xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include "ctree.h"
31 #include "disk-io.h"
32 #include "export.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "locking.h"
38 #include "backref.h"
39 #include "rcu-string.h"
40 #include "send.h"
41 #include "dev-replace.h"
42 #include "props.h"
43 #include "sysfs.h"
44 #include "qgroup.h"
45 #include "tree-log.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "delalloc-space.h"
49 #include "block-group.h"
50 
51 #ifdef CONFIG_64BIT
52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
53  * structures are incorrect, as the timespec structure from userspace
54  * is 4 bytes too small. We define these alternatives here to teach
55  * the kernel about the 32-bit struct packing.
56  */
57 struct btrfs_ioctl_timespec_32 {
58 	__u64 sec;
59 	__u32 nsec;
60 } __attribute__ ((__packed__));
61 
62 struct btrfs_ioctl_received_subvol_args_32 {
63 	char	uuid[BTRFS_UUID_SIZE];	/* in */
64 	__u64	stransid;		/* in */
65 	__u64	rtransid;		/* out */
66 	struct btrfs_ioctl_timespec_32 stime; /* in */
67 	struct btrfs_ioctl_timespec_32 rtime; /* out */
68 	__u64	flags;			/* in */
69 	__u64	reserved[16];		/* in */
70 } __attribute__ ((__packed__));
71 
72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
73 				struct btrfs_ioctl_received_subvol_args_32)
74 #endif
75 
76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
77 struct btrfs_ioctl_send_args_32 {
78 	__s64 send_fd;			/* in */
79 	__u64 clone_sources_count;	/* in */
80 	compat_uptr_t clone_sources;	/* in */
81 	__u64 parent_root;		/* in */
82 	__u64 flags;			/* in */
83 	__u64 reserved[4];		/* in */
84 } __attribute__ ((__packed__));
85 
86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
87 			       struct btrfs_ioctl_send_args_32)
88 #endif
89 
90 /* Mask out flags that are inappropriate for the given type of inode. */
91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 		unsigned int flags)
93 {
94 	if (S_ISDIR(inode->i_mode))
95 		return flags;
96 	else if (S_ISREG(inode->i_mode))
97 		return flags & ~FS_DIRSYNC_FL;
98 	else
99 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100 }
101 
102 /*
103  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104  * ioctl.
105  */
106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if (flags & BTRFS_INODE_NOCOMPRESS)
126 		iflags |= FS_NOCOMP_FL;
127 	else if (flags & BTRFS_INODE_COMPRESS)
128 		iflags |= FS_COMPR_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
137 {
138 	struct btrfs_inode *binode = BTRFS_I(inode);
139 	unsigned int new_fl = 0;
140 
141 	if (binode->flags & BTRFS_INODE_SYNC)
142 		new_fl |= S_SYNC;
143 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 		new_fl |= S_IMMUTABLE;
145 	if (binode->flags & BTRFS_INODE_APPEND)
146 		new_fl |= S_APPEND;
147 	if (binode->flags & BTRFS_INODE_NOATIME)
148 		new_fl |= S_NOATIME;
149 	if (binode->flags & BTRFS_INODE_DIRSYNC)
150 		new_fl |= S_DIRSYNC;
151 
152 	set_mask_bits(&inode->i_flags,
153 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 		      new_fl);
155 }
156 
157 /*
158  * Check if @flags are a supported and valid set of FS_*_FL flags and that
159  * the old and new flags are not conflicting
160  */
161 static int check_fsflags(unsigned int old_flags, unsigned int flags)
162 {
163 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
164 		      FS_NOATIME_FL | FS_NODUMP_FL | \
165 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
166 		      FS_NOCOMP_FL | FS_COMPR_FL |
167 		      FS_NOCOW_FL))
168 		return -EOPNOTSUPP;
169 
170 	/* COMPR and NOCOMP on new/old are valid */
171 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
172 		return -EINVAL;
173 
174 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
175 		return -EINVAL;
176 
177 	/* NOCOW and compression options are mutually exclusive */
178 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
179 		return -EINVAL;
180 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
181 		return -EINVAL;
182 
183 	return 0;
184 }
185 
186 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
187 				    unsigned int flags)
188 {
189 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
190 		return -EPERM;
191 
192 	return 0;
193 }
194 
195 /*
196  * Set flags/xflags from the internal inode flags. The remaining items of
197  * fsxattr are zeroed.
198  */
199 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
200 {
201 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
202 
203 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode->flags));
204 	return 0;
205 }
206 
207 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
208 		       struct dentry *dentry, struct fileattr *fa)
209 {
210 	struct inode *inode = d_inode(dentry);
211 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
212 	struct btrfs_inode *binode = BTRFS_I(inode);
213 	struct btrfs_root *root = binode->root;
214 	struct btrfs_trans_handle *trans;
215 	unsigned int fsflags, old_fsflags;
216 	int ret;
217 	const char *comp = NULL;
218 	u32 binode_flags;
219 
220 	if (btrfs_root_readonly(root))
221 		return -EROFS;
222 
223 	if (fileattr_has_fsx(fa))
224 		return -EOPNOTSUPP;
225 
226 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
227 	old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
228 	ret = check_fsflags(old_fsflags, fsflags);
229 	if (ret)
230 		return ret;
231 
232 	ret = check_fsflags_compatible(fs_info, fsflags);
233 	if (ret)
234 		return ret;
235 
236 	binode_flags = binode->flags;
237 	if (fsflags & FS_SYNC_FL)
238 		binode_flags |= BTRFS_INODE_SYNC;
239 	else
240 		binode_flags &= ~BTRFS_INODE_SYNC;
241 	if (fsflags & FS_IMMUTABLE_FL)
242 		binode_flags |= BTRFS_INODE_IMMUTABLE;
243 	else
244 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
245 	if (fsflags & FS_APPEND_FL)
246 		binode_flags |= BTRFS_INODE_APPEND;
247 	else
248 		binode_flags &= ~BTRFS_INODE_APPEND;
249 	if (fsflags & FS_NODUMP_FL)
250 		binode_flags |= BTRFS_INODE_NODUMP;
251 	else
252 		binode_flags &= ~BTRFS_INODE_NODUMP;
253 	if (fsflags & FS_NOATIME_FL)
254 		binode_flags |= BTRFS_INODE_NOATIME;
255 	else
256 		binode_flags &= ~BTRFS_INODE_NOATIME;
257 
258 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
259 	if (!fa->flags_valid) {
260 		/* 1 item for the inode */
261 		trans = btrfs_start_transaction(root, 1);
262 		if (IS_ERR(trans))
263 			return PTR_ERR(trans);
264 		goto update_flags;
265 	}
266 
267 	if (fsflags & FS_DIRSYNC_FL)
268 		binode_flags |= BTRFS_INODE_DIRSYNC;
269 	else
270 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
271 	if (fsflags & FS_NOCOW_FL) {
272 		if (S_ISREG(inode->i_mode)) {
273 			/*
274 			 * It's safe to turn csums off here, no extents exist.
275 			 * Otherwise we want the flag to reflect the real COW
276 			 * status of the file and will not set it.
277 			 */
278 			if (inode->i_size == 0)
279 				binode_flags |= BTRFS_INODE_NODATACOW |
280 						BTRFS_INODE_NODATASUM;
281 		} else {
282 			binode_flags |= BTRFS_INODE_NODATACOW;
283 		}
284 	} else {
285 		/*
286 		 * Revert back under same assumptions as above
287 		 */
288 		if (S_ISREG(inode->i_mode)) {
289 			if (inode->i_size == 0)
290 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
291 						  BTRFS_INODE_NODATASUM);
292 		} else {
293 			binode_flags &= ~BTRFS_INODE_NODATACOW;
294 		}
295 	}
296 
297 	/*
298 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
299 	 * flag may be changed automatically if compression code won't make
300 	 * things smaller.
301 	 */
302 	if (fsflags & FS_NOCOMP_FL) {
303 		binode_flags &= ~BTRFS_INODE_COMPRESS;
304 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
305 	} else if (fsflags & FS_COMPR_FL) {
306 
307 		if (IS_SWAPFILE(inode))
308 			return -ETXTBSY;
309 
310 		binode_flags |= BTRFS_INODE_COMPRESS;
311 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
312 
313 		comp = btrfs_compress_type2str(fs_info->compress_type);
314 		if (!comp || comp[0] == 0)
315 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
316 	} else {
317 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
318 	}
319 
320 	/*
321 	 * 1 for inode item
322 	 * 2 for properties
323 	 */
324 	trans = btrfs_start_transaction(root, 3);
325 	if (IS_ERR(trans))
326 		return PTR_ERR(trans);
327 
328 	if (comp) {
329 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
330 				     strlen(comp), 0);
331 		if (ret) {
332 			btrfs_abort_transaction(trans, ret);
333 			goto out_end_trans;
334 		}
335 	} else {
336 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
337 				     0, 0);
338 		if (ret && ret != -ENODATA) {
339 			btrfs_abort_transaction(trans, ret);
340 			goto out_end_trans;
341 		}
342 	}
343 
344 update_flags:
345 	binode->flags = binode_flags;
346 	btrfs_sync_inode_flags_to_i_flags(inode);
347 	inode_inc_iversion(inode);
348 	inode->i_ctime = current_time(inode);
349 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
350 
351  out_end_trans:
352 	btrfs_end_transaction(trans);
353 	return ret;
354 }
355 
356 /*
357  * Start exclusive operation @type, return true on success
358  */
359 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
360 			enum btrfs_exclusive_operation type)
361 {
362 	bool ret = false;
363 
364 	spin_lock(&fs_info->super_lock);
365 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
366 		fs_info->exclusive_operation = type;
367 		ret = true;
368 	}
369 	spin_unlock(&fs_info->super_lock);
370 
371 	return ret;
372 }
373 
374 /*
375  * Conditionally allow to enter the exclusive operation in case it's compatible
376  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
377  * btrfs_exclop_finish.
378  *
379  * Compatibility:
380  * - the same type is already running
381  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
382  *   must check the condition first that would allow none -> @type
383  */
384 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
385 				 enum btrfs_exclusive_operation type)
386 {
387 	spin_lock(&fs_info->super_lock);
388 	if (fs_info->exclusive_operation == type)
389 		return true;
390 
391 	spin_unlock(&fs_info->super_lock);
392 	return false;
393 }
394 
395 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
396 {
397 	spin_unlock(&fs_info->super_lock);
398 }
399 
400 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
401 {
402 	spin_lock(&fs_info->super_lock);
403 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
404 	spin_unlock(&fs_info->super_lock);
405 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
406 }
407 
408 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
409 {
410 	struct inode *inode = file_inode(file);
411 
412 	return put_user(inode->i_generation, arg);
413 }
414 
415 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
416 					void __user *arg)
417 {
418 	struct btrfs_device *device;
419 	struct request_queue *q;
420 	struct fstrim_range range;
421 	u64 minlen = ULLONG_MAX;
422 	u64 num_devices = 0;
423 	int ret;
424 
425 	if (!capable(CAP_SYS_ADMIN))
426 		return -EPERM;
427 
428 	/*
429 	 * btrfs_trim_block_group() depends on space cache, which is not
430 	 * available in zoned filesystem. So, disallow fitrim on a zoned
431 	 * filesystem for now.
432 	 */
433 	if (btrfs_is_zoned(fs_info))
434 		return -EOPNOTSUPP;
435 
436 	/*
437 	 * If the fs is mounted with nologreplay, which requires it to be
438 	 * mounted in RO mode as well, we can not allow discard on free space
439 	 * inside block groups, because log trees refer to extents that are not
440 	 * pinned in a block group's free space cache (pinning the extents is
441 	 * precisely the first phase of replaying a log tree).
442 	 */
443 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
444 		return -EROFS;
445 
446 	rcu_read_lock();
447 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
448 				dev_list) {
449 		if (!device->bdev)
450 			continue;
451 		q = bdev_get_queue(device->bdev);
452 		if (blk_queue_discard(q)) {
453 			num_devices++;
454 			minlen = min_t(u64, q->limits.discard_granularity,
455 				     minlen);
456 		}
457 	}
458 	rcu_read_unlock();
459 
460 	if (!num_devices)
461 		return -EOPNOTSUPP;
462 	if (copy_from_user(&range, arg, sizeof(range)))
463 		return -EFAULT;
464 
465 	/*
466 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
467 	 * block group is in the logical address space, which can be any
468 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
469 	 */
470 	if (range.len < fs_info->sb->s_blocksize)
471 		return -EINVAL;
472 
473 	range.minlen = max(range.minlen, minlen);
474 	ret = btrfs_trim_fs(fs_info, &range);
475 	if (ret < 0)
476 		return ret;
477 
478 	if (copy_to_user(arg, &range, sizeof(range)))
479 		return -EFAULT;
480 
481 	return 0;
482 }
483 
484 int __pure btrfs_is_empty_uuid(u8 *uuid)
485 {
486 	int i;
487 
488 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
489 		if (uuid[i])
490 			return 0;
491 	}
492 	return 1;
493 }
494 
495 static noinline int create_subvol(struct inode *dir,
496 				  struct dentry *dentry,
497 				  const char *name, int namelen,
498 				  struct btrfs_qgroup_inherit *inherit)
499 {
500 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
501 	struct btrfs_trans_handle *trans;
502 	struct btrfs_key key;
503 	struct btrfs_root_item *root_item;
504 	struct btrfs_inode_item *inode_item;
505 	struct extent_buffer *leaf;
506 	struct btrfs_root *root = BTRFS_I(dir)->root;
507 	struct btrfs_root *new_root;
508 	struct btrfs_block_rsv block_rsv;
509 	struct timespec64 cur_time = current_time(dir);
510 	struct inode *inode;
511 	int ret;
512 	int err;
513 	dev_t anon_dev = 0;
514 	u64 objectid;
515 	u64 index = 0;
516 
517 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
518 	if (!root_item)
519 		return -ENOMEM;
520 
521 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
522 	if (ret)
523 		goto fail_free;
524 
525 	ret = get_anon_bdev(&anon_dev);
526 	if (ret < 0)
527 		goto fail_free;
528 
529 	/*
530 	 * Don't create subvolume whose level is not zero. Or qgroup will be
531 	 * screwed up since it assumes subvolume qgroup's level to be 0.
532 	 */
533 	if (btrfs_qgroup_level(objectid)) {
534 		ret = -ENOSPC;
535 		goto fail_free;
536 	}
537 
538 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
539 	/*
540 	 * The same as the snapshot creation, please see the comment
541 	 * of create_snapshot().
542 	 */
543 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
544 	if (ret)
545 		goto fail_free;
546 
547 	trans = btrfs_start_transaction(root, 0);
548 	if (IS_ERR(trans)) {
549 		ret = PTR_ERR(trans);
550 		btrfs_subvolume_release_metadata(root, &block_rsv);
551 		goto fail_free;
552 	}
553 	trans->block_rsv = &block_rsv;
554 	trans->bytes_reserved = block_rsv.size;
555 
556 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
557 	if (ret)
558 		goto fail;
559 
560 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
561 				      BTRFS_NESTING_NORMAL);
562 	if (IS_ERR(leaf)) {
563 		ret = PTR_ERR(leaf);
564 		goto fail;
565 	}
566 
567 	btrfs_mark_buffer_dirty(leaf);
568 
569 	inode_item = &root_item->inode;
570 	btrfs_set_stack_inode_generation(inode_item, 1);
571 	btrfs_set_stack_inode_size(inode_item, 3);
572 	btrfs_set_stack_inode_nlink(inode_item, 1);
573 	btrfs_set_stack_inode_nbytes(inode_item,
574 				     fs_info->nodesize);
575 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
576 
577 	btrfs_set_root_flags(root_item, 0);
578 	btrfs_set_root_limit(root_item, 0);
579 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
580 
581 	btrfs_set_root_bytenr(root_item, leaf->start);
582 	btrfs_set_root_generation(root_item, trans->transid);
583 	btrfs_set_root_level(root_item, 0);
584 	btrfs_set_root_refs(root_item, 1);
585 	btrfs_set_root_used(root_item, leaf->len);
586 	btrfs_set_root_last_snapshot(root_item, 0);
587 
588 	btrfs_set_root_generation_v2(root_item,
589 			btrfs_root_generation(root_item));
590 	generate_random_guid(root_item->uuid);
591 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
592 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
593 	root_item->ctime = root_item->otime;
594 	btrfs_set_root_ctransid(root_item, trans->transid);
595 	btrfs_set_root_otransid(root_item, trans->transid);
596 
597 	btrfs_tree_unlock(leaf);
598 
599 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
600 
601 	key.objectid = objectid;
602 	key.offset = 0;
603 	key.type = BTRFS_ROOT_ITEM_KEY;
604 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
605 				root_item);
606 	if (ret) {
607 		/*
608 		 * Since we don't abort the transaction in this case, free the
609 		 * tree block so that we don't leak space and leave the
610 		 * filesystem in an inconsistent state (an extent item in the
611 		 * extent tree without backreferences). Also no need to have
612 		 * the tree block locked since it is not in any tree at this
613 		 * point, so no other task can find it and use it.
614 		 */
615 		btrfs_free_tree_block(trans, root, leaf, 0, 1);
616 		free_extent_buffer(leaf);
617 		goto fail;
618 	}
619 
620 	free_extent_buffer(leaf);
621 	leaf = NULL;
622 
623 	key.offset = (u64)-1;
624 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
625 	if (IS_ERR(new_root)) {
626 		free_anon_bdev(anon_dev);
627 		ret = PTR_ERR(new_root);
628 		btrfs_abort_transaction(trans, ret);
629 		goto fail;
630 	}
631 	/* Freeing will be done in btrfs_put_root() of new_root */
632 	anon_dev = 0;
633 
634 	ret = btrfs_record_root_in_trans(trans, new_root);
635 	if (ret) {
636 		btrfs_put_root(new_root);
637 		btrfs_abort_transaction(trans, ret);
638 		goto fail;
639 	}
640 
641 	ret = btrfs_create_subvol_root(trans, new_root, root);
642 	btrfs_put_root(new_root);
643 	if (ret) {
644 		/* We potentially lose an unused inode item here */
645 		btrfs_abort_transaction(trans, ret);
646 		goto fail;
647 	}
648 
649 	/*
650 	 * insert the directory item
651 	 */
652 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
653 	if (ret) {
654 		btrfs_abort_transaction(trans, ret);
655 		goto fail;
656 	}
657 
658 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
659 				    BTRFS_FT_DIR, index);
660 	if (ret) {
661 		btrfs_abort_transaction(trans, ret);
662 		goto fail;
663 	}
664 
665 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
666 	ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
667 	if (ret) {
668 		btrfs_abort_transaction(trans, ret);
669 		goto fail;
670 	}
671 
672 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
673 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
674 	if (ret) {
675 		btrfs_abort_transaction(trans, ret);
676 		goto fail;
677 	}
678 
679 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
680 				  BTRFS_UUID_KEY_SUBVOL, objectid);
681 	if (ret)
682 		btrfs_abort_transaction(trans, ret);
683 
684 fail:
685 	kfree(root_item);
686 	trans->block_rsv = NULL;
687 	trans->bytes_reserved = 0;
688 	btrfs_subvolume_release_metadata(root, &block_rsv);
689 
690 	err = btrfs_commit_transaction(trans);
691 	if (err && !ret)
692 		ret = err;
693 
694 	if (!ret) {
695 		inode = btrfs_lookup_dentry(dir, dentry);
696 		if (IS_ERR(inode))
697 			return PTR_ERR(inode);
698 		d_instantiate(dentry, inode);
699 	}
700 	return ret;
701 
702 fail_free:
703 	if (anon_dev)
704 		free_anon_bdev(anon_dev);
705 	kfree(root_item);
706 	return ret;
707 }
708 
709 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
710 			   struct dentry *dentry, bool readonly,
711 			   struct btrfs_qgroup_inherit *inherit)
712 {
713 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
714 	struct inode *inode;
715 	struct btrfs_pending_snapshot *pending_snapshot;
716 	struct btrfs_trans_handle *trans;
717 	int ret;
718 
719 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
720 		return -EINVAL;
721 
722 	if (atomic_read(&root->nr_swapfiles)) {
723 		btrfs_warn(fs_info,
724 			   "cannot snapshot subvolume with active swapfile");
725 		return -ETXTBSY;
726 	}
727 
728 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
729 	if (!pending_snapshot)
730 		return -ENOMEM;
731 
732 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
733 	if (ret < 0)
734 		goto free_pending;
735 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
736 			GFP_KERNEL);
737 	pending_snapshot->path = btrfs_alloc_path();
738 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
739 		ret = -ENOMEM;
740 		goto free_pending;
741 	}
742 
743 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
744 			     BTRFS_BLOCK_RSV_TEMP);
745 	/*
746 	 * 1 - parent dir inode
747 	 * 2 - dir entries
748 	 * 1 - root item
749 	 * 2 - root ref/backref
750 	 * 1 - root of snapshot
751 	 * 1 - UUID item
752 	 */
753 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
754 					&pending_snapshot->block_rsv, 8,
755 					false);
756 	if (ret)
757 		goto free_pending;
758 
759 	pending_snapshot->dentry = dentry;
760 	pending_snapshot->root = root;
761 	pending_snapshot->readonly = readonly;
762 	pending_snapshot->dir = dir;
763 	pending_snapshot->inherit = inherit;
764 
765 	trans = btrfs_start_transaction(root, 0);
766 	if (IS_ERR(trans)) {
767 		ret = PTR_ERR(trans);
768 		goto fail;
769 	}
770 
771 	spin_lock(&fs_info->trans_lock);
772 	list_add(&pending_snapshot->list,
773 		 &trans->transaction->pending_snapshots);
774 	spin_unlock(&fs_info->trans_lock);
775 
776 	ret = btrfs_commit_transaction(trans);
777 	if (ret)
778 		goto fail;
779 
780 	ret = pending_snapshot->error;
781 	if (ret)
782 		goto fail;
783 
784 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
785 	if (ret)
786 		goto fail;
787 
788 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
789 	if (IS_ERR(inode)) {
790 		ret = PTR_ERR(inode);
791 		goto fail;
792 	}
793 
794 	d_instantiate(dentry, inode);
795 	ret = 0;
796 	pending_snapshot->anon_dev = 0;
797 fail:
798 	/* Prevent double freeing of anon_dev */
799 	if (ret && pending_snapshot->snap)
800 		pending_snapshot->snap->anon_dev = 0;
801 	btrfs_put_root(pending_snapshot->snap);
802 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
803 free_pending:
804 	if (pending_snapshot->anon_dev)
805 		free_anon_bdev(pending_snapshot->anon_dev);
806 	kfree(pending_snapshot->root_item);
807 	btrfs_free_path(pending_snapshot->path);
808 	kfree(pending_snapshot);
809 
810 	return ret;
811 }
812 
813 /*  copy of may_delete in fs/namei.c()
814  *	Check whether we can remove a link victim from directory dir, check
815  *  whether the type of victim is right.
816  *  1. We can't do it if dir is read-only (done in permission())
817  *  2. We should have write and exec permissions on dir
818  *  3. We can't remove anything from append-only dir
819  *  4. We can't do anything with immutable dir (done in permission())
820  *  5. If the sticky bit on dir is set we should either
821  *	a. be owner of dir, or
822  *	b. be owner of victim, or
823  *	c. have CAP_FOWNER capability
824  *  6. If the victim is append-only or immutable we can't do anything with
825  *     links pointing to it.
826  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
827  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
828  *  9. We can't remove a root or mountpoint.
829  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
830  *     nfs_async_unlink().
831  */
832 
833 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
834 {
835 	int error;
836 
837 	if (d_really_is_negative(victim))
838 		return -ENOENT;
839 
840 	BUG_ON(d_inode(victim->d_parent) != dir);
841 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
842 
843 	error = inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC);
844 	if (error)
845 		return error;
846 	if (IS_APPEND(dir))
847 		return -EPERM;
848 	if (check_sticky(&init_user_ns, dir, d_inode(victim)) ||
849 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
850 	    IS_SWAPFILE(d_inode(victim)))
851 		return -EPERM;
852 	if (isdir) {
853 		if (!d_is_dir(victim))
854 			return -ENOTDIR;
855 		if (IS_ROOT(victim))
856 			return -EBUSY;
857 	} else if (d_is_dir(victim))
858 		return -EISDIR;
859 	if (IS_DEADDIR(dir))
860 		return -ENOENT;
861 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
862 		return -EBUSY;
863 	return 0;
864 }
865 
866 /* copy of may_create in fs/namei.c() */
867 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
868 {
869 	if (d_really_is_positive(child))
870 		return -EEXIST;
871 	if (IS_DEADDIR(dir))
872 		return -ENOENT;
873 	return inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC);
874 }
875 
876 /*
877  * Create a new subvolume below @parent.  This is largely modeled after
878  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
879  * inside this filesystem so it's quite a bit simpler.
880  */
881 static noinline int btrfs_mksubvol(const struct path *parent,
882 				   const char *name, int namelen,
883 				   struct btrfs_root *snap_src,
884 				   bool readonly,
885 				   struct btrfs_qgroup_inherit *inherit)
886 {
887 	struct inode *dir = d_inode(parent->dentry);
888 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
889 	struct dentry *dentry;
890 	int error;
891 
892 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
893 	if (error == -EINTR)
894 		return error;
895 
896 	dentry = lookup_one_len(name, parent->dentry, namelen);
897 	error = PTR_ERR(dentry);
898 	if (IS_ERR(dentry))
899 		goto out_unlock;
900 
901 	error = btrfs_may_create(dir, dentry);
902 	if (error)
903 		goto out_dput;
904 
905 	/*
906 	 * even if this name doesn't exist, we may get hash collisions.
907 	 * check for them now when we can safely fail
908 	 */
909 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
910 					       dir->i_ino, name,
911 					       namelen);
912 	if (error)
913 		goto out_dput;
914 
915 	down_read(&fs_info->subvol_sem);
916 
917 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
918 		goto out_up_read;
919 
920 	if (snap_src)
921 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
922 	else
923 		error = create_subvol(dir, dentry, name, namelen, inherit);
924 
925 	if (!error)
926 		fsnotify_mkdir(dir, dentry);
927 out_up_read:
928 	up_read(&fs_info->subvol_sem);
929 out_dput:
930 	dput(dentry);
931 out_unlock:
932 	btrfs_inode_unlock(dir, 0);
933 	return error;
934 }
935 
936 static noinline int btrfs_mksnapshot(const struct path *parent,
937 				   const char *name, int namelen,
938 				   struct btrfs_root *root,
939 				   bool readonly,
940 				   struct btrfs_qgroup_inherit *inherit)
941 {
942 	int ret;
943 	bool snapshot_force_cow = false;
944 
945 	/*
946 	 * Force new buffered writes to reserve space even when NOCOW is
947 	 * possible. This is to avoid later writeback (running dealloc) to
948 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
949 	 */
950 	btrfs_drew_read_lock(&root->snapshot_lock);
951 
952 	ret = btrfs_start_delalloc_snapshot(root, false);
953 	if (ret)
954 		goto out;
955 
956 	/*
957 	 * All previous writes have started writeback in NOCOW mode, so now
958 	 * we force future writes to fallback to COW mode during snapshot
959 	 * creation.
960 	 */
961 	atomic_inc(&root->snapshot_force_cow);
962 	snapshot_force_cow = true;
963 
964 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
965 
966 	ret = btrfs_mksubvol(parent, name, namelen,
967 			     root, readonly, inherit);
968 out:
969 	if (snapshot_force_cow)
970 		atomic_dec(&root->snapshot_force_cow);
971 	btrfs_drew_read_unlock(&root->snapshot_lock);
972 	return ret;
973 }
974 
975 /*
976  * When we're defragging a range, we don't want to kick it off again
977  * if it is really just waiting for delalloc to send it down.
978  * If we find a nice big extent or delalloc range for the bytes in the
979  * file you want to defrag, we return 0 to let you know to skip this
980  * part of the file
981  */
982 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
983 {
984 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
985 	struct extent_map *em = NULL;
986 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
987 	u64 end;
988 
989 	read_lock(&em_tree->lock);
990 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
991 	read_unlock(&em_tree->lock);
992 
993 	if (em) {
994 		end = extent_map_end(em);
995 		free_extent_map(em);
996 		if (end - offset > thresh)
997 			return 0;
998 	}
999 	/* if we already have a nice delalloc here, just stop */
1000 	thresh /= 2;
1001 	end = count_range_bits(io_tree, &offset, offset + thresh,
1002 			       thresh, EXTENT_DELALLOC, 1);
1003 	if (end >= thresh)
1004 		return 0;
1005 	return 1;
1006 }
1007 
1008 /*
1009  * helper function to walk through a file and find extents
1010  * newer than a specific transid, and smaller than thresh.
1011  *
1012  * This is used by the defragging code to find new and small
1013  * extents
1014  */
1015 static int find_new_extents(struct btrfs_root *root,
1016 			    struct inode *inode, u64 newer_than,
1017 			    u64 *off, u32 thresh)
1018 {
1019 	struct btrfs_path *path;
1020 	struct btrfs_key min_key;
1021 	struct extent_buffer *leaf;
1022 	struct btrfs_file_extent_item *extent;
1023 	int type;
1024 	int ret;
1025 	u64 ino = btrfs_ino(BTRFS_I(inode));
1026 
1027 	path = btrfs_alloc_path();
1028 	if (!path)
1029 		return -ENOMEM;
1030 
1031 	min_key.objectid = ino;
1032 	min_key.type = BTRFS_EXTENT_DATA_KEY;
1033 	min_key.offset = *off;
1034 
1035 	while (1) {
1036 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1037 		if (ret != 0)
1038 			goto none;
1039 process_slot:
1040 		if (min_key.objectid != ino)
1041 			goto none;
1042 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1043 			goto none;
1044 
1045 		leaf = path->nodes[0];
1046 		extent = btrfs_item_ptr(leaf, path->slots[0],
1047 					struct btrfs_file_extent_item);
1048 
1049 		type = btrfs_file_extent_type(leaf, extent);
1050 		if (type == BTRFS_FILE_EXTENT_REG &&
1051 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1052 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1053 			*off = min_key.offset;
1054 			btrfs_free_path(path);
1055 			return 0;
1056 		}
1057 
1058 		path->slots[0]++;
1059 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1060 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1061 			goto process_slot;
1062 		}
1063 
1064 		if (min_key.offset == (u64)-1)
1065 			goto none;
1066 
1067 		min_key.offset++;
1068 		btrfs_release_path(path);
1069 	}
1070 none:
1071 	btrfs_free_path(path);
1072 	return -ENOENT;
1073 }
1074 
1075 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1076 {
1077 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1078 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1079 	struct extent_map *em;
1080 	u64 len = PAGE_SIZE;
1081 
1082 	/*
1083 	 * hopefully we have this extent in the tree already, try without
1084 	 * the full extent lock
1085 	 */
1086 	read_lock(&em_tree->lock);
1087 	em = lookup_extent_mapping(em_tree, start, len);
1088 	read_unlock(&em_tree->lock);
1089 
1090 	if (!em) {
1091 		struct extent_state *cached = NULL;
1092 		u64 end = start + len - 1;
1093 
1094 		/* get the big lock and read metadata off disk */
1095 		lock_extent_bits(io_tree, start, end, &cached);
1096 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1097 		unlock_extent_cached(io_tree, start, end, &cached);
1098 
1099 		if (IS_ERR(em))
1100 			return NULL;
1101 	}
1102 
1103 	return em;
1104 }
1105 
1106 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1107 {
1108 	struct extent_map *next;
1109 	bool ret = true;
1110 
1111 	/* this is the last extent */
1112 	if (em->start + em->len >= i_size_read(inode))
1113 		return false;
1114 
1115 	next = defrag_lookup_extent(inode, em->start + em->len);
1116 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1117 		ret = false;
1118 	else if ((em->block_start + em->block_len == next->block_start) &&
1119 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1120 		ret = false;
1121 
1122 	free_extent_map(next);
1123 	return ret;
1124 }
1125 
1126 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1127 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1128 			       int compress)
1129 {
1130 	struct extent_map *em;
1131 	int ret = 1;
1132 	bool next_mergeable = true;
1133 	bool prev_mergeable = true;
1134 
1135 	/*
1136 	 * make sure that once we start defragging an extent, we keep on
1137 	 * defragging it
1138 	 */
1139 	if (start < *defrag_end)
1140 		return 1;
1141 
1142 	*skip = 0;
1143 
1144 	em = defrag_lookup_extent(inode, start);
1145 	if (!em)
1146 		return 0;
1147 
1148 	/* this will cover holes, and inline extents */
1149 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1150 		ret = 0;
1151 		goto out;
1152 	}
1153 
1154 	if (!*defrag_end)
1155 		prev_mergeable = false;
1156 
1157 	next_mergeable = defrag_check_next_extent(inode, em);
1158 	/*
1159 	 * we hit a real extent, if it is big or the next extent is not a
1160 	 * real extent, don't bother defragging it
1161 	 */
1162 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1163 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1164 		ret = 0;
1165 out:
1166 	/*
1167 	 * last_len ends up being a counter of how many bytes we've defragged.
1168 	 * every time we choose not to defrag an extent, we reset *last_len
1169 	 * so that the next tiny extent will force a defrag.
1170 	 *
1171 	 * The end result of this is that tiny extents before a single big
1172 	 * extent will force at least part of that big extent to be defragged.
1173 	 */
1174 	if (ret) {
1175 		*defrag_end = extent_map_end(em);
1176 	} else {
1177 		*last_len = 0;
1178 		*skip = extent_map_end(em);
1179 		*defrag_end = 0;
1180 	}
1181 
1182 	free_extent_map(em);
1183 	return ret;
1184 }
1185 
1186 /*
1187  * it doesn't do much good to defrag one or two pages
1188  * at a time.  This pulls in a nice chunk of pages
1189  * to COW and defrag.
1190  *
1191  * It also makes sure the delalloc code has enough
1192  * dirty data to avoid making new small extents as part
1193  * of the defrag
1194  *
1195  * It's a good idea to start RA on this range
1196  * before calling this.
1197  */
1198 static int cluster_pages_for_defrag(struct inode *inode,
1199 				    struct page **pages,
1200 				    unsigned long start_index,
1201 				    unsigned long num_pages)
1202 {
1203 	unsigned long file_end;
1204 	u64 isize = i_size_read(inode);
1205 	u64 page_start;
1206 	u64 page_end;
1207 	u64 page_cnt;
1208 	u64 start = (u64)start_index << PAGE_SHIFT;
1209 	u64 search_start;
1210 	int ret;
1211 	int i;
1212 	int i_done;
1213 	struct btrfs_ordered_extent *ordered;
1214 	struct extent_state *cached_state = NULL;
1215 	struct extent_io_tree *tree;
1216 	struct extent_changeset *data_reserved = NULL;
1217 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1218 
1219 	file_end = (isize - 1) >> PAGE_SHIFT;
1220 	if (!isize || start_index > file_end)
1221 		return 0;
1222 
1223 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1224 
1225 	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1226 			start, page_cnt << PAGE_SHIFT);
1227 	if (ret)
1228 		return ret;
1229 	i_done = 0;
1230 	tree = &BTRFS_I(inode)->io_tree;
1231 
1232 	/* step one, lock all the pages */
1233 	for (i = 0; i < page_cnt; i++) {
1234 		struct page *page;
1235 again:
1236 		page = find_or_create_page(inode->i_mapping,
1237 					   start_index + i, mask);
1238 		if (!page)
1239 			break;
1240 
1241 		ret = set_page_extent_mapped(page);
1242 		if (ret < 0) {
1243 			unlock_page(page);
1244 			put_page(page);
1245 			break;
1246 		}
1247 
1248 		page_start = page_offset(page);
1249 		page_end = page_start + PAGE_SIZE - 1;
1250 		while (1) {
1251 			lock_extent_bits(tree, page_start, page_end,
1252 					 &cached_state);
1253 			ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1254 							      page_start);
1255 			unlock_extent_cached(tree, page_start, page_end,
1256 					     &cached_state);
1257 			if (!ordered)
1258 				break;
1259 
1260 			unlock_page(page);
1261 			btrfs_start_ordered_extent(ordered, 1);
1262 			btrfs_put_ordered_extent(ordered);
1263 			lock_page(page);
1264 			/*
1265 			 * we unlocked the page above, so we need check if
1266 			 * it was released or not.
1267 			 */
1268 			if (page->mapping != inode->i_mapping) {
1269 				unlock_page(page);
1270 				put_page(page);
1271 				goto again;
1272 			}
1273 		}
1274 
1275 		if (!PageUptodate(page)) {
1276 			btrfs_readpage(NULL, page);
1277 			lock_page(page);
1278 			if (!PageUptodate(page)) {
1279 				unlock_page(page);
1280 				put_page(page);
1281 				ret = -EIO;
1282 				break;
1283 			}
1284 		}
1285 
1286 		if (page->mapping != inode->i_mapping) {
1287 			unlock_page(page);
1288 			put_page(page);
1289 			goto again;
1290 		}
1291 
1292 		pages[i] = page;
1293 		i_done++;
1294 	}
1295 	if (!i_done || ret)
1296 		goto out;
1297 
1298 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1299 		goto out;
1300 
1301 	/*
1302 	 * so now we have a nice long stream of locked
1303 	 * and up to date pages, lets wait on them
1304 	 */
1305 	for (i = 0; i < i_done; i++)
1306 		wait_on_page_writeback(pages[i]);
1307 
1308 	page_start = page_offset(pages[0]);
1309 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1310 
1311 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1312 			 page_start, page_end - 1, &cached_state);
1313 
1314 	/*
1315 	 * When defragmenting we skip ranges that have holes or inline extents,
1316 	 * (check should_defrag_range()), to avoid unnecessary IO and wasting
1317 	 * space. At btrfs_defrag_file(), we check if a range should be defragged
1318 	 * before locking the inode and then, if it should, we trigger a sync
1319 	 * page cache readahead - we lock the inode only after that to avoid
1320 	 * blocking for too long other tasks that possibly want to operate on
1321 	 * other file ranges. But before we were able to get the inode lock,
1322 	 * some other task may have punched a hole in the range, or we may have
1323 	 * now an inline extent, in which case we should not defrag. So check
1324 	 * for that here, where we have the inode and the range locked, and bail
1325 	 * out if that happened.
1326 	 */
1327 	search_start = page_start;
1328 	while (search_start < page_end) {
1329 		struct extent_map *em;
1330 
1331 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1332 				      page_end - search_start);
1333 		if (IS_ERR(em)) {
1334 			ret = PTR_ERR(em);
1335 			goto out_unlock_range;
1336 		}
1337 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1338 			free_extent_map(em);
1339 			/* Ok, 0 means we did not defrag anything */
1340 			ret = 0;
1341 			goto out_unlock_range;
1342 		}
1343 		search_start = extent_map_end(em);
1344 		free_extent_map(em);
1345 	}
1346 
1347 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1348 			  page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1349 			  EXTENT_DEFRAG, 0, 0, &cached_state);
1350 
1351 	if (i_done != page_cnt) {
1352 		spin_lock(&BTRFS_I(inode)->lock);
1353 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1354 		spin_unlock(&BTRFS_I(inode)->lock);
1355 		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1356 				start, (page_cnt - i_done) << PAGE_SHIFT, true);
1357 	}
1358 
1359 
1360 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1361 			  &cached_state);
1362 
1363 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1364 			     page_start, page_end - 1, &cached_state);
1365 
1366 	for (i = 0; i < i_done; i++) {
1367 		clear_page_dirty_for_io(pages[i]);
1368 		ClearPageChecked(pages[i]);
1369 		set_page_dirty(pages[i]);
1370 		unlock_page(pages[i]);
1371 		put_page(pages[i]);
1372 	}
1373 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1374 	extent_changeset_free(data_reserved);
1375 	return i_done;
1376 
1377 out_unlock_range:
1378 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1379 			     page_start, page_end - 1, &cached_state);
1380 out:
1381 	for (i = 0; i < i_done; i++) {
1382 		unlock_page(pages[i]);
1383 		put_page(pages[i]);
1384 	}
1385 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1386 			start, page_cnt << PAGE_SHIFT, true);
1387 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1388 	extent_changeset_free(data_reserved);
1389 	return ret;
1390 
1391 }
1392 
1393 int btrfs_defrag_file(struct inode *inode, struct file *file,
1394 		      struct btrfs_ioctl_defrag_range_args *range,
1395 		      u64 newer_than, unsigned long max_to_defrag)
1396 {
1397 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1398 	struct btrfs_root *root = BTRFS_I(inode)->root;
1399 	struct file_ra_state *ra = NULL;
1400 	unsigned long last_index;
1401 	u64 isize = i_size_read(inode);
1402 	u64 last_len = 0;
1403 	u64 skip = 0;
1404 	u64 defrag_end = 0;
1405 	u64 newer_off = range->start;
1406 	unsigned long i;
1407 	unsigned long ra_index = 0;
1408 	int ret;
1409 	int defrag_count = 0;
1410 	int compress_type = BTRFS_COMPRESS_ZLIB;
1411 	u32 extent_thresh = range->extent_thresh;
1412 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1413 	unsigned long cluster = max_cluster;
1414 	u64 new_align = ~((u64)SZ_128K - 1);
1415 	struct page **pages = NULL;
1416 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1417 
1418 	if (isize == 0)
1419 		return 0;
1420 
1421 	if (range->start >= isize)
1422 		return -EINVAL;
1423 
1424 	if (do_compress) {
1425 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1426 			return -EINVAL;
1427 		if (range->compress_type)
1428 			compress_type = range->compress_type;
1429 	}
1430 
1431 	if (extent_thresh == 0)
1432 		extent_thresh = SZ_256K;
1433 
1434 	/*
1435 	 * If we were not given a file, allocate a readahead context. As
1436 	 * readahead is just an optimization, defrag will work without it so
1437 	 * we don't error out.
1438 	 */
1439 	if (!file) {
1440 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1441 		if (ra)
1442 			file_ra_state_init(ra, inode->i_mapping);
1443 	} else {
1444 		ra = &file->f_ra;
1445 	}
1446 
1447 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1448 	if (!pages) {
1449 		ret = -ENOMEM;
1450 		goto out_ra;
1451 	}
1452 
1453 	/* find the last page to defrag */
1454 	if (range->start + range->len > range->start) {
1455 		last_index = min_t(u64, isize - 1,
1456 			 range->start + range->len - 1) >> PAGE_SHIFT;
1457 	} else {
1458 		last_index = (isize - 1) >> PAGE_SHIFT;
1459 	}
1460 
1461 	if (newer_than) {
1462 		ret = find_new_extents(root, inode, newer_than,
1463 				       &newer_off, SZ_64K);
1464 		if (!ret) {
1465 			range->start = newer_off;
1466 			/*
1467 			 * we always align our defrag to help keep
1468 			 * the extents in the file evenly spaced
1469 			 */
1470 			i = (newer_off & new_align) >> PAGE_SHIFT;
1471 		} else
1472 			goto out_ra;
1473 	} else {
1474 		i = range->start >> PAGE_SHIFT;
1475 	}
1476 	if (!max_to_defrag)
1477 		max_to_defrag = last_index - i + 1;
1478 
1479 	/*
1480 	 * make writeback starts from i, so the defrag range can be
1481 	 * written sequentially.
1482 	 */
1483 	if (i < inode->i_mapping->writeback_index)
1484 		inode->i_mapping->writeback_index = i;
1485 
1486 	while (i <= last_index && defrag_count < max_to_defrag &&
1487 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1488 		/*
1489 		 * make sure we stop running if someone unmounts
1490 		 * the FS
1491 		 */
1492 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1493 			break;
1494 
1495 		if (btrfs_defrag_cancelled(fs_info)) {
1496 			btrfs_debug(fs_info, "defrag_file cancelled");
1497 			ret = -EAGAIN;
1498 			goto error;
1499 		}
1500 
1501 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1502 					 extent_thresh, &last_len, &skip,
1503 					 &defrag_end, do_compress)){
1504 			unsigned long next;
1505 			/*
1506 			 * the should_defrag function tells us how much to skip
1507 			 * bump our counter by the suggested amount
1508 			 */
1509 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1510 			i = max(i + 1, next);
1511 			continue;
1512 		}
1513 
1514 		if (!newer_than) {
1515 			cluster = (PAGE_ALIGN(defrag_end) >>
1516 				   PAGE_SHIFT) - i;
1517 			cluster = min(cluster, max_cluster);
1518 		} else {
1519 			cluster = max_cluster;
1520 		}
1521 
1522 		if (i + cluster > ra_index) {
1523 			ra_index = max(i, ra_index);
1524 			if (ra)
1525 				page_cache_sync_readahead(inode->i_mapping, ra,
1526 						file, ra_index, cluster);
1527 			ra_index += cluster;
1528 		}
1529 
1530 		btrfs_inode_lock(inode, 0);
1531 		if (IS_SWAPFILE(inode)) {
1532 			ret = -ETXTBSY;
1533 		} else {
1534 			if (do_compress)
1535 				BTRFS_I(inode)->defrag_compress = compress_type;
1536 			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1537 		}
1538 		if (ret < 0) {
1539 			btrfs_inode_unlock(inode, 0);
1540 			goto out_ra;
1541 		}
1542 
1543 		defrag_count += ret;
1544 		balance_dirty_pages_ratelimited(inode->i_mapping);
1545 		btrfs_inode_unlock(inode, 0);
1546 
1547 		if (newer_than) {
1548 			if (newer_off == (u64)-1)
1549 				break;
1550 
1551 			if (ret > 0)
1552 				i += ret;
1553 
1554 			newer_off = max(newer_off + 1,
1555 					(u64)i << PAGE_SHIFT);
1556 
1557 			ret = find_new_extents(root, inode, newer_than,
1558 					       &newer_off, SZ_64K);
1559 			if (!ret) {
1560 				range->start = newer_off;
1561 				i = (newer_off & new_align) >> PAGE_SHIFT;
1562 			} else {
1563 				break;
1564 			}
1565 		} else {
1566 			if (ret > 0) {
1567 				i += ret;
1568 				last_len += ret << PAGE_SHIFT;
1569 			} else {
1570 				i++;
1571 				last_len = 0;
1572 			}
1573 		}
1574 	}
1575 
1576 	ret = defrag_count;
1577 error:
1578 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1579 		filemap_flush(inode->i_mapping);
1580 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1581 			     &BTRFS_I(inode)->runtime_flags))
1582 			filemap_flush(inode->i_mapping);
1583 	}
1584 
1585 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1586 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1587 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1588 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1589 	}
1590 
1591 out_ra:
1592 	if (do_compress) {
1593 		btrfs_inode_lock(inode, 0);
1594 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1595 		btrfs_inode_unlock(inode, 0);
1596 	}
1597 	if (!file)
1598 		kfree(ra);
1599 	kfree(pages);
1600 	return ret;
1601 }
1602 
1603 /*
1604  * Try to start exclusive operation @type or cancel it if it's running.
1605  *
1606  * Return:
1607  *   0        - normal mode, newly claimed op started
1608  *  >0        - normal mode, something else is running,
1609  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1610  * ECANCELED  - cancel mode, successful cancel
1611  * ENOTCONN   - cancel mode, operation not running anymore
1612  */
1613 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1614 			enum btrfs_exclusive_operation type, bool cancel)
1615 {
1616 	if (!cancel) {
1617 		/* Start normal op */
1618 		if (!btrfs_exclop_start(fs_info, type))
1619 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1620 		/* Exclusive operation is now claimed */
1621 		return 0;
1622 	}
1623 
1624 	/* Cancel running op */
1625 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1626 		/*
1627 		 * This blocks any exclop finish from setting it to NONE, so we
1628 		 * request cancellation. Either it runs and we will wait for it,
1629 		 * or it has finished and no waiting will happen.
1630 		 */
1631 		atomic_inc(&fs_info->reloc_cancel_req);
1632 		btrfs_exclop_start_unlock(fs_info);
1633 
1634 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1635 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1636 				    TASK_INTERRUPTIBLE);
1637 
1638 		return -ECANCELED;
1639 	}
1640 
1641 	/* Something else is running or none */
1642 	return -ENOTCONN;
1643 }
1644 
1645 static noinline int btrfs_ioctl_resize(struct file *file,
1646 					void __user *arg)
1647 {
1648 	struct inode *inode = file_inode(file);
1649 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1650 	u64 new_size;
1651 	u64 old_size;
1652 	u64 devid = 1;
1653 	struct btrfs_root *root = BTRFS_I(inode)->root;
1654 	struct btrfs_ioctl_vol_args *vol_args;
1655 	struct btrfs_trans_handle *trans;
1656 	struct btrfs_device *device = NULL;
1657 	char *sizestr;
1658 	char *retptr;
1659 	char *devstr = NULL;
1660 	int ret = 0;
1661 	int mod = 0;
1662 	bool cancel;
1663 
1664 	if (!capable(CAP_SYS_ADMIN))
1665 		return -EPERM;
1666 
1667 	ret = mnt_want_write_file(file);
1668 	if (ret)
1669 		return ret;
1670 
1671 	/*
1672 	 * Read the arguments before checking exclusivity to be able to
1673 	 * distinguish regular resize and cancel
1674 	 */
1675 	vol_args = memdup_user(arg, sizeof(*vol_args));
1676 	if (IS_ERR(vol_args)) {
1677 		ret = PTR_ERR(vol_args);
1678 		goto out_drop;
1679 	}
1680 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1681 	sizestr = vol_args->name;
1682 	cancel = (strcmp("cancel", sizestr) == 0);
1683 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1684 	if (ret)
1685 		goto out_free;
1686 	/* Exclusive operation is now claimed */
1687 
1688 	devstr = strchr(sizestr, ':');
1689 	if (devstr) {
1690 		sizestr = devstr + 1;
1691 		*devstr = '\0';
1692 		devstr = vol_args->name;
1693 		ret = kstrtoull(devstr, 10, &devid);
1694 		if (ret)
1695 			goto out_finish;
1696 		if (!devid) {
1697 			ret = -EINVAL;
1698 			goto out_finish;
1699 		}
1700 		btrfs_info(fs_info, "resizing devid %llu", devid);
1701 	}
1702 
1703 	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
1704 	if (!device) {
1705 		btrfs_info(fs_info, "resizer unable to find device %llu",
1706 			   devid);
1707 		ret = -ENODEV;
1708 		goto out_finish;
1709 	}
1710 
1711 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1712 		btrfs_info(fs_info,
1713 			   "resizer unable to apply on readonly device %llu",
1714 		       devid);
1715 		ret = -EPERM;
1716 		goto out_finish;
1717 	}
1718 
1719 	if (!strcmp(sizestr, "max"))
1720 		new_size = device->bdev->bd_inode->i_size;
1721 	else {
1722 		if (sizestr[0] == '-') {
1723 			mod = -1;
1724 			sizestr++;
1725 		} else if (sizestr[0] == '+') {
1726 			mod = 1;
1727 			sizestr++;
1728 		}
1729 		new_size = memparse(sizestr, &retptr);
1730 		if (*retptr != '\0' || new_size == 0) {
1731 			ret = -EINVAL;
1732 			goto out_finish;
1733 		}
1734 	}
1735 
1736 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1737 		ret = -EPERM;
1738 		goto out_finish;
1739 	}
1740 
1741 	old_size = btrfs_device_get_total_bytes(device);
1742 
1743 	if (mod < 0) {
1744 		if (new_size > old_size) {
1745 			ret = -EINVAL;
1746 			goto out_finish;
1747 		}
1748 		new_size = old_size - new_size;
1749 	} else if (mod > 0) {
1750 		if (new_size > ULLONG_MAX - old_size) {
1751 			ret = -ERANGE;
1752 			goto out_finish;
1753 		}
1754 		new_size = old_size + new_size;
1755 	}
1756 
1757 	if (new_size < SZ_256M) {
1758 		ret = -EINVAL;
1759 		goto out_finish;
1760 	}
1761 	if (new_size > device->bdev->bd_inode->i_size) {
1762 		ret = -EFBIG;
1763 		goto out_finish;
1764 	}
1765 
1766 	new_size = round_down(new_size, fs_info->sectorsize);
1767 
1768 	if (new_size > old_size) {
1769 		trans = btrfs_start_transaction(root, 0);
1770 		if (IS_ERR(trans)) {
1771 			ret = PTR_ERR(trans);
1772 			goto out_finish;
1773 		}
1774 		ret = btrfs_grow_device(trans, device, new_size);
1775 		btrfs_commit_transaction(trans);
1776 	} else if (new_size < old_size) {
1777 		ret = btrfs_shrink_device(device, new_size);
1778 	} /* equal, nothing need to do */
1779 
1780 	if (ret == 0 && new_size != old_size)
1781 		btrfs_info_in_rcu(fs_info,
1782 			"resize device %s (devid %llu) from %llu to %llu",
1783 			rcu_str_deref(device->name), device->devid,
1784 			old_size, new_size);
1785 out_finish:
1786 	btrfs_exclop_finish(fs_info);
1787 out_free:
1788 	kfree(vol_args);
1789 out_drop:
1790 	mnt_drop_write_file(file);
1791 	return ret;
1792 }
1793 
1794 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1795 				const char *name, unsigned long fd, int subvol,
1796 				bool readonly,
1797 				struct btrfs_qgroup_inherit *inherit)
1798 {
1799 	int namelen;
1800 	int ret = 0;
1801 
1802 	if (!S_ISDIR(file_inode(file)->i_mode))
1803 		return -ENOTDIR;
1804 
1805 	ret = mnt_want_write_file(file);
1806 	if (ret)
1807 		goto out;
1808 
1809 	namelen = strlen(name);
1810 	if (strchr(name, '/')) {
1811 		ret = -EINVAL;
1812 		goto out_drop_write;
1813 	}
1814 
1815 	if (name[0] == '.' &&
1816 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1817 		ret = -EEXIST;
1818 		goto out_drop_write;
1819 	}
1820 
1821 	if (subvol) {
1822 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1823 				     NULL, readonly, inherit);
1824 	} else {
1825 		struct fd src = fdget(fd);
1826 		struct inode *src_inode;
1827 		if (!src.file) {
1828 			ret = -EINVAL;
1829 			goto out_drop_write;
1830 		}
1831 
1832 		src_inode = file_inode(src.file);
1833 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1834 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1835 				   "Snapshot src from another FS");
1836 			ret = -EXDEV;
1837 		} else if (!inode_owner_or_capable(&init_user_ns, src_inode)) {
1838 			/*
1839 			 * Subvolume creation is not restricted, but snapshots
1840 			 * are limited to own subvolumes only
1841 			 */
1842 			ret = -EPERM;
1843 		} else {
1844 			ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1845 					     BTRFS_I(src_inode)->root,
1846 					     readonly, inherit);
1847 		}
1848 		fdput(src);
1849 	}
1850 out_drop_write:
1851 	mnt_drop_write_file(file);
1852 out:
1853 	return ret;
1854 }
1855 
1856 static noinline int btrfs_ioctl_snap_create(struct file *file,
1857 					    void __user *arg, int subvol)
1858 {
1859 	struct btrfs_ioctl_vol_args *vol_args;
1860 	int ret;
1861 
1862 	if (!S_ISDIR(file_inode(file)->i_mode))
1863 		return -ENOTDIR;
1864 
1865 	vol_args = memdup_user(arg, sizeof(*vol_args));
1866 	if (IS_ERR(vol_args))
1867 		return PTR_ERR(vol_args);
1868 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1869 
1870 	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1871 					subvol, false, NULL);
1872 
1873 	kfree(vol_args);
1874 	return ret;
1875 }
1876 
1877 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1878 					       void __user *arg, int subvol)
1879 {
1880 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1881 	int ret;
1882 	bool readonly = false;
1883 	struct btrfs_qgroup_inherit *inherit = NULL;
1884 
1885 	if (!S_ISDIR(file_inode(file)->i_mode))
1886 		return -ENOTDIR;
1887 
1888 	vol_args = memdup_user(arg, sizeof(*vol_args));
1889 	if (IS_ERR(vol_args))
1890 		return PTR_ERR(vol_args);
1891 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1892 
1893 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1894 		ret = -EOPNOTSUPP;
1895 		goto free_args;
1896 	}
1897 
1898 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1899 		readonly = true;
1900 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1901 		u64 nums;
1902 
1903 		if (vol_args->size < sizeof(*inherit) ||
1904 		    vol_args->size > PAGE_SIZE) {
1905 			ret = -EINVAL;
1906 			goto free_args;
1907 		}
1908 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1909 		if (IS_ERR(inherit)) {
1910 			ret = PTR_ERR(inherit);
1911 			goto free_args;
1912 		}
1913 
1914 		if (inherit->num_qgroups > PAGE_SIZE ||
1915 		    inherit->num_ref_copies > PAGE_SIZE ||
1916 		    inherit->num_excl_copies > PAGE_SIZE) {
1917 			ret = -EINVAL;
1918 			goto free_inherit;
1919 		}
1920 
1921 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1922 		       2 * inherit->num_excl_copies;
1923 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1924 			ret = -EINVAL;
1925 			goto free_inherit;
1926 		}
1927 	}
1928 
1929 	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1930 					subvol, readonly, inherit);
1931 	if (ret)
1932 		goto free_inherit;
1933 free_inherit:
1934 	kfree(inherit);
1935 free_args:
1936 	kfree(vol_args);
1937 	return ret;
1938 }
1939 
1940 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1941 						void __user *arg)
1942 {
1943 	struct inode *inode = file_inode(file);
1944 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1945 	struct btrfs_root *root = BTRFS_I(inode)->root;
1946 	int ret = 0;
1947 	u64 flags = 0;
1948 
1949 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1950 		return -EINVAL;
1951 
1952 	down_read(&fs_info->subvol_sem);
1953 	if (btrfs_root_readonly(root))
1954 		flags |= BTRFS_SUBVOL_RDONLY;
1955 	up_read(&fs_info->subvol_sem);
1956 
1957 	if (copy_to_user(arg, &flags, sizeof(flags)))
1958 		ret = -EFAULT;
1959 
1960 	return ret;
1961 }
1962 
1963 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1964 					      void __user *arg)
1965 {
1966 	struct inode *inode = file_inode(file);
1967 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1968 	struct btrfs_root *root = BTRFS_I(inode)->root;
1969 	struct btrfs_trans_handle *trans;
1970 	u64 root_flags;
1971 	u64 flags;
1972 	int ret = 0;
1973 
1974 	if (!inode_owner_or_capable(&init_user_ns, inode))
1975 		return -EPERM;
1976 
1977 	ret = mnt_want_write_file(file);
1978 	if (ret)
1979 		goto out;
1980 
1981 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1982 		ret = -EINVAL;
1983 		goto out_drop_write;
1984 	}
1985 
1986 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1987 		ret = -EFAULT;
1988 		goto out_drop_write;
1989 	}
1990 
1991 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1992 		ret = -EOPNOTSUPP;
1993 		goto out_drop_write;
1994 	}
1995 
1996 	down_write(&fs_info->subvol_sem);
1997 
1998 	/* nothing to do */
1999 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2000 		goto out_drop_sem;
2001 
2002 	root_flags = btrfs_root_flags(&root->root_item);
2003 	if (flags & BTRFS_SUBVOL_RDONLY) {
2004 		btrfs_set_root_flags(&root->root_item,
2005 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2006 	} else {
2007 		/*
2008 		 * Block RO -> RW transition if this subvolume is involved in
2009 		 * send
2010 		 */
2011 		spin_lock(&root->root_item_lock);
2012 		if (root->send_in_progress == 0) {
2013 			btrfs_set_root_flags(&root->root_item,
2014 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2015 			spin_unlock(&root->root_item_lock);
2016 		} else {
2017 			spin_unlock(&root->root_item_lock);
2018 			btrfs_warn(fs_info,
2019 				   "Attempt to set subvolume %llu read-write during send",
2020 				   root->root_key.objectid);
2021 			ret = -EPERM;
2022 			goto out_drop_sem;
2023 		}
2024 	}
2025 
2026 	trans = btrfs_start_transaction(root, 1);
2027 	if (IS_ERR(trans)) {
2028 		ret = PTR_ERR(trans);
2029 		goto out_reset;
2030 	}
2031 
2032 	ret = btrfs_update_root(trans, fs_info->tree_root,
2033 				&root->root_key, &root->root_item);
2034 	if (ret < 0) {
2035 		btrfs_end_transaction(trans);
2036 		goto out_reset;
2037 	}
2038 
2039 	ret = btrfs_commit_transaction(trans);
2040 
2041 out_reset:
2042 	if (ret)
2043 		btrfs_set_root_flags(&root->root_item, root_flags);
2044 out_drop_sem:
2045 	up_write(&fs_info->subvol_sem);
2046 out_drop_write:
2047 	mnt_drop_write_file(file);
2048 out:
2049 	return ret;
2050 }
2051 
2052 static noinline int key_in_sk(struct btrfs_key *key,
2053 			      struct btrfs_ioctl_search_key *sk)
2054 {
2055 	struct btrfs_key test;
2056 	int ret;
2057 
2058 	test.objectid = sk->min_objectid;
2059 	test.type = sk->min_type;
2060 	test.offset = sk->min_offset;
2061 
2062 	ret = btrfs_comp_cpu_keys(key, &test);
2063 	if (ret < 0)
2064 		return 0;
2065 
2066 	test.objectid = sk->max_objectid;
2067 	test.type = sk->max_type;
2068 	test.offset = sk->max_offset;
2069 
2070 	ret = btrfs_comp_cpu_keys(key, &test);
2071 	if (ret > 0)
2072 		return 0;
2073 	return 1;
2074 }
2075 
2076 static noinline int copy_to_sk(struct btrfs_path *path,
2077 			       struct btrfs_key *key,
2078 			       struct btrfs_ioctl_search_key *sk,
2079 			       size_t *buf_size,
2080 			       char __user *ubuf,
2081 			       unsigned long *sk_offset,
2082 			       int *num_found)
2083 {
2084 	u64 found_transid;
2085 	struct extent_buffer *leaf;
2086 	struct btrfs_ioctl_search_header sh;
2087 	struct btrfs_key test;
2088 	unsigned long item_off;
2089 	unsigned long item_len;
2090 	int nritems;
2091 	int i;
2092 	int slot;
2093 	int ret = 0;
2094 
2095 	leaf = path->nodes[0];
2096 	slot = path->slots[0];
2097 	nritems = btrfs_header_nritems(leaf);
2098 
2099 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2100 		i = nritems;
2101 		goto advance_key;
2102 	}
2103 	found_transid = btrfs_header_generation(leaf);
2104 
2105 	for (i = slot; i < nritems; i++) {
2106 		item_off = btrfs_item_ptr_offset(leaf, i);
2107 		item_len = btrfs_item_size_nr(leaf, i);
2108 
2109 		btrfs_item_key_to_cpu(leaf, key, i);
2110 		if (!key_in_sk(key, sk))
2111 			continue;
2112 
2113 		if (sizeof(sh) + item_len > *buf_size) {
2114 			if (*num_found) {
2115 				ret = 1;
2116 				goto out;
2117 			}
2118 
2119 			/*
2120 			 * return one empty item back for v1, which does not
2121 			 * handle -EOVERFLOW
2122 			 */
2123 
2124 			*buf_size = sizeof(sh) + item_len;
2125 			item_len = 0;
2126 			ret = -EOVERFLOW;
2127 		}
2128 
2129 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2130 			ret = 1;
2131 			goto out;
2132 		}
2133 
2134 		sh.objectid = key->objectid;
2135 		sh.offset = key->offset;
2136 		sh.type = key->type;
2137 		sh.len = item_len;
2138 		sh.transid = found_transid;
2139 
2140 		/*
2141 		 * Copy search result header. If we fault then loop again so we
2142 		 * can fault in the pages and -EFAULT there if there's a
2143 		 * problem. Otherwise we'll fault and then copy the buffer in
2144 		 * properly this next time through
2145 		 */
2146 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2147 			ret = 0;
2148 			goto out;
2149 		}
2150 
2151 		*sk_offset += sizeof(sh);
2152 
2153 		if (item_len) {
2154 			char __user *up = ubuf + *sk_offset;
2155 			/*
2156 			 * Copy the item, same behavior as above, but reset the
2157 			 * * sk_offset so we copy the full thing again.
2158 			 */
2159 			if (read_extent_buffer_to_user_nofault(leaf, up,
2160 						item_off, item_len)) {
2161 				ret = 0;
2162 				*sk_offset -= sizeof(sh);
2163 				goto out;
2164 			}
2165 
2166 			*sk_offset += item_len;
2167 		}
2168 		(*num_found)++;
2169 
2170 		if (ret) /* -EOVERFLOW from above */
2171 			goto out;
2172 
2173 		if (*num_found >= sk->nr_items) {
2174 			ret = 1;
2175 			goto out;
2176 		}
2177 	}
2178 advance_key:
2179 	ret = 0;
2180 	test.objectid = sk->max_objectid;
2181 	test.type = sk->max_type;
2182 	test.offset = sk->max_offset;
2183 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2184 		ret = 1;
2185 	else if (key->offset < (u64)-1)
2186 		key->offset++;
2187 	else if (key->type < (u8)-1) {
2188 		key->offset = 0;
2189 		key->type++;
2190 	} else if (key->objectid < (u64)-1) {
2191 		key->offset = 0;
2192 		key->type = 0;
2193 		key->objectid++;
2194 	} else
2195 		ret = 1;
2196 out:
2197 	/*
2198 	 *  0: all items from this leaf copied, continue with next
2199 	 *  1: * more items can be copied, but unused buffer is too small
2200 	 *     * all items were found
2201 	 *     Either way, it will stops the loop which iterates to the next
2202 	 *     leaf
2203 	 *  -EOVERFLOW: item was to large for buffer
2204 	 *  -EFAULT: could not copy extent buffer back to userspace
2205 	 */
2206 	return ret;
2207 }
2208 
2209 static noinline int search_ioctl(struct inode *inode,
2210 				 struct btrfs_ioctl_search_key *sk,
2211 				 size_t *buf_size,
2212 				 char __user *ubuf)
2213 {
2214 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2215 	struct btrfs_root *root;
2216 	struct btrfs_key key;
2217 	struct btrfs_path *path;
2218 	int ret;
2219 	int num_found = 0;
2220 	unsigned long sk_offset = 0;
2221 
2222 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2223 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2224 		return -EOVERFLOW;
2225 	}
2226 
2227 	path = btrfs_alloc_path();
2228 	if (!path)
2229 		return -ENOMEM;
2230 
2231 	if (sk->tree_id == 0) {
2232 		/* search the root of the inode that was passed */
2233 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2234 	} else {
2235 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2236 		if (IS_ERR(root)) {
2237 			btrfs_free_path(path);
2238 			return PTR_ERR(root);
2239 		}
2240 	}
2241 
2242 	key.objectid = sk->min_objectid;
2243 	key.type = sk->min_type;
2244 	key.offset = sk->min_offset;
2245 
2246 	while (1) {
2247 		ret = fault_in_pages_writeable(ubuf + sk_offset,
2248 					       *buf_size - sk_offset);
2249 		if (ret)
2250 			break;
2251 
2252 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2253 		if (ret != 0) {
2254 			if (ret > 0)
2255 				ret = 0;
2256 			goto err;
2257 		}
2258 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2259 				 &sk_offset, &num_found);
2260 		btrfs_release_path(path);
2261 		if (ret)
2262 			break;
2263 
2264 	}
2265 	if (ret > 0)
2266 		ret = 0;
2267 err:
2268 	sk->nr_items = num_found;
2269 	btrfs_put_root(root);
2270 	btrfs_free_path(path);
2271 	return ret;
2272 }
2273 
2274 static noinline int btrfs_ioctl_tree_search(struct file *file,
2275 					   void __user *argp)
2276 {
2277 	struct btrfs_ioctl_search_args __user *uargs;
2278 	struct btrfs_ioctl_search_key sk;
2279 	struct inode *inode;
2280 	int ret;
2281 	size_t buf_size;
2282 
2283 	if (!capable(CAP_SYS_ADMIN))
2284 		return -EPERM;
2285 
2286 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2287 
2288 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2289 		return -EFAULT;
2290 
2291 	buf_size = sizeof(uargs->buf);
2292 
2293 	inode = file_inode(file);
2294 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2295 
2296 	/*
2297 	 * In the origin implementation an overflow is handled by returning a
2298 	 * search header with a len of zero, so reset ret.
2299 	 */
2300 	if (ret == -EOVERFLOW)
2301 		ret = 0;
2302 
2303 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2304 		ret = -EFAULT;
2305 	return ret;
2306 }
2307 
2308 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2309 					       void __user *argp)
2310 {
2311 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2312 	struct btrfs_ioctl_search_args_v2 args;
2313 	struct inode *inode;
2314 	int ret;
2315 	size_t buf_size;
2316 	const size_t buf_limit = SZ_16M;
2317 
2318 	if (!capable(CAP_SYS_ADMIN))
2319 		return -EPERM;
2320 
2321 	/* copy search header and buffer size */
2322 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2323 	if (copy_from_user(&args, uarg, sizeof(args)))
2324 		return -EFAULT;
2325 
2326 	buf_size = args.buf_size;
2327 
2328 	/* limit result size to 16MB */
2329 	if (buf_size > buf_limit)
2330 		buf_size = buf_limit;
2331 
2332 	inode = file_inode(file);
2333 	ret = search_ioctl(inode, &args.key, &buf_size,
2334 			   (char __user *)(&uarg->buf[0]));
2335 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2336 		ret = -EFAULT;
2337 	else if (ret == -EOVERFLOW &&
2338 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2339 		ret = -EFAULT;
2340 
2341 	return ret;
2342 }
2343 
2344 /*
2345  * Search INODE_REFs to identify path name of 'dirid' directory
2346  * in a 'tree_id' tree. and sets path name to 'name'.
2347  */
2348 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2349 				u64 tree_id, u64 dirid, char *name)
2350 {
2351 	struct btrfs_root *root;
2352 	struct btrfs_key key;
2353 	char *ptr;
2354 	int ret = -1;
2355 	int slot;
2356 	int len;
2357 	int total_len = 0;
2358 	struct btrfs_inode_ref *iref;
2359 	struct extent_buffer *l;
2360 	struct btrfs_path *path;
2361 
2362 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2363 		name[0]='\0';
2364 		return 0;
2365 	}
2366 
2367 	path = btrfs_alloc_path();
2368 	if (!path)
2369 		return -ENOMEM;
2370 
2371 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2372 
2373 	root = btrfs_get_fs_root(info, tree_id, true);
2374 	if (IS_ERR(root)) {
2375 		ret = PTR_ERR(root);
2376 		root = NULL;
2377 		goto out;
2378 	}
2379 
2380 	key.objectid = dirid;
2381 	key.type = BTRFS_INODE_REF_KEY;
2382 	key.offset = (u64)-1;
2383 
2384 	while (1) {
2385 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2386 		if (ret < 0)
2387 			goto out;
2388 		else if (ret > 0) {
2389 			ret = btrfs_previous_item(root, path, dirid,
2390 						  BTRFS_INODE_REF_KEY);
2391 			if (ret < 0)
2392 				goto out;
2393 			else if (ret > 0) {
2394 				ret = -ENOENT;
2395 				goto out;
2396 			}
2397 		}
2398 
2399 		l = path->nodes[0];
2400 		slot = path->slots[0];
2401 		btrfs_item_key_to_cpu(l, &key, slot);
2402 
2403 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2404 		len = btrfs_inode_ref_name_len(l, iref);
2405 		ptr -= len + 1;
2406 		total_len += len + 1;
2407 		if (ptr < name) {
2408 			ret = -ENAMETOOLONG;
2409 			goto out;
2410 		}
2411 
2412 		*(ptr + len) = '/';
2413 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2414 
2415 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2416 			break;
2417 
2418 		btrfs_release_path(path);
2419 		key.objectid = key.offset;
2420 		key.offset = (u64)-1;
2421 		dirid = key.objectid;
2422 	}
2423 	memmove(name, ptr, total_len);
2424 	name[total_len] = '\0';
2425 	ret = 0;
2426 out:
2427 	btrfs_put_root(root);
2428 	btrfs_free_path(path);
2429 	return ret;
2430 }
2431 
2432 static int btrfs_search_path_in_tree_user(struct inode *inode,
2433 				struct btrfs_ioctl_ino_lookup_user_args *args)
2434 {
2435 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2436 	struct super_block *sb = inode->i_sb;
2437 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2438 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2439 	u64 dirid = args->dirid;
2440 	unsigned long item_off;
2441 	unsigned long item_len;
2442 	struct btrfs_inode_ref *iref;
2443 	struct btrfs_root_ref *rref;
2444 	struct btrfs_root *root = NULL;
2445 	struct btrfs_path *path;
2446 	struct btrfs_key key, key2;
2447 	struct extent_buffer *leaf;
2448 	struct inode *temp_inode;
2449 	char *ptr;
2450 	int slot;
2451 	int len;
2452 	int total_len = 0;
2453 	int ret;
2454 
2455 	path = btrfs_alloc_path();
2456 	if (!path)
2457 		return -ENOMEM;
2458 
2459 	/*
2460 	 * If the bottom subvolume does not exist directly under upper_limit,
2461 	 * construct the path in from the bottom up.
2462 	 */
2463 	if (dirid != upper_limit.objectid) {
2464 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2465 
2466 		root = btrfs_get_fs_root(fs_info, treeid, true);
2467 		if (IS_ERR(root)) {
2468 			ret = PTR_ERR(root);
2469 			goto out;
2470 		}
2471 
2472 		key.objectid = dirid;
2473 		key.type = BTRFS_INODE_REF_KEY;
2474 		key.offset = (u64)-1;
2475 		while (1) {
2476 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2477 			if (ret < 0) {
2478 				goto out_put;
2479 			} else if (ret > 0) {
2480 				ret = btrfs_previous_item(root, path, dirid,
2481 							  BTRFS_INODE_REF_KEY);
2482 				if (ret < 0) {
2483 					goto out_put;
2484 				} else if (ret > 0) {
2485 					ret = -ENOENT;
2486 					goto out_put;
2487 				}
2488 			}
2489 
2490 			leaf = path->nodes[0];
2491 			slot = path->slots[0];
2492 			btrfs_item_key_to_cpu(leaf, &key, slot);
2493 
2494 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2495 			len = btrfs_inode_ref_name_len(leaf, iref);
2496 			ptr -= len + 1;
2497 			total_len += len + 1;
2498 			if (ptr < args->path) {
2499 				ret = -ENAMETOOLONG;
2500 				goto out_put;
2501 			}
2502 
2503 			*(ptr + len) = '/';
2504 			read_extent_buffer(leaf, ptr,
2505 					(unsigned long)(iref + 1), len);
2506 
2507 			/* Check the read+exec permission of this directory */
2508 			ret = btrfs_previous_item(root, path, dirid,
2509 						  BTRFS_INODE_ITEM_KEY);
2510 			if (ret < 0) {
2511 				goto out_put;
2512 			} else if (ret > 0) {
2513 				ret = -ENOENT;
2514 				goto out_put;
2515 			}
2516 
2517 			leaf = path->nodes[0];
2518 			slot = path->slots[0];
2519 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2520 			if (key2.objectid != dirid) {
2521 				ret = -ENOENT;
2522 				goto out_put;
2523 			}
2524 
2525 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2526 			if (IS_ERR(temp_inode)) {
2527 				ret = PTR_ERR(temp_inode);
2528 				goto out_put;
2529 			}
2530 			ret = inode_permission(&init_user_ns, temp_inode,
2531 					       MAY_READ | MAY_EXEC);
2532 			iput(temp_inode);
2533 			if (ret) {
2534 				ret = -EACCES;
2535 				goto out_put;
2536 			}
2537 
2538 			if (key.offset == upper_limit.objectid)
2539 				break;
2540 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2541 				ret = -EACCES;
2542 				goto out_put;
2543 			}
2544 
2545 			btrfs_release_path(path);
2546 			key.objectid = key.offset;
2547 			key.offset = (u64)-1;
2548 			dirid = key.objectid;
2549 		}
2550 
2551 		memmove(args->path, ptr, total_len);
2552 		args->path[total_len] = '\0';
2553 		btrfs_put_root(root);
2554 		root = NULL;
2555 		btrfs_release_path(path);
2556 	}
2557 
2558 	/* Get the bottom subvolume's name from ROOT_REF */
2559 	key.objectid = treeid;
2560 	key.type = BTRFS_ROOT_REF_KEY;
2561 	key.offset = args->treeid;
2562 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2563 	if (ret < 0) {
2564 		goto out;
2565 	} else if (ret > 0) {
2566 		ret = -ENOENT;
2567 		goto out;
2568 	}
2569 
2570 	leaf = path->nodes[0];
2571 	slot = path->slots[0];
2572 	btrfs_item_key_to_cpu(leaf, &key, slot);
2573 
2574 	item_off = btrfs_item_ptr_offset(leaf, slot);
2575 	item_len = btrfs_item_size_nr(leaf, slot);
2576 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2577 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2578 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2579 		ret = -EINVAL;
2580 		goto out;
2581 	}
2582 
2583 	/* Copy subvolume's name */
2584 	item_off += sizeof(struct btrfs_root_ref);
2585 	item_len -= sizeof(struct btrfs_root_ref);
2586 	read_extent_buffer(leaf, args->name, item_off, item_len);
2587 	args->name[item_len] = 0;
2588 
2589 out_put:
2590 	btrfs_put_root(root);
2591 out:
2592 	btrfs_free_path(path);
2593 	return ret;
2594 }
2595 
2596 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2597 					   void __user *argp)
2598 {
2599 	struct btrfs_ioctl_ino_lookup_args *args;
2600 	struct inode *inode;
2601 	int ret = 0;
2602 
2603 	args = memdup_user(argp, sizeof(*args));
2604 	if (IS_ERR(args))
2605 		return PTR_ERR(args);
2606 
2607 	inode = file_inode(file);
2608 
2609 	/*
2610 	 * Unprivileged query to obtain the containing subvolume root id. The
2611 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2612 	 */
2613 	if (args->treeid == 0)
2614 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2615 
2616 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2617 		args->name[0] = 0;
2618 		goto out;
2619 	}
2620 
2621 	if (!capable(CAP_SYS_ADMIN)) {
2622 		ret = -EPERM;
2623 		goto out;
2624 	}
2625 
2626 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2627 					args->treeid, args->objectid,
2628 					args->name);
2629 
2630 out:
2631 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2632 		ret = -EFAULT;
2633 
2634 	kfree(args);
2635 	return ret;
2636 }
2637 
2638 /*
2639  * Version of ino_lookup ioctl (unprivileged)
2640  *
2641  * The main differences from ino_lookup ioctl are:
2642  *
2643  *   1. Read + Exec permission will be checked using inode_permission() during
2644  *      path construction. -EACCES will be returned in case of failure.
2645  *   2. Path construction will be stopped at the inode number which corresponds
2646  *      to the fd with which this ioctl is called. If constructed path does not
2647  *      exist under fd's inode, -EACCES will be returned.
2648  *   3. The name of bottom subvolume is also searched and filled.
2649  */
2650 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2651 {
2652 	struct btrfs_ioctl_ino_lookup_user_args *args;
2653 	struct inode *inode;
2654 	int ret;
2655 
2656 	args = memdup_user(argp, sizeof(*args));
2657 	if (IS_ERR(args))
2658 		return PTR_ERR(args);
2659 
2660 	inode = file_inode(file);
2661 
2662 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2663 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2664 		/*
2665 		 * The subvolume does not exist under fd with which this is
2666 		 * called
2667 		 */
2668 		kfree(args);
2669 		return -EACCES;
2670 	}
2671 
2672 	ret = btrfs_search_path_in_tree_user(inode, args);
2673 
2674 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2675 		ret = -EFAULT;
2676 
2677 	kfree(args);
2678 	return ret;
2679 }
2680 
2681 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2682 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2683 {
2684 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2685 	struct btrfs_fs_info *fs_info;
2686 	struct btrfs_root *root;
2687 	struct btrfs_path *path;
2688 	struct btrfs_key key;
2689 	struct btrfs_root_item *root_item;
2690 	struct btrfs_root_ref *rref;
2691 	struct extent_buffer *leaf;
2692 	unsigned long item_off;
2693 	unsigned long item_len;
2694 	struct inode *inode;
2695 	int slot;
2696 	int ret = 0;
2697 
2698 	path = btrfs_alloc_path();
2699 	if (!path)
2700 		return -ENOMEM;
2701 
2702 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2703 	if (!subvol_info) {
2704 		btrfs_free_path(path);
2705 		return -ENOMEM;
2706 	}
2707 
2708 	inode = file_inode(file);
2709 	fs_info = BTRFS_I(inode)->root->fs_info;
2710 
2711 	/* Get root_item of inode's subvolume */
2712 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2713 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2714 	if (IS_ERR(root)) {
2715 		ret = PTR_ERR(root);
2716 		goto out_free;
2717 	}
2718 	root_item = &root->root_item;
2719 
2720 	subvol_info->treeid = key.objectid;
2721 
2722 	subvol_info->generation = btrfs_root_generation(root_item);
2723 	subvol_info->flags = btrfs_root_flags(root_item);
2724 
2725 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2726 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2727 						    BTRFS_UUID_SIZE);
2728 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2729 						    BTRFS_UUID_SIZE);
2730 
2731 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2732 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2733 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2734 
2735 	subvol_info->otransid = btrfs_root_otransid(root_item);
2736 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2737 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2738 
2739 	subvol_info->stransid = btrfs_root_stransid(root_item);
2740 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2741 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2742 
2743 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2744 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2745 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2746 
2747 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2748 		/* Search root tree for ROOT_BACKREF of this subvolume */
2749 		key.type = BTRFS_ROOT_BACKREF_KEY;
2750 		key.offset = 0;
2751 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2752 		if (ret < 0) {
2753 			goto out;
2754 		} else if (path->slots[0] >=
2755 			   btrfs_header_nritems(path->nodes[0])) {
2756 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2757 			if (ret < 0) {
2758 				goto out;
2759 			} else if (ret > 0) {
2760 				ret = -EUCLEAN;
2761 				goto out;
2762 			}
2763 		}
2764 
2765 		leaf = path->nodes[0];
2766 		slot = path->slots[0];
2767 		btrfs_item_key_to_cpu(leaf, &key, slot);
2768 		if (key.objectid == subvol_info->treeid &&
2769 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2770 			subvol_info->parent_id = key.offset;
2771 
2772 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2773 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2774 
2775 			item_off = btrfs_item_ptr_offset(leaf, slot)
2776 					+ sizeof(struct btrfs_root_ref);
2777 			item_len = btrfs_item_size_nr(leaf, slot)
2778 					- sizeof(struct btrfs_root_ref);
2779 			read_extent_buffer(leaf, subvol_info->name,
2780 					   item_off, item_len);
2781 		} else {
2782 			ret = -ENOENT;
2783 			goto out;
2784 		}
2785 	}
2786 
2787 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2788 		ret = -EFAULT;
2789 
2790 out:
2791 	btrfs_put_root(root);
2792 out_free:
2793 	btrfs_free_path(path);
2794 	kfree(subvol_info);
2795 	return ret;
2796 }
2797 
2798 /*
2799  * Return ROOT_REF information of the subvolume containing this inode
2800  * except the subvolume name.
2801  */
2802 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2803 {
2804 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2805 	struct btrfs_root_ref *rref;
2806 	struct btrfs_root *root;
2807 	struct btrfs_path *path;
2808 	struct btrfs_key key;
2809 	struct extent_buffer *leaf;
2810 	struct inode *inode;
2811 	u64 objectid;
2812 	int slot;
2813 	int ret;
2814 	u8 found;
2815 
2816 	path = btrfs_alloc_path();
2817 	if (!path)
2818 		return -ENOMEM;
2819 
2820 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2821 	if (IS_ERR(rootrefs)) {
2822 		btrfs_free_path(path);
2823 		return PTR_ERR(rootrefs);
2824 	}
2825 
2826 	inode = file_inode(file);
2827 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2828 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2829 
2830 	key.objectid = objectid;
2831 	key.type = BTRFS_ROOT_REF_KEY;
2832 	key.offset = rootrefs->min_treeid;
2833 	found = 0;
2834 
2835 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2836 	if (ret < 0) {
2837 		goto out;
2838 	} else if (path->slots[0] >=
2839 		   btrfs_header_nritems(path->nodes[0])) {
2840 		ret = btrfs_next_leaf(root, path);
2841 		if (ret < 0) {
2842 			goto out;
2843 		} else if (ret > 0) {
2844 			ret = -EUCLEAN;
2845 			goto out;
2846 		}
2847 	}
2848 	while (1) {
2849 		leaf = path->nodes[0];
2850 		slot = path->slots[0];
2851 
2852 		btrfs_item_key_to_cpu(leaf, &key, slot);
2853 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2854 			ret = 0;
2855 			goto out;
2856 		}
2857 
2858 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2859 			ret = -EOVERFLOW;
2860 			goto out;
2861 		}
2862 
2863 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2864 		rootrefs->rootref[found].treeid = key.offset;
2865 		rootrefs->rootref[found].dirid =
2866 				  btrfs_root_ref_dirid(leaf, rref);
2867 		found++;
2868 
2869 		ret = btrfs_next_item(root, path);
2870 		if (ret < 0) {
2871 			goto out;
2872 		} else if (ret > 0) {
2873 			ret = -EUCLEAN;
2874 			goto out;
2875 		}
2876 	}
2877 
2878 out:
2879 	if (!ret || ret == -EOVERFLOW) {
2880 		rootrefs->num_items = found;
2881 		/* update min_treeid for next search */
2882 		if (found)
2883 			rootrefs->min_treeid =
2884 				rootrefs->rootref[found - 1].treeid + 1;
2885 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2886 			ret = -EFAULT;
2887 	}
2888 
2889 	kfree(rootrefs);
2890 	btrfs_free_path(path);
2891 
2892 	return ret;
2893 }
2894 
2895 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2896 					     void __user *arg,
2897 					     bool destroy_v2)
2898 {
2899 	struct dentry *parent = file->f_path.dentry;
2900 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2901 	struct dentry *dentry;
2902 	struct inode *dir = d_inode(parent);
2903 	struct inode *inode;
2904 	struct btrfs_root *root = BTRFS_I(dir)->root;
2905 	struct btrfs_root *dest = NULL;
2906 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2907 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2908 	char *subvol_name, *subvol_name_ptr = NULL;
2909 	int subvol_namelen;
2910 	int err = 0;
2911 	bool destroy_parent = false;
2912 
2913 	if (destroy_v2) {
2914 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2915 		if (IS_ERR(vol_args2))
2916 			return PTR_ERR(vol_args2);
2917 
2918 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2919 			err = -EOPNOTSUPP;
2920 			goto out;
2921 		}
2922 
2923 		/*
2924 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2925 		 * name, same as v1 currently does.
2926 		 */
2927 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2928 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2929 			subvol_name = vol_args2->name;
2930 
2931 			err = mnt_want_write_file(file);
2932 			if (err)
2933 				goto out;
2934 		} else {
2935 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2936 				err = -EINVAL;
2937 				goto out;
2938 			}
2939 
2940 			err = mnt_want_write_file(file);
2941 			if (err)
2942 				goto out;
2943 
2944 			dentry = btrfs_get_dentry(fs_info->sb,
2945 					BTRFS_FIRST_FREE_OBJECTID,
2946 					vol_args2->subvolid, 0, 0);
2947 			if (IS_ERR(dentry)) {
2948 				err = PTR_ERR(dentry);
2949 				goto out_drop_write;
2950 			}
2951 
2952 			/*
2953 			 * Change the default parent since the subvolume being
2954 			 * deleted can be outside of the current mount point.
2955 			 */
2956 			parent = btrfs_get_parent(dentry);
2957 
2958 			/*
2959 			 * At this point dentry->d_name can point to '/' if the
2960 			 * subvolume we want to destroy is outsite of the
2961 			 * current mount point, so we need to release the
2962 			 * current dentry and execute the lookup to return a new
2963 			 * one with ->d_name pointing to the
2964 			 * <mount point>/subvol_name.
2965 			 */
2966 			dput(dentry);
2967 			if (IS_ERR(parent)) {
2968 				err = PTR_ERR(parent);
2969 				goto out_drop_write;
2970 			}
2971 			dir = d_inode(parent);
2972 
2973 			/*
2974 			 * If v2 was used with SPEC_BY_ID, a new parent was
2975 			 * allocated since the subvolume can be outside of the
2976 			 * current mount point. Later on we need to release this
2977 			 * new parent dentry.
2978 			 */
2979 			destroy_parent = true;
2980 
2981 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2982 						fs_info, vol_args2->subvolid);
2983 			if (IS_ERR(subvol_name_ptr)) {
2984 				err = PTR_ERR(subvol_name_ptr);
2985 				goto free_parent;
2986 			}
2987 			/* subvol_name_ptr is already nul terminated */
2988 			subvol_name = (char *)kbasename(subvol_name_ptr);
2989 		}
2990 	} else {
2991 		vol_args = memdup_user(arg, sizeof(*vol_args));
2992 		if (IS_ERR(vol_args))
2993 			return PTR_ERR(vol_args);
2994 
2995 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2996 		subvol_name = vol_args->name;
2997 
2998 		err = mnt_want_write_file(file);
2999 		if (err)
3000 			goto out;
3001 	}
3002 
3003 	subvol_namelen = strlen(subvol_name);
3004 
3005 	if (strchr(subvol_name, '/') ||
3006 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
3007 		err = -EINVAL;
3008 		goto free_subvol_name;
3009 	}
3010 
3011 	if (!S_ISDIR(dir->i_mode)) {
3012 		err = -ENOTDIR;
3013 		goto free_subvol_name;
3014 	}
3015 
3016 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3017 	if (err == -EINTR)
3018 		goto free_subvol_name;
3019 	dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
3020 	if (IS_ERR(dentry)) {
3021 		err = PTR_ERR(dentry);
3022 		goto out_unlock_dir;
3023 	}
3024 
3025 	if (d_really_is_negative(dentry)) {
3026 		err = -ENOENT;
3027 		goto out_dput;
3028 	}
3029 
3030 	inode = d_inode(dentry);
3031 	dest = BTRFS_I(inode)->root;
3032 	if (!capable(CAP_SYS_ADMIN)) {
3033 		/*
3034 		 * Regular user.  Only allow this with a special mount
3035 		 * option, when the user has write+exec access to the
3036 		 * subvol root, and when rmdir(2) would have been
3037 		 * allowed.
3038 		 *
3039 		 * Note that this is _not_ check that the subvol is
3040 		 * empty or doesn't contain data that we wouldn't
3041 		 * otherwise be able to delete.
3042 		 *
3043 		 * Users who want to delete empty subvols should try
3044 		 * rmdir(2).
3045 		 */
3046 		err = -EPERM;
3047 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3048 			goto out_dput;
3049 
3050 		/*
3051 		 * Do not allow deletion if the parent dir is the same
3052 		 * as the dir to be deleted.  That means the ioctl
3053 		 * must be called on the dentry referencing the root
3054 		 * of the subvol, not a random directory contained
3055 		 * within it.
3056 		 */
3057 		err = -EINVAL;
3058 		if (root == dest)
3059 			goto out_dput;
3060 
3061 		err = inode_permission(&init_user_ns, inode,
3062 				       MAY_WRITE | MAY_EXEC);
3063 		if (err)
3064 			goto out_dput;
3065 	}
3066 
3067 	/* check if subvolume may be deleted by a user */
3068 	err = btrfs_may_delete(dir, dentry, 1);
3069 	if (err)
3070 		goto out_dput;
3071 
3072 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3073 		err = -EINVAL;
3074 		goto out_dput;
3075 	}
3076 
3077 	btrfs_inode_lock(inode, 0);
3078 	err = btrfs_delete_subvolume(dir, dentry);
3079 	btrfs_inode_unlock(inode, 0);
3080 	if (!err) {
3081 		fsnotify_rmdir(dir, dentry);
3082 		d_delete(dentry);
3083 	}
3084 
3085 out_dput:
3086 	dput(dentry);
3087 out_unlock_dir:
3088 	btrfs_inode_unlock(dir, 0);
3089 free_subvol_name:
3090 	kfree(subvol_name_ptr);
3091 free_parent:
3092 	if (destroy_parent)
3093 		dput(parent);
3094 out_drop_write:
3095 	mnt_drop_write_file(file);
3096 out:
3097 	kfree(vol_args2);
3098 	kfree(vol_args);
3099 	return err;
3100 }
3101 
3102 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3103 {
3104 	struct inode *inode = file_inode(file);
3105 	struct btrfs_root *root = BTRFS_I(inode)->root;
3106 	struct btrfs_ioctl_defrag_range_args *range;
3107 	int ret;
3108 
3109 	ret = mnt_want_write_file(file);
3110 	if (ret)
3111 		return ret;
3112 
3113 	if (btrfs_root_readonly(root)) {
3114 		ret = -EROFS;
3115 		goto out;
3116 	}
3117 
3118 	switch (inode->i_mode & S_IFMT) {
3119 	case S_IFDIR:
3120 		if (!capable(CAP_SYS_ADMIN)) {
3121 			ret = -EPERM;
3122 			goto out;
3123 		}
3124 		ret = btrfs_defrag_root(root);
3125 		break;
3126 	case S_IFREG:
3127 		/*
3128 		 * Note that this does not check the file descriptor for write
3129 		 * access. This prevents defragmenting executables that are
3130 		 * running and allows defrag on files open in read-only mode.
3131 		 */
3132 		if (!capable(CAP_SYS_ADMIN) &&
3133 		    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3134 			ret = -EPERM;
3135 			goto out;
3136 		}
3137 
3138 		range = kzalloc(sizeof(*range), GFP_KERNEL);
3139 		if (!range) {
3140 			ret = -ENOMEM;
3141 			goto out;
3142 		}
3143 
3144 		if (argp) {
3145 			if (copy_from_user(range, argp,
3146 					   sizeof(*range))) {
3147 				ret = -EFAULT;
3148 				kfree(range);
3149 				goto out;
3150 			}
3151 			/* compression requires us to start the IO */
3152 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3153 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3154 				range->extent_thresh = (u32)-1;
3155 			}
3156 		} else {
3157 			/* the rest are all set to zero by kzalloc */
3158 			range->len = (u64)-1;
3159 		}
3160 		ret = btrfs_defrag_file(file_inode(file), file,
3161 					range, BTRFS_OLDEST_GENERATION, 0);
3162 		if (ret > 0)
3163 			ret = 0;
3164 		kfree(range);
3165 		break;
3166 	default:
3167 		ret = -EINVAL;
3168 	}
3169 out:
3170 	mnt_drop_write_file(file);
3171 	return ret;
3172 }
3173 
3174 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3175 {
3176 	struct btrfs_ioctl_vol_args *vol_args;
3177 	int ret;
3178 
3179 	if (!capable(CAP_SYS_ADMIN))
3180 		return -EPERM;
3181 
3182 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3183 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3184 
3185 	vol_args = memdup_user(arg, sizeof(*vol_args));
3186 	if (IS_ERR(vol_args)) {
3187 		ret = PTR_ERR(vol_args);
3188 		goto out;
3189 	}
3190 
3191 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3192 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3193 
3194 	if (!ret)
3195 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3196 
3197 	kfree(vol_args);
3198 out:
3199 	btrfs_exclop_finish(fs_info);
3200 	return ret;
3201 }
3202 
3203 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3204 {
3205 	struct inode *inode = file_inode(file);
3206 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3207 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3208 	int ret;
3209 	bool cancel = false;
3210 
3211 	if (!capable(CAP_SYS_ADMIN))
3212 		return -EPERM;
3213 
3214 	ret = mnt_want_write_file(file);
3215 	if (ret)
3216 		return ret;
3217 
3218 	vol_args = memdup_user(arg, sizeof(*vol_args));
3219 	if (IS_ERR(vol_args)) {
3220 		ret = PTR_ERR(vol_args);
3221 		goto err_drop;
3222 	}
3223 
3224 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3225 		ret = -EOPNOTSUPP;
3226 		goto out;
3227 	}
3228 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3229 	if (!(vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) &&
3230 	    strcmp("cancel", vol_args->name) == 0)
3231 		cancel = true;
3232 
3233 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3234 					   cancel);
3235 	if (ret)
3236 		goto out;
3237 	/* Exclusive operation is now claimed */
3238 
3239 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3240 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3241 	else
3242 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3243 
3244 	btrfs_exclop_finish(fs_info);
3245 
3246 	if (!ret) {
3247 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3248 			btrfs_info(fs_info, "device deleted: id %llu",
3249 					vol_args->devid);
3250 		else
3251 			btrfs_info(fs_info, "device deleted: %s",
3252 					vol_args->name);
3253 	}
3254 out:
3255 	kfree(vol_args);
3256 err_drop:
3257 	mnt_drop_write_file(file);
3258 	return ret;
3259 }
3260 
3261 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3262 {
3263 	struct inode *inode = file_inode(file);
3264 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3265 	struct btrfs_ioctl_vol_args *vol_args;
3266 	int ret;
3267 	bool cancel;
3268 
3269 	if (!capable(CAP_SYS_ADMIN))
3270 		return -EPERM;
3271 
3272 	ret = mnt_want_write_file(file);
3273 	if (ret)
3274 		return ret;
3275 
3276 	vol_args = memdup_user(arg, sizeof(*vol_args));
3277 	if (IS_ERR(vol_args)) {
3278 		ret = PTR_ERR(vol_args);
3279 		goto out_drop_write;
3280 	}
3281 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3282 	cancel = (strcmp("cancel", vol_args->name) == 0);
3283 
3284 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3285 					   cancel);
3286 	if (ret == 0) {
3287 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3288 		if (!ret)
3289 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3290 		btrfs_exclop_finish(fs_info);
3291 	}
3292 
3293 	kfree(vol_args);
3294 out_drop_write:
3295 	mnt_drop_write_file(file);
3296 
3297 	return ret;
3298 }
3299 
3300 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3301 				void __user *arg)
3302 {
3303 	struct btrfs_ioctl_fs_info_args *fi_args;
3304 	struct btrfs_device *device;
3305 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3306 	u64 flags_in;
3307 	int ret = 0;
3308 
3309 	fi_args = memdup_user(arg, sizeof(*fi_args));
3310 	if (IS_ERR(fi_args))
3311 		return PTR_ERR(fi_args);
3312 
3313 	flags_in = fi_args->flags;
3314 	memset(fi_args, 0, sizeof(*fi_args));
3315 
3316 	rcu_read_lock();
3317 	fi_args->num_devices = fs_devices->num_devices;
3318 
3319 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3320 		if (device->devid > fi_args->max_id)
3321 			fi_args->max_id = device->devid;
3322 	}
3323 	rcu_read_unlock();
3324 
3325 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3326 	fi_args->nodesize = fs_info->nodesize;
3327 	fi_args->sectorsize = fs_info->sectorsize;
3328 	fi_args->clone_alignment = fs_info->sectorsize;
3329 
3330 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3331 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3332 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3333 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3334 	}
3335 
3336 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3337 		fi_args->generation = fs_info->generation;
3338 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3339 	}
3340 
3341 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3342 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3343 		       sizeof(fi_args->metadata_uuid));
3344 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3345 	}
3346 
3347 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3348 		ret = -EFAULT;
3349 
3350 	kfree(fi_args);
3351 	return ret;
3352 }
3353 
3354 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3355 				 void __user *arg)
3356 {
3357 	struct btrfs_ioctl_dev_info_args *di_args;
3358 	struct btrfs_device *dev;
3359 	int ret = 0;
3360 	char *s_uuid = NULL;
3361 
3362 	di_args = memdup_user(arg, sizeof(*di_args));
3363 	if (IS_ERR(di_args))
3364 		return PTR_ERR(di_args);
3365 
3366 	if (!btrfs_is_empty_uuid(di_args->uuid))
3367 		s_uuid = di_args->uuid;
3368 
3369 	rcu_read_lock();
3370 	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3371 				NULL);
3372 
3373 	if (!dev) {
3374 		ret = -ENODEV;
3375 		goto out;
3376 	}
3377 
3378 	di_args->devid = dev->devid;
3379 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3380 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3381 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3382 	if (dev->name) {
3383 		strncpy(di_args->path, rcu_str_deref(dev->name),
3384 				sizeof(di_args->path) - 1);
3385 		di_args->path[sizeof(di_args->path) - 1] = 0;
3386 	} else {
3387 		di_args->path[0] = '\0';
3388 	}
3389 
3390 out:
3391 	rcu_read_unlock();
3392 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3393 		ret = -EFAULT;
3394 
3395 	kfree(di_args);
3396 	return ret;
3397 }
3398 
3399 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3400 {
3401 	struct inode *inode = file_inode(file);
3402 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3403 	struct btrfs_root *root = BTRFS_I(inode)->root;
3404 	struct btrfs_root *new_root;
3405 	struct btrfs_dir_item *di;
3406 	struct btrfs_trans_handle *trans;
3407 	struct btrfs_path *path = NULL;
3408 	struct btrfs_disk_key disk_key;
3409 	u64 objectid = 0;
3410 	u64 dir_id;
3411 	int ret;
3412 
3413 	if (!capable(CAP_SYS_ADMIN))
3414 		return -EPERM;
3415 
3416 	ret = mnt_want_write_file(file);
3417 	if (ret)
3418 		return ret;
3419 
3420 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3421 		ret = -EFAULT;
3422 		goto out;
3423 	}
3424 
3425 	if (!objectid)
3426 		objectid = BTRFS_FS_TREE_OBJECTID;
3427 
3428 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3429 	if (IS_ERR(new_root)) {
3430 		ret = PTR_ERR(new_root);
3431 		goto out;
3432 	}
3433 	if (!is_fstree(new_root->root_key.objectid)) {
3434 		ret = -ENOENT;
3435 		goto out_free;
3436 	}
3437 
3438 	path = btrfs_alloc_path();
3439 	if (!path) {
3440 		ret = -ENOMEM;
3441 		goto out_free;
3442 	}
3443 
3444 	trans = btrfs_start_transaction(root, 1);
3445 	if (IS_ERR(trans)) {
3446 		ret = PTR_ERR(trans);
3447 		goto out_free;
3448 	}
3449 
3450 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3451 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3452 				   dir_id, "default", 7, 1);
3453 	if (IS_ERR_OR_NULL(di)) {
3454 		btrfs_release_path(path);
3455 		btrfs_end_transaction(trans);
3456 		btrfs_err(fs_info,
3457 			  "Umm, you don't have the default diritem, this isn't going to work");
3458 		ret = -ENOENT;
3459 		goto out_free;
3460 	}
3461 
3462 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3463 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3464 	btrfs_mark_buffer_dirty(path->nodes[0]);
3465 	btrfs_release_path(path);
3466 
3467 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3468 	btrfs_end_transaction(trans);
3469 out_free:
3470 	btrfs_put_root(new_root);
3471 	btrfs_free_path(path);
3472 out:
3473 	mnt_drop_write_file(file);
3474 	return ret;
3475 }
3476 
3477 static void get_block_group_info(struct list_head *groups_list,
3478 				 struct btrfs_ioctl_space_info *space)
3479 {
3480 	struct btrfs_block_group *block_group;
3481 
3482 	space->total_bytes = 0;
3483 	space->used_bytes = 0;
3484 	space->flags = 0;
3485 	list_for_each_entry(block_group, groups_list, list) {
3486 		space->flags = block_group->flags;
3487 		space->total_bytes += block_group->length;
3488 		space->used_bytes += block_group->used;
3489 	}
3490 }
3491 
3492 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3493 				   void __user *arg)
3494 {
3495 	struct btrfs_ioctl_space_args space_args;
3496 	struct btrfs_ioctl_space_info space;
3497 	struct btrfs_ioctl_space_info *dest;
3498 	struct btrfs_ioctl_space_info *dest_orig;
3499 	struct btrfs_ioctl_space_info __user *user_dest;
3500 	struct btrfs_space_info *info;
3501 	static const u64 types[] = {
3502 		BTRFS_BLOCK_GROUP_DATA,
3503 		BTRFS_BLOCK_GROUP_SYSTEM,
3504 		BTRFS_BLOCK_GROUP_METADATA,
3505 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3506 	};
3507 	int num_types = 4;
3508 	int alloc_size;
3509 	int ret = 0;
3510 	u64 slot_count = 0;
3511 	int i, c;
3512 
3513 	if (copy_from_user(&space_args,
3514 			   (struct btrfs_ioctl_space_args __user *)arg,
3515 			   sizeof(space_args)))
3516 		return -EFAULT;
3517 
3518 	for (i = 0; i < num_types; i++) {
3519 		struct btrfs_space_info *tmp;
3520 
3521 		info = NULL;
3522 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3523 			if (tmp->flags == types[i]) {
3524 				info = tmp;
3525 				break;
3526 			}
3527 		}
3528 
3529 		if (!info)
3530 			continue;
3531 
3532 		down_read(&info->groups_sem);
3533 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3534 			if (!list_empty(&info->block_groups[c]))
3535 				slot_count++;
3536 		}
3537 		up_read(&info->groups_sem);
3538 	}
3539 
3540 	/*
3541 	 * Global block reserve, exported as a space_info
3542 	 */
3543 	slot_count++;
3544 
3545 	/* space_slots == 0 means they are asking for a count */
3546 	if (space_args.space_slots == 0) {
3547 		space_args.total_spaces = slot_count;
3548 		goto out;
3549 	}
3550 
3551 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3552 
3553 	alloc_size = sizeof(*dest) * slot_count;
3554 
3555 	/* we generally have at most 6 or so space infos, one for each raid
3556 	 * level.  So, a whole page should be more than enough for everyone
3557 	 */
3558 	if (alloc_size > PAGE_SIZE)
3559 		return -ENOMEM;
3560 
3561 	space_args.total_spaces = 0;
3562 	dest = kmalloc(alloc_size, GFP_KERNEL);
3563 	if (!dest)
3564 		return -ENOMEM;
3565 	dest_orig = dest;
3566 
3567 	/* now we have a buffer to copy into */
3568 	for (i = 0; i < num_types; i++) {
3569 		struct btrfs_space_info *tmp;
3570 
3571 		if (!slot_count)
3572 			break;
3573 
3574 		info = NULL;
3575 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3576 			if (tmp->flags == types[i]) {
3577 				info = tmp;
3578 				break;
3579 			}
3580 		}
3581 
3582 		if (!info)
3583 			continue;
3584 		down_read(&info->groups_sem);
3585 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3586 			if (!list_empty(&info->block_groups[c])) {
3587 				get_block_group_info(&info->block_groups[c],
3588 						     &space);
3589 				memcpy(dest, &space, sizeof(space));
3590 				dest++;
3591 				space_args.total_spaces++;
3592 				slot_count--;
3593 			}
3594 			if (!slot_count)
3595 				break;
3596 		}
3597 		up_read(&info->groups_sem);
3598 	}
3599 
3600 	/*
3601 	 * Add global block reserve
3602 	 */
3603 	if (slot_count) {
3604 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3605 
3606 		spin_lock(&block_rsv->lock);
3607 		space.total_bytes = block_rsv->size;
3608 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3609 		spin_unlock(&block_rsv->lock);
3610 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3611 		memcpy(dest, &space, sizeof(space));
3612 		space_args.total_spaces++;
3613 	}
3614 
3615 	user_dest = (struct btrfs_ioctl_space_info __user *)
3616 		(arg + sizeof(struct btrfs_ioctl_space_args));
3617 
3618 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3619 		ret = -EFAULT;
3620 
3621 	kfree(dest_orig);
3622 out:
3623 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3624 		ret = -EFAULT;
3625 
3626 	return ret;
3627 }
3628 
3629 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3630 					    void __user *argp)
3631 {
3632 	struct btrfs_trans_handle *trans;
3633 	u64 transid;
3634 	int ret;
3635 
3636 	trans = btrfs_attach_transaction_barrier(root);
3637 	if (IS_ERR(trans)) {
3638 		if (PTR_ERR(trans) != -ENOENT)
3639 			return PTR_ERR(trans);
3640 
3641 		/* No running transaction, don't bother */
3642 		transid = root->fs_info->last_trans_committed;
3643 		goto out;
3644 	}
3645 	transid = trans->transid;
3646 	ret = btrfs_commit_transaction_async(trans);
3647 	if (ret) {
3648 		btrfs_end_transaction(trans);
3649 		return ret;
3650 	}
3651 out:
3652 	if (argp)
3653 		if (copy_to_user(argp, &transid, sizeof(transid)))
3654 			return -EFAULT;
3655 	return 0;
3656 }
3657 
3658 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3659 					   void __user *argp)
3660 {
3661 	u64 transid;
3662 
3663 	if (argp) {
3664 		if (copy_from_user(&transid, argp, sizeof(transid)))
3665 			return -EFAULT;
3666 	} else {
3667 		transid = 0;  /* current trans */
3668 	}
3669 	return btrfs_wait_for_commit(fs_info, transid);
3670 }
3671 
3672 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3673 {
3674 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3675 	struct btrfs_ioctl_scrub_args *sa;
3676 	int ret;
3677 
3678 	if (!capable(CAP_SYS_ADMIN))
3679 		return -EPERM;
3680 
3681 	sa = memdup_user(arg, sizeof(*sa));
3682 	if (IS_ERR(sa))
3683 		return PTR_ERR(sa);
3684 
3685 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3686 		ret = mnt_want_write_file(file);
3687 		if (ret)
3688 			goto out;
3689 	}
3690 
3691 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3692 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3693 			      0);
3694 
3695 	/*
3696 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3697 	 * error. This is important as it allows user space to know how much
3698 	 * progress scrub has done. For example, if scrub is canceled we get
3699 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3700 	 * space. Later user space can inspect the progress from the structure
3701 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3702 	 * previously (btrfs-progs does this).
3703 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3704 	 * then return -EFAULT to signal the structure was not copied or it may
3705 	 * be corrupt and unreliable due to a partial copy.
3706 	 */
3707 	if (copy_to_user(arg, sa, sizeof(*sa)))
3708 		ret = -EFAULT;
3709 
3710 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3711 		mnt_drop_write_file(file);
3712 out:
3713 	kfree(sa);
3714 	return ret;
3715 }
3716 
3717 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3718 {
3719 	if (!capable(CAP_SYS_ADMIN))
3720 		return -EPERM;
3721 
3722 	return btrfs_scrub_cancel(fs_info);
3723 }
3724 
3725 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3726 				       void __user *arg)
3727 {
3728 	struct btrfs_ioctl_scrub_args *sa;
3729 	int ret;
3730 
3731 	if (!capable(CAP_SYS_ADMIN))
3732 		return -EPERM;
3733 
3734 	sa = memdup_user(arg, sizeof(*sa));
3735 	if (IS_ERR(sa))
3736 		return PTR_ERR(sa);
3737 
3738 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3739 
3740 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3741 		ret = -EFAULT;
3742 
3743 	kfree(sa);
3744 	return ret;
3745 }
3746 
3747 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3748 				      void __user *arg)
3749 {
3750 	struct btrfs_ioctl_get_dev_stats *sa;
3751 	int ret;
3752 
3753 	sa = memdup_user(arg, sizeof(*sa));
3754 	if (IS_ERR(sa))
3755 		return PTR_ERR(sa);
3756 
3757 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3758 		kfree(sa);
3759 		return -EPERM;
3760 	}
3761 
3762 	ret = btrfs_get_dev_stats(fs_info, sa);
3763 
3764 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3765 		ret = -EFAULT;
3766 
3767 	kfree(sa);
3768 	return ret;
3769 }
3770 
3771 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3772 				    void __user *arg)
3773 {
3774 	struct btrfs_ioctl_dev_replace_args *p;
3775 	int ret;
3776 
3777 	if (!capable(CAP_SYS_ADMIN))
3778 		return -EPERM;
3779 
3780 	p = memdup_user(arg, sizeof(*p));
3781 	if (IS_ERR(p))
3782 		return PTR_ERR(p);
3783 
3784 	switch (p->cmd) {
3785 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3786 		if (sb_rdonly(fs_info->sb)) {
3787 			ret = -EROFS;
3788 			goto out;
3789 		}
3790 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3791 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3792 		} else {
3793 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3794 			btrfs_exclop_finish(fs_info);
3795 		}
3796 		break;
3797 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3798 		btrfs_dev_replace_status(fs_info, p);
3799 		ret = 0;
3800 		break;
3801 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3802 		p->result = btrfs_dev_replace_cancel(fs_info);
3803 		ret = 0;
3804 		break;
3805 	default:
3806 		ret = -EINVAL;
3807 		break;
3808 	}
3809 
3810 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3811 		ret = -EFAULT;
3812 out:
3813 	kfree(p);
3814 	return ret;
3815 }
3816 
3817 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3818 {
3819 	int ret = 0;
3820 	int i;
3821 	u64 rel_ptr;
3822 	int size;
3823 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3824 	struct inode_fs_paths *ipath = NULL;
3825 	struct btrfs_path *path;
3826 
3827 	if (!capable(CAP_DAC_READ_SEARCH))
3828 		return -EPERM;
3829 
3830 	path = btrfs_alloc_path();
3831 	if (!path) {
3832 		ret = -ENOMEM;
3833 		goto out;
3834 	}
3835 
3836 	ipa = memdup_user(arg, sizeof(*ipa));
3837 	if (IS_ERR(ipa)) {
3838 		ret = PTR_ERR(ipa);
3839 		ipa = NULL;
3840 		goto out;
3841 	}
3842 
3843 	size = min_t(u32, ipa->size, 4096);
3844 	ipath = init_ipath(size, root, path);
3845 	if (IS_ERR(ipath)) {
3846 		ret = PTR_ERR(ipath);
3847 		ipath = NULL;
3848 		goto out;
3849 	}
3850 
3851 	ret = paths_from_inode(ipa->inum, ipath);
3852 	if (ret < 0)
3853 		goto out;
3854 
3855 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3856 		rel_ptr = ipath->fspath->val[i] -
3857 			  (u64)(unsigned long)ipath->fspath->val;
3858 		ipath->fspath->val[i] = rel_ptr;
3859 	}
3860 
3861 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3862 			   ipath->fspath, size);
3863 	if (ret) {
3864 		ret = -EFAULT;
3865 		goto out;
3866 	}
3867 
3868 out:
3869 	btrfs_free_path(path);
3870 	free_ipath(ipath);
3871 	kfree(ipa);
3872 
3873 	return ret;
3874 }
3875 
3876 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3877 {
3878 	struct btrfs_data_container *inodes = ctx;
3879 	const size_t c = 3 * sizeof(u64);
3880 
3881 	if (inodes->bytes_left >= c) {
3882 		inodes->bytes_left -= c;
3883 		inodes->val[inodes->elem_cnt] = inum;
3884 		inodes->val[inodes->elem_cnt + 1] = offset;
3885 		inodes->val[inodes->elem_cnt + 2] = root;
3886 		inodes->elem_cnt += 3;
3887 	} else {
3888 		inodes->bytes_missing += c - inodes->bytes_left;
3889 		inodes->bytes_left = 0;
3890 		inodes->elem_missed += 3;
3891 	}
3892 
3893 	return 0;
3894 }
3895 
3896 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3897 					void __user *arg, int version)
3898 {
3899 	int ret = 0;
3900 	int size;
3901 	struct btrfs_ioctl_logical_ino_args *loi;
3902 	struct btrfs_data_container *inodes = NULL;
3903 	struct btrfs_path *path = NULL;
3904 	bool ignore_offset;
3905 
3906 	if (!capable(CAP_SYS_ADMIN))
3907 		return -EPERM;
3908 
3909 	loi = memdup_user(arg, sizeof(*loi));
3910 	if (IS_ERR(loi))
3911 		return PTR_ERR(loi);
3912 
3913 	if (version == 1) {
3914 		ignore_offset = false;
3915 		size = min_t(u32, loi->size, SZ_64K);
3916 	} else {
3917 		/* All reserved bits must be 0 for now */
3918 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3919 			ret = -EINVAL;
3920 			goto out_loi;
3921 		}
3922 		/* Only accept flags we have defined so far */
3923 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3924 			ret = -EINVAL;
3925 			goto out_loi;
3926 		}
3927 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3928 		size = min_t(u32, loi->size, SZ_16M);
3929 	}
3930 
3931 	path = btrfs_alloc_path();
3932 	if (!path) {
3933 		ret = -ENOMEM;
3934 		goto out;
3935 	}
3936 
3937 	inodes = init_data_container(size);
3938 	if (IS_ERR(inodes)) {
3939 		ret = PTR_ERR(inodes);
3940 		inodes = NULL;
3941 		goto out;
3942 	}
3943 
3944 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3945 					  build_ino_list, inodes, ignore_offset);
3946 	if (ret == -EINVAL)
3947 		ret = -ENOENT;
3948 	if (ret < 0)
3949 		goto out;
3950 
3951 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3952 			   size);
3953 	if (ret)
3954 		ret = -EFAULT;
3955 
3956 out:
3957 	btrfs_free_path(path);
3958 	kvfree(inodes);
3959 out_loi:
3960 	kfree(loi);
3961 
3962 	return ret;
3963 }
3964 
3965 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3966 			       struct btrfs_ioctl_balance_args *bargs)
3967 {
3968 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3969 
3970 	bargs->flags = bctl->flags;
3971 
3972 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3973 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3974 	if (atomic_read(&fs_info->balance_pause_req))
3975 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3976 	if (atomic_read(&fs_info->balance_cancel_req))
3977 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3978 
3979 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3980 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3981 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3982 
3983 	spin_lock(&fs_info->balance_lock);
3984 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3985 	spin_unlock(&fs_info->balance_lock);
3986 }
3987 
3988 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3989 {
3990 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3991 	struct btrfs_fs_info *fs_info = root->fs_info;
3992 	struct btrfs_ioctl_balance_args *bargs;
3993 	struct btrfs_balance_control *bctl;
3994 	bool need_unlock; /* for mut. excl. ops lock */
3995 	int ret;
3996 
3997 	if (!capable(CAP_SYS_ADMIN))
3998 		return -EPERM;
3999 
4000 	ret = mnt_want_write_file(file);
4001 	if (ret)
4002 		return ret;
4003 
4004 again:
4005 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4006 		mutex_lock(&fs_info->balance_mutex);
4007 		need_unlock = true;
4008 		goto locked;
4009 	}
4010 
4011 	/*
4012 	 * mut. excl. ops lock is locked.  Three possibilities:
4013 	 *   (1) some other op is running
4014 	 *   (2) balance is running
4015 	 *   (3) balance is paused -- special case (think resume)
4016 	 */
4017 	mutex_lock(&fs_info->balance_mutex);
4018 	if (fs_info->balance_ctl) {
4019 		/* this is either (2) or (3) */
4020 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4021 			mutex_unlock(&fs_info->balance_mutex);
4022 			/*
4023 			 * Lock released to allow other waiters to continue,
4024 			 * we'll reexamine the status again.
4025 			 */
4026 			mutex_lock(&fs_info->balance_mutex);
4027 
4028 			if (fs_info->balance_ctl &&
4029 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4030 				/* this is (3) */
4031 				need_unlock = false;
4032 				goto locked;
4033 			}
4034 
4035 			mutex_unlock(&fs_info->balance_mutex);
4036 			goto again;
4037 		} else {
4038 			/* this is (2) */
4039 			mutex_unlock(&fs_info->balance_mutex);
4040 			ret = -EINPROGRESS;
4041 			goto out;
4042 		}
4043 	} else {
4044 		/* this is (1) */
4045 		mutex_unlock(&fs_info->balance_mutex);
4046 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4047 		goto out;
4048 	}
4049 
4050 locked:
4051 
4052 	if (arg) {
4053 		bargs = memdup_user(arg, sizeof(*bargs));
4054 		if (IS_ERR(bargs)) {
4055 			ret = PTR_ERR(bargs);
4056 			goto out_unlock;
4057 		}
4058 
4059 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4060 			if (!fs_info->balance_ctl) {
4061 				ret = -ENOTCONN;
4062 				goto out_bargs;
4063 			}
4064 
4065 			bctl = fs_info->balance_ctl;
4066 			spin_lock(&fs_info->balance_lock);
4067 			bctl->flags |= BTRFS_BALANCE_RESUME;
4068 			spin_unlock(&fs_info->balance_lock);
4069 
4070 			goto do_balance;
4071 		}
4072 	} else {
4073 		bargs = NULL;
4074 	}
4075 
4076 	if (fs_info->balance_ctl) {
4077 		ret = -EINPROGRESS;
4078 		goto out_bargs;
4079 	}
4080 
4081 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4082 	if (!bctl) {
4083 		ret = -ENOMEM;
4084 		goto out_bargs;
4085 	}
4086 
4087 	if (arg) {
4088 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4089 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4090 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4091 
4092 		bctl->flags = bargs->flags;
4093 	} else {
4094 		/* balance everything - no filters */
4095 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4096 	}
4097 
4098 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4099 		ret = -EINVAL;
4100 		goto out_bctl;
4101 	}
4102 
4103 do_balance:
4104 	/*
4105 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4106 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4107 	 * all the way until unmount, in free_fs_info.  The flag should be
4108 	 * cleared after reset_balance_state.
4109 	 */
4110 	need_unlock = false;
4111 
4112 	ret = btrfs_balance(fs_info, bctl, bargs);
4113 	bctl = NULL;
4114 
4115 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4116 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4117 			ret = -EFAULT;
4118 	}
4119 
4120 out_bctl:
4121 	kfree(bctl);
4122 out_bargs:
4123 	kfree(bargs);
4124 out_unlock:
4125 	mutex_unlock(&fs_info->balance_mutex);
4126 	if (need_unlock)
4127 		btrfs_exclop_finish(fs_info);
4128 out:
4129 	mnt_drop_write_file(file);
4130 	return ret;
4131 }
4132 
4133 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4134 {
4135 	if (!capable(CAP_SYS_ADMIN))
4136 		return -EPERM;
4137 
4138 	switch (cmd) {
4139 	case BTRFS_BALANCE_CTL_PAUSE:
4140 		return btrfs_pause_balance(fs_info);
4141 	case BTRFS_BALANCE_CTL_CANCEL:
4142 		return btrfs_cancel_balance(fs_info);
4143 	}
4144 
4145 	return -EINVAL;
4146 }
4147 
4148 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4149 					 void __user *arg)
4150 {
4151 	struct btrfs_ioctl_balance_args *bargs;
4152 	int ret = 0;
4153 
4154 	if (!capable(CAP_SYS_ADMIN))
4155 		return -EPERM;
4156 
4157 	mutex_lock(&fs_info->balance_mutex);
4158 	if (!fs_info->balance_ctl) {
4159 		ret = -ENOTCONN;
4160 		goto out;
4161 	}
4162 
4163 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4164 	if (!bargs) {
4165 		ret = -ENOMEM;
4166 		goto out;
4167 	}
4168 
4169 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4170 
4171 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4172 		ret = -EFAULT;
4173 
4174 	kfree(bargs);
4175 out:
4176 	mutex_unlock(&fs_info->balance_mutex);
4177 	return ret;
4178 }
4179 
4180 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4181 {
4182 	struct inode *inode = file_inode(file);
4183 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4184 	struct btrfs_ioctl_quota_ctl_args *sa;
4185 	int ret;
4186 
4187 	if (!capable(CAP_SYS_ADMIN))
4188 		return -EPERM;
4189 
4190 	ret = mnt_want_write_file(file);
4191 	if (ret)
4192 		return ret;
4193 
4194 	sa = memdup_user(arg, sizeof(*sa));
4195 	if (IS_ERR(sa)) {
4196 		ret = PTR_ERR(sa);
4197 		goto drop_write;
4198 	}
4199 
4200 	down_write(&fs_info->subvol_sem);
4201 
4202 	switch (sa->cmd) {
4203 	case BTRFS_QUOTA_CTL_ENABLE:
4204 		ret = btrfs_quota_enable(fs_info);
4205 		break;
4206 	case BTRFS_QUOTA_CTL_DISABLE:
4207 		ret = btrfs_quota_disable(fs_info);
4208 		break;
4209 	default:
4210 		ret = -EINVAL;
4211 		break;
4212 	}
4213 
4214 	kfree(sa);
4215 	up_write(&fs_info->subvol_sem);
4216 drop_write:
4217 	mnt_drop_write_file(file);
4218 	return ret;
4219 }
4220 
4221 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4222 {
4223 	struct inode *inode = file_inode(file);
4224 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4225 	struct btrfs_root *root = BTRFS_I(inode)->root;
4226 	struct btrfs_ioctl_qgroup_assign_args *sa;
4227 	struct btrfs_trans_handle *trans;
4228 	int ret;
4229 	int err;
4230 
4231 	if (!capable(CAP_SYS_ADMIN))
4232 		return -EPERM;
4233 
4234 	ret = mnt_want_write_file(file);
4235 	if (ret)
4236 		return ret;
4237 
4238 	sa = memdup_user(arg, sizeof(*sa));
4239 	if (IS_ERR(sa)) {
4240 		ret = PTR_ERR(sa);
4241 		goto drop_write;
4242 	}
4243 
4244 	trans = btrfs_join_transaction(root);
4245 	if (IS_ERR(trans)) {
4246 		ret = PTR_ERR(trans);
4247 		goto out;
4248 	}
4249 
4250 	if (sa->assign) {
4251 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4252 	} else {
4253 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4254 	}
4255 
4256 	/* update qgroup status and info */
4257 	err = btrfs_run_qgroups(trans);
4258 	if (err < 0)
4259 		btrfs_handle_fs_error(fs_info, err,
4260 				      "failed to update qgroup status and info");
4261 	err = btrfs_end_transaction(trans);
4262 	if (err && !ret)
4263 		ret = err;
4264 
4265 out:
4266 	kfree(sa);
4267 drop_write:
4268 	mnt_drop_write_file(file);
4269 	return ret;
4270 }
4271 
4272 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4273 {
4274 	struct inode *inode = file_inode(file);
4275 	struct btrfs_root *root = BTRFS_I(inode)->root;
4276 	struct btrfs_ioctl_qgroup_create_args *sa;
4277 	struct btrfs_trans_handle *trans;
4278 	int ret;
4279 	int err;
4280 
4281 	if (!capable(CAP_SYS_ADMIN))
4282 		return -EPERM;
4283 
4284 	ret = mnt_want_write_file(file);
4285 	if (ret)
4286 		return ret;
4287 
4288 	sa = memdup_user(arg, sizeof(*sa));
4289 	if (IS_ERR(sa)) {
4290 		ret = PTR_ERR(sa);
4291 		goto drop_write;
4292 	}
4293 
4294 	if (!sa->qgroupid) {
4295 		ret = -EINVAL;
4296 		goto out;
4297 	}
4298 
4299 	trans = btrfs_join_transaction(root);
4300 	if (IS_ERR(trans)) {
4301 		ret = PTR_ERR(trans);
4302 		goto out;
4303 	}
4304 
4305 	if (sa->create) {
4306 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4307 	} else {
4308 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4309 	}
4310 
4311 	err = btrfs_end_transaction(trans);
4312 	if (err && !ret)
4313 		ret = err;
4314 
4315 out:
4316 	kfree(sa);
4317 drop_write:
4318 	mnt_drop_write_file(file);
4319 	return ret;
4320 }
4321 
4322 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4323 {
4324 	struct inode *inode = file_inode(file);
4325 	struct btrfs_root *root = BTRFS_I(inode)->root;
4326 	struct btrfs_ioctl_qgroup_limit_args *sa;
4327 	struct btrfs_trans_handle *trans;
4328 	int ret;
4329 	int err;
4330 	u64 qgroupid;
4331 
4332 	if (!capable(CAP_SYS_ADMIN))
4333 		return -EPERM;
4334 
4335 	ret = mnt_want_write_file(file);
4336 	if (ret)
4337 		return ret;
4338 
4339 	sa = memdup_user(arg, sizeof(*sa));
4340 	if (IS_ERR(sa)) {
4341 		ret = PTR_ERR(sa);
4342 		goto drop_write;
4343 	}
4344 
4345 	trans = btrfs_join_transaction(root);
4346 	if (IS_ERR(trans)) {
4347 		ret = PTR_ERR(trans);
4348 		goto out;
4349 	}
4350 
4351 	qgroupid = sa->qgroupid;
4352 	if (!qgroupid) {
4353 		/* take the current subvol as qgroup */
4354 		qgroupid = root->root_key.objectid;
4355 	}
4356 
4357 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4358 
4359 	err = btrfs_end_transaction(trans);
4360 	if (err && !ret)
4361 		ret = err;
4362 
4363 out:
4364 	kfree(sa);
4365 drop_write:
4366 	mnt_drop_write_file(file);
4367 	return ret;
4368 }
4369 
4370 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4371 {
4372 	struct inode *inode = file_inode(file);
4373 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4374 	struct btrfs_ioctl_quota_rescan_args *qsa;
4375 	int ret;
4376 
4377 	if (!capable(CAP_SYS_ADMIN))
4378 		return -EPERM;
4379 
4380 	ret = mnt_want_write_file(file);
4381 	if (ret)
4382 		return ret;
4383 
4384 	qsa = memdup_user(arg, sizeof(*qsa));
4385 	if (IS_ERR(qsa)) {
4386 		ret = PTR_ERR(qsa);
4387 		goto drop_write;
4388 	}
4389 
4390 	if (qsa->flags) {
4391 		ret = -EINVAL;
4392 		goto out;
4393 	}
4394 
4395 	ret = btrfs_qgroup_rescan(fs_info);
4396 
4397 out:
4398 	kfree(qsa);
4399 drop_write:
4400 	mnt_drop_write_file(file);
4401 	return ret;
4402 }
4403 
4404 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4405 						void __user *arg)
4406 {
4407 	struct btrfs_ioctl_quota_rescan_args *qsa;
4408 	int ret = 0;
4409 
4410 	if (!capable(CAP_SYS_ADMIN))
4411 		return -EPERM;
4412 
4413 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4414 	if (!qsa)
4415 		return -ENOMEM;
4416 
4417 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4418 		qsa->flags = 1;
4419 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4420 	}
4421 
4422 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4423 		ret = -EFAULT;
4424 
4425 	kfree(qsa);
4426 	return ret;
4427 }
4428 
4429 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4430 						void __user *arg)
4431 {
4432 	if (!capable(CAP_SYS_ADMIN))
4433 		return -EPERM;
4434 
4435 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4436 }
4437 
4438 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4439 					    struct btrfs_ioctl_received_subvol_args *sa)
4440 {
4441 	struct inode *inode = file_inode(file);
4442 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4443 	struct btrfs_root *root = BTRFS_I(inode)->root;
4444 	struct btrfs_root_item *root_item = &root->root_item;
4445 	struct btrfs_trans_handle *trans;
4446 	struct timespec64 ct = current_time(inode);
4447 	int ret = 0;
4448 	int received_uuid_changed;
4449 
4450 	if (!inode_owner_or_capable(&init_user_ns, inode))
4451 		return -EPERM;
4452 
4453 	ret = mnt_want_write_file(file);
4454 	if (ret < 0)
4455 		return ret;
4456 
4457 	down_write(&fs_info->subvol_sem);
4458 
4459 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4460 		ret = -EINVAL;
4461 		goto out;
4462 	}
4463 
4464 	if (btrfs_root_readonly(root)) {
4465 		ret = -EROFS;
4466 		goto out;
4467 	}
4468 
4469 	/*
4470 	 * 1 - root item
4471 	 * 2 - uuid items (received uuid + subvol uuid)
4472 	 */
4473 	trans = btrfs_start_transaction(root, 3);
4474 	if (IS_ERR(trans)) {
4475 		ret = PTR_ERR(trans);
4476 		trans = NULL;
4477 		goto out;
4478 	}
4479 
4480 	sa->rtransid = trans->transid;
4481 	sa->rtime.sec = ct.tv_sec;
4482 	sa->rtime.nsec = ct.tv_nsec;
4483 
4484 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4485 				       BTRFS_UUID_SIZE);
4486 	if (received_uuid_changed &&
4487 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4488 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4489 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4490 					  root->root_key.objectid);
4491 		if (ret && ret != -ENOENT) {
4492 		        btrfs_abort_transaction(trans, ret);
4493 		        btrfs_end_transaction(trans);
4494 		        goto out;
4495 		}
4496 	}
4497 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4498 	btrfs_set_root_stransid(root_item, sa->stransid);
4499 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4500 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4501 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4502 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4503 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4504 
4505 	ret = btrfs_update_root(trans, fs_info->tree_root,
4506 				&root->root_key, &root->root_item);
4507 	if (ret < 0) {
4508 		btrfs_end_transaction(trans);
4509 		goto out;
4510 	}
4511 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4512 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4513 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4514 					  root->root_key.objectid);
4515 		if (ret < 0 && ret != -EEXIST) {
4516 			btrfs_abort_transaction(trans, ret);
4517 			btrfs_end_transaction(trans);
4518 			goto out;
4519 		}
4520 	}
4521 	ret = btrfs_commit_transaction(trans);
4522 out:
4523 	up_write(&fs_info->subvol_sem);
4524 	mnt_drop_write_file(file);
4525 	return ret;
4526 }
4527 
4528 #ifdef CONFIG_64BIT
4529 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4530 						void __user *arg)
4531 {
4532 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4533 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4534 	int ret = 0;
4535 
4536 	args32 = memdup_user(arg, sizeof(*args32));
4537 	if (IS_ERR(args32))
4538 		return PTR_ERR(args32);
4539 
4540 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4541 	if (!args64) {
4542 		ret = -ENOMEM;
4543 		goto out;
4544 	}
4545 
4546 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4547 	args64->stransid = args32->stransid;
4548 	args64->rtransid = args32->rtransid;
4549 	args64->stime.sec = args32->stime.sec;
4550 	args64->stime.nsec = args32->stime.nsec;
4551 	args64->rtime.sec = args32->rtime.sec;
4552 	args64->rtime.nsec = args32->rtime.nsec;
4553 	args64->flags = args32->flags;
4554 
4555 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4556 	if (ret)
4557 		goto out;
4558 
4559 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4560 	args32->stransid = args64->stransid;
4561 	args32->rtransid = args64->rtransid;
4562 	args32->stime.sec = args64->stime.sec;
4563 	args32->stime.nsec = args64->stime.nsec;
4564 	args32->rtime.sec = args64->rtime.sec;
4565 	args32->rtime.nsec = args64->rtime.nsec;
4566 	args32->flags = args64->flags;
4567 
4568 	ret = copy_to_user(arg, args32, sizeof(*args32));
4569 	if (ret)
4570 		ret = -EFAULT;
4571 
4572 out:
4573 	kfree(args32);
4574 	kfree(args64);
4575 	return ret;
4576 }
4577 #endif
4578 
4579 static long btrfs_ioctl_set_received_subvol(struct file *file,
4580 					    void __user *arg)
4581 {
4582 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4583 	int ret = 0;
4584 
4585 	sa = memdup_user(arg, sizeof(*sa));
4586 	if (IS_ERR(sa))
4587 		return PTR_ERR(sa);
4588 
4589 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4590 
4591 	if (ret)
4592 		goto out;
4593 
4594 	ret = copy_to_user(arg, sa, sizeof(*sa));
4595 	if (ret)
4596 		ret = -EFAULT;
4597 
4598 out:
4599 	kfree(sa);
4600 	return ret;
4601 }
4602 
4603 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4604 					void __user *arg)
4605 {
4606 	size_t len;
4607 	int ret;
4608 	char label[BTRFS_LABEL_SIZE];
4609 
4610 	spin_lock(&fs_info->super_lock);
4611 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4612 	spin_unlock(&fs_info->super_lock);
4613 
4614 	len = strnlen(label, BTRFS_LABEL_SIZE);
4615 
4616 	if (len == BTRFS_LABEL_SIZE) {
4617 		btrfs_warn(fs_info,
4618 			   "label is too long, return the first %zu bytes",
4619 			   --len);
4620 	}
4621 
4622 	ret = copy_to_user(arg, label, len);
4623 
4624 	return ret ? -EFAULT : 0;
4625 }
4626 
4627 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4628 {
4629 	struct inode *inode = file_inode(file);
4630 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4631 	struct btrfs_root *root = BTRFS_I(inode)->root;
4632 	struct btrfs_super_block *super_block = fs_info->super_copy;
4633 	struct btrfs_trans_handle *trans;
4634 	char label[BTRFS_LABEL_SIZE];
4635 	int ret;
4636 
4637 	if (!capable(CAP_SYS_ADMIN))
4638 		return -EPERM;
4639 
4640 	if (copy_from_user(label, arg, sizeof(label)))
4641 		return -EFAULT;
4642 
4643 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4644 		btrfs_err(fs_info,
4645 			  "unable to set label with more than %d bytes",
4646 			  BTRFS_LABEL_SIZE - 1);
4647 		return -EINVAL;
4648 	}
4649 
4650 	ret = mnt_want_write_file(file);
4651 	if (ret)
4652 		return ret;
4653 
4654 	trans = btrfs_start_transaction(root, 0);
4655 	if (IS_ERR(trans)) {
4656 		ret = PTR_ERR(trans);
4657 		goto out_unlock;
4658 	}
4659 
4660 	spin_lock(&fs_info->super_lock);
4661 	strcpy(super_block->label, label);
4662 	spin_unlock(&fs_info->super_lock);
4663 	ret = btrfs_commit_transaction(trans);
4664 
4665 out_unlock:
4666 	mnt_drop_write_file(file);
4667 	return ret;
4668 }
4669 
4670 #define INIT_FEATURE_FLAGS(suffix) \
4671 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4672 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4673 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4674 
4675 int btrfs_ioctl_get_supported_features(void __user *arg)
4676 {
4677 	static const struct btrfs_ioctl_feature_flags features[3] = {
4678 		INIT_FEATURE_FLAGS(SUPP),
4679 		INIT_FEATURE_FLAGS(SAFE_SET),
4680 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4681 	};
4682 
4683 	if (copy_to_user(arg, &features, sizeof(features)))
4684 		return -EFAULT;
4685 
4686 	return 0;
4687 }
4688 
4689 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4690 					void __user *arg)
4691 {
4692 	struct btrfs_super_block *super_block = fs_info->super_copy;
4693 	struct btrfs_ioctl_feature_flags features;
4694 
4695 	features.compat_flags = btrfs_super_compat_flags(super_block);
4696 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4697 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4698 
4699 	if (copy_to_user(arg, &features, sizeof(features)))
4700 		return -EFAULT;
4701 
4702 	return 0;
4703 }
4704 
4705 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4706 			      enum btrfs_feature_set set,
4707 			      u64 change_mask, u64 flags, u64 supported_flags,
4708 			      u64 safe_set, u64 safe_clear)
4709 {
4710 	const char *type = btrfs_feature_set_name(set);
4711 	char *names;
4712 	u64 disallowed, unsupported;
4713 	u64 set_mask = flags & change_mask;
4714 	u64 clear_mask = ~flags & change_mask;
4715 
4716 	unsupported = set_mask & ~supported_flags;
4717 	if (unsupported) {
4718 		names = btrfs_printable_features(set, unsupported);
4719 		if (names) {
4720 			btrfs_warn(fs_info,
4721 				   "this kernel does not support the %s feature bit%s",
4722 				   names, strchr(names, ',') ? "s" : "");
4723 			kfree(names);
4724 		} else
4725 			btrfs_warn(fs_info,
4726 				   "this kernel does not support %s bits 0x%llx",
4727 				   type, unsupported);
4728 		return -EOPNOTSUPP;
4729 	}
4730 
4731 	disallowed = set_mask & ~safe_set;
4732 	if (disallowed) {
4733 		names = btrfs_printable_features(set, disallowed);
4734 		if (names) {
4735 			btrfs_warn(fs_info,
4736 				   "can't set the %s feature bit%s while mounted",
4737 				   names, strchr(names, ',') ? "s" : "");
4738 			kfree(names);
4739 		} else
4740 			btrfs_warn(fs_info,
4741 				   "can't set %s bits 0x%llx while mounted",
4742 				   type, disallowed);
4743 		return -EPERM;
4744 	}
4745 
4746 	disallowed = clear_mask & ~safe_clear;
4747 	if (disallowed) {
4748 		names = btrfs_printable_features(set, disallowed);
4749 		if (names) {
4750 			btrfs_warn(fs_info,
4751 				   "can't clear the %s feature bit%s while mounted",
4752 				   names, strchr(names, ',') ? "s" : "");
4753 			kfree(names);
4754 		} else
4755 			btrfs_warn(fs_info,
4756 				   "can't clear %s bits 0x%llx while mounted",
4757 				   type, disallowed);
4758 		return -EPERM;
4759 	}
4760 
4761 	return 0;
4762 }
4763 
4764 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4765 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4766 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4767 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4768 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4769 
4770 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4771 {
4772 	struct inode *inode = file_inode(file);
4773 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4774 	struct btrfs_root *root = BTRFS_I(inode)->root;
4775 	struct btrfs_super_block *super_block = fs_info->super_copy;
4776 	struct btrfs_ioctl_feature_flags flags[2];
4777 	struct btrfs_trans_handle *trans;
4778 	u64 newflags;
4779 	int ret;
4780 
4781 	if (!capable(CAP_SYS_ADMIN))
4782 		return -EPERM;
4783 
4784 	if (copy_from_user(flags, arg, sizeof(flags)))
4785 		return -EFAULT;
4786 
4787 	/* Nothing to do */
4788 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4789 	    !flags[0].incompat_flags)
4790 		return 0;
4791 
4792 	ret = check_feature(fs_info, flags[0].compat_flags,
4793 			    flags[1].compat_flags, COMPAT);
4794 	if (ret)
4795 		return ret;
4796 
4797 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4798 			    flags[1].compat_ro_flags, COMPAT_RO);
4799 	if (ret)
4800 		return ret;
4801 
4802 	ret = check_feature(fs_info, flags[0].incompat_flags,
4803 			    flags[1].incompat_flags, INCOMPAT);
4804 	if (ret)
4805 		return ret;
4806 
4807 	ret = mnt_want_write_file(file);
4808 	if (ret)
4809 		return ret;
4810 
4811 	trans = btrfs_start_transaction(root, 0);
4812 	if (IS_ERR(trans)) {
4813 		ret = PTR_ERR(trans);
4814 		goto out_drop_write;
4815 	}
4816 
4817 	spin_lock(&fs_info->super_lock);
4818 	newflags = btrfs_super_compat_flags(super_block);
4819 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4820 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4821 	btrfs_set_super_compat_flags(super_block, newflags);
4822 
4823 	newflags = btrfs_super_compat_ro_flags(super_block);
4824 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4825 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4826 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4827 
4828 	newflags = btrfs_super_incompat_flags(super_block);
4829 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4830 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4831 	btrfs_set_super_incompat_flags(super_block, newflags);
4832 	spin_unlock(&fs_info->super_lock);
4833 
4834 	ret = btrfs_commit_transaction(trans);
4835 out_drop_write:
4836 	mnt_drop_write_file(file);
4837 
4838 	return ret;
4839 }
4840 
4841 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4842 {
4843 	struct btrfs_ioctl_send_args *arg;
4844 	int ret;
4845 
4846 	if (compat) {
4847 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4848 		struct btrfs_ioctl_send_args_32 args32;
4849 
4850 		ret = copy_from_user(&args32, argp, sizeof(args32));
4851 		if (ret)
4852 			return -EFAULT;
4853 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4854 		if (!arg)
4855 			return -ENOMEM;
4856 		arg->send_fd = args32.send_fd;
4857 		arg->clone_sources_count = args32.clone_sources_count;
4858 		arg->clone_sources = compat_ptr(args32.clone_sources);
4859 		arg->parent_root = args32.parent_root;
4860 		arg->flags = args32.flags;
4861 		memcpy(arg->reserved, args32.reserved,
4862 		       sizeof(args32.reserved));
4863 #else
4864 		return -ENOTTY;
4865 #endif
4866 	} else {
4867 		arg = memdup_user(argp, sizeof(*arg));
4868 		if (IS_ERR(arg))
4869 			return PTR_ERR(arg);
4870 	}
4871 	ret = btrfs_ioctl_send(file, arg);
4872 	kfree(arg);
4873 	return ret;
4874 }
4875 
4876 long btrfs_ioctl(struct file *file, unsigned int
4877 		cmd, unsigned long arg)
4878 {
4879 	struct inode *inode = file_inode(file);
4880 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4881 	struct btrfs_root *root = BTRFS_I(inode)->root;
4882 	void __user *argp = (void __user *)arg;
4883 
4884 	switch (cmd) {
4885 	case FS_IOC_GETVERSION:
4886 		return btrfs_ioctl_getversion(file, argp);
4887 	case FS_IOC_GETFSLABEL:
4888 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4889 	case FS_IOC_SETFSLABEL:
4890 		return btrfs_ioctl_set_fslabel(file, argp);
4891 	case FITRIM:
4892 		return btrfs_ioctl_fitrim(fs_info, argp);
4893 	case BTRFS_IOC_SNAP_CREATE:
4894 		return btrfs_ioctl_snap_create(file, argp, 0);
4895 	case BTRFS_IOC_SNAP_CREATE_V2:
4896 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4897 	case BTRFS_IOC_SUBVOL_CREATE:
4898 		return btrfs_ioctl_snap_create(file, argp, 1);
4899 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4900 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4901 	case BTRFS_IOC_SNAP_DESTROY:
4902 		return btrfs_ioctl_snap_destroy(file, argp, false);
4903 	case BTRFS_IOC_SNAP_DESTROY_V2:
4904 		return btrfs_ioctl_snap_destroy(file, argp, true);
4905 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4906 		return btrfs_ioctl_subvol_getflags(file, argp);
4907 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4908 		return btrfs_ioctl_subvol_setflags(file, argp);
4909 	case BTRFS_IOC_DEFAULT_SUBVOL:
4910 		return btrfs_ioctl_default_subvol(file, argp);
4911 	case BTRFS_IOC_DEFRAG:
4912 		return btrfs_ioctl_defrag(file, NULL);
4913 	case BTRFS_IOC_DEFRAG_RANGE:
4914 		return btrfs_ioctl_defrag(file, argp);
4915 	case BTRFS_IOC_RESIZE:
4916 		return btrfs_ioctl_resize(file, argp);
4917 	case BTRFS_IOC_ADD_DEV:
4918 		return btrfs_ioctl_add_dev(fs_info, argp);
4919 	case BTRFS_IOC_RM_DEV:
4920 		return btrfs_ioctl_rm_dev(file, argp);
4921 	case BTRFS_IOC_RM_DEV_V2:
4922 		return btrfs_ioctl_rm_dev_v2(file, argp);
4923 	case BTRFS_IOC_FS_INFO:
4924 		return btrfs_ioctl_fs_info(fs_info, argp);
4925 	case BTRFS_IOC_DEV_INFO:
4926 		return btrfs_ioctl_dev_info(fs_info, argp);
4927 	case BTRFS_IOC_BALANCE:
4928 		return btrfs_ioctl_balance(file, NULL);
4929 	case BTRFS_IOC_TREE_SEARCH:
4930 		return btrfs_ioctl_tree_search(file, argp);
4931 	case BTRFS_IOC_TREE_SEARCH_V2:
4932 		return btrfs_ioctl_tree_search_v2(file, argp);
4933 	case BTRFS_IOC_INO_LOOKUP:
4934 		return btrfs_ioctl_ino_lookup(file, argp);
4935 	case BTRFS_IOC_INO_PATHS:
4936 		return btrfs_ioctl_ino_to_path(root, argp);
4937 	case BTRFS_IOC_LOGICAL_INO:
4938 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4939 	case BTRFS_IOC_LOGICAL_INO_V2:
4940 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4941 	case BTRFS_IOC_SPACE_INFO:
4942 		return btrfs_ioctl_space_info(fs_info, argp);
4943 	case BTRFS_IOC_SYNC: {
4944 		int ret;
4945 
4946 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4947 		if (ret)
4948 			return ret;
4949 		ret = btrfs_sync_fs(inode->i_sb, 1);
4950 		/*
4951 		 * The transaction thread may want to do more work,
4952 		 * namely it pokes the cleaner kthread that will start
4953 		 * processing uncleaned subvols.
4954 		 */
4955 		wake_up_process(fs_info->transaction_kthread);
4956 		return ret;
4957 	}
4958 	case BTRFS_IOC_START_SYNC:
4959 		return btrfs_ioctl_start_sync(root, argp);
4960 	case BTRFS_IOC_WAIT_SYNC:
4961 		return btrfs_ioctl_wait_sync(fs_info, argp);
4962 	case BTRFS_IOC_SCRUB:
4963 		return btrfs_ioctl_scrub(file, argp);
4964 	case BTRFS_IOC_SCRUB_CANCEL:
4965 		return btrfs_ioctl_scrub_cancel(fs_info);
4966 	case BTRFS_IOC_SCRUB_PROGRESS:
4967 		return btrfs_ioctl_scrub_progress(fs_info, argp);
4968 	case BTRFS_IOC_BALANCE_V2:
4969 		return btrfs_ioctl_balance(file, argp);
4970 	case BTRFS_IOC_BALANCE_CTL:
4971 		return btrfs_ioctl_balance_ctl(fs_info, arg);
4972 	case BTRFS_IOC_BALANCE_PROGRESS:
4973 		return btrfs_ioctl_balance_progress(fs_info, argp);
4974 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4975 		return btrfs_ioctl_set_received_subvol(file, argp);
4976 #ifdef CONFIG_64BIT
4977 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4978 		return btrfs_ioctl_set_received_subvol_32(file, argp);
4979 #endif
4980 	case BTRFS_IOC_SEND:
4981 		return _btrfs_ioctl_send(file, argp, false);
4982 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4983 	case BTRFS_IOC_SEND_32:
4984 		return _btrfs_ioctl_send(file, argp, true);
4985 #endif
4986 	case BTRFS_IOC_GET_DEV_STATS:
4987 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4988 	case BTRFS_IOC_QUOTA_CTL:
4989 		return btrfs_ioctl_quota_ctl(file, argp);
4990 	case BTRFS_IOC_QGROUP_ASSIGN:
4991 		return btrfs_ioctl_qgroup_assign(file, argp);
4992 	case BTRFS_IOC_QGROUP_CREATE:
4993 		return btrfs_ioctl_qgroup_create(file, argp);
4994 	case BTRFS_IOC_QGROUP_LIMIT:
4995 		return btrfs_ioctl_qgroup_limit(file, argp);
4996 	case BTRFS_IOC_QUOTA_RESCAN:
4997 		return btrfs_ioctl_quota_rescan(file, argp);
4998 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4999 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5000 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5001 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5002 	case BTRFS_IOC_DEV_REPLACE:
5003 		return btrfs_ioctl_dev_replace(fs_info, argp);
5004 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5005 		return btrfs_ioctl_get_supported_features(argp);
5006 	case BTRFS_IOC_GET_FEATURES:
5007 		return btrfs_ioctl_get_features(fs_info, argp);
5008 	case BTRFS_IOC_SET_FEATURES:
5009 		return btrfs_ioctl_set_features(file, argp);
5010 	case BTRFS_IOC_GET_SUBVOL_INFO:
5011 		return btrfs_ioctl_get_subvol_info(file, argp);
5012 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5013 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5014 	case BTRFS_IOC_INO_LOOKUP_USER:
5015 		return btrfs_ioctl_ino_lookup_user(file, argp);
5016 	}
5017 
5018 	return -ENOTTY;
5019 }
5020 
5021 #ifdef CONFIG_COMPAT
5022 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5023 {
5024 	/*
5025 	 * These all access 32-bit values anyway so no further
5026 	 * handling is necessary.
5027 	 */
5028 	switch (cmd) {
5029 	case FS_IOC32_GETVERSION:
5030 		cmd = FS_IOC_GETVERSION;
5031 		break;
5032 	}
5033 
5034 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5035 }
5036 #endif
5037