1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/compat.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/security.h> 39 #include <linux/xattr.h> 40 #include <linux/vmalloc.h> 41 #include <linux/slab.h> 42 #include <linux/blkdev.h> 43 #include <linux/uuid.h> 44 #include <linux/btrfs.h> 45 #include <linux/uaccess.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "volumes.h" 52 #include "locking.h" 53 #include "inode-map.h" 54 #include "backref.h" 55 #include "rcu-string.h" 56 #include "send.h" 57 #include "dev-replace.h" 58 #include "props.h" 59 #include "sysfs.h" 60 #include "qgroup.h" 61 #include "tree-log.h" 62 #include "compression.h" 63 64 #ifdef CONFIG_64BIT 65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 66 * structures are incorrect, as the timespec structure from userspace 67 * is 4 bytes too small. We define these alternatives here to teach 68 * the kernel about the 32-bit struct packing. 69 */ 70 struct btrfs_ioctl_timespec_32 { 71 __u64 sec; 72 __u32 nsec; 73 } __attribute__ ((__packed__)); 74 75 struct btrfs_ioctl_received_subvol_args_32 { 76 char uuid[BTRFS_UUID_SIZE]; /* in */ 77 __u64 stransid; /* in */ 78 __u64 rtransid; /* out */ 79 struct btrfs_ioctl_timespec_32 stime; /* in */ 80 struct btrfs_ioctl_timespec_32 rtime; /* out */ 81 __u64 flags; /* in */ 82 __u64 reserved[16]; /* in */ 83 } __attribute__ ((__packed__)); 84 85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 86 struct btrfs_ioctl_received_subvol_args_32) 87 #endif 88 89 90 static int btrfs_clone(struct inode *src, struct inode *inode, 91 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 92 int no_time_update); 93 94 /* Mask out flags that are inappropriate for the given type of inode. */ 95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 96 { 97 if (S_ISDIR(mode)) 98 return flags; 99 else if (S_ISREG(mode)) 100 return flags & ~FS_DIRSYNC_FL; 101 else 102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 103 } 104 105 /* 106 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 107 */ 108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 109 { 110 unsigned int iflags = 0; 111 112 if (flags & BTRFS_INODE_SYNC) 113 iflags |= FS_SYNC_FL; 114 if (flags & BTRFS_INODE_IMMUTABLE) 115 iflags |= FS_IMMUTABLE_FL; 116 if (flags & BTRFS_INODE_APPEND) 117 iflags |= FS_APPEND_FL; 118 if (flags & BTRFS_INODE_NODUMP) 119 iflags |= FS_NODUMP_FL; 120 if (flags & BTRFS_INODE_NOATIME) 121 iflags |= FS_NOATIME_FL; 122 if (flags & BTRFS_INODE_DIRSYNC) 123 iflags |= FS_DIRSYNC_FL; 124 if (flags & BTRFS_INODE_NODATACOW) 125 iflags |= FS_NOCOW_FL; 126 127 if (flags & BTRFS_INODE_NOCOMPRESS) 128 iflags |= FS_NOCOMP_FL; 129 else if (flags & BTRFS_INODE_COMPRESS) 130 iflags |= FS_COMPR_FL; 131 132 return iflags; 133 } 134 135 /* 136 * Update inode->i_flags based on the btrfs internal flags. 137 */ 138 void btrfs_update_iflags(struct inode *inode) 139 { 140 struct btrfs_inode *ip = BTRFS_I(inode); 141 unsigned int new_fl = 0; 142 143 if (ip->flags & BTRFS_INODE_SYNC) 144 new_fl |= S_SYNC; 145 if (ip->flags & BTRFS_INODE_IMMUTABLE) 146 new_fl |= S_IMMUTABLE; 147 if (ip->flags & BTRFS_INODE_APPEND) 148 new_fl |= S_APPEND; 149 if (ip->flags & BTRFS_INODE_NOATIME) 150 new_fl |= S_NOATIME; 151 if (ip->flags & BTRFS_INODE_DIRSYNC) 152 new_fl |= S_DIRSYNC; 153 154 set_mask_bits(&inode->i_flags, 155 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 156 new_fl); 157 } 158 159 /* 160 * Inherit flags from the parent inode. 161 * 162 * Currently only the compression flags and the cow flags are inherited. 163 */ 164 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 165 { 166 unsigned int flags; 167 168 if (!dir) 169 return; 170 171 flags = BTRFS_I(dir)->flags; 172 173 if (flags & BTRFS_INODE_NOCOMPRESS) { 174 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 175 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 176 } else if (flags & BTRFS_INODE_COMPRESS) { 177 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 178 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 179 } 180 181 if (flags & BTRFS_INODE_NODATACOW) { 182 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 183 if (S_ISREG(inode->i_mode)) 184 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 185 } 186 187 btrfs_update_iflags(inode); 188 } 189 190 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 191 { 192 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 193 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 194 195 if (copy_to_user(arg, &flags, sizeof(flags))) 196 return -EFAULT; 197 return 0; 198 } 199 200 static int check_flags(unsigned int flags) 201 { 202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 203 FS_NOATIME_FL | FS_NODUMP_FL | \ 204 FS_SYNC_FL | FS_DIRSYNC_FL | \ 205 FS_NOCOMP_FL | FS_COMPR_FL | 206 FS_NOCOW_FL)) 207 return -EOPNOTSUPP; 208 209 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 210 return -EINVAL; 211 212 return 0; 213 } 214 215 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 216 { 217 struct inode *inode = file_inode(file); 218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 219 struct btrfs_inode *ip = BTRFS_I(inode); 220 struct btrfs_root *root = ip->root; 221 struct btrfs_trans_handle *trans; 222 unsigned int flags, oldflags; 223 int ret; 224 u64 ip_oldflags; 225 unsigned int i_oldflags; 226 umode_t mode; 227 228 if (!inode_owner_or_capable(inode)) 229 return -EPERM; 230 231 if (btrfs_root_readonly(root)) 232 return -EROFS; 233 234 if (copy_from_user(&flags, arg, sizeof(flags))) 235 return -EFAULT; 236 237 ret = check_flags(flags); 238 if (ret) 239 return ret; 240 241 ret = mnt_want_write_file(file); 242 if (ret) 243 return ret; 244 245 inode_lock(inode); 246 247 ip_oldflags = ip->flags; 248 i_oldflags = inode->i_flags; 249 mode = inode->i_mode; 250 251 flags = btrfs_mask_flags(inode->i_mode, flags); 252 oldflags = btrfs_flags_to_ioctl(ip->flags); 253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 254 if (!capable(CAP_LINUX_IMMUTABLE)) { 255 ret = -EPERM; 256 goto out_unlock; 257 } 258 } 259 260 if (flags & FS_SYNC_FL) 261 ip->flags |= BTRFS_INODE_SYNC; 262 else 263 ip->flags &= ~BTRFS_INODE_SYNC; 264 if (flags & FS_IMMUTABLE_FL) 265 ip->flags |= BTRFS_INODE_IMMUTABLE; 266 else 267 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 268 if (flags & FS_APPEND_FL) 269 ip->flags |= BTRFS_INODE_APPEND; 270 else 271 ip->flags &= ~BTRFS_INODE_APPEND; 272 if (flags & FS_NODUMP_FL) 273 ip->flags |= BTRFS_INODE_NODUMP; 274 else 275 ip->flags &= ~BTRFS_INODE_NODUMP; 276 if (flags & FS_NOATIME_FL) 277 ip->flags |= BTRFS_INODE_NOATIME; 278 else 279 ip->flags &= ~BTRFS_INODE_NOATIME; 280 if (flags & FS_DIRSYNC_FL) 281 ip->flags |= BTRFS_INODE_DIRSYNC; 282 else 283 ip->flags &= ~BTRFS_INODE_DIRSYNC; 284 if (flags & FS_NOCOW_FL) { 285 if (S_ISREG(mode)) { 286 /* 287 * It's safe to turn csums off here, no extents exist. 288 * Otherwise we want the flag to reflect the real COW 289 * status of the file and will not set it. 290 */ 291 if (inode->i_size == 0) 292 ip->flags |= BTRFS_INODE_NODATACOW 293 | BTRFS_INODE_NODATASUM; 294 } else { 295 ip->flags |= BTRFS_INODE_NODATACOW; 296 } 297 } else { 298 /* 299 * Revert back under same assumptions as above 300 */ 301 if (S_ISREG(mode)) { 302 if (inode->i_size == 0) 303 ip->flags &= ~(BTRFS_INODE_NODATACOW 304 | BTRFS_INODE_NODATASUM); 305 } else { 306 ip->flags &= ~BTRFS_INODE_NODATACOW; 307 } 308 } 309 310 /* 311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 312 * flag may be changed automatically if compression code won't make 313 * things smaller. 314 */ 315 if (flags & FS_NOCOMP_FL) { 316 ip->flags &= ~BTRFS_INODE_COMPRESS; 317 ip->flags |= BTRFS_INODE_NOCOMPRESS; 318 319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 320 if (ret && ret != -ENODATA) 321 goto out_drop; 322 } else if (flags & FS_COMPR_FL) { 323 const char *comp; 324 325 ip->flags |= BTRFS_INODE_COMPRESS; 326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 327 328 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 329 comp = "lzo"; 330 else 331 comp = "zlib"; 332 ret = btrfs_set_prop(inode, "btrfs.compression", 333 comp, strlen(comp), 0); 334 if (ret) 335 goto out_drop; 336 337 } else { 338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 339 if (ret && ret != -ENODATA) 340 goto out_drop; 341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 342 } 343 344 trans = btrfs_start_transaction(root, 1); 345 if (IS_ERR(trans)) { 346 ret = PTR_ERR(trans); 347 goto out_drop; 348 } 349 350 btrfs_update_iflags(inode); 351 inode_inc_iversion(inode); 352 inode->i_ctime = current_time(inode); 353 ret = btrfs_update_inode(trans, root, inode); 354 355 btrfs_end_transaction(trans); 356 out_drop: 357 if (ret) { 358 ip->flags = ip_oldflags; 359 inode->i_flags = i_oldflags; 360 } 361 362 out_unlock: 363 inode_unlock(inode); 364 mnt_drop_write_file(file); 365 return ret; 366 } 367 368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 369 { 370 struct inode *inode = file_inode(file); 371 372 return put_user(inode->i_generation, arg); 373 } 374 375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 376 { 377 struct inode *inode = file_inode(file); 378 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 379 struct btrfs_device *device; 380 struct request_queue *q; 381 struct fstrim_range range; 382 u64 minlen = ULLONG_MAX; 383 u64 num_devices = 0; 384 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 385 int ret; 386 387 if (!capable(CAP_SYS_ADMIN)) 388 return -EPERM; 389 390 rcu_read_lock(); 391 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 392 dev_list) { 393 if (!device->bdev) 394 continue; 395 q = bdev_get_queue(device->bdev); 396 if (blk_queue_discard(q)) { 397 num_devices++; 398 minlen = min((u64)q->limits.discard_granularity, 399 minlen); 400 } 401 } 402 rcu_read_unlock(); 403 404 if (!num_devices) 405 return -EOPNOTSUPP; 406 if (copy_from_user(&range, arg, sizeof(range))) 407 return -EFAULT; 408 if (range.start > total_bytes || 409 range.len < fs_info->sb->s_blocksize) 410 return -EINVAL; 411 412 range.len = min(range.len, total_bytes - range.start); 413 range.minlen = max(range.minlen, minlen); 414 ret = btrfs_trim_fs(fs_info, &range); 415 if (ret < 0) 416 return ret; 417 418 if (copy_to_user(arg, &range, sizeof(range))) 419 return -EFAULT; 420 421 return 0; 422 } 423 424 int btrfs_is_empty_uuid(u8 *uuid) 425 { 426 int i; 427 428 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 429 if (uuid[i]) 430 return 0; 431 } 432 return 1; 433 } 434 435 static noinline int create_subvol(struct inode *dir, 436 struct dentry *dentry, 437 char *name, int namelen, 438 u64 *async_transid, 439 struct btrfs_qgroup_inherit *inherit) 440 { 441 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 442 struct btrfs_trans_handle *trans; 443 struct btrfs_key key; 444 struct btrfs_root_item *root_item; 445 struct btrfs_inode_item *inode_item; 446 struct extent_buffer *leaf; 447 struct btrfs_root *root = BTRFS_I(dir)->root; 448 struct btrfs_root *new_root; 449 struct btrfs_block_rsv block_rsv; 450 struct timespec cur_time = current_time(dir); 451 struct inode *inode; 452 int ret; 453 int err; 454 u64 objectid; 455 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 456 u64 index = 0; 457 u64 qgroup_reserved; 458 uuid_le new_uuid; 459 460 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 461 if (!root_item) 462 return -ENOMEM; 463 464 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 465 if (ret) 466 goto fail_free; 467 468 /* 469 * Don't create subvolume whose level is not zero. Or qgroup will be 470 * screwed up since it assumes subvolume qgroup's level to be 0. 471 */ 472 if (btrfs_qgroup_level(objectid)) { 473 ret = -ENOSPC; 474 goto fail_free; 475 } 476 477 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 478 /* 479 * The same as the snapshot creation, please see the comment 480 * of create_snapshot(). 481 */ 482 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 483 8, &qgroup_reserved, false); 484 if (ret) 485 goto fail_free; 486 487 trans = btrfs_start_transaction(root, 0); 488 if (IS_ERR(trans)) { 489 ret = PTR_ERR(trans); 490 btrfs_subvolume_release_metadata(fs_info, &block_rsv, 491 qgroup_reserved); 492 goto fail_free; 493 } 494 trans->block_rsv = &block_rsv; 495 trans->bytes_reserved = block_rsv.size; 496 497 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit); 498 if (ret) 499 goto fail; 500 501 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 502 if (IS_ERR(leaf)) { 503 ret = PTR_ERR(leaf); 504 goto fail; 505 } 506 507 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 508 btrfs_set_header_bytenr(leaf, leaf->start); 509 btrfs_set_header_generation(leaf, trans->transid); 510 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 511 btrfs_set_header_owner(leaf, objectid); 512 513 write_extent_buffer_fsid(leaf, fs_info->fsid); 514 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 515 btrfs_mark_buffer_dirty(leaf); 516 517 inode_item = &root_item->inode; 518 btrfs_set_stack_inode_generation(inode_item, 1); 519 btrfs_set_stack_inode_size(inode_item, 3); 520 btrfs_set_stack_inode_nlink(inode_item, 1); 521 btrfs_set_stack_inode_nbytes(inode_item, 522 fs_info->nodesize); 523 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 524 525 btrfs_set_root_flags(root_item, 0); 526 btrfs_set_root_limit(root_item, 0); 527 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 528 529 btrfs_set_root_bytenr(root_item, leaf->start); 530 btrfs_set_root_generation(root_item, trans->transid); 531 btrfs_set_root_level(root_item, 0); 532 btrfs_set_root_refs(root_item, 1); 533 btrfs_set_root_used(root_item, leaf->len); 534 btrfs_set_root_last_snapshot(root_item, 0); 535 536 btrfs_set_root_generation_v2(root_item, 537 btrfs_root_generation(root_item)); 538 uuid_le_gen(&new_uuid); 539 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 540 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 541 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 542 root_item->ctime = root_item->otime; 543 btrfs_set_root_ctransid(root_item, trans->transid); 544 btrfs_set_root_otransid(root_item, trans->transid); 545 546 btrfs_tree_unlock(leaf); 547 free_extent_buffer(leaf); 548 leaf = NULL; 549 550 btrfs_set_root_dirid(root_item, new_dirid); 551 552 key.objectid = objectid; 553 key.offset = 0; 554 key.type = BTRFS_ROOT_ITEM_KEY; 555 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 556 root_item); 557 if (ret) 558 goto fail; 559 560 key.offset = (u64)-1; 561 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 562 if (IS_ERR(new_root)) { 563 ret = PTR_ERR(new_root); 564 btrfs_abort_transaction(trans, ret); 565 goto fail; 566 } 567 568 btrfs_record_root_in_trans(trans, new_root); 569 570 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 571 if (ret) { 572 /* We potentially lose an unused inode item here */ 573 btrfs_abort_transaction(trans, ret); 574 goto fail; 575 } 576 577 mutex_lock(&new_root->objectid_mutex); 578 new_root->highest_objectid = new_dirid; 579 mutex_unlock(&new_root->objectid_mutex); 580 581 /* 582 * insert the directory item 583 */ 584 ret = btrfs_set_inode_index(dir, &index); 585 if (ret) { 586 btrfs_abort_transaction(trans, ret); 587 goto fail; 588 } 589 590 ret = btrfs_insert_dir_item(trans, root, 591 name, namelen, dir, &key, 592 BTRFS_FT_DIR, index); 593 if (ret) { 594 btrfs_abort_transaction(trans, ret); 595 goto fail; 596 } 597 598 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 599 ret = btrfs_update_inode(trans, root, dir); 600 BUG_ON(ret); 601 602 ret = btrfs_add_root_ref(trans, fs_info, 603 objectid, root->root_key.objectid, 604 btrfs_ino(dir), index, name, namelen); 605 BUG_ON(ret); 606 607 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid, 608 BTRFS_UUID_KEY_SUBVOL, objectid); 609 if (ret) 610 btrfs_abort_transaction(trans, ret); 611 612 fail: 613 kfree(root_item); 614 trans->block_rsv = NULL; 615 trans->bytes_reserved = 0; 616 btrfs_subvolume_release_metadata(fs_info, &block_rsv, qgroup_reserved); 617 618 if (async_transid) { 619 *async_transid = trans->transid; 620 err = btrfs_commit_transaction_async(trans, 1); 621 if (err) 622 err = btrfs_commit_transaction(trans); 623 } else { 624 err = btrfs_commit_transaction(trans); 625 } 626 if (err && !ret) 627 ret = err; 628 629 if (!ret) { 630 inode = btrfs_lookup_dentry(dir, dentry); 631 if (IS_ERR(inode)) 632 return PTR_ERR(inode); 633 d_instantiate(dentry, inode); 634 } 635 return ret; 636 637 fail_free: 638 kfree(root_item); 639 return ret; 640 } 641 642 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root) 643 { 644 s64 writers; 645 DEFINE_WAIT(wait); 646 647 do { 648 prepare_to_wait(&root->subv_writers->wait, &wait, 649 TASK_UNINTERRUPTIBLE); 650 651 writers = percpu_counter_sum(&root->subv_writers->counter); 652 if (writers) 653 schedule(); 654 655 finish_wait(&root->subv_writers->wait, &wait); 656 } while (writers); 657 } 658 659 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 660 struct dentry *dentry, char *name, int namelen, 661 u64 *async_transid, bool readonly, 662 struct btrfs_qgroup_inherit *inherit) 663 { 664 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 665 struct inode *inode; 666 struct btrfs_pending_snapshot *pending_snapshot; 667 struct btrfs_trans_handle *trans; 668 int ret; 669 670 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 671 return -EINVAL; 672 673 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 674 if (!pending_snapshot) 675 return -ENOMEM; 676 677 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 678 GFP_NOFS); 679 pending_snapshot->path = btrfs_alloc_path(); 680 if (!pending_snapshot->root_item || !pending_snapshot->path) { 681 ret = -ENOMEM; 682 goto free_pending; 683 } 684 685 atomic_inc(&root->will_be_snapshoted); 686 smp_mb__after_atomic(); 687 btrfs_wait_for_no_snapshoting_writes(root); 688 689 ret = btrfs_start_delalloc_inodes(root, 0); 690 if (ret) 691 goto dec_and_free; 692 693 btrfs_wait_ordered_extents(root, -1, 0, (u64)-1); 694 695 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 696 BTRFS_BLOCK_RSV_TEMP); 697 /* 698 * 1 - parent dir inode 699 * 2 - dir entries 700 * 1 - root item 701 * 2 - root ref/backref 702 * 1 - root of snapshot 703 * 1 - UUID item 704 */ 705 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 706 &pending_snapshot->block_rsv, 8, 707 &pending_snapshot->qgroup_reserved, 708 false); 709 if (ret) 710 goto dec_and_free; 711 712 pending_snapshot->dentry = dentry; 713 pending_snapshot->root = root; 714 pending_snapshot->readonly = readonly; 715 pending_snapshot->dir = dir; 716 pending_snapshot->inherit = inherit; 717 718 trans = btrfs_start_transaction(root, 0); 719 if (IS_ERR(trans)) { 720 ret = PTR_ERR(trans); 721 goto fail; 722 } 723 724 spin_lock(&fs_info->trans_lock); 725 list_add(&pending_snapshot->list, 726 &trans->transaction->pending_snapshots); 727 spin_unlock(&fs_info->trans_lock); 728 if (async_transid) { 729 *async_transid = trans->transid; 730 ret = btrfs_commit_transaction_async(trans, 1); 731 if (ret) 732 ret = btrfs_commit_transaction(trans); 733 } else { 734 ret = btrfs_commit_transaction(trans); 735 } 736 if (ret) 737 goto fail; 738 739 ret = pending_snapshot->error; 740 if (ret) 741 goto fail; 742 743 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 744 if (ret) 745 goto fail; 746 747 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 748 if (IS_ERR(inode)) { 749 ret = PTR_ERR(inode); 750 goto fail; 751 } 752 753 d_instantiate(dentry, inode); 754 ret = 0; 755 fail: 756 btrfs_subvolume_release_metadata(fs_info, 757 &pending_snapshot->block_rsv, 758 pending_snapshot->qgroup_reserved); 759 dec_and_free: 760 if (atomic_dec_and_test(&root->will_be_snapshoted)) 761 wake_up_atomic_t(&root->will_be_snapshoted); 762 free_pending: 763 kfree(pending_snapshot->root_item); 764 btrfs_free_path(pending_snapshot->path); 765 kfree(pending_snapshot); 766 767 return ret; 768 } 769 770 /* copy of may_delete in fs/namei.c() 771 * Check whether we can remove a link victim from directory dir, check 772 * whether the type of victim is right. 773 * 1. We can't do it if dir is read-only (done in permission()) 774 * 2. We should have write and exec permissions on dir 775 * 3. We can't remove anything from append-only dir 776 * 4. We can't do anything with immutable dir (done in permission()) 777 * 5. If the sticky bit on dir is set we should either 778 * a. be owner of dir, or 779 * b. be owner of victim, or 780 * c. have CAP_FOWNER capability 781 * 6. If the victim is append-only or immutable we can't do anything with 782 * links pointing to it. 783 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 784 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 785 * 9. We can't remove a root or mountpoint. 786 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 787 * nfs_async_unlink(). 788 */ 789 790 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 791 { 792 int error; 793 794 if (d_really_is_negative(victim)) 795 return -ENOENT; 796 797 BUG_ON(d_inode(victim->d_parent) != dir); 798 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 799 800 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 801 if (error) 802 return error; 803 if (IS_APPEND(dir)) 804 return -EPERM; 805 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 806 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 807 return -EPERM; 808 if (isdir) { 809 if (!d_is_dir(victim)) 810 return -ENOTDIR; 811 if (IS_ROOT(victim)) 812 return -EBUSY; 813 } else if (d_is_dir(victim)) 814 return -EISDIR; 815 if (IS_DEADDIR(dir)) 816 return -ENOENT; 817 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 818 return -EBUSY; 819 return 0; 820 } 821 822 /* copy of may_create in fs/namei.c() */ 823 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 824 { 825 if (d_really_is_positive(child)) 826 return -EEXIST; 827 if (IS_DEADDIR(dir)) 828 return -ENOENT; 829 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 830 } 831 832 /* 833 * Create a new subvolume below @parent. This is largely modeled after 834 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 835 * inside this filesystem so it's quite a bit simpler. 836 */ 837 static noinline int btrfs_mksubvol(const struct path *parent, 838 char *name, int namelen, 839 struct btrfs_root *snap_src, 840 u64 *async_transid, bool readonly, 841 struct btrfs_qgroup_inherit *inherit) 842 { 843 struct inode *dir = d_inode(parent->dentry); 844 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 845 struct dentry *dentry; 846 int error; 847 848 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 849 if (error == -EINTR) 850 return error; 851 852 dentry = lookup_one_len(name, parent->dentry, namelen); 853 error = PTR_ERR(dentry); 854 if (IS_ERR(dentry)) 855 goto out_unlock; 856 857 error = btrfs_may_create(dir, dentry); 858 if (error) 859 goto out_dput; 860 861 /* 862 * even if this name doesn't exist, we may get hash collisions. 863 * check for them now when we can safely fail 864 */ 865 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 866 dir->i_ino, name, 867 namelen); 868 if (error) 869 goto out_dput; 870 871 down_read(&fs_info->subvol_sem); 872 873 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 874 goto out_up_read; 875 876 if (snap_src) { 877 error = create_snapshot(snap_src, dir, dentry, name, namelen, 878 async_transid, readonly, inherit); 879 } else { 880 error = create_subvol(dir, dentry, name, namelen, 881 async_transid, inherit); 882 } 883 if (!error) 884 fsnotify_mkdir(dir, dentry); 885 out_up_read: 886 up_read(&fs_info->subvol_sem); 887 out_dput: 888 dput(dentry); 889 out_unlock: 890 inode_unlock(dir); 891 return error; 892 } 893 894 /* 895 * When we're defragging a range, we don't want to kick it off again 896 * if it is really just waiting for delalloc to send it down. 897 * If we find a nice big extent or delalloc range for the bytes in the 898 * file you want to defrag, we return 0 to let you know to skip this 899 * part of the file 900 */ 901 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 902 { 903 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 904 struct extent_map *em = NULL; 905 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 906 u64 end; 907 908 read_lock(&em_tree->lock); 909 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 910 read_unlock(&em_tree->lock); 911 912 if (em) { 913 end = extent_map_end(em); 914 free_extent_map(em); 915 if (end - offset > thresh) 916 return 0; 917 } 918 /* if we already have a nice delalloc here, just stop */ 919 thresh /= 2; 920 end = count_range_bits(io_tree, &offset, offset + thresh, 921 thresh, EXTENT_DELALLOC, 1); 922 if (end >= thresh) 923 return 0; 924 return 1; 925 } 926 927 /* 928 * helper function to walk through a file and find extents 929 * newer than a specific transid, and smaller than thresh. 930 * 931 * This is used by the defragging code to find new and small 932 * extents 933 */ 934 static int find_new_extents(struct btrfs_root *root, 935 struct inode *inode, u64 newer_than, 936 u64 *off, u32 thresh) 937 { 938 struct btrfs_path *path; 939 struct btrfs_key min_key; 940 struct extent_buffer *leaf; 941 struct btrfs_file_extent_item *extent; 942 int type; 943 int ret; 944 u64 ino = btrfs_ino(inode); 945 946 path = btrfs_alloc_path(); 947 if (!path) 948 return -ENOMEM; 949 950 min_key.objectid = ino; 951 min_key.type = BTRFS_EXTENT_DATA_KEY; 952 min_key.offset = *off; 953 954 while (1) { 955 ret = btrfs_search_forward(root, &min_key, path, newer_than); 956 if (ret != 0) 957 goto none; 958 process_slot: 959 if (min_key.objectid != ino) 960 goto none; 961 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 962 goto none; 963 964 leaf = path->nodes[0]; 965 extent = btrfs_item_ptr(leaf, path->slots[0], 966 struct btrfs_file_extent_item); 967 968 type = btrfs_file_extent_type(leaf, extent); 969 if (type == BTRFS_FILE_EXTENT_REG && 970 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 971 check_defrag_in_cache(inode, min_key.offset, thresh)) { 972 *off = min_key.offset; 973 btrfs_free_path(path); 974 return 0; 975 } 976 977 path->slots[0]++; 978 if (path->slots[0] < btrfs_header_nritems(leaf)) { 979 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 980 goto process_slot; 981 } 982 983 if (min_key.offset == (u64)-1) 984 goto none; 985 986 min_key.offset++; 987 btrfs_release_path(path); 988 } 989 none: 990 btrfs_free_path(path); 991 return -ENOENT; 992 } 993 994 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 995 { 996 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 997 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 998 struct extent_map *em; 999 u64 len = PAGE_SIZE; 1000 1001 /* 1002 * hopefully we have this extent in the tree already, try without 1003 * the full extent lock 1004 */ 1005 read_lock(&em_tree->lock); 1006 em = lookup_extent_mapping(em_tree, start, len); 1007 read_unlock(&em_tree->lock); 1008 1009 if (!em) { 1010 struct extent_state *cached = NULL; 1011 u64 end = start + len - 1; 1012 1013 /* get the big lock and read metadata off disk */ 1014 lock_extent_bits(io_tree, start, end, &cached); 1015 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 1016 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 1017 1018 if (IS_ERR(em)) 1019 return NULL; 1020 } 1021 1022 return em; 1023 } 1024 1025 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1026 { 1027 struct extent_map *next; 1028 bool ret = true; 1029 1030 /* this is the last extent */ 1031 if (em->start + em->len >= i_size_read(inode)) 1032 return false; 1033 1034 next = defrag_lookup_extent(inode, em->start + em->len); 1035 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1036 ret = false; 1037 else if ((em->block_start + em->block_len == next->block_start) && 1038 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1039 ret = false; 1040 1041 free_extent_map(next); 1042 return ret; 1043 } 1044 1045 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1046 u64 *last_len, u64 *skip, u64 *defrag_end, 1047 int compress) 1048 { 1049 struct extent_map *em; 1050 int ret = 1; 1051 bool next_mergeable = true; 1052 bool prev_mergeable = true; 1053 1054 /* 1055 * make sure that once we start defragging an extent, we keep on 1056 * defragging it 1057 */ 1058 if (start < *defrag_end) 1059 return 1; 1060 1061 *skip = 0; 1062 1063 em = defrag_lookup_extent(inode, start); 1064 if (!em) 1065 return 0; 1066 1067 /* this will cover holes, and inline extents */ 1068 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1069 ret = 0; 1070 goto out; 1071 } 1072 1073 if (!*defrag_end) 1074 prev_mergeable = false; 1075 1076 next_mergeable = defrag_check_next_extent(inode, em); 1077 /* 1078 * we hit a real extent, if it is big or the next extent is not a 1079 * real extent, don't bother defragging it 1080 */ 1081 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1082 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1083 ret = 0; 1084 out: 1085 /* 1086 * last_len ends up being a counter of how many bytes we've defragged. 1087 * every time we choose not to defrag an extent, we reset *last_len 1088 * so that the next tiny extent will force a defrag. 1089 * 1090 * The end result of this is that tiny extents before a single big 1091 * extent will force at least part of that big extent to be defragged. 1092 */ 1093 if (ret) { 1094 *defrag_end = extent_map_end(em); 1095 } else { 1096 *last_len = 0; 1097 *skip = extent_map_end(em); 1098 *defrag_end = 0; 1099 } 1100 1101 free_extent_map(em); 1102 return ret; 1103 } 1104 1105 /* 1106 * it doesn't do much good to defrag one or two pages 1107 * at a time. This pulls in a nice chunk of pages 1108 * to COW and defrag. 1109 * 1110 * It also makes sure the delalloc code has enough 1111 * dirty data to avoid making new small extents as part 1112 * of the defrag 1113 * 1114 * It's a good idea to start RA on this range 1115 * before calling this. 1116 */ 1117 static int cluster_pages_for_defrag(struct inode *inode, 1118 struct page **pages, 1119 unsigned long start_index, 1120 unsigned long num_pages) 1121 { 1122 unsigned long file_end; 1123 u64 isize = i_size_read(inode); 1124 u64 page_start; 1125 u64 page_end; 1126 u64 page_cnt; 1127 int ret; 1128 int i; 1129 int i_done; 1130 struct btrfs_ordered_extent *ordered; 1131 struct extent_state *cached_state = NULL; 1132 struct extent_io_tree *tree; 1133 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1134 1135 file_end = (isize - 1) >> PAGE_SHIFT; 1136 if (!isize || start_index > file_end) 1137 return 0; 1138 1139 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1140 1141 ret = btrfs_delalloc_reserve_space(inode, 1142 start_index << PAGE_SHIFT, 1143 page_cnt << PAGE_SHIFT); 1144 if (ret) 1145 return ret; 1146 i_done = 0; 1147 tree = &BTRFS_I(inode)->io_tree; 1148 1149 /* step one, lock all the pages */ 1150 for (i = 0; i < page_cnt; i++) { 1151 struct page *page; 1152 again: 1153 page = find_or_create_page(inode->i_mapping, 1154 start_index + i, mask); 1155 if (!page) 1156 break; 1157 1158 page_start = page_offset(page); 1159 page_end = page_start + PAGE_SIZE - 1; 1160 while (1) { 1161 lock_extent_bits(tree, page_start, page_end, 1162 &cached_state); 1163 ordered = btrfs_lookup_ordered_extent(inode, 1164 page_start); 1165 unlock_extent_cached(tree, page_start, page_end, 1166 &cached_state, GFP_NOFS); 1167 if (!ordered) 1168 break; 1169 1170 unlock_page(page); 1171 btrfs_start_ordered_extent(inode, ordered, 1); 1172 btrfs_put_ordered_extent(ordered); 1173 lock_page(page); 1174 /* 1175 * we unlocked the page above, so we need check if 1176 * it was released or not. 1177 */ 1178 if (page->mapping != inode->i_mapping) { 1179 unlock_page(page); 1180 put_page(page); 1181 goto again; 1182 } 1183 } 1184 1185 if (!PageUptodate(page)) { 1186 btrfs_readpage(NULL, page); 1187 lock_page(page); 1188 if (!PageUptodate(page)) { 1189 unlock_page(page); 1190 put_page(page); 1191 ret = -EIO; 1192 break; 1193 } 1194 } 1195 1196 if (page->mapping != inode->i_mapping) { 1197 unlock_page(page); 1198 put_page(page); 1199 goto again; 1200 } 1201 1202 pages[i] = page; 1203 i_done++; 1204 } 1205 if (!i_done || ret) 1206 goto out; 1207 1208 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1209 goto out; 1210 1211 /* 1212 * so now we have a nice long stream of locked 1213 * and up to date pages, lets wait on them 1214 */ 1215 for (i = 0; i < i_done; i++) 1216 wait_on_page_writeback(pages[i]); 1217 1218 page_start = page_offset(pages[0]); 1219 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1220 1221 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1222 page_start, page_end - 1, &cached_state); 1223 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1224 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1225 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1226 &cached_state, GFP_NOFS); 1227 1228 if (i_done != page_cnt) { 1229 spin_lock(&BTRFS_I(inode)->lock); 1230 BTRFS_I(inode)->outstanding_extents++; 1231 spin_unlock(&BTRFS_I(inode)->lock); 1232 btrfs_delalloc_release_space(inode, 1233 start_index << PAGE_SHIFT, 1234 (page_cnt - i_done) << PAGE_SHIFT); 1235 } 1236 1237 1238 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1239 &cached_state); 1240 1241 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1242 page_start, page_end - 1, &cached_state, 1243 GFP_NOFS); 1244 1245 for (i = 0; i < i_done; i++) { 1246 clear_page_dirty_for_io(pages[i]); 1247 ClearPageChecked(pages[i]); 1248 set_page_extent_mapped(pages[i]); 1249 set_page_dirty(pages[i]); 1250 unlock_page(pages[i]); 1251 put_page(pages[i]); 1252 } 1253 return i_done; 1254 out: 1255 for (i = 0; i < i_done; i++) { 1256 unlock_page(pages[i]); 1257 put_page(pages[i]); 1258 } 1259 btrfs_delalloc_release_space(inode, 1260 start_index << PAGE_SHIFT, 1261 page_cnt << PAGE_SHIFT); 1262 return ret; 1263 1264 } 1265 1266 int btrfs_defrag_file(struct inode *inode, struct file *file, 1267 struct btrfs_ioctl_defrag_range_args *range, 1268 u64 newer_than, unsigned long max_to_defrag) 1269 { 1270 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1271 struct btrfs_root *root = BTRFS_I(inode)->root; 1272 struct file_ra_state *ra = NULL; 1273 unsigned long last_index; 1274 u64 isize = i_size_read(inode); 1275 u64 last_len = 0; 1276 u64 skip = 0; 1277 u64 defrag_end = 0; 1278 u64 newer_off = range->start; 1279 unsigned long i; 1280 unsigned long ra_index = 0; 1281 int ret; 1282 int defrag_count = 0; 1283 int compress_type = BTRFS_COMPRESS_ZLIB; 1284 u32 extent_thresh = range->extent_thresh; 1285 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1286 unsigned long cluster = max_cluster; 1287 u64 new_align = ~((u64)SZ_128K - 1); 1288 struct page **pages = NULL; 1289 1290 if (isize == 0) 1291 return 0; 1292 1293 if (range->start >= isize) 1294 return -EINVAL; 1295 1296 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1297 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1298 return -EINVAL; 1299 if (range->compress_type) 1300 compress_type = range->compress_type; 1301 } 1302 1303 if (extent_thresh == 0) 1304 extent_thresh = SZ_256K; 1305 1306 /* 1307 * if we were not given a file, allocate a readahead 1308 * context 1309 */ 1310 if (!file) { 1311 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1312 if (!ra) 1313 return -ENOMEM; 1314 file_ra_state_init(ra, inode->i_mapping); 1315 } else { 1316 ra = &file->f_ra; 1317 } 1318 1319 pages = kmalloc_array(max_cluster, sizeof(struct page *), 1320 GFP_NOFS); 1321 if (!pages) { 1322 ret = -ENOMEM; 1323 goto out_ra; 1324 } 1325 1326 /* find the last page to defrag */ 1327 if (range->start + range->len > range->start) { 1328 last_index = min_t(u64, isize - 1, 1329 range->start + range->len - 1) >> PAGE_SHIFT; 1330 } else { 1331 last_index = (isize - 1) >> PAGE_SHIFT; 1332 } 1333 1334 if (newer_than) { 1335 ret = find_new_extents(root, inode, newer_than, 1336 &newer_off, SZ_64K); 1337 if (!ret) { 1338 range->start = newer_off; 1339 /* 1340 * we always align our defrag to help keep 1341 * the extents in the file evenly spaced 1342 */ 1343 i = (newer_off & new_align) >> PAGE_SHIFT; 1344 } else 1345 goto out_ra; 1346 } else { 1347 i = range->start >> PAGE_SHIFT; 1348 } 1349 if (!max_to_defrag) 1350 max_to_defrag = last_index - i + 1; 1351 1352 /* 1353 * make writeback starts from i, so the defrag range can be 1354 * written sequentially. 1355 */ 1356 if (i < inode->i_mapping->writeback_index) 1357 inode->i_mapping->writeback_index = i; 1358 1359 while (i <= last_index && defrag_count < max_to_defrag && 1360 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1361 /* 1362 * make sure we stop running if someone unmounts 1363 * the FS 1364 */ 1365 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1366 break; 1367 1368 if (btrfs_defrag_cancelled(fs_info)) { 1369 btrfs_debug(fs_info, "defrag_file cancelled"); 1370 ret = -EAGAIN; 1371 break; 1372 } 1373 1374 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1375 extent_thresh, &last_len, &skip, 1376 &defrag_end, range->flags & 1377 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1378 unsigned long next; 1379 /* 1380 * the should_defrag function tells us how much to skip 1381 * bump our counter by the suggested amount 1382 */ 1383 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1384 i = max(i + 1, next); 1385 continue; 1386 } 1387 1388 if (!newer_than) { 1389 cluster = (PAGE_ALIGN(defrag_end) >> 1390 PAGE_SHIFT) - i; 1391 cluster = min(cluster, max_cluster); 1392 } else { 1393 cluster = max_cluster; 1394 } 1395 1396 if (i + cluster > ra_index) { 1397 ra_index = max(i, ra_index); 1398 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1399 cluster); 1400 ra_index += cluster; 1401 } 1402 1403 inode_lock(inode); 1404 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1405 BTRFS_I(inode)->force_compress = compress_type; 1406 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1407 if (ret < 0) { 1408 inode_unlock(inode); 1409 goto out_ra; 1410 } 1411 1412 defrag_count += ret; 1413 balance_dirty_pages_ratelimited(inode->i_mapping); 1414 inode_unlock(inode); 1415 1416 if (newer_than) { 1417 if (newer_off == (u64)-1) 1418 break; 1419 1420 if (ret > 0) 1421 i += ret; 1422 1423 newer_off = max(newer_off + 1, 1424 (u64)i << PAGE_SHIFT); 1425 1426 ret = find_new_extents(root, inode, newer_than, 1427 &newer_off, SZ_64K); 1428 if (!ret) { 1429 range->start = newer_off; 1430 i = (newer_off & new_align) >> PAGE_SHIFT; 1431 } else { 1432 break; 1433 } 1434 } else { 1435 if (ret > 0) { 1436 i += ret; 1437 last_len += ret << PAGE_SHIFT; 1438 } else { 1439 i++; 1440 last_len = 0; 1441 } 1442 } 1443 } 1444 1445 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1446 filemap_flush(inode->i_mapping); 1447 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1448 &BTRFS_I(inode)->runtime_flags)) 1449 filemap_flush(inode->i_mapping); 1450 } 1451 1452 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1453 /* the filemap_flush will queue IO into the worker threads, but 1454 * we have to make sure the IO is actually started and that 1455 * ordered extents get created before we return 1456 */ 1457 atomic_inc(&fs_info->async_submit_draining); 1458 while (atomic_read(&fs_info->nr_async_submits) || 1459 atomic_read(&fs_info->async_delalloc_pages)) { 1460 wait_event(fs_info->async_submit_wait, 1461 (atomic_read(&fs_info->nr_async_submits) == 0 && 1462 atomic_read(&fs_info->async_delalloc_pages) == 0)); 1463 } 1464 atomic_dec(&fs_info->async_submit_draining); 1465 } 1466 1467 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1468 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1469 } 1470 1471 ret = defrag_count; 1472 1473 out_ra: 1474 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1475 inode_lock(inode); 1476 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1477 inode_unlock(inode); 1478 } 1479 if (!file) 1480 kfree(ra); 1481 kfree(pages); 1482 return ret; 1483 } 1484 1485 static noinline int btrfs_ioctl_resize(struct file *file, 1486 void __user *arg) 1487 { 1488 struct inode *inode = file_inode(file); 1489 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1490 u64 new_size; 1491 u64 old_size; 1492 u64 devid = 1; 1493 struct btrfs_root *root = BTRFS_I(inode)->root; 1494 struct btrfs_ioctl_vol_args *vol_args; 1495 struct btrfs_trans_handle *trans; 1496 struct btrfs_device *device = NULL; 1497 char *sizestr; 1498 char *retptr; 1499 char *devstr = NULL; 1500 int ret = 0; 1501 int mod = 0; 1502 1503 if (!capable(CAP_SYS_ADMIN)) 1504 return -EPERM; 1505 1506 ret = mnt_want_write_file(file); 1507 if (ret) 1508 return ret; 1509 1510 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 1511 mnt_drop_write_file(file); 1512 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1513 } 1514 1515 mutex_lock(&fs_info->volume_mutex); 1516 vol_args = memdup_user(arg, sizeof(*vol_args)); 1517 if (IS_ERR(vol_args)) { 1518 ret = PTR_ERR(vol_args); 1519 goto out; 1520 } 1521 1522 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1523 1524 sizestr = vol_args->name; 1525 devstr = strchr(sizestr, ':'); 1526 if (devstr) { 1527 sizestr = devstr + 1; 1528 *devstr = '\0'; 1529 devstr = vol_args->name; 1530 ret = kstrtoull(devstr, 10, &devid); 1531 if (ret) 1532 goto out_free; 1533 if (!devid) { 1534 ret = -EINVAL; 1535 goto out_free; 1536 } 1537 btrfs_info(fs_info, "resizing devid %llu", devid); 1538 } 1539 1540 device = btrfs_find_device(fs_info, devid, NULL, NULL); 1541 if (!device) { 1542 btrfs_info(fs_info, "resizer unable to find device %llu", 1543 devid); 1544 ret = -ENODEV; 1545 goto out_free; 1546 } 1547 1548 if (!device->writeable) { 1549 btrfs_info(fs_info, 1550 "resizer unable to apply on readonly device %llu", 1551 devid); 1552 ret = -EPERM; 1553 goto out_free; 1554 } 1555 1556 if (!strcmp(sizestr, "max")) 1557 new_size = device->bdev->bd_inode->i_size; 1558 else { 1559 if (sizestr[0] == '-') { 1560 mod = -1; 1561 sizestr++; 1562 } else if (sizestr[0] == '+') { 1563 mod = 1; 1564 sizestr++; 1565 } 1566 new_size = memparse(sizestr, &retptr); 1567 if (*retptr != '\0' || new_size == 0) { 1568 ret = -EINVAL; 1569 goto out_free; 1570 } 1571 } 1572 1573 if (device->is_tgtdev_for_dev_replace) { 1574 ret = -EPERM; 1575 goto out_free; 1576 } 1577 1578 old_size = btrfs_device_get_total_bytes(device); 1579 1580 if (mod < 0) { 1581 if (new_size > old_size) { 1582 ret = -EINVAL; 1583 goto out_free; 1584 } 1585 new_size = old_size - new_size; 1586 } else if (mod > 0) { 1587 if (new_size > ULLONG_MAX - old_size) { 1588 ret = -ERANGE; 1589 goto out_free; 1590 } 1591 new_size = old_size + new_size; 1592 } 1593 1594 if (new_size < SZ_256M) { 1595 ret = -EINVAL; 1596 goto out_free; 1597 } 1598 if (new_size > device->bdev->bd_inode->i_size) { 1599 ret = -EFBIG; 1600 goto out_free; 1601 } 1602 1603 new_size = div_u64(new_size, fs_info->sectorsize); 1604 new_size *= fs_info->sectorsize; 1605 1606 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1607 rcu_str_deref(device->name), new_size); 1608 1609 if (new_size > old_size) { 1610 trans = btrfs_start_transaction(root, 0); 1611 if (IS_ERR(trans)) { 1612 ret = PTR_ERR(trans); 1613 goto out_free; 1614 } 1615 ret = btrfs_grow_device(trans, device, new_size); 1616 btrfs_commit_transaction(trans); 1617 } else if (new_size < old_size) { 1618 ret = btrfs_shrink_device(device, new_size); 1619 } /* equal, nothing need to do */ 1620 1621 out_free: 1622 kfree(vol_args); 1623 out: 1624 mutex_unlock(&fs_info->volume_mutex); 1625 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 1626 mnt_drop_write_file(file); 1627 return ret; 1628 } 1629 1630 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1631 char *name, unsigned long fd, int subvol, 1632 u64 *transid, bool readonly, 1633 struct btrfs_qgroup_inherit *inherit) 1634 { 1635 int namelen; 1636 int ret = 0; 1637 1638 if (!S_ISDIR(file_inode(file)->i_mode)) 1639 return -ENOTDIR; 1640 1641 ret = mnt_want_write_file(file); 1642 if (ret) 1643 goto out; 1644 1645 namelen = strlen(name); 1646 if (strchr(name, '/')) { 1647 ret = -EINVAL; 1648 goto out_drop_write; 1649 } 1650 1651 if (name[0] == '.' && 1652 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1653 ret = -EEXIST; 1654 goto out_drop_write; 1655 } 1656 1657 if (subvol) { 1658 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1659 NULL, transid, readonly, inherit); 1660 } else { 1661 struct fd src = fdget(fd); 1662 struct inode *src_inode; 1663 if (!src.file) { 1664 ret = -EINVAL; 1665 goto out_drop_write; 1666 } 1667 1668 src_inode = file_inode(src.file); 1669 if (src_inode->i_sb != file_inode(file)->i_sb) { 1670 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1671 "Snapshot src from another FS"); 1672 ret = -EXDEV; 1673 } else if (!inode_owner_or_capable(src_inode)) { 1674 /* 1675 * Subvolume creation is not restricted, but snapshots 1676 * are limited to own subvolumes only 1677 */ 1678 ret = -EPERM; 1679 } else { 1680 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1681 BTRFS_I(src_inode)->root, 1682 transid, readonly, inherit); 1683 } 1684 fdput(src); 1685 } 1686 out_drop_write: 1687 mnt_drop_write_file(file); 1688 out: 1689 return ret; 1690 } 1691 1692 static noinline int btrfs_ioctl_snap_create(struct file *file, 1693 void __user *arg, int subvol) 1694 { 1695 struct btrfs_ioctl_vol_args *vol_args; 1696 int ret; 1697 1698 if (!S_ISDIR(file_inode(file)->i_mode)) 1699 return -ENOTDIR; 1700 1701 vol_args = memdup_user(arg, sizeof(*vol_args)); 1702 if (IS_ERR(vol_args)) 1703 return PTR_ERR(vol_args); 1704 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1705 1706 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1707 vol_args->fd, subvol, 1708 NULL, false, NULL); 1709 1710 kfree(vol_args); 1711 return ret; 1712 } 1713 1714 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1715 void __user *arg, int subvol) 1716 { 1717 struct btrfs_ioctl_vol_args_v2 *vol_args; 1718 int ret; 1719 u64 transid = 0; 1720 u64 *ptr = NULL; 1721 bool readonly = false; 1722 struct btrfs_qgroup_inherit *inherit = NULL; 1723 1724 if (!S_ISDIR(file_inode(file)->i_mode)) 1725 return -ENOTDIR; 1726 1727 vol_args = memdup_user(arg, sizeof(*vol_args)); 1728 if (IS_ERR(vol_args)) 1729 return PTR_ERR(vol_args); 1730 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1731 1732 if (vol_args->flags & 1733 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1734 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1735 ret = -EOPNOTSUPP; 1736 goto free_args; 1737 } 1738 1739 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1740 ptr = &transid; 1741 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1742 readonly = true; 1743 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1744 if (vol_args->size > PAGE_SIZE) { 1745 ret = -EINVAL; 1746 goto free_args; 1747 } 1748 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1749 if (IS_ERR(inherit)) { 1750 ret = PTR_ERR(inherit); 1751 goto free_args; 1752 } 1753 } 1754 1755 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1756 vol_args->fd, subvol, ptr, 1757 readonly, inherit); 1758 if (ret) 1759 goto free_inherit; 1760 1761 if (ptr && copy_to_user(arg + 1762 offsetof(struct btrfs_ioctl_vol_args_v2, 1763 transid), 1764 ptr, sizeof(*ptr))) 1765 ret = -EFAULT; 1766 1767 free_inherit: 1768 kfree(inherit); 1769 free_args: 1770 kfree(vol_args); 1771 return ret; 1772 } 1773 1774 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1775 void __user *arg) 1776 { 1777 struct inode *inode = file_inode(file); 1778 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1779 struct btrfs_root *root = BTRFS_I(inode)->root; 1780 int ret = 0; 1781 u64 flags = 0; 1782 1783 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1784 return -EINVAL; 1785 1786 down_read(&fs_info->subvol_sem); 1787 if (btrfs_root_readonly(root)) 1788 flags |= BTRFS_SUBVOL_RDONLY; 1789 up_read(&fs_info->subvol_sem); 1790 1791 if (copy_to_user(arg, &flags, sizeof(flags))) 1792 ret = -EFAULT; 1793 1794 return ret; 1795 } 1796 1797 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1798 void __user *arg) 1799 { 1800 struct inode *inode = file_inode(file); 1801 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1802 struct btrfs_root *root = BTRFS_I(inode)->root; 1803 struct btrfs_trans_handle *trans; 1804 u64 root_flags; 1805 u64 flags; 1806 int ret = 0; 1807 1808 if (!inode_owner_or_capable(inode)) 1809 return -EPERM; 1810 1811 ret = mnt_want_write_file(file); 1812 if (ret) 1813 goto out; 1814 1815 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1816 ret = -EINVAL; 1817 goto out_drop_write; 1818 } 1819 1820 if (copy_from_user(&flags, arg, sizeof(flags))) { 1821 ret = -EFAULT; 1822 goto out_drop_write; 1823 } 1824 1825 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1826 ret = -EINVAL; 1827 goto out_drop_write; 1828 } 1829 1830 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1831 ret = -EOPNOTSUPP; 1832 goto out_drop_write; 1833 } 1834 1835 down_write(&fs_info->subvol_sem); 1836 1837 /* nothing to do */ 1838 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1839 goto out_drop_sem; 1840 1841 root_flags = btrfs_root_flags(&root->root_item); 1842 if (flags & BTRFS_SUBVOL_RDONLY) { 1843 btrfs_set_root_flags(&root->root_item, 1844 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1845 } else { 1846 /* 1847 * Block RO -> RW transition if this subvolume is involved in 1848 * send 1849 */ 1850 spin_lock(&root->root_item_lock); 1851 if (root->send_in_progress == 0) { 1852 btrfs_set_root_flags(&root->root_item, 1853 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1854 spin_unlock(&root->root_item_lock); 1855 } else { 1856 spin_unlock(&root->root_item_lock); 1857 btrfs_warn(fs_info, 1858 "Attempt to set subvolume %llu read-write during send", 1859 root->root_key.objectid); 1860 ret = -EPERM; 1861 goto out_drop_sem; 1862 } 1863 } 1864 1865 trans = btrfs_start_transaction(root, 1); 1866 if (IS_ERR(trans)) { 1867 ret = PTR_ERR(trans); 1868 goto out_reset; 1869 } 1870 1871 ret = btrfs_update_root(trans, fs_info->tree_root, 1872 &root->root_key, &root->root_item); 1873 1874 btrfs_commit_transaction(trans); 1875 out_reset: 1876 if (ret) 1877 btrfs_set_root_flags(&root->root_item, root_flags); 1878 out_drop_sem: 1879 up_write(&fs_info->subvol_sem); 1880 out_drop_write: 1881 mnt_drop_write_file(file); 1882 out: 1883 return ret; 1884 } 1885 1886 /* 1887 * helper to check if the subvolume references other subvolumes 1888 */ 1889 static noinline int may_destroy_subvol(struct btrfs_root *root) 1890 { 1891 struct btrfs_fs_info *fs_info = root->fs_info; 1892 struct btrfs_path *path; 1893 struct btrfs_dir_item *di; 1894 struct btrfs_key key; 1895 u64 dir_id; 1896 int ret; 1897 1898 path = btrfs_alloc_path(); 1899 if (!path) 1900 return -ENOMEM; 1901 1902 /* Make sure this root isn't set as the default subvol */ 1903 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1904 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 1905 dir_id, "default", 7, 0); 1906 if (di && !IS_ERR(di)) { 1907 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1908 if (key.objectid == root->root_key.objectid) { 1909 ret = -EPERM; 1910 btrfs_err(fs_info, 1911 "deleting default subvolume %llu is not allowed", 1912 key.objectid); 1913 goto out; 1914 } 1915 btrfs_release_path(path); 1916 } 1917 1918 key.objectid = root->root_key.objectid; 1919 key.type = BTRFS_ROOT_REF_KEY; 1920 key.offset = (u64)-1; 1921 1922 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1923 if (ret < 0) 1924 goto out; 1925 BUG_ON(ret == 0); 1926 1927 ret = 0; 1928 if (path->slots[0] > 0) { 1929 path->slots[0]--; 1930 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1931 if (key.objectid == root->root_key.objectid && 1932 key.type == BTRFS_ROOT_REF_KEY) 1933 ret = -ENOTEMPTY; 1934 } 1935 out: 1936 btrfs_free_path(path); 1937 return ret; 1938 } 1939 1940 static noinline int key_in_sk(struct btrfs_key *key, 1941 struct btrfs_ioctl_search_key *sk) 1942 { 1943 struct btrfs_key test; 1944 int ret; 1945 1946 test.objectid = sk->min_objectid; 1947 test.type = sk->min_type; 1948 test.offset = sk->min_offset; 1949 1950 ret = btrfs_comp_cpu_keys(key, &test); 1951 if (ret < 0) 1952 return 0; 1953 1954 test.objectid = sk->max_objectid; 1955 test.type = sk->max_type; 1956 test.offset = sk->max_offset; 1957 1958 ret = btrfs_comp_cpu_keys(key, &test); 1959 if (ret > 0) 1960 return 0; 1961 return 1; 1962 } 1963 1964 static noinline int copy_to_sk(struct btrfs_path *path, 1965 struct btrfs_key *key, 1966 struct btrfs_ioctl_search_key *sk, 1967 size_t *buf_size, 1968 char __user *ubuf, 1969 unsigned long *sk_offset, 1970 int *num_found) 1971 { 1972 u64 found_transid; 1973 struct extent_buffer *leaf; 1974 struct btrfs_ioctl_search_header sh; 1975 struct btrfs_key test; 1976 unsigned long item_off; 1977 unsigned long item_len; 1978 int nritems; 1979 int i; 1980 int slot; 1981 int ret = 0; 1982 1983 leaf = path->nodes[0]; 1984 slot = path->slots[0]; 1985 nritems = btrfs_header_nritems(leaf); 1986 1987 if (btrfs_header_generation(leaf) > sk->max_transid) { 1988 i = nritems; 1989 goto advance_key; 1990 } 1991 found_transid = btrfs_header_generation(leaf); 1992 1993 for (i = slot; i < nritems; i++) { 1994 item_off = btrfs_item_ptr_offset(leaf, i); 1995 item_len = btrfs_item_size_nr(leaf, i); 1996 1997 btrfs_item_key_to_cpu(leaf, key, i); 1998 if (!key_in_sk(key, sk)) 1999 continue; 2000 2001 if (sizeof(sh) + item_len > *buf_size) { 2002 if (*num_found) { 2003 ret = 1; 2004 goto out; 2005 } 2006 2007 /* 2008 * return one empty item back for v1, which does not 2009 * handle -EOVERFLOW 2010 */ 2011 2012 *buf_size = sizeof(sh) + item_len; 2013 item_len = 0; 2014 ret = -EOVERFLOW; 2015 } 2016 2017 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2018 ret = 1; 2019 goto out; 2020 } 2021 2022 sh.objectid = key->objectid; 2023 sh.offset = key->offset; 2024 sh.type = key->type; 2025 sh.len = item_len; 2026 sh.transid = found_transid; 2027 2028 /* copy search result header */ 2029 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2030 ret = -EFAULT; 2031 goto out; 2032 } 2033 2034 *sk_offset += sizeof(sh); 2035 2036 if (item_len) { 2037 char __user *up = ubuf + *sk_offset; 2038 /* copy the item */ 2039 if (read_extent_buffer_to_user(leaf, up, 2040 item_off, item_len)) { 2041 ret = -EFAULT; 2042 goto out; 2043 } 2044 2045 *sk_offset += item_len; 2046 } 2047 (*num_found)++; 2048 2049 if (ret) /* -EOVERFLOW from above */ 2050 goto out; 2051 2052 if (*num_found >= sk->nr_items) { 2053 ret = 1; 2054 goto out; 2055 } 2056 } 2057 advance_key: 2058 ret = 0; 2059 test.objectid = sk->max_objectid; 2060 test.type = sk->max_type; 2061 test.offset = sk->max_offset; 2062 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2063 ret = 1; 2064 else if (key->offset < (u64)-1) 2065 key->offset++; 2066 else if (key->type < (u8)-1) { 2067 key->offset = 0; 2068 key->type++; 2069 } else if (key->objectid < (u64)-1) { 2070 key->offset = 0; 2071 key->type = 0; 2072 key->objectid++; 2073 } else 2074 ret = 1; 2075 out: 2076 /* 2077 * 0: all items from this leaf copied, continue with next 2078 * 1: * more items can be copied, but unused buffer is too small 2079 * * all items were found 2080 * Either way, it will stops the loop which iterates to the next 2081 * leaf 2082 * -EOVERFLOW: item was to large for buffer 2083 * -EFAULT: could not copy extent buffer back to userspace 2084 */ 2085 return ret; 2086 } 2087 2088 static noinline int search_ioctl(struct inode *inode, 2089 struct btrfs_ioctl_search_key *sk, 2090 size_t *buf_size, 2091 char __user *ubuf) 2092 { 2093 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2094 struct btrfs_root *root; 2095 struct btrfs_key key; 2096 struct btrfs_path *path; 2097 int ret; 2098 int num_found = 0; 2099 unsigned long sk_offset = 0; 2100 2101 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2102 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2103 return -EOVERFLOW; 2104 } 2105 2106 path = btrfs_alloc_path(); 2107 if (!path) 2108 return -ENOMEM; 2109 2110 if (sk->tree_id == 0) { 2111 /* search the root of the inode that was passed */ 2112 root = BTRFS_I(inode)->root; 2113 } else { 2114 key.objectid = sk->tree_id; 2115 key.type = BTRFS_ROOT_ITEM_KEY; 2116 key.offset = (u64)-1; 2117 root = btrfs_read_fs_root_no_name(info, &key); 2118 if (IS_ERR(root)) { 2119 btrfs_free_path(path); 2120 return -ENOENT; 2121 } 2122 } 2123 2124 key.objectid = sk->min_objectid; 2125 key.type = sk->min_type; 2126 key.offset = sk->min_offset; 2127 2128 while (1) { 2129 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2130 if (ret != 0) { 2131 if (ret > 0) 2132 ret = 0; 2133 goto err; 2134 } 2135 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2136 &sk_offset, &num_found); 2137 btrfs_release_path(path); 2138 if (ret) 2139 break; 2140 2141 } 2142 if (ret > 0) 2143 ret = 0; 2144 err: 2145 sk->nr_items = num_found; 2146 btrfs_free_path(path); 2147 return ret; 2148 } 2149 2150 static noinline int btrfs_ioctl_tree_search(struct file *file, 2151 void __user *argp) 2152 { 2153 struct btrfs_ioctl_search_args __user *uargs; 2154 struct btrfs_ioctl_search_key sk; 2155 struct inode *inode; 2156 int ret; 2157 size_t buf_size; 2158 2159 if (!capable(CAP_SYS_ADMIN)) 2160 return -EPERM; 2161 2162 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2163 2164 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2165 return -EFAULT; 2166 2167 buf_size = sizeof(uargs->buf); 2168 2169 inode = file_inode(file); 2170 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2171 2172 /* 2173 * In the origin implementation an overflow is handled by returning a 2174 * search header with a len of zero, so reset ret. 2175 */ 2176 if (ret == -EOVERFLOW) 2177 ret = 0; 2178 2179 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2180 ret = -EFAULT; 2181 return ret; 2182 } 2183 2184 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2185 void __user *argp) 2186 { 2187 struct btrfs_ioctl_search_args_v2 __user *uarg; 2188 struct btrfs_ioctl_search_args_v2 args; 2189 struct inode *inode; 2190 int ret; 2191 size_t buf_size; 2192 const size_t buf_limit = SZ_16M; 2193 2194 if (!capable(CAP_SYS_ADMIN)) 2195 return -EPERM; 2196 2197 /* copy search header and buffer size */ 2198 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2199 if (copy_from_user(&args, uarg, sizeof(args))) 2200 return -EFAULT; 2201 2202 buf_size = args.buf_size; 2203 2204 if (buf_size < sizeof(struct btrfs_ioctl_search_header)) 2205 return -EOVERFLOW; 2206 2207 /* limit result size to 16MB */ 2208 if (buf_size > buf_limit) 2209 buf_size = buf_limit; 2210 2211 inode = file_inode(file); 2212 ret = search_ioctl(inode, &args.key, &buf_size, 2213 (char *)(&uarg->buf[0])); 2214 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2215 ret = -EFAULT; 2216 else if (ret == -EOVERFLOW && 2217 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2218 ret = -EFAULT; 2219 2220 return ret; 2221 } 2222 2223 /* 2224 * Search INODE_REFs to identify path name of 'dirid' directory 2225 * in a 'tree_id' tree. and sets path name to 'name'. 2226 */ 2227 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2228 u64 tree_id, u64 dirid, char *name) 2229 { 2230 struct btrfs_root *root; 2231 struct btrfs_key key; 2232 char *ptr; 2233 int ret = -1; 2234 int slot; 2235 int len; 2236 int total_len = 0; 2237 struct btrfs_inode_ref *iref; 2238 struct extent_buffer *l; 2239 struct btrfs_path *path; 2240 2241 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2242 name[0]='\0'; 2243 return 0; 2244 } 2245 2246 path = btrfs_alloc_path(); 2247 if (!path) 2248 return -ENOMEM; 2249 2250 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2251 2252 key.objectid = tree_id; 2253 key.type = BTRFS_ROOT_ITEM_KEY; 2254 key.offset = (u64)-1; 2255 root = btrfs_read_fs_root_no_name(info, &key); 2256 if (IS_ERR(root)) { 2257 btrfs_err(info, "could not find root %llu", tree_id); 2258 ret = -ENOENT; 2259 goto out; 2260 } 2261 2262 key.objectid = dirid; 2263 key.type = BTRFS_INODE_REF_KEY; 2264 key.offset = (u64)-1; 2265 2266 while (1) { 2267 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2268 if (ret < 0) 2269 goto out; 2270 else if (ret > 0) { 2271 ret = btrfs_previous_item(root, path, dirid, 2272 BTRFS_INODE_REF_KEY); 2273 if (ret < 0) 2274 goto out; 2275 else if (ret > 0) { 2276 ret = -ENOENT; 2277 goto out; 2278 } 2279 } 2280 2281 l = path->nodes[0]; 2282 slot = path->slots[0]; 2283 btrfs_item_key_to_cpu(l, &key, slot); 2284 2285 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2286 len = btrfs_inode_ref_name_len(l, iref); 2287 ptr -= len + 1; 2288 total_len += len + 1; 2289 if (ptr < name) { 2290 ret = -ENAMETOOLONG; 2291 goto out; 2292 } 2293 2294 *(ptr + len) = '/'; 2295 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2296 2297 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2298 break; 2299 2300 btrfs_release_path(path); 2301 key.objectid = key.offset; 2302 key.offset = (u64)-1; 2303 dirid = key.objectid; 2304 } 2305 memmove(name, ptr, total_len); 2306 name[total_len] = '\0'; 2307 ret = 0; 2308 out: 2309 btrfs_free_path(path); 2310 return ret; 2311 } 2312 2313 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2314 void __user *argp) 2315 { 2316 struct btrfs_ioctl_ino_lookup_args *args; 2317 struct inode *inode; 2318 int ret = 0; 2319 2320 args = memdup_user(argp, sizeof(*args)); 2321 if (IS_ERR(args)) 2322 return PTR_ERR(args); 2323 2324 inode = file_inode(file); 2325 2326 /* 2327 * Unprivileged query to obtain the containing subvolume root id. The 2328 * path is reset so it's consistent with btrfs_search_path_in_tree. 2329 */ 2330 if (args->treeid == 0) 2331 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2332 2333 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2334 args->name[0] = 0; 2335 goto out; 2336 } 2337 2338 if (!capable(CAP_SYS_ADMIN)) { 2339 ret = -EPERM; 2340 goto out; 2341 } 2342 2343 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2344 args->treeid, args->objectid, 2345 args->name); 2346 2347 out: 2348 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2349 ret = -EFAULT; 2350 2351 kfree(args); 2352 return ret; 2353 } 2354 2355 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2356 void __user *arg) 2357 { 2358 struct dentry *parent = file->f_path.dentry; 2359 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2360 struct dentry *dentry; 2361 struct inode *dir = d_inode(parent); 2362 struct inode *inode; 2363 struct btrfs_root *root = BTRFS_I(dir)->root; 2364 struct btrfs_root *dest = NULL; 2365 struct btrfs_ioctl_vol_args *vol_args; 2366 struct btrfs_trans_handle *trans; 2367 struct btrfs_block_rsv block_rsv; 2368 u64 root_flags; 2369 u64 qgroup_reserved; 2370 int namelen; 2371 int ret; 2372 int err = 0; 2373 2374 if (!S_ISDIR(dir->i_mode)) 2375 return -ENOTDIR; 2376 2377 vol_args = memdup_user(arg, sizeof(*vol_args)); 2378 if (IS_ERR(vol_args)) 2379 return PTR_ERR(vol_args); 2380 2381 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2382 namelen = strlen(vol_args->name); 2383 if (strchr(vol_args->name, '/') || 2384 strncmp(vol_args->name, "..", namelen) == 0) { 2385 err = -EINVAL; 2386 goto out; 2387 } 2388 2389 err = mnt_want_write_file(file); 2390 if (err) 2391 goto out; 2392 2393 2394 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2395 if (err == -EINTR) 2396 goto out_drop_write; 2397 dentry = lookup_one_len(vol_args->name, parent, namelen); 2398 if (IS_ERR(dentry)) { 2399 err = PTR_ERR(dentry); 2400 goto out_unlock_dir; 2401 } 2402 2403 if (d_really_is_negative(dentry)) { 2404 err = -ENOENT; 2405 goto out_dput; 2406 } 2407 2408 inode = d_inode(dentry); 2409 dest = BTRFS_I(inode)->root; 2410 if (!capable(CAP_SYS_ADMIN)) { 2411 /* 2412 * Regular user. Only allow this with a special mount 2413 * option, when the user has write+exec access to the 2414 * subvol root, and when rmdir(2) would have been 2415 * allowed. 2416 * 2417 * Note that this is _not_ check that the subvol is 2418 * empty or doesn't contain data that we wouldn't 2419 * otherwise be able to delete. 2420 * 2421 * Users who want to delete empty subvols should try 2422 * rmdir(2). 2423 */ 2424 err = -EPERM; 2425 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2426 goto out_dput; 2427 2428 /* 2429 * Do not allow deletion if the parent dir is the same 2430 * as the dir to be deleted. That means the ioctl 2431 * must be called on the dentry referencing the root 2432 * of the subvol, not a random directory contained 2433 * within it. 2434 */ 2435 err = -EINVAL; 2436 if (root == dest) 2437 goto out_dput; 2438 2439 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2440 if (err) 2441 goto out_dput; 2442 } 2443 2444 /* check if subvolume may be deleted by a user */ 2445 err = btrfs_may_delete(dir, dentry, 1); 2446 if (err) 2447 goto out_dput; 2448 2449 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2450 err = -EINVAL; 2451 goto out_dput; 2452 } 2453 2454 inode_lock(inode); 2455 2456 /* 2457 * Don't allow to delete a subvolume with send in progress. This is 2458 * inside the i_mutex so the error handling that has to drop the bit 2459 * again is not run concurrently. 2460 */ 2461 spin_lock(&dest->root_item_lock); 2462 root_flags = btrfs_root_flags(&dest->root_item); 2463 if (dest->send_in_progress == 0) { 2464 btrfs_set_root_flags(&dest->root_item, 2465 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2466 spin_unlock(&dest->root_item_lock); 2467 } else { 2468 spin_unlock(&dest->root_item_lock); 2469 btrfs_warn(fs_info, 2470 "Attempt to delete subvolume %llu during send", 2471 dest->root_key.objectid); 2472 err = -EPERM; 2473 goto out_unlock_inode; 2474 } 2475 2476 down_write(&fs_info->subvol_sem); 2477 2478 err = may_destroy_subvol(dest); 2479 if (err) 2480 goto out_up_write; 2481 2482 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2483 /* 2484 * One for dir inode, two for dir entries, two for root 2485 * ref/backref. 2486 */ 2487 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2488 5, &qgroup_reserved, true); 2489 if (err) 2490 goto out_up_write; 2491 2492 trans = btrfs_start_transaction(root, 0); 2493 if (IS_ERR(trans)) { 2494 err = PTR_ERR(trans); 2495 goto out_release; 2496 } 2497 trans->block_rsv = &block_rsv; 2498 trans->bytes_reserved = block_rsv.size; 2499 2500 btrfs_record_snapshot_destroy(trans, dir); 2501 2502 ret = btrfs_unlink_subvol(trans, root, dir, 2503 dest->root_key.objectid, 2504 dentry->d_name.name, 2505 dentry->d_name.len); 2506 if (ret) { 2507 err = ret; 2508 btrfs_abort_transaction(trans, ret); 2509 goto out_end_trans; 2510 } 2511 2512 btrfs_record_root_in_trans(trans, dest); 2513 2514 memset(&dest->root_item.drop_progress, 0, 2515 sizeof(dest->root_item.drop_progress)); 2516 dest->root_item.drop_level = 0; 2517 btrfs_set_root_refs(&dest->root_item, 0); 2518 2519 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2520 ret = btrfs_insert_orphan_item(trans, 2521 fs_info->tree_root, 2522 dest->root_key.objectid); 2523 if (ret) { 2524 btrfs_abort_transaction(trans, ret); 2525 err = ret; 2526 goto out_end_trans; 2527 } 2528 } 2529 2530 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid, 2531 BTRFS_UUID_KEY_SUBVOL, 2532 dest->root_key.objectid); 2533 if (ret && ret != -ENOENT) { 2534 btrfs_abort_transaction(trans, ret); 2535 err = ret; 2536 goto out_end_trans; 2537 } 2538 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2539 ret = btrfs_uuid_tree_rem(trans, fs_info, 2540 dest->root_item.received_uuid, 2541 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2542 dest->root_key.objectid); 2543 if (ret && ret != -ENOENT) { 2544 btrfs_abort_transaction(trans, ret); 2545 err = ret; 2546 goto out_end_trans; 2547 } 2548 } 2549 2550 out_end_trans: 2551 trans->block_rsv = NULL; 2552 trans->bytes_reserved = 0; 2553 ret = btrfs_end_transaction(trans); 2554 if (ret && !err) 2555 err = ret; 2556 inode->i_flags |= S_DEAD; 2557 out_release: 2558 btrfs_subvolume_release_metadata(fs_info, &block_rsv, qgroup_reserved); 2559 out_up_write: 2560 up_write(&fs_info->subvol_sem); 2561 if (err) { 2562 spin_lock(&dest->root_item_lock); 2563 root_flags = btrfs_root_flags(&dest->root_item); 2564 btrfs_set_root_flags(&dest->root_item, 2565 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2566 spin_unlock(&dest->root_item_lock); 2567 } 2568 out_unlock_inode: 2569 inode_unlock(inode); 2570 if (!err) { 2571 d_invalidate(dentry); 2572 btrfs_invalidate_inodes(dest); 2573 d_delete(dentry); 2574 ASSERT(dest->send_in_progress == 0); 2575 2576 /* the last ref */ 2577 if (dest->ino_cache_inode) { 2578 iput(dest->ino_cache_inode); 2579 dest->ino_cache_inode = NULL; 2580 } 2581 } 2582 out_dput: 2583 dput(dentry); 2584 out_unlock_dir: 2585 inode_unlock(dir); 2586 out_drop_write: 2587 mnt_drop_write_file(file); 2588 out: 2589 kfree(vol_args); 2590 return err; 2591 } 2592 2593 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2594 { 2595 struct inode *inode = file_inode(file); 2596 struct btrfs_root *root = BTRFS_I(inode)->root; 2597 struct btrfs_ioctl_defrag_range_args *range; 2598 int ret; 2599 2600 ret = mnt_want_write_file(file); 2601 if (ret) 2602 return ret; 2603 2604 if (btrfs_root_readonly(root)) { 2605 ret = -EROFS; 2606 goto out; 2607 } 2608 2609 switch (inode->i_mode & S_IFMT) { 2610 case S_IFDIR: 2611 if (!capable(CAP_SYS_ADMIN)) { 2612 ret = -EPERM; 2613 goto out; 2614 } 2615 ret = btrfs_defrag_root(root); 2616 if (ret) 2617 goto out; 2618 ret = btrfs_defrag_root(root->fs_info->extent_root); 2619 break; 2620 case S_IFREG: 2621 if (!(file->f_mode & FMODE_WRITE)) { 2622 ret = -EINVAL; 2623 goto out; 2624 } 2625 2626 range = kzalloc(sizeof(*range), GFP_KERNEL); 2627 if (!range) { 2628 ret = -ENOMEM; 2629 goto out; 2630 } 2631 2632 if (argp) { 2633 if (copy_from_user(range, argp, 2634 sizeof(*range))) { 2635 ret = -EFAULT; 2636 kfree(range); 2637 goto out; 2638 } 2639 /* compression requires us to start the IO */ 2640 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2641 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2642 range->extent_thresh = (u32)-1; 2643 } 2644 } else { 2645 /* the rest are all set to zero by kzalloc */ 2646 range->len = (u64)-1; 2647 } 2648 ret = btrfs_defrag_file(file_inode(file), file, 2649 range, 0, 0); 2650 if (ret > 0) 2651 ret = 0; 2652 kfree(range); 2653 break; 2654 default: 2655 ret = -EINVAL; 2656 } 2657 out: 2658 mnt_drop_write_file(file); 2659 return ret; 2660 } 2661 2662 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2663 { 2664 struct btrfs_ioctl_vol_args *vol_args; 2665 int ret; 2666 2667 if (!capable(CAP_SYS_ADMIN)) 2668 return -EPERM; 2669 2670 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) 2671 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2672 2673 mutex_lock(&fs_info->volume_mutex); 2674 vol_args = memdup_user(arg, sizeof(*vol_args)); 2675 if (IS_ERR(vol_args)) { 2676 ret = PTR_ERR(vol_args); 2677 goto out; 2678 } 2679 2680 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2681 ret = btrfs_init_new_device(fs_info, vol_args->name); 2682 2683 if (!ret) 2684 btrfs_info(fs_info, "disk added %s", vol_args->name); 2685 2686 kfree(vol_args); 2687 out: 2688 mutex_unlock(&fs_info->volume_mutex); 2689 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 2690 return ret; 2691 } 2692 2693 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2694 { 2695 struct inode *inode = file_inode(file); 2696 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2697 struct btrfs_ioctl_vol_args_v2 *vol_args; 2698 int ret; 2699 2700 if (!capable(CAP_SYS_ADMIN)) 2701 return -EPERM; 2702 2703 ret = mnt_want_write_file(file); 2704 if (ret) 2705 return ret; 2706 2707 vol_args = memdup_user(arg, sizeof(*vol_args)); 2708 if (IS_ERR(vol_args)) { 2709 ret = PTR_ERR(vol_args); 2710 goto err_drop; 2711 } 2712 2713 /* Check for compatibility reject unknown flags */ 2714 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) 2715 return -EOPNOTSUPP; 2716 2717 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 2718 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2719 goto out; 2720 } 2721 2722 mutex_lock(&fs_info->volume_mutex); 2723 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2724 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 2725 } else { 2726 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2727 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 2728 } 2729 mutex_unlock(&fs_info->volume_mutex); 2730 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 2731 2732 if (!ret) { 2733 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2734 btrfs_info(fs_info, "device deleted: id %llu", 2735 vol_args->devid); 2736 else 2737 btrfs_info(fs_info, "device deleted: %s", 2738 vol_args->name); 2739 } 2740 out: 2741 kfree(vol_args); 2742 err_drop: 2743 mnt_drop_write_file(file); 2744 return ret; 2745 } 2746 2747 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2748 { 2749 struct inode *inode = file_inode(file); 2750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2751 struct btrfs_ioctl_vol_args *vol_args; 2752 int ret; 2753 2754 if (!capable(CAP_SYS_ADMIN)) 2755 return -EPERM; 2756 2757 ret = mnt_want_write_file(file); 2758 if (ret) 2759 return ret; 2760 2761 if (atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 2762 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2763 goto out_drop_write; 2764 } 2765 2766 vol_args = memdup_user(arg, sizeof(*vol_args)); 2767 if (IS_ERR(vol_args)) { 2768 ret = PTR_ERR(vol_args); 2769 goto out; 2770 } 2771 2772 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2773 mutex_lock(&fs_info->volume_mutex); 2774 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 2775 mutex_unlock(&fs_info->volume_mutex); 2776 2777 if (!ret) 2778 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2779 kfree(vol_args); 2780 out: 2781 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 2782 out_drop_write: 2783 mnt_drop_write_file(file); 2784 2785 return ret; 2786 } 2787 2788 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2789 void __user *arg) 2790 { 2791 struct btrfs_ioctl_fs_info_args *fi_args; 2792 struct btrfs_device *device; 2793 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2794 int ret = 0; 2795 2796 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2797 if (!fi_args) 2798 return -ENOMEM; 2799 2800 mutex_lock(&fs_devices->device_list_mutex); 2801 fi_args->num_devices = fs_devices->num_devices; 2802 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid)); 2803 2804 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2805 if (device->devid > fi_args->max_id) 2806 fi_args->max_id = device->devid; 2807 } 2808 mutex_unlock(&fs_devices->device_list_mutex); 2809 2810 fi_args->nodesize = fs_info->super_copy->nodesize; 2811 fi_args->sectorsize = fs_info->super_copy->sectorsize; 2812 fi_args->clone_alignment = fs_info->super_copy->sectorsize; 2813 2814 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2815 ret = -EFAULT; 2816 2817 kfree(fi_args); 2818 return ret; 2819 } 2820 2821 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2822 void __user *arg) 2823 { 2824 struct btrfs_ioctl_dev_info_args *di_args; 2825 struct btrfs_device *dev; 2826 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2827 int ret = 0; 2828 char *s_uuid = NULL; 2829 2830 di_args = memdup_user(arg, sizeof(*di_args)); 2831 if (IS_ERR(di_args)) 2832 return PTR_ERR(di_args); 2833 2834 if (!btrfs_is_empty_uuid(di_args->uuid)) 2835 s_uuid = di_args->uuid; 2836 2837 mutex_lock(&fs_devices->device_list_mutex); 2838 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL); 2839 2840 if (!dev) { 2841 ret = -ENODEV; 2842 goto out; 2843 } 2844 2845 di_args->devid = dev->devid; 2846 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2847 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2848 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2849 if (dev->name) { 2850 struct rcu_string *name; 2851 2852 rcu_read_lock(); 2853 name = rcu_dereference(dev->name); 2854 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2855 rcu_read_unlock(); 2856 di_args->path[sizeof(di_args->path) - 1] = 0; 2857 } else { 2858 di_args->path[0] = '\0'; 2859 } 2860 2861 out: 2862 mutex_unlock(&fs_devices->device_list_mutex); 2863 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2864 ret = -EFAULT; 2865 2866 kfree(di_args); 2867 return ret; 2868 } 2869 2870 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 2871 { 2872 struct page *page; 2873 2874 page = grab_cache_page(inode->i_mapping, index); 2875 if (!page) 2876 return ERR_PTR(-ENOMEM); 2877 2878 if (!PageUptodate(page)) { 2879 int ret; 2880 2881 ret = btrfs_readpage(NULL, page); 2882 if (ret) 2883 return ERR_PTR(ret); 2884 lock_page(page); 2885 if (!PageUptodate(page)) { 2886 unlock_page(page); 2887 put_page(page); 2888 return ERR_PTR(-EIO); 2889 } 2890 if (page->mapping != inode->i_mapping) { 2891 unlock_page(page); 2892 put_page(page); 2893 return ERR_PTR(-EAGAIN); 2894 } 2895 } 2896 2897 return page; 2898 } 2899 2900 static int gather_extent_pages(struct inode *inode, struct page **pages, 2901 int num_pages, u64 off) 2902 { 2903 int i; 2904 pgoff_t index = off >> PAGE_SHIFT; 2905 2906 for (i = 0; i < num_pages; i++) { 2907 again: 2908 pages[i] = extent_same_get_page(inode, index + i); 2909 if (IS_ERR(pages[i])) { 2910 int err = PTR_ERR(pages[i]); 2911 2912 if (err == -EAGAIN) 2913 goto again; 2914 pages[i] = NULL; 2915 return err; 2916 } 2917 } 2918 return 0; 2919 } 2920 2921 static int lock_extent_range(struct inode *inode, u64 off, u64 len, 2922 bool retry_range_locking) 2923 { 2924 /* 2925 * Do any pending delalloc/csum calculations on inode, one way or 2926 * another, and lock file content. 2927 * The locking order is: 2928 * 2929 * 1) pages 2930 * 2) range in the inode's io tree 2931 */ 2932 while (1) { 2933 struct btrfs_ordered_extent *ordered; 2934 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2935 ordered = btrfs_lookup_first_ordered_extent(inode, 2936 off + len - 1); 2937 if ((!ordered || 2938 ordered->file_offset + ordered->len <= off || 2939 ordered->file_offset >= off + len) && 2940 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2941 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2942 if (ordered) 2943 btrfs_put_ordered_extent(ordered); 2944 break; 2945 } 2946 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2947 if (ordered) 2948 btrfs_put_ordered_extent(ordered); 2949 if (!retry_range_locking) 2950 return -EAGAIN; 2951 btrfs_wait_ordered_range(inode, off, len); 2952 } 2953 return 0; 2954 } 2955 2956 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 2957 { 2958 inode_unlock(inode1); 2959 inode_unlock(inode2); 2960 } 2961 2962 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 2963 { 2964 if (inode1 < inode2) 2965 swap(inode1, inode2); 2966 2967 inode_lock_nested(inode1, I_MUTEX_PARENT); 2968 inode_lock_nested(inode2, I_MUTEX_CHILD); 2969 } 2970 2971 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 2972 struct inode *inode2, u64 loff2, u64 len) 2973 { 2974 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2975 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2976 } 2977 2978 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 2979 struct inode *inode2, u64 loff2, u64 len, 2980 bool retry_range_locking) 2981 { 2982 int ret; 2983 2984 if (inode1 < inode2) { 2985 swap(inode1, inode2); 2986 swap(loff1, loff2); 2987 } 2988 ret = lock_extent_range(inode1, loff1, len, retry_range_locking); 2989 if (ret) 2990 return ret; 2991 ret = lock_extent_range(inode2, loff2, len, retry_range_locking); 2992 if (ret) 2993 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, 2994 loff1 + len - 1); 2995 return ret; 2996 } 2997 2998 struct cmp_pages { 2999 int num_pages; 3000 struct page **src_pages; 3001 struct page **dst_pages; 3002 }; 3003 3004 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 3005 { 3006 int i; 3007 struct page *pg; 3008 3009 for (i = 0; i < cmp->num_pages; i++) { 3010 pg = cmp->src_pages[i]; 3011 if (pg) { 3012 unlock_page(pg); 3013 put_page(pg); 3014 } 3015 pg = cmp->dst_pages[i]; 3016 if (pg) { 3017 unlock_page(pg); 3018 put_page(pg); 3019 } 3020 } 3021 kfree(cmp->src_pages); 3022 kfree(cmp->dst_pages); 3023 } 3024 3025 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 3026 struct inode *dst, u64 dst_loff, 3027 u64 len, struct cmp_pages *cmp) 3028 { 3029 int ret; 3030 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT; 3031 struct page **src_pgarr, **dst_pgarr; 3032 3033 /* 3034 * We must gather up all the pages before we initiate our 3035 * extent locking. We use an array for the page pointers. Size 3036 * of the array is bounded by len, which is in turn bounded by 3037 * BTRFS_MAX_DEDUPE_LEN. 3038 */ 3039 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3040 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3041 if (!src_pgarr || !dst_pgarr) { 3042 kfree(src_pgarr); 3043 kfree(dst_pgarr); 3044 return -ENOMEM; 3045 } 3046 cmp->num_pages = num_pages; 3047 cmp->src_pages = src_pgarr; 3048 cmp->dst_pages = dst_pgarr; 3049 3050 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff); 3051 if (ret) 3052 goto out; 3053 3054 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff); 3055 3056 out: 3057 if (ret) 3058 btrfs_cmp_data_free(cmp); 3059 return 0; 3060 } 3061 3062 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst, 3063 u64 dst_loff, u64 len, struct cmp_pages *cmp) 3064 { 3065 int ret = 0; 3066 int i; 3067 struct page *src_page, *dst_page; 3068 unsigned int cmp_len = PAGE_SIZE; 3069 void *addr, *dst_addr; 3070 3071 i = 0; 3072 while (len) { 3073 if (len < PAGE_SIZE) 3074 cmp_len = len; 3075 3076 BUG_ON(i >= cmp->num_pages); 3077 3078 src_page = cmp->src_pages[i]; 3079 dst_page = cmp->dst_pages[i]; 3080 ASSERT(PageLocked(src_page)); 3081 ASSERT(PageLocked(dst_page)); 3082 3083 addr = kmap_atomic(src_page); 3084 dst_addr = kmap_atomic(dst_page); 3085 3086 flush_dcache_page(src_page); 3087 flush_dcache_page(dst_page); 3088 3089 if (memcmp(addr, dst_addr, cmp_len)) 3090 ret = -EBADE; 3091 3092 kunmap_atomic(addr); 3093 kunmap_atomic(dst_addr); 3094 3095 if (ret) 3096 break; 3097 3098 len -= cmp_len; 3099 i++; 3100 } 3101 3102 return ret; 3103 } 3104 3105 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 3106 u64 olen) 3107 { 3108 u64 len = *plen; 3109 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 3110 3111 if (off + olen > inode->i_size || off + olen < off) 3112 return -EINVAL; 3113 3114 /* if we extend to eof, continue to block boundary */ 3115 if (off + len == inode->i_size) 3116 *plen = len = ALIGN(inode->i_size, bs) - off; 3117 3118 /* Check that we are block aligned - btrfs_clone() requires this */ 3119 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 3120 return -EINVAL; 3121 3122 return 0; 3123 } 3124 3125 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3126 struct inode *dst, u64 dst_loff) 3127 { 3128 int ret; 3129 u64 len = olen; 3130 struct cmp_pages cmp; 3131 int same_inode = 0; 3132 u64 same_lock_start = 0; 3133 u64 same_lock_len = 0; 3134 3135 if (src == dst) 3136 same_inode = 1; 3137 3138 if (len == 0) 3139 return 0; 3140 3141 if (same_inode) { 3142 inode_lock(src); 3143 3144 ret = extent_same_check_offsets(src, loff, &len, olen); 3145 if (ret) 3146 goto out_unlock; 3147 ret = extent_same_check_offsets(src, dst_loff, &len, olen); 3148 if (ret) 3149 goto out_unlock; 3150 3151 /* 3152 * Single inode case wants the same checks, except we 3153 * don't want our length pushed out past i_size as 3154 * comparing that data range makes no sense. 3155 * 3156 * extent_same_check_offsets() will do this for an 3157 * unaligned length at i_size, so catch it here and 3158 * reject the request. 3159 * 3160 * This effectively means we require aligned extents 3161 * for the single-inode case, whereas the other cases 3162 * allow an unaligned length so long as it ends at 3163 * i_size. 3164 */ 3165 if (len != olen) { 3166 ret = -EINVAL; 3167 goto out_unlock; 3168 } 3169 3170 /* Check for overlapping ranges */ 3171 if (dst_loff + len > loff && dst_loff < loff + len) { 3172 ret = -EINVAL; 3173 goto out_unlock; 3174 } 3175 3176 same_lock_start = min_t(u64, loff, dst_loff); 3177 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3178 } else { 3179 btrfs_double_inode_lock(src, dst); 3180 3181 ret = extent_same_check_offsets(src, loff, &len, olen); 3182 if (ret) 3183 goto out_unlock; 3184 3185 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3186 if (ret) 3187 goto out_unlock; 3188 } 3189 3190 /* don't make the dst file partly checksummed */ 3191 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3192 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3193 ret = -EINVAL; 3194 goto out_unlock; 3195 } 3196 3197 again: 3198 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp); 3199 if (ret) 3200 goto out_unlock; 3201 3202 if (same_inode) 3203 ret = lock_extent_range(src, same_lock_start, same_lock_len, 3204 false); 3205 else 3206 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len, 3207 false); 3208 /* 3209 * If one of the inodes has dirty pages in the respective range or 3210 * ordered extents, we need to flush dellaloc and wait for all ordered 3211 * extents in the range. We must unlock the pages and the ranges in the 3212 * io trees to avoid deadlocks when flushing delalloc (requires locking 3213 * pages) and when waiting for ordered extents to complete (they require 3214 * range locking). 3215 */ 3216 if (ret == -EAGAIN) { 3217 /* 3218 * Ranges in the io trees already unlocked. Now unlock all 3219 * pages before waiting for all IO to complete. 3220 */ 3221 btrfs_cmp_data_free(&cmp); 3222 if (same_inode) { 3223 btrfs_wait_ordered_range(src, same_lock_start, 3224 same_lock_len); 3225 } else { 3226 btrfs_wait_ordered_range(src, loff, len); 3227 btrfs_wait_ordered_range(dst, dst_loff, len); 3228 } 3229 goto again; 3230 } 3231 ASSERT(ret == 0); 3232 if (WARN_ON(ret)) { 3233 /* ranges in the io trees already unlocked */ 3234 btrfs_cmp_data_free(&cmp); 3235 return ret; 3236 } 3237 3238 /* pass original length for comparison so we stay within i_size */ 3239 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp); 3240 if (ret == 0) 3241 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3242 3243 if (same_inode) 3244 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3245 same_lock_start + same_lock_len - 1); 3246 else 3247 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3248 3249 btrfs_cmp_data_free(&cmp); 3250 out_unlock: 3251 if (same_inode) 3252 inode_unlock(src); 3253 else 3254 btrfs_double_inode_unlock(src, dst); 3255 3256 return ret; 3257 } 3258 3259 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3260 3261 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen, 3262 struct file *dst_file, u64 dst_loff) 3263 { 3264 struct inode *src = file_inode(src_file); 3265 struct inode *dst = file_inode(dst_file); 3266 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3267 ssize_t res; 3268 3269 if (olen > BTRFS_MAX_DEDUPE_LEN) 3270 olen = BTRFS_MAX_DEDUPE_LEN; 3271 3272 if (WARN_ON_ONCE(bs < PAGE_SIZE)) { 3273 /* 3274 * Btrfs does not support blocksize < page_size. As a 3275 * result, btrfs_cmp_data() won't correctly handle 3276 * this situation without an update. 3277 */ 3278 return -EINVAL; 3279 } 3280 3281 res = btrfs_extent_same(src, loff, olen, dst, dst_loff); 3282 if (res) 3283 return res; 3284 return olen; 3285 } 3286 3287 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3288 struct inode *inode, 3289 u64 endoff, 3290 const u64 destoff, 3291 const u64 olen, 3292 int no_time_update) 3293 { 3294 struct btrfs_root *root = BTRFS_I(inode)->root; 3295 int ret; 3296 3297 inode_inc_iversion(inode); 3298 if (!no_time_update) 3299 inode->i_mtime = inode->i_ctime = current_time(inode); 3300 /* 3301 * We round up to the block size at eof when determining which 3302 * extents to clone above, but shouldn't round up the file size. 3303 */ 3304 if (endoff > destoff + olen) 3305 endoff = destoff + olen; 3306 if (endoff > inode->i_size) 3307 btrfs_i_size_write(inode, endoff); 3308 3309 ret = btrfs_update_inode(trans, root, inode); 3310 if (ret) { 3311 btrfs_abort_transaction(trans, ret); 3312 btrfs_end_transaction(trans); 3313 goto out; 3314 } 3315 ret = btrfs_end_transaction(trans); 3316 out: 3317 return ret; 3318 } 3319 3320 static void clone_update_extent_map(struct inode *inode, 3321 const struct btrfs_trans_handle *trans, 3322 const struct btrfs_path *path, 3323 const u64 hole_offset, 3324 const u64 hole_len) 3325 { 3326 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3327 struct extent_map *em; 3328 int ret; 3329 3330 em = alloc_extent_map(); 3331 if (!em) { 3332 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3333 &BTRFS_I(inode)->runtime_flags); 3334 return; 3335 } 3336 3337 if (path) { 3338 struct btrfs_file_extent_item *fi; 3339 3340 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3341 struct btrfs_file_extent_item); 3342 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3343 em->generation = -1; 3344 if (btrfs_file_extent_type(path->nodes[0], fi) == 3345 BTRFS_FILE_EXTENT_INLINE) 3346 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3347 &BTRFS_I(inode)->runtime_flags); 3348 } else { 3349 em->start = hole_offset; 3350 em->len = hole_len; 3351 em->ram_bytes = em->len; 3352 em->orig_start = hole_offset; 3353 em->block_start = EXTENT_MAP_HOLE; 3354 em->block_len = 0; 3355 em->orig_block_len = 0; 3356 em->compress_type = BTRFS_COMPRESS_NONE; 3357 em->generation = trans->transid; 3358 } 3359 3360 while (1) { 3361 write_lock(&em_tree->lock); 3362 ret = add_extent_mapping(em_tree, em, 1); 3363 write_unlock(&em_tree->lock); 3364 if (ret != -EEXIST) { 3365 free_extent_map(em); 3366 break; 3367 } 3368 btrfs_drop_extent_cache(inode, em->start, 3369 em->start + em->len - 1, 0); 3370 } 3371 3372 if (ret) 3373 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3374 &BTRFS_I(inode)->runtime_flags); 3375 } 3376 3377 /* 3378 * Make sure we do not end up inserting an inline extent into a file that has 3379 * already other (non-inline) extents. If a file has an inline extent it can 3380 * not have any other extents and the (single) inline extent must start at the 3381 * file offset 0. Failing to respect these rules will lead to file corruption, 3382 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3383 * 3384 * We can have extents that have been already written to disk or we can have 3385 * dirty ranges still in delalloc, in which case the extent maps and items are 3386 * created only when we run delalloc, and the delalloc ranges might fall outside 3387 * the range we are currently locking in the inode's io tree. So we check the 3388 * inode's i_size because of that (i_size updates are done while holding the 3389 * i_mutex, which we are holding here). 3390 * We also check to see if the inode has a size not greater than "datal" but has 3391 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3392 * protected against such concurrent fallocate calls by the i_mutex). 3393 * 3394 * If the file has no extents but a size greater than datal, do not allow the 3395 * copy because we would need turn the inline extent into a non-inline one (even 3396 * with NO_HOLES enabled). If we find our destination inode only has one inline 3397 * extent, just overwrite it with the source inline extent if its size is less 3398 * than the source extent's size, or we could copy the source inline extent's 3399 * data into the destination inode's inline extent if the later is greater then 3400 * the former. 3401 */ 3402 static int clone_copy_inline_extent(struct inode *src, 3403 struct inode *dst, 3404 struct btrfs_trans_handle *trans, 3405 struct btrfs_path *path, 3406 struct btrfs_key *new_key, 3407 const u64 drop_start, 3408 const u64 datal, 3409 const u64 skip, 3410 const u64 size, 3411 char *inline_data) 3412 { 3413 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3414 struct btrfs_root *root = BTRFS_I(dst)->root; 3415 const u64 aligned_end = ALIGN(new_key->offset + datal, 3416 fs_info->sectorsize); 3417 int ret; 3418 struct btrfs_key key; 3419 3420 if (new_key->offset > 0) 3421 return -EOPNOTSUPP; 3422 3423 key.objectid = btrfs_ino(dst); 3424 key.type = BTRFS_EXTENT_DATA_KEY; 3425 key.offset = 0; 3426 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3427 if (ret < 0) { 3428 return ret; 3429 } else if (ret > 0) { 3430 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3431 ret = btrfs_next_leaf(root, path); 3432 if (ret < 0) 3433 return ret; 3434 else if (ret > 0) 3435 goto copy_inline_extent; 3436 } 3437 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3438 if (key.objectid == btrfs_ino(dst) && 3439 key.type == BTRFS_EXTENT_DATA_KEY) { 3440 ASSERT(key.offset > 0); 3441 return -EOPNOTSUPP; 3442 } 3443 } else if (i_size_read(dst) <= datal) { 3444 struct btrfs_file_extent_item *ei; 3445 u64 ext_len; 3446 3447 /* 3448 * If the file size is <= datal, make sure there are no other 3449 * extents following (can happen do to an fallocate call with 3450 * the flag FALLOC_FL_KEEP_SIZE). 3451 */ 3452 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3453 struct btrfs_file_extent_item); 3454 /* 3455 * If it's an inline extent, it can not have other extents 3456 * following it. 3457 */ 3458 if (btrfs_file_extent_type(path->nodes[0], ei) == 3459 BTRFS_FILE_EXTENT_INLINE) 3460 goto copy_inline_extent; 3461 3462 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3463 if (ext_len > aligned_end) 3464 return -EOPNOTSUPP; 3465 3466 ret = btrfs_next_item(root, path); 3467 if (ret < 0) { 3468 return ret; 3469 } else if (ret == 0) { 3470 btrfs_item_key_to_cpu(path->nodes[0], &key, 3471 path->slots[0]); 3472 if (key.objectid == btrfs_ino(dst) && 3473 key.type == BTRFS_EXTENT_DATA_KEY) 3474 return -EOPNOTSUPP; 3475 } 3476 } 3477 3478 copy_inline_extent: 3479 /* 3480 * We have no extent items, or we have an extent at offset 0 which may 3481 * or may not be inlined. All these cases are dealt the same way. 3482 */ 3483 if (i_size_read(dst) > datal) { 3484 /* 3485 * If the destination inode has an inline extent... 3486 * This would require copying the data from the source inline 3487 * extent into the beginning of the destination's inline extent. 3488 * But this is really complex, both extents can be compressed 3489 * or just one of them, which would require decompressing and 3490 * re-compressing data (which could increase the new compressed 3491 * size, not allowing the compressed data to fit anymore in an 3492 * inline extent). 3493 * So just don't support this case for now (it should be rare, 3494 * we are not really saving space when cloning inline extents). 3495 */ 3496 return -EOPNOTSUPP; 3497 } 3498 3499 btrfs_release_path(path); 3500 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3501 if (ret) 3502 return ret; 3503 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3504 if (ret) 3505 return ret; 3506 3507 if (skip) { 3508 const u32 start = btrfs_file_extent_calc_inline_size(0); 3509 3510 memmove(inline_data + start, inline_data + start + skip, datal); 3511 } 3512 3513 write_extent_buffer(path->nodes[0], inline_data, 3514 btrfs_item_ptr_offset(path->nodes[0], 3515 path->slots[0]), 3516 size); 3517 inode_add_bytes(dst, datal); 3518 3519 return 0; 3520 } 3521 3522 /** 3523 * btrfs_clone() - clone a range from inode file to another 3524 * 3525 * @src: Inode to clone from 3526 * @inode: Inode to clone to 3527 * @off: Offset within source to start clone from 3528 * @olen: Original length, passed by user, of range to clone 3529 * @olen_aligned: Block-aligned value of olen 3530 * @destoff: Offset within @inode to start clone 3531 * @no_time_update: Whether to update mtime/ctime on the target inode 3532 */ 3533 static int btrfs_clone(struct inode *src, struct inode *inode, 3534 const u64 off, const u64 olen, const u64 olen_aligned, 3535 const u64 destoff, int no_time_update) 3536 { 3537 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3538 struct btrfs_root *root = BTRFS_I(inode)->root; 3539 struct btrfs_path *path = NULL; 3540 struct extent_buffer *leaf; 3541 struct btrfs_trans_handle *trans; 3542 char *buf = NULL; 3543 struct btrfs_key key; 3544 u32 nritems; 3545 int slot; 3546 int ret; 3547 const u64 len = olen_aligned; 3548 u64 last_dest_end = destoff; 3549 3550 ret = -ENOMEM; 3551 buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN); 3552 if (!buf) { 3553 buf = vmalloc(fs_info->nodesize); 3554 if (!buf) 3555 return ret; 3556 } 3557 3558 path = btrfs_alloc_path(); 3559 if (!path) { 3560 kvfree(buf); 3561 return ret; 3562 } 3563 3564 path->reada = READA_FORWARD; 3565 /* clone data */ 3566 key.objectid = btrfs_ino(src); 3567 key.type = BTRFS_EXTENT_DATA_KEY; 3568 key.offset = off; 3569 3570 while (1) { 3571 u64 next_key_min_offset = key.offset + 1; 3572 3573 /* 3574 * note the key will change type as we walk through the 3575 * tree. 3576 */ 3577 path->leave_spinning = 1; 3578 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3579 0, 0); 3580 if (ret < 0) 3581 goto out; 3582 /* 3583 * First search, if no extent item that starts at offset off was 3584 * found but the previous item is an extent item, it's possible 3585 * it might overlap our target range, therefore process it. 3586 */ 3587 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3588 btrfs_item_key_to_cpu(path->nodes[0], &key, 3589 path->slots[0] - 1); 3590 if (key.type == BTRFS_EXTENT_DATA_KEY) 3591 path->slots[0]--; 3592 } 3593 3594 nritems = btrfs_header_nritems(path->nodes[0]); 3595 process_slot: 3596 if (path->slots[0] >= nritems) { 3597 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3598 if (ret < 0) 3599 goto out; 3600 if (ret > 0) 3601 break; 3602 nritems = btrfs_header_nritems(path->nodes[0]); 3603 } 3604 leaf = path->nodes[0]; 3605 slot = path->slots[0]; 3606 3607 btrfs_item_key_to_cpu(leaf, &key, slot); 3608 if (key.type > BTRFS_EXTENT_DATA_KEY || 3609 key.objectid != btrfs_ino(src)) 3610 break; 3611 3612 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3613 struct btrfs_file_extent_item *extent; 3614 int type; 3615 u32 size; 3616 struct btrfs_key new_key; 3617 u64 disko = 0, diskl = 0; 3618 u64 datao = 0, datal = 0; 3619 u8 comp; 3620 u64 drop_start; 3621 3622 extent = btrfs_item_ptr(leaf, slot, 3623 struct btrfs_file_extent_item); 3624 comp = btrfs_file_extent_compression(leaf, extent); 3625 type = btrfs_file_extent_type(leaf, extent); 3626 if (type == BTRFS_FILE_EXTENT_REG || 3627 type == BTRFS_FILE_EXTENT_PREALLOC) { 3628 disko = btrfs_file_extent_disk_bytenr(leaf, 3629 extent); 3630 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3631 extent); 3632 datao = btrfs_file_extent_offset(leaf, extent); 3633 datal = btrfs_file_extent_num_bytes(leaf, 3634 extent); 3635 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3636 /* take upper bound, may be compressed */ 3637 datal = btrfs_file_extent_ram_bytes(leaf, 3638 extent); 3639 } 3640 3641 /* 3642 * The first search might have left us at an extent 3643 * item that ends before our target range's start, can 3644 * happen if we have holes and NO_HOLES feature enabled. 3645 */ 3646 if (key.offset + datal <= off) { 3647 path->slots[0]++; 3648 goto process_slot; 3649 } else if (key.offset >= off + len) { 3650 break; 3651 } 3652 next_key_min_offset = key.offset + datal; 3653 size = btrfs_item_size_nr(leaf, slot); 3654 read_extent_buffer(leaf, buf, 3655 btrfs_item_ptr_offset(leaf, slot), 3656 size); 3657 3658 btrfs_release_path(path); 3659 path->leave_spinning = 0; 3660 3661 memcpy(&new_key, &key, sizeof(new_key)); 3662 new_key.objectid = btrfs_ino(inode); 3663 if (off <= key.offset) 3664 new_key.offset = key.offset + destoff - off; 3665 else 3666 new_key.offset = destoff; 3667 3668 /* 3669 * Deal with a hole that doesn't have an extent item 3670 * that represents it (NO_HOLES feature enabled). 3671 * This hole is either in the middle of the cloning 3672 * range or at the beginning (fully overlaps it or 3673 * partially overlaps it). 3674 */ 3675 if (new_key.offset != last_dest_end) 3676 drop_start = last_dest_end; 3677 else 3678 drop_start = new_key.offset; 3679 3680 /* 3681 * 1 - adjusting old extent (we may have to split it) 3682 * 1 - add new extent 3683 * 1 - inode update 3684 */ 3685 trans = btrfs_start_transaction(root, 3); 3686 if (IS_ERR(trans)) { 3687 ret = PTR_ERR(trans); 3688 goto out; 3689 } 3690 3691 if (type == BTRFS_FILE_EXTENT_REG || 3692 type == BTRFS_FILE_EXTENT_PREALLOC) { 3693 /* 3694 * a | --- range to clone ---| b 3695 * | ------------- extent ------------- | 3696 */ 3697 3698 /* subtract range b */ 3699 if (key.offset + datal > off + len) 3700 datal = off + len - key.offset; 3701 3702 /* subtract range a */ 3703 if (off > key.offset) { 3704 datao += off - key.offset; 3705 datal -= off - key.offset; 3706 } 3707 3708 ret = btrfs_drop_extents(trans, root, inode, 3709 drop_start, 3710 new_key.offset + datal, 3711 1); 3712 if (ret) { 3713 if (ret != -EOPNOTSUPP) 3714 btrfs_abort_transaction(trans, 3715 ret); 3716 btrfs_end_transaction(trans); 3717 goto out; 3718 } 3719 3720 ret = btrfs_insert_empty_item(trans, root, path, 3721 &new_key, size); 3722 if (ret) { 3723 btrfs_abort_transaction(trans, ret); 3724 btrfs_end_transaction(trans); 3725 goto out; 3726 } 3727 3728 leaf = path->nodes[0]; 3729 slot = path->slots[0]; 3730 write_extent_buffer(leaf, buf, 3731 btrfs_item_ptr_offset(leaf, slot), 3732 size); 3733 3734 extent = btrfs_item_ptr(leaf, slot, 3735 struct btrfs_file_extent_item); 3736 3737 /* disko == 0 means it's a hole */ 3738 if (!disko) 3739 datao = 0; 3740 3741 btrfs_set_file_extent_offset(leaf, extent, 3742 datao); 3743 btrfs_set_file_extent_num_bytes(leaf, extent, 3744 datal); 3745 3746 if (disko) { 3747 inode_add_bytes(inode, datal); 3748 ret = btrfs_inc_extent_ref(trans, 3749 fs_info, 3750 disko, diskl, 0, 3751 root->root_key.objectid, 3752 btrfs_ino(inode), 3753 new_key.offset - datao); 3754 if (ret) { 3755 btrfs_abort_transaction(trans, 3756 ret); 3757 btrfs_end_transaction(trans); 3758 goto out; 3759 3760 } 3761 } 3762 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3763 u64 skip = 0; 3764 u64 trim = 0; 3765 3766 if (off > key.offset) { 3767 skip = off - key.offset; 3768 new_key.offset += skip; 3769 } 3770 3771 if (key.offset + datal > off + len) 3772 trim = key.offset + datal - (off + len); 3773 3774 if (comp && (skip || trim)) { 3775 ret = -EINVAL; 3776 btrfs_end_transaction(trans); 3777 goto out; 3778 } 3779 size -= skip + trim; 3780 datal -= skip + trim; 3781 3782 ret = clone_copy_inline_extent(src, inode, 3783 trans, path, 3784 &new_key, 3785 drop_start, 3786 datal, 3787 skip, size, buf); 3788 if (ret) { 3789 if (ret != -EOPNOTSUPP) 3790 btrfs_abort_transaction(trans, 3791 ret); 3792 btrfs_end_transaction(trans); 3793 goto out; 3794 } 3795 leaf = path->nodes[0]; 3796 slot = path->slots[0]; 3797 } 3798 3799 /* If we have an implicit hole (NO_HOLES feature). */ 3800 if (drop_start < new_key.offset) 3801 clone_update_extent_map(inode, trans, 3802 NULL, drop_start, 3803 new_key.offset - drop_start); 3804 3805 clone_update_extent_map(inode, trans, path, 0, 0); 3806 3807 btrfs_mark_buffer_dirty(leaf); 3808 btrfs_release_path(path); 3809 3810 last_dest_end = ALIGN(new_key.offset + datal, 3811 fs_info->sectorsize); 3812 ret = clone_finish_inode_update(trans, inode, 3813 last_dest_end, 3814 destoff, olen, 3815 no_time_update); 3816 if (ret) 3817 goto out; 3818 if (new_key.offset + datal >= destoff + len) 3819 break; 3820 } 3821 btrfs_release_path(path); 3822 key.offset = next_key_min_offset; 3823 3824 if (fatal_signal_pending(current)) { 3825 ret = -EINTR; 3826 goto out; 3827 } 3828 } 3829 ret = 0; 3830 3831 if (last_dest_end < destoff + len) { 3832 /* 3833 * We have an implicit hole (NO_HOLES feature is enabled) that 3834 * fully or partially overlaps our cloning range at its end. 3835 */ 3836 btrfs_release_path(path); 3837 3838 /* 3839 * 1 - remove extent(s) 3840 * 1 - inode update 3841 */ 3842 trans = btrfs_start_transaction(root, 2); 3843 if (IS_ERR(trans)) { 3844 ret = PTR_ERR(trans); 3845 goto out; 3846 } 3847 ret = btrfs_drop_extents(trans, root, inode, 3848 last_dest_end, destoff + len, 1); 3849 if (ret) { 3850 if (ret != -EOPNOTSUPP) 3851 btrfs_abort_transaction(trans, ret); 3852 btrfs_end_transaction(trans); 3853 goto out; 3854 } 3855 clone_update_extent_map(inode, trans, NULL, last_dest_end, 3856 destoff + len - last_dest_end); 3857 ret = clone_finish_inode_update(trans, inode, destoff + len, 3858 destoff, olen, no_time_update); 3859 } 3860 3861 out: 3862 btrfs_free_path(path); 3863 kvfree(buf); 3864 return ret; 3865 } 3866 3867 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3868 u64 off, u64 olen, u64 destoff) 3869 { 3870 struct inode *inode = file_inode(file); 3871 struct inode *src = file_inode(file_src); 3872 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3873 struct btrfs_root *root = BTRFS_I(inode)->root; 3874 int ret; 3875 u64 len = olen; 3876 u64 bs = fs_info->sb->s_blocksize; 3877 int same_inode = src == inode; 3878 3879 /* 3880 * TODO: 3881 * - split compressed inline extents. annoying: we need to 3882 * decompress into destination's address_space (the file offset 3883 * may change, so source mapping won't do), then recompress (or 3884 * otherwise reinsert) a subrange. 3885 * 3886 * - split destination inode's inline extents. The inline extents can 3887 * be either compressed or non-compressed. 3888 */ 3889 3890 if (btrfs_root_readonly(root)) 3891 return -EROFS; 3892 3893 if (file_src->f_path.mnt != file->f_path.mnt || 3894 src->i_sb != inode->i_sb) 3895 return -EXDEV; 3896 3897 /* don't make the dst file partly checksummed */ 3898 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3899 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3900 return -EINVAL; 3901 3902 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3903 return -EISDIR; 3904 3905 if (!same_inode) { 3906 btrfs_double_inode_lock(src, inode); 3907 } else { 3908 inode_lock(src); 3909 } 3910 3911 /* determine range to clone */ 3912 ret = -EINVAL; 3913 if (off + len > src->i_size || off + len < off) 3914 goto out_unlock; 3915 if (len == 0) 3916 olen = len = src->i_size - off; 3917 /* if we extend to eof, continue to block boundary */ 3918 if (off + len == src->i_size) 3919 len = ALIGN(src->i_size, bs) - off; 3920 3921 if (len == 0) { 3922 ret = 0; 3923 goto out_unlock; 3924 } 3925 3926 /* verify the end result is block aligned */ 3927 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3928 !IS_ALIGNED(destoff, bs)) 3929 goto out_unlock; 3930 3931 /* verify if ranges are overlapped within the same file */ 3932 if (same_inode) { 3933 if (destoff + len > off && destoff < off + len) 3934 goto out_unlock; 3935 } 3936 3937 if (destoff > inode->i_size) { 3938 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3939 if (ret) 3940 goto out_unlock; 3941 } 3942 3943 /* 3944 * Lock the target range too. Right after we replace the file extent 3945 * items in the fs tree (which now point to the cloned data), we might 3946 * have a worker replace them with extent items relative to a write 3947 * operation that was issued before this clone operation (i.e. confront 3948 * with inode.c:btrfs_finish_ordered_io). 3949 */ 3950 if (same_inode) { 3951 u64 lock_start = min_t(u64, off, destoff); 3952 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3953 3954 ret = lock_extent_range(src, lock_start, lock_len, true); 3955 } else { 3956 ret = btrfs_double_extent_lock(src, off, inode, destoff, len, 3957 true); 3958 } 3959 ASSERT(ret == 0); 3960 if (WARN_ON(ret)) { 3961 /* ranges in the io trees already unlocked */ 3962 goto out_unlock; 3963 } 3964 3965 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3966 3967 if (same_inode) { 3968 u64 lock_start = min_t(u64, off, destoff); 3969 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3970 3971 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3972 } else { 3973 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3974 } 3975 /* 3976 * Truncate page cache pages so that future reads will see the cloned 3977 * data immediately and not the previous data. 3978 */ 3979 truncate_inode_pages_range(&inode->i_data, 3980 round_down(destoff, PAGE_SIZE), 3981 round_up(destoff + len, PAGE_SIZE) - 1); 3982 out_unlock: 3983 if (!same_inode) 3984 btrfs_double_inode_unlock(src, inode); 3985 else 3986 inode_unlock(src); 3987 return ret; 3988 } 3989 3990 int btrfs_clone_file_range(struct file *src_file, loff_t off, 3991 struct file *dst_file, loff_t destoff, u64 len) 3992 { 3993 return btrfs_clone_files(dst_file, src_file, off, len, destoff); 3994 } 3995 3996 /* 3997 * there are many ways the trans_start and trans_end ioctls can lead 3998 * to deadlocks. They should only be used by applications that 3999 * basically own the machine, and have a very in depth understanding 4000 * of all the possible deadlocks and enospc problems. 4001 */ 4002 static long btrfs_ioctl_trans_start(struct file *file) 4003 { 4004 struct inode *inode = file_inode(file); 4005 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4006 struct btrfs_root *root = BTRFS_I(inode)->root; 4007 struct btrfs_trans_handle *trans; 4008 int ret; 4009 4010 ret = -EPERM; 4011 if (!capable(CAP_SYS_ADMIN)) 4012 goto out; 4013 4014 ret = -EINPROGRESS; 4015 if (file->private_data) 4016 goto out; 4017 4018 ret = -EROFS; 4019 if (btrfs_root_readonly(root)) 4020 goto out; 4021 4022 ret = mnt_want_write_file(file); 4023 if (ret) 4024 goto out; 4025 4026 atomic_inc(&fs_info->open_ioctl_trans); 4027 4028 ret = -ENOMEM; 4029 trans = btrfs_start_ioctl_transaction(root); 4030 if (IS_ERR(trans)) 4031 goto out_drop; 4032 4033 file->private_data = trans; 4034 return 0; 4035 4036 out_drop: 4037 atomic_dec(&fs_info->open_ioctl_trans); 4038 mnt_drop_write_file(file); 4039 out: 4040 return ret; 4041 } 4042 4043 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4044 { 4045 struct inode *inode = file_inode(file); 4046 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4047 struct btrfs_root *root = BTRFS_I(inode)->root; 4048 struct btrfs_root *new_root; 4049 struct btrfs_dir_item *di; 4050 struct btrfs_trans_handle *trans; 4051 struct btrfs_path *path; 4052 struct btrfs_key location; 4053 struct btrfs_disk_key disk_key; 4054 u64 objectid = 0; 4055 u64 dir_id; 4056 int ret; 4057 4058 if (!capable(CAP_SYS_ADMIN)) 4059 return -EPERM; 4060 4061 ret = mnt_want_write_file(file); 4062 if (ret) 4063 return ret; 4064 4065 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4066 ret = -EFAULT; 4067 goto out; 4068 } 4069 4070 if (!objectid) 4071 objectid = BTRFS_FS_TREE_OBJECTID; 4072 4073 location.objectid = objectid; 4074 location.type = BTRFS_ROOT_ITEM_KEY; 4075 location.offset = (u64)-1; 4076 4077 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 4078 if (IS_ERR(new_root)) { 4079 ret = PTR_ERR(new_root); 4080 goto out; 4081 } 4082 4083 path = btrfs_alloc_path(); 4084 if (!path) { 4085 ret = -ENOMEM; 4086 goto out; 4087 } 4088 path->leave_spinning = 1; 4089 4090 trans = btrfs_start_transaction(root, 1); 4091 if (IS_ERR(trans)) { 4092 btrfs_free_path(path); 4093 ret = PTR_ERR(trans); 4094 goto out; 4095 } 4096 4097 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4098 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4099 dir_id, "default", 7, 1); 4100 if (IS_ERR_OR_NULL(di)) { 4101 btrfs_free_path(path); 4102 btrfs_end_transaction(trans); 4103 btrfs_err(fs_info, 4104 "Umm, you don't have the default diritem, this isn't going to work"); 4105 ret = -ENOENT; 4106 goto out; 4107 } 4108 4109 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4110 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4111 btrfs_mark_buffer_dirty(path->nodes[0]); 4112 btrfs_free_path(path); 4113 4114 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4115 btrfs_end_transaction(trans); 4116 out: 4117 mnt_drop_write_file(file); 4118 return ret; 4119 } 4120 4121 void btrfs_get_block_group_info(struct list_head *groups_list, 4122 struct btrfs_ioctl_space_info *space) 4123 { 4124 struct btrfs_block_group_cache *block_group; 4125 4126 space->total_bytes = 0; 4127 space->used_bytes = 0; 4128 space->flags = 0; 4129 list_for_each_entry(block_group, groups_list, list) { 4130 space->flags = block_group->flags; 4131 space->total_bytes += block_group->key.offset; 4132 space->used_bytes += 4133 btrfs_block_group_used(&block_group->item); 4134 } 4135 } 4136 4137 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4138 void __user *arg) 4139 { 4140 struct btrfs_ioctl_space_args space_args; 4141 struct btrfs_ioctl_space_info space; 4142 struct btrfs_ioctl_space_info *dest; 4143 struct btrfs_ioctl_space_info *dest_orig; 4144 struct btrfs_ioctl_space_info __user *user_dest; 4145 struct btrfs_space_info *info; 4146 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 4147 BTRFS_BLOCK_GROUP_SYSTEM, 4148 BTRFS_BLOCK_GROUP_METADATA, 4149 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 4150 int num_types = 4; 4151 int alloc_size; 4152 int ret = 0; 4153 u64 slot_count = 0; 4154 int i, c; 4155 4156 if (copy_from_user(&space_args, 4157 (struct btrfs_ioctl_space_args __user *)arg, 4158 sizeof(space_args))) 4159 return -EFAULT; 4160 4161 for (i = 0; i < num_types; i++) { 4162 struct btrfs_space_info *tmp; 4163 4164 info = NULL; 4165 rcu_read_lock(); 4166 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4167 list) { 4168 if (tmp->flags == types[i]) { 4169 info = tmp; 4170 break; 4171 } 4172 } 4173 rcu_read_unlock(); 4174 4175 if (!info) 4176 continue; 4177 4178 down_read(&info->groups_sem); 4179 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4180 if (!list_empty(&info->block_groups[c])) 4181 slot_count++; 4182 } 4183 up_read(&info->groups_sem); 4184 } 4185 4186 /* 4187 * Global block reserve, exported as a space_info 4188 */ 4189 slot_count++; 4190 4191 /* space_slots == 0 means they are asking for a count */ 4192 if (space_args.space_slots == 0) { 4193 space_args.total_spaces = slot_count; 4194 goto out; 4195 } 4196 4197 slot_count = min_t(u64, space_args.space_slots, slot_count); 4198 4199 alloc_size = sizeof(*dest) * slot_count; 4200 4201 /* we generally have at most 6 or so space infos, one for each raid 4202 * level. So, a whole page should be more than enough for everyone 4203 */ 4204 if (alloc_size > PAGE_SIZE) 4205 return -ENOMEM; 4206 4207 space_args.total_spaces = 0; 4208 dest = kmalloc(alloc_size, GFP_KERNEL); 4209 if (!dest) 4210 return -ENOMEM; 4211 dest_orig = dest; 4212 4213 /* now we have a buffer to copy into */ 4214 for (i = 0; i < num_types; i++) { 4215 struct btrfs_space_info *tmp; 4216 4217 if (!slot_count) 4218 break; 4219 4220 info = NULL; 4221 rcu_read_lock(); 4222 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4223 list) { 4224 if (tmp->flags == types[i]) { 4225 info = tmp; 4226 break; 4227 } 4228 } 4229 rcu_read_unlock(); 4230 4231 if (!info) 4232 continue; 4233 down_read(&info->groups_sem); 4234 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4235 if (!list_empty(&info->block_groups[c])) { 4236 btrfs_get_block_group_info( 4237 &info->block_groups[c], &space); 4238 memcpy(dest, &space, sizeof(space)); 4239 dest++; 4240 space_args.total_spaces++; 4241 slot_count--; 4242 } 4243 if (!slot_count) 4244 break; 4245 } 4246 up_read(&info->groups_sem); 4247 } 4248 4249 /* 4250 * Add global block reserve 4251 */ 4252 if (slot_count) { 4253 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4254 4255 spin_lock(&block_rsv->lock); 4256 space.total_bytes = block_rsv->size; 4257 space.used_bytes = block_rsv->size - block_rsv->reserved; 4258 spin_unlock(&block_rsv->lock); 4259 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4260 memcpy(dest, &space, sizeof(space)); 4261 space_args.total_spaces++; 4262 } 4263 4264 user_dest = (struct btrfs_ioctl_space_info __user *) 4265 (arg + sizeof(struct btrfs_ioctl_space_args)); 4266 4267 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4268 ret = -EFAULT; 4269 4270 kfree(dest_orig); 4271 out: 4272 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4273 ret = -EFAULT; 4274 4275 return ret; 4276 } 4277 4278 /* 4279 * there are many ways the trans_start and trans_end ioctls can lead 4280 * to deadlocks. They should only be used by applications that 4281 * basically own the machine, and have a very in depth understanding 4282 * of all the possible deadlocks and enospc problems. 4283 */ 4284 long btrfs_ioctl_trans_end(struct file *file) 4285 { 4286 struct inode *inode = file_inode(file); 4287 struct btrfs_root *root = BTRFS_I(inode)->root; 4288 struct btrfs_trans_handle *trans; 4289 4290 trans = file->private_data; 4291 if (!trans) 4292 return -EINVAL; 4293 file->private_data = NULL; 4294 4295 btrfs_end_transaction(trans); 4296 4297 atomic_dec(&root->fs_info->open_ioctl_trans); 4298 4299 mnt_drop_write_file(file); 4300 return 0; 4301 } 4302 4303 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4304 void __user *argp) 4305 { 4306 struct btrfs_trans_handle *trans; 4307 u64 transid; 4308 int ret; 4309 4310 trans = btrfs_attach_transaction_barrier(root); 4311 if (IS_ERR(trans)) { 4312 if (PTR_ERR(trans) != -ENOENT) 4313 return PTR_ERR(trans); 4314 4315 /* No running transaction, don't bother */ 4316 transid = root->fs_info->last_trans_committed; 4317 goto out; 4318 } 4319 transid = trans->transid; 4320 ret = btrfs_commit_transaction_async(trans, 0); 4321 if (ret) { 4322 btrfs_end_transaction(trans); 4323 return ret; 4324 } 4325 out: 4326 if (argp) 4327 if (copy_to_user(argp, &transid, sizeof(transid))) 4328 return -EFAULT; 4329 return 0; 4330 } 4331 4332 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4333 void __user *argp) 4334 { 4335 u64 transid; 4336 4337 if (argp) { 4338 if (copy_from_user(&transid, argp, sizeof(transid))) 4339 return -EFAULT; 4340 } else { 4341 transid = 0; /* current trans */ 4342 } 4343 return btrfs_wait_for_commit(fs_info, transid); 4344 } 4345 4346 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4347 { 4348 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4349 struct btrfs_ioctl_scrub_args *sa; 4350 int ret; 4351 4352 if (!capable(CAP_SYS_ADMIN)) 4353 return -EPERM; 4354 4355 sa = memdup_user(arg, sizeof(*sa)); 4356 if (IS_ERR(sa)) 4357 return PTR_ERR(sa); 4358 4359 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4360 ret = mnt_want_write_file(file); 4361 if (ret) 4362 goto out; 4363 } 4364 4365 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4366 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4367 0); 4368 4369 if (copy_to_user(arg, sa, sizeof(*sa))) 4370 ret = -EFAULT; 4371 4372 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4373 mnt_drop_write_file(file); 4374 out: 4375 kfree(sa); 4376 return ret; 4377 } 4378 4379 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4380 { 4381 if (!capable(CAP_SYS_ADMIN)) 4382 return -EPERM; 4383 4384 return btrfs_scrub_cancel(fs_info); 4385 } 4386 4387 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4388 void __user *arg) 4389 { 4390 struct btrfs_ioctl_scrub_args *sa; 4391 int ret; 4392 4393 if (!capable(CAP_SYS_ADMIN)) 4394 return -EPERM; 4395 4396 sa = memdup_user(arg, sizeof(*sa)); 4397 if (IS_ERR(sa)) 4398 return PTR_ERR(sa); 4399 4400 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4401 4402 if (copy_to_user(arg, sa, sizeof(*sa))) 4403 ret = -EFAULT; 4404 4405 kfree(sa); 4406 return ret; 4407 } 4408 4409 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4410 void __user *arg) 4411 { 4412 struct btrfs_ioctl_get_dev_stats *sa; 4413 int ret; 4414 4415 sa = memdup_user(arg, sizeof(*sa)); 4416 if (IS_ERR(sa)) 4417 return PTR_ERR(sa); 4418 4419 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4420 kfree(sa); 4421 return -EPERM; 4422 } 4423 4424 ret = btrfs_get_dev_stats(fs_info, sa); 4425 4426 if (copy_to_user(arg, sa, sizeof(*sa))) 4427 ret = -EFAULT; 4428 4429 kfree(sa); 4430 return ret; 4431 } 4432 4433 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4434 void __user *arg) 4435 { 4436 struct btrfs_ioctl_dev_replace_args *p; 4437 int ret; 4438 4439 if (!capable(CAP_SYS_ADMIN)) 4440 return -EPERM; 4441 4442 p = memdup_user(arg, sizeof(*p)); 4443 if (IS_ERR(p)) 4444 return PTR_ERR(p); 4445 4446 switch (p->cmd) { 4447 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4448 if (fs_info->sb->s_flags & MS_RDONLY) { 4449 ret = -EROFS; 4450 goto out; 4451 } 4452 if (atomic_xchg( 4453 &fs_info->mutually_exclusive_operation_running, 1)) { 4454 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4455 } else { 4456 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4457 atomic_set( 4458 &fs_info->mutually_exclusive_operation_running, 0); 4459 } 4460 break; 4461 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4462 btrfs_dev_replace_status(fs_info, p); 4463 ret = 0; 4464 break; 4465 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4466 ret = btrfs_dev_replace_cancel(fs_info, p); 4467 break; 4468 default: 4469 ret = -EINVAL; 4470 break; 4471 } 4472 4473 if (copy_to_user(arg, p, sizeof(*p))) 4474 ret = -EFAULT; 4475 out: 4476 kfree(p); 4477 return ret; 4478 } 4479 4480 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4481 { 4482 int ret = 0; 4483 int i; 4484 u64 rel_ptr; 4485 int size; 4486 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4487 struct inode_fs_paths *ipath = NULL; 4488 struct btrfs_path *path; 4489 4490 if (!capable(CAP_DAC_READ_SEARCH)) 4491 return -EPERM; 4492 4493 path = btrfs_alloc_path(); 4494 if (!path) { 4495 ret = -ENOMEM; 4496 goto out; 4497 } 4498 4499 ipa = memdup_user(arg, sizeof(*ipa)); 4500 if (IS_ERR(ipa)) { 4501 ret = PTR_ERR(ipa); 4502 ipa = NULL; 4503 goto out; 4504 } 4505 4506 size = min_t(u32, ipa->size, 4096); 4507 ipath = init_ipath(size, root, path); 4508 if (IS_ERR(ipath)) { 4509 ret = PTR_ERR(ipath); 4510 ipath = NULL; 4511 goto out; 4512 } 4513 4514 ret = paths_from_inode(ipa->inum, ipath); 4515 if (ret < 0) 4516 goto out; 4517 4518 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4519 rel_ptr = ipath->fspath->val[i] - 4520 (u64)(unsigned long)ipath->fspath->val; 4521 ipath->fspath->val[i] = rel_ptr; 4522 } 4523 4524 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 4525 (void *)(unsigned long)ipath->fspath, size); 4526 if (ret) { 4527 ret = -EFAULT; 4528 goto out; 4529 } 4530 4531 out: 4532 btrfs_free_path(path); 4533 free_ipath(ipath); 4534 kfree(ipa); 4535 4536 return ret; 4537 } 4538 4539 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4540 { 4541 struct btrfs_data_container *inodes = ctx; 4542 const size_t c = 3 * sizeof(u64); 4543 4544 if (inodes->bytes_left >= c) { 4545 inodes->bytes_left -= c; 4546 inodes->val[inodes->elem_cnt] = inum; 4547 inodes->val[inodes->elem_cnt + 1] = offset; 4548 inodes->val[inodes->elem_cnt + 2] = root; 4549 inodes->elem_cnt += 3; 4550 } else { 4551 inodes->bytes_missing += c - inodes->bytes_left; 4552 inodes->bytes_left = 0; 4553 inodes->elem_missed += 3; 4554 } 4555 4556 return 0; 4557 } 4558 4559 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4560 void __user *arg) 4561 { 4562 int ret = 0; 4563 int size; 4564 struct btrfs_ioctl_logical_ino_args *loi; 4565 struct btrfs_data_container *inodes = NULL; 4566 struct btrfs_path *path = NULL; 4567 4568 if (!capable(CAP_SYS_ADMIN)) 4569 return -EPERM; 4570 4571 loi = memdup_user(arg, sizeof(*loi)); 4572 if (IS_ERR(loi)) 4573 return PTR_ERR(loi); 4574 4575 path = btrfs_alloc_path(); 4576 if (!path) { 4577 ret = -ENOMEM; 4578 goto out; 4579 } 4580 4581 size = min_t(u32, loi->size, SZ_64K); 4582 inodes = init_data_container(size); 4583 if (IS_ERR(inodes)) { 4584 ret = PTR_ERR(inodes); 4585 inodes = NULL; 4586 goto out; 4587 } 4588 4589 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4590 build_ino_list, inodes); 4591 if (ret == -EINVAL) 4592 ret = -ENOENT; 4593 if (ret < 0) 4594 goto out; 4595 4596 ret = copy_to_user((void *)(unsigned long)loi->inodes, 4597 (void *)(unsigned long)inodes, size); 4598 if (ret) 4599 ret = -EFAULT; 4600 4601 out: 4602 btrfs_free_path(path); 4603 vfree(inodes); 4604 kfree(loi); 4605 4606 return ret; 4607 } 4608 4609 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4610 struct btrfs_ioctl_balance_args *bargs) 4611 { 4612 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4613 4614 bargs->flags = bctl->flags; 4615 4616 if (atomic_read(&fs_info->balance_running)) 4617 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4618 if (atomic_read(&fs_info->balance_pause_req)) 4619 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4620 if (atomic_read(&fs_info->balance_cancel_req)) 4621 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4622 4623 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4624 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4625 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4626 4627 if (lock) { 4628 spin_lock(&fs_info->balance_lock); 4629 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4630 spin_unlock(&fs_info->balance_lock); 4631 } else { 4632 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4633 } 4634 } 4635 4636 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4637 { 4638 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4639 struct btrfs_fs_info *fs_info = root->fs_info; 4640 struct btrfs_ioctl_balance_args *bargs; 4641 struct btrfs_balance_control *bctl; 4642 bool need_unlock; /* for mut. excl. ops lock */ 4643 int ret; 4644 4645 if (!capable(CAP_SYS_ADMIN)) 4646 return -EPERM; 4647 4648 ret = mnt_want_write_file(file); 4649 if (ret) 4650 return ret; 4651 4652 again: 4653 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 4654 mutex_lock(&fs_info->volume_mutex); 4655 mutex_lock(&fs_info->balance_mutex); 4656 need_unlock = true; 4657 goto locked; 4658 } 4659 4660 /* 4661 * mut. excl. ops lock is locked. Three possibilities: 4662 * (1) some other op is running 4663 * (2) balance is running 4664 * (3) balance is paused -- special case (think resume) 4665 */ 4666 mutex_lock(&fs_info->balance_mutex); 4667 if (fs_info->balance_ctl) { 4668 /* this is either (2) or (3) */ 4669 if (!atomic_read(&fs_info->balance_running)) { 4670 mutex_unlock(&fs_info->balance_mutex); 4671 if (!mutex_trylock(&fs_info->volume_mutex)) 4672 goto again; 4673 mutex_lock(&fs_info->balance_mutex); 4674 4675 if (fs_info->balance_ctl && 4676 !atomic_read(&fs_info->balance_running)) { 4677 /* this is (3) */ 4678 need_unlock = false; 4679 goto locked; 4680 } 4681 4682 mutex_unlock(&fs_info->balance_mutex); 4683 mutex_unlock(&fs_info->volume_mutex); 4684 goto again; 4685 } else { 4686 /* this is (2) */ 4687 mutex_unlock(&fs_info->balance_mutex); 4688 ret = -EINPROGRESS; 4689 goto out; 4690 } 4691 } else { 4692 /* this is (1) */ 4693 mutex_unlock(&fs_info->balance_mutex); 4694 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4695 goto out; 4696 } 4697 4698 locked: 4699 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 4700 4701 if (arg) { 4702 bargs = memdup_user(arg, sizeof(*bargs)); 4703 if (IS_ERR(bargs)) { 4704 ret = PTR_ERR(bargs); 4705 goto out_unlock; 4706 } 4707 4708 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4709 if (!fs_info->balance_ctl) { 4710 ret = -ENOTCONN; 4711 goto out_bargs; 4712 } 4713 4714 bctl = fs_info->balance_ctl; 4715 spin_lock(&fs_info->balance_lock); 4716 bctl->flags |= BTRFS_BALANCE_RESUME; 4717 spin_unlock(&fs_info->balance_lock); 4718 4719 goto do_balance; 4720 } 4721 } else { 4722 bargs = NULL; 4723 } 4724 4725 if (fs_info->balance_ctl) { 4726 ret = -EINPROGRESS; 4727 goto out_bargs; 4728 } 4729 4730 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4731 if (!bctl) { 4732 ret = -ENOMEM; 4733 goto out_bargs; 4734 } 4735 4736 bctl->fs_info = fs_info; 4737 if (arg) { 4738 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4739 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4740 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4741 4742 bctl->flags = bargs->flags; 4743 } else { 4744 /* balance everything - no filters */ 4745 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4746 } 4747 4748 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4749 ret = -EINVAL; 4750 goto out_bctl; 4751 } 4752 4753 do_balance: 4754 /* 4755 * Ownership of bctl and mutually_exclusive_operation_running 4756 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4757 * or, if restriper was paused all the way until unmount, in 4758 * free_fs_info. mutually_exclusive_operation_running is 4759 * cleared in __cancel_balance. 4760 */ 4761 need_unlock = false; 4762 4763 ret = btrfs_balance(bctl, bargs); 4764 bctl = NULL; 4765 4766 if (arg) { 4767 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4768 ret = -EFAULT; 4769 } 4770 4771 out_bctl: 4772 kfree(bctl); 4773 out_bargs: 4774 kfree(bargs); 4775 out_unlock: 4776 mutex_unlock(&fs_info->balance_mutex); 4777 mutex_unlock(&fs_info->volume_mutex); 4778 if (need_unlock) 4779 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 4780 out: 4781 mnt_drop_write_file(file); 4782 return ret; 4783 } 4784 4785 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4786 { 4787 if (!capable(CAP_SYS_ADMIN)) 4788 return -EPERM; 4789 4790 switch (cmd) { 4791 case BTRFS_BALANCE_CTL_PAUSE: 4792 return btrfs_pause_balance(fs_info); 4793 case BTRFS_BALANCE_CTL_CANCEL: 4794 return btrfs_cancel_balance(fs_info); 4795 } 4796 4797 return -EINVAL; 4798 } 4799 4800 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4801 void __user *arg) 4802 { 4803 struct btrfs_ioctl_balance_args *bargs; 4804 int ret = 0; 4805 4806 if (!capable(CAP_SYS_ADMIN)) 4807 return -EPERM; 4808 4809 mutex_lock(&fs_info->balance_mutex); 4810 if (!fs_info->balance_ctl) { 4811 ret = -ENOTCONN; 4812 goto out; 4813 } 4814 4815 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4816 if (!bargs) { 4817 ret = -ENOMEM; 4818 goto out; 4819 } 4820 4821 update_ioctl_balance_args(fs_info, 1, bargs); 4822 4823 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4824 ret = -EFAULT; 4825 4826 kfree(bargs); 4827 out: 4828 mutex_unlock(&fs_info->balance_mutex); 4829 return ret; 4830 } 4831 4832 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4833 { 4834 struct inode *inode = file_inode(file); 4835 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4836 struct btrfs_ioctl_quota_ctl_args *sa; 4837 struct btrfs_trans_handle *trans = NULL; 4838 int ret; 4839 int err; 4840 4841 if (!capable(CAP_SYS_ADMIN)) 4842 return -EPERM; 4843 4844 ret = mnt_want_write_file(file); 4845 if (ret) 4846 return ret; 4847 4848 sa = memdup_user(arg, sizeof(*sa)); 4849 if (IS_ERR(sa)) { 4850 ret = PTR_ERR(sa); 4851 goto drop_write; 4852 } 4853 4854 down_write(&fs_info->subvol_sem); 4855 trans = btrfs_start_transaction(fs_info->tree_root, 2); 4856 if (IS_ERR(trans)) { 4857 ret = PTR_ERR(trans); 4858 goto out; 4859 } 4860 4861 switch (sa->cmd) { 4862 case BTRFS_QUOTA_CTL_ENABLE: 4863 ret = btrfs_quota_enable(trans, fs_info); 4864 break; 4865 case BTRFS_QUOTA_CTL_DISABLE: 4866 ret = btrfs_quota_disable(trans, fs_info); 4867 break; 4868 default: 4869 ret = -EINVAL; 4870 break; 4871 } 4872 4873 err = btrfs_commit_transaction(trans); 4874 if (err && !ret) 4875 ret = err; 4876 out: 4877 kfree(sa); 4878 up_write(&fs_info->subvol_sem); 4879 drop_write: 4880 mnt_drop_write_file(file); 4881 return ret; 4882 } 4883 4884 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4885 { 4886 struct inode *inode = file_inode(file); 4887 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4888 struct btrfs_root *root = BTRFS_I(inode)->root; 4889 struct btrfs_ioctl_qgroup_assign_args *sa; 4890 struct btrfs_trans_handle *trans; 4891 int ret; 4892 int err; 4893 4894 if (!capable(CAP_SYS_ADMIN)) 4895 return -EPERM; 4896 4897 ret = mnt_want_write_file(file); 4898 if (ret) 4899 return ret; 4900 4901 sa = memdup_user(arg, sizeof(*sa)); 4902 if (IS_ERR(sa)) { 4903 ret = PTR_ERR(sa); 4904 goto drop_write; 4905 } 4906 4907 trans = btrfs_join_transaction(root); 4908 if (IS_ERR(trans)) { 4909 ret = PTR_ERR(trans); 4910 goto out; 4911 } 4912 4913 /* FIXME: check if the IDs really exist */ 4914 if (sa->assign) { 4915 ret = btrfs_add_qgroup_relation(trans, fs_info, 4916 sa->src, sa->dst); 4917 } else { 4918 ret = btrfs_del_qgroup_relation(trans, fs_info, 4919 sa->src, sa->dst); 4920 } 4921 4922 /* update qgroup status and info */ 4923 err = btrfs_run_qgroups(trans, fs_info); 4924 if (err < 0) 4925 btrfs_handle_fs_error(fs_info, err, 4926 "failed to update qgroup status and info"); 4927 err = btrfs_end_transaction(trans); 4928 if (err && !ret) 4929 ret = err; 4930 4931 out: 4932 kfree(sa); 4933 drop_write: 4934 mnt_drop_write_file(file); 4935 return ret; 4936 } 4937 4938 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4939 { 4940 struct inode *inode = file_inode(file); 4941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4942 struct btrfs_root *root = BTRFS_I(inode)->root; 4943 struct btrfs_ioctl_qgroup_create_args *sa; 4944 struct btrfs_trans_handle *trans; 4945 int ret; 4946 int err; 4947 4948 if (!capable(CAP_SYS_ADMIN)) 4949 return -EPERM; 4950 4951 ret = mnt_want_write_file(file); 4952 if (ret) 4953 return ret; 4954 4955 sa = memdup_user(arg, sizeof(*sa)); 4956 if (IS_ERR(sa)) { 4957 ret = PTR_ERR(sa); 4958 goto drop_write; 4959 } 4960 4961 if (!sa->qgroupid) { 4962 ret = -EINVAL; 4963 goto out; 4964 } 4965 4966 trans = btrfs_join_transaction(root); 4967 if (IS_ERR(trans)) { 4968 ret = PTR_ERR(trans); 4969 goto out; 4970 } 4971 4972 /* FIXME: check if the IDs really exist */ 4973 if (sa->create) { 4974 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid); 4975 } else { 4976 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid); 4977 } 4978 4979 err = btrfs_end_transaction(trans); 4980 if (err && !ret) 4981 ret = err; 4982 4983 out: 4984 kfree(sa); 4985 drop_write: 4986 mnt_drop_write_file(file); 4987 return ret; 4988 } 4989 4990 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4991 { 4992 struct inode *inode = file_inode(file); 4993 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4994 struct btrfs_root *root = BTRFS_I(inode)->root; 4995 struct btrfs_ioctl_qgroup_limit_args *sa; 4996 struct btrfs_trans_handle *trans; 4997 int ret; 4998 int err; 4999 u64 qgroupid; 5000 5001 if (!capable(CAP_SYS_ADMIN)) 5002 return -EPERM; 5003 5004 ret = mnt_want_write_file(file); 5005 if (ret) 5006 return ret; 5007 5008 sa = memdup_user(arg, sizeof(*sa)); 5009 if (IS_ERR(sa)) { 5010 ret = PTR_ERR(sa); 5011 goto drop_write; 5012 } 5013 5014 trans = btrfs_join_transaction(root); 5015 if (IS_ERR(trans)) { 5016 ret = PTR_ERR(trans); 5017 goto out; 5018 } 5019 5020 qgroupid = sa->qgroupid; 5021 if (!qgroupid) { 5022 /* take the current subvol as qgroup */ 5023 qgroupid = root->root_key.objectid; 5024 } 5025 5026 /* FIXME: check if the IDs really exist */ 5027 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim); 5028 5029 err = btrfs_end_transaction(trans); 5030 if (err && !ret) 5031 ret = err; 5032 5033 out: 5034 kfree(sa); 5035 drop_write: 5036 mnt_drop_write_file(file); 5037 return ret; 5038 } 5039 5040 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5041 { 5042 struct inode *inode = file_inode(file); 5043 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5044 struct btrfs_ioctl_quota_rescan_args *qsa; 5045 int ret; 5046 5047 if (!capable(CAP_SYS_ADMIN)) 5048 return -EPERM; 5049 5050 ret = mnt_want_write_file(file); 5051 if (ret) 5052 return ret; 5053 5054 qsa = memdup_user(arg, sizeof(*qsa)); 5055 if (IS_ERR(qsa)) { 5056 ret = PTR_ERR(qsa); 5057 goto drop_write; 5058 } 5059 5060 if (qsa->flags) { 5061 ret = -EINVAL; 5062 goto out; 5063 } 5064 5065 ret = btrfs_qgroup_rescan(fs_info); 5066 5067 out: 5068 kfree(qsa); 5069 drop_write: 5070 mnt_drop_write_file(file); 5071 return ret; 5072 } 5073 5074 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5075 { 5076 struct inode *inode = file_inode(file); 5077 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5078 struct btrfs_ioctl_quota_rescan_args *qsa; 5079 int ret = 0; 5080 5081 if (!capable(CAP_SYS_ADMIN)) 5082 return -EPERM; 5083 5084 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5085 if (!qsa) 5086 return -ENOMEM; 5087 5088 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5089 qsa->flags = 1; 5090 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 5091 } 5092 5093 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5094 ret = -EFAULT; 5095 5096 kfree(qsa); 5097 return ret; 5098 } 5099 5100 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5101 { 5102 struct inode *inode = file_inode(file); 5103 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5104 5105 if (!capable(CAP_SYS_ADMIN)) 5106 return -EPERM; 5107 5108 return btrfs_qgroup_wait_for_completion(fs_info, true); 5109 } 5110 5111 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5112 struct btrfs_ioctl_received_subvol_args *sa) 5113 { 5114 struct inode *inode = file_inode(file); 5115 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5116 struct btrfs_root *root = BTRFS_I(inode)->root; 5117 struct btrfs_root_item *root_item = &root->root_item; 5118 struct btrfs_trans_handle *trans; 5119 struct timespec ct = current_time(inode); 5120 int ret = 0; 5121 int received_uuid_changed; 5122 5123 if (!inode_owner_or_capable(inode)) 5124 return -EPERM; 5125 5126 ret = mnt_want_write_file(file); 5127 if (ret < 0) 5128 return ret; 5129 5130 down_write(&fs_info->subvol_sem); 5131 5132 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 5133 ret = -EINVAL; 5134 goto out; 5135 } 5136 5137 if (btrfs_root_readonly(root)) { 5138 ret = -EROFS; 5139 goto out; 5140 } 5141 5142 /* 5143 * 1 - root item 5144 * 2 - uuid items (received uuid + subvol uuid) 5145 */ 5146 trans = btrfs_start_transaction(root, 3); 5147 if (IS_ERR(trans)) { 5148 ret = PTR_ERR(trans); 5149 trans = NULL; 5150 goto out; 5151 } 5152 5153 sa->rtransid = trans->transid; 5154 sa->rtime.sec = ct.tv_sec; 5155 sa->rtime.nsec = ct.tv_nsec; 5156 5157 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5158 BTRFS_UUID_SIZE); 5159 if (received_uuid_changed && 5160 !btrfs_is_empty_uuid(root_item->received_uuid)) 5161 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid, 5162 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5163 root->root_key.objectid); 5164 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5165 btrfs_set_root_stransid(root_item, sa->stransid); 5166 btrfs_set_root_rtransid(root_item, sa->rtransid); 5167 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5168 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5169 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5170 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5171 5172 ret = btrfs_update_root(trans, fs_info->tree_root, 5173 &root->root_key, &root->root_item); 5174 if (ret < 0) { 5175 btrfs_end_transaction(trans); 5176 goto out; 5177 } 5178 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5179 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid, 5180 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5181 root->root_key.objectid); 5182 if (ret < 0 && ret != -EEXIST) { 5183 btrfs_abort_transaction(trans, ret); 5184 goto out; 5185 } 5186 } 5187 ret = btrfs_commit_transaction(trans); 5188 if (ret < 0) { 5189 btrfs_abort_transaction(trans, ret); 5190 goto out; 5191 } 5192 5193 out: 5194 up_write(&fs_info->subvol_sem); 5195 mnt_drop_write_file(file); 5196 return ret; 5197 } 5198 5199 #ifdef CONFIG_64BIT 5200 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5201 void __user *arg) 5202 { 5203 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5204 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5205 int ret = 0; 5206 5207 args32 = memdup_user(arg, sizeof(*args32)); 5208 if (IS_ERR(args32)) 5209 return PTR_ERR(args32); 5210 5211 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5212 if (!args64) { 5213 ret = -ENOMEM; 5214 goto out; 5215 } 5216 5217 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5218 args64->stransid = args32->stransid; 5219 args64->rtransid = args32->rtransid; 5220 args64->stime.sec = args32->stime.sec; 5221 args64->stime.nsec = args32->stime.nsec; 5222 args64->rtime.sec = args32->rtime.sec; 5223 args64->rtime.nsec = args32->rtime.nsec; 5224 args64->flags = args32->flags; 5225 5226 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5227 if (ret) 5228 goto out; 5229 5230 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5231 args32->stransid = args64->stransid; 5232 args32->rtransid = args64->rtransid; 5233 args32->stime.sec = args64->stime.sec; 5234 args32->stime.nsec = args64->stime.nsec; 5235 args32->rtime.sec = args64->rtime.sec; 5236 args32->rtime.nsec = args64->rtime.nsec; 5237 args32->flags = args64->flags; 5238 5239 ret = copy_to_user(arg, args32, sizeof(*args32)); 5240 if (ret) 5241 ret = -EFAULT; 5242 5243 out: 5244 kfree(args32); 5245 kfree(args64); 5246 return ret; 5247 } 5248 #endif 5249 5250 static long btrfs_ioctl_set_received_subvol(struct file *file, 5251 void __user *arg) 5252 { 5253 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5254 int ret = 0; 5255 5256 sa = memdup_user(arg, sizeof(*sa)); 5257 if (IS_ERR(sa)) 5258 return PTR_ERR(sa); 5259 5260 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5261 5262 if (ret) 5263 goto out; 5264 5265 ret = copy_to_user(arg, sa, sizeof(*sa)); 5266 if (ret) 5267 ret = -EFAULT; 5268 5269 out: 5270 kfree(sa); 5271 return ret; 5272 } 5273 5274 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5275 { 5276 struct inode *inode = file_inode(file); 5277 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5278 size_t len; 5279 int ret; 5280 char label[BTRFS_LABEL_SIZE]; 5281 5282 spin_lock(&fs_info->super_lock); 5283 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5284 spin_unlock(&fs_info->super_lock); 5285 5286 len = strnlen(label, BTRFS_LABEL_SIZE); 5287 5288 if (len == BTRFS_LABEL_SIZE) { 5289 btrfs_warn(fs_info, 5290 "label is too long, return the first %zu bytes", 5291 --len); 5292 } 5293 5294 ret = copy_to_user(arg, label, len); 5295 5296 return ret ? -EFAULT : 0; 5297 } 5298 5299 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5300 { 5301 struct inode *inode = file_inode(file); 5302 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5303 struct btrfs_root *root = BTRFS_I(inode)->root; 5304 struct btrfs_super_block *super_block = fs_info->super_copy; 5305 struct btrfs_trans_handle *trans; 5306 char label[BTRFS_LABEL_SIZE]; 5307 int ret; 5308 5309 if (!capable(CAP_SYS_ADMIN)) 5310 return -EPERM; 5311 5312 if (copy_from_user(label, arg, sizeof(label))) 5313 return -EFAULT; 5314 5315 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5316 btrfs_err(fs_info, 5317 "unable to set label with more than %d bytes", 5318 BTRFS_LABEL_SIZE - 1); 5319 return -EINVAL; 5320 } 5321 5322 ret = mnt_want_write_file(file); 5323 if (ret) 5324 return ret; 5325 5326 trans = btrfs_start_transaction(root, 0); 5327 if (IS_ERR(trans)) { 5328 ret = PTR_ERR(trans); 5329 goto out_unlock; 5330 } 5331 5332 spin_lock(&fs_info->super_lock); 5333 strcpy(super_block->label, label); 5334 spin_unlock(&fs_info->super_lock); 5335 ret = btrfs_commit_transaction(trans); 5336 5337 out_unlock: 5338 mnt_drop_write_file(file); 5339 return ret; 5340 } 5341 5342 #define INIT_FEATURE_FLAGS(suffix) \ 5343 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5344 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5345 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5346 5347 int btrfs_ioctl_get_supported_features(void __user *arg) 5348 { 5349 static const struct btrfs_ioctl_feature_flags features[3] = { 5350 INIT_FEATURE_FLAGS(SUPP), 5351 INIT_FEATURE_FLAGS(SAFE_SET), 5352 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5353 }; 5354 5355 if (copy_to_user(arg, &features, sizeof(features))) 5356 return -EFAULT; 5357 5358 return 0; 5359 } 5360 5361 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5362 { 5363 struct inode *inode = file_inode(file); 5364 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5365 struct btrfs_super_block *super_block = fs_info->super_copy; 5366 struct btrfs_ioctl_feature_flags features; 5367 5368 features.compat_flags = btrfs_super_compat_flags(super_block); 5369 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5370 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5371 5372 if (copy_to_user(arg, &features, sizeof(features))) 5373 return -EFAULT; 5374 5375 return 0; 5376 } 5377 5378 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5379 enum btrfs_feature_set set, 5380 u64 change_mask, u64 flags, u64 supported_flags, 5381 u64 safe_set, u64 safe_clear) 5382 { 5383 const char *type = btrfs_feature_set_names[set]; 5384 char *names; 5385 u64 disallowed, unsupported; 5386 u64 set_mask = flags & change_mask; 5387 u64 clear_mask = ~flags & change_mask; 5388 5389 unsupported = set_mask & ~supported_flags; 5390 if (unsupported) { 5391 names = btrfs_printable_features(set, unsupported); 5392 if (names) { 5393 btrfs_warn(fs_info, 5394 "this kernel does not support the %s feature bit%s", 5395 names, strchr(names, ',') ? "s" : ""); 5396 kfree(names); 5397 } else 5398 btrfs_warn(fs_info, 5399 "this kernel does not support %s bits 0x%llx", 5400 type, unsupported); 5401 return -EOPNOTSUPP; 5402 } 5403 5404 disallowed = set_mask & ~safe_set; 5405 if (disallowed) { 5406 names = btrfs_printable_features(set, disallowed); 5407 if (names) { 5408 btrfs_warn(fs_info, 5409 "can't set the %s feature bit%s while mounted", 5410 names, strchr(names, ',') ? "s" : ""); 5411 kfree(names); 5412 } else 5413 btrfs_warn(fs_info, 5414 "can't set %s bits 0x%llx while mounted", 5415 type, disallowed); 5416 return -EPERM; 5417 } 5418 5419 disallowed = clear_mask & ~safe_clear; 5420 if (disallowed) { 5421 names = btrfs_printable_features(set, disallowed); 5422 if (names) { 5423 btrfs_warn(fs_info, 5424 "can't clear the %s feature bit%s while mounted", 5425 names, strchr(names, ',') ? "s" : ""); 5426 kfree(names); 5427 } else 5428 btrfs_warn(fs_info, 5429 "can't clear %s bits 0x%llx while mounted", 5430 type, disallowed); 5431 return -EPERM; 5432 } 5433 5434 return 0; 5435 } 5436 5437 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5438 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5439 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5440 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5441 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5442 5443 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5444 { 5445 struct inode *inode = file_inode(file); 5446 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5447 struct btrfs_root *root = BTRFS_I(inode)->root; 5448 struct btrfs_super_block *super_block = fs_info->super_copy; 5449 struct btrfs_ioctl_feature_flags flags[2]; 5450 struct btrfs_trans_handle *trans; 5451 u64 newflags; 5452 int ret; 5453 5454 if (!capable(CAP_SYS_ADMIN)) 5455 return -EPERM; 5456 5457 if (copy_from_user(flags, arg, sizeof(flags))) 5458 return -EFAULT; 5459 5460 /* Nothing to do */ 5461 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5462 !flags[0].incompat_flags) 5463 return 0; 5464 5465 ret = check_feature(fs_info, flags[0].compat_flags, 5466 flags[1].compat_flags, COMPAT); 5467 if (ret) 5468 return ret; 5469 5470 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5471 flags[1].compat_ro_flags, COMPAT_RO); 5472 if (ret) 5473 return ret; 5474 5475 ret = check_feature(fs_info, flags[0].incompat_flags, 5476 flags[1].incompat_flags, INCOMPAT); 5477 if (ret) 5478 return ret; 5479 5480 ret = mnt_want_write_file(file); 5481 if (ret) 5482 return ret; 5483 5484 trans = btrfs_start_transaction(root, 0); 5485 if (IS_ERR(trans)) { 5486 ret = PTR_ERR(trans); 5487 goto out_drop_write; 5488 } 5489 5490 spin_lock(&fs_info->super_lock); 5491 newflags = btrfs_super_compat_flags(super_block); 5492 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5493 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5494 btrfs_set_super_compat_flags(super_block, newflags); 5495 5496 newflags = btrfs_super_compat_ro_flags(super_block); 5497 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5498 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5499 btrfs_set_super_compat_ro_flags(super_block, newflags); 5500 5501 newflags = btrfs_super_incompat_flags(super_block); 5502 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5503 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5504 btrfs_set_super_incompat_flags(super_block, newflags); 5505 spin_unlock(&fs_info->super_lock); 5506 5507 ret = btrfs_commit_transaction(trans); 5508 out_drop_write: 5509 mnt_drop_write_file(file); 5510 5511 return ret; 5512 } 5513 5514 long btrfs_ioctl(struct file *file, unsigned int 5515 cmd, unsigned long arg) 5516 { 5517 struct inode *inode = file_inode(file); 5518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5519 struct btrfs_root *root = BTRFS_I(inode)->root; 5520 void __user *argp = (void __user *)arg; 5521 5522 switch (cmd) { 5523 case FS_IOC_GETFLAGS: 5524 return btrfs_ioctl_getflags(file, argp); 5525 case FS_IOC_SETFLAGS: 5526 return btrfs_ioctl_setflags(file, argp); 5527 case FS_IOC_GETVERSION: 5528 return btrfs_ioctl_getversion(file, argp); 5529 case FITRIM: 5530 return btrfs_ioctl_fitrim(file, argp); 5531 case BTRFS_IOC_SNAP_CREATE: 5532 return btrfs_ioctl_snap_create(file, argp, 0); 5533 case BTRFS_IOC_SNAP_CREATE_V2: 5534 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5535 case BTRFS_IOC_SUBVOL_CREATE: 5536 return btrfs_ioctl_snap_create(file, argp, 1); 5537 case BTRFS_IOC_SUBVOL_CREATE_V2: 5538 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5539 case BTRFS_IOC_SNAP_DESTROY: 5540 return btrfs_ioctl_snap_destroy(file, argp); 5541 case BTRFS_IOC_SUBVOL_GETFLAGS: 5542 return btrfs_ioctl_subvol_getflags(file, argp); 5543 case BTRFS_IOC_SUBVOL_SETFLAGS: 5544 return btrfs_ioctl_subvol_setflags(file, argp); 5545 case BTRFS_IOC_DEFAULT_SUBVOL: 5546 return btrfs_ioctl_default_subvol(file, argp); 5547 case BTRFS_IOC_DEFRAG: 5548 return btrfs_ioctl_defrag(file, NULL); 5549 case BTRFS_IOC_DEFRAG_RANGE: 5550 return btrfs_ioctl_defrag(file, argp); 5551 case BTRFS_IOC_RESIZE: 5552 return btrfs_ioctl_resize(file, argp); 5553 case BTRFS_IOC_ADD_DEV: 5554 return btrfs_ioctl_add_dev(fs_info, argp); 5555 case BTRFS_IOC_RM_DEV: 5556 return btrfs_ioctl_rm_dev(file, argp); 5557 case BTRFS_IOC_RM_DEV_V2: 5558 return btrfs_ioctl_rm_dev_v2(file, argp); 5559 case BTRFS_IOC_FS_INFO: 5560 return btrfs_ioctl_fs_info(fs_info, argp); 5561 case BTRFS_IOC_DEV_INFO: 5562 return btrfs_ioctl_dev_info(fs_info, argp); 5563 case BTRFS_IOC_BALANCE: 5564 return btrfs_ioctl_balance(file, NULL); 5565 case BTRFS_IOC_TRANS_START: 5566 return btrfs_ioctl_trans_start(file); 5567 case BTRFS_IOC_TRANS_END: 5568 return btrfs_ioctl_trans_end(file); 5569 case BTRFS_IOC_TREE_SEARCH: 5570 return btrfs_ioctl_tree_search(file, argp); 5571 case BTRFS_IOC_TREE_SEARCH_V2: 5572 return btrfs_ioctl_tree_search_v2(file, argp); 5573 case BTRFS_IOC_INO_LOOKUP: 5574 return btrfs_ioctl_ino_lookup(file, argp); 5575 case BTRFS_IOC_INO_PATHS: 5576 return btrfs_ioctl_ino_to_path(root, argp); 5577 case BTRFS_IOC_LOGICAL_INO: 5578 return btrfs_ioctl_logical_to_ino(fs_info, argp); 5579 case BTRFS_IOC_SPACE_INFO: 5580 return btrfs_ioctl_space_info(fs_info, argp); 5581 case BTRFS_IOC_SYNC: { 5582 int ret; 5583 5584 ret = btrfs_start_delalloc_roots(fs_info, 0, -1); 5585 if (ret) 5586 return ret; 5587 ret = btrfs_sync_fs(inode->i_sb, 1); 5588 /* 5589 * The transaction thread may want to do more work, 5590 * namely it pokes the cleaner kthread that will start 5591 * processing uncleaned subvols. 5592 */ 5593 wake_up_process(fs_info->transaction_kthread); 5594 return ret; 5595 } 5596 case BTRFS_IOC_START_SYNC: 5597 return btrfs_ioctl_start_sync(root, argp); 5598 case BTRFS_IOC_WAIT_SYNC: 5599 return btrfs_ioctl_wait_sync(fs_info, argp); 5600 case BTRFS_IOC_SCRUB: 5601 return btrfs_ioctl_scrub(file, argp); 5602 case BTRFS_IOC_SCRUB_CANCEL: 5603 return btrfs_ioctl_scrub_cancel(fs_info); 5604 case BTRFS_IOC_SCRUB_PROGRESS: 5605 return btrfs_ioctl_scrub_progress(fs_info, argp); 5606 case BTRFS_IOC_BALANCE_V2: 5607 return btrfs_ioctl_balance(file, argp); 5608 case BTRFS_IOC_BALANCE_CTL: 5609 return btrfs_ioctl_balance_ctl(fs_info, arg); 5610 case BTRFS_IOC_BALANCE_PROGRESS: 5611 return btrfs_ioctl_balance_progress(fs_info, argp); 5612 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5613 return btrfs_ioctl_set_received_subvol(file, argp); 5614 #ifdef CONFIG_64BIT 5615 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5616 return btrfs_ioctl_set_received_subvol_32(file, argp); 5617 #endif 5618 case BTRFS_IOC_SEND: 5619 return btrfs_ioctl_send(file, argp); 5620 case BTRFS_IOC_GET_DEV_STATS: 5621 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5622 case BTRFS_IOC_QUOTA_CTL: 5623 return btrfs_ioctl_quota_ctl(file, argp); 5624 case BTRFS_IOC_QGROUP_ASSIGN: 5625 return btrfs_ioctl_qgroup_assign(file, argp); 5626 case BTRFS_IOC_QGROUP_CREATE: 5627 return btrfs_ioctl_qgroup_create(file, argp); 5628 case BTRFS_IOC_QGROUP_LIMIT: 5629 return btrfs_ioctl_qgroup_limit(file, argp); 5630 case BTRFS_IOC_QUOTA_RESCAN: 5631 return btrfs_ioctl_quota_rescan(file, argp); 5632 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5633 return btrfs_ioctl_quota_rescan_status(file, argp); 5634 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5635 return btrfs_ioctl_quota_rescan_wait(file, argp); 5636 case BTRFS_IOC_DEV_REPLACE: 5637 return btrfs_ioctl_dev_replace(fs_info, argp); 5638 case BTRFS_IOC_GET_FSLABEL: 5639 return btrfs_ioctl_get_fslabel(file, argp); 5640 case BTRFS_IOC_SET_FSLABEL: 5641 return btrfs_ioctl_set_fslabel(file, argp); 5642 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5643 return btrfs_ioctl_get_supported_features(argp); 5644 case BTRFS_IOC_GET_FEATURES: 5645 return btrfs_ioctl_get_features(file, argp); 5646 case BTRFS_IOC_SET_FEATURES: 5647 return btrfs_ioctl_set_features(file, argp); 5648 } 5649 5650 return -ENOTTY; 5651 } 5652 5653 #ifdef CONFIG_COMPAT 5654 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5655 { 5656 switch (cmd) { 5657 case FS_IOC32_GETFLAGS: 5658 cmd = FS_IOC_GETFLAGS; 5659 break; 5660 case FS_IOC32_SETFLAGS: 5661 cmd = FS_IOC_SETFLAGS; 5662 break; 5663 case FS_IOC32_GETVERSION: 5664 cmd = FS_IOC_GETVERSION; 5665 break; 5666 default: 5667 return -ENOIOCTLCMD; 5668 } 5669 5670 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5671 } 5672 #endif 5673