xref: /openbmc/linux/fs/btrfs/ioctl.c (revision a1c7c49c2091926962f8c1c866d386febffec5d8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "export.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "volumes.h"
38 #include "locking.h"
39 #include "backref.h"
40 #include "rcu-string.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "delalloc-space.h"
50 #include "block-group.h"
51 #include "subpage.h"
52 
53 #ifdef CONFIG_64BIT
54 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
55  * structures are incorrect, as the timespec structure from userspace
56  * is 4 bytes too small. We define these alternatives here to teach
57  * the kernel about the 32-bit struct packing.
58  */
59 struct btrfs_ioctl_timespec_32 {
60 	__u64 sec;
61 	__u32 nsec;
62 } __attribute__ ((__packed__));
63 
64 struct btrfs_ioctl_received_subvol_args_32 {
65 	char	uuid[BTRFS_UUID_SIZE];	/* in */
66 	__u64	stransid;		/* in */
67 	__u64	rtransid;		/* out */
68 	struct btrfs_ioctl_timespec_32 stime; /* in */
69 	struct btrfs_ioctl_timespec_32 rtime; /* out */
70 	__u64	flags;			/* in */
71 	__u64	reserved[16];		/* in */
72 } __attribute__ ((__packed__));
73 
74 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
75 				struct btrfs_ioctl_received_subvol_args_32)
76 #endif
77 
78 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
79 struct btrfs_ioctl_send_args_32 {
80 	__s64 send_fd;			/* in */
81 	__u64 clone_sources_count;	/* in */
82 	compat_uptr_t clone_sources;	/* in */
83 	__u64 parent_root;		/* in */
84 	__u64 flags;			/* in */
85 	__u32 version;			/* in */
86 	__u8  reserved[28];		/* in */
87 } __attribute__ ((__packed__));
88 
89 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
90 			       struct btrfs_ioctl_send_args_32)
91 #endif
92 
93 /* Mask out flags that are inappropriate for the given type of inode. */
94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
95 		unsigned int flags)
96 {
97 	if (S_ISDIR(inode->i_mode))
98 		return flags;
99 	else if (S_ISREG(inode->i_mode))
100 		return flags & ~FS_DIRSYNC_FL;
101 	else
102 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104 
105 /*
106  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
107  * ioctl.
108  */
109 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
110 {
111 	unsigned int iflags = 0;
112 	u32 flags = binode->flags;
113 	u32 ro_flags = binode->ro_flags;
114 
115 	if (flags & BTRFS_INODE_SYNC)
116 		iflags |= FS_SYNC_FL;
117 	if (flags & BTRFS_INODE_IMMUTABLE)
118 		iflags |= FS_IMMUTABLE_FL;
119 	if (flags & BTRFS_INODE_APPEND)
120 		iflags |= FS_APPEND_FL;
121 	if (flags & BTRFS_INODE_NODUMP)
122 		iflags |= FS_NODUMP_FL;
123 	if (flags & BTRFS_INODE_NOATIME)
124 		iflags |= FS_NOATIME_FL;
125 	if (flags & BTRFS_INODE_DIRSYNC)
126 		iflags |= FS_DIRSYNC_FL;
127 	if (flags & BTRFS_INODE_NODATACOW)
128 		iflags |= FS_NOCOW_FL;
129 	if (ro_flags & BTRFS_INODE_RO_VERITY)
130 		iflags |= FS_VERITY_FL;
131 
132 	if (flags & BTRFS_INODE_NOCOMPRESS)
133 		iflags |= FS_NOCOMP_FL;
134 	else if (flags & BTRFS_INODE_COMPRESS)
135 		iflags |= FS_COMPR_FL;
136 
137 	return iflags;
138 }
139 
140 /*
141  * Update inode->i_flags based on the btrfs internal flags.
142  */
143 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
144 {
145 	struct btrfs_inode *binode = BTRFS_I(inode);
146 	unsigned int new_fl = 0;
147 
148 	if (binode->flags & BTRFS_INODE_SYNC)
149 		new_fl |= S_SYNC;
150 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
151 		new_fl |= S_IMMUTABLE;
152 	if (binode->flags & BTRFS_INODE_APPEND)
153 		new_fl |= S_APPEND;
154 	if (binode->flags & BTRFS_INODE_NOATIME)
155 		new_fl |= S_NOATIME;
156 	if (binode->flags & BTRFS_INODE_DIRSYNC)
157 		new_fl |= S_DIRSYNC;
158 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
159 		new_fl |= S_VERITY;
160 
161 	set_mask_bits(&inode->i_flags,
162 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
163 		      S_VERITY, new_fl);
164 }
165 
166 /*
167  * Check if @flags are a supported and valid set of FS_*_FL flags and that
168  * the old and new flags are not conflicting
169  */
170 static int check_fsflags(unsigned int old_flags, unsigned int flags)
171 {
172 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
173 		      FS_NOATIME_FL | FS_NODUMP_FL | \
174 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
175 		      FS_NOCOMP_FL | FS_COMPR_FL |
176 		      FS_NOCOW_FL))
177 		return -EOPNOTSUPP;
178 
179 	/* COMPR and NOCOMP on new/old are valid */
180 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
181 		return -EINVAL;
182 
183 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
184 		return -EINVAL;
185 
186 	/* NOCOW and compression options are mutually exclusive */
187 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
188 		return -EINVAL;
189 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
190 		return -EINVAL;
191 
192 	return 0;
193 }
194 
195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
196 				    unsigned int flags)
197 {
198 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
199 		return -EPERM;
200 
201 	return 0;
202 }
203 
204 /*
205  * Set flags/xflags from the internal inode flags. The remaining items of
206  * fsxattr are zeroed.
207  */
208 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
209 {
210 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
211 
212 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
213 	return 0;
214 }
215 
216 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
217 		       struct dentry *dentry, struct fileattr *fa)
218 {
219 	struct inode *inode = d_inode(dentry);
220 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
221 	struct btrfs_inode *binode = BTRFS_I(inode);
222 	struct btrfs_root *root = binode->root;
223 	struct btrfs_trans_handle *trans;
224 	unsigned int fsflags, old_fsflags;
225 	int ret;
226 	const char *comp = NULL;
227 	u32 binode_flags;
228 
229 	if (btrfs_root_readonly(root))
230 		return -EROFS;
231 
232 	if (fileattr_has_fsx(fa))
233 		return -EOPNOTSUPP;
234 
235 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
236 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
237 	ret = check_fsflags(old_fsflags, fsflags);
238 	if (ret)
239 		return ret;
240 
241 	ret = check_fsflags_compatible(fs_info, fsflags);
242 	if (ret)
243 		return ret;
244 
245 	binode_flags = binode->flags;
246 	if (fsflags & FS_SYNC_FL)
247 		binode_flags |= BTRFS_INODE_SYNC;
248 	else
249 		binode_flags &= ~BTRFS_INODE_SYNC;
250 	if (fsflags & FS_IMMUTABLE_FL)
251 		binode_flags |= BTRFS_INODE_IMMUTABLE;
252 	else
253 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
254 	if (fsflags & FS_APPEND_FL)
255 		binode_flags |= BTRFS_INODE_APPEND;
256 	else
257 		binode_flags &= ~BTRFS_INODE_APPEND;
258 	if (fsflags & FS_NODUMP_FL)
259 		binode_flags |= BTRFS_INODE_NODUMP;
260 	else
261 		binode_flags &= ~BTRFS_INODE_NODUMP;
262 	if (fsflags & FS_NOATIME_FL)
263 		binode_flags |= BTRFS_INODE_NOATIME;
264 	else
265 		binode_flags &= ~BTRFS_INODE_NOATIME;
266 
267 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
268 	if (!fa->flags_valid) {
269 		/* 1 item for the inode */
270 		trans = btrfs_start_transaction(root, 1);
271 		if (IS_ERR(trans))
272 			return PTR_ERR(trans);
273 		goto update_flags;
274 	}
275 
276 	if (fsflags & FS_DIRSYNC_FL)
277 		binode_flags |= BTRFS_INODE_DIRSYNC;
278 	else
279 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
280 	if (fsflags & FS_NOCOW_FL) {
281 		if (S_ISREG(inode->i_mode)) {
282 			/*
283 			 * It's safe to turn csums off here, no extents exist.
284 			 * Otherwise we want the flag to reflect the real COW
285 			 * status of the file and will not set it.
286 			 */
287 			if (inode->i_size == 0)
288 				binode_flags |= BTRFS_INODE_NODATACOW |
289 						BTRFS_INODE_NODATASUM;
290 		} else {
291 			binode_flags |= BTRFS_INODE_NODATACOW;
292 		}
293 	} else {
294 		/*
295 		 * Revert back under same assumptions as above
296 		 */
297 		if (S_ISREG(inode->i_mode)) {
298 			if (inode->i_size == 0)
299 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
300 						  BTRFS_INODE_NODATASUM);
301 		} else {
302 			binode_flags &= ~BTRFS_INODE_NODATACOW;
303 		}
304 	}
305 
306 	/*
307 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
308 	 * flag may be changed automatically if compression code won't make
309 	 * things smaller.
310 	 */
311 	if (fsflags & FS_NOCOMP_FL) {
312 		binode_flags &= ~BTRFS_INODE_COMPRESS;
313 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
314 	} else if (fsflags & FS_COMPR_FL) {
315 
316 		if (IS_SWAPFILE(inode))
317 			return -ETXTBSY;
318 
319 		binode_flags |= BTRFS_INODE_COMPRESS;
320 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
321 
322 		comp = btrfs_compress_type2str(fs_info->compress_type);
323 		if (!comp || comp[0] == 0)
324 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
325 	} else {
326 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
327 	}
328 
329 	/*
330 	 * 1 for inode item
331 	 * 2 for properties
332 	 */
333 	trans = btrfs_start_transaction(root, 3);
334 	if (IS_ERR(trans))
335 		return PTR_ERR(trans);
336 
337 	if (comp) {
338 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
339 				     strlen(comp), 0);
340 		if (ret) {
341 			btrfs_abort_transaction(trans, ret);
342 			goto out_end_trans;
343 		}
344 	} else {
345 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
346 				     0, 0);
347 		if (ret && ret != -ENODATA) {
348 			btrfs_abort_transaction(trans, ret);
349 			goto out_end_trans;
350 		}
351 	}
352 
353 update_flags:
354 	binode->flags = binode_flags;
355 	btrfs_sync_inode_flags_to_i_flags(inode);
356 	inode_inc_iversion(inode);
357 	inode->i_ctime = current_time(inode);
358 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
359 
360  out_end_trans:
361 	btrfs_end_transaction(trans);
362 	return ret;
363 }
364 
365 /*
366  * Start exclusive operation @type, return true on success
367  */
368 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
369 			enum btrfs_exclusive_operation type)
370 {
371 	bool ret = false;
372 
373 	spin_lock(&fs_info->super_lock);
374 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
375 		fs_info->exclusive_operation = type;
376 		ret = true;
377 	}
378 	spin_unlock(&fs_info->super_lock);
379 
380 	return ret;
381 }
382 
383 /*
384  * Conditionally allow to enter the exclusive operation in case it's compatible
385  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
386  * btrfs_exclop_finish.
387  *
388  * Compatibility:
389  * - the same type is already running
390  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
391  *   must check the condition first that would allow none -> @type
392  */
393 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
394 				 enum btrfs_exclusive_operation type)
395 {
396 	spin_lock(&fs_info->super_lock);
397 	if (fs_info->exclusive_operation == type)
398 		return true;
399 
400 	spin_unlock(&fs_info->super_lock);
401 	return false;
402 }
403 
404 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
405 {
406 	spin_unlock(&fs_info->super_lock);
407 }
408 
409 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
410 {
411 	spin_lock(&fs_info->super_lock);
412 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
413 	spin_unlock(&fs_info->super_lock);
414 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
415 }
416 
417 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
418 {
419 	struct inode *inode = file_inode(file);
420 
421 	return put_user(inode->i_generation, arg);
422 }
423 
424 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
425 					void __user *arg)
426 {
427 	struct btrfs_device *device;
428 	struct request_queue *q;
429 	struct fstrim_range range;
430 	u64 minlen = ULLONG_MAX;
431 	u64 num_devices = 0;
432 	int ret;
433 
434 	if (!capable(CAP_SYS_ADMIN))
435 		return -EPERM;
436 
437 	/*
438 	 * btrfs_trim_block_group() depends on space cache, which is not
439 	 * available in zoned filesystem. So, disallow fitrim on a zoned
440 	 * filesystem for now.
441 	 */
442 	if (btrfs_is_zoned(fs_info))
443 		return -EOPNOTSUPP;
444 
445 	/*
446 	 * If the fs is mounted with nologreplay, which requires it to be
447 	 * mounted in RO mode as well, we can not allow discard on free space
448 	 * inside block groups, because log trees refer to extents that are not
449 	 * pinned in a block group's free space cache (pinning the extents is
450 	 * precisely the first phase of replaying a log tree).
451 	 */
452 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
453 		return -EROFS;
454 
455 	rcu_read_lock();
456 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
457 				dev_list) {
458 		if (!device->bdev)
459 			continue;
460 		q = bdev_get_queue(device->bdev);
461 		if (blk_queue_discard(q)) {
462 			num_devices++;
463 			minlen = min_t(u64, q->limits.discard_granularity,
464 				     minlen);
465 		}
466 	}
467 	rcu_read_unlock();
468 
469 	if (!num_devices)
470 		return -EOPNOTSUPP;
471 	if (copy_from_user(&range, arg, sizeof(range)))
472 		return -EFAULT;
473 
474 	/*
475 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
476 	 * block group is in the logical address space, which can be any
477 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
478 	 */
479 	if (range.len < fs_info->sb->s_blocksize)
480 		return -EINVAL;
481 
482 	range.minlen = max(range.minlen, minlen);
483 	ret = btrfs_trim_fs(fs_info, &range);
484 	if (ret < 0)
485 		return ret;
486 
487 	if (copy_to_user(arg, &range, sizeof(range)))
488 		return -EFAULT;
489 
490 	return 0;
491 }
492 
493 int __pure btrfs_is_empty_uuid(u8 *uuid)
494 {
495 	int i;
496 
497 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
498 		if (uuid[i])
499 			return 0;
500 	}
501 	return 1;
502 }
503 
504 static noinline int create_subvol(struct user_namespace *mnt_userns,
505 				  struct inode *dir, struct dentry *dentry,
506 				  const char *name, int namelen,
507 				  struct btrfs_qgroup_inherit *inherit)
508 {
509 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
510 	struct btrfs_trans_handle *trans;
511 	struct btrfs_key key;
512 	struct btrfs_root_item *root_item;
513 	struct btrfs_inode_item *inode_item;
514 	struct extent_buffer *leaf;
515 	struct btrfs_root *root = BTRFS_I(dir)->root;
516 	struct btrfs_root *new_root;
517 	struct btrfs_block_rsv block_rsv;
518 	struct timespec64 cur_time = current_time(dir);
519 	struct inode *inode;
520 	int ret;
521 	int err;
522 	dev_t anon_dev = 0;
523 	u64 objectid;
524 	u64 index = 0;
525 
526 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
527 	if (!root_item)
528 		return -ENOMEM;
529 
530 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
531 	if (ret)
532 		goto fail_free;
533 
534 	ret = get_anon_bdev(&anon_dev);
535 	if (ret < 0)
536 		goto fail_free;
537 
538 	/*
539 	 * Don't create subvolume whose level is not zero. Or qgroup will be
540 	 * screwed up since it assumes subvolume qgroup's level to be 0.
541 	 */
542 	if (btrfs_qgroup_level(objectid)) {
543 		ret = -ENOSPC;
544 		goto fail_free;
545 	}
546 
547 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
548 	/*
549 	 * The same as the snapshot creation, please see the comment
550 	 * of create_snapshot().
551 	 */
552 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
553 	if (ret)
554 		goto fail_free;
555 
556 	trans = btrfs_start_transaction(root, 0);
557 	if (IS_ERR(trans)) {
558 		ret = PTR_ERR(trans);
559 		btrfs_subvolume_release_metadata(root, &block_rsv);
560 		goto fail_free;
561 	}
562 	trans->block_rsv = &block_rsv;
563 	trans->bytes_reserved = block_rsv.size;
564 
565 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
566 	if (ret)
567 		goto fail;
568 
569 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
570 				      BTRFS_NESTING_NORMAL);
571 	if (IS_ERR(leaf)) {
572 		ret = PTR_ERR(leaf);
573 		goto fail;
574 	}
575 
576 	btrfs_mark_buffer_dirty(leaf);
577 
578 	inode_item = &root_item->inode;
579 	btrfs_set_stack_inode_generation(inode_item, 1);
580 	btrfs_set_stack_inode_size(inode_item, 3);
581 	btrfs_set_stack_inode_nlink(inode_item, 1);
582 	btrfs_set_stack_inode_nbytes(inode_item,
583 				     fs_info->nodesize);
584 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
585 
586 	btrfs_set_root_flags(root_item, 0);
587 	btrfs_set_root_limit(root_item, 0);
588 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
589 
590 	btrfs_set_root_bytenr(root_item, leaf->start);
591 	btrfs_set_root_generation(root_item, trans->transid);
592 	btrfs_set_root_level(root_item, 0);
593 	btrfs_set_root_refs(root_item, 1);
594 	btrfs_set_root_used(root_item, leaf->len);
595 	btrfs_set_root_last_snapshot(root_item, 0);
596 
597 	btrfs_set_root_generation_v2(root_item,
598 			btrfs_root_generation(root_item));
599 	generate_random_guid(root_item->uuid);
600 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
601 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
602 	root_item->ctime = root_item->otime;
603 	btrfs_set_root_ctransid(root_item, trans->transid);
604 	btrfs_set_root_otransid(root_item, trans->transid);
605 
606 	btrfs_tree_unlock(leaf);
607 
608 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
609 
610 	key.objectid = objectid;
611 	key.offset = 0;
612 	key.type = BTRFS_ROOT_ITEM_KEY;
613 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
614 				root_item);
615 	if (ret) {
616 		/*
617 		 * Since we don't abort the transaction in this case, free the
618 		 * tree block so that we don't leak space and leave the
619 		 * filesystem in an inconsistent state (an extent item in the
620 		 * extent tree with a backreference for a root that does not
621 		 * exists).
622 		 */
623 		btrfs_tree_lock(leaf);
624 		btrfs_clean_tree_block(leaf);
625 		btrfs_tree_unlock(leaf);
626 		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
627 		free_extent_buffer(leaf);
628 		goto fail;
629 	}
630 
631 	free_extent_buffer(leaf);
632 	leaf = NULL;
633 
634 	key.offset = (u64)-1;
635 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
636 	if (IS_ERR(new_root)) {
637 		free_anon_bdev(anon_dev);
638 		ret = PTR_ERR(new_root);
639 		btrfs_abort_transaction(trans, ret);
640 		goto fail;
641 	}
642 	/* Freeing will be done in btrfs_put_root() of new_root */
643 	anon_dev = 0;
644 
645 	ret = btrfs_record_root_in_trans(trans, new_root);
646 	if (ret) {
647 		btrfs_put_root(new_root);
648 		btrfs_abort_transaction(trans, ret);
649 		goto fail;
650 	}
651 
652 	ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns);
653 	btrfs_put_root(new_root);
654 	if (ret) {
655 		/* We potentially lose an unused inode item here */
656 		btrfs_abort_transaction(trans, ret);
657 		goto fail;
658 	}
659 
660 	/*
661 	 * insert the directory item
662 	 */
663 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
664 	if (ret) {
665 		btrfs_abort_transaction(trans, ret);
666 		goto fail;
667 	}
668 
669 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
670 				    BTRFS_FT_DIR, index);
671 	if (ret) {
672 		btrfs_abort_transaction(trans, ret);
673 		goto fail;
674 	}
675 
676 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
677 	ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
678 	if (ret) {
679 		btrfs_abort_transaction(trans, ret);
680 		goto fail;
681 	}
682 
683 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
684 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
685 	if (ret) {
686 		btrfs_abort_transaction(trans, ret);
687 		goto fail;
688 	}
689 
690 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
691 				  BTRFS_UUID_KEY_SUBVOL, objectid);
692 	if (ret)
693 		btrfs_abort_transaction(trans, ret);
694 
695 fail:
696 	kfree(root_item);
697 	trans->block_rsv = NULL;
698 	trans->bytes_reserved = 0;
699 	btrfs_subvolume_release_metadata(root, &block_rsv);
700 
701 	err = btrfs_commit_transaction(trans);
702 	if (err && !ret)
703 		ret = err;
704 
705 	if (!ret) {
706 		inode = btrfs_lookup_dentry(dir, dentry);
707 		if (IS_ERR(inode))
708 			return PTR_ERR(inode);
709 		d_instantiate(dentry, inode);
710 	}
711 	return ret;
712 
713 fail_free:
714 	if (anon_dev)
715 		free_anon_bdev(anon_dev);
716 	kfree(root_item);
717 	return ret;
718 }
719 
720 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
721 			   struct dentry *dentry, bool readonly,
722 			   struct btrfs_qgroup_inherit *inherit)
723 {
724 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
725 	struct inode *inode;
726 	struct btrfs_pending_snapshot *pending_snapshot;
727 	struct btrfs_trans_handle *trans;
728 	int ret;
729 
730 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
731 		return -EINVAL;
732 
733 	if (atomic_read(&root->nr_swapfiles)) {
734 		btrfs_warn(fs_info,
735 			   "cannot snapshot subvolume with active swapfile");
736 		return -ETXTBSY;
737 	}
738 
739 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
740 	if (!pending_snapshot)
741 		return -ENOMEM;
742 
743 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
744 	if (ret < 0)
745 		goto free_pending;
746 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
747 			GFP_KERNEL);
748 	pending_snapshot->path = btrfs_alloc_path();
749 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
750 		ret = -ENOMEM;
751 		goto free_pending;
752 	}
753 
754 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
755 			     BTRFS_BLOCK_RSV_TEMP);
756 	/*
757 	 * 1 - parent dir inode
758 	 * 2 - dir entries
759 	 * 1 - root item
760 	 * 2 - root ref/backref
761 	 * 1 - root of snapshot
762 	 * 1 - UUID item
763 	 */
764 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
765 					&pending_snapshot->block_rsv, 8,
766 					false);
767 	if (ret)
768 		goto free_pending;
769 
770 	pending_snapshot->dentry = dentry;
771 	pending_snapshot->root = root;
772 	pending_snapshot->readonly = readonly;
773 	pending_snapshot->dir = dir;
774 	pending_snapshot->inherit = inherit;
775 
776 	trans = btrfs_start_transaction(root, 0);
777 	if (IS_ERR(trans)) {
778 		ret = PTR_ERR(trans);
779 		goto fail;
780 	}
781 
782 	spin_lock(&fs_info->trans_lock);
783 	list_add(&pending_snapshot->list,
784 		 &trans->transaction->pending_snapshots);
785 	spin_unlock(&fs_info->trans_lock);
786 
787 	ret = btrfs_commit_transaction(trans);
788 	if (ret)
789 		goto fail;
790 
791 	ret = pending_snapshot->error;
792 	if (ret)
793 		goto fail;
794 
795 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
796 	if (ret)
797 		goto fail;
798 
799 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
800 	if (IS_ERR(inode)) {
801 		ret = PTR_ERR(inode);
802 		goto fail;
803 	}
804 
805 	d_instantiate(dentry, inode);
806 	ret = 0;
807 	pending_snapshot->anon_dev = 0;
808 fail:
809 	/* Prevent double freeing of anon_dev */
810 	if (ret && pending_snapshot->snap)
811 		pending_snapshot->snap->anon_dev = 0;
812 	btrfs_put_root(pending_snapshot->snap);
813 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
814 free_pending:
815 	if (pending_snapshot->anon_dev)
816 		free_anon_bdev(pending_snapshot->anon_dev);
817 	kfree(pending_snapshot->root_item);
818 	btrfs_free_path(pending_snapshot->path);
819 	kfree(pending_snapshot);
820 
821 	return ret;
822 }
823 
824 /*  copy of may_delete in fs/namei.c()
825  *	Check whether we can remove a link victim from directory dir, check
826  *  whether the type of victim is right.
827  *  1. We can't do it if dir is read-only (done in permission())
828  *  2. We should have write and exec permissions on dir
829  *  3. We can't remove anything from append-only dir
830  *  4. We can't do anything with immutable dir (done in permission())
831  *  5. If the sticky bit on dir is set we should either
832  *	a. be owner of dir, or
833  *	b. be owner of victim, or
834  *	c. have CAP_FOWNER capability
835  *  6. If the victim is append-only or immutable we can't do anything with
836  *     links pointing to it.
837  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
838  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
839  *  9. We can't remove a root or mountpoint.
840  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
841  *     nfs_async_unlink().
842  */
843 
844 static int btrfs_may_delete(struct user_namespace *mnt_userns,
845 			    struct inode *dir, struct dentry *victim, int isdir)
846 {
847 	int error;
848 
849 	if (d_really_is_negative(victim))
850 		return -ENOENT;
851 
852 	BUG_ON(d_inode(victim->d_parent) != dir);
853 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
854 
855 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
856 	if (error)
857 		return error;
858 	if (IS_APPEND(dir))
859 		return -EPERM;
860 	if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
861 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
862 	    IS_SWAPFILE(d_inode(victim)))
863 		return -EPERM;
864 	if (isdir) {
865 		if (!d_is_dir(victim))
866 			return -ENOTDIR;
867 		if (IS_ROOT(victim))
868 			return -EBUSY;
869 	} else if (d_is_dir(victim))
870 		return -EISDIR;
871 	if (IS_DEADDIR(dir))
872 		return -ENOENT;
873 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
874 		return -EBUSY;
875 	return 0;
876 }
877 
878 /* copy of may_create in fs/namei.c() */
879 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
880 				   struct inode *dir, struct dentry *child)
881 {
882 	if (d_really_is_positive(child))
883 		return -EEXIST;
884 	if (IS_DEADDIR(dir))
885 		return -ENOENT;
886 	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
887 		return -EOVERFLOW;
888 	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
889 }
890 
891 /*
892  * Create a new subvolume below @parent.  This is largely modeled after
893  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
894  * inside this filesystem so it's quite a bit simpler.
895  */
896 static noinline int btrfs_mksubvol(const struct path *parent,
897 				   struct user_namespace *mnt_userns,
898 				   const char *name, int namelen,
899 				   struct btrfs_root *snap_src,
900 				   bool readonly,
901 				   struct btrfs_qgroup_inherit *inherit)
902 {
903 	struct inode *dir = d_inode(parent->dentry);
904 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
905 	struct dentry *dentry;
906 	int error;
907 
908 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
909 	if (error == -EINTR)
910 		return error;
911 
912 	dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
913 	error = PTR_ERR(dentry);
914 	if (IS_ERR(dentry))
915 		goto out_unlock;
916 
917 	error = btrfs_may_create(mnt_userns, dir, dentry);
918 	if (error)
919 		goto out_dput;
920 
921 	/*
922 	 * even if this name doesn't exist, we may get hash collisions.
923 	 * check for them now when we can safely fail
924 	 */
925 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
926 					       dir->i_ino, name,
927 					       namelen);
928 	if (error)
929 		goto out_dput;
930 
931 	down_read(&fs_info->subvol_sem);
932 
933 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
934 		goto out_up_read;
935 
936 	if (snap_src)
937 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
938 	else
939 		error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit);
940 
941 	if (!error)
942 		fsnotify_mkdir(dir, dentry);
943 out_up_read:
944 	up_read(&fs_info->subvol_sem);
945 out_dput:
946 	dput(dentry);
947 out_unlock:
948 	btrfs_inode_unlock(dir, 0);
949 	return error;
950 }
951 
952 static noinline int btrfs_mksnapshot(const struct path *parent,
953 				   struct user_namespace *mnt_userns,
954 				   const char *name, int namelen,
955 				   struct btrfs_root *root,
956 				   bool readonly,
957 				   struct btrfs_qgroup_inherit *inherit)
958 {
959 	int ret;
960 	bool snapshot_force_cow = false;
961 
962 	/*
963 	 * Force new buffered writes to reserve space even when NOCOW is
964 	 * possible. This is to avoid later writeback (running dealloc) to
965 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
966 	 */
967 	btrfs_drew_read_lock(&root->snapshot_lock);
968 
969 	ret = btrfs_start_delalloc_snapshot(root, false);
970 	if (ret)
971 		goto out;
972 
973 	/*
974 	 * All previous writes have started writeback in NOCOW mode, so now
975 	 * we force future writes to fallback to COW mode during snapshot
976 	 * creation.
977 	 */
978 	atomic_inc(&root->snapshot_force_cow);
979 	snapshot_force_cow = true;
980 
981 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
982 
983 	ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
984 			     root, readonly, inherit);
985 out:
986 	if (snapshot_force_cow)
987 		atomic_dec(&root->snapshot_force_cow);
988 	btrfs_drew_read_unlock(&root->snapshot_lock);
989 	return ret;
990 }
991 
992 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
993 					       bool locked)
994 {
995 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
996 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
997 	struct extent_map *em;
998 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
999 
1000 	/*
1001 	 * hopefully we have this extent in the tree already, try without
1002 	 * the full extent lock
1003 	 */
1004 	read_lock(&em_tree->lock);
1005 	em = lookup_extent_mapping(em_tree, start, sectorsize);
1006 	read_unlock(&em_tree->lock);
1007 
1008 	if (!em) {
1009 		struct extent_state *cached = NULL;
1010 		u64 end = start + sectorsize - 1;
1011 
1012 		/* get the big lock and read metadata off disk */
1013 		if (!locked)
1014 			lock_extent_bits(io_tree, start, end, &cached);
1015 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, sectorsize);
1016 		if (!locked)
1017 			unlock_extent_cached(io_tree, start, end, &cached);
1018 
1019 		if (IS_ERR(em))
1020 			return NULL;
1021 	}
1022 
1023 	return em;
1024 }
1025 
1026 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
1027 				     bool locked)
1028 {
1029 	struct extent_map *next;
1030 	bool ret = true;
1031 
1032 	/* this is the last extent */
1033 	if (em->start + em->len >= i_size_read(inode))
1034 		return false;
1035 
1036 	next = defrag_lookup_extent(inode, em->start + em->len, locked);
1037 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1038 		ret = false;
1039 	else if ((em->block_start + em->block_len == next->block_start) &&
1040 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1041 		ret = false;
1042 
1043 	free_extent_map(next);
1044 	return ret;
1045 }
1046 
1047 /*
1048  * Prepare one page to be defragged.
1049  *
1050  * This will ensure:
1051  *
1052  * - Returned page is locked and has been set up properly.
1053  * - No ordered extent exists in the page.
1054  * - The page is uptodate.
1055  *
1056  * NOTE: Caller should also wait for page writeback after the cluster is
1057  * prepared, here we don't do writeback wait for each page.
1058  */
1059 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
1060 					    pgoff_t index)
1061 {
1062 	struct address_space *mapping = inode->vfs_inode.i_mapping;
1063 	gfp_t mask = btrfs_alloc_write_mask(mapping);
1064 	u64 page_start = (u64)index << PAGE_SHIFT;
1065 	u64 page_end = page_start + PAGE_SIZE - 1;
1066 	struct extent_state *cached_state = NULL;
1067 	struct page *page;
1068 	int ret;
1069 
1070 again:
1071 	page = find_or_create_page(mapping, index, mask);
1072 	if (!page)
1073 		return ERR_PTR(-ENOMEM);
1074 
1075 	/*
1076 	 * Since we can defragment files opened read-only, we can encounter
1077 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
1078 	 * can't do I/O using huge pages yet, so return an error for now.
1079 	 * Filesystem transparent huge pages are typically only used for
1080 	 * executables that explicitly enable them, so this isn't very
1081 	 * restrictive.
1082 	 */
1083 	if (PageCompound(page)) {
1084 		unlock_page(page);
1085 		put_page(page);
1086 		return ERR_PTR(-ETXTBSY);
1087 	}
1088 
1089 	ret = set_page_extent_mapped(page);
1090 	if (ret < 0) {
1091 		unlock_page(page);
1092 		put_page(page);
1093 		return ERR_PTR(ret);
1094 	}
1095 
1096 	/* Wait for any existing ordered extent in the range */
1097 	while (1) {
1098 		struct btrfs_ordered_extent *ordered;
1099 
1100 		lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
1101 		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
1102 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
1103 				     &cached_state);
1104 		if (!ordered)
1105 			break;
1106 
1107 		unlock_page(page);
1108 		btrfs_start_ordered_extent(ordered, 1);
1109 		btrfs_put_ordered_extent(ordered);
1110 		lock_page(page);
1111 		/*
1112 		 * We unlocked the page above, so we need check if it was
1113 		 * released or not.
1114 		 */
1115 		if (page->mapping != mapping || !PagePrivate(page)) {
1116 			unlock_page(page);
1117 			put_page(page);
1118 			goto again;
1119 		}
1120 	}
1121 
1122 	/*
1123 	 * Now the page range has no ordered extent any more.  Read the page to
1124 	 * make it uptodate.
1125 	 */
1126 	if (!PageUptodate(page)) {
1127 		btrfs_readpage(NULL, page);
1128 		lock_page(page);
1129 		if (page->mapping != mapping || !PagePrivate(page)) {
1130 			unlock_page(page);
1131 			put_page(page);
1132 			goto again;
1133 		}
1134 		if (!PageUptodate(page)) {
1135 			unlock_page(page);
1136 			put_page(page);
1137 			return ERR_PTR(-EIO);
1138 		}
1139 	}
1140 	return page;
1141 }
1142 
1143 struct defrag_target_range {
1144 	struct list_head list;
1145 	u64 start;
1146 	u64 len;
1147 };
1148 
1149 /*
1150  * Collect all valid target extents.
1151  *
1152  * @start:	   file offset to lookup
1153  * @len:	   length to lookup
1154  * @extent_thresh: file extent size threshold, any extent size >= this value
1155  *		   will be ignored
1156  * @newer_than:    only defrag extents newer than this value
1157  * @do_compress:   whether the defrag is doing compression
1158  *		   if true, @extent_thresh will be ignored and all regular
1159  *		   file extents meeting @newer_than will be targets.
1160  * @locked:	   if the range has already held extent lock
1161  * @target_list:   list of targets file extents
1162  */
1163 static int defrag_collect_targets(struct btrfs_inode *inode,
1164 				  u64 start, u64 len, u32 extent_thresh,
1165 				  u64 newer_than, bool do_compress,
1166 				  bool locked, struct list_head *target_list)
1167 {
1168 	u64 cur = start;
1169 	int ret = 0;
1170 
1171 	while (cur < start + len) {
1172 		struct extent_map *em;
1173 		struct defrag_target_range *new;
1174 		bool next_mergeable = true;
1175 		u64 range_len;
1176 
1177 		em = defrag_lookup_extent(&inode->vfs_inode, cur, locked);
1178 		if (!em)
1179 			break;
1180 
1181 		/* Skip hole/inline/preallocated extents */
1182 		if (em->block_start >= EXTENT_MAP_LAST_BYTE ||
1183 		    test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1184 			goto next;
1185 
1186 		/* Skip older extent */
1187 		if (em->generation < newer_than)
1188 			goto next;
1189 
1190 		/*
1191 		 * For do_compress case, we want to compress all valid file
1192 		 * extents, thus no @extent_thresh or mergeable check.
1193 		 */
1194 		if (do_compress)
1195 			goto add;
1196 
1197 		/* Skip too large extent */
1198 		if (em->len >= extent_thresh)
1199 			goto next;
1200 
1201 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1202 							  locked);
1203 		if (!next_mergeable) {
1204 			struct defrag_target_range *last;
1205 
1206 			/* Empty target list, no way to merge with last entry */
1207 			if (list_empty(target_list))
1208 				goto next;
1209 			last = list_entry(target_list->prev,
1210 					  struct defrag_target_range, list);
1211 			/* Not mergeable with last entry */
1212 			if (last->start + last->len != cur)
1213 				goto next;
1214 
1215 			/* Mergeable, fall through to add it to @target_list. */
1216 		}
1217 
1218 add:
1219 		range_len = min(extent_map_end(em), start + len) - cur;
1220 		/*
1221 		 * This one is a good target, check if it can be merged into
1222 		 * last range of the target list.
1223 		 */
1224 		if (!list_empty(target_list)) {
1225 			struct defrag_target_range *last;
1226 
1227 			last = list_entry(target_list->prev,
1228 					  struct defrag_target_range, list);
1229 			ASSERT(last->start + last->len <= cur);
1230 			if (last->start + last->len == cur) {
1231 				/* Mergeable, enlarge the last entry */
1232 				last->len += range_len;
1233 				goto next;
1234 			}
1235 			/* Fall through to allocate a new entry */
1236 		}
1237 
1238 		/* Allocate new defrag_target_range */
1239 		new = kmalloc(sizeof(*new), GFP_NOFS);
1240 		if (!new) {
1241 			free_extent_map(em);
1242 			ret = -ENOMEM;
1243 			break;
1244 		}
1245 		new->start = cur;
1246 		new->len = range_len;
1247 		list_add_tail(&new->list, target_list);
1248 
1249 next:
1250 		cur = extent_map_end(em);
1251 		free_extent_map(em);
1252 	}
1253 	if (ret < 0) {
1254 		struct defrag_target_range *entry;
1255 		struct defrag_target_range *tmp;
1256 
1257 		list_for_each_entry_safe(entry, tmp, target_list, list) {
1258 			list_del_init(&entry->list);
1259 			kfree(entry);
1260 		}
1261 	}
1262 	return ret;
1263 }
1264 
1265 #define CLUSTER_SIZE	(SZ_256K)
1266 
1267 /*
1268  * Defrag one contiguous target range.
1269  *
1270  * @inode:	target inode
1271  * @target:	target range to defrag
1272  * @pages:	locked pages covering the defrag range
1273  * @nr_pages:	number of locked pages
1274  *
1275  * Caller should ensure:
1276  *
1277  * - Pages are prepared
1278  *   Pages should be locked, no ordered extent in the pages range,
1279  *   no writeback.
1280  *
1281  * - Extent bits are locked
1282  */
1283 static int defrag_one_locked_target(struct btrfs_inode *inode,
1284 				    struct defrag_target_range *target,
1285 				    struct page **pages, int nr_pages,
1286 				    struct extent_state **cached_state)
1287 {
1288 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1289 	struct extent_changeset *data_reserved = NULL;
1290 	const u64 start = target->start;
1291 	const u64 len = target->len;
1292 	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1293 	unsigned long start_index = start >> PAGE_SHIFT;
1294 	unsigned long first_index = page_index(pages[0]);
1295 	int ret = 0;
1296 	int i;
1297 
1298 	ASSERT(last_index - first_index + 1 <= nr_pages);
1299 
1300 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1301 	if (ret < 0)
1302 		return ret;
1303 	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1304 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1305 			 EXTENT_DEFRAG, 0, 0, cached_state);
1306 	set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1307 
1308 	/* Update the page status */
1309 	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1310 		ClearPageChecked(pages[i]);
1311 		btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1312 	}
1313 	btrfs_delalloc_release_extents(inode, len);
1314 	extent_changeset_free(data_reserved);
1315 
1316 	return ret;
1317 }
1318 
1319 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1320 			    u32 extent_thresh, u64 newer_than, bool do_compress)
1321 {
1322 	struct extent_state *cached_state = NULL;
1323 	struct defrag_target_range *entry;
1324 	struct defrag_target_range *tmp;
1325 	LIST_HEAD(target_list);
1326 	struct page **pages;
1327 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1328 	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1329 	u64 start_index = start >> PAGE_SHIFT;
1330 	unsigned int nr_pages = last_index - start_index + 1;
1331 	int ret = 0;
1332 	int i;
1333 
1334 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1335 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1336 
1337 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1338 	if (!pages)
1339 		return -ENOMEM;
1340 
1341 	/* Prepare all pages */
1342 	for (i = 0; i < nr_pages; i++) {
1343 		pages[i] = defrag_prepare_one_page(inode, start_index + i);
1344 		if (IS_ERR(pages[i])) {
1345 			ret = PTR_ERR(pages[i]);
1346 			pages[i] = NULL;
1347 			goto free_pages;
1348 		}
1349 	}
1350 	for (i = 0; i < nr_pages; i++)
1351 		wait_on_page_writeback(pages[i]);
1352 
1353 	/* Lock the pages range */
1354 	lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT,
1355 			 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1356 			 &cached_state);
1357 	/*
1358 	 * Now we have a consistent view about the extent map, re-check
1359 	 * which range really needs to be defragged.
1360 	 *
1361 	 * And this time we have extent locked already, pass @locked = true
1362 	 * so that we won't relock the extent range and cause deadlock.
1363 	 */
1364 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1365 				     newer_than, do_compress, true,
1366 				     &target_list);
1367 	if (ret < 0)
1368 		goto unlock_extent;
1369 
1370 	list_for_each_entry(entry, &target_list, list) {
1371 		ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1372 					       &cached_state);
1373 		if (ret < 0)
1374 			break;
1375 	}
1376 
1377 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1378 		list_del_init(&entry->list);
1379 		kfree(entry);
1380 	}
1381 unlock_extent:
1382 	unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT,
1383 			     (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1384 			     &cached_state);
1385 free_pages:
1386 	for (i = 0; i < nr_pages; i++) {
1387 		if (pages[i]) {
1388 			unlock_page(pages[i]);
1389 			put_page(pages[i]);
1390 		}
1391 	}
1392 	kfree(pages);
1393 	return ret;
1394 }
1395 
1396 static int defrag_one_cluster(struct btrfs_inode *inode,
1397 			      struct file_ra_state *ra,
1398 			      u64 start, u32 len, u32 extent_thresh,
1399 			      u64 newer_than, bool do_compress,
1400 			      unsigned long *sectors_defragged,
1401 			      unsigned long max_sectors)
1402 {
1403 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1404 	struct defrag_target_range *entry;
1405 	struct defrag_target_range *tmp;
1406 	LIST_HEAD(target_list);
1407 	int ret;
1408 
1409 	BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1410 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1411 				     newer_than, do_compress, false,
1412 				     &target_list);
1413 	if (ret < 0)
1414 		goto out;
1415 
1416 	list_for_each_entry(entry, &target_list, list) {
1417 		u32 range_len = entry->len;
1418 
1419 		/* Reached the limit */
1420 		if (max_sectors && max_sectors == *sectors_defragged)
1421 			break;
1422 
1423 		if (max_sectors)
1424 			range_len = min_t(u32, range_len,
1425 				(max_sectors - *sectors_defragged) * sectorsize);
1426 
1427 		if (ra)
1428 			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1429 				ra, NULL, entry->start >> PAGE_SHIFT,
1430 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1431 				(entry->start >> PAGE_SHIFT) + 1);
1432 		/*
1433 		 * Here we may not defrag any range if holes are punched before
1434 		 * we locked the pages.
1435 		 * But that's fine, it only affects the @sectors_defragged
1436 		 * accounting.
1437 		 */
1438 		ret = defrag_one_range(inode, entry->start, range_len,
1439 				       extent_thresh, newer_than, do_compress);
1440 		if (ret < 0)
1441 			break;
1442 		*sectors_defragged += range_len;
1443 	}
1444 out:
1445 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1446 		list_del_init(&entry->list);
1447 		kfree(entry);
1448 	}
1449 	return ret;
1450 }
1451 
1452 /*
1453  * Entry point to file defragmentation.
1454  *
1455  * @inode:	   inode to be defragged
1456  * @ra:		   readahead state (can be NUL)
1457  * @range:	   defrag options including range and flags
1458  * @newer_than:	   minimum transid to defrag
1459  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1460  *		   will be defragged.
1461  */
1462 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1463 		      struct btrfs_ioctl_defrag_range_args *range,
1464 		      u64 newer_than, unsigned long max_to_defrag)
1465 {
1466 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1467 	unsigned long sectors_defragged = 0;
1468 	u64 isize = i_size_read(inode);
1469 	u64 cur;
1470 	u64 last_byte;
1471 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1472 	bool ra_allocated = false;
1473 	int compress_type = BTRFS_COMPRESS_ZLIB;
1474 	int ret = 0;
1475 	u32 extent_thresh = range->extent_thresh;
1476 
1477 	if (isize == 0)
1478 		return 0;
1479 
1480 	if (range->start >= isize)
1481 		return -EINVAL;
1482 
1483 	if (do_compress) {
1484 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1485 			return -EINVAL;
1486 		if (range->compress_type)
1487 			compress_type = range->compress_type;
1488 	}
1489 
1490 	if (extent_thresh == 0)
1491 		extent_thresh = SZ_256K;
1492 
1493 	if (range->start + range->len > range->start) {
1494 		/* Got a specific range */
1495 		last_byte = min(isize, range->start + range->len) - 1;
1496 	} else {
1497 		/* Defrag until file end */
1498 		last_byte = isize - 1;
1499 	}
1500 
1501 	/*
1502 	 * If we were not given a ra, allocate a readahead context. As
1503 	 * readahead is just an optimization, defrag will work without it so
1504 	 * we don't error out.
1505 	 */
1506 	if (!ra) {
1507 		ra_allocated = true;
1508 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1509 		if (ra)
1510 			file_ra_state_init(ra, inode->i_mapping);
1511 	}
1512 
1513 	/* Align the range */
1514 	cur = round_down(range->start, fs_info->sectorsize);
1515 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1516 
1517 	while (cur < last_byte) {
1518 		u64 cluster_end;
1519 
1520 		/* The cluster size 256K should always be page aligned */
1521 		BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1522 
1523 		/* We want the cluster end at page boundary when possible */
1524 		cluster_end = (((cur >> PAGE_SHIFT) +
1525 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1526 		cluster_end = min(cluster_end, last_byte);
1527 
1528 		btrfs_inode_lock(inode, 0);
1529 		if (IS_SWAPFILE(inode)) {
1530 			ret = -ETXTBSY;
1531 			btrfs_inode_unlock(inode, 0);
1532 			break;
1533 		}
1534 		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1535 			btrfs_inode_unlock(inode, 0);
1536 			break;
1537 		}
1538 		if (do_compress)
1539 			BTRFS_I(inode)->defrag_compress = compress_type;
1540 		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1541 				cluster_end + 1 - cur, extent_thresh,
1542 				newer_than, do_compress,
1543 				&sectors_defragged, max_to_defrag);
1544 		btrfs_inode_unlock(inode, 0);
1545 		if (ret < 0)
1546 			break;
1547 		cur = cluster_end + 1;
1548 	}
1549 
1550 	if (ra_allocated)
1551 		kfree(ra);
1552 	if (sectors_defragged) {
1553 		/*
1554 		 * We have defragged some sectors, for compression case they
1555 		 * need to be written back immediately.
1556 		 */
1557 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1558 			filemap_flush(inode->i_mapping);
1559 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1560 				     &BTRFS_I(inode)->runtime_flags))
1561 				filemap_flush(inode->i_mapping);
1562 		}
1563 		if (range->compress_type == BTRFS_COMPRESS_LZO)
1564 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1565 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1566 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1567 		ret = sectors_defragged;
1568 	}
1569 	if (do_compress) {
1570 		btrfs_inode_lock(inode, 0);
1571 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1572 		btrfs_inode_unlock(inode, 0);
1573 	}
1574 	return ret;
1575 }
1576 
1577 /*
1578  * Try to start exclusive operation @type or cancel it if it's running.
1579  *
1580  * Return:
1581  *   0        - normal mode, newly claimed op started
1582  *  >0        - normal mode, something else is running,
1583  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1584  * ECANCELED  - cancel mode, successful cancel
1585  * ENOTCONN   - cancel mode, operation not running anymore
1586  */
1587 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1588 			enum btrfs_exclusive_operation type, bool cancel)
1589 {
1590 	if (!cancel) {
1591 		/* Start normal op */
1592 		if (!btrfs_exclop_start(fs_info, type))
1593 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1594 		/* Exclusive operation is now claimed */
1595 		return 0;
1596 	}
1597 
1598 	/* Cancel running op */
1599 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1600 		/*
1601 		 * This blocks any exclop finish from setting it to NONE, so we
1602 		 * request cancellation. Either it runs and we will wait for it,
1603 		 * or it has finished and no waiting will happen.
1604 		 */
1605 		atomic_inc(&fs_info->reloc_cancel_req);
1606 		btrfs_exclop_start_unlock(fs_info);
1607 
1608 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1609 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1610 				    TASK_INTERRUPTIBLE);
1611 
1612 		return -ECANCELED;
1613 	}
1614 
1615 	/* Something else is running or none */
1616 	return -ENOTCONN;
1617 }
1618 
1619 static noinline int btrfs_ioctl_resize(struct file *file,
1620 					void __user *arg)
1621 {
1622 	BTRFS_DEV_LOOKUP_ARGS(args);
1623 	struct inode *inode = file_inode(file);
1624 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1625 	u64 new_size;
1626 	u64 old_size;
1627 	u64 devid = 1;
1628 	struct btrfs_root *root = BTRFS_I(inode)->root;
1629 	struct btrfs_ioctl_vol_args *vol_args;
1630 	struct btrfs_trans_handle *trans;
1631 	struct btrfs_device *device = NULL;
1632 	char *sizestr;
1633 	char *retptr;
1634 	char *devstr = NULL;
1635 	int ret = 0;
1636 	int mod = 0;
1637 	bool cancel;
1638 
1639 	if (!capable(CAP_SYS_ADMIN))
1640 		return -EPERM;
1641 
1642 	ret = mnt_want_write_file(file);
1643 	if (ret)
1644 		return ret;
1645 
1646 	/*
1647 	 * Read the arguments before checking exclusivity to be able to
1648 	 * distinguish regular resize and cancel
1649 	 */
1650 	vol_args = memdup_user(arg, sizeof(*vol_args));
1651 	if (IS_ERR(vol_args)) {
1652 		ret = PTR_ERR(vol_args);
1653 		goto out_drop;
1654 	}
1655 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1656 	sizestr = vol_args->name;
1657 	cancel = (strcmp("cancel", sizestr) == 0);
1658 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1659 	if (ret)
1660 		goto out_free;
1661 	/* Exclusive operation is now claimed */
1662 
1663 	devstr = strchr(sizestr, ':');
1664 	if (devstr) {
1665 		sizestr = devstr + 1;
1666 		*devstr = '\0';
1667 		devstr = vol_args->name;
1668 		ret = kstrtoull(devstr, 10, &devid);
1669 		if (ret)
1670 			goto out_finish;
1671 		if (!devid) {
1672 			ret = -EINVAL;
1673 			goto out_finish;
1674 		}
1675 		btrfs_info(fs_info, "resizing devid %llu", devid);
1676 	}
1677 
1678 	args.devid = devid;
1679 	device = btrfs_find_device(fs_info->fs_devices, &args);
1680 	if (!device) {
1681 		btrfs_info(fs_info, "resizer unable to find device %llu",
1682 			   devid);
1683 		ret = -ENODEV;
1684 		goto out_finish;
1685 	}
1686 
1687 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1688 		btrfs_info(fs_info,
1689 			   "resizer unable to apply on readonly device %llu",
1690 		       devid);
1691 		ret = -EPERM;
1692 		goto out_finish;
1693 	}
1694 
1695 	if (!strcmp(sizestr, "max"))
1696 		new_size = bdev_nr_bytes(device->bdev);
1697 	else {
1698 		if (sizestr[0] == '-') {
1699 			mod = -1;
1700 			sizestr++;
1701 		} else if (sizestr[0] == '+') {
1702 			mod = 1;
1703 			sizestr++;
1704 		}
1705 		new_size = memparse(sizestr, &retptr);
1706 		if (*retptr != '\0' || new_size == 0) {
1707 			ret = -EINVAL;
1708 			goto out_finish;
1709 		}
1710 	}
1711 
1712 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1713 		ret = -EPERM;
1714 		goto out_finish;
1715 	}
1716 
1717 	old_size = btrfs_device_get_total_bytes(device);
1718 
1719 	if (mod < 0) {
1720 		if (new_size > old_size) {
1721 			ret = -EINVAL;
1722 			goto out_finish;
1723 		}
1724 		new_size = old_size - new_size;
1725 	} else if (mod > 0) {
1726 		if (new_size > ULLONG_MAX - old_size) {
1727 			ret = -ERANGE;
1728 			goto out_finish;
1729 		}
1730 		new_size = old_size + new_size;
1731 	}
1732 
1733 	if (new_size < SZ_256M) {
1734 		ret = -EINVAL;
1735 		goto out_finish;
1736 	}
1737 	if (new_size > bdev_nr_bytes(device->bdev)) {
1738 		ret = -EFBIG;
1739 		goto out_finish;
1740 	}
1741 
1742 	new_size = round_down(new_size, fs_info->sectorsize);
1743 
1744 	if (new_size > old_size) {
1745 		trans = btrfs_start_transaction(root, 0);
1746 		if (IS_ERR(trans)) {
1747 			ret = PTR_ERR(trans);
1748 			goto out_finish;
1749 		}
1750 		ret = btrfs_grow_device(trans, device, new_size);
1751 		btrfs_commit_transaction(trans);
1752 	} else if (new_size < old_size) {
1753 		ret = btrfs_shrink_device(device, new_size);
1754 	} /* equal, nothing need to do */
1755 
1756 	if (ret == 0 && new_size != old_size)
1757 		btrfs_info_in_rcu(fs_info,
1758 			"resize device %s (devid %llu) from %llu to %llu",
1759 			rcu_str_deref(device->name), device->devid,
1760 			old_size, new_size);
1761 out_finish:
1762 	btrfs_exclop_finish(fs_info);
1763 out_free:
1764 	kfree(vol_args);
1765 out_drop:
1766 	mnt_drop_write_file(file);
1767 	return ret;
1768 }
1769 
1770 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1771 				struct user_namespace *mnt_userns,
1772 				const char *name, unsigned long fd, int subvol,
1773 				bool readonly,
1774 				struct btrfs_qgroup_inherit *inherit)
1775 {
1776 	int namelen;
1777 	int ret = 0;
1778 
1779 	if (!S_ISDIR(file_inode(file)->i_mode))
1780 		return -ENOTDIR;
1781 
1782 	ret = mnt_want_write_file(file);
1783 	if (ret)
1784 		goto out;
1785 
1786 	namelen = strlen(name);
1787 	if (strchr(name, '/')) {
1788 		ret = -EINVAL;
1789 		goto out_drop_write;
1790 	}
1791 
1792 	if (name[0] == '.' &&
1793 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1794 		ret = -EEXIST;
1795 		goto out_drop_write;
1796 	}
1797 
1798 	if (subvol) {
1799 		ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
1800 				     namelen, NULL, readonly, inherit);
1801 	} else {
1802 		struct fd src = fdget(fd);
1803 		struct inode *src_inode;
1804 		if (!src.file) {
1805 			ret = -EINVAL;
1806 			goto out_drop_write;
1807 		}
1808 
1809 		src_inode = file_inode(src.file);
1810 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1811 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1812 				   "Snapshot src from another FS");
1813 			ret = -EXDEV;
1814 		} else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
1815 			/*
1816 			 * Subvolume creation is not restricted, but snapshots
1817 			 * are limited to own subvolumes only
1818 			 */
1819 			ret = -EPERM;
1820 		} else {
1821 			ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
1822 					       name, namelen,
1823 					       BTRFS_I(src_inode)->root,
1824 					       readonly, inherit);
1825 		}
1826 		fdput(src);
1827 	}
1828 out_drop_write:
1829 	mnt_drop_write_file(file);
1830 out:
1831 	return ret;
1832 }
1833 
1834 static noinline int btrfs_ioctl_snap_create(struct file *file,
1835 					    void __user *arg, int subvol)
1836 {
1837 	struct btrfs_ioctl_vol_args *vol_args;
1838 	int ret;
1839 
1840 	if (!S_ISDIR(file_inode(file)->i_mode))
1841 		return -ENOTDIR;
1842 
1843 	vol_args = memdup_user(arg, sizeof(*vol_args));
1844 	if (IS_ERR(vol_args))
1845 		return PTR_ERR(vol_args);
1846 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1847 
1848 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1849 					vol_args->name, vol_args->fd, subvol,
1850 					false, NULL);
1851 
1852 	kfree(vol_args);
1853 	return ret;
1854 }
1855 
1856 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1857 					       void __user *arg, int subvol)
1858 {
1859 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1860 	int ret;
1861 	bool readonly = false;
1862 	struct btrfs_qgroup_inherit *inherit = NULL;
1863 
1864 	if (!S_ISDIR(file_inode(file)->i_mode))
1865 		return -ENOTDIR;
1866 
1867 	vol_args = memdup_user(arg, sizeof(*vol_args));
1868 	if (IS_ERR(vol_args))
1869 		return PTR_ERR(vol_args);
1870 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1871 
1872 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1873 		ret = -EOPNOTSUPP;
1874 		goto free_args;
1875 	}
1876 
1877 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1878 		readonly = true;
1879 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1880 		u64 nums;
1881 
1882 		if (vol_args->size < sizeof(*inherit) ||
1883 		    vol_args->size > PAGE_SIZE) {
1884 			ret = -EINVAL;
1885 			goto free_args;
1886 		}
1887 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1888 		if (IS_ERR(inherit)) {
1889 			ret = PTR_ERR(inherit);
1890 			goto free_args;
1891 		}
1892 
1893 		if (inherit->num_qgroups > PAGE_SIZE ||
1894 		    inherit->num_ref_copies > PAGE_SIZE ||
1895 		    inherit->num_excl_copies > PAGE_SIZE) {
1896 			ret = -EINVAL;
1897 			goto free_inherit;
1898 		}
1899 
1900 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1901 		       2 * inherit->num_excl_copies;
1902 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1903 			ret = -EINVAL;
1904 			goto free_inherit;
1905 		}
1906 	}
1907 
1908 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1909 					vol_args->name, vol_args->fd, subvol,
1910 					readonly, inherit);
1911 	if (ret)
1912 		goto free_inherit;
1913 free_inherit:
1914 	kfree(inherit);
1915 free_args:
1916 	kfree(vol_args);
1917 	return ret;
1918 }
1919 
1920 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1921 						void __user *arg)
1922 {
1923 	struct inode *inode = file_inode(file);
1924 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1925 	struct btrfs_root *root = BTRFS_I(inode)->root;
1926 	int ret = 0;
1927 	u64 flags = 0;
1928 
1929 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1930 		return -EINVAL;
1931 
1932 	down_read(&fs_info->subvol_sem);
1933 	if (btrfs_root_readonly(root))
1934 		flags |= BTRFS_SUBVOL_RDONLY;
1935 	up_read(&fs_info->subvol_sem);
1936 
1937 	if (copy_to_user(arg, &flags, sizeof(flags)))
1938 		ret = -EFAULT;
1939 
1940 	return ret;
1941 }
1942 
1943 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1944 					      void __user *arg)
1945 {
1946 	struct inode *inode = file_inode(file);
1947 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1948 	struct btrfs_root *root = BTRFS_I(inode)->root;
1949 	struct btrfs_trans_handle *trans;
1950 	u64 root_flags;
1951 	u64 flags;
1952 	int ret = 0;
1953 
1954 	if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
1955 		return -EPERM;
1956 
1957 	ret = mnt_want_write_file(file);
1958 	if (ret)
1959 		goto out;
1960 
1961 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1962 		ret = -EINVAL;
1963 		goto out_drop_write;
1964 	}
1965 
1966 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1967 		ret = -EFAULT;
1968 		goto out_drop_write;
1969 	}
1970 
1971 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1972 		ret = -EOPNOTSUPP;
1973 		goto out_drop_write;
1974 	}
1975 
1976 	down_write(&fs_info->subvol_sem);
1977 
1978 	/* nothing to do */
1979 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1980 		goto out_drop_sem;
1981 
1982 	root_flags = btrfs_root_flags(&root->root_item);
1983 	if (flags & BTRFS_SUBVOL_RDONLY) {
1984 		btrfs_set_root_flags(&root->root_item,
1985 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1986 	} else {
1987 		/*
1988 		 * Block RO -> RW transition if this subvolume is involved in
1989 		 * send
1990 		 */
1991 		spin_lock(&root->root_item_lock);
1992 		if (root->send_in_progress == 0) {
1993 			btrfs_set_root_flags(&root->root_item,
1994 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1995 			spin_unlock(&root->root_item_lock);
1996 		} else {
1997 			spin_unlock(&root->root_item_lock);
1998 			btrfs_warn(fs_info,
1999 				   "Attempt to set subvolume %llu read-write during send",
2000 				   root->root_key.objectid);
2001 			ret = -EPERM;
2002 			goto out_drop_sem;
2003 		}
2004 	}
2005 
2006 	trans = btrfs_start_transaction(root, 1);
2007 	if (IS_ERR(trans)) {
2008 		ret = PTR_ERR(trans);
2009 		goto out_reset;
2010 	}
2011 
2012 	ret = btrfs_update_root(trans, fs_info->tree_root,
2013 				&root->root_key, &root->root_item);
2014 	if (ret < 0) {
2015 		btrfs_end_transaction(trans);
2016 		goto out_reset;
2017 	}
2018 
2019 	ret = btrfs_commit_transaction(trans);
2020 
2021 out_reset:
2022 	if (ret)
2023 		btrfs_set_root_flags(&root->root_item, root_flags);
2024 out_drop_sem:
2025 	up_write(&fs_info->subvol_sem);
2026 out_drop_write:
2027 	mnt_drop_write_file(file);
2028 out:
2029 	return ret;
2030 }
2031 
2032 static noinline int key_in_sk(struct btrfs_key *key,
2033 			      struct btrfs_ioctl_search_key *sk)
2034 {
2035 	struct btrfs_key test;
2036 	int ret;
2037 
2038 	test.objectid = sk->min_objectid;
2039 	test.type = sk->min_type;
2040 	test.offset = sk->min_offset;
2041 
2042 	ret = btrfs_comp_cpu_keys(key, &test);
2043 	if (ret < 0)
2044 		return 0;
2045 
2046 	test.objectid = sk->max_objectid;
2047 	test.type = sk->max_type;
2048 	test.offset = sk->max_offset;
2049 
2050 	ret = btrfs_comp_cpu_keys(key, &test);
2051 	if (ret > 0)
2052 		return 0;
2053 	return 1;
2054 }
2055 
2056 static noinline int copy_to_sk(struct btrfs_path *path,
2057 			       struct btrfs_key *key,
2058 			       struct btrfs_ioctl_search_key *sk,
2059 			       size_t *buf_size,
2060 			       char __user *ubuf,
2061 			       unsigned long *sk_offset,
2062 			       int *num_found)
2063 {
2064 	u64 found_transid;
2065 	struct extent_buffer *leaf;
2066 	struct btrfs_ioctl_search_header sh;
2067 	struct btrfs_key test;
2068 	unsigned long item_off;
2069 	unsigned long item_len;
2070 	int nritems;
2071 	int i;
2072 	int slot;
2073 	int ret = 0;
2074 
2075 	leaf = path->nodes[0];
2076 	slot = path->slots[0];
2077 	nritems = btrfs_header_nritems(leaf);
2078 
2079 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2080 		i = nritems;
2081 		goto advance_key;
2082 	}
2083 	found_transid = btrfs_header_generation(leaf);
2084 
2085 	for (i = slot; i < nritems; i++) {
2086 		item_off = btrfs_item_ptr_offset(leaf, i);
2087 		item_len = btrfs_item_size_nr(leaf, i);
2088 
2089 		btrfs_item_key_to_cpu(leaf, key, i);
2090 		if (!key_in_sk(key, sk))
2091 			continue;
2092 
2093 		if (sizeof(sh) + item_len > *buf_size) {
2094 			if (*num_found) {
2095 				ret = 1;
2096 				goto out;
2097 			}
2098 
2099 			/*
2100 			 * return one empty item back for v1, which does not
2101 			 * handle -EOVERFLOW
2102 			 */
2103 
2104 			*buf_size = sizeof(sh) + item_len;
2105 			item_len = 0;
2106 			ret = -EOVERFLOW;
2107 		}
2108 
2109 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2110 			ret = 1;
2111 			goto out;
2112 		}
2113 
2114 		sh.objectid = key->objectid;
2115 		sh.offset = key->offset;
2116 		sh.type = key->type;
2117 		sh.len = item_len;
2118 		sh.transid = found_transid;
2119 
2120 		/*
2121 		 * Copy search result header. If we fault then loop again so we
2122 		 * can fault in the pages and -EFAULT there if there's a
2123 		 * problem. Otherwise we'll fault and then copy the buffer in
2124 		 * properly this next time through
2125 		 */
2126 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2127 			ret = 0;
2128 			goto out;
2129 		}
2130 
2131 		*sk_offset += sizeof(sh);
2132 
2133 		if (item_len) {
2134 			char __user *up = ubuf + *sk_offset;
2135 			/*
2136 			 * Copy the item, same behavior as above, but reset the
2137 			 * * sk_offset so we copy the full thing again.
2138 			 */
2139 			if (read_extent_buffer_to_user_nofault(leaf, up,
2140 						item_off, item_len)) {
2141 				ret = 0;
2142 				*sk_offset -= sizeof(sh);
2143 				goto out;
2144 			}
2145 
2146 			*sk_offset += item_len;
2147 		}
2148 		(*num_found)++;
2149 
2150 		if (ret) /* -EOVERFLOW from above */
2151 			goto out;
2152 
2153 		if (*num_found >= sk->nr_items) {
2154 			ret = 1;
2155 			goto out;
2156 		}
2157 	}
2158 advance_key:
2159 	ret = 0;
2160 	test.objectid = sk->max_objectid;
2161 	test.type = sk->max_type;
2162 	test.offset = sk->max_offset;
2163 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2164 		ret = 1;
2165 	else if (key->offset < (u64)-1)
2166 		key->offset++;
2167 	else if (key->type < (u8)-1) {
2168 		key->offset = 0;
2169 		key->type++;
2170 	} else if (key->objectid < (u64)-1) {
2171 		key->offset = 0;
2172 		key->type = 0;
2173 		key->objectid++;
2174 	} else
2175 		ret = 1;
2176 out:
2177 	/*
2178 	 *  0: all items from this leaf copied, continue with next
2179 	 *  1: * more items can be copied, but unused buffer is too small
2180 	 *     * all items were found
2181 	 *     Either way, it will stops the loop which iterates to the next
2182 	 *     leaf
2183 	 *  -EOVERFLOW: item was to large for buffer
2184 	 *  -EFAULT: could not copy extent buffer back to userspace
2185 	 */
2186 	return ret;
2187 }
2188 
2189 static noinline int search_ioctl(struct inode *inode,
2190 				 struct btrfs_ioctl_search_key *sk,
2191 				 size_t *buf_size,
2192 				 char __user *ubuf)
2193 {
2194 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2195 	struct btrfs_root *root;
2196 	struct btrfs_key key;
2197 	struct btrfs_path *path;
2198 	int ret;
2199 	int num_found = 0;
2200 	unsigned long sk_offset = 0;
2201 
2202 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2203 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2204 		return -EOVERFLOW;
2205 	}
2206 
2207 	path = btrfs_alloc_path();
2208 	if (!path)
2209 		return -ENOMEM;
2210 
2211 	if (sk->tree_id == 0) {
2212 		/* search the root of the inode that was passed */
2213 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2214 	} else {
2215 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2216 		if (IS_ERR(root)) {
2217 			btrfs_free_path(path);
2218 			return PTR_ERR(root);
2219 		}
2220 	}
2221 
2222 	key.objectid = sk->min_objectid;
2223 	key.type = sk->min_type;
2224 	key.offset = sk->min_offset;
2225 
2226 	while (1) {
2227 		ret = -EFAULT;
2228 		if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset))
2229 			break;
2230 
2231 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2232 		if (ret != 0) {
2233 			if (ret > 0)
2234 				ret = 0;
2235 			goto err;
2236 		}
2237 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2238 				 &sk_offset, &num_found);
2239 		btrfs_release_path(path);
2240 		if (ret)
2241 			break;
2242 
2243 	}
2244 	if (ret > 0)
2245 		ret = 0;
2246 err:
2247 	sk->nr_items = num_found;
2248 	btrfs_put_root(root);
2249 	btrfs_free_path(path);
2250 	return ret;
2251 }
2252 
2253 static noinline int btrfs_ioctl_tree_search(struct file *file,
2254 					   void __user *argp)
2255 {
2256 	struct btrfs_ioctl_search_args __user *uargs;
2257 	struct btrfs_ioctl_search_key sk;
2258 	struct inode *inode;
2259 	int ret;
2260 	size_t buf_size;
2261 
2262 	if (!capable(CAP_SYS_ADMIN))
2263 		return -EPERM;
2264 
2265 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2266 
2267 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2268 		return -EFAULT;
2269 
2270 	buf_size = sizeof(uargs->buf);
2271 
2272 	inode = file_inode(file);
2273 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2274 
2275 	/*
2276 	 * In the origin implementation an overflow is handled by returning a
2277 	 * search header with a len of zero, so reset ret.
2278 	 */
2279 	if (ret == -EOVERFLOW)
2280 		ret = 0;
2281 
2282 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2283 		ret = -EFAULT;
2284 	return ret;
2285 }
2286 
2287 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2288 					       void __user *argp)
2289 {
2290 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2291 	struct btrfs_ioctl_search_args_v2 args;
2292 	struct inode *inode;
2293 	int ret;
2294 	size_t buf_size;
2295 	const size_t buf_limit = SZ_16M;
2296 
2297 	if (!capable(CAP_SYS_ADMIN))
2298 		return -EPERM;
2299 
2300 	/* copy search header and buffer size */
2301 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2302 	if (copy_from_user(&args, uarg, sizeof(args)))
2303 		return -EFAULT;
2304 
2305 	buf_size = args.buf_size;
2306 
2307 	/* limit result size to 16MB */
2308 	if (buf_size > buf_limit)
2309 		buf_size = buf_limit;
2310 
2311 	inode = file_inode(file);
2312 	ret = search_ioctl(inode, &args.key, &buf_size,
2313 			   (char __user *)(&uarg->buf[0]));
2314 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2315 		ret = -EFAULT;
2316 	else if (ret == -EOVERFLOW &&
2317 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2318 		ret = -EFAULT;
2319 
2320 	return ret;
2321 }
2322 
2323 /*
2324  * Search INODE_REFs to identify path name of 'dirid' directory
2325  * in a 'tree_id' tree. and sets path name to 'name'.
2326  */
2327 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2328 				u64 tree_id, u64 dirid, char *name)
2329 {
2330 	struct btrfs_root *root;
2331 	struct btrfs_key key;
2332 	char *ptr;
2333 	int ret = -1;
2334 	int slot;
2335 	int len;
2336 	int total_len = 0;
2337 	struct btrfs_inode_ref *iref;
2338 	struct extent_buffer *l;
2339 	struct btrfs_path *path;
2340 
2341 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2342 		name[0]='\0';
2343 		return 0;
2344 	}
2345 
2346 	path = btrfs_alloc_path();
2347 	if (!path)
2348 		return -ENOMEM;
2349 
2350 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2351 
2352 	root = btrfs_get_fs_root(info, tree_id, true);
2353 	if (IS_ERR(root)) {
2354 		ret = PTR_ERR(root);
2355 		root = NULL;
2356 		goto out;
2357 	}
2358 
2359 	key.objectid = dirid;
2360 	key.type = BTRFS_INODE_REF_KEY;
2361 	key.offset = (u64)-1;
2362 
2363 	while (1) {
2364 		ret = btrfs_search_backwards(root, &key, path);
2365 		if (ret < 0)
2366 			goto out;
2367 		else if (ret > 0) {
2368 			ret = -ENOENT;
2369 			goto out;
2370 		}
2371 
2372 		l = path->nodes[0];
2373 		slot = path->slots[0];
2374 
2375 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2376 		len = btrfs_inode_ref_name_len(l, iref);
2377 		ptr -= len + 1;
2378 		total_len += len + 1;
2379 		if (ptr < name) {
2380 			ret = -ENAMETOOLONG;
2381 			goto out;
2382 		}
2383 
2384 		*(ptr + len) = '/';
2385 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2386 
2387 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2388 			break;
2389 
2390 		btrfs_release_path(path);
2391 		key.objectid = key.offset;
2392 		key.offset = (u64)-1;
2393 		dirid = key.objectid;
2394 	}
2395 	memmove(name, ptr, total_len);
2396 	name[total_len] = '\0';
2397 	ret = 0;
2398 out:
2399 	btrfs_put_root(root);
2400 	btrfs_free_path(path);
2401 	return ret;
2402 }
2403 
2404 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2405 				struct inode *inode,
2406 				struct btrfs_ioctl_ino_lookup_user_args *args)
2407 {
2408 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2409 	struct super_block *sb = inode->i_sb;
2410 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2411 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2412 	u64 dirid = args->dirid;
2413 	unsigned long item_off;
2414 	unsigned long item_len;
2415 	struct btrfs_inode_ref *iref;
2416 	struct btrfs_root_ref *rref;
2417 	struct btrfs_root *root = NULL;
2418 	struct btrfs_path *path;
2419 	struct btrfs_key key, key2;
2420 	struct extent_buffer *leaf;
2421 	struct inode *temp_inode;
2422 	char *ptr;
2423 	int slot;
2424 	int len;
2425 	int total_len = 0;
2426 	int ret;
2427 
2428 	path = btrfs_alloc_path();
2429 	if (!path)
2430 		return -ENOMEM;
2431 
2432 	/*
2433 	 * If the bottom subvolume does not exist directly under upper_limit,
2434 	 * construct the path in from the bottom up.
2435 	 */
2436 	if (dirid != upper_limit.objectid) {
2437 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2438 
2439 		root = btrfs_get_fs_root(fs_info, treeid, true);
2440 		if (IS_ERR(root)) {
2441 			ret = PTR_ERR(root);
2442 			goto out;
2443 		}
2444 
2445 		key.objectid = dirid;
2446 		key.type = BTRFS_INODE_REF_KEY;
2447 		key.offset = (u64)-1;
2448 		while (1) {
2449 			ret = btrfs_search_backwards(root, &key, path);
2450 			if (ret < 0)
2451 				goto out_put;
2452 			else if (ret > 0) {
2453 				ret = -ENOENT;
2454 				goto out_put;
2455 			}
2456 
2457 			leaf = path->nodes[0];
2458 			slot = path->slots[0];
2459 
2460 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2461 			len = btrfs_inode_ref_name_len(leaf, iref);
2462 			ptr -= len + 1;
2463 			total_len += len + 1;
2464 			if (ptr < args->path) {
2465 				ret = -ENAMETOOLONG;
2466 				goto out_put;
2467 			}
2468 
2469 			*(ptr + len) = '/';
2470 			read_extent_buffer(leaf, ptr,
2471 					(unsigned long)(iref + 1), len);
2472 
2473 			/* Check the read+exec permission of this directory */
2474 			ret = btrfs_previous_item(root, path, dirid,
2475 						  BTRFS_INODE_ITEM_KEY);
2476 			if (ret < 0) {
2477 				goto out_put;
2478 			} else if (ret > 0) {
2479 				ret = -ENOENT;
2480 				goto out_put;
2481 			}
2482 
2483 			leaf = path->nodes[0];
2484 			slot = path->slots[0];
2485 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2486 			if (key2.objectid != dirid) {
2487 				ret = -ENOENT;
2488 				goto out_put;
2489 			}
2490 
2491 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2492 			if (IS_ERR(temp_inode)) {
2493 				ret = PTR_ERR(temp_inode);
2494 				goto out_put;
2495 			}
2496 			ret = inode_permission(mnt_userns, temp_inode,
2497 					       MAY_READ | MAY_EXEC);
2498 			iput(temp_inode);
2499 			if (ret) {
2500 				ret = -EACCES;
2501 				goto out_put;
2502 			}
2503 
2504 			if (key.offset == upper_limit.objectid)
2505 				break;
2506 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2507 				ret = -EACCES;
2508 				goto out_put;
2509 			}
2510 
2511 			btrfs_release_path(path);
2512 			key.objectid = key.offset;
2513 			key.offset = (u64)-1;
2514 			dirid = key.objectid;
2515 		}
2516 
2517 		memmove(args->path, ptr, total_len);
2518 		args->path[total_len] = '\0';
2519 		btrfs_put_root(root);
2520 		root = NULL;
2521 		btrfs_release_path(path);
2522 	}
2523 
2524 	/* Get the bottom subvolume's name from ROOT_REF */
2525 	key.objectid = treeid;
2526 	key.type = BTRFS_ROOT_REF_KEY;
2527 	key.offset = args->treeid;
2528 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2529 	if (ret < 0) {
2530 		goto out;
2531 	} else if (ret > 0) {
2532 		ret = -ENOENT;
2533 		goto out;
2534 	}
2535 
2536 	leaf = path->nodes[0];
2537 	slot = path->slots[0];
2538 	btrfs_item_key_to_cpu(leaf, &key, slot);
2539 
2540 	item_off = btrfs_item_ptr_offset(leaf, slot);
2541 	item_len = btrfs_item_size_nr(leaf, slot);
2542 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2543 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2544 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2545 		ret = -EINVAL;
2546 		goto out;
2547 	}
2548 
2549 	/* Copy subvolume's name */
2550 	item_off += sizeof(struct btrfs_root_ref);
2551 	item_len -= sizeof(struct btrfs_root_ref);
2552 	read_extent_buffer(leaf, args->name, item_off, item_len);
2553 	args->name[item_len] = 0;
2554 
2555 out_put:
2556 	btrfs_put_root(root);
2557 out:
2558 	btrfs_free_path(path);
2559 	return ret;
2560 }
2561 
2562 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2563 					   void __user *argp)
2564 {
2565 	struct btrfs_ioctl_ino_lookup_args *args;
2566 	struct inode *inode;
2567 	int ret = 0;
2568 
2569 	args = memdup_user(argp, sizeof(*args));
2570 	if (IS_ERR(args))
2571 		return PTR_ERR(args);
2572 
2573 	inode = file_inode(file);
2574 
2575 	/*
2576 	 * Unprivileged query to obtain the containing subvolume root id. The
2577 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2578 	 */
2579 	if (args->treeid == 0)
2580 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2581 
2582 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2583 		args->name[0] = 0;
2584 		goto out;
2585 	}
2586 
2587 	if (!capable(CAP_SYS_ADMIN)) {
2588 		ret = -EPERM;
2589 		goto out;
2590 	}
2591 
2592 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2593 					args->treeid, args->objectid,
2594 					args->name);
2595 
2596 out:
2597 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2598 		ret = -EFAULT;
2599 
2600 	kfree(args);
2601 	return ret;
2602 }
2603 
2604 /*
2605  * Version of ino_lookup ioctl (unprivileged)
2606  *
2607  * The main differences from ino_lookup ioctl are:
2608  *
2609  *   1. Read + Exec permission will be checked using inode_permission() during
2610  *      path construction. -EACCES will be returned in case of failure.
2611  *   2. Path construction will be stopped at the inode number which corresponds
2612  *      to the fd with which this ioctl is called. If constructed path does not
2613  *      exist under fd's inode, -EACCES will be returned.
2614  *   3. The name of bottom subvolume is also searched and filled.
2615  */
2616 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2617 {
2618 	struct btrfs_ioctl_ino_lookup_user_args *args;
2619 	struct inode *inode;
2620 	int ret;
2621 
2622 	args = memdup_user(argp, sizeof(*args));
2623 	if (IS_ERR(args))
2624 		return PTR_ERR(args);
2625 
2626 	inode = file_inode(file);
2627 
2628 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2629 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2630 		/*
2631 		 * The subvolume does not exist under fd with which this is
2632 		 * called
2633 		 */
2634 		kfree(args);
2635 		return -EACCES;
2636 	}
2637 
2638 	ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2639 
2640 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2641 		ret = -EFAULT;
2642 
2643 	kfree(args);
2644 	return ret;
2645 }
2646 
2647 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2648 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2649 {
2650 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2651 	struct btrfs_fs_info *fs_info;
2652 	struct btrfs_root *root;
2653 	struct btrfs_path *path;
2654 	struct btrfs_key key;
2655 	struct btrfs_root_item *root_item;
2656 	struct btrfs_root_ref *rref;
2657 	struct extent_buffer *leaf;
2658 	unsigned long item_off;
2659 	unsigned long item_len;
2660 	struct inode *inode;
2661 	int slot;
2662 	int ret = 0;
2663 
2664 	path = btrfs_alloc_path();
2665 	if (!path)
2666 		return -ENOMEM;
2667 
2668 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2669 	if (!subvol_info) {
2670 		btrfs_free_path(path);
2671 		return -ENOMEM;
2672 	}
2673 
2674 	inode = file_inode(file);
2675 	fs_info = BTRFS_I(inode)->root->fs_info;
2676 
2677 	/* Get root_item of inode's subvolume */
2678 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2679 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2680 	if (IS_ERR(root)) {
2681 		ret = PTR_ERR(root);
2682 		goto out_free;
2683 	}
2684 	root_item = &root->root_item;
2685 
2686 	subvol_info->treeid = key.objectid;
2687 
2688 	subvol_info->generation = btrfs_root_generation(root_item);
2689 	subvol_info->flags = btrfs_root_flags(root_item);
2690 
2691 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2692 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2693 						    BTRFS_UUID_SIZE);
2694 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2695 						    BTRFS_UUID_SIZE);
2696 
2697 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2698 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2699 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2700 
2701 	subvol_info->otransid = btrfs_root_otransid(root_item);
2702 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2703 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2704 
2705 	subvol_info->stransid = btrfs_root_stransid(root_item);
2706 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2707 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2708 
2709 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2710 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2711 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2712 
2713 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2714 		/* Search root tree for ROOT_BACKREF of this subvolume */
2715 		key.type = BTRFS_ROOT_BACKREF_KEY;
2716 		key.offset = 0;
2717 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2718 		if (ret < 0) {
2719 			goto out;
2720 		} else if (path->slots[0] >=
2721 			   btrfs_header_nritems(path->nodes[0])) {
2722 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2723 			if (ret < 0) {
2724 				goto out;
2725 			} else if (ret > 0) {
2726 				ret = -EUCLEAN;
2727 				goto out;
2728 			}
2729 		}
2730 
2731 		leaf = path->nodes[0];
2732 		slot = path->slots[0];
2733 		btrfs_item_key_to_cpu(leaf, &key, slot);
2734 		if (key.objectid == subvol_info->treeid &&
2735 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2736 			subvol_info->parent_id = key.offset;
2737 
2738 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2739 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2740 
2741 			item_off = btrfs_item_ptr_offset(leaf, slot)
2742 					+ sizeof(struct btrfs_root_ref);
2743 			item_len = btrfs_item_size_nr(leaf, slot)
2744 					- sizeof(struct btrfs_root_ref);
2745 			read_extent_buffer(leaf, subvol_info->name,
2746 					   item_off, item_len);
2747 		} else {
2748 			ret = -ENOENT;
2749 			goto out;
2750 		}
2751 	}
2752 
2753 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2754 		ret = -EFAULT;
2755 
2756 out:
2757 	btrfs_put_root(root);
2758 out_free:
2759 	btrfs_free_path(path);
2760 	kfree(subvol_info);
2761 	return ret;
2762 }
2763 
2764 /*
2765  * Return ROOT_REF information of the subvolume containing this inode
2766  * except the subvolume name.
2767  */
2768 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2769 {
2770 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2771 	struct btrfs_root_ref *rref;
2772 	struct btrfs_root *root;
2773 	struct btrfs_path *path;
2774 	struct btrfs_key key;
2775 	struct extent_buffer *leaf;
2776 	struct inode *inode;
2777 	u64 objectid;
2778 	int slot;
2779 	int ret;
2780 	u8 found;
2781 
2782 	path = btrfs_alloc_path();
2783 	if (!path)
2784 		return -ENOMEM;
2785 
2786 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2787 	if (IS_ERR(rootrefs)) {
2788 		btrfs_free_path(path);
2789 		return PTR_ERR(rootrefs);
2790 	}
2791 
2792 	inode = file_inode(file);
2793 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2794 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2795 
2796 	key.objectid = objectid;
2797 	key.type = BTRFS_ROOT_REF_KEY;
2798 	key.offset = rootrefs->min_treeid;
2799 	found = 0;
2800 
2801 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2802 	if (ret < 0) {
2803 		goto out;
2804 	} else if (path->slots[0] >=
2805 		   btrfs_header_nritems(path->nodes[0])) {
2806 		ret = btrfs_next_leaf(root, path);
2807 		if (ret < 0) {
2808 			goto out;
2809 		} else if (ret > 0) {
2810 			ret = -EUCLEAN;
2811 			goto out;
2812 		}
2813 	}
2814 	while (1) {
2815 		leaf = path->nodes[0];
2816 		slot = path->slots[0];
2817 
2818 		btrfs_item_key_to_cpu(leaf, &key, slot);
2819 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2820 			ret = 0;
2821 			goto out;
2822 		}
2823 
2824 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2825 			ret = -EOVERFLOW;
2826 			goto out;
2827 		}
2828 
2829 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2830 		rootrefs->rootref[found].treeid = key.offset;
2831 		rootrefs->rootref[found].dirid =
2832 				  btrfs_root_ref_dirid(leaf, rref);
2833 		found++;
2834 
2835 		ret = btrfs_next_item(root, path);
2836 		if (ret < 0) {
2837 			goto out;
2838 		} else if (ret > 0) {
2839 			ret = -EUCLEAN;
2840 			goto out;
2841 		}
2842 	}
2843 
2844 out:
2845 	if (!ret || ret == -EOVERFLOW) {
2846 		rootrefs->num_items = found;
2847 		/* update min_treeid for next search */
2848 		if (found)
2849 			rootrefs->min_treeid =
2850 				rootrefs->rootref[found - 1].treeid + 1;
2851 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2852 			ret = -EFAULT;
2853 	}
2854 
2855 	kfree(rootrefs);
2856 	btrfs_free_path(path);
2857 
2858 	return ret;
2859 }
2860 
2861 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2862 					     void __user *arg,
2863 					     bool destroy_v2)
2864 {
2865 	struct dentry *parent = file->f_path.dentry;
2866 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2867 	struct dentry *dentry;
2868 	struct inode *dir = d_inode(parent);
2869 	struct inode *inode;
2870 	struct btrfs_root *root = BTRFS_I(dir)->root;
2871 	struct btrfs_root *dest = NULL;
2872 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2873 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2874 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
2875 	char *subvol_name, *subvol_name_ptr = NULL;
2876 	int subvol_namelen;
2877 	int err = 0;
2878 	bool destroy_parent = false;
2879 
2880 	if (destroy_v2) {
2881 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2882 		if (IS_ERR(vol_args2))
2883 			return PTR_ERR(vol_args2);
2884 
2885 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2886 			err = -EOPNOTSUPP;
2887 			goto out;
2888 		}
2889 
2890 		/*
2891 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2892 		 * name, same as v1 currently does.
2893 		 */
2894 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2895 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2896 			subvol_name = vol_args2->name;
2897 
2898 			err = mnt_want_write_file(file);
2899 			if (err)
2900 				goto out;
2901 		} else {
2902 			struct inode *old_dir;
2903 
2904 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2905 				err = -EINVAL;
2906 				goto out;
2907 			}
2908 
2909 			err = mnt_want_write_file(file);
2910 			if (err)
2911 				goto out;
2912 
2913 			dentry = btrfs_get_dentry(fs_info->sb,
2914 					BTRFS_FIRST_FREE_OBJECTID,
2915 					vol_args2->subvolid, 0, 0);
2916 			if (IS_ERR(dentry)) {
2917 				err = PTR_ERR(dentry);
2918 				goto out_drop_write;
2919 			}
2920 
2921 			/*
2922 			 * Change the default parent since the subvolume being
2923 			 * deleted can be outside of the current mount point.
2924 			 */
2925 			parent = btrfs_get_parent(dentry);
2926 
2927 			/*
2928 			 * At this point dentry->d_name can point to '/' if the
2929 			 * subvolume we want to destroy is outsite of the
2930 			 * current mount point, so we need to release the
2931 			 * current dentry and execute the lookup to return a new
2932 			 * one with ->d_name pointing to the
2933 			 * <mount point>/subvol_name.
2934 			 */
2935 			dput(dentry);
2936 			if (IS_ERR(parent)) {
2937 				err = PTR_ERR(parent);
2938 				goto out_drop_write;
2939 			}
2940 			old_dir = dir;
2941 			dir = d_inode(parent);
2942 
2943 			/*
2944 			 * If v2 was used with SPEC_BY_ID, a new parent was
2945 			 * allocated since the subvolume can be outside of the
2946 			 * current mount point. Later on we need to release this
2947 			 * new parent dentry.
2948 			 */
2949 			destroy_parent = true;
2950 
2951 			/*
2952 			 * On idmapped mounts, deletion via subvolid is
2953 			 * restricted to subvolumes that are immediate
2954 			 * ancestors of the inode referenced by the file
2955 			 * descriptor in the ioctl. Otherwise the idmapping
2956 			 * could potentially be abused to delete subvolumes
2957 			 * anywhere in the filesystem the user wouldn't be able
2958 			 * to delete without an idmapped mount.
2959 			 */
2960 			if (old_dir != dir && mnt_userns != &init_user_ns) {
2961 				err = -EOPNOTSUPP;
2962 				goto free_parent;
2963 			}
2964 
2965 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2966 						fs_info, vol_args2->subvolid);
2967 			if (IS_ERR(subvol_name_ptr)) {
2968 				err = PTR_ERR(subvol_name_ptr);
2969 				goto free_parent;
2970 			}
2971 			/* subvol_name_ptr is already nul terminated */
2972 			subvol_name = (char *)kbasename(subvol_name_ptr);
2973 		}
2974 	} else {
2975 		vol_args = memdup_user(arg, sizeof(*vol_args));
2976 		if (IS_ERR(vol_args))
2977 			return PTR_ERR(vol_args);
2978 
2979 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2980 		subvol_name = vol_args->name;
2981 
2982 		err = mnt_want_write_file(file);
2983 		if (err)
2984 			goto out;
2985 	}
2986 
2987 	subvol_namelen = strlen(subvol_name);
2988 
2989 	if (strchr(subvol_name, '/') ||
2990 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2991 		err = -EINVAL;
2992 		goto free_subvol_name;
2993 	}
2994 
2995 	if (!S_ISDIR(dir->i_mode)) {
2996 		err = -ENOTDIR;
2997 		goto free_subvol_name;
2998 	}
2999 
3000 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3001 	if (err == -EINTR)
3002 		goto free_subvol_name;
3003 	dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3004 	if (IS_ERR(dentry)) {
3005 		err = PTR_ERR(dentry);
3006 		goto out_unlock_dir;
3007 	}
3008 
3009 	if (d_really_is_negative(dentry)) {
3010 		err = -ENOENT;
3011 		goto out_dput;
3012 	}
3013 
3014 	inode = d_inode(dentry);
3015 	dest = BTRFS_I(inode)->root;
3016 	if (!capable(CAP_SYS_ADMIN)) {
3017 		/*
3018 		 * Regular user.  Only allow this with a special mount
3019 		 * option, when the user has write+exec access to the
3020 		 * subvol root, and when rmdir(2) would have been
3021 		 * allowed.
3022 		 *
3023 		 * Note that this is _not_ check that the subvol is
3024 		 * empty or doesn't contain data that we wouldn't
3025 		 * otherwise be able to delete.
3026 		 *
3027 		 * Users who want to delete empty subvols should try
3028 		 * rmdir(2).
3029 		 */
3030 		err = -EPERM;
3031 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3032 			goto out_dput;
3033 
3034 		/*
3035 		 * Do not allow deletion if the parent dir is the same
3036 		 * as the dir to be deleted.  That means the ioctl
3037 		 * must be called on the dentry referencing the root
3038 		 * of the subvol, not a random directory contained
3039 		 * within it.
3040 		 */
3041 		err = -EINVAL;
3042 		if (root == dest)
3043 			goto out_dput;
3044 
3045 		err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3046 		if (err)
3047 			goto out_dput;
3048 	}
3049 
3050 	/* check if subvolume may be deleted by a user */
3051 	err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3052 	if (err)
3053 		goto out_dput;
3054 
3055 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3056 		err = -EINVAL;
3057 		goto out_dput;
3058 	}
3059 
3060 	btrfs_inode_lock(inode, 0);
3061 	err = btrfs_delete_subvolume(dir, dentry);
3062 	btrfs_inode_unlock(inode, 0);
3063 	if (!err) {
3064 		fsnotify_rmdir(dir, dentry);
3065 		d_delete(dentry);
3066 	}
3067 
3068 out_dput:
3069 	dput(dentry);
3070 out_unlock_dir:
3071 	btrfs_inode_unlock(dir, 0);
3072 free_subvol_name:
3073 	kfree(subvol_name_ptr);
3074 free_parent:
3075 	if (destroy_parent)
3076 		dput(parent);
3077 out_drop_write:
3078 	mnt_drop_write_file(file);
3079 out:
3080 	kfree(vol_args2);
3081 	kfree(vol_args);
3082 	return err;
3083 }
3084 
3085 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3086 {
3087 	struct inode *inode = file_inode(file);
3088 	struct btrfs_root *root = BTRFS_I(inode)->root;
3089 	struct btrfs_ioctl_defrag_range_args range = {0};
3090 	int ret;
3091 
3092 	ret = mnt_want_write_file(file);
3093 	if (ret)
3094 		return ret;
3095 
3096 	if (btrfs_root_readonly(root)) {
3097 		ret = -EROFS;
3098 		goto out;
3099 	}
3100 
3101 	switch (inode->i_mode & S_IFMT) {
3102 	case S_IFDIR:
3103 		if (!capable(CAP_SYS_ADMIN)) {
3104 			ret = -EPERM;
3105 			goto out;
3106 		}
3107 		ret = btrfs_defrag_root(root);
3108 		break;
3109 	case S_IFREG:
3110 		/*
3111 		 * Note that this does not check the file descriptor for write
3112 		 * access. This prevents defragmenting executables that are
3113 		 * running and allows defrag on files open in read-only mode.
3114 		 */
3115 		if (!capable(CAP_SYS_ADMIN) &&
3116 		    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3117 			ret = -EPERM;
3118 			goto out;
3119 		}
3120 
3121 		if (argp) {
3122 			if (copy_from_user(&range, argp, sizeof(range))) {
3123 				ret = -EFAULT;
3124 				goto out;
3125 			}
3126 			/* compression requires us to start the IO */
3127 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3128 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3129 				range.extent_thresh = (u32)-1;
3130 			}
3131 		} else {
3132 			/* the rest are all set to zero by kzalloc */
3133 			range.len = (u64)-1;
3134 		}
3135 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
3136 					&range, BTRFS_OLDEST_GENERATION, 0);
3137 		if (ret > 0)
3138 			ret = 0;
3139 		break;
3140 	default:
3141 		ret = -EINVAL;
3142 	}
3143 out:
3144 	mnt_drop_write_file(file);
3145 	return ret;
3146 }
3147 
3148 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3149 {
3150 	struct btrfs_ioctl_vol_args *vol_args;
3151 	int ret;
3152 
3153 	if (!capable(CAP_SYS_ADMIN))
3154 		return -EPERM;
3155 
3156 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3157 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3158 
3159 	vol_args = memdup_user(arg, sizeof(*vol_args));
3160 	if (IS_ERR(vol_args)) {
3161 		ret = PTR_ERR(vol_args);
3162 		goto out;
3163 	}
3164 
3165 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3166 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3167 
3168 	if (!ret)
3169 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3170 
3171 	kfree(vol_args);
3172 out:
3173 	btrfs_exclop_finish(fs_info);
3174 	return ret;
3175 }
3176 
3177 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3178 {
3179 	BTRFS_DEV_LOOKUP_ARGS(args);
3180 	struct inode *inode = file_inode(file);
3181 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3182 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3183 	struct block_device *bdev = NULL;
3184 	fmode_t mode;
3185 	int ret;
3186 	bool cancel = false;
3187 
3188 	if (!capable(CAP_SYS_ADMIN))
3189 		return -EPERM;
3190 
3191 	vol_args = memdup_user(arg, sizeof(*vol_args));
3192 	if (IS_ERR(vol_args))
3193 		return PTR_ERR(vol_args);
3194 
3195 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3196 		ret = -EOPNOTSUPP;
3197 		goto out;
3198 	}
3199 
3200 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3201 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3202 		args.devid = vol_args->devid;
3203 	} else if (!strcmp("cancel", vol_args->name)) {
3204 		cancel = true;
3205 	} else {
3206 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3207 		if (ret)
3208 			goto out;
3209 	}
3210 
3211 	ret = mnt_want_write_file(file);
3212 	if (ret)
3213 		goto out;
3214 
3215 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3216 					   cancel);
3217 	if (ret)
3218 		goto err_drop;
3219 
3220 	/* Exclusive operation is now claimed */
3221 	ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3222 
3223 	btrfs_exclop_finish(fs_info);
3224 
3225 	if (!ret) {
3226 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3227 			btrfs_info(fs_info, "device deleted: id %llu",
3228 					vol_args->devid);
3229 		else
3230 			btrfs_info(fs_info, "device deleted: %s",
3231 					vol_args->name);
3232 	}
3233 err_drop:
3234 	mnt_drop_write_file(file);
3235 	if (bdev)
3236 		blkdev_put(bdev, mode);
3237 out:
3238 	btrfs_put_dev_args_from_path(&args);
3239 	kfree(vol_args);
3240 	return ret;
3241 }
3242 
3243 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3244 {
3245 	BTRFS_DEV_LOOKUP_ARGS(args);
3246 	struct inode *inode = file_inode(file);
3247 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3248 	struct btrfs_ioctl_vol_args *vol_args;
3249 	struct block_device *bdev = NULL;
3250 	fmode_t mode;
3251 	int ret;
3252 	bool cancel;
3253 
3254 	if (!capable(CAP_SYS_ADMIN))
3255 		return -EPERM;
3256 
3257 	vol_args = memdup_user(arg, sizeof(*vol_args));
3258 	if (IS_ERR(vol_args))
3259 		return PTR_ERR(vol_args);
3260 
3261 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3262 	if (!strcmp("cancel", vol_args->name)) {
3263 		cancel = true;
3264 	} else {
3265 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3266 		if (ret)
3267 			goto out;
3268 	}
3269 
3270 	ret = mnt_want_write_file(file);
3271 	if (ret)
3272 		goto out;
3273 
3274 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3275 					   cancel);
3276 	if (ret == 0) {
3277 		ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3278 		if (!ret)
3279 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3280 		btrfs_exclop_finish(fs_info);
3281 	}
3282 
3283 	mnt_drop_write_file(file);
3284 	if (bdev)
3285 		blkdev_put(bdev, mode);
3286 out:
3287 	btrfs_put_dev_args_from_path(&args);
3288 	kfree(vol_args);
3289 	return ret;
3290 }
3291 
3292 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3293 				void __user *arg)
3294 {
3295 	struct btrfs_ioctl_fs_info_args *fi_args;
3296 	struct btrfs_device *device;
3297 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3298 	u64 flags_in;
3299 	int ret = 0;
3300 
3301 	fi_args = memdup_user(arg, sizeof(*fi_args));
3302 	if (IS_ERR(fi_args))
3303 		return PTR_ERR(fi_args);
3304 
3305 	flags_in = fi_args->flags;
3306 	memset(fi_args, 0, sizeof(*fi_args));
3307 
3308 	rcu_read_lock();
3309 	fi_args->num_devices = fs_devices->num_devices;
3310 
3311 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3312 		if (device->devid > fi_args->max_id)
3313 			fi_args->max_id = device->devid;
3314 	}
3315 	rcu_read_unlock();
3316 
3317 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3318 	fi_args->nodesize = fs_info->nodesize;
3319 	fi_args->sectorsize = fs_info->sectorsize;
3320 	fi_args->clone_alignment = fs_info->sectorsize;
3321 
3322 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3323 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3324 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3325 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3326 	}
3327 
3328 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3329 		fi_args->generation = fs_info->generation;
3330 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3331 	}
3332 
3333 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3334 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3335 		       sizeof(fi_args->metadata_uuid));
3336 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3337 	}
3338 
3339 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3340 		ret = -EFAULT;
3341 
3342 	kfree(fi_args);
3343 	return ret;
3344 }
3345 
3346 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3347 				 void __user *arg)
3348 {
3349 	BTRFS_DEV_LOOKUP_ARGS(args);
3350 	struct btrfs_ioctl_dev_info_args *di_args;
3351 	struct btrfs_device *dev;
3352 	int ret = 0;
3353 
3354 	di_args = memdup_user(arg, sizeof(*di_args));
3355 	if (IS_ERR(di_args))
3356 		return PTR_ERR(di_args);
3357 
3358 	args.devid = di_args->devid;
3359 	if (!btrfs_is_empty_uuid(di_args->uuid))
3360 		args.uuid = di_args->uuid;
3361 
3362 	rcu_read_lock();
3363 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3364 	if (!dev) {
3365 		ret = -ENODEV;
3366 		goto out;
3367 	}
3368 
3369 	di_args->devid = dev->devid;
3370 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3371 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3372 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3373 	if (dev->name) {
3374 		strncpy(di_args->path, rcu_str_deref(dev->name),
3375 				sizeof(di_args->path) - 1);
3376 		di_args->path[sizeof(di_args->path) - 1] = 0;
3377 	} else {
3378 		di_args->path[0] = '\0';
3379 	}
3380 
3381 out:
3382 	rcu_read_unlock();
3383 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3384 		ret = -EFAULT;
3385 
3386 	kfree(di_args);
3387 	return ret;
3388 }
3389 
3390 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3391 {
3392 	struct inode *inode = file_inode(file);
3393 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3394 	struct btrfs_root *root = BTRFS_I(inode)->root;
3395 	struct btrfs_root *new_root;
3396 	struct btrfs_dir_item *di;
3397 	struct btrfs_trans_handle *trans;
3398 	struct btrfs_path *path = NULL;
3399 	struct btrfs_disk_key disk_key;
3400 	u64 objectid = 0;
3401 	u64 dir_id;
3402 	int ret;
3403 
3404 	if (!capable(CAP_SYS_ADMIN))
3405 		return -EPERM;
3406 
3407 	ret = mnt_want_write_file(file);
3408 	if (ret)
3409 		return ret;
3410 
3411 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3412 		ret = -EFAULT;
3413 		goto out;
3414 	}
3415 
3416 	if (!objectid)
3417 		objectid = BTRFS_FS_TREE_OBJECTID;
3418 
3419 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3420 	if (IS_ERR(new_root)) {
3421 		ret = PTR_ERR(new_root);
3422 		goto out;
3423 	}
3424 	if (!is_fstree(new_root->root_key.objectid)) {
3425 		ret = -ENOENT;
3426 		goto out_free;
3427 	}
3428 
3429 	path = btrfs_alloc_path();
3430 	if (!path) {
3431 		ret = -ENOMEM;
3432 		goto out_free;
3433 	}
3434 
3435 	trans = btrfs_start_transaction(root, 1);
3436 	if (IS_ERR(trans)) {
3437 		ret = PTR_ERR(trans);
3438 		goto out_free;
3439 	}
3440 
3441 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3442 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3443 				   dir_id, "default", 7, 1);
3444 	if (IS_ERR_OR_NULL(di)) {
3445 		btrfs_release_path(path);
3446 		btrfs_end_transaction(trans);
3447 		btrfs_err(fs_info,
3448 			  "Umm, you don't have the default diritem, this isn't going to work");
3449 		ret = -ENOENT;
3450 		goto out_free;
3451 	}
3452 
3453 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3454 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3455 	btrfs_mark_buffer_dirty(path->nodes[0]);
3456 	btrfs_release_path(path);
3457 
3458 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3459 	btrfs_end_transaction(trans);
3460 out_free:
3461 	btrfs_put_root(new_root);
3462 	btrfs_free_path(path);
3463 out:
3464 	mnt_drop_write_file(file);
3465 	return ret;
3466 }
3467 
3468 static void get_block_group_info(struct list_head *groups_list,
3469 				 struct btrfs_ioctl_space_info *space)
3470 {
3471 	struct btrfs_block_group *block_group;
3472 
3473 	space->total_bytes = 0;
3474 	space->used_bytes = 0;
3475 	space->flags = 0;
3476 	list_for_each_entry(block_group, groups_list, list) {
3477 		space->flags = block_group->flags;
3478 		space->total_bytes += block_group->length;
3479 		space->used_bytes += block_group->used;
3480 	}
3481 }
3482 
3483 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3484 				   void __user *arg)
3485 {
3486 	struct btrfs_ioctl_space_args space_args;
3487 	struct btrfs_ioctl_space_info space;
3488 	struct btrfs_ioctl_space_info *dest;
3489 	struct btrfs_ioctl_space_info *dest_orig;
3490 	struct btrfs_ioctl_space_info __user *user_dest;
3491 	struct btrfs_space_info *info;
3492 	static const u64 types[] = {
3493 		BTRFS_BLOCK_GROUP_DATA,
3494 		BTRFS_BLOCK_GROUP_SYSTEM,
3495 		BTRFS_BLOCK_GROUP_METADATA,
3496 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3497 	};
3498 	int num_types = 4;
3499 	int alloc_size;
3500 	int ret = 0;
3501 	u64 slot_count = 0;
3502 	int i, c;
3503 
3504 	if (copy_from_user(&space_args,
3505 			   (struct btrfs_ioctl_space_args __user *)arg,
3506 			   sizeof(space_args)))
3507 		return -EFAULT;
3508 
3509 	for (i = 0; i < num_types; i++) {
3510 		struct btrfs_space_info *tmp;
3511 
3512 		info = NULL;
3513 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3514 			if (tmp->flags == types[i]) {
3515 				info = tmp;
3516 				break;
3517 			}
3518 		}
3519 
3520 		if (!info)
3521 			continue;
3522 
3523 		down_read(&info->groups_sem);
3524 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3525 			if (!list_empty(&info->block_groups[c]))
3526 				slot_count++;
3527 		}
3528 		up_read(&info->groups_sem);
3529 	}
3530 
3531 	/*
3532 	 * Global block reserve, exported as a space_info
3533 	 */
3534 	slot_count++;
3535 
3536 	/* space_slots == 0 means they are asking for a count */
3537 	if (space_args.space_slots == 0) {
3538 		space_args.total_spaces = slot_count;
3539 		goto out;
3540 	}
3541 
3542 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3543 
3544 	alloc_size = sizeof(*dest) * slot_count;
3545 
3546 	/* we generally have at most 6 or so space infos, one for each raid
3547 	 * level.  So, a whole page should be more than enough for everyone
3548 	 */
3549 	if (alloc_size > PAGE_SIZE)
3550 		return -ENOMEM;
3551 
3552 	space_args.total_spaces = 0;
3553 	dest = kmalloc(alloc_size, GFP_KERNEL);
3554 	if (!dest)
3555 		return -ENOMEM;
3556 	dest_orig = dest;
3557 
3558 	/* now we have a buffer to copy into */
3559 	for (i = 0; i < num_types; i++) {
3560 		struct btrfs_space_info *tmp;
3561 
3562 		if (!slot_count)
3563 			break;
3564 
3565 		info = NULL;
3566 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3567 			if (tmp->flags == types[i]) {
3568 				info = tmp;
3569 				break;
3570 			}
3571 		}
3572 
3573 		if (!info)
3574 			continue;
3575 		down_read(&info->groups_sem);
3576 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3577 			if (!list_empty(&info->block_groups[c])) {
3578 				get_block_group_info(&info->block_groups[c],
3579 						     &space);
3580 				memcpy(dest, &space, sizeof(space));
3581 				dest++;
3582 				space_args.total_spaces++;
3583 				slot_count--;
3584 			}
3585 			if (!slot_count)
3586 				break;
3587 		}
3588 		up_read(&info->groups_sem);
3589 	}
3590 
3591 	/*
3592 	 * Add global block reserve
3593 	 */
3594 	if (slot_count) {
3595 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3596 
3597 		spin_lock(&block_rsv->lock);
3598 		space.total_bytes = block_rsv->size;
3599 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3600 		spin_unlock(&block_rsv->lock);
3601 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3602 		memcpy(dest, &space, sizeof(space));
3603 		space_args.total_spaces++;
3604 	}
3605 
3606 	user_dest = (struct btrfs_ioctl_space_info __user *)
3607 		(arg + sizeof(struct btrfs_ioctl_space_args));
3608 
3609 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3610 		ret = -EFAULT;
3611 
3612 	kfree(dest_orig);
3613 out:
3614 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3615 		ret = -EFAULT;
3616 
3617 	return ret;
3618 }
3619 
3620 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3621 					    void __user *argp)
3622 {
3623 	struct btrfs_trans_handle *trans;
3624 	u64 transid;
3625 	int ret;
3626 
3627 	trans = btrfs_attach_transaction_barrier(root);
3628 	if (IS_ERR(trans)) {
3629 		if (PTR_ERR(trans) != -ENOENT)
3630 			return PTR_ERR(trans);
3631 
3632 		/* No running transaction, don't bother */
3633 		transid = root->fs_info->last_trans_committed;
3634 		goto out;
3635 	}
3636 	transid = trans->transid;
3637 	ret = btrfs_commit_transaction_async(trans);
3638 	if (ret) {
3639 		btrfs_end_transaction(trans);
3640 		return ret;
3641 	}
3642 out:
3643 	if (argp)
3644 		if (copy_to_user(argp, &transid, sizeof(transid)))
3645 			return -EFAULT;
3646 	return 0;
3647 }
3648 
3649 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3650 					   void __user *argp)
3651 {
3652 	u64 transid;
3653 
3654 	if (argp) {
3655 		if (copy_from_user(&transid, argp, sizeof(transid)))
3656 			return -EFAULT;
3657 	} else {
3658 		transid = 0;  /* current trans */
3659 	}
3660 	return btrfs_wait_for_commit(fs_info, transid);
3661 }
3662 
3663 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3664 {
3665 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3666 	struct btrfs_ioctl_scrub_args *sa;
3667 	int ret;
3668 
3669 	if (!capable(CAP_SYS_ADMIN))
3670 		return -EPERM;
3671 
3672 	sa = memdup_user(arg, sizeof(*sa));
3673 	if (IS_ERR(sa))
3674 		return PTR_ERR(sa);
3675 
3676 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3677 		ret = mnt_want_write_file(file);
3678 		if (ret)
3679 			goto out;
3680 	}
3681 
3682 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3683 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3684 			      0);
3685 
3686 	/*
3687 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3688 	 * error. This is important as it allows user space to know how much
3689 	 * progress scrub has done. For example, if scrub is canceled we get
3690 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3691 	 * space. Later user space can inspect the progress from the structure
3692 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3693 	 * previously (btrfs-progs does this).
3694 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3695 	 * then return -EFAULT to signal the structure was not copied or it may
3696 	 * be corrupt and unreliable due to a partial copy.
3697 	 */
3698 	if (copy_to_user(arg, sa, sizeof(*sa)))
3699 		ret = -EFAULT;
3700 
3701 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3702 		mnt_drop_write_file(file);
3703 out:
3704 	kfree(sa);
3705 	return ret;
3706 }
3707 
3708 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3709 {
3710 	if (!capable(CAP_SYS_ADMIN))
3711 		return -EPERM;
3712 
3713 	return btrfs_scrub_cancel(fs_info);
3714 }
3715 
3716 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3717 				       void __user *arg)
3718 {
3719 	struct btrfs_ioctl_scrub_args *sa;
3720 	int ret;
3721 
3722 	if (!capable(CAP_SYS_ADMIN))
3723 		return -EPERM;
3724 
3725 	sa = memdup_user(arg, sizeof(*sa));
3726 	if (IS_ERR(sa))
3727 		return PTR_ERR(sa);
3728 
3729 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3730 
3731 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3732 		ret = -EFAULT;
3733 
3734 	kfree(sa);
3735 	return ret;
3736 }
3737 
3738 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3739 				      void __user *arg)
3740 {
3741 	struct btrfs_ioctl_get_dev_stats *sa;
3742 	int ret;
3743 
3744 	sa = memdup_user(arg, sizeof(*sa));
3745 	if (IS_ERR(sa))
3746 		return PTR_ERR(sa);
3747 
3748 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3749 		kfree(sa);
3750 		return -EPERM;
3751 	}
3752 
3753 	ret = btrfs_get_dev_stats(fs_info, sa);
3754 
3755 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3756 		ret = -EFAULT;
3757 
3758 	kfree(sa);
3759 	return ret;
3760 }
3761 
3762 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3763 				    void __user *arg)
3764 {
3765 	struct btrfs_ioctl_dev_replace_args *p;
3766 	int ret;
3767 
3768 	if (!capable(CAP_SYS_ADMIN))
3769 		return -EPERM;
3770 
3771 	p = memdup_user(arg, sizeof(*p));
3772 	if (IS_ERR(p))
3773 		return PTR_ERR(p);
3774 
3775 	switch (p->cmd) {
3776 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3777 		if (sb_rdonly(fs_info->sb)) {
3778 			ret = -EROFS;
3779 			goto out;
3780 		}
3781 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3782 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3783 		} else {
3784 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3785 			btrfs_exclop_finish(fs_info);
3786 		}
3787 		break;
3788 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3789 		btrfs_dev_replace_status(fs_info, p);
3790 		ret = 0;
3791 		break;
3792 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3793 		p->result = btrfs_dev_replace_cancel(fs_info);
3794 		ret = 0;
3795 		break;
3796 	default:
3797 		ret = -EINVAL;
3798 		break;
3799 	}
3800 
3801 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3802 		ret = -EFAULT;
3803 out:
3804 	kfree(p);
3805 	return ret;
3806 }
3807 
3808 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3809 {
3810 	int ret = 0;
3811 	int i;
3812 	u64 rel_ptr;
3813 	int size;
3814 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3815 	struct inode_fs_paths *ipath = NULL;
3816 	struct btrfs_path *path;
3817 
3818 	if (!capable(CAP_DAC_READ_SEARCH))
3819 		return -EPERM;
3820 
3821 	path = btrfs_alloc_path();
3822 	if (!path) {
3823 		ret = -ENOMEM;
3824 		goto out;
3825 	}
3826 
3827 	ipa = memdup_user(arg, sizeof(*ipa));
3828 	if (IS_ERR(ipa)) {
3829 		ret = PTR_ERR(ipa);
3830 		ipa = NULL;
3831 		goto out;
3832 	}
3833 
3834 	size = min_t(u32, ipa->size, 4096);
3835 	ipath = init_ipath(size, root, path);
3836 	if (IS_ERR(ipath)) {
3837 		ret = PTR_ERR(ipath);
3838 		ipath = NULL;
3839 		goto out;
3840 	}
3841 
3842 	ret = paths_from_inode(ipa->inum, ipath);
3843 	if (ret < 0)
3844 		goto out;
3845 
3846 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3847 		rel_ptr = ipath->fspath->val[i] -
3848 			  (u64)(unsigned long)ipath->fspath->val;
3849 		ipath->fspath->val[i] = rel_ptr;
3850 	}
3851 
3852 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3853 			   ipath->fspath, size);
3854 	if (ret) {
3855 		ret = -EFAULT;
3856 		goto out;
3857 	}
3858 
3859 out:
3860 	btrfs_free_path(path);
3861 	free_ipath(ipath);
3862 	kfree(ipa);
3863 
3864 	return ret;
3865 }
3866 
3867 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3868 {
3869 	struct btrfs_data_container *inodes = ctx;
3870 	const size_t c = 3 * sizeof(u64);
3871 
3872 	if (inodes->bytes_left >= c) {
3873 		inodes->bytes_left -= c;
3874 		inodes->val[inodes->elem_cnt] = inum;
3875 		inodes->val[inodes->elem_cnt + 1] = offset;
3876 		inodes->val[inodes->elem_cnt + 2] = root;
3877 		inodes->elem_cnt += 3;
3878 	} else {
3879 		inodes->bytes_missing += c - inodes->bytes_left;
3880 		inodes->bytes_left = 0;
3881 		inodes->elem_missed += 3;
3882 	}
3883 
3884 	return 0;
3885 }
3886 
3887 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3888 					void __user *arg, int version)
3889 {
3890 	int ret = 0;
3891 	int size;
3892 	struct btrfs_ioctl_logical_ino_args *loi;
3893 	struct btrfs_data_container *inodes = NULL;
3894 	struct btrfs_path *path = NULL;
3895 	bool ignore_offset;
3896 
3897 	if (!capable(CAP_SYS_ADMIN))
3898 		return -EPERM;
3899 
3900 	loi = memdup_user(arg, sizeof(*loi));
3901 	if (IS_ERR(loi))
3902 		return PTR_ERR(loi);
3903 
3904 	if (version == 1) {
3905 		ignore_offset = false;
3906 		size = min_t(u32, loi->size, SZ_64K);
3907 	} else {
3908 		/* All reserved bits must be 0 for now */
3909 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3910 			ret = -EINVAL;
3911 			goto out_loi;
3912 		}
3913 		/* Only accept flags we have defined so far */
3914 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3915 			ret = -EINVAL;
3916 			goto out_loi;
3917 		}
3918 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3919 		size = min_t(u32, loi->size, SZ_16M);
3920 	}
3921 
3922 	path = btrfs_alloc_path();
3923 	if (!path) {
3924 		ret = -ENOMEM;
3925 		goto out;
3926 	}
3927 
3928 	inodes = init_data_container(size);
3929 	if (IS_ERR(inodes)) {
3930 		ret = PTR_ERR(inodes);
3931 		inodes = NULL;
3932 		goto out;
3933 	}
3934 
3935 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3936 					  build_ino_list, inodes, ignore_offset);
3937 	if (ret == -EINVAL)
3938 		ret = -ENOENT;
3939 	if (ret < 0)
3940 		goto out;
3941 
3942 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3943 			   size);
3944 	if (ret)
3945 		ret = -EFAULT;
3946 
3947 out:
3948 	btrfs_free_path(path);
3949 	kvfree(inodes);
3950 out_loi:
3951 	kfree(loi);
3952 
3953 	return ret;
3954 }
3955 
3956 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3957 			       struct btrfs_ioctl_balance_args *bargs)
3958 {
3959 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3960 
3961 	bargs->flags = bctl->flags;
3962 
3963 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3964 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3965 	if (atomic_read(&fs_info->balance_pause_req))
3966 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3967 	if (atomic_read(&fs_info->balance_cancel_req))
3968 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3969 
3970 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3971 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3972 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3973 
3974 	spin_lock(&fs_info->balance_lock);
3975 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3976 	spin_unlock(&fs_info->balance_lock);
3977 }
3978 
3979 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3980 {
3981 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3982 	struct btrfs_fs_info *fs_info = root->fs_info;
3983 	struct btrfs_ioctl_balance_args *bargs;
3984 	struct btrfs_balance_control *bctl;
3985 	bool need_unlock; /* for mut. excl. ops lock */
3986 	int ret;
3987 
3988 	if (!arg)
3989 		btrfs_warn(fs_info,
3990 	"IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18");
3991 
3992 	if (!capable(CAP_SYS_ADMIN))
3993 		return -EPERM;
3994 
3995 	ret = mnt_want_write_file(file);
3996 	if (ret)
3997 		return ret;
3998 
3999 again:
4000 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4001 		mutex_lock(&fs_info->balance_mutex);
4002 		need_unlock = true;
4003 		goto locked;
4004 	}
4005 
4006 	/*
4007 	 * mut. excl. ops lock is locked.  Three possibilities:
4008 	 *   (1) some other op is running
4009 	 *   (2) balance is running
4010 	 *   (3) balance is paused -- special case (think resume)
4011 	 */
4012 	mutex_lock(&fs_info->balance_mutex);
4013 	if (fs_info->balance_ctl) {
4014 		/* this is either (2) or (3) */
4015 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4016 			mutex_unlock(&fs_info->balance_mutex);
4017 			/*
4018 			 * Lock released to allow other waiters to continue,
4019 			 * we'll reexamine the status again.
4020 			 */
4021 			mutex_lock(&fs_info->balance_mutex);
4022 
4023 			if (fs_info->balance_ctl &&
4024 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4025 				/* this is (3) */
4026 				need_unlock = false;
4027 				goto locked;
4028 			}
4029 
4030 			mutex_unlock(&fs_info->balance_mutex);
4031 			goto again;
4032 		} else {
4033 			/* this is (2) */
4034 			mutex_unlock(&fs_info->balance_mutex);
4035 			ret = -EINPROGRESS;
4036 			goto out;
4037 		}
4038 	} else {
4039 		/* this is (1) */
4040 		mutex_unlock(&fs_info->balance_mutex);
4041 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4042 		goto out;
4043 	}
4044 
4045 locked:
4046 
4047 	if (arg) {
4048 		bargs = memdup_user(arg, sizeof(*bargs));
4049 		if (IS_ERR(bargs)) {
4050 			ret = PTR_ERR(bargs);
4051 			goto out_unlock;
4052 		}
4053 
4054 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4055 			if (!fs_info->balance_ctl) {
4056 				ret = -ENOTCONN;
4057 				goto out_bargs;
4058 			}
4059 
4060 			bctl = fs_info->balance_ctl;
4061 			spin_lock(&fs_info->balance_lock);
4062 			bctl->flags |= BTRFS_BALANCE_RESUME;
4063 			spin_unlock(&fs_info->balance_lock);
4064 
4065 			goto do_balance;
4066 		}
4067 	} else {
4068 		bargs = NULL;
4069 	}
4070 
4071 	if (fs_info->balance_ctl) {
4072 		ret = -EINPROGRESS;
4073 		goto out_bargs;
4074 	}
4075 
4076 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4077 	if (!bctl) {
4078 		ret = -ENOMEM;
4079 		goto out_bargs;
4080 	}
4081 
4082 	if (arg) {
4083 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4084 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4085 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4086 
4087 		bctl->flags = bargs->flags;
4088 	} else {
4089 		/* balance everything - no filters */
4090 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4091 	}
4092 
4093 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4094 		ret = -EINVAL;
4095 		goto out_bctl;
4096 	}
4097 
4098 do_balance:
4099 	/*
4100 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4101 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4102 	 * all the way until unmount, in free_fs_info.  The flag should be
4103 	 * cleared after reset_balance_state.
4104 	 */
4105 	need_unlock = false;
4106 
4107 	ret = btrfs_balance(fs_info, bctl, bargs);
4108 	bctl = NULL;
4109 
4110 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4111 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4112 			ret = -EFAULT;
4113 	}
4114 
4115 out_bctl:
4116 	kfree(bctl);
4117 out_bargs:
4118 	kfree(bargs);
4119 out_unlock:
4120 	mutex_unlock(&fs_info->balance_mutex);
4121 	if (need_unlock)
4122 		btrfs_exclop_finish(fs_info);
4123 out:
4124 	mnt_drop_write_file(file);
4125 	return ret;
4126 }
4127 
4128 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4129 {
4130 	if (!capable(CAP_SYS_ADMIN))
4131 		return -EPERM;
4132 
4133 	switch (cmd) {
4134 	case BTRFS_BALANCE_CTL_PAUSE:
4135 		return btrfs_pause_balance(fs_info);
4136 	case BTRFS_BALANCE_CTL_CANCEL:
4137 		return btrfs_cancel_balance(fs_info);
4138 	}
4139 
4140 	return -EINVAL;
4141 }
4142 
4143 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4144 					 void __user *arg)
4145 {
4146 	struct btrfs_ioctl_balance_args *bargs;
4147 	int ret = 0;
4148 
4149 	if (!capable(CAP_SYS_ADMIN))
4150 		return -EPERM;
4151 
4152 	mutex_lock(&fs_info->balance_mutex);
4153 	if (!fs_info->balance_ctl) {
4154 		ret = -ENOTCONN;
4155 		goto out;
4156 	}
4157 
4158 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4159 	if (!bargs) {
4160 		ret = -ENOMEM;
4161 		goto out;
4162 	}
4163 
4164 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4165 
4166 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4167 		ret = -EFAULT;
4168 
4169 	kfree(bargs);
4170 out:
4171 	mutex_unlock(&fs_info->balance_mutex);
4172 	return ret;
4173 }
4174 
4175 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4176 {
4177 	struct inode *inode = file_inode(file);
4178 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4179 	struct btrfs_ioctl_quota_ctl_args *sa;
4180 	int ret;
4181 
4182 	if (!capable(CAP_SYS_ADMIN))
4183 		return -EPERM;
4184 
4185 	ret = mnt_want_write_file(file);
4186 	if (ret)
4187 		return ret;
4188 
4189 	sa = memdup_user(arg, sizeof(*sa));
4190 	if (IS_ERR(sa)) {
4191 		ret = PTR_ERR(sa);
4192 		goto drop_write;
4193 	}
4194 
4195 	down_write(&fs_info->subvol_sem);
4196 
4197 	switch (sa->cmd) {
4198 	case BTRFS_QUOTA_CTL_ENABLE:
4199 		ret = btrfs_quota_enable(fs_info);
4200 		break;
4201 	case BTRFS_QUOTA_CTL_DISABLE:
4202 		ret = btrfs_quota_disable(fs_info);
4203 		break;
4204 	default:
4205 		ret = -EINVAL;
4206 		break;
4207 	}
4208 
4209 	kfree(sa);
4210 	up_write(&fs_info->subvol_sem);
4211 drop_write:
4212 	mnt_drop_write_file(file);
4213 	return ret;
4214 }
4215 
4216 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4217 {
4218 	struct inode *inode = file_inode(file);
4219 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4220 	struct btrfs_root *root = BTRFS_I(inode)->root;
4221 	struct btrfs_ioctl_qgroup_assign_args *sa;
4222 	struct btrfs_trans_handle *trans;
4223 	int ret;
4224 	int err;
4225 
4226 	if (!capable(CAP_SYS_ADMIN))
4227 		return -EPERM;
4228 
4229 	ret = mnt_want_write_file(file);
4230 	if (ret)
4231 		return ret;
4232 
4233 	sa = memdup_user(arg, sizeof(*sa));
4234 	if (IS_ERR(sa)) {
4235 		ret = PTR_ERR(sa);
4236 		goto drop_write;
4237 	}
4238 
4239 	trans = btrfs_join_transaction(root);
4240 	if (IS_ERR(trans)) {
4241 		ret = PTR_ERR(trans);
4242 		goto out;
4243 	}
4244 
4245 	if (sa->assign) {
4246 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4247 	} else {
4248 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4249 	}
4250 
4251 	/* update qgroup status and info */
4252 	err = btrfs_run_qgroups(trans);
4253 	if (err < 0)
4254 		btrfs_handle_fs_error(fs_info, err,
4255 				      "failed to update qgroup status and info");
4256 	err = btrfs_end_transaction(trans);
4257 	if (err && !ret)
4258 		ret = err;
4259 
4260 out:
4261 	kfree(sa);
4262 drop_write:
4263 	mnt_drop_write_file(file);
4264 	return ret;
4265 }
4266 
4267 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4268 {
4269 	struct inode *inode = file_inode(file);
4270 	struct btrfs_root *root = BTRFS_I(inode)->root;
4271 	struct btrfs_ioctl_qgroup_create_args *sa;
4272 	struct btrfs_trans_handle *trans;
4273 	int ret;
4274 	int err;
4275 
4276 	if (!capable(CAP_SYS_ADMIN))
4277 		return -EPERM;
4278 
4279 	ret = mnt_want_write_file(file);
4280 	if (ret)
4281 		return ret;
4282 
4283 	sa = memdup_user(arg, sizeof(*sa));
4284 	if (IS_ERR(sa)) {
4285 		ret = PTR_ERR(sa);
4286 		goto drop_write;
4287 	}
4288 
4289 	if (!sa->qgroupid) {
4290 		ret = -EINVAL;
4291 		goto out;
4292 	}
4293 
4294 	trans = btrfs_join_transaction(root);
4295 	if (IS_ERR(trans)) {
4296 		ret = PTR_ERR(trans);
4297 		goto out;
4298 	}
4299 
4300 	if (sa->create) {
4301 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4302 	} else {
4303 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4304 	}
4305 
4306 	err = btrfs_end_transaction(trans);
4307 	if (err && !ret)
4308 		ret = err;
4309 
4310 out:
4311 	kfree(sa);
4312 drop_write:
4313 	mnt_drop_write_file(file);
4314 	return ret;
4315 }
4316 
4317 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4318 {
4319 	struct inode *inode = file_inode(file);
4320 	struct btrfs_root *root = BTRFS_I(inode)->root;
4321 	struct btrfs_ioctl_qgroup_limit_args *sa;
4322 	struct btrfs_trans_handle *trans;
4323 	int ret;
4324 	int err;
4325 	u64 qgroupid;
4326 
4327 	if (!capable(CAP_SYS_ADMIN))
4328 		return -EPERM;
4329 
4330 	ret = mnt_want_write_file(file);
4331 	if (ret)
4332 		return ret;
4333 
4334 	sa = memdup_user(arg, sizeof(*sa));
4335 	if (IS_ERR(sa)) {
4336 		ret = PTR_ERR(sa);
4337 		goto drop_write;
4338 	}
4339 
4340 	trans = btrfs_join_transaction(root);
4341 	if (IS_ERR(trans)) {
4342 		ret = PTR_ERR(trans);
4343 		goto out;
4344 	}
4345 
4346 	qgroupid = sa->qgroupid;
4347 	if (!qgroupid) {
4348 		/* take the current subvol as qgroup */
4349 		qgroupid = root->root_key.objectid;
4350 	}
4351 
4352 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4353 
4354 	err = btrfs_end_transaction(trans);
4355 	if (err && !ret)
4356 		ret = err;
4357 
4358 out:
4359 	kfree(sa);
4360 drop_write:
4361 	mnt_drop_write_file(file);
4362 	return ret;
4363 }
4364 
4365 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4366 {
4367 	struct inode *inode = file_inode(file);
4368 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4369 	struct btrfs_ioctl_quota_rescan_args *qsa;
4370 	int ret;
4371 
4372 	if (!capable(CAP_SYS_ADMIN))
4373 		return -EPERM;
4374 
4375 	ret = mnt_want_write_file(file);
4376 	if (ret)
4377 		return ret;
4378 
4379 	qsa = memdup_user(arg, sizeof(*qsa));
4380 	if (IS_ERR(qsa)) {
4381 		ret = PTR_ERR(qsa);
4382 		goto drop_write;
4383 	}
4384 
4385 	if (qsa->flags) {
4386 		ret = -EINVAL;
4387 		goto out;
4388 	}
4389 
4390 	ret = btrfs_qgroup_rescan(fs_info);
4391 
4392 out:
4393 	kfree(qsa);
4394 drop_write:
4395 	mnt_drop_write_file(file);
4396 	return ret;
4397 }
4398 
4399 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4400 						void __user *arg)
4401 {
4402 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
4403 
4404 	if (!capable(CAP_SYS_ADMIN))
4405 		return -EPERM;
4406 
4407 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4408 		qsa.flags = 1;
4409 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4410 	}
4411 
4412 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
4413 		return -EFAULT;
4414 
4415 	return 0;
4416 }
4417 
4418 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4419 						void __user *arg)
4420 {
4421 	if (!capable(CAP_SYS_ADMIN))
4422 		return -EPERM;
4423 
4424 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4425 }
4426 
4427 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4428 					    struct user_namespace *mnt_userns,
4429 					    struct btrfs_ioctl_received_subvol_args *sa)
4430 {
4431 	struct inode *inode = file_inode(file);
4432 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4433 	struct btrfs_root *root = BTRFS_I(inode)->root;
4434 	struct btrfs_root_item *root_item = &root->root_item;
4435 	struct btrfs_trans_handle *trans;
4436 	struct timespec64 ct = current_time(inode);
4437 	int ret = 0;
4438 	int received_uuid_changed;
4439 
4440 	if (!inode_owner_or_capable(mnt_userns, inode))
4441 		return -EPERM;
4442 
4443 	ret = mnt_want_write_file(file);
4444 	if (ret < 0)
4445 		return ret;
4446 
4447 	down_write(&fs_info->subvol_sem);
4448 
4449 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4450 		ret = -EINVAL;
4451 		goto out;
4452 	}
4453 
4454 	if (btrfs_root_readonly(root)) {
4455 		ret = -EROFS;
4456 		goto out;
4457 	}
4458 
4459 	/*
4460 	 * 1 - root item
4461 	 * 2 - uuid items (received uuid + subvol uuid)
4462 	 */
4463 	trans = btrfs_start_transaction(root, 3);
4464 	if (IS_ERR(trans)) {
4465 		ret = PTR_ERR(trans);
4466 		trans = NULL;
4467 		goto out;
4468 	}
4469 
4470 	sa->rtransid = trans->transid;
4471 	sa->rtime.sec = ct.tv_sec;
4472 	sa->rtime.nsec = ct.tv_nsec;
4473 
4474 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4475 				       BTRFS_UUID_SIZE);
4476 	if (received_uuid_changed &&
4477 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4478 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4479 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4480 					  root->root_key.objectid);
4481 		if (ret && ret != -ENOENT) {
4482 		        btrfs_abort_transaction(trans, ret);
4483 		        btrfs_end_transaction(trans);
4484 		        goto out;
4485 		}
4486 	}
4487 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4488 	btrfs_set_root_stransid(root_item, sa->stransid);
4489 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4490 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4491 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4492 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4493 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4494 
4495 	ret = btrfs_update_root(trans, fs_info->tree_root,
4496 				&root->root_key, &root->root_item);
4497 	if (ret < 0) {
4498 		btrfs_end_transaction(trans);
4499 		goto out;
4500 	}
4501 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4502 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4503 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4504 					  root->root_key.objectid);
4505 		if (ret < 0 && ret != -EEXIST) {
4506 			btrfs_abort_transaction(trans, ret);
4507 			btrfs_end_transaction(trans);
4508 			goto out;
4509 		}
4510 	}
4511 	ret = btrfs_commit_transaction(trans);
4512 out:
4513 	up_write(&fs_info->subvol_sem);
4514 	mnt_drop_write_file(file);
4515 	return ret;
4516 }
4517 
4518 #ifdef CONFIG_64BIT
4519 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4520 						void __user *arg)
4521 {
4522 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4523 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4524 	int ret = 0;
4525 
4526 	args32 = memdup_user(arg, sizeof(*args32));
4527 	if (IS_ERR(args32))
4528 		return PTR_ERR(args32);
4529 
4530 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4531 	if (!args64) {
4532 		ret = -ENOMEM;
4533 		goto out;
4534 	}
4535 
4536 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4537 	args64->stransid = args32->stransid;
4538 	args64->rtransid = args32->rtransid;
4539 	args64->stime.sec = args32->stime.sec;
4540 	args64->stime.nsec = args32->stime.nsec;
4541 	args64->rtime.sec = args32->rtime.sec;
4542 	args64->rtime.nsec = args32->rtime.nsec;
4543 	args64->flags = args32->flags;
4544 
4545 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4546 	if (ret)
4547 		goto out;
4548 
4549 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4550 	args32->stransid = args64->stransid;
4551 	args32->rtransid = args64->rtransid;
4552 	args32->stime.sec = args64->stime.sec;
4553 	args32->stime.nsec = args64->stime.nsec;
4554 	args32->rtime.sec = args64->rtime.sec;
4555 	args32->rtime.nsec = args64->rtime.nsec;
4556 	args32->flags = args64->flags;
4557 
4558 	ret = copy_to_user(arg, args32, sizeof(*args32));
4559 	if (ret)
4560 		ret = -EFAULT;
4561 
4562 out:
4563 	kfree(args32);
4564 	kfree(args64);
4565 	return ret;
4566 }
4567 #endif
4568 
4569 static long btrfs_ioctl_set_received_subvol(struct file *file,
4570 					    void __user *arg)
4571 {
4572 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4573 	int ret = 0;
4574 
4575 	sa = memdup_user(arg, sizeof(*sa));
4576 	if (IS_ERR(sa))
4577 		return PTR_ERR(sa);
4578 
4579 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4580 
4581 	if (ret)
4582 		goto out;
4583 
4584 	ret = copy_to_user(arg, sa, sizeof(*sa));
4585 	if (ret)
4586 		ret = -EFAULT;
4587 
4588 out:
4589 	kfree(sa);
4590 	return ret;
4591 }
4592 
4593 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4594 					void __user *arg)
4595 {
4596 	size_t len;
4597 	int ret;
4598 	char label[BTRFS_LABEL_SIZE];
4599 
4600 	spin_lock(&fs_info->super_lock);
4601 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4602 	spin_unlock(&fs_info->super_lock);
4603 
4604 	len = strnlen(label, BTRFS_LABEL_SIZE);
4605 
4606 	if (len == BTRFS_LABEL_SIZE) {
4607 		btrfs_warn(fs_info,
4608 			   "label is too long, return the first %zu bytes",
4609 			   --len);
4610 	}
4611 
4612 	ret = copy_to_user(arg, label, len);
4613 
4614 	return ret ? -EFAULT : 0;
4615 }
4616 
4617 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4618 {
4619 	struct inode *inode = file_inode(file);
4620 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4621 	struct btrfs_root *root = BTRFS_I(inode)->root;
4622 	struct btrfs_super_block *super_block = fs_info->super_copy;
4623 	struct btrfs_trans_handle *trans;
4624 	char label[BTRFS_LABEL_SIZE];
4625 	int ret;
4626 
4627 	if (!capable(CAP_SYS_ADMIN))
4628 		return -EPERM;
4629 
4630 	if (copy_from_user(label, arg, sizeof(label)))
4631 		return -EFAULT;
4632 
4633 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4634 		btrfs_err(fs_info,
4635 			  "unable to set label with more than %d bytes",
4636 			  BTRFS_LABEL_SIZE - 1);
4637 		return -EINVAL;
4638 	}
4639 
4640 	ret = mnt_want_write_file(file);
4641 	if (ret)
4642 		return ret;
4643 
4644 	trans = btrfs_start_transaction(root, 0);
4645 	if (IS_ERR(trans)) {
4646 		ret = PTR_ERR(trans);
4647 		goto out_unlock;
4648 	}
4649 
4650 	spin_lock(&fs_info->super_lock);
4651 	strcpy(super_block->label, label);
4652 	spin_unlock(&fs_info->super_lock);
4653 	ret = btrfs_commit_transaction(trans);
4654 
4655 out_unlock:
4656 	mnt_drop_write_file(file);
4657 	return ret;
4658 }
4659 
4660 #define INIT_FEATURE_FLAGS(suffix) \
4661 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4662 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4663 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4664 
4665 int btrfs_ioctl_get_supported_features(void __user *arg)
4666 {
4667 	static const struct btrfs_ioctl_feature_flags features[3] = {
4668 		INIT_FEATURE_FLAGS(SUPP),
4669 		INIT_FEATURE_FLAGS(SAFE_SET),
4670 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4671 	};
4672 
4673 	if (copy_to_user(arg, &features, sizeof(features)))
4674 		return -EFAULT;
4675 
4676 	return 0;
4677 }
4678 
4679 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4680 					void __user *arg)
4681 {
4682 	struct btrfs_super_block *super_block = fs_info->super_copy;
4683 	struct btrfs_ioctl_feature_flags features;
4684 
4685 	features.compat_flags = btrfs_super_compat_flags(super_block);
4686 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4687 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4688 
4689 	if (copy_to_user(arg, &features, sizeof(features)))
4690 		return -EFAULT;
4691 
4692 	return 0;
4693 }
4694 
4695 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4696 			      enum btrfs_feature_set set,
4697 			      u64 change_mask, u64 flags, u64 supported_flags,
4698 			      u64 safe_set, u64 safe_clear)
4699 {
4700 	const char *type = btrfs_feature_set_name(set);
4701 	char *names;
4702 	u64 disallowed, unsupported;
4703 	u64 set_mask = flags & change_mask;
4704 	u64 clear_mask = ~flags & change_mask;
4705 
4706 	unsupported = set_mask & ~supported_flags;
4707 	if (unsupported) {
4708 		names = btrfs_printable_features(set, unsupported);
4709 		if (names) {
4710 			btrfs_warn(fs_info,
4711 				   "this kernel does not support the %s feature bit%s",
4712 				   names, strchr(names, ',') ? "s" : "");
4713 			kfree(names);
4714 		} else
4715 			btrfs_warn(fs_info,
4716 				   "this kernel does not support %s bits 0x%llx",
4717 				   type, unsupported);
4718 		return -EOPNOTSUPP;
4719 	}
4720 
4721 	disallowed = set_mask & ~safe_set;
4722 	if (disallowed) {
4723 		names = btrfs_printable_features(set, disallowed);
4724 		if (names) {
4725 			btrfs_warn(fs_info,
4726 				   "can't set the %s feature bit%s while mounted",
4727 				   names, strchr(names, ',') ? "s" : "");
4728 			kfree(names);
4729 		} else
4730 			btrfs_warn(fs_info,
4731 				   "can't set %s bits 0x%llx while mounted",
4732 				   type, disallowed);
4733 		return -EPERM;
4734 	}
4735 
4736 	disallowed = clear_mask & ~safe_clear;
4737 	if (disallowed) {
4738 		names = btrfs_printable_features(set, disallowed);
4739 		if (names) {
4740 			btrfs_warn(fs_info,
4741 				   "can't clear the %s feature bit%s while mounted",
4742 				   names, strchr(names, ',') ? "s" : "");
4743 			kfree(names);
4744 		} else
4745 			btrfs_warn(fs_info,
4746 				   "can't clear %s bits 0x%llx while mounted",
4747 				   type, disallowed);
4748 		return -EPERM;
4749 	}
4750 
4751 	return 0;
4752 }
4753 
4754 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4755 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4756 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4757 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4758 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4759 
4760 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4761 {
4762 	struct inode *inode = file_inode(file);
4763 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4764 	struct btrfs_root *root = BTRFS_I(inode)->root;
4765 	struct btrfs_super_block *super_block = fs_info->super_copy;
4766 	struct btrfs_ioctl_feature_flags flags[2];
4767 	struct btrfs_trans_handle *trans;
4768 	u64 newflags;
4769 	int ret;
4770 
4771 	if (!capable(CAP_SYS_ADMIN))
4772 		return -EPERM;
4773 
4774 	if (copy_from_user(flags, arg, sizeof(flags)))
4775 		return -EFAULT;
4776 
4777 	/* Nothing to do */
4778 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4779 	    !flags[0].incompat_flags)
4780 		return 0;
4781 
4782 	ret = check_feature(fs_info, flags[0].compat_flags,
4783 			    flags[1].compat_flags, COMPAT);
4784 	if (ret)
4785 		return ret;
4786 
4787 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4788 			    flags[1].compat_ro_flags, COMPAT_RO);
4789 	if (ret)
4790 		return ret;
4791 
4792 	ret = check_feature(fs_info, flags[0].incompat_flags,
4793 			    flags[1].incompat_flags, INCOMPAT);
4794 	if (ret)
4795 		return ret;
4796 
4797 	ret = mnt_want_write_file(file);
4798 	if (ret)
4799 		return ret;
4800 
4801 	trans = btrfs_start_transaction(root, 0);
4802 	if (IS_ERR(trans)) {
4803 		ret = PTR_ERR(trans);
4804 		goto out_drop_write;
4805 	}
4806 
4807 	spin_lock(&fs_info->super_lock);
4808 	newflags = btrfs_super_compat_flags(super_block);
4809 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4810 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4811 	btrfs_set_super_compat_flags(super_block, newflags);
4812 
4813 	newflags = btrfs_super_compat_ro_flags(super_block);
4814 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4815 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4816 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4817 
4818 	newflags = btrfs_super_incompat_flags(super_block);
4819 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4820 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4821 	btrfs_set_super_incompat_flags(super_block, newflags);
4822 	spin_unlock(&fs_info->super_lock);
4823 
4824 	ret = btrfs_commit_transaction(trans);
4825 out_drop_write:
4826 	mnt_drop_write_file(file);
4827 
4828 	return ret;
4829 }
4830 
4831 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4832 {
4833 	struct btrfs_ioctl_send_args *arg;
4834 	int ret;
4835 
4836 	if (compat) {
4837 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4838 		struct btrfs_ioctl_send_args_32 args32;
4839 
4840 		ret = copy_from_user(&args32, argp, sizeof(args32));
4841 		if (ret)
4842 			return -EFAULT;
4843 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4844 		if (!arg)
4845 			return -ENOMEM;
4846 		arg->send_fd = args32.send_fd;
4847 		arg->clone_sources_count = args32.clone_sources_count;
4848 		arg->clone_sources = compat_ptr(args32.clone_sources);
4849 		arg->parent_root = args32.parent_root;
4850 		arg->flags = args32.flags;
4851 		memcpy(arg->reserved, args32.reserved,
4852 		       sizeof(args32.reserved));
4853 #else
4854 		return -ENOTTY;
4855 #endif
4856 	} else {
4857 		arg = memdup_user(argp, sizeof(*arg));
4858 		if (IS_ERR(arg))
4859 			return PTR_ERR(arg);
4860 	}
4861 	ret = btrfs_ioctl_send(file, arg);
4862 	kfree(arg);
4863 	return ret;
4864 }
4865 
4866 long btrfs_ioctl(struct file *file, unsigned int
4867 		cmd, unsigned long arg)
4868 {
4869 	struct inode *inode = file_inode(file);
4870 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4871 	struct btrfs_root *root = BTRFS_I(inode)->root;
4872 	void __user *argp = (void __user *)arg;
4873 
4874 	switch (cmd) {
4875 	case FS_IOC_GETVERSION:
4876 		return btrfs_ioctl_getversion(file, argp);
4877 	case FS_IOC_GETFSLABEL:
4878 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4879 	case FS_IOC_SETFSLABEL:
4880 		return btrfs_ioctl_set_fslabel(file, argp);
4881 	case FITRIM:
4882 		return btrfs_ioctl_fitrim(fs_info, argp);
4883 	case BTRFS_IOC_SNAP_CREATE:
4884 		return btrfs_ioctl_snap_create(file, argp, 0);
4885 	case BTRFS_IOC_SNAP_CREATE_V2:
4886 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4887 	case BTRFS_IOC_SUBVOL_CREATE:
4888 		return btrfs_ioctl_snap_create(file, argp, 1);
4889 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4890 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4891 	case BTRFS_IOC_SNAP_DESTROY:
4892 		return btrfs_ioctl_snap_destroy(file, argp, false);
4893 	case BTRFS_IOC_SNAP_DESTROY_V2:
4894 		return btrfs_ioctl_snap_destroy(file, argp, true);
4895 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4896 		return btrfs_ioctl_subvol_getflags(file, argp);
4897 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4898 		return btrfs_ioctl_subvol_setflags(file, argp);
4899 	case BTRFS_IOC_DEFAULT_SUBVOL:
4900 		return btrfs_ioctl_default_subvol(file, argp);
4901 	case BTRFS_IOC_DEFRAG:
4902 		return btrfs_ioctl_defrag(file, NULL);
4903 	case BTRFS_IOC_DEFRAG_RANGE:
4904 		return btrfs_ioctl_defrag(file, argp);
4905 	case BTRFS_IOC_RESIZE:
4906 		return btrfs_ioctl_resize(file, argp);
4907 	case BTRFS_IOC_ADD_DEV:
4908 		return btrfs_ioctl_add_dev(fs_info, argp);
4909 	case BTRFS_IOC_RM_DEV:
4910 		return btrfs_ioctl_rm_dev(file, argp);
4911 	case BTRFS_IOC_RM_DEV_V2:
4912 		return btrfs_ioctl_rm_dev_v2(file, argp);
4913 	case BTRFS_IOC_FS_INFO:
4914 		return btrfs_ioctl_fs_info(fs_info, argp);
4915 	case BTRFS_IOC_DEV_INFO:
4916 		return btrfs_ioctl_dev_info(fs_info, argp);
4917 	case BTRFS_IOC_BALANCE:
4918 		return btrfs_ioctl_balance(file, NULL);
4919 	case BTRFS_IOC_TREE_SEARCH:
4920 		return btrfs_ioctl_tree_search(file, argp);
4921 	case BTRFS_IOC_TREE_SEARCH_V2:
4922 		return btrfs_ioctl_tree_search_v2(file, argp);
4923 	case BTRFS_IOC_INO_LOOKUP:
4924 		return btrfs_ioctl_ino_lookup(file, argp);
4925 	case BTRFS_IOC_INO_PATHS:
4926 		return btrfs_ioctl_ino_to_path(root, argp);
4927 	case BTRFS_IOC_LOGICAL_INO:
4928 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4929 	case BTRFS_IOC_LOGICAL_INO_V2:
4930 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4931 	case BTRFS_IOC_SPACE_INFO:
4932 		return btrfs_ioctl_space_info(fs_info, argp);
4933 	case BTRFS_IOC_SYNC: {
4934 		int ret;
4935 
4936 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4937 		if (ret)
4938 			return ret;
4939 		ret = btrfs_sync_fs(inode->i_sb, 1);
4940 		/*
4941 		 * The transaction thread may want to do more work,
4942 		 * namely it pokes the cleaner kthread that will start
4943 		 * processing uncleaned subvols.
4944 		 */
4945 		wake_up_process(fs_info->transaction_kthread);
4946 		return ret;
4947 	}
4948 	case BTRFS_IOC_START_SYNC:
4949 		return btrfs_ioctl_start_sync(root, argp);
4950 	case BTRFS_IOC_WAIT_SYNC:
4951 		return btrfs_ioctl_wait_sync(fs_info, argp);
4952 	case BTRFS_IOC_SCRUB:
4953 		return btrfs_ioctl_scrub(file, argp);
4954 	case BTRFS_IOC_SCRUB_CANCEL:
4955 		return btrfs_ioctl_scrub_cancel(fs_info);
4956 	case BTRFS_IOC_SCRUB_PROGRESS:
4957 		return btrfs_ioctl_scrub_progress(fs_info, argp);
4958 	case BTRFS_IOC_BALANCE_V2:
4959 		return btrfs_ioctl_balance(file, argp);
4960 	case BTRFS_IOC_BALANCE_CTL:
4961 		return btrfs_ioctl_balance_ctl(fs_info, arg);
4962 	case BTRFS_IOC_BALANCE_PROGRESS:
4963 		return btrfs_ioctl_balance_progress(fs_info, argp);
4964 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4965 		return btrfs_ioctl_set_received_subvol(file, argp);
4966 #ifdef CONFIG_64BIT
4967 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4968 		return btrfs_ioctl_set_received_subvol_32(file, argp);
4969 #endif
4970 	case BTRFS_IOC_SEND:
4971 		return _btrfs_ioctl_send(file, argp, false);
4972 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4973 	case BTRFS_IOC_SEND_32:
4974 		return _btrfs_ioctl_send(file, argp, true);
4975 #endif
4976 	case BTRFS_IOC_GET_DEV_STATS:
4977 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4978 	case BTRFS_IOC_QUOTA_CTL:
4979 		return btrfs_ioctl_quota_ctl(file, argp);
4980 	case BTRFS_IOC_QGROUP_ASSIGN:
4981 		return btrfs_ioctl_qgroup_assign(file, argp);
4982 	case BTRFS_IOC_QGROUP_CREATE:
4983 		return btrfs_ioctl_qgroup_create(file, argp);
4984 	case BTRFS_IOC_QGROUP_LIMIT:
4985 		return btrfs_ioctl_qgroup_limit(file, argp);
4986 	case BTRFS_IOC_QUOTA_RESCAN:
4987 		return btrfs_ioctl_quota_rescan(file, argp);
4988 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4989 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4990 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4991 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4992 	case BTRFS_IOC_DEV_REPLACE:
4993 		return btrfs_ioctl_dev_replace(fs_info, argp);
4994 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4995 		return btrfs_ioctl_get_supported_features(argp);
4996 	case BTRFS_IOC_GET_FEATURES:
4997 		return btrfs_ioctl_get_features(fs_info, argp);
4998 	case BTRFS_IOC_SET_FEATURES:
4999 		return btrfs_ioctl_set_features(file, argp);
5000 	case BTRFS_IOC_GET_SUBVOL_INFO:
5001 		return btrfs_ioctl_get_subvol_info(file, argp);
5002 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5003 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5004 	case BTRFS_IOC_INO_LOOKUP_USER:
5005 		return btrfs_ioctl_ino_lookup_user(file, argp);
5006 	case FS_IOC_ENABLE_VERITY:
5007 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5008 	case FS_IOC_MEASURE_VERITY:
5009 		return fsverity_ioctl_measure(file, argp);
5010 	}
5011 
5012 	return -ENOTTY;
5013 }
5014 
5015 #ifdef CONFIG_COMPAT
5016 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5017 {
5018 	/*
5019 	 * These all access 32-bit values anyway so no further
5020 	 * handling is necessary.
5021 	 */
5022 	switch (cmd) {
5023 	case FS_IOC32_GETVERSION:
5024 		cmd = FS_IOC_GETVERSION;
5025 		break;
5026 	}
5027 
5028 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5029 }
5030 #endif
5031