xref: /openbmc/linux/fs/btrfs/ioctl.c (revision a8fe58ce)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 
63 #ifdef CONFIG_64BIT
64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
65  * structures are incorrect, as the timespec structure from userspace
66  * is 4 bytes too small. We define these alternatives here to teach
67  * the kernel about the 32-bit struct packing.
68  */
69 struct btrfs_ioctl_timespec_32 {
70 	__u64 sec;
71 	__u32 nsec;
72 } __attribute__ ((__packed__));
73 
74 struct btrfs_ioctl_received_subvol_args_32 {
75 	char	uuid[BTRFS_UUID_SIZE];	/* in */
76 	__u64	stransid;		/* in */
77 	__u64	rtransid;		/* out */
78 	struct btrfs_ioctl_timespec_32 stime; /* in */
79 	struct btrfs_ioctl_timespec_32 rtime; /* out */
80 	__u64	flags;			/* in */
81 	__u64	reserved[16];		/* in */
82 } __attribute__ ((__packed__));
83 
84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
85 				struct btrfs_ioctl_received_subvol_args_32)
86 #endif
87 
88 
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
91 		       int no_time_update);
92 
93 /* Mask out flags that are inappropriate for the given type of inode. */
94 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
95 {
96 	if (S_ISDIR(mode))
97 		return flags;
98 	else if (S_ISREG(mode))
99 		return flags & ~FS_DIRSYNC_FL;
100 	else
101 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
102 }
103 
104 /*
105  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
106  */
107 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
108 {
109 	unsigned int iflags = 0;
110 
111 	if (flags & BTRFS_INODE_SYNC)
112 		iflags |= FS_SYNC_FL;
113 	if (flags & BTRFS_INODE_IMMUTABLE)
114 		iflags |= FS_IMMUTABLE_FL;
115 	if (flags & BTRFS_INODE_APPEND)
116 		iflags |= FS_APPEND_FL;
117 	if (flags & BTRFS_INODE_NODUMP)
118 		iflags |= FS_NODUMP_FL;
119 	if (flags & BTRFS_INODE_NOATIME)
120 		iflags |= FS_NOATIME_FL;
121 	if (flags & BTRFS_INODE_DIRSYNC)
122 		iflags |= FS_DIRSYNC_FL;
123 	if (flags & BTRFS_INODE_NODATACOW)
124 		iflags |= FS_NOCOW_FL;
125 
126 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
127 		iflags |= FS_COMPR_FL;
128 	else if (flags & BTRFS_INODE_NOCOMPRESS)
129 		iflags |= FS_NOCOMP_FL;
130 
131 	return iflags;
132 }
133 
134 /*
135  * Update inode->i_flags based on the btrfs internal flags.
136  */
137 void btrfs_update_iflags(struct inode *inode)
138 {
139 	struct btrfs_inode *ip = BTRFS_I(inode);
140 	unsigned int new_fl = 0;
141 
142 	if (ip->flags & BTRFS_INODE_SYNC)
143 		new_fl |= S_SYNC;
144 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
145 		new_fl |= S_IMMUTABLE;
146 	if (ip->flags & BTRFS_INODE_APPEND)
147 		new_fl |= S_APPEND;
148 	if (ip->flags & BTRFS_INODE_NOATIME)
149 		new_fl |= S_NOATIME;
150 	if (ip->flags & BTRFS_INODE_DIRSYNC)
151 		new_fl |= S_DIRSYNC;
152 
153 	set_mask_bits(&inode->i_flags,
154 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
155 		      new_fl);
156 }
157 
158 /*
159  * Inherit flags from the parent inode.
160  *
161  * Currently only the compression flags and the cow flags are inherited.
162  */
163 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
164 {
165 	unsigned int flags;
166 
167 	if (!dir)
168 		return;
169 
170 	flags = BTRFS_I(dir)->flags;
171 
172 	if (flags & BTRFS_INODE_NOCOMPRESS) {
173 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
174 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
175 	} else if (flags & BTRFS_INODE_COMPRESS) {
176 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
177 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
178 	}
179 
180 	if (flags & BTRFS_INODE_NODATACOW) {
181 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
182 		if (S_ISREG(inode->i_mode))
183 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
184 	}
185 
186 	btrfs_update_iflags(inode);
187 }
188 
189 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
190 {
191 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
192 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
193 
194 	if (copy_to_user(arg, &flags, sizeof(flags)))
195 		return -EFAULT;
196 	return 0;
197 }
198 
199 static int check_flags(unsigned int flags)
200 {
201 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
202 		      FS_NOATIME_FL | FS_NODUMP_FL | \
203 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
204 		      FS_NOCOMP_FL | FS_COMPR_FL |
205 		      FS_NOCOW_FL))
206 		return -EOPNOTSUPP;
207 
208 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
209 		return -EINVAL;
210 
211 	return 0;
212 }
213 
214 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
215 {
216 	struct inode *inode = file_inode(file);
217 	struct btrfs_inode *ip = BTRFS_I(inode);
218 	struct btrfs_root *root = ip->root;
219 	struct btrfs_trans_handle *trans;
220 	unsigned int flags, oldflags;
221 	int ret;
222 	u64 ip_oldflags;
223 	unsigned int i_oldflags;
224 	umode_t mode;
225 
226 	if (!inode_owner_or_capable(inode))
227 		return -EPERM;
228 
229 	if (btrfs_root_readonly(root))
230 		return -EROFS;
231 
232 	if (copy_from_user(&flags, arg, sizeof(flags)))
233 		return -EFAULT;
234 
235 	ret = check_flags(flags);
236 	if (ret)
237 		return ret;
238 
239 	ret = mnt_want_write_file(file);
240 	if (ret)
241 		return ret;
242 
243 	inode_lock(inode);
244 
245 	ip_oldflags = ip->flags;
246 	i_oldflags = inode->i_flags;
247 	mode = inode->i_mode;
248 
249 	flags = btrfs_mask_flags(inode->i_mode, flags);
250 	oldflags = btrfs_flags_to_ioctl(ip->flags);
251 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
252 		if (!capable(CAP_LINUX_IMMUTABLE)) {
253 			ret = -EPERM;
254 			goto out_unlock;
255 		}
256 	}
257 
258 	if (flags & FS_SYNC_FL)
259 		ip->flags |= BTRFS_INODE_SYNC;
260 	else
261 		ip->flags &= ~BTRFS_INODE_SYNC;
262 	if (flags & FS_IMMUTABLE_FL)
263 		ip->flags |= BTRFS_INODE_IMMUTABLE;
264 	else
265 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
266 	if (flags & FS_APPEND_FL)
267 		ip->flags |= BTRFS_INODE_APPEND;
268 	else
269 		ip->flags &= ~BTRFS_INODE_APPEND;
270 	if (flags & FS_NODUMP_FL)
271 		ip->flags |= BTRFS_INODE_NODUMP;
272 	else
273 		ip->flags &= ~BTRFS_INODE_NODUMP;
274 	if (flags & FS_NOATIME_FL)
275 		ip->flags |= BTRFS_INODE_NOATIME;
276 	else
277 		ip->flags &= ~BTRFS_INODE_NOATIME;
278 	if (flags & FS_DIRSYNC_FL)
279 		ip->flags |= BTRFS_INODE_DIRSYNC;
280 	else
281 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
282 	if (flags & FS_NOCOW_FL) {
283 		if (S_ISREG(mode)) {
284 			/*
285 			 * It's safe to turn csums off here, no extents exist.
286 			 * Otherwise we want the flag to reflect the real COW
287 			 * status of the file and will not set it.
288 			 */
289 			if (inode->i_size == 0)
290 				ip->flags |= BTRFS_INODE_NODATACOW
291 					   | BTRFS_INODE_NODATASUM;
292 		} else {
293 			ip->flags |= BTRFS_INODE_NODATACOW;
294 		}
295 	} else {
296 		/*
297 		 * Revert back under same assuptions as above
298 		 */
299 		if (S_ISREG(mode)) {
300 			if (inode->i_size == 0)
301 				ip->flags &= ~(BTRFS_INODE_NODATACOW
302 				             | BTRFS_INODE_NODATASUM);
303 		} else {
304 			ip->flags &= ~BTRFS_INODE_NODATACOW;
305 		}
306 	}
307 
308 	/*
309 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
310 	 * flag may be changed automatically if compression code won't make
311 	 * things smaller.
312 	 */
313 	if (flags & FS_NOCOMP_FL) {
314 		ip->flags &= ~BTRFS_INODE_COMPRESS;
315 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
316 
317 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
318 		if (ret && ret != -ENODATA)
319 			goto out_drop;
320 	} else if (flags & FS_COMPR_FL) {
321 		const char *comp;
322 
323 		ip->flags |= BTRFS_INODE_COMPRESS;
324 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
325 
326 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
327 			comp = "lzo";
328 		else
329 			comp = "zlib";
330 		ret = btrfs_set_prop(inode, "btrfs.compression",
331 				     comp, strlen(comp), 0);
332 		if (ret)
333 			goto out_drop;
334 
335 	} else {
336 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
337 		if (ret && ret != -ENODATA)
338 			goto out_drop;
339 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
340 	}
341 
342 	trans = btrfs_start_transaction(root, 1);
343 	if (IS_ERR(trans)) {
344 		ret = PTR_ERR(trans);
345 		goto out_drop;
346 	}
347 
348 	btrfs_update_iflags(inode);
349 	inode_inc_iversion(inode);
350 	inode->i_ctime = CURRENT_TIME;
351 	ret = btrfs_update_inode(trans, root, inode);
352 
353 	btrfs_end_transaction(trans, root);
354  out_drop:
355 	if (ret) {
356 		ip->flags = ip_oldflags;
357 		inode->i_flags = i_oldflags;
358 	}
359 
360  out_unlock:
361 	inode_unlock(inode);
362 	mnt_drop_write_file(file);
363 	return ret;
364 }
365 
366 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
367 {
368 	struct inode *inode = file_inode(file);
369 
370 	return put_user(inode->i_generation, arg);
371 }
372 
373 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
374 {
375 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
376 	struct btrfs_device *device;
377 	struct request_queue *q;
378 	struct fstrim_range range;
379 	u64 minlen = ULLONG_MAX;
380 	u64 num_devices = 0;
381 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
382 	int ret;
383 
384 	if (!capable(CAP_SYS_ADMIN))
385 		return -EPERM;
386 
387 	rcu_read_lock();
388 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
389 				dev_list) {
390 		if (!device->bdev)
391 			continue;
392 		q = bdev_get_queue(device->bdev);
393 		if (blk_queue_discard(q)) {
394 			num_devices++;
395 			minlen = min((u64)q->limits.discard_granularity,
396 				     minlen);
397 		}
398 	}
399 	rcu_read_unlock();
400 
401 	if (!num_devices)
402 		return -EOPNOTSUPP;
403 	if (copy_from_user(&range, arg, sizeof(range)))
404 		return -EFAULT;
405 	if (range.start > total_bytes ||
406 	    range.len < fs_info->sb->s_blocksize)
407 		return -EINVAL;
408 
409 	range.len = min(range.len, total_bytes - range.start);
410 	range.minlen = max(range.minlen, minlen);
411 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
412 	if (ret < 0)
413 		return ret;
414 
415 	if (copy_to_user(arg, &range, sizeof(range)))
416 		return -EFAULT;
417 
418 	return 0;
419 }
420 
421 int btrfs_is_empty_uuid(u8 *uuid)
422 {
423 	int i;
424 
425 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
426 		if (uuid[i])
427 			return 0;
428 	}
429 	return 1;
430 }
431 
432 static noinline int create_subvol(struct inode *dir,
433 				  struct dentry *dentry,
434 				  char *name, int namelen,
435 				  u64 *async_transid,
436 				  struct btrfs_qgroup_inherit *inherit)
437 {
438 	struct btrfs_trans_handle *trans;
439 	struct btrfs_key key;
440 	struct btrfs_root_item root_item;
441 	struct btrfs_inode_item *inode_item;
442 	struct extent_buffer *leaf;
443 	struct btrfs_root *root = BTRFS_I(dir)->root;
444 	struct btrfs_root *new_root;
445 	struct btrfs_block_rsv block_rsv;
446 	struct timespec cur_time = CURRENT_TIME;
447 	struct inode *inode;
448 	int ret;
449 	int err;
450 	u64 objectid;
451 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
452 	u64 index = 0;
453 	u64 qgroup_reserved;
454 	uuid_le new_uuid;
455 
456 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
457 	if (ret)
458 		return ret;
459 
460 	/*
461 	 * Don't create subvolume whose level is not zero. Or qgroup will be
462 	 * screwed up since it assume subvolme qgroup's level to be 0.
463 	 */
464 	if (btrfs_qgroup_level(objectid))
465 		return -ENOSPC;
466 
467 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
468 	/*
469 	 * The same as the snapshot creation, please see the comment
470 	 * of create_snapshot().
471 	 */
472 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
473 					       8, &qgroup_reserved, false);
474 	if (ret)
475 		return ret;
476 
477 	trans = btrfs_start_transaction(root, 0);
478 	if (IS_ERR(trans)) {
479 		ret = PTR_ERR(trans);
480 		btrfs_subvolume_release_metadata(root, &block_rsv,
481 						 qgroup_reserved);
482 		return ret;
483 	}
484 	trans->block_rsv = &block_rsv;
485 	trans->bytes_reserved = block_rsv.size;
486 
487 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
488 	if (ret)
489 		goto fail;
490 
491 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
492 	if (IS_ERR(leaf)) {
493 		ret = PTR_ERR(leaf);
494 		goto fail;
495 	}
496 
497 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
498 	btrfs_set_header_bytenr(leaf, leaf->start);
499 	btrfs_set_header_generation(leaf, trans->transid);
500 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
501 	btrfs_set_header_owner(leaf, objectid);
502 
503 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
504 			    BTRFS_FSID_SIZE);
505 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
506 			    btrfs_header_chunk_tree_uuid(leaf),
507 			    BTRFS_UUID_SIZE);
508 	btrfs_mark_buffer_dirty(leaf);
509 
510 	memset(&root_item, 0, sizeof(root_item));
511 
512 	inode_item = &root_item.inode;
513 	btrfs_set_stack_inode_generation(inode_item, 1);
514 	btrfs_set_stack_inode_size(inode_item, 3);
515 	btrfs_set_stack_inode_nlink(inode_item, 1);
516 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
517 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
518 
519 	btrfs_set_root_flags(&root_item, 0);
520 	btrfs_set_root_limit(&root_item, 0);
521 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
522 
523 	btrfs_set_root_bytenr(&root_item, leaf->start);
524 	btrfs_set_root_generation(&root_item, trans->transid);
525 	btrfs_set_root_level(&root_item, 0);
526 	btrfs_set_root_refs(&root_item, 1);
527 	btrfs_set_root_used(&root_item, leaf->len);
528 	btrfs_set_root_last_snapshot(&root_item, 0);
529 
530 	btrfs_set_root_generation_v2(&root_item,
531 			btrfs_root_generation(&root_item));
532 	uuid_le_gen(&new_uuid);
533 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
534 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
535 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
536 	root_item.ctime = root_item.otime;
537 	btrfs_set_root_ctransid(&root_item, trans->transid);
538 	btrfs_set_root_otransid(&root_item, trans->transid);
539 
540 	btrfs_tree_unlock(leaf);
541 	free_extent_buffer(leaf);
542 	leaf = NULL;
543 
544 	btrfs_set_root_dirid(&root_item, new_dirid);
545 
546 	key.objectid = objectid;
547 	key.offset = 0;
548 	key.type = BTRFS_ROOT_ITEM_KEY;
549 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
550 				&root_item);
551 	if (ret)
552 		goto fail;
553 
554 	key.offset = (u64)-1;
555 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
556 	if (IS_ERR(new_root)) {
557 		ret = PTR_ERR(new_root);
558 		btrfs_abort_transaction(trans, root, ret);
559 		goto fail;
560 	}
561 
562 	btrfs_record_root_in_trans(trans, new_root);
563 
564 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
565 	if (ret) {
566 		/* We potentially lose an unused inode item here */
567 		btrfs_abort_transaction(trans, root, ret);
568 		goto fail;
569 	}
570 
571 	mutex_lock(&new_root->objectid_mutex);
572 	new_root->highest_objectid = new_dirid;
573 	mutex_unlock(&new_root->objectid_mutex);
574 
575 	/*
576 	 * insert the directory item
577 	 */
578 	ret = btrfs_set_inode_index(dir, &index);
579 	if (ret) {
580 		btrfs_abort_transaction(trans, root, ret);
581 		goto fail;
582 	}
583 
584 	ret = btrfs_insert_dir_item(trans, root,
585 				    name, namelen, dir, &key,
586 				    BTRFS_FT_DIR, index);
587 	if (ret) {
588 		btrfs_abort_transaction(trans, root, ret);
589 		goto fail;
590 	}
591 
592 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
593 	ret = btrfs_update_inode(trans, root, dir);
594 	BUG_ON(ret);
595 
596 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
597 				 objectid, root->root_key.objectid,
598 				 btrfs_ino(dir), index, name, namelen);
599 	BUG_ON(ret);
600 
601 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
602 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
603 				  objectid);
604 	if (ret)
605 		btrfs_abort_transaction(trans, root, ret);
606 
607 fail:
608 	trans->block_rsv = NULL;
609 	trans->bytes_reserved = 0;
610 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
611 
612 	if (async_transid) {
613 		*async_transid = trans->transid;
614 		err = btrfs_commit_transaction_async(trans, root, 1);
615 		if (err)
616 			err = btrfs_commit_transaction(trans, root);
617 	} else {
618 		err = btrfs_commit_transaction(trans, root);
619 	}
620 	if (err && !ret)
621 		ret = err;
622 
623 	if (!ret) {
624 		inode = btrfs_lookup_dentry(dir, dentry);
625 		if (IS_ERR(inode))
626 			return PTR_ERR(inode);
627 		d_instantiate(dentry, inode);
628 	}
629 	return ret;
630 }
631 
632 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
633 {
634 	s64 writers;
635 	DEFINE_WAIT(wait);
636 
637 	do {
638 		prepare_to_wait(&root->subv_writers->wait, &wait,
639 				TASK_UNINTERRUPTIBLE);
640 
641 		writers = percpu_counter_sum(&root->subv_writers->counter);
642 		if (writers)
643 			schedule();
644 
645 		finish_wait(&root->subv_writers->wait, &wait);
646 	} while (writers);
647 }
648 
649 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
650 			   struct dentry *dentry, char *name, int namelen,
651 			   u64 *async_transid, bool readonly,
652 			   struct btrfs_qgroup_inherit *inherit)
653 {
654 	struct inode *inode;
655 	struct btrfs_pending_snapshot *pending_snapshot;
656 	struct btrfs_trans_handle *trans;
657 	int ret;
658 
659 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
660 		return -EINVAL;
661 
662 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
663 	if (!pending_snapshot)
664 		return -ENOMEM;
665 
666 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
667 			GFP_NOFS);
668 	pending_snapshot->path = btrfs_alloc_path();
669 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
670 		ret = -ENOMEM;
671 		goto free_pending;
672 	}
673 
674 	atomic_inc(&root->will_be_snapshoted);
675 	smp_mb__after_atomic();
676 	btrfs_wait_for_no_snapshoting_writes(root);
677 
678 	ret = btrfs_start_delalloc_inodes(root, 0);
679 	if (ret)
680 		goto dec_and_free;
681 
682 	btrfs_wait_ordered_extents(root, -1);
683 
684 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
685 			     BTRFS_BLOCK_RSV_TEMP);
686 	/*
687 	 * 1 - parent dir inode
688 	 * 2 - dir entries
689 	 * 1 - root item
690 	 * 2 - root ref/backref
691 	 * 1 - root of snapshot
692 	 * 1 - UUID item
693 	 */
694 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
695 					&pending_snapshot->block_rsv, 8,
696 					&pending_snapshot->qgroup_reserved,
697 					false);
698 	if (ret)
699 		goto dec_and_free;
700 
701 	pending_snapshot->dentry = dentry;
702 	pending_snapshot->root = root;
703 	pending_snapshot->readonly = readonly;
704 	pending_snapshot->dir = dir;
705 	pending_snapshot->inherit = inherit;
706 
707 	trans = btrfs_start_transaction(root, 0);
708 	if (IS_ERR(trans)) {
709 		ret = PTR_ERR(trans);
710 		goto fail;
711 	}
712 
713 	spin_lock(&root->fs_info->trans_lock);
714 	list_add(&pending_snapshot->list,
715 		 &trans->transaction->pending_snapshots);
716 	spin_unlock(&root->fs_info->trans_lock);
717 	if (async_transid) {
718 		*async_transid = trans->transid;
719 		ret = btrfs_commit_transaction_async(trans,
720 				     root->fs_info->extent_root, 1);
721 		if (ret)
722 			ret = btrfs_commit_transaction(trans, root);
723 	} else {
724 		ret = btrfs_commit_transaction(trans,
725 					       root->fs_info->extent_root);
726 	}
727 	if (ret)
728 		goto fail;
729 
730 	ret = pending_snapshot->error;
731 	if (ret)
732 		goto fail;
733 
734 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
735 	if (ret)
736 		goto fail;
737 
738 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
739 	if (IS_ERR(inode)) {
740 		ret = PTR_ERR(inode);
741 		goto fail;
742 	}
743 
744 	d_instantiate(dentry, inode);
745 	ret = 0;
746 fail:
747 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
748 					 &pending_snapshot->block_rsv,
749 					 pending_snapshot->qgroup_reserved);
750 dec_and_free:
751 	if (atomic_dec_and_test(&root->will_be_snapshoted))
752 		wake_up_atomic_t(&root->will_be_snapshoted);
753 free_pending:
754 	kfree(pending_snapshot->root_item);
755 	btrfs_free_path(pending_snapshot->path);
756 	kfree(pending_snapshot);
757 
758 	return ret;
759 }
760 
761 /*  copy of may_delete in fs/namei.c()
762  *	Check whether we can remove a link victim from directory dir, check
763  *  whether the type of victim is right.
764  *  1. We can't do it if dir is read-only (done in permission())
765  *  2. We should have write and exec permissions on dir
766  *  3. We can't remove anything from append-only dir
767  *  4. We can't do anything with immutable dir (done in permission())
768  *  5. If the sticky bit on dir is set we should either
769  *	a. be owner of dir, or
770  *	b. be owner of victim, or
771  *	c. have CAP_FOWNER capability
772  *  6. If the victim is append-only or immutable we can't do antyhing with
773  *     links pointing to it.
774  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
775  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
776  *  9. We can't remove a root or mountpoint.
777  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
778  *     nfs_async_unlink().
779  */
780 
781 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
782 {
783 	int error;
784 
785 	if (d_really_is_negative(victim))
786 		return -ENOENT;
787 
788 	BUG_ON(d_inode(victim->d_parent) != dir);
789 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
790 
791 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
792 	if (error)
793 		return error;
794 	if (IS_APPEND(dir))
795 		return -EPERM;
796 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
797 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
798 		return -EPERM;
799 	if (isdir) {
800 		if (!d_is_dir(victim))
801 			return -ENOTDIR;
802 		if (IS_ROOT(victim))
803 			return -EBUSY;
804 	} else if (d_is_dir(victim))
805 		return -EISDIR;
806 	if (IS_DEADDIR(dir))
807 		return -ENOENT;
808 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
809 		return -EBUSY;
810 	return 0;
811 }
812 
813 /* copy of may_create in fs/namei.c() */
814 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
815 {
816 	if (d_really_is_positive(child))
817 		return -EEXIST;
818 	if (IS_DEADDIR(dir))
819 		return -ENOENT;
820 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
821 }
822 
823 /*
824  * Create a new subvolume below @parent.  This is largely modeled after
825  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
826  * inside this filesystem so it's quite a bit simpler.
827  */
828 static noinline int btrfs_mksubvol(struct path *parent,
829 				   char *name, int namelen,
830 				   struct btrfs_root *snap_src,
831 				   u64 *async_transid, bool readonly,
832 				   struct btrfs_qgroup_inherit *inherit)
833 {
834 	struct inode *dir  = d_inode(parent->dentry);
835 	struct dentry *dentry;
836 	int error;
837 
838 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
839 	if (error == -EINTR)
840 		return error;
841 
842 	dentry = lookup_one_len(name, parent->dentry, namelen);
843 	error = PTR_ERR(dentry);
844 	if (IS_ERR(dentry))
845 		goto out_unlock;
846 
847 	error = -EEXIST;
848 	if (d_really_is_positive(dentry))
849 		goto out_dput;
850 
851 	error = btrfs_may_create(dir, dentry);
852 	if (error)
853 		goto out_dput;
854 
855 	/*
856 	 * even if this name doesn't exist, we may get hash collisions.
857 	 * check for them now when we can safely fail
858 	 */
859 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
860 					       dir->i_ino, name,
861 					       namelen);
862 	if (error)
863 		goto out_dput;
864 
865 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
866 
867 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
868 		goto out_up_read;
869 
870 	if (snap_src) {
871 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
872 					async_transid, readonly, inherit);
873 	} else {
874 		error = create_subvol(dir, dentry, name, namelen,
875 				      async_transid, inherit);
876 	}
877 	if (!error)
878 		fsnotify_mkdir(dir, dentry);
879 out_up_read:
880 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
881 out_dput:
882 	dput(dentry);
883 out_unlock:
884 	inode_unlock(dir);
885 	return error;
886 }
887 
888 /*
889  * When we're defragging a range, we don't want to kick it off again
890  * if it is really just waiting for delalloc to send it down.
891  * If we find a nice big extent or delalloc range for the bytes in the
892  * file you want to defrag, we return 0 to let you know to skip this
893  * part of the file
894  */
895 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
896 {
897 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
898 	struct extent_map *em = NULL;
899 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
900 	u64 end;
901 
902 	read_lock(&em_tree->lock);
903 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
904 	read_unlock(&em_tree->lock);
905 
906 	if (em) {
907 		end = extent_map_end(em);
908 		free_extent_map(em);
909 		if (end - offset > thresh)
910 			return 0;
911 	}
912 	/* if we already have a nice delalloc here, just stop */
913 	thresh /= 2;
914 	end = count_range_bits(io_tree, &offset, offset + thresh,
915 			       thresh, EXTENT_DELALLOC, 1);
916 	if (end >= thresh)
917 		return 0;
918 	return 1;
919 }
920 
921 /*
922  * helper function to walk through a file and find extents
923  * newer than a specific transid, and smaller than thresh.
924  *
925  * This is used by the defragging code to find new and small
926  * extents
927  */
928 static int find_new_extents(struct btrfs_root *root,
929 			    struct inode *inode, u64 newer_than,
930 			    u64 *off, u32 thresh)
931 {
932 	struct btrfs_path *path;
933 	struct btrfs_key min_key;
934 	struct extent_buffer *leaf;
935 	struct btrfs_file_extent_item *extent;
936 	int type;
937 	int ret;
938 	u64 ino = btrfs_ino(inode);
939 
940 	path = btrfs_alloc_path();
941 	if (!path)
942 		return -ENOMEM;
943 
944 	min_key.objectid = ino;
945 	min_key.type = BTRFS_EXTENT_DATA_KEY;
946 	min_key.offset = *off;
947 
948 	while (1) {
949 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
950 		if (ret != 0)
951 			goto none;
952 process_slot:
953 		if (min_key.objectid != ino)
954 			goto none;
955 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
956 			goto none;
957 
958 		leaf = path->nodes[0];
959 		extent = btrfs_item_ptr(leaf, path->slots[0],
960 					struct btrfs_file_extent_item);
961 
962 		type = btrfs_file_extent_type(leaf, extent);
963 		if (type == BTRFS_FILE_EXTENT_REG &&
964 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
965 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
966 			*off = min_key.offset;
967 			btrfs_free_path(path);
968 			return 0;
969 		}
970 
971 		path->slots[0]++;
972 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
973 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
974 			goto process_slot;
975 		}
976 
977 		if (min_key.offset == (u64)-1)
978 			goto none;
979 
980 		min_key.offset++;
981 		btrfs_release_path(path);
982 	}
983 none:
984 	btrfs_free_path(path);
985 	return -ENOENT;
986 }
987 
988 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
989 {
990 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
991 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
992 	struct extent_map *em;
993 	u64 len = PAGE_CACHE_SIZE;
994 
995 	/*
996 	 * hopefully we have this extent in the tree already, try without
997 	 * the full extent lock
998 	 */
999 	read_lock(&em_tree->lock);
1000 	em = lookup_extent_mapping(em_tree, start, len);
1001 	read_unlock(&em_tree->lock);
1002 
1003 	if (!em) {
1004 		struct extent_state *cached = NULL;
1005 		u64 end = start + len - 1;
1006 
1007 		/* get the big lock and read metadata off disk */
1008 		lock_extent_bits(io_tree, start, end, &cached);
1009 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1010 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1011 
1012 		if (IS_ERR(em))
1013 			return NULL;
1014 	}
1015 
1016 	return em;
1017 }
1018 
1019 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1020 {
1021 	struct extent_map *next;
1022 	bool ret = true;
1023 
1024 	/* this is the last extent */
1025 	if (em->start + em->len >= i_size_read(inode))
1026 		return false;
1027 
1028 	next = defrag_lookup_extent(inode, em->start + em->len);
1029 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1030 		ret = false;
1031 	else if ((em->block_start + em->block_len == next->block_start) &&
1032 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1033 		ret = false;
1034 
1035 	free_extent_map(next);
1036 	return ret;
1037 }
1038 
1039 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1040 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1041 			       int compress)
1042 {
1043 	struct extent_map *em;
1044 	int ret = 1;
1045 	bool next_mergeable = true;
1046 	bool prev_mergeable = true;
1047 
1048 	/*
1049 	 * make sure that once we start defragging an extent, we keep on
1050 	 * defragging it
1051 	 */
1052 	if (start < *defrag_end)
1053 		return 1;
1054 
1055 	*skip = 0;
1056 
1057 	em = defrag_lookup_extent(inode, start);
1058 	if (!em)
1059 		return 0;
1060 
1061 	/* this will cover holes, and inline extents */
1062 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1063 		ret = 0;
1064 		goto out;
1065 	}
1066 
1067 	if (!*defrag_end)
1068 		prev_mergeable = false;
1069 
1070 	next_mergeable = defrag_check_next_extent(inode, em);
1071 	/*
1072 	 * we hit a real extent, if it is big or the next extent is not a
1073 	 * real extent, don't bother defragging it
1074 	 */
1075 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1076 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1077 		ret = 0;
1078 out:
1079 	/*
1080 	 * last_len ends up being a counter of how many bytes we've defragged.
1081 	 * every time we choose not to defrag an extent, we reset *last_len
1082 	 * so that the next tiny extent will force a defrag.
1083 	 *
1084 	 * The end result of this is that tiny extents before a single big
1085 	 * extent will force at least part of that big extent to be defragged.
1086 	 */
1087 	if (ret) {
1088 		*defrag_end = extent_map_end(em);
1089 	} else {
1090 		*last_len = 0;
1091 		*skip = extent_map_end(em);
1092 		*defrag_end = 0;
1093 	}
1094 
1095 	free_extent_map(em);
1096 	return ret;
1097 }
1098 
1099 /*
1100  * it doesn't do much good to defrag one or two pages
1101  * at a time.  This pulls in a nice chunk of pages
1102  * to COW and defrag.
1103  *
1104  * It also makes sure the delalloc code has enough
1105  * dirty data to avoid making new small extents as part
1106  * of the defrag
1107  *
1108  * It's a good idea to start RA on this range
1109  * before calling this.
1110  */
1111 static int cluster_pages_for_defrag(struct inode *inode,
1112 				    struct page **pages,
1113 				    unsigned long start_index,
1114 				    unsigned long num_pages)
1115 {
1116 	unsigned long file_end;
1117 	u64 isize = i_size_read(inode);
1118 	u64 page_start;
1119 	u64 page_end;
1120 	u64 page_cnt;
1121 	int ret;
1122 	int i;
1123 	int i_done;
1124 	struct btrfs_ordered_extent *ordered;
1125 	struct extent_state *cached_state = NULL;
1126 	struct extent_io_tree *tree;
1127 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1128 
1129 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1130 	if (!isize || start_index > file_end)
1131 		return 0;
1132 
1133 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1134 
1135 	ret = btrfs_delalloc_reserve_space(inode,
1136 			start_index << PAGE_CACHE_SHIFT,
1137 			page_cnt << PAGE_CACHE_SHIFT);
1138 	if (ret)
1139 		return ret;
1140 	i_done = 0;
1141 	tree = &BTRFS_I(inode)->io_tree;
1142 
1143 	/* step one, lock all the pages */
1144 	for (i = 0; i < page_cnt; i++) {
1145 		struct page *page;
1146 again:
1147 		page = find_or_create_page(inode->i_mapping,
1148 					   start_index + i, mask);
1149 		if (!page)
1150 			break;
1151 
1152 		page_start = page_offset(page);
1153 		page_end = page_start + PAGE_CACHE_SIZE - 1;
1154 		while (1) {
1155 			lock_extent_bits(tree, page_start, page_end,
1156 					 &cached_state);
1157 			ordered = btrfs_lookup_ordered_extent(inode,
1158 							      page_start);
1159 			unlock_extent_cached(tree, page_start, page_end,
1160 					     &cached_state, GFP_NOFS);
1161 			if (!ordered)
1162 				break;
1163 
1164 			unlock_page(page);
1165 			btrfs_start_ordered_extent(inode, ordered, 1);
1166 			btrfs_put_ordered_extent(ordered);
1167 			lock_page(page);
1168 			/*
1169 			 * we unlocked the page above, so we need check if
1170 			 * it was released or not.
1171 			 */
1172 			if (page->mapping != inode->i_mapping) {
1173 				unlock_page(page);
1174 				page_cache_release(page);
1175 				goto again;
1176 			}
1177 		}
1178 
1179 		if (!PageUptodate(page)) {
1180 			btrfs_readpage(NULL, page);
1181 			lock_page(page);
1182 			if (!PageUptodate(page)) {
1183 				unlock_page(page);
1184 				page_cache_release(page);
1185 				ret = -EIO;
1186 				break;
1187 			}
1188 		}
1189 
1190 		if (page->mapping != inode->i_mapping) {
1191 			unlock_page(page);
1192 			page_cache_release(page);
1193 			goto again;
1194 		}
1195 
1196 		pages[i] = page;
1197 		i_done++;
1198 	}
1199 	if (!i_done || ret)
1200 		goto out;
1201 
1202 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1203 		goto out;
1204 
1205 	/*
1206 	 * so now we have a nice long stream of locked
1207 	 * and up to date pages, lets wait on them
1208 	 */
1209 	for (i = 0; i < i_done; i++)
1210 		wait_on_page_writeback(pages[i]);
1211 
1212 	page_start = page_offset(pages[0]);
1213 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1214 
1215 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1216 			 page_start, page_end - 1, &cached_state);
1217 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1218 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1219 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1220 			  &cached_state, GFP_NOFS);
1221 
1222 	if (i_done != page_cnt) {
1223 		spin_lock(&BTRFS_I(inode)->lock);
1224 		BTRFS_I(inode)->outstanding_extents++;
1225 		spin_unlock(&BTRFS_I(inode)->lock);
1226 		btrfs_delalloc_release_space(inode,
1227 				start_index << PAGE_CACHE_SHIFT,
1228 				(page_cnt - i_done) << PAGE_CACHE_SHIFT);
1229 	}
1230 
1231 
1232 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1233 			  &cached_state, GFP_NOFS);
1234 
1235 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1236 			     page_start, page_end - 1, &cached_state,
1237 			     GFP_NOFS);
1238 
1239 	for (i = 0; i < i_done; i++) {
1240 		clear_page_dirty_for_io(pages[i]);
1241 		ClearPageChecked(pages[i]);
1242 		set_page_extent_mapped(pages[i]);
1243 		set_page_dirty(pages[i]);
1244 		unlock_page(pages[i]);
1245 		page_cache_release(pages[i]);
1246 	}
1247 	return i_done;
1248 out:
1249 	for (i = 0; i < i_done; i++) {
1250 		unlock_page(pages[i]);
1251 		page_cache_release(pages[i]);
1252 	}
1253 	btrfs_delalloc_release_space(inode,
1254 			start_index << PAGE_CACHE_SHIFT,
1255 			page_cnt << PAGE_CACHE_SHIFT);
1256 	return ret;
1257 
1258 }
1259 
1260 int btrfs_defrag_file(struct inode *inode, struct file *file,
1261 		      struct btrfs_ioctl_defrag_range_args *range,
1262 		      u64 newer_than, unsigned long max_to_defrag)
1263 {
1264 	struct btrfs_root *root = BTRFS_I(inode)->root;
1265 	struct file_ra_state *ra = NULL;
1266 	unsigned long last_index;
1267 	u64 isize = i_size_read(inode);
1268 	u64 last_len = 0;
1269 	u64 skip = 0;
1270 	u64 defrag_end = 0;
1271 	u64 newer_off = range->start;
1272 	unsigned long i;
1273 	unsigned long ra_index = 0;
1274 	int ret;
1275 	int defrag_count = 0;
1276 	int compress_type = BTRFS_COMPRESS_ZLIB;
1277 	u32 extent_thresh = range->extent_thresh;
1278 	unsigned long max_cluster = SZ_256K >> PAGE_CACHE_SHIFT;
1279 	unsigned long cluster = max_cluster;
1280 	u64 new_align = ~((u64)SZ_128K - 1);
1281 	struct page **pages = NULL;
1282 
1283 	if (isize == 0)
1284 		return 0;
1285 
1286 	if (range->start >= isize)
1287 		return -EINVAL;
1288 
1289 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1290 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1291 			return -EINVAL;
1292 		if (range->compress_type)
1293 			compress_type = range->compress_type;
1294 	}
1295 
1296 	if (extent_thresh == 0)
1297 		extent_thresh = SZ_256K;
1298 
1299 	/*
1300 	 * if we were not given a file, allocate a readahead
1301 	 * context
1302 	 */
1303 	if (!file) {
1304 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1305 		if (!ra)
1306 			return -ENOMEM;
1307 		file_ra_state_init(ra, inode->i_mapping);
1308 	} else {
1309 		ra = &file->f_ra;
1310 	}
1311 
1312 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1313 			GFP_NOFS);
1314 	if (!pages) {
1315 		ret = -ENOMEM;
1316 		goto out_ra;
1317 	}
1318 
1319 	/* find the last page to defrag */
1320 	if (range->start + range->len > range->start) {
1321 		last_index = min_t(u64, isize - 1,
1322 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1323 	} else {
1324 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1325 	}
1326 
1327 	if (newer_than) {
1328 		ret = find_new_extents(root, inode, newer_than,
1329 				       &newer_off, SZ_64K);
1330 		if (!ret) {
1331 			range->start = newer_off;
1332 			/*
1333 			 * we always align our defrag to help keep
1334 			 * the extents in the file evenly spaced
1335 			 */
1336 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1337 		} else
1338 			goto out_ra;
1339 	} else {
1340 		i = range->start >> PAGE_CACHE_SHIFT;
1341 	}
1342 	if (!max_to_defrag)
1343 		max_to_defrag = last_index - i + 1;
1344 
1345 	/*
1346 	 * make writeback starts from i, so the defrag range can be
1347 	 * written sequentially.
1348 	 */
1349 	if (i < inode->i_mapping->writeback_index)
1350 		inode->i_mapping->writeback_index = i;
1351 
1352 	while (i <= last_index && defrag_count < max_to_defrag &&
1353 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) {
1354 		/*
1355 		 * make sure we stop running if someone unmounts
1356 		 * the FS
1357 		 */
1358 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1359 			break;
1360 
1361 		if (btrfs_defrag_cancelled(root->fs_info)) {
1362 			btrfs_debug(root->fs_info, "defrag_file cancelled");
1363 			ret = -EAGAIN;
1364 			break;
1365 		}
1366 
1367 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1368 					 extent_thresh, &last_len, &skip,
1369 					 &defrag_end, range->flags &
1370 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1371 			unsigned long next;
1372 			/*
1373 			 * the should_defrag function tells us how much to skip
1374 			 * bump our counter by the suggested amount
1375 			 */
1376 			next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE);
1377 			i = max(i + 1, next);
1378 			continue;
1379 		}
1380 
1381 		if (!newer_than) {
1382 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1383 				   PAGE_CACHE_SHIFT) - i;
1384 			cluster = min(cluster, max_cluster);
1385 		} else {
1386 			cluster = max_cluster;
1387 		}
1388 
1389 		if (i + cluster > ra_index) {
1390 			ra_index = max(i, ra_index);
1391 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1392 				       cluster);
1393 			ra_index += cluster;
1394 		}
1395 
1396 		inode_lock(inode);
1397 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1398 			BTRFS_I(inode)->force_compress = compress_type;
1399 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1400 		if (ret < 0) {
1401 			inode_unlock(inode);
1402 			goto out_ra;
1403 		}
1404 
1405 		defrag_count += ret;
1406 		balance_dirty_pages_ratelimited(inode->i_mapping);
1407 		inode_unlock(inode);
1408 
1409 		if (newer_than) {
1410 			if (newer_off == (u64)-1)
1411 				break;
1412 
1413 			if (ret > 0)
1414 				i += ret;
1415 
1416 			newer_off = max(newer_off + 1,
1417 					(u64)i << PAGE_CACHE_SHIFT);
1418 
1419 			ret = find_new_extents(root, inode, newer_than,
1420 					       &newer_off, SZ_64K);
1421 			if (!ret) {
1422 				range->start = newer_off;
1423 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1424 			} else {
1425 				break;
1426 			}
1427 		} else {
1428 			if (ret > 0) {
1429 				i += ret;
1430 				last_len += ret << PAGE_CACHE_SHIFT;
1431 			} else {
1432 				i++;
1433 				last_len = 0;
1434 			}
1435 		}
1436 	}
1437 
1438 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1439 		filemap_flush(inode->i_mapping);
1440 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1441 			     &BTRFS_I(inode)->runtime_flags))
1442 			filemap_flush(inode->i_mapping);
1443 	}
1444 
1445 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1446 		/* the filemap_flush will queue IO into the worker threads, but
1447 		 * we have to make sure the IO is actually started and that
1448 		 * ordered extents get created before we return
1449 		 */
1450 		atomic_inc(&root->fs_info->async_submit_draining);
1451 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1452 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1453 			wait_event(root->fs_info->async_submit_wait,
1454 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1455 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1456 		}
1457 		atomic_dec(&root->fs_info->async_submit_draining);
1458 	}
1459 
1460 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1461 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1462 	}
1463 
1464 	ret = defrag_count;
1465 
1466 out_ra:
1467 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1468 		inode_lock(inode);
1469 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1470 		inode_unlock(inode);
1471 	}
1472 	if (!file)
1473 		kfree(ra);
1474 	kfree(pages);
1475 	return ret;
1476 }
1477 
1478 static noinline int btrfs_ioctl_resize(struct file *file,
1479 					void __user *arg)
1480 {
1481 	u64 new_size;
1482 	u64 old_size;
1483 	u64 devid = 1;
1484 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1485 	struct btrfs_ioctl_vol_args *vol_args;
1486 	struct btrfs_trans_handle *trans;
1487 	struct btrfs_device *device = NULL;
1488 	char *sizestr;
1489 	char *retptr;
1490 	char *devstr = NULL;
1491 	int ret = 0;
1492 	int mod = 0;
1493 
1494 	if (!capable(CAP_SYS_ADMIN))
1495 		return -EPERM;
1496 
1497 	ret = mnt_want_write_file(file);
1498 	if (ret)
1499 		return ret;
1500 
1501 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1502 			1)) {
1503 		mnt_drop_write_file(file);
1504 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1505 	}
1506 
1507 	mutex_lock(&root->fs_info->volume_mutex);
1508 	vol_args = memdup_user(arg, sizeof(*vol_args));
1509 	if (IS_ERR(vol_args)) {
1510 		ret = PTR_ERR(vol_args);
1511 		goto out;
1512 	}
1513 
1514 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1515 
1516 	sizestr = vol_args->name;
1517 	devstr = strchr(sizestr, ':');
1518 	if (devstr) {
1519 		sizestr = devstr + 1;
1520 		*devstr = '\0';
1521 		devstr = vol_args->name;
1522 		ret = kstrtoull(devstr, 10, &devid);
1523 		if (ret)
1524 			goto out_free;
1525 		if (!devid) {
1526 			ret = -EINVAL;
1527 			goto out_free;
1528 		}
1529 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1530 	}
1531 
1532 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1533 	if (!device) {
1534 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1535 		       devid);
1536 		ret = -ENODEV;
1537 		goto out_free;
1538 	}
1539 
1540 	if (!device->writeable) {
1541 		btrfs_info(root->fs_info,
1542 			   "resizer unable to apply on readonly device %llu",
1543 		       devid);
1544 		ret = -EPERM;
1545 		goto out_free;
1546 	}
1547 
1548 	if (!strcmp(sizestr, "max"))
1549 		new_size = device->bdev->bd_inode->i_size;
1550 	else {
1551 		if (sizestr[0] == '-') {
1552 			mod = -1;
1553 			sizestr++;
1554 		} else if (sizestr[0] == '+') {
1555 			mod = 1;
1556 			sizestr++;
1557 		}
1558 		new_size = memparse(sizestr, &retptr);
1559 		if (*retptr != '\0' || new_size == 0) {
1560 			ret = -EINVAL;
1561 			goto out_free;
1562 		}
1563 	}
1564 
1565 	if (device->is_tgtdev_for_dev_replace) {
1566 		ret = -EPERM;
1567 		goto out_free;
1568 	}
1569 
1570 	old_size = btrfs_device_get_total_bytes(device);
1571 
1572 	if (mod < 0) {
1573 		if (new_size > old_size) {
1574 			ret = -EINVAL;
1575 			goto out_free;
1576 		}
1577 		new_size = old_size - new_size;
1578 	} else if (mod > 0) {
1579 		if (new_size > ULLONG_MAX - old_size) {
1580 			ret = -ERANGE;
1581 			goto out_free;
1582 		}
1583 		new_size = old_size + new_size;
1584 	}
1585 
1586 	if (new_size < SZ_256M) {
1587 		ret = -EINVAL;
1588 		goto out_free;
1589 	}
1590 	if (new_size > device->bdev->bd_inode->i_size) {
1591 		ret = -EFBIG;
1592 		goto out_free;
1593 	}
1594 
1595 	new_size = div_u64(new_size, root->sectorsize);
1596 	new_size *= root->sectorsize;
1597 
1598 	btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1599 		      rcu_str_deref(device->name), new_size);
1600 
1601 	if (new_size > old_size) {
1602 		trans = btrfs_start_transaction(root, 0);
1603 		if (IS_ERR(trans)) {
1604 			ret = PTR_ERR(trans);
1605 			goto out_free;
1606 		}
1607 		ret = btrfs_grow_device(trans, device, new_size);
1608 		btrfs_commit_transaction(trans, root);
1609 	} else if (new_size < old_size) {
1610 		ret = btrfs_shrink_device(device, new_size);
1611 	} /* equal, nothing need to do */
1612 
1613 out_free:
1614 	kfree(vol_args);
1615 out:
1616 	mutex_unlock(&root->fs_info->volume_mutex);
1617 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1618 	mnt_drop_write_file(file);
1619 	return ret;
1620 }
1621 
1622 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1623 				char *name, unsigned long fd, int subvol,
1624 				u64 *transid, bool readonly,
1625 				struct btrfs_qgroup_inherit *inherit)
1626 {
1627 	int namelen;
1628 	int ret = 0;
1629 
1630 	ret = mnt_want_write_file(file);
1631 	if (ret)
1632 		goto out;
1633 
1634 	namelen = strlen(name);
1635 	if (strchr(name, '/')) {
1636 		ret = -EINVAL;
1637 		goto out_drop_write;
1638 	}
1639 
1640 	if (name[0] == '.' &&
1641 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1642 		ret = -EEXIST;
1643 		goto out_drop_write;
1644 	}
1645 
1646 	if (subvol) {
1647 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1648 				     NULL, transid, readonly, inherit);
1649 	} else {
1650 		struct fd src = fdget(fd);
1651 		struct inode *src_inode;
1652 		if (!src.file) {
1653 			ret = -EINVAL;
1654 			goto out_drop_write;
1655 		}
1656 
1657 		src_inode = file_inode(src.file);
1658 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1659 			btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1660 				   "Snapshot src from another FS");
1661 			ret = -EXDEV;
1662 		} else if (!inode_owner_or_capable(src_inode)) {
1663 			/*
1664 			 * Subvolume creation is not restricted, but snapshots
1665 			 * are limited to own subvolumes only
1666 			 */
1667 			ret = -EPERM;
1668 		} else {
1669 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1670 					     BTRFS_I(src_inode)->root,
1671 					     transid, readonly, inherit);
1672 		}
1673 		fdput(src);
1674 	}
1675 out_drop_write:
1676 	mnt_drop_write_file(file);
1677 out:
1678 	return ret;
1679 }
1680 
1681 static noinline int btrfs_ioctl_snap_create(struct file *file,
1682 					    void __user *arg, int subvol)
1683 {
1684 	struct btrfs_ioctl_vol_args *vol_args;
1685 	int ret;
1686 
1687 	vol_args = memdup_user(arg, sizeof(*vol_args));
1688 	if (IS_ERR(vol_args))
1689 		return PTR_ERR(vol_args);
1690 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1691 
1692 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1693 					      vol_args->fd, subvol,
1694 					      NULL, false, NULL);
1695 
1696 	kfree(vol_args);
1697 	return ret;
1698 }
1699 
1700 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1701 					       void __user *arg, int subvol)
1702 {
1703 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1704 	int ret;
1705 	u64 transid = 0;
1706 	u64 *ptr = NULL;
1707 	bool readonly = false;
1708 	struct btrfs_qgroup_inherit *inherit = NULL;
1709 
1710 	vol_args = memdup_user(arg, sizeof(*vol_args));
1711 	if (IS_ERR(vol_args))
1712 		return PTR_ERR(vol_args);
1713 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1714 
1715 	if (vol_args->flags &
1716 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1717 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1718 		ret = -EOPNOTSUPP;
1719 		goto free_args;
1720 	}
1721 
1722 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1723 		ptr = &transid;
1724 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1725 		readonly = true;
1726 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1727 		if (vol_args->size > PAGE_CACHE_SIZE) {
1728 			ret = -EINVAL;
1729 			goto free_args;
1730 		}
1731 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1732 		if (IS_ERR(inherit)) {
1733 			ret = PTR_ERR(inherit);
1734 			goto free_args;
1735 		}
1736 	}
1737 
1738 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1739 					      vol_args->fd, subvol, ptr,
1740 					      readonly, inherit);
1741 	if (ret)
1742 		goto free_inherit;
1743 
1744 	if (ptr && copy_to_user(arg +
1745 				offsetof(struct btrfs_ioctl_vol_args_v2,
1746 					transid),
1747 				ptr, sizeof(*ptr)))
1748 		ret = -EFAULT;
1749 
1750 free_inherit:
1751 	kfree(inherit);
1752 free_args:
1753 	kfree(vol_args);
1754 	return ret;
1755 }
1756 
1757 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1758 						void __user *arg)
1759 {
1760 	struct inode *inode = file_inode(file);
1761 	struct btrfs_root *root = BTRFS_I(inode)->root;
1762 	int ret = 0;
1763 	u64 flags = 0;
1764 
1765 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1766 		return -EINVAL;
1767 
1768 	down_read(&root->fs_info->subvol_sem);
1769 	if (btrfs_root_readonly(root))
1770 		flags |= BTRFS_SUBVOL_RDONLY;
1771 	up_read(&root->fs_info->subvol_sem);
1772 
1773 	if (copy_to_user(arg, &flags, sizeof(flags)))
1774 		ret = -EFAULT;
1775 
1776 	return ret;
1777 }
1778 
1779 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1780 					      void __user *arg)
1781 {
1782 	struct inode *inode = file_inode(file);
1783 	struct btrfs_root *root = BTRFS_I(inode)->root;
1784 	struct btrfs_trans_handle *trans;
1785 	u64 root_flags;
1786 	u64 flags;
1787 	int ret = 0;
1788 
1789 	if (!inode_owner_or_capable(inode))
1790 		return -EPERM;
1791 
1792 	ret = mnt_want_write_file(file);
1793 	if (ret)
1794 		goto out;
1795 
1796 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1797 		ret = -EINVAL;
1798 		goto out_drop_write;
1799 	}
1800 
1801 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1802 		ret = -EFAULT;
1803 		goto out_drop_write;
1804 	}
1805 
1806 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1807 		ret = -EINVAL;
1808 		goto out_drop_write;
1809 	}
1810 
1811 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1812 		ret = -EOPNOTSUPP;
1813 		goto out_drop_write;
1814 	}
1815 
1816 	down_write(&root->fs_info->subvol_sem);
1817 
1818 	/* nothing to do */
1819 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1820 		goto out_drop_sem;
1821 
1822 	root_flags = btrfs_root_flags(&root->root_item);
1823 	if (flags & BTRFS_SUBVOL_RDONLY) {
1824 		btrfs_set_root_flags(&root->root_item,
1825 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1826 	} else {
1827 		/*
1828 		 * Block RO -> RW transition if this subvolume is involved in
1829 		 * send
1830 		 */
1831 		spin_lock(&root->root_item_lock);
1832 		if (root->send_in_progress == 0) {
1833 			btrfs_set_root_flags(&root->root_item,
1834 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1835 			spin_unlock(&root->root_item_lock);
1836 		} else {
1837 			spin_unlock(&root->root_item_lock);
1838 			btrfs_warn(root->fs_info,
1839 			"Attempt to set subvolume %llu read-write during send",
1840 					root->root_key.objectid);
1841 			ret = -EPERM;
1842 			goto out_drop_sem;
1843 		}
1844 	}
1845 
1846 	trans = btrfs_start_transaction(root, 1);
1847 	if (IS_ERR(trans)) {
1848 		ret = PTR_ERR(trans);
1849 		goto out_reset;
1850 	}
1851 
1852 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1853 				&root->root_key, &root->root_item);
1854 
1855 	btrfs_commit_transaction(trans, root);
1856 out_reset:
1857 	if (ret)
1858 		btrfs_set_root_flags(&root->root_item, root_flags);
1859 out_drop_sem:
1860 	up_write(&root->fs_info->subvol_sem);
1861 out_drop_write:
1862 	mnt_drop_write_file(file);
1863 out:
1864 	return ret;
1865 }
1866 
1867 /*
1868  * helper to check if the subvolume references other subvolumes
1869  */
1870 static noinline int may_destroy_subvol(struct btrfs_root *root)
1871 {
1872 	struct btrfs_path *path;
1873 	struct btrfs_dir_item *di;
1874 	struct btrfs_key key;
1875 	u64 dir_id;
1876 	int ret;
1877 
1878 	path = btrfs_alloc_path();
1879 	if (!path)
1880 		return -ENOMEM;
1881 
1882 	/* Make sure this root isn't set as the default subvol */
1883 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1884 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1885 				   dir_id, "default", 7, 0);
1886 	if (di && !IS_ERR(di)) {
1887 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1888 		if (key.objectid == root->root_key.objectid) {
1889 			ret = -EPERM;
1890 			btrfs_err(root->fs_info, "deleting default subvolume "
1891 				  "%llu is not allowed", key.objectid);
1892 			goto out;
1893 		}
1894 		btrfs_release_path(path);
1895 	}
1896 
1897 	key.objectid = root->root_key.objectid;
1898 	key.type = BTRFS_ROOT_REF_KEY;
1899 	key.offset = (u64)-1;
1900 
1901 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1902 				&key, path, 0, 0);
1903 	if (ret < 0)
1904 		goto out;
1905 	BUG_ON(ret == 0);
1906 
1907 	ret = 0;
1908 	if (path->slots[0] > 0) {
1909 		path->slots[0]--;
1910 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1911 		if (key.objectid == root->root_key.objectid &&
1912 		    key.type == BTRFS_ROOT_REF_KEY)
1913 			ret = -ENOTEMPTY;
1914 	}
1915 out:
1916 	btrfs_free_path(path);
1917 	return ret;
1918 }
1919 
1920 static noinline int key_in_sk(struct btrfs_key *key,
1921 			      struct btrfs_ioctl_search_key *sk)
1922 {
1923 	struct btrfs_key test;
1924 	int ret;
1925 
1926 	test.objectid = sk->min_objectid;
1927 	test.type = sk->min_type;
1928 	test.offset = sk->min_offset;
1929 
1930 	ret = btrfs_comp_cpu_keys(key, &test);
1931 	if (ret < 0)
1932 		return 0;
1933 
1934 	test.objectid = sk->max_objectid;
1935 	test.type = sk->max_type;
1936 	test.offset = sk->max_offset;
1937 
1938 	ret = btrfs_comp_cpu_keys(key, &test);
1939 	if (ret > 0)
1940 		return 0;
1941 	return 1;
1942 }
1943 
1944 static noinline int copy_to_sk(struct btrfs_root *root,
1945 			       struct btrfs_path *path,
1946 			       struct btrfs_key *key,
1947 			       struct btrfs_ioctl_search_key *sk,
1948 			       size_t *buf_size,
1949 			       char __user *ubuf,
1950 			       unsigned long *sk_offset,
1951 			       int *num_found)
1952 {
1953 	u64 found_transid;
1954 	struct extent_buffer *leaf;
1955 	struct btrfs_ioctl_search_header sh;
1956 	struct btrfs_key test;
1957 	unsigned long item_off;
1958 	unsigned long item_len;
1959 	int nritems;
1960 	int i;
1961 	int slot;
1962 	int ret = 0;
1963 
1964 	leaf = path->nodes[0];
1965 	slot = path->slots[0];
1966 	nritems = btrfs_header_nritems(leaf);
1967 
1968 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1969 		i = nritems;
1970 		goto advance_key;
1971 	}
1972 	found_transid = btrfs_header_generation(leaf);
1973 
1974 	for (i = slot; i < nritems; i++) {
1975 		item_off = btrfs_item_ptr_offset(leaf, i);
1976 		item_len = btrfs_item_size_nr(leaf, i);
1977 
1978 		btrfs_item_key_to_cpu(leaf, key, i);
1979 		if (!key_in_sk(key, sk))
1980 			continue;
1981 
1982 		if (sizeof(sh) + item_len > *buf_size) {
1983 			if (*num_found) {
1984 				ret = 1;
1985 				goto out;
1986 			}
1987 
1988 			/*
1989 			 * return one empty item back for v1, which does not
1990 			 * handle -EOVERFLOW
1991 			 */
1992 
1993 			*buf_size = sizeof(sh) + item_len;
1994 			item_len = 0;
1995 			ret = -EOVERFLOW;
1996 		}
1997 
1998 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1999 			ret = 1;
2000 			goto out;
2001 		}
2002 
2003 		sh.objectid = key->objectid;
2004 		sh.offset = key->offset;
2005 		sh.type = key->type;
2006 		sh.len = item_len;
2007 		sh.transid = found_transid;
2008 
2009 		/* copy search result header */
2010 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2011 			ret = -EFAULT;
2012 			goto out;
2013 		}
2014 
2015 		*sk_offset += sizeof(sh);
2016 
2017 		if (item_len) {
2018 			char __user *up = ubuf + *sk_offset;
2019 			/* copy the item */
2020 			if (read_extent_buffer_to_user(leaf, up,
2021 						       item_off, item_len)) {
2022 				ret = -EFAULT;
2023 				goto out;
2024 			}
2025 
2026 			*sk_offset += item_len;
2027 		}
2028 		(*num_found)++;
2029 
2030 		if (ret) /* -EOVERFLOW from above */
2031 			goto out;
2032 
2033 		if (*num_found >= sk->nr_items) {
2034 			ret = 1;
2035 			goto out;
2036 		}
2037 	}
2038 advance_key:
2039 	ret = 0;
2040 	test.objectid = sk->max_objectid;
2041 	test.type = sk->max_type;
2042 	test.offset = sk->max_offset;
2043 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2044 		ret = 1;
2045 	else if (key->offset < (u64)-1)
2046 		key->offset++;
2047 	else if (key->type < (u8)-1) {
2048 		key->offset = 0;
2049 		key->type++;
2050 	} else if (key->objectid < (u64)-1) {
2051 		key->offset = 0;
2052 		key->type = 0;
2053 		key->objectid++;
2054 	} else
2055 		ret = 1;
2056 out:
2057 	/*
2058 	 *  0: all items from this leaf copied, continue with next
2059 	 *  1: * more items can be copied, but unused buffer is too small
2060 	 *     * all items were found
2061 	 *     Either way, it will stops the loop which iterates to the next
2062 	 *     leaf
2063 	 *  -EOVERFLOW: item was to large for buffer
2064 	 *  -EFAULT: could not copy extent buffer back to userspace
2065 	 */
2066 	return ret;
2067 }
2068 
2069 static noinline int search_ioctl(struct inode *inode,
2070 				 struct btrfs_ioctl_search_key *sk,
2071 				 size_t *buf_size,
2072 				 char __user *ubuf)
2073 {
2074 	struct btrfs_root *root;
2075 	struct btrfs_key key;
2076 	struct btrfs_path *path;
2077 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2078 	int ret;
2079 	int num_found = 0;
2080 	unsigned long sk_offset = 0;
2081 
2082 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2083 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2084 		return -EOVERFLOW;
2085 	}
2086 
2087 	path = btrfs_alloc_path();
2088 	if (!path)
2089 		return -ENOMEM;
2090 
2091 	if (sk->tree_id == 0) {
2092 		/* search the root of the inode that was passed */
2093 		root = BTRFS_I(inode)->root;
2094 	} else {
2095 		key.objectid = sk->tree_id;
2096 		key.type = BTRFS_ROOT_ITEM_KEY;
2097 		key.offset = (u64)-1;
2098 		root = btrfs_read_fs_root_no_name(info, &key);
2099 		if (IS_ERR(root)) {
2100 			btrfs_err(info, "could not find root %llu",
2101 			       sk->tree_id);
2102 			btrfs_free_path(path);
2103 			return -ENOENT;
2104 		}
2105 	}
2106 
2107 	key.objectid = sk->min_objectid;
2108 	key.type = sk->min_type;
2109 	key.offset = sk->min_offset;
2110 
2111 	while (1) {
2112 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2113 		if (ret != 0) {
2114 			if (ret > 0)
2115 				ret = 0;
2116 			goto err;
2117 		}
2118 		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2119 				 &sk_offset, &num_found);
2120 		btrfs_release_path(path);
2121 		if (ret)
2122 			break;
2123 
2124 	}
2125 	if (ret > 0)
2126 		ret = 0;
2127 err:
2128 	sk->nr_items = num_found;
2129 	btrfs_free_path(path);
2130 	return ret;
2131 }
2132 
2133 static noinline int btrfs_ioctl_tree_search(struct file *file,
2134 					   void __user *argp)
2135 {
2136 	struct btrfs_ioctl_search_args __user *uargs;
2137 	struct btrfs_ioctl_search_key sk;
2138 	struct inode *inode;
2139 	int ret;
2140 	size_t buf_size;
2141 
2142 	if (!capable(CAP_SYS_ADMIN))
2143 		return -EPERM;
2144 
2145 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2146 
2147 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2148 		return -EFAULT;
2149 
2150 	buf_size = sizeof(uargs->buf);
2151 
2152 	inode = file_inode(file);
2153 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2154 
2155 	/*
2156 	 * In the origin implementation an overflow is handled by returning a
2157 	 * search header with a len of zero, so reset ret.
2158 	 */
2159 	if (ret == -EOVERFLOW)
2160 		ret = 0;
2161 
2162 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2163 		ret = -EFAULT;
2164 	return ret;
2165 }
2166 
2167 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2168 					       void __user *argp)
2169 {
2170 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2171 	struct btrfs_ioctl_search_args_v2 args;
2172 	struct inode *inode;
2173 	int ret;
2174 	size_t buf_size;
2175 	const size_t buf_limit = SZ_16M;
2176 
2177 	if (!capable(CAP_SYS_ADMIN))
2178 		return -EPERM;
2179 
2180 	/* copy search header and buffer size */
2181 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2182 	if (copy_from_user(&args, uarg, sizeof(args)))
2183 		return -EFAULT;
2184 
2185 	buf_size = args.buf_size;
2186 
2187 	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2188 		return -EOVERFLOW;
2189 
2190 	/* limit result size to 16MB */
2191 	if (buf_size > buf_limit)
2192 		buf_size = buf_limit;
2193 
2194 	inode = file_inode(file);
2195 	ret = search_ioctl(inode, &args.key, &buf_size,
2196 			   (char *)(&uarg->buf[0]));
2197 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2198 		ret = -EFAULT;
2199 	else if (ret == -EOVERFLOW &&
2200 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2201 		ret = -EFAULT;
2202 
2203 	return ret;
2204 }
2205 
2206 /*
2207  * Search INODE_REFs to identify path name of 'dirid' directory
2208  * in a 'tree_id' tree. and sets path name to 'name'.
2209  */
2210 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2211 				u64 tree_id, u64 dirid, char *name)
2212 {
2213 	struct btrfs_root *root;
2214 	struct btrfs_key key;
2215 	char *ptr;
2216 	int ret = -1;
2217 	int slot;
2218 	int len;
2219 	int total_len = 0;
2220 	struct btrfs_inode_ref *iref;
2221 	struct extent_buffer *l;
2222 	struct btrfs_path *path;
2223 
2224 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2225 		name[0]='\0';
2226 		return 0;
2227 	}
2228 
2229 	path = btrfs_alloc_path();
2230 	if (!path)
2231 		return -ENOMEM;
2232 
2233 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2234 
2235 	key.objectid = tree_id;
2236 	key.type = BTRFS_ROOT_ITEM_KEY;
2237 	key.offset = (u64)-1;
2238 	root = btrfs_read_fs_root_no_name(info, &key);
2239 	if (IS_ERR(root)) {
2240 		btrfs_err(info, "could not find root %llu", tree_id);
2241 		ret = -ENOENT;
2242 		goto out;
2243 	}
2244 
2245 	key.objectid = dirid;
2246 	key.type = BTRFS_INODE_REF_KEY;
2247 	key.offset = (u64)-1;
2248 
2249 	while (1) {
2250 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2251 		if (ret < 0)
2252 			goto out;
2253 		else if (ret > 0) {
2254 			ret = btrfs_previous_item(root, path, dirid,
2255 						  BTRFS_INODE_REF_KEY);
2256 			if (ret < 0)
2257 				goto out;
2258 			else if (ret > 0) {
2259 				ret = -ENOENT;
2260 				goto out;
2261 			}
2262 		}
2263 
2264 		l = path->nodes[0];
2265 		slot = path->slots[0];
2266 		btrfs_item_key_to_cpu(l, &key, slot);
2267 
2268 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2269 		len = btrfs_inode_ref_name_len(l, iref);
2270 		ptr -= len + 1;
2271 		total_len += len + 1;
2272 		if (ptr < name) {
2273 			ret = -ENAMETOOLONG;
2274 			goto out;
2275 		}
2276 
2277 		*(ptr + len) = '/';
2278 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2279 
2280 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2281 			break;
2282 
2283 		btrfs_release_path(path);
2284 		key.objectid = key.offset;
2285 		key.offset = (u64)-1;
2286 		dirid = key.objectid;
2287 	}
2288 	memmove(name, ptr, total_len);
2289 	name[total_len] = '\0';
2290 	ret = 0;
2291 out:
2292 	btrfs_free_path(path);
2293 	return ret;
2294 }
2295 
2296 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2297 					   void __user *argp)
2298 {
2299 	 struct btrfs_ioctl_ino_lookup_args *args;
2300 	 struct inode *inode;
2301 	int ret = 0;
2302 
2303 	args = memdup_user(argp, sizeof(*args));
2304 	if (IS_ERR(args))
2305 		return PTR_ERR(args);
2306 
2307 	inode = file_inode(file);
2308 
2309 	/*
2310 	 * Unprivileged query to obtain the containing subvolume root id. The
2311 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2312 	 */
2313 	if (args->treeid == 0)
2314 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2315 
2316 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2317 		args->name[0] = 0;
2318 		goto out;
2319 	}
2320 
2321 	if (!capable(CAP_SYS_ADMIN)) {
2322 		ret = -EPERM;
2323 		goto out;
2324 	}
2325 
2326 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2327 					args->treeid, args->objectid,
2328 					args->name);
2329 
2330 out:
2331 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2332 		ret = -EFAULT;
2333 
2334 	kfree(args);
2335 	return ret;
2336 }
2337 
2338 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2339 					     void __user *arg)
2340 {
2341 	struct dentry *parent = file->f_path.dentry;
2342 	struct dentry *dentry;
2343 	struct inode *dir = d_inode(parent);
2344 	struct inode *inode;
2345 	struct btrfs_root *root = BTRFS_I(dir)->root;
2346 	struct btrfs_root *dest = NULL;
2347 	struct btrfs_ioctl_vol_args *vol_args;
2348 	struct btrfs_trans_handle *trans;
2349 	struct btrfs_block_rsv block_rsv;
2350 	u64 root_flags;
2351 	u64 qgroup_reserved;
2352 	int namelen;
2353 	int ret;
2354 	int err = 0;
2355 
2356 	vol_args = memdup_user(arg, sizeof(*vol_args));
2357 	if (IS_ERR(vol_args))
2358 		return PTR_ERR(vol_args);
2359 
2360 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2361 	namelen = strlen(vol_args->name);
2362 	if (strchr(vol_args->name, '/') ||
2363 	    strncmp(vol_args->name, "..", namelen) == 0) {
2364 		err = -EINVAL;
2365 		goto out;
2366 	}
2367 
2368 	err = mnt_want_write_file(file);
2369 	if (err)
2370 		goto out;
2371 
2372 
2373 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2374 	if (err == -EINTR)
2375 		goto out_drop_write;
2376 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2377 	if (IS_ERR(dentry)) {
2378 		err = PTR_ERR(dentry);
2379 		goto out_unlock_dir;
2380 	}
2381 
2382 	if (d_really_is_negative(dentry)) {
2383 		err = -ENOENT;
2384 		goto out_dput;
2385 	}
2386 
2387 	inode = d_inode(dentry);
2388 	dest = BTRFS_I(inode)->root;
2389 	if (!capable(CAP_SYS_ADMIN)) {
2390 		/*
2391 		 * Regular user.  Only allow this with a special mount
2392 		 * option, when the user has write+exec access to the
2393 		 * subvol root, and when rmdir(2) would have been
2394 		 * allowed.
2395 		 *
2396 		 * Note that this is _not_ check that the subvol is
2397 		 * empty or doesn't contain data that we wouldn't
2398 		 * otherwise be able to delete.
2399 		 *
2400 		 * Users who want to delete empty subvols should try
2401 		 * rmdir(2).
2402 		 */
2403 		err = -EPERM;
2404 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2405 			goto out_dput;
2406 
2407 		/*
2408 		 * Do not allow deletion if the parent dir is the same
2409 		 * as the dir to be deleted.  That means the ioctl
2410 		 * must be called on the dentry referencing the root
2411 		 * of the subvol, not a random directory contained
2412 		 * within it.
2413 		 */
2414 		err = -EINVAL;
2415 		if (root == dest)
2416 			goto out_dput;
2417 
2418 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2419 		if (err)
2420 			goto out_dput;
2421 	}
2422 
2423 	/* check if subvolume may be deleted by a user */
2424 	err = btrfs_may_delete(dir, dentry, 1);
2425 	if (err)
2426 		goto out_dput;
2427 
2428 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2429 		err = -EINVAL;
2430 		goto out_dput;
2431 	}
2432 
2433 	inode_lock(inode);
2434 
2435 	/*
2436 	 * Don't allow to delete a subvolume with send in progress. This is
2437 	 * inside the i_mutex so the error handling that has to drop the bit
2438 	 * again is not run concurrently.
2439 	 */
2440 	spin_lock(&dest->root_item_lock);
2441 	root_flags = btrfs_root_flags(&dest->root_item);
2442 	if (dest->send_in_progress == 0) {
2443 		btrfs_set_root_flags(&dest->root_item,
2444 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2445 		spin_unlock(&dest->root_item_lock);
2446 	} else {
2447 		spin_unlock(&dest->root_item_lock);
2448 		btrfs_warn(root->fs_info,
2449 			"Attempt to delete subvolume %llu during send",
2450 			dest->root_key.objectid);
2451 		err = -EPERM;
2452 		goto out_unlock_inode;
2453 	}
2454 
2455 	down_write(&root->fs_info->subvol_sem);
2456 
2457 	err = may_destroy_subvol(dest);
2458 	if (err)
2459 		goto out_up_write;
2460 
2461 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2462 	/*
2463 	 * One for dir inode, two for dir entries, two for root
2464 	 * ref/backref.
2465 	 */
2466 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2467 					       5, &qgroup_reserved, true);
2468 	if (err)
2469 		goto out_up_write;
2470 
2471 	trans = btrfs_start_transaction(root, 0);
2472 	if (IS_ERR(trans)) {
2473 		err = PTR_ERR(trans);
2474 		goto out_release;
2475 	}
2476 	trans->block_rsv = &block_rsv;
2477 	trans->bytes_reserved = block_rsv.size;
2478 
2479 	ret = btrfs_unlink_subvol(trans, root, dir,
2480 				dest->root_key.objectid,
2481 				dentry->d_name.name,
2482 				dentry->d_name.len);
2483 	if (ret) {
2484 		err = ret;
2485 		btrfs_abort_transaction(trans, root, ret);
2486 		goto out_end_trans;
2487 	}
2488 
2489 	btrfs_record_root_in_trans(trans, dest);
2490 
2491 	memset(&dest->root_item.drop_progress, 0,
2492 		sizeof(dest->root_item.drop_progress));
2493 	dest->root_item.drop_level = 0;
2494 	btrfs_set_root_refs(&dest->root_item, 0);
2495 
2496 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2497 		ret = btrfs_insert_orphan_item(trans,
2498 					root->fs_info->tree_root,
2499 					dest->root_key.objectid);
2500 		if (ret) {
2501 			btrfs_abort_transaction(trans, root, ret);
2502 			err = ret;
2503 			goto out_end_trans;
2504 		}
2505 	}
2506 
2507 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2508 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2509 				  dest->root_key.objectid);
2510 	if (ret && ret != -ENOENT) {
2511 		btrfs_abort_transaction(trans, root, ret);
2512 		err = ret;
2513 		goto out_end_trans;
2514 	}
2515 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2516 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2517 					  dest->root_item.received_uuid,
2518 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2519 					  dest->root_key.objectid);
2520 		if (ret && ret != -ENOENT) {
2521 			btrfs_abort_transaction(trans, root, ret);
2522 			err = ret;
2523 			goto out_end_trans;
2524 		}
2525 	}
2526 
2527 out_end_trans:
2528 	trans->block_rsv = NULL;
2529 	trans->bytes_reserved = 0;
2530 	ret = btrfs_end_transaction(trans, root);
2531 	if (ret && !err)
2532 		err = ret;
2533 	inode->i_flags |= S_DEAD;
2534 out_release:
2535 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2536 out_up_write:
2537 	up_write(&root->fs_info->subvol_sem);
2538 	if (err) {
2539 		spin_lock(&dest->root_item_lock);
2540 		root_flags = btrfs_root_flags(&dest->root_item);
2541 		btrfs_set_root_flags(&dest->root_item,
2542 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2543 		spin_unlock(&dest->root_item_lock);
2544 	}
2545 out_unlock_inode:
2546 	inode_unlock(inode);
2547 	if (!err) {
2548 		d_invalidate(dentry);
2549 		btrfs_invalidate_inodes(dest);
2550 		d_delete(dentry);
2551 		ASSERT(dest->send_in_progress == 0);
2552 
2553 		/* the last ref */
2554 		if (dest->ino_cache_inode) {
2555 			iput(dest->ino_cache_inode);
2556 			dest->ino_cache_inode = NULL;
2557 		}
2558 	}
2559 out_dput:
2560 	dput(dentry);
2561 out_unlock_dir:
2562 	inode_unlock(dir);
2563 out_drop_write:
2564 	mnt_drop_write_file(file);
2565 out:
2566 	kfree(vol_args);
2567 	return err;
2568 }
2569 
2570 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2571 {
2572 	struct inode *inode = file_inode(file);
2573 	struct btrfs_root *root = BTRFS_I(inode)->root;
2574 	struct btrfs_ioctl_defrag_range_args *range;
2575 	int ret;
2576 
2577 	ret = mnt_want_write_file(file);
2578 	if (ret)
2579 		return ret;
2580 
2581 	if (btrfs_root_readonly(root)) {
2582 		ret = -EROFS;
2583 		goto out;
2584 	}
2585 
2586 	switch (inode->i_mode & S_IFMT) {
2587 	case S_IFDIR:
2588 		if (!capable(CAP_SYS_ADMIN)) {
2589 			ret = -EPERM;
2590 			goto out;
2591 		}
2592 		ret = btrfs_defrag_root(root);
2593 		if (ret)
2594 			goto out;
2595 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2596 		break;
2597 	case S_IFREG:
2598 		if (!(file->f_mode & FMODE_WRITE)) {
2599 			ret = -EINVAL;
2600 			goto out;
2601 		}
2602 
2603 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2604 		if (!range) {
2605 			ret = -ENOMEM;
2606 			goto out;
2607 		}
2608 
2609 		if (argp) {
2610 			if (copy_from_user(range, argp,
2611 					   sizeof(*range))) {
2612 				ret = -EFAULT;
2613 				kfree(range);
2614 				goto out;
2615 			}
2616 			/* compression requires us to start the IO */
2617 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2618 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2619 				range->extent_thresh = (u32)-1;
2620 			}
2621 		} else {
2622 			/* the rest are all set to zero by kzalloc */
2623 			range->len = (u64)-1;
2624 		}
2625 		ret = btrfs_defrag_file(file_inode(file), file,
2626 					range, 0, 0);
2627 		if (ret > 0)
2628 			ret = 0;
2629 		kfree(range);
2630 		break;
2631 	default:
2632 		ret = -EINVAL;
2633 	}
2634 out:
2635 	mnt_drop_write_file(file);
2636 	return ret;
2637 }
2638 
2639 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2640 {
2641 	struct btrfs_ioctl_vol_args *vol_args;
2642 	int ret;
2643 
2644 	if (!capable(CAP_SYS_ADMIN))
2645 		return -EPERM;
2646 
2647 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2648 			1)) {
2649 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2650 	}
2651 
2652 	mutex_lock(&root->fs_info->volume_mutex);
2653 	vol_args = memdup_user(arg, sizeof(*vol_args));
2654 	if (IS_ERR(vol_args)) {
2655 		ret = PTR_ERR(vol_args);
2656 		goto out;
2657 	}
2658 
2659 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2660 	ret = btrfs_init_new_device(root, vol_args->name);
2661 
2662 	if (!ret)
2663 		btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2664 
2665 	kfree(vol_args);
2666 out:
2667 	mutex_unlock(&root->fs_info->volume_mutex);
2668 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2669 	return ret;
2670 }
2671 
2672 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2673 {
2674 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2675 	struct btrfs_ioctl_vol_args *vol_args;
2676 	int ret;
2677 
2678 	if (!capable(CAP_SYS_ADMIN))
2679 		return -EPERM;
2680 
2681 	ret = mnt_want_write_file(file);
2682 	if (ret)
2683 		return ret;
2684 
2685 	vol_args = memdup_user(arg, sizeof(*vol_args));
2686 	if (IS_ERR(vol_args)) {
2687 		ret = PTR_ERR(vol_args);
2688 		goto err_drop;
2689 	}
2690 
2691 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2692 
2693 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2694 			1)) {
2695 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2696 		goto out;
2697 	}
2698 
2699 	mutex_lock(&root->fs_info->volume_mutex);
2700 	ret = btrfs_rm_device(root, vol_args->name);
2701 	mutex_unlock(&root->fs_info->volume_mutex);
2702 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2703 
2704 	if (!ret)
2705 		btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2706 
2707 out:
2708 	kfree(vol_args);
2709 err_drop:
2710 	mnt_drop_write_file(file);
2711 	return ret;
2712 }
2713 
2714 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2715 {
2716 	struct btrfs_ioctl_fs_info_args *fi_args;
2717 	struct btrfs_device *device;
2718 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2719 	int ret = 0;
2720 
2721 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2722 	if (!fi_args)
2723 		return -ENOMEM;
2724 
2725 	mutex_lock(&fs_devices->device_list_mutex);
2726 	fi_args->num_devices = fs_devices->num_devices;
2727 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2728 
2729 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2730 		if (device->devid > fi_args->max_id)
2731 			fi_args->max_id = device->devid;
2732 	}
2733 	mutex_unlock(&fs_devices->device_list_mutex);
2734 
2735 	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2736 	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2737 	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2738 
2739 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2740 		ret = -EFAULT;
2741 
2742 	kfree(fi_args);
2743 	return ret;
2744 }
2745 
2746 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2747 {
2748 	struct btrfs_ioctl_dev_info_args *di_args;
2749 	struct btrfs_device *dev;
2750 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2751 	int ret = 0;
2752 	char *s_uuid = NULL;
2753 
2754 	di_args = memdup_user(arg, sizeof(*di_args));
2755 	if (IS_ERR(di_args))
2756 		return PTR_ERR(di_args);
2757 
2758 	if (!btrfs_is_empty_uuid(di_args->uuid))
2759 		s_uuid = di_args->uuid;
2760 
2761 	mutex_lock(&fs_devices->device_list_mutex);
2762 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2763 
2764 	if (!dev) {
2765 		ret = -ENODEV;
2766 		goto out;
2767 	}
2768 
2769 	di_args->devid = dev->devid;
2770 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2771 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2772 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2773 	if (dev->name) {
2774 		struct rcu_string *name;
2775 
2776 		rcu_read_lock();
2777 		name = rcu_dereference(dev->name);
2778 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2779 		rcu_read_unlock();
2780 		di_args->path[sizeof(di_args->path) - 1] = 0;
2781 	} else {
2782 		di_args->path[0] = '\0';
2783 	}
2784 
2785 out:
2786 	mutex_unlock(&fs_devices->device_list_mutex);
2787 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2788 		ret = -EFAULT;
2789 
2790 	kfree(di_args);
2791 	return ret;
2792 }
2793 
2794 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2795 {
2796 	struct page *page;
2797 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2798 
2799 	page = grab_cache_page(inode->i_mapping, index);
2800 	if (!page)
2801 		return NULL;
2802 
2803 	if (!PageUptodate(page)) {
2804 		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2805 						 0))
2806 			return NULL;
2807 		lock_page(page);
2808 		if (!PageUptodate(page)) {
2809 			unlock_page(page);
2810 			page_cache_release(page);
2811 			return NULL;
2812 		}
2813 	}
2814 	unlock_page(page);
2815 
2816 	return page;
2817 }
2818 
2819 static int gather_extent_pages(struct inode *inode, struct page **pages,
2820 			       int num_pages, u64 off)
2821 {
2822 	int i;
2823 	pgoff_t index = off >> PAGE_CACHE_SHIFT;
2824 
2825 	for (i = 0; i < num_pages; i++) {
2826 		pages[i] = extent_same_get_page(inode, index + i);
2827 		if (!pages[i])
2828 			return -ENOMEM;
2829 	}
2830 	return 0;
2831 }
2832 
2833 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2834 {
2835 	/* do any pending delalloc/csum calc on src, one way or
2836 	   another, and lock file content */
2837 	while (1) {
2838 		struct btrfs_ordered_extent *ordered;
2839 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2840 		ordered = btrfs_lookup_first_ordered_extent(inode,
2841 							    off + len - 1);
2842 		if ((!ordered ||
2843 		     ordered->file_offset + ordered->len <= off ||
2844 		     ordered->file_offset >= off + len) &&
2845 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2846 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2847 			if (ordered)
2848 				btrfs_put_ordered_extent(ordered);
2849 			break;
2850 		}
2851 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2852 		if (ordered)
2853 			btrfs_put_ordered_extent(ordered);
2854 		btrfs_wait_ordered_range(inode, off, len);
2855 	}
2856 }
2857 
2858 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2859 {
2860 	inode_unlock(inode1);
2861 	inode_unlock(inode2);
2862 }
2863 
2864 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2865 {
2866 	if (inode1 < inode2)
2867 		swap(inode1, inode2);
2868 
2869 	inode_lock_nested(inode1, I_MUTEX_PARENT);
2870 	inode_lock_nested(inode2, I_MUTEX_CHILD);
2871 }
2872 
2873 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2874 				      struct inode *inode2, u64 loff2, u64 len)
2875 {
2876 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2877 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2878 }
2879 
2880 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2881 				     struct inode *inode2, u64 loff2, u64 len)
2882 {
2883 	if (inode1 < inode2) {
2884 		swap(inode1, inode2);
2885 		swap(loff1, loff2);
2886 	}
2887 	lock_extent_range(inode1, loff1, len);
2888 	lock_extent_range(inode2, loff2, len);
2889 }
2890 
2891 struct cmp_pages {
2892 	int		num_pages;
2893 	struct page	**src_pages;
2894 	struct page	**dst_pages;
2895 };
2896 
2897 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2898 {
2899 	int i;
2900 	struct page *pg;
2901 
2902 	for (i = 0; i < cmp->num_pages; i++) {
2903 		pg = cmp->src_pages[i];
2904 		if (pg)
2905 			page_cache_release(pg);
2906 		pg = cmp->dst_pages[i];
2907 		if (pg)
2908 			page_cache_release(pg);
2909 	}
2910 	kfree(cmp->src_pages);
2911 	kfree(cmp->dst_pages);
2912 }
2913 
2914 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2915 				  struct inode *dst, u64 dst_loff,
2916 				  u64 len, struct cmp_pages *cmp)
2917 {
2918 	int ret;
2919 	int num_pages = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
2920 	struct page **src_pgarr, **dst_pgarr;
2921 
2922 	/*
2923 	 * We must gather up all the pages before we initiate our
2924 	 * extent locking. We use an array for the page pointers. Size
2925 	 * of the array is bounded by len, which is in turn bounded by
2926 	 * BTRFS_MAX_DEDUPE_LEN.
2927 	 */
2928 	src_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS);
2929 	dst_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS);
2930 	if (!src_pgarr || !dst_pgarr) {
2931 		kfree(src_pgarr);
2932 		kfree(dst_pgarr);
2933 		return -ENOMEM;
2934 	}
2935 	cmp->num_pages = num_pages;
2936 	cmp->src_pages = src_pgarr;
2937 	cmp->dst_pages = dst_pgarr;
2938 
2939 	ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
2940 	if (ret)
2941 		goto out;
2942 
2943 	ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
2944 
2945 out:
2946 	if (ret)
2947 		btrfs_cmp_data_free(cmp);
2948 	return 0;
2949 }
2950 
2951 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2952 			  u64 dst_loff, u64 len, struct cmp_pages *cmp)
2953 {
2954 	int ret = 0;
2955 	int i;
2956 	struct page *src_page, *dst_page;
2957 	unsigned int cmp_len = PAGE_CACHE_SIZE;
2958 	void *addr, *dst_addr;
2959 
2960 	i = 0;
2961 	while (len) {
2962 		if (len < PAGE_CACHE_SIZE)
2963 			cmp_len = len;
2964 
2965 		BUG_ON(i >= cmp->num_pages);
2966 
2967 		src_page = cmp->src_pages[i];
2968 		dst_page = cmp->dst_pages[i];
2969 
2970 		addr = kmap_atomic(src_page);
2971 		dst_addr = kmap_atomic(dst_page);
2972 
2973 		flush_dcache_page(src_page);
2974 		flush_dcache_page(dst_page);
2975 
2976 		if (memcmp(addr, dst_addr, cmp_len))
2977 			ret = -EBADE;
2978 
2979 		kunmap_atomic(addr);
2980 		kunmap_atomic(dst_addr);
2981 
2982 		if (ret)
2983 			break;
2984 
2985 		len -= cmp_len;
2986 		i++;
2987 	}
2988 
2989 	return ret;
2990 }
2991 
2992 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
2993 				     u64 olen)
2994 {
2995 	u64 len = *plen;
2996 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2997 
2998 	if (off + olen > inode->i_size || off + olen < off)
2999 		return -EINVAL;
3000 
3001 	/* if we extend to eof, continue to block boundary */
3002 	if (off + len == inode->i_size)
3003 		*plen = len = ALIGN(inode->i_size, bs) - off;
3004 
3005 	/* Check that we are block aligned - btrfs_clone() requires this */
3006 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3007 		return -EINVAL;
3008 
3009 	return 0;
3010 }
3011 
3012 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3013 			     struct inode *dst, u64 dst_loff)
3014 {
3015 	int ret;
3016 	u64 len = olen;
3017 	struct cmp_pages cmp;
3018 	int same_inode = 0;
3019 	u64 same_lock_start = 0;
3020 	u64 same_lock_len = 0;
3021 
3022 	if (src == dst)
3023 		same_inode = 1;
3024 
3025 	if (len == 0)
3026 		return 0;
3027 
3028 	if (same_inode) {
3029 		inode_lock(src);
3030 
3031 		ret = extent_same_check_offsets(src, loff, &len, olen);
3032 		if (ret)
3033 			goto out_unlock;
3034 
3035 		/*
3036 		 * Single inode case wants the same checks, except we
3037 		 * don't want our length pushed out past i_size as
3038 		 * comparing that data range makes no sense.
3039 		 *
3040 		 * extent_same_check_offsets() will do this for an
3041 		 * unaligned length at i_size, so catch it here and
3042 		 * reject the request.
3043 		 *
3044 		 * This effectively means we require aligned extents
3045 		 * for the single-inode case, whereas the other cases
3046 		 * allow an unaligned length so long as it ends at
3047 		 * i_size.
3048 		 */
3049 		if (len != olen) {
3050 			ret = -EINVAL;
3051 			goto out_unlock;
3052 		}
3053 
3054 		/* Check for overlapping ranges */
3055 		if (dst_loff + len > loff && dst_loff < loff + len) {
3056 			ret = -EINVAL;
3057 			goto out_unlock;
3058 		}
3059 
3060 		same_lock_start = min_t(u64, loff, dst_loff);
3061 		same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3062 	} else {
3063 		btrfs_double_inode_lock(src, dst);
3064 
3065 		ret = extent_same_check_offsets(src, loff, &len, olen);
3066 		if (ret)
3067 			goto out_unlock;
3068 
3069 		ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3070 		if (ret)
3071 			goto out_unlock;
3072 	}
3073 
3074 	/* don't make the dst file partly checksummed */
3075 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3076 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3077 		ret = -EINVAL;
3078 		goto out_unlock;
3079 	}
3080 
3081 	ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3082 	if (ret)
3083 		goto out_unlock;
3084 
3085 	if (same_inode)
3086 		lock_extent_range(src, same_lock_start, same_lock_len);
3087 	else
3088 		btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
3089 
3090 	/* pass original length for comparison so we stay within i_size */
3091 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3092 	if (ret == 0)
3093 		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3094 
3095 	if (same_inode)
3096 		unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3097 			      same_lock_start + same_lock_len - 1);
3098 	else
3099 		btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3100 
3101 	btrfs_cmp_data_free(&cmp);
3102 out_unlock:
3103 	if (same_inode)
3104 		inode_unlock(src);
3105 	else
3106 		btrfs_double_inode_unlock(src, dst);
3107 
3108 	return ret;
3109 }
3110 
3111 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3112 
3113 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3114 				struct file *dst_file, u64 dst_loff)
3115 {
3116 	struct inode *src = file_inode(src_file);
3117 	struct inode *dst = file_inode(dst_file);
3118 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3119 	ssize_t res;
3120 
3121 	if (olen > BTRFS_MAX_DEDUPE_LEN)
3122 		olen = BTRFS_MAX_DEDUPE_LEN;
3123 
3124 	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
3125 		/*
3126 		 * Btrfs does not support blocksize < page_size. As a
3127 		 * result, btrfs_cmp_data() won't correctly handle
3128 		 * this situation without an update.
3129 		 */
3130 		return -EINVAL;
3131 	}
3132 
3133 	res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3134 	if (res)
3135 		return res;
3136 	return olen;
3137 }
3138 
3139 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3140 				     struct inode *inode,
3141 				     u64 endoff,
3142 				     const u64 destoff,
3143 				     const u64 olen,
3144 				     int no_time_update)
3145 {
3146 	struct btrfs_root *root = BTRFS_I(inode)->root;
3147 	int ret;
3148 
3149 	inode_inc_iversion(inode);
3150 	if (!no_time_update)
3151 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3152 	/*
3153 	 * We round up to the block size at eof when determining which
3154 	 * extents to clone above, but shouldn't round up the file size.
3155 	 */
3156 	if (endoff > destoff + olen)
3157 		endoff = destoff + olen;
3158 	if (endoff > inode->i_size)
3159 		btrfs_i_size_write(inode, endoff);
3160 
3161 	ret = btrfs_update_inode(trans, root, inode);
3162 	if (ret) {
3163 		btrfs_abort_transaction(trans, root, ret);
3164 		btrfs_end_transaction(trans, root);
3165 		goto out;
3166 	}
3167 	ret = btrfs_end_transaction(trans, root);
3168 out:
3169 	return ret;
3170 }
3171 
3172 static void clone_update_extent_map(struct inode *inode,
3173 				    const struct btrfs_trans_handle *trans,
3174 				    const struct btrfs_path *path,
3175 				    const u64 hole_offset,
3176 				    const u64 hole_len)
3177 {
3178 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3179 	struct extent_map *em;
3180 	int ret;
3181 
3182 	em = alloc_extent_map();
3183 	if (!em) {
3184 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3185 			&BTRFS_I(inode)->runtime_flags);
3186 		return;
3187 	}
3188 
3189 	if (path) {
3190 		struct btrfs_file_extent_item *fi;
3191 
3192 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3193 				    struct btrfs_file_extent_item);
3194 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3195 		em->generation = -1;
3196 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3197 		    BTRFS_FILE_EXTENT_INLINE)
3198 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3199 				&BTRFS_I(inode)->runtime_flags);
3200 	} else {
3201 		em->start = hole_offset;
3202 		em->len = hole_len;
3203 		em->ram_bytes = em->len;
3204 		em->orig_start = hole_offset;
3205 		em->block_start = EXTENT_MAP_HOLE;
3206 		em->block_len = 0;
3207 		em->orig_block_len = 0;
3208 		em->compress_type = BTRFS_COMPRESS_NONE;
3209 		em->generation = trans->transid;
3210 	}
3211 
3212 	while (1) {
3213 		write_lock(&em_tree->lock);
3214 		ret = add_extent_mapping(em_tree, em, 1);
3215 		write_unlock(&em_tree->lock);
3216 		if (ret != -EEXIST) {
3217 			free_extent_map(em);
3218 			break;
3219 		}
3220 		btrfs_drop_extent_cache(inode, em->start,
3221 					em->start + em->len - 1, 0);
3222 	}
3223 
3224 	if (ret)
3225 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3226 			&BTRFS_I(inode)->runtime_flags);
3227 }
3228 
3229 /*
3230  * Make sure we do not end up inserting an inline extent into a file that has
3231  * already other (non-inline) extents. If a file has an inline extent it can
3232  * not have any other extents and the (single) inline extent must start at the
3233  * file offset 0. Failing to respect these rules will lead to file corruption,
3234  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3235  *
3236  * We can have extents that have been already written to disk or we can have
3237  * dirty ranges still in delalloc, in which case the extent maps and items are
3238  * created only when we run delalloc, and the delalloc ranges might fall outside
3239  * the range we are currently locking in the inode's io tree. So we check the
3240  * inode's i_size because of that (i_size updates are done while holding the
3241  * i_mutex, which we are holding here).
3242  * We also check to see if the inode has a size not greater than "datal" but has
3243  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3244  * protected against such concurrent fallocate calls by the i_mutex).
3245  *
3246  * If the file has no extents but a size greater than datal, do not allow the
3247  * copy because we would need turn the inline extent into a non-inline one (even
3248  * with NO_HOLES enabled). If we find our destination inode only has one inline
3249  * extent, just overwrite it with the source inline extent if its size is less
3250  * than the source extent's size, or we could copy the source inline extent's
3251  * data into the destination inode's inline extent if the later is greater then
3252  * the former.
3253  */
3254 static int clone_copy_inline_extent(struct inode *src,
3255 				    struct inode *dst,
3256 				    struct btrfs_trans_handle *trans,
3257 				    struct btrfs_path *path,
3258 				    struct btrfs_key *new_key,
3259 				    const u64 drop_start,
3260 				    const u64 datal,
3261 				    const u64 skip,
3262 				    const u64 size,
3263 				    char *inline_data)
3264 {
3265 	struct btrfs_root *root = BTRFS_I(dst)->root;
3266 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3267 				      root->sectorsize);
3268 	int ret;
3269 	struct btrfs_key key;
3270 
3271 	if (new_key->offset > 0)
3272 		return -EOPNOTSUPP;
3273 
3274 	key.objectid = btrfs_ino(dst);
3275 	key.type = BTRFS_EXTENT_DATA_KEY;
3276 	key.offset = 0;
3277 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3278 	if (ret < 0) {
3279 		return ret;
3280 	} else if (ret > 0) {
3281 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3282 			ret = btrfs_next_leaf(root, path);
3283 			if (ret < 0)
3284 				return ret;
3285 			else if (ret > 0)
3286 				goto copy_inline_extent;
3287 		}
3288 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3289 		if (key.objectid == btrfs_ino(dst) &&
3290 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3291 			ASSERT(key.offset > 0);
3292 			return -EOPNOTSUPP;
3293 		}
3294 	} else if (i_size_read(dst) <= datal) {
3295 		struct btrfs_file_extent_item *ei;
3296 		u64 ext_len;
3297 
3298 		/*
3299 		 * If the file size is <= datal, make sure there are no other
3300 		 * extents following (can happen do to an fallocate call with
3301 		 * the flag FALLOC_FL_KEEP_SIZE).
3302 		 */
3303 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3304 				    struct btrfs_file_extent_item);
3305 		/*
3306 		 * If it's an inline extent, it can not have other extents
3307 		 * following it.
3308 		 */
3309 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3310 		    BTRFS_FILE_EXTENT_INLINE)
3311 			goto copy_inline_extent;
3312 
3313 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3314 		if (ext_len > aligned_end)
3315 			return -EOPNOTSUPP;
3316 
3317 		ret = btrfs_next_item(root, path);
3318 		if (ret < 0) {
3319 			return ret;
3320 		} else if (ret == 0) {
3321 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3322 					      path->slots[0]);
3323 			if (key.objectid == btrfs_ino(dst) &&
3324 			    key.type == BTRFS_EXTENT_DATA_KEY)
3325 				return -EOPNOTSUPP;
3326 		}
3327 	}
3328 
3329 copy_inline_extent:
3330 	/*
3331 	 * We have no extent items, or we have an extent at offset 0 which may
3332 	 * or may not be inlined. All these cases are dealt the same way.
3333 	 */
3334 	if (i_size_read(dst) > datal) {
3335 		/*
3336 		 * If the destination inode has an inline extent...
3337 		 * This would require copying the data from the source inline
3338 		 * extent into the beginning of the destination's inline extent.
3339 		 * But this is really complex, both extents can be compressed
3340 		 * or just one of them, which would require decompressing and
3341 		 * re-compressing data (which could increase the new compressed
3342 		 * size, not allowing the compressed data to fit anymore in an
3343 		 * inline extent).
3344 		 * So just don't support this case for now (it should be rare,
3345 		 * we are not really saving space when cloning inline extents).
3346 		 */
3347 		return -EOPNOTSUPP;
3348 	}
3349 
3350 	btrfs_release_path(path);
3351 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3352 	if (ret)
3353 		return ret;
3354 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3355 	if (ret)
3356 		return ret;
3357 
3358 	if (skip) {
3359 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3360 
3361 		memmove(inline_data + start, inline_data + start + skip, datal);
3362 	}
3363 
3364 	write_extent_buffer(path->nodes[0], inline_data,
3365 			    btrfs_item_ptr_offset(path->nodes[0],
3366 						  path->slots[0]),
3367 			    size);
3368 	inode_add_bytes(dst, datal);
3369 
3370 	return 0;
3371 }
3372 
3373 /**
3374  * btrfs_clone() - clone a range from inode file to another
3375  *
3376  * @src: Inode to clone from
3377  * @inode: Inode to clone to
3378  * @off: Offset within source to start clone from
3379  * @olen: Original length, passed by user, of range to clone
3380  * @olen_aligned: Block-aligned value of olen
3381  * @destoff: Offset within @inode to start clone
3382  * @no_time_update: Whether to update mtime/ctime on the target inode
3383  */
3384 static int btrfs_clone(struct inode *src, struct inode *inode,
3385 		       const u64 off, const u64 olen, const u64 olen_aligned,
3386 		       const u64 destoff, int no_time_update)
3387 {
3388 	struct btrfs_root *root = BTRFS_I(inode)->root;
3389 	struct btrfs_path *path = NULL;
3390 	struct extent_buffer *leaf;
3391 	struct btrfs_trans_handle *trans;
3392 	char *buf = NULL;
3393 	struct btrfs_key key;
3394 	u32 nritems;
3395 	int slot;
3396 	int ret;
3397 	const u64 len = olen_aligned;
3398 	u64 last_dest_end = destoff;
3399 
3400 	ret = -ENOMEM;
3401 	buf = vmalloc(root->nodesize);
3402 	if (!buf)
3403 		return ret;
3404 
3405 	path = btrfs_alloc_path();
3406 	if (!path) {
3407 		vfree(buf);
3408 		return ret;
3409 	}
3410 
3411 	path->reada = READA_FORWARD;
3412 	/* clone data */
3413 	key.objectid = btrfs_ino(src);
3414 	key.type = BTRFS_EXTENT_DATA_KEY;
3415 	key.offset = off;
3416 
3417 	while (1) {
3418 		u64 next_key_min_offset = key.offset + 1;
3419 
3420 		/*
3421 		 * note the key will change type as we walk through the
3422 		 * tree.
3423 		 */
3424 		path->leave_spinning = 1;
3425 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3426 				0, 0);
3427 		if (ret < 0)
3428 			goto out;
3429 		/*
3430 		 * First search, if no extent item that starts at offset off was
3431 		 * found but the previous item is an extent item, it's possible
3432 		 * it might overlap our target range, therefore process it.
3433 		 */
3434 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3435 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3436 					      path->slots[0] - 1);
3437 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3438 				path->slots[0]--;
3439 		}
3440 
3441 		nritems = btrfs_header_nritems(path->nodes[0]);
3442 process_slot:
3443 		if (path->slots[0] >= nritems) {
3444 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3445 			if (ret < 0)
3446 				goto out;
3447 			if (ret > 0)
3448 				break;
3449 			nritems = btrfs_header_nritems(path->nodes[0]);
3450 		}
3451 		leaf = path->nodes[0];
3452 		slot = path->slots[0];
3453 
3454 		btrfs_item_key_to_cpu(leaf, &key, slot);
3455 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3456 		    key.objectid != btrfs_ino(src))
3457 			break;
3458 
3459 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3460 			struct btrfs_file_extent_item *extent;
3461 			int type;
3462 			u32 size;
3463 			struct btrfs_key new_key;
3464 			u64 disko = 0, diskl = 0;
3465 			u64 datao = 0, datal = 0;
3466 			u8 comp;
3467 			u64 drop_start;
3468 
3469 			extent = btrfs_item_ptr(leaf, slot,
3470 						struct btrfs_file_extent_item);
3471 			comp = btrfs_file_extent_compression(leaf, extent);
3472 			type = btrfs_file_extent_type(leaf, extent);
3473 			if (type == BTRFS_FILE_EXTENT_REG ||
3474 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3475 				disko = btrfs_file_extent_disk_bytenr(leaf,
3476 								      extent);
3477 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3478 								 extent);
3479 				datao = btrfs_file_extent_offset(leaf, extent);
3480 				datal = btrfs_file_extent_num_bytes(leaf,
3481 								    extent);
3482 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3483 				/* take upper bound, may be compressed */
3484 				datal = btrfs_file_extent_ram_bytes(leaf,
3485 								    extent);
3486 			}
3487 
3488 			/*
3489 			 * The first search might have left us at an extent
3490 			 * item that ends before our target range's start, can
3491 			 * happen if we have holes and NO_HOLES feature enabled.
3492 			 */
3493 			if (key.offset + datal <= off) {
3494 				path->slots[0]++;
3495 				goto process_slot;
3496 			} else if (key.offset >= off + len) {
3497 				break;
3498 			}
3499 			next_key_min_offset = key.offset + datal;
3500 			size = btrfs_item_size_nr(leaf, slot);
3501 			read_extent_buffer(leaf, buf,
3502 					   btrfs_item_ptr_offset(leaf, slot),
3503 					   size);
3504 
3505 			btrfs_release_path(path);
3506 			path->leave_spinning = 0;
3507 
3508 			memcpy(&new_key, &key, sizeof(new_key));
3509 			new_key.objectid = btrfs_ino(inode);
3510 			if (off <= key.offset)
3511 				new_key.offset = key.offset + destoff - off;
3512 			else
3513 				new_key.offset = destoff;
3514 
3515 			/*
3516 			 * Deal with a hole that doesn't have an extent item
3517 			 * that represents it (NO_HOLES feature enabled).
3518 			 * This hole is either in the middle of the cloning
3519 			 * range or at the beginning (fully overlaps it or
3520 			 * partially overlaps it).
3521 			 */
3522 			if (new_key.offset != last_dest_end)
3523 				drop_start = last_dest_end;
3524 			else
3525 				drop_start = new_key.offset;
3526 
3527 			/*
3528 			 * 1 - adjusting old extent (we may have to split it)
3529 			 * 1 - add new extent
3530 			 * 1 - inode update
3531 			 */
3532 			trans = btrfs_start_transaction(root, 3);
3533 			if (IS_ERR(trans)) {
3534 				ret = PTR_ERR(trans);
3535 				goto out;
3536 			}
3537 
3538 			if (type == BTRFS_FILE_EXTENT_REG ||
3539 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3540 				/*
3541 				 *    a  | --- range to clone ---|  b
3542 				 * | ------------- extent ------------- |
3543 				 */
3544 
3545 				/* subtract range b */
3546 				if (key.offset + datal > off + len)
3547 					datal = off + len - key.offset;
3548 
3549 				/* subtract range a */
3550 				if (off > key.offset) {
3551 					datao += off - key.offset;
3552 					datal -= off - key.offset;
3553 				}
3554 
3555 				ret = btrfs_drop_extents(trans, root, inode,
3556 							 drop_start,
3557 							 new_key.offset + datal,
3558 							 1);
3559 				if (ret) {
3560 					if (ret != -EOPNOTSUPP)
3561 						btrfs_abort_transaction(trans,
3562 								root, ret);
3563 					btrfs_end_transaction(trans, root);
3564 					goto out;
3565 				}
3566 
3567 				ret = btrfs_insert_empty_item(trans, root, path,
3568 							      &new_key, size);
3569 				if (ret) {
3570 					btrfs_abort_transaction(trans, root,
3571 								ret);
3572 					btrfs_end_transaction(trans, root);
3573 					goto out;
3574 				}
3575 
3576 				leaf = path->nodes[0];
3577 				slot = path->slots[0];
3578 				write_extent_buffer(leaf, buf,
3579 					    btrfs_item_ptr_offset(leaf, slot),
3580 					    size);
3581 
3582 				extent = btrfs_item_ptr(leaf, slot,
3583 						struct btrfs_file_extent_item);
3584 
3585 				/* disko == 0 means it's a hole */
3586 				if (!disko)
3587 					datao = 0;
3588 
3589 				btrfs_set_file_extent_offset(leaf, extent,
3590 							     datao);
3591 				btrfs_set_file_extent_num_bytes(leaf, extent,
3592 								datal);
3593 
3594 				if (disko) {
3595 					inode_add_bytes(inode, datal);
3596 					ret = btrfs_inc_extent_ref(trans, root,
3597 							disko, diskl, 0,
3598 							root->root_key.objectid,
3599 							btrfs_ino(inode),
3600 							new_key.offset - datao);
3601 					if (ret) {
3602 						btrfs_abort_transaction(trans,
3603 									root,
3604 									ret);
3605 						btrfs_end_transaction(trans,
3606 								      root);
3607 						goto out;
3608 
3609 					}
3610 				}
3611 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3612 				u64 skip = 0;
3613 				u64 trim = 0;
3614 
3615 				if (off > key.offset) {
3616 					skip = off - key.offset;
3617 					new_key.offset += skip;
3618 				}
3619 
3620 				if (key.offset + datal > off + len)
3621 					trim = key.offset + datal - (off + len);
3622 
3623 				if (comp && (skip || trim)) {
3624 					ret = -EINVAL;
3625 					btrfs_end_transaction(trans, root);
3626 					goto out;
3627 				}
3628 				size -= skip + trim;
3629 				datal -= skip + trim;
3630 
3631 				ret = clone_copy_inline_extent(src, inode,
3632 							       trans, path,
3633 							       &new_key,
3634 							       drop_start,
3635 							       datal,
3636 							       skip, size, buf);
3637 				if (ret) {
3638 					if (ret != -EOPNOTSUPP)
3639 						btrfs_abort_transaction(trans,
3640 									root,
3641 									ret);
3642 					btrfs_end_transaction(trans, root);
3643 					goto out;
3644 				}
3645 				leaf = path->nodes[0];
3646 				slot = path->slots[0];
3647 			}
3648 
3649 			/* If we have an implicit hole (NO_HOLES feature). */
3650 			if (drop_start < new_key.offset)
3651 				clone_update_extent_map(inode, trans,
3652 						NULL, drop_start,
3653 						new_key.offset - drop_start);
3654 
3655 			clone_update_extent_map(inode, trans, path, 0, 0);
3656 
3657 			btrfs_mark_buffer_dirty(leaf);
3658 			btrfs_release_path(path);
3659 
3660 			last_dest_end = ALIGN(new_key.offset + datal,
3661 					      root->sectorsize);
3662 			ret = clone_finish_inode_update(trans, inode,
3663 							last_dest_end,
3664 							destoff, olen,
3665 							no_time_update);
3666 			if (ret)
3667 				goto out;
3668 			if (new_key.offset + datal >= destoff + len)
3669 				break;
3670 		}
3671 		btrfs_release_path(path);
3672 		key.offset = next_key_min_offset;
3673 	}
3674 	ret = 0;
3675 
3676 	if (last_dest_end < destoff + len) {
3677 		/*
3678 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3679 		 * fully or partially overlaps our cloning range at its end.
3680 		 */
3681 		btrfs_release_path(path);
3682 
3683 		/*
3684 		 * 1 - remove extent(s)
3685 		 * 1 - inode update
3686 		 */
3687 		trans = btrfs_start_transaction(root, 2);
3688 		if (IS_ERR(trans)) {
3689 			ret = PTR_ERR(trans);
3690 			goto out;
3691 		}
3692 		ret = btrfs_drop_extents(trans, root, inode,
3693 					 last_dest_end, destoff + len, 1);
3694 		if (ret) {
3695 			if (ret != -EOPNOTSUPP)
3696 				btrfs_abort_transaction(trans, root, ret);
3697 			btrfs_end_transaction(trans, root);
3698 			goto out;
3699 		}
3700 		clone_update_extent_map(inode, trans, NULL, last_dest_end,
3701 					destoff + len - last_dest_end);
3702 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3703 						destoff, olen, no_time_update);
3704 	}
3705 
3706 out:
3707 	btrfs_free_path(path);
3708 	vfree(buf);
3709 	return ret;
3710 }
3711 
3712 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3713 					u64 off, u64 olen, u64 destoff)
3714 {
3715 	struct inode *inode = file_inode(file);
3716 	struct inode *src = file_inode(file_src);
3717 	struct btrfs_root *root = BTRFS_I(inode)->root;
3718 	int ret;
3719 	u64 len = olen;
3720 	u64 bs = root->fs_info->sb->s_blocksize;
3721 	int same_inode = src == inode;
3722 
3723 	/*
3724 	 * TODO:
3725 	 * - split compressed inline extents.  annoying: we need to
3726 	 *   decompress into destination's address_space (the file offset
3727 	 *   may change, so source mapping won't do), then recompress (or
3728 	 *   otherwise reinsert) a subrange.
3729 	 *
3730 	 * - split destination inode's inline extents.  The inline extents can
3731 	 *   be either compressed or non-compressed.
3732 	 */
3733 
3734 	if (btrfs_root_readonly(root))
3735 		return -EROFS;
3736 
3737 	if (file_src->f_path.mnt != file->f_path.mnt ||
3738 	    src->i_sb != inode->i_sb)
3739 		return -EXDEV;
3740 
3741 	/* don't make the dst file partly checksummed */
3742 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3743 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3744 		return -EINVAL;
3745 
3746 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3747 		return -EISDIR;
3748 
3749 	if (!same_inode) {
3750 		btrfs_double_inode_lock(src, inode);
3751 	} else {
3752 		inode_lock(src);
3753 	}
3754 
3755 	/* determine range to clone */
3756 	ret = -EINVAL;
3757 	if (off + len > src->i_size || off + len < off)
3758 		goto out_unlock;
3759 	if (len == 0)
3760 		olen = len = src->i_size - off;
3761 	/* if we extend to eof, continue to block boundary */
3762 	if (off + len == src->i_size)
3763 		len = ALIGN(src->i_size, bs) - off;
3764 
3765 	if (len == 0) {
3766 		ret = 0;
3767 		goto out_unlock;
3768 	}
3769 
3770 	/* verify the end result is block aligned */
3771 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3772 	    !IS_ALIGNED(destoff, bs))
3773 		goto out_unlock;
3774 
3775 	/* verify if ranges are overlapped within the same file */
3776 	if (same_inode) {
3777 		if (destoff + len > off && destoff < off + len)
3778 			goto out_unlock;
3779 	}
3780 
3781 	if (destoff > inode->i_size) {
3782 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3783 		if (ret)
3784 			goto out_unlock;
3785 	}
3786 
3787 	/*
3788 	 * Lock the target range too. Right after we replace the file extent
3789 	 * items in the fs tree (which now point to the cloned data), we might
3790 	 * have a worker replace them with extent items relative to a write
3791 	 * operation that was issued before this clone operation (i.e. confront
3792 	 * with inode.c:btrfs_finish_ordered_io).
3793 	 */
3794 	if (same_inode) {
3795 		u64 lock_start = min_t(u64, off, destoff);
3796 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3797 
3798 		lock_extent_range(src, lock_start, lock_len);
3799 	} else {
3800 		btrfs_double_extent_lock(src, off, inode, destoff, len);
3801 	}
3802 
3803 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3804 
3805 	if (same_inode) {
3806 		u64 lock_start = min_t(u64, off, destoff);
3807 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3808 
3809 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3810 	} else {
3811 		btrfs_double_extent_unlock(src, off, inode, destoff, len);
3812 	}
3813 	/*
3814 	 * Truncate page cache pages so that future reads will see the cloned
3815 	 * data immediately and not the previous data.
3816 	 */
3817 	truncate_inode_pages_range(&inode->i_data, destoff,
3818 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3819 out_unlock:
3820 	if (!same_inode)
3821 		btrfs_double_inode_unlock(src, inode);
3822 	else
3823 		inode_unlock(src);
3824 	return ret;
3825 }
3826 
3827 ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in,
3828 			      struct file *file_out, loff_t pos_out,
3829 			      size_t len, unsigned int flags)
3830 {
3831 	ssize_t ret;
3832 
3833 	ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out);
3834 	if (ret == 0)
3835 		ret = len;
3836 	return ret;
3837 }
3838 
3839 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3840 		struct file *dst_file, loff_t destoff, u64 len)
3841 {
3842 	return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3843 }
3844 
3845 /*
3846  * there are many ways the trans_start and trans_end ioctls can lead
3847  * to deadlocks.  They should only be used by applications that
3848  * basically own the machine, and have a very in depth understanding
3849  * of all the possible deadlocks and enospc problems.
3850  */
3851 static long btrfs_ioctl_trans_start(struct file *file)
3852 {
3853 	struct inode *inode = file_inode(file);
3854 	struct btrfs_root *root = BTRFS_I(inode)->root;
3855 	struct btrfs_trans_handle *trans;
3856 	int ret;
3857 
3858 	ret = -EPERM;
3859 	if (!capable(CAP_SYS_ADMIN))
3860 		goto out;
3861 
3862 	ret = -EINPROGRESS;
3863 	if (file->private_data)
3864 		goto out;
3865 
3866 	ret = -EROFS;
3867 	if (btrfs_root_readonly(root))
3868 		goto out;
3869 
3870 	ret = mnt_want_write_file(file);
3871 	if (ret)
3872 		goto out;
3873 
3874 	atomic_inc(&root->fs_info->open_ioctl_trans);
3875 
3876 	ret = -ENOMEM;
3877 	trans = btrfs_start_ioctl_transaction(root);
3878 	if (IS_ERR(trans))
3879 		goto out_drop;
3880 
3881 	file->private_data = trans;
3882 	return 0;
3883 
3884 out_drop:
3885 	atomic_dec(&root->fs_info->open_ioctl_trans);
3886 	mnt_drop_write_file(file);
3887 out:
3888 	return ret;
3889 }
3890 
3891 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3892 {
3893 	struct inode *inode = file_inode(file);
3894 	struct btrfs_root *root = BTRFS_I(inode)->root;
3895 	struct btrfs_root *new_root;
3896 	struct btrfs_dir_item *di;
3897 	struct btrfs_trans_handle *trans;
3898 	struct btrfs_path *path;
3899 	struct btrfs_key location;
3900 	struct btrfs_disk_key disk_key;
3901 	u64 objectid = 0;
3902 	u64 dir_id;
3903 	int ret;
3904 
3905 	if (!capable(CAP_SYS_ADMIN))
3906 		return -EPERM;
3907 
3908 	ret = mnt_want_write_file(file);
3909 	if (ret)
3910 		return ret;
3911 
3912 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3913 		ret = -EFAULT;
3914 		goto out;
3915 	}
3916 
3917 	if (!objectid)
3918 		objectid = BTRFS_FS_TREE_OBJECTID;
3919 
3920 	location.objectid = objectid;
3921 	location.type = BTRFS_ROOT_ITEM_KEY;
3922 	location.offset = (u64)-1;
3923 
3924 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3925 	if (IS_ERR(new_root)) {
3926 		ret = PTR_ERR(new_root);
3927 		goto out;
3928 	}
3929 
3930 	path = btrfs_alloc_path();
3931 	if (!path) {
3932 		ret = -ENOMEM;
3933 		goto out;
3934 	}
3935 	path->leave_spinning = 1;
3936 
3937 	trans = btrfs_start_transaction(root, 1);
3938 	if (IS_ERR(trans)) {
3939 		btrfs_free_path(path);
3940 		ret = PTR_ERR(trans);
3941 		goto out;
3942 	}
3943 
3944 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3945 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3946 				   dir_id, "default", 7, 1);
3947 	if (IS_ERR_OR_NULL(di)) {
3948 		btrfs_free_path(path);
3949 		btrfs_end_transaction(trans, root);
3950 		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3951 			   "item, this isn't going to work");
3952 		ret = -ENOENT;
3953 		goto out;
3954 	}
3955 
3956 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3957 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3958 	btrfs_mark_buffer_dirty(path->nodes[0]);
3959 	btrfs_free_path(path);
3960 
3961 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3962 	btrfs_end_transaction(trans, root);
3963 out:
3964 	mnt_drop_write_file(file);
3965 	return ret;
3966 }
3967 
3968 void btrfs_get_block_group_info(struct list_head *groups_list,
3969 				struct btrfs_ioctl_space_info *space)
3970 {
3971 	struct btrfs_block_group_cache *block_group;
3972 
3973 	space->total_bytes = 0;
3974 	space->used_bytes = 0;
3975 	space->flags = 0;
3976 	list_for_each_entry(block_group, groups_list, list) {
3977 		space->flags = block_group->flags;
3978 		space->total_bytes += block_group->key.offset;
3979 		space->used_bytes +=
3980 			btrfs_block_group_used(&block_group->item);
3981 	}
3982 }
3983 
3984 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3985 {
3986 	struct btrfs_ioctl_space_args space_args;
3987 	struct btrfs_ioctl_space_info space;
3988 	struct btrfs_ioctl_space_info *dest;
3989 	struct btrfs_ioctl_space_info *dest_orig;
3990 	struct btrfs_ioctl_space_info __user *user_dest;
3991 	struct btrfs_space_info *info;
3992 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3993 		       BTRFS_BLOCK_GROUP_SYSTEM,
3994 		       BTRFS_BLOCK_GROUP_METADATA,
3995 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3996 	int num_types = 4;
3997 	int alloc_size;
3998 	int ret = 0;
3999 	u64 slot_count = 0;
4000 	int i, c;
4001 
4002 	if (copy_from_user(&space_args,
4003 			   (struct btrfs_ioctl_space_args __user *)arg,
4004 			   sizeof(space_args)))
4005 		return -EFAULT;
4006 
4007 	for (i = 0; i < num_types; i++) {
4008 		struct btrfs_space_info *tmp;
4009 
4010 		info = NULL;
4011 		rcu_read_lock();
4012 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4013 					list) {
4014 			if (tmp->flags == types[i]) {
4015 				info = tmp;
4016 				break;
4017 			}
4018 		}
4019 		rcu_read_unlock();
4020 
4021 		if (!info)
4022 			continue;
4023 
4024 		down_read(&info->groups_sem);
4025 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4026 			if (!list_empty(&info->block_groups[c]))
4027 				slot_count++;
4028 		}
4029 		up_read(&info->groups_sem);
4030 	}
4031 
4032 	/*
4033 	 * Global block reserve, exported as a space_info
4034 	 */
4035 	slot_count++;
4036 
4037 	/* space_slots == 0 means they are asking for a count */
4038 	if (space_args.space_slots == 0) {
4039 		space_args.total_spaces = slot_count;
4040 		goto out;
4041 	}
4042 
4043 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4044 
4045 	alloc_size = sizeof(*dest) * slot_count;
4046 
4047 	/* we generally have at most 6 or so space infos, one for each raid
4048 	 * level.  So, a whole page should be more than enough for everyone
4049 	 */
4050 	if (alloc_size > PAGE_CACHE_SIZE)
4051 		return -ENOMEM;
4052 
4053 	space_args.total_spaces = 0;
4054 	dest = kmalloc(alloc_size, GFP_KERNEL);
4055 	if (!dest)
4056 		return -ENOMEM;
4057 	dest_orig = dest;
4058 
4059 	/* now we have a buffer to copy into */
4060 	for (i = 0; i < num_types; i++) {
4061 		struct btrfs_space_info *tmp;
4062 
4063 		if (!slot_count)
4064 			break;
4065 
4066 		info = NULL;
4067 		rcu_read_lock();
4068 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4069 					list) {
4070 			if (tmp->flags == types[i]) {
4071 				info = tmp;
4072 				break;
4073 			}
4074 		}
4075 		rcu_read_unlock();
4076 
4077 		if (!info)
4078 			continue;
4079 		down_read(&info->groups_sem);
4080 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4081 			if (!list_empty(&info->block_groups[c])) {
4082 				btrfs_get_block_group_info(
4083 					&info->block_groups[c], &space);
4084 				memcpy(dest, &space, sizeof(space));
4085 				dest++;
4086 				space_args.total_spaces++;
4087 				slot_count--;
4088 			}
4089 			if (!slot_count)
4090 				break;
4091 		}
4092 		up_read(&info->groups_sem);
4093 	}
4094 
4095 	/*
4096 	 * Add global block reserve
4097 	 */
4098 	if (slot_count) {
4099 		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4100 
4101 		spin_lock(&block_rsv->lock);
4102 		space.total_bytes = block_rsv->size;
4103 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4104 		spin_unlock(&block_rsv->lock);
4105 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4106 		memcpy(dest, &space, sizeof(space));
4107 		space_args.total_spaces++;
4108 	}
4109 
4110 	user_dest = (struct btrfs_ioctl_space_info __user *)
4111 		(arg + sizeof(struct btrfs_ioctl_space_args));
4112 
4113 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4114 		ret = -EFAULT;
4115 
4116 	kfree(dest_orig);
4117 out:
4118 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4119 		ret = -EFAULT;
4120 
4121 	return ret;
4122 }
4123 
4124 /*
4125  * there are many ways the trans_start and trans_end ioctls can lead
4126  * to deadlocks.  They should only be used by applications that
4127  * basically own the machine, and have a very in depth understanding
4128  * of all the possible deadlocks and enospc problems.
4129  */
4130 long btrfs_ioctl_trans_end(struct file *file)
4131 {
4132 	struct inode *inode = file_inode(file);
4133 	struct btrfs_root *root = BTRFS_I(inode)->root;
4134 	struct btrfs_trans_handle *trans;
4135 
4136 	trans = file->private_data;
4137 	if (!trans)
4138 		return -EINVAL;
4139 	file->private_data = NULL;
4140 
4141 	btrfs_end_transaction(trans, root);
4142 
4143 	atomic_dec(&root->fs_info->open_ioctl_trans);
4144 
4145 	mnt_drop_write_file(file);
4146 	return 0;
4147 }
4148 
4149 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4150 					    void __user *argp)
4151 {
4152 	struct btrfs_trans_handle *trans;
4153 	u64 transid;
4154 	int ret;
4155 
4156 	trans = btrfs_attach_transaction_barrier(root);
4157 	if (IS_ERR(trans)) {
4158 		if (PTR_ERR(trans) != -ENOENT)
4159 			return PTR_ERR(trans);
4160 
4161 		/* No running transaction, don't bother */
4162 		transid = root->fs_info->last_trans_committed;
4163 		goto out;
4164 	}
4165 	transid = trans->transid;
4166 	ret = btrfs_commit_transaction_async(trans, root, 0);
4167 	if (ret) {
4168 		btrfs_end_transaction(trans, root);
4169 		return ret;
4170 	}
4171 out:
4172 	if (argp)
4173 		if (copy_to_user(argp, &transid, sizeof(transid)))
4174 			return -EFAULT;
4175 	return 0;
4176 }
4177 
4178 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4179 					   void __user *argp)
4180 {
4181 	u64 transid;
4182 
4183 	if (argp) {
4184 		if (copy_from_user(&transid, argp, sizeof(transid)))
4185 			return -EFAULT;
4186 	} else {
4187 		transid = 0;  /* current trans */
4188 	}
4189 	return btrfs_wait_for_commit(root, transid);
4190 }
4191 
4192 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4193 {
4194 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4195 	struct btrfs_ioctl_scrub_args *sa;
4196 	int ret;
4197 
4198 	if (!capable(CAP_SYS_ADMIN))
4199 		return -EPERM;
4200 
4201 	sa = memdup_user(arg, sizeof(*sa));
4202 	if (IS_ERR(sa))
4203 		return PTR_ERR(sa);
4204 
4205 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4206 		ret = mnt_want_write_file(file);
4207 		if (ret)
4208 			goto out;
4209 	}
4210 
4211 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4212 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4213 			      0);
4214 
4215 	if (copy_to_user(arg, sa, sizeof(*sa)))
4216 		ret = -EFAULT;
4217 
4218 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4219 		mnt_drop_write_file(file);
4220 out:
4221 	kfree(sa);
4222 	return ret;
4223 }
4224 
4225 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4226 {
4227 	if (!capable(CAP_SYS_ADMIN))
4228 		return -EPERM;
4229 
4230 	return btrfs_scrub_cancel(root->fs_info);
4231 }
4232 
4233 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4234 				       void __user *arg)
4235 {
4236 	struct btrfs_ioctl_scrub_args *sa;
4237 	int ret;
4238 
4239 	if (!capable(CAP_SYS_ADMIN))
4240 		return -EPERM;
4241 
4242 	sa = memdup_user(arg, sizeof(*sa));
4243 	if (IS_ERR(sa))
4244 		return PTR_ERR(sa);
4245 
4246 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4247 
4248 	if (copy_to_user(arg, sa, sizeof(*sa)))
4249 		ret = -EFAULT;
4250 
4251 	kfree(sa);
4252 	return ret;
4253 }
4254 
4255 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4256 				      void __user *arg)
4257 {
4258 	struct btrfs_ioctl_get_dev_stats *sa;
4259 	int ret;
4260 
4261 	sa = memdup_user(arg, sizeof(*sa));
4262 	if (IS_ERR(sa))
4263 		return PTR_ERR(sa);
4264 
4265 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4266 		kfree(sa);
4267 		return -EPERM;
4268 	}
4269 
4270 	ret = btrfs_get_dev_stats(root, sa);
4271 
4272 	if (copy_to_user(arg, sa, sizeof(*sa)))
4273 		ret = -EFAULT;
4274 
4275 	kfree(sa);
4276 	return ret;
4277 }
4278 
4279 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4280 {
4281 	struct btrfs_ioctl_dev_replace_args *p;
4282 	int ret;
4283 
4284 	if (!capable(CAP_SYS_ADMIN))
4285 		return -EPERM;
4286 
4287 	p = memdup_user(arg, sizeof(*p));
4288 	if (IS_ERR(p))
4289 		return PTR_ERR(p);
4290 
4291 	switch (p->cmd) {
4292 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4293 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4294 			ret = -EROFS;
4295 			goto out;
4296 		}
4297 		if (atomic_xchg(
4298 			&root->fs_info->mutually_exclusive_operation_running,
4299 			1)) {
4300 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4301 		} else {
4302 			ret = btrfs_dev_replace_start(root, p);
4303 			atomic_set(
4304 			 &root->fs_info->mutually_exclusive_operation_running,
4305 			 0);
4306 		}
4307 		break;
4308 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4309 		btrfs_dev_replace_status(root->fs_info, p);
4310 		ret = 0;
4311 		break;
4312 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4313 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
4314 		break;
4315 	default:
4316 		ret = -EINVAL;
4317 		break;
4318 	}
4319 
4320 	if (copy_to_user(arg, p, sizeof(*p)))
4321 		ret = -EFAULT;
4322 out:
4323 	kfree(p);
4324 	return ret;
4325 }
4326 
4327 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4328 {
4329 	int ret = 0;
4330 	int i;
4331 	u64 rel_ptr;
4332 	int size;
4333 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4334 	struct inode_fs_paths *ipath = NULL;
4335 	struct btrfs_path *path;
4336 
4337 	if (!capable(CAP_DAC_READ_SEARCH))
4338 		return -EPERM;
4339 
4340 	path = btrfs_alloc_path();
4341 	if (!path) {
4342 		ret = -ENOMEM;
4343 		goto out;
4344 	}
4345 
4346 	ipa = memdup_user(arg, sizeof(*ipa));
4347 	if (IS_ERR(ipa)) {
4348 		ret = PTR_ERR(ipa);
4349 		ipa = NULL;
4350 		goto out;
4351 	}
4352 
4353 	size = min_t(u32, ipa->size, 4096);
4354 	ipath = init_ipath(size, root, path);
4355 	if (IS_ERR(ipath)) {
4356 		ret = PTR_ERR(ipath);
4357 		ipath = NULL;
4358 		goto out;
4359 	}
4360 
4361 	ret = paths_from_inode(ipa->inum, ipath);
4362 	if (ret < 0)
4363 		goto out;
4364 
4365 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4366 		rel_ptr = ipath->fspath->val[i] -
4367 			  (u64)(unsigned long)ipath->fspath->val;
4368 		ipath->fspath->val[i] = rel_ptr;
4369 	}
4370 
4371 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4372 			   (void *)(unsigned long)ipath->fspath, size);
4373 	if (ret) {
4374 		ret = -EFAULT;
4375 		goto out;
4376 	}
4377 
4378 out:
4379 	btrfs_free_path(path);
4380 	free_ipath(ipath);
4381 	kfree(ipa);
4382 
4383 	return ret;
4384 }
4385 
4386 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4387 {
4388 	struct btrfs_data_container *inodes = ctx;
4389 	const size_t c = 3 * sizeof(u64);
4390 
4391 	if (inodes->bytes_left >= c) {
4392 		inodes->bytes_left -= c;
4393 		inodes->val[inodes->elem_cnt] = inum;
4394 		inodes->val[inodes->elem_cnt + 1] = offset;
4395 		inodes->val[inodes->elem_cnt + 2] = root;
4396 		inodes->elem_cnt += 3;
4397 	} else {
4398 		inodes->bytes_missing += c - inodes->bytes_left;
4399 		inodes->bytes_left = 0;
4400 		inodes->elem_missed += 3;
4401 	}
4402 
4403 	return 0;
4404 }
4405 
4406 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4407 					void __user *arg)
4408 {
4409 	int ret = 0;
4410 	int size;
4411 	struct btrfs_ioctl_logical_ino_args *loi;
4412 	struct btrfs_data_container *inodes = NULL;
4413 	struct btrfs_path *path = NULL;
4414 
4415 	if (!capable(CAP_SYS_ADMIN))
4416 		return -EPERM;
4417 
4418 	loi = memdup_user(arg, sizeof(*loi));
4419 	if (IS_ERR(loi)) {
4420 		ret = PTR_ERR(loi);
4421 		loi = NULL;
4422 		goto out;
4423 	}
4424 
4425 	path = btrfs_alloc_path();
4426 	if (!path) {
4427 		ret = -ENOMEM;
4428 		goto out;
4429 	}
4430 
4431 	size = min_t(u32, loi->size, SZ_64K);
4432 	inodes = init_data_container(size);
4433 	if (IS_ERR(inodes)) {
4434 		ret = PTR_ERR(inodes);
4435 		inodes = NULL;
4436 		goto out;
4437 	}
4438 
4439 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4440 					  build_ino_list, inodes);
4441 	if (ret == -EINVAL)
4442 		ret = -ENOENT;
4443 	if (ret < 0)
4444 		goto out;
4445 
4446 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4447 			   (void *)(unsigned long)inodes, size);
4448 	if (ret)
4449 		ret = -EFAULT;
4450 
4451 out:
4452 	btrfs_free_path(path);
4453 	vfree(inodes);
4454 	kfree(loi);
4455 
4456 	return ret;
4457 }
4458 
4459 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4460 			       struct btrfs_ioctl_balance_args *bargs)
4461 {
4462 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4463 
4464 	bargs->flags = bctl->flags;
4465 
4466 	if (atomic_read(&fs_info->balance_running))
4467 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4468 	if (atomic_read(&fs_info->balance_pause_req))
4469 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4470 	if (atomic_read(&fs_info->balance_cancel_req))
4471 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4472 
4473 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4474 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4475 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4476 
4477 	if (lock) {
4478 		spin_lock(&fs_info->balance_lock);
4479 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4480 		spin_unlock(&fs_info->balance_lock);
4481 	} else {
4482 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4483 	}
4484 }
4485 
4486 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4487 {
4488 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4489 	struct btrfs_fs_info *fs_info = root->fs_info;
4490 	struct btrfs_ioctl_balance_args *bargs;
4491 	struct btrfs_balance_control *bctl;
4492 	bool need_unlock; /* for mut. excl. ops lock */
4493 	int ret;
4494 
4495 	if (!capable(CAP_SYS_ADMIN))
4496 		return -EPERM;
4497 
4498 	ret = mnt_want_write_file(file);
4499 	if (ret)
4500 		return ret;
4501 
4502 again:
4503 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4504 		mutex_lock(&fs_info->volume_mutex);
4505 		mutex_lock(&fs_info->balance_mutex);
4506 		need_unlock = true;
4507 		goto locked;
4508 	}
4509 
4510 	/*
4511 	 * mut. excl. ops lock is locked.  Three possibilites:
4512 	 *   (1) some other op is running
4513 	 *   (2) balance is running
4514 	 *   (3) balance is paused -- special case (think resume)
4515 	 */
4516 	mutex_lock(&fs_info->balance_mutex);
4517 	if (fs_info->balance_ctl) {
4518 		/* this is either (2) or (3) */
4519 		if (!atomic_read(&fs_info->balance_running)) {
4520 			mutex_unlock(&fs_info->balance_mutex);
4521 			if (!mutex_trylock(&fs_info->volume_mutex))
4522 				goto again;
4523 			mutex_lock(&fs_info->balance_mutex);
4524 
4525 			if (fs_info->balance_ctl &&
4526 			    !atomic_read(&fs_info->balance_running)) {
4527 				/* this is (3) */
4528 				need_unlock = false;
4529 				goto locked;
4530 			}
4531 
4532 			mutex_unlock(&fs_info->balance_mutex);
4533 			mutex_unlock(&fs_info->volume_mutex);
4534 			goto again;
4535 		} else {
4536 			/* this is (2) */
4537 			mutex_unlock(&fs_info->balance_mutex);
4538 			ret = -EINPROGRESS;
4539 			goto out;
4540 		}
4541 	} else {
4542 		/* this is (1) */
4543 		mutex_unlock(&fs_info->balance_mutex);
4544 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4545 		goto out;
4546 	}
4547 
4548 locked:
4549 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4550 
4551 	if (arg) {
4552 		bargs = memdup_user(arg, sizeof(*bargs));
4553 		if (IS_ERR(bargs)) {
4554 			ret = PTR_ERR(bargs);
4555 			goto out_unlock;
4556 		}
4557 
4558 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4559 			if (!fs_info->balance_ctl) {
4560 				ret = -ENOTCONN;
4561 				goto out_bargs;
4562 			}
4563 
4564 			bctl = fs_info->balance_ctl;
4565 			spin_lock(&fs_info->balance_lock);
4566 			bctl->flags |= BTRFS_BALANCE_RESUME;
4567 			spin_unlock(&fs_info->balance_lock);
4568 
4569 			goto do_balance;
4570 		}
4571 	} else {
4572 		bargs = NULL;
4573 	}
4574 
4575 	if (fs_info->balance_ctl) {
4576 		ret = -EINPROGRESS;
4577 		goto out_bargs;
4578 	}
4579 
4580 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4581 	if (!bctl) {
4582 		ret = -ENOMEM;
4583 		goto out_bargs;
4584 	}
4585 
4586 	bctl->fs_info = fs_info;
4587 	if (arg) {
4588 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4589 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4590 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4591 
4592 		bctl->flags = bargs->flags;
4593 	} else {
4594 		/* balance everything - no filters */
4595 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4596 	}
4597 
4598 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4599 		ret = -EINVAL;
4600 		goto out_bctl;
4601 	}
4602 
4603 do_balance:
4604 	/*
4605 	 * Ownership of bctl and mutually_exclusive_operation_running
4606 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4607 	 * or, if restriper was paused all the way until unmount, in
4608 	 * free_fs_info.  mutually_exclusive_operation_running is
4609 	 * cleared in __cancel_balance.
4610 	 */
4611 	need_unlock = false;
4612 
4613 	ret = btrfs_balance(bctl, bargs);
4614 	bctl = NULL;
4615 
4616 	if (arg) {
4617 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4618 			ret = -EFAULT;
4619 	}
4620 
4621 out_bctl:
4622 	kfree(bctl);
4623 out_bargs:
4624 	kfree(bargs);
4625 out_unlock:
4626 	mutex_unlock(&fs_info->balance_mutex);
4627 	mutex_unlock(&fs_info->volume_mutex);
4628 	if (need_unlock)
4629 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4630 out:
4631 	mnt_drop_write_file(file);
4632 	return ret;
4633 }
4634 
4635 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4636 {
4637 	if (!capable(CAP_SYS_ADMIN))
4638 		return -EPERM;
4639 
4640 	switch (cmd) {
4641 	case BTRFS_BALANCE_CTL_PAUSE:
4642 		return btrfs_pause_balance(root->fs_info);
4643 	case BTRFS_BALANCE_CTL_CANCEL:
4644 		return btrfs_cancel_balance(root->fs_info);
4645 	}
4646 
4647 	return -EINVAL;
4648 }
4649 
4650 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4651 					 void __user *arg)
4652 {
4653 	struct btrfs_fs_info *fs_info = root->fs_info;
4654 	struct btrfs_ioctl_balance_args *bargs;
4655 	int ret = 0;
4656 
4657 	if (!capable(CAP_SYS_ADMIN))
4658 		return -EPERM;
4659 
4660 	mutex_lock(&fs_info->balance_mutex);
4661 	if (!fs_info->balance_ctl) {
4662 		ret = -ENOTCONN;
4663 		goto out;
4664 	}
4665 
4666 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4667 	if (!bargs) {
4668 		ret = -ENOMEM;
4669 		goto out;
4670 	}
4671 
4672 	update_ioctl_balance_args(fs_info, 1, bargs);
4673 
4674 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4675 		ret = -EFAULT;
4676 
4677 	kfree(bargs);
4678 out:
4679 	mutex_unlock(&fs_info->balance_mutex);
4680 	return ret;
4681 }
4682 
4683 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4684 {
4685 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4686 	struct btrfs_ioctl_quota_ctl_args *sa;
4687 	struct btrfs_trans_handle *trans = NULL;
4688 	int ret;
4689 	int err;
4690 
4691 	if (!capable(CAP_SYS_ADMIN))
4692 		return -EPERM;
4693 
4694 	ret = mnt_want_write_file(file);
4695 	if (ret)
4696 		return ret;
4697 
4698 	sa = memdup_user(arg, sizeof(*sa));
4699 	if (IS_ERR(sa)) {
4700 		ret = PTR_ERR(sa);
4701 		goto drop_write;
4702 	}
4703 
4704 	down_write(&root->fs_info->subvol_sem);
4705 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4706 	if (IS_ERR(trans)) {
4707 		ret = PTR_ERR(trans);
4708 		goto out;
4709 	}
4710 
4711 	switch (sa->cmd) {
4712 	case BTRFS_QUOTA_CTL_ENABLE:
4713 		ret = btrfs_quota_enable(trans, root->fs_info);
4714 		break;
4715 	case BTRFS_QUOTA_CTL_DISABLE:
4716 		ret = btrfs_quota_disable(trans, root->fs_info);
4717 		break;
4718 	default:
4719 		ret = -EINVAL;
4720 		break;
4721 	}
4722 
4723 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4724 	if (err && !ret)
4725 		ret = err;
4726 out:
4727 	kfree(sa);
4728 	up_write(&root->fs_info->subvol_sem);
4729 drop_write:
4730 	mnt_drop_write_file(file);
4731 	return ret;
4732 }
4733 
4734 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4735 {
4736 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4737 	struct btrfs_ioctl_qgroup_assign_args *sa;
4738 	struct btrfs_trans_handle *trans;
4739 	int ret;
4740 	int err;
4741 
4742 	if (!capable(CAP_SYS_ADMIN))
4743 		return -EPERM;
4744 
4745 	ret = mnt_want_write_file(file);
4746 	if (ret)
4747 		return ret;
4748 
4749 	sa = memdup_user(arg, sizeof(*sa));
4750 	if (IS_ERR(sa)) {
4751 		ret = PTR_ERR(sa);
4752 		goto drop_write;
4753 	}
4754 
4755 	trans = btrfs_join_transaction(root);
4756 	if (IS_ERR(trans)) {
4757 		ret = PTR_ERR(trans);
4758 		goto out;
4759 	}
4760 
4761 	/* FIXME: check if the IDs really exist */
4762 	if (sa->assign) {
4763 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4764 						sa->src, sa->dst);
4765 	} else {
4766 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4767 						sa->src, sa->dst);
4768 	}
4769 
4770 	/* update qgroup status and info */
4771 	err = btrfs_run_qgroups(trans, root->fs_info);
4772 	if (err < 0)
4773 		btrfs_std_error(root->fs_info, ret,
4774 			    "failed to update qgroup status and info\n");
4775 	err = btrfs_end_transaction(trans, root);
4776 	if (err && !ret)
4777 		ret = err;
4778 
4779 out:
4780 	kfree(sa);
4781 drop_write:
4782 	mnt_drop_write_file(file);
4783 	return ret;
4784 }
4785 
4786 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4787 {
4788 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4789 	struct btrfs_ioctl_qgroup_create_args *sa;
4790 	struct btrfs_trans_handle *trans;
4791 	int ret;
4792 	int err;
4793 
4794 	if (!capable(CAP_SYS_ADMIN))
4795 		return -EPERM;
4796 
4797 	ret = mnt_want_write_file(file);
4798 	if (ret)
4799 		return ret;
4800 
4801 	sa = memdup_user(arg, sizeof(*sa));
4802 	if (IS_ERR(sa)) {
4803 		ret = PTR_ERR(sa);
4804 		goto drop_write;
4805 	}
4806 
4807 	if (!sa->qgroupid) {
4808 		ret = -EINVAL;
4809 		goto out;
4810 	}
4811 
4812 	trans = btrfs_join_transaction(root);
4813 	if (IS_ERR(trans)) {
4814 		ret = PTR_ERR(trans);
4815 		goto out;
4816 	}
4817 
4818 	/* FIXME: check if the IDs really exist */
4819 	if (sa->create) {
4820 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4821 	} else {
4822 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4823 	}
4824 
4825 	err = btrfs_end_transaction(trans, root);
4826 	if (err && !ret)
4827 		ret = err;
4828 
4829 out:
4830 	kfree(sa);
4831 drop_write:
4832 	mnt_drop_write_file(file);
4833 	return ret;
4834 }
4835 
4836 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4837 {
4838 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4839 	struct btrfs_ioctl_qgroup_limit_args *sa;
4840 	struct btrfs_trans_handle *trans;
4841 	int ret;
4842 	int err;
4843 	u64 qgroupid;
4844 
4845 	if (!capable(CAP_SYS_ADMIN))
4846 		return -EPERM;
4847 
4848 	ret = mnt_want_write_file(file);
4849 	if (ret)
4850 		return ret;
4851 
4852 	sa = memdup_user(arg, sizeof(*sa));
4853 	if (IS_ERR(sa)) {
4854 		ret = PTR_ERR(sa);
4855 		goto drop_write;
4856 	}
4857 
4858 	trans = btrfs_join_transaction(root);
4859 	if (IS_ERR(trans)) {
4860 		ret = PTR_ERR(trans);
4861 		goto out;
4862 	}
4863 
4864 	qgroupid = sa->qgroupid;
4865 	if (!qgroupid) {
4866 		/* take the current subvol as qgroup */
4867 		qgroupid = root->root_key.objectid;
4868 	}
4869 
4870 	/* FIXME: check if the IDs really exist */
4871 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4872 
4873 	err = btrfs_end_transaction(trans, root);
4874 	if (err && !ret)
4875 		ret = err;
4876 
4877 out:
4878 	kfree(sa);
4879 drop_write:
4880 	mnt_drop_write_file(file);
4881 	return ret;
4882 }
4883 
4884 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4885 {
4886 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4887 	struct btrfs_ioctl_quota_rescan_args *qsa;
4888 	int ret;
4889 
4890 	if (!capable(CAP_SYS_ADMIN))
4891 		return -EPERM;
4892 
4893 	ret = mnt_want_write_file(file);
4894 	if (ret)
4895 		return ret;
4896 
4897 	qsa = memdup_user(arg, sizeof(*qsa));
4898 	if (IS_ERR(qsa)) {
4899 		ret = PTR_ERR(qsa);
4900 		goto drop_write;
4901 	}
4902 
4903 	if (qsa->flags) {
4904 		ret = -EINVAL;
4905 		goto out;
4906 	}
4907 
4908 	ret = btrfs_qgroup_rescan(root->fs_info);
4909 
4910 out:
4911 	kfree(qsa);
4912 drop_write:
4913 	mnt_drop_write_file(file);
4914 	return ret;
4915 }
4916 
4917 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4918 {
4919 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4920 	struct btrfs_ioctl_quota_rescan_args *qsa;
4921 	int ret = 0;
4922 
4923 	if (!capable(CAP_SYS_ADMIN))
4924 		return -EPERM;
4925 
4926 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4927 	if (!qsa)
4928 		return -ENOMEM;
4929 
4930 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4931 		qsa->flags = 1;
4932 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4933 	}
4934 
4935 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4936 		ret = -EFAULT;
4937 
4938 	kfree(qsa);
4939 	return ret;
4940 }
4941 
4942 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4943 {
4944 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4945 
4946 	if (!capable(CAP_SYS_ADMIN))
4947 		return -EPERM;
4948 
4949 	return btrfs_qgroup_wait_for_completion(root->fs_info);
4950 }
4951 
4952 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4953 					    struct btrfs_ioctl_received_subvol_args *sa)
4954 {
4955 	struct inode *inode = file_inode(file);
4956 	struct btrfs_root *root = BTRFS_I(inode)->root;
4957 	struct btrfs_root_item *root_item = &root->root_item;
4958 	struct btrfs_trans_handle *trans;
4959 	struct timespec ct = CURRENT_TIME;
4960 	int ret = 0;
4961 	int received_uuid_changed;
4962 
4963 	if (!inode_owner_or_capable(inode))
4964 		return -EPERM;
4965 
4966 	ret = mnt_want_write_file(file);
4967 	if (ret < 0)
4968 		return ret;
4969 
4970 	down_write(&root->fs_info->subvol_sem);
4971 
4972 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4973 		ret = -EINVAL;
4974 		goto out;
4975 	}
4976 
4977 	if (btrfs_root_readonly(root)) {
4978 		ret = -EROFS;
4979 		goto out;
4980 	}
4981 
4982 	/*
4983 	 * 1 - root item
4984 	 * 2 - uuid items (received uuid + subvol uuid)
4985 	 */
4986 	trans = btrfs_start_transaction(root, 3);
4987 	if (IS_ERR(trans)) {
4988 		ret = PTR_ERR(trans);
4989 		trans = NULL;
4990 		goto out;
4991 	}
4992 
4993 	sa->rtransid = trans->transid;
4994 	sa->rtime.sec = ct.tv_sec;
4995 	sa->rtime.nsec = ct.tv_nsec;
4996 
4997 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4998 				       BTRFS_UUID_SIZE);
4999 	if (received_uuid_changed &&
5000 	    !btrfs_is_empty_uuid(root_item->received_uuid))
5001 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5002 				    root_item->received_uuid,
5003 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5004 				    root->root_key.objectid);
5005 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5006 	btrfs_set_root_stransid(root_item, sa->stransid);
5007 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5008 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5009 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5010 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5011 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5012 
5013 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
5014 				&root->root_key, &root->root_item);
5015 	if (ret < 0) {
5016 		btrfs_end_transaction(trans, root);
5017 		goto out;
5018 	}
5019 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5020 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5021 					  sa->uuid,
5022 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5023 					  root->root_key.objectid);
5024 		if (ret < 0 && ret != -EEXIST) {
5025 			btrfs_abort_transaction(trans, root, ret);
5026 			goto out;
5027 		}
5028 	}
5029 	ret = btrfs_commit_transaction(trans, root);
5030 	if (ret < 0) {
5031 		btrfs_abort_transaction(trans, root, ret);
5032 		goto out;
5033 	}
5034 
5035 out:
5036 	up_write(&root->fs_info->subvol_sem);
5037 	mnt_drop_write_file(file);
5038 	return ret;
5039 }
5040 
5041 #ifdef CONFIG_64BIT
5042 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5043 						void __user *arg)
5044 {
5045 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5046 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5047 	int ret = 0;
5048 
5049 	args32 = memdup_user(arg, sizeof(*args32));
5050 	if (IS_ERR(args32)) {
5051 		ret = PTR_ERR(args32);
5052 		args32 = NULL;
5053 		goto out;
5054 	}
5055 
5056 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5057 	if (!args64) {
5058 		ret = -ENOMEM;
5059 		goto out;
5060 	}
5061 
5062 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5063 	args64->stransid = args32->stransid;
5064 	args64->rtransid = args32->rtransid;
5065 	args64->stime.sec = args32->stime.sec;
5066 	args64->stime.nsec = args32->stime.nsec;
5067 	args64->rtime.sec = args32->rtime.sec;
5068 	args64->rtime.nsec = args32->rtime.nsec;
5069 	args64->flags = args32->flags;
5070 
5071 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5072 	if (ret)
5073 		goto out;
5074 
5075 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5076 	args32->stransid = args64->stransid;
5077 	args32->rtransid = args64->rtransid;
5078 	args32->stime.sec = args64->stime.sec;
5079 	args32->stime.nsec = args64->stime.nsec;
5080 	args32->rtime.sec = args64->rtime.sec;
5081 	args32->rtime.nsec = args64->rtime.nsec;
5082 	args32->flags = args64->flags;
5083 
5084 	ret = copy_to_user(arg, args32, sizeof(*args32));
5085 	if (ret)
5086 		ret = -EFAULT;
5087 
5088 out:
5089 	kfree(args32);
5090 	kfree(args64);
5091 	return ret;
5092 }
5093 #endif
5094 
5095 static long btrfs_ioctl_set_received_subvol(struct file *file,
5096 					    void __user *arg)
5097 {
5098 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5099 	int ret = 0;
5100 
5101 	sa = memdup_user(arg, sizeof(*sa));
5102 	if (IS_ERR(sa)) {
5103 		ret = PTR_ERR(sa);
5104 		sa = NULL;
5105 		goto out;
5106 	}
5107 
5108 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5109 
5110 	if (ret)
5111 		goto out;
5112 
5113 	ret = copy_to_user(arg, sa, sizeof(*sa));
5114 	if (ret)
5115 		ret = -EFAULT;
5116 
5117 out:
5118 	kfree(sa);
5119 	return ret;
5120 }
5121 
5122 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5123 {
5124 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5125 	size_t len;
5126 	int ret;
5127 	char label[BTRFS_LABEL_SIZE];
5128 
5129 	spin_lock(&root->fs_info->super_lock);
5130 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5131 	spin_unlock(&root->fs_info->super_lock);
5132 
5133 	len = strnlen(label, BTRFS_LABEL_SIZE);
5134 
5135 	if (len == BTRFS_LABEL_SIZE) {
5136 		btrfs_warn(root->fs_info,
5137 			"label is too long, return the first %zu bytes", --len);
5138 	}
5139 
5140 	ret = copy_to_user(arg, label, len);
5141 
5142 	return ret ? -EFAULT : 0;
5143 }
5144 
5145 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5146 {
5147 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5148 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5149 	struct btrfs_trans_handle *trans;
5150 	char label[BTRFS_LABEL_SIZE];
5151 	int ret;
5152 
5153 	if (!capable(CAP_SYS_ADMIN))
5154 		return -EPERM;
5155 
5156 	if (copy_from_user(label, arg, sizeof(label)))
5157 		return -EFAULT;
5158 
5159 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5160 		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5161 		       BTRFS_LABEL_SIZE - 1);
5162 		return -EINVAL;
5163 	}
5164 
5165 	ret = mnt_want_write_file(file);
5166 	if (ret)
5167 		return ret;
5168 
5169 	trans = btrfs_start_transaction(root, 0);
5170 	if (IS_ERR(trans)) {
5171 		ret = PTR_ERR(trans);
5172 		goto out_unlock;
5173 	}
5174 
5175 	spin_lock(&root->fs_info->super_lock);
5176 	strcpy(super_block->label, label);
5177 	spin_unlock(&root->fs_info->super_lock);
5178 	ret = btrfs_commit_transaction(trans, root);
5179 
5180 out_unlock:
5181 	mnt_drop_write_file(file);
5182 	return ret;
5183 }
5184 
5185 #define INIT_FEATURE_FLAGS(suffix) \
5186 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5187 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5188 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5189 
5190 static int btrfs_ioctl_get_supported_features(struct file *file,
5191 					      void __user *arg)
5192 {
5193 	static const struct btrfs_ioctl_feature_flags features[3] = {
5194 		INIT_FEATURE_FLAGS(SUPP),
5195 		INIT_FEATURE_FLAGS(SAFE_SET),
5196 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5197 	};
5198 
5199 	if (copy_to_user(arg, &features, sizeof(features)))
5200 		return -EFAULT;
5201 
5202 	return 0;
5203 }
5204 
5205 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5206 {
5207 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5208 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5209 	struct btrfs_ioctl_feature_flags features;
5210 
5211 	features.compat_flags = btrfs_super_compat_flags(super_block);
5212 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5213 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5214 
5215 	if (copy_to_user(arg, &features, sizeof(features)))
5216 		return -EFAULT;
5217 
5218 	return 0;
5219 }
5220 
5221 static int check_feature_bits(struct btrfs_root *root,
5222 			      enum btrfs_feature_set set,
5223 			      u64 change_mask, u64 flags, u64 supported_flags,
5224 			      u64 safe_set, u64 safe_clear)
5225 {
5226 	const char *type = btrfs_feature_set_names[set];
5227 	char *names;
5228 	u64 disallowed, unsupported;
5229 	u64 set_mask = flags & change_mask;
5230 	u64 clear_mask = ~flags & change_mask;
5231 
5232 	unsupported = set_mask & ~supported_flags;
5233 	if (unsupported) {
5234 		names = btrfs_printable_features(set, unsupported);
5235 		if (names) {
5236 			btrfs_warn(root->fs_info,
5237 			   "this kernel does not support the %s feature bit%s",
5238 			   names, strchr(names, ',') ? "s" : "");
5239 			kfree(names);
5240 		} else
5241 			btrfs_warn(root->fs_info,
5242 			   "this kernel does not support %s bits 0x%llx",
5243 			   type, unsupported);
5244 		return -EOPNOTSUPP;
5245 	}
5246 
5247 	disallowed = set_mask & ~safe_set;
5248 	if (disallowed) {
5249 		names = btrfs_printable_features(set, disallowed);
5250 		if (names) {
5251 			btrfs_warn(root->fs_info,
5252 			   "can't set the %s feature bit%s while mounted",
5253 			   names, strchr(names, ',') ? "s" : "");
5254 			kfree(names);
5255 		} else
5256 			btrfs_warn(root->fs_info,
5257 			   "can't set %s bits 0x%llx while mounted",
5258 			   type, disallowed);
5259 		return -EPERM;
5260 	}
5261 
5262 	disallowed = clear_mask & ~safe_clear;
5263 	if (disallowed) {
5264 		names = btrfs_printable_features(set, disallowed);
5265 		if (names) {
5266 			btrfs_warn(root->fs_info,
5267 			   "can't clear the %s feature bit%s while mounted",
5268 			   names, strchr(names, ',') ? "s" : "");
5269 			kfree(names);
5270 		} else
5271 			btrfs_warn(root->fs_info,
5272 			   "can't clear %s bits 0x%llx while mounted",
5273 			   type, disallowed);
5274 		return -EPERM;
5275 	}
5276 
5277 	return 0;
5278 }
5279 
5280 #define check_feature(root, change_mask, flags, mask_base)	\
5281 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5282 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5283 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5284 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5285 
5286 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5287 {
5288 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5289 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5290 	struct btrfs_ioctl_feature_flags flags[2];
5291 	struct btrfs_trans_handle *trans;
5292 	u64 newflags;
5293 	int ret;
5294 
5295 	if (!capable(CAP_SYS_ADMIN))
5296 		return -EPERM;
5297 
5298 	if (copy_from_user(flags, arg, sizeof(flags)))
5299 		return -EFAULT;
5300 
5301 	/* Nothing to do */
5302 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5303 	    !flags[0].incompat_flags)
5304 		return 0;
5305 
5306 	ret = check_feature(root, flags[0].compat_flags,
5307 			    flags[1].compat_flags, COMPAT);
5308 	if (ret)
5309 		return ret;
5310 
5311 	ret = check_feature(root, flags[0].compat_ro_flags,
5312 			    flags[1].compat_ro_flags, COMPAT_RO);
5313 	if (ret)
5314 		return ret;
5315 
5316 	ret = check_feature(root, flags[0].incompat_flags,
5317 			    flags[1].incompat_flags, INCOMPAT);
5318 	if (ret)
5319 		return ret;
5320 
5321 	trans = btrfs_start_transaction(root, 0);
5322 	if (IS_ERR(trans))
5323 		return PTR_ERR(trans);
5324 
5325 	spin_lock(&root->fs_info->super_lock);
5326 	newflags = btrfs_super_compat_flags(super_block);
5327 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5328 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5329 	btrfs_set_super_compat_flags(super_block, newflags);
5330 
5331 	newflags = btrfs_super_compat_ro_flags(super_block);
5332 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5333 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5334 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5335 
5336 	newflags = btrfs_super_incompat_flags(super_block);
5337 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5338 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5339 	btrfs_set_super_incompat_flags(super_block, newflags);
5340 	spin_unlock(&root->fs_info->super_lock);
5341 
5342 	return btrfs_commit_transaction(trans, root);
5343 }
5344 
5345 long btrfs_ioctl(struct file *file, unsigned int
5346 		cmd, unsigned long arg)
5347 {
5348 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5349 	void __user *argp = (void __user *)arg;
5350 
5351 	switch (cmd) {
5352 	case FS_IOC_GETFLAGS:
5353 		return btrfs_ioctl_getflags(file, argp);
5354 	case FS_IOC_SETFLAGS:
5355 		return btrfs_ioctl_setflags(file, argp);
5356 	case FS_IOC_GETVERSION:
5357 		return btrfs_ioctl_getversion(file, argp);
5358 	case FITRIM:
5359 		return btrfs_ioctl_fitrim(file, argp);
5360 	case BTRFS_IOC_SNAP_CREATE:
5361 		return btrfs_ioctl_snap_create(file, argp, 0);
5362 	case BTRFS_IOC_SNAP_CREATE_V2:
5363 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5364 	case BTRFS_IOC_SUBVOL_CREATE:
5365 		return btrfs_ioctl_snap_create(file, argp, 1);
5366 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5367 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5368 	case BTRFS_IOC_SNAP_DESTROY:
5369 		return btrfs_ioctl_snap_destroy(file, argp);
5370 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5371 		return btrfs_ioctl_subvol_getflags(file, argp);
5372 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5373 		return btrfs_ioctl_subvol_setflags(file, argp);
5374 	case BTRFS_IOC_DEFAULT_SUBVOL:
5375 		return btrfs_ioctl_default_subvol(file, argp);
5376 	case BTRFS_IOC_DEFRAG:
5377 		return btrfs_ioctl_defrag(file, NULL);
5378 	case BTRFS_IOC_DEFRAG_RANGE:
5379 		return btrfs_ioctl_defrag(file, argp);
5380 	case BTRFS_IOC_RESIZE:
5381 		return btrfs_ioctl_resize(file, argp);
5382 	case BTRFS_IOC_ADD_DEV:
5383 		return btrfs_ioctl_add_dev(root, argp);
5384 	case BTRFS_IOC_RM_DEV:
5385 		return btrfs_ioctl_rm_dev(file, argp);
5386 	case BTRFS_IOC_FS_INFO:
5387 		return btrfs_ioctl_fs_info(root, argp);
5388 	case BTRFS_IOC_DEV_INFO:
5389 		return btrfs_ioctl_dev_info(root, argp);
5390 	case BTRFS_IOC_BALANCE:
5391 		return btrfs_ioctl_balance(file, NULL);
5392 	case BTRFS_IOC_TRANS_START:
5393 		return btrfs_ioctl_trans_start(file);
5394 	case BTRFS_IOC_TRANS_END:
5395 		return btrfs_ioctl_trans_end(file);
5396 	case BTRFS_IOC_TREE_SEARCH:
5397 		return btrfs_ioctl_tree_search(file, argp);
5398 	case BTRFS_IOC_TREE_SEARCH_V2:
5399 		return btrfs_ioctl_tree_search_v2(file, argp);
5400 	case BTRFS_IOC_INO_LOOKUP:
5401 		return btrfs_ioctl_ino_lookup(file, argp);
5402 	case BTRFS_IOC_INO_PATHS:
5403 		return btrfs_ioctl_ino_to_path(root, argp);
5404 	case BTRFS_IOC_LOGICAL_INO:
5405 		return btrfs_ioctl_logical_to_ino(root, argp);
5406 	case BTRFS_IOC_SPACE_INFO:
5407 		return btrfs_ioctl_space_info(root, argp);
5408 	case BTRFS_IOC_SYNC: {
5409 		int ret;
5410 
5411 		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5412 		if (ret)
5413 			return ret;
5414 		ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5415 		/*
5416 		 * The transaction thread may want to do more work,
5417 		 * namely it pokes the cleaner ktread that will start
5418 		 * processing uncleaned subvols.
5419 		 */
5420 		wake_up_process(root->fs_info->transaction_kthread);
5421 		return ret;
5422 	}
5423 	case BTRFS_IOC_START_SYNC:
5424 		return btrfs_ioctl_start_sync(root, argp);
5425 	case BTRFS_IOC_WAIT_SYNC:
5426 		return btrfs_ioctl_wait_sync(root, argp);
5427 	case BTRFS_IOC_SCRUB:
5428 		return btrfs_ioctl_scrub(file, argp);
5429 	case BTRFS_IOC_SCRUB_CANCEL:
5430 		return btrfs_ioctl_scrub_cancel(root, argp);
5431 	case BTRFS_IOC_SCRUB_PROGRESS:
5432 		return btrfs_ioctl_scrub_progress(root, argp);
5433 	case BTRFS_IOC_BALANCE_V2:
5434 		return btrfs_ioctl_balance(file, argp);
5435 	case BTRFS_IOC_BALANCE_CTL:
5436 		return btrfs_ioctl_balance_ctl(root, arg);
5437 	case BTRFS_IOC_BALANCE_PROGRESS:
5438 		return btrfs_ioctl_balance_progress(root, argp);
5439 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5440 		return btrfs_ioctl_set_received_subvol(file, argp);
5441 #ifdef CONFIG_64BIT
5442 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5443 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5444 #endif
5445 	case BTRFS_IOC_SEND:
5446 		return btrfs_ioctl_send(file, argp);
5447 	case BTRFS_IOC_GET_DEV_STATS:
5448 		return btrfs_ioctl_get_dev_stats(root, argp);
5449 	case BTRFS_IOC_QUOTA_CTL:
5450 		return btrfs_ioctl_quota_ctl(file, argp);
5451 	case BTRFS_IOC_QGROUP_ASSIGN:
5452 		return btrfs_ioctl_qgroup_assign(file, argp);
5453 	case BTRFS_IOC_QGROUP_CREATE:
5454 		return btrfs_ioctl_qgroup_create(file, argp);
5455 	case BTRFS_IOC_QGROUP_LIMIT:
5456 		return btrfs_ioctl_qgroup_limit(file, argp);
5457 	case BTRFS_IOC_QUOTA_RESCAN:
5458 		return btrfs_ioctl_quota_rescan(file, argp);
5459 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5460 		return btrfs_ioctl_quota_rescan_status(file, argp);
5461 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5462 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5463 	case BTRFS_IOC_DEV_REPLACE:
5464 		return btrfs_ioctl_dev_replace(root, argp);
5465 	case BTRFS_IOC_GET_FSLABEL:
5466 		return btrfs_ioctl_get_fslabel(file, argp);
5467 	case BTRFS_IOC_SET_FSLABEL:
5468 		return btrfs_ioctl_set_fslabel(file, argp);
5469 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5470 		return btrfs_ioctl_get_supported_features(file, argp);
5471 	case BTRFS_IOC_GET_FEATURES:
5472 		return btrfs_ioctl_get_features(file, argp);
5473 	case BTRFS_IOC_SET_FEATURES:
5474 		return btrfs_ioctl_set_features(file, argp);
5475 	}
5476 
5477 	return -ENOTTY;
5478 }
5479