptr);
2039 		if (*retptr != '\0' || new_size == 0) {
2040 			ret = -EINVAL;
2041 			goto out_finish;
2042 		}
2043 	}
2044 
2045 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2046 		ret = -EPERM;
2047 		goto out_finish;
2048 	}
2049 
2050 	old_size = btrfs_device_get_total_bytes(device);
2051 
2052 	if (mod < 0) {
2053 		if (new_size > old_size) {
2054 			ret = -EINVAL;
2055 			goto out_finish;
2056 		}
2057 		new_size = old_size - new_size;
2058 	} else if (mod > 0) {
2059 		if (new_size > ULLONG_MAX - old_size) {
2060 			ret = -ERANGE;
2061 			goto out_finish;
2062 		}
2063 		new_size = old_size + new_size;
2064 	}
2065 
2066 	if (new_size < SZ_256M) {
2067 		ret = -EINVAL;
2068 		goto out_finish;
2069 	}
2070 	if (new_size > bdev_nr_bytes(device->bdev)) {
2071 		ret = -EFBIG;
2072 		goto out_finish;
2073 	}
2074 
2075 	new_size = round_down(new_size, fs_info->sectorsize);
2076 
2077 	if (new_size > old_size) {
2078 		trans = btrfs_start_transaction(root, 0);
2079 		if (IS_ERR(trans)) {
2080 			ret = PTR_ERR(trans);
2081 			goto out_finish;
2082 		}
2083 		ret = btrfs_grow_device(trans, device, new_size);
2084 		btrfs_commit_transaction(trans);
2085 	} else if (new_size < old_size) {
2086 		ret = btrfs_shrink_device(device, new_size);
2087 	} /* equal, nothing need to do */
2088 
2089 	if (ret == 0 && new_size != old_size)
2090 		btrfs_info_in_rcu(fs_info,
2091 			"resize device %s (devid %llu) from %llu to %llu",
2092 			rcu_str_deref(device->name), device->devid,
2093 			old_size, new_size);
2094 out_finish:
2095 	btrfs_exclop_finish(fs_info);
2096 out_free:
2097 	kfree(vol_args);
2098 out_drop:
2099 	mnt_drop_write_file(file);
2100 	return ret;
2101 }
2102 
2103 static noinline int __btrfs_ioctl_snap_create(struct file *file,
2104 				struct user_namespace *mnt_userns,
2105 				const char *name, unsigned long fd, int subvol,
2106 				bool readonly,
2107 				struct btrfs_qgroup_inherit *inherit)
2108 {
2109 	int namelen;
2110 	int ret = 0;
2111 
2112 	if (!S_ISDIR(file_inode(file)->i_mode))
2113 		return -ENOTDIR;
2114 
2115 	ret = mnt_want_write_file(file);
2116 	if (ret)
2117 		goto out;
2118 
2119 	namelen = strlen(name);
2120 	if (strchr(name, '/')) {
2121 		ret = -EINVAL;
2122 		goto out_drop_write;
2123 	}
2124 
2125 	if (name[0] == '.' &&
2126 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
2127 		ret = -EEXIST;
2128 		goto out_drop_write;
2129 	}
2130 
2131 	if (subvol) {
2132 		ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
2133 				     namelen, NULL, readonly, inherit);
2134 	} else {
2135 		struct fd src = fdget(fd);
2136 		struct inode *src_inode;
2137 		if (!src.file) {
2138 			ret = -EINVAL;
2139 			goto out_drop_write;
2140 		}
2141 
2142 		src_inode = file_inode(src.file);
2143 		if (src_inode->i_sb != file_inode(file)->i_sb) {
2144 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
2145 				   "Snapshot src from another FS");
2146 			ret = -EXDEV;
2147 		} else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
2148 			/*
2149 			 * Subvolume creation is not restricted, but snapshots
2150 			 * are limited to own subvolumes only
2151 			 */
2152 			ret = -EPERM;
2153 		} else {
2154 			ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
2155 					       name, namelen,
2156 					       BTRFS_I(src_inode)->root,
2157 					       readonly, inherit);
2158 		}
2159 		fdput(src);
2160 	}
2161 out_drop_write:
2162 	mnt_drop_write_file(file);
2163 out:
2164 	return ret;
2165 }
2166 
2167 static noinline int btrfs_ioctl_snap_create(struct file *file,
2168 					    void __user *arg, int subvol)
2169 {
2170 	struct btrfs_ioctl_vol_args *vol_args;
2171 	int ret;
2172 
2173 	if (!S_ISDIR(file_inode(file)->i_mode))
2174 		return -ENOTDIR;
2175 
2176 	vol_args = memdup_user(arg, sizeof(*vol_args));
2177 	if (IS_ERR(vol_args))
2178 		return PTR_ERR(vol_args);
2179 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2180 
2181 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2182 					vol_args->name, vol_args->fd, subvol,
2183 					false, NULL);
2184 
2185 	kfree(vol_args);
2186 	return ret;
2187 }
2188 
2189 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
2190 					       void __user *arg, int subvol)
2191 {
2192 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2193 	int ret;
2194 	bool readonly = false;
2195 	struct btrfs_qgroup_inherit *inherit = NULL;
2196 
2197 	if (!S_ISDIR(file_inode(file)->i_mode))
2198 		return -ENOTDIR;
2199 
2200 	vol_args = memdup_user(arg, sizeof(*vol_args));
2201 	if (IS_ERR(vol_args))
2202 		return PTR_ERR(vol_args);
2203 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2204 
2205 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
2206 		ret = -EOPNOTSUPP;
2207 		goto free_args;
2208 	}
2209 
2210 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
2211 		readonly = true;
2212 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
2213 		u64 nums;
2214 
2215 		if (vol_args->size < sizeof(*inherit) ||
2216 		    vol_args->size > PAGE_SIZE) {
2217 			ret = -EINVAL;
2218 			goto free_args;
2219 		}
2220 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
2221 		if (IS_ERR(inherit)) {
2222 			ret = PTR_ERR(inherit);
2223 			goto free_args;
2224 		}
2225 
2226 		if (inherit->num_qgroups > PAGE_SIZE ||
2227 		    inherit->num_ref_copies > PAGE_SIZE ||
2228 		    inherit->num_excl_copies > PAGE_SIZE) {
2229 			ret = -EINVAL;
2230 			goto free_inherit;
2231 		}
2232 
2233 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
2234 		       2 * inherit->num_excl_copies;
2235 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
2236 			ret = -EINVAL;
2237 			goto free_inherit;
2238 		}
2239 	}
2240 
2241 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2242 					vol_args->name, vol_args->fd, subvol,
2243 					readonly, inherit);
2244 	if (ret)
2245 		goto free_inherit;
2246 free_inherit:
2247 	kfree(inherit);
2248 free_args:
2249 	kfree(vol_args);
2250 	return ret;
2251 }
2252 
2253 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
2254 						void __user *arg)
2255 {
2256 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2257 	struct btrfs_root *root = BTRFS_I(inode)->root;
2258 	int ret = 0;
2259 	u64 flags = 0;
2260 
2261 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
2262 		return -EINVAL;
2263 
2264 	down_read(&fs_info->subvol_sem);
2265 	if (btrfs_root_readonly(root))
2266 		flags |= BTRFS_SUBVOL_RDONLY;
2267 	up_read(&fs_info->subvol_sem);
2268 
2269 	if (copy_to_user(arg, &flags, sizeof(flags)))
2270 		ret = -EFAULT;
2271 
2272 	return ret;
2273 }
2274 
2275 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
2276 					      void __user *arg)
2277 {
2278 	struct inode *inode = file_inode(file);
2279 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2280 	struct btrfs_root *root = BTRFS_I(inode)->root;
2281 	struct btrfs_trans_handle *trans;
2282 	u64 root_flags;
2283 	u64 flags;
2284 	int ret = 0;
2285 
2286 	if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
2287 		return -EPERM;
2288 
2289 	ret = mnt_want_write_file(file);
2290 	if (ret)
2291 		goto out;
2292 
2293 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2294 		ret = -EINVAL;
2295 		goto out_drop_write;
2296 	}
2297 
2298 	if (copy_from_user(&flags, arg, sizeof(flags))) {
2299 		ret = -EFAULT;
2300 		goto out_drop_write;
2301 	}
2302 
2303 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
2304 		ret = -EOPNOTSUPP;
2305 		goto out_drop_write;
2306 	}
2307 
2308 	down_write(&fs_info->subvol_sem);
2309 
2310 	/* nothing to do */
2311 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2312 		goto out_drop_sem;
2313 
2314 	root_flags = btrfs_root_flags(&root->root_item);
2315 	if (flags & BTRFS_SUBVOL_RDONLY) {
2316 		btrfs_set_root_flags(&root->root_item,
2317 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2318 	} else {
2319 		/*
2320 		 * Block RO -> RW transition if this subvolume is involved in
2321 		 * send
2322 		 */
2323 		spin_lock(&root->root_item_lock);
2324 		if (root->send_in_progress == 0) {
2325 			btrfs_set_root_flags(&root->root_item,
2326 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2327 			spin_unlock(&root->root_item_lock);
2328 		} else {
2329 			spin_unlock(&root->root_item_lock);
2330 			btrfs_warn(fs_info,
2331 				   "Attempt to set subvolume %llu read-write during send",
2332 				   root->root_key.objectid);
2333 			ret = -EPERM;
2334 			goto out_drop_sem;
2335 		}
2336 	}
2337 
2338 	trans = btrfs_start_transaction(root, 1);
2339 	if (IS_ERR(trans)) {
2340 		ret = PTR_ERR(trans);
2341 		goto out_reset;
2342 	}
2343 
2344 	ret = btrfs_update_root(trans, fs_info->tree_root,
2345 				&root->root_key, &root->root_item);
2346 	if (ret < 0) {
2347 		btrfs_end_transaction(trans);
2348 		goto out_reset;
2349 	}
2350 
2351 	ret = btrfs_commit_transaction(trans);
2352 
2353 out_reset:
2354 	if (ret)
2355 		btrfs_set_root_flags(&root->root_item, root_flags);
2356 out_drop_sem:
2357 	up_write(&fs_info->subvol_sem);
2358 out_drop_write:
2359 	mnt_drop_write_file(file);
2360 out:
2361 	return ret;
2362 }
2363 
2364 static noinline int key_in_sk(struct btrfs_key *key,
2365 			      struct btrfs_ioctl_search_key *sk)
2366 {
2367 	struct btrfs_key test;
2368 	int ret;
2369 
2370 	test.objectid = sk->min_objectid;
2371 	test.type = sk->min_type;
2372 	test.offset = sk->min_offset;
2373 
2374 	ret = btrfs_comp_cpu_keys(key, &test);
2375 	if (ret < 0)
2376 		return 0;
2377 
2378 	test.objectid = sk->max_objectid;
2379 	test.type = sk->max_type;
2380 	test.offset = sk->max_offset;
2381 
2382 	ret = btrfs_comp_cpu_keys(key, &test);
2383 	if (ret > 0)
2384 		return 0;
2385 	return 1;
2386 }
2387 
2388 static noinline int copy_to_sk(struct btrfs_path *path,
2389 			       struct btrfs_key *key,
2390 			       struct btrfs_ioctl_search_key *sk,
2391 			       size_t *buf_size,
2392 			       char __user *ubuf,
2393 			       unsigned long *sk_offset,
2394 			       int *num_found)
2395 {
2396 	u64 found_transid;
2397 	struct extent_buffer *leaf;
2398 	struct btrfs_ioctl_search_header sh;
2399 	struct btrfs_key test;
2400 	unsigned long item_off;
2401 	unsigned long item_len;
2402 	int nritems;
2403 	int i;
2404 	int slot;
2405 	int ret = 0;
2406 
2407 	leaf = path->nodes[0];
2408 	slot = path->slots[0];
2409 	nritems = btrfs_header_nritems(leaf);
2410 
2411 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2412 		i = nritems;
2413 		goto advance_key;
2414 	}
2415 	found_transid = btrfs_header_generation(leaf);
2416 
2417 	for (i = slot; i < nritems; i++) {
2418 		item_off = btrfs_item_ptr_offset(leaf, i);
2419 		item_len = btrfs_item_size(leaf, i);
2420 
2421 		btrfs_item_key_to_cpu(leaf, key, i);
2422 		if (!key_in_sk(key, sk))
2423 			continue;
2424 
2425 		if (sizeof(sh) + item_len > *buf_size) {
2426 			if (*num_found) {
2427 				ret = 1;
2428 				goto out;
2429 			}
2430 
2431 			/*
2432 			 * return one empty item back for v1, which does not
2433 			 * handle -EOVERFLOW
2434 			 */
2435 
2436 			*buf_size = sizeof(sh) + item_len;
2437 			item_len = 0;
2438 			ret = -EOVERFLOW;
2439 		}
2440 
2441 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2442 			ret = 1;
2443 			goto out;
2444 		}
2445 
2446 		sh.objectid = key->objectid;
2447 		sh.offset = key->offset;
2448 		sh.type = key->type;
2449 		sh.len = item_len;
2450 		sh.transid = found_transid;
2451 
2452 		/*
2453 		 * Copy search result header. If we fault then loop again so we
2454 		 * can fault in the pages and -EFAULT there if there's a
2455 		 * problem. Otherwise we'll fault and then copy the buffer in
2456 		 * properly this next time through
2457 		 */
2458 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2459 			ret = 0;
2460 			goto out;
2461 		}
2462 
2463 		*sk_offset += sizeof(sh);
2464 
2465 		if (item_len) {
2466 			char __user *up = ubuf + *sk_offset;
2467 			/*
2468 			 * Copy the item, same behavior as above, but reset the
2469 			 * * sk_offset so we copy the full thing again.
2470 			 */
2471 			if (read_extent_buffer_to_user_nofault(leaf, up,
2472 						item_off, item_len)) {
2473 				ret = 0;
2474 				*sk_offset -= sizeof(sh);
2475 				goto out;
2476 			}
2477 
2478 			*sk_offset += item_len;
2479 		}
2480 		(*num_found)++;
2481 
2482 		if (ret) /* -EOVERFLOW from above */
2483 			goto out;
2484 
2485 		if (*num_found >= sk->nr_items) {
2486 			ret = 1;
2487 			goto out;
2488 		}
2489 	}
2490 advance_key:
2491 	ret = 0;
2492 	test.objectid = sk->max_objectid;
2493 	test.type = sk->max_type;
2494 	test.offset = sk->max_offset;
2495 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2496 		ret = 1;
2497 	else if (key->offset < (u64)-1)
2498 		key->offset++;
2499 	else if (key->type < (u8)-1) {
2500 		key->offset = 0;
2501 		key->type++;
2502 	} else if (key->objectid < (u64)-1) {
2503 		key->offset = 0;
2504 		key->type = 0;
2505 		key->objectid++;
2506 	} else
2507 		ret = 1;
2508 out:
2509 	/*
2510 	 *  0: all items from this leaf copied, continue with next
2511 	 *  1: * more items can be copied, but unused buffer is too small
2512 	 *     * all items were found
2513 	 *     Either way, it will stops the loop which iterates to the next
2514 	 *     leaf
2515 	 *  -EOVERFLOW: item was to large for buffer
2516 	 *  -EFAULT: could not copy extent buffer back to userspace
2517 	 */
2518 	return ret;
2519 }
2520 
2521 static noinline int search_ioctl(struct inode *inode,
2522 				 struct btrfs_ioctl_search_key *sk,
2523 				 size_t *buf_size,
2524 				 char __user *ubuf)
2525 {
2526 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2527 	struct btrfs_root *root;
2528 	struct btrfs_key key;
2529 	struct btrfs_path *path;
2530 	int ret;
2531 	int num_found = 0;
2532 	unsigned long sk_offset = 0;
2533 
2534 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2535 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2536 		return -EOVERFLOW;
2537 	}
2538 
2539 	path = btrfs_alloc_path();
2540 	if (!path)
2541 		return -ENOMEM;
2542 
2543 	if (sk->tree_id == 0) {
2544 		/* search the root of the inode that was passed */
2545 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2546 	} else {
2547 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2548 		if (IS_ERR(root)) {
2549 			btrfs_free_path(path);
2550 			return PTR_ERR(root);
2551 		}
2552 	}
2553 
2554 	key.objectid = sk->min_objectid;
2555 	key.type = sk->min_type;
2556 	key.offset = sk->min_offset;
2557 
2558 	while (1) {
2559 		ret = -EFAULT;
2560 		if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset))
2561 			break;
2562 
2563 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2564 		if (ret != 0) {
2565 			if (ret > 0)
2566 				ret = 0;
2567 			goto err;
2568 		}
2569 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2570 				 &sk_offset, &num_found);
2571 		btrfs_release_path(path);
2572 		if (ret)
2573 			break;
2574 
2575 	}
2576 	if (ret > 0)
2577 		ret = 0;
2578 err:
2579 	sk->nr_items = num_found;
2580 	btrfs_put_root(root);
2581 	btrfs_free_path(path);
2582 	return ret;
2583 }
2584 
2585 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
2586 					    void __user *argp)
2587 {
2588 	struct btrfs_ioctl_search_args __user *uargs;
2589 	struct btrfs_ioctl_search_key sk;
2590 	int ret;
2591 	size_t buf_size;
2592 
2593 	if (!capable(CAP_SYS_ADMIN))
2594 		return -EPERM;
2595 
2596 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2597 
2598 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2599 		return -EFAULT;
2600 
2601 	buf_size = sizeof(uargs->buf);
2602 
2603 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2604 
2605 	/*
2606 	 * In the origin implementation an overflow is handled by returning a
2607 	 * search header with a len of zero, so reset ret.
2608 	 */
2609 	if (ret == -EOVERFLOW)
2610 		ret = 0;
2611 
2612 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2613 		ret = -EFAULT;
2614 	return ret;
2615 }
2616 
2617 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
2618 					       void __user *argp)
2619 {
2620 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2621 	struct btrfs_ioctl_search_args_v2 args;
2622 	int ret;
2623 	size_t buf_size;
2624 	const size_t buf_limit = SZ_16M;
2625 
2626 	if (!capable(CAP_SYS_ADMIN))
2627 		return -EPERM;
2628 
2629 	/* copy search header and buffer size */
2630 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2631 	if (copy_from_user(&args, uarg, sizeof(args)))
2632 		return -EFAULT;
2633 
2634 	buf_size = args.buf_size;
2635 
2636 	/* limit result size to 16MB */
2637 	if (buf_size > buf_limit)
2638 		buf_size = buf_limit;
2639 
2640 	ret = search_ioctl(inode, &args.key, &buf_size,
2641 			   (char __user *)(&uarg->buf[0]));
2642 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2643 		ret = -EFAULT;
2644 	else if (ret == -EOVERFLOW &&
2645 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2646 		ret = -EFAULT;
2647 
2648 	return ret;
2649 }
2650 
2651 /*
2652  * Search INODE_REFs to identify path name of 'dirid' directory
2653  * in a 'tree_id' tree. and sets path name to 'name'.
2654  */
2655 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2656 				u64 tree_id, u64 dirid, char *name)
2657 {
2658 	struct btrfs_root *root;
2659 	struct btrfs_key key;
2660 	char *ptr;
2661 	int ret = -1;
2662 	int slot;
2663 	int len;
2664 	int total_len = 0;
2665 	struct btrfs_inode_ref *iref;
2666 	struct extent_buffer *l;
2667 	struct btrfs_path *path;
2668 
2669 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2670 		name[0]='\0';
2671 		return 0;
2672 	}
2673 
2674 	path = btrfs_alloc_path();
2675 	if (!path)
2676 		return -ENOMEM;
2677 
2678 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2679 
2680 	root = btrfs_get_fs_root(info, tree_id, true);
2681 	if (IS_ERR(root)) {
2682 		ret = PTR_ERR(root);
2683 		root = NULL;
2684 		goto out;
2685 	}
2686 
2687 	key.objectid = dirid;
2688 	key.type = BTRFS_INODE_REF_KEY;
2689 	key.offset = (u64)-1;
2690 
2691 	while (1) {
2692 		ret = btrfs_search_backwards(root, &key, path);
2693 		if (ret < 0)
2694 			goto out;
2695 		else if (ret > 0) {
2696 			ret = -ENOENT;
2697 			goto out;
2698 		}
2699 
2700 		l = path->nodes[0];
2701 		slot = path->slots[0];
2702 
2703 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2704 		len = btrfs_inode_ref_name_len(l, iref);
2705 		ptr -= len + 1;
2706 		total_len += len + 1;
2707 		if (ptr < name) {
2708 			ret = -ENAMETOOLONG;
2709 			goto out;
2710 		}
2711 
2712 		*(ptr + len) = '/';
2713 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2714 
2715 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2716 			break;
2717 
2718 		btrfs_release_path(path);
2719 		key.objectid = key.offset;
2720 		key.offset = (u64)-1;
2721 		dirid = key.objectid;
2722 	}
2723 	memmove(name, ptr, total_len);
2724 	name[total_len] = '\0';
2725 	ret = 0;
2726 out:
2727 	btrfs_put_root(root);
2728 	btrfs_free_path(path);
2729 	return ret;
2730 }
2731 
2732 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2733 				struct inode *inode,
2734 				struct btrfs_ioctl_ino_lookup_user_args *args)
2735 {
2736 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2737 	struct super_block *sb = inode->i_sb;
2738 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2739 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2740 	u64 dirid = args->dirid;
2741 	unsigned long item_off;
2742 	unsigned long item_len;
2743 	struct btrfs_inode_ref *iref;
2744 	struct btrfs_root_ref *rref;
2745 	struct btrfs_root *root = NULL;
2746 	struct btrfs_path *path;
2747 	struct btrfs_key key, key2;
2748 	struct extent_buffer *leaf;
2749 	struct inode *temp_inode;
2750 	char *ptr;
2751 	int slot;
2752 	int len;
2753 	int total_len = 0;
2754 	int ret;
2755 
2756 	path = btrfs_alloc_path();
2757 	if (!path)
2758 		return -ENOMEM;
2759 
2760 	/*
2761 	 * If the bottom subvolume does not exist directly under upper_limit,
2762 	 * construct the path in from the bottom up.
2763 	 */
2764 	if (dirid != upper_limit.objectid) {
2765 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2766 
2767 		root = btrfs_get_fs_root(fs_info, treeid, true);
2768 		if (IS_ERR(root)) {
2769 			ret = PTR_ERR(root);
2770 			goto out;
2771 		}
2772 
2773 		key.objectid = dirid;
2774 		key.type = BTRFS_INODE_REF_KEY;
2775 		key.offset = (u64)-1;
2776 		while (1) {
2777 			ret = btrfs_search_backwards(root, &key, path);
2778 			if (ret < 0)
2779 				goto out_put;
2780 			else if (ret > 0) {
2781 				ret = -ENOENT;
2782 				goto out_put;
2783 			}
2784 
2785 			leaf = path->nodes[0];
2786 			slot = path->slots[0];
2787 
2788 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2789 			len = btrfs_inode_ref_name_len(leaf, iref);
2790 			ptr -= len + 1;
2791 			total_len += len + 1;
2792 			if (ptr < args->path) {
2793 				ret = -ENAMETOOLONG;
2794 				goto out_put;
2795 			}
2796 
2797 			*(ptr + len) = '/';
2798 			read_extent_buffer(leaf, ptr,
2799 					(unsigned long)(iref + 1), len);
2800 
2801 			/* Check the read+exec permission of this directory */
2802 			ret = btrfs_previous_item(root, path, dirid,
2803 						  BTRFS_INODE_ITEM_KEY);
2804 			if (ret < 0) {
2805 				goto out_put;
2806 			} else if (ret > 0) {
2807 				ret = -ENOENT;
2808 				goto out_put;
2809 			}
2810 
2811 			leaf = path->nodes[0];
2812 			slot = path->slots[0];
2813 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2814 			if (key2.objectid != dirid) {
2815 				ret = -ENOENT;
2816 				goto out_put;
2817 			}
2818 
2819 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2820 			if (IS_ERR(temp_inode)) {
2821 				ret = PTR_ERR(temp_inode);
2822 				goto out_put;
2823 			}
2824 			ret = inode_permission(mnt_userns, temp_inode,
2825 					       MAY_READ | MAY_EXEC);
2826 			iput(temp_inode);
2827 			if (ret) {
2828 				ret = -EACCES;
2829 				goto out_put;
2830 			}
2831 
2832 			if (key.offset == upper_limit.objectid)
2833 				break;
2834 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2835 				ret = -EACCES;
2836 				goto out_put;
2837 			}
2838 
2839 			btrfs_release_path(path);
2840 			key.objectid = key.offset;
2841 			key.offset = (u64)-1;
2842 			dirid = key.objectid;
2843 		}
2844 
2845 		memmove(args->path, ptr, total_len);
2846 		args->path[total_len] = '\0';
2847 		btrfs_put_root(root);
2848 		root = NULL;
2849 		btrfs_release_path(path);
2850 	}
2851 
2852 	/* Get the bottom subvolume's name from ROOT_REF */
2853 	key.objectid = treeid;
2854 	key.type = BTRFS_ROOT_REF_KEY;
2855 	key.offset = args->treeid;
2856 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2857 	if (ret < 0) {
2858 		goto out;
2859 	} else if (ret > 0) {
2860 		ret = -ENOENT;
2861 		goto out;
2862 	}
2863 
2864 	leaf = path->nodes[0];
2865 	slot = path->slots[0];
2866 	btrfs_item_key_to_cpu(leaf, &key, slot);
2867 
2868 	item_off = btrfs_item_ptr_offset(leaf, slot);
2869 	item_len = btrfs_item_size(leaf, slot);
2870 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2871 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2872 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2873 		ret = -EINVAL;
2874 		goto out;
2875 	}
2876 
2877 	/* Copy subvolume's name */
2878 	item_off += sizeof(struct btrfs_root_ref);
2879 	item_len -= sizeof(struct btrfs_root_ref);
2880 	read_extent_buffer(leaf, args->name, item_off, item_len);
2881 	args->name[item_len] = 0;
2882 
2883 out_put:
2884 	btrfs_put_root(root);
2885 out:
2886 	btrfs_free_path(path);
2887 	return ret;
2888 }
2889 
2890 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2891 					   void __user *argp)
2892 {
2893 	struct btrfs_ioctl_ino_lookup_args *args;
2894 	int ret = 0;
2895 
2896 	args = memdup_user(argp, sizeof(*args));
2897 	if (IS_ERR(args))
2898 		return PTR_ERR(args);
2899 
2900 	/*
2901 	 * Unprivileged query to obtain the containing subvolume root id. The
2902 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2903 	 */
2904 	if (args->treeid == 0)
2905 		args->treeid = root->root_key.objectid;
2906 
2907 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2908 		args->name[0] = 0;
2909 		goto out;
2910 	}
2911 
2912 	if (!capable(CAP_SYS_ADMIN)) {
2913 		ret = -EPERM;
2914 		goto out;
2915 	}
2916 
2917 	ret = btrfs_search_path_in_tree(root->fs_info,
2918 					args->treeid, args->objectid,
2919 					args->name);
2920 
2921 out:
2922 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2923 		ret = -EFAULT;
2924 
2925 	kfree(args);
2926 	return ret;
2927 }
2928 
2929 /*
2930  * Version of ino_lookup ioctl (unprivileged)
2931  *
2932  * The main differences from ino_lookup ioctl are:
2933  *
2934  *   1. Read + Exec permission will be checked using inode_permission() during
2935  *      path construction. -EACCES will be returned in case of failure.
2936  *   2. Path construction will be stopped at the inode number which corresponds
2937  *      to the fd with which this ioctl is called. If constructed path does not
2938  *      exist under fd's inode, -EACCES will be returned.
2939  *   3. The name of bottom subvolume is also searched and filled.
2940  */
2941 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2942 {
2943 	struct btrfs_ioctl_ino_lookup_user_args *args;
2944 	struct inode *inode;
2945 	int ret;
2946 
2947 	args = memdup_user(argp, sizeof(*args));
2948 	if (IS_ERR(args))
2949 		return PTR_ERR(args);
2950 
2951 	inode = file_inode(file);
2952 
2953 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2954 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2955 		/*
2956 		 * The subvolume does not exist under fd with which this is
2957 		 * called
2958 		 */
2959 		kfree(args);
2960 		return -EACCES;
2961 	}
2962 
2963 	ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2964 
2965 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2966 		ret = -EFAULT;
2967 
2968 	kfree(args);
2969 	return ret;
2970 }
2971 
2972 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2973 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2974 {
2975 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2976 	struct btrfs_fs_info *fs_info;
2977 	struct btrfs_root *root;
2978 	struct btrfs_path *path;
2979 	struct btrfs_key key;
2980 	struct btrfs_root_item *root_item;
2981 	struct btrfs_root_ref *rref;
2982 	struct extent_buffer *leaf;
2983 	unsigned long item_off;
2984 	unsigned long item_len;
2985 	int slot;
2986 	int ret = 0;
2987 
2988 	path = btrfs_alloc_path();
2989 	if (!path)
2990 		return -ENOMEM;
2991 
2992 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2993 	if (!subvol_info) {
2994 		btrfs_free_path(path);
2995 		return -ENOMEM;
2996 	}
2997 
2998 	fs_info = BTRFS_I(inode)->root->fs_info;
2999 
3000 	/* Get root_item of inode's subvolume */
3001 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
3002 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
3003 	if (IS_ERR(root)) {
3004 		ret = PTR_ERR(root);
3005 		goto out_free;
3006 	}
3007 	root_item = &root->root_item;
3008 
3009 	subvol_info->treeid = key.objectid;
3010 
3011 	subvol_info->generation = btrfs_root_generation(root_item);
3012 	subvol_info->flags = btrfs_root_flags(root_item);
3013 
3014 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
3015 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
3016 						    BTRFS_UUID_SIZE);
3017 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
3018 						    BTRFS_UUID_SIZE);
3019 
3020 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
3021 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
3022 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
3023 
3024 	subvol_info->otransid = btrfs_root_otransid(root_item);
3025 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
3026 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
3027 
3028 	subvol_info->stransid = btrfs_root_stransid(root_item);
3029 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
3030 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
3031 
3032 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
3033 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
3034 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
3035 
3036 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
3037 		/* Search root tree for ROOT_BACKREF of this subvolume */
3038 		key.type = BTRFS_ROOT_BACKREF_KEY;
3039 		key.offset = 0;
3040 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3041 		if (ret < 0) {
3042 			goto out;
3043 		} else if (path->slots[0] >=
3044 			   btrfs_header_nritems(path->nodes[0])) {
3045 			ret = btrfs_next_leaf(fs_info->tree_root, path);
3046 			if (ret < 0) {
3047 				goto out;
3048 			} else if (ret > 0) {
3049 				ret = -EUCLEAN;
3050 				goto out;
3051 			}
3052 		}
3053 
3054 		leaf = path->nodes[0];
3055 		slot = path->slots[0];
3056 		btrfs_item_key_to_cpu(leaf, &key, slot);
3057 		if (key.objectid == subvol_info->treeid &&
3058 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
3059 			subvol_info->parent_id = key.offset;
3060 
3061 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3062 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
3063 
3064 			item_off = btrfs_item_ptr_offset(leaf, slot)
3065 					+ sizeof(struct btrfs_root_ref);
3066 			item_len = btrfs_item_size(leaf, slot)
3067 					- sizeof(struct btrfs_root_ref);
3068 			read_extent_buffer(leaf, subvol_info->name,
3069 					   item_off, item_len);
3070 		} else {
3071 			ret = -ENOENT;
3072 			goto out;
3073 		}
3074 	}
3075 
3076 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
3077 		ret = -EFAULT;
3078 
3079 out:
3080 	btrfs_put_root(root);
3081 out_free:
3082 	btrfs_free_path(path);
3083 	kfree(subvol_info);
3084 	return ret;
3085 }
3086 
3087 /*
3088  * Return ROOT_REF information of the subvolume containing this inode
3089  * except the subvolume name.
3090  */
3091 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
3092 					  void __user *argp)
3093 {
3094 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
3095 	struct btrfs_root_ref *rref;
3096 	struct btrfs_path *path;
3097 	struct btrfs_key key;
3098 	struct extent_buffer *leaf;
3099 	u64 objectid;
3100 	int slot;
3101 	int ret;
3102 	u8 found;
3103 
3104 	path = btrfs_alloc_path();
3105 	if (!path)
3106 		return -ENOMEM;
3107 
3108 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
3109 	if (IS_ERR(rootrefs)) {
3110 		btrfs_free_path(path);
3111 		return PTR_ERR(rootrefs);
3112 	}
3113 
3114 	objectid = root->root_key.objectid;
3115 	key.objectid = objectid;
3116 	key.type = BTRFS_ROOT_REF_KEY;
3117 	key.offset = rootrefs->min_treeid;
3118 	found = 0;
3119 
3120 	root = root->fs_info->tree_root;
3121 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3122 	if (ret < 0) {
3123 		goto out;
3124 	} else if (path->slots[0] >=
3125 		   btrfs_header_nritems(path->nodes[0])) {
3126 		ret = btrfs_next_leaf(root, path);
3127 		if (ret < 0) {
3128 			goto out;
3129 		} else if (ret > 0) {
3130 			ret = -EUCLEAN;
3131 			goto out;
3132 		}
3133 	}
3134 	while (1) {
3135 		leaf = path->nodes[0];
3136 		slot = path->slots[0];
3137 
3138 		btrfs_item_key_to_cpu(leaf, &key, slot);
3139 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
3140 			ret = 0;
3141 			goto out;
3142 		}
3143 
3144 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
3145 			ret = -EOVERFLOW;
3146 			goto out;
3147 		}
3148 
3149 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3150 		rootrefs->rootref[found].treeid = key.offset;
3151 		rootrefs->rootref[found].dirid =
3152 				  btrfs_root_ref_dirid(leaf, rref);
3153 		found++;
3154 
3155 		ret = btrfs_next_item(root, path);
3156 		if (ret < 0) {
3157 			goto out;
3158 		} else if (ret > 0) {
3159 			ret = -EUCLEAN;
3160 			goto out;
3161 		}
3162 	}
3163 
3164 out:
3165 	if (!ret || ret == -EOVERFLOW) {
3166 		rootrefs->num_items = found;
3167 		/* update min_treeid for next search */
3168 		if (found)
3169 			rootrefs->min_treeid =
3170 				rootrefs->rootref[found - 1].treeid + 1;
3171 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
3172 			ret = -EFAULT;
3173 	}
3174 
3175 	kfree(rootrefs);
3176 	btrfs_free_path(path);
3177 
3178 	return ret;
3179 }
3180 
3181 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
3182 					     void __user *arg,
3183 					     bool destroy_v2)
3184 {
3185 	struct dentry *parent = file->f_path.dentry;
3186 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
3187 	struct dentry *dentry;
3188 	struct inode *dir = d_inode(parent);
3189 	struct inode *inode;
3190 	struct btrfs_root *root = BTRFS_I(dir)->root;
3191 	struct btrfs_root *dest = NULL;
3192 	struct btrfs_ioctl_vol_args *vol_args = NULL;
3193 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
3194 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
3195 	char *subvol_name, *subvol_name_ptr = NULL;
3196 	int subvol_namelen;
3197 	int err = 0;
3198 	bool destroy_parent = false;
3199 
3200 	/* We don't support snapshots with extent tree v2 yet. */
3201 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3202 		btrfs_err(fs_info,
3203 			  "extent tree v2 doesn't support snapshot deletion yet");
3204 		return -EOPNOTSUPP;
3205 	}
3206 
3207 	if (destroy_v2) {
3208 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
3209 		if (IS_ERR(vol_args2))
3210 			return PTR_ERR(vol_args2);
3211 
3212 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
3213 			err = -EOPNOTSUPP;
3214 			goto out;
3215 		}
3216 
3217 		/*
3218 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
3219 		 * name, same as v1 currently does.
3220 		 */
3221 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
3222 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
3223 			subvol_name = vol_args2->name;
3224 
3225 			err = mnt_want_write_file(file);
3226 			if (err)
3227 				goto out;
3228 		} else {
3229 			struct inode *old_dir;
3230 
3231 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
3232 				err = -EINVAL;
3233 				goto out;
3234 			}
3235 
3236 			err = mnt_want_write_file(file);
3237 			if (err)
3238 				goto out;
3239 
3240 			dentry = btrfs_get_dentry(fs_info->sb,
3241 					BTRFS_FIRST_FREE_OBJECTID,
3242 					vol_args2->subvolid, 0, 0);
3243 			if (IS_ERR(dentry)) {
3244 				err = PTR_ERR(dentry);
3245 				goto out_drop_write;
3246 			}
3247 
3248 			/*
3249 			 * Change the default parent since the subvolume being
3250 			 * deleted can be outside of the current mount point.
3251 			 */
3252 			parent = btrfs_get_parent(dentry);
3253 
3254 			/*
3255 			 * At this point dentry->d_name can point to '/' if the
3256 			 * subvolume we want to destroy is outsite of the
3257 			 * current mount point, so we need to release the
3258 			 * current dentry and execute the lookup to return a new
3259 			 * one with ->d_name pointing to the
3260 			 * <mount point>/subvol_name.
3261 			 */
3262 			dput(dentry);
3263 			if (IS_ERR(parent)) {
3264 				err = PTR_ERR(parent);
3265 				goto out_drop_write;
3266 			}
3267 			old_dir = dir;
3268 			dir = d_inode(parent);
3269 
3270 			/*
3271 			 * If v2 was used with SPEC_BY_ID, a new parent was
3272 			 * allocated since the subvolume can be outside of the
3273 			 * current mount point. Later on we need to release this
3274 			 * new parent dentry.
3275 			 */
3276 			destroy_parent = true;
3277 
3278 			/*
3279 			 * On idmapped mounts, deletion via subvolid is
3280 			 * restricted to subvolumes that are immediate
3281 			 * ancestors of the inode referenced by the file
3282 			 * descriptor in the ioctl. Otherwise the idmapping
3283 			 * could potentially be abused to delete subvolumes
3284 			 * anywhere in the filesystem the user wouldn't be able
3285 			 * to delete without an idmapped mount.
3286 			 */
3287 			if (old_dir != dir && mnt_userns != &init_user_ns) {
3288 				err = -EOPNOTSUPP;
3289 				goto free_parent;
3290 			}
3291 
3292 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3293 						fs_info, vol_args2->subvolid);
3294 			if (IS_ERR(subvol_name_ptr)) {
3295 				err = PTR_ERR(subvol_name_ptr);
3296 				goto free_parent;
3297 			}
3298 			/* subvol_name_ptr is already nul terminated */
3299 			subvol_name = (char *)kbasename(subvol_name_ptr);
3300 		}
3301 	} else {
3302 		vol_args = memdup_user(arg, sizeof(*vol_args));
3303 		if (IS_ERR(vol_args))
3304 			return PTR_ERR(vol_args);
3305 
3306 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3307 		subvol_name = vol_args->name;
3308 
3309 		err = mnt_want_write_file(file);
3310 		if (err)
3311 			goto out;
3312 	}
3313 
3314 	subvol_namelen = strlen(subvol_name);
3315 
3316 	if (strchr(subvol_name, '/') ||
3317 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
3318 		err = -EINVAL;
3319 		goto free_subvol_name;
3320 	}
3321 
3322 	if (!S_ISDIR(dir->i_mode)) {
3323 		err = -ENOTDIR;
3324 		goto free_subvol_name;
3325 	}
3326 
3327 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3328 	if (err == -EINTR)
3329 		goto free_subvol_name;
3330 	dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3331 	if (IS_ERR(dentry)) {
3332 		err = PTR_ERR(dentry);
3333 		goto out_unlock_dir;
3334 	}
3335 
3336 	if (d_really_is_negative(dentry)) {
3337 		err = -ENOENT;
3338 		goto out_dput;
3339 	}
3340 
3341 	inode = d_inode(dentry);
3342 	dest = BTRFS_I(inode)->root;
3343 	if (!capable(CAP_SYS_ADMIN)) {
3344 		/*
3345 		 * Regular user.  Only allow this with a special mount
3346 		 * option, when the user has write+exec access to the
3347 		 * subvol root, and when rmdir(2) would have been
3348 		 * allowed.
3349 		 *
3350 		 * Note that this is _not_ check that the subvol is
3351 		 * empty or doesn't contain data that we wouldn't
3352 		 * otherwise be able to delete.
3353 		 *
3354 		 * Users who want to delete empty subvols should try
3355 		 * rmdir(2).
3356 		 */
3357 		err = -EPERM;
3358 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3359 			goto out_dput;
3360 
3361 		/*
3362 		 * Do not allow deletion if the parent dir is the same
3363 		 * as the dir to be deleted.  That means the ioctl
3364 		 * must be called on the dentry referencing the root
3365 		 * of the subvol, not a random directory contained
3366 		 * within it.
3367 		 */
3368 		err = -EINVAL;
3369 		if (root == dest)
3370 			goto out_dput;
3371 
3372 		err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3373 		if (err)
3374 			goto out_dput;
3375 	}
3376 
3377 	/* check if subvolume may be deleted by a user */
3378 	err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3379 	if (err)
3380 		goto out_dput;
3381 
3382 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3383 		err = -EINVAL;
3384 		goto out_dput;
3385 	}
3386 
3387 	btrfs_inode_lock(inode, 0);
3388 	err = btrfs_delete_subvolume(dir, dentry);
3389 	btrfs_inode_unlock(inode, 0);
3390 	if (!err)
3391 		d_delete_notify(dir, dentry);
3392 
3393 out_dput:
3394 	dput(dentry);
3395 out_unlock_dir:
3396 	btrfs_inode_unlock(dir, 0);
3397 free_subvol_name:
3398 	kfree(subvol_name_ptr);
3399 free_parent:
3400 	if (destroy_parent)
3401 		dput(parent);
3402 out_drop_write:
3403 	mnt_drop_write_file(file);
3404 out:
3405 	kfree(vol_args2);
3406 	kfree(vol_args);
3407 	return err;
3408 }
3409 
3410 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3411 {
3412 	struct inode *inode = file_inode(file);
3413 	struct btrfs_root *root = BTRFS_I(inode)->root;
3414 	struct btrfs_ioctl_defrag_range_args range = {0};
3415 	int ret;
3416 
3417 	ret = mnt_want_write_file(file);
3418 	if (ret)
3419 		return ret;
3420 
3421 	if (btrfs_root_readonly(root)) {
3422 		ret = -EROFS;
3423 		goto out;
3424 	}
3425 
3426 	switch (inode->i_mode & S_IFMT) {
3427 	case S_IFDIR:
3428 		if (!capable(CAP_SYS_ADMIN)) {
3429 			ret = -EPERM;
3430 			goto out;
3431 		}
3432 		ret = btrfs_defrag_root(root);
3433 		break;
3434 	case S_IFREG:
3435 		/*
3436 		 * Note that this does not check the file descriptor for write
3437 		 * access. This prevents defragmenting executables that are
3438 		 * running and allows defrag on files open in read-only mode.
3439 		 */
3440 		if (!capable(CAP_SYS_ADMIN) &&
3441 		    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3442 			ret = -EPERM;
3443 			goto out;
3444 		}
3445 
3446 		if (argp) {
3447 			if (copy_from_user(&range, argp, sizeof(range))) {
3448 				ret = -EFAULT;
3449 				goto out;
3450 			}
3451 			/* compression requires us to start the IO */
3452 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3453 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3454 				range.extent_thresh = (u32)-1;
3455 			}
3456 		} else {
3457 			/* the rest are all set to zero by kzalloc */
3458 			range.len = (u64)-1;
3459 		}
3460 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
3461 					&range, BTRFS_OLDEST_GENERATION, 0);
3462 		if (ret > 0)
3463 			ret = 0;
3464 		break;
3465 	default:
3466 		ret = -EINVAL;
3467 	}
3468 out:
3469 	mnt_drop_write_file(file);
3470 	return ret;
3471 }
3472 
3473 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3474 {
3475 	struct btrfs_ioctl_vol_args *vol_args;
3476 	bool restore_op = false;
3477 	int ret;
3478 
3479 	if (!capable(CAP_SYS_ADMIN))
3480 		return -EPERM;
3481 
3482 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3483 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
3484 		return -EINVAL;
3485 	}
3486 
3487 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
3488 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
3489 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3490 
3491 		/*
3492 		 * We can do the device add because we have a paused balanced,
3493 		 * change the exclusive op type and remember we should bring
3494 		 * back the paused balance
3495 		 */
3496 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
3497 		btrfs_exclop_start_unlock(fs_info);
3498 		restore_op = true;
3499 	}
3500 
3501 	vol_args = memdup_user(arg, sizeof(*vol_args));
3502 	if (IS_ERR(vol_args)) {
3503 		ret = PTR_ERR(vol_args);
3504 		goto out;
3505 	}
3506 
3507 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3508 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3509 
3510 	if (!ret)
3511 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3512 
3513 	kfree(vol_args);
3514 out:
3515 	if (restore_op)
3516 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
3517 	else
3518 		btrfs_exclop_finish(fs_info);
3519 	return ret;
3520 }
3521 
3522 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3523 {
3524 	BTRFS_DEV_LOOKUP_ARGS(args);
3525 	struct inode *inode = file_inode(file);
3526 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3527 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3528 	struct block_device *bdev = NULL;
3529 	fmode_t mode;
3530 	int ret;
3531 	bool cancel = false;
3532 
3533 	if (!capable(CAP_SYS_ADMIN))
3534 		return -EPERM;
3535 
3536 	vol_args = memdup_user(arg, sizeof(*vol_args));
3537 	if (IS_ERR(vol_args))
3538 		return PTR_ERR(vol_args);
3539 
3540 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3541 		ret = -EOPNOTSUPP;
3542 		goto out;
3543 	}
3544 
3545 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3546 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3547 		args.devid = vol_args->devid;
3548 	} else if (!strcmp("cancel", vol_args->name)) {
3549 		cancel = true;
3550 	} else {
3551 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3552 		if (ret)
3553 			goto out;
3554 	}
3555 
3556 	ret = mnt_want_write_file(file);
3557 	if (ret)
3558 		goto out;
3559 
3560 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3561 					   cancel);
3562 	if (ret)
3563 		goto err_drop;
3564 
3565 	/* Exclusive operation is now claimed */
3566 	ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3567 
3568 	btrfs_exclop_finish(fs_info);
3569 
3570 	if (!ret) {
3571 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3572 			btrfs_info(fs_info, "device deleted: id %llu",
3573 					vol_args->devid);
3574 		else
3575 			btrfs_info(fs_info, "device deleted: %s",
3576 					vol_args->name);
3577 	}
3578 err_drop:
3579 	mnt_drop_write_file(file);
3580 	if (bdev)
3581 		blkdev_put(bdev, mode);
3582 out:
3583 	btrfs_put_dev_args_from_path(&args);
3584 	kfree(vol_args);
3585 	return ret;
3586 }
3587 
3588 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3589 {
3590 	BTRFS_DEV_LOOKUP_ARGS(args);
3591 	struct inode *inode = file_inode(file);
3592 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3593 	struct btrfs_ioctl_vol_args *vol_args;
3594 	struct block_device *bdev = NULL;
3595 	fmode_t mode;
3596 	int ret;
3597 	bool cancel = false;
3598 
3599 	if (!capable(CAP_SYS_ADMIN))
3600 		return -EPERM;
3601 
3602 	vol_args = memdup_user(arg, sizeof(*vol_args));
3603 	if (IS_ERR(vol_args))
3604 		return PTR_ERR(vol_args);
3605 
3606 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3607 	if (!strcmp("cancel", vol_args->name)) {
3608 		cancel = true;
3609 	} else {
3610 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3611 		if (ret)
3612 			goto out;
3613 	}
3614 
3615 	ret = mnt_want_write_file(file);
3616 	if (ret)
3617 		goto out;
3618 
3619 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3620 					   cancel);
3621 	if (ret == 0) {
3622 		ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3623 		if (!ret)
3624 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3625 		btrfs_exclop_finish(fs_info);
3626 	}
3627 
3628 	mnt_drop_write_file(file);
3629 	if (bdev)
3630 		blkdev_put(bdev, mode);
3631 out:
3632 	btrfs_put_dev_args_from_path(&args);
3633 	kfree(vol_args);
3634 	return ret;
3635 }
3636 
3637 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3638 				void __user *arg)
3639 {
3640 	struct btrfs_ioctl_fs_info_args *fi_args;
3641 	struct btrfs_device *device;
3642 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3643 	u64 flags_in;
3644 	int ret = 0;
3645 
3646 	fi_args = memdup_user(arg, sizeof(*fi_args));
3647 	if (IS_ERR(fi_args))
3648 		return PTR_ERR(fi_args);
3649 
3650 	flags_in = fi_args->flags;
3651 	memset(fi_args, 0, sizeof(*fi_args));
3652 
3653 	rcu_read_lock();
3654 	fi_args->num_devices = fs_devices->num_devices;
3655 
3656 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3657 		if (device->devid > fi_args->max_id)
3658 			fi_args->max_id = device->devid;
3659 	}
3660 	rcu_read_unlock();
3661 
3662 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3663 	fi_args->nodesize = fs_info->nodesize;
3664 	fi_args->sectorsize = fs_info->sectorsize;
3665 	fi_args->clone_alignment = fs_info->sectorsize;
3666 
3667 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3668 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3669 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3670 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3671 	}
3672 
3673 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3674 		fi_args->generation = fs_info->generation;
3675 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3676 	}
3677 
3678 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3679 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3680 		       sizeof(fi_args->metadata_uuid));
3681 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3682 	}
3683 
3684 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3685 		ret = -EFAULT;
3686 
3687 	kfree(fi_args);
3688 	return ret;
3689 }
3690 
3691 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3692 				 void __user *arg)
3693 {
3694 	BTRFS_DEV_LOOKUP_ARGS(args);
3695 	struct btrfs_ioctl_dev_info_args *di_args;
3696 	struct btrfs_device *dev;
3697 	int ret = 0;
3698 
3699 	di_args = memdup_user(arg, sizeof(*di_args));
3700 	if (IS_ERR(di_args))
3701 		return PTR_ERR(di_args);
3702 
3703 	args.devid = di_args->devid;
3704 	if (!btrfs_is_empty_uuid(di_args->uuid))
3705 		args.uuid = di_args->uuid;
3706 
3707 	rcu_read_lock();
3708 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3709 	if (!dev) {
3710 		ret = -ENODEV;
3711 		goto out;
3712 	}
3713 
3714 	di_args->devid = dev->devid;
3715 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3716 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3717 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3718 	if (dev->name) {
3719 		strncpy(di_args->path, rcu_str_deref(dev->name),
3720 				sizeof(di_args->path) - 1);
3721 		di_args->path[sizeof(di_args->path) - 1] = 0;
3722 	} else {
3723 		di_args->path[0] = '\0';
3724 	}
3725 
3726 out:
3727 	rcu_read_unlock();
3728 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3729 		ret = -EFAULT;
3730 
3731 	kfree(di_args);
3732 	return ret;
3733 }
3734 
3735 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3736 {
3737 	struct inode *inode = file_inode(file);
3738 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3739 	struct btrfs_root *root = BTRFS_I(inode)->root;
3740 	struct btrfs_root *new_root;
3741 	struct btrfs_dir_item *di;
3742 	struct btrfs_trans_handle *trans;
3743 	struct btrfs_path *path = NULL;
3744 	struct btrfs_disk_key disk_key;
3745 	u64 objectid = 0;
3746 	u64 dir_id;
3747 	int ret;
3748 
3749 	if (!capable(CAP_SYS_ADMIN))
3750 		return -EPERM;
3751 
3752 	ret = mnt_want_write_file(file);
3753 	if (ret)
3754 		return ret;
3755 
3756 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3757 		ret = -EFAULT;
3758 		goto out;
3759 	}
3760 
3761 	if (!objectid)
3762 		objectid = BTRFS_FS_TREE_OBJECTID;
3763 
3764 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3765 	if (IS_ERR(new_root)) {
3766 		ret = PTR_ERR(new_root);
3767 		goto out;
3768 	}
3769 	if (!is_fstree(new_root->root_key.objectid)) {
3770 		ret = -ENOENT;
3771 		goto out_free;
3772 	}
3773 
3774 	path = btrfs_alloc_path();
3775 	if (!path) {
3776 		ret = -ENOMEM;
3777 		goto out_free;
3778 	}
3779 
3780 	trans = btrfs_start_transaction(root, 1);
3781 	if (IS_ERR(trans)) {
3782 		ret = PTR_ERR(trans);
3783 		goto out_free;
3784 	}
3785 
3786 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3787 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3788 				   dir_id, "default", 7, 1);
3789 	if (IS_ERR_OR_NULL(di)) {
3790 		btrfs_release_path(path);
3791 		btrfs_end_transaction(trans);
3792 		btrfs_err(fs_info,
3793 			  "Umm, you don't have the default diritem, this isn't going to work");
3794 		ret = -ENOENT;
3795 		goto out_free;
3796 	}
3797 
3798 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3799 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3800 	btrfs_mark_buffer_dirty(path->nodes[0]);
3801 	btrfs_release_path(path);
3802 
3803 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3804 	btrfs_end_transaction(trans);
3805 out_free:
3806 	btrfs_put_root(new_root);
3807 	btrfs_free_path(path);
3808 out:
3809 	mnt_drop_write_file(file);
3810 	return ret;
3811 }
3812 
3813 static void get_block_group_info(struct list_head *groups_list,
3814 				 struct btrfs_ioctl_space_info *space)
3815 {
3816 	struct btrfs_block_group *block_group;
3817 
3818 	space->total_bytes = 0;
3819 	space->used_bytes = 0;
3820 	space->flags = 0;
3821 	list_for_each_entry(block_group, groups_list, list) {
3822 		space->flags = block_group->flags;
3823 		space->total_bytes += block_group->length;
3824 		space->used_bytes += block_group->used;
3825 	}
3826 }
3827 
3828 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3829 				   void __user *arg)
3830 {
3831 	struct btrfs_ioctl_space_args space_args;
3832 	struct btrfs_ioctl_space_info space;
3833 	struct btrfs_ioctl_space_info *dest;
3834 	struct btrfs_ioctl_space_info *dest_orig;
3835 	struct btrfs_ioctl_space_info __user *user_dest;
3836 	struct btrfs_space_info *info;
3837 	static const u64 types[] = {
3838 		BTRFS_BLOCK_GROUP_DATA,
3839 		BTRFS_BLOCK_GROUP_SYSTEM,
3840 		BTRFS_BLOCK_GROUP_METADATA,
3841 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3842 	};
3843 	int num_types = 4;
3844 	int alloc_size;
3845 	int ret = 0;
3846 	u64 slot_count = 0;
3847 	int i, c;
3848 
3849 	if (copy_from_user(&space_args,
3850 			   (struct btrfs_ioctl_space_args __user *)arg,
3851 			   sizeof(space_args)))
3852 		return -EFAULT;
3853 
3854 	for (i = 0; i < num_types; i++) {
3855 		struct btrfs_space_info *tmp;
3856 
3857 		info = NULL;
3858 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3859 			if (tmp->flags == types[i]) {
3860 				info = tmp;
3861 				break;
3862 			}
3863 		}
3864 
3865 		if (!info)
3866 			continue;
3867 
3868 		down_read(&info->groups_sem);
3869 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3870 			if (!list_empty(&info->block_groups[c]))
3871 				slot_count++;
3872 		}
3873 		up_read(&info->groups_sem);
3874 	}
3875 
3876 	/*
3877 	 * Global block reserve, exported as a space_info
3878 	 */
3879 	slot_count++;
3880 
3881 	/* space_slots == 0 means they are asking for a count */
3882 	if (space_args.space_slots == 0) {
3883 		space_args.total_spaces = slot_count;
3884 		goto out;
3885 	}
3886 
3887 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3888 
3889 	alloc_size = sizeof(*dest) * slot_count;
3890 
3891 	/* we generally have at most 6 or so space infos, one for each raid
3892 	 * level.  So, a whole page should be more than enough for everyone
3893 	 */
3894 	if (alloc_size > PAGE_SIZE)
3895 		return -ENOMEM;
3896 
3897 	space_args.total_spaces = 0;
3898 	dest = kmalloc(alloc_size, GFP_KERNEL);
3899 	if (!dest)
3900 		return -ENOMEM;
3901 	dest_orig = dest;
3902 
3903 	/* now we have a buffer to copy into */
3904 	for (i = 0; i < num_types; i++) {
3905 		struct btrfs_space_info *tmp;
3906 
3907 		if (!slot_count)
3908 			break;
3909 
3910 		info = NULL;
3911 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3912 			if (tmp->flags == types[i]) {
3913 				info = tmp;
3914 				break;
3915 			}
3916 		}
3917 
3918 		if (!info)
3919 			continue;
3920 		down_read(&info->groups_sem);
3921 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3922 			if (!list_empty(&info->block_groups[c])) {
3923 				get_block_group_info(&info->block_groups[c],
3924 						     &space);
3925 				memcpy(dest, &space, sizeof(space));
3926 				dest++;
3927 				space_args.total_spaces++;
3928 				slot_count--;
3929 			}
3930 			if (!slot_count)
3931 				break;
3932 		}
3933 		up_read(&info->groups_sem);
3934 	}
3935 
3936 	/*
3937 	 * Add global block reserve
3938 	 */
3939 	if (slot_count) {
3940 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3941 
3942 		spin_lock(&block_rsv->lock);
3943 		space.total_bytes = block_rsv->size;
3944 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3945 		spin_unlock(&block_rsv->lock);
3946 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3947 		memcpy(dest, &space, sizeof(space));
3948 		space_args.total_spaces++;
3949 	}
3950 
3951 	user_dest = (struct btrfs_ioctl_space_info __user *)
3952 		(arg + sizeof(struct btrfs_ioctl_space_args));
3953 
3954 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3955 		ret = -EFAULT;
3956 
3957 	kfree(dest_orig);
3958 out:
3959 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3960 		ret = -EFAULT;
3961 
3962 	return ret;
3963 }
3964 
3965 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3966 					    void __user *argp)
3967 {
3968 	struct btrfs_trans_handle *trans;
3969 	u64 transid;
3970 
3971 	trans = btrfs_attach_transaction_barrier(root);
3972 	if (IS_ERR(trans)) {
3973 		if (PTR_ERR(trans) != -ENOENT)
3974 			return PTR_ERR(trans);
3975 
3976 		/* No running transaction, don't bother */
3977 		transid = root->fs_info->last_trans_committed;
3978 		goto out;
3979 	}
3980 	transid = trans->transid;
3981 	btrfs_commit_transaction_async(trans);
3982 out:
3983 	if (argp)
3984 		if (copy_to_user(argp, &transid, sizeof(transid)))
3985 			return -EFAULT;
3986 	return 0;
3987 }
3988 
3989 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3990 					   void __user *argp)
3991 {
3992 	u64 transid;
3993 
3994 	if (argp) {
3995 		if (copy_from_user(&transid, argp, sizeof(transid)))
3996 			return -EFAULT;
3997 	} else {
3998 		transid = 0;  /* current trans */
3999 	}
4000 	return btrfs_wait_for_commit(fs_info, transid);
4001 }
4002 
4003 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4004 {
4005 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4006 	struct btrfs_ioctl_scrub_args *sa;
4007 	int ret;
4008 
4009 	if (!capable(CAP_SYS_ADMIN))
4010 		return -EPERM;
4011 
4012 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4013 		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
4014 		return -EINVAL;
4015 	}
4016 
4017 	sa = memdup_user(arg, sizeof(*sa));
4018 	if (IS_ERR(sa))
4019 		return PTR_ERR(sa);
4020 
4021 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4022 		ret = mnt_want_write_file(file);
4023 		if (ret)
4024 			goto out;
4025 	}
4026 
4027 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4028 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4029 			      0);
4030 
4031 	/*
4032 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
4033 	 * error. This is important as it allows user space to know how much
4034 	 * progress scrub has done. For example, if scrub is canceled we get
4035 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
4036 	 * space. Later user space can inspect the progress from the structure
4037 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
4038 	 * previously (btrfs-progs does this).
4039 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
4040 	 * then return -EFAULT to signal the structure was not copied or it may
4041 	 * be corrupt and unreliable due to a partial copy.
4042 	 */
4043 	if (copy_to_user(arg, sa, sizeof(*sa)))
4044 		ret = -EFAULT;
4045 
4046 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4047 		mnt_drop_write_file(file);
4048 out:
4049 	kfree(sa);
4050 	return ret;
4051 }
4052 
4053 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4054 {
4055 	if (!capable(CAP_SYS_ADMIN))
4056 		return -EPERM;
4057 
4058 	return btrfs_scrub_cancel(fs_info);
4059 }
4060 
4061 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4062 				       void __user *arg)
4063 {
4064 	struct btrfs_ioctl_scrub_args *sa;
4065 	int ret;
4066 
4067 	if (!capable(CAP_SYS_ADMIN))
4068 		return -EPERM;
4069 
4070 	sa = memdup_user(arg, sizeof(*sa));
4071 	if (IS_ERR(sa))
4072 		return PTR_ERR(sa);
4073 
4074 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4075 
4076 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4077 		ret = -EFAULT;
4078 
4079 	kfree(sa);
4080 	return ret;
4081 }
4082 
4083 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4084 				      void __user *arg)
4085 {
4086 	struct btrfs_ioctl_get_dev_stats *sa;
4087 	int ret;
4088 
4089 	sa = memdup_user(arg, sizeof(*sa));
4090 	if (IS_ERR(sa))
4091 		return PTR_ERR(sa);
4092 
4093 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4094 		kfree(sa);
4095 		return -EPERM;
4096 	}
4097 
4098 	ret = btrfs_get_dev_stats(fs_info, sa);
4099 
4100 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4101 		ret = -EFAULT;
4102 
4103 	kfree(sa);
4104 	return ret;
4105 }
4106 
4107 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4108 				    void __user *arg)
4109 {
4110 	struct btrfs_ioctl_dev_replace_args *p;
4111 	int ret;
4112 
4113 	if (!capable(CAP_SYS_ADMIN))
4114 		return -EPERM;
4115 
4116 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4117 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
4118 		return -EINVAL;
4119 	}
4120 
4121 	p = memdup_user(arg, sizeof(*p));
4122 	if (IS_ERR(p))
4123 		return PTR_ERR(p);
4124 
4125 	switch (p->cmd) {
4126 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4127 		if (sb_rdonly(fs_info->sb)) {
4128 			ret = -EROFS;
4129 			goto out;
4130 		}
4131 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
4132 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4133 		} else {
4134 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4135 			btrfs_exclop_finish(fs_info);
4136 		}
4137 		break;
4138 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4139 		btrfs_dev_replace_status(fs_info, p);
4140 		ret = 0;
4141 		break;
4142 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4143 		p->result = btrfs_dev_replace_cancel(fs_info);
4144 		ret = 0;
4145 		break;
4146 	default:
4147 		ret = -EINVAL;
4148 		break;
4149 	}
4150 
4151 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
4152 		ret = -EFAULT;
4153 out:
4154 	kfree(p);
4155 	return ret;
4156 }
4157 
4158 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4159 {
4160 	int ret = 0;
4161 	int i;
4162 	u64 rel_ptr;
4163 	int size;
4164 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4165 	struct inode_fs_paths *ipath = NULL;
4166 	struct btrfs_path *path;
4167 
4168 	if (!capable(CAP_DAC_READ_SEARCH))
4169 		return -EPERM;
4170 
4171 	path = btrfs_alloc_path();
4172 	if (!path) {
4173 		ret = -ENOMEM;
4174 		goto out;
4175 	}
4176 
4177 	ipa = memdup_user(arg, sizeof(*ipa));
4178 	if (IS_ERR(ipa)) {
4179 		ret = PTR_ERR(ipa);
4180 		ipa = NULL;
4181 		goto out;
4182 	}
4183 
4184 	size = min_t(u32, ipa->size, 4096);
4185 	ipath = init_ipath(size, root, path);
4186 	if (IS_ERR(ipath)) {
4187 		ret = PTR_ERR(ipath);
4188 		ipath = NULL;
4189 		goto out;
4190 	}
4191 
4192 	ret = paths_from_inode(ipa->inum, ipath);
4193 	if (ret < 0)
4194 		goto out;
4195 
4196 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4197 		rel_ptr = ipath->fspath->val[i] -
4198 			  (u64)(unsigned long)ipath->fspath->val;
4199 		ipath->fspath->val[i] = rel_ptr;
4200 	}
4201 
4202 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4203 			   ipath->fspath, size);
4204 	if (ret) {
4205 		ret = -EFAULT;
4206 		goto out;
4207 	}
4208 
4209 out:
4210 	btrfs_free_path(path);
4211 	free_ipath(ipath);
4212 	kfree(ipa);
4213 
4214 	return ret;
4215 }
4216 
4217 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4218 {
4219 	struct btrfs_data_container *inodes = ctx;
4220 	const size_t c = 3 * sizeof(u64);
4221 
4222 	if (inodes->bytes_left >= c) {
4223 		inodes->bytes_left -= c;
4224 		inodes->val[inodes->elem_cnt] = inum;
4225 		inodes->val[inodes->elem_cnt + 1] = offset;
4226 		inodes->val[inodes->elem_cnt + 2] = root;
4227 		inodes->elem_cnt += 3;
4228 	} else {
4229 		inodes->bytes_missing += c - inodes->bytes_left;
4230 		inodes->bytes_left = 0;
4231 		inodes->elem_missed += 3;
4232 	}
4233 
4234 	return 0;
4235 }
4236 
4237 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4238 					void __user *arg, int version)
4239 {
4240 	int ret = 0;
4241 	int size;
4242 	struct btrfs_ioctl_logical_ino_args *loi;
4243 	struct btrfs_data_container *inodes = NULL;
4244 	struct btrfs_path *path = NULL;
4245 	bool ignore_offset;
4246 
4247 	if (!capable(CAP_SYS_ADMIN))
4248 		return -EPERM;
4249 
4250 	loi = memdup_user(arg, sizeof(*loi));
4251 	if (IS_ERR(loi))
4252 		return PTR_ERR(loi);
4253 
4254 	if (version == 1) {
4255 		ignore_offset = false;
4256 		size = min_t(u32, loi->size, SZ_64K);
4257 	} else {
4258 		/* All reserved bits must be 0 for now */
4259 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4260 			ret = -EINVAL;
4261 			goto out_loi;
4262 		}
4263 		/* Only accept flags we have defined so far */
4264 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4265 			ret = -EINVAL;
4266 			goto out_loi;
4267 		}
4268 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4269 		size = min_t(u32, loi->size, SZ_16M);
4270 	}
4271 
4272 	path = btrfs_alloc_path();
4273 	if (!path) {
4274 		ret = -ENOMEM;
4275 		goto out;
4276 	}
4277 
4278 	inodes = init_data_container(size);
4279 	if (IS_ERR(inodes)) {
4280 		ret = PTR_ERR(inodes);
4281 		inodes = NULL;
4282 		goto out;
4283 	}
4284 
4285 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4286 					  build_ino_list, inodes, ignore_offset);
4287 	if (ret == -EINVAL)
4288 		ret = -ENOENT;
4289 	if (ret < 0)
4290 		goto out;
4291 
4292 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4293 			   size);
4294 	if (ret)
4295 		ret = -EFAULT;
4296 
4297 out:
4298 	btrfs_free_path(path);
4299 	kvfree(inodes);
4300 out_loi:
4301 	kfree(loi);
4302 
4303 	return ret;
4304 }
4305 
4306 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4307 			       struct btrfs_ioctl_balance_args *bargs)
4308 {
4309 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4310 
4311 	bargs->flags = bctl->flags;
4312 
4313 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4314 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4315 	if (atomic_read(&fs_info->balance_pause_req))
4316 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4317 	if (atomic_read(&fs_info->balance_cancel_req))
4318 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4319 
4320 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4321 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4322 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4323 
4324 	spin_lock(&fs_info->balance_lock);
4325 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4326 	spin_unlock(&fs_info->balance_lock);
4327 }
4328 
4329 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4330 {
4331 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4332 	struct btrfs_fs_info *fs_info = root->fs_info;
4333 	struct btrfs_ioctl_balance_args *bargs;
4334 	struct btrfs_balance_control *bctl;
4335 	bool need_unlock; /* for mut. excl. ops lock */
4336 	int ret;
4337 
4338 	if (!arg)
4339 		btrfs_warn(fs_info,
4340 	"IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18");
4341 
4342 	if (!capable(CAP_SYS_ADMIN))
4343 		return -EPERM;
4344 
4345 	ret = mnt_want_write_file(file);
4346 	if (ret)
4347 		return ret;
4348 
4349 again:
4350 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4351 		mutex_lock(&fs_info->balance_mutex);
4352 		need_unlock = true;
4353 		goto locked;
4354 	}
4355 
4356 	/*
4357 	 * mut. excl. ops lock is locked.  Three possibilities:
4358 	 *   (1) some other op is running
4359 	 *   (2) balance is running
4360 	 *   (3) balance is paused -- special case (think resume)
4361 	 */
4362 	mutex_lock(&fs_info->balance_mutex);
4363 	if (fs_info->balance_ctl) {
4364 		/* this is either (2) or (3) */
4365 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4366 			mutex_unlock(&fs_info->balance_mutex);
4367 			/*
4368 			 * Lock released to allow other waiters to continue,
4369 			 * we'll reexamine the status again.
4370 			 */
4371 			mutex_lock(&fs_info->balance_mutex);
4372 
4373 			if (fs_info->balance_ctl &&
4374 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4375 				/* this is (3) */
4376 				need_unlock = false;
4377 				goto locked;
4378 			}
4379 
4380 			mutex_unlock(&fs_info->balance_mutex);
4381 			goto again;
4382 		} else {
4383 			/* this is (2) */
4384 			mutex_unlock(&fs_info->balance_mutex);
4385 			ret = -EINPROGRESS;
4386 			goto out;
4387 		}
4388 	} else {
4389 		/* this is (1) */
4390 		mutex_unlock(&fs_info->balance_mutex);
4391 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4392 		goto out;
4393 	}
4394 
4395 locked:
4396 
4397 	if (arg) {
4398 		bargs = memdup_user(arg, sizeof(*bargs));
4399 		if (IS_ERR(bargs)) {
4400 			ret = PTR_ERR(bargs);
4401 			goto out_unlock;
4402 		}
4403 
4404 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4405 			if (!fs_info->balance_ctl) {
4406 				ret = -ENOTCONN;
4407 				goto out_bargs;
4408 			}
4409 
4410 			bctl = fs_info->balance_ctl;
4411 			spin_lock(&fs_info->balance_lock);
4412 			bctl->flags |= BTRFS_BALANCE_RESUME;
4413 			spin_unlock(&fs_info->balance_lock);
4414 			btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
4415 
4416 			goto do_balance;
4417 		}
4418 	} else {
4419 		bargs = NULL;
4420 	}
4421 
4422 	if (fs_info->balance_ctl) {
4423 		ret = -EINPROGRESS;
4424 		goto out_bargs;
4425 	}
4426 
4427 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4428 	if (!bctl) {
4429 		ret = -ENOMEM;
4430 		goto out_bargs;
4431 	}
4432 
4433 	if (arg) {
4434 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4435 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4436 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4437 
4438 		bctl->flags = bargs->flags;
4439 	} else {
4440 		/* balance everything - no filters */
4441 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4442 	}
4443 
4444 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4445 		ret = -EINVAL;
4446 		goto out_bctl;
4447 	}
4448 
4449 do_balance:
4450 	/*
4451 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4452 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4453 	 * all the way until unmount, in free_fs_info.  The flag should be
4454 	 * cleared after reset_balance_state.
4455 	 */
4456 	need_unlock = false;
4457 
4458 	ret = btrfs_balance(fs_info, bctl, bargs);
4459 	bctl = NULL;
4460 
4461 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4462 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4463 			ret = -EFAULT;
4464 	}
4465 
4466 out_bctl:
4467 	kfree(bctl);
4468 out_bargs:
4469 	kfree(bargs);
4470 out_unlock:
4471 	mutex_unlock(&fs_info->balance_mutex);
4472 	if (need_unlock)
4473 		btrfs_exclop_finish(fs_info);
4474 out:
4475 	mnt_drop_write_file(file);
4476 	return ret;
4477 }
4478 
4479 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4480 {
4481 	if (!capable(CAP_SYS_ADMIN))
4482 		return -EPERM;
4483 
4484 	switch (cmd) {
4485 	case BTRFS_BALANCE_CTL_PAUSE:
4486 		return btrfs_pause_balance(fs_info);
4487 	case BTRFS_BALANCE_CTL_CANCEL:
4488 		return btrfs_cancel_balance(fs_info);
4489 	}
4490 
4491 	return -EINVAL;
4492 }
4493 
4494 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4495 					 void __user *arg)
4496 {
4497 	struct btrfs_ioctl_balance_args *bargs;
4498 	int ret = 0;
4499 
4500 	if (!capable(CAP_SYS_ADMIN))
4501 		return -EPERM;
4502 
4503 	mutex_lock(&fs_info->balance_mutex);
4504 	if (!fs_info->balance_ctl) {
4505 		ret = -ENOTCONN;
4506 		goto out;
4507 	}
4508 
4509 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4510 	if (!bargs) {
4511 		ret = -ENOMEM;
4512 		goto out;
4513 	}
4514 
4515 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4516 
4517 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4518 		ret = -EFAULT;
4519 
4520 	kfree(bargs);
4521 out:
4522 	mutex_unlock(&fs_info->balance_mutex);
4523 	return ret;
4524 }
4525 
4526 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4527 {
4528 	struct inode *inode = file_inode(file);
4529 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4530 	struct btrfs_ioctl_quota_ctl_args *sa;
4531 	int ret;
4532 
4533 	if (!capable(CAP_SYS_ADMIN))
4534 		return -EPERM;
4535 
4536 	ret = mnt_want_write_file(file);
4537 	if (ret)
4538 		return ret;
4539 
4540 	sa = memdup_user(arg, sizeof(*sa));
4541 	if (IS_ERR(sa)) {
4542 		ret = PTR_ERR(sa);
4543 		goto drop_write;
4544 	}
4545 
4546 	down_write(&fs_info->subvol_sem);
4547 
4548 	switch (sa->cmd) {
4549 	case BTRFS_QUOTA_CTL_ENABLE:
4550 		ret = btrfs_quota_enable(fs_info);
4551 		break;
4552 	case BTRFS_QUOTA_CTL_DISABLE:
4553 		ret = btrfs_quota_disable(fs_info);
4554 		break;
4555 	default:
4556 		ret = -EINVAL;
4557 		break;
4558 	}
4559 
4560 	kfree(sa);
4561 	up_write(&fs_info->subvol_sem);
4562 drop_write:
4563 	mnt_drop_write_file(file);
4564 	return ret;
4565 }
4566 
4567 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4568 {
4569 	struct inode *inode = file_inode(file);
4570 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4571 	struct btrfs_root *root = BTRFS_I(inode)->root;
4572 	struct btrfs_ioctl_qgroup_assign_args *sa;
4573 	struct btrfs_trans_handle *trans;
4574 	int ret;
4575 	int err;
4576 
4577 	if (!capable(CAP_SYS_ADMIN))
4578 		return -EPERM;
4579 
4580 	ret = mnt_want_write_file(file);
4581 	if (ret)
4582 		return ret;
4583 
4584 	sa = memdup_user(arg, sizeof(*sa));
4585 	if (IS_ERR(sa)) {
4586 		ret = PTR_ERR(sa);
4587 		goto drop_write;
4588 	}
4589 
4590 	trans = btrfs_join_transaction(root);
4591 	if (IS_ERR(trans)) {
4592 		ret = PTR_ERR(trans);
4593 		goto out;
4594 	}
4595 
4596 	if (sa->assign) {
4597 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4598 	} else {
4599 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4600 	}
4601 
4602 	/* update qgroup status and info */
4603 	err = btrfs_run_qgroups(trans);
4604 	if (err < 0)
4605 		btrfs_handle_fs_error(fs_info, err,
4606 				      "failed to update qgroup status and info");
4607 	err = btrfs_end_transaction(trans);
4608 	if (err && !ret)
4609 		ret = err;
4610 
4611 out:
4612 	kfree(sa);
4613 drop_write:
4614 	mnt_drop_write_file(file);
4615 	return ret;
4616 }
4617 
4618 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4619 {
4620 	struct inode *inode = file_inode(file);
4621 	struct btrfs_root *root = BTRFS_I(inode)->root;
4622 	struct btrfs_ioctl_qgroup_create_args *sa;
4623 	struct btrfs_trans_handle *trans;
4624 	int ret;
4625 	int err;
4626 
4627 	if (!capable(CAP_SYS_ADMIN))
4628 		return -EPERM;
4629 
4630 	ret = mnt_want_write_file(file);
4631 	if (ret)
4632 		return ret;
4633 
4634 	sa = memdup_user(arg, sizeof(*sa));
4635 	if (IS_ERR(sa)) {
4636 		ret = PTR_ERR(sa);
4637 		goto drop_write;
4638 	}
4639 
4640 	if (!sa->qgroupid) {
4641 		ret = -EINVAL;
4642 		goto out;
4643 	}
4644 
4645 	trans = btrfs_join_transaction(root);
4646 	if (IS_ERR(trans)) {
4647 		ret = PTR_ERR(trans);
4648 		goto out;
4649 	}
4650 
4651 	if (sa->create) {
4652 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4653 	} else {
4654 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4655 	}
4656 
4657 	err = btrfs_end_transaction(trans);
4658 	if (err && !ret)
4659 		ret = err;
4660 
4661 out:
4662 	kfree(sa);
4663 drop_write:
4664 	mnt_drop_write_file(file);
4665 	return ret;
4666 }
4667 
4668 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4669 {
4670 	struct inode *inode = file_inode(file);
4671 	struct btrfs_root *root = BTRFS_I(inode)->root;
4672 	struct btrfs_ioctl_qgroup_limit_args *sa;
4673 	struct btrfs_trans_handle *trans;
4674 	int ret;
4675 	int err;
4676 	u64 qgroupid;
4677 
4678 	if (!capable(CAP_SYS_ADMIN))
4679 		return -EPERM;
4680 
4681 	ret = mnt_want_write_file(file);
4682 	if (ret)
4683 		return ret;
4684 
4685 	sa = memdup_user(arg, sizeof(*sa));
4686 	if (IS_ERR(sa)) {
4687 		ret = PTR_ERR(sa);
4688 		goto drop_write;
4689 	}
4690 
4691 	trans = btrfs_join_transaction(root);
4692 	if (IS_ERR(trans)) {
4693 		ret = PTR_ERR(trans);
4694 		goto out;
4695 	}
4696 
4697 	qgroupid = sa->qgroupid;
4698 	if (!qgroupid) {
4699 		/* take the current subvol as qgroup */
4700 		qgroupid = root->root_key.objectid;
4701 	}
4702 
4703 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4704 
4705 	err = btrfs_end_transaction(trans);
4706 	if (err && !ret)
4707 		ret = err;
4708 
4709 out:
4710 	kfree(sa);
4711 drop_write:
4712 	mnt_drop_write_file(file);
4713 	return ret;
4714 }
4715 
4716 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4717 {
4718 	struct inode *inode = file_inode(file);
4719 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4720 	struct btrfs_ioctl_quota_rescan_args *qsa;
4721 	int ret;
4722 
4723 	if (!capable(CAP_SYS_ADMIN))
4724 		return -EPERM;
4725 
4726 	ret = mnt_want_write_file(file);
4727 	if (ret)
4728 		return ret;
4729 
4730 	qsa = memdup_user(arg, sizeof(*qsa));
4731 	if (IS_ERR(qsa)) {
4732 		ret = PTR_ERR(qsa);
4733 		goto drop_write;
4734 	}
4735 
4736 	if (qsa->flags) {
4737 		ret = -EINVAL;
4738 		goto out;
4739 	}
4740 
4741 	ret = btrfs_qgroup_rescan(fs_info);
4742 
4743 out:
4744 	kfree(qsa);
4745 drop_write:
4746 	mnt_drop_write_file(file);
4747 	return ret;
4748 }
4749 
4750 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4751 						void __user *arg)
4752 {
4753 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
4754 
4755 	if (!capable(CAP_SYS_ADMIN))
4756 		return -EPERM;
4757 
4758 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4759 		qsa.flags = 1;
4760 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4761 	}
4762 
4763 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
4764 		return -EFAULT;
4765 
4766 	return 0;
4767 }
4768 
4769 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4770 						void __user *arg)
4771 {
4772 	if (!capable(CAP_SYS_ADMIN))
4773 		return -EPERM;
4774 
4775 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4776 }
4777 
4778 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4779 					    struct user_namespace *mnt_userns,
4780 					    struct btrfs_ioctl_received_subvol_args *sa)
4781 {
4782 	struct inode *inode = file_inode(file);
4783 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4784 	struct btrfs_root *root = BTRFS_I(inode)->root;
4785 	struct btrfs_root_item *root_item = &root->root_item;
4786 	struct btrfs_trans_handle *trans;
4787 	struct timespec64 ct = current_time(inode);
4788 	int ret = 0;
4789 	int received_uuid_changed;
4790 
4791 	if (!inode_owner_or_capable(mnt_userns, inode))
4792 		return -EPERM;
4793 
4794 	ret = mnt_want_write_file(file);
4795 	if (ret < 0)
4796 		return ret;
4797 
4798 	down_write(&fs_info->subvol_sem);
4799 
4800 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4801 		ret = -EINVAL;
4802 		goto out;
4803 	}
4804 
4805 	if (btrfs_root_readonly(root)) {
4806 		ret = -EROFS;
4807 		goto out;
4808 	}
4809 
4810 	/*
4811 	 * 1 - root item
4812 	 * 2 - uuid items (received uuid + subvol uuid)
4813 	 */
4814 	trans = btrfs_start_transaction(root, 3);
4815 	if (IS_ERR(trans)) {
4816 		ret = PTR_ERR(trans);
4817 		trans = NULL;
4818 		goto out;
4819 	}
4820 
4821 	sa->rtransid = trans->transid;
4822 	sa->rtime.sec = ct.tv_sec;
4823 	sa->rtime.nsec = ct.tv_nsec;
4824 
4825 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4826 				       BTRFS_UUID_SIZE);
4827 	if (received_uuid_changed &&
4828 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4829 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4830 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4831 					  root->root_key.objectid);
4832 		if (ret && ret != -ENOENT) {
4833 		        btrfs_abort_transaction(trans, ret);
4834 		        btrfs_end_transaction(trans);
4835 		        goto out;
4836 		}
4837 	}
4838 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4839 	btrfs_set_root_stransid(root_item, sa->stransid);
4840 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4841 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4842 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4843 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4844 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4845 
4846 	ret = btrfs_update_root(trans, fs_info->tree_root,
4847 				&root->root_key, &root->root_item);
4848 	if (ret < 0) {
4849 		btrfs_end_transaction(trans);
4850 		goto out;
4851 	}
4852 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4853 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4854 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4855 					  root->root_key.objectid);
4856 		if (ret < 0 && ret != -EEXIST) {
4857 			btrfs_abort_transaction(trans, ret);
4858 			btrfs_end_transaction(trans);
4859 			goto out;
4860 		}
4861 	}
4862 	ret = btrfs_commit_transaction(trans);
4863 out:
4864 	up_write(&fs_info->subvol_sem);
4865 	mnt_drop_write_file(file);
4866 	return ret;
4867 }
4868 
4869 #ifdef CONFIG_64BIT
4870 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4871 						void __user *arg)
4872 {
4873 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4874 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4875 	int ret = 0;
4876 
4877 	args32 = memdup_user(arg, sizeof(*args32));
4878 	if (IS_ERR(args32))
4879 		return PTR_ERR(args32);
4880 
4881 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4882 	if (!args64) {
4883 		ret = -ENOMEM;
4884 		goto out;
4885 	}
4886 
4887 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4888 	args64->stransid = args32->stransid;
4889 	args64->rtransid = args32->rtransid;
4890 	args64->stime.sec = args32->stime.sec;
4891 	args64->stime.nsec = args32->stime.nsec;
4892 	args64->rtime.sec = args32->rtime.sec;
4893 	args64->rtime.nsec = args32->rtime.nsec;
4894 	args64->flags = args32->flags;
4895 
4896 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4897 	if (ret)
4898 		goto out;
4899 
4900 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4901 	args32->stransid = args64->stransid;
4902 	args32->rtransid = args64->rtransid;
4903 	args32->stime.sec = args64->stime.sec;
4904 	args32->stime.nsec = args64->stime.nsec;
4905 	args32->rtime.sec = args64->rtime.sec;
4906 	args32->rtime.nsec = args64->rtime.nsec;
4907 	args32->flags = args64->flags;
4908 
4909 	ret = copy_to_user(arg, args32, sizeof(*args32));
4910 	if (ret)
4911 		ret = -EFAULT;
4912 
4913 out:
4914 	kfree(args32);
4915 	kfree(args64);
4916 	return ret;
4917 }
4918 #endif
4919 
4920 static long btrfs_ioctl_set_received_subvol(struct file *file,
4921 					    void __user *arg)
4922 {
4923 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4924 	int ret = 0;
4925 
4926 	sa = memdup_user(arg, sizeof(*sa));
4927 	if (IS_ERR(sa))
4928 		return PTR_ERR(sa);
4929 
4930 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4931 
4932 	if (ret)
4933 		goto out;
4934 
4935 	ret = copy_to_user(arg, sa, sizeof(*sa));
4936 	if (ret)
4937 		ret = -EFAULT;
4938 
4939 out:
4940 	kfree(sa);
4941 	return ret;
4942 }
4943 
4944 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4945 					void __user *arg)
4946 {
4947 	size_t len;
4948 	int ret;
4949 	char label[BTRFS_LABEL_SIZE];
4950 
4951 	spin_lock(&fs_info->super_lock);
4952 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4953 	spin_unlock(&fs_info->super_lock);
4954 
4955 	len = strnlen(label, BTRFS_LABEL_SIZE);
4956 
4957 	if (len == BTRFS_LABEL_SIZE) {
4958 		btrfs_warn(fs_info,
4959 			   "label is too long, return the first %zu bytes",
4960 			   --len);
4961 	}
4962 
4963 	ret = copy_to_user(arg, label, len);
4964 
4965 	return ret ? -EFAULT : 0;
4966 }
4967 
4968 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4969 {
4970 	struct inode *inode = file_inode(file);
4971 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4972 	struct btrfs_root *root = BTRFS_I(inode)->root;
4973 	struct btrfs_super_block *super_block = fs_info->super_copy;
4974 	struct btrfs_trans_handle *trans;
4975 	char label[BTRFS_LABEL_SIZE];
4976 	int ret;
4977 
4978 	if (!capable(CAP_SYS_ADMIN))
4979 		return -EPERM;
4980 
4981 	if (copy_from_user(label, arg, sizeof(label)))
4982 		return -EFAULT;
4983 
4984 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4985 		btrfs_err(fs_info,
4986 			  "unable to set label with more than %d bytes",
4987 			  BTRFS_LABEL_SIZE - 1);
4988 		return -EINVAL;
4989 	}
4990 
4991 	ret = mnt_want_write_file(file);
4992 	if (ret)
4993 		return ret;
4994 
4995 	trans = btrfs_start_transaction(root, 0);
4996 	if (IS_ERR(trans)) {
4997 		ret = PTR_ERR(trans);
4998 		goto out_unlock;
4999 	}
5000 
5001 	spin_lock(&fs_info->super_lock);
5002 	strcpy(super_block->label, label);
5003 	spin_unlock(&fs_info->super_lock);
5004 	ret = btrfs_commit_transaction(trans);
5005 
5006 out_unlock:
5007 	mnt_drop_write_file(file);
5008 	return ret;
5009 }
5010 
5011 #define INIT_FEATURE_FLAGS(suffix) \
5012 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5013 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5014 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5015 
5016 int btrfs_ioctl_get_supported_features(void __user *arg)
5017 {
5018 	static const struct btrfs_ioctl_feature_flags features[3] = {
5019 		INIT_FEATURE_FLAGS(SUPP),
5020 		INIT_FEATURE_FLAGS(SAFE_SET),
5021 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5022 	};
5023 
5024 	if (copy_to_user(arg, &features, sizeof(features)))
5025 		return -EFAULT;
5026 
5027 	return 0;
5028 }
5029 
5030 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
5031 					void __user *arg)
5032 {
5033 	struct btrfs_super_block *super_block = fs_info->super_copy;
5034 	struct btrfs_ioctl_feature_flags features;
5035 
5036 	features.compat_flags = btrfs_super_compat_flags(super_block);
5037 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5038 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5039 
5040 	if (copy_to_user(arg, &features, sizeof(features)))
5041 		return -EFAULT;
5042 
5043 	return 0;
5044 }
5045 
5046 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5047 			      enum btrfs_feature_set set,
5048 			      u64 change_mask, u64 flags, u64 supported_flags,
5049 			      u64 safe_set, u64 safe_clear)
5050 {
5051 	const char *type = btrfs_feature_set_name(set);
5052 	char *names;
5053 	u64 disallowed, unsupported;
5054 	u64 set_mask = flags & change_mask;
5055 	u64 clear_mask = ~flags & change_mask;
5056 
5057 	unsupported = set_mask & ~supported_flags;
5058 	if (unsupported) {
5059 		names = btrfs_printable_features(set, unsupported);
5060 		if (names) {
5061 			btrfs_warn(fs_info,
5062 				   "this kernel does not support the %s feature bit%s",
5063 				   names, strchr(names, ',') ? "s" : "");
5064 			kfree(names);
5065 		} else
5066 			btrfs_warn(fs_info,
5067 				   "this kernel does not support %s bits 0x%llx",
5068 				   type, unsupported);
5069 		return -EOPNOTSUPP;
5070 	}
5071 
5072 	disallowed = set_mask & ~safe_set;
5073 	if (disallowed) {
5074 		names = btrfs_printable_features(set, disallowed);
5075 		if (names) {
5076 			btrfs_warn(fs_info,
5077 				   "can't set the %s feature bit%s while mounted",
5078 				   names, strchr(names, ',') ? "s" : "");
5079 			kfree(names);
5080 		} else
5081 			btrfs_warn(fs_info,
5082 				   "can't set %s bits 0x%llx while mounted",
5083 				   type, disallowed);
5084 		return -EPERM;
5085 	}
5086 
5087 	disallowed = clear_mask & ~safe_clear;
5088 	if (disallowed) {
5089 		names = btrfs_printable_features(set, disallowed);
5090 		if (names) {
5091 			btrfs_warn(fs_info,
5092 				   "can't clear the %s feature bit%s while mounted",
5093 				   names, strchr(names, ',') ? "s" : "");
5094 			kfree(names);
5095 		} else
5096 			btrfs_warn(fs_info,
5097 				   "can't clear %s bits 0x%llx while mounted",
5098 				   type, disallowed);
5099 		return -EPERM;
5100 	}
5101 
5102 	return 0;
5103 }
5104 
5105 #define check_feature(fs_info, change_mask, flags, mask_base)	\
5106 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
5107 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5108 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5109 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5110 
5111 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5112 {
5113 	struct inode *inode = file_inode(file);
5114 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5115 	struct btrfs_root *root = BTRFS_I(inode)->root;
5116 	struct btrfs_super_block *super_block = fs_info->super_copy;
5117 	struct btrfs_ioctl_feature_flags flags[2];
5118 	struct btrfs_trans_handle *trans;
5119 	u64 newflags;
5120 	int ret;
5121 
5122 	if (!capable(CAP_SYS_ADMIN))
5123 		return -EPERM;
5124 
5125 	if (copy_from_user(flags, arg, sizeof(flags)))
5126 		return -EFAULT;
5127 
5128 	/* Nothing to do */
5129 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5130 	    !flags[0].incompat_flags)
5131 		return 0;
5132 
5133 	ret = check_feature(fs_info, flags[0].compat_flags,
5134 			    flags[1].compat_flags, COMPAT);
5135 	if (ret)
5136 		return ret;
5137 
5138 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
5139 			    flags[1].compat_ro_flags, COMPAT_RO);
5140 	if (ret)
5141 		return ret;
5142 
5143 	ret = check_feature(fs_info, flags[0].incompat_flags,
5144 			    flags[1].incompat_flags, INCOMPAT);
5145 	if (ret)
5146 		return ret;
5147 
5148 	ret = mnt_want_write_file(file);
5149 	if (ret)
5150 		return ret;
5151 
5152 	trans = btrfs_start_transaction(root, 0);
5153 	if (IS_ERR(trans)) {
5154 		ret = PTR_ERR(trans);
5155 		goto out_drop_write;
5156 	}
5157 
5158 	spin_lock(&fs_info->super_lock);
5159 	newflags = btrfs_super_compat_flags(super_block);
5160 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5161 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5162 	btrfs_set_super_compat_flags(super_block, newflags);
5163 
5164 	newflags = btrfs_super_compat_ro_flags(super_block);
5165 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5166 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5167 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5168 
5169 	newflags = btrfs_super_incompat_flags(super_block);
5170 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5171 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5172 	btrfs_set_super_incompat_flags(super_block, newflags);
5173 	spin_unlock(&fs_info->super_lock);
5174 
5175 	ret = btrfs_commit_transaction(trans);
5176 out_drop_write:
5177 	mnt_drop_write_file(file);
5178 
5179 	return ret;
5180 }
5181 
5182 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
5183 {
5184 	struct btrfs_ioctl_send_args *arg;
5185 	int ret;
5186 
5187 	if (compat) {
5188 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5189 		struct btrfs_ioctl_send_args_32 args32;
5190 
5191 		ret = copy_from_user(&args32, argp, sizeof(args32));
5192 		if (ret)
5193 			return -EFAULT;
5194 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5195 		if (!arg)
5196 			return -ENOMEM;
5197 		arg->send_fd = args32.send_fd;
5198 		arg->clone_sources_count = args32.clone_sources_count;
5199 		arg->clone_sources = compat_ptr(args32.clone_sources);
5200 		arg->parent_root = args32.parent_root;
5201 		arg->flags = args32.flags;
5202 		memcpy(arg->reserved, args32.reserved,
5203 		       sizeof(args32.reserved));
5204 #else
5205 		return -ENOTTY;
5206 #endif
5207 	} else {
5208 		arg = memdup_user(argp, sizeof(*arg));
5209 		if (IS_ERR(arg))
5210 			return PTR_ERR(arg);
5211 	}
5212 	ret = btrfs_ioctl_send(inode, arg);
5213 	kfree(arg);
5214 	return ret;
5215 }
5216 
5217 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
5218 				    bool compat)
5219 {
5220 	struct btrfs_ioctl_encoded_io_args args = { 0 };
5221 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
5222 					     flags);
5223 	size_t copy_end;
5224 	struct iovec iovstack[UIO_FASTIOV];
5225 	struct iovec *iov = iovstack;
5226 	struct iov_iter iter;
5227 	loff_t pos;
5228 	struct kiocb kiocb;
5229 	ssize_t ret;
5230 
5231 	if (!capable(CAP_SYS_ADMIN)) {
5232 		ret = -EPERM;
5233 		goto out_acct;
5234 	}
5235 
5236 	if (compat) {
5237 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5238 		struct btrfs_ioctl_encoded_io_args_32 args32;
5239 
5240 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
5241 				       flags);
5242 		if (copy_from_user(&args32, argp, copy_end)) {
5243 			ret = -EFAULT;
5244 			goto out_acct;
5245 		}
5246 		args.iov = compat_ptr(args32.iov);
5247 		args.iovcnt = args32.iovcnt;
5248 		args.offset = args32.offset;
5249 		args.flags = args32.flags;
5250 #else
5251 		return -ENOTTY;
5252 #endif
5253 	} else {
5254 		copy_end = copy_end_kernel;
5255 		if (copy_from_user(&args, argp, copy_end)) {
5256 			ret = -EFAULT;
5257 			goto out_acct;
5258 		}
5259 	}
5260 	if (args.flags != 0) {
5261 		ret = -EINVAL;
5262 		goto out_acct;
5263 	}
5264 
5265 	ret = import_iovec(READ, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5266 			   &iov, &iter);
5267 	if (ret < 0)
5268 		goto out_acct;
5269 
5270 	if (iov_iter_count(&iter) == 0) {
5271 		ret = 0;
5272 		goto out_iov;
5273 	}
5274 	pos = args.offset;
5275 	ret = rw_verify_area(READ, file, &pos, args.len);
5276 	if (ret < 0)
5277 		goto out_iov;
5278 
5279 	init_sync_kiocb(&kiocb, file);
5280 	kiocb.ki_pos = pos;
5281 
5282 	ret = btrfs_encoded_read(&kiocb, &iter, &args);
5283 	if (ret >= 0) {
5284 		fsnotify_access(file);
5285 		if (copy_to_user(argp + copy_end,
5286 				 (char *)&args + copy_end_kernel,
5287 				 sizeof(args) - copy_end_kernel))
5288 			ret = -EFAULT;
5289 	}
5290 
5291 out_iov:
5292 	kfree(iov);
5293 out_acct:
5294 	if (ret > 0)
5295 		add_rchar(current, ret);
5296 	inc_syscr(current);
5297 	return ret;
5298 }
5299 
5300 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
5301 {
5302 	struct btrfs_ioctl_encoded_io_args args;
5303 	struct iovec iovstack[UIO_FASTIOV];
5304 	struct iovec *iov = iovstack;
5305 	struct iov_iter iter;
5306 	loff_t pos;
5307 	struct kiocb kiocb;
5308 	ssize_t ret;
5309 
5310 	if (!capable(CAP_SYS_ADMIN)) {
5311 		ret = -EPERM;
5312 		goto out_acct;
5313 	}
5314 
5315 	if (!(file->f_mode & FMODE_WRITE)) {
5316 		ret = -EBADF;
5317 		goto out_acct;
5318 	}
5319 
5320 	if (compat) {
5321 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5322 		struct btrfs_ioctl_encoded_io_args_32 args32;
5323 
5324 		if (copy_from_user(&args32, argp, sizeof(args32))) {
5325 			ret = -EFAULT;
5326 			goto out_acct;
5327 		}
5328 		args.iov = compat_ptr(args32.iov);
5329 		args.iovcnt = args32.iovcnt;
5330 		args.offset = args32.offset;
5331 		args.flags = args32.flags;
5332 		args.len = args32.len;
5333 		args.unencoded_len = args32.unencoded_len;
5334 		args.unencoded_offset = args32.unencoded_offset;
5335 		args.compression = args32.compression;
5336 		args.encryption = args32.encryption;
5337 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
5338 #else
5339 		return -ENOTTY;
5340 #endif
5341 	} else {
5342 		if (copy_from_user(&args, argp, sizeof(args))) {
5343 			ret = -EFAULT;
5344 			goto out_acct;
5345 		}
5346 	}
5347 
5348 	ret = -EINVAL;
5349 	if (args.flags != 0)
5350 		goto out_acct;
5351 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
5352 		goto out_acct;
5353 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5354 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5355 		goto out_acct;
5356 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5357 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5358 		goto out_acct;
5359 	if (args.unencoded_offset > args.unencoded_len)
5360 		goto out_acct;
5361 	if (args.len > args.unencoded_len - args.unencoded_offset)
5362 		goto out_acct;
5363 
5364 	ret = import_iovec(WRITE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5365 			   &iov, &iter);
5366 	if (ret < 0)
5367 		goto out_acct;
5368 
5369 	file_start_write(file);
5370 
5371 	if (iov_iter_count(&iter) == 0) {
5372 		ret = 0;
5373 		goto out_end_write;
5374 	}
5375 	pos = args.offset;
5376 	ret = rw_verify_area(WRITE, file, &pos, args.len);
5377 	if (ret < 0)
5378 		goto out_end_write;
5379 
5380 	init_sync_kiocb(&kiocb, file);
5381 	ret = kiocb_set_rw_flags(&kiocb, 0);
5382 	if (ret)
5383 		goto out_end_write;
5384 	kiocb.ki_pos = pos;
5385 
5386 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
5387 	if (ret > 0)
5388 		fsnotify_modify(file);
5389 
5390 out_end_write:
5391 	file_end_write(file);
5392 	kfree(iov);
5393 out_acct:
5394 	if (ret > 0)
5395 		add_wchar(current, ret);
5396 	inc_syscw(current);
5397 	return ret;
5398 }
5399 
5400 long btrfs_ioctl(struct file *file, unsigned int
5401 		cmd, unsigned long arg)
5402 {
5403 	struct inode *inode = file_inode(file);
5404 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5405 	struct btrfs_root *root = BTRFS_I(inode)->root;
5406 	void __user *argp = (void __user *)arg;
5407 
5408 	switch (cmd) {
5409 	case FS_IOC_GETVERSION:
5410 		return btrfs_ioctl_getversion(inode, argp);
5411 	case FS_IOC_GETFSLABEL:
5412 		return btrfs_ioctl_get_fslabel(fs_info, argp);
5413 	case FS_IOC_SETFSLABEL:
5414 		return btrfs_ioctl_set_fslabel(file, argp);
5415 	case FITRIM:
5416 		return btrfs_ioctl_fitrim(fs_info, argp);
5417 	case BTRFS_IOC_SNAP_CREATE:
5418 		return btrfs_ioctl_snap_create(file, argp, 0);
5419 	case BTRFS_IOC_SNAP_CREATE_V2:
5420 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5421 	case BTRFS_IOC_SUBVOL_CREATE:
5422 		return btrfs_ioctl_snap_create(file, argp, 1);
5423 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5424 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5425 	case BTRFS_IOC_SNAP_DESTROY:
5426 		return btrfs_ioctl_snap_destroy(file, argp, false);
5427 	case BTRFS_IOC_SNAP_DESTROY_V2:
5428 		return btrfs_ioctl_snap_destroy(file, argp, true);
5429 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5430 		return btrfs_ioctl_subvol_getflags(inode, argp);
5431 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5432 		return btrfs_ioctl_subvol_setflags(file, argp);
5433 	case BTRFS_IOC_DEFAULT_SUBVOL:
5434 		return btrfs_ioctl_default_subvol(file, argp);
5435 	case BTRFS_IOC_DEFRAG:
5436 		return btrfs_ioctl_defrag(file, NULL);
5437 	case BTRFS_IOC_DEFRAG_RANGE:
5438 		return btrfs_ioctl_defrag(file, argp);
5439 	case BTRFS_IOC_RESIZE:
5440 		return btrfs_ioctl_resize(file, argp);
5441 	case BTRFS_IOC_ADD_DEV:
5442 		return btrfs_ioctl_add_dev(fs_info, argp);
5443 	case BTRFS_IOC_RM_DEV:
5444 		return btrfs_ioctl_rm_dev(file, argp);
5445 	case BTRFS_IOC_RM_DEV_V2:
5446 		return btrfs_ioctl_rm_dev_v2(file, argp);
5447 	case BTRFS_IOC_FS_INFO:
5448 		return btrfs_ioctl_fs_info(fs_info, argp);
5449 	case BTRFS_IOC_DEV_INFO:
5450 		return btrfs_ioctl_dev_info(fs_info, argp);
5451 	case BTRFS_IOC_BALANCE:
5452 		return btrfs_ioctl_balance(file, NULL);
5453 	case BTRFS_IOC_TREE_SEARCH:
5454 		return btrfs_ioctl_tree_search(inode, argp);
5455 	case BTRFS_IOC_TREE_SEARCH_V2:
5456 		return btrfs_ioctl_tree_search_v2(inode, argp);
5457 	case BTRFS_IOC_INO_LOOKUP:
5458 		return btrfs_ioctl_ino_lookup(root, argp);
5459 	case BTRFS_IOC_INO_PATHS:
5460 		return btrfs_ioctl_ino_to_path(root, argp);
5461 	case BTRFS_IOC_LOGICAL_INO:
5462 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5463 	case BTRFS_IOC_LOGICAL_INO_V2:
5464 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5465 	case BTRFS_IOC_SPACE_INFO:
5466 		return btrfs_ioctl_space_info(fs_info, argp);
5467 	case BTRFS_IOC_SYNC: {
5468 		int ret;
5469 
5470 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5471 		if (ret)
5472 			return ret;
5473 		ret = btrfs_sync_fs(inode->i_sb, 1);
5474 		/*
5475 		 * The transaction thread may want to do more work,
5476 		 * namely it pokes the cleaner kthread that will start
5477 		 * processing uncleaned subvols.
5478 		 */
5479 		wake_up_process(fs_info->transaction_kthread);
5480 		return ret;
5481 	}
5482 	case BTRFS_IOC_START_SYNC:
5483 		return btrfs_ioctl_start_sync(root, argp);
5484 	case BTRFS_IOC_WAIT_SYNC:
5485 		return btrfs_ioctl_wait_sync(fs_info, argp);
5486 	case BTRFS_IOC_SCRUB:
5487 		return btrfs_ioctl_scrub(file, argp);
5488 	case BTRFS_IOC_SCRUB_CANCEL:
5489 		return btrfs_ioctl_scrub_cancel(fs_info);
5490 	case BTRFS_IOC_SCRUB_PROGRESS:
5491 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5492 	case BTRFS_IOC_BALANCE_V2:
5493 		return btrfs_ioctl_balance(file, argp);
5494 	case BTRFS_IOC_BALANCE_CTL:
5495 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5496 	case BTRFS_IOC_BALANCE_PROGRESS:
5497 		return btrfs_ioctl_balance_progress(fs_info, argp);
5498 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5499 		return btrfs_ioctl_set_received_subvol(file, argp);
5500 #ifdef CONFIG_64BIT
5501 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5502 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5503 #endif
5504 	case BTRFS_IOC_SEND:
5505 		return _btrfs_ioctl_send(inode, argp, false);
5506 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5507 	case BTRFS_IOC_SEND_32:
5508 		return _btrfs_ioctl_send(inode, argp, true);
5509 #endif
5510 	case BTRFS_IOC_GET_DEV_STATS:
5511 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5512 	case BTRFS_IOC_QUOTA_CTL:
5513 		return btrfs_ioctl_quota_ctl(file, argp);
5514 	case BTRFS_IOC_QGROUP_ASSIGN:
5515 		return btrfs_ioctl_qgroup_assign(file, argp);
5516 	case BTRFS_IOC_QGROUP_CREATE:
5517 		return btrfs_ioctl_qgroup_create(file, argp);
5518 	case BTRFS_IOC_QGROUP_LIMIT:
5519 		return btrfs_ioctl_qgroup_limit(file, argp);
5520 	case BTRFS_IOC_QUOTA_RESCAN:
5521 		return btrfs_ioctl_quota_rescan(file, argp);
5522 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5523 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5524 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5525 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5526 	case BTRFS_IOC_DEV_REPLACE:
5527 		return btrfs_ioctl_dev_replace(fs_info, argp);
5528 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5529 		return btrfs_ioctl_get_supported_features(argp);
5530 	case BTRFS_IOC_GET_FEATURES:
5531 		return btrfs_ioctl_get_features(fs_info, argp);
5532 	case BTRFS_IOC_SET_FEATURES:
5533 		return btrfs_ioctl_set_features(file, argp);
5534 	case BTRFS_IOC_GET_SUBVOL_INFO:
5535 		return btrfs_ioctl_get_subvol_info(inode, argp);
5536 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5537 		return btrfs_ioctl_get_subvol_rootref(root, argp);
5538 	case BTRFS_IOC_INO_LOOKUP_USER:
5539 		return btrfs_ioctl_ino_lookup_user(file, argp);
5540 	case FS_IOC_ENABLE_VERITY:
5541 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5542 	case FS_IOC_MEASURE_VERITY:
5543 		return fsverity_ioctl_measure(file, argp);
5544 	case BTRFS_IOC_ENCODED_READ:
5545 		return btrfs_ioctl_encoded_read(file, argp, false);
5546 	case BTRFS_IOC_ENCODED_WRITE:
5547 		return btrfs_ioctl_encoded_write(file, argp, false);
5548 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5549 	case BTRFS_IOC_ENCODED_READ_32:
5550 		return btrfs_ioctl_encoded_read(file, argp, true);
5551 	case BTRFS_IOC_ENCODED_WRITE_32:
5552 		return btrfs_ioctl_encoded_write(file, argp, true);
5553 #endif
5554 	}
5555 
5556 	return -ENOTTY;
5557 }
5558 
5559 #ifdef CONFIG_COMPAT
5560 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5561 {
5562 	/*
5563 	 * These all access 32-bit values anyway so no further
5564 	 * handling is necessary.
5565 	 */
5566 	switch (cmd) {
5567 	case FS_IOC32_GETVERSION:
5568 		cmd = FS_IOC_GETVERSION;
5569 		break;
5570 	}
5571 
5572 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5573 }
5574 #endif
5575