xref: /openbmc/linux/fs/btrfs/ioctl.c (revision a2fb4d78)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 
62 static int btrfs_clone(struct inode *src, struct inode *inode,
63 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff);
64 
65 /* Mask out flags that are inappropriate for the given type of inode. */
66 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
67 {
68 	if (S_ISDIR(mode))
69 		return flags;
70 	else if (S_ISREG(mode))
71 		return flags & ~FS_DIRSYNC_FL;
72 	else
73 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
74 }
75 
76 /*
77  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
78  */
79 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
80 {
81 	unsigned int iflags = 0;
82 
83 	if (flags & BTRFS_INODE_SYNC)
84 		iflags |= FS_SYNC_FL;
85 	if (flags & BTRFS_INODE_IMMUTABLE)
86 		iflags |= FS_IMMUTABLE_FL;
87 	if (flags & BTRFS_INODE_APPEND)
88 		iflags |= FS_APPEND_FL;
89 	if (flags & BTRFS_INODE_NODUMP)
90 		iflags |= FS_NODUMP_FL;
91 	if (flags & BTRFS_INODE_NOATIME)
92 		iflags |= FS_NOATIME_FL;
93 	if (flags & BTRFS_INODE_DIRSYNC)
94 		iflags |= FS_DIRSYNC_FL;
95 	if (flags & BTRFS_INODE_NODATACOW)
96 		iflags |= FS_NOCOW_FL;
97 
98 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
99 		iflags |= FS_COMPR_FL;
100 	else if (flags & BTRFS_INODE_NOCOMPRESS)
101 		iflags |= FS_NOCOMP_FL;
102 
103 	return iflags;
104 }
105 
106 /*
107  * Update inode->i_flags based on the btrfs internal flags.
108  */
109 void btrfs_update_iflags(struct inode *inode)
110 {
111 	struct btrfs_inode *ip = BTRFS_I(inode);
112 
113 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
114 
115 	if (ip->flags & BTRFS_INODE_SYNC)
116 		inode->i_flags |= S_SYNC;
117 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
118 		inode->i_flags |= S_IMMUTABLE;
119 	if (ip->flags & BTRFS_INODE_APPEND)
120 		inode->i_flags |= S_APPEND;
121 	if (ip->flags & BTRFS_INODE_NOATIME)
122 		inode->i_flags |= S_NOATIME;
123 	if (ip->flags & BTRFS_INODE_DIRSYNC)
124 		inode->i_flags |= S_DIRSYNC;
125 }
126 
127 /*
128  * Inherit flags from the parent inode.
129  *
130  * Currently only the compression flags and the cow flags are inherited.
131  */
132 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
133 {
134 	unsigned int flags;
135 
136 	if (!dir)
137 		return;
138 
139 	flags = BTRFS_I(dir)->flags;
140 
141 	if (flags & BTRFS_INODE_NOCOMPRESS) {
142 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
143 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
144 	} else if (flags & BTRFS_INODE_COMPRESS) {
145 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
146 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
147 	}
148 
149 	if (flags & BTRFS_INODE_NODATACOW) {
150 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
151 		if (S_ISREG(inode->i_mode))
152 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
153 	}
154 
155 	btrfs_update_iflags(inode);
156 }
157 
158 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
159 {
160 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
161 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
162 
163 	if (copy_to_user(arg, &flags, sizeof(flags)))
164 		return -EFAULT;
165 	return 0;
166 }
167 
168 static int check_flags(unsigned int flags)
169 {
170 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
171 		      FS_NOATIME_FL | FS_NODUMP_FL | \
172 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
173 		      FS_NOCOMP_FL | FS_COMPR_FL |
174 		      FS_NOCOW_FL))
175 		return -EOPNOTSUPP;
176 
177 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
178 		return -EINVAL;
179 
180 	return 0;
181 }
182 
183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
184 {
185 	struct inode *inode = file_inode(file);
186 	struct btrfs_inode *ip = BTRFS_I(inode);
187 	struct btrfs_root *root = ip->root;
188 	struct btrfs_trans_handle *trans;
189 	unsigned int flags, oldflags;
190 	int ret;
191 	u64 ip_oldflags;
192 	unsigned int i_oldflags;
193 	umode_t mode;
194 
195 	if (!inode_owner_or_capable(inode))
196 		return -EPERM;
197 
198 	if (btrfs_root_readonly(root))
199 		return -EROFS;
200 
201 	if (copy_from_user(&flags, arg, sizeof(flags)))
202 		return -EFAULT;
203 
204 	ret = check_flags(flags);
205 	if (ret)
206 		return ret;
207 
208 	ret = mnt_want_write_file(file);
209 	if (ret)
210 		return ret;
211 
212 	mutex_lock(&inode->i_mutex);
213 
214 	ip_oldflags = ip->flags;
215 	i_oldflags = inode->i_flags;
216 	mode = inode->i_mode;
217 
218 	flags = btrfs_mask_flags(inode->i_mode, flags);
219 	oldflags = btrfs_flags_to_ioctl(ip->flags);
220 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
221 		if (!capable(CAP_LINUX_IMMUTABLE)) {
222 			ret = -EPERM;
223 			goto out_unlock;
224 		}
225 	}
226 
227 	if (flags & FS_SYNC_FL)
228 		ip->flags |= BTRFS_INODE_SYNC;
229 	else
230 		ip->flags &= ~BTRFS_INODE_SYNC;
231 	if (flags & FS_IMMUTABLE_FL)
232 		ip->flags |= BTRFS_INODE_IMMUTABLE;
233 	else
234 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
235 	if (flags & FS_APPEND_FL)
236 		ip->flags |= BTRFS_INODE_APPEND;
237 	else
238 		ip->flags &= ~BTRFS_INODE_APPEND;
239 	if (flags & FS_NODUMP_FL)
240 		ip->flags |= BTRFS_INODE_NODUMP;
241 	else
242 		ip->flags &= ~BTRFS_INODE_NODUMP;
243 	if (flags & FS_NOATIME_FL)
244 		ip->flags |= BTRFS_INODE_NOATIME;
245 	else
246 		ip->flags &= ~BTRFS_INODE_NOATIME;
247 	if (flags & FS_DIRSYNC_FL)
248 		ip->flags |= BTRFS_INODE_DIRSYNC;
249 	else
250 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
251 	if (flags & FS_NOCOW_FL) {
252 		if (S_ISREG(mode)) {
253 			/*
254 			 * It's safe to turn csums off here, no extents exist.
255 			 * Otherwise we want the flag to reflect the real COW
256 			 * status of the file and will not set it.
257 			 */
258 			if (inode->i_size == 0)
259 				ip->flags |= BTRFS_INODE_NODATACOW
260 					   | BTRFS_INODE_NODATASUM;
261 		} else {
262 			ip->flags |= BTRFS_INODE_NODATACOW;
263 		}
264 	} else {
265 		/*
266 		 * Revert back under same assuptions as above
267 		 */
268 		if (S_ISREG(mode)) {
269 			if (inode->i_size == 0)
270 				ip->flags &= ~(BTRFS_INODE_NODATACOW
271 				             | BTRFS_INODE_NODATASUM);
272 		} else {
273 			ip->flags &= ~BTRFS_INODE_NODATACOW;
274 		}
275 	}
276 
277 	/*
278 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
279 	 * flag may be changed automatically if compression code won't make
280 	 * things smaller.
281 	 */
282 	if (flags & FS_NOCOMP_FL) {
283 		ip->flags &= ~BTRFS_INODE_COMPRESS;
284 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
285 
286 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
287 		if (ret && ret != -ENODATA)
288 			goto out_drop;
289 	} else if (flags & FS_COMPR_FL) {
290 		const char *comp;
291 
292 		ip->flags |= BTRFS_INODE_COMPRESS;
293 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
294 
295 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
296 			comp = "lzo";
297 		else
298 			comp = "zlib";
299 		ret = btrfs_set_prop(inode, "btrfs.compression",
300 				     comp, strlen(comp), 0);
301 		if (ret)
302 			goto out_drop;
303 
304 	} else {
305 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
306 	}
307 
308 	trans = btrfs_start_transaction(root, 1);
309 	if (IS_ERR(trans)) {
310 		ret = PTR_ERR(trans);
311 		goto out_drop;
312 	}
313 
314 	btrfs_update_iflags(inode);
315 	inode_inc_iversion(inode);
316 	inode->i_ctime = CURRENT_TIME;
317 	ret = btrfs_update_inode(trans, root, inode);
318 
319 	btrfs_end_transaction(trans, root);
320  out_drop:
321 	if (ret) {
322 		ip->flags = ip_oldflags;
323 		inode->i_flags = i_oldflags;
324 	}
325 
326  out_unlock:
327 	mutex_unlock(&inode->i_mutex);
328 	mnt_drop_write_file(file);
329 	return ret;
330 }
331 
332 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
333 {
334 	struct inode *inode = file_inode(file);
335 
336 	return put_user(inode->i_generation, arg);
337 }
338 
339 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
340 {
341 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
342 	struct btrfs_device *device;
343 	struct request_queue *q;
344 	struct fstrim_range range;
345 	u64 minlen = ULLONG_MAX;
346 	u64 num_devices = 0;
347 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
348 	int ret;
349 
350 	if (!capable(CAP_SYS_ADMIN))
351 		return -EPERM;
352 
353 	rcu_read_lock();
354 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
355 				dev_list) {
356 		if (!device->bdev)
357 			continue;
358 		q = bdev_get_queue(device->bdev);
359 		if (blk_queue_discard(q)) {
360 			num_devices++;
361 			minlen = min((u64)q->limits.discard_granularity,
362 				     minlen);
363 		}
364 	}
365 	rcu_read_unlock();
366 
367 	if (!num_devices)
368 		return -EOPNOTSUPP;
369 	if (copy_from_user(&range, arg, sizeof(range)))
370 		return -EFAULT;
371 	if (range.start > total_bytes ||
372 	    range.len < fs_info->sb->s_blocksize)
373 		return -EINVAL;
374 
375 	range.len = min(range.len, total_bytes - range.start);
376 	range.minlen = max(range.minlen, minlen);
377 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
378 	if (ret < 0)
379 		return ret;
380 
381 	if (copy_to_user(arg, &range, sizeof(range)))
382 		return -EFAULT;
383 
384 	return 0;
385 }
386 
387 int btrfs_is_empty_uuid(u8 *uuid)
388 {
389 	int i;
390 
391 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
392 		if (uuid[i])
393 			return 0;
394 	}
395 	return 1;
396 }
397 
398 static noinline int create_subvol(struct inode *dir,
399 				  struct dentry *dentry,
400 				  char *name, int namelen,
401 				  u64 *async_transid,
402 				  struct btrfs_qgroup_inherit *inherit)
403 {
404 	struct btrfs_trans_handle *trans;
405 	struct btrfs_key key;
406 	struct btrfs_root_item root_item;
407 	struct btrfs_inode_item *inode_item;
408 	struct extent_buffer *leaf;
409 	struct btrfs_root *root = BTRFS_I(dir)->root;
410 	struct btrfs_root *new_root;
411 	struct btrfs_block_rsv block_rsv;
412 	struct timespec cur_time = CURRENT_TIME;
413 	struct inode *inode;
414 	int ret;
415 	int err;
416 	u64 objectid;
417 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
418 	u64 index = 0;
419 	u64 qgroup_reserved;
420 	uuid_le new_uuid;
421 
422 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
423 	if (ret)
424 		return ret;
425 
426 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
427 	/*
428 	 * The same as the snapshot creation, please see the comment
429 	 * of create_snapshot().
430 	 */
431 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
432 					       8, &qgroup_reserved, false);
433 	if (ret)
434 		return ret;
435 
436 	trans = btrfs_start_transaction(root, 0);
437 	if (IS_ERR(trans)) {
438 		ret = PTR_ERR(trans);
439 		btrfs_subvolume_release_metadata(root, &block_rsv,
440 						 qgroup_reserved);
441 		return ret;
442 	}
443 	trans->block_rsv = &block_rsv;
444 	trans->bytes_reserved = block_rsv.size;
445 
446 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
447 	if (ret)
448 		goto fail;
449 
450 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
451 				      0, objectid, NULL, 0, 0, 0);
452 	if (IS_ERR(leaf)) {
453 		ret = PTR_ERR(leaf);
454 		goto fail;
455 	}
456 
457 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
458 	btrfs_set_header_bytenr(leaf, leaf->start);
459 	btrfs_set_header_generation(leaf, trans->transid);
460 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
461 	btrfs_set_header_owner(leaf, objectid);
462 
463 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
464 			    BTRFS_FSID_SIZE);
465 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
466 			    btrfs_header_chunk_tree_uuid(leaf),
467 			    BTRFS_UUID_SIZE);
468 	btrfs_mark_buffer_dirty(leaf);
469 
470 	memset(&root_item, 0, sizeof(root_item));
471 
472 	inode_item = &root_item.inode;
473 	btrfs_set_stack_inode_generation(inode_item, 1);
474 	btrfs_set_stack_inode_size(inode_item, 3);
475 	btrfs_set_stack_inode_nlink(inode_item, 1);
476 	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
477 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
478 
479 	btrfs_set_root_flags(&root_item, 0);
480 	btrfs_set_root_limit(&root_item, 0);
481 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
482 
483 	btrfs_set_root_bytenr(&root_item, leaf->start);
484 	btrfs_set_root_generation(&root_item, trans->transid);
485 	btrfs_set_root_level(&root_item, 0);
486 	btrfs_set_root_refs(&root_item, 1);
487 	btrfs_set_root_used(&root_item, leaf->len);
488 	btrfs_set_root_last_snapshot(&root_item, 0);
489 
490 	btrfs_set_root_generation_v2(&root_item,
491 			btrfs_root_generation(&root_item));
492 	uuid_le_gen(&new_uuid);
493 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
494 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
495 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
496 	root_item.ctime = root_item.otime;
497 	btrfs_set_root_ctransid(&root_item, trans->transid);
498 	btrfs_set_root_otransid(&root_item, trans->transid);
499 
500 	btrfs_tree_unlock(leaf);
501 	free_extent_buffer(leaf);
502 	leaf = NULL;
503 
504 	btrfs_set_root_dirid(&root_item, new_dirid);
505 
506 	key.objectid = objectid;
507 	key.offset = 0;
508 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
509 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
510 				&root_item);
511 	if (ret)
512 		goto fail;
513 
514 	key.offset = (u64)-1;
515 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
516 	if (IS_ERR(new_root)) {
517 		btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
518 		ret = PTR_ERR(new_root);
519 		goto fail;
520 	}
521 
522 	btrfs_record_root_in_trans(trans, new_root);
523 
524 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
525 	if (ret) {
526 		/* We potentially lose an unused inode item here */
527 		btrfs_abort_transaction(trans, root, ret);
528 		goto fail;
529 	}
530 
531 	/*
532 	 * insert the directory item
533 	 */
534 	ret = btrfs_set_inode_index(dir, &index);
535 	if (ret) {
536 		btrfs_abort_transaction(trans, root, ret);
537 		goto fail;
538 	}
539 
540 	ret = btrfs_insert_dir_item(trans, root,
541 				    name, namelen, dir, &key,
542 				    BTRFS_FT_DIR, index);
543 	if (ret) {
544 		btrfs_abort_transaction(trans, root, ret);
545 		goto fail;
546 	}
547 
548 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
549 	ret = btrfs_update_inode(trans, root, dir);
550 	BUG_ON(ret);
551 
552 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
553 				 objectid, root->root_key.objectid,
554 				 btrfs_ino(dir), index, name, namelen);
555 	BUG_ON(ret);
556 
557 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
558 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
559 				  objectid);
560 	if (ret)
561 		btrfs_abort_transaction(trans, root, ret);
562 
563 fail:
564 	trans->block_rsv = NULL;
565 	trans->bytes_reserved = 0;
566 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
567 
568 	if (async_transid) {
569 		*async_transid = trans->transid;
570 		err = btrfs_commit_transaction_async(trans, root, 1);
571 		if (err)
572 			err = btrfs_commit_transaction(trans, root);
573 	} else {
574 		err = btrfs_commit_transaction(trans, root);
575 	}
576 	if (err && !ret)
577 		ret = err;
578 
579 	if (!ret) {
580 		inode = btrfs_lookup_dentry(dir, dentry);
581 		if (IS_ERR(inode))
582 			return PTR_ERR(inode);
583 		d_instantiate(dentry, inode);
584 	}
585 	return ret;
586 }
587 
588 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
589 			   struct dentry *dentry, char *name, int namelen,
590 			   u64 *async_transid, bool readonly,
591 			   struct btrfs_qgroup_inherit *inherit)
592 {
593 	struct inode *inode;
594 	struct btrfs_pending_snapshot *pending_snapshot;
595 	struct btrfs_trans_handle *trans;
596 	int ret;
597 
598 	if (!root->ref_cows)
599 		return -EINVAL;
600 
601 	ret = btrfs_start_delalloc_inodes(root, 0);
602 	if (ret)
603 		return ret;
604 
605 	btrfs_wait_ordered_extents(root, -1);
606 
607 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
608 	if (!pending_snapshot)
609 		return -ENOMEM;
610 
611 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
612 			     BTRFS_BLOCK_RSV_TEMP);
613 	/*
614 	 * 1 - parent dir inode
615 	 * 2 - dir entries
616 	 * 1 - root item
617 	 * 2 - root ref/backref
618 	 * 1 - root of snapshot
619 	 * 1 - UUID item
620 	 */
621 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
622 					&pending_snapshot->block_rsv, 8,
623 					&pending_snapshot->qgroup_reserved,
624 					false);
625 	if (ret)
626 		goto out;
627 
628 	pending_snapshot->dentry = dentry;
629 	pending_snapshot->root = root;
630 	pending_snapshot->readonly = readonly;
631 	pending_snapshot->dir = dir;
632 	pending_snapshot->inherit = inherit;
633 
634 	trans = btrfs_start_transaction(root, 0);
635 	if (IS_ERR(trans)) {
636 		ret = PTR_ERR(trans);
637 		goto fail;
638 	}
639 
640 	spin_lock(&root->fs_info->trans_lock);
641 	list_add(&pending_snapshot->list,
642 		 &trans->transaction->pending_snapshots);
643 	spin_unlock(&root->fs_info->trans_lock);
644 	if (async_transid) {
645 		*async_transid = trans->transid;
646 		ret = btrfs_commit_transaction_async(trans,
647 				     root->fs_info->extent_root, 1);
648 		if (ret)
649 			ret = btrfs_commit_transaction(trans, root);
650 	} else {
651 		ret = btrfs_commit_transaction(trans,
652 					       root->fs_info->extent_root);
653 	}
654 	if (ret)
655 		goto fail;
656 
657 	ret = pending_snapshot->error;
658 	if (ret)
659 		goto fail;
660 
661 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
662 	if (ret)
663 		goto fail;
664 
665 	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
666 	if (IS_ERR(inode)) {
667 		ret = PTR_ERR(inode);
668 		goto fail;
669 	}
670 
671 	d_instantiate(dentry, inode);
672 	ret = 0;
673 fail:
674 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
675 					 &pending_snapshot->block_rsv,
676 					 pending_snapshot->qgroup_reserved);
677 out:
678 	kfree(pending_snapshot);
679 	return ret;
680 }
681 
682 /*  copy of check_sticky in fs/namei.c()
683 * It's inline, so penalty for filesystems that don't use sticky bit is
684 * minimal.
685 */
686 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
687 {
688 	kuid_t fsuid = current_fsuid();
689 
690 	if (!(dir->i_mode & S_ISVTX))
691 		return 0;
692 	if (uid_eq(inode->i_uid, fsuid))
693 		return 0;
694 	if (uid_eq(dir->i_uid, fsuid))
695 		return 0;
696 	return !capable(CAP_FOWNER);
697 }
698 
699 /*  copy of may_delete in fs/namei.c()
700  *	Check whether we can remove a link victim from directory dir, check
701  *  whether the type of victim is right.
702  *  1. We can't do it if dir is read-only (done in permission())
703  *  2. We should have write and exec permissions on dir
704  *  3. We can't remove anything from append-only dir
705  *  4. We can't do anything with immutable dir (done in permission())
706  *  5. If the sticky bit on dir is set we should either
707  *	a. be owner of dir, or
708  *	b. be owner of victim, or
709  *	c. have CAP_FOWNER capability
710  *  6. If the victim is append-only or immutable we can't do antyhing with
711  *     links pointing to it.
712  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
713  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
714  *  9. We can't remove a root or mountpoint.
715  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
716  *     nfs_async_unlink().
717  */
718 
719 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
720 {
721 	int error;
722 
723 	if (!victim->d_inode)
724 		return -ENOENT;
725 
726 	BUG_ON(victim->d_parent->d_inode != dir);
727 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
728 
729 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
730 	if (error)
731 		return error;
732 	if (IS_APPEND(dir))
733 		return -EPERM;
734 	if (btrfs_check_sticky(dir, victim->d_inode)||
735 		IS_APPEND(victim->d_inode)||
736 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
737 		return -EPERM;
738 	if (isdir) {
739 		if (!S_ISDIR(victim->d_inode->i_mode))
740 			return -ENOTDIR;
741 		if (IS_ROOT(victim))
742 			return -EBUSY;
743 	} else if (S_ISDIR(victim->d_inode->i_mode))
744 		return -EISDIR;
745 	if (IS_DEADDIR(dir))
746 		return -ENOENT;
747 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
748 		return -EBUSY;
749 	return 0;
750 }
751 
752 /* copy of may_create in fs/namei.c() */
753 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
754 {
755 	if (child->d_inode)
756 		return -EEXIST;
757 	if (IS_DEADDIR(dir))
758 		return -ENOENT;
759 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
760 }
761 
762 /*
763  * Create a new subvolume below @parent.  This is largely modeled after
764  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
765  * inside this filesystem so it's quite a bit simpler.
766  */
767 static noinline int btrfs_mksubvol(struct path *parent,
768 				   char *name, int namelen,
769 				   struct btrfs_root *snap_src,
770 				   u64 *async_transid, bool readonly,
771 				   struct btrfs_qgroup_inherit *inherit)
772 {
773 	struct inode *dir  = parent->dentry->d_inode;
774 	struct dentry *dentry;
775 	int error;
776 
777 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
778 	if (error == -EINTR)
779 		return error;
780 
781 	dentry = lookup_one_len(name, parent->dentry, namelen);
782 	error = PTR_ERR(dentry);
783 	if (IS_ERR(dentry))
784 		goto out_unlock;
785 
786 	error = -EEXIST;
787 	if (dentry->d_inode)
788 		goto out_dput;
789 
790 	error = btrfs_may_create(dir, dentry);
791 	if (error)
792 		goto out_dput;
793 
794 	/*
795 	 * even if this name doesn't exist, we may get hash collisions.
796 	 * check for them now when we can safely fail
797 	 */
798 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
799 					       dir->i_ino, name,
800 					       namelen);
801 	if (error)
802 		goto out_dput;
803 
804 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
805 
806 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
807 		goto out_up_read;
808 
809 	if (snap_src) {
810 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
811 					async_transid, readonly, inherit);
812 	} else {
813 		error = create_subvol(dir, dentry, name, namelen,
814 				      async_transid, inherit);
815 	}
816 	if (!error)
817 		fsnotify_mkdir(dir, dentry);
818 out_up_read:
819 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
820 out_dput:
821 	dput(dentry);
822 out_unlock:
823 	mutex_unlock(&dir->i_mutex);
824 	return error;
825 }
826 
827 /*
828  * When we're defragging a range, we don't want to kick it off again
829  * if it is really just waiting for delalloc to send it down.
830  * If we find a nice big extent or delalloc range for the bytes in the
831  * file you want to defrag, we return 0 to let you know to skip this
832  * part of the file
833  */
834 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
835 {
836 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
837 	struct extent_map *em = NULL;
838 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
839 	u64 end;
840 
841 	read_lock(&em_tree->lock);
842 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
843 	read_unlock(&em_tree->lock);
844 
845 	if (em) {
846 		end = extent_map_end(em);
847 		free_extent_map(em);
848 		if (end - offset > thresh)
849 			return 0;
850 	}
851 	/* if we already have a nice delalloc here, just stop */
852 	thresh /= 2;
853 	end = count_range_bits(io_tree, &offset, offset + thresh,
854 			       thresh, EXTENT_DELALLOC, 1);
855 	if (end >= thresh)
856 		return 0;
857 	return 1;
858 }
859 
860 /*
861  * helper function to walk through a file and find extents
862  * newer than a specific transid, and smaller than thresh.
863  *
864  * This is used by the defragging code to find new and small
865  * extents
866  */
867 static int find_new_extents(struct btrfs_root *root,
868 			    struct inode *inode, u64 newer_than,
869 			    u64 *off, int thresh)
870 {
871 	struct btrfs_path *path;
872 	struct btrfs_key min_key;
873 	struct extent_buffer *leaf;
874 	struct btrfs_file_extent_item *extent;
875 	int type;
876 	int ret;
877 	u64 ino = btrfs_ino(inode);
878 
879 	path = btrfs_alloc_path();
880 	if (!path)
881 		return -ENOMEM;
882 
883 	min_key.objectid = ino;
884 	min_key.type = BTRFS_EXTENT_DATA_KEY;
885 	min_key.offset = *off;
886 
887 	path->keep_locks = 1;
888 
889 	while (1) {
890 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
891 		if (ret != 0)
892 			goto none;
893 		if (min_key.objectid != ino)
894 			goto none;
895 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
896 			goto none;
897 
898 		leaf = path->nodes[0];
899 		extent = btrfs_item_ptr(leaf, path->slots[0],
900 					struct btrfs_file_extent_item);
901 
902 		type = btrfs_file_extent_type(leaf, extent);
903 		if (type == BTRFS_FILE_EXTENT_REG &&
904 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
905 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
906 			*off = min_key.offset;
907 			btrfs_free_path(path);
908 			return 0;
909 		}
910 
911 		if (min_key.offset == (u64)-1)
912 			goto none;
913 
914 		min_key.offset++;
915 		btrfs_release_path(path);
916 	}
917 none:
918 	btrfs_free_path(path);
919 	return -ENOENT;
920 }
921 
922 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
923 {
924 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
925 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
926 	struct extent_map *em;
927 	u64 len = PAGE_CACHE_SIZE;
928 
929 	/*
930 	 * hopefully we have this extent in the tree already, try without
931 	 * the full extent lock
932 	 */
933 	read_lock(&em_tree->lock);
934 	em = lookup_extent_mapping(em_tree, start, len);
935 	read_unlock(&em_tree->lock);
936 
937 	if (!em) {
938 		/* get the big lock and read metadata off disk */
939 		lock_extent(io_tree, start, start + len - 1);
940 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
941 		unlock_extent(io_tree, start, start + len - 1);
942 
943 		if (IS_ERR(em))
944 			return NULL;
945 	}
946 
947 	return em;
948 }
949 
950 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
951 {
952 	struct extent_map *next;
953 	bool ret = true;
954 
955 	/* this is the last extent */
956 	if (em->start + em->len >= i_size_read(inode))
957 		return false;
958 
959 	next = defrag_lookup_extent(inode, em->start + em->len);
960 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
961 		ret = false;
962 
963 	free_extent_map(next);
964 	return ret;
965 }
966 
967 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
968 			       u64 *last_len, u64 *skip, u64 *defrag_end,
969 			       int compress)
970 {
971 	struct extent_map *em;
972 	int ret = 1;
973 	bool next_mergeable = true;
974 
975 	/*
976 	 * make sure that once we start defragging an extent, we keep on
977 	 * defragging it
978 	 */
979 	if (start < *defrag_end)
980 		return 1;
981 
982 	*skip = 0;
983 
984 	em = defrag_lookup_extent(inode, start);
985 	if (!em)
986 		return 0;
987 
988 	/* this will cover holes, and inline extents */
989 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
990 		ret = 0;
991 		goto out;
992 	}
993 
994 	next_mergeable = defrag_check_next_extent(inode, em);
995 
996 	/*
997 	 * we hit a real extent, if it is big or the next extent is not a
998 	 * real extent, don't bother defragging it
999 	 */
1000 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1001 	    (em->len >= thresh || !next_mergeable))
1002 		ret = 0;
1003 out:
1004 	/*
1005 	 * last_len ends up being a counter of how many bytes we've defragged.
1006 	 * every time we choose not to defrag an extent, we reset *last_len
1007 	 * so that the next tiny extent will force a defrag.
1008 	 *
1009 	 * The end result of this is that tiny extents before a single big
1010 	 * extent will force at least part of that big extent to be defragged.
1011 	 */
1012 	if (ret) {
1013 		*defrag_end = extent_map_end(em);
1014 	} else {
1015 		*last_len = 0;
1016 		*skip = extent_map_end(em);
1017 		*defrag_end = 0;
1018 	}
1019 
1020 	free_extent_map(em);
1021 	return ret;
1022 }
1023 
1024 /*
1025  * it doesn't do much good to defrag one or two pages
1026  * at a time.  This pulls in a nice chunk of pages
1027  * to COW and defrag.
1028  *
1029  * It also makes sure the delalloc code has enough
1030  * dirty data to avoid making new small extents as part
1031  * of the defrag
1032  *
1033  * It's a good idea to start RA on this range
1034  * before calling this.
1035  */
1036 static int cluster_pages_for_defrag(struct inode *inode,
1037 				    struct page **pages,
1038 				    unsigned long start_index,
1039 				    unsigned long num_pages)
1040 {
1041 	unsigned long file_end;
1042 	u64 isize = i_size_read(inode);
1043 	u64 page_start;
1044 	u64 page_end;
1045 	u64 page_cnt;
1046 	int ret;
1047 	int i;
1048 	int i_done;
1049 	struct btrfs_ordered_extent *ordered;
1050 	struct extent_state *cached_state = NULL;
1051 	struct extent_io_tree *tree;
1052 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1053 
1054 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1055 	if (!isize || start_index > file_end)
1056 		return 0;
1057 
1058 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1059 
1060 	ret = btrfs_delalloc_reserve_space(inode,
1061 					   page_cnt << PAGE_CACHE_SHIFT);
1062 	if (ret)
1063 		return ret;
1064 	i_done = 0;
1065 	tree = &BTRFS_I(inode)->io_tree;
1066 
1067 	/* step one, lock all the pages */
1068 	for (i = 0; i < page_cnt; i++) {
1069 		struct page *page;
1070 again:
1071 		page = find_or_create_page(inode->i_mapping,
1072 					   start_index + i, mask);
1073 		if (!page)
1074 			break;
1075 
1076 		page_start = page_offset(page);
1077 		page_end = page_start + PAGE_CACHE_SIZE - 1;
1078 		while (1) {
1079 			lock_extent(tree, page_start, page_end);
1080 			ordered = btrfs_lookup_ordered_extent(inode,
1081 							      page_start);
1082 			unlock_extent(tree, page_start, page_end);
1083 			if (!ordered)
1084 				break;
1085 
1086 			unlock_page(page);
1087 			btrfs_start_ordered_extent(inode, ordered, 1);
1088 			btrfs_put_ordered_extent(ordered);
1089 			lock_page(page);
1090 			/*
1091 			 * we unlocked the page above, so we need check if
1092 			 * it was released or not.
1093 			 */
1094 			if (page->mapping != inode->i_mapping) {
1095 				unlock_page(page);
1096 				page_cache_release(page);
1097 				goto again;
1098 			}
1099 		}
1100 
1101 		if (!PageUptodate(page)) {
1102 			btrfs_readpage(NULL, page);
1103 			lock_page(page);
1104 			if (!PageUptodate(page)) {
1105 				unlock_page(page);
1106 				page_cache_release(page);
1107 				ret = -EIO;
1108 				break;
1109 			}
1110 		}
1111 
1112 		if (page->mapping != inode->i_mapping) {
1113 			unlock_page(page);
1114 			page_cache_release(page);
1115 			goto again;
1116 		}
1117 
1118 		pages[i] = page;
1119 		i_done++;
1120 	}
1121 	if (!i_done || ret)
1122 		goto out;
1123 
1124 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1125 		goto out;
1126 
1127 	/*
1128 	 * so now we have a nice long stream of locked
1129 	 * and up to date pages, lets wait on them
1130 	 */
1131 	for (i = 0; i < i_done; i++)
1132 		wait_on_page_writeback(pages[i]);
1133 
1134 	page_start = page_offset(pages[0]);
1135 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1136 
1137 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1138 			 page_start, page_end - 1, 0, &cached_state);
1139 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1140 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1141 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1142 			  &cached_state, GFP_NOFS);
1143 
1144 	if (i_done != page_cnt) {
1145 		spin_lock(&BTRFS_I(inode)->lock);
1146 		BTRFS_I(inode)->outstanding_extents++;
1147 		spin_unlock(&BTRFS_I(inode)->lock);
1148 		btrfs_delalloc_release_space(inode,
1149 				     (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1150 	}
1151 
1152 
1153 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1154 			  &cached_state, GFP_NOFS);
1155 
1156 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1157 			     page_start, page_end - 1, &cached_state,
1158 			     GFP_NOFS);
1159 
1160 	for (i = 0; i < i_done; i++) {
1161 		clear_page_dirty_for_io(pages[i]);
1162 		ClearPageChecked(pages[i]);
1163 		set_page_extent_mapped(pages[i]);
1164 		set_page_dirty(pages[i]);
1165 		unlock_page(pages[i]);
1166 		page_cache_release(pages[i]);
1167 	}
1168 	return i_done;
1169 out:
1170 	for (i = 0; i < i_done; i++) {
1171 		unlock_page(pages[i]);
1172 		page_cache_release(pages[i]);
1173 	}
1174 	btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1175 	return ret;
1176 
1177 }
1178 
1179 int btrfs_defrag_file(struct inode *inode, struct file *file,
1180 		      struct btrfs_ioctl_defrag_range_args *range,
1181 		      u64 newer_than, unsigned long max_to_defrag)
1182 {
1183 	struct btrfs_root *root = BTRFS_I(inode)->root;
1184 	struct file_ra_state *ra = NULL;
1185 	unsigned long last_index;
1186 	u64 isize = i_size_read(inode);
1187 	u64 last_len = 0;
1188 	u64 skip = 0;
1189 	u64 defrag_end = 0;
1190 	u64 newer_off = range->start;
1191 	unsigned long i;
1192 	unsigned long ra_index = 0;
1193 	int ret;
1194 	int defrag_count = 0;
1195 	int compress_type = BTRFS_COMPRESS_ZLIB;
1196 	int extent_thresh = range->extent_thresh;
1197 	unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1198 	unsigned long cluster = max_cluster;
1199 	u64 new_align = ~((u64)128 * 1024 - 1);
1200 	struct page **pages = NULL;
1201 
1202 	if (isize == 0)
1203 		return 0;
1204 
1205 	if (range->start >= isize)
1206 		return -EINVAL;
1207 
1208 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1209 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1210 			return -EINVAL;
1211 		if (range->compress_type)
1212 			compress_type = range->compress_type;
1213 	}
1214 
1215 	if (extent_thresh == 0)
1216 		extent_thresh = 256 * 1024;
1217 
1218 	/*
1219 	 * if we were not given a file, allocate a readahead
1220 	 * context
1221 	 */
1222 	if (!file) {
1223 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1224 		if (!ra)
1225 			return -ENOMEM;
1226 		file_ra_state_init(ra, inode->i_mapping);
1227 	} else {
1228 		ra = &file->f_ra;
1229 	}
1230 
1231 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1232 			GFP_NOFS);
1233 	if (!pages) {
1234 		ret = -ENOMEM;
1235 		goto out_ra;
1236 	}
1237 
1238 	/* find the last page to defrag */
1239 	if (range->start + range->len > range->start) {
1240 		last_index = min_t(u64, isize - 1,
1241 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1242 	} else {
1243 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1244 	}
1245 
1246 	if (newer_than) {
1247 		ret = find_new_extents(root, inode, newer_than,
1248 				       &newer_off, 64 * 1024);
1249 		if (!ret) {
1250 			range->start = newer_off;
1251 			/*
1252 			 * we always align our defrag to help keep
1253 			 * the extents in the file evenly spaced
1254 			 */
1255 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1256 		} else
1257 			goto out_ra;
1258 	} else {
1259 		i = range->start >> PAGE_CACHE_SHIFT;
1260 	}
1261 	if (!max_to_defrag)
1262 		max_to_defrag = last_index + 1;
1263 
1264 	/*
1265 	 * make writeback starts from i, so the defrag range can be
1266 	 * written sequentially.
1267 	 */
1268 	if (i < inode->i_mapping->writeback_index)
1269 		inode->i_mapping->writeback_index = i;
1270 
1271 	while (i <= last_index && defrag_count < max_to_defrag &&
1272 	       (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1273 		PAGE_CACHE_SHIFT)) {
1274 		/*
1275 		 * make sure we stop running if someone unmounts
1276 		 * the FS
1277 		 */
1278 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1279 			break;
1280 
1281 		if (btrfs_defrag_cancelled(root->fs_info)) {
1282 			printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1283 			ret = -EAGAIN;
1284 			break;
1285 		}
1286 
1287 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1288 					 extent_thresh, &last_len, &skip,
1289 					 &defrag_end, range->flags &
1290 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1291 			unsigned long next;
1292 			/*
1293 			 * the should_defrag function tells us how much to skip
1294 			 * bump our counter by the suggested amount
1295 			 */
1296 			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1297 			i = max(i + 1, next);
1298 			continue;
1299 		}
1300 
1301 		if (!newer_than) {
1302 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1303 				   PAGE_CACHE_SHIFT) - i;
1304 			cluster = min(cluster, max_cluster);
1305 		} else {
1306 			cluster = max_cluster;
1307 		}
1308 
1309 		if (i + cluster > ra_index) {
1310 			ra_index = max(i, ra_index);
1311 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1312 				       cluster);
1313 			ra_index += max_cluster;
1314 		}
1315 
1316 		mutex_lock(&inode->i_mutex);
1317 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1318 			BTRFS_I(inode)->force_compress = compress_type;
1319 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1320 		if (ret < 0) {
1321 			mutex_unlock(&inode->i_mutex);
1322 			goto out_ra;
1323 		}
1324 
1325 		defrag_count += ret;
1326 		balance_dirty_pages_ratelimited(inode->i_mapping);
1327 		mutex_unlock(&inode->i_mutex);
1328 
1329 		if (newer_than) {
1330 			if (newer_off == (u64)-1)
1331 				break;
1332 
1333 			if (ret > 0)
1334 				i += ret;
1335 
1336 			newer_off = max(newer_off + 1,
1337 					(u64)i << PAGE_CACHE_SHIFT);
1338 
1339 			ret = find_new_extents(root, inode,
1340 					       newer_than, &newer_off,
1341 					       64 * 1024);
1342 			if (!ret) {
1343 				range->start = newer_off;
1344 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1345 			} else {
1346 				break;
1347 			}
1348 		} else {
1349 			if (ret > 0) {
1350 				i += ret;
1351 				last_len += ret << PAGE_CACHE_SHIFT;
1352 			} else {
1353 				i++;
1354 				last_len = 0;
1355 			}
1356 		}
1357 	}
1358 
1359 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1360 		filemap_flush(inode->i_mapping);
1361 
1362 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1363 		/* the filemap_flush will queue IO into the worker threads, but
1364 		 * we have to make sure the IO is actually started and that
1365 		 * ordered extents get created before we return
1366 		 */
1367 		atomic_inc(&root->fs_info->async_submit_draining);
1368 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1369 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1370 			wait_event(root->fs_info->async_submit_wait,
1371 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1372 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1373 		}
1374 		atomic_dec(&root->fs_info->async_submit_draining);
1375 	}
1376 
1377 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1378 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1379 	}
1380 
1381 	ret = defrag_count;
1382 
1383 out_ra:
1384 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1385 		mutex_lock(&inode->i_mutex);
1386 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1387 		mutex_unlock(&inode->i_mutex);
1388 	}
1389 	if (!file)
1390 		kfree(ra);
1391 	kfree(pages);
1392 	return ret;
1393 }
1394 
1395 static noinline int btrfs_ioctl_resize(struct file *file,
1396 					void __user *arg)
1397 {
1398 	u64 new_size;
1399 	u64 old_size;
1400 	u64 devid = 1;
1401 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1402 	struct btrfs_ioctl_vol_args *vol_args;
1403 	struct btrfs_trans_handle *trans;
1404 	struct btrfs_device *device = NULL;
1405 	char *sizestr;
1406 	char *devstr = NULL;
1407 	int ret = 0;
1408 	int mod = 0;
1409 
1410 	if (!capable(CAP_SYS_ADMIN))
1411 		return -EPERM;
1412 
1413 	ret = mnt_want_write_file(file);
1414 	if (ret)
1415 		return ret;
1416 
1417 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1418 			1)) {
1419 		mnt_drop_write_file(file);
1420 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1421 	}
1422 
1423 	mutex_lock(&root->fs_info->volume_mutex);
1424 	vol_args = memdup_user(arg, sizeof(*vol_args));
1425 	if (IS_ERR(vol_args)) {
1426 		ret = PTR_ERR(vol_args);
1427 		goto out;
1428 	}
1429 
1430 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1431 
1432 	sizestr = vol_args->name;
1433 	devstr = strchr(sizestr, ':');
1434 	if (devstr) {
1435 		char *end;
1436 		sizestr = devstr + 1;
1437 		*devstr = '\0';
1438 		devstr = vol_args->name;
1439 		devid = simple_strtoull(devstr, &end, 10);
1440 		if (!devid) {
1441 			ret = -EINVAL;
1442 			goto out_free;
1443 		}
1444 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1445 	}
1446 
1447 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1448 	if (!device) {
1449 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1450 		       devid);
1451 		ret = -ENODEV;
1452 		goto out_free;
1453 	}
1454 
1455 	if (!device->writeable) {
1456 		btrfs_info(root->fs_info,
1457 			   "resizer unable to apply on readonly device %llu",
1458 		       devid);
1459 		ret = -EPERM;
1460 		goto out_free;
1461 	}
1462 
1463 	if (!strcmp(sizestr, "max"))
1464 		new_size = device->bdev->bd_inode->i_size;
1465 	else {
1466 		if (sizestr[0] == '-') {
1467 			mod = -1;
1468 			sizestr++;
1469 		} else if (sizestr[0] == '+') {
1470 			mod = 1;
1471 			sizestr++;
1472 		}
1473 		new_size = memparse(sizestr, NULL);
1474 		if (new_size == 0) {
1475 			ret = -EINVAL;
1476 			goto out_free;
1477 		}
1478 	}
1479 
1480 	if (device->is_tgtdev_for_dev_replace) {
1481 		ret = -EPERM;
1482 		goto out_free;
1483 	}
1484 
1485 	old_size = device->total_bytes;
1486 
1487 	if (mod < 0) {
1488 		if (new_size > old_size) {
1489 			ret = -EINVAL;
1490 			goto out_free;
1491 		}
1492 		new_size = old_size - new_size;
1493 	} else if (mod > 0) {
1494 		if (new_size > ULLONG_MAX - old_size) {
1495 			ret = -EINVAL;
1496 			goto out_free;
1497 		}
1498 		new_size = old_size + new_size;
1499 	}
1500 
1501 	if (new_size < 256 * 1024 * 1024) {
1502 		ret = -EINVAL;
1503 		goto out_free;
1504 	}
1505 	if (new_size > device->bdev->bd_inode->i_size) {
1506 		ret = -EFBIG;
1507 		goto out_free;
1508 	}
1509 
1510 	do_div(new_size, root->sectorsize);
1511 	new_size *= root->sectorsize;
1512 
1513 	printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1514 		      rcu_str_deref(device->name), new_size);
1515 
1516 	if (new_size > old_size) {
1517 		trans = btrfs_start_transaction(root, 0);
1518 		if (IS_ERR(trans)) {
1519 			ret = PTR_ERR(trans);
1520 			goto out_free;
1521 		}
1522 		ret = btrfs_grow_device(trans, device, new_size);
1523 		btrfs_commit_transaction(trans, root);
1524 	} else if (new_size < old_size) {
1525 		ret = btrfs_shrink_device(device, new_size);
1526 	} /* equal, nothing need to do */
1527 
1528 out_free:
1529 	kfree(vol_args);
1530 out:
1531 	mutex_unlock(&root->fs_info->volume_mutex);
1532 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1533 	mnt_drop_write_file(file);
1534 	return ret;
1535 }
1536 
1537 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1538 				char *name, unsigned long fd, int subvol,
1539 				u64 *transid, bool readonly,
1540 				struct btrfs_qgroup_inherit *inherit)
1541 {
1542 	int namelen;
1543 	int ret = 0;
1544 
1545 	ret = mnt_want_write_file(file);
1546 	if (ret)
1547 		goto out;
1548 
1549 	namelen = strlen(name);
1550 	if (strchr(name, '/')) {
1551 		ret = -EINVAL;
1552 		goto out_drop_write;
1553 	}
1554 
1555 	if (name[0] == '.' &&
1556 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1557 		ret = -EEXIST;
1558 		goto out_drop_write;
1559 	}
1560 
1561 	if (subvol) {
1562 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1563 				     NULL, transid, readonly, inherit);
1564 	} else {
1565 		struct fd src = fdget(fd);
1566 		struct inode *src_inode;
1567 		if (!src.file) {
1568 			ret = -EINVAL;
1569 			goto out_drop_write;
1570 		}
1571 
1572 		src_inode = file_inode(src.file);
1573 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1574 			btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1575 				   "Snapshot src from another FS");
1576 			ret = -EINVAL;
1577 		} else if (!inode_owner_or_capable(src_inode)) {
1578 			/*
1579 			 * Subvolume creation is not restricted, but snapshots
1580 			 * are limited to own subvolumes only
1581 			 */
1582 			ret = -EPERM;
1583 		} else {
1584 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1585 					     BTRFS_I(src_inode)->root,
1586 					     transid, readonly, inherit);
1587 		}
1588 		fdput(src);
1589 	}
1590 out_drop_write:
1591 	mnt_drop_write_file(file);
1592 out:
1593 	return ret;
1594 }
1595 
1596 static noinline int btrfs_ioctl_snap_create(struct file *file,
1597 					    void __user *arg, int subvol)
1598 {
1599 	struct btrfs_ioctl_vol_args *vol_args;
1600 	int ret;
1601 
1602 	vol_args = memdup_user(arg, sizeof(*vol_args));
1603 	if (IS_ERR(vol_args))
1604 		return PTR_ERR(vol_args);
1605 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1606 
1607 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1608 					      vol_args->fd, subvol,
1609 					      NULL, false, NULL);
1610 
1611 	kfree(vol_args);
1612 	return ret;
1613 }
1614 
1615 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1616 					       void __user *arg, int subvol)
1617 {
1618 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1619 	int ret;
1620 	u64 transid = 0;
1621 	u64 *ptr = NULL;
1622 	bool readonly = false;
1623 	struct btrfs_qgroup_inherit *inherit = NULL;
1624 
1625 	vol_args = memdup_user(arg, sizeof(*vol_args));
1626 	if (IS_ERR(vol_args))
1627 		return PTR_ERR(vol_args);
1628 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1629 
1630 	if (vol_args->flags &
1631 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1632 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1633 		ret = -EOPNOTSUPP;
1634 		goto out;
1635 	}
1636 
1637 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1638 		ptr = &transid;
1639 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1640 		readonly = true;
1641 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1642 		if (vol_args->size > PAGE_CACHE_SIZE) {
1643 			ret = -EINVAL;
1644 			goto out;
1645 		}
1646 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1647 		if (IS_ERR(inherit)) {
1648 			ret = PTR_ERR(inherit);
1649 			goto out;
1650 		}
1651 	}
1652 
1653 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1654 					      vol_args->fd, subvol, ptr,
1655 					      readonly, inherit);
1656 
1657 	if (ret == 0 && ptr &&
1658 	    copy_to_user(arg +
1659 			 offsetof(struct btrfs_ioctl_vol_args_v2,
1660 				  transid), ptr, sizeof(*ptr)))
1661 		ret = -EFAULT;
1662 out:
1663 	kfree(vol_args);
1664 	kfree(inherit);
1665 	return ret;
1666 }
1667 
1668 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1669 						void __user *arg)
1670 {
1671 	struct inode *inode = file_inode(file);
1672 	struct btrfs_root *root = BTRFS_I(inode)->root;
1673 	int ret = 0;
1674 	u64 flags = 0;
1675 
1676 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1677 		return -EINVAL;
1678 
1679 	down_read(&root->fs_info->subvol_sem);
1680 	if (btrfs_root_readonly(root))
1681 		flags |= BTRFS_SUBVOL_RDONLY;
1682 	up_read(&root->fs_info->subvol_sem);
1683 
1684 	if (copy_to_user(arg, &flags, sizeof(flags)))
1685 		ret = -EFAULT;
1686 
1687 	return ret;
1688 }
1689 
1690 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1691 					      void __user *arg)
1692 {
1693 	struct inode *inode = file_inode(file);
1694 	struct btrfs_root *root = BTRFS_I(inode)->root;
1695 	struct btrfs_trans_handle *trans;
1696 	u64 root_flags;
1697 	u64 flags;
1698 	int ret = 0;
1699 
1700 	if (!inode_owner_or_capable(inode))
1701 		return -EPERM;
1702 
1703 	ret = mnt_want_write_file(file);
1704 	if (ret)
1705 		goto out;
1706 
1707 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1708 		ret = -EINVAL;
1709 		goto out_drop_write;
1710 	}
1711 
1712 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1713 		ret = -EFAULT;
1714 		goto out_drop_write;
1715 	}
1716 
1717 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1718 		ret = -EINVAL;
1719 		goto out_drop_write;
1720 	}
1721 
1722 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1723 		ret = -EOPNOTSUPP;
1724 		goto out_drop_write;
1725 	}
1726 
1727 	down_write(&root->fs_info->subvol_sem);
1728 
1729 	/* nothing to do */
1730 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1731 		goto out_drop_sem;
1732 
1733 	root_flags = btrfs_root_flags(&root->root_item);
1734 	if (flags & BTRFS_SUBVOL_RDONLY) {
1735 		btrfs_set_root_flags(&root->root_item,
1736 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1737 	} else {
1738 		/*
1739 		 * Block RO -> RW transition if this subvolume is involved in
1740 		 * send
1741 		 */
1742 		spin_lock(&root->root_item_lock);
1743 		if (root->send_in_progress == 0) {
1744 			btrfs_set_root_flags(&root->root_item,
1745 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1746 			spin_unlock(&root->root_item_lock);
1747 		} else {
1748 			spin_unlock(&root->root_item_lock);
1749 			btrfs_warn(root->fs_info,
1750 			"Attempt to set subvolume %llu read-write during send",
1751 					root->root_key.objectid);
1752 			ret = -EPERM;
1753 			goto out_drop_sem;
1754 		}
1755 	}
1756 
1757 	trans = btrfs_start_transaction(root, 1);
1758 	if (IS_ERR(trans)) {
1759 		ret = PTR_ERR(trans);
1760 		goto out_reset;
1761 	}
1762 
1763 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1764 				&root->root_key, &root->root_item);
1765 
1766 	btrfs_commit_transaction(trans, root);
1767 out_reset:
1768 	if (ret)
1769 		btrfs_set_root_flags(&root->root_item, root_flags);
1770 out_drop_sem:
1771 	up_write(&root->fs_info->subvol_sem);
1772 out_drop_write:
1773 	mnt_drop_write_file(file);
1774 out:
1775 	return ret;
1776 }
1777 
1778 /*
1779  * helper to check if the subvolume references other subvolumes
1780  */
1781 static noinline int may_destroy_subvol(struct btrfs_root *root)
1782 {
1783 	struct btrfs_path *path;
1784 	struct btrfs_dir_item *di;
1785 	struct btrfs_key key;
1786 	u64 dir_id;
1787 	int ret;
1788 
1789 	path = btrfs_alloc_path();
1790 	if (!path)
1791 		return -ENOMEM;
1792 
1793 	/* Make sure this root isn't set as the default subvol */
1794 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1795 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1796 				   dir_id, "default", 7, 0);
1797 	if (di && !IS_ERR(di)) {
1798 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1799 		if (key.objectid == root->root_key.objectid) {
1800 			ret = -ENOTEMPTY;
1801 			goto out;
1802 		}
1803 		btrfs_release_path(path);
1804 	}
1805 
1806 	key.objectid = root->root_key.objectid;
1807 	key.type = BTRFS_ROOT_REF_KEY;
1808 	key.offset = (u64)-1;
1809 
1810 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1811 				&key, path, 0, 0);
1812 	if (ret < 0)
1813 		goto out;
1814 	BUG_ON(ret == 0);
1815 
1816 	ret = 0;
1817 	if (path->slots[0] > 0) {
1818 		path->slots[0]--;
1819 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1820 		if (key.objectid == root->root_key.objectid &&
1821 		    key.type == BTRFS_ROOT_REF_KEY)
1822 			ret = -ENOTEMPTY;
1823 	}
1824 out:
1825 	btrfs_free_path(path);
1826 	return ret;
1827 }
1828 
1829 static noinline int key_in_sk(struct btrfs_key *key,
1830 			      struct btrfs_ioctl_search_key *sk)
1831 {
1832 	struct btrfs_key test;
1833 	int ret;
1834 
1835 	test.objectid = sk->min_objectid;
1836 	test.type = sk->min_type;
1837 	test.offset = sk->min_offset;
1838 
1839 	ret = btrfs_comp_cpu_keys(key, &test);
1840 	if (ret < 0)
1841 		return 0;
1842 
1843 	test.objectid = sk->max_objectid;
1844 	test.type = sk->max_type;
1845 	test.offset = sk->max_offset;
1846 
1847 	ret = btrfs_comp_cpu_keys(key, &test);
1848 	if (ret > 0)
1849 		return 0;
1850 	return 1;
1851 }
1852 
1853 static noinline int copy_to_sk(struct btrfs_root *root,
1854 			       struct btrfs_path *path,
1855 			       struct btrfs_key *key,
1856 			       struct btrfs_ioctl_search_key *sk,
1857 			       char *buf,
1858 			       unsigned long *sk_offset,
1859 			       int *num_found)
1860 {
1861 	u64 found_transid;
1862 	struct extent_buffer *leaf;
1863 	struct btrfs_ioctl_search_header sh;
1864 	unsigned long item_off;
1865 	unsigned long item_len;
1866 	int nritems;
1867 	int i;
1868 	int slot;
1869 	int ret = 0;
1870 
1871 	leaf = path->nodes[0];
1872 	slot = path->slots[0];
1873 	nritems = btrfs_header_nritems(leaf);
1874 
1875 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1876 		i = nritems;
1877 		goto advance_key;
1878 	}
1879 	found_transid = btrfs_header_generation(leaf);
1880 
1881 	for (i = slot; i < nritems; i++) {
1882 		item_off = btrfs_item_ptr_offset(leaf, i);
1883 		item_len = btrfs_item_size_nr(leaf, i);
1884 
1885 		btrfs_item_key_to_cpu(leaf, key, i);
1886 		if (!key_in_sk(key, sk))
1887 			continue;
1888 
1889 		if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1890 			item_len = 0;
1891 
1892 		if (sizeof(sh) + item_len + *sk_offset >
1893 		    BTRFS_SEARCH_ARGS_BUFSIZE) {
1894 			ret = 1;
1895 			goto overflow;
1896 		}
1897 
1898 		sh.objectid = key->objectid;
1899 		sh.offset = key->offset;
1900 		sh.type = key->type;
1901 		sh.len = item_len;
1902 		sh.transid = found_transid;
1903 
1904 		/* copy search result header */
1905 		memcpy(buf + *sk_offset, &sh, sizeof(sh));
1906 		*sk_offset += sizeof(sh);
1907 
1908 		if (item_len) {
1909 			char *p = buf + *sk_offset;
1910 			/* copy the item */
1911 			read_extent_buffer(leaf, p,
1912 					   item_off, item_len);
1913 			*sk_offset += item_len;
1914 		}
1915 		(*num_found)++;
1916 
1917 		if (*num_found >= sk->nr_items)
1918 			break;
1919 	}
1920 advance_key:
1921 	ret = 0;
1922 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1923 		key->offset++;
1924 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
1925 		key->offset = 0;
1926 		key->type++;
1927 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1928 		key->offset = 0;
1929 		key->type = 0;
1930 		key->objectid++;
1931 	} else
1932 		ret = 1;
1933 overflow:
1934 	return ret;
1935 }
1936 
1937 static noinline int search_ioctl(struct inode *inode,
1938 				 struct btrfs_ioctl_search_args *args)
1939 {
1940 	struct btrfs_root *root;
1941 	struct btrfs_key key;
1942 	struct btrfs_path *path;
1943 	struct btrfs_ioctl_search_key *sk = &args->key;
1944 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1945 	int ret;
1946 	int num_found = 0;
1947 	unsigned long sk_offset = 0;
1948 
1949 	path = btrfs_alloc_path();
1950 	if (!path)
1951 		return -ENOMEM;
1952 
1953 	if (sk->tree_id == 0) {
1954 		/* search the root of the inode that was passed */
1955 		root = BTRFS_I(inode)->root;
1956 	} else {
1957 		key.objectid = sk->tree_id;
1958 		key.type = BTRFS_ROOT_ITEM_KEY;
1959 		key.offset = (u64)-1;
1960 		root = btrfs_read_fs_root_no_name(info, &key);
1961 		if (IS_ERR(root)) {
1962 			printk(KERN_ERR "BTRFS: could not find root %llu\n",
1963 			       sk->tree_id);
1964 			btrfs_free_path(path);
1965 			return -ENOENT;
1966 		}
1967 	}
1968 
1969 	key.objectid = sk->min_objectid;
1970 	key.type = sk->min_type;
1971 	key.offset = sk->min_offset;
1972 
1973 	path->keep_locks = 1;
1974 
1975 	while (1) {
1976 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1977 		if (ret != 0) {
1978 			if (ret > 0)
1979 				ret = 0;
1980 			goto err;
1981 		}
1982 		ret = copy_to_sk(root, path, &key, sk, args->buf,
1983 				 &sk_offset, &num_found);
1984 		btrfs_release_path(path);
1985 		if (ret || num_found >= sk->nr_items)
1986 			break;
1987 
1988 	}
1989 	ret = 0;
1990 err:
1991 	sk->nr_items = num_found;
1992 	btrfs_free_path(path);
1993 	return ret;
1994 }
1995 
1996 static noinline int btrfs_ioctl_tree_search(struct file *file,
1997 					   void __user *argp)
1998 {
1999 	 struct btrfs_ioctl_search_args *args;
2000 	 struct inode *inode;
2001 	 int ret;
2002 
2003 	if (!capable(CAP_SYS_ADMIN))
2004 		return -EPERM;
2005 
2006 	args = memdup_user(argp, sizeof(*args));
2007 	if (IS_ERR(args))
2008 		return PTR_ERR(args);
2009 
2010 	inode = file_inode(file);
2011 	ret = search_ioctl(inode, args);
2012 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2013 		ret = -EFAULT;
2014 	kfree(args);
2015 	return ret;
2016 }
2017 
2018 /*
2019  * Search INODE_REFs to identify path name of 'dirid' directory
2020  * in a 'tree_id' tree. and sets path name to 'name'.
2021  */
2022 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2023 				u64 tree_id, u64 dirid, char *name)
2024 {
2025 	struct btrfs_root *root;
2026 	struct btrfs_key key;
2027 	char *ptr;
2028 	int ret = -1;
2029 	int slot;
2030 	int len;
2031 	int total_len = 0;
2032 	struct btrfs_inode_ref *iref;
2033 	struct extent_buffer *l;
2034 	struct btrfs_path *path;
2035 
2036 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2037 		name[0]='\0';
2038 		return 0;
2039 	}
2040 
2041 	path = btrfs_alloc_path();
2042 	if (!path)
2043 		return -ENOMEM;
2044 
2045 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2046 
2047 	key.objectid = tree_id;
2048 	key.type = BTRFS_ROOT_ITEM_KEY;
2049 	key.offset = (u64)-1;
2050 	root = btrfs_read_fs_root_no_name(info, &key);
2051 	if (IS_ERR(root)) {
2052 		printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2053 		ret = -ENOENT;
2054 		goto out;
2055 	}
2056 
2057 	key.objectid = dirid;
2058 	key.type = BTRFS_INODE_REF_KEY;
2059 	key.offset = (u64)-1;
2060 
2061 	while (1) {
2062 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2063 		if (ret < 0)
2064 			goto out;
2065 		else if (ret > 0) {
2066 			ret = btrfs_previous_item(root, path, dirid,
2067 						  BTRFS_INODE_REF_KEY);
2068 			if (ret < 0)
2069 				goto out;
2070 			else if (ret > 0) {
2071 				ret = -ENOENT;
2072 				goto out;
2073 			}
2074 		}
2075 
2076 		l = path->nodes[0];
2077 		slot = path->slots[0];
2078 		btrfs_item_key_to_cpu(l, &key, slot);
2079 
2080 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2081 		len = btrfs_inode_ref_name_len(l, iref);
2082 		ptr -= len + 1;
2083 		total_len += len + 1;
2084 		if (ptr < name) {
2085 			ret = -ENAMETOOLONG;
2086 			goto out;
2087 		}
2088 
2089 		*(ptr + len) = '/';
2090 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2091 
2092 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2093 			break;
2094 
2095 		btrfs_release_path(path);
2096 		key.objectid = key.offset;
2097 		key.offset = (u64)-1;
2098 		dirid = key.objectid;
2099 	}
2100 	memmove(name, ptr, total_len);
2101 	name[total_len] = '\0';
2102 	ret = 0;
2103 out:
2104 	btrfs_free_path(path);
2105 	return ret;
2106 }
2107 
2108 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2109 					   void __user *argp)
2110 {
2111 	 struct btrfs_ioctl_ino_lookup_args *args;
2112 	 struct inode *inode;
2113 	 int ret;
2114 
2115 	if (!capable(CAP_SYS_ADMIN))
2116 		return -EPERM;
2117 
2118 	args = memdup_user(argp, sizeof(*args));
2119 	if (IS_ERR(args))
2120 		return PTR_ERR(args);
2121 
2122 	inode = file_inode(file);
2123 
2124 	if (args->treeid == 0)
2125 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2126 
2127 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2128 					args->treeid, args->objectid,
2129 					args->name);
2130 
2131 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2132 		ret = -EFAULT;
2133 
2134 	kfree(args);
2135 	return ret;
2136 }
2137 
2138 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2139 					     void __user *arg)
2140 {
2141 	struct dentry *parent = file->f_path.dentry;
2142 	struct dentry *dentry;
2143 	struct inode *dir = parent->d_inode;
2144 	struct inode *inode;
2145 	struct btrfs_root *root = BTRFS_I(dir)->root;
2146 	struct btrfs_root *dest = NULL;
2147 	struct btrfs_ioctl_vol_args *vol_args;
2148 	struct btrfs_trans_handle *trans;
2149 	struct btrfs_block_rsv block_rsv;
2150 	u64 qgroup_reserved;
2151 	int namelen;
2152 	int ret;
2153 	int err = 0;
2154 
2155 	vol_args = memdup_user(arg, sizeof(*vol_args));
2156 	if (IS_ERR(vol_args))
2157 		return PTR_ERR(vol_args);
2158 
2159 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2160 	namelen = strlen(vol_args->name);
2161 	if (strchr(vol_args->name, '/') ||
2162 	    strncmp(vol_args->name, "..", namelen) == 0) {
2163 		err = -EINVAL;
2164 		goto out;
2165 	}
2166 
2167 	err = mnt_want_write_file(file);
2168 	if (err)
2169 		goto out;
2170 
2171 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2172 	if (err == -EINTR)
2173 		goto out_drop_write;
2174 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2175 	if (IS_ERR(dentry)) {
2176 		err = PTR_ERR(dentry);
2177 		goto out_unlock_dir;
2178 	}
2179 
2180 	if (!dentry->d_inode) {
2181 		err = -ENOENT;
2182 		goto out_dput;
2183 	}
2184 
2185 	inode = dentry->d_inode;
2186 	dest = BTRFS_I(inode)->root;
2187 	if (!capable(CAP_SYS_ADMIN)) {
2188 		/*
2189 		 * Regular user.  Only allow this with a special mount
2190 		 * option, when the user has write+exec access to the
2191 		 * subvol root, and when rmdir(2) would have been
2192 		 * allowed.
2193 		 *
2194 		 * Note that this is _not_ check that the subvol is
2195 		 * empty or doesn't contain data that we wouldn't
2196 		 * otherwise be able to delete.
2197 		 *
2198 		 * Users who want to delete empty subvols should try
2199 		 * rmdir(2).
2200 		 */
2201 		err = -EPERM;
2202 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2203 			goto out_dput;
2204 
2205 		/*
2206 		 * Do not allow deletion if the parent dir is the same
2207 		 * as the dir to be deleted.  That means the ioctl
2208 		 * must be called on the dentry referencing the root
2209 		 * of the subvol, not a random directory contained
2210 		 * within it.
2211 		 */
2212 		err = -EINVAL;
2213 		if (root == dest)
2214 			goto out_dput;
2215 
2216 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2217 		if (err)
2218 			goto out_dput;
2219 	}
2220 
2221 	/* check if subvolume may be deleted by a user */
2222 	err = btrfs_may_delete(dir, dentry, 1);
2223 	if (err)
2224 		goto out_dput;
2225 
2226 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2227 		err = -EINVAL;
2228 		goto out_dput;
2229 	}
2230 
2231 	mutex_lock(&inode->i_mutex);
2232 	err = d_invalidate(dentry);
2233 	if (err)
2234 		goto out_unlock;
2235 
2236 	down_write(&root->fs_info->subvol_sem);
2237 
2238 	err = may_destroy_subvol(dest);
2239 	if (err)
2240 		goto out_up_write;
2241 
2242 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2243 	/*
2244 	 * One for dir inode, two for dir entries, two for root
2245 	 * ref/backref.
2246 	 */
2247 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2248 					       5, &qgroup_reserved, true);
2249 	if (err)
2250 		goto out_up_write;
2251 
2252 	trans = btrfs_start_transaction(root, 0);
2253 	if (IS_ERR(trans)) {
2254 		err = PTR_ERR(trans);
2255 		goto out_release;
2256 	}
2257 	trans->block_rsv = &block_rsv;
2258 	trans->bytes_reserved = block_rsv.size;
2259 
2260 	ret = btrfs_unlink_subvol(trans, root, dir,
2261 				dest->root_key.objectid,
2262 				dentry->d_name.name,
2263 				dentry->d_name.len);
2264 	if (ret) {
2265 		err = ret;
2266 		btrfs_abort_transaction(trans, root, ret);
2267 		goto out_end_trans;
2268 	}
2269 
2270 	btrfs_record_root_in_trans(trans, dest);
2271 
2272 	memset(&dest->root_item.drop_progress, 0,
2273 		sizeof(dest->root_item.drop_progress));
2274 	dest->root_item.drop_level = 0;
2275 	btrfs_set_root_refs(&dest->root_item, 0);
2276 
2277 	if (!xchg(&dest->orphan_item_inserted, 1)) {
2278 		ret = btrfs_insert_orphan_item(trans,
2279 					root->fs_info->tree_root,
2280 					dest->root_key.objectid);
2281 		if (ret) {
2282 			btrfs_abort_transaction(trans, root, ret);
2283 			err = ret;
2284 			goto out_end_trans;
2285 		}
2286 	}
2287 
2288 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2289 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2290 				  dest->root_key.objectid);
2291 	if (ret && ret != -ENOENT) {
2292 		btrfs_abort_transaction(trans, root, ret);
2293 		err = ret;
2294 		goto out_end_trans;
2295 	}
2296 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2297 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2298 					  dest->root_item.received_uuid,
2299 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2300 					  dest->root_key.objectid);
2301 		if (ret && ret != -ENOENT) {
2302 			btrfs_abort_transaction(trans, root, ret);
2303 			err = ret;
2304 			goto out_end_trans;
2305 		}
2306 	}
2307 
2308 out_end_trans:
2309 	trans->block_rsv = NULL;
2310 	trans->bytes_reserved = 0;
2311 	ret = btrfs_end_transaction(trans, root);
2312 	if (ret && !err)
2313 		err = ret;
2314 	inode->i_flags |= S_DEAD;
2315 out_release:
2316 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2317 out_up_write:
2318 	up_write(&root->fs_info->subvol_sem);
2319 out_unlock:
2320 	mutex_unlock(&inode->i_mutex);
2321 	if (!err) {
2322 		shrink_dcache_sb(root->fs_info->sb);
2323 		btrfs_invalidate_inodes(dest);
2324 		d_delete(dentry);
2325 
2326 		/* the last ref */
2327 		if (dest->cache_inode) {
2328 			iput(dest->cache_inode);
2329 			dest->cache_inode = NULL;
2330 		}
2331 	}
2332 out_dput:
2333 	dput(dentry);
2334 out_unlock_dir:
2335 	mutex_unlock(&dir->i_mutex);
2336 out_drop_write:
2337 	mnt_drop_write_file(file);
2338 out:
2339 	kfree(vol_args);
2340 	return err;
2341 }
2342 
2343 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2344 {
2345 	struct inode *inode = file_inode(file);
2346 	struct btrfs_root *root = BTRFS_I(inode)->root;
2347 	struct btrfs_ioctl_defrag_range_args *range;
2348 	int ret;
2349 
2350 	ret = mnt_want_write_file(file);
2351 	if (ret)
2352 		return ret;
2353 
2354 	if (btrfs_root_readonly(root)) {
2355 		ret = -EROFS;
2356 		goto out;
2357 	}
2358 
2359 	switch (inode->i_mode & S_IFMT) {
2360 	case S_IFDIR:
2361 		if (!capable(CAP_SYS_ADMIN)) {
2362 			ret = -EPERM;
2363 			goto out;
2364 		}
2365 		ret = btrfs_defrag_root(root);
2366 		if (ret)
2367 			goto out;
2368 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2369 		break;
2370 	case S_IFREG:
2371 		if (!(file->f_mode & FMODE_WRITE)) {
2372 			ret = -EINVAL;
2373 			goto out;
2374 		}
2375 
2376 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2377 		if (!range) {
2378 			ret = -ENOMEM;
2379 			goto out;
2380 		}
2381 
2382 		if (argp) {
2383 			if (copy_from_user(range, argp,
2384 					   sizeof(*range))) {
2385 				ret = -EFAULT;
2386 				kfree(range);
2387 				goto out;
2388 			}
2389 			/* compression requires us to start the IO */
2390 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2391 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2392 				range->extent_thresh = (u32)-1;
2393 			}
2394 		} else {
2395 			/* the rest are all set to zero by kzalloc */
2396 			range->len = (u64)-1;
2397 		}
2398 		ret = btrfs_defrag_file(file_inode(file), file,
2399 					range, 0, 0);
2400 		if (ret > 0)
2401 			ret = 0;
2402 		kfree(range);
2403 		break;
2404 	default:
2405 		ret = -EINVAL;
2406 	}
2407 out:
2408 	mnt_drop_write_file(file);
2409 	return ret;
2410 }
2411 
2412 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2413 {
2414 	struct btrfs_ioctl_vol_args *vol_args;
2415 	int ret;
2416 
2417 	if (!capable(CAP_SYS_ADMIN))
2418 		return -EPERM;
2419 
2420 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2421 			1)) {
2422 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2423 	}
2424 
2425 	mutex_lock(&root->fs_info->volume_mutex);
2426 	vol_args = memdup_user(arg, sizeof(*vol_args));
2427 	if (IS_ERR(vol_args)) {
2428 		ret = PTR_ERR(vol_args);
2429 		goto out;
2430 	}
2431 
2432 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2433 	ret = btrfs_init_new_device(root, vol_args->name);
2434 
2435 	kfree(vol_args);
2436 out:
2437 	mutex_unlock(&root->fs_info->volume_mutex);
2438 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2439 	return ret;
2440 }
2441 
2442 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2443 {
2444 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2445 	struct btrfs_ioctl_vol_args *vol_args;
2446 	int ret;
2447 
2448 	if (!capable(CAP_SYS_ADMIN))
2449 		return -EPERM;
2450 
2451 	ret = mnt_want_write_file(file);
2452 	if (ret)
2453 		return ret;
2454 
2455 	vol_args = memdup_user(arg, sizeof(*vol_args));
2456 	if (IS_ERR(vol_args)) {
2457 		ret = PTR_ERR(vol_args);
2458 		goto out;
2459 	}
2460 
2461 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2462 
2463 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2464 			1)) {
2465 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2466 		goto out;
2467 	}
2468 
2469 	mutex_lock(&root->fs_info->volume_mutex);
2470 	ret = btrfs_rm_device(root, vol_args->name);
2471 	mutex_unlock(&root->fs_info->volume_mutex);
2472 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2473 
2474 out:
2475 	kfree(vol_args);
2476 	mnt_drop_write_file(file);
2477 	return ret;
2478 }
2479 
2480 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2481 {
2482 	struct btrfs_ioctl_fs_info_args *fi_args;
2483 	struct btrfs_device *device;
2484 	struct btrfs_device *next;
2485 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2486 	int ret = 0;
2487 
2488 	if (!capable(CAP_SYS_ADMIN))
2489 		return -EPERM;
2490 
2491 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2492 	if (!fi_args)
2493 		return -ENOMEM;
2494 
2495 	mutex_lock(&fs_devices->device_list_mutex);
2496 	fi_args->num_devices = fs_devices->num_devices;
2497 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2498 
2499 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2500 		if (device->devid > fi_args->max_id)
2501 			fi_args->max_id = device->devid;
2502 	}
2503 	mutex_unlock(&fs_devices->device_list_mutex);
2504 
2505 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2506 		ret = -EFAULT;
2507 
2508 	kfree(fi_args);
2509 	return ret;
2510 }
2511 
2512 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2513 {
2514 	struct btrfs_ioctl_dev_info_args *di_args;
2515 	struct btrfs_device *dev;
2516 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2517 	int ret = 0;
2518 	char *s_uuid = NULL;
2519 
2520 	if (!capable(CAP_SYS_ADMIN))
2521 		return -EPERM;
2522 
2523 	di_args = memdup_user(arg, sizeof(*di_args));
2524 	if (IS_ERR(di_args))
2525 		return PTR_ERR(di_args);
2526 
2527 	if (!btrfs_is_empty_uuid(di_args->uuid))
2528 		s_uuid = di_args->uuid;
2529 
2530 	mutex_lock(&fs_devices->device_list_mutex);
2531 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2532 
2533 	if (!dev) {
2534 		ret = -ENODEV;
2535 		goto out;
2536 	}
2537 
2538 	di_args->devid = dev->devid;
2539 	di_args->bytes_used = dev->bytes_used;
2540 	di_args->total_bytes = dev->total_bytes;
2541 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2542 	if (dev->name) {
2543 		struct rcu_string *name;
2544 
2545 		rcu_read_lock();
2546 		name = rcu_dereference(dev->name);
2547 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2548 		rcu_read_unlock();
2549 		di_args->path[sizeof(di_args->path) - 1] = 0;
2550 	} else {
2551 		di_args->path[0] = '\0';
2552 	}
2553 
2554 out:
2555 	mutex_unlock(&fs_devices->device_list_mutex);
2556 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2557 		ret = -EFAULT;
2558 
2559 	kfree(di_args);
2560 	return ret;
2561 }
2562 
2563 static struct page *extent_same_get_page(struct inode *inode, u64 off)
2564 {
2565 	struct page *page;
2566 	pgoff_t index;
2567 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2568 
2569 	index = off >> PAGE_CACHE_SHIFT;
2570 
2571 	page = grab_cache_page(inode->i_mapping, index);
2572 	if (!page)
2573 		return NULL;
2574 
2575 	if (!PageUptodate(page)) {
2576 		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2577 						 0))
2578 			return NULL;
2579 		lock_page(page);
2580 		if (!PageUptodate(page)) {
2581 			unlock_page(page);
2582 			page_cache_release(page);
2583 			return NULL;
2584 		}
2585 	}
2586 	unlock_page(page);
2587 
2588 	return page;
2589 }
2590 
2591 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2592 {
2593 	/* do any pending delalloc/csum calc on src, one way or
2594 	   another, and lock file content */
2595 	while (1) {
2596 		struct btrfs_ordered_extent *ordered;
2597 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2598 		ordered = btrfs_lookup_first_ordered_extent(inode,
2599 							    off + len - 1);
2600 		if (!ordered &&
2601 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2602 				    off + len - 1, EXTENT_DELALLOC, 0, NULL))
2603 			break;
2604 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2605 		if (ordered)
2606 			btrfs_put_ordered_extent(ordered);
2607 		btrfs_wait_ordered_range(inode, off, len);
2608 	}
2609 }
2610 
2611 static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2612 				struct inode *inode2, u64 loff2, u64 len)
2613 {
2614 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2615 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2616 
2617 	mutex_unlock(&inode1->i_mutex);
2618 	mutex_unlock(&inode2->i_mutex);
2619 }
2620 
2621 static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2622 			      struct inode *inode2, u64 loff2, u64 len)
2623 {
2624 	if (inode1 < inode2) {
2625 		swap(inode1, inode2);
2626 		swap(loff1, loff2);
2627 	}
2628 
2629 	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2630 	lock_extent_range(inode1, loff1, len);
2631 	if (inode1 != inode2) {
2632 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2633 		lock_extent_range(inode2, loff2, len);
2634 	}
2635 }
2636 
2637 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2638 			  u64 dst_loff, u64 len)
2639 {
2640 	int ret = 0;
2641 	struct page *src_page, *dst_page;
2642 	unsigned int cmp_len = PAGE_CACHE_SIZE;
2643 	void *addr, *dst_addr;
2644 
2645 	while (len) {
2646 		if (len < PAGE_CACHE_SIZE)
2647 			cmp_len = len;
2648 
2649 		src_page = extent_same_get_page(src, loff);
2650 		if (!src_page)
2651 			return -EINVAL;
2652 		dst_page = extent_same_get_page(dst, dst_loff);
2653 		if (!dst_page) {
2654 			page_cache_release(src_page);
2655 			return -EINVAL;
2656 		}
2657 		addr = kmap_atomic(src_page);
2658 		dst_addr = kmap_atomic(dst_page);
2659 
2660 		flush_dcache_page(src_page);
2661 		flush_dcache_page(dst_page);
2662 
2663 		if (memcmp(addr, dst_addr, cmp_len))
2664 			ret = BTRFS_SAME_DATA_DIFFERS;
2665 
2666 		kunmap_atomic(addr);
2667 		kunmap_atomic(dst_addr);
2668 		page_cache_release(src_page);
2669 		page_cache_release(dst_page);
2670 
2671 		if (ret)
2672 			break;
2673 
2674 		loff += cmp_len;
2675 		dst_loff += cmp_len;
2676 		len -= cmp_len;
2677 	}
2678 
2679 	return ret;
2680 }
2681 
2682 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2683 {
2684 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2685 
2686 	if (off + len > inode->i_size || off + len < off)
2687 		return -EINVAL;
2688 	/* Check that we are block aligned - btrfs_clone() requires this */
2689 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2690 		return -EINVAL;
2691 
2692 	return 0;
2693 }
2694 
2695 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2696 			     struct inode *dst, u64 dst_loff)
2697 {
2698 	int ret;
2699 
2700 	/*
2701 	 * btrfs_clone() can't handle extents in the same file
2702 	 * yet. Once that works, we can drop this check and replace it
2703 	 * with a check for the same inode, but overlapping extents.
2704 	 */
2705 	if (src == dst)
2706 		return -EINVAL;
2707 
2708 	btrfs_double_lock(src, loff, dst, dst_loff, len);
2709 
2710 	ret = extent_same_check_offsets(src, loff, len);
2711 	if (ret)
2712 		goto out_unlock;
2713 
2714 	ret = extent_same_check_offsets(dst, dst_loff, len);
2715 	if (ret)
2716 		goto out_unlock;
2717 
2718 	/* don't make the dst file partly checksummed */
2719 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2720 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2721 		ret = -EINVAL;
2722 		goto out_unlock;
2723 	}
2724 
2725 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2726 	if (ret == 0)
2727 		ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2728 
2729 out_unlock:
2730 	btrfs_double_unlock(src, loff, dst, dst_loff, len);
2731 
2732 	return ret;
2733 }
2734 
2735 #define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
2736 
2737 static long btrfs_ioctl_file_extent_same(struct file *file,
2738 			struct btrfs_ioctl_same_args __user *argp)
2739 {
2740 	struct btrfs_ioctl_same_args *same;
2741 	struct btrfs_ioctl_same_extent_info *info;
2742 	struct inode *src = file_inode(file);
2743 	u64 off;
2744 	u64 len;
2745 	int i;
2746 	int ret;
2747 	unsigned long size;
2748 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2749 	bool is_admin = capable(CAP_SYS_ADMIN);
2750 	u16 count;
2751 
2752 	if (!(file->f_mode & FMODE_READ))
2753 		return -EINVAL;
2754 
2755 	ret = mnt_want_write_file(file);
2756 	if (ret)
2757 		return ret;
2758 
2759 	if (get_user(count, &argp->dest_count)) {
2760 		ret = -EFAULT;
2761 		goto out;
2762 	}
2763 
2764 	size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
2765 
2766 	same = memdup_user(argp, size);
2767 
2768 	if (IS_ERR(same)) {
2769 		ret = PTR_ERR(same);
2770 		goto out;
2771 	}
2772 
2773 	off = same->logical_offset;
2774 	len = same->length;
2775 
2776 	/*
2777 	 * Limit the total length we will dedupe for each operation.
2778 	 * This is intended to bound the total time spent in this
2779 	 * ioctl to something sane.
2780 	 */
2781 	if (len > BTRFS_MAX_DEDUPE_LEN)
2782 		len = BTRFS_MAX_DEDUPE_LEN;
2783 
2784 	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
2785 		/*
2786 		 * Btrfs does not support blocksize < page_size. As a
2787 		 * result, btrfs_cmp_data() won't correctly handle
2788 		 * this situation without an update.
2789 		 */
2790 		ret = -EINVAL;
2791 		goto out;
2792 	}
2793 
2794 	ret = -EISDIR;
2795 	if (S_ISDIR(src->i_mode))
2796 		goto out;
2797 
2798 	ret = -EACCES;
2799 	if (!S_ISREG(src->i_mode))
2800 		goto out;
2801 
2802 	/* pre-format output fields to sane values */
2803 	for (i = 0; i < count; i++) {
2804 		same->info[i].bytes_deduped = 0ULL;
2805 		same->info[i].status = 0;
2806 	}
2807 
2808 	for (i = 0, info = same->info; i < count; i++, info++) {
2809 		struct inode *dst;
2810 		struct fd dst_file = fdget(info->fd);
2811 		if (!dst_file.file) {
2812 			info->status = -EBADF;
2813 			continue;
2814 		}
2815 		dst = file_inode(dst_file.file);
2816 
2817 		if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
2818 			info->status = -EINVAL;
2819 		} else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
2820 			info->status = -EXDEV;
2821 		} else if (S_ISDIR(dst->i_mode)) {
2822 			info->status = -EISDIR;
2823 		} else if (!S_ISREG(dst->i_mode)) {
2824 			info->status = -EACCES;
2825 		} else {
2826 			info->status = btrfs_extent_same(src, off, len, dst,
2827 							info->logical_offset);
2828 			if (info->status == 0)
2829 				info->bytes_deduped += len;
2830 		}
2831 		fdput(dst_file);
2832 	}
2833 
2834 	ret = copy_to_user(argp, same, size);
2835 	if (ret)
2836 		ret = -EFAULT;
2837 
2838 out:
2839 	mnt_drop_write_file(file);
2840 	return ret;
2841 }
2842 
2843 /**
2844  * btrfs_clone() - clone a range from inode file to another
2845  *
2846  * @src: Inode to clone from
2847  * @inode: Inode to clone to
2848  * @off: Offset within source to start clone from
2849  * @olen: Original length, passed by user, of range to clone
2850  * @olen_aligned: Block-aligned value of olen, extent_same uses
2851  *               identical values here
2852  * @destoff: Offset within @inode to start clone
2853  */
2854 static int btrfs_clone(struct inode *src, struct inode *inode,
2855 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff)
2856 {
2857 	struct btrfs_root *root = BTRFS_I(inode)->root;
2858 	struct btrfs_path *path = NULL;
2859 	struct extent_buffer *leaf;
2860 	struct btrfs_trans_handle *trans;
2861 	char *buf = NULL;
2862 	struct btrfs_key key;
2863 	u32 nritems;
2864 	int slot;
2865 	int ret;
2866 	u64 len = olen_aligned;
2867 
2868 	ret = -ENOMEM;
2869 	buf = vmalloc(btrfs_level_size(root, 0));
2870 	if (!buf)
2871 		return ret;
2872 
2873 	path = btrfs_alloc_path();
2874 	if (!path) {
2875 		vfree(buf);
2876 		return ret;
2877 	}
2878 
2879 	path->reada = 2;
2880 	/* clone data */
2881 	key.objectid = btrfs_ino(src);
2882 	key.type = BTRFS_EXTENT_DATA_KEY;
2883 	key.offset = 0;
2884 
2885 	while (1) {
2886 		/*
2887 		 * note the key will change type as we walk through the
2888 		 * tree.
2889 		 */
2890 		path->leave_spinning = 1;
2891 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2892 				0, 0);
2893 		if (ret < 0)
2894 			goto out;
2895 
2896 		nritems = btrfs_header_nritems(path->nodes[0]);
2897 process_slot:
2898 		if (path->slots[0] >= nritems) {
2899 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2900 			if (ret < 0)
2901 				goto out;
2902 			if (ret > 0)
2903 				break;
2904 			nritems = btrfs_header_nritems(path->nodes[0]);
2905 		}
2906 		leaf = path->nodes[0];
2907 		slot = path->slots[0];
2908 
2909 		btrfs_item_key_to_cpu(leaf, &key, slot);
2910 		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2911 		    key.objectid != btrfs_ino(src))
2912 			break;
2913 
2914 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2915 			struct btrfs_file_extent_item *extent;
2916 			int type;
2917 			u32 size;
2918 			struct btrfs_key new_key;
2919 			u64 disko = 0, diskl = 0;
2920 			u64 datao = 0, datal = 0;
2921 			u8 comp;
2922 			u64 endoff;
2923 
2924 			extent = btrfs_item_ptr(leaf, slot,
2925 						struct btrfs_file_extent_item);
2926 			comp = btrfs_file_extent_compression(leaf, extent);
2927 			type = btrfs_file_extent_type(leaf, extent);
2928 			if (type == BTRFS_FILE_EXTENT_REG ||
2929 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2930 				disko = btrfs_file_extent_disk_bytenr(leaf,
2931 								      extent);
2932 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
2933 								 extent);
2934 				datao = btrfs_file_extent_offset(leaf, extent);
2935 				datal = btrfs_file_extent_num_bytes(leaf,
2936 								    extent);
2937 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
2938 				/* take upper bound, may be compressed */
2939 				datal = btrfs_file_extent_ram_bytes(leaf,
2940 								    extent);
2941 			}
2942 
2943 			if (key.offset + datal <= off ||
2944 			    key.offset >= off + len - 1) {
2945 				path->slots[0]++;
2946 				goto process_slot;
2947 			}
2948 
2949 			size = btrfs_item_size_nr(leaf, slot);
2950 			read_extent_buffer(leaf, buf,
2951 					   btrfs_item_ptr_offset(leaf, slot),
2952 					   size);
2953 
2954 			btrfs_release_path(path);
2955 			path->leave_spinning = 0;
2956 
2957 			memcpy(&new_key, &key, sizeof(new_key));
2958 			new_key.objectid = btrfs_ino(inode);
2959 			if (off <= key.offset)
2960 				new_key.offset = key.offset + destoff - off;
2961 			else
2962 				new_key.offset = destoff;
2963 
2964 			/*
2965 			 * 1 - adjusting old extent (we may have to split it)
2966 			 * 1 - add new extent
2967 			 * 1 - inode update
2968 			 */
2969 			trans = btrfs_start_transaction(root, 3);
2970 			if (IS_ERR(trans)) {
2971 				ret = PTR_ERR(trans);
2972 				goto out;
2973 			}
2974 
2975 			if (type == BTRFS_FILE_EXTENT_REG ||
2976 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2977 				/*
2978 				 *    a  | --- range to clone ---|  b
2979 				 * | ------------- extent ------------- |
2980 				 */
2981 
2982 				/* substract range b */
2983 				if (key.offset + datal > off + len)
2984 					datal = off + len - key.offset;
2985 
2986 				/* substract range a */
2987 				if (off > key.offset) {
2988 					datao += off - key.offset;
2989 					datal -= off - key.offset;
2990 				}
2991 
2992 				ret = btrfs_drop_extents(trans, root, inode,
2993 							 new_key.offset,
2994 							 new_key.offset + datal,
2995 							 1);
2996 				if (ret) {
2997 					btrfs_abort_transaction(trans, root,
2998 								ret);
2999 					btrfs_end_transaction(trans, root);
3000 					goto out;
3001 				}
3002 
3003 				ret = btrfs_insert_empty_item(trans, root, path,
3004 							      &new_key, size);
3005 				if (ret) {
3006 					btrfs_abort_transaction(trans, root,
3007 								ret);
3008 					btrfs_end_transaction(trans, root);
3009 					goto out;
3010 				}
3011 
3012 				leaf = path->nodes[0];
3013 				slot = path->slots[0];
3014 				write_extent_buffer(leaf, buf,
3015 					    btrfs_item_ptr_offset(leaf, slot),
3016 					    size);
3017 
3018 				extent = btrfs_item_ptr(leaf, slot,
3019 						struct btrfs_file_extent_item);
3020 
3021 				/* disko == 0 means it's a hole */
3022 				if (!disko)
3023 					datao = 0;
3024 
3025 				btrfs_set_file_extent_offset(leaf, extent,
3026 							     datao);
3027 				btrfs_set_file_extent_num_bytes(leaf, extent,
3028 								datal);
3029 				if (disko) {
3030 					inode_add_bytes(inode, datal);
3031 					ret = btrfs_inc_extent_ref(trans, root,
3032 							disko, diskl, 0,
3033 							root->root_key.objectid,
3034 							btrfs_ino(inode),
3035 							new_key.offset - datao,
3036 							0);
3037 					if (ret) {
3038 						btrfs_abort_transaction(trans,
3039 									root,
3040 									ret);
3041 						btrfs_end_transaction(trans,
3042 								      root);
3043 						goto out;
3044 
3045 					}
3046 				}
3047 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3048 				u64 skip = 0;
3049 				u64 trim = 0;
3050 				if (off > key.offset) {
3051 					skip = off - key.offset;
3052 					new_key.offset += skip;
3053 				}
3054 
3055 				if (key.offset + datal > off + len)
3056 					trim = key.offset + datal - (off + len);
3057 
3058 				if (comp && (skip || trim)) {
3059 					ret = -EINVAL;
3060 					btrfs_end_transaction(trans, root);
3061 					goto out;
3062 				}
3063 				size -= skip + trim;
3064 				datal -= skip + trim;
3065 
3066 				ret = btrfs_drop_extents(trans, root, inode,
3067 							 new_key.offset,
3068 							 new_key.offset + datal,
3069 							 1);
3070 				if (ret) {
3071 					btrfs_abort_transaction(trans, root,
3072 								ret);
3073 					btrfs_end_transaction(trans, root);
3074 					goto out;
3075 				}
3076 
3077 				ret = btrfs_insert_empty_item(trans, root, path,
3078 							      &new_key, size);
3079 				if (ret) {
3080 					btrfs_abort_transaction(trans, root,
3081 								ret);
3082 					btrfs_end_transaction(trans, root);
3083 					goto out;
3084 				}
3085 
3086 				if (skip) {
3087 					u32 start =
3088 					  btrfs_file_extent_calc_inline_size(0);
3089 					memmove(buf+start, buf+start+skip,
3090 						datal);
3091 				}
3092 
3093 				leaf = path->nodes[0];
3094 				slot = path->slots[0];
3095 				write_extent_buffer(leaf, buf,
3096 					    btrfs_item_ptr_offset(leaf, slot),
3097 					    size);
3098 				inode_add_bytes(inode, datal);
3099 			}
3100 
3101 			btrfs_mark_buffer_dirty(leaf);
3102 			btrfs_release_path(path);
3103 
3104 			inode_inc_iversion(inode);
3105 			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3106 
3107 			/*
3108 			 * we round up to the block size at eof when
3109 			 * determining which extents to clone above,
3110 			 * but shouldn't round up the file size
3111 			 */
3112 			endoff = new_key.offset + datal;
3113 			if (endoff > destoff+olen)
3114 				endoff = destoff+olen;
3115 			if (endoff > inode->i_size)
3116 				btrfs_i_size_write(inode, endoff);
3117 
3118 			ret = btrfs_update_inode(trans, root, inode);
3119 			if (ret) {
3120 				btrfs_abort_transaction(trans, root, ret);
3121 				btrfs_end_transaction(trans, root);
3122 				goto out;
3123 			}
3124 			ret = btrfs_end_transaction(trans, root);
3125 		}
3126 		btrfs_release_path(path);
3127 		key.offset++;
3128 	}
3129 	ret = 0;
3130 
3131 out:
3132 	btrfs_release_path(path);
3133 	btrfs_free_path(path);
3134 	vfree(buf);
3135 	return ret;
3136 }
3137 
3138 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3139 				       u64 off, u64 olen, u64 destoff)
3140 {
3141 	struct inode *inode = file_inode(file);
3142 	struct btrfs_root *root = BTRFS_I(inode)->root;
3143 	struct fd src_file;
3144 	struct inode *src;
3145 	int ret;
3146 	u64 len = olen;
3147 	u64 bs = root->fs_info->sb->s_blocksize;
3148 	int same_inode = 0;
3149 
3150 	/*
3151 	 * TODO:
3152 	 * - split compressed inline extents.  annoying: we need to
3153 	 *   decompress into destination's address_space (the file offset
3154 	 *   may change, so source mapping won't do), then recompress (or
3155 	 *   otherwise reinsert) a subrange.
3156 	 * - allow ranges within the same file to be cloned (provided
3157 	 *   they don't overlap)?
3158 	 */
3159 
3160 	/* the destination must be opened for writing */
3161 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3162 		return -EINVAL;
3163 
3164 	if (btrfs_root_readonly(root))
3165 		return -EROFS;
3166 
3167 	ret = mnt_want_write_file(file);
3168 	if (ret)
3169 		return ret;
3170 
3171 	src_file = fdget(srcfd);
3172 	if (!src_file.file) {
3173 		ret = -EBADF;
3174 		goto out_drop_write;
3175 	}
3176 
3177 	ret = -EXDEV;
3178 	if (src_file.file->f_path.mnt != file->f_path.mnt)
3179 		goto out_fput;
3180 
3181 	src = file_inode(src_file.file);
3182 
3183 	ret = -EINVAL;
3184 	if (src == inode)
3185 		same_inode = 1;
3186 
3187 	/* the src must be open for reading */
3188 	if (!(src_file.file->f_mode & FMODE_READ))
3189 		goto out_fput;
3190 
3191 	/* don't make the dst file partly checksummed */
3192 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3193 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3194 		goto out_fput;
3195 
3196 	ret = -EISDIR;
3197 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3198 		goto out_fput;
3199 
3200 	ret = -EXDEV;
3201 	if (src->i_sb != inode->i_sb)
3202 		goto out_fput;
3203 
3204 	if (!same_inode) {
3205 		if (inode < src) {
3206 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3207 			mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3208 		} else {
3209 			mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3210 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3211 		}
3212 	} else {
3213 		mutex_lock(&src->i_mutex);
3214 	}
3215 
3216 	/* determine range to clone */
3217 	ret = -EINVAL;
3218 	if (off + len > src->i_size || off + len < off)
3219 		goto out_unlock;
3220 	if (len == 0)
3221 		olen = len = src->i_size - off;
3222 	/* if we extend to eof, continue to block boundary */
3223 	if (off + len == src->i_size)
3224 		len = ALIGN(src->i_size, bs) - off;
3225 
3226 	/* verify the end result is block aligned */
3227 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3228 	    !IS_ALIGNED(destoff, bs))
3229 		goto out_unlock;
3230 
3231 	/* verify if ranges are overlapped within the same file */
3232 	if (same_inode) {
3233 		if (destoff + len > off && destoff < off + len)
3234 			goto out_unlock;
3235 	}
3236 
3237 	if (destoff > inode->i_size) {
3238 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3239 		if (ret)
3240 			goto out_unlock;
3241 	}
3242 
3243 	/* truncate page cache pages from target inode range */
3244 	truncate_inode_pages_range(&inode->i_data, destoff,
3245 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3246 
3247 	lock_extent_range(src, off, len);
3248 
3249 	ret = btrfs_clone(src, inode, off, olen, len, destoff);
3250 
3251 	unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3252 out_unlock:
3253 	if (!same_inode) {
3254 		if (inode < src) {
3255 			mutex_unlock(&src->i_mutex);
3256 			mutex_unlock(&inode->i_mutex);
3257 		} else {
3258 			mutex_unlock(&inode->i_mutex);
3259 			mutex_unlock(&src->i_mutex);
3260 		}
3261 	} else {
3262 		mutex_unlock(&src->i_mutex);
3263 	}
3264 out_fput:
3265 	fdput(src_file);
3266 out_drop_write:
3267 	mnt_drop_write_file(file);
3268 	return ret;
3269 }
3270 
3271 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3272 {
3273 	struct btrfs_ioctl_clone_range_args args;
3274 
3275 	if (copy_from_user(&args, argp, sizeof(args)))
3276 		return -EFAULT;
3277 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3278 				 args.src_length, args.dest_offset);
3279 }
3280 
3281 /*
3282  * there are many ways the trans_start and trans_end ioctls can lead
3283  * to deadlocks.  They should only be used by applications that
3284  * basically own the machine, and have a very in depth understanding
3285  * of all the possible deadlocks and enospc problems.
3286  */
3287 static long btrfs_ioctl_trans_start(struct file *file)
3288 {
3289 	struct inode *inode = file_inode(file);
3290 	struct btrfs_root *root = BTRFS_I(inode)->root;
3291 	struct btrfs_trans_handle *trans;
3292 	int ret;
3293 
3294 	ret = -EPERM;
3295 	if (!capable(CAP_SYS_ADMIN))
3296 		goto out;
3297 
3298 	ret = -EINPROGRESS;
3299 	if (file->private_data)
3300 		goto out;
3301 
3302 	ret = -EROFS;
3303 	if (btrfs_root_readonly(root))
3304 		goto out;
3305 
3306 	ret = mnt_want_write_file(file);
3307 	if (ret)
3308 		goto out;
3309 
3310 	atomic_inc(&root->fs_info->open_ioctl_trans);
3311 
3312 	ret = -ENOMEM;
3313 	trans = btrfs_start_ioctl_transaction(root);
3314 	if (IS_ERR(trans))
3315 		goto out_drop;
3316 
3317 	file->private_data = trans;
3318 	return 0;
3319 
3320 out_drop:
3321 	atomic_dec(&root->fs_info->open_ioctl_trans);
3322 	mnt_drop_write_file(file);
3323 out:
3324 	return ret;
3325 }
3326 
3327 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3328 {
3329 	struct inode *inode = file_inode(file);
3330 	struct btrfs_root *root = BTRFS_I(inode)->root;
3331 	struct btrfs_root *new_root;
3332 	struct btrfs_dir_item *di;
3333 	struct btrfs_trans_handle *trans;
3334 	struct btrfs_path *path;
3335 	struct btrfs_key location;
3336 	struct btrfs_disk_key disk_key;
3337 	u64 objectid = 0;
3338 	u64 dir_id;
3339 	int ret;
3340 
3341 	if (!capable(CAP_SYS_ADMIN))
3342 		return -EPERM;
3343 
3344 	ret = mnt_want_write_file(file);
3345 	if (ret)
3346 		return ret;
3347 
3348 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3349 		ret = -EFAULT;
3350 		goto out;
3351 	}
3352 
3353 	if (!objectid)
3354 		objectid = BTRFS_FS_TREE_OBJECTID;
3355 
3356 	location.objectid = objectid;
3357 	location.type = BTRFS_ROOT_ITEM_KEY;
3358 	location.offset = (u64)-1;
3359 
3360 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3361 	if (IS_ERR(new_root)) {
3362 		ret = PTR_ERR(new_root);
3363 		goto out;
3364 	}
3365 
3366 	path = btrfs_alloc_path();
3367 	if (!path) {
3368 		ret = -ENOMEM;
3369 		goto out;
3370 	}
3371 	path->leave_spinning = 1;
3372 
3373 	trans = btrfs_start_transaction(root, 1);
3374 	if (IS_ERR(trans)) {
3375 		btrfs_free_path(path);
3376 		ret = PTR_ERR(trans);
3377 		goto out;
3378 	}
3379 
3380 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3381 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3382 				   dir_id, "default", 7, 1);
3383 	if (IS_ERR_OR_NULL(di)) {
3384 		btrfs_free_path(path);
3385 		btrfs_end_transaction(trans, root);
3386 		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3387 			   "item, this isn't going to work");
3388 		ret = -ENOENT;
3389 		goto out;
3390 	}
3391 
3392 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3393 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3394 	btrfs_mark_buffer_dirty(path->nodes[0]);
3395 	btrfs_free_path(path);
3396 
3397 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3398 	btrfs_end_transaction(trans, root);
3399 out:
3400 	mnt_drop_write_file(file);
3401 	return ret;
3402 }
3403 
3404 void btrfs_get_block_group_info(struct list_head *groups_list,
3405 				struct btrfs_ioctl_space_info *space)
3406 {
3407 	struct btrfs_block_group_cache *block_group;
3408 
3409 	space->total_bytes = 0;
3410 	space->used_bytes = 0;
3411 	space->flags = 0;
3412 	list_for_each_entry(block_group, groups_list, list) {
3413 		space->flags = block_group->flags;
3414 		space->total_bytes += block_group->key.offset;
3415 		space->used_bytes +=
3416 			btrfs_block_group_used(&block_group->item);
3417 	}
3418 }
3419 
3420 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3421 {
3422 	struct btrfs_ioctl_space_args space_args;
3423 	struct btrfs_ioctl_space_info space;
3424 	struct btrfs_ioctl_space_info *dest;
3425 	struct btrfs_ioctl_space_info *dest_orig;
3426 	struct btrfs_ioctl_space_info __user *user_dest;
3427 	struct btrfs_space_info *info;
3428 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3429 		       BTRFS_BLOCK_GROUP_SYSTEM,
3430 		       BTRFS_BLOCK_GROUP_METADATA,
3431 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3432 	int num_types = 4;
3433 	int alloc_size;
3434 	int ret = 0;
3435 	u64 slot_count = 0;
3436 	int i, c;
3437 
3438 	if (copy_from_user(&space_args,
3439 			   (struct btrfs_ioctl_space_args __user *)arg,
3440 			   sizeof(space_args)))
3441 		return -EFAULT;
3442 
3443 	for (i = 0; i < num_types; i++) {
3444 		struct btrfs_space_info *tmp;
3445 
3446 		info = NULL;
3447 		rcu_read_lock();
3448 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3449 					list) {
3450 			if (tmp->flags == types[i]) {
3451 				info = tmp;
3452 				break;
3453 			}
3454 		}
3455 		rcu_read_unlock();
3456 
3457 		if (!info)
3458 			continue;
3459 
3460 		down_read(&info->groups_sem);
3461 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3462 			if (!list_empty(&info->block_groups[c]))
3463 				slot_count++;
3464 		}
3465 		up_read(&info->groups_sem);
3466 	}
3467 
3468 	/* space_slots == 0 means they are asking for a count */
3469 	if (space_args.space_slots == 0) {
3470 		space_args.total_spaces = slot_count;
3471 		goto out;
3472 	}
3473 
3474 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3475 
3476 	alloc_size = sizeof(*dest) * slot_count;
3477 
3478 	/* we generally have at most 6 or so space infos, one for each raid
3479 	 * level.  So, a whole page should be more than enough for everyone
3480 	 */
3481 	if (alloc_size > PAGE_CACHE_SIZE)
3482 		return -ENOMEM;
3483 
3484 	space_args.total_spaces = 0;
3485 	dest = kmalloc(alloc_size, GFP_NOFS);
3486 	if (!dest)
3487 		return -ENOMEM;
3488 	dest_orig = dest;
3489 
3490 	/* now we have a buffer to copy into */
3491 	for (i = 0; i < num_types; i++) {
3492 		struct btrfs_space_info *tmp;
3493 
3494 		if (!slot_count)
3495 			break;
3496 
3497 		info = NULL;
3498 		rcu_read_lock();
3499 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3500 					list) {
3501 			if (tmp->flags == types[i]) {
3502 				info = tmp;
3503 				break;
3504 			}
3505 		}
3506 		rcu_read_unlock();
3507 
3508 		if (!info)
3509 			continue;
3510 		down_read(&info->groups_sem);
3511 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3512 			if (!list_empty(&info->block_groups[c])) {
3513 				btrfs_get_block_group_info(
3514 					&info->block_groups[c], &space);
3515 				memcpy(dest, &space, sizeof(space));
3516 				dest++;
3517 				space_args.total_spaces++;
3518 				slot_count--;
3519 			}
3520 			if (!slot_count)
3521 				break;
3522 		}
3523 		up_read(&info->groups_sem);
3524 	}
3525 
3526 	user_dest = (struct btrfs_ioctl_space_info __user *)
3527 		(arg + sizeof(struct btrfs_ioctl_space_args));
3528 
3529 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3530 		ret = -EFAULT;
3531 
3532 	kfree(dest_orig);
3533 out:
3534 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3535 		ret = -EFAULT;
3536 
3537 	return ret;
3538 }
3539 
3540 /*
3541  * there are many ways the trans_start and trans_end ioctls can lead
3542  * to deadlocks.  They should only be used by applications that
3543  * basically own the machine, and have a very in depth understanding
3544  * of all the possible deadlocks and enospc problems.
3545  */
3546 long btrfs_ioctl_trans_end(struct file *file)
3547 {
3548 	struct inode *inode = file_inode(file);
3549 	struct btrfs_root *root = BTRFS_I(inode)->root;
3550 	struct btrfs_trans_handle *trans;
3551 
3552 	trans = file->private_data;
3553 	if (!trans)
3554 		return -EINVAL;
3555 	file->private_data = NULL;
3556 
3557 	btrfs_end_transaction(trans, root);
3558 
3559 	atomic_dec(&root->fs_info->open_ioctl_trans);
3560 
3561 	mnt_drop_write_file(file);
3562 	return 0;
3563 }
3564 
3565 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3566 					    void __user *argp)
3567 {
3568 	struct btrfs_trans_handle *trans;
3569 	u64 transid;
3570 	int ret;
3571 
3572 	trans = btrfs_attach_transaction_barrier(root);
3573 	if (IS_ERR(trans)) {
3574 		if (PTR_ERR(trans) != -ENOENT)
3575 			return PTR_ERR(trans);
3576 
3577 		/* No running transaction, don't bother */
3578 		transid = root->fs_info->last_trans_committed;
3579 		goto out;
3580 	}
3581 	transid = trans->transid;
3582 	ret = btrfs_commit_transaction_async(trans, root, 0);
3583 	if (ret) {
3584 		btrfs_end_transaction(trans, root);
3585 		return ret;
3586 	}
3587 out:
3588 	if (argp)
3589 		if (copy_to_user(argp, &transid, sizeof(transid)))
3590 			return -EFAULT;
3591 	return 0;
3592 }
3593 
3594 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3595 					   void __user *argp)
3596 {
3597 	u64 transid;
3598 
3599 	if (argp) {
3600 		if (copy_from_user(&transid, argp, sizeof(transid)))
3601 			return -EFAULT;
3602 	} else {
3603 		transid = 0;  /* current trans */
3604 	}
3605 	return btrfs_wait_for_commit(root, transid);
3606 }
3607 
3608 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3609 {
3610 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3611 	struct btrfs_ioctl_scrub_args *sa;
3612 	int ret;
3613 
3614 	if (!capable(CAP_SYS_ADMIN))
3615 		return -EPERM;
3616 
3617 	sa = memdup_user(arg, sizeof(*sa));
3618 	if (IS_ERR(sa))
3619 		return PTR_ERR(sa);
3620 
3621 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3622 		ret = mnt_want_write_file(file);
3623 		if (ret)
3624 			goto out;
3625 	}
3626 
3627 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3628 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3629 			      0);
3630 
3631 	if (copy_to_user(arg, sa, sizeof(*sa)))
3632 		ret = -EFAULT;
3633 
3634 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3635 		mnt_drop_write_file(file);
3636 out:
3637 	kfree(sa);
3638 	return ret;
3639 }
3640 
3641 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3642 {
3643 	if (!capable(CAP_SYS_ADMIN))
3644 		return -EPERM;
3645 
3646 	return btrfs_scrub_cancel(root->fs_info);
3647 }
3648 
3649 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3650 				       void __user *arg)
3651 {
3652 	struct btrfs_ioctl_scrub_args *sa;
3653 	int ret;
3654 
3655 	if (!capable(CAP_SYS_ADMIN))
3656 		return -EPERM;
3657 
3658 	sa = memdup_user(arg, sizeof(*sa));
3659 	if (IS_ERR(sa))
3660 		return PTR_ERR(sa);
3661 
3662 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3663 
3664 	if (copy_to_user(arg, sa, sizeof(*sa)))
3665 		ret = -EFAULT;
3666 
3667 	kfree(sa);
3668 	return ret;
3669 }
3670 
3671 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3672 				      void __user *arg)
3673 {
3674 	struct btrfs_ioctl_get_dev_stats *sa;
3675 	int ret;
3676 
3677 	sa = memdup_user(arg, sizeof(*sa));
3678 	if (IS_ERR(sa))
3679 		return PTR_ERR(sa);
3680 
3681 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3682 		kfree(sa);
3683 		return -EPERM;
3684 	}
3685 
3686 	ret = btrfs_get_dev_stats(root, sa);
3687 
3688 	if (copy_to_user(arg, sa, sizeof(*sa)))
3689 		ret = -EFAULT;
3690 
3691 	kfree(sa);
3692 	return ret;
3693 }
3694 
3695 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3696 {
3697 	struct btrfs_ioctl_dev_replace_args *p;
3698 	int ret;
3699 
3700 	if (!capable(CAP_SYS_ADMIN))
3701 		return -EPERM;
3702 
3703 	p = memdup_user(arg, sizeof(*p));
3704 	if (IS_ERR(p))
3705 		return PTR_ERR(p);
3706 
3707 	switch (p->cmd) {
3708 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3709 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
3710 			ret = -EROFS;
3711 			goto out;
3712 		}
3713 		if (atomic_xchg(
3714 			&root->fs_info->mutually_exclusive_operation_running,
3715 			1)) {
3716 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3717 		} else {
3718 			ret = btrfs_dev_replace_start(root, p);
3719 			atomic_set(
3720 			 &root->fs_info->mutually_exclusive_operation_running,
3721 			 0);
3722 		}
3723 		break;
3724 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3725 		btrfs_dev_replace_status(root->fs_info, p);
3726 		ret = 0;
3727 		break;
3728 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3729 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
3730 		break;
3731 	default:
3732 		ret = -EINVAL;
3733 		break;
3734 	}
3735 
3736 	if (copy_to_user(arg, p, sizeof(*p)))
3737 		ret = -EFAULT;
3738 out:
3739 	kfree(p);
3740 	return ret;
3741 }
3742 
3743 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3744 {
3745 	int ret = 0;
3746 	int i;
3747 	u64 rel_ptr;
3748 	int size;
3749 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3750 	struct inode_fs_paths *ipath = NULL;
3751 	struct btrfs_path *path;
3752 
3753 	if (!capable(CAP_DAC_READ_SEARCH))
3754 		return -EPERM;
3755 
3756 	path = btrfs_alloc_path();
3757 	if (!path) {
3758 		ret = -ENOMEM;
3759 		goto out;
3760 	}
3761 
3762 	ipa = memdup_user(arg, sizeof(*ipa));
3763 	if (IS_ERR(ipa)) {
3764 		ret = PTR_ERR(ipa);
3765 		ipa = NULL;
3766 		goto out;
3767 	}
3768 
3769 	size = min_t(u32, ipa->size, 4096);
3770 	ipath = init_ipath(size, root, path);
3771 	if (IS_ERR(ipath)) {
3772 		ret = PTR_ERR(ipath);
3773 		ipath = NULL;
3774 		goto out;
3775 	}
3776 
3777 	ret = paths_from_inode(ipa->inum, ipath);
3778 	if (ret < 0)
3779 		goto out;
3780 
3781 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3782 		rel_ptr = ipath->fspath->val[i] -
3783 			  (u64)(unsigned long)ipath->fspath->val;
3784 		ipath->fspath->val[i] = rel_ptr;
3785 	}
3786 
3787 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3788 			   (void *)(unsigned long)ipath->fspath, size);
3789 	if (ret) {
3790 		ret = -EFAULT;
3791 		goto out;
3792 	}
3793 
3794 out:
3795 	btrfs_free_path(path);
3796 	free_ipath(ipath);
3797 	kfree(ipa);
3798 
3799 	return ret;
3800 }
3801 
3802 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3803 {
3804 	struct btrfs_data_container *inodes = ctx;
3805 	const size_t c = 3 * sizeof(u64);
3806 
3807 	if (inodes->bytes_left >= c) {
3808 		inodes->bytes_left -= c;
3809 		inodes->val[inodes->elem_cnt] = inum;
3810 		inodes->val[inodes->elem_cnt + 1] = offset;
3811 		inodes->val[inodes->elem_cnt + 2] = root;
3812 		inodes->elem_cnt += 3;
3813 	} else {
3814 		inodes->bytes_missing += c - inodes->bytes_left;
3815 		inodes->bytes_left = 0;
3816 		inodes->elem_missed += 3;
3817 	}
3818 
3819 	return 0;
3820 }
3821 
3822 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3823 					void __user *arg)
3824 {
3825 	int ret = 0;
3826 	int size;
3827 	struct btrfs_ioctl_logical_ino_args *loi;
3828 	struct btrfs_data_container *inodes = NULL;
3829 	struct btrfs_path *path = NULL;
3830 
3831 	if (!capable(CAP_SYS_ADMIN))
3832 		return -EPERM;
3833 
3834 	loi = memdup_user(arg, sizeof(*loi));
3835 	if (IS_ERR(loi)) {
3836 		ret = PTR_ERR(loi);
3837 		loi = NULL;
3838 		goto out;
3839 	}
3840 
3841 	path = btrfs_alloc_path();
3842 	if (!path) {
3843 		ret = -ENOMEM;
3844 		goto out;
3845 	}
3846 
3847 	size = min_t(u32, loi->size, 64 * 1024);
3848 	inodes = init_data_container(size);
3849 	if (IS_ERR(inodes)) {
3850 		ret = PTR_ERR(inodes);
3851 		inodes = NULL;
3852 		goto out;
3853 	}
3854 
3855 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3856 					  build_ino_list, inodes);
3857 	if (ret == -EINVAL)
3858 		ret = -ENOENT;
3859 	if (ret < 0)
3860 		goto out;
3861 
3862 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
3863 			   (void *)(unsigned long)inodes, size);
3864 	if (ret)
3865 		ret = -EFAULT;
3866 
3867 out:
3868 	btrfs_free_path(path);
3869 	vfree(inodes);
3870 	kfree(loi);
3871 
3872 	return ret;
3873 }
3874 
3875 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3876 			       struct btrfs_ioctl_balance_args *bargs)
3877 {
3878 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3879 
3880 	bargs->flags = bctl->flags;
3881 
3882 	if (atomic_read(&fs_info->balance_running))
3883 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3884 	if (atomic_read(&fs_info->balance_pause_req))
3885 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3886 	if (atomic_read(&fs_info->balance_cancel_req))
3887 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3888 
3889 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3890 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3891 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3892 
3893 	if (lock) {
3894 		spin_lock(&fs_info->balance_lock);
3895 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3896 		spin_unlock(&fs_info->balance_lock);
3897 	} else {
3898 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3899 	}
3900 }
3901 
3902 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3903 {
3904 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3905 	struct btrfs_fs_info *fs_info = root->fs_info;
3906 	struct btrfs_ioctl_balance_args *bargs;
3907 	struct btrfs_balance_control *bctl;
3908 	bool need_unlock; /* for mut. excl. ops lock */
3909 	int ret;
3910 
3911 	if (!capable(CAP_SYS_ADMIN))
3912 		return -EPERM;
3913 
3914 	ret = mnt_want_write_file(file);
3915 	if (ret)
3916 		return ret;
3917 
3918 again:
3919 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
3920 		mutex_lock(&fs_info->volume_mutex);
3921 		mutex_lock(&fs_info->balance_mutex);
3922 		need_unlock = true;
3923 		goto locked;
3924 	}
3925 
3926 	/*
3927 	 * mut. excl. ops lock is locked.  Three possibilites:
3928 	 *   (1) some other op is running
3929 	 *   (2) balance is running
3930 	 *   (3) balance is paused -- special case (think resume)
3931 	 */
3932 	mutex_lock(&fs_info->balance_mutex);
3933 	if (fs_info->balance_ctl) {
3934 		/* this is either (2) or (3) */
3935 		if (!atomic_read(&fs_info->balance_running)) {
3936 			mutex_unlock(&fs_info->balance_mutex);
3937 			if (!mutex_trylock(&fs_info->volume_mutex))
3938 				goto again;
3939 			mutex_lock(&fs_info->balance_mutex);
3940 
3941 			if (fs_info->balance_ctl &&
3942 			    !atomic_read(&fs_info->balance_running)) {
3943 				/* this is (3) */
3944 				need_unlock = false;
3945 				goto locked;
3946 			}
3947 
3948 			mutex_unlock(&fs_info->balance_mutex);
3949 			mutex_unlock(&fs_info->volume_mutex);
3950 			goto again;
3951 		} else {
3952 			/* this is (2) */
3953 			mutex_unlock(&fs_info->balance_mutex);
3954 			ret = -EINPROGRESS;
3955 			goto out;
3956 		}
3957 	} else {
3958 		/* this is (1) */
3959 		mutex_unlock(&fs_info->balance_mutex);
3960 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3961 		goto out;
3962 	}
3963 
3964 locked:
3965 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
3966 
3967 	if (arg) {
3968 		bargs = memdup_user(arg, sizeof(*bargs));
3969 		if (IS_ERR(bargs)) {
3970 			ret = PTR_ERR(bargs);
3971 			goto out_unlock;
3972 		}
3973 
3974 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
3975 			if (!fs_info->balance_ctl) {
3976 				ret = -ENOTCONN;
3977 				goto out_bargs;
3978 			}
3979 
3980 			bctl = fs_info->balance_ctl;
3981 			spin_lock(&fs_info->balance_lock);
3982 			bctl->flags |= BTRFS_BALANCE_RESUME;
3983 			spin_unlock(&fs_info->balance_lock);
3984 
3985 			goto do_balance;
3986 		}
3987 	} else {
3988 		bargs = NULL;
3989 	}
3990 
3991 	if (fs_info->balance_ctl) {
3992 		ret = -EINPROGRESS;
3993 		goto out_bargs;
3994 	}
3995 
3996 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3997 	if (!bctl) {
3998 		ret = -ENOMEM;
3999 		goto out_bargs;
4000 	}
4001 
4002 	bctl->fs_info = fs_info;
4003 	if (arg) {
4004 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4005 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4006 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4007 
4008 		bctl->flags = bargs->flags;
4009 	} else {
4010 		/* balance everything - no filters */
4011 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4012 	}
4013 
4014 do_balance:
4015 	/*
4016 	 * Ownership of bctl and mutually_exclusive_operation_running
4017 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4018 	 * or, if restriper was paused all the way until unmount, in
4019 	 * free_fs_info.  mutually_exclusive_operation_running is
4020 	 * cleared in __cancel_balance.
4021 	 */
4022 	need_unlock = false;
4023 
4024 	ret = btrfs_balance(bctl, bargs);
4025 
4026 	if (arg) {
4027 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4028 			ret = -EFAULT;
4029 	}
4030 
4031 out_bargs:
4032 	kfree(bargs);
4033 out_unlock:
4034 	mutex_unlock(&fs_info->balance_mutex);
4035 	mutex_unlock(&fs_info->volume_mutex);
4036 	if (need_unlock)
4037 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4038 out:
4039 	mnt_drop_write_file(file);
4040 	return ret;
4041 }
4042 
4043 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4044 {
4045 	if (!capable(CAP_SYS_ADMIN))
4046 		return -EPERM;
4047 
4048 	switch (cmd) {
4049 	case BTRFS_BALANCE_CTL_PAUSE:
4050 		return btrfs_pause_balance(root->fs_info);
4051 	case BTRFS_BALANCE_CTL_CANCEL:
4052 		return btrfs_cancel_balance(root->fs_info);
4053 	}
4054 
4055 	return -EINVAL;
4056 }
4057 
4058 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4059 					 void __user *arg)
4060 {
4061 	struct btrfs_fs_info *fs_info = root->fs_info;
4062 	struct btrfs_ioctl_balance_args *bargs;
4063 	int ret = 0;
4064 
4065 	if (!capable(CAP_SYS_ADMIN))
4066 		return -EPERM;
4067 
4068 	mutex_lock(&fs_info->balance_mutex);
4069 	if (!fs_info->balance_ctl) {
4070 		ret = -ENOTCONN;
4071 		goto out;
4072 	}
4073 
4074 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4075 	if (!bargs) {
4076 		ret = -ENOMEM;
4077 		goto out;
4078 	}
4079 
4080 	update_ioctl_balance_args(fs_info, 1, bargs);
4081 
4082 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4083 		ret = -EFAULT;
4084 
4085 	kfree(bargs);
4086 out:
4087 	mutex_unlock(&fs_info->balance_mutex);
4088 	return ret;
4089 }
4090 
4091 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4092 {
4093 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4094 	struct btrfs_ioctl_quota_ctl_args *sa;
4095 	struct btrfs_trans_handle *trans = NULL;
4096 	int ret;
4097 	int err;
4098 
4099 	if (!capable(CAP_SYS_ADMIN))
4100 		return -EPERM;
4101 
4102 	ret = mnt_want_write_file(file);
4103 	if (ret)
4104 		return ret;
4105 
4106 	sa = memdup_user(arg, sizeof(*sa));
4107 	if (IS_ERR(sa)) {
4108 		ret = PTR_ERR(sa);
4109 		goto drop_write;
4110 	}
4111 
4112 	down_write(&root->fs_info->subvol_sem);
4113 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4114 	if (IS_ERR(trans)) {
4115 		ret = PTR_ERR(trans);
4116 		goto out;
4117 	}
4118 
4119 	switch (sa->cmd) {
4120 	case BTRFS_QUOTA_CTL_ENABLE:
4121 		ret = btrfs_quota_enable(trans, root->fs_info);
4122 		break;
4123 	case BTRFS_QUOTA_CTL_DISABLE:
4124 		ret = btrfs_quota_disable(trans, root->fs_info);
4125 		break;
4126 	default:
4127 		ret = -EINVAL;
4128 		break;
4129 	}
4130 
4131 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4132 	if (err && !ret)
4133 		ret = err;
4134 out:
4135 	kfree(sa);
4136 	up_write(&root->fs_info->subvol_sem);
4137 drop_write:
4138 	mnt_drop_write_file(file);
4139 	return ret;
4140 }
4141 
4142 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4143 {
4144 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4145 	struct btrfs_ioctl_qgroup_assign_args *sa;
4146 	struct btrfs_trans_handle *trans;
4147 	int ret;
4148 	int err;
4149 
4150 	if (!capable(CAP_SYS_ADMIN))
4151 		return -EPERM;
4152 
4153 	ret = mnt_want_write_file(file);
4154 	if (ret)
4155 		return ret;
4156 
4157 	sa = memdup_user(arg, sizeof(*sa));
4158 	if (IS_ERR(sa)) {
4159 		ret = PTR_ERR(sa);
4160 		goto drop_write;
4161 	}
4162 
4163 	trans = btrfs_join_transaction(root);
4164 	if (IS_ERR(trans)) {
4165 		ret = PTR_ERR(trans);
4166 		goto out;
4167 	}
4168 
4169 	/* FIXME: check if the IDs really exist */
4170 	if (sa->assign) {
4171 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4172 						sa->src, sa->dst);
4173 	} else {
4174 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4175 						sa->src, sa->dst);
4176 	}
4177 
4178 	err = btrfs_end_transaction(trans, root);
4179 	if (err && !ret)
4180 		ret = err;
4181 
4182 out:
4183 	kfree(sa);
4184 drop_write:
4185 	mnt_drop_write_file(file);
4186 	return ret;
4187 }
4188 
4189 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4190 {
4191 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4192 	struct btrfs_ioctl_qgroup_create_args *sa;
4193 	struct btrfs_trans_handle *trans;
4194 	int ret;
4195 	int err;
4196 
4197 	if (!capable(CAP_SYS_ADMIN))
4198 		return -EPERM;
4199 
4200 	ret = mnt_want_write_file(file);
4201 	if (ret)
4202 		return ret;
4203 
4204 	sa = memdup_user(arg, sizeof(*sa));
4205 	if (IS_ERR(sa)) {
4206 		ret = PTR_ERR(sa);
4207 		goto drop_write;
4208 	}
4209 
4210 	if (!sa->qgroupid) {
4211 		ret = -EINVAL;
4212 		goto out;
4213 	}
4214 
4215 	trans = btrfs_join_transaction(root);
4216 	if (IS_ERR(trans)) {
4217 		ret = PTR_ERR(trans);
4218 		goto out;
4219 	}
4220 
4221 	/* FIXME: check if the IDs really exist */
4222 	if (sa->create) {
4223 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
4224 					  NULL);
4225 	} else {
4226 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4227 	}
4228 
4229 	err = btrfs_end_transaction(trans, root);
4230 	if (err && !ret)
4231 		ret = err;
4232 
4233 out:
4234 	kfree(sa);
4235 drop_write:
4236 	mnt_drop_write_file(file);
4237 	return ret;
4238 }
4239 
4240 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4241 {
4242 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4243 	struct btrfs_ioctl_qgroup_limit_args *sa;
4244 	struct btrfs_trans_handle *trans;
4245 	int ret;
4246 	int err;
4247 	u64 qgroupid;
4248 
4249 	if (!capable(CAP_SYS_ADMIN))
4250 		return -EPERM;
4251 
4252 	ret = mnt_want_write_file(file);
4253 	if (ret)
4254 		return ret;
4255 
4256 	sa = memdup_user(arg, sizeof(*sa));
4257 	if (IS_ERR(sa)) {
4258 		ret = PTR_ERR(sa);
4259 		goto drop_write;
4260 	}
4261 
4262 	trans = btrfs_join_transaction(root);
4263 	if (IS_ERR(trans)) {
4264 		ret = PTR_ERR(trans);
4265 		goto out;
4266 	}
4267 
4268 	qgroupid = sa->qgroupid;
4269 	if (!qgroupid) {
4270 		/* take the current subvol as qgroup */
4271 		qgroupid = root->root_key.objectid;
4272 	}
4273 
4274 	/* FIXME: check if the IDs really exist */
4275 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4276 
4277 	err = btrfs_end_transaction(trans, root);
4278 	if (err && !ret)
4279 		ret = err;
4280 
4281 out:
4282 	kfree(sa);
4283 drop_write:
4284 	mnt_drop_write_file(file);
4285 	return ret;
4286 }
4287 
4288 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4289 {
4290 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4291 	struct btrfs_ioctl_quota_rescan_args *qsa;
4292 	int ret;
4293 
4294 	if (!capable(CAP_SYS_ADMIN))
4295 		return -EPERM;
4296 
4297 	ret = mnt_want_write_file(file);
4298 	if (ret)
4299 		return ret;
4300 
4301 	qsa = memdup_user(arg, sizeof(*qsa));
4302 	if (IS_ERR(qsa)) {
4303 		ret = PTR_ERR(qsa);
4304 		goto drop_write;
4305 	}
4306 
4307 	if (qsa->flags) {
4308 		ret = -EINVAL;
4309 		goto out;
4310 	}
4311 
4312 	ret = btrfs_qgroup_rescan(root->fs_info);
4313 
4314 out:
4315 	kfree(qsa);
4316 drop_write:
4317 	mnt_drop_write_file(file);
4318 	return ret;
4319 }
4320 
4321 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4322 {
4323 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4324 	struct btrfs_ioctl_quota_rescan_args *qsa;
4325 	int ret = 0;
4326 
4327 	if (!capable(CAP_SYS_ADMIN))
4328 		return -EPERM;
4329 
4330 	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4331 	if (!qsa)
4332 		return -ENOMEM;
4333 
4334 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4335 		qsa->flags = 1;
4336 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4337 	}
4338 
4339 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4340 		ret = -EFAULT;
4341 
4342 	kfree(qsa);
4343 	return ret;
4344 }
4345 
4346 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4347 {
4348 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4349 
4350 	if (!capable(CAP_SYS_ADMIN))
4351 		return -EPERM;
4352 
4353 	return btrfs_qgroup_wait_for_completion(root->fs_info);
4354 }
4355 
4356 static long btrfs_ioctl_set_received_subvol(struct file *file,
4357 					    void __user *arg)
4358 {
4359 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4360 	struct inode *inode = file_inode(file);
4361 	struct btrfs_root *root = BTRFS_I(inode)->root;
4362 	struct btrfs_root_item *root_item = &root->root_item;
4363 	struct btrfs_trans_handle *trans;
4364 	struct timespec ct = CURRENT_TIME;
4365 	int ret = 0;
4366 	int received_uuid_changed;
4367 
4368 	if (!inode_owner_or_capable(inode))
4369 		return -EPERM;
4370 
4371 	ret = mnt_want_write_file(file);
4372 	if (ret < 0)
4373 		return ret;
4374 
4375 	down_write(&root->fs_info->subvol_sem);
4376 
4377 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4378 		ret = -EINVAL;
4379 		goto out;
4380 	}
4381 
4382 	if (btrfs_root_readonly(root)) {
4383 		ret = -EROFS;
4384 		goto out;
4385 	}
4386 
4387 	sa = memdup_user(arg, sizeof(*sa));
4388 	if (IS_ERR(sa)) {
4389 		ret = PTR_ERR(sa);
4390 		sa = NULL;
4391 		goto out;
4392 	}
4393 
4394 	/*
4395 	 * 1 - root item
4396 	 * 2 - uuid items (received uuid + subvol uuid)
4397 	 */
4398 	trans = btrfs_start_transaction(root, 3);
4399 	if (IS_ERR(trans)) {
4400 		ret = PTR_ERR(trans);
4401 		trans = NULL;
4402 		goto out;
4403 	}
4404 
4405 	sa->rtransid = trans->transid;
4406 	sa->rtime.sec = ct.tv_sec;
4407 	sa->rtime.nsec = ct.tv_nsec;
4408 
4409 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4410 				       BTRFS_UUID_SIZE);
4411 	if (received_uuid_changed &&
4412 	    !btrfs_is_empty_uuid(root_item->received_uuid))
4413 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4414 				    root_item->received_uuid,
4415 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4416 				    root->root_key.objectid);
4417 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4418 	btrfs_set_root_stransid(root_item, sa->stransid);
4419 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4420 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4421 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4422 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4423 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4424 
4425 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4426 				&root->root_key, &root->root_item);
4427 	if (ret < 0) {
4428 		btrfs_end_transaction(trans, root);
4429 		goto out;
4430 	}
4431 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4432 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4433 					  sa->uuid,
4434 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4435 					  root->root_key.objectid);
4436 		if (ret < 0 && ret != -EEXIST) {
4437 			btrfs_abort_transaction(trans, root, ret);
4438 			goto out;
4439 		}
4440 	}
4441 	ret = btrfs_commit_transaction(trans, root);
4442 	if (ret < 0) {
4443 		btrfs_abort_transaction(trans, root, ret);
4444 		goto out;
4445 	}
4446 
4447 	ret = copy_to_user(arg, sa, sizeof(*sa));
4448 	if (ret)
4449 		ret = -EFAULT;
4450 
4451 out:
4452 	kfree(sa);
4453 	up_write(&root->fs_info->subvol_sem);
4454 	mnt_drop_write_file(file);
4455 	return ret;
4456 }
4457 
4458 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
4459 {
4460 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4461 	size_t len;
4462 	int ret;
4463 	char label[BTRFS_LABEL_SIZE];
4464 
4465 	spin_lock(&root->fs_info->super_lock);
4466 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4467 	spin_unlock(&root->fs_info->super_lock);
4468 
4469 	len = strnlen(label, BTRFS_LABEL_SIZE);
4470 
4471 	if (len == BTRFS_LABEL_SIZE) {
4472 		btrfs_warn(root->fs_info,
4473 			"label is too long, return the first %zu bytes", --len);
4474 	}
4475 
4476 	ret = copy_to_user(arg, label, len);
4477 
4478 	return ret ? -EFAULT : 0;
4479 }
4480 
4481 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4482 {
4483 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4484 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
4485 	struct btrfs_trans_handle *trans;
4486 	char label[BTRFS_LABEL_SIZE];
4487 	int ret;
4488 
4489 	if (!capable(CAP_SYS_ADMIN))
4490 		return -EPERM;
4491 
4492 	if (copy_from_user(label, arg, sizeof(label)))
4493 		return -EFAULT;
4494 
4495 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4496 		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
4497 		       BTRFS_LABEL_SIZE - 1);
4498 		return -EINVAL;
4499 	}
4500 
4501 	ret = mnt_want_write_file(file);
4502 	if (ret)
4503 		return ret;
4504 
4505 	trans = btrfs_start_transaction(root, 0);
4506 	if (IS_ERR(trans)) {
4507 		ret = PTR_ERR(trans);
4508 		goto out_unlock;
4509 	}
4510 
4511 	spin_lock(&root->fs_info->super_lock);
4512 	strcpy(super_block->label, label);
4513 	spin_unlock(&root->fs_info->super_lock);
4514 	ret = btrfs_commit_transaction(trans, root);
4515 
4516 out_unlock:
4517 	mnt_drop_write_file(file);
4518 	return ret;
4519 }
4520 
4521 #define INIT_FEATURE_FLAGS(suffix) \
4522 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4523 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4524 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4525 
4526 static int btrfs_ioctl_get_supported_features(struct file *file,
4527 					      void __user *arg)
4528 {
4529 	static struct btrfs_ioctl_feature_flags features[3] = {
4530 		INIT_FEATURE_FLAGS(SUPP),
4531 		INIT_FEATURE_FLAGS(SAFE_SET),
4532 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4533 	};
4534 
4535 	if (copy_to_user(arg, &features, sizeof(features)))
4536 		return -EFAULT;
4537 
4538 	return 0;
4539 }
4540 
4541 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
4542 {
4543 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4544 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
4545 	struct btrfs_ioctl_feature_flags features;
4546 
4547 	features.compat_flags = btrfs_super_compat_flags(super_block);
4548 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4549 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4550 
4551 	if (copy_to_user(arg, &features, sizeof(features)))
4552 		return -EFAULT;
4553 
4554 	return 0;
4555 }
4556 
4557 static int check_feature_bits(struct btrfs_root *root,
4558 			      enum btrfs_feature_set set,
4559 			      u64 change_mask, u64 flags, u64 supported_flags,
4560 			      u64 safe_set, u64 safe_clear)
4561 {
4562 	const char *type = btrfs_feature_set_names[set];
4563 	char *names;
4564 	u64 disallowed, unsupported;
4565 	u64 set_mask = flags & change_mask;
4566 	u64 clear_mask = ~flags & change_mask;
4567 
4568 	unsupported = set_mask & ~supported_flags;
4569 	if (unsupported) {
4570 		names = btrfs_printable_features(set, unsupported);
4571 		if (names) {
4572 			btrfs_warn(root->fs_info,
4573 			   "this kernel does not support the %s feature bit%s",
4574 			   names, strchr(names, ',') ? "s" : "");
4575 			kfree(names);
4576 		} else
4577 			btrfs_warn(root->fs_info,
4578 			   "this kernel does not support %s bits 0x%llx",
4579 			   type, unsupported);
4580 		return -EOPNOTSUPP;
4581 	}
4582 
4583 	disallowed = set_mask & ~safe_set;
4584 	if (disallowed) {
4585 		names = btrfs_printable_features(set, disallowed);
4586 		if (names) {
4587 			btrfs_warn(root->fs_info,
4588 			   "can't set the %s feature bit%s while mounted",
4589 			   names, strchr(names, ',') ? "s" : "");
4590 			kfree(names);
4591 		} else
4592 			btrfs_warn(root->fs_info,
4593 			   "can't set %s bits 0x%llx while mounted",
4594 			   type, disallowed);
4595 		return -EPERM;
4596 	}
4597 
4598 	disallowed = clear_mask & ~safe_clear;
4599 	if (disallowed) {
4600 		names = btrfs_printable_features(set, disallowed);
4601 		if (names) {
4602 			btrfs_warn(root->fs_info,
4603 			   "can't clear the %s feature bit%s while mounted",
4604 			   names, strchr(names, ',') ? "s" : "");
4605 			kfree(names);
4606 		} else
4607 			btrfs_warn(root->fs_info,
4608 			   "can't clear %s bits 0x%llx while mounted",
4609 			   type, disallowed);
4610 		return -EPERM;
4611 	}
4612 
4613 	return 0;
4614 }
4615 
4616 #define check_feature(root, change_mask, flags, mask_base)	\
4617 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
4618 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4619 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4620 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4621 
4622 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4623 {
4624 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4625 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
4626 	struct btrfs_ioctl_feature_flags flags[2];
4627 	struct btrfs_trans_handle *trans;
4628 	u64 newflags;
4629 	int ret;
4630 
4631 	if (!capable(CAP_SYS_ADMIN))
4632 		return -EPERM;
4633 
4634 	if (copy_from_user(flags, arg, sizeof(flags)))
4635 		return -EFAULT;
4636 
4637 	/* Nothing to do */
4638 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4639 	    !flags[0].incompat_flags)
4640 		return 0;
4641 
4642 	ret = check_feature(root, flags[0].compat_flags,
4643 			    flags[1].compat_flags, COMPAT);
4644 	if (ret)
4645 		return ret;
4646 
4647 	ret = check_feature(root, flags[0].compat_ro_flags,
4648 			    flags[1].compat_ro_flags, COMPAT_RO);
4649 	if (ret)
4650 		return ret;
4651 
4652 	ret = check_feature(root, flags[0].incompat_flags,
4653 			    flags[1].incompat_flags, INCOMPAT);
4654 	if (ret)
4655 		return ret;
4656 
4657 	trans = btrfs_start_transaction(root, 0);
4658 	if (IS_ERR(trans))
4659 		return PTR_ERR(trans);
4660 
4661 	spin_lock(&root->fs_info->super_lock);
4662 	newflags = btrfs_super_compat_flags(super_block);
4663 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4664 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4665 	btrfs_set_super_compat_flags(super_block, newflags);
4666 
4667 	newflags = btrfs_super_compat_ro_flags(super_block);
4668 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4669 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4670 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4671 
4672 	newflags = btrfs_super_incompat_flags(super_block);
4673 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4674 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4675 	btrfs_set_super_incompat_flags(super_block, newflags);
4676 	spin_unlock(&root->fs_info->super_lock);
4677 
4678 	return btrfs_commit_transaction(trans, root);
4679 }
4680 
4681 long btrfs_ioctl(struct file *file, unsigned int
4682 		cmd, unsigned long arg)
4683 {
4684 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4685 	void __user *argp = (void __user *)arg;
4686 
4687 	switch (cmd) {
4688 	case FS_IOC_GETFLAGS:
4689 		return btrfs_ioctl_getflags(file, argp);
4690 	case FS_IOC_SETFLAGS:
4691 		return btrfs_ioctl_setflags(file, argp);
4692 	case FS_IOC_GETVERSION:
4693 		return btrfs_ioctl_getversion(file, argp);
4694 	case FITRIM:
4695 		return btrfs_ioctl_fitrim(file, argp);
4696 	case BTRFS_IOC_SNAP_CREATE:
4697 		return btrfs_ioctl_snap_create(file, argp, 0);
4698 	case BTRFS_IOC_SNAP_CREATE_V2:
4699 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4700 	case BTRFS_IOC_SUBVOL_CREATE:
4701 		return btrfs_ioctl_snap_create(file, argp, 1);
4702 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4703 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4704 	case BTRFS_IOC_SNAP_DESTROY:
4705 		return btrfs_ioctl_snap_destroy(file, argp);
4706 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4707 		return btrfs_ioctl_subvol_getflags(file, argp);
4708 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4709 		return btrfs_ioctl_subvol_setflags(file, argp);
4710 	case BTRFS_IOC_DEFAULT_SUBVOL:
4711 		return btrfs_ioctl_default_subvol(file, argp);
4712 	case BTRFS_IOC_DEFRAG:
4713 		return btrfs_ioctl_defrag(file, NULL);
4714 	case BTRFS_IOC_DEFRAG_RANGE:
4715 		return btrfs_ioctl_defrag(file, argp);
4716 	case BTRFS_IOC_RESIZE:
4717 		return btrfs_ioctl_resize(file, argp);
4718 	case BTRFS_IOC_ADD_DEV:
4719 		return btrfs_ioctl_add_dev(root, argp);
4720 	case BTRFS_IOC_RM_DEV:
4721 		return btrfs_ioctl_rm_dev(file, argp);
4722 	case BTRFS_IOC_FS_INFO:
4723 		return btrfs_ioctl_fs_info(root, argp);
4724 	case BTRFS_IOC_DEV_INFO:
4725 		return btrfs_ioctl_dev_info(root, argp);
4726 	case BTRFS_IOC_BALANCE:
4727 		return btrfs_ioctl_balance(file, NULL);
4728 	case BTRFS_IOC_CLONE:
4729 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
4730 	case BTRFS_IOC_CLONE_RANGE:
4731 		return btrfs_ioctl_clone_range(file, argp);
4732 	case BTRFS_IOC_TRANS_START:
4733 		return btrfs_ioctl_trans_start(file);
4734 	case BTRFS_IOC_TRANS_END:
4735 		return btrfs_ioctl_trans_end(file);
4736 	case BTRFS_IOC_TREE_SEARCH:
4737 		return btrfs_ioctl_tree_search(file, argp);
4738 	case BTRFS_IOC_INO_LOOKUP:
4739 		return btrfs_ioctl_ino_lookup(file, argp);
4740 	case BTRFS_IOC_INO_PATHS:
4741 		return btrfs_ioctl_ino_to_path(root, argp);
4742 	case BTRFS_IOC_LOGICAL_INO:
4743 		return btrfs_ioctl_logical_to_ino(root, argp);
4744 	case BTRFS_IOC_SPACE_INFO:
4745 		return btrfs_ioctl_space_info(root, argp);
4746 	case BTRFS_IOC_SYNC: {
4747 		int ret;
4748 
4749 		ret = btrfs_start_delalloc_roots(root->fs_info, 0);
4750 		if (ret)
4751 			return ret;
4752 		ret = btrfs_sync_fs(file->f_dentry->d_sb, 1);
4753 		return ret;
4754 	}
4755 	case BTRFS_IOC_START_SYNC:
4756 		return btrfs_ioctl_start_sync(root, argp);
4757 	case BTRFS_IOC_WAIT_SYNC:
4758 		return btrfs_ioctl_wait_sync(root, argp);
4759 	case BTRFS_IOC_SCRUB:
4760 		return btrfs_ioctl_scrub(file, argp);
4761 	case BTRFS_IOC_SCRUB_CANCEL:
4762 		return btrfs_ioctl_scrub_cancel(root, argp);
4763 	case BTRFS_IOC_SCRUB_PROGRESS:
4764 		return btrfs_ioctl_scrub_progress(root, argp);
4765 	case BTRFS_IOC_BALANCE_V2:
4766 		return btrfs_ioctl_balance(file, argp);
4767 	case BTRFS_IOC_BALANCE_CTL:
4768 		return btrfs_ioctl_balance_ctl(root, arg);
4769 	case BTRFS_IOC_BALANCE_PROGRESS:
4770 		return btrfs_ioctl_balance_progress(root, argp);
4771 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4772 		return btrfs_ioctl_set_received_subvol(file, argp);
4773 	case BTRFS_IOC_SEND:
4774 		return btrfs_ioctl_send(file, argp);
4775 	case BTRFS_IOC_GET_DEV_STATS:
4776 		return btrfs_ioctl_get_dev_stats(root, argp);
4777 	case BTRFS_IOC_QUOTA_CTL:
4778 		return btrfs_ioctl_quota_ctl(file, argp);
4779 	case BTRFS_IOC_QGROUP_ASSIGN:
4780 		return btrfs_ioctl_qgroup_assign(file, argp);
4781 	case BTRFS_IOC_QGROUP_CREATE:
4782 		return btrfs_ioctl_qgroup_create(file, argp);
4783 	case BTRFS_IOC_QGROUP_LIMIT:
4784 		return btrfs_ioctl_qgroup_limit(file, argp);
4785 	case BTRFS_IOC_QUOTA_RESCAN:
4786 		return btrfs_ioctl_quota_rescan(file, argp);
4787 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4788 		return btrfs_ioctl_quota_rescan_status(file, argp);
4789 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4790 		return btrfs_ioctl_quota_rescan_wait(file, argp);
4791 	case BTRFS_IOC_DEV_REPLACE:
4792 		return btrfs_ioctl_dev_replace(root, argp);
4793 	case BTRFS_IOC_GET_FSLABEL:
4794 		return btrfs_ioctl_get_fslabel(file, argp);
4795 	case BTRFS_IOC_SET_FSLABEL:
4796 		return btrfs_ioctl_set_fslabel(file, argp);
4797 	case BTRFS_IOC_FILE_EXTENT_SAME:
4798 		return btrfs_ioctl_file_extent_same(file, argp);
4799 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4800 		return btrfs_ioctl_get_supported_features(file, argp);
4801 	case BTRFS_IOC_GET_FEATURES:
4802 		return btrfs_ioctl_get_features(file, argp);
4803 	case BTRFS_IOC_SET_FEATURES:
4804 		return btrfs_ioctl_set_features(file, argp);
4805 	}
4806 
4807 	return -ENOTTY;
4808 }
4809