xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 95b384f9)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 #include "tree-log.h"
63 #include "compression.h"
64 
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67  * structures are incorrect, as the timespec structure from userspace
68  * is 4 bytes too small. We define these alternatives here to teach
69  * the kernel about the 32-bit struct packing.
70  */
71 struct btrfs_ioctl_timespec_32 {
72 	__u64 sec;
73 	__u32 nsec;
74 } __attribute__ ((__packed__));
75 
76 struct btrfs_ioctl_received_subvol_args_32 {
77 	char	uuid[BTRFS_UUID_SIZE];	/* in */
78 	__u64	stransid;		/* in */
79 	__u64	rtransid;		/* out */
80 	struct btrfs_ioctl_timespec_32 stime; /* in */
81 	struct btrfs_ioctl_timespec_32 rtime; /* out */
82 	__u64	flags;			/* in */
83 	__u64	reserved[16];		/* in */
84 } __attribute__ ((__packed__));
85 
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 				struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89 
90 
91 static int btrfs_clone(struct inode *src, struct inode *inode,
92 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
93 		       int no_time_update);
94 
95 /* Mask out flags that are inappropriate for the given type of inode. */
96 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
97 {
98 	if (S_ISDIR(mode))
99 		return flags;
100 	else if (S_ISREG(mode))
101 		return flags & ~FS_DIRSYNC_FL;
102 	else
103 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
104 }
105 
106 /*
107  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108  */
109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
110 {
111 	unsigned int iflags = 0;
112 
113 	if (flags & BTRFS_INODE_SYNC)
114 		iflags |= FS_SYNC_FL;
115 	if (flags & BTRFS_INODE_IMMUTABLE)
116 		iflags |= FS_IMMUTABLE_FL;
117 	if (flags & BTRFS_INODE_APPEND)
118 		iflags |= FS_APPEND_FL;
119 	if (flags & BTRFS_INODE_NODUMP)
120 		iflags |= FS_NODUMP_FL;
121 	if (flags & BTRFS_INODE_NOATIME)
122 		iflags |= FS_NOATIME_FL;
123 	if (flags & BTRFS_INODE_DIRSYNC)
124 		iflags |= FS_DIRSYNC_FL;
125 	if (flags & BTRFS_INODE_NODATACOW)
126 		iflags |= FS_NOCOW_FL;
127 
128 	if (flags & BTRFS_INODE_NOCOMPRESS)
129 		iflags |= FS_NOCOMP_FL;
130 	else if (flags & BTRFS_INODE_COMPRESS)
131 		iflags |= FS_COMPR_FL;
132 
133 	return iflags;
134 }
135 
136 /*
137  * Update inode->i_flags based on the btrfs internal flags.
138  */
139 void btrfs_update_iflags(struct inode *inode)
140 {
141 	struct btrfs_inode *ip = BTRFS_I(inode);
142 	unsigned int new_fl = 0;
143 
144 	if (ip->flags & BTRFS_INODE_SYNC)
145 		new_fl |= S_SYNC;
146 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
147 		new_fl |= S_IMMUTABLE;
148 	if (ip->flags & BTRFS_INODE_APPEND)
149 		new_fl |= S_APPEND;
150 	if (ip->flags & BTRFS_INODE_NOATIME)
151 		new_fl |= S_NOATIME;
152 	if (ip->flags & BTRFS_INODE_DIRSYNC)
153 		new_fl |= S_DIRSYNC;
154 
155 	set_mask_bits(&inode->i_flags,
156 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 		      new_fl);
158 }
159 
160 /*
161  * Inherit flags from the parent inode.
162  *
163  * Currently only the compression flags and the cow flags are inherited.
164  */
165 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
166 {
167 	unsigned int flags;
168 
169 	if (!dir)
170 		return;
171 
172 	flags = BTRFS_I(dir)->flags;
173 
174 	if (flags & BTRFS_INODE_NOCOMPRESS) {
175 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
176 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
177 	} else if (flags & BTRFS_INODE_COMPRESS) {
178 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
179 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
180 	}
181 
182 	if (flags & BTRFS_INODE_NODATACOW) {
183 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
184 		if (S_ISREG(inode->i_mode))
185 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
186 	}
187 
188 	btrfs_update_iflags(inode);
189 }
190 
191 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
192 {
193 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
194 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
195 
196 	if (copy_to_user(arg, &flags, sizeof(flags)))
197 		return -EFAULT;
198 	return 0;
199 }
200 
201 static int check_flags(unsigned int flags)
202 {
203 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
204 		      FS_NOATIME_FL | FS_NODUMP_FL | \
205 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
206 		      FS_NOCOMP_FL | FS_COMPR_FL |
207 		      FS_NOCOW_FL))
208 		return -EOPNOTSUPP;
209 
210 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 		return -EINVAL;
212 
213 	return 0;
214 }
215 
216 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
217 {
218 	struct inode *inode = file_inode(file);
219 	struct btrfs_inode *ip = BTRFS_I(inode);
220 	struct btrfs_root *root = ip->root;
221 	struct btrfs_trans_handle *trans;
222 	unsigned int flags, oldflags;
223 	int ret;
224 	u64 ip_oldflags;
225 	unsigned int i_oldflags;
226 	umode_t mode;
227 
228 	if (!inode_owner_or_capable(inode))
229 		return -EPERM;
230 
231 	if (btrfs_root_readonly(root))
232 		return -EROFS;
233 
234 	if (copy_from_user(&flags, arg, sizeof(flags)))
235 		return -EFAULT;
236 
237 	ret = check_flags(flags);
238 	if (ret)
239 		return ret;
240 
241 	ret = mnt_want_write_file(file);
242 	if (ret)
243 		return ret;
244 
245 	inode_lock(inode);
246 
247 	ip_oldflags = ip->flags;
248 	i_oldflags = inode->i_flags;
249 	mode = inode->i_mode;
250 
251 	flags = btrfs_mask_flags(inode->i_mode, flags);
252 	oldflags = btrfs_flags_to_ioctl(ip->flags);
253 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254 		if (!capable(CAP_LINUX_IMMUTABLE)) {
255 			ret = -EPERM;
256 			goto out_unlock;
257 		}
258 	}
259 
260 	if (flags & FS_SYNC_FL)
261 		ip->flags |= BTRFS_INODE_SYNC;
262 	else
263 		ip->flags &= ~BTRFS_INODE_SYNC;
264 	if (flags & FS_IMMUTABLE_FL)
265 		ip->flags |= BTRFS_INODE_IMMUTABLE;
266 	else
267 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268 	if (flags & FS_APPEND_FL)
269 		ip->flags |= BTRFS_INODE_APPEND;
270 	else
271 		ip->flags &= ~BTRFS_INODE_APPEND;
272 	if (flags & FS_NODUMP_FL)
273 		ip->flags |= BTRFS_INODE_NODUMP;
274 	else
275 		ip->flags &= ~BTRFS_INODE_NODUMP;
276 	if (flags & FS_NOATIME_FL)
277 		ip->flags |= BTRFS_INODE_NOATIME;
278 	else
279 		ip->flags &= ~BTRFS_INODE_NOATIME;
280 	if (flags & FS_DIRSYNC_FL)
281 		ip->flags |= BTRFS_INODE_DIRSYNC;
282 	else
283 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
284 	if (flags & FS_NOCOW_FL) {
285 		if (S_ISREG(mode)) {
286 			/*
287 			 * It's safe to turn csums off here, no extents exist.
288 			 * Otherwise we want the flag to reflect the real COW
289 			 * status of the file and will not set it.
290 			 */
291 			if (inode->i_size == 0)
292 				ip->flags |= BTRFS_INODE_NODATACOW
293 					   | BTRFS_INODE_NODATASUM;
294 		} else {
295 			ip->flags |= BTRFS_INODE_NODATACOW;
296 		}
297 	} else {
298 		/*
299 		 * Revert back under same assumptions as above
300 		 */
301 		if (S_ISREG(mode)) {
302 			if (inode->i_size == 0)
303 				ip->flags &= ~(BTRFS_INODE_NODATACOW
304 				             | BTRFS_INODE_NODATASUM);
305 		} else {
306 			ip->flags &= ~BTRFS_INODE_NODATACOW;
307 		}
308 	}
309 
310 	/*
311 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 	 * flag may be changed automatically if compression code won't make
313 	 * things smaller.
314 	 */
315 	if (flags & FS_NOCOMP_FL) {
316 		ip->flags &= ~BTRFS_INODE_COMPRESS;
317 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
318 
319 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320 		if (ret && ret != -ENODATA)
321 			goto out_drop;
322 	} else if (flags & FS_COMPR_FL) {
323 		const char *comp;
324 
325 		ip->flags |= BTRFS_INODE_COMPRESS;
326 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
327 
328 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
329 			comp = "lzo";
330 		else
331 			comp = "zlib";
332 		ret = btrfs_set_prop(inode, "btrfs.compression",
333 				     comp, strlen(comp), 0);
334 		if (ret)
335 			goto out_drop;
336 
337 	} else {
338 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339 		if (ret && ret != -ENODATA)
340 			goto out_drop;
341 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
342 	}
343 
344 	trans = btrfs_start_transaction(root, 1);
345 	if (IS_ERR(trans)) {
346 		ret = PTR_ERR(trans);
347 		goto out_drop;
348 	}
349 
350 	btrfs_update_iflags(inode);
351 	inode_inc_iversion(inode);
352 	inode->i_ctime = current_fs_time(inode->i_sb);
353 	ret = btrfs_update_inode(trans, root, inode);
354 
355 	btrfs_end_transaction(trans, root);
356  out_drop:
357 	if (ret) {
358 		ip->flags = ip_oldflags;
359 		inode->i_flags = i_oldflags;
360 	}
361 
362  out_unlock:
363 	inode_unlock(inode);
364 	mnt_drop_write_file(file);
365 	return ret;
366 }
367 
368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
369 {
370 	struct inode *inode = file_inode(file);
371 
372 	return put_user(inode->i_generation, arg);
373 }
374 
375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
376 {
377 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
378 	struct btrfs_device *device;
379 	struct request_queue *q;
380 	struct fstrim_range range;
381 	u64 minlen = ULLONG_MAX;
382 	u64 num_devices = 0;
383 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
384 	int ret;
385 
386 	if (!capable(CAP_SYS_ADMIN))
387 		return -EPERM;
388 
389 	rcu_read_lock();
390 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
391 				dev_list) {
392 		if (!device->bdev)
393 			continue;
394 		q = bdev_get_queue(device->bdev);
395 		if (blk_queue_discard(q)) {
396 			num_devices++;
397 			minlen = min((u64)q->limits.discard_granularity,
398 				     minlen);
399 		}
400 	}
401 	rcu_read_unlock();
402 
403 	if (!num_devices)
404 		return -EOPNOTSUPP;
405 	if (copy_from_user(&range, arg, sizeof(range)))
406 		return -EFAULT;
407 	if (range.start > total_bytes ||
408 	    range.len < fs_info->sb->s_blocksize)
409 		return -EINVAL;
410 
411 	range.len = min(range.len, total_bytes - range.start);
412 	range.minlen = max(range.minlen, minlen);
413 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
414 	if (ret < 0)
415 		return ret;
416 
417 	if (copy_to_user(arg, &range, sizeof(range)))
418 		return -EFAULT;
419 
420 	return 0;
421 }
422 
423 int btrfs_is_empty_uuid(u8 *uuid)
424 {
425 	int i;
426 
427 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
428 		if (uuid[i])
429 			return 0;
430 	}
431 	return 1;
432 }
433 
434 static noinline int create_subvol(struct inode *dir,
435 				  struct dentry *dentry,
436 				  char *name, int namelen,
437 				  u64 *async_transid,
438 				  struct btrfs_qgroup_inherit *inherit)
439 {
440 	struct btrfs_trans_handle *trans;
441 	struct btrfs_key key;
442 	struct btrfs_root_item *root_item;
443 	struct btrfs_inode_item *inode_item;
444 	struct extent_buffer *leaf;
445 	struct btrfs_root *root = BTRFS_I(dir)->root;
446 	struct btrfs_root *new_root;
447 	struct btrfs_block_rsv block_rsv;
448 	struct timespec cur_time = current_fs_time(dir->i_sb);
449 	struct inode *inode;
450 	int ret;
451 	int err;
452 	u64 objectid;
453 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
454 	u64 index = 0;
455 	u64 qgroup_reserved;
456 	uuid_le new_uuid;
457 
458 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
459 	if (!root_item)
460 		return -ENOMEM;
461 
462 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
463 	if (ret)
464 		goto fail_free;
465 
466 	/*
467 	 * Don't create subvolume whose level is not zero. Or qgroup will be
468 	 * screwed up since it assumes subvolume qgroup's level to be 0.
469 	 */
470 	if (btrfs_qgroup_level(objectid)) {
471 		ret = -ENOSPC;
472 		goto fail_free;
473 	}
474 
475 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
476 	/*
477 	 * The same as the snapshot creation, please see the comment
478 	 * of create_snapshot().
479 	 */
480 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
481 					       8, &qgroup_reserved, false);
482 	if (ret)
483 		goto fail_free;
484 
485 	trans = btrfs_start_transaction(root, 0);
486 	if (IS_ERR(trans)) {
487 		ret = PTR_ERR(trans);
488 		btrfs_subvolume_release_metadata(root, &block_rsv,
489 						 qgroup_reserved);
490 		goto fail_free;
491 	}
492 	trans->block_rsv = &block_rsv;
493 	trans->bytes_reserved = block_rsv.size;
494 
495 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
496 	if (ret)
497 		goto fail;
498 
499 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
500 	if (IS_ERR(leaf)) {
501 		ret = PTR_ERR(leaf);
502 		goto fail;
503 	}
504 
505 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
506 	btrfs_set_header_bytenr(leaf, leaf->start);
507 	btrfs_set_header_generation(leaf, trans->transid);
508 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
509 	btrfs_set_header_owner(leaf, objectid);
510 
511 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
512 			    BTRFS_FSID_SIZE);
513 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
514 			    btrfs_header_chunk_tree_uuid(leaf),
515 			    BTRFS_UUID_SIZE);
516 	btrfs_mark_buffer_dirty(leaf);
517 
518 	inode_item = &root_item->inode;
519 	btrfs_set_stack_inode_generation(inode_item, 1);
520 	btrfs_set_stack_inode_size(inode_item, 3);
521 	btrfs_set_stack_inode_nlink(inode_item, 1);
522 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
523 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
524 
525 	btrfs_set_root_flags(root_item, 0);
526 	btrfs_set_root_limit(root_item, 0);
527 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
528 
529 	btrfs_set_root_bytenr(root_item, leaf->start);
530 	btrfs_set_root_generation(root_item, trans->transid);
531 	btrfs_set_root_level(root_item, 0);
532 	btrfs_set_root_refs(root_item, 1);
533 	btrfs_set_root_used(root_item, leaf->len);
534 	btrfs_set_root_last_snapshot(root_item, 0);
535 
536 	btrfs_set_root_generation_v2(root_item,
537 			btrfs_root_generation(root_item));
538 	uuid_le_gen(&new_uuid);
539 	memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
540 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
541 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
542 	root_item->ctime = root_item->otime;
543 	btrfs_set_root_ctransid(root_item, trans->transid);
544 	btrfs_set_root_otransid(root_item, trans->transid);
545 
546 	btrfs_tree_unlock(leaf);
547 	free_extent_buffer(leaf);
548 	leaf = NULL;
549 
550 	btrfs_set_root_dirid(root_item, new_dirid);
551 
552 	key.objectid = objectid;
553 	key.offset = 0;
554 	key.type = BTRFS_ROOT_ITEM_KEY;
555 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
556 				root_item);
557 	if (ret)
558 		goto fail;
559 
560 	key.offset = (u64)-1;
561 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
562 	if (IS_ERR(new_root)) {
563 		ret = PTR_ERR(new_root);
564 		btrfs_abort_transaction(trans, root, ret);
565 		goto fail;
566 	}
567 
568 	btrfs_record_root_in_trans(trans, new_root);
569 
570 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
571 	if (ret) {
572 		/* We potentially lose an unused inode item here */
573 		btrfs_abort_transaction(trans, root, ret);
574 		goto fail;
575 	}
576 
577 	mutex_lock(&new_root->objectid_mutex);
578 	new_root->highest_objectid = new_dirid;
579 	mutex_unlock(&new_root->objectid_mutex);
580 
581 	/*
582 	 * insert the directory item
583 	 */
584 	ret = btrfs_set_inode_index(dir, &index);
585 	if (ret) {
586 		btrfs_abort_transaction(trans, root, ret);
587 		goto fail;
588 	}
589 
590 	ret = btrfs_insert_dir_item(trans, root,
591 				    name, namelen, dir, &key,
592 				    BTRFS_FT_DIR, index);
593 	if (ret) {
594 		btrfs_abort_transaction(trans, root, ret);
595 		goto fail;
596 	}
597 
598 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
599 	ret = btrfs_update_inode(trans, root, dir);
600 	BUG_ON(ret);
601 
602 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
603 				 objectid, root->root_key.objectid,
604 				 btrfs_ino(dir), index, name, namelen);
605 	BUG_ON(ret);
606 
607 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
608 				  root_item->uuid, BTRFS_UUID_KEY_SUBVOL,
609 				  objectid);
610 	if (ret)
611 		btrfs_abort_transaction(trans, root, ret);
612 
613 fail:
614 	kfree(root_item);
615 	trans->block_rsv = NULL;
616 	trans->bytes_reserved = 0;
617 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
618 
619 	if (async_transid) {
620 		*async_transid = trans->transid;
621 		err = btrfs_commit_transaction_async(trans, root, 1);
622 		if (err)
623 			err = btrfs_commit_transaction(trans, root);
624 	} else {
625 		err = btrfs_commit_transaction(trans, root);
626 	}
627 	if (err && !ret)
628 		ret = err;
629 
630 	if (!ret) {
631 		inode = btrfs_lookup_dentry(dir, dentry);
632 		if (IS_ERR(inode))
633 			return PTR_ERR(inode);
634 		d_instantiate(dentry, inode);
635 	}
636 	return ret;
637 
638 fail_free:
639 	kfree(root_item);
640 	return ret;
641 }
642 
643 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
644 {
645 	s64 writers;
646 	DEFINE_WAIT(wait);
647 
648 	do {
649 		prepare_to_wait(&root->subv_writers->wait, &wait,
650 				TASK_UNINTERRUPTIBLE);
651 
652 		writers = percpu_counter_sum(&root->subv_writers->counter);
653 		if (writers)
654 			schedule();
655 
656 		finish_wait(&root->subv_writers->wait, &wait);
657 	} while (writers);
658 }
659 
660 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
661 			   struct dentry *dentry, char *name, int namelen,
662 			   u64 *async_transid, bool readonly,
663 			   struct btrfs_qgroup_inherit *inherit)
664 {
665 	struct inode *inode;
666 	struct btrfs_pending_snapshot *pending_snapshot;
667 	struct btrfs_trans_handle *trans;
668 	int ret;
669 
670 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
671 		return -EINVAL;
672 
673 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
674 	if (!pending_snapshot)
675 		return -ENOMEM;
676 
677 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
678 			GFP_NOFS);
679 	pending_snapshot->path = btrfs_alloc_path();
680 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
681 		ret = -ENOMEM;
682 		goto free_pending;
683 	}
684 
685 	atomic_inc(&root->will_be_snapshoted);
686 	smp_mb__after_atomic();
687 	btrfs_wait_for_no_snapshoting_writes(root);
688 
689 	ret = btrfs_start_delalloc_inodes(root, 0);
690 	if (ret)
691 		goto dec_and_free;
692 
693 	btrfs_wait_ordered_extents(root, -1, 0, (u64)-1);
694 
695 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
696 			     BTRFS_BLOCK_RSV_TEMP);
697 	/*
698 	 * 1 - parent dir inode
699 	 * 2 - dir entries
700 	 * 1 - root item
701 	 * 2 - root ref/backref
702 	 * 1 - root of snapshot
703 	 * 1 - UUID item
704 	 */
705 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
706 					&pending_snapshot->block_rsv, 8,
707 					&pending_snapshot->qgroup_reserved,
708 					false);
709 	if (ret)
710 		goto dec_and_free;
711 
712 	pending_snapshot->dentry = dentry;
713 	pending_snapshot->root = root;
714 	pending_snapshot->readonly = readonly;
715 	pending_snapshot->dir = dir;
716 	pending_snapshot->inherit = inherit;
717 
718 	trans = btrfs_start_transaction(root, 0);
719 	if (IS_ERR(trans)) {
720 		ret = PTR_ERR(trans);
721 		goto fail;
722 	}
723 
724 	spin_lock(&root->fs_info->trans_lock);
725 	list_add(&pending_snapshot->list,
726 		 &trans->transaction->pending_snapshots);
727 	spin_unlock(&root->fs_info->trans_lock);
728 	if (async_transid) {
729 		*async_transid = trans->transid;
730 		ret = btrfs_commit_transaction_async(trans,
731 				     root->fs_info->extent_root, 1);
732 		if (ret)
733 			ret = btrfs_commit_transaction(trans, root);
734 	} else {
735 		ret = btrfs_commit_transaction(trans,
736 					       root->fs_info->extent_root);
737 	}
738 	if (ret)
739 		goto fail;
740 
741 	ret = pending_snapshot->error;
742 	if (ret)
743 		goto fail;
744 
745 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
746 	if (ret)
747 		goto fail;
748 
749 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
750 	if (IS_ERR(inode)) {
751 		ret = PTR_ERR(inode);
752 		goto fail;
753 	}
754 
755 	d_instantiate(dentry, inode);
756 	ret = 0;
757 fail:
758 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
759 					 &pending_snapshot->block_rsv,
760 					 pending_snapshot->qgroup_reserved);
761 dec_and_free:
762 	if (atomic_dec_and_test(&root->will_be_snapshoted))
763 		wake_up_atomic_t(&root->will_be_snapshoted);
764 free_pending:
765 	kfree(pending_snapshot->root_item);
766 	btrfs_free_path(pending_snapshot->path);
767 	kfree(pending_snapshot);
768 
769 	return ret;
770 }
771 
772 /*  copy of may_delete in fs/namei.c()
773  *	Check whether we can remove a link victim from directory dir, check
774  *  whether the type of victim is right.
775  *  1. We can't do it if dir is read-only (done in permission())
776  *  2. We should have write and exec permissions on dir
777  *  3. We can't remove anything from append-only dir
778  *  4. We can't do anything with immutable dir (done in permission())
779  *  5. If the sticky bit on dir is set we should either
780  *	a. be owner of dir, or
781  *	b. be owner of victim, or
782  *	c. have CAP_FOWNER capability
783  *  6. If the victim is append-only or immutable we can't do anything with
784  *     links pointing to it.
785  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
786  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
787  *  9. We can't remove a root or mountpoint.
788  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
789  *     nfs_async_unlink().
790  */
791 
792 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
793 {
794 	int error;
795 
796 	if (d_really_is_negative(victim))
797 		return -ENOENT;
798 
799 	BUG_ON(d_inode(victim->d_parent) != dir);
800 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
801 
802 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
803 	if (error)
804 		return error;
805 	if (IS_APPEND(dir))
806 		return -EPERM;
807 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
808 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
809 		return -EPERM;
810 	if (isdir) {
811 		if (!d_is_dir(victim))
812 			return -ENOTDIR;
813 		if (IS_ROOT(victim))
814 			return -EBUSY;
815 	} else if (d_is_dir(victim))
816 		return -EISDIR;
817 	if (IS_DEADDIR(dir))
818 		return -ENOENT;
819 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
820 		return -EBUSY;
821 	return 0;
822 }
823 
824 /* copy of may_create in fs/namei.c() */
825 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
826 {
827 	if (d_really_is_positive(child))
828 		return -EEXIST;
829 	if (IS_DEADDIR(dir))
830 		return -ENOENT;
831 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
832 }
833 
834 /*
835  * Create a new subvolume below @parent.  This is largely modeled after
836  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
837  * inside this filesystem so it's quite a bit simpler.
838  */
839 static noinline int btrfs_mksubvol(struct path *parent,
840 				   char *name, int namelen,
841 				   struct btrfs_root *snap_src,
842 				   u64 *async_transid, bool readonly,
843 				   struct btrfs_qgroup_inherit *inherit)
844 {
845 	struct inode *dir  = d_inode(parent->dentry);
846 	struct dentry *dentry;
847 	int error;
848 
849 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
850 	if (error == -EINTR)
851 		return error;
852 
853 	dentry = lookup_one_len(name, parent->dentry, namelen);
854 	error = PTR_ERR(dentry);
855 	if (IS_ERR(dentry))
856 		goto out_unlock;
857 
858 	error = btrfs_may_create(dir, dentry);
859 	if (error)
860 		goto out_dput;
861 
862 	/*
863 	 * even if this name doesn't exist, we may get hash collisions.
864 	 * check for them now when we can safely fail
865 	 */
866 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
867 					       dir->i_ino, name,
868 					       namelen);
869 	if (error)
870 		goto out_dput;
871 
872 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
873 
874 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
875 		goto out_up_read;
876 
877 	if (snap_src) {
878 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
879 					async_transid, readonly, inherit);
880 	} else {
881 		error = create_subvol(dir, dentry, name, namelen,
882 				      async_transid, inherit);
883 	}
884 	if (!error)
885 		fsnotify_mkdir(dir, dentry);
886 out_up_read:
887 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
888 out_dput:
889 	dput(dentry);
890 out_unlock:
891 	inode_unlock(dir);
892 	return error;
893 }
894 
895 /*
896  * When we're defragging a range, we don't want to kick it off again
897  * if it is really just waiting for delalloc to send it down.
898  * If we find a nice big extent or delalloc range for the bytes in the
899  * file you want to defrag, we return 0 to let you know to skip this
900  * part of the file
901  */
902 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
903 {
904 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
905 	struct extent_map *em = NULL;
906 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
907 	u64 end;
908 
909 	read_lock(&em_tree->lock);
910 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
911 	read_unlock(&em_tree->lock);
912 
913 	if (em) {
914 		end = extent_map_end(em);
915 		free_extent_map(em);
916 		if (end - offset > thresh)
917 			return 0;
918 	}
919 	/* if we already have a nice delalloc here, just stop */
920 	thresh /= 2;
921 	end = count_range_bits(io_tree, &offset, offset + thresh,
922 			       thresh, EXTENT_DELALLOC, 1);
923 	if (end >= thresh)
924 		return 0;
925 	return 1;
926 }
927 
928 /*
929  * helper function to walk through a file and find extents
930  * newer than a specific transid, and smaller than thresh.
931  *
932  * This is used by the defragging code to find new and small
933  * extents
934  */
935 static int find_new_extents(struct btrfs_root *root,
936 			    struct inode *inode, u64 newer_than,
937 			    u64 *off, u32 thresh)
938 {
939 	struct btrfs_path *path;
940 	struct btrfs_key min_key;
941 	struct extent_buffer *leaf;
942 	struct btrfs_file_extent_item *extent;
943 	int type;
944 	int ret;
945 	u64 ino = btrfs_ino(inode);
946 
947 	path = btrfs_alloc_path();
948 	if (!path)
949 		return -ENOMEM;
950 
951 	min_key.objectid = ino;
952 	min_key.type = BTRFS_EXTENT_DATA_KEY;
953 	min_key.offset = *off;
954 
955 	while (1) {
956 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
957 		if (ret != 0)
958 			goto none;
959 process_slot:
960 		if (min_key.objectid != ino)
961 			goto none;
962 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
963 			goto none;
964 
965 		leaf = path->nodes[0];
966 		extent = btrfs_item_ptr(leaf, path->slots[0],
967 					struct btrfs_file_extent_item);
968 
969 		type = btrfs_file_extent_type(leaf, extent);
970 		if (type == BTRFS_FILE_EXTENT_REG &&
971 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
972 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
973 			*off = min_key.offset;
974 			btrfs_free_path(path);
975 			return 0;
976 		}
977 
978 		path->slots[0]++;
979 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
980 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
981 			goto process_slot;
982 		}
983 
984 		if (min_key.offset == (u64)-1)
985 			goto none;
986 
987 		min_key.offset++;
988 		btrfs_release_path(path);
989 	}
990 none:
991 	btrfs_free_path(path);
992 	return -ENOENT;
993 }
994 
995 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
996 {
997 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
998 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
999 	struct extent_map *em;
1000 	u64 len = PAGE_SIZE;
1001 
1002 	/*
1003 	 * hopefully we have this extent in the tree already, try without
1004 	 * the full extent lock
1005 	 */
1006 	read_lock(&em_tree->lock);
1007 	em = lookup_extent_mapping(em_tree, start, len);
1008 	read_unlock(&em_tree->lock);
1009 
1010 	if (!em) {
1011 		struct extent_state *cached = NULL;
1012 		u64 end = start + len - 1;
1013 
1014 		/* get the big lock and read metadata off disk */
1015 		lock_extent_bits(io_tree, start, end, &cached);
1016 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1017 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1018 
1019 		if (IS_ERR(em))
1020 			return NULL;
1021 	}
1022 
1023 	return em;
1024 }
1025 
1026 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1027 {
1028 	struct extent_map *next;
1029 	bool ret = true;
1030 
1031 	/* this is the last extent */
1032 	if (em->start + em->len >= i_size_read(inode))
1033 		return false;
1034 
1035 	next = defrag_lookup_extent(inode, em->start + em->len);
1036 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1037 		ret = false;
1038 	else if ((em->block_start + em->block_len == next->block_start) &&
1039 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1040 		ret = false;
1041 
1042 	free_extent_map(next);
1043 	return ret;
1044 }
1045 
1046 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1047 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1048 			       int compress)
1049 {
1050 	struct extent_map *em;
1051 	int ret = 1;
1052 	bool next_mergeable = true;
1053 	bool prev_mergeable = true;
1054 
1055 	/*
1056 	 * make sure that once we start defragging an extent, we keep on
1057 	 * defragging it
1058 	 */
1059 	if (start < *defrag_end)
1060 		return 1;
1061 
1062 	*skip = 0;
1063 
1064 	em = defrag_lookup_extent(inode, start);
1065 	if (!em)
1066 		return 0;
1067 
1068 	/* this will cover holes, and inline extents */
1069 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1070 		ret = 0;
1071 		goto out;
1072 	}
1073 
1074 	if (!*defrag_end)
1075 		prev_mergeable = false;
1076 
1077 	next_mergeable = defrag_check_next_extent(inode, em);
1078 	/*
1079 	 * we hit a real extent, if it is big or the next extent is not a
1080 	 * real extent, don't bother defragging it
1081 	 */
1082 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1083 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1084 		ret = 0;
1085 out:
1086 	/*
1087 	 * last_len ends up being a counter of how many bytes we've defragged.
1088 	 * every time we choose not to defrag an extent, we reset *last_len
1089 	 * so that the next tiny extent will force a defrag.
1090 	 *
1091 	 * The end result of this is that tiny extents before a single big
1092 	 * extent will force at least part of that big extent to be defragged.
1093 	 */
1094 	if (ret) {
1095 		*defrag_end = extent_map_end(em);
1096 	} else {
1097 		*last_len = 0;
1098 		*skip = extent_map_end(em);
1099 		*defrag_end = 0;
1100 	}
1101 
1102 	free_extent_map(em);
1103 	return ret;
1104 }
1105 
1106 /*
1107  * it doesn't do much good to defrag one or two pages
1108  * at a time.  This pulls in a nice chunk of pages
1109  * to COW and defrag.
1110  *
1111  * It also makes sure the delalloc code has enough
1112  * dirty data to avoid making new small extents as part
1113  * of the defrag
1114  *
1115  * It's a good idea to start RA on this range
1116  * before calling this.
1117  */
1118 static int cluster_pages_for_defrag(struct inode *inode,
1119 				    struct page **pages,
1120 				    unsigned long start_index,
1121 				    unsigned long num_pages)
1122 {
1123 	unsigned long file_end;
1124 	u64 isize = i_size_read(inode);
1125 	u64 page_start;
1126 	u64 page_end;
1127 	u64 page_cnt;
1128 	int ret;
1129 	int i;
1130 	int i_done;
1131 	struct btrfs_ordered_extent *ordered;
1132 	struct extent_state *cached_state = NULL;
1133 	struct extent_io_tree *tree;
1134 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1135 
1136 	file_end = (isize - 1) >> PAGE_SHIFT;
1137 	if (!isize || start_index > file_end)
1138 		return 0;
1139 
1140 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1141 
1142 	ret = btrfs_delalloc_reserve_space(inode,
1143 			start_index << PAGE_SHIFT,
1144 			page_cnt << PAGE_SHIFT);
1145 	if (ret)
1146 		return ret;
1147 	i_done = 0;
1148 	tree = &BTRFS_I(inode)->io_tree;
1149 
1150 	/* step one, lock all the pages */
1151 	for (i = 0; i < page_cnt; i++) {
1152 		struct page *page;
1153 again:
1154 		page = find_or_create_page(inode->i_mapping,
1155 					   start_index + i, mask);
1156 		if (!page)
1157 			break;
1158 
1159 		page_start = page_offset(page);
1160 		page_end = page_start + PAGE_SIZE - 1;
1161 		while (1) {
1162 			lock_extent_bits(tree, page_start, page_end,
1163 					 &cached_state);
1164 			ordered = btrfs_lookup_ordered_extent(inode,
1165 							      page_start);
1166 			unlock_extent_cached(tree, page_start, page_end,
1167 					     &cached_state, GFP_NOFS);
1168 			if (!ordered)
1169 				break;
1170 
1171 			unlock_page(page);
1172 			btrfs_start_ordered_extent(inode, ordered, 1);
1173 			btrfs_put_ordered_extent(ordered);
1174 			lock_page(page);
1175 			/*
1176 			 * we unlocked the page above, so we need check if
1177 			 * it was released or not.
1178 			 */
1179 			if (page->mapping != inode->i_mapping) {
1180 				unlock_page(page);
1181 				put_page(page);
1182 				goto again;
1183 			}
1184 		}
1185 
1186 		if (!PageUptodate(page)) {
1187 			btrfs_readpage(NULL, page);
1188 			lock_page(page);
1189 			if (!PageUptodate(page)) {
1190 				unlock_page(page);
1191 				put_page(page);
1192 				ret = -EIO;
1193 				break;
1194 			}
1195 		}
1196 
1197 		if (page->mapping != inode->i_mapping) {
1198 			unlock_page(page);
1199 			put_page(page);
1200 			goto again;
1201 		}
1202 
1203 		pages[i] = page;
1204 		i_done++;
1205 	}
1206 	if (!i_done || ret)
1207 		goto out;
1208 
1209 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1210 		goto out;
1211 
1212 	/*
1213 	 * so now we have a nice long stream of locked
1214 	 * and up to date pages, lets wait on them
1215 	 */
1216 	for (i = 0; i < i_done; i++)
1217 		wait_on_page_writeback(pages[i]);
1218 
1219 	page_start = page_offset(pages[0]);
1220 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1221 
1222 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1223 			 page_start, page_end - 1, &cached_state);
1224 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1225 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1226 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1227 			  &cached_state, GFP_NOFS);
1228 
1229 	if (i_done != page_cnt) {
1230 		spin_lock(&BTRFS_I(inode)->lock);
1231 		BTRFS_I(inode)->outstanding_extents++;
1232 		spin_unlock(&BTRFS_I(inode)->lock);
1233 		btrfs_delalloc_release_space(inode,
1234 				start_index << PAGE_SHIFT,
1235 				(page_cnt - i_done) << PAGE_SHIFT);
1236 	}
1237 
1238 
1239 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1240 			  &cached_state);
1241 
1242 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1243 			     page_start, page_end - 1, &cached_state,
1244 			     GFP_NOFS);
1245 
1246 	for (i = 0; i < i_done; i++) {
1247 		clear_page_dirty_for_io(pages[i]);
1248 		ClearPageChecked(pages[i]);
1249 		set_page_extent_mapped(pages[i]);
1250 		set_page_dirty(pages[i]);
1251 		unlock_page(pages[i]);
1252 		put_page(pages[i]);
1253 	}
1254 	return i_done;
1255 out:
1256 	for (i = 0; i < i_done; i++) {
1257 		unlock_page(pages[i]);
1258 		put_page(pages[i]);
1259 	}
1260 	btrfs_delalloc_release_space(inode,
1261 			start_index << PAGE_SHIFT,
1262 			page_cnt << PAGE_SHIFT);
1263 	return ret;
1264 
1265 }
1266 
1267 int btrfs_defrag_file(struct inode *inode, struct file *file,
1268 		      struct btrfs_ioctl_defrag_range_args *range,
1269 		      u64 newer_than, unsigned long max_to_defrag)
1270 {
1271 	struct btrfs_root *root = BTRFS_I(inode)->root;
1272 	struct file_ra_state *ra = NULL;
1273 	unsigned long last_index;
1274 	u64 isize = i_size_read(inode);
1275 	u64 last_len = 0;
1276 	u64 skip = 0;
1277 	u64 defrag_end = 0;
1278 	u64 newer_off = range->start;
1279 	unsigned long i;
1280 	unsigned long ra_index = 0;
1281 	int ret;
1282 	int defrag_count = 0;
1283 	int compress_type = BTRFS_COMPRESS_ZLIB;
1284 	u32 extent_thresh = range->extent_thresh;
1285 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1286 	unsigned long cluster = max_cluster;
1287 	u64 new_align = ~((u64)SZ_128K - 1);
1288 	struct page **pages = NULL;
1289 
1290 	if (isize == 0)
1291 		return 0;
1292 
1293 	if (range->start >= isize)
1294 		return -EINVAL;
1295 
1296 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1297 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1298 			return -EINVAL;
1299 		if (range->compress_type)
1300 			compress_type = range->compress_type;
1301 	}
1302 
1303 	if (extent_thresh == 0)
1304 		extent_thresh = SZ_256K;
1305 
1306 	/*
1307 	 * if we were not given a file, allocate a readahead
1308 	 * context
1309 	 */
1310 	if (!file) {
1311 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1312 		if (!ra)
1313 			return -ENOMEM;
1314 		file_ra_state_init(ra, inode->i_mapping);
1315 	} else {
1316 		ra = &file->f_ra;
1317 	}
1318 
1319 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1320 			GFP_NOFS);
1321 	if (!pages) {
1322 		ret = -ENOMEM;
1323 		goto out_ra;
1324 	}
1325 
1326 	/* find the last page to defrag */
1327 	if (range->start + range->len > range->start) {
1328 		last_index = min_t(u64, isize - 1,
1329 			 range->start + range->len - 1) >> PAGE_SHIFT;
1330 	} else {
1331 		last_index = (isize - 1) >> PAGE_SHIFT;
1332 	}
1333 
1334 	if (newer_than) {
1335 		ret = find_new_extents(root, inode, newer_than,
1336 				       &newer_off, SZ_64K);
1337 		if (!ret) {
1338 			range->start = newer_off;
1339 			/*
1340 			 * we always align our defrag to help keep
1341 			 * the extents in the file evenly spaced
1342 			 */
1343 			i = (newer_off & new_align) >> PAGE_SHIFT;
1344 		} else
1345 			goto out_ra;
1346 	} else {
1347 		i = range->start >> PAGE_SHIFT;
1348 	}
1349 	if (!max_to_defrag)
1350 		max_to_defrag = last_index - i + 1;
1351 
1352 	/*
1353 	 * make writeback starts from i, so the defrag range can be
1354 	 * written sequentially.
1355 	 */
1356 	if (i < inode->i_mapping->writeback_index)
1357 		inode->i_mapping->writeback_index = i;
1358 
1359 	while (i <= last_index && defrag_count < max_to_defrag &&
1360 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1361 		/*
1362 		 * make sure we stop running if someone unmounts
1363 		 * the FS
1364 		 */
1365 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1366 			break;
1367 
1368 		if (btrfs_defrag_cancelled(root->fs_info)) {
1369 			btrfs_debug(root->fs_info, "defrag_file cancelled");
1370 			ret = -EAGAIN;
1371 			break;
1372 		}
1373 
1374 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1375 					 extent_thresh, &last_len, &skip,
1376 					 &defrag_end, range->flags &
1377 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1378 			unsigned long next;
1379 			/*
1380 			 * the should_defrag function tells us how much to skip
1381 			 * bump our counter by the suggested amount
1382 			 */
1383 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1384 			i = max(i + 1, next);
1385 			continue;
1386 		}
1387 
1388 		if (!newer_than) {
1389 			cluster = (PAGE_ALIGN(defrag_end) >>
1390 				   PAGE_SHIFT) - i;
1391 			cluster = min(cluster, max_cluster);
1392 		} else {
1393 			cluster = max_cluster;
1394 		}
1395 
1396 		if (i + cluster > ra_index) {
1397 			ra_index = max(i, ra_index);
1398 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1399 				       cluster);
1400 			ra_index += cluster;
1401 		}
1402 
1403 		inode_lock(inode);
1404 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1405 			BTRFS_I(inode)->force_compress = compress_type;
1406 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1407 		if (ret < 0) {
1408 			inode_unlock(inode);
1409 			goto out_ra;
1410 		}
1411 
1412 		defrag_count += ret;
1413 		balance_dirty_pages_ratelimited(inode->i_mapping);
1414 		inode_unlock(inode);
1415 
1416 		if (newer_than) {
1417 			if (newer_off == (u64)-1)
1418 				break;
1419 
1420 			if (ret > 0)
1421 				i += ret;
1422 
1423 			newer_off = max(newer_off + 1,
1424 					(u64)i << PAGE_SHIFT);
1425 
1426 			ret = find_new_extents(root, inode, newer_than,
1427 					       &newer_off, SZ_64K);
1428 			if (!ret) {
1429 				range->start = newer_off;
1430 				i = (newer_off & new_align) >> PAGE_SHIFT;
1431 			} else {
1432 				break;
1433 			}
1434 		} else {
1435 			if (ret > 0) {
1436 				i += ret;
1437 				last_len += ret << PAGE_SHIFT;
1438 			} else {
1439 				i++;
1440 				last_len = 0;
1441 			}
1442 		}
1443 	}
1444 
1445 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1446 		filemap_flush(inode->i_mapping);
1447 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1448 			     &BTRFS_I(inode)->runtime_flags))
1449 			filemap_flush(inode->i_mapping);
1450 	}
1451 
1452 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1453 		/* the filemap_flush will queue IO into the worker threads, but
1454 		 * we have to make sure the IO is actually started and that
1455 		 * ordered extents get created before we return
1456 		 */
1457 		atomic_inc(&root->fs_info->async_submit_draining);
1458 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1459 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1460 			wait_event(root->fs_info->async_submit_wait,
1461 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1462 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1463 		}
1464 		atomic_dec(&root->fs_info->async_submit_draining);
1465 	}
1466 
1467 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1468 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1469 	}
1470 
1471 	ret = defrag_count;
1472 
1473 out_ra:
1474 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1475 		inode_lock(inode);
1476 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1477 		inode_unlock(inode);
1478 	}
1479 	if (!file)
1480 		kfree(ra);
1481 	kfree(pages);
1482 	return ret;
1483 }
1484 
1485 static noinline int btrfs_ioctl_resize(struct file *file,
1486 					void __user *arg)
1487 {
1488 	u64 new_size;
1489 	u64 old_size;
1490 	u64 devid = 1;
1491 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1492 	struct btrfs_ioctl_vol_args *vol_args;
1493 	struct btrfs_trans_handle *trans;
1494 	struct btrfs_device *device = NULL;
1495 	char *sizestr;
1496 	char *retptr;
1497 	char *devstr = NULL;
1498 	int ret = 0;
1499 	int mod = 0;
1500 
1501 	if (!capable(CAP_SYS_ADMIN))
1502 		return -EPERM;
1503 
1504 	ret = mnt_want_write_file(file);
1505 	if (ret)
1506 		return ret;
1507 
1508 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1509 			1)) {
1510 		mnt_drop_write_file(file);
1511 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1512 	}
1513 
1514 	mutex_lock(&root->fs_info->volume_mutex);
1515 	vol_args = memdup_user(arg, sizeof(*vol_args));
1516 	if (IS_ERR(vol_args)) {
1517 		ret = PTR_ERR(vol_args);
1518 		goto out;
1519 	}
1520 
1521 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1522 
1523 	sizestr = vol_args->name;
1524 	devstr = strchr(sizestr, ':');
1525 	if (devstr) {
1526 		sizestr = devstr + 1;
1527 		*devstr = '\0';
1528 		devstr = vol_args->name;
1529 		ret = kstrtoull(devstr, 10, &devid);
1530 		if (ret)
1531 			goto out_free;
1532 		if (!devid) {
1533 			ret = -EINVAL;
1534 			goto out_free;
1535 		}
1536 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1537 	}
1538 
1539 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1540 	if (!device) {
1541 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1542 		       devid);
1543 		ret = -ENODEV;
1544 		goto out_free;
1545 	}
1546 
1547 	if (!device->writeable) {
1548 		btrfs_info(root->fs_info,
1549 			   "resizer unable to apply on readonly device %llu",
1550 		       devid);
1551 		ret = -EPERM;
1552 		goto out_free;
1553 	}
1554 
1555 	if (!strcmp(sizestr, "max"))
1556 		new_size = device->bdev->bd_inode->i_size;
1557 	else {
1558 		if (sizestr[0] == '-') {
1559 			mod = -1;
1560 			sizestr++;
1561 		} else if (sizestr[0] == '+') {
1562 			mod = 1;
1563 			sizestr++;
1564 		}
1565 		new_size = memparse(sizestr, &retptr);
1566 		if (*retptr != '\0' || new_size == 0) {
1567 			ret = -EINVAL;
1568 			goto out_free;
1569 		}
1570 	}
1571 
1572 	if (device->is_tgtdev_for_dev_replace) {
1573 		ret = -EPERM;
1574 		goto out_free;
1575 	}
1576 
1577 	old_size = btrfs_device_get_total_bytes(device);
1578 
1579 	if (mod < 0) {
1580 		if (new_size > old_size) {
1581 			ret = -EINVAL;
1582 			goto out_free;
1583 		}
1584 		new_size = old_size - new_size;
1585 	} else if (mod > 0) {
1586 		if (new_size > ULLONG_MAX - old_size) {
1587 			ret = -ERANGE;
1588 			goto out_free;
1589 		}
1590 		new_size = old_size + new_size;
1591 	}
1592 
1593 	if (new_size < SZ_256M) {
1594 		ret = -EINVAL;
1595 		goto out_free;
1596 	}
1597 	if (new_size > device->bdev->bd_inode->i_size) {
1598 		ret = -EFBIG;
1599 		goto out_free;
1600 	}
1601 
1602 	new_size = div_u64(new_size, root->sectorsize);
1603 	new_size *= root->sectorsize;
1604 
1605 	btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1606 		      rcu_str_deref(device->name), new_size);
1607 
1608 	if (new_size > old_size) {
1609 		trans = btrfs_start_transaction(root, 0);
1610 		if (IS_ERR(trans)) {
1611 			ret = PTR_ERR(trans);
1612 			goto out_free;
1613 		}
1614 		ret = btrfs_grow_device(trans, device, new_size);
1615 		btrfs_commit_transaction(trans, root);
1616 	} else if (new_size < old_size) {
1617 		ret = btrfs_shrink_device(device, new_size);
1618 	} /* equal, nothing need to do */
1619 
1620 out_free:
1621 	kfree(vol_args);
1622 out:
1623 	mutex_unlock(&root->fs_info->volume_mutex);
1624 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1625 	mnt_drop_write_file(file);
1626 	return ret;
1627 }
1628 
1629 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1630 				char *name, unsigned long fd, int subvol,
1631 				u64 *transid, bool readonly,
1632 				struct btrfs_qgroup_inherit *inherit)
1633 {
1634 	int namelen;
1635 	int ret = 0;
1636 
1637 	ret = mnt_want_write_file(file);
1638 	if (ret)
1639 		goto out;
1640 
1641 	namelen = strlen(name);
1642 	if (strchr(name, '/')) {
1643 		ret = -EINVAL;
1644 		goto out_drop_write;
1645 	}
1646 
1647 	if (name[0] == '.' &&
1648 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1649 		ret = -EEXIST;
1650 		goto out_drop_write;
1651 	}
1652 
1653 	if (subvol) {
1654 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1655 				     NULL, transid, readonly, inherit);
1656 	} else {
1657 		struct fd src = fdget(fd);
1658 		struct inode *src_inode;
1659 		if (!src.file) {
1660 			ret = -EINVAL;
1661 			goto out_drop_write;
1662 		}
1663 
1664 		src_inode = file_inode(src.file);
1665 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1666 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1667 				   "Snapshot src from another FS");
1668 			ret = -EXDEV;
1669 		} else if (!inode_owner_or_capable(src_inode)) {
1670 			/*
1671 			 * Subvolume creation is not restricted, but snapshots
1672 			 * are limited to own subvolumes only
1673 			 */
1674 			ret = -EPERM;
1675 		} else {
1676 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1677 					     BTRFS_I(src_inode)->root,
1678 					     transid, readonly, inherit);
1679 		}
1680 		fdput(src);
1681 	}
1682 out_drop_write:
1683 	mnt_drop_write_file(file);
1684 out:
1685 	return ret;
1686 }
1687 
1688 static noinline int btrfs_ioctl_snap_create(struct file *file,
1689 					    void __user *arg, int subvol)
1690 {
1691 	struct btrfs_ioctl_vol_args *vol_args;
1692 	int ret;
1693 
1694 	vol_args = memdup_user(arg, sizeof(*vol_args));
1695 	if (IS_ERR(vol_args))
1696 		return PTR_ERR(vol_args);
1697 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1698 
1699 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1700 					      vol_args->fd, subvol,
1701 					      NULL, false, NULL);
1702 
1703 	kfree(vol_args);
1704 	return ret;
1705 }
1706 
1707 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1708 					       void __user *arg, int subvol)
1709 {
1710 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1711 	int ret;
1712 	u64 transid = 0;
1713 	u64 *ptr = NULL;
1714 	bool readonly = false;
1715 	struct btrfs_qgroup_inherit *inherit = NULL;
1716 
1717 	vol_args = memdup_user(arg, sizeof(*vol_args));
1718 	if (IS_ERR(vol_args))
1719 		return PTR_ERR(vol_args);
1720 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1721 
1722 	if (vol_args->flags &
1723 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1724 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1725 		ret = -EOPNOTSUPP;
1726 		goto free_args;
1727 	}
1728 
1729 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1730 		ptr = &transid;
1731 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1732 		readonly = true;
1733 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1734 		if (vol_args->size > PAGE_SIZE) {
1735 			ret = -EINVAL;
1736 			goto free_args;
1737 		}
1738 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1739 		if (IS_ERR(inherit)) {
1740 			ret = PTR_ERR(inherit);
1741 			goto free_args;
1742 		}
1743 	}
1744 
1745 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1746 					      vol_args->fd, subvol, ptr,
1747 					      readonly, inherit);
1748 	if (ret)
1749 		goto free_inherit;
1750 
1751 	if (ptr && copy_to_user(arg +
1752 				offsetof(struct btrfs_ioctl_vol_args_v2,
1753 					transid),
1754 				ptr, sizeof(*ptr)))
1755 		ret = -EFAULT;
1756 
1757 free_inherit:
1758 	kfree(inherit);
1759 free_args:
1760 	kfree(vol_args);
1761 	return ret;
1762 }
1763 
1764 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1765 						void __user *arg)
1766 {
1767 	struct inode *inode = file_inode(file);
1768 	struct btrfs_root *root = BTRFS_I(inode)->root;
1769 	int ret = 0;
1770 	u64 flags = 0;
1771 
1772 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1773 		return -EINVAL;
1774 
1775 	down_read(&root->fs_info->subvol_sem);
1776 	if (btrfs_root_readonly(root))
1777 		flags |= BTRFS_SUBVOL_RDONLY;
1778 	up_read(&root->fs_info->subvol_sem);
1779 
1780 	if (copy_to_user(arg, &flags, sizeof(flags)))
1781 		ret = -EFAULT;
1782 
1783 	return ret;
1784 }
1785 
1786 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1787 					      void __user *arg)
1788 {
1789 	struct inode *inode = file_inode(file);
1790 	struct btrfs_root *root = BTRFS_I(inode)->root;
1791 	struct btrfs_trans_handle *trans;
1792 	u64 root_flags;
1793 	u64 flags;
1794 	int ret = 0;
1795 
1796 	if (!inode_owner_or_capable(inode))
1797 		return -EPERM;
1798 
1799 	ret = mnt_want_write_file(file);
1800 	if (ret)
1801 		goto out;
1802 
1803 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1804 		ret = -EINVAL;
1805 		goto out_drop_write;
1806 	}
1807 
1808 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1809 		ret = -EFAULT;
1810 		goto out_drop_write;
1811 	}
1812 
1813 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1814 		ret = -EINVAL;
1815 		goto out_drop_write;
1816 	}
1817 
1818 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1819 		ret = -EOPNOTSUPP;
1820 		goto out_drop_write;
1821 	}
1822 
1823 	down_write(&root->fs_info->subvol_sem);
1824 
1825 	/* nothing to do */
1826 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1827 		goto out_drop_sem;
1828 
1829 	root_flags = btrfs_root_flags(&root->root_item);
1830 	if (flags & BTRFS_SUBVOL_RDONLY) {
1831 		btrfs_set_root_flags(&root->root_item,
1832 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1833 	} else {
1834 		/*
1835 		 * Block RO -> RW transition if this subvolume is involved in
1836 		 * send
1837 		 */
1838 		spin_lock(&root->root_item_lock);
1839 		if (root->send_in_progress == 0) {
1840 			btrfs_set_root_flags(&root->root_item,
1841 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1842 			spin_unlock(&root->root_item_lock);
1843 		} else {
1844 			spin_unlock(&root->root_item_lock);
1845 			btrfs_warn(root->fs_info,
1846 			"Attempt to set subvolume %llu read-write during send",
1847 					root->root_key.objectid);
1848 			ret = -EPERM;
1849 			goto out_drop_sem;
1850 		}
1851 	}
1852 
1853 	trans = btrfs_start_transaction(root, 1);
1854 	if (IS_ERR(trans)) {
1855 		ret = PTR_ERR(trans);
1856 		goto out_reset;
1857 	}
1858 
1859 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1860 				&root->root_key, &root->root_item);
1861 
1862 	btrfs_commit_transaction(trans, root);
1863 out_reset:
1864 	if (ret)
1865 		btrfs_set_root_flags(&root->root_item, root_flags);
1866 out_drop_sem:
1867 	up_write(&root->fs_info->subvol_sem);
1868 out_drop_write:
1869 	mnt_drop_write_file(file);
1870 out:
1871 	return ret;
1872 }
1873 
1874 /*
1875  * helper to check if the subvolume references other subvolumes
1876  */
1877 static noinline int may_destroy_subvol(struct btrfs_root *root)
1878 {
1879 	struct btrfs_path *path;
1880 	struct btrfs_dir_item *di;
1881 	struct btrfs_key key;
1882 	u64 dir_id;
1883 	int ret;
1884 
1885 	path = btrfs_alloc_path();
1886 	if (!path)
1887 		return -ENOMEM;
1888 
1889 	/* Make sure this root isn't set as the default subvol */
1890 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1891 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1892 				   dir_id, "default", 7, 0);
1893 	if (di && !IS_ERR(di)) {
1894 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1895 		if (key.objectid == root->root_key.objectid) {
1896 			ret = -EPERM;
1897 			btrfs_err(root->fs_info, "deleting default subvolume "
1898 				  "%llu is not allowed", key.objectid);
1899 			goto out;
1900 		}
1901 		btrfs_release_path(path);
1902 	}
1903 
1904 	key.objectid = root->root_key.objectid;
1905 	key.type = BTRFS_ROOT_REF_KEY;
1906 	key.offset = (u64)-1;
1907 
1908 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1909 				&key, path, 0, 0);
1910 	if (ret < 0)
1911 		goto out;
1912 	BUG_ON(ret == 0);
1913 
1914 	ret = 0;
1915 	if (path->slots[0] > 0) {
1916 		path->slots[0]--;
1917 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1918 		if (key.objectid == root->root_key.objectid &&
1919 		    key.type == BTRFS_ROOT_REF_KEY)
1920 			ret = -ENOTEMPTY;
1921 	}
1922 out:
1923 	btrfs_free_path(path);
1924 	return ret;
1925 }
1926 
1927 static noinline int key_in_sk(struct btrfs_key *key,
1928 			      struct btrfs_ioctl_search_key *sk)
1929 {
1930 	struct btrfs_key test;
1931 	int ret;
1932 
1933 	test.objectid = sk->min_objectid;
1934 	test.type = sk->min_type;
1935 	test.offset = sk->min_offset;
1936 
1937 	ret = btrfs_comp_cpu_keys(key, &test);
1938 	if (ret < 0)
1939 		return 0;
1940 
1941 	test.objectid = sk->max_objectid;
1942 	test.type = sk->max_type;
1943 	test.offset = sk->max_offset;
1944 
1945 	ret = btrfs_comp_cpu_keys(key, &test);
1946 	if (ret > 0)
1947 		return 0;
1948 	return 1;
1949 }
1950 
1951 static noinline int copy_to_sk(struct btrfs_root *root,
1952 			       struct btrfs_path *path,
1953 			       struct btrfs_key *key,
1954 			       struct btrfs_ioctl_search_key *sk,
1955 			       size_t *buf_size,
1956 			       char __user *ubuf,
1957 			       unsigned long *sk_offset,
1958 			       int *num_found)
1959 {
1960 	u64 found_transid;
1961 	struct extent_buffer *leaf;
1962 	struct btrfs_ioctl_search_header sh;
1963 	struct btrfs_key test;
1964 	unsigned long item_off;
1965 	unsigned long item_len;
1966 	int nritems;
1967 	int i;
1968 	int slot;
1969 	int ret = 0;
1970 
1971 	leaf = path->nodes[0];
1972 	slot = path->slots[0];
1973 	nritems = btrfs_header_nritems(leaf);
1974 
1975 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1976 		i = nritems;
1977 		goto advance_key;
1978 	}
1979 	found_transid = btrfs_header_generation(leaf);
1980 
1981 	for (i = slot; i < nritems; i++) {
1982 		item_off = btrfs_item_ptr_offset(leaf, i);
1983 		item_len = btrfs_item_size_nr(leaf, i);
1984 
1985 		btrfs_item_key_to_cpu(leaf, key, i);
1986 		if (!key_in_sk(key, sk))
1987 			continue;
1988 
1989 		if (sizeof(sh) + item_len > *buf_size) {
1990 			if (*num_found) {
1991 				ret = 1;
1992 				goto out;
1993 			}
1994 
1995 			/*
1996 			 * return one empty item back for v1, which does not
1997 			 * handle -EOVERFLOW
1998 			 */
1999 
2000 			*buf_size = sizeof(sh) + item_len;
2001 			item_len = 0;
2002 			ret = -EOVERFLOW;
2003 		}
2004 
2005 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2006 			ret = 1;
2007 			goto out;
2008 		}
2009 
2010 		sh.objectid = key->objectid;
2011 		sh.offset = key->offset;
2012 		sh.type = key->type;
2013 		sh.len = item_len;
2014 		sh.transid = found_transid;
2015 
2016 		/* copy search result header */
2017 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2018 			ret = -EFAULT;
2019 			goto out;
2020 		}
2021 
2022 		*sk_offset += sizeof(sh);
2023 
2024 		if (item_len) {
2025 			char __user *up = ubuf + *sk_offset;
2026 			/* copy the item */
2027 			if (read_extent_buffer_to_user(leaf, up,
2028 						       item_off, item_len)) {
2029 				ret = -EFAULT;
2030 				goto out;
2031 			}
2032 
2033 			*sk_offset += item_len;
2034 		}
2035 		(*num_found)++;
2036 
2037 		if (ret) /* -EOVERFLOW from above */
2038 			goto out;
2039 
2040 		if (*num_found >= sk->nr_items) {
2041 			ret = 1;
2042 			goto out;
2043 		}
2044 	}
2045 advance_key:
2046 	ret = 0;
2047 	test.objectid = sk->max_objectid;
2048 	test.type = sk->max_type;
2049 	test.offset = sk->max_offset;
2050 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2051 		ret = 1;
2052 	else if (key->offset < (u64)-1)
2053 		key->offset++;
2054 	else if (key->type < (u8)-1) {
2055 		key->offset = 0;
2056 		key->type++;
2057 	} else if (key->objectid < (u64)-1) {
2058 		key->offset = 0;
2059 		key->type = 0;
2060 		key->objectid++;
2061 	} else
2062 		ret = 1;
2063 out:
2064 	/*
2065 	 *  0: all items from this leaf copied, continue with next
2066 	 *  1: * more items can be copied, but unused buffer is too small
2067 	 *     * all items were found
2068 	 *     Either way, it will stops the loop which iterates to the next
2069 	 *     leaf
2070 	 *  -EOVERFLOW: item was to large for buffer
2071 	 *  -EFAULT: could not copy extent buffer back to userspace
2072 	 */
2073 	return ret;
2074 }
2075 
2076 static noinline int search_ioctl(struct inode *inode,
2077 				 struct btrfs_ioctl_search_key *sk,
2078 				 size_t *buf_size,
2079 				 char __user *ubuf)
2080 {
2081 	struct btrfs_root *root;
2082 	struct btrfs_key key;
2083 	struct btrfs_path *path;
2084 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2085 	int ret;
2086 	int num_found = 0;
2087 	unsigned long sk_offset = 0;
2088 
2089 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2090 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2091 		return -EOVERFLOW;
2092 	}
2093 
2094 	path = btrfs_alloc_path();
2095 	if (!path)
2096 		return -ENOMEM;
2097 
2098 	if (sk->tree_id == 0) {
2099 		/* search the root of the inode that was passed */
2100 		root = BTRFS_I(inode)->root;
2101 	} else {
2102 		key.objectid = sk->tree_id;
2103 		key.type = BTRFS_ROOT_ITEM_KEY;
2104 		key.offset = (u64)-1;
2105 		root = btrfs_read_fs_root_no_name(info, &key);
2106 		if (IS_ERR(root)) {
2107 			btrfs_free_path(path);
2108 			return -ENOENT;
2109 		}
2110 	}
2111 
2112 	key.objectid = sk->min_objectid;
2113 	key.type = sk->min_type;
2114 	key.offset = sk->min_offset;
2115 
2116 	while (1) {
2117 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2118 		if (ret != 0) {
2119 			if (ret > 0)
2120 				ret = 0;
2121 			goto err;
2122 		}
2123 		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2124 				 &sk_offset, &num_found);
2125 		btrfs_release_path(path);
2126 		if (ret)
2127 			break;
2128 
2129 	}
2130 	if (ret > 0)
2131 		ret = 0;
2132 err:
2133 	sk->nr_items = num_found;
2134 	btrfs_free_path(path);
2135 	return ret;
2136 }
2137 
2138 static noinline int btrfs_ioctl_tree_search(struct file *file,
2139 					   void __user *argp)
2140 {
2141 	struct btrfs_ioctl_search_args __user *uargs;
2142 	struct btrfs_ioctl_search_key sk;
2143 	struct inode *inode;
2144 	int ret;
2145 	size_t buf_size;
2146 
2147 	if (!capable(CAP_SYS_ADMIN))
2148 		return -EPERM;
2149 
2150 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2151 
2152 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2153 		return -EFAULT;
2154 
2155 	buf_size = sizeof(uargs->buf);
2156 
2157 	inode = file_inode(file);
2158 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2159 
2160 	/*
2161 	 * In the origin implementation an overflow is handled by returning a
2162 	 * search header with a len of zero, so reset ret.
2163 	 */
2164 	if (ret == -EOVERFLOW)
2165 		ret = 0;
2166 
2167 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2168 		ret = -EFAULT;
2169 	return ret;
2170 }
2171 
2172 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2173 					       void __user *argp)
2174 {
2175 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2176 	struct btrfs_ioctl_search_args_v2 args;
2177 	struct inode *inode;
2178 	int ret;
2179 	size_t buf_size;
2180 	const size_t buf_limit = SZ_16M;
2181 
2182 	if (!capable(CAP_SYS_ADMIN))
2183 		return -EPERM;
2184 
2185 	/* copy search header and buffer size */
2186 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2187 	if (copy_from_user(&args, uarg, sizeof(args)))
2188 		return -EFAULT;
2189 
2190 	buf_size = args.buf_size;
2191 
2192 	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2193 		return -EOVERFLOW;
2194 
2195 	/* limit result size to 16MB */
2196 	if (buf_size > buf_limit)
2197 		buf_size = buf_limit;
2198 
2199 	inode = file_inode(file);
2200 	ret = search_ioctl(inode, &args.key, &buf_size,
2201 			   (char *)(&uarg->buf[0]));
2202 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2203 		ret = -EFAULT;
2204 	else if (ret == -EOVERFLOW &&
2205 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2206 		ret = -EFAULT;
2207 
2208 	return ret;
2209 }
2210 
2211 /*
2212  * Search INODE_REFs to identify path name of 'dirid' directory
2213  * in a 'tree_id' tree. and sets path name to 'name'.
2214  */
2215 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2216 				u64 tree_id, u64 dirid, char *name)
2217 {
2218 	struct btrfs_root *root;
2219 	struct btrfs_key key;
2220 	char *ptr;
2221 	int ret = -1;
2222 	int slot;
2223 	int len;
2224 	int total_len = 0;
2225 	struct btrfs_inode_ref *iref;
2226 	struct extent_buffer *l;
2227 	struct btrfs_path *path;
2228 
2229 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2230 		name[0]='\0';
2231 		return 0;
2232 	}
2233 
2234 	path = btrfs_alloc_path();
2235 	if (!path)
2236 		return -ENOMEM;
2237 
2238 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2239 
2240 	key.objectid = tree_id;
2241 	key.type = BTRFS_ROOT_ITEM_KEY;
2242 	key.offset = (u64)-1;
2243 	root = btrfs_read_fs_root_no_name(info, &key);
2244 	if (IS_ERR(root)) {
2245 		btrfs_err(info, "could not find root %llu", tree_id);
2246 		ret = -ENOENT;
2247 		goto out;
2248 	}
2249 
2250 	key.objectid = dirid;
2251 	key.type = BTRFS_INODE_REF_KEY;
2252 	key.offset = (u64)-1;
2253 
2254 	while (1) {
2255 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2256 		if (ret < 0)
2257 			goto out;
2258 		else if (ret > 0) {
2259 			ret = btrfs_previous_item(root, path, dirid,
2260 						  BTRFS_INODE_REF_KEY);
2261 			if (ret < 0)
2262 				goto out;
2263 			else if (ret > 0) {
2264 				ret = -ENOENT;
2265 				goto out;
2266 			}
2267 		}
2268 
2269 		l = path->nodes[0];
2270 		slot = path->slots[0];
2271 		btrfs_item_key_to_cpu(l, &key, slot);
2272 
2273 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2274 		len = btrfs_inode_ref_name_len(l, iref);
2275 		ptr -= len + 1;
2276 		total_len += len + 1;
2277 		if (ptr < name) {
2278 			ret = -ENAMETOOLONG;
2279 			goto out;
2280 		}
2281 
2282 		*(ptr + len) = '/';
2283 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2284 
2285 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2286 			break;
2287 
2288 		btrfs_release_path(path);
2289 		key.objectid = key.offset;
2290 		key.offset = (u64)-1;
2291 		dirid = key.objectid;
2292 	}
2293 	memmove(name, ptr, total_len);
2294 	name[total_len] = '\0';
2295 	ret = 0;
2296 out:
2297 	btrfs_free_path(path);
2298 	return ret;
2299 }
2300 
2301 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2302 					   void __user *argp)
2303 {
2304 	 struct btrfs_ioctl_ino_lookup_args *args;
2305 	 struct inode *inode;
2306 	int ret = 0;
2307 
2308 	args = memdup_user(argp, sizeof(*args));
2309 	if (IS_ERR(args))
2310 		return PTR_ERR(args);
2311 
2312 	inode = file_inode(file);
2313 
2314 	/*
2315 	 * Unprivileged query to obtain the containing subvolume root id. The
2316 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2317 	 */
2318 	if (args->treeid == 0)
2319 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2320 
2321 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2322 		args->name[0] = 0;
2323 		goto out;
2324 	}
2325 
2326 	if (!capable(CAP_SYS_ADMIN)) {
2327 		ret = -EPERM;
2328 		goto out;
2329 	}
2330 
2331 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2332 					args->treeid, args->objectid,
2333 					args->name);
2334 
2335 out:
2336 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2337 		ret = -EFAULT;
2338 
2339 	kfree(args);
2340 	return ret;
2341 }
2342 
2343 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2344 					     void __user *arg)
2345 {
2346 	struct dentry *parent = file->f_path.dentry;
2347 	struct dentry *dentry;
2348 	struct inode *dir = d_inode(parent);
2349 	struct inode *inode;
2350 	struct btrfs_root *root = BTRFS_I(dir)->root;
2351 	struct btrfs_root *dest = NULL;
2352 	struct btrfs_ioctl_vol_args *vol_args;
2353 	struct btrfs_trans_handle *trans;
2354 	struct btrfs_block_rsv block_rsv;
2355 	u64 root_flags;
2356 	u64 qgroup_reserved;
2357 	int namelen;
2358 	int ret;
2359 	int err = 0;
2360 
2361 	vol_args = memdup_user(arg, sizeof(*vol_args));
2362 	if (IS_ERR(vol_args))
2363 		return PTR_ERR(vol_args);
2364 
2365 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2366 	namelen = strlen(vol_args->name);
2367 	if (strchr(vol_args->name, '/') ||
2368 	    strncmp(vol_args->name, "..", namelen) == 0) {
2369 		err = -EINVAL;
2370 		goto out;
2371 	}
2372 
2373 	err = mnt_want_write_file(file);
2374 	if (err)
2375 		goto out;
2376 
2377 
2378 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2379 	if (err == -EINTR)
2380 		goto out_drop_write;
2381 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2382 	if (IS_ERR(dentry)) {
2383 		err = PTR_ERR(dentry);
2384 		goto out_unlock_dir;
2385 	}
2386 
2387 	if (d_really_is_negative(dentry)) {
2388 		err = -ENOENT;
2389 		goto out_dput;
2390 	}
2391 
2392 	inode = d_inode(dentry);
2393 	dest = BTRFS_I(inode)->root;
2394 	if (!capable(CAP_SYS_ADMIN)) {
2395 		/*
2396 		 * Regular user.  Only allow this with a special mount
2397 		 * option, when the user has write+exec access to the
2398 		 * subvol root, and when rmdir(2) would have been
2399 		 * allowed.
2400 		 *
2401 		 * Note that this is _not_ check that the subvol is
2402 		 * empty or doesn't contain data that we wouldn't
2403 		 * otherwise be able to delete.
2404 		 *
2405 		 * Users who want to delete empty subvols should try
2406 		 * rmdir(2).
2407 		 */
2408 		err = -EPERM;
2409 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2410 			goto out_dput;
2411 
2412 		/*
2413 		 * Do not allow deletion if the parent dir is the same
2414 		 * as the dir to be deleted.  That means the ioctl
2415 		 * must be called on the dentry referencing the root
2416 		 * of the subvol, not a random directory contained
2417 		 * within it.
2418 		 */
2419 		err = -EINVAL;
2420 		if (root == dest)
2421 			goto out_dput;
2422 
2423 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2424 		if (err)
2425 			goto out_dput;
2426 	}
2427 
2428 	/* check if subvolume may be deleted by a user */
2429 	err = btrfs_may_delete(dir, dentry, 1);
2430 	if (err)
2431 		goto out_dput;
2432 
2433 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2434 		err = -EINVAL;
2435 		goto out_dput;
2436 	}
2437 
2438 	inode_lock(inode);
2439 
2440 	/*
2441 	 * Don't allow to delete a subvolume with send in progress. This is
2442 	 * inside the i_mutex so the error handling that has to drop the bit
2443 	 * again is not run concurrently.
2444 	 */
2445 	spin_lock(&dest->root_item_lock);
2446 	root_flags = btrfs_root_flags(&dest->root_item);
2447 	if (dest->send_in_progress == 0) {
2448 		btrfs_set_root_flags(&dest->root_item,
2449 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2450 		spin_unlock(&dest->root_item_lock);
2451 	} else {
2452 		spin_unlock(&dest->root_item_lock);
2453 		btrfs_warn(root->fs_info,
2454 			"Attempt to delete subvolume %llu during send",
2455 			dest->root_key.objectid);
2456 		err = -EPERM;
2457 		goto out_unlock_inode;
2458 	}
2459 
2460 	down_write(&root->fs_info->subvol_sem);
2461 
2462 	err = may_destroy_subvol(dest);
2463 	if (err)
2464 		goto out_up_write;
2465 
2466 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2467 	/*
2468 	 * One for dir inode, two for dir entries, two for root
2469 	 * ref/backref.
2470 	 */
2471 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2472 					       5, &qgroup_reserved, true);
2473 	if (err)
2474 		goto out_up_write;
2475 
2476 	trans = btrfs_start_transaction(root, 0);
2477 	if (IS_ERR(trans)) {
2478 		err = PTR_ERR(trans);
2479 		goto out_release;
2480 	}
2481 	trans->block_rsv = &block_rsv;
2482 	trans->bytes_reserved = block_rsv.size;
2483 
2484 	btrfs_record_snapshot_destroy(trans, dir);
2485 
2486 	ret = btrfs_unlink_subvol(trans, root, dir,
2487 				dest->root_key.objectid,
2488 				dentry->d_name.name,
2489 				dentry->d_name.len);
2490 	if (ret) {
2491 		err = ret;
2492 		btrfs_abort_transaction(trans, root, ret);
2493 		goto out_end_trans;
2494 	}
2495 
2496 	btrfs_record_root_in_trans(trans, dest);
2497 
2498 	memset(&dest->root_item.drop_progress, 0,
2499 		sizeof(dest->root_item.drop_progress));
2500 	dest->root_item.drop_level = 0;
2501 	btrfs_set_root_refs(&dest->root_item, 0);
2502 
2503 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2504 		ret = btrfs_insert_orphan_item(trans,
2505 					root->fs_info->tree_root,
2506 					dest->root_key.objectid);
2507 		if (ret) {
2508 			btrfs_abort_transaction(trans, root, ret);
2509 			err = ret;
2510 			goto out_end_trans;
2511 		}
2512 	}
2513 
2514 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2515 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2516 				  dest->root_key.objectid);
2517 	if (ret && ret != -ENOENT) {
2518 		btrfs_abort_transaction(trans, root, ret);
2519 		err = ret;
2520 		goto out_end_trans;
2521 	}
2522 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2523 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2524 					  dest->root_item.received_uuid,
2525 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2526 					  dest->root_key.objectid);
2527 		if (ret && ret != -ENOENT) {
2528 			btrfs_abort_transaction(trans, root, ret);
2529 			err = ret;
2530 			goto out_end_trans;
2531 		}
2532 	}
2533 
2534 out_end_trans:
2535 	trans->block_rsv = NULL;
2536 	trans->bytes_reserved = 0;
2537 	ret = btrfs_end_transaction(trans, root);
2538 	if (ret && !err)
2539 		err = ret;
2540 	inode->i_flags |= S_DEAD;
2541 out_release:
2542 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2543 out_up_write:
2544 	up_write(&root->fs_info->subvol_sem);
2545 	if (err) {
2546 		spin_lock(&dest->root_item_lock);
2547 		root_flags = btrfs_root_flags(&dest->root_item);
2548 		btrfs_set_root_flags(&dest->root_item,
2549 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2550 		spin_unlock(&dest->root_item_lock);
2551 	}
2552 out_unlock_inode:
2553 	inode_unlock(inode);
2554 	if (!err) {
2555 		d_invalidate(dentry);
2556 		btrfs_invalidate_inodes(dest);
2557 		d_delete(dentry);
2558 		ASSERT(dest->send_in_progress == 0);
2559 
2560 		/* the last ref */
2561 		if (dest->ino_cache_inode) {
2562 			iput(dest->ino_cache_inode);
2563 			dest->ino_cache_inode = NULL;
2564 		}
2565 	}
2566 out_dput:
2567 	dput(dentry);
2568 out_unlock_dir:
2569 	inode_unlock(dir);
2570 out_drop_write:
2571 	mnt_drop_write_file(file);
2572 out:
2573 	kfree(vol_args);
2574 	return err;
2575 }
2576 
2577 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2578 {
2579 	struct inode *inode = file_inode(file);
2580 	struct btrfs_root *root = BTRFS_I(inode)->root;
2581 	struct btrfs_ioctl_defrag_range_args *range;
2582 	int ret;
2583 
2584 	ret = mnt_want_write_file(file);
2585 	if (ret)
2586 		return ret;
2587 
2588 	if (btrfs_root_readonly(root)) {
2589 		ret = -EROFS;
2590 		goto out;
2591 	}
2592 
2593 	switch (inode->i_mode & S_IFMT) {
2594 	case S_IFDIR:
2595 		if (!capable(CAP_SYS_ADMIN)) {
2596 			ret = -EPERM;
2597 			goto out;
2598 		}
2599 		ret = btrfs_defrag_root(root);
2600 		if (ret)
2601 			goto out;
2602 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2603 		break;
2604 	case S_IFREG:
2605 		if (!(file->f_mode & FMODE_WRITE)) {
2606 			ret = -EINVAL;
2607 			goto out;
2608 		}
2609 
2610 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2611 		if (!range) {
2612 			ret = -ENOMEM;
2613 			goto out;
2614 		}
2615 
2616 		if (argp) {
2617 			if (copy_from_user(range, argp,
2618 					   sizeof(*range))) {
2619 				ret = -EFAULT;
2620 				kfree(range);
2621 				goto out;
2622 			}
2623 			/* compression requires us to start the IO */
2624 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2625 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2626 				range->extent_thresh = (u32)-1;
2627 			}
2628 		} else {
2629 			/* the rest are all set to zero by kzalloc */
2630 			range->len = (u64)-1;
2631 		}
2632 		ret = btrfs_defrag_file(file_inode(file), file,
2633 					range, 0, 0);
2634 		if (ret > 0)
2635 			ret = 0;
2636 		kfree(range);
2637 		break;
2638 	default:
2639 		ret = -EINVAL;
2640 	}
2641 out:
2642 	mnt_drop_write_file(file);
2643 	return ret;
2644 }
2645 
2646 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2647 {
2648 	struct btrfs_ioctl_vol_args *vol_args;
2649 	int ret;
2650 
2651 	if (!capable(CAP_SYS_ADMIN))
2652 		return -EPERM;
2653 
2654 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2655 			1)) {
2656 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2657 	}
2658 
2659 	mutex_lock(&root->fs_info->volume_mutex);
2660 	vol_args = memdup_user(arg, sizeof(*vol_args));
2661 	if (IS_ERR(vol_args)) {
2662 		ret = PTR_ERR(vol_args);
2663 		goto out;
2664 	}
2665 
2666 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2667 	ret = btrfs_init_new_device(root, vol_args->name);
2668 
2669 	if (!ret)
2670 		btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2671 
2672 	kfree(vol_args);
2673 out:
2674 	mutex_unlock(&root->fs_info->volume_mutex);
2675 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2676 	return ret;
2677 }
2678 
2679 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2680 {
2681 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2682 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2683 	int ret;
2684 
2685 	if (!capable(CAP_SYS_ADMIN))
2686 		return -EPERM;
2687 
2688 	ret = mnt_want_write_file(file);
2689 	if (ret)
2690 		return ret;
2691 
2692 	vol_args = memdup_user(arg, sizeof(*vol_args));
2693 	if (IS_ERR(vol_args)) {
2694 		ret = PTR_ERR(vol_args);
2695 		goto err_drop;
2696 	}
2697 
2698 	/* Check for compatibility reject unknown flags */
2699 	if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2700 		return -EOPNOTSUPP;
2701 
2702 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2703 			1)) {
2704 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2705 		goto out;
2706 	}
2707 
2708 	mutex_lock(&root->fs_info->volume_mutex);
2709 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2710 		ret = btrfs_rm_device(root, NULL, vol_args->devid);
2711 	} else {
2712 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2713 		ret = btrfs_rm_device(root, vol_args->name, 0);
2714 	}
2715 	mutex_unlock(&root->fs_info->volume_mutex);
2716 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2717 
2718 	if (!ret) {
2719 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2720 			btrfs_info(root->fs_info, "device deleted: id %llu",
2721 					vol_args->devid);
2722 		else
2723 			btrfs_info(root->fs_info, "device deleted: %s",
2724 					vol_args->name);
2725 	}
2726 out:
2727 	kfree(vol_args);
2728 err_drop:
2729 	mnt_drop_write_file(file);
2730 	return ret;
2731 }
2732 
2733 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2734 {
2735 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2736 	struct btrfs_ioctl_vol_args *vol_args;
2737 	int ret;
2738 
2739 	if (!capable(CAP_SYS_ADMIN))
2740 		return -EPERM;
2741 
2742 	ret = mnt_want_write_file(file);
2743 	if (ret)
2744 		return ret;
2745 
2746 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2747 			1)) {
2748 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2749 		goto out_drop_write;
2750 	}
2751 
2752 	vol_args = memdup_user(arg, sizeof(*vol_args));
2753 	if (IS_ERR(vol_args)) {
2754 		ret = PTR_ERR(vol_args);
2755 		goto out;
2756 	}
2757 
2758 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2759 	mutex_lock(&root->fs_info->volume_mutex);
2760 	ret = btrfs_rm_device(root, vol_args->name, 0);
2761 	mutex_unlock(&root->fs_info->volume_mutex);
2762 
2763 	if (!ret)
2764 		btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2765 	kfree(vol_args);
2766 out:
2767 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2768 out_drop_write:
2769 	mnt_drop_write_file(file);
2770 
2771 	return ret;
2772 }
2773 
2774 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2775 {
2776 	struct btrfs_ioctl_fs_info_args *fi_args;
2777 	struct btrfs_device *device;
2778 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2779 	int ret = 0;
2780 
2781 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2782 	if (!fi_args)
2783 		return -ENOMEM;
2784 
2785 	mutex_lock(&fs_devices->device_list_mutex);
2786 	fi_args->num_devices = fs_devices->num_devices;
2787 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2788 
2789 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2790 		if (device->devid > fi_args->max_id)
2791 			fi_args->max_id = device->devid;
2792 	}
2793 	mutex_unlock(&fs_devices->device_list_mutex);
2794 
2795 	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2796 	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2797 	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2798 
2799 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2800 		ret = -EFAULT;
2801 
2802 	kfree(fi_args);
2803 	return ret;
2804 }
2805 
2806 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2807 {
2808 	struct btrfs_ioctl_dev_info_args *di_args;
2809 	struct btrfs_device *dev;
2810 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2811 	int ret = 0;
2812 	char *s_uuid = NULL;
2813 
2814 	di_args = memdup_user(arg, sizeof(*di_args));
2815 	if (IS_ERR(di_args))
2816 		return PTR_ERR(di_args);
2817 
2818 	if (!btrfs_is_empty_uuid(di_args->uuid))
2819 		s_uuid = di_args->uuid;
2820 
2821 	mutex_lock(&fs_devices->device_list_mutex);
2822 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2823 
2824 	if (!dev) {
2825 		ret = -ENODEV;
2826 		goto out;
2827 	}
2828 
2829 	di_args->devid = dev->devid;
2830 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2831 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2832 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2833 	if (dev->name) {
2834 		struct rcu_string *name;
2835 
2836 		rcu_read_lock();
2837 		name = rcu_dereference(dev->name);
2838 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2839 		rcu_read_unlock();
2840 		di_args->path[sizeof(di_args->path) - 1] = 0;
2841 	} else {
2842 		di_args->path[0] = '\0';
2843 	}
2844 
2845 out:
2846 	mutex_unlock(&fs_devices->device_list_mutex);
2847 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2848 		ret = -EFAULT;
2849 
2850 	kfree(di_args);
2851 	return ret;
2852 }
2853 
2854 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2855 {
2856 	struct page *page;
2857 
2858 	page = grab_cache_page(inode->i_mapping, index);
2859 	if (!page)
2860 		return ERR_PTR(-ENOMEM);
2861 
2862 	if (!PageUptodate(page)) {
2863 		int ret;
2864 
2865 		ret = btrfs_readpage(NULL, page);
2866 		if (ret)
2867 			return ERR_PTR(ret);
2868 		lock_page(page);
2869 		if (!PageUptodate(page)) {
2870 			unlock_page(page);
2871 			put_page(page);
2872 			return ERR_PTR(-EIO);
2873 		}
2874 		if (page->mapping != inode->i_mapping) {
2875 			unlock_page(page);
2876 			put_page(page);
2877 			return ERR_PTR(-EAGAIN);
2878 		}
2879 	}
2880 
2881 	return page;
2882 }
2883 
2884 static int gather_extent_pages(struct inode *inode, struct page **pages,
2885 			       int num_pages, u64 off)
2886 {
2887 	int i;
2888 	pgoff_t index = off >> PAGE_SHIFT;
2889 
2890 	for (i = 0; i < num_pages; i++) {
2891 again:
2892 		pages[i] = extent_same_get_page(inode, index + i);
2893 		if (IS_ERR(pages[i])) {
2894 			int err = PTR_ERR(pages[i]);
2895 
2896 			if (err == -EAGAIN)
2897 				goto again;
2898 			pages[i] = NULL;
2899 			return err;
2900 		}
2901 	}
2902 	return 0;
2903 }
2904 
2905 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2906 			     bool retry_range_locking)
2907 {
2908 	/*
2909 	 * Do any pending delalloc/csum calculations on inode, one way or
2910 	 * another, and lock file content.
2911 	 * The locking order is:
2912 	 *
2913 	 *   1) pages
2914 	 *   2) range in the inode's io tree
2915 	 */
2916 	while (1) {
2917 		struct btrfs_ordered_extent *ordered;
2918 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2919 		ordered = btrfs_lookup_first_ordered_extent(inode,
2920 							    off + len - 1);
2921 		if ((!ordered ||
2922 		     ordered->file_offset + ordered->len <= off ||
2923 		     ordered->file_offset >= off + len) &&
2924 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2925 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2926 			if (ordered)
2927 				btrfs_put_ordered_extent(ordered);
2928 			break;
2929 		}
2930 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2931 		if (ordered)
2932 			btrfs_put_ordered_extent(ordered);
2933 		if (!retry_range_locking)
2934 			return -EAGAIN;
2935 		btrfs_wait_ordered_range(inode, off, len);
2936 	}
2937 	return 0;
2938 }
2939 
2940 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2941 {
2942 	inode_unlock(inode1);
2943 	inode_unlock(inode2);
2944 }
2945 
2946 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2947 {
2948 	if (inode1 < inode2)
2949 		swap(inode1, inode2);
2950 
2951 	inode_lock_nested(inode1, I_MUTEX_PARENT);
2952 	inode_lock_nested(inode2, I_MUTEX_CHILD);
2953 }
2954 
2955 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2956 				      struct inode *inode2, u64 loff2, u64 len)
2957 {
2958 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2959 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2960 }
2961 
2962 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2963 				    struct inode *inode2, u64 loff2, u64 len,
2964 				    bool retry_range_locking)
2965 {
2966 	int ret;
2967 
2968 	if (inode1 < inode2) {
2969 		swap(inode1, inode2);
2970 		swap(loff1, loff2);
2971 	}
2972 	ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2973 	if (ret)
2974 		return ret;
2975 	ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2976 	if (ret)
2977 		unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2978 			      loff1 + len - 1);
2979 	return ret;
2980 }
2981 
2982 struct cmp_pages {
2983 	int		num_pages;
2984 	struct page	**src_pages;
2985 	struct page	**dst_pages;
2986 };
2987 
2988 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2989 {
2990 	int i;
2991 	struct page *pg;
2992 
2993 	for (i = 0; i < cmp->num_pages; i++) {
2994 		pg = cmp->src_pages[i];
2995 		if (pg) {
2996 			unlock_page(pg);
2997 			put_page(pg);
2998 		}
2999 		pg = cmp->dst_pages[i];
3000 		if (pg) {
3001 			unlock_page(pg);
3002 			put_page(pg);
3003 		}
3004 	}
3005 	kfree(cmp->src_pages);
3006 	kfree(cmp->dst_pages);
3007 }
3008 
3009 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3010 				  struct inode *dst, u64 dst_loff,
3011 				  u64 len, struct cmp_pages *cmp)
3012 {
3013 	int ret;
3014 	int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3015 	struct page **src_pgarr, **dst_pgarr;
3016 
3017 	/*
3018 	 * We must gather up all the pages before we initiate our
3019 	 * extent locking. We use an array for the page pointers. Size
3020 	 * of the array is bounded by len, which is in turn bounded by
3021 	 * BTRFS_MAX_DEDUPE_LEN.
3022 	 */
3023 	src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3024 	dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3025 	if (!src_pgarr || !dst_pgarr) {
3026 		kfree(src_pgarr);
3027 		kfree(dst_pgarr);
3028 		return -ENOMEM;
3029 	}
3030 	cmp->num_pages = num_pages;
3031 	cmp->src_pages = src_pgarr;
3032 	cmp->dst_pages = dst_pgarr;
3033 
3034 	ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
3035 	if (ret)
3036 		goto out;
3037 
3038 	ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
3039 
3040 out:
3041 	if (ret)
3042 		btrfs_cmp_data_free(cmp);
3043 	return 0;
3044 }
3045 
3046 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
3047 			  u64 dst_loff, u64 len, struct cmp_pages *cmp)
3048 {
3049 	int ret = 0;
3050 	int i;
3051 	struct page *src_page, *dst_page;
3052 	unsigned int cmp_len = PAGE_SIZE;
3053 	void *addr, *dst_addr;
3054 
3055 	i = 0;
3056 	while (len) {
3057 		if (len < PAGE_SIZE)
3058 			cmp_len = len;
3059 
3060 		BUG_ON(i >= cmp->num_pages);
3061 
3062 		src_page = cmp->src_pages[i];
3063 		dst_page = cmp->dst_pages[i];
3064 		ASSERT(PageLocked(src_page));
3065 		ASSERT(PageLocked(dst_page));
3066 
3067 		addr = kmap_atomic(src_page);
3068 		dst_addr = kmap_atomic(dst_page);
3069 
3070 		flush_dcache_page(src_page);
3071 		flush_dcache_page(dst_page);
3072 
3073 		if (memcmp(addr, dst_addr, cmp_len))
3074 			ret = -EBADE;
3075 
3076 		kunmap_atomic(addr);
3077 		kunmap_atomic(dst_addr);
3078 
3079 		if (ret)
3080 			break;
3081 
3082 		len -= cmp_len;
3083 		i++;
3084 	}
3085 
3086 	return ret;
3087 }
3088 
3089 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3090 				     u64 olen)
3091 {
3092 	u64 len = *plen;
3093 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3094 
3095 	if (off + olen > inode->i_size || off + olen < off)
3096 		return -EINVAL;
3097 
3098 	/* if we extend to eof, continue to block boundary */
3099 	if (off + len == inode->i_size)
3100 		*plen = len = ALIGN(inode->i_size, bs) - off;
3101 
3102 	/* Check that we are block aligned - btrfs_clone() requires this */
3103 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3104 		return -EINVAL;
3105 
3106 	return 0;
3107 }
3108 
3109 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3110 			     struct inode *dst, u64 dst_loff)
3111 {
3112 	int ret;
3113 	u64 len = olen;
3114 	struct cmp_pages cmp;
3115 	int same_inode = 0;
3116 	u64 same_lock_start = 0;
3117 	u64 same_lock_len = 0;
3118 
3119 	if (src == dst)
3120 		same_inode = 1;
3121 
3122 	if (len == 0)
3123 		return 0;
3124 
3125 	if (same_inode) {
3126 		inode_lock(src);
3127 
3128 		ret = extent_same_check_offsets(src, loff, &len, olen);
3129 		if (ret)
3130 			goto out_unlock;
3131 		ret = extent_same_check_offsets(src, dst_loff, &len, olen);
3132 		if (ret)
3133 			goto out_unlock;
3134 
3135 		/*
3136 		 * Single inode case wants the same checks, except we
3137 		 * don't want our length pushed out past i_size as
3138 		 * comparing that data range makes no sense.
3139 		 *
3140 		 * extent_same_check_offsets() will do this for an
3141 		 * unaligned length at i_size, so catch it here and
3142 		 * reject the request.
3143 		 *
3144 		 * This effectively means we require aligned extents
3145 		 * for the single-inode case, whereas the other cases
3146 		 * allow an unaligned length so long as it ends at
3147 		 * i_size.
3148 		 */
3149 		if (len != olen) {
3150 			ret = -EINVAL;
3151 			goto out_unlock;
3152 		}
3153 
3154 		/* Check for overlapping ranges */
3155 		if (dst_loff + len > loff && dst_loff < loff + len) {
3156 			ret = -EINVAL;
3157 			goto out_unlock;
3158 		}
3159 
3160 		same_lock_start = min_t(u64, loff, dst_loff);
3161 		same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3162 	} else {
3163 		btrfs_double_inode_lock(src, dst);
3164 
3165 		ret = extent_same_check_offsets(src, loff, &len, olen);
3166 		if (ret)
3167 			goto out_unlock;
3168 
3169 		ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3170 		if (ret)
3171 			goto out_unlock;
3172 	}
3173 
3174 	/* don't make the dst file partly checksummed */
3175 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3176 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3177 		ret = -EINVAL;
3178 		goto out_unlock;
3179 	}
3180 
3181 again:
3182 	ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3183 	if (ret)
3184 		goto out_unlock;
3185 
3186 	if (same_inode)
3187 		ret = lock_extent_range(src, same_lock_start, same_lock_len,
3188 					false);
3189 	else
3190 		ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3191 					       false);
3192 	/*
3193 	 * If one of the inodes has dirty pages in the respective range or
3194 	 * ordered extents, we need to flush dellaloc and wait for all ordered
3195 	 * extents in the range. We must unlock the pages and the ranges in the
3196 	 * io trees to avoid deadlocks when flushing delalloc (requires locking
3197 	 * pages) and when waiting for ordered extents to complete (they require
3198 	 * range locking).
3199 	 */
3200 	if (ret == -EAGAIN) {
3201 		/*
3202 		 * Ranges in the io trees already unlocked. Now unlock all
3203 		 * pages before waiting for all IO to complete.
3204 		 */
3205 		btrfs_cmp_data_free(&cmp);
3206 		if (same_inode) {
3207 			btrfs_wait_ordered_range(src, same_lock_start,
3208 						 same_lock_len);
3209 		} else {
3210 			btrfs_wait_ordered_range(src, loff, len);
3211 			btrfs_wait_ordered_range(dst, dst_loff, len);
3212 		}
3213 		goto again;
3214 	}
3215 	ASSERT(ret == 0);
3216 	if (WARN_ON(ret)) {
3217 		/* ranges in the io trees already unlocked */
3218 		btrfs_cmp_data_free(&cmp);
3219 		return ret;
3220 	}
3221 
3222 	/* pass original length for comparison so we stay within i_size */
3223 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3224 	if (ret == 0)
3225 		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3226 
3227 	if (same_inode)
3228 		unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3229 			      same_lock_start + same_lock_len - 1);
3230 	else
3231 		btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3232 
3233 	btrfs_cmp_data_free(&cmp);
3234 out_unlock:
3235 	if (same_inode)
3236 		inode_unlock(src);
3237 	else
3238 		btrfs_double_inode_unlock(src, dst);
3239 
3240 	return ret;
3241 }
3242 
3243 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3244 
3245 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3246 				struct file *dst_file, u64 dst_loff)
3247 {
3248 	struct inode *src = file_inode(src_file);
3249 	struct inode *dst = file_inode(dst_file);
3250 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3251 	ssize_t res;
3252 
3253 	if (olen > BTRFS_MAX_DEDUPE_LEN)
3254 		olen = BTRFS_MAX_DEDUPE_LEN;
3255 
3256 	if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3257 		/*
3258 		 * Btrfs does not support blocksize < page_size. As a
3259 		 * result, btrfs_cmp_data() won't correctly handle
3260 		 * this situation without an update.
3261 		 */
3262 		return -EINVAL;
3263 	}
3264 
3265 	res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3266 	if (res)
3267 		return res;
3268 	return olen;
3269 }
3270 
3271 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3272 				     struct inode *inode,
3273 				     u64 endoff,
3274 				     const u64 destoff,
3275 				     const u64 olen,
3276 				     int no_time_update)
3277 {
3278 	struct btrfs_root *root = BTRFS_I(inode)->root;
3279 	int ret;
3280 
3281 	inode_inc_iversion(inode);
3282 	if (!no_time_update)
3283 		inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
3284 	/*
3285 	 * We round up to the block size at eof when determining which
3286 	 * extents to clone above, but shouldn't round up the file size.
3287 	 */
3288 	if (endoff > destoff + olen)
3289 		endoff = destoff + olen;
3290 	if (endoff > inode->i_size)
3291 		btrfs_i_size_write(inode, endoff);
3292 
3293 	ret = btrfs_update_inode(trans, root, inode);
3294 	if (ret) {
3295 		btrfs_abort_transaction(trans, root, ret);
3296 		btrfs_end_transaction(trans, root);
3297 		goto out;
3298 	}
3299 	ret = btrfs_end_transaction(trans, root);
3300 out:
3301 	return ret;
3302 }
3303 
3304 static void clone_update_extent_map(struct inode *inode,
3305 				    const struct btrfs_trans_handle *trans,
3306 				    const struct btrfs_path *path,
3307 				    const u64 hole_offset,
3308 				    const u64 hole_len)
3309 {
3310 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3311 	struct extent_map *em;
3312 	int ret;
3313 
3314 	em = alloc_extent_map();
3315 	if (!em) {
3316 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3317 			&BTRFS_I(inode)->runtime_flags);
3318 		return;
3319 	}
3320 
3321 	if (path) {
3322 		struct btrfs_file_extent_item *fi;
3323 
3324 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3325 				    struct btrfs_file_extent_item);
3326 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3327 		em->generation = -1;
3328 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3329 		    BTRFS_FILE_EXTENT_INLINE)
3330 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3331 				&BTRFS_I(inode)->runtime_flags);
3332 	} else {
3333 		em->start = hole_offset;
3334 		em->len = hole_len;
3335 		em->ram_bytes = em->len;
3336 		em->orig_start = hole_offset;
3337 		em->block_start = EXTENT_MAP_HOLE;
3338 		em->block_len = 0;
3339 		em->orig_block_len = 0;
3340 		em->compress_type = BTRFS_COMPRESS_NONE;
3341 		em->generation = trans->transid;
3342 	}
3343 
3344 	while (1) {
3345 		write_lock(&em_tree->lock);
3346 		ret = add_extent_mapping(em_tree, em, 1);
3347 		write_unlock(&em_tree->lock);
3348 		if (ret != -EEXIST) {
3349 			free_extent_map(em);
3350 			break;
3351 		}
3352 		btrfs_drop_extent_cache(inode, em->start,
3353 					em->start + em->len - 1, 0);
3354 	}
3355 
3356 	if (ret)
3357 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3358 			&BTRFS_I(inode)->runtime_flags);
3359 }
3360 
3361 /*
3362  * Make sure we do not end up inserting an inline extent into a file that has
3363  * already other (non-inline) extents. If a file has an inline extent it can
3364  * not have any other extents and the (single) inline extent must start at the
3365  * file offset 0. Failing to respect these rules will lead to file corruption,
3366  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3367  *
3368  * We can have extents that have been already written to disk or we can have
3369  * dirty ranges still in delalloc, in which case the extent maps and items are
3370  * created only when we run delalloc, and the delalloc ranges might fall outside
3371  * the range we are currently locking in the inode's io tree. So we check the
3372  * inode's i_size because of that (i_size updates are done while holding the
3373  * i_mutex, which we are holding here).
3374  * We also check to see if the inode has a size not greater than "datal" but has
3375  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3376  * protected against such concurrent fallocate calls by the i_mutex).
3377  *
3378  * If the file has no extents but a size greater than datal, do not allow the
3379  * copy because we would need turn the inline extent into a non-inline one (even
3380  * with NO_HOLES enabled). If we find our destination inode only has one inline
3381  * extent, just overwrite it with the source inline extent if its size is less
3382  * than the source extent's size, or we could copy the source inline extent's
3383  * data into the destination inode's inline extent if the later is greater then
3384  * the former.
3385  */
3386 static int clone_copy_inline_extent(struct inode *src,
3387 				    struct inode *dst,
3388 				    struct btrfs_trans_handle *trans,
3389 				    struct btrfs_path *path,
3390 				    struct btrfs_key *new_key,
3391 				    const u64 drop_start,
3392 				    const u64 datal,
3393 				    const u64 skip,
3394 				    const u64 size,
3395 				    char *inline_data)
3396 {
3397 	struct btrfs_root *root = BTRFS_I(dst)->root;
3398 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3399 				      root->sectorsize);
3400 	int ret;
3401 	struct btrfs_key key;
3402 
3403 	if (new_key->offset > 0)
3404 		return -EOPNOTSUPP;
3405 
3406 	key.objectid = btrfs_ino(dst);
3407 	key.type = BTRFS_EXTENT_DATA_KEY;
3408 	key.offset = 0;
3409 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3410 	if (ret < 0) {
3411 		return ret;
3412 	} else if (ret > 0) {
3413 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3414 			ret = btrfs_next_leaf(root, path);
3415 			if (ret < 0)
3416 				return ret;
3417 			else if (ret > 0)
3418 				goto copy_inline_extent;
3419 		}
3420 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3421 		if (key.objectid == btrfs_ino(dst) &&
3422 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3423 			ASSERT(key.offset > 0);
3424 			return -EOPNOTSUPP;
3425 		}
3426 	} else if (i_size_read(dst) <= datal) {
3427 		struct btrfs_file_extent_item *ei;
3428 		u64 ext_len;
3429 
3430 		/*
3431 		 * If the file size is <= datal, make sure there are no other
3432 		 * extents following (can happen do to an fallocate call with
3433 		 * the flag FALLOC_FL_KEEP_SIZE).
3434 		 */
3435 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3436 				    struct btrfs_file_extent_item);
3437 		/*
3438 		 * If it's an inline extent, it can not have other extents
3439 		 * following it.
3440 		 */
3441 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3442 		    BTRFS_FILE_EXTENT_INLINE)
3443 			goto copy_inline_extent;
3444 
3445 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3446 		if (ext_len > aligned_end)
3447 			return -EOPNOTSUPP;
3448 
3449 		ret = btrfs_next_item(root, path);
3450 		if (ret < 0) {
3451 			return ret;
3452 		} else if (ret == 0) {
3453 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3454 					      path->slots[0]);
3455 			if (key.objectid == btrfs_ino(dst) &&
3456 			    key.type == BTRFS_EXTENT_DATA_KEY)
3457 				return -EOPNOTSUPP;
3458 		}
3459 	}
3460 
3461 copy_inline_extent:
3462 	/*
3463 	 * We have no extent items, or we have an extent at offset 0 which may
3464 	 * or may not be inlined. All these cases are dealt the same way.
3465 	 */
3466 	if (i_size_read(dst) > datal) {
3467 		/*
3468 		 * If the destination inode has an inline extent...
3469 		 * This would require copying the data from the source inline
3470 		 * extent into the beginning of the destination's inline extent.
3471 		 * But this is really complex, both extents can be compressed
3472 		 * or just one of them, which would require decompressing and
3473 		 * re-compressing data (which could increase the new compressed
3474 		 * size, not allowing the compressed data to fit anymore in an
3475 		 * inline extent).
3476 		 * So just don't support this case for now (it should be rare,
3477 		 * we are not really saving space when cloning inline extents).
3478 		 */
3479 		return -EOPNOTSUPP;
3480 	}
3481 
3482 	btrfs_release_path(path);
3483 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3484 	if (ret)
3485 		return ret;
3486 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3487 	if (ret)
3488 		return ret;
3489 
3490 	if (skip) {
3491 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3492 
3493 		memmove(inline_data + start, inline_data + start + skip, datal);
3494 	}
3495 
3496 	write_extent_buffer(path->nodes[0], inline_data,
3497 			    btrfs_item_ptr_offset(path->nodes[0],
3498 						  path->slots[0]),
3499 			    size);
3500 	inode_add_bytes(dst, datal);
3501 
3502 	return 0;
3503 }
3504 
3505 /**
3506  * btrfs_clone() - clone a range from inode file to another
3507  *
3508  * @src: Inode to clone from
3509  * @inode: Inode to clone to
3510  * @off: Offset within source to start clone from
3511  * @olen: Original length, passed by user, of range to clone
3512  * @olen_aligned: Block-aligned value of olen
3513  * @destoff: Offset within @inode to start clone
3514  * @no_time_update: Whether to update mtime/ctime on the target inode
3515  */
3516 static int btrfs_clone(struct inode *src, struct inode *inode,
3517 		       const u64 off, const u64 olen, const u64 olen_aligned,
3518 		       const u64 destoff, int no_time_update)
3519 {
3520 	struct btrfs_root *root = BTRFS_I(inode)->root;
3521 	struct btrfs_path *path = NULL;
3522 	struct extent_buffer *leaf;
3523 	struct btrfs_trans_handle *trans;
3524 	char *buf = NULL;
3525 	struct btrfs_key key;
3526 	u32 nritems;
3527 	int slot;
3528 	int ret;
3529 	const u64 len = olen_aligned;
3530 	u64 last_dest_end = destoff;
3531 
3532 	ret = -ENOMEM;
3533 	buf = kmalloc(root->nodesize, GFP_KERNEL | __GFP_NOWARN);
3534 	if (!buf) {
3535 		buf = vmalloc(root->nodesize);
3536 		if (!buf)
3537 			return ret;
3538 	}
3539 
3540 	path = btrfs_alloc_path();
3541 	if (!path) {
3542 		kvfree(buf);
3543 		return ret;
3544 	}
3545 
3546 	path->reada = READA_FORWARD;
3547 	/* clone data */
3548 	key.objectid = btrfs_ino(src);
3549 	key.type = BTRFS_EXTENT_DATA_KEY;
3550 	key.offset = off;
3551 
3552 	while (1) {
3553 		u64 next_key_min_offset = key.offset + 1;
3554 
3555 		/*
3556 		 * note the key will change type as we walk through the
3557 		 * tree.
3558 		 */
3559 		path->leave_spinning = 1;
3560 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3561 				0, 0);
3562 		if (ret < 0)
3563 			goto out;
3564 		/*
3565 		 * First search, if no extent item that starts at offset off was
3566 		 * found but the previous item is an extent item, it's possible
3567 		 * it might overlap our target range, therefore process it.
3568 		 */
3569 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3570 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3571 					      path->slots[0] - 1);
3572 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3573 				path->slots[0]--;
3574 		}
3575 
3576 		nritems = btrfs_header_nritems(path->nodes[0]);
3577 process_slot:
3578 		if (path->slots[0] >= nritems) {
3579 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3580 			if (ret < 0)
3581 				goto out;
3582 			if (ret > 0)
3583 				break;
3584 			nritems = btrfs_header_nritems(path->nodes[0]);
3585 		}
3586 		leaf = path->nodes[0];
3587 		slot = path->slots[0];
3588 
3589 		btrfs_item_key_to_cpu(leaf, &key, slot);
3590 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3591 		    key.objectid != btrfs_ino(src))
3592 			break;
3593 
3594 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3595 			struct btrfs_file_extent_item *extent;
3596 			int type;
3597 			u32 size;
3598 			struct btrfs_key new_key;
3599 			u64 disko = 0, diskl = 0;
3600 			u64 datao = 0, datal = 0;
3601 			u8 comp;
3602 			u64 drop_start;
3603 
3604 			extent = btrfs_item_ptr(leaf, slot,
3605 						struct btrfs_file_extent_item);
3606 			comp = btrfs_file_extent_compression(leaf, extent);
3607 			type = btrfs_file_extent_type(leaf, extent);
3608 			if (type == BTRFS_FILE_EXTENT_REG ||
3609 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3610 				disko = btrfs_file_extent_disk_bytenr(leaf,
3611 								      extent);
3612 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3613 								 extent);
3614 				datao = btrfs_file_extent_offset(leaf, extent);
3615 				datal = btrfs_file_extent_num_bytes(leaf,
3616 								    extent);
3617 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3618 				/* take upper bound, may be compressed */
3619 				datal = btrfs_file_extent_ram_bytes(leaf,
3620 								    extent);
3621 			}
3622 
3623 			/*
3624 			 * The first search might have left us at an extent
3625 			 * item that ends before our target range's start, can
3626 			 * happen if we have holes and NO_HOLES feature enabled.
3627 			 */
3628 			if (key.offset + datal <= off) {
3629 				path->slots[0]++;
3630 				goto process_slot;
3631 			} else if (key.offset >= off + len) {
3632 				break;
3633 			}
3634 			next_key_min_offset = key.offset + datal;
3635 			size = btrfs_item_size_nr(leaf, slot);
3636 			read_extent_buffer(leaf, buf,
3637 					   btrfs_item_ptr_offset(leaf, slot),
3638 					   size);
3639 
3640 			btrfs_release_path(path);
3641 			path->leave_spinning = 0;
3642 
3643 			memcpy(&new_key, &key, sizeof(new_key));
3644 			new_key.objectid = btrfs_ino(inode);
3645 			if (off <= key.offset)
3646 				new_key.offset = key.offset + destoff - off;
3647 			else
3648 				new_key.offset = destoff;
3649 
3650 			/*
3651 			 * Deal with a hole that doesn't have an extent item
3652 			 * that represents it (NO_HOLES feature enabled).
3653 			 * This hole is either in the middle of the cloning
3654 			 * range or at the beginning (fully overlaps it or
3655 			 * partially overlaps it).
3656 			 */
3657 			if (new_key.offset != last_dest_end)
3658 				drop_start = last_dest_end;
3659 			else
3660 				drop_start = new_key.offset;
3661 
3662 			/*
3663 			 * 1 - adjusting old extent (we may have to split it)
3664 			 * 1 - add new extent
3665 			 * 1 - inode update
3666 			 */
3667 			trans = btrfs_start_transaction(root, 3);
3668 			if (IS_ERR(trans)) {
3669 				ret = PTR_ERR(trans);
3670 				goto out;
3671 			}
3672 
3673 			if (type == BTRFS_FILE_EXTENT_REG ||
3674 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3675 				/*
3676 				 *    a  | --- range to clone ---|  b
3677 				 * | ------------- extent ------------- |
3678 				 */
3679 
3680 				/* subtract range b */
3681 				if (key.offset + datal > off + len)
3682 					datal = off + len - key.offset;
3683 
3684 				/* subtract range a */
3685 				if (off > key.offset) {
3686 					datao += off - key.offset;
3687 					datal -= off - key.offset;
3688 				}
3689 
3690 				ret = btrfs_drop_extents(trans, root, inode,
3691 							 drop_start,
3692 							 new_key.offset + datal,
3693 							 1);
3694 				if (ret) {
3695 					if (ret != -EOPNOTSUPP)
3696 						btrfs_abort_transaction(trans,
3697 								root, ret);
3698 					btrfs_end_transaction(trans, root);
3699 					goto out;
3700 				}
3701 
3702 				ret = btrfs_insert_empty_item(trans, root, path,
3703 							      &new_key, size);
3704 				if (ret) {
3705 					btrfs_abort_transaction(trans, root,
3706 								ret);
3707 					btrfs_end_transaction(trans, root);
3708 					goto out;
3709 				}
3710 
3711 				leaf = path->nodes[0];
3712 				slot = path->slots[0];
3713 				write_extent_buffer(leaf, buf,
3714 					    btrfs_item_ptr_offset(leaf, slot),
3715 					    size);
3716 
3717 				extent = btrfs_item_ptr(leaf, slot,
3718 						struct btrfs_file_extent_item);
3719 
3720 				/* disko == 0 means it's a hole */
3721 				if (!disko)
3722 					datao = 0;
3723 
3724 				btrfs_set_file_extent_offset(leaf, extent,
3725 							     datao);
3726 				btrfs_set_file_extent_num_bytes(leaf, extent,
3727 								datal);
3728 
3729 				if (disko) {
3730 					inode_add_bytes(inode, datal);
3731 					ret = btrfs_inc_extent_ref(trans, root,
3732 							disko, diskl, 0,
3733 							root->root_key.objectid,
3734 							btrfs_ino(inode),
3735 							new_key.offset - datao);
3736 					if (ret) {
3737 						btrfs_abort_transaction(trans,
3738 									root,
3739 									ret);
3740 						btrfs_end_transaction(trans,
3741 								      root);
3742 						goto out;
3743 
3744 					}
3745 				}
3746 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3747 				u64 skip = 0;
3748 				u64 trim = 0;
3749 
3750 				if (off > key.offset) {
3751 					skip = off - key.offset;
3752 					new_key.offset += skip;
3753 				}
3754 
3755 				if (key.offset + datal > off + len)
3756 					trim = key.offset + datal - (off + len);
3757 
3758 				if (comp && (skip || trim)) {
3759 					ret = -EINVAL;
3760 					btrfs_end_transaction(trans, root);
3761 					goto out;
3762 				}
3763 				size -= skip + trim;
3764 				datal -= skip + trim;
3765 
3766 				ret = clone_copy_inline_extent(src, inode,
3767 							       trans, path,
3768 							       &new_key,
3769 							       drop_start,
3770 							       datal,
3771 							       skip, size, buf);
3772 				if (ret) {
3773 					if (ret != -EOPNOTSUPP)
3774 						btrfs_abort_transaction(trans,
3775 									root,
3776 									ret);
3777 					btrfs_end_transaction(trans, root);
3778 					goto out;
3779 				}
3780 				leaf = path->nodes[0];
3781 				slot = path->slots[0];
3782 			}
3783 
3784 			/* If we have an implicit hole (NO_HOLES feature). */
3785 			if (drop_start < new_key.offset)
3786 				clone_update_extent_map(inode, trans,
3787 						NULL, drop_start,
3788 						new_key.offset - drop_start);
3789 
3790 			clone_update_extent_map(inode, trans, path, 0, 0);
3791 
3792 			btrfs_mark_buffer_dirty(leaf);
3793 			btrfs_release_path(path);
3794 
3795 			last_dest_end = ALIGN(new_key.offset + datal,
3796 					      root->sectorsize);
3797 			ret = clone_finish_inode_update(trans, inode,
3798 							last_dest_end,
3799 							destoff, olen,
3800 							no_time_update);
3801 			if (ret)
3802 				goto out;
3803 			if (new_key.offset + datal >= destoff + len)
3804 				break;
3805 		}
3806 		btrfs_release_path(path);
3807 		key.offset = next_key_min_offset;
3808 	}
3809 	ret = 0;
3810 
3811 	if (last_dest_end < destoff + len) {
3812 		/*
3813 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3814 		 * fully or partially overlaps our cloning range at its end.
3815 		 */
3816 		btrfs_release_path(path);
3817 
3818 		/*
3819 		 * 1 - remove extent(s)
3820 		 * 1 - inode update
3821 		 */
3822 		trans = btrfs_start_transaction(root, 2);
3823 		if (IS_ERR(trans)) {
3824 			ret = PTR_ERR(trans);
3825 			goto out;
3826 		}
3827 		ret = btrfs_drop_extents(trans, root, inode,
3828 					 last_dest_end, destoff + len, 1);
3829 		if (ret) {
3830 			if (ret != -EOPNOTSUPP)
3831 				btrfs_abort_transaction(trans, root, ret);
3832 			btrfs_end_transaction(trans, root);
3833 			goto out;
3834 		}
3835 		clone_update_extent_map(inode, trans, NULL, last_dest_end,
3836 					destoff + len - last_dest_end);
3837 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3838 						destoff, olen, no_time_update);
3839 	}
3840 
3841 out:
3842 	btrfs_free_path(path);
3843 	kvfree(buf);
3844 	return ret;
3845 }
3846 
3847 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3848 					u64 off, u64 olen, u64 destoff)
3849 {
3850 	struct inode *inode = file_inode(file);
3851 	struct inode *src = file_inode(file_src);
3852 	struct btrfs_root *root = BTRFS_I(inode)->root;
3853 	int ret;
3854 	u64 len = olen;
3855 	u64 bs = root->fs_info->sb->s_blocksize;
3856 	int same_inode = src == inode;
3857 
3858 	/*
3859 	 * TODO:
3860 	 * - split compressed inline extents.  annoying: we need to
3861 	 *   decompress into destination's address_space (the file offset
3862 	 *   may change, so source mapping won't do), then recompress (or
3863 	 *   otherwise reinsert) a subrange.
3864 	 *
3865 	 * - split destination inode's inline extents.  The inline extents can
3866 	 *   be either compressed or non-compressed.
3867 	 */
3868 
3869 	if (btrfs_root_readonly(root))
3870 		return -EROFS;
3871 
3872 	if (file_src->f_path.mnt != file->f_path.mnt ||
3873 	    src->i_sb != inode->i_sb)
3874 		return -EXDEV;
3875 
3876 	/* don't make the dst file partly checksummed */
3877 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3878 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3879 		return -EINVAL;
3880 
3881 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3882 		return -EISDIR;
3883 
3884 	if (!same_inode) {
3885 		btrfs_double_inode_lock(src, inode);
3886 	} else {
3887 		inode_lock(src);
3888 	}
3889 
3890 	/* determine range to clone */
3891 	ret = -EINVAL;
3892 	if (off + len > src->i_size || off + len < off)
3893 		goto out_unlock;
3894 	if (len == 0)
3895 		olen = len = src->i_size - off;
3896 	/* if we extend to eof, continue to block boundary */
3897 	if (off + len == src->i_size)
3898 		len = ALIGN(src->i_size, bs) - off;
3899 
3900 	if (len == 0) {
3901 		ret = 0;
3902 		goto out_unlock;
3903 	}
3904 
3905 	/* verify the end result is block aligned */
3906 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3907 	    !IS_ALIGNED(destoff, bs))
3908 		goto out_unlock;
3909 
3910 	/* verify if ranges are overlapped within the same file */
3911 	if (same_inode) {
3912 		if (destoff + len > off && destoff < off + len)
3913 			goto out_unlock;
3914 	}
3915 
3916 	if (destoff > inode->i_size) {
3917 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3918 		if (ret)
3919 			goto out_unlock;
3920 	}
3921 
3922 	/*
3923 	 * Lock the target range too. Right after we replace the file extent
3924 	 * items in the fs tree (which now point to the cloned data), we might
3925 	 * have a worker replace them with extent items relative to a write
3926 	 * operation that was issued before this clone operation (i.e. confront
3927 	 * with inode.c:btrfs_finish_ordered_io).
3928 	 */
3929 	if (same_inode) {
3930 		u64 lock_start = min_t(u64, off, destoff);
3931 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3932 
3933 		ret = lock_extent_range(src, lock_start, lock_len, true);
3934 	} else {
3935 		ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3936 					       true);
3937 	}
3938 	ASSERT(ret == 0);
3939 	if (WARN_ON(ret)) {
3940 		/* ranges in the io trees already unlocked */
3941 		goto out_unlock;
3942 	}
3943 
3944 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3945 
3946 	if (same_inode) {
3947 		u64 lock_start = min_t(u64, off, destoff);
3948 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3949 
3950 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3951 	} else {
3952 		btrfs_double_extent_unlock(src, off, inode, destoff, len);
3953 	}
3954 	/*
3955 	 * Truncate page cache pages so that future reads will see the cloned
3956 	 * data immediately and not the previous data.
3957 	 */
3958 	truncate_inode_pages_range(&inode->i_data,
3959 				round_down(destoff, PAGE_SIZE),
3960 				round_up(destoff + len, PAGE_SIZE) - 1);
3961 out_unlock:
3962 	if (!same_inode)
3963 		btrfs_double_inode_unlock(src, inode);
3964 	else
3965 		inode_unlock(src);
3966 	return ret;
3967 }
3968 
3969 ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in,
3970 			      struct file *file_out, loff_t pos_out,
3971 			      size_t len, unsigned int flags)
3972 {
3973 	ssize_t ret;
3974 
3975 	ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out);
3976 	if (ret == 0)
3977 		ret = len;
3978 	return ret;
3979 }
3980 
3981 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3982 		struct file *dst_file, loff_t destoff, u64 len)
3983 {
3984 	return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3985 }
3986 
3987 /*
3988  * there are many ways the trans_start and trans_end ioctls can lead
3989  * to deadlocks.  They should only be used by applications that
3990  * basically own the machine, and have a very in depth understanding
3991  * of all the possible deadlocks and enospc problems.
3992  */
3993 static long btrfs_ioctl_trans_start(struct file *file)
3994 {
3995 	struct inode *inode = file_inode(file);
3996 	struct btrfs_root *root = BTRFS_I(inode)->root;
3997 	struct btrfs_trans_handle *trans;
3998 	int ret;
3999 
4000 	ret = -EPERM;
4001 	if (!capable(CAP_SYS_ADMIN))
4002 		goto out;
4003 
4004 	ret = -EINPROGRESS;
4005 	if (file->private_data)
4006 		goto out;
4007 
4008 	ret = -EROFS;
4009 	if (btrfs_root_readonly(root))
4010 		goto out;
4011 
4012 	ret = mnt_want_write_file(file);
4013 	if (ret)
4014 		goto out;
4015 
4016 	atomic_inc(&root->fs_info->open_ioctl_trans);
4017 
4018 	ret = -ENOMEM;
4019 	trans = btrfs_start_ioctl_transaction(root);
4020 	if (IS_ERR(trans))
4021 		goto out_drop;
4022 
4023 	file->private_data = trans;
4024 	return 0;
4025 
4026 out_drop:
4027 	atomic_dec(&root->fs_info->open_ioctl_trans);
4028 	mnt_drop_write_file(file);
4029 out:
4030 	return ret;
4031 }
4032 
4033 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4034 {
4035 	struct inode *inode = file_inode(file);
4036 	struct btrfs_root *root = BTRFS_I(inode)->root;
4037 	struct btrfs_root *new_root;
4038 	struct btrfs_dir_item *di;
4039 	struct btrfs_trans_handle *trans;
4040 	struct btrfs_path *path;
4041 	struct btrfs_key location;
4042 	struct btrfs_disk_key disk_key;
4043 	u64 objectid = 0;
4044 	u64 dir_id;
4045 	int ret;
4046 
4047 	if (!capable(CAP_SYS_ADMIN))
4048 		return -EPERM;
4049 
4050 	ret = mnt_want_write_file(file);
4051 	if (ret)
4052 		return ret;
4053 
4054 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4055 		ret = -EFAULT;
4056 		goto out;
4057 	}
4058 
4059 	if (!objectid)
4060 		objectid = BTRFS_FS_TREE_OBJECTID;
4061 
4062 	location.objectid = objectid;
4063 	location.type = BTRFS_ROOT_ITEM_KEY;
4064 	location.offset = (u64)-1;
4065 
4066 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
4067 	if (IS_ERR(new_root)) {
4068 		ret = PTR_ERR(new_root);
4069 		goto out;
4070 	}
4071 
4072 	path = btrfs_alloc_path();
4073 	if (!path) {
4074 		ret = -ENOMEM;
4075 		goto out;
4076 	}
4077 	path->leave_spinning = 1;
4078 
4079 	trans = btrfs_start_transaction(root, 1);
4080 	if (IS_ERR(trans)) {
4081 		btrfs_free_path(path);
4082 		ret = PTR_ERR(trans);
4083 		goto out;
4084 	}
4085 
4086 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
4087 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
4088 				   dir_id, "default", 7, 1);
4089 	if (IS_ERR_OR_NULL(di)) {
4090 		btrfs_free_path(path);
4091 		btrfs_end_transaction(trans, root);
4092 		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
4093 			   "item, this isn't going to work");
4094 		ret = -ENOENT;
4095 		goto out;
4096 	}
4097 
4098 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4099 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4100 	btrfs_mark_buffer_dirty(path->nodes[0]);
4101 	btrfs_free_path(path);
4102 
4103 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4104 	btrfs_end_transaction(trans, root);
4105 out:
4106 	mnt_drop_write_file(file);
4107 	return ret;
4108 }
4109 
4110 void btrfs_get_block_group_info(struct list_head *groups_list,
4111 				struct btrfs_ioctl_space_info *space)
4112 {
4113 	struct btrfs_block_group_cache *block_group;
4114 
4115 	space->total_bytes = 0;
4116 	space->used_bytes = 0;
4117 	space->flags = 0;
4118 	list_for_each_entry(block_group, groups_list, list) {
4119 		space->flags = block_group->flags;
4120 		space->total_bytes += block_group->key.offset;
4121 		space->used_bytes +=
4122 			btrfs_block_group_used(&block_group->item);
4123 	}
4124 }
4125 
4126 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
4127 {
4128 	struct btrfs_ioctl_space_args space_args;
4129 	struct btrfs_ioctl_space_info space;
4130 	struct btrfs_ioctl_space_info *dest;
4131 	struct btrfs_ioctl_space_info *dest_orig;
4132 	struct btrfs_ioctl_space_info __user *user_dest;
4133 	struct btrfs_space_info *info;
4134 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4135 		       BTRFS_BLOCK_GROUP_SYSTEM,
4136 		       BTRFS_BLOCK_GROUP_METADATA,
4137 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4138 	int num_types = 4;
4139 	int alloc_size;
4140 	int ret = 0;
4141 	u64 slot_count = 0;
4142 	int i, c;
4143 
4144 	if (copy_from_user(&space_args,
4145 			   (struct btrfs_ioctl_space_args __user *)arg,
4146 			   sizeof(space_args)))
4147 		return -EFAULT;
4148 
4149 	for (i = 0; i < num_types; i++) {
4150 		struct btrfs_space_info *tmp;
4151 
4152 		info = NULL;
4153 		rcu_read_lock();
4154 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4155 					list) {
4156 			if (tmp->flags == types[i]) {
4157 				info = tmp;
4158 				break;
4159 			}
4160 		}
4161 		rcu_read_unlock();
4162 
4163 		if (!info)
4164 			continue;
4165 
4166 		down_read(&info->groups_sem);
4167 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4168 			if (!list_empty(&info->block_groups[c]))
4169 				slot_count++;
4170 		}
4171 		up_read(&info->groups_sem);
4172 	}
4173 
4174 	/*
4175 	 * Global block reserve, exported as a space_info
4176 	 */
4177 	slot_count++;
4178 
4179 	/* space_slots == 0 means they are asking for a count */
4180 	if (space_args.space_slots == 0) {
4181 		space_args.total_spaces = slot_count;
4182 		goto out;
4183 	}
4184 
4185 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4186 
4187 	alloc_size = sizeof(*dest) * slot_count;
4188 
4189 	/* we generally have at most 6 or so space infos, one for each raid
4190 	 * level.  So, a whole page should be more than enough for everyone
4191 	 */
4192 	if (alloc_size > PAGE_SIZE)
4193 		return -ENOMEM;
4194 
4195 	space_args.total_spaces = 0;
4196 	dest = kmalloc(alloc_size, GFP_KERNEL);
4197 	if (!dest)
4198 		return -ENOMEM;
4199 	dest_orig = dest;
4200 
4201 	/* now we have a buffer to copy into */
4202 	for (i = 0; i < num_types; i++) {
4203 		struct btrfs_space_info *tmp;
4204 
4205 		if (!slot_count)
4206 			break;
4207 
4208 		info = NULL;
4209 		rcu_read_lock();
4210 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4211 					list) {
4212 			if (tmp->flags == types[i]) {
4213 				info = tmp;
4214 				break;
4215 			}
4216 		}
4217 		rcu_read_unlock();
4218 
4219 		if (!info)
4220 			continue;
4221 		down_read(&info->groups_sem);
4222 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4223 			if (!list_empty(&info->block_groups[c])) {
4224 				btrfs_get_block_group_info(
4225 					&info->block_groups[c], &space);
4226 				memcpy(dest, &space, sizeof(space));
4227 				dest++;
4228 				space_args.total_spaces++;
4229 				slot_count--;
4230 			}
4231 			if (!slot_count)
4232 				break;
4233 		}
4234 		up_read(&info->groups_sem);
4235 	}
4236 
4237 	/*
4238 	 * Add global block reserve
4239 	 */
4240 	if (slot_count) {
4241 		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4242 
4243 		spin_lock(&block_rsv->lock);
4244 		space.total_bytes = block_rsv->size;
4245 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4246 		spin_unlock(&block_rsv->lock);
4247 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4248 		memcpy(dest, &space, sizeof(space));
4249 		space_args.total_spaces++;
4250 	}
4251 
4252 	user_dest = (struct btrfs_ioctl_space_info __user *)
4253 		(arg + sizeof(struct btrfs_ioctl_space_args));
4254 
4255 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4256 		ret = -EFAULT;
4257 
4258 	kfree(dest_orig);
4259 out:
4260 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4261 		ret = -EFAULT;
4262 
4263 	return ret;
4264 }
4265 
4266 /*
4267  * there are many ways the trans_start and trans_end ioctls can lead
4268  * to deadlocks.  They should only be used by applications that
4269  * basically own the machine, and have a very in depth understanding
4270  * of all the possible deadlocks and enospc problems.
4271  */
4272 long btrfs_ioctl_trans_end(struct file *file)
4273 {
4274 	struct inode *inode = file_inode(file);
4275 	struct btrfs_root *root = BTRFS_I(inode)->root;
4276 	struct btrfs_trans_handle *trans;
4277 
4278 	trans = file->private_data;
4279 	if (!trans)
4280 		return -EINVAL;
4281 	file->private_data = NULL;
4282 
4283 	btrfs_end_transaction(trans, root);
4284 
4285 	atomic_dec(&root->fs_info->open_ioctl_trans);
4286 
4287 	mnt_drop_write_file(file);
4288 	return 0;
4289 }
4290 
4291 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4292 					    void __user *argp)
4293 {
4294 	struct btrfs_trans_handle *trans;
4295 	u64 transid;
4296 	int ret;
4297 
4298 	trans = btrfs_attach_transaction_barrier(root);
4299 	if (IS_ERR(trans)) {
4300 		if (PTR_ERR(trans) != -ENOENT)
4301 			return PTR_ERR(trans);
4302 
4303 		/* No running transaction, don't bother */
4304 		transid = root->fs_info->last_trans_committed;
4305 		goto out;
4306 	}
4307 	transid = trans->transid;
4308 	ret = btrfs_commit_transaction_async(trans, root, 0);
4309 	if (ret) {
4310 		btrfs_end_transaction(trans, root);
4311 		return ret;
4312 	}
4313 out:
4314 	if (argp)
4315 		if (copy_to_user(argp, &transid, sizeof(transid)))
4316 			return -EFAULT;
4317 	return 0;
4318 }
4319 
4320 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4321 					   void __user *argp)
4322 {
4323 	u64 transid;
4324 
4325 	if (argp) {
4326 		if (copy_from_user(&transid, argp, sizeof(transid)))
4327 			return -EFAULT;
4328 	} else {
4329 		transid = 0;  /* current trans */
4330 	}
4331 	return btrfs_wait_for_commit(root, transid);
4332 }
4333 
4334 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4335 {
4336 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4337 	struct btrfs_ioctl_scrub_args *sa;
4338 	int ret;
4339 
4340 	if (!capable(CAP_SYS_ADMIN))
4341 		return -EPERM;
4342 
4343 	sa = memdup_user(arg, sizeof(*sa));
4344 	if (IS_ERR(sa))
4345 		return PTR_ERR(sa);
4346 
4347 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4348 		ret = mnt_want_write_file(file);
4349 		if (ret)
4350 			goto out;
4351 	}
4352 
4353 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4354 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4355 			      0);
4356 
4357 	if (copy_to_user(arg, sa, sizeof(*sa)))
4358 		ret = -EFAULT;
4359 
4360 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4361 		mnt_drop_write_file(file);
4362 out:
4363 	kfree(sa);
4364 	return ret;
4365 }
4366 
4367 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4368 {
4369 	if (!capable(CAP_SYS_ADMIN))
4370 		return -EPERM;
4371 
4372 	return btrfs_scrub_cancel(root->fs_info);
4373 }
4374 
4375 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4376 				       void __user *arg)
4377 {
4378 	struct btrfs_ioctl_scrub_args *sa;
4379 	int ret;
4380 
4381 	if (!capable(CAP_SYS_ADMIN))
4382 		return -EPERM;
4383 
4384 	sa = memdup_user(arg, sizeof(*sa));
4385 	if (IS_ERR(sa))
4386 		return PTR_ERR(sa);
4387 
4388 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4389 
4390 	if (copy_to_user(arg, sa, sizeof(*sa)))
4391 		ret = -EFAULT;
4392 
4393 	kfree(sa);
4394 	return ret;
4395 }
4396 
4397 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4398 				      void __user *arg)
4399 {
4400 	struct btrfs_ioctl_get_dev_stats *sa;
4401 	int ret;
4402 
4403 	sa = memdup_user(arg, sizeof(*sa));
4404 	if (IS_ERR(sa))
4405 		return PTR_ERR(sa);
4406 
4407 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4408 		kfree(sa);
4409 		return -EPERM;
4410 	}
4411 
4412 	ret = btrfs_get_dev_stats(root, sa);
4413 
4414 	if (copy_to_user(arg, sa, sizeof(*sa)))
4415 		ret = -EFAULT;
4416 
4417 	kfree(sa);
4418 	return ret;
4419 }
4420 
4421 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4422 {
4423 	struct btrfs_ioctl_dev_replace_args *p;
4424 	int ret;
4425 
4426 	if (!capable(CAP_SYS_ADMIN))
4427 		return -EPERM;
4428 
4429 	p = memdup_user(arg, sizeof(*p));
4430 	if (IS_ERR(p))
4431 		return PTR_ERR(p);
4432 
4433 	switch (p->cmd) {
4434 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4435 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4436 			ret = -EROFS;
4437 			goto out;
4438 		}
4439 		if (atomic_xchg(
4440 			&root->fs_info->mutually_exclusive_operation_running,
4441 			1)) {
4442 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4443 		} else {
4444 			ret = btrfs_dev_replace_by_ioctl(root, p);
4445 			atomic_set(
4446 			 &root->fs_info->mutually_exclusive_operation_running,
4447 			 0);
4448 		}
4449 		break;
4450 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4451 		btrfs_dev_replace_status(root->fs_info, p);
4452 		ret = 0;
4453 		break;
4454 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4455 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
4456 		break;
4457 	default:
4458 		ret = -EINVAL;
4459 		break;
4460 	}
4461 
4462 	if (copy_to_user(arg, p, sizeof(*p)))
4463 		ret = -EFAULT;
4464 out:
4465 	kfree(p);
4466 	return ret;
4467 }
4468 
4469 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4470 {
4471 	int ret = 0;
4472 	int i;
4473 	u64 rel_ptr;
4474 	int size;
4475 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4476 	struct inode_fs_paths *ipath = NULL;
4477 	struct btrfs_path *path;
4478 
4479 	if (!capable(CAP_DAC_READ_SEARCH))
4480 		return -EPERM;
4481 
4482 	path = btrfs_alloc_path();
4483 	if (!path) {
4484 		ret = -ENOMEM;
4485 		goto out;
4486 	}
4487 
4488 	ipa = memdup_user(arg, sizeof(*ipa));
4489 	if (IS_ERR(ipa)) {
4490 		ret = PTR_ERR(ipa);
4491 		ipa = NULL;
4492 		goto out;
4493 	}
4494 
4495 	size = min_t(u32, ipa->size, 4096);
4496 	ipath = init_ipath(size, root, path);
4497 	if (IS_ERR(ipath)) {
4498 		ret = PTR_ERR(ipath);
4499 		ipath = NULL;
4500 		goto out;
4501 	}
4502 
4503 	ret = paths_from_inode(ipa->inum, ipath);
4504 	if (ret < 0)
4505 		goto out;
4506 
4507 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4508 		rel_ptr = ipath->fspath->val[i] -
4509 			  (u64)(unsigned long)ipath->fspath->val;
4510 		ipath->fspath->val[i] = rel_ptr;
4511 	}
4512 
4513 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4514 			   (void *)(unsigned long)ipath->fspath, size);
4515 	if (ret) {
4516 		ret = -EFAULT;
4517 		goto out;
4518 	}
4519 
4520 out:
4521 	btrfs_free_path(path);
4522 	free_ipath(ipath);
4523 	kfree(ipa);
4524 
4525 	return ret;
4526 }
4527 
4528 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4529 {
4530 	struct btrfs_data_container *inodes = ctx;
4531 	const size_t c = 3 * sizeof(u64);
4532 
4533 	if (inodes->bytes_left >= c) {
4534 		inodes->bytes_left -= c;
4535 		inodes->val[inodes->elem_cnt] = inum;
4536 		inodes->val[inodes->elem_cnt + 1] = offset;
4537 		inodes->val[inodes->elem_cnt + 2] = root;
4538 		inodes->elem_cnt += 3;
4539 	} else {
4540 		inodes->bytes_missing += c - inodes->bytes_left;
4541 		inodes->bytes_left = 0;
4542 		inodes->elem_missed += 3;
4543 	}
4544 
4545 	return 0;
4546 }
4547 
4548 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4549 					void __user *arg)
4550 {
4551 	int ret = 0;
4552 	int size;
4553 	struct btrfs_ioctl_logical_ino_args *loi;
4554 	struct btrfs_data_container *inodes = NULL;
4555 	struct btrfs_path *path = NULL;
4556 
4557 	if (!capable(CAP_SYS_ADMIN))
4558 		return -EPERM;
4559 
4560 	loi = memdup_user(arg, sizeof(*loi));
4561 	if (IS_ERR(loi)) {
4562 		ret = PTR_ERR(loi);
4563 		loi = NULL;
4564 		goto out;
4565 	}
4566 
4567 	path = btrfs_alloc_path();
4568 	if (!path) {
4569 		ret = -ENOMEM;
4570 		goto out;
4571 	}
4572 
4573 	size = min_t(u32, loi->size, SZ_64K);
4574 	inodes = init_data_container(size);
4575 	if (IS_ERR(inodes)) {
4576 		ret = PTR_ERR(inodes);
4577 		inodes = NULL;
4578 		goto out;
4579 	}
4580 
4581 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4582 					  build_ino_list, inodes);
4583 	if (ret == -EINVAL)
4584 		ret = -ENOENT;
4585 	if (ret < 0)
4586 		goto out;
4587 
4588 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4589 			   (void *)(unsigned long)inodes, size);
4590 	if (ret)
4591 		ret = -EFAULT;
4592 
4593 out:
4594 	btrfs_free_path(path);
4595 	vfree(inodes);
4596 	kfree(loi);
4597 
4598 	return ret;
4599 }
4600 
4601 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4602 			       struct btrfs_ioctl_balance_args *bargs)
4603 {
4604 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4605 
4606 	bargs->flags = bctl->flags;
4607 
4608 	if (atomic_read(&fs_info->balance_running))
4609 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4610 	if (atomic_read(&fs_info->balance_pause_req))
4611 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4612 	if (atomic_read(&fs_info->balance_cancel_req))
4613 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4614 
4615 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4616 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4617 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4618 
4619 	if (lock) {
4620 		spin_lock(&fs_info->balance_lock);
4621 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4622 		spin_unlock(&fs_info->balance_lock);
4623 	} else {
4624 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4625 	}
4626 }
4627 
4628 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4629 {
4630 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4631 	struct btrfs_fs_info *fs_info = root->fs_info;
4632 	struct btrfs_ioctl_balance_args *bargs;
4633 	struct btrfs_balance_control *bctl;
4634 	bool need_unlock; /* for mut. excl. ops lock */
4635 	int ret;
4636 
4637 	if (!capable(CAP_SYS_ADMIN))
4638 		return -EPERM;
4639 
4640 	ret = mnt_want_write_file(file);
4641 	if (ret)
4642 		return ret;
4643 
4644 again:
4645 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4646 		mutex_lock(&fs_info->volume_mutex);
4647 		mutex_lock(&fs_info->balance_mutex);
4648 		need_unlock = true;
4649 		goto locked;
4650 	}
4651 
4652 	/*
4653 	 * mut. excl. ops lock is locked.  Three possibilities:
4654 	 *   (1) some other op is running
4655 	 *   (2) balance is running
4656 	 *   (3) balance is paused -- special case (think resume)
4657 	 */
4658 	mutex_lock(&fs_info->balance_mutex);
4659 	if (fs_info->balance_ctl) {
4660 		/* this is either (2) or (3) */
4661 		if (!atomic_read(&fs_info->balance_running)) {
4662 			mutex_unlock(&fs_info->balance_mutex);
4663 			if (!mutex_trylock(&fs_info->volume_mutex))
4664 				goto again;
4665 			mutex_lock(&fs_info->balance_mutex);
4666 
4667 			if (fs_info->balance_ctl &&
4668 			    !atomic_read(&fs_info->balance_running)) {
4669 				/* this is (3) */
4670 				need_unlock = false;
4671 				goto locked;
4672 			}
4673 
4674 			mutex_unlock(&fs_info->balance_mutex);
4675 			mutex_unlock(&fs_info->volume_mutex);
4676 			goto again;
4677 		} else {
4678 			/* this is (2) */
4679 			mutex_unlock(&fs_info->balance_mutex);
4680 			ret = -EINPROGRESS;
4681 			goto out;
4682 		}
4683 	} else {
4684 		/* this is (1) */
4685 		mutex_unlock(&fs_info->balance_mutex);
4686 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4687 		goto out;
4688 	}
4689 
4690 locked:
4691 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4692 
4693 	if (arg) {
4694 		bargs = memdup_user(arg, sizeof(*bargs));
4695 		if (IS_ERR(bargs)) {
4696 			ret = PTR_ERR(bargs);
4697 			goto out_unlock;
4698 		}
4699 
4700 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4701 			if (!fs_info->balance_ctl) {
4702 				ret = -ENOTCONN;
4703 				goto out_bargs;
4704 			}
4705 
4706 			bctl = fs_info->balance_ctl;
4707 			spin_lock(&fs_info->balance_lock);
4708 			bctl->flags |= BTRFS_BALANCE_RESUME;
4709 			spin_unlock(&fs_info->balance_lock);
4710 
4711 			goto do_balance;
4712 		}
4713 	} else {
4714 		bargs = NULL;
4715 	}
4716 
4717 	if (fs_info->balance_ctl) {
4718 		ret = -EINPROGRESS;
4719 		goto out_bargs;
4720 	}
4721 
4722 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4723 	if (!bctl) {
4724 		ret = -ENOMEM;
4725 		goto out_bargs;
4726 	}
4727 
4728 	bctl->fs_info = fs_info;
4729 	if (arg) {
4730 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4731 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4732 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4733 
4734 		bctl->flags = bargs->flags;
4735 	} else {
4736 		/* balance everything - no filters */
4737 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4738 	}
4739 
4740 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4741 		ret = -EINVAL;
4742 		goto out_bctl;
4743 	}
4744 
4745 do_balance:
4746 	/*
4747 	 * Ownership of bctl and mutually_exclusive_operation_running
4748 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4749 	 * or, if restriper was paused all the way until unmount, in
4750 	 * free_fs_info.  mutually_exclusive_operation_running is
4751 	 * cleared in __cancel_balance.
4752 	 */
4753 	need_unlock = false;
4754 
4755 	ret = btrfs_balance(bctl, bargs);
4756 	bctl = NULL;
4757 
4758 	if (arg) {
4759 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4760 			ret = -EFAULT;
4761 	}
4762 
4763 out_bctl:
4764 	kfree(bctl);
4765 out_bargs:
4766 	kfree(bargs);
4767 out_unlock:
4768 	mutex_unlock(&fs_info->balance_mutex);
4769 	mutex_unlock(&fs_info->volume_mutex);
4770 	if (need_unlock)
4771 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4772 out:
4773 	mnt_drop_write_file(file);
4774 	return ret;
4775 }
4776 
4777 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4778 {
4779 	if (!capable(CAP_SYS_ADMIN))
4780 		return -EPERM;
4781 
4782 	switch (cmd) {
4783 	case BTRFS_BALANCE_CTL_PAUSE:
4784 		return btrfs_pause_balance(root->fs_info);
4785 	case BTRFS_BALANCE_CTL_CANCEL:
4786 		return btrfs_cancel_balance(root->fs_info);
4787 	}
4788 
4789 	return -EINVAL;
4790 }
4791 
4792 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4793 					 void __user *arg)
4794 {
4795 	struct btrfs_fs_info *fs_info = root->fs_info;
4796 	struct btrfs_ioctl_balance_args *bargs;
4797 	int ret = 0;
4798 
4799 	if (!capable(CAP_SYS_ADMIN))
4800 		return -EPERM;
4801 
4802 	mutex_lock(&fs_info->balance_mutex);
4803 	if (!fs_info->balance_ctl) {
4804 		ret = -ENOTCONN;
4805 		goto out;
4806 	}
4807 
4808 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4809 	if (!bargs) {
4810 		ret = -ENOMEM;
4811 		goto out;
4812 	}
4813 
4814 	update_ioctl_balance_args(fs_info, 1, bargs);
4815 
4816 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4817 		ret = -EFAULT;
4818 
4819 	kfree(bargs);
4820 out:
4821 	mutex_unlock(&fs_info->balance_mutex);
4822 	return ret;
4823 }
4824 
4825 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4826 {
4827 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4828 	struct btrfs_ioctl_quota_ctl_args *sa;
4829 	struct btrfs_trans_handle *trans = NULL;
4830 	int ret;
4831 	int err;
4832 
4833 	if (!capable(CAP_SYS_ADMIN))
4834 		return -EPERM;
4835 
4836 	ret = mnt_want_write_file(file);
4837 	if (ret)
4838 		return ret;
4839 
4840 	sa = memdup_user(arg, sizeof(*sa));
4841 	if (IS_ERR(sa)) {
4842 		ret = PTR_ERR(sa);
4843 		goto drop_write;
4844 	}
4845 
4846 	down_write(&root->fs_info->subvol_sem);
4847 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4848 	if (IS_ERR(trans)) {
4849 		ret = PTR_ERR(trans);
4850 		goto out;
4851 	}
4852 
4853 	switch (sa->cmd) {
4854 	case BTRFS_QUOTA_CTL_ENABLE:
4855 		ret = btrfs_quota_enable(trans, root->fs_info);
4856 		break;
4857 	case BTRFS_QUOTA_CTL_DISABLE:
4858 		ret = btrfs_quota_disable(trans, root->fs_info);
4859 		break;
4860 	default:
4861 		ret = -EINVAL;
4862 		break;
4863 	}
4864 
4865 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4866 	if (err && !ret)
4867 		ret = err;
4868 out:
4869 	kfree(sa);
4870 	up_write(&root->fs_info->subvol_sem);
4871 drop_write:
4872 	mnt_drop_write_file(file);
4873 	return ret;
4874 }
4875 
4876 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4877 {
4878 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4879 	struct btrfs_ioctl_qgroup_assign_args *sa;
4880 	struct btrfs_trans_handle *trans;
4881 	int ret;
4882 	int err;
4883 
4884 	if (!capable(CAP_SYS_ADMIN))
4885 		return -EPERM;
4886 
4887 	ret = mnt_want_write_file(file);
4888 	if (ret)
4889 		return ret;
4890 
4891 	sa = memdup_user(arg, sizeof(*sa));
4892 	if (IS_ERR(sa)) {
4893 		ret = PTR_ERR(sa);
4894 		goto drop_write;
4895 	}
4896 
4897 	trans = btrfs_join_transaction(root);
4898 	if (IS_ERR(trans)) {
4899 		ret = PTR_ERR(trans);
4900 		goto out;
4901 	}
4902 
4903 	/* FIXME: check if the IDs really exist */
4904 	if (sa->assign) {
4905 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4906 						sa->src, sa->dst);
4907 	} else {
4908 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4909 						sa->src, sa->dst);
4910 	}
4911 
4912 	/* update qgroup status and info */
4913 	err = btrfs_run_qgroups(trans, root->fs_info);
4914 	if (err < 0)
4915 		btrfs_handle_fs_error(root->fs_info, err,
4916 			    "failed to update qgroup status and info");
4917 	err = btrfs_end_transaction(trans, root);
4918 	if (err && !ret)
4919 		ret = err;
4920 
4921 out:
4922 	kfree(sa);
4923 drop_write:
4924 	mnt_drop_write_file(file);
4925 	return ret;
4926 }
4927 
4928 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4929 {
4930 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4931 	struct btrfs_ioctl_qgroup_create_args *sa;
4932 	struct btrfs_trans_handle *trans;
4933 	int ret;
4934 	int err;
4935 
4936 	if (!capable(CAP_SYS_ADMIN))
4937 		return -EPERM;
4938 
4939 	ret = mnt_want_write_file(file);
4940 	if (ret)
4941 		return ret;
4942 
4943 	sa = memdup_user(arg, sizeof(*sa));
4944 	if (IS_ERR(sa)) {
4945 		ret = PTR_ERR(sa);
4946 		goto drop_write;
4947 	}
4948 
4949 	if (!sa->qgroupid) {
4950 		ret = -EINVAL;
4951 		goto out;
4952 	}
4953 
4954 	trans = btrfs_join_transaction(root);
4955 	if (IS_ERR(trans)) {
4956 		ret = PTR_ERR(trans);
4957 		goto out;
4958 	}
4959 
4960 	/* FIXME: check if the IDs really exist */
4961 	if (sa->create) {
4962 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4963 	} else {
4964 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4965 	}
4966 
4967 	err = btrfs_end_transaction(trans, root);
4968 	if (err && !ret)
4969 		ret = err;
4970 
4971 out:
4972 	kfree(sa);
4973 drop_write:
4974 	mnt_drop_write_file(file);
4975 	return ret;
4976 }
4977 
4978 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4979 {
4980 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4981 	struct btrfs_ioctl_qgroup_limit_args *sa;
4982 	struct btrfs_trans_handle *trans;
4983 	int ret;
4984 	int err;
4985 	u64 qgroupid;
4986 
4987 	if (!capable(CAP_SYS_ADMIN))
4988 		return -EPERM;
4989 
4990 	ret = mnt_want_write_file(file);
4991 	if (ret)
4992 		return ret;
4993 
4994 	sa = memdup_user(arg, sizeof(*sa));
4995 	if (IS_ERR(sa)) {
4996 		ret = PTR_ERR(sa);
4997 		goto drop_write;
4998 	}
4999 
5000 	trans = btrfs_join_transaction(root);
5001 	if (IS_ERR(trans)) {
5002 		ret = PTR_ERR(trans);
5003 		goto out;
5004 	}
5005 
5006 	qgroupid = sa->qgroupid;
5007 	if (!qgroupid) {
5008 		/* take the current subvol as qgroup */
5009 		qgroupid = root->root_key.objectid;
5010 	}
5011 
5012 	/* FIXME: check if the IDs really exist */
5013 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
5014 
5015 	err = btrfs_end_transaction(trans, root);
5016 	if (err && !ret)
5017 		ret = err;
5018 
5019 out:
5020 	kfree(sa);
5021 drop_write:
5022 	mnt_drop_write_file(file);
5023 	return ret;
5024 }
5025 
5026 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5027 {
5028 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5029 	struct btrfs_ioctl_quota_rescan_args *qsa;
5030 	int ret;
5031 
5032 	if (!capable(CAP_SYS_ADMIN))
5033 		return -EPERM;
5034 
5035 	ret = mnt_want_write_file(file);
5036 	if (ret)
5037 		return ret;
5038 
5039 	qsa = memdup_user(arg, sizeof(*qsa));
5040 	if (IS_ERR(qsa)) {
5041 		ret = PTR_ERR(qsa);
5042 		goto drop_write;
5043 	}
5044 
5045 	if (qsa->flags) {
5046 		ret = -EINVAL;
5047 		goto out;
5048 	}
5049 
5050 	ret = btrfs_qgroup_rescan(root->fs_info);
5051 
5052 out:
5053 	kfree(qsa);
5054 drop_write:
5055 	mnt_drop_write_file(file);
5056 	return ret;
5057 }
5058 
5059 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5060 {
5061 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5062 	struct btrfs_ioctl_quota_rescan_args *qsa;
5063 	int ret = 0;
5064 
5065 	if (!capable(CAP_SYS_ADMIN))
5066 		return -EPERM;
5067 
5068 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5069 	if (!qsa)
5070 		return -ENOMEM;
5071 
5072 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5073 		qsa->flags = 1;
5074 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
5075 	}
5076 
5077 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5078 		ret = -EFAULT;
5079 
5080 	kfree(qsa);
5081 	return ret;
5082 }
5083 
5084 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5085 {
5086 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5087 
5088 	if (!capable(CAP_SYS_ADMIN))
5089 		return -EPERM;
5090 
5091 	return btrfs_qgroup_wait_for_completion(root->fs_info);
5092 }
5093 
5094 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5095 					    struct btrfs_ioctl_received_subvol_args *sa)
5096 {
5097 	struct inode *inode = file_inode(file);
5098 	struct btrfs_root *root = BTRFS_I(inode)->root;
5099 	struct btrfs_root_item *root_item = &root->root_item;
5100 	struct btrfs_trans_handle *trans;
5101 	struct timespec ct = current_fs_time(inode->i_sb);
5102 	int ret = 0;
5103 	int received_uuid_changed;
5104 
5105 	if (!inode_owner_or_capable(inode))
5106 		return -EPERM;
5107 
5108 	ret = mnt_want_write_file(file);
5109 	if (ret < 0)
5110 		return ret;
5111 
5112 	down_write(&root->fs_info->subvol_sem);
5113 
5114 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5115 		ret = -EINVAL;
5116 		goto out;
5117 	}
5118 
5119 	if (btrfs_root_readonly(root)) {
5120 		ret = -EROFS;
5121 		goto out;
5122 	}
5123 
5124 	/*
5125 	 * 1 - root item
5126 	 * 2 - uuid items (received uuid + subvol uuid)
5127 	 */
5128 	trans = btrfs_start_transaction(root, 3);
5129 	if (IS_ERR(trans)) {
5130 		ret = PTR_ERR(trans);
5131 		trans = NULL;
5132 		goto out;
5133 	}
5134 
5135 	sa->rtransid = trans->transid;
5136 	sa->rtime.sec = ct.tv_sec;
5137 	sa->rtime.nsec = ct.tv_nsec;
5138 
5139 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5140 				       BTRFS_UUID_SIZE);
5141 	if (received_uuid_changed &&
5142 	    !btrfs_is_empty_uuid(root_item->received_uuid))
5143 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5144 				    root_item->received_uuid,
5145 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5146 				    root->root_key.objectid);
5147 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5148 	btrfs_set_root_stransid(root_item, sa->stransid);
5149 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5150 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5151 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5152 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5153 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5154 
5155 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
5156 				&root->root_key, &root->root_item);
5157 	if (ret < 0) {
5158 		btrfs_end_transaction(trans, root);
5159 		goto out;
5160 	}
5161 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5162 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5163 					  sa->uuid,
5164 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5165 					  root->root_key.objectid);
5166 		if (ret < 0 && ret != -EEXIST) {
5167 			btrfs_abort_transaction(trans, root, ret);
5168 			goto out;
5169 		}
5170 	}
5171 	ret = btrfs_commit_transaction(trans, root);
5172 	if (ret < 0) {
5173 		btrfs_abort_transaction(trans, root, ret);
5174 		goto out;
5175 	}
5176 
5177 out:
5178 	up_write(&root->fs_info->subvol_sem);
5179 	mnt_drop_write_file(file);
5180 	return ret;
5181 }
5182 
5183 #ifdef CONFIG_64BIT
5184 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5185 						void __user *arg)
5186 {
5187 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5188 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5189 	int ret = 0;
5190 
5191 	args32 = memdup_user(arg, sizeof(*args32));
5192 	if (IS_ERR(args32)) {
5193 		ret = PTR_ERR(args32);
5194 		args32 = NULL;
5195 		goto out;
5196 	}
5197 
5198 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5199 	if (!args64) {
5200 		ret = -ENOMEM;
5201 		goto out;
5202 	}
5203 
5204 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5205 	args64->stransid = args32->stransid;
5206 	args64->rtransid = args32->rtransid;
5207 	args64->stime.sec = args32->stime.sec;
5208 	args64->stime.nsec = args32->stime.nsec;
5209 	args64->rtime.sec = args32->rtime.sec;
5210 	args64->rtime.nsec = args32->rtime.nsec;
5211 	args64->flags = args32->flags;
5212 
5213 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5214 	if (ret)
5215 		goto out;
5216 
5217 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5218 	args32->stransid = args64->stransid;
5219 	args32->rtransid = args64->rtransid;
5220 	args32->stime.sec = args64->stime.sec;
5221 	args32->stime.nsec = args64->stime.nsec;
5222 	args32->rtime.sec = args64->rtime.sec;
5223 	args32->rtime.nsec = args64->rtime.nsec;
5224 	args32->flags = args64->flags;
5225 
5226 	ret = copy_to_user(arg, args32, sizeof(*args32));
5227 	if (ret)
5228 		ret = -EFAULT;
5229 
5230 out:
5231 	kfree(args32);
5232 	kfree(args64);
5233 	return ret;
5234 }
5235 #endif
5236 
5237 static long btrfs_ioctl_set_received_subvol(struct file *file,
5238 					    void __user *arg)
5239 {
5240 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5241 	int ret = 0;
5242 
5243 	sa = memdup_user(arg, sizeof(*sa));
5244 	if (IS_ERR(sa)) {
5245 		ret = PTR_ERR(sa);
5246 		sa = NULL;
5247 		goto out;
5248 	}
5249 
5250 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5251 
5252 	if (ret)
5253 		goto out;
5254 
5255 	ret = copy_to_user(arg, sa, sizeof(*sa));
5256 	if (ret)
5257 		ret = -EFAULT;
5258 
5259 out:
5260 	kfree(sa);
5261 	return ret;
5262 }
5263 
5264 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5265 {
5266 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5267 	size_t len;
5268 	int ret;
5269 	char label[BTRFS_LABEL_SIZE];
5270 
5271 	spin_lock(&root->fs_info->super_lock);
5272 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5273 	spin_unlock(&root->fs_info->super_lock);
5274 
5275 	len = strnlen(label, BTRFS_LABEL_SIZE);
5276 
5277 	if (len == BTRFS_LABEL_SIZE) {
5278 		btrfs_warn(root->fs_info,
5279 			"label is too long, return the first %zu bytes", --len);
5280 	}
5281 
5282 	ret = copy_to_user(arg, label, len);
5283 
5284 	return ret ? -EFAULT : 0;
5285 }
5286 
5287 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5288 {
5289 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5290 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5291 	struct btrfs_trans_handle *trans;
5292 	char label[BTRFS_LABEL_SIZE];
5293 	int ret;
5294 
5295 	if (!capable(CAP_SYS_ADMIN))
5296 		return -EPERM;
5297 
5298 	if (copy_from_user(label, arg, sizeof(label)))
5299 		return -EFAULT;
5300 
5301 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5302 		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5303 		       BTRFS_LABEL_SIZE - 1);
5304 		return -EINVAL;
5305 	}
5306 
5307 	ret = mnt_want_write_file(file);
5308 	if (ret)
5309 		return ret;
5310 
5311 	trans = btrfs_start_transaction(root, 0);
5312 	if (IS_ERR(trans)) {
5313 		ret = PTR_ERR(trans);
5314 		goto out_unlock;
5315 	}
5316 
5317 	spin_lock(&root->fs_info->super_lock);
5318 	strcpy(super_block->label, label);
5319 	spin_unlock(&root->fs_info->super_lock);
5320 	ret = btrfs_commit_transaction(trans, root);
5321 
5322 out_unlock:
5323 	mnt_drop_write_file(file);
5324 	return ret;
5325 }
5326 
5327 #define INIT_FEATURE_FLAGS(suffix) \
5328 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5329 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5330 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5331 
5332 int btrfs_ioctl_get_supported_features(void __user *arg)
5333 {
5334 	static const struct btrfs_ioctl_feature_flags features[3] = {
5335 		INIT_FEATURE_FLAGS(SUPP),
5336 		INIT_FEATURE_FLAGS(SAFE_SET),
5337 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5338 	};
5339 
5340 	if (copy_to_user(arg, &features, sizeof(features)))
5341 		return -EFAULT;
5342 
5343 	return 0;
5344 }
5345 
5346 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5347 {
5348 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5349 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5350 	struct btrfs_ioctl_feature_flags features;
5351 
5352 	features.compat_flags = btrfs_super_compat_flags(super_block);
5353 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5354 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5355 
5356 	if (copy_to_user(arg, &features, sizeof(features)))
5357 		return -EFAULT;
5358 
5359 	return 0;
5360 }
5361 
5362 static int check_feature_bits(struct btrfs_root *root,
5363 			      enum btrfs_feature_set set,
5364 			      u64 change_mask, u64 flags, u64 supported_flags,
5365 			      u64 safe_set, u64 safe_clear)
5366 {
5367 	const char *type = btrfs_feature_set_names[set];
5368 	char *names;
5369 	u64 disallowed, unsupported;
5370 	u64 set_mask = flags & change_mask;
5371 	u64 clear_mask = ~flags & change_mask;
5372 
5373 	unsupported = set_mask & ~supported_flags;
5374 	if (unsupported) {
5375 		names = btrfs_printable_features(set, unsupported);
5376 		if (names) {
5377 			btrfs_warn(root->fs_info,
5378 			   "this kernel does not support the %s feature bit%s",
5379 			   names, strchr(names, ',') ? "s" : "");
5380 			kfree(names);
5381 		} else
5382 			btrfs_warn(root->fs_info,
5383 			   "this kernel does not support %s bits 0x%llx",
5384 			   type, unsupported);
5385 		return -EOPNOTSUPP;
5386 	}
5387 
5388 	disallowed = set_mask & ~safe_set;
5389 	if (disallowed) {
5390 		names = btrfs_printable_features(set, disallowed);
5391 		if (names) {
5392 			btrfs_warn(root->fs_info,
5393 			   "can't set the %s feature bit%s while mounted",
5394 			   names, strchr(names, ',') ? "s" : "");
5395 			kfree(names);
5396 		} else
5397 			btrfs_warn(root->fs_info,
5398 			   "can't set %s bits 0x%llx while mounted",
5399 			   type, disallowed);
5400 		return -EPERM;
5401 	}
5402 
5403 	disallowed = clear_mask & ~safe_clear;
5404 	if (disallowed) {
5405 		names = btrfs_printable_features(set, disallowed);
5406 		if (names) {
5407 			btrfs_warn(root->fs_info,
5408 			   "can't clear the %s feature bit%s while mounted",
5409 			   names, strchr(names, ',') ? "s" : "");
5410 			kfree(names);
5411 		} else
5412 			btrfs_warn(root->fs_info,
5413 			   "can't clear %s bits 0x%llx while mounted",
5414 			   type, disallowed);
5415 		return -EPERM;
5416 	}
5417 
5418 	return 0;
5419 }
5420 
5421 #define check_feature(root, change_mask, flags, mask_base)	\
5422 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5423 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5424 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5425 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5426 
5427 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5428 {
5429 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5430 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5431 	struct btrfs_ioctl_feature_flags flags[2];
5432 	struct btrfs_trans_handle *trans;
5433 	u64 newflags;
5434 	int ret;
5435 
5436 	if (!capable(CAP_SYS_ADMIN))
5437 		return -EPERM;
5438 
5439 	if (copy_from_user(flags, arg, sizeof(flags)))
5440 		return -EFAULT;
5441 
5442 	/* Nothing to do */
5443 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5444 	    !flags[0].incompat_flags)
5445 		return 0;
5446 
5447 	ret = check_feature(root, flags[0].compat_flags,
5448 			    flags[1].compat_flags, COMPAT);
5449 	if (ret)
5450 		return ret;
5451 
5452 	ret = check_feature(root, flags[0].compat_ro_flags,
5453 			    flags[1].compat_ro_flags, COMPAT_RO);
5454 	if (ret)
5455 		return ret;
5456 
5457 	ret = check_feature(root, flags[0].incompat_flags,
5458 			    flags[1].incompat_flags, INCOMPAT);
5459 	if (ret)
5460 		return ret;
5461 
5462 	ret = mnt_want_write_file(file);
5463 	if (ret)
5464 		return ret;
5465 
5466 	trans = btrfs_start_transaction(root, 0);
5467 	if (IS_ERR(trans)) {
5468 		ret = PTR_ERR(trans);
5469 		goto out_drop_write;
5470 	}
5471 
5472 	spin_lock(&root->fs_info->super_lock);
5473 	newflags = btrfs_super_compat_flags(super_block);
5474 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5475 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5476 	btrfs_set_super_compat_flags(super_block, newflags);
5477 
5478 	newflags = btrfs_super_compat_ro_flags(super_block);
5479 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5480 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5481 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5482 
5483 	newflags = btrfs_super_incompat_flags(super_block);
5484 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5485 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5486 	btrfs_set_super_incompat_flags(super_block, newflags);
5487 	spin_unlock(&root->fs_info->super_lock);
5488 
5489 	ret = btrfs_commit_transaction(trans, root);
5490 out_drop_write:
5491 	mnt_drop_write_file(file);
5492 
5493 	return ret;
5494 }
5495 
5496 long btrfs_ioctl(struct file *file, unsigned int
5497 		cmd, unsigned long arg)
5498 {
5499 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5500 	void __user *argp = (void __user *)arg;
5501 
5502 	switch (cmd) {
5503 	case FS_IOC_GETFLAGS:
5504 		return btrfs_ioctl_getflags(file, argp);
5505 	case FS_IOC_SETFLAGS:
5506 		return btrfs_ioctl_setflags(file, argp);
5507 	case FS_IOC_GETVERSION:
5508 		return btrfs_ioctl_getversion(file, argp);
5509 	case FITRIM:
5510 		return btrfs_ioctl_fitrim(file, argp);
5511 	case BTRFS_IOC_SNAP_CREATE:
5512 		return btrfs_ioctl_snap_create(file, argp, 0);
5513 	case BTRFS_IOC_SNAP_CREATE_V2:
5514 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5515 	case BTRFS_IOC_SUBVOL_CREATE:
5516 		return btrfs_ioctl_snap_create(file, argp, 1);
5517 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5518 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5519 	case BTRFS_IOC_SNAP_DESTROY:
5520 		return btrfs_ioctl_snap_destroy(file, argp);
5521 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5522 		return btrfs_ioctl_subvol_getflags(file, argp);
5523 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5524 		return btrfs_ioctl_subvol_setflags(file, argp);
5525 	case BTRFS_IOC_DEFAULT_SUBVOL:
5526 		return btrfs_ioctl_default_subvol(file, argp);
5527 	case BTRFS_IOC_DEFRAG:
5528 		return btrfs_ioctl_defrag(file, NULL);
5529 	case BTRFS_IOC_DEFRAG_RANGE:
5530 		return btrfs_ioctl_defrag(file, argp);
5531 	case BTRFS_IOC_RESIZE:
5532 		return btrfs_ioctl_resize(file, argp);
5533 	case BTRFS_IOC_ADD_DEV:
5534 		return btrfs_ioctl_add_dev(root, argp);
5535 	case BTRFS_IOC_RM_DEV:
5536 		return btrfs_ioctl_rm_dev(file, argp);
5537 	case BTRFS_IOC_RM_DEV_V2:
5538 		return btrfs_ioctl_rm_dev_v2(file, argp);
5539 	case BTRFS_IOC_FS_INFO:
5540 		return btrfs_ioctl_fs_info(root, argp);
5541 	case BTRFS_IOC_DEV_INFO:
5542 		return btrfs_ioctl_dev_info(root, argp);
5543 	case BTRFS_IOC_BALANCE:
5544 		return btrfs_ioctl_balance(file, NULL);
5545 	case BTRFS_IOC_TRANS_START:
5546 		return btrfs_ioctl_trans_start(file);
5547 	case BTRFS_IOC_TRANS_END:
5548 		return btrfs_ioctl_trans_end(file);
5549 	case BTRFS_IOC_TREE_SEARCH:
5550 		return btrfs_ioctl_tree_search(file, argp);
5551 	case BTRFS_IOC_TREE_SEARCH_V2:
5552 		return btrfs_ioctl_tree_search_v2(file, argp);
5553 	case BTRFS_IOC_INO_LOOKUP:
5554 		return btrfs_ioctl_ino_lookup(file, argp);
5555 	case BTRFS_IOC_INO_PATHS:
5556 		return btrfs_ioctl_ino_to_path(root, argp);
5557 	case BTRFS_IOC_LOGICAL_INO:
5558 		return btrfs_ioctl_logical_to_ino(root, argp);
5559 	case BTRFS_IOC_SPACE_INFO:
5560 		return btrfs_ioctl_space_info(root, argp);
5561 	case BTRFS_IOC_SYNC: {
5562 		int ret;
5563 
5564 		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5565 		if (ret)
5566 			return ret;
5567 		ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5568 		/*
5569 		 * The transaction thread may want to do more work,
5570 		 * namely it pokes the cleaner kthread that will start
5571 		 * processing uncleaned subvols.
5572 		 */
5573 		wake_up_process(root->fs_info->transaction_kthread);
5574 		return ret;
5575 	}
5576 	case BTRFS_IOC_START_SYNC:
5577 		return btrfs_ioctl_start_sync(root, argp);
5578 	case BTRFS_IOC_WAIT_SYNC:
5579 		return btrfs_ioctl_wait_sync(root, argp);
5580 	case BTRFS_IOC_SCRUB:
5581 		return btrfs_ioctl_scrub(file, argp);
5582 	case BTRFS_IOC_SCRUB_CANCEL:
5583 		return btrfs_ioctl_scrub_cancel(root, argp);
5584 	case BTRFS_IOC_SCRUB_PROGRESS:
5585 		return btrfs_ioctl_scrub_progress(root, argp);
5586 	case BTRFS_IOC_BALANCE_V2:
5587 		return btrfs_ioctl_balance(file, argp);
5588 	case BTRFS_IOC_BALANCE_CTL:
5589 		return btrfs_ioctl_balance_ctl(root, arg);
5590 	case BTRFS_IOC_BALANCE_PROGRESS:
5591 		return btrfs_ioctl_balance_progress(root, argp);
5592 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5593 		return btrfs_ioctl_set_received_subvol(file, argp);
5594 #ifdef CONFIG_64BIT
5595 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5596 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5597 #endif
5598 	case BTRFS_IOC_SEND:
5599 		return btrfs_ioctl_send(file, argp);
5600 	case BTRFS_IOC_GET_DEV_STATS:
5601 		return btrfs_ioctl_get_dev_stats(root, argp);
5602 	case BTRFS_IOC_QUOTA_CTL:
5603 		return btrfs_ioctl_quota_ctl(file, argp);
5604 	case BTRFS_IOC_QGROUP_ASSIGN:
5605 		return btrfs_ioctl_qgroup_assign(file, argp);
5606 	case BTRFS_IOC_QGROUP_CREATE:
5607 		return btrfs_ioctl_qgroup_create(file, argp);
5608 	case BTRFS_IOC_QGROUP_LIMIT:
5609 		return btrfs_ioctl_qgroup_limit(file, argp);
5610 	case BTRFS_IOC_QUOTA_RESCAN:
5611 		return btrfs_ioctl_quota_rescan(file, argp);
5612 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5613 		return btrfs_ioctl_quota_rescan_status(file, argp);
5614 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5615 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5616 	case BTRFS_IOC_DEV_REPLACE:
5617 		return btrfs_ioctl_dev_replace(root, argp);
5618 	case BTRFS_IOC_GET_FSLABEL:
5619 		return btrfs_ioctl_get_fslabel(file, argp);
5620 	case BTRFS_IOC_SET_FSLABEL:
5621 		return btrfs_ioctl_set_fslabel(file, argp);
5622 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5623 		return btrfs_ioctl_get_supported_features(argp);
5624 	case BTRFS_IOC_GET_FEATURES:
5625 		return btrfs_ioctl_get_features(file, argp);
5626 	case BTRFS_IOC_SET_FEATURES:
5627 		return btrfs_ioctl_set_features(file, argp);
5628 	}
5629 
5630 	return -ENOTTY;
5631 }
5632 
5633 #ifdef CONFIG_COMPAT
5634 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5635 {
5636 	switch (cmd) {
5637 	case FS_IOC32_GETFLAGS:
5638 		cmd = FS_IOC_GETFLAGS;
5639 		break;
5640 	case FS_IOC32_SETFLAGS:
5641 		cmd = FS_IOC_SETFLAGS;
5642 		break;
5643 	case FS_IOC32_GETVERSION:
5644 		cmd = FS_IOC_GETVERSION;
5645 		break;
5646 	default:
5647 		return -ENOIOCTLCMD;
5648 	}
5649 
5650 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5651 }
5652 #endif
5653