1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include <linux/btrfs.h> 46 #include <linux/uaccess.h> 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 #include "dev-replace.h" 59 #include "props.h" 60 #include "sysfs.h" 61 #include "qgroup.h" 62 63 #ifdef CONFIG_64BIT 64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 65 * structures are incorrect, as the timespec structure from userspace 66 * is 4 bytes too small. We define these alternatives here to teach 67 * the kernel about the 32-bit struct packing. 68 */ 69 struct btrfs_ioctl_timespec_32 { 70 __u64 sec; 71 __u32 nsec; 72 } __attribute__ ((__packed__)); 73 74 struct btrfs_ioctl_received_subvol_args_32 { 75 char uuid[BTRFS_UUID_SIZE]; /* in */ 76 __u64 stransid; /* in */ 77 __u64 rtransid; /* out */ 78 struct btrfs_ioctl_timespec_32 stime; /* in */ 79 struct btrfs_ioctl_timespec_32 rtime; /* out */ 80 __u64 flags; /* in */ 81 __u64 reserved[16]; /* in */ 82 } __attribute__ ((__packed__)); 83 84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 85 struct btrfs_ioctl_received_subvol_args_32) 86 #endif 87 88 89 static int btrfs_clone(struct inode *src, struct inode *inode, 90 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 91 int no_time_update); 92 93 /* Mask out flags that are inappropriate for the given type of inode. */ 94 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 95 { 96 if (S_ISDIR(mode)) 97 return flags; 98 else if (S_ISREG(mode)) 99 return flags & ~FS_DIRSYNC_FL; 100 else 101 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 102 } 103 104 /* 105 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 106 */ 107 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 108 { 109 unsigned int iflags = 0; 110 111 if (flags & BTRFS_INODE_SYNC) 112 iflags |= FS_SYNC_FL; 113 if (flags & BTRFS_INODE_IMMUTABLE) 114 iflags |= FS_IMMUTABLE_FL; 115 if (flags & BTRFS_INODE_APPEND) 116 iflags |= FS_APPEND_FL; 117 if (flags & BTRFS_INODE_NODUMP) 118 iflags |= FS_NODUMP_FL; 119 if (flags & BTRFS_INODE_NOATIME) 120 iflags |= FS_NOATIME_FL; 121 if (flags & BTRFS_INODE_DIRSYNC) 122 iflags |= FS_DIRSYNC_FL; 123 if (flags & BTRFS_INODE_NODATACOW) 124 iflags |= FS_NOCOW_FL; 125 126 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 127 iflags |= FS_COMPR_FL; 128 else if (flags & BTRFS_INODE_NOCOMPRESS) 129 iflags |= FS_NOCOMP_FL; 130 131 return iflags; 132 } 133 134 /* 135 * Update inode->i_flags based on the btrfs internal flags. 136 */ 137 void btrfs_update_iflags(struct inode *inode) 138 { 139 struct btrfs_inode *ip = BTRFS_I(inode); 140 unsigned int new_fl = 0; 141 142 if (ip->flags & BTRFS_INODE_SYNC) 143 new_fl |= S_SYNC; 144 if (ip->flags & BTRFS_INODE_IMMUTABLE) 145 new_fl |= S_IMMUTABLE; 146 if (ip->flags & BTRFS_INODE_APPEND) 147 new_fl |= S_APPEND; 148 if (ip->flags & BTRFS_INODE_NOATIME) 149 new_fl |= S_NOATIME; 150 if (ip->flags & BTRFS_INODE_DIRSYNC) 151 new_fl |= S_DIRSYNC; 152 153 set_mask_bits(&inode->i_flags, 154 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 155 new_fl); 156 } 157 158 /* 159 * Inherit flags from the parent inode. 160 * 161 * Currently only the compression flags and the cow flags are inherited. 162 */ 163 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 164 { 165 unsigned int flags; 166 167 if (!dir) 168 return; 169 170 flags = BTRFS_I(dir)->flags; 171 172 if (flags & BTRFS_INODE_NOCOMPRESS) { 173 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 174 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 175 } else if (flags & BTRFS_INODE_COMPRESS) { 176 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 177 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 178 } 179 180 if (flags & BTRFS_INODE_NODATACOW) { 181 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 182 if (S_ISREG(inode->i_mode)) 183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 184 } 185 186 btrfs_update_iflags(inode); 187 } 188 189 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 190 { 191 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 192 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 193 194 if (copy_to_user(arg, &flags, sizeof(flags))) 195 return -EFAULT; 196 return 0; 197 } 198 199 static int check_flags(unsigned int flags) 200 { 201 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 202 FS_NOATIME_FL | FS_NODUMP_FL | \ 203 FS_SYNC_FL | FS_DIRSYNC_FL | \ 204 FS_NOCOMP_FL | FS_COMPR_FL | 205 FS_NOCOW_FL)) 206 return -EOPNOTSUPP; 207 208 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 209 return -EINVAL; 210 211 return 0; 212 } 213 214 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 215 { 216 struct inode *inode = file_inode(file); 217 struct btrfs_inode *ip = BTRFS_I(inode); 218 struct btrfs_root *root = ip->root; 219 struct btrfs_trans_handle *trans; 220 unsigned int flags, oldflags; 221 int ret; 222 u64 ip_oldflags; 223 unsigned int i_oldflags; 224 umode_t mode; 225 226 if (!inode_owner_or_capable(inode)) 227 return -EPERM; 228 229 if (btrfs_root_readonly(root)) 230 return -EROFS; 231 232 if (copy_from_user(&flags, arg, sizeof(flags))) 233 return -EFAULT; 234 235 ret = check_flags(flags); 236 if (ret) 237 return ret; 238 239 ret = mnt_want_write_file(file); 240 if (ret) 241 return ret; 242 243 mutex_lock(&inode->i_mutex); 244 245 ip_oldflags = ip->flags; 246 i_oldflags = inode->i_flags; 247 mode = inode->i_mode; 248 249 flags = btrfs_mask_flags(inode->i_mode, flags); 250 oldflags = btrfs_flags_to_ioctl(ip->flags); 251 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 252 if (!capable(CAP_LINUX_IMMUTABLE)) { 253 ret = -EPERM; 254 goto out_unlock; 255 } 256 } 257 258 if (flags & FS_SYNC_FL) 259 ip->flags |= BTRFS_INODE_SYNC; 260 else 261 ip->flags &= ~BTRFS_INODE_SYNC; 262 if (flags & FS_IMMUTABLE_FL) 263 ip->flags |= BTRFS_INODE_IMMUTABLE; 264 else 265 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 266 if (flags & FS_APPEND_FL) 267 ip->flags |= BTRFS_INODE_APPEND; 268 else 269 ip->flags &= ~BTRFS_INODE_APPEND; 270 if (flags & FS_NODUMP_FL) 271 ip->flags |= BTRFS_INODE_NODUMP; 272 else 273 ip->flags &= ~BTRFS_INODE_NODUMP; 274 if (flags & FS_NOATIME_FL) 275 ip->flags |= BTRFS_INODE_NOATIME; 276 else 277 ip->flags &= ~BTRFS_INODE_NOATIME; 278 if (flags & FS_DIRSYNC_FL) 279 ip->flags |= BTRFS_INODE_DIRSYNC; 280 else 281 ip->flags &= ~BTRFS_INODE_DIRSYNC; 282 if (flags & FS_NOCOW_FL) { 283 if (S_ISREG(mode)) { 284 /* 285 * It's safe to turn csums off here, no extents exist. 286 * Otherwise we want the flag to reflect the real COW 287 * status of the file and will not set it. 288 */ 289 if (inode->i_size == 0) 290 ip->flags |= BTRFS_INODE_NODATACOW 291 | BTRFS_INODE_NODATASUM; 292 } else { 293 ip->flags |= BTRFS_INODE_NODATACOW; 294 } 295 } else { 296 /* 297 * Revert back under same assuptions as above 298 */ 299 if (S_ISREG(mode)) { 300 if (inode->i_size == 0) 301 ip->flags &= ~(BTRFS_INODE_NODATACOW 302 | BTRFS_INODE_NODATASUM); 303 } else { 304 ip->flags &= ~BTRFS_INODE_NODATACOW; 305 } 306 } 307 308 /* 309 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 310 * flag may be changed automatically if compression code won't make 311 * things smaller. 312 */ 313 if (flags & FS_NOCOMP_FL) { 314 ip->flags &= ~BTRFS_INODE_COMPRESS; 315 ip->flags |= BTRFS_INODE_NOCOMPRESS; 316 317 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 318 if (ret && ret != -ENODATA) 319 goto out_drop; 320 } else if (flags & FS_COMPR_FL) { 321 const char *comp; 322 323 ip->flags |= BTRFS_INODE_COMPRESS; 324 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 325 326 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 327 comp = "lzo"; 328 else 329 comp = "zlib"; 330 ret = btrfs_set_prop(inode, "btrfs.compression", 331 comp, strlen(comp), 0); 332 if (ret) 333 goto out_drop; 334 335 } else { 336 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 337 if (ret && ret != -ENODATA) 338 goto out_drop; 339 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 340 } 341 342 trans = btrfs_start_transaction(root, 1); 343 if (IS_ERR(trans)) { 344 ret = PTR_ERR(trans); 345 goto out_drop; 346 } 347 348 btrfs_update_iflags(inode); 349 inode_inc_iversion(inode); 350 inode->i_ctime = CURRENT_TIME; 351 ret = btrfs_update_inode(trans, root, inode); 352 353 btrfs_end_transaction(trans, root); 354 out_drop: 355 if (ret) { 356 ip->flags = ip_oldflags; 357 inode->i_flags = i_oldflags; 358 } 359 360 out_unlock: 361 mutex_unlock(&inode->i_mutex); 362 mnt_drop_write_file(file); 363 return ret; 364 } 365 366 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 367 { 368 struct inode *inode = file_inode(file); 369 370 return put_user(inode->i_generation, arg); 371 } 372 373 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 374 { 375 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 376 struct btrfs_device *device; 377 struct request_queue *q; 378 struct fstrim_range range; 379 u64 minlen = ULLONG_MAX; 380 u64 num_devices = 0; 381 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 382 int ret; 383 384 if (!capable(CAP_SYS_ADMIN)) 385 return -EPERM; 386 387 rcu_read_lock(); 388 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 389 dev_list) { 390 if (!device->bdev) 391 continue; 392 q = bdev_get_queue(device->bdev); 393 if (blk_queue_discard(q)) { 394 num_devices++; 395 minlen = min((u64)q->limits.discard_granularity, 396 minlen); 397 } 398 } 399 rcu_read_unlock(); 400 401 if (!num_devices) 402 return -EOPNOTSUPP; 403 if (copy_from_user(&range, arg, sizeof(range))) 404 return -EFAULT; 405 if (range.start > total_bytes || 406 range.len < fs_info->sb->s_blocksize) 407 return -EINVAL; 408 409 range.len = min(range.len, total_bytes - range.start); 410 range.minlen = max(range.minlen, minlen); 411 ret = btrfs_trim_fs(fs_info->tree_root, &range); 412 if (ret < 0) 413 return ret; 414 415 if (copy_to_user(arg, &range, sizeof(range))) 416 return -EFAULT; 417 418 return 0; 419 } 420 421 int btrfs_is_empty_uuid(u8 *uuid) 422 { 423 int i; 424 425 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 426 if (uuid[i]) 427 return 0; 428 } 429 return 1; 430 } 431 432 static noinline int create_subvol(struct inode *dir, 433 struct dentry *dentry, 434 char *name, int namelen, 435 u64 *async_transid, 436 struct btrfs_qgroup_inherit *inherit) 437 { 438 struct btrfs_trans_handle *trans; 439 struct btrfs_key key; 440 struct btrfs_root_item root_item; 441 struct btrfs_inode_item *inode_item; 442 struct extent_buffer *leaf; 443 struct btrfs_root *root = BTRFS_I(dir)->root; 444 struct btrfs_root *new_root; 445 struct btrfs_block_rsv block_rsv; 446 struct timespec cur_time = CURRENT_TIME; 447 struct inode *inode; 448 int ret; 449 int err; 450 u64 objectid; 451 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 452 u64 index = 0; 453 u64 qgroup_reserved; 454 uuid_le new_uuid; 455 456 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 457 if (ret) 458 return ret; 459 460 /* 461 * Don't create subvolume whose level is not zero. Or qgroup will be 462 * screwed up since it assume subvolme qgroup's level to be 0. 463 */ 464 if (btrfs_qgroup_level(objectid)) 465 return -ENOSPC; 466 467 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 468 /* 469 * The same as the snapshot creation, please see the comment 470 * of create_snapshot(). 471 */ 472 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 473 8, &qgroup_reserved, false); 474 if (ret) 475 return ret; 476 477 trans = btrfs_start_transaction(root, 0); 478 if (IS_ERR(trans)) { 479 ret = PTR_ERR(trans); 480 btrfs_subvolume_release_metadata(root, &block_rsv, 481 qgroup_reserved); 482 return ret; 483 } 484 trans->block_rsv = &block_rsv; 485 trans->bytes_reserved = block_rsv.size; 486 487 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit); 488 if (ret) 489 goto fail; 490 491 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 492 if (IS_ERR(leaf)) { 493 ret = PTR_ERR(leaf); 494 goto fail; 495 } 496 497 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 498 btrfs_set_header_bytenr(leaf, leaf->start); 499 btrfs_set_header_generation(leaf, trans->transid); 500 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 501 btrfs_set_header_owner(leaf, objectid); 502 503 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(), 504 BTRFS_FSID_SIZE); 505 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 506 btrfs_header_chunk_tree_uuid(leaf), 507 BTRFS_UUID_SIZE); 508 btrfs_mark_buffer_dirty(leaf); 509 510 memset(&root_item, 0, sizeof(root_item)); 511 512 inode_item = &root_item.inode; 513 btrfs_set_stack_inode_generation(inode_item, 1); 514 btrfs_set_stack_inode_size(inode_item, 3); 515 btrfs_set_stack_inode_nlink(inode_item, 1); 516 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 517 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 518 519 btrfs_set_root_flags(&root_item, 0); 520 btrfs_set_root_limit(&root_item, 0); 521 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 522 523 btrfs_set_root_bytenr(&root_item, leaf->start); 524 btrfs_set_root_generation(&root_item, trans->transid); 525 btrfs_set_root_level(&root_item, 0); 526 btrfs_set_root_refs(&root_item, 1); 527 btrfs_set_root_used(&root_item, leaf->len); 528 btrfs_set_root_last_snapshot(&root_item, 0); 529 530 btrfs_set_root_generation_v2(&root_item, 531 btrfs_root_generation(&root_item)); 532 uuid_le_gen(&new_uuid); 533 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE); 534 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec); 535 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec); 536 root_item.ctime = root_item.otime; 537 btrfs_set_root_ctransid(&root_item, trans->transid); 538 btrfs_set_root_otransid(&root_item, trans->transid); 539 540 btrfs_tree_unlock(leaf); 541 free_extent_buffer(leaf); 542 leaf = NULL; 543 544 btrfs_set_root_dirid(&root_item, new_dirid); 545 546 key.objectid = objectid; 547 key.offset = 0; 548 key.type = BTRFS_ROOT_ITEM_KEY; 549 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 550 &root_item); 551 if (ret) 552 goto fail; 553 554 key.offset = (u64)-1; 555 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 556 if (IS_ERR(new_root)) { 557 ret = PTR_ERR(new_root); 558 btrfs_abort_transaction(trans, root, ret); 559 goto fail; 560 } 561 562 btrfs_record_root_in_trans(trans, new_root); 563 564 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 565 if (ret) { 566 /* We potentially lose an unused inode item here */ 567 btrfs_abort_transaction(trans, root, ret); 568 goto fail; 569 } 570 571 /* 572 * insert the directory item 573 */ 574 ret = btrfs_set_inode_index(dir, &index); 575 if (ret) { 576 btrfs_abort_transaction(trans, root, ret); 577 goto fail; 578 } 579 580 ret = btrfs_insert_dir_item(trans, root, 581 name, namelen, dir, &key, 582 BTRFS_FT_DIR, index); 583 if (ret) { 584 btrfs_abort_transaction(trans, root, ret); 585 goto fail; 586 } 587 588 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 589 ret = btrfs_update_inode(trans, root, dir); 590 BUG_ON(ret); 591 592 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 593 objectid, root->root_key.objectid, 594 btrfs_ino(dir), index, name, namelen); 595 BUG_ON(ret); 596 597 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 598 root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 599 objectid); 600 if (ret) 601 btrfs_abort_transaction(trans, root, ret); 602 603 fail: 604 trans->block_rsv = NULL; 605 trans->bytes_reserved = 0; 606 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 607 608 if (async_transid) { 609 *async_transid = trans->transid; 610 err = btrfs_commit_transaction_async(trans, root, 1); 611 if (err) 612 err = btrfs_commit_transaction(trans, root); 613 } else { 614 err = btrfs_commit_transaction(trans, root); 615 } 616 if (err && !ret) 617 ret = err; 618 619 if (!ret) { 620 inode = btrfs_lookup_dentry(dir, dentry); 621 if (IS_ERR(inode)) 622 return PTR_ERR(inode); 623 d_instantiate(dentry, inode); 624 } 625 return ret; 626 } 627 628 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root) 629 { 630 s64 writers; 631 DEFINE_WAIT(wait); 632 633 do { 634 prepare_to_wait(&root->subv_writers->wait, &wait, 635 TASK_UNINTERRUPTIBLE); 636 637 writers = percpu_counter_sum(&root->subv_writers->counter); 638 if (writers) 639 schedule(); 640 641 finish_wait(&root->subv_writers->wait, &wait); 642 } while (writers); 643 } 644 645 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 646 struct dentry *dentry, char *name, int namelen, 647 u64 *async_transid, bool readonly, 648 struct btrfs_qgroup_inherit *inherit) 649 { 650 struct inode *inode; 651 struct btrfs_pending_snapshot *pending_snapshot; 652 struct btrfs_trans_handle *trans; 653 int ret; 654 655 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 656 return -EINVAL; 657 658 atomic_inc(&root->will_be_snapshoted); 659 smp_mb__after_atomic(); 660 btrfs_wait_for_no_snapshoting_writes(root); 661 662 ret = btrfs_start_delalloc_inodes(root, 0); 663 if (ret) 664 goto out; 665 666 btrfs_wait_ordered_extents(root, -1); 667 668 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 669 if (!pending_snapshot) { 670 ret = -ENOMEM; 671 goto out; 672 } 673 674 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 675 BTRFS_BLOCK_RSV_TEMP); 676 /* 677 * 1 - parent dir inode 678 * 2 - dir entries 679 * 1 - root item 680 * 2 - root ref/backref 681 * 1 - root of snapshot 682 * 1 - UUID item 683 */ 684 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 685 &pending_snapshot->block_rsv, 8, 686 &pending_snapshot->qgroup_reserved, 687 false); 688 if (ret) 689 goto free; 690 691 pending_snapshot->dentry = dentry; 692 pending_snapshot->root = root; 693 pending_snapshot->readonly = readonly; 694 pending_snapshot->dir = dir; 695 pending_snapshot->inherit = inherit; 696 697 trans = btrfs_start_transaction(root, 0); 698 if (IS_ERR(trans)) { 699 ret = PTR_ERR(trans); 700 goto fail; 701 } 702 703 spin_lock(&root->fs_info->trans_lock); 704 list_add(&pending_snapshot->list, 705 &trans->transaction->pending_snapshots); 706 spin_unlock(&root->fs_info->trans_lock); 707 if (async_transid) { 708 *async_transid = trans->transid; 709 ret = btrfs_commit_transaction_async(trans, 710 root->fs_info->extent_root, 1); 711 if (ret) 712 ret = btrfs_commit_transaction(trans, root); 713 } else { 714 ret = btrfs_commit_transaction(trans, 715 root->fs_info->extent_root); 716 } 717 if (ret) 718 goto fail; 719 720 ret = pending_snapshot->error; 721 if (ret) 722 goto fail; 723 724 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 725 if (ret) 726 goto fail; 727 728 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 729 if (IS_ERR(inode)) { 730 ret = PTR_ERR(inode); 731 goto fail; 732 } 733 734 d_instantiate(dentry, inode); 735 ret = 0; 736 fail: 737 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root, 738 &pending_snapshot->block_rsv, 739 pending_snapshot->qgroup_reserved); 740 free: 741 kfree(pending_snapshot); 742 out: 743 if (atomic_dec_and_test(&root->will_be_snapshoted)) 744 wake_up_atomic_t(&root->will_be_snapshoted); 745 return ret; 746 } 747 748 /* copy of may_delete in fs/namei.c() 749 * Check whether we can remove a link victim from directory dir, check 750 * whether the type of victim is right. 751 * 1. We can't do it if dir is read-only (done in permission()) 752 * 2. We should have write and exec permissions on dir 753 * 3. We can't remove anything from append-only dir 754 * 4. We can't do anything with immutable dir (done in permission()) 755 * 5. If the sticky bit on dir is set we should either 756 * a. be owner of dir, or 757 * b. be owner of victim, or 758 * c. have CAP_FOWNER capability 759 * 6. If the victim is append-only or immutable we can't do antyhing with 760 * links pointing to it. 761 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 762 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 763 * 9. We can't remove a root or mountpoint. 764 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 765 * nfs_async_unlink(). 766 */ 767 768 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 769 { 770 int error; 771 772 if (d_really_is_negative(victim)) 773 return -ENOENT; 774 775 BUG_ON(d_inode(victim->d_parent) != dir); 776 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 777 778 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 779 if (error) 780 return error; 781 if (IS_APPEND(dir)) 782 return -EPERM; 783 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 784 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 785 return -EPERM; 786 if (isdir) { 787 if (!d_is_dir(victim)) 788 return -ENOTDIR; 789 if (IS_ROOT(victim)) 790 return -EBUSY; 791 } else if (d_is_dir(victim)) 792 return -EISDIR; 793 if (IS_DEADDIR(dir)) 794 return -ENOENT; 795 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 796 return -EBUSY; 797 return 0; 798 } 799 800 /* copy of may_create in fs/namei.c() */ 801 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 802 { 803 if (d_really_is_positive(child)) 804 return -EEXIST; 805 if (IS_DEADDIR(dir)) 806 return -ENOENT; 807 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 808 } 809 810 /* 811 * Create a new subvolume below @parent. This is largely modeled after 812 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 813 * inside this filesystem so it's quite a bit simpler. 814 */ 815 static noinline int btrfs_mksubvol(struct path *parent, 816 char *name, int namelen, 817 struct btrfs_root *snap_src, 818 u64 *async_transid, bool readonly, 819 struct btrfs_qgroup_inherit *inherit) 820 { 821 struct inode *dir = d_inode(parent->dentry); 822 struct dentry *dentry; 823 int error; 824 825 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 826 if (error == -EINTR) 827 return error; 828 829 dentry = lookup_one_len(name, parent->dentry, namelen); 830 error = PTR_ERR(dentry); 831 if (IS_ERR(dentry)) 832 goto out_unlock; 833 834 error = -EEXIST; 835 if (d_really_is_positive(dentry)) 836 goto out_dput; 837 838 error = btrfs_may_create(dir, dentry); 839 if (error) 840 goto out_dput; 841 842 /* 843 * even if this name doesn't exist, we may get hash collisions. 844 * check for them now when we can safely fail 845 */ 846 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 847 dir->i_ino, name, 848 namelen); 849 if (error) 850 goto out_dput; 851 852 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 853 854 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 855 goto out_up_read; 856 857 if (snap_src) { 858 error = create_snapshot(snap_src, dir, dentry, name, namelen, 859 async_transid, readonly, inherit); 860 } else { 861 error = create_subvol(dir, dentry, name, namelen, 862 async_transid, inherit); 863 } 864 if (!error) 865 fsnotify_mkdir(dir, dentry); 866 out_up_read: 867 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 868 out_dput: 869 dput(dentry); 870 out_unlock: 871 mutex_unlock(&dir->i_mutex); 872 return error; 873 } 874 875 /* 876 * When we're defragging a range, we don't want to kick it off again 877 * if it is really just waiting for delalloc to send it down. 878 * If we find a nice big extent or delalloc range for the bytes in the 879 * file you want to defrag, we return 0 to let you know to skip this 880 * part of the file 881 */ 882 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 883 { 884 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 885 struct extent_map *em = NULL; 886 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 887 u64 end; 888 889 read_lock(&em_tree->lock); 890 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 891 read_unlock(&em_tree->lock); 892 893 if (em) { 894 end = extent_map_end(em); 895 free_extent_map(em); 896 if (end - offset > thresh) 897 return 0; 898 } 899 /* if we already have a nice delalloc here, just stop */ 900 thresh /= 2; 901 end = count_range_bits(io_tree, &offset, offset + thresh, 902 thresh, EXTENT_DELALLOC, 1); 903 if (end >= thresh) 904 return 0; 905 return 1; 906 } 907 908 /* 909 * helper function to walk through a file and find extents 910 * newer than a specific transid, and smaller than thresh. 911 * 912 * This is used by the defragging code to find new and small 913 * extents 914 */ 915 static int find_new_extents(struct btrfs_root *root, 916 struct inode *inode, u64 newer_than, 917 u64 *off, u32 thresh) 918 { 919 struct btrfs_path *path; 920 struct btrfs_key min_key; 921 struct extent_buffer *leaf; 922 struct btrfs_file_extent_item *extent; 923 int type; 924 int ret; 925 u64 ino = btrfs_ino(inode); 926 927 path = btrfs_alloc_path(); 928 if (!path) 929 return -ENOMEM; 930 931 min_key.objectid = ino; 932 min_key.type = BTRFS_EXTENT_DATA_KEY; 933 min_key.offset = *off; 934 935 while (1) { 936 ret = btrfs_search_forward(root, &min_key, path, newer_than); 937 if (ret != 0) 938 goto none; 939 process_slot: 940 if (min_key.objectid != ino) 941 goto none; 942 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 943 goto none; 944 945 leaf = path->nodes[0]; 946 extent = btrfs_item_ptr(leaf, path->slots[0], 947 struct btrfs_file_extent_item); 948 949 type = btrfs_file_extent_type(leaf, extent); 950 if (type == BTRFS_FILE_EXTENT_REG && 951 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 952 check_defrag_in_cache(inode, min_key.offset, thresh)) { 953 *off = min_key.offset; 954 btrfs_free_path(path); 955 return 0; 956 } 957 958 path->slots[0]++; 959 if (path->slots[0] < btrfs_header_nritems(leaf)) { 960 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 961 goto process_slot; 962 } 963 964 if (min_key.offset == (u64)-1) 965 goto none; 966 967 min_key.offset++; 968 btrfs_release_path(path); 969 } 970 none: 971 btrfs_free_path(path); 972 return -ENOENT; 973 } 974 975 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 976 { 977 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 978 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 979 struct extent_map *em; 980 u64 len = PAGE_CACHE_SIZE; 981 982 /* 983 * hopefully we have this extent in the tree already, try without 984 * the full extent lock 985 */ 986 read_lock(&em_tree->lock); 987 em = lookup_extent_mapping(em_tree, start, len); 988 read_unlock(&em_tree->lock); 989 990 if (!em) { 991 struct extent_state *cached = NULL; 992 u64 end = start + len - 1; 993 994 /* get the big lock and read metadata off disk */ 995 lock_extent_bits(io_tree, start, end, 0, &cached); 996 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 997 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 998 999 if (IS_ERR(em)) 1000 return NULL; 1001 } 1002 1003 return em; 1004 } 1005 1006 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1007 { 1008 struct extent_map *next; 1009 bool ret = true; 1010 1011 /* this is the last extent */ 1012 if (em->start + em->len >= i_size_read(inode)) 1013 return false; 1014 1015 next = defrag_lookup_extent(inode, em->start + em->len); 1016 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1017 ret = false; 1018 else if ((em->block_start + em->block_len == next->block_start) && 1019 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024)) 1020 ret = false; 1021 1022 free_extent_map(next); 1023 return ret; 1024 } 1025 1026 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1027 u64 *last_len, u64 *skip, u64 *defrag_end, 1028 int compress) 1029 { 1030 struct extent_map *em; 1031 int ret = 1; 1032 bool next_mergeable = true; 1033 bool prev_mergeable = true; 1034 1035 /* 1036 * make sure that once we start defragging an extent, we keep on 1037 * defragging it 1038 */ 1039 if (start < *defrag_end) 1040 return 1; 1041 1042 *skip = 0; 1043 1044 em = defrag_lookup_extent(inode, start); 1045 if (!em) 1046 return 0; 1047 1048 /* this will cover holes, and inline extents */ 1049 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1050 ret = 0; 1051 goto out; 1052 } 1053 1054 if (!*defrag_end) 1055 prev_mergeable = false; 1056 1057 next_mergeable = defrag_check_next_extent(inode, em); 1058 /* 1059 * we hit a real extent, if it is big or the next extent is not a 1060 * real extent, don't bother defragging it 1061 */ 1062 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1063 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1064 ret = 0; 1065 out: 1066 /* 1067 * last_len ends up being a counter of how many bytes we've defragged. 1068 * every time we choose not to defrag an extent, we reset *last_len 1069 * so that the next tiny extent will force a defrag. 1070 * 1071 * The end result of this is that tiny extents before a single big 1072 * extent will force at least part of that big extent to be defragged. 1073 */ 1074 if (ret) { 1075 *defrag_end = extent_map_end(em); 1076 } else { 1077 *last_len = 0; 1078 *skip = extent_map_end(em); 1079 *defrag_end = 0; 1080 } 1081 1082 free_extent_map(em); 1083 return ret; 1084 } 1085 1086 /* 1087 * it doesn't do much good to defrag one or two pages 1088 * at a time. This pulls in a nice chunk of pages 1089 * to COW and defrag. 1090 * 1091 * It also makes sure the delalloc code has enough 1092 * dirty data to avoid making new small extents as part 1093 * of the defrag 1094 * 1095 * It's a good idea to start RA on this range 1096 * before calling this. 1097 */ 1098 static int cluster_pages_for_defrag(struct inode *inode, 1099 struct page **pages, 1100 unsigned long start_index, 1101 unsigned long num_pages) 1102 { 1103 unsigned long file_end; 1104 u64 isize = i_size_read(inode); 1105 u64 page_start; 1106 u64 page_end; 1107 u64 page_cnt; 1108 int ret; 1109 int i; 1110 int i_done; 1111 struct btrfs_ordered_extent *ordered; 1112 struct extent_state *cached_state = NULL; 1113 struct extent_io_tree *tree; 1114 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1115 1116 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 1117 if (!isize || start_index > file_end) 1118 return 0; 1119 1120 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1121 1122 ret = btrfs_delalloc_reserve_space(inode, 1123 start_index << PAGE_CACHE_SHIFT, 1124 page_cnt << PAGE_CACHE_SHIFT); 1125 if (ret) 1126 return ret; 1127 i_done = 0; 1128 tree = &BTRFS_I(inode)->io_tree; 1129 1130 /* step one, lock all the pages */ 1131 for (i = 0; i < page_cnt; i++) { 1132 struct page *page; 1133 again: 1134 page = find_or_create_page(inode->i_mapping, 1135 start_index + i, mask); 1136 if (!page) 1137 break; 1138 1139 page_start = page_offset(page); 1140 page_end = page_start + PAGE_CACHE_SIZE - 1; 1141 while (1) { 1142 lock_extent_bits(tree, page_start, page_end, 1143 0, &cached_state); 1144 ordered = btrfs_lookup_ordered_extent(inode, 1145 page_start); 1146 unlock_extent_cached(tree, page_start, page_end, 1147 &cached_state, GFP_NOFS); 1148 if (!ordered) 1149 break; 1150 1151 unlock_page(page); 1152 btrfs_start_ordered_extent(inode, ordered, 1); 1153 btrfs_put_ordered_extent(ordered); 1154 lock_page(page); 1155 /* 1156 * we unlocked the page above, so we need check if 1157 * it was released or not. 1158 */ 1159 if (page->mapping != inode->i_mapping) { 1160 unlock_page(page); 1161 page_cache_release(page); 1162 goto again; 1163 } 1164 } 1165 1166 if (!PageUptodate(page)) { 1167 btrfs_readpage(NULL, page); 1168 lock_page(page); 1169 if (!PageUptodate(page)) { 1170 unlock_page(page); 1171 page_cache_release(page); 1172 ret = -EIO; 1173 break; 1174 } 1175 } 1176 1177 if (page->mapping != inode->i_mapping) { 1178 unlock_page(page); 1179 page_cache_release(page); 1180 goto again; 1181 } 1182 1183 pages[i] = page; 1184 i_done++; 1185 } 1186 if (!i_done || ret) 1187 goto out; 1188 1189 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1190 goto out; 1191 1192 /* 1193 * so now we have a nice long stream of locked 1194 * and up to date pages, lets wait on them 1195 */ 1196 for (i = 0; i < i_done; i++) 1197 wait_on_page_writeback(pages[i]); 1198 1199 page_start = page_offset(pages[0]); 1200 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 1201 1202 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1203 page_start, page_end - 1, 0, &cached_state); 1204 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1205 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1206 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1207 &cached_state, GFP_NOFS); 1208 1209 if (i_done != page_cnt) { 1210 spin_lock(&BTRFS_I(inode)->lock); 1211 BTRFS_I(inode)->outstanding_extents++; 1212 spin_unlock(&BTRFS_I(inode)->lock); 1213 btrfs_delalloc_release_space(inode, 1214 start_index << PAGE_CACHE_SHIFT, 1215 (page_cnt - i_done) << PAGE_CACHE_SHIFT); 1216 } 1217 1218 1219 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1220 &cached_state, GFP_NOFS); 1221 1222 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1223 page_start, page_end - 1, &cached_state, 1224 GFP_NOFS); 1225 1226 for (i = 0; i < i_done; i++) { 1227 clear_page_dirty_for_io(pages[i]); 1228 ClearPageChecked(pages[i]); 1229 set_page_extent_mapped(pages[i]); 1230 set_page_dirty(pages[i]); 1231 unlock_page(pages[i]); 1232 page_cache_release(pages[i]); 1233 } 1234 return i_done; 1235 out: 1236 for (i = 0; i < i_done; i++) { 1237 unlock_page(pages[i]); 1238 page_cache_release(pages[i]); 1239 } 1240 btrfs_delalloc_release_space(inode, 1241 start_index << PAGE_CACHE_SHIFT, 1242 page_cnt << PAGE_CACHE_SHIFT); 1243 return ret; 1244 1245 } 1246 1247 int btrfs_defrag_file(struct inode *inode, struct file *file, 1248 struct btrfs_ioctl_defrag_range_args *range, 1249 u64 newer_than, unsigned long max_to_defrag) 1250 { 1251 struct btrfs_root *root = BTRFS_I(inode)->root; 1252 struct file_ra_state *ra = NULL; 1253 unsigned long last_index; 1254 u64 isize = i_size_read(inode); 1255 u64 last_len = 0; 1256 u64 skip = 0; 1257 u64 defrag_end = 0; 1258 u64 newer_off = range->start; 1259 unsigned long i; 1260 unsigned long ra_index = 0; 1261 int ret; 1262 int defrag_count = 0; 1263 int compress_type = BTRFS_COMPRESS_ZLIB; 1264 u32 extent_thresh = range->extent_thresh; 1265 unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 1266 unsigned long cluster = max_cluster; 1267 u64 new_align = ~((u64)128 * 1024 - 1); 1268 struct page **pages = NULL; 1269 1270 if (isize == 0) 1271 return 0; 1272 1273 if (range->start >= isize) 1274 return -EINVAL; 1275 1276 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1277 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1278 return -EINVAL; 1279 if (range->compress_type) 1280 compress_type = range->compress_type; 1281 } 1282 1283 if (extent_thresh == 0) 1284 extent_thresh = 256 * 1024; 1285 1286 /* 1287 * if we were not given a file, allocate a readahead 1288 * context 1289 */ 1290 if (!file) { 1291 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1292 if (!ra) 1293 return -ENOMEM; 1294 file_ra_state_init(ra, inode->i_mapping); 1295 } else { 1296 ra = &file->f_ra; 1297 } 1298 1299 pages = kmalloc_array(max_cluster, sizeof(struct page *), 1300 GFP_NOFS); 1301 if (!pages) { 1302 ret = -ENOMEM; 1303 goto out_ra; 1304 } 1305 1306 /* find the last page to defrag */ 1307 if (range->start + range->len > range->start) { 1308 last_index = min_t(u64, isize - 1, 1309 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1310 } else { 1311 last_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1312 } 1313 1314 if (newer_than) { 1315 ret = find_new_extents(root, inode, newer_than, 1316 &newer_off, 64 * 1024); 1317 if (!ret) { 1318 range->start = newer_off; 1319 /* 1320 * we always align our defrag to help keep 1321 * the extents in the file evenly spaced 1322 */ 1323 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1324 } else 1325 goto out_ra; 1326 } else { 1327 i = range->start >> PAGE_CACHE_SHIFT; 1328 } 1329 if (!max_to_defrag) 1330 max_to_defrag = last_index - i + 1; 1331 1332 /* 1333 * make writeback starts from i, so the defrag range can be 1334 * written sequentially. 1335 */ 1336 if (i < inode->i_mapping->writeback_index) 1337 inode->i_mapping->writeback_index = i; 1338 1339 while (i <= last_index && defrag_count < max_to_defrag && 1340 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) { 1341 /* 1342 * make sure we stop running if someone unmounts 1343 * the FS 1344 */ 1345 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1346 break; 1347 1348 if (btrfs_defrag_cancelled(root->fs_info)) { 1349 btrfs_debug(root->fs_info, "defrag_file cancelled"); 1350 ret = -EAGAIN; 1351 break; 1352 } 1353 1354 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1355 extent_thresh, &last_len, &skip, 1356 &defrag_end, range->flags & 1357 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1358 unsigned long next; 1359 /* 1360 * the should_defrag function tells us how much to skip 1361 * bump our counter by the suggested amount 1362 */ 1363 next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE); 1364 i = max(i + 1, next); 1365 continue; 1366 } 1367 1368 if (!newer_than) { 1369 cluster = (PAGE_CACHE_ALIGN(defrag_end) >> 1370 PAGE_CACHE_SHIFT) - i; 1371 cluster = min(cluster, max_cluster); 1372 } else { 1373 cluster = max_cluster; 1374 } 1375 1376 if (i + cluster > ra_index) { 1377 ra_index = max(i, ra_index); 1378 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1379 cluster); 1380 ra_index += cluster; 1381 } 1382 1383 mutex_lock(&inode->i_mutex); 1384 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1385 BTRFS_I(inode)->force_compress = compress_type; 1386 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1387 if (ret < 0) { 1388 mutex_unlock(&inode->i_mutex); 1389 goto out_ra; 1390 } 1391 1392 defrag_count += ret; 1393 balance_dirty_pages_ratelimited(inode->i_mapping); 1394 mutex_unlock(&inode->i_mutex); 1395 1396 if (newer_than) { 1397 if (newer_off == (u64)-1) 1398 break; 1399 1400 if (ret > 0) 1401 i += ret; 1402 1403 newer_off = max(newer_off + 1, 1404 (u64)i << PAGE_CACHE_SHIFT); 1405 1406 ret = find_new_extents(root, inode, 1407 newer_than, &newer_off, 1408 64 * 1024); 1409 if (!ret) { 1410 range->start = newer_off; 1411 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1412 } else { 1413 break; 1414 } 1415 } else { 1416 if (ret > 0) { 1417 i += ret; 1418 last_len += ret << PAGE_CACHE_SHIFT; 1419 } else { 1420 i++; 1421 last_len = 0; 1422 } 1423 } 1424 } 1425 1426 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1427 filemap_flush(inode->i_mapping); 1428 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1429 &BTRFS_I(inode)->runtime_flags)) 1430 filemap_flush(inode->i_mapping); 1431 } 1432 1433 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1434 /* the filemap_flush will queue IO into the worker threads, but 1435 * we have to make sure the IO is actually started and that 1436 * ordered extents get created before we return 1437 */ 1438 atomic_inc(&root->fs_info->async_submit_draining); 1439 while (atomic_read(&root->fs_info->nr_async_submits) || 1440 atomic_read(&root->fs_info->async_delalloc_pages)) { 1441 wait_event(root->fs_info->async_submit_wait, 1442 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1443 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1444 } 1445 atomic_dec(&root->fs_info->async_submit_draining); 1446 } 1447 1448 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1449 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1450 } 1451 1452 ret = defrag_count; 1453 1454 out_ra: 1455 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1456 mutex_lock(&inode->i_mutex); 1457 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1458 mutex_unlock(&inode->i_mutex); 1459 } 1460 if (!file) 1461 kfree(ra); 1462 kfree(pages); 1463 return ret; 1464 } 1465 1466 static noinline int btrfs_ioctl_resize(struct file *file, 1467 void __user *arg) 1468 { 1469 u64 new_size; 1470 u64 old_size; 1471 u64 devid = 1; 1472 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 1473 struct btrfs_ioctl_vol_args *vol_args; 1474 struct btrfs_trans_handle *trans; 1475 struct btrfs_device *device = NULL; 1476 char *sizestr; 1477 char *retptr; 1478 char *devstr = NULL; 1479 int ret = 0; 1480 int mod = 0; 1481 1482 if (!capable(CAP_SYS_ADMIN)) 1483 return -EPERM; 1484 1485 ret = mnt_want_write_file(file); 1486 if (ret) 1487 return ret; 1488 1489 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 1490 1)) { 1491 mnt_drop_write_file(file); 1492 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1493 } 1494 1495 mutex_lock(&root->fs_info->volume_mutex); 1496 vol_args = memdup_user(arg, sizeof(*vol_args)); 1497 if (IS_ERR(vol_args)) { 1498 ret = PTR_ERR(vol_args); 1499 goto out; 1500 } 1501 1502 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1503 1504 sizestr = vol_args->name; 1505 devstr = strchr(sizestr, ':'); 1506 if (devstr) { 1507 sizestr = devstr + 1; 1508 *devstr = '\0'; 1509 devstr = vol_args->name; 1510 ret = kstrtoull(devstr, 10, &devid); 1511 if (ret) 1512 goto out_free; 1513 if (!devid) { 1514 ret = -EINVAL; 1515 goto out_free; 1516 } 1517 btrfs_info(root->fs_info, "resizing devid %llu", devid); 1518 } 1519 1520 device = btrfs_find_device(root->fs_info, devid, NULL, NULL); 1521 if (!device) { 1522 btrfs_info(root->fs_info, "resizer unable to find device %llu", 1523 devid); 1524 ret = -ENODEV; 1525 goto out_free; 1526 } 1527 1528 if (!device->writeable) { 1529 btrfs_info(root->fs_info, 1530 "resizer unable to apply on readonly device %llu", 1531 devid); 1532 ret = -EPERM; 1533 goto out_free; 1534 } 1535 1536 if (!strcmp(sizestr, "max")) 1537 new_size = device->bdev->bd_inode->i_size; 1538 else { 1539 if (sizestr[0] == '-') { 1540 mod = -1; 1541 sizestr++; 1542 } else if (sizestr[0] == '+') { 1543 mod = 1; 1544 sizestr++; 1545 } 1546 new_size = memparse(sizestr, &retptr); 1547 if (*retptr != '\0' || new_size == 0) { 1548 ret = -EINVAL; 1549 goto out_free; 1550 } 1551 } 1552 1553 if (device->is_tgtdev_for_dev_replace) { 1554 ret = -EPERM; 1555 goto out_free; 1556 } 1557 1558 old_size = btrfs_device_get_total_bytes(device); 1559 1560 if (mod < 0) { 1561 if (new_size > old_size) { 1562 ret = -EINVAL; 1563 goto out_free; 1564 } 1565 new_size = old_size - new_size; 1566 } else if (mod > 0) { 1567 if (new_size > ULLONG_MAX - old_size) { 1568 ret = -ERANGE; 1569 goto out_free; 1570 } 1571 new_size = old_size + new_size; 1572 } 1573 1574 if (new_size < 256 * 1024 * 1024) { 1575 ret = -EINVAL; 1576 goto out_free; 1577 } 1578 if (new_size > device->bdev->bd_inode->i_size) { 1579 ret = -EFBIG; 1580 goto out_free; 1581 } 1582 1583 new_size = div_u64(new_size, root->sectorsize); 1584 new_size *= root->sectorsize; 1585 1586 btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu", 1587 rcu_str_deref(device->name), new_size); 1588 1589 if (new_size > old_size) { 1590 trans = btrfs_start_transaction(root, 0); 1591 if (IS_ERR(trans)) { 1592 ret = PTR_ERR(trans); 1593 goto out_free; 1594 } 1595 ret = btrfs_grow_device(trans, device, new_size); 1596 btrfs_commit_transaction(trans, root); 1597 } else if (new_size < old_size) { 1598 ret = btrfs_shrink_device(device, new_size); 1599 } /* equal, nothing need to do */ 1600 1601 out_free: 1602 kfree(vol_args); 1603 out: 1604 mutex_unlock(&root->fs_info->volume_mutex); 1605 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 1606 mnt_drop_write_file(file); 1607 return ret; 1608 } 1609 1610 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1611 char *name, unsigned long fd, int subvol, 1612 u64 *transid, bool readonly, 1613 struct btrfs_qgroup_inherit *inherit) 1614 { 1615 int namelen; 1616 int ret = 0; 1617 1618 ret = mnt_want_write_file(file); 1619 if (ret) 1620 goto out; 1621 1622 namelen = strlen(name); 1623 if (strchr(name, '/')) { 1624 ret = -EINVAL; 1625 goto out_drop_write; 1626 } 1627 1628 if (name[0] == '.' && 1629 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1630 ret = -EEXIST; 1631 goto out_drop_write; 1632 } 1633 1634 if (subvol) { 1635 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1636 NULL, transid, readonly, inherit); 1637 } else { 1638 struct fd src = fdget(fd); 1639 struct inode *src_inode; 1640 if (!src.file) { 1641 ret = -EINVAL; 1642 goto out_drop_write; 1643 } 1644 1645 src_inode = file_inode(src.file); 1646 if (src_inode->i_sb != file_inode(file)->i_sb) { 1647 btrfs_info(BTRFS_I(src_inode)->root->fs_info, 1648 "Snapshot src from another FS"); 1649 ret = -EXDEV; 1650 } else if (!inode_owner_or_capable(src_inode)) { 1651 /* 1652 * Subvolume creation is not restricted, but snapshots 1653 * are limited to own subvolumes only 1654 */ 1655 ret = -EPERM; 1656 } else { 1657 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1658 BTRFS_I(src_inode)->root, 1659 transid, readonly, inherit); 1660 } 1661 fdput(src); 1662 } 1663 out_drop_write: 1664 mnt_drop_write_file(file); 1665 out: 1666 return ret; 1667 } 1668 1669 static noinline int btrfs_ioctl_snap_create(struct file *file, 1670 void __user *arg, int subvol) 1671 { 1672 struct btrfs_ioctl_vol_args *vol_args; 1673 int ret; 1674 1675 vol_args = memdup_user(arg, sizeof(*vol_args)); 1676 if (IS_ERR(vol_args)) 1677 return PTR_ERR(vol_args); 1678 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1679 1680 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1681 vol_args->fd, subvol, 1682 NULL, false, NULL); 1683 1684 kfree(vol_args); 1685 return ret; 1686 } 1687 1688 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1689 void __user *arg, int subvol) 1690 { 1691 struct btrfs_ioctl_vol_args_v2 *vol_args; 1692 int ret; 1693 u64 transid = 0; 1694 u64 *ptr = NULL; 1695 bool readonly = false; 1696 struct btrfs_qgroup_inherit *inherit = NULL; 1697 1698 vol_args = memdup_user(arg, sizeof(*vol_args)); 1699 if (IS_ERR(vol_args)) 1700 return PTR_ERR(vol_args); 1701 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1702 1703 if (vol_args->flags & 1704 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1705 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1706 ret = -EOPNOTSUPP; 1707 goto free_args; 1708 } 1709 1710 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1711 ptr = &transid; 1712 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1713 readonly = true; 1714 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1715 if (vol_args->size > PAGE_CACHE_SIZE) { 1716 ret = -EINVAL; 1717 goto free_args; 1718 } 1719 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1720 if (IS_ERR(inherit)) { 1721 ret = PTR_ERR(inherit); 1722 goto free_args; 1723 } 1724 } 1725 1726 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1727 vol_args->fd, subvol, ptr, 1728 readonly, inherit); 1729 if (ret) 1730 goto free_inherit; 1731 1732 if (ptr && copy_to_user(arg + 1733 offsetof(struct btrfs_ioctl_vol_args_v2, 1734 transid), 1735 ptr, sizeof(*ptr))) 1736 ret = -EFAULT; 1737 1738 free_inherit: 1739 kfree(inherit); 1740 free_args: 1741 kfree(vol_args); 1742 return ret; 1743 } 1744 1745 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1746 void __user *arg) 1747 { 1748 struct inode *inode = file_inode(file); 1749 struct btrfs_root *root = BTRFS_I(inode)->root; 1750 int ret = 0; 1751 u64 flags = 0; 1752 1753 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1754 return -EINVAL; 1755 1756 down_read(&root->fs_info->subvol_sem); 1757 if (btrfs_root_readonly(root)) 1758 flags |= BTRFS_SUBVOL_RDONLY; 1759 up_read(&root->fs_info->subvol_sem); 1760 1761 if (copy_to_user(arg, &flags, sizeof(flags))) 1762 ret = -EFAULT; 1763 1764 return ret; 1765 } 1766 1767 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1768 void __user *arg) 1769 { 1770 struct inode *inode = file_inode(file); 1771 struct btrfs_root *root = BTRFS_I(inode)->root; 1772 struct btrfs_trans_handle *trans; 1773 u64 root_flags; 1774 u64 flags; 1775 int ret = 0; 1776 1777 if (!inode_owner_or_capable(inode)) 1778 return -EPERM; 1779 1780 ret = mnt_want_write_file(file); 1781 if (ret) 1782 goto out; 1783 1784 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1785 ret = -EINVAL; 1786 goto out_drop_write; 1787 } 1788 1789 if (copy_from_user(&flags, arg, sizeof(flags))) { 1790 ret = -EFAULT; 1791 goto out_drop_write; 1792 } 1793 1794 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1795 ret = -EINVAL; 1796 goto out_drop_write; 1797 } 1798 1799 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1800 ret = -EOPNOTSUPP; 1801 goto out_drop_write; 1802 } 1803 1804 down_write(&root->fs_info->subvol_sem); 1805 1806 /* nothing to do */ 1807 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1808 goto out_drop_sem; 1809 1810 root_flags = btrfs_root_flags(&root->root_item); 1811 if (flags & BTRFS_SUBVOL_RDONLY) { 1812 btrfs_set_root_flags(&root->root_item, 1813 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1814 } else { 1815 /* 1816 * Block RO -> RW transition if this subvolume is involved in 1817 * send 1818 */ 1819 spin_lock(&root->root_item_lock); 1820 if (root->send_in_progress == 0) { 1821 btrfs_set_root_flags(&root->root_item, 1822 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1823 spin_unlock(&root->root_item_lock); 1824 } else { 1825 spin_unlock(&root->root_item_lock); 1826 btrfs_warn(root->fs_info, 1827 "Attempt to set subvolume %llu read-write during send", 1828 root->root_key.objectid); 1829 ret = -EPERM; 1830 goto out_drop_sem; 1831 } 1832 } 1833 1834 trans = btrfs_start_transaction(root, 1); 1835 if (IS_ERR(trans)) { 1836 ret = PTR_ERR(trans); 1837 goto out_reset; 1838 } 1839 1840 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1841 &root->root_key, &root->root_item); 1842 1843 btrfs_commit_transaction(trans, root); 1844 out_reset: 1845 if (ret) 1846 btrfs_set_root_flags(&root->root_item, root_flags); 1847 out_drop_sem: 1848 up_write(&root->fs_info->subvol_sem); 1849 out_drop_write: 1850 mnt_drop_write_file(file); 1851 out: 1852 return ret; 1853 } 1854 1855 /* 1856 * helper to check if the subvolume references other subvolumes 1857 */ 1858 static noinline int may_destroy_subvol(struct btrfs_root *root) 1859 { 1860 struct btrfs_path *path; 1861 struct btrfs_dir_item *di; 1862 struct btrfs_key key; 1863 u64 dir_id; 1864 int ret; 1865 1866 path = btrfs_alloc_path(); 1867 if (!path) 1868 return -ENOMEM; 1869 1870 /* Make sure this root isn't set as the default subvol */ 1871 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 1872 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path, 1873 dir_id, "default", 7, 0); 1874 if (di && !IS_ERR(di)) { 1875 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1876 if (key.objectid == root->root_key.objectid) { 1877 ret = -EPERM; 1878 btrfs_err(root->fs_info, "deleting default subvolume " 1879 "%llu is not allowed", key.objectid); 1880 goto out; 1881 } 1882 btrfs_release_path(path); 1883 } 1884 1885 key.objectid = root->root_key.objectid; 1886 key.type = BTRFS_ROOT_REF_KEY; 1887 key.offset = (u64)-1; 1888 1889 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1890 &key, path, 0, 0); 1891 if (ret < 0) 1892 goto out; 1893 BUG_ON(ret == 0); 1894 1895 ret = 0; 1896 if (path->slots[0] > 0) { 1897 path->slots[0]--; 1898 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1899 if (key.objectid == root->root_key.objectid && 1900 key.type == BTRFS_ROOT_REF_KEY) 1901 ret = -ENOTEMPTY; 1902 } 1903 out: 1904 btrfs_free_path(path); 1905 return ret; 1906 } 1907 1908 static noinline int key_in_sk(struct btrfs_key *key, 1909 struct btrfs_ioctl_search_key *sk) 1910 { 1911 struct btrfs_key test; 1912 int ret; 1913 1914 test.objectid = sk->min_objectid; 1915 test.type = sk->min_type; 1916 test.offset = sk->min_offset; 1917 1918 ret = btrfs_comp_cpu_keys(key, &test); 1919 if (ret < 0) 1920 return 0; 1921 1922 test.objectid = sk->max_objectid; 1923 test.type = sk->max_type; 1924 test.offset = sk->max_offset; 1925 1926 ret = btrfs_comp_cpu_keys(key, &test); 1927 if (ret > 0) 1928 return 0; 1929 return 1; 1930 } 1931 1932 static noinline int copy_to_sk(struct btrfs_root *root, 1933 struct btrfs_path *path, 1934 struct btrfs_key *key, 1935 struct btrfs_ioctl_search_key *sk, 1936 size_t *buf_size, 1937 char __user *ubuf, 1938 unsigned long *sk_offset, 1939 int *num_found) 1940 { 1941 u64 found_transid; 1942 struct extent_buffer *leaf; 1943 struct btrfs_ioctl_search_header sh; 1944 struct btrfs_key test; 1945 unsigned long item_off; 1946 unsigned long item_len; 1947 int nritems; 1948 int i; 1949 int slot; 1950 int ret = 0; 1951 1952 leaf = path->nodes[0]; 1953 slot = path->slots[0]; 1954 nritems = btrfs_header_nritems(leaf); 1955 1956 if (btrfs_header_generation(leaf) > sk->max_transid) { 1957 i = nritems; 1958 goto advance_key; 1959 } 1960 found_transid = btrfs_header_generation(leaf); 1961 1962 for (i = slot; i < nritems; i++) { 1963 item_off = btrfs_item_ptr_offset(leaf, i); 1964 item_len = btrfs_item_size_nr(leaf, i); 1965 1966 btrfs_item_key_to_cpu(leaf, key, i); 1967 if (!key_in_sk(key, sk)) 1968 continue; 1969 1970 if (sizeof(sh) + item_len > *buf_size) { 1971 if (*num_found) { 1972 ret = 1; 1973 goto out; 1974 } 1975 1976 /* 1977 * return one empty item back for v1, which does not 1978 * handle -EOVERFLOW 1979 */ 1980 1981 *buf_size = sizeof(sh) + item_len; 1982 item_len = 0; 1983 ret = -EOVERFLOW; 1984 } 1985 1986 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1987 ret = 1; 1988 goto out; 1989 } 1990 1991 sh.objectid = key->objectid; 1992 sh.offset = key->offset; 1993 sh.type = key->type; 1994 sh.len = item_len; 1995 sh.transid = found_transid; 1996 1997 /* copy search result header */ 1998 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 1999 ret = -EFAULT; 2000 goto out; 2001 } 2002 2003 *sk_offset += sizeof(sh); 2004 2005 if (item_len) { 2006 char __user *up = ubuf + *sk_offset; 2007 /* copy the item */ 2008 if (read_extent_buffer_to_user(leaf, up, 2009 item_off, item_len)) { 2010 ret = -EFAULT; 2011 goto out; 2012 } 2013 2014 *sk_offset += item_len; 2015 } 2016 (*num_found)++; 2017 2018 if (ret) /* -EOVERFLOW from above */ 2019 goto out; 2020 2021 if (*num_found >= sk->nr_items) { 2022 ret = 1; 2023 goto out; 2024 } 2025 } 2026 advance_key: 2027 ret = 0; 2028 test.objectid = sk->max_objectid; 2029 test.type = sk->max_type; 2030 test.offset = sk->max_offset; 2031 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2032 ret = 1; 2033 else if (key->offset < (u64)-1) 2034 key->offset++; 2035 else if (key->type < (u8)-1) { 2036 key->offset = 0; 2037 key->type++; 2038 } else if (key->objectid < (u64)-1) { 2039 key->offset = 0; 2040 key->type = 0; 2041 key->objectid++; 2042 } else 2043 ret = 1; 2044 out: 2045 /* 2046 * 0: all items from this leaf copied, continue with next 2047 * 1: * more items can be copied, but unused buffer is too small 2048 * * all items were found 2049 * Either way, it will stops the loop which iterates to the next 2050 * leaf 2051 * -EOVERFLOW: item was to large for buffer 2052 * -EFAULT: could not copy extent buffer back to userspace 2053 */ 2054 return ret; 2055 } 2056 2057 static noinline int search_ioctl(struct inode *inode, 2058 struct btrfs_ioctl_search_key *sk, 2059 size_t *buf_size, 2060 char __user *ubuf) 2061 { 2062 struct btrfs_root *root; 2063 struct btrfs_key key; 2064 struct btrfs_path *path; 2065 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 2066 int ret; 2067 int num_found = 0; 2068 unsigned long sk_offset = 0; 2069 2070 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2071 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2072 return -EOVERFLOW; 2073 } 2074 2075 path = btrfs_alloc_path(); 2076 if (!path) 2077 return -ENOMEM; 2078 2079 if (sk->tree_id == 0) { 2080 /* search the root of the inode that was passed */ 2081 root = BTRFS_I(inode)->root; 2082 } else { 2083 key.objectid = sk->tree_id; 2084 key.type = BTRFS_ROOT_ITEM_KEY; 2085 key.offset = (u64)-1; 2086 root = btrfs_read_fs_root_no_name(info, &key); 2087 if (IS_ERR(root)) { 2088 btrfs_err(info, "could not find root %llu", 2089 sk->tree_id); 2090 btrfs_free_path(path); 2091 return -ENOENT; 2092 } 2093 } 2094 2095 key.objectid = sk->min_objectid; 2096 key.type = sk->min_type; 2097 key.offset = sk->min_offset; 2098 2099 while (1) { 2100 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2101 if (ret != 0) { 2102 if (ret > 0) 2103 ret = 0; 2104 goto err; 2105 } 2106 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf, 2107 &sk_offset, &num_found); 2108 btrfs_release_path(path); 2109 if (ret) 2110 break; 2111 2112 } 2113 if (ret > 0) 2114 ret = 0; 2115 err: 2116 sk->nr_items = num_found; 2117 btrfs_free_path(path); 2118 return ret; 2119 } 2120 2121 static noinline int btrfs_ioctl_tree_search(struct file *file, 2122 void __user *argp) 2123 { 2124 struct btrfs_ioctl_search_args __user *uargs; 2125 struct btrfs_ioctl_search_key sk; 2126 struct inode *inode; 2127 int ret; 2128 size_t buf_size; 2129 2130 if (!capable(CAP_SYS_ADMIN)) 2131 return -EPERM; 2132 2133 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2134 2135 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2136 return -EFAULT; 2137 2138 buf_size = sizeof(uargs->buf); 2139 2140 inode = file_inode(file); 2141 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2142 2143 /* 2144 * In the origin implementation an overflow is handled by returning a 2145 * search header with a len of zero, so reset ret. 2146 */ 2147 if (ret == -EOVERFLOW) 2148 ret = 0; 2149 2150 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2151 ret = -EFAULT; 2152 return ret; 2153 } 2154 2155 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2156 void __user *argp) 2157 { 2158 struct btrfs_ioctl_search_args_v2 __user *uarg; 2159 struct btrfs_ioctl_search_args_v2 args; 2160 struct inode *inode; 2161 int ret; 2162 size_t buf_size; 2163 const size_t buf_limit = 16 * 1024 * 1024; 2164 2165 if (!capable(CAP_SYS_ADMIN)) 2166 return -EPERM; 2167 2168 /* copy search header and buffer size */ 2169 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2170 if (copy_from_user(&args, uarg, sizeof(args))) 2171 return -EFAULT; 2172 2173 buf_size = args.buf_size; 2174 2175 if (buf_size < sizeof(struct btrfs_ioctl_search_header)) 2176 return -EOVERFLOW; 2177 2178 /* limit result size to 16MB */ 2179 if (buf_size > buf_limit) 2180 buf_size = buf_limit; 2181 2182 inode = file_inode(file); 2183 ret = search_ioctl(inode, &args.key, &buf_size, 2184 (char *)(&uarg->buf[0])); 2185 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2186 ret = -EFAULT; 2187 else if (ret == -EOVERFLOW && 2188 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2189 ret = -EFAULT; 2190 2191 return ret; 2192 } 2193 2194 /* 2195 * Search INODE_REFs to identify path name of 'dirid' directory 2196 * in a 'tree_id' tree. and sets path name to 'name'. 2197 */ 2198 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2199 u64 tree_id, u64 dirid, char *name) 2200 { 2201 struct btrfs_root *root; 2202 struct btrfs_key key; 2203 char *ptr; 2204 int ret = -1; 2205 int slot; 2206 int len; 2207 int total_len = 0; 2208 struct btrfs_inode_ref *iref; 2209 struct extent_buffer *l; 2210 struct btrfs_path *path; 2211 2212 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2213 name[0]='\0'; 2214 return 0; 2215 } 2216 2217 path = btrfs_alloc_path(); 2218 if (!path) 2219 return -ENOMEM; 2220 2221 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2222 2223 key.objectid = tree_id; 2224 key.type = BTRFS_ROOT_ITEM_KEY; 2225 key.offset = (u64)-1; 2226 root = btrfs_read_fs_root_no_name(info, &key); 2227 if (IS_ERR(root)) { 2228 btrfs_err(info, "could not find root %llu", tree_id); 2229 ret = -ENOENT; 2230 goto out; 2231 } 2232 2233 key.objectid = dirid; 2234 key.type = BTRFS_INODE_REF_KEY; 2235 key.offset = (u64)-1; 2236 2237 while (1) { 2238 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2239 if (ret < 0) 2240 goto out; 2241 else if (ret > 0) { 2242 ret = btrfs_previous_item(root, path, dirid, 2243 BTRFS_INODE_REF_KEY); 2244 if (ret < 0) 2245 goto out; 2246 else if (ret > 0) { 2247 ret = -ENOENT; 2248 goto out; 2249 } 2250 } 2251 2252 l = path->nodes[0]; 2253 slot = path->slots[0]; 2254 btrfs_item_key_to_cpu(l, &key, slot); 2255 2256 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2257 len = btrfs_inode_ref_name_len(l, iref); 2258 ptr -= len + 1; 2259 total_len += len + 1; 2260 if (ptr < name) { 2261 ret = -ENAMETOOLONG; 2262 goto out; 2263 } 2264 2265 *(ptr + len) = '/'; 2266 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2267 2268 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2269 break; 2270 2271 btrfs_release_path(path); 2272 key.objectid = key.offset; 2273 key.offset = (u64)-1; 2274 dirid = key.objectid; 2275 } 2276 memmove(name, ptr, total_len); 2277 name[total_len] = '\0'; 2278 ret = 0; 2279 out: 2280 btrfs_free_path(path); 2281 return ret; 2282 } 2283 2284 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2285 void __user *argp) 2286 { 2287 struct btrfs_ioctl_ino_lookup_args *args; 2288 struct inode *inode; 2289 int ret = 0; 2290 2291 args = memdup_user(argp, sizeof(*args)); 2292 if (IS_ERR(args)) 2293 return PTR_ERR(args); 2294 2295 inode = file_inode(file); 2296 2297 /* 2298 * Unprivileged query to obtain the containing subvolume root id. The 2299 * path is reset so it's consistent with btrfs_search_path_in_tree. 2300 */ 2301 if (args->treeid == 0) 2302 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2303 2304 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2305 args->name[0] = 0; 2306 goto out; 2307 } 2308 2309 if (!capable(CAP_SYS_ADMIN)) { 2310 ret = -EPERM; 2311 goto out; 2312 } 2313 2314 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2315 args->treeid, args->objectid, 2316 args->name); 2317 2318 out: 2319 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2320 ret = -EFAULT; 2321 2322 kfree(args); 2323 return ret; 2324 } 2325 2326 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2327 void __user *arg) 2328 { 2329 struct dentry *parent = file->f_path.dentry; 2330 struct dentry *dentry; 2331 struct inode *dir = d_inode(parent); 2332 struct inode *inode; 2333 struct btrfs_root *root = BTRFS_I(dir)->root; 2334 struct btrfs_root *dest = NULL; 2335 struct btrfs_ioctl_vol_args *vol_args; 2336 struct btrfs_trans_handle *trans; 2337 struct btrfs_block_rsv block_rsv; 2338 u64 root_flags; 2339 u64 qgroup_reserved; 2340 int namelen; 2341 int ret; 2342 int err = 0; 2343 2344 vol_args = memdup_user(arg, sizeof(*vol_args)); 2345 if (IS_ERR(vol_args)) 2346 return PTR_ERR(vol_args); 2347 2348 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2349 namelen = strlen(vol_args->name); 2350 if (strchr(vol_args->name, '/') || 2351 strncmp(vol_args->name, "..", namelen) == 0) { 2352 err = -EINVAL; 2353 goto out; 2354 } 2355 2356 err = mnt_want_write_file(file); 2357 if (err) 2358 goto out; 2359 2360 2361 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 2362 if (err == -EINTR) 2363 goto out_drop_write; 2364 dentry = lookup_one_len(vol_args->name, parent, namelen); 2365 if (IS_ERR(dentry)) { 2366 err = PTR_ERR(dentry); 2367 goto out_unlock_dir; 2368 } 2369 2370 if (d_really_is_negative(dentry)) { 2371 err = -ENOENT; 2372 goto out_dput; 2373 } 2374 2375 inode = d_inode(dentry); 2376 dest = BTRFS_I(inode)->root; 2377 if (!capable(CAP_SYS_ADMIN)) { 2378 /* 2379 * Regular user. Only allow this with a special mount 2380 * option, when the user has write+exec access to the 2381 * subvol root, and when rmdir(2) would have been 2382 * allowed. 2383 * 2384 * Note that this is _not_ check that the subvol is 2385 * empty or doesn't contain data that we wouldn't 2386 * otherwise be able to delete. 2387 * 2388 * Users who want to delete empty subvols should try 2389 * rmdir(2). 2390 */ 2391 err = -EPERM; 2392 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 2393 goto out_dput; 2394 2395 /* 2396 * Do not allow deletion if the parent dir is the same 2397 * as the dir to be deleted. That means the ioctl 2398 * must be called on the dentry referencing the root 2399 * of the subvol, not a random directory contained 2400 * within it. 2401 */ 2402 err = -EINVAL; 2403 if (root == dest) 2404 goto out_dput; 2405 2406 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2407 if (err) 2408 goto out_dput; 2409 } 2410 2411 /* check if subvolume may be deleted by a user */ 2412 err = btrfs_may_delete(dir, dentry, 1); 2413 if (err) 2414 goto out_dput; 2415 2416 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2417 err = -EINVAL; 2418 goto out_dput; 2419 } 2420 2421 mutex_lock(&inode->i_mutex); 2422 2423 /* 2424 * Don't allow to delete a subvolume with send in progress. This is 2425 * inside the i_mutex so the error handling that has to drop the bit 2426 * again is not run concurrently. 2427 */ 2428 spin_lock(&dest->root_item_lock); 2429 root_flags = btrfs_root_flags(&dest->root_item); 2430 if (dest->send_in_progress == 0) { 2431 btrfs_set_root_flags(&dest->root_item, 2432 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2433 spin_unlock(&dest->root_item_lock); 2434 } else { 2435 spin_unlock(&dest->root_item_lock); 2436 btrfs_warn(root->fs_info, 2437 "Attempt to delete subvolume %llu during send", 2438 dest->root_key.objectid); 2439 err = -EPERM; 2440 goto out_unlock_inode; 2441 } 2442 2443 down_write(&root->fs_info->subvol_sem); 2444 2445 err = may_destroy_subvol(dest); 2446 if (err) 2447 goto out_up_write; 2448 2449 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2450 /* 2451 * One for dir inode, two for dir entries, two for root 2452 * ref/backref. 2453 */ 2454 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2455 5, &qgroup_reserved, true); 2456 if (err) 2457 goto out_up_write; 2458 2459 trans = btrfs_start_transaction(root, 0); 2460 if (IS_ERR(trans)) { 2461 err = PTR_ERR(trans); 2462 goto out_release; 2463 } 2464 trans->block_rsv = &block_rsv; 2465 trans->bytes_reserved = block_rsv.size; 2466 2467 ret = btrfs_unlink_subvol(trans, root, dir, 2468 dest->root_key.objectid, 2469 dentry->d_name.name, 2470 dentry->d_name.len); 2471 if (ret) { 2472 err = ret; 2473 btrfs_abort_transaction(trans, root, ret); 2474 goto out_end_trans; 2475 } 2476 2477 btrfs_record_root_in_trans(trans, dest); 2478 2479 memset(&dest->root_item.drop_progress, 0, 2480 sizeof(dest->root_item.drop_progress)); 2481 dest->root_item.drop_level = 0; 2482 btrfs_set_root_refs(&dest->root_item, 0); 2483 2484 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2485 ret = btrfs_insert_orphan_item(trans, 2486 root->fs_info->tree_root, 2487 dest->root_key.objectid); 2488 if (ret) { 2489 btrfs_abort_transaction(trans, root, ret); 2490 err = ret; 2491 goto out_end_trans; 2492 } 2493 } 2494 2495 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2496 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 2497 dest->root_key.objectid); 2498 if (ret && ret != -ENOENT) { 2499 btrfs_abort_transaction(trans, root, ret); 2500 err = ret; 2501 goto out_end_trans; 2502 } 2503 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2504 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2505 dest->root_item.received_uuid, 2506 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2507 dest->root_key.objectid); 2508 if (ret && ret != -ENOENT) { 2509 btrfs_abort_transaction(trans, root, ret); 2510 err = ret; 2511 goto out_end_trans; 2512 } 2513 } 2514 2515 out_end_trans: 2516 trans->block_rsv = NULL; 2517 trans->bytes_reserved = 0; 2518 ret = btrfs_end_transaction(trans, root); 2519 if (ret && !err) 2520 err = ret; 2521 inode->i_flags |= S_DEAD; 2522 out_release: 2523 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 2524 out_up_write: 2525 up_write(&root->fs_info->subvol_sem); 2526 if (err) { 2527 spin_lock(&dest->root_item_lock); 2528 root_flags = btrfs_root_flags(&dest->root_item); 2529 btrfs_set_root_flags(&dest->root_item, 2530 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2531 spin_unlock(&dest->root_item_lock); 2532 } 2533 out_unlock_inode: 2534 mutex_unlock(&inode->i_mutex); 2535 if (!err) { 2536 d_invalidate(dentry); 2537 btrfs_invalidate_inodes(dest); 2538 d_delete(dentry); 2539 ASSERT(dest->send_in_progress == 0); 2540 2541 /* the last ref */ 2542 if (dest->ino_cache_inode) { 2543 iput(dest->ino_cache_inode); 2544 dest->ino_cache_inode = NULL; 2545 } 2546 } 2547 out_dput: 2548 dput(dentry); 2549 out_unlock_dir: 2550 mutex_unlock(&dir->i_mutex); 2551 out_drop_write: 2552 mnt_drop_write_file(file); 2553 out: 2554 kfree(vol_args); 2555 return err; 2556 } 2557 2558 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2559 { 2560 struct inode *inode = file_inode(file); 2561 struct btrfs_root *root = BTRFS_I(inode)->root; 2562 struct btrfs_ioctl_defrag_range_args *range; 2563 int ret; 2564 2565 ret = mnt_want_write_file(file); 2566 if (ret) 2567 return ret; 2568 2569 if (btrfs_root_readonly(root)) { 2570 ret = -EROFS; 2571 goto out; 2572 } 2573 2574 switch (inode->i_mode & S_IFMT) { 2575 case S_IFDIR: 2576 if (!capable(CAP_SYS_ADMIN)) { 2577 ret = -EPERM; 2578 goto out; 2579 } 2580 ret = btrfs_defrag_root(root); 2581 if (ret) 2582 goto out; 2583 ret = btrfs_defrag_root(root->fs_info->extent_root); 2584 break; 2585 case S_IFREG: 2586 if (!(file->f_mode & FMODE_WRITE)) { 2587 ret = -EINVAL; 2588 goto out; 2589 } 2590 2591 range = kzalloc(sizeof(*range), GFP_KERNEL); 2592 if (!range) { 2593 ret = -ENOMEM; 2594 goto out; 2595 } 2596 2597 if (argp) { 2598 if (copy_from_user(range, argp, 2599 sizeof(*range))) { 2600 ret = -EFAULT; 2601 kfree(range); 2602 goto out; 2603 } 2604 /* compression requires us to start the IO */ 2605 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2606 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2607 range->extent_thresh = (u32)-1; 2608 } 2609 } else { 2610 /* the rest are all set to zero by kzalloc */ 2611 range->len = (u64)-1; 2612 } 2613 ret = btrfs_defrag_file(file_inode(file), file, 2614 range, 0, 0); 2615 if (ret > 0) 2616 ret = 0; 2617 kfree(range); 2618 break; 2619 default: 2620 ret = -EINVAL; 2621 } 2622 out: 2623 mnt_drop_write_file(file); 2624 return ret; 2625 } 2626 2627 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2628 { 2629 struct btrfs_ioctl_vol_args *vol_args; 2630 int ret; 2631 2632 if (!capable(CAP_SYS_ADMIN)) 2633 return -EPERM; 2634 2635 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2636 1)) { 2637 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2638 } 2639 2640 mutex_lock(&root->fs_info->volume_mutex); 2641 vol_args = memdup_user(arg, sizeof(*vol_args)); 2642 if (IS_ERR(vol_args)) { 2643 ret = PTR_ERR(vol_args); 2644 goto out; 2645 } 2646 2647 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2648 ret = btrfs_init_new_device(root, vol_args->name); 2649 2650 if (!ret) 2651 btrfs_info(root->fs_info, "disk added %s",vol_args->name); 2652 2653 kfree(vol_args); 2654 out: 2655 mutex_unlock(&root->fs_info->volume_mutex); 2656 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2657 return ret; 2658 } 2659 2660 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2661 { 2662 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2663 struct btrfs_ioctl_vol_args *vol_args; 2664 int ret; 2665 2666 if (!capable(CAP_SYS_ADMIN)) 2667 return -EPERM; 2668 2669 ret = mnt_want_write_file(file); 2670 if (ret) 2671 return ret; 2672 2673 vol_args = memdup_user(arg, sizeof(*vol_args)); 2674 if (IS_ERR(vol_args)) { 2675 ret = PTR_ERR(vol_args); 2676 goto err_drop; 2677 } 2678 2679 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2680 2681 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2682 1)) { 2683 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2684 goto out; 2685 } 2686 2687 mutex_lock(&root->fs_info->volume_mutex); 2688 ret = btrfs_rm_device(root, vol_args->name); 2689 mutex_unlock(&root->fs_info->volume_mutex); 2690 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2691 2692 if (!ret) 2693 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name); 2694 2695 out: 2696 kfree(vol_args); 2697 err_drop: 2698 mnt_drop_write_file(file); 2699 return ret; 2700 } 2701 2702 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2703 { 2704 struct btrfs_ioctl_fs_info_args *fi_args; 2705 struct btrfs_device *device; 2706 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2707 int ret = 0; 2708 2709 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2710 if (!fi_args) 2711 return -ENOMEM; 2712 2713 mutex_lock(&fs_devices->device_list_mutex); 2714 fi_args->num_devices = fs_devices->num_devices; 2715 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2716 2717 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2718 if (device->devid > fi_args->max_id) 2719 fi_args->max_id = device->devid; 2720 } 2721 mutex_unlock(&fs_devices->device_list_mutex); 2722 2723 fi_args->nodesize = root->fs_info->super_copy->nodesize; 2724 fi_args->sectorsize = root->fs_info->super_copy->sectorsize; 2725 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize; 2726 2727 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2728 ret = -EFAULT; 2729 2730 kfree(fi_args); 2731 return ret; 2732 } 2733 2734 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2735 { 2736 struct btrfs_ioctl_dev_info_args *di_args; 2737 struct btrfs_device *dev; 2738 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2739 int ret = 0; 2740 char *s_uuid = NULL; 2741 2742 di_args = memdup_user(arg, sizeof(*di_args)); 2743 if (IS_ERR(di_args)) 2744 return PTR_ERR(di_args); 2745 2746 if (!btrfs_is_empty_uuid(di_args->uuid)) 2747 s_uuid = di_args->uuid; 2748 2749 mutex_lock(&fs_devices->device_list_mutex); 2750 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL); 2751 2752 if (!dev) { 2753 ret = -ENODEV; 2754 goto out; 2755 } 2756 2757 di_args->devid = dev->devid; 2758 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2759 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2760 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2761 if (dev->name) { 2762 struct rcu_string *name; 2763 2764 rcu_read_lock(); 2765 name = rcu_dereference(dev->name); 2766 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2767 rcu_read_unlock(); 2768 di_args->path[sizeof(di_args->path) - 1] = 0; 2769 } else { 2770 di_args->path[0] = '\0'; 2771 } 2772 2773 out: 2774 mutex_unlock(&fs_devices->device_list_mutex); 2775 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2776 ret = -EFAULT; 2777 2778 kfree(di_args); 2779 return ret; 2780 } 2781 2782 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 2783 { 2784 struct page *page; 2785 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2786 2787 page = grab_cache_page(inode->i_mapping, index); 2788 if (!page) 2789 return NULL; 2790 2791 if (!PageUptodate(page)) { 2792 if (extent_read_full_page_nolock(tree, page, btrfs_get_extent, 2793 0)) 2794 return NULL; 2795 lock_page(page); 2796 if (!PageUptodate(page)) { 2797 unlock_page(page); 2798 page_cache_release(page); 2799 return NULL; 2800 } 2801 } 2802 unlock_page(page); 2803 2804 return page; 2805 } 2806 2807 static int gather_extent_pages(struct inode *inode, struct page **pages, 2808 int num_pages, u64 off) 2809 { 2810 int i; 2811 pgoff_t index = off >> PAGE_CACHE_SHIFT; 2812 2813 for (i = 0; i < num_pages; i++) { 2814 pages[i] = extent_same_get_page(inode, index + i); 2815 if (!pages[i]) 2816 return -ENOMEM; 2817 } 2818 return 0; 2819 } 2820 2821 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len) 2822 { 2823 /* do any pending delalloc/csum calc on src, one way or 2824 another, and lock file content */ 2825 while (1) { 2826 struct btrfs_ordered_extent *ordered; 2827 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2828 ordered = btrfs_lookup_first_ordered_extent(inode, 2829 off + len - 1); 2830 if ((!ordered || 2831 ordered->file_offset + ordered->len <= off || 2832 ordered->file_offset >= off + len) && 2833 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2834 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2835 if (ordered) 2836 btrfs_put_ordered_extent(ordered); 2837 break; 2838 } 2839 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2840 if (ordered) 2841 btrfs_put_ordered_extent(ordered); 2842 btrfs_wait_ordered_range(inode, off, len); 2843 } 2844 } 2845 2846 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 2847 { 2848 mutex_unlock(&inode1->i_mutex); 2849 mutex_unlock(&inode2->i_mutex); 2850 } 2851 2852 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 2853 { 2854 if (inode1 < inode2) 2855 swap(inode1, inode2); 2856 2857 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 2858 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 2859 } 2860 2861 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 2862 struct inode *inode2, u64 loff2, u64 len) 2863 { 2864 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2865 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2866 } 2867 2868 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 2869 struct inode *inode2, u64 loff2, u64 len) 2870 { 2871 if (inode1 < inode2) { 2872 swap(inode1, inode2); 2873 swap(loff1, loff2); 2874 } 2875 lock_extent_range(inode1, loff1, len); 2876 lock_extent_range(inode2, loff2, len); 2877 } 2878 2879 struct cmp_pages { 2880 int num_pages; 2881 struct page **src_pages; 2882 struct page **dst_pages; 2883 }; 2884 2885 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 2886 { 2887 int i; 2888 struct page *pg; 2889 2890 for (i = 0; i < cmp->num_pages; i++) { 2891 pg = cmp->src_pages[i]; 2892 if (pg) 2893 page_cache_release(pg); 2894 pg = cmp->dst_pages[i]; 2895 if (pg) 2896 page_cache_release(pg); 2897 } 2898 kfree(cmp->src_pages); 2899 kfree(cmp->dst_pages); 2900 } 2901 2902 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 2903 struct inode *dst, u64 dst_loff, 2904 u64 len, struct cmp_pages *cmp) 2905 { 2906 int ret; 2907 int num_pages = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT; 2908 struct page **src_pgarr, **dst_pgarr; 2909 2910 /* 2911 * We must gather up all the pages before we initiate our 2912 * extent locking. We use an array for the page pointers. Size 2913 * of the array is bounded by len, which is in turn bounded by 2914 * BTRFS_MAX_DEDUPE_LEN. 2915 */ 2916 src_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS); 2917 dst_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS); 2918 if (!src_pgarr || !dst_pgarr) { 2919 kfree(src_pgarr); 2920 kfree(dst_pgarr); 2921 return -ENOMEM; 2922 } 2923 cmp->num_pages = num_pages; 2924 cmp->src_pages = src_pgarr; 2925 cmp->dst_pages = dst_pgarr; 2926 2927 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff); 2928 if (ret) 2929 goto out; 2930 2931 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff); 2932 2933 out: 2934 if (ret) 2935 btrfs_cmp_data_free(cmp); 2936 return 0; 2937 } 2938 2939 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst, 2940 u64 dst_loff, u64 len, struct cmp_pages *cmp) 2941 { 2942 int ret = 0; 2943 int i; 2944 struct page *src_page, *dst_page; 2945 unsigned int cmp_len = PAGE_CACHE_SIZE; 2946 void *addr, *dst_addr; 2947 2948 i = 0; 2949 while (len) { 2950 if (len < PAGE_CACHE_SIZE) 2951 cmp_len = len; 2952 2953 BUG_ON(i >= cmp->num_pages); 2954 2955 src_page = cmp->src_pages[i]; 2956 dst_page = cmp->dst_pages[i]; 2957 2958 addr = kmap_atomic(src_page); 2959 dst_addr = kmap_atomic(dst_page); 2960 2961 flush_dcache_page(src_page); 2962 flush_dcache_page(dst_page); 2963 2964 if (memcmp(addr, dst_addr, cmp_len)) 2965 ret = BTRFS_SAME_DATA_DIFFERS; 2966 2967 kunmap_atomic(addr); 2968 kunmap_atomic(dst_addr); 2969 2970 if (ret) 2971 break; 2972 2973 len -= cmp_len; 2974 i++; 2975 } 2976 2977 return ret; 2978 } 2979 2980 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 2981 u64 olen) 2982 { 2983 u64 len = *plen; 2984 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 2985 2986 if (off + olen > inode->i_size || off + olen < off) 2987 return -EINVAL; 2988 2989 /* if we extend to eof, continue to block boundary */ 2990 if (off + len == inode->i_size) 2991 *plen = len = ALIGN(inode->i_size, bs) - off; 2992 2993 /* Check that we are block aligned - btrfs_clone() requires this */ 2994 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 2995 return -EINVAL; 2996 2997 return 0; 2998 } 2999 3000 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3001 struct inode *dst, u64 dst_loff) 3002 { 3003 int ret; 3004 u64 len = olen; 3005 struct cmp_pages cmp; 3006 int same_inode = 0; 3007 u64 same_lock_start = 0; 3008 u64 same_lock_len = 0; 3009 3010 if (src == dst) 3011 same_inode = 1; 3012 3013 if (len == 0) 3014 return 0; 3015 3016 if (same_inode) { 3017 mutex_lock(&src->i_mutex); 3018 3019 ret = extent_same_check_offsets(src, loff, &len, olen); 3020 if (ret) 3021 goto out_unlock; 3022 3023 /* 3024 * Single inode case wants the same checks, except we 3025 * don't want our length pushed out past i_size as 3026 * comparing that data range makes no sense. 3027 * 3028 * extent_same_check_offsets() will do this for an 3029 * unaligned length at i_size, so catch it here and 3030 * reject the request. 3031 * 3032 * This effectively means we require aligned extents 3033 * for the single-inode case, whereas the other cases 3034 * allow an unaligned length so long as it ends at 3035 * i_size. 3036 */ 3037 if (len != olen) { 3038 ret = -EINVAL; 3039 goto out_unlock; 3040 } 3041 3042 /* Check for overlapping ranges */ 3043 if (dst_loff + len > loff && dst_loff < loff + len) { 3044 ret = -EINVAL; 3045 goto out_unlock; 3046 } 3047 3048 same_lock_start = min_t(u64, loff, dst_loff); 3049 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3050 } else { 3051 btrfs_double_inode_lock(src, dst); 3052 3053 ret = extent_same_check_offsets(src, loff, &len, olen); 3054 if (ret) 3055 goto out_unlock; 3056 3057 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3058 if (ret) 3059 goto out_unlock; 3060 } 3061 3062 /* don't make the dst file partly checksummed */ 3063 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3064 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3065 ret = -EINVAL; 3066 goto out_unlock; 3067 } 3068 3069 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp); 3070 if (ret) 3071 goto out_unlock; 3072 3073 if (same_inode) 3074 lock_extent_range(src, same_lock_start, same_lock_len); 3075 else 3076 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 3077 3078 /* pass original length for comparison so we stay within i_size */ 3079 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp); 3080 if (ret == 0) 3081 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3082 3083 if (same_inode) 3084 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3085 same_lock_start + same_lock_len - 1); 3086 else 3087 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3088 3089 btrfs_cmp_data_free(&cmp); 3090 out_unlock: 3091 if (same_inode) 3092 mutex_unlock(&src->i_mutex); 3093 else 3094 btrfs_double_inode_unlock(src, dst); 3095 3096 return ret; 3097 } 3098 3099 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024) 3100 3101 static long btrfs_ioctl_file_extent_same(struct file *file, 3102 struct btrfs_ioctl_same_args __user *argp) 3103 { 3104 struct btrfs_ioctl_same_args *same = NULL; 3105 struct btrfs_ioctl_same_extent_info *info; 3106 struct inode *src = file_inode(file); 3107 u64 off; 3108 u64 len; 3109 int i; 3110 int ret; 3111 unsigned long size; 3112 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3113 bool is_admin = capable(CAP_SYS_ADMIN); 3114 u16 count; 3115 3116 if (!(file->f_mode & FMODE_READ)) 3117 return -EINVAL; 3118 3119 ret = mnt_want_write_file(file); 3120 if (ret) 3121 return ret; 3122 3123 if (get_user(count, &argp->dest_count)) { 3124 ret = -EFAULT; 3125 goto out; 3126 } 3127 3128 size = offsetof(struct btrfs_ioctl_same_args __user, info[count]); 3129 3130 same = memdup_user(argp, size); 3131 3132 if (IS_ERR(same)) { 3133 ret = PTR_ERR(same); 3134 same = NULL; 3135 goto out; 3136 } 3137 3138 off = same->logical_offset; 3139 len = same->length; 3140 3141 /* 3142 * Limit the total length we will dedupe for each operation. 3143 * This is intended to bound the total time spent in this 3144 * ioctl to something sane. 3145 */ 3146 if (len > BTRFS_MAX_DEDUPE_LEN) 3147 len = BTRFS_MAX_DEDUPE_LEN; 3148 3149 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) { 3150 /* 3151 * Btrfs does not support blocksize < page_size. As a 3152 * result, btrfs_cmp_data() won't correctly handle 3153 * this situation without an update. 3154 */ 3155 ret = -EINVAL; 3156 goto out; 3157 } 3158 3159 ret = -EISDIR; 3160 if (S_ISDIR(src->i_mode)) 3161 goto out; 3162 3163 ret = -EACCES; 3164 if (!S_ISREG(src->i_mode)) 3165 goto out; 3166 3167 /* pre-format output fields to sane values */ 3168 for (i = 0; i < count; i++) { 3169 same->info[i].bytes_deduped = 0ULL; 3170 same->info[i].status = 0; 3171 } 3172 3173 for (i = 0, info = same->info; i < count; i++, info++) { 3174 struct inode *dst; 3175 struct fd dst_file = fdget(info->fd); 3176 if (!dst_file.file) { 3177 info->status = -EBADF; 3178 continue; 3179 } 3180 dst = file_inode(dst_file.file); 3181 3182 if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) { 3183 info->status = -EINVAL; 3184 } else if (file->f_path.mnt != dst_file.file->f_path.mnt) { 3185 info->status = -EXDEV; 3186 } else if (S_ISDIR(dst->i_mode)) { 3187 info->status = -EISDIR; 3188 } else if (!S_ISREG(dst->i_mode)) { 3189 info->status = -EACCES; 3190 } else { 3191 info->status = btrfs_extent_same(src, off, len, dst, 3192 info->logical_offset); 3193 if (info->status == 0) 3194 info->bytes_deduped += len; 3195 } 3196 fdput(dst_file); 3197 } 3198 3199 ret = copy_to_user(argp, same, size); 3200 if (ret) 3201 ret = -EFAULT; 3202 3203 out: 3204 mnt_drop_write_file(file); 3205 kfree(same); 3206 return ret; 3207 } 3208 3209 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3210 struct inode *inode, 3211 u64 endoff, 3212 const u64 destoff, 3213 const u64 olen, 3214 int no_time_update) 3215 { 3216 struct btrfs_root *root = BTRFS_I(inode)->root; 3217 int ret; 3218 3219 inode_inc_iversion(inode); 3220 if (!no_time_update) 3221 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3222 /* 3223 * We round up to the block size at eof when determining which 3224 * extents to clone above, but shouldn't round up the file size. 3225 */ 3226 if (endoff > destoff + olen) 3227 endoff = destoff + olen; 3228 if (endoff > inode->i_size) 3229 btrfs_i_size_write(inode, endoff); 3230 3231 ret = btrfs_update_inode(trans, root, inode); 3232 if (ret) { 3233 btrfs_abort_transaction(trans, root, ret); 3234 btrfs_end_transaction(trans, root); 3235 goto out; 3236 } 3237 ret = btrfs_end_transaction(trans, root); 3238 out: 3239 return ret; 3240 } 3241 3242 static void clone_update_extent_map(struct inode *inode, 3243 const struct btrfs_trans_handle *trans, 3244 const struct btrfs_path *path, 3245 const u64 hole_offset, 3246 const u64 hole_len) 3247 { 3248 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3249 struct extent_map *em; 3250 int ret; 3251 3252 em = alloc_extent_map(); 3253 if (!em) { 3254 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3255 &BTRFS_I(inode)->runtime_flags); 3256 return; 3257 } 3258 3259 if (path) { 3260 struct btrfs_file_extent_item *fi; 3261 3262 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3263 struct btrfs_file_extent_item); 3264 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3265 em->generation = -1; 3266 if (btrfs_file_extent_type(path->nodes[0], fi) == 3267 BTRFS_FILE_EXTENT_INLINE) 3268 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3269 &BTRFS_I(inode)->runtime_flags); 3270 } else { 3271 em->start = hole_offset; 3272 em->len = hole_len; 3273 em->ram_bytes = em->len; 3274 em->orig_start = hole_offset; 3275 em->block_start = EXTENT_MAP_HOLE; 3276 em->block_len = 0; 3277 em->orig_block_len = 0; 3278 em->compress_type = BTRFS_COMPRESS_NONE; 3279 em->generation = trans->transid; 3280 } 3281 3282 while (1) { 3283 write_lock(&em_tree->lock); 3284 ret = add_extent_mapping(em_tree, em, 1); 3285 write_unlock(&em_tree->lock); 3286 if (ret != -EEXIST) { 3287 free_extent_map(em); 3288 break; 3289 } 3290 btrfs_drop_extent_cache(inode, em->start, 3291 em->start + em->len - 1, 0); 3292 } 3293 3294 if (ret) 3295 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3296 &BTRFS_I(inode)->runtime_flags); 3297 } 3298 3299 /* 3300 * Make sure we do not end up inserting an inline extent into a file that has 3301 * already other (non-inline) extents. If a file has an inline extent it can 3302 * not have any other extents and the (single) inline extent must start at the 3303 * file offset 0. Failing to respect these rules will lead to file corruption, 3304 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3305 * 3306 * We can have extents that have been already written to disk or we can have 3307 * dirty ranges still in delalloc, in which case the extent maps and items are 3308 * created only when we run delalloc, and the delalloc ranges might fall outside 3309 * the range we are currently locking in the inode's io tree. So we check the 3310 * inode's i_size because of that (i_size updates are done while holding the 3311 * i_mutex, which we are holding here). 3312 * We also check to see if the inode has a size not greater than "datal" but has 3313 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3314 * protected against such concurrent fallocate calls by the i_mutex). 3315 * 3316 * If the file has no extents but a size greater than datal, do not allow the 3317 * copy because we would need turn the inline extent into a non-inline one (even 3318 * with NO_HOLES enabled). If we find our destination inode only has one inline 3319 * extent, just overwrite it with the source inline extent if its size is less 3320 * than the source extent's size, or we could copy the source inline extent's 3321 * data into the destination inode's inline extent if the later is greater then 3322 * the former. 3323 */ 3324 static int clone_copy_inline_extent(struct inode *src, 3325 struct inode *dst, 3326 struct btrfs_trans_handle *trans, 3327 struct btrfs_path *path, 3328 struct btrfs_key *new_key, 3329 const u64 drop_start, 3330 const u64 datal, 3331 const u64 skip, 3332 const u64 size, 3333 char *inline_data) 3334 { 3335 struct btrfs_root *root = BTRFS_I(dst)->root; 3336 const u64 aligned_end = ALIGN(new_key->offset + datal, 3337 root->sectorsize); 3338 int ret; 3339 struct btrfs_key key; 3340 3341 if (new_key->offset > 0) 3342 return -EOPNOTSUPP; 3343 3344 key.objectid = btrfs_ino(dst); 3345 key.type = BTRFS_EXTENT_DATA_KEY; 3346 key.offset = 0; 3347 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3348 if (ret < 0) { 3349 return ret; 3350 } else if (ret > 0) { 3351 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3352 ret = btrfs_next_leaf(root, path); 3353 if (ret < 0) 3354 return ret; 3355 else if (ret > 0) 3356 goto copy_inline_extent; 3357 } 3358 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3359 if (key.objectid == btrfs_ino(dst) && 3360 key.type == BTRFS_EXTENT_DATA_KEY) { 3361 ASSERT(key.offset > 0); 3362 return -EOPNOTSUPP; 3363 } 3364 } else if (i_size_read(dst) <= datal) { 3365 struct btrfs_file_extent_item *ei; 3366 u64 ext_len; 3367 3368 /* 3369 * If the file size is <= datal, make sure there are no other 3370 * extents following (can happen do to an fallocate call with 3371 * the flag FALLOC_FL_KEEP_SIZE). 3372 */ 3373 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3374 struct btrfs_file_extent_item); 3375 /* 3376 * If it's an inline extent, it can not have other extents 3377 * following it. 3378 */ 3379 if (btrfs_file_extent_type(path->nodes[0], ei) == 3380 BTRFS_FILE_EXTENT_INLINE) 3381 goto copy_inline_extent; 3382 3383 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3384 if (ext_len > aligned_end) 3385 return -EOPNOTSUPP; 3386 3387 ret = btrfs_next_item(root, path); 3388 if (ret < 0) { 3389 return ret; 3390 } else if (ret == 0) { 3391 btrfs_item_key_to_cpu(path->nodes[0], &key, 3392 path->slots[0]); 3393 if (key.objectid == btrfs_ino(dst) && 3394 key.type == BTRFS_EXTENT_DATA_KEY) 3395 return -EOPNOTSUPP; 3396 } 3397 } 3398 3399 copy_inline_extent: 3400 /* 3401 * We have no extent items, or we have an extent at offset 0 which may 3402 * or may not be inlined. All these cases are dealt the same way. 3403 */ 3404 if (i_size_read(dst) > datal) { 3405 /* 3406 * If the destination inode has an inline extent... 3407 * This would require copying the data from the source inline 3408 * extent into the beginning of the destination's inline extent. 3409 * But this is really complex, both extents can be compressed 3410 * or just one of them, which would require decompressing and 3411 * re-compressing data (which could increase the new compressed 3412 * size, not allowing the compressed data to fit anymore in an 3413 * inline extent). 3414 * So just don't support this case for now (it should be rare, 3415 * we are not really saving space when cloning inline extents). 3416 */ 3417 return -EOPNOTSUPP; 3418 } 3419 3420 btrfs_release_path(path); 3421 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3422 if (ret) 3423 return ret; 3424 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3425 if (ret) 3426 return ret; 3427 3428 if (skip) { 3429 const u32 start = btrfs_file_extent_calc_inline_size(0); 3430 3431 memmove(inline_data + start, inline_data + start + skip, datal); 3432 } 3433 3434 write_extent_buffer(path->nodes[0], inline_data, 3435 btrfs_item_ptr_offset(path->nodes[0], 3436 path->slots[0]), 3437 size); 3438 inode_add_bytes(dst, datal); 3439 3440 return 0; 3441 } 3442 3443 /** 3444 * btrfs_clone() - clone a range from inode file to another 3445 * 3446 * @src: Inode to clone from 3447 * @inode: Inode to clone to 3448 * @off: Offset within source to start clone from 3449 * @olen: Original length, passed by user, of range to clone 3450 * @olen_aligned: Block-aligned value of olen 3451 * @destoff: Offset within @inode to start clone 3452 * @no_time_update: Whether to update mtime/ctime on the target inode 3453 */ 3454 static int btrfs_clone(struct inode *src, struct inode *inode, 3455 const u64 off, const u64 olen, const u64 olen_aligned, 3456 const u64 destoff, int no_time_update) 3457 { 3458 struct btrfs_root *root = BTRFS_I(inode)->root; 3459 struct btrfs_path *path = NULL; 3460 struct extent_buffer *leaf; 3461 struct btrfs_trans_handle *trans; 3462 char *buf = NULL; 3463 struct btrfs_key key; 3464 u32 nritems; 3465 int slot; 3466 int ret; 3467 const u64 len = olen_aligned; 3468 u64 last_dest_end = destoff; 3469 3470 ret = -ENOMEM; 3471 buf = vmalloc(root->nodesize); 3472 if (!buf) 3473 return ret; 3474 3475 path = btrfs_alloc_path(); 3476 if (!path) { 3477 vfree(buf); 3478 return ret; 3479 } 3480 3481 path->reada = 2; 3482 /* clone data */ 3483 key.objectid = btrfs_ino(src); 3484 key.type = BTRFS_EXTENT_DATA_KEY; 3485 key.offset = off; 3486 3487 while (1) { 3488 u64 next_key_min_offset = key.offset + 1; 3489 3490 /* 3491 * note the key will change type as we walk through the 3492 * tree. 3493 */ 3494 path->leave_spinning = 1; 3495 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3496 0, 0); 3497 if (ret < 0) 3498 goto out; 3499 /* 3500 * First search, if no extent item that starts at offset off was 3501 * found but the previous item is an extent item, it's possible 3502 * it might overlap our target range, therefore process it. 3503 */ 3504 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3505 btrfs_item_key_to_cpu(path->nodes[0], &key, 3506 path->slots[0] - 1); 3507 if (key.type == BTRFS_EXTENT_DATA_KEY) 3508 path->slots[0]--; 3509 } 3510 3511 nritems = btrfs_header_nritems(path->nodes[0]); 3512 process_slot: 3513 if (path->slots[0] >= nritems) { 3514 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3515 if (ret < 0) 3516 goto out; 3517 if (ret > 0) 3518 break; 3519 nritems = btrfs_header_nritems(path->nodes[0]); 3520 } 3521 leaf = path->nodes[0]; 3522 slot = path->slots[0]; 3523 3524 btrfs_item_key_to_cpu(leaf, &key, slot); 3525 if (key.type > BTRFS_EXTENT_DATA_KEY || 3526 key.objectid != btrfs_ino(src)) 3527 break; 3528 3529 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3530 struct btrfs_file_extent_item *extent; 3531 int type; 3532 u32 size; 3533 struct btrfs_key new_key; 3534 u64 disko = 0, diskl = 0; 3535 u64 datao = 0, datal = 0; 3536 u8 comp; 3537 u64 drop_start; 3538 3539 extent = btrfs_item_ptr(leaf, slot, 3540 struct btrfs_file_extent_item); 3541 comp = btrfs_file_extent_compression(leaf, extent); 3542 type = btrfs_file_extent_type(leaf, extent); 3543 if (type == BTRFS_FILE_EXTENT_REG || 3544 type == BTRFS_FILE_EXTENT_PREALLOC) { 3545 disko = btrfs_file_extent_disk_bytenr(leaf, 3546 extent); 3547 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3548 extent); 3549 datao = btrfs_file_extent_offset(leaf, extent); 3550 datal = btrfs_file_extent_num_bytes(leaf, 3551 extent); 3552 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3553 /* take upper bound, may be compressed */ 3554 datal = btrfs_file_extent_ram_bytes(leaf, 3555 extent); 3556 } 3557 3558 /* 3559 * The first search might have left us at an extent 3560 * item that ends before our target range's start, can 3561 * happen if we have holes and NO_HOLES feature enabled. 3562 */ 3563 if (key.offset + datal <= off) { 3564 path->slots[0]++; 3565 goto process_slot; 3566 } else if (key.offset >= off + len) { 3567 break; 3568 } 3569 next_key_min_offset = key.offset + datal; 3570 size = btrfs_item_size_nr(leaf, slot); 3571 read_extent_buffer(leaf, buf, 3572 btrfs_item_ptr_offset(leaf, slot), 3573 size); 3574 3575 btrfs_release_path(path); 3576 path->leave_spinning = 0; 3577 3578 memcpy(&new_key, &key, sizeof(new_key)); 3579 new_key.objectid = btrfs_ino(inode); 3580 if (off <= key.offset) 3581 new_key.offset = key.offset + destoff - off; 3582 else 3583 new_key.offset = destoff; 3584 3585 /* 3586 * Deal with a hole that doesn't have an extent item 3587 * that represents it (NO_HOLES feature enabled). 3588 * This hole is either in the middle of the cloning 3589 * range or at the beginning (fully overlaps it or 3590 * partially overlaps it). 3591 */ 3592 if (new_key.offset != last_dest_end) 3593 drop_start = last_dest_end; 3594 else 3595 drop_start = new_key.offset; 3596 3597 /* 3598 * 1 - adjusting old extent (we may have to split it) 3599 * 1 - add new extent 3600 * 1 - inode update 3601 */ 3602 trans = btrfs_start_transaction(root, 3); 3603 if (IS_ERR(trans)) { 3604 ret = PTR_ERR(trans); 3605 goto out; 3606 } 3607 3608 if (type == BTRFS_FILE_EXTENT_REG || 3609 type == BTRFS_FILE_EXTENT_PREALLOC) { 3610 /* 3611 * a | --- range to clone ---| b 3612 * | ------------- extent ------------- | 3613 */ 3614 3615 /* subtract range b */ 3616 if (key.offset + datal > off + len) 3617 datal = off + len - key.offset; 3618 3619 /* subtract range a */ 3620 if (off > key.offset) { 3621 datao += off - key.offset; 3622 datal -= off - key.offset; 3623 } 3624 3625 ret = btrfs_drop_extents(trans, root, inode, 3626 drop_start, 3627 new_key.offset + datal, 3628 1); 3629 if (ret) { 3630 if (ret != -EOPNOTSUPP) 3631 btrfs_abort_transaction(trans, 3632 root, ret); 3633 btrfs_end_transaction(trans, root); 3634 goto out; 3635 } 3636 3637 ret = btrfs_insert_empty_item(trans, root, path, 3638 &new_key, size); 3639 if (ret) { 3640 btrfs_abort_transaction(trans, root, 3641 ret); 3642 btrfs_end_transaction(trans, root); 3643 goto out; 3644 } 3645 3646 leaf = path->nodes[0]; 3647 slot = path->slots[0]; 3648 write_extent_buffer(leaf, buf, 3649 btrfs_item_ptr_offset(leaf, slot), 3650 size); 3651 3652 extent = btrfs_item_ptr(leaf, slot, 3653 struct btrfs_file_extent_item); 3654 3655 /* disko == 0 means it's a hole */ 3656 if (!disko) 3657 datao = 0; 3658 3659 btrfs_set_file_extent_offset(leaf, extent, 3660 datao); 3661 btrfs_set_file_extent_num_bytes(leaf, extent, 3662 datal); 3663 3664 if (disko) { 3665 inode_add_bytes(inode, datal); 3666 ret = btrfs_inc_extent_ref(trans, root, 3667 disko, diskl, 0, 3668 root->root_key.objectid, 3669 btrfs_ino(inode), 3670 new_key.offset - datao); 3671 if (ret) { 3672 btrfs_abort_transaction(trans, 3673 root, 3674 ret); 3675 btrfs_end_transaction(trans, 3676 root); 3677 goto out; 3678 3679 } 3680 } 3681 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3682 u64 skip = 0; 3683 u64 trim = 0; 3684 3685 if (off > key.offset) { 3686 skip = off - key.offset; 3687 new_key.offset += skip; 3688 } 3689 3690 if (key.offset + datal > off + len) 3691 trim = key.offset + datal - (off + len); 3692 3693 if (comp && (skip || trim)) { 3694 ret = -EINVAL; 3695 btrfs_end_transaction(trans, root); 3696 goto out; 3697 } 3698 size -= skip + trim; 3699 datal -= skip + trim; 3700 3701 ret = clone_copy_inline_extent(src, inode, 3702 trans, path, 3703 &new_key, 3704 drop_start, 3705 datal, 3706 skip, size, buf); 3707 if (ret) { 3708 if (ret != -EOPNOTSUPP) 3709 btrfs_abort_transaction(trans, 3710 root, 3711 ret); 3712 btrfs_end_transaction(trans, root); 3713 goto out; 3714 } 3715 leaf = path->nodes[0]; 3716 slot = path->slots[0]; 3717 } 3718 3719 /* If we have an implicit hole (NO_HOLES feature). */ 3720 if (drop_start < new_key.offset) 3721 clone_update_extent_map(inode, trans, 3722 NULL, drop_start, 3723 new_key.offset - drop_start); 3724 3725 clone_update_extent_map(inode, trans, path, 0, 0); 3726 3727 btrfs_mark_buffer_dirty(leaf); 3728 btrfs_release_path(path); 3729 3730 last_dest_end = ALIGN(new_key.offset + datal, 3731 root->sectorsize); 3732 ret = clone_finish_inode_update(trans, inode, 3733 last_dest_end, 3734 destoff, olen, 3735 no_time_update); 3736 if (ret) 3737 goto out; 3738 if (new_key.offset + datal >= destoff + len) 3739 break; 3740 } 3741 btrfs_release_path(path); 3742 key.offset = next_key_min_offset; 3743 } 3744 ret = 0; 3745 3746 if (last_dest_end < destoff + len) { 3747 /* 3748 * We have an implicit hole (NO_HOLES feature is enabled) that 3749 * fully or partially overlaps our cloning range at its end. 3750 */ 3751 btrfs_release_path(path); 3752 3753 /* 3754 * 1 - remove extent(s) 3755 * 1 - inode update 3756 */ 3757 trans = btrfs_start_transaction(root, 2); 3758 if (IS_ERR(trans)) { 3759 ret = PTR_ERR(trans); 3760 goto out; 3761 } 3762 ret = btrfs_drop_extents(trans, root, inode, 3763 last_dest_end, destoff + len, 1); 3764 if (ret) { 3765 if (ret != -EOPNOTSUPP) 3766 btrfs_abort_transaction(trans, root, ret); 3767 btrfs_end_transaction(trans, root); 3768 goto out; 3769 } 3770 clone_update_extent_map(inode, trans, NULL, last_dest_end, 3771 destoff + len - last_dest_end); 3772 ret = clone_finish_inode_update(trans, inode, destoff + len, 3773 destoff, olen, no_time_update); 3774 } 3775 3776 out: 3777 btrfs_free_path(path); 3778 vfree(buf); 3779 return ret; 3780 } 3781 3782 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 3783 u64 off, u64 olen, u64 destoff) 3784 { 3785 struct inode *inode = file_inode(file); 3786 struct btrfs_root *root = BTRFS_I(inode)->root; 3787 struct fd src_file; 3788 struct inode *src; 3789 int ret; 3790 u64 len = olen; 3791 u64 bs = root->fs_info->sb->s_blocksize; 3792 int same_inode = 0; 3793 3794 /* 3795 * TODO: 3796 * - split compressed inline extents. annoying: we need to 3797 * decompress into destination's address_space (the file offset 3798 * may change, so source mapping won't do), then recompress (or 3799 * otherwise reinsert) a subrange. 3800 * 3801 * - split destination inode's inline extents. The inline extents can 3802 * be either compressed or non-compressed. 3803 */ 3804 3805 /* the destination must be opened for writing */ 3806 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 3807 return -EINVAL; 3808 3809 if (btrfs_root_readonly(root)) 3810 return -EROFS; 3811 3812 ret = mnt_want_write_file(file); 3813 if (ret) 3814 return ret; 3815 3816 src_file = fdget(srcfd); 3817 if (!src_file.file) { 3818 ret = -EBADF; 3819 goto out_drop_write; 3820 } 3821 3822 ret = -EXDEV; 3823 if (src_file.file->f_path.mnt != file->f_path.mnt) 3824 goto out_fput; 3825 3826 src = file_inode(src_file.file); 3827 3828 ret = -EINVAL; 3829 if (src == inode) 3830 same_inode = 1; 3831 3832 /* the src must be open for reading */ 3833 if (!(src_file.file->f_mode & FMODE_READ)) 3834 goto out_fput; 3835 3836 /* don't make the dst file partly checksummed */ 3837 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3838 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3839 goto out_fput; 3840 3841 ret = -EISDIR; 3842 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3843 goto out_fput; 3844 3845 ret = -EXDEV; 3846 if (src->i_sb != inode->i_sb) 3847 goto out_fput; 3848 3849 if (!same_inode) { 3850 btrfs_double_inode_lock(src, inode); 3851 } else { 3852 mutex_lock(&src->i_mutex); 3853 } 3854 3855 /* determine range to clone */ 3856 ret = -EINVAL; 3857 if (off + len > src->i_size || off + len < off) 3858 goto out_unlock; 3859 if (len == 0) 3860 olen = len = src->i_size - off; 3861 /* if we extend to eof, continue to block boundary */ 3862 if (off + len == src->i_size) 3863 len = ALIGN(src->i_size, bs) - off; 3864 3865 if (len == 0) { 3866 ret = 0; 3867 goto out_unlock; 3868 } 3869 3870 /* verify the end result is block aligned */ 3871 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3872 !IS_ALIGNED(destoff, bs)) 3873 goto out_unlock; 3874 3875 /* verify if ranges are overlapped within the same file */ 3876 if (same_inode) { 3877 if (destoff + len > off && destoff < off + len) 3878 goto out_unlock; 3879 } 3880 3881 if (destoff > inode->i_size) { 3882 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3883 if (ret) 3884 goto out_unlock; 3885 } 3886 3887 /* 3888 * Lock the target range too. Right after we replace the file extent 3889 * items in the fs tree (which now point to the cloned data), we might 3890 * have a worker replace them with extent items relative to a write 3891 * operation that was issued before this clone operation (i.e. confront 3892 * with inode.c:btrfs_finish_ordered_io). 3893 */ 3894 if (same_inode) { 3895 u64 lock_start = min_t(u64, off, destoff); 3896 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3897 3898 lock_extent_range(src, lock_start, lock_len); 3899 } else { 3900 btrfs_double_extent_lock(src, off, inode, destoff, len); 3901 } 3902 3903 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3904 3905 if (same_inode) { 3906 u64 lock_start = min_t(u64, off, destoff); 3907 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3908 3909 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3910 } else { 3911 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3912 } 3913 /* 3914 * Truncate page cache pages so that future reads will see the cloned 3915 * data immediately and not the previous data. 3916 */ 3917 truncate_inode_pages_range(&inode->i_data, destoff, 3918 PAGE_CACHE_ALIGN(destoff + len) - 1); 3919 out_unlock: 3920 if (!same_inode) 3921 btrfs_double_inode_unlock(src, inode); 3922 else 3923 mutex_unlock(&src->i_mutex); 3924 out_fput: 3925 fdput(src_file); 3926 out_drop_write: 3927 mnt_drop_write_file(file); 3928 return ret; 3929 } 3930 3931 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 3932 { 3933 struct btrfs_ioctl_clone_range_args args; 3934 3935 if (copy_from_user(&args, argp, sizeof(args))) 3936 return -EFAULT; 3937 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 3938 args.src_length, args.dest_offset); 3939 } 3940 3941 /* 3942 * there are many ways the trans_start and trans_end ioctls can lead 3943 * to deadlocks. They should only be used by applications that 3944 * basically own the machine, and have a very in depth understanding 3945 * of all the possible deadlocks and enospc problems. 3946 */ 3947 static long btrfs_ioctl_trans_start(struct file *file) 3948 { 3949 struct inode *inode = file_inode(file); 3950 struct btrfs_root *root = BTRFS_I(inode)->root; 3951 struct btrfs_trans_handle *trans; 3952 int ret; 3953 3954 ret = -EPERM; 3955 if (!capable(CAP_SYS_ADMIN)) 3956 goto out; 3957 3958 ret = -EINPROGRESS; 3959 if (file->private_data) 3960 goto out; 3961 3962 ret = -EROFS; 3963 if (btrfs_root_readonly(root)) 3964 goto out; 3965 3966 ret = mnt_want_write_file(file); 3967 if (ret) 3968 goto out; 3969 3970 atomic_inc(&root->fs_info->open_ioctl_trans); 3971 3972 ret = -ENOMEM; 3973 trans = btrfs_start_ioctl_transaction(root); 3974 if (IS_ERR(trans)) 3975 goto out_drop; 3976 3977 file->private_data = trans; 3978 return 0; 3979 3980 out_drop: 3981 atomic_dec(&root->fs_info->open_ioctl_trans); 3982 mnt_drop_write_file(file); 3983 out: 3984 return ret; 3985 } 3986 3987 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3988 { 3989 struct inode *inode = file_inode(file); 3990 struct btrfs_root *root = BTRFS_I(inode)->root; 3991 struct btrfs_root *new_root; 3992 struct btrfs_dir_item *di; 3993 struct btrfs_trans_handle *trans; 3994 struct btrfs_path *path; 3995 struct btrfs_key location; 3996 struct btrfs_disk_key disk_key; 3997 u64 objectid = 0; 3998 u64 dir_id; 3999 int ret; 4000 4001 if (!capable(CAP_SYS_ADMIN)) 4002 return -EPERM; 4003 4004 ret = mnt_want_write_file(file); 4005 if (ret) 4006 return ret; 4007 4008 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4009 ret = -EFAULT; 4010 goto out; 4011 } 4012 4013 if (!objectid) 4014 objectid = BTRFS_FS_TREE_OBJECTID; 4015 4016 location.objectid = objectid; 4017 location.type = BTRFS_ROOT_ITEM_KEY; 4018 location.offset = (u64)-1; 4019 4020 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 4021 if (IS_ERR(new_root)) { 4022 ret = PTR_ERR(new_root); 4023 goto out; 4024 } 4025 4026 path = btrfs_alloc_path(); 4027 if (!path) { 4028 ret = -ENOMEM; 4029 goto out; 4030 } 4031 path->leave_spinning = 1; 4032 4033 trans = btrfs_start_transaction(root, 1); 4034 if (IS_ERR(trans)) { 4035 btrfs_free_path(path); 4036 ret = PTR_ERR(trans); 4037 goto out; 4038 } 4039 4040 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 4041 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 4042 dir_id, "default", 7, 1); 4043 if (IS_ERR_OR_NULL(di)) { 4044 btrfs_free_path(path); 4045 btrfs_end_transaction(trans, root); 4046 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir" 4047 "item, this isn't going to work"); 4048 ret = -ENOENT; 4049 goto out; 4050 } 4051 4052 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4053 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4054 btrfs_mark_buffer_dirty(path->nodes[0]); 4055 btrfs_free_path(path); 4056 4057 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 4058 btrfs_end_transaction(trans, root); 4059 out: 4060 mnt_drop_write_file(file); 4061 return ret; 4062 } 4063 4064 void btrfs_get_block_group_info(struct list_head *groups_list, 4065 struct btrfs_ioctl_space_info *space) 4066 { 4067 struct btrfs_block_group_cache *block_group; 4068 4069 space->total_bytes = 0; 4070 space->used_bytes = 0; 4071 space->flags = 0; 4072 list_for_each_entry(block_group, groups_list, list) { 4073 space->flags = block_group->flags; 4074 space->total_bytes += block_group->key.offset; 4075 space->used_bytes += 4076 btrfs_block_group_used(&block_group->item); 4077 } 4078 } 4079 4080 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 4081 { 4082 struct btrfs_ioctl_space_args space_args; 4083 struct btrfs_ioctl_space_info space; 4084 struct btrfs_ioctl_space_info *dest; 4085 struct btrfs_ioctl_space_info *dest_orig; 4086 struct btrfs_ioctl_space_info __user *user_dest; 4087 struct btrfs_space_info *info; 4088 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 4089 BTRFS_BLOCK_GROUP_SYSTEM, 4090 BTRFS_BLOCK_GROUP_METADATA, 4091 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 4092 int num_types = 4; 4093 int alloc_size; 4094 int ret = 0; 4095 u64 slot_count = 0; 4096 int i, c; 4097 4098 if (copy_from_user(&space_args, 4099 (struct btrfs_ioctl_space_args __user *)arg, 4100 sizeof(space_args))) 4101 return -EFAULT; 4102 4103 for (i = 0; i < num_types; i++) { 4104 struct btrfs_space_info *tmp; 4105 4106 info = NULL; 4107 rcu_read_lock(); 4108 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4109 list) { 4110 if (tmp->flags == types[i]) { 4111 info = tmp; 4112 break; 4113 } 4114 } 4115 rcu_read_unlock(); 4116 4117 if (!info) 4118 continue; 4119 4120 down_read(&info->groups_sem); 4121 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4122 if (!list_empty(&info->block_groups[c])) 4123 slot_count++; 4124 } 4125 up_read(&info->groups_sem); 4126 } 4127 4128 /* 4129 * Global block reserve, exported as a space_info 4130 */ 4131 slot_count++; 4132 4133 /* space_slots == 0 means they are asking for a count */ 4134 if (space_args.space_slots == 0) { 4135 space_args.total_spaces = slot_count; 4136 goto out; 4137 } 4138 4139 slot_count = min_t(u64, space_args.space_slots, slot_count); 4140 4141 alloc_size = sizeof(*dest) * slot_count; 4142 4143 /* we generally have at most 6 or so space infos, one for each raid 4144 * level. So, a whole page should be more than enough for everyone 4145 */ 4146 if (alloc_size > PAGE_CACHE_SIZE) 4147 return -ENOMEM; 4148 4149 space_args.total_spaces = 0; 4150 dest = kmalloc(alloc_size, GFP_NOFS); 4151 if (!dest) 4152 return -ENOMEM; 4153 dest_orig = dest; 4154 4155 /* now we have a buffer to copy into */ 4156 for (i = 0; i < num_types; i++) { 4157 struct btrfs_space_info *tmp; 4158 4159 if (!slot_count) 4160 break; 4161 4162 info = NULL; 4163 rcu_read_lock(); 4164 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4165 list) { 4166 if (tmp->flags == types[i]) { 4167 info = tmp; 4168 break; 4169 } 4170 } 4171 rcu_read_unlock(); 4172 4173 if (!info) 4174 continue; 4175 down_read(&info->groups_sem); 4176 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4177 if (!list_empty(&info->block_groups[c])) { 4178 btrfs_get_block_group_info( 4179 &info->block_groups[c], &space); 4180 memcpy(dest, &space, sizeof(space)); 4181 dest++; 4182 space_args.total_spaces++; 4183 slot_count--; 4184 } 4185 if (!slot_count) 4186 break; 4187 } 4188 up_read(&info->groups_sem); 4189 } 4190 4191 /* 4192 * Add global block reserve 4193 */ 4194 if (slot_count) { 4195 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv; 4196 4197 spin_lock(&block_rsv->lock); 4198 space.total_bytes = block_rsv->size; 4199 space.used_bytes = block_rsv->size - block_rsv->reserved; 4200 spin_unlock(&block_rsv->lock); 4201 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4202 memcpy(dest, &space, sizeof(space)); 4203 space_args.total_spaces++; 4204 } 4205 4206 user_dest = (struct btrfs_ioctl_space_info __user *) 4207 (arg + sizeof(struct btrfs_ioctl_space_args)); 4208 4209 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4210 ret = -EFAULT; 4211 4212 kfree(dest_orig); 4213 out: 4214 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4215 ret = -EFAULT; 4216 4217 return ret; 4218 } 4219 4220 /* 4221 * there are many ways the trans_start and trans_end ioctls can lead 4222 * to deadlocks. They should only be used by applications that 4223 * basically own the machine, and have a very in depth understanding 4224 * of all the possible deadlocks and enospc problems. 4225 */ 4226 long btrfs_ioctl_trans_end(struct file *file) 4227 { 4228 struct inode *inode = file_inode(file); 4229 struct btrfs_root *root = BTRFS_I(inode)->root; 4230 struct btrfs_trans_handle *trans; 4231 4232 trans = file->private_data; 4233 if (!trans) 4234 return -EINVAL; 4235 file->private_data = NULL; 4236 4237 btrfs_end_transaction(trans, root); 4238 4239 atomic_dec(&root->fs_info->open_ioctl_trans); 4240 4241 mnt_drop_write_file(file); 4242 return 0; 4243 } 4244 4245 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4246 void __user *argp) 4247 { 4248 struct btrfs_trans_handle *trans; 4249 u64 transid; 4250 int ret; 4251 4252 trans = btrfs_attach_transaction_barrier(root); 4253 if (IS_ERR(trans)) { 4254 if (PTR_ERR(trans) != -ENOENT) 4255 return PTR_ERR(trans); 4256 4257 /* No running transaction, don't bother */ 4258 transid = root->fs_info->last_trans_committed; 4259 goto out; 4260 } 4261 transid = trans->transid; 4262 ret = btrfs_commit_transaction_async(trans, root, 0); 4263 if (ret) { 4264 btrfs_end_transaction(trans, root); 4265 return ret; 4266 } 4267 out: 4268 if (argp) 4269 if (copy_to_user(argp, &transid, sizeof(transid))) 4270 return -EFAULT; 4271 return 0; 4272 } 4273 4274 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root, 4275 void __user *argp) 4276 { 4277 u64 transid; 4278 4279 if (argp) { 4280 if (copy_from_user(&transid, argp, sizeof(transid))) 4281 return -EFAULT; 4282 } else { 4283 transid = 0; /* current trans */ 4284 } 4285 return btrfs_wait_for_commit(root, transid); 4286 } 4287 4288 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4289 { 4290 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4291 struct btrfs_ioctl_scrub_args *sa; 4292 int ret; 4293 4294 if (!capable(CAP_SYS_ADMIN)) 4295 return -EPERM; 4296 4297 sa = memdup_user(arg, sizeof(*sa)); 4298 if (IS_ERR(sa)) 4299 return PTR_ERR(sa); 4300 4301 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4302 ret = mnt_want_write_file(file); 4303 if (ret) 4304 goto out; 4305 } 4306 4307 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end, 4308 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4309 0); 4310 4311 if (copy_to_user(arg, sa, sizeof(*sa))) 4312 ret = -EFAULT; 4313 4314 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4315 mnt_drop_write_file(file); 4316 out: 4317 kfree(sa); 4318 return ret; 4319 } 4320 4321 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 4322 { 4323 if (!capable(CAP_SYS_ADMIN)) 4324 return -EPERM; 4325 4326 return btrfs_scrub_cancel(root->fs_info); 4327 } 4328 4329 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 4330 void __user *arg) 4331 { 4332 struct btrfs_ioctl_scrub_args *sa; 4333 int ret; 4334 4335 if (!capable(CAP_SYS_ADMIN)) 4336 return -EPERM; 4337 4338 sa = memdup_user(arg, sizeof(*sa)); 4339 if (IS_ERR(sa)) 4340 return PTR_ERR(sa); 4341 4342 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 4343 4344 if (copy_to_user(arg, sa, sizeof(*sa))) 4345 ret = -EFAULT; 4346 4347 kfree(sa); 4348 return ret; 4349 } 4350 4351 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 4352 void __user *arg) 4353 { 4354 struct btrfs_ioctl_get_dev_stats *sa; 4355 int ret; 4356 4357 sa = memdup_user(arg, sizeof(*sa)); 4358 if (IS_ERR(sa)) 4359 return PTR_ERR(sa); 4360 4361 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4362 kfree(sa); 4363 return -EPERM; 4364 } 4365 4366 ret = btrfs_get_dev_stats(root, sa); 4367 4368 if (copy_to_user(arg, sa, sizeof(*sa))) 4369 ret = -EFAULT; 4370 4371 kfree(sa); 4372 return ret; 4373 } 4374 4375 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg) 4376 { 4377 struct btrfs_ioctl_dev_replace_args *p; 4378 int ret; 4379 4380 if (!capable(CAP_SYS_ADMIN)) 4381 return -EPERM; 4382 4383 p = memdup_user(arg, sizeof(*p)); 4384 if (IS_ERR(p)) 4385 return PTR_ERR(p); 4386 4387 switch (p->cmd) { 4388 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4389 if (root->fs_info->sb->s_flags & MS_RDONLY) { 4390 ret = -EROFS; 4391 goto out; 4392 } 4393 if (atomic_xchg( 4394 &root->fs_info->mutually_exclusive_operation_running, 4395 1)) { 4396 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4397 } else { 4398 ret = btrfs_dev_replace_start(root, p); 4399 atomic_set( 4400 &root->fs_info->mutually_exclusive_operation_running, 4401 0); 4402 } 4403 break; 4404 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4405 btrfs_dev_replace_status(root->fs_info, p); 4406 ret = 0; 4407 break; 4408 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4409 ret = btrfs_dev_replace_cancel(root->fs_info, p); 4410 break; 4411 default: 4412 ret = -EINVAL; 4413 break; 4414 } 4415 4416 if (copy_to_user(arg, p, sizeof(*p))) 4417 ret = -EFAULT; 4418 out: 4419 kfree(p); 4420 return ret; 4421 } 4422 4423 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4424 { 4425 int ret = 0; 4426 int i; 4427 u64 rel_ptr; 4428 int size; 4429 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4430 struct inode_fs_paths *ipath = NULL; 4431 struct btrfs_path *path; 4432 4433 if (!capable(CAP_DAC_READ_SEARCH)) 4434 return -EPERM; 4435 4436 path = btrfs_alloc_path(); 4437 if (!path) { 4438 ret = -ENOMEM; 4439 goto out; 4440 } 4441 4442 ipa = memdup_user(arg, sizeof(*ipa)); 4443 if (IS_ERR(ipa)) { 4444 ret = PTR_ERR(ipa); 4445 ipa = NULL; 4446 goto out; 4447 } 4448 4449 size = min_t(u32, ipa->size, 4096); 4450 ipath = init_ipath(size, root, path); 4451 if (IS_ERR(ipath)) { 4452 ret = PTR_ERR(ipath); 4453 ipath = NULL; 4454 goto out; 4455 } 4456 4457 ret = paths_from_inode(ipa->inum, ipath); 4458 if (ret < 0) 4459 goto out; 4460 4461 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4462 rel_ptr = ipath->fspath->val[i] - 4463 (u64)(unsigned long)ipath->fspath->val; 4464 ipath->fspath->val[i] = rel_ptr; 4465 } 4466 4467 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 4468 (void *)(unsigned long)ipath->fspath, size); 4469 if (ret) { 4470 ret = -EFAULT; 4471 goto out; 4472 } 4473 4474 out: 4475 btrfs_free_path(path); 4476 free_ipath(ipath); 4477 kfree(ipa); 4478 4479 return ret; 4480 } 4481 4482 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4483 { 4484 struct btrfs_data_container *inodes = ctx; 4485 const size_t c = 3 * sizeof(u64); 4486 4487 if (inodes->bytes_left >= c) { 4488 inodes->bytes_left -= c; 4489 inodes->val[inodes->elem_cnt] = inum; 4490 inodes->val[inodes->elem_cnt + 1] = offset; 4491 inodes->val[inodes->elem_cnt + 2] = root; 4492 inodes->elem_cnt += 3; 4493 } else { 4494 inodes->bytes_missing += c - inodes->bytes_left; 4495 inodes->bytes_left = 0; 4496 inodes->elem_missed += 3; 4497 } 4498 4499 return 0; 4500 } 4501 4502 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 4503 void __user *arg) 4504 { 4505 int ret = 0; 4506 int size; 4507 struct btrfs_ioctl_logical_ino_args *loi; 4508 struct btrfs_data_container *inodes = NULL; 4509 struct btrfs_path *path = NULL; 4510 4511 if (!capable(CAP_SYS_ADMIN)) 4512 return -EPERM; 4513 4514 loi = memdup_user(arg, sizeof(*loi)); 4515 if (IS_ERR(loi)) { 4516 ret = PTR_ERR(loi); 4517 loi = NULL; 4518 goto out; 4519 } 4520 4521 path = btrfs_alloc_path(); 4522 if (!path) { 4523 ret = -ENOMEM; 4524 goto out; 4525 } 4526 4527 size = min_t(u32, loi->size, 64 * 1024); 4528 inodes = init_data_container(size); 4529 if (IS_ERR(inodes)) { 4530 ret = PTR_ERR(inodes); 4531 inodes = NULL; 4532 goto out; 4533 } 4534 4535 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 4536 build_ino_list, inodes); 4537 if (ret == -EINVAL) 4538 ret = -ENOENT; 4539 if (ret < 0) 4540 goto out; 4541 4542 ret = copy_to_user((void *)(unsigned long)loi->inodes, 4543 (void *)(unsigned long)inodes, size); 4544 if (ret) 4545 ret = -EFAULT; 4546 4547 out: 4548 btrfs_free_path(path); 4549 vfree(inodes); 4550 kfree(loi); 4551 4552 return ret; 4553 } 4554 4555 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4556 struct btrfs_ioctl_balance_args *bargs) 4557 { 4558 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4559 4560 bargs->flags = bctl->flags; 4561 4562 if (atomic_read(&fs_info->balance_running)) 4563 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4564 if (atomic_read(&fs_info->balance_pause_req)) 4565 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4566 if (atomic_read(&fs_info->balance_cancel_req)) 4567 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4568 4569 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4570 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4571 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4572 4573 if (lock) { 4574 spin_lock(&fs_info->balance_lock); 4575 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4576 spin_unlock(&fs_info->balance_lock); 4577 } else { 4578 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4579 } 4580 } 4581 4582 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4583 { 4584 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4585 struct btrfs_fs_info *fs_info = root->fs_info; 4586 struct btrfs_ioctl_balance_args *bargs; 4587 struct btrfs_balance_control *bctl; 4588 bool need_unlock; /* for mut. excl. ops lock */ 4589 int ret; 4590 4591 if (!capable(CAP_SYS_ADMIN)) 4592 return -EPERM; 4593 4594 ret = mnt_want_write_file(file); 4595 if (ret) 4596 return ret; 4597 4598 again: 4599 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 4600 mutex_lock(&fs_info->volume_mutex); 4601 mutex_lock(&fs_info->balance_mutex); 4602 need_unlock = true; 4603 goto locked; 4604 } 4605 4606 /* 4607 * mut. excl. ops lock is locked. Three possibilites: 4608 * (1) some other op is running 4609 * (2) balance is running 4610 * (3) balance is paused -- special case (think resume) 4611 */ 4612 mutex_lock(&fs_info->balance_mutex); 4613 if (fs_info->balance_ctl) { 4614 /* this is either (2) or (3) */ 4615 if (!atomic_read(&fs_info->balance_running)) { 4616 mutex_unlock(&fs_info->balance_mutex); 4617 if (!mutex_trylock(&fs_info->volume_mutex)) 4618 goto again; 4619 mutex_lock(&fs_info->balance_mutex); 4620 4621 if (fs_info->balance_ctl && 4622 !atomic_read(&fs_info->balance_running)) { 4623 /* this is (3) */ 4624 need_unlock = false; 4625 goto locked; 4626 } 4627 4628 mutex_unlock(&fs_info->balance_mutex); 4629 mutex_unlock(&fs_info->volume_mutex); 4630 goto again; 4631 } else { 4632 /* this is (2) */ 4633 mutex_unlock(&fs_info->balance_mutex); 4634 ret = -EINPROGRESS; 4635 goto out; 4636 } 4637 } else { 4638 /* this is (1) */ 4639 mutex_unlock(&fs_info->balance_mutex); 4640 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4641 goto out; 4642 } 4643 4644 locked: 4645 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 4646 4647 if (arg) { 4648 bargs = memdup_user(arg, sizeof(*bargs)); 4649 if (IS_ERR(bargs)) { 4650 ret = PTR_ERR(bargs); 4651 goto out_unlock; 4652 } 4653 4654 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4655 if (!fs_info->balance_ctl) { 4656 ret = -ENOTCONN; 4657 goto out_bargs; 4658 } 4659 4660 bctl = fs_info->balance_ctl; 4661 spin_lock(&fs_info->balance_lock); 4662 bctl->flags |= BTRFS_BALANCE_RESUME; 4663 spin_unlock(&fs_info->balance_lock); 4664 4665 goto do_balance; 4666 } 4667 } else { 4668 bargs = NULL; 4669 } 4670 4671 if (fs_info->balance_ctl) { 4672 ret = -EINPROGRESS; 4673 goto out_bargs; 4674 } 4675 4676 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4677 if (!bctl) { 4678 ret = -ENOMEM; 4679 goto out_bargs; 4680 } 4681 4682 bctl->fs_info = fs_info; 4683 if (arg) { 4684 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4685 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4686 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4687 4688 bctl->flags = bargs->flags; 4689 } else { 4690 /* balance everything - no filters */ 4691 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4692 } 4693 4694 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4695 ret = -EINVAL; 4696 goto out_bctl; 4697 } 4698 4699 do_balance: 4700 /* 4701 * Ownership of bctl and mutually_exclusive_operation_running 4702 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4703 * or, if restriper was paused all the way until unmount, in 4704 * free_fs_info. mutually_exclusive_operation_running is 4705 * cleared in __cancel_balance. 4706 */ 4707 need_unlock = false; 4708 4709 ret = btrfs_balance(bctl, bargs); 4710 bctl = NULL; 4711 4712 if (arg) { 4713 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4714 ret = -EFAULT; 4715 } 4716 4717 out_bctl: 4718 kfree(bctl); 4719 out_bargs: 4720 kfree(bargs); 4721 out_unlock: 4722 mutex_unlock(&fs_info->balance_mutex); 4723 mutex_unlock(&fs_info->volume_mutex); 4724 if (need_unlock) 4725 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 4726 out: 4727 mnt_drop_write_file(file); 4728 return ret; 4729 } 4730 4731 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 4732 { 4733 if (!capable(CAP_SYS_ADMIN)) 4734 return -EPERM; 4735 4736 switch (cmd) { 4737 case BTRFS_BALANCE_CTL_PAUSE: 4738 return btrfs_pause_balance(root->fs_info); 4739 case BTRFS_BALANCE_CTL_CANCEL: 4740 return btrfs_cancel_balance(root->fs_info); 4741 } 4742 4743 return -EINVAL; 4744 } 4745 4746 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 4747 void __user *arg) 4748 { 4749 struct btrfs_fs_info *fs_info = root->fs_info; 4750 struct btrfs_ioctl_balance_args *bargs; 4751 int ret = 0; 4752 4753 if (!capable(CAP_SYS_ADMIN)) 4754 return -EPERM; 4755 4756 mutex_lock(&fs_info->balance_mutex); 4757 if (!fs_info->balance_ctl) { 4758 ret = -ENOTCONN; 4759 goto out; 4760 } 4761 4762 bargs = kzalloc(sizeof(*bargs), GFP_NOFS); 4763 if (!bargs) { 4764 ret = -ENOMEM; 4765 goto out; 4766 } 4767 4768 update_ioctl_balance_args(fs_info, 1, bargs); 4769 4770 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4771 ret = -EFAULT; 4772 4773 kfree(bargs); 4774 out: 4775 mutex_unlock(&fs_info->balance_mutex); 4776 return ret; 4777 } 4778 4779 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4780 { 4781 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4782 struct btrfs_ioctl_quota_ctl_args *sa; 4783 struct btrfs_trans_handle *trans = NULL; 4784 int ret; 4785 int err; 4786 4787 if (!capable(CAP_SYS_ADMIN)) 4788 return -EPERM; 4789 4790 ret = mnt_want_write_file(file); 4791 if (ret) 4792 return ret; 4793 4794 sa = memdup_user(arg, sizeof(*sa)); 4795 if (IS_ERR(sa)) { 4796 ret = PTR_ERR(sa); 4797 goto drop_write; 4798 } 4799 4800 down_write(&root->fs_info->subvol_sem); 4801 trans = btrfs_start_transaction(root->fs_info->tree_root, 2); 4802 if (IS_ERR(trans)) { 4803 ret = PTR_ERR(trans); 4804 goto out; 4805 } 4806 4807 switch (sa->cmd) { 4808 case BTRFS_QUOTA_CTL_ENABLE: 4809 ret = btrfs_quota_enable(trans, root->fs_info); 4810 break; 4811 case BTRFS_QUOTA_CTL_DISABLE: 4812 ret = btrfs_quota_disable(trans, root->fs_info); 4813 break; 4814 default: 4815 ret = -EINVAL; 4816 break; 4817 } 4818 4819 err = btrfs_commit_transaction(trans, root->fs_info->tree_root); 4820 if (err && !ret) 4821 ret = err; 4822 out: 4823 kfree(sa); 4824 up_write(&root->fs_info->subvol_sem); 4825 drop_write: 4826 mnt_drop_write_file(file); 4827 return ret; 4828 } 4829 4830 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4831 { 4832 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4833 struct btrfs_ioctl_qgroup_assign_args *sa; 4834 struct btrfs_trans_handle *trans; 4835 int ret; 4836 int err; 4837 4838 if (!capable(CAP_SYS_ADMIN)) 4839 return -EPERM; 4840 4841 ret = mnt_want_write_file(file); 4842 if (ret) 4843 return ret; 4844 4845 sa = memdup_user(arg, sizeof(*sa)); 4846 if (IS_ERR(sa)) { 4847 ret = PTR_ERR(sa); 4848 goto drop_write; 4849 } 4850 4851 trans = btrfs_join_transaction(root); 4852 if (IS_ERR(trans)) { 4853 ret = PTR_ERR(trans); 4854 goto out; 4855 } 4856 4857 /* FIXME: check if the IDs really exist */ 4858 if (sa->assign) { 4859 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 4860 sa->src, sa->dst); 4861 } else { 4862 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 4863 sa->src, sa->dst); 4864 } 4865 4866 /* update qgroup status and info */ 4867 err = btrfs_run_qgroups(trans, root->fs_info); 4868 if (err < 0) 4869 btrfs_std_error(root->fs_info, ret, 4870 "failed to update qgroup status and info\n"); 4871 err = btrfs_end_transaction(trans, root); 4872 if (err && !ret) 4873 ret = err; 4874 4875 out: 4876 kfree(sa); 4877 drop_write: 4878 mnt_drop_write_file(file); 4879 return ret; 4880 } 4881 4882 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4883 { 4884 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4885 struct btrfs_ioctl_qgroup_create_args *sa; 4886 struct btrfs_trans_handle *trans; 4887 int ret; 4888 int err; 4889 4890 if (!capable(CAP_SYS_ADMIN)) 4891 return -EPERM; 4892 4893 ret = mnt_want_write_file(file); 4894 if (ret) 4895 return ret; 4896 4897 sa = memdup_user(arg, sizeof(*sa)); 4898 if (IS_ERR(sa)) { 4899 ret = PTR_ERR(sa); 4900 goto drop_write; 4901 } 4902 4903 if (!sa->qgroupid) { 4904 ret = -EINVAL; 4905 goto out; 4906 } 4907 4908 trans = btrfs_join_transaction(root); 4909 if (IS_ERR(trans)) { 4910 ret = PTR_ERR(trans); 4911 goto out; 4912 } 4913 4914 /* FIXME: check if the IDs really exist */ 4915 if (sa->create) { 4916 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid); 4917 } else { 4918 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 4919 } 4920 4921 err = btrfs_end_transaction(trans, root); 4922 if (err && !ret) 4923 ret = err; 4924 4925 out: 4926 kfree(sa); 4927 drop_write: 4928 mnt_drop_write_file(file); 4929 return ret; 4930 } 4931 4932 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4933 { 4934 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4935 struct btrfs_ioctl_qgroup_limit_args *sa; 4936 struct btrfs_trans_handle *trans; 4937 int ret; 4938 int err; 4939 u64 qgroupid; 4940 4941 if (!capable(CAP_SYS_ADMIN)) 4942 return -EPERM; 4943 4944 ret = mnt_want_write_file(file); 4945 if (ret) 4946 return ret; 4947 4948 sa = memdup_user(arg, sizeof(*sa)); 4949 if (IS_ERR(sa)) { 4950 ret = PTR_ERR(sa); 4951 goto drop_write; 4952 } 4953 4954 trans = btrfs_join_transaction(root); 4955 if (IS_ERR(trans)) { 4956 ret = PTR_ERR(trans); 4957 goto out; 4958 } 4959 4960 qgroupid = sa->qgroupid; 4961 if (!qgroupid) { 4962 /* take the current subvol as qgroup */ 4963 qgroupid = root->root_key.objectid; 4964 } 4965 4966 /* FIXME: check if the IDs really exist */ 4967 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 4968 4969 err = btrfs_end_transaction(trans, root); 4970 if (err && !ret) 4971 ret = err; 4972 4973 out: 4974 kfree(sa); 4975 drop_write: 4976 mnt_drop_write_file(file); 4977 return ret; 4978 } 4979 4980 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4981 { 4982 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4983 struct btrfs_ioctl_quota_rescan_args *qsa; 4984 int ret; 4985 4986 if (!capable(CAP_SYS_ADMIN)) 4987 return -EPERM; 4988 4989 ret = mnt_want_write_file(file); 4990 if (ret) 4991 return ret; 4992 4993 qsa = memdup_user(arg, sizeof(*qsa)); 4994 if (IS_ERR(qsa)) { 4995 ret = PTR_ERR(qsa); 4996 goto drop_write; 4997 } 4998 4999 if (qsa->flags) { 5000 ret = -EINVAL; 5001 goto out; 5002 } 5003 5004 ret = btrfs_qgroup_rescan(root->fs_info); 5005 5006 out: 5007 kfree(qsa); 5008 drop_write: 5009 mnt_drop_write_file(file); 5010 return ret; 5011 } 5012 5013 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5014 { 5015 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5016 struct btrfs_ioctl_quota_rescan_args *qsa; 5017 int ret = 0; 5018 5019 if (!capable(CAP_SYS_ADMIN)) 5020 return -EPERM; 5021 5022 qsa = kzalloc(sizeof(*qsa), GFP_NOFS); 5023 if (!qsa) 5024 return -ENOMEM; 5025 5026 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5027 qsa->flags = 1; 5028 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid; 5029 } 5030 5031 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5032 ret = -EFAULT; 5033 5034 kfree(qsa); 5035 return ret; 5036 } 5037 5038 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5039 { 5040 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5041 5042 if (!capable(CAP_SYS_ADMIN)) 5043 return -EPERM; 5044 5045 return btrfs_qgroup_wait_for_completion(root->fs_info); 5046 } 5047 5048 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5049 struct btrfs_ioctl_received_subvol_args *sa) 5050 { 5051 struct inode *inode = file_inode(file); 5052 struct btrfs_root *root = BTRFS_I(inode)->root; 5053 struct btrfs_root_item *root_item = &root->root_item; 5054 struct btrfs_trans_handle *trans; 5055 struct timespec ct = CURRENT_TIME; 5056 int ret = 0; 5057 int received_uuid_changed; 5058 5059 if (!inode_owner_or_capable(inode)) 5060 return -EPERM; 5061 5062 ret = mnt_want_write_file(file); 5063 if (ret < 0) 5064 return ret; 5065 5066 down_write(&root->fs_info->subvol_sem); 5067 5068 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 5069 ret = -EINVAL; 5070 goto out; 5071 } 5072 5073 if (btrfs_root_readonly(root)) { 5074 ret = -EROFS; 5075 goto out; 5076 } 5077 5078 /* 5079 * 1 - root item 5080 * 2 - uuid items (received uuid + subvol uuid) 5081 */ 5082 trans = btrfs_start_transaction(root, 3); 5083 if (IS_ERR(trans)) { 5084 ret = PTR_ERR(trans); 5085 trans = NULL; 5086 goto out; 5087 } 5088 5089 sa->rtransid = trans->transid; 5090 sa->rtime.sec = ct.tv_sec; 5091 sa->rtime.nsec = ct.tv_nsec; 5092 5093 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5094 BTRFS_UUID_SIZE); 5095 if (received_uuid_changed && 5096 !btrfs_is_empty_uuid(root_item->received_uuid)) 5097 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 5098 root_item->received_uuid, 5099 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5100 root->root_key.objectid); 5101 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5102 btrfs_set_root_stransid(root_item, sa->stransid); 5103 btrfs_set_root_rtransid(root_item, sa->rtransid); 5104 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5105 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5106 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5107 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5108 5109 ret = btrfs_update_root(trans, root->fs_info->tree_root, 5110 &root->root_key, &root->root_item); 5111 if (ret < 0) { 5112 btrfs_end_transaction(trans, root); 5113 goto out; 5114 } 5115 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5116 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 5117 sa->uuid, 5118 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5119 root->root_key.objectid); 5120 if (ret < 0 && ret != -EEXIST) { 5121 btrfs_abort_transaction(trans, root, ret); 5122 goto out; 5123 } 5124 } 5125 ret = btrfs_commit_transaction(trans, root); 5126 if (ret < 0) { 5127 btrfs_abort_transaction(trans, root, ret); 5128 goto out; 5129 } 5130 5131 out: 5132 up_write(&root->fs_info->subvol_sem); 5133 mnt_drop_write_file(file); 5134 return ret; 5135 } 5136 5137 #ifdef CONFIG_64BIT 5138 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5139 void __user *arg) 5140 { 5141 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5142 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5143 int ret = 0; 5144 5145 args32 = memdup_user(arg, sizeof(*args32)); 5146 if (IS_ERR(args32)) { 5147 ret = PTR_ERR(args32); 5148 args32 = NULL; 5149 goto out; 5150 } 5151 5152 args64 = kmalloc(sizeof(*args64), GFP_NOFS); 5153 if (!args64) { 5154 ret = -ENOMEM; 5155 goto out; 5156 } 5157 5158 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5159 args64->stransid = args32->stransid; 5160 args64->rtransid = args32->rtransid; 5161 args64->stime.sec = args32->stime.sec; 5162 args64->stime.nsec = args32->stime.nsec; 5163 args64->rtime.sec = args32->rtime.sec; 5164 args64->rtime.nsec = args32->rtime.nsec; 5165 args64->flags = args32->flags; 5166 5167 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5168 if (ret) 5169 goto out; 5170 5171 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5172 args32->stransid = args64->stransid; 5173 args32->rtransid = args64->rtransid; 5174 args32->stime.sec = args64->stime.sec; 5175 args32->stime.nsec = args64->stime.nsec; 5176 args32->rtime.sec = args64->rtime.sec; 5177 args32->rtime.nsec = args64->rtime.nsec; 5178 args32->flags = args64->flags; 5179 5180 ret = copy_to_user(arg, args32, sizeof(*args32)); 5181 if (ret) 5182 ret = -EFAULT; 5183 5184 out: 5185 kfree(args32); 5186 kfree(args64); 5187 return ret; 5188 } 5189 #endif 5190 5191 static long btrfs_ioctl_set_received_subvol(struct file *file, 5192 void __user *arg) 5193 { 5194 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5195 int ret = 0; 5196 5197 sa = memdup_user(arg, sizeof(*sa)); 5198 if (IS_ERR(sa)) { 5199 ret = PTR_ERR(sa); 5200 sa = NULL; 5201 goto out; 5202 } 5203 5204 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5205 5206 if (ret) 5207 goto out; 5208 5209 ret = copy_to_user(arg, sa, sizeof(*sa)); 5210 if (ret) 5211 ret = -EFAULT; 5212 5213 out: 5214 kfree(sa); 5215 return ret; 5216 } 5217 5218 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5219 { 5220 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5221 size_t len; 5222 int ret; 5223 char label[BTRFS_LABEL_SIZE]; 5224 5225 spin_lock(&root->fs_info->super_lock); 5226 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5227 spin_unlock(&root->fs_info->super_lock); 5228 5229 len = strnlen(label, BTRFS_LABEL_SIZE); 5230 5231 if (len == BTRFS_LABEL_SIZE) { 5232 btrfs_warn(root->fs_info, 5233 "label is too long, return the first %zu bytes", --len); 5234 } 5235 5236 ret = copy_to_user(arg, label, len); 5237 5238 return ret ? -EFAULT : 0; 5239 } 5240 5241 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5242 { 5243 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5244 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5245 struct btrfs_trans_handle *trans; 5246 char label[BTRFS_LABEL_SIZE]; 5247 int ret; 5248 5249 if (!capable(CAP_SYS_ADMIN)) 5250 return -EPERM; 5251 5252 if (copy_from_user(label, arg, sizeof(label))) 5253 return -EFAULT; 5254 5255 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5256 btrfs_err(root->fs_info, "unable to set label with more than %d bytes", 5257 BTRFS_LABEL_SIZE - 1); 5258 return -EINVAL; 5259 } 5260 5261 ret = mnt_want_write_file(file); 5262 if (ret) 5263 return ret; 5264 5265 trans = btrfs_start_transaction(root, 0); 5266 if (IS_ERR(trans)) { 5267 ret = PTR_ERR(trans); 5268 goto out_unlock; 5269 } 5270 5271 spin_lock(&root->fs_info->super_lock); 5272 strcpy(super_block->label, label); 5273 spin_unlock(&root->fs_info->super_lock); 5274 ret = btrfs_commit_transaction(trans, root); 5275 5276 out_unlock: 5277 mnt_drop_write_file(file); 5278 return ret; 5279 } 5280 5281 #define INIT_FEATURE_FLAGS(suffix) \ 5282 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5283 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5284 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5285 5286 static int btrfs_ioctl_get_supported_features(struct file *file, 5287 void __user *arg) 5288 { 5289 static struct btrfs_ioctl_feature_flags features[3] = { 5290 INIT_FEATURE_FLAGS(SUPP), 5291 INIT_FEATURE_FLAGS(SAFE_SET), 5292 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5293 }; 5294 5295 if (copy_to_user(arg, &features, sizeof(features))) 5296 return -EFAULT; 5297 5298 return 0; 5299 } 5300 5301 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5302 { 5303 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5304 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5305 struct btrfs_ioctl_feature_flags features; 5306 5307 features.compat_flags = btrfs_super_compat_flags(super_block); 5308 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5309 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5310 5311 if (copy_to_user(arg, &features, sizeof(features))) 5312 return -EFAULT; 5313 5314 return 0; 5315 } 5316 5317 static int check_feature_bits(struct btrfs_root *root, 5318 enum btrfs_feature_set set, 5319 u64 change_mask, u64 flags, u64 supported_flags, 5320 u64 safe_set, u64 safe_clear) 5321 { 5322 const char *type = btrfs_feature_set_names[set]; 5323 char *names; 5324 u64 disallowed, unsupported; 5325 u64 set_mask = flags & change_mask; 5326 u64 clear_mask = ~flags & change_mask; 5327 5328 unsupported = set_mask & ~supported_flags; 5329 if (unsupported) { 5330 names = btrfs_printable_features(set, unsupported); 5331 if (names) { 5332 btrfs_warn(root->fs_info, 5333 "this kernel does not support the %s feature bit%s", 5334 names, strchr(names, ',') ? "s" : ""); 5335 kfree(names); 5336 } else 5337 btrfs_warn(root->fs_info, 5338 "this kernel does not support %s bits 0x%llx", 5339 type, unsupported); 5340 return -EOPNOTSUPP; 5341 } 5342 5343 disallowed = set_mask & ~safe_set; 5344 if (disallowed) { 5345 names = btrfs_printable_features(set, disallowed); 5346 if (names) { 5347 btrfs_warn(root->fs_info, 5348 "can't set the %s feature bit%s while mounted", 5349 names, strchr(names, ',') ? "s" : ""); 5350 kfree(names); 5351 } else 5352 btrfs_warn(root->fs_info, 5353 "can't set %s bits 0x%llx while mounted", 5354 type, disallowed); 5355 return -EPERM; 5356 } 5357 5358 disallowed = clear_mask & ~safe_clear; 5359 if (disallowed) { 5360 names = btrfs_printable_features(set, disallowed); 5361 if (names) { 5362 btrfs_warn(root->fs_info, 5363 "can't clear the %s feature bit%s while mounted", 5364 names, strchr(names, ',') ? "s" : ""); 5365 kfree(names); 5366 } else 5367 btrfs_warn(root->fs_info, 5368 "can't clear %s bits 0x%llx while mounted", 5369 type, disallowed); 5370 return -EPERM; 5371 } 5372 5373 return 0; 5374 } 5375 5376 #define check_feature(root, change_mask, flags, mask_base) \ 5377 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \ 5378 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5379 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5380 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5381 5382 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5383 { 5384 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5385 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5386 struct btrfs_ioctl_feature_flags flags[2]; 5387 struct btrfs_trans_handle *trans; 5388 u64 newflags; 5389 int ret; 5390 5391 if (!capable(CAP_SYS_ADMIN)) 5392 return -EPERM; 5393 5394 if (copy_from_user(flags, arg, sizeof(flags))) 5395 return -EFAULT; 5396 5397 /* Nothing to do */ 5398 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5399 !flags[0].incompat_flags) 5400 return 0; 5401 5402 ret = check_feature(root, flags[0].compat_flags, 5403 flags[1].compat_flags, COMPAT); 5404 if (ret) 5405 return ret; 5406 5407 ret = check_feature(root, flags[0].compat_ro_flags, 5408 flags[1].compat_ro_flags, COMPAT_RO); 5409 if (ret) 5410 return ret; 5411 5412 ret = check_feature(root, flags[0].incompat_flags, 5413 flags[1].incompat_flags, INCOMPAT); 5414 if (ret) 5415 return ret; 5416 5417 trans = btrfs_start_transaction(root, 0); 5418 if (IS_ERR(trans)) 5419 return PTR_ERR(trans); 5420 5421 spin_lock(&root->fs_info->super_lock); 5422 newflags = btrfs_super_compat_flags(super_block); 5423 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5424 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5425 btrfs_set_super_compat_flags(super_block, newflags); 5426 5427 newflags = btrfs_super_compat_ro_flags(super_block); 5428 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5429 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5430 btrfs_set_super_compat_ro_flags(super_block, newflags); 5431 5432 newflags = btrfs_super_incompat_flags(super_block); 5433 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5434 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5435 btrfs_set_super_incompat_flags(super_block, newflags); 5436 spin_unlock(&root->fs_info->super_lock); 5437 5438 return btrfs_commit_transaction(trans, root); 5439 } 5440 5441 long btrfs_ioctl(struct file *file, unsigned int 5442 cmd, unsigned long arg) 5443 { 5444 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5445 void __user *argp = (void __user *)arg; 5446 5447 switch (cmd) { 5448 case FS_IOC_GETFLAGS: 5449 return btrfs_ioctl_getflags(file, argp); 5450 case FS_IOC_SETFLAGS: 5451 return btrfs_ioctl_setflags(file, argp); 5452 case FS_IOC_GETVERSION: 5453 return btrfs_ioctl_getversion(file, argp); 5454 case FITRIM: 5455 return btrfs_ioctl_fitrim(file, argp); 5456 case BTRFS_IOC_SNAP_CREATE: 5457 return btrfs_ioctl_snap_create(file, argp, 0); 5458 case BTRFS_IOC_SNAP_CREATE_V2: 5459 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5460 case BTRFS_IOC_SUBVOL_CREATE: 5461 return btrfs_ioctl_snap_create(file, argp, 1); 5462 case BTRFS_IOC_SUBVOL_CREATE_V2: 5463 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5464 case BTRFS_IOC_SNAP_DESTROY: 5465 return btrfs_ioctl_snap_destroy(file, argp); 5466 case BTRFS_IOC_SUBVOL_GETFLAGS: 5467 return btrfs_ioctl_subvol_getflags(file, argp); 5468 case BTRFS_IOC_SUBVOL_SETFLAGS: 5469 return btrfs_ioctl_subvol_setflags(file, argp); 5470 case BTRFS_IOC_DEFAULT_SUBVOL: 5471 return btrfs_ioctl_default_subvol(file, argp); 5472 case BTRFS_IOC_DEFRAG: 5473 return btrfs_ioctl_defrag(file, NULL); 5474 case BTRFS_IOC_DEFRAG_RANGE: 5475 return btrfs_ioctl_defrag(file, argp); 5476 case BTRFS_IOC_RESIZE: 5477 return btrfs_ioctl_resize(file, argp); 5478 case BTRFS_IOC_ADD_DEV: 5479 return btrfs_ioctl_add_dev(root, argp); 5480 case BTRFS_IOC_RM_DEV: 5481 return btrfs_ioctl_rm_dev(file, argp); 5482 case BTRFS_IOC_FS_INFO: 5483 return btrfs_ioctl_fs_info(root, argp); 5484 case BTRFS_IOC_DEV_INFO: 5485 return btrfs_ioctl_dev_info(root, argp); 5486 case BTRFS_IOC_BALANCE: 5487 return btrfs_ioctl_balance(file, NULL); 5488 case BTRFS_IOC_CLONE: 5489 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 5490 case BTRFS_IOC_CLONE_RANGE: 5491 return btrfs_ioctl_clone_range(file, argp); 5492 case BTRFS_IOC_TRANS_START: 5493 return btrfs_ioctl_trans_start(file); 5494 case BTRFS_IOC_TRANS_END: 5495 return btrfs_ioctl_trans_end(file); 5496 case BTRFS_IOC_TREE_SEARCH: 5497 return btrfs_ioctl_tree_search(file, argp); 5498 case BTRFS_IOC_TREE_SEARCH_V2: 5499 return btrfs_ioctl_tree_search_v2(file, argp); 5500 case BTRFS_IOC_INO_LOOKUP: 5501 return btrfs_ioctl_ino_lookup(file, argp); 5502 case BTRFS_IOC_INO_PATHS: 5503 return btrfs_ioctl_ino_to_path(root, argp); 5504 case BTRFS_IOC_LOGICAL_INO: 5505 return btrfs_ioctl_logical_to_ino(root, argp); 5506 case BTRFS_IOC_SPACE_INFO: 5507 return btrfs_ioctl_space_info(root, argp); 5508 case BTRFS_IOC_SYNC: { 5509 int ret; 5510 5511 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1); 5512 if (ret) 5513 return ret; 5514 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1); 5515 /* 5516 * The transaction thread may want to do more work, 5517 * namely it pokes the cleaner ktread that will start 5518 * processing uncleaned subvols. 5519 */ 5520 wake_up_process(root->fs_info->transaction_kthread); 5521 return ret; 5522 } 5523 case BTRFS_IOC_START_SYNC: 5524 return btrfs_ioctl_start_sync(root, argp); 5525 case BTRFS_IOC_WAIT_SYNC: 5526 return btrfs_ioctl_wait_sync(root, argp); 5527 case BTRFS_IOC_SCRUB: 5528 return btrfs_ioctl_scrub(file, argp); 5529 case BTRFS_IOC_SCRUB_CANCEL: 5530 return btrfs_ioctl_scrub_cancel(root, argp); 5531 case BTRFS_IOC_SCRUB_PROGRESS: 5532 return btrfs_ioctl_scrub_progress(root, argp); 5533 case BTRFS_IOC_BALANCE_V2: 5534 return btrfs_ioctl_balance(file, argp); 5535 case BTRFS_IOC_BALANCE_CTL: 5536 return btrfs_ioctl_balance_ctl(root, arg); 5537 case BTRFS_IOC_BALANCE_PROGRESS: 5538 return btrfs_ioctl_balance_progress(root, argp); 5539 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5540 return btrfs_ioctl_set_received_subvol(file, argp); 5541 #ifdef CONFIG_64BIT 5542 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5543 return btrfs_ioctl_set_received_subvol_32(file, argp); 5544 #endif 5545 case BTRFS_IOC_SEND: 5546 return btrfs_ioctl_send(file, argp); 5547 case BTRFS_IOC_GET_DEV_STATS: 5548 return btrfs_ioctl_get_dev_stats(root, argp); 5549 case BTRFS_IOC_QUOTA_CTL: 5550 return btrfs_ioctl_quota_ctl(file, argp); 5551 case BTRFS_IOC_QGROUP_ASSIGN: 5552 return btrfs_ioctl_qgroup_assign(file, argp); 5553 case BTRFS_IOC_QGROUP_CREATE: 5554 return btrfs_ioctl_qgroup_create(file, argp); 5555 case BTRFS_IOC_QGROUP_LIMIT: 5556 return btrfs_ioctl_qgroup_limit(file, argp); 5557 case BTRFS_IOC_QUOTA_RESCAN: 5558 return btrfs_ioctl_quota_rescan(file, argp); 5559 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5560 return btrfs_ioctl_quota_rescan_status(file, argp); 5561 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5562 return btrfs_ioctl_quota_rescan_wait(file, argp); 5563 case BTRFS_IOC_DEV_REPLACE: 5564 return btrfs_ioctl_dev_replace(root, argp); 5565 case BTRFS_IOC_GET_FSLABEL: 5566 return btrfs_ioctl_get_fslabel(file, argp); 5567 case BTRFS_IOC_SET_FSLABEL: 5568 return btrfs_ioctl_set_fslabel(file, argp); 5569 case BTRFS_IOC_FILE_EXTENT_SAME: 5570 return btrfs_ioctl_file_extent_same(file, argp); 5571 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5572 return btrfs_ioctl_get_supported_features(file, argp); 5573 case BTRFS_IOC_GET_FEATURES: 5574 return btrfs_ioctl_get_features(file, argp); 5575 case BTRFS_IOC_SET_FEATURES: 5576 return btrfs_ioctl_set_features(file, argp); 5577 } 5578 5579 return -ENOTTY; 5580 } 5581