1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include <linux/btrfs.h> 46 #include <linux/uaccess.h> 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 #include "dev-replace.h" 59 #include "props.h" 60 #include "sysfs.h" 61 62 static int btrfs_clone(struct inode *src, struct inode *inode, 63 u64 off, u64 olen, u64 olen_aligned, u64 destoff); 64 65 /* Mask out flags that are inappropriate for the given type of inode. */ 66 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 67 { 68 if (S_ISDIR(mode)) 69 return flags; 70 else if (S_ISREG(mode)) 71 return flags & ~FS_DIRSYNC_FL; 72 else 73 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 74 } 75 76 /* 77 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 78 */ 79 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 80 { 81 unsigned int iflags = 0; 82 83 if (flags & BTRFS_INODE_SYNC) 84 iflags |= FS_SYNC_FL; 85 if (flags & BTRFS_INODE_IMMUTABLE) 86 iflags |= FS_IMMUTABLE_FL; 87 if (flags & BTRFS_INODE_APPEND) 88 iflags |= FS_APPEND_FL; 89 if (flags & BTRFS_INODE_NODUMP) 90 iflags |= FS_NODUMP_FL; 91 if (flags & BTRFS_INODE_NOATIME) 92 iflags |= FS_NOATIME_FL; 93 if (flags & BTRFS_INODE_DIRSYNC) 94 iflags |= FS_DIRSYNC_FL; 95 if (flags & BTRFS_INODE_NODATACOW) 96 iflags |= FS_NOCOW_FL; 97 98 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 99 iflags |= FS_COMPR_FL; 100 else if (flags & BTRFS_INODE_NOCOMPRESS) 101 iflags |= FS_NOCOMP_FL; 102 103 return iflags; 104 } 105 106 /* 107 * Update inode->i_flags based on the btrfs internal flags. 108 */ 109 void btrfs_update_iflags(struct inode *inode) 110 { 111 struct btrfs_inode *ip = BTRFS_I(inode); 112 113 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 114 115 if (ip->flags & BTRFS_INODE_SYNC) 116 inode->i_flags |= S_SYNC; 117 if (ip->flags & BTRFS_INODE_IMMUTABLE) 118 inode->i_flags |= S_IMMUTABLE; 119 if (ip->flags & BTRFS_INODE_APPEND) 120 inode->i_flags |= S_APPEND; 121 if (ip->flags & BTRFS_INODE_NOATIME) 122 inode->i_flags |= S_NOATIME; 123 if (ip->flags & BTRFS_INODE_DIRSYNC) 124 inode->i_flags |= S_DIRSYNC; 125 } 126 127 /* 128 * Inherit flags from the parent inode. 129 * 130 * Currently only the compression flags and the cow flags are inherited. 131 */ 132 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 133 { 134 unsigned int flags; 135 136 if (!dir) 137 return; 138 139 flags = BTRFS_I(dir)->flags; 140 141 if (flags & BTRFS_INODE_NOCOMPRESS) { 142 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 143 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 144 } else if (flags & BTRFS_INODE_COMPRESS) { 145 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 146 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 147 } 148 149 if (flags & BTRFS_INODE_NODATACOW) { 150 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 151 if (S_ISREG(inode->i_mode)) 152 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 153 } 154 155 btrfs_update_iflags(inode); 156 } 157 158 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 159 { 160 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 161 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 162 163 if (copy_to_user(arg, &flags, sizeof(flags))) 164 return -EFAULT; 165 return 0; 166 } 167 168 static int check_flags(unsigned int flags) 169 { 170 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 171 FS_NOATIME_FL | FS_NODUMP_FL | \ 172 FS_SYNC_FL | FS_DIRSYNC_FL | \ 173 FS_NOCOMP_FL | FS_COMPR_FL | 174 FS_NOCOW_FL)) 175 return -EOPNOTSUPP; 176 177 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 178 return -EINVAL; 179 180 return 0; 181 } 182 183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 184 { 185 struct inode *inode = file_inode(file); 186 struct btrfs_inode *ip = BTRFS_I(inode); 187 struct btrfs_root *root = ip->root; 188 struct btrfs_trans_handle *trans; 189 unsigned int flags, oldflags; 190 int ret; 191 u64 ip_oldflags; 192 unsigned int i_oldflags; 193 umode_t mode; 194 195 if (!inode_owner_or_capable(inode)) 196 return -EPERM; 197 198 if (btrfs_root_readonly(root)) 199 return -EROFS; 200 201 if (copy_from_user(&flags, arg, sizeof(flags))) 202 return -EFAULT; 203 204 ret = check_flags(flags); 205 if (ret) 206 return ret; 207 208 ret = mnt_want_write_file(file); 209 if (ret) 210 return ret; 211 212 mutex_lock(&inode->i_mutex); 213 214 ip_oldflags = ip->flags; 215 i_oldflags = inode->i_flags; 216 mode = inode->i_mode; 217 218 flags = btrfs_mask_flags(inode->i_mode, flags); 219 oldflags = btrfs_flags_to_ioctl(ip->flags); 220 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 221 if (!capable(CAP_LINUX_IMMUTABLE)) { 222 ret = -EPERM; 223 goto out_unlock; 224 } 225 } 226 227 if (flags & FS_SYNC_FL) 228 ip->flags |= BTRFS_INODE_SYNC; 229 else 230 ip->flags &= ~BTRFS_INODE_SYNC; 231 if (flags & FS_IMMUTABLE_FL) 232 ip->flags |= BTRFS_INODE_IMMUTABLE; 233 else 234 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 235 if (flags & FS_APPEND_FL) 236 ip->flags |= BTRFS_INODE_APPEND; 237 else 238 ip->flags &= ~BTRFS_INODE_APPEND; 239 if (flags & FS_NODUMP_FL) 240 ip->flags |= BTRFS_INODE_NODUMP; 241 else 242 ip->flags &= ~BTRFS_INODE_NODUMP; 243 if (flags & FS_NOATIME_FL) 244 ip->flags |= BTRFS_INODE_NOATIME; 245 else 246 ip->flags &= ~BTRFS_INODE_NOATIME; 247 if (flags & FS_DIRSYNC_FL) 248 ip->flags |= BTRFS_INODE_DIRSYNC; 249 else 250 ip->flags &= ~BTRFS_INODE_DIRSYNC; 251 if (flags & FS_NOCOW_FL) { 252 if (S_ISREG(mode)) { 253 /* 254 * It's safe to turn csums off here, no extents exist. 255 * Otherwise we want the flag to reflect the real COW 256 * status of the file and will not set it. 257 */ 258 if (inode->i_size == 0) 259 ip->flags |= BTRFS_INODE_NODATACOW 260 | BTRFS_INODE_NODATASUM; 261 } else { 262 ip->flags |= BTRFS_INODE_NODATACOW; 263 } 264 } else { 265 /* 266 * Revert back under same assuptions as above 267 */ 268 if (S_ISREG(mode)) { 269 if (inode->i_size == 0) 270 ip->flags &= ~(BTRFS_INODE_NODATACOW 271 | BTRFS_INODE_NODATASUM); 272 } else { 273 ip->flags &= ~BTRFS_INODE_NODATACOW; 274 } 275 } 276 277 /* 278 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 279 * flag may be changed automatically if compression code won't make 280 * things smaller. 281 */ 282 if (flags & FS_NOCOMP_FL) { 283 ip->flags &= ~BTRFS_INODE_COMPRESS; 284 ip->flags |= BTRFS_INODE_NOCOMPRESS; 285 286 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 287 if (ret && ret != -ENODATA) 288 goto out_drop; 289 } else if (flags & FS_COMPR_FL) { 290 const char *comp; 291 292 ip->flags |= BTRFS_INODE_COMPRESS; 293 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 294 295 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 296 comp = "lzo"; 297 else 298 comp = "zlib"; 299 ret = btrfs_set_prop(inode, "btrfs.compression", 300 comp, strlen(comp), 0); 301 if (ret) 302 goto out_drop; 303 304 } else { 305 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 306 } 307 308 trans = btrfs_start_transaction(root, 1); 309 if (IS_ERR(trans)) { 310 ret = PTR_ERR(trans); 311 goto out_drop; 312 } 313 314 btrfs_update_iflags(inode); 315 inode_inc_iversion(inode); 316 inode->i_ctime = CURRENT_TIME; 317 ret = btrfs_update_inode(trans, root, inode); 318 319 btrfs_end_transaction(trans, root); 320 out_drop: 321 if (ret) { 322 ip->flags = ip_oldflags; 323 inode->i_flags = i_oldflags; 324 } 325 326 out_unlock: 327 mutex_unlock(&inode->i_mutex); 328 mnt_drop_write_file(file); 329 return ret; 330 } 331 332 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 333 { 334 struct inode *inode = file_inode(file); 335 336 return put_user(inode->i_generation, arg); 337 } 338 339 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 340 { 341 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 342 struct btrfs_device *device; 343 struct request_queue *q; 344 struct fstrim_range range; 345 u64 minlen = ULLONG_MAX; 346 u64 num_devices = 0; 347 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 348 int ret; 349 350 if (!capable(CAP_SYS_ADMIN)) 351 return -EPERM; 352 353 rcu_read_lock(); 354 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 355 dev_list) { 356 if (!device->bdev) 357 continue; 358 q = bdev_get_queue(device->bdev); 359 if (blk_queue_discard(q)) { 360 num_devices++; 361 minlen = min((u64)q->limits.discard_granularity, 362 minlen); 363 } 364 } 365 rcu_read_unlock(); 366 367 if (!num_devices) 368 return -EOPNOTSUPP; 369 if (copy_from_user(&range, arg, sizeof(range))) 370 return -EFAULT; 371 if (range.start > total_bytes || 372 range.len < fs_info->sb->s_blocksize) 373 return -EINVAL; 374 375 range.len = min(range.len, total_bytes - range.start); 376 range.minlen = max(range.minlen, minlen); 377 ret = btrfs_trim_fs(fs_info->tree_root, &range); 378 if (ret < 0) 379 return ret; 380 381 if (copy_to_user(arg, &range, sizeof(range))) 382 return -EFAULT; 383 384 return 0; 385 } 386 387 int btrfs_is_empty_uuid(u8 *uuid) 388 { 389 int i; 390 391 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 392 if (uuid[i]) 393 return 0; 394 } 395 return 1; 396 } 397 398 static noinline int create_subvol(struct inode *dir, 399 struct dentry *dentry, 400 char *name, int namelen, 401 u64 *async_transid, 402 struct btrfs_qgroup_inherit *inherit) 403 { 404 struct btrfs_trans_handle *trans; 405 struct btrfs_key key; 406 struct btrfs_root_item root_item; 407 struct btrfs_inode_item *inode_item; 408 struct extent_buffer *leaf; 409 struct btrfs_root *root = BTRFS_I(dir)->root; 410 struct btrfs_root *new_root; 411 struct btrfs_block_rsv block_rsv; 412 struct timespec cur_time = CURRENT_TIME; 413 struct inode *inode; 414 int ret; 415 int err; 416 u64 objectid; 417 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 418 u64 index = 0; 419 u64 qgroup_reserved; 420 uuid_le new_uuid; 421 422 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 423 if (ret) 424 return ret; 425 426 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 427 /* 428 * The same as the snapshot creation, please see the comment 429 * of create_snapshot(). 430 */ 431 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 432 8, &qgroup_reserved, false); 433 if (ret) 434 return ret; 435 436 trans = btrfs_start_transaction(root, 0); 437 if (IS_ERR(trans)) { 438 ret = PTR_ERR(trans); 439 btrfs_subvolume_release_metadata(root, &block_rsv, 440 qgroup_reserved); 441 return ret; 442 } 443 trans->block_rsv = &block_rsv; 444 trans->bytes_reserved = block_rsv.size; 445 446 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit); 447 if (ret) 448 goto fail; 449 450 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 451 0, objectid, NULL, 0, 0, 0); 452 if (IS_ERR(leaf)) { 453 ret = PTR_ERR(leaf); 454 goto fail; 455 } 456 457 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 458 btrfs_set_header_bytenr(leaf, leaf->start); 459 btrfs_set_header_generation(leaf, trans->transid); 460 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 461 btrfs_set_header_owner(leaf, objectid); 462 463 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(), 464 BTRFS_FSID_SIZE); 465 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 466 btrfs_header_chunk_tree_uuid(leaf), 467 BTRFS_UUID_SIZE); 468 btrfs_mark_buffer_dirty(leaf); 469 470 memset(&root_item, 0, sizeof(root_item)); 471 472 inode_item = &root_item.inode; 473 btrfs_set_stack_inode_generation(inode_item, 1); 474 btrfs_set_stack_inode_size(inode_item, 3); 475 btrfs_set_stack_inode_nlink(inode_item, 1); 476 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize); 477 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 478 479 btrfs_set_root_flags(&root_item, 0); 480 btrfs_set_root_limit(&root_item, 0); 481 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 482 483 btrfs_set_root_bytenr(&root_item, leaf->start); 484 btrfs_set_root_generation(&root_item, trans->transid); 485 btrfs_set_root_level(&root_item, 0); 486 btrfs_set_root_refs(&root_item, 1); 487 btrfs_set_root_used(&root_item, leaf->len); 488 btrfs_set_root_last_snapshot(&root_item, 0); 489 490 btrfs_set_root_generation_v2(&root_item, 491 btrfs_root_generation(&root_item)); 492 uuid_le_gen(&new_uuid); 493 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE); 494 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec); 495 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec); 496 root_item.ctime = root_item.otime; 497 btrfs_set_root_ctransid(&root_item, trans->transid); 498 btrfs_set_root_otransid(&root_item, trans->transid); 499 500 btrfs_tree_unlock(leaf); 501 free_extent_buffer(leaf); 502 leaf = NULL; 503 504 btrfs_set_root_dirid(&root_item, new_dirid); 505 506 key.objectid = objectid; 507 key.offset = 0; 508 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 509 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 510 &root_item); 511 if (ret) 512 goto fail; 513 514 key.offset = (u64)-1; 515 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 516 if (IS_ERR(new_root)) { 517 btrfs_abort_transaction(trans, root, PTR_ERR(new_root)); 518 ret = PTR_ERR(new_root); 519 goto fail; 520 } 521 522 btrfs_record_root_in_trans(trans, new_root); 523 524 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 525 if (ret) { 526 /* We potentially lose an unused inode item here */ 527 btrfs_abort_transaction(trans, root, ret); 528 goto fail; 529 } 530 531 /* 532 * insert the directory item 533 */ 534 ret = btrfs_set_inode_index(dir, &index); 535 if (ret) { 536 btrfs_abort_transaction(trans, root, ret); 537 goto fail; 538 } 539 540 ret = btrfs_insert_dir_item(trans, root, 541 name, namelen, dir, &key, 542 BTRFS_FT_DIR, index); 543 if (ret) { 544 btrfs_abort_transaction(trans, root, ret); 545 goto fail; 546 } 547 548 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 549 ret = btrfs_update_inode(trans, root, dir); 550 BUG_ON(ret); 551 552 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 553 objectid, root->root_key.objectid, 554 btrfs_ino(dir), index, name, namelen); 555 BUG_ON(ret); 556 557 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 558 root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 559 objectid); 560 if (ret) 561 btrfs_abort_transaction(trans, root, ret); 562 563 fail: 564 trans->block_rsv = NULL; 565 trans->bytes_reserved = 0; 566 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 567 568 if (async_transid) { 569 *async_transid = trans->transid; 570 err = btrfs_commit_transaction_async(trans, root, 1); 571 if (err) 572 err = btrfs_commit_transaction(trans, root); 573 } else { 574 err = btrfs_commit_transaction(trans, root); 575 } 576 if (err && !ret) 577 ret = err; 578 579 if (!ret) { 580 inode = btrfs_lookup_dentry(dir, dentry); 581 if (IS_ERR(inode)) 582 return PTR_ERR(inode); 583 d_instantiate(dentry, inode); 584 } 585 return ret; 586 } 587 588 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 589 struct dentry *dentry, char *name, int namelen, 590 u64 *async_transid, bool readonly, 591 struct btrfs_qgroup_inherit *inherit) 592 { 593 struct inode *inode; 594 struct btrfs_pending_snapshot *pending_snapshot; 595 struct btrfs_trans_handle *trans; 596 int ret; 597 598 if (!root->ref_cows) 599 return -EINVAL; 600 601 ret = btrfs_start_delalloc_inodes(root, 0); 602 if (ret) 603 return ret; 604 605 btrfs_wait_ordered_extents(root, -1); 606 607 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 608 if (!pending_snapshot) 609 return -ENOMEM; 610 611 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 612 BTRFS_BLOCK_RSV_TEMP); 613 /* 614 * 1 - parent dir inode 615 * 2 - dir entries 616 * 1 - root item 617 * 2 - root ref/backref 618 * 1 - root of snapshot 619 * 1 - UUID item 620 */ 621 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 622 &pending_snapshot->block_rsv, 8, 623 &pending_snapshot->qgroup_reserved, 624 false); 625 if (ret) 626 goto out; 627 628 pending_snapshot->dentry = dentry; 629 pending_snapshot->root = root; 630 pending_snapshot->readonly = readonly; 631 pending_snapshot->dir = dir; 632 pending_snapshot->inherit = inherit; 633 634 trans = btrfs_start_transaction(root, 0); 635 if (IS_ERR(trans)) { 636 ret = PTR_ERR(trans); 637 goto fail; 638 } 639 640 spin_lock(&root->fs_info->trans_lock); 641 list_add(&pending_snapshot->list, 642 &trans->transaction->pending_snapshots); 643 spin_unlock(&root->fs_info->trans_lock); 644 if (async_transid) { 645 *async_transid = trans->transid; 646 ret = btrfs_commit_transaction_async(trans, 647 root->fs_info->extent_root, 1); 648 if (ret) 649 ret = btrfs_commit_transaction(trans, root); 650 } else { 651 ret = btrfs_commit_transaction(trans, 652 root->fs_info->extent_root); 653 } 654 if (ret) 655 goto fail; 656 657 ret = pending_snapshot->error; 658 if (ret) 659 goto fail; 660 661 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 662 if (ret) 663 goto fail; 664 665 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry); 666 if (IS_ERR(inode)) { 667 ret = PTR_ERR(inode); 668 goto fail; 669 } 670 671 d_instantiate(dentry, inode); 672 ret = 0; 673 fail: 674 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root, 675 &pending_snapshot->block_rsv, 676 pending_snapshot->qgroup_reserved); 677 out: 678 kfree(pending_snapshot); 679 return ret; 680 } 681 682 /* copy of check_sticky in fs/namei.c() 683 * It's inline, so penalty for filesystems that don't use sticky bit is 684 * minimal. 685 */ 686 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode) 687 { 688 kuid_t fsuid = current_fsuid(); 689 690 if (!(dir->i_mode & S_ISVTX)) 691 return 0; 692 if (uid_eq(inode->i_uid, fsuid)) 693 return 0; 694 if (uid_eq(dir->i_uid, fsuid)) 695 return 0; 696 return !capable(CAP_FOWNER); 697 } 698 699 /* copy of may_delete in fs/namei.c() 700 * Check whether we can remove a link victim from directory dir, check 701 * whether the type of victim is right. 702 * 1. We can't do it if dir is read-only (done in permission()) 703 * 2. We should have write and exec permissions on dir 704 * 3. We can't remove anything from append-only dir 705 * 4. We can't do anything with immutable dir (done in permission()) 706 * 5. If the sticky bit on dir is set we should either 707 * a. be owner of dir, or 708 * b. be owner of victim, or 709 * c. have CAP_FOWNER capability 710 * 6. If the victim is append-only or immutable we can't do antyhing with 711 * links pointing to it. 712 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 713 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 714 * 9. We can't remove a root or mountpoint. 715 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 716 * nfs_async_unlink(). 717 */ 718 719 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 720 { 721 int error; 722 723 if (!victim->d_inode) 724 return -ENOENT; 725 726 BUG_ON(victim->d_parent->d_inode != dir); 727 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 728 729 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 730 if (error) 731 return error; 732 if (IS_APPEND(dir)) 733 return -EPERM; 734 if (btrfs_check_sticky(dir, victim->d_inode)|| 735 IS_APPEND(victim->d_inode)|| 736 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 737 return -EPERM; 738 if (isdir) { 739 if (!S_ISDIR(victim->d_inode->i_mode)) 740 return -ENOTDIR; 741 if (IS_ROOT(victim)) 742 return -EBUSY; 743 } else if (S_ISDIR(victim->d_inode->i_mode)) 744 return -EISDIR; 745 if (IS_DEADDIR(dir)) 746 return -ENOENT; 747 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 748 return -EBUSY; 749 return 0; 750 } 751 752 /* copy of may_create in fs/namei.c() */ 753 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 754 { 755 if (child->d_inode) 756 return -EEXIST; 757 if (IS_DEADDIR(dir)) 758 return -ENOENT; 759 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 760 } 761 762 /* 763 * Create a new subvolume below @parent. This is largely modeled after 764 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 765 * inside this filesystem so it's quite a bit simpler. 766 */ 767 static noinline int btrfs_mksubvol(struct path *parent, 768 char *name, int namelen, 769 struct btrfs_root *snap_src, 770 u64 *async_transid, bool readonly, 771 struct btrfs_qgroup_inherit *inherit) 772 { 773 struct inode *dir = parent->dentry->d_inode; 774 struct dentry *dentry; 775 int error; 776 777 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 778 if (error == -EINTR) 779 return error; 780 781 dentry = lookup_one_len(name, parent->dentry, namelen); 782 error = PTR_ERR(dentry); 783 if (IS_ERR(dentry)) 784 goto out_unlock; 785 786 error = -EEXIST; 787 if (dentry->d_inode) 788 goto out_dput; 789 790 error = btrfs_may_create(dir, dentry); 791 if (error) 792 goto out_dput; 793 794 /* 795 * even if this name doesn't exist, we may get hash collisions. 796 * check for them now when we can safely fail 797 */ 798 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 799 dir->i_ino, name, 800 namelen); 801 if (error) 802 goto out_dput; 803 804 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 805 806 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 807 goto out_up_read; 808 809 if (snap_src) { 810 error = create_snapshot(snap_src, dir, dentry, name, namelen, 811 async_transid, readonly, inherit); 812 } else { 813 error = create_subvol(dir, dentry, name, namelen, 814 async_transid, inherit); 815 } 816 if (!error) 817 fsnotify_mkdir(dir, dentry); 818 out_up_read: 819 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 820 out_dput: 821 dput(dentry); 822 out_unlock: 823 mutex_unlock(&dir->i_mutex); 824 return error; 825 } 826 827 /* 828 * When we're defragging a range, we don't want to kick it off again 829 * if it is really just waiting for delalloc to send it down. 830 * If we find a nice big extent or delalloc range for the bytes in the 831 * file you want to defrag, we return 0 to let you know to skip this 832 * part of the file 833 */ 834 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh) 835 { 836 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 837 struct extent_map *em = NULL; 838 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 839 u64 end; 840 841 read_lock(&em_tree->lock); 842 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 843 read_unlock(&em_tree->lock); 844 845 if (em) { 846 end = extent_map_end(em); 847 free_extent_map(em); 848 if (end - offset > thresh) 849 return 0; 850 } 851 /* if we already have a nice delalloc here, just stop */ 852 thresh /= 2; 853 end = count_range_bits(io_tree, &offset, offset + thresh, 854 thresh, EXTENT_DELALLOC, 1); 855 if (end >= thresh) 856 return 0; 857 return 1; 858 } 859 860 /* 861 * helper function to walk through a file and find extents 862 * newer than a specific transid, and smaller than thresh. 863 * 864 * This is used by the defragging code to find new and small 865 * extents 866 */ 867 static int find_new_extents(struct btrfs_root *root, 868 struct inode *inode, u64 newer_than, 869 u64 *off, int thresh) 870 { 871 struct btrfs_path *path; 872 struct btrfs_key min_key; 873 struct extent_buffer *leaf; 874 struct btrfs_file_extent_item *extent; 875 int type; 876 int ret; 877 u64 ino = btrfs_ino(inode); 878 879 path = btrfs_alloc_path(); 880 if (!path) 881 return -ENOMEM; 882 883 min_key.objectid = ino; 884 min_key.type = BTRFS_EXTENT_DATA_KEY; 885 min_key.offset = *off; 886 887 path->keep_locks = 1; 888 889 while (1) { 890 ret = btrfs_search_forward(root, &min_key, path, newer_than); 891 if (ret != 0) 892 goto none; 893 if (min_key.objectid != ino) 894 goto none; 895 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 896 goto none; 897 898 leaf = path->nodes[0]; 899 extent = btrfs_item_ptr(leaf, path->slots[0], 900 struct btrfs_file_extent_item); 901 902 type = btrfs_file_extent_type(leaf, extent); 903 if (type == BTRFS_FILE_EXTENT_REG && 904 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 905 check_defrag_in_cache(inode, min_key.offset, thresh)) { 906 *off = min_key.offset; 907 btrfs_free_path(path); 908 return 0; 909 } 910 911 if (min_key.offset == (u64)-1) 912 goto none; 913 914 min_key.offset++; 915 btrfs_release_path(path); 916 } 917 none: 918 btrfs_free_path(path); 919 return -ENOENT; 920 } 921 922 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 923 { 924 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 925 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 926 struct extent_map *em; 927 u64 len = PAGE_CACHE_SIZE; 928 929 /* 930 * hopefully we have this extent in the tree already, try without 931 * the full extent lock 932 */ 933 read_lock(&em_tree->lock); 934 em = lookup_extent_mapping(em_tree, start, len); 935 read_unlock(&em_tree->lock); 936 937 if (!em) { 938 /* get the big lock and read metadata off disk */ 939 lock_extent(io_tree, start, start + len - 1); 940 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 941 unlock_extent(io_tree, start, start + len - 1); 942 943 if (IS_ERR(em)) 944 return NULL; 945 } 946 947 return em; 948 } 949 950 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 951 { 952 struct extent_map *next; 953 bool ret = true; 954 955 /* this is the last extent */ 956 if (em->start + em->len >= i_size_read(inode)) 957 return false; 958 959 next = defrag_lookup_extent(inode, em->start + em->len); 960 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 961 ret = false; 962 963 free_extent_map(next); 964 return ret; 965 } 966 967 static int should_defrag_range(struct inode *inode, u64 start, int thresh, 968 u64 *last_len, u64 *skip, u64 *defrag_end, 969 int compress) 970 { 971 struct extent_map *em; 972 int ret = 1; 973 bool next_mergeable = true; 974 975 /* 976 * make sure that once we start defragging an extent, we keep on 977 * defragging it 978 */ 979 if (start < *defrag_end) 980 return 1; 981 982 *skip = 0; 983 984 em = defrag_lookup_extent(inode, start); 985 if (!em) 986 return 0; 987 988 /* this will cover holes, and inline extents */ 989 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 990 ret = 0; 991 goto out; 992 } 993 994 next_mergeable = defrag_check_next_extent(inode, em); 995 996 /* 997 * we hit a real extent, if it is big or the next extent is not a 998 * real extent, don't bother defragging it 999 */ 1000 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1001 (em->len >= thresh || !next_mergeable)) 1002 ret = 0; 1003 out: 1004 /* 1005 * last_len ends up being a counter of how many bytes we've defragged. 1006 * every time we choose not to defrag an extent, we reset *last_len 1007 * so that the next tiny extent will force a defrag. 1008 * 1009 * The end result of this is that tiny extents before a single big 1010 * extent will force at least part of that big extent to be defragged. 1011 */ 1012 if (ret) { 1013 *defrag_end = extent_map_end(em); 1014 } else { 1015 *last_len = 0; 1016 *skip = extent_map_end(em); 1017 *defrag_end = 0; 1018 } 1019 1020 free_extent_map(em); 1021 return ret; 1022 } 1023 1024 /* 1025 * it doesn't do much good to defrag one or two pages 1026 * at a time. This pulls in a nice chunk of pages 1027 * to COW and defrag. 1028 * 1029 * It also makes sure the delalloc code has enough 1030 * dirty data to avoid making new small extents as part 1031 * of the defrag 1032 * 1033 * It's a good idea to start RA on this range 1034 * before calling this. 1035 */ 1036 static int cluster_pages_for_defrag(struct inode *inode, 1037 struct page **pages, 1038 unsigned long start_index, 1039 unsigned long num_pages) 1040 { 1041 unsigned long file_end; 1042 u64 isize = i_size_read(inode); 1043 u64 page_start; 1044 u64 page_end; 1045 u64 page_cnt; 1046 int ret; 1047 int i; 1048 int i_done; 1049 struct btrfs_ordered_extent *ordered; 1050 struct extent_state *cached_state = NULL; 1051 struct extent_io_tree *tree; 1052 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1053 1054 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 1055 if (!isize || start_index > file_end) 1056 return 0; 1057 1058 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1059 1060 ret = btrfs_delalloc_reserve_space(inode, 1061 page_cnt << PAGE_CACHE_SHIFT); 1062 if (ret) 1063 return ret; 1064 i_done = 0; 1065 tree = &BTRFS_I(inode)->io_tree; 1066 1067 /* step one, lock all the pages */ 1068 for (i = 0; i < page_cnt; i++) { 1069 struct page *page; 1070 again: 1071 page = find_or_create_page(inode->i_mapping, 1072 start_index + i, mask); 1073 if (!page) 1074 break; 1075 1076 page_start = page_offset(page); 1077 page_end = page_start + PAGE_CACHE_SIZE - 1; 1078 while (1) { 1079 lock_extent(tree, page_start, page_end); 1080 ordered = btrfs_lookup_ordered_extent(inode, 1081 page_start); 1082 unlock_extent(tree, page_start, page_end); 1083 if (!ordered) 1084 break; 1085 1086 unlock_page(page); 1087 btrfs_start_ordered_extent(inode, ordered, 1); 1088 btrfs_put_ordered_extent(ordered); 1089 lock_page(page); 1090 /* 1091 * we unlocked the page above, so we need check if 1092 * it was released or not. 1093 */ 1094 if (page->mapping != inode->i_mapping) { 1095 unlock_page(page); 1096 page_cache_release(page); 1097 goto again; 1098 } 1099 } 1100 1101 if (!PageUptodate(page)) { 1102 btrfs_readpage(NULL, page); 1103 lock_page(page); 1104 if (!PageUptodate(page)) { 1105 unlock_page(page); 1106 page_cache_release(page); 1107 ret = -EIO; 1108 break; 1109 } 1110 } 1111 1112 if (page->mapping != inode->i_mapping) { 1113 unlock_page(page); 1114 page_cache_release(page); 1115 goto again; 1116 } 1117 1118 pages[i] = page; 1119 i_done++; 1120 } 1121 if (!i_done || ret) 1122 goto out; 1123 1124 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1125 goto out; 1126 1127 /* 1128 * so now we have a nice long stream of locked 1129 * and up to date pages, lets wait on them 1130 */ 1131 for (i = 0; i < i_done; i++) 1132 wait_on_page_writeback(pages[i]); 1133 1134 page_start = page_offset(pages[0]); 1135 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 1136 1137 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1138 page_start, page_end - 1, 0, &cached_state); 1139 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1140 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1141 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1142 &cached_state, GFP_NOFS); 1143 1144 if (i_done != page_cnt) { 1145 spin_lock(&BTRFS_I(inode)->lock); 1146 BTRFS_I(inode)->outstanding_extents++; 1147 spin_unlock(&BTRFS_I(inode)->lock); 1148 btrfs_delalloc_release_space(inode, 1149 (page_cnt - i_done) << PAGE_CACHE_SHIFT); 1150 } 1151 1152 1153 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1154 &cached_state, GFP_NOFS); 1155 1156 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1157 page_start, page_end - 1, &cached_state, 1158 GFP_NOFS); 1159 1160 for (i = 0; i < i_done; i++) { 1161 clear_page_dirty_for_io(pages[i]); 1162 ClearPageChecked(pages[i]); 1163 set_page_extent_mapped(pages[i]); 1164 set_page_dirty(pages[i]); 1165 unlock_page(pages[i]); 1166 page_cache_release(pages[i]); 1167 } 1168 return i_done; 1169 out: 1170 for (i = 0; i < i_done; i++) { 1171 unlock_page(pages[i]); 1172 page_cache_release(pages[i]); 1173 } 1174 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT); 1175 return ret; 1176 1177 } 1178 1179 int btrfs_defrag_file(struct inode *inode, struct file *file, 1180 struct btrfs_ioctl_defrag_range_args *range, 1181 u64 newer_than, unsigned long max_to_defrag) 1182 { 1183 struct btrfs_root *root = BTRFS_I(inode)->root; 1184 struct file_ra_state *ra = NULL; 1185 unsigned long last_index; 1186 u64 isize = i_size_read(inode); 1187 u64 last_len = 0; 1188 u64 skip = 0; 1189 u64 defrag_end = 0; 1190 u64 newer_off = range->start; 1191 unsigned long i; 1192 unsigned long ra_index = 0; 1193 int ret; 1194 int defrag_count = 0; 1195 int compress_type = BTRFS_COMPRESS_ZLIB; 1196 int extent_thresh = range->extent_thresh; 1197 unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 1198 unsigned long cluster = max_cluster; 1199 u64 new_align = ~((u64)128 * 1024 - 1); 1200 struct page **pages = NULL; 1201 1202 if (isize == 0) 1203 return 0; 1204 1205 if (range->start >= isize) 1206 return -EINVAL; 1207 1208 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1209 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1210 return -EINVAL; 1211 if (range->compress_type) 1212 compress_type = range->compress_type; 1213 } 1214 1215 if (extent_thresh == 0) 1216 extent_thresh = 256 * 1024; 1217 1218 /* 1219 * if we were not given a file, allocate a readahead 1220 * context 1221 */ 1222 if (!file) { 1223 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1224 if (!ra) 1225 return -ENOMEM; 1226 file_ra_state_init(ra, inode->i_mapping); 1227 } else { 1228 ra = &file->f_ra; 1229 } 1230 1231 pages = kmalloc_array(max_cluster, sizeof(struct page *), 1232 GFP_NOFS); 1233 if (!pages) { 1234 ret = -ENOMEM; 1235 goto out_ra; 1236 } 1237 1238 /* find the last page to defrag */ 1239 if (range->start + range->len > range->start) { 1240 last_index = min_t(u64, isize - 1, 1241 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1242 } else { 1243 last_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1244 } 1245 1246 if (newer_than) { 1247 ret = find_new_extents(root, inode, newer_than, 1248 &newer_off, 64 * 1024); 1249 if (!ret) { 1250 range->start = newer_off; 1251 /* 1252 * we always align our defrag to help keep 1253 * the extents in the file evenly spaced 1254 */ 1255 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1256 } else 1257 goto out_ra; 1258 } else { 1259 i = range->start >> PAGE_CACHE_SHIFT; 1260 } 1261 if (!max_to_defrag) 1262 max_to_defrag = last_index + 1; 1263 1264 /* 1265 * make writeback starts from i, so the defrag range can be 1266 * written sequentially. 1267 */ 1268 if (i < inode->i_mapping->writeback_index) 1269 inode->i_mapping->writeback_index = i; 1270 1271 while (i <= last_index && defrag_count < max_to_defrag && 1272 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> 1273 PAGE_CACHE_SHIFT)) { 1274 /* 1275 * make sure we stop running if someone unmounts 1276 * the FS 1277 */ 1278 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1279 break; 1280 1281 if (btrfs_defrag_cancelled(root->fs_info)) { 1282 printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n"); 1283 ret = -EAGAIN; 1284 break; 1285 } 1286 1287 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1288 extent_thresh, &last_len, &skip, 1289 &defrag_end, range->flags & 1290 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1291 unsigned long next; 1292 /* 1293 * the should_defrag function tells us how much to skip 1294 * bump our counter by the suggested amount 1295 */ 1296 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1297 i = max(i + 1, next); 1298 continue; 1299 } 1300 1301 if (!newer_than) { 1302 cluster = (PAGE_CACHE_ALIGN(defrag_end) >> 1303 PAGE_CACHE_SHIFT) - i; 1304 cluster = min(cluster, max_cluster); 1305 } else { 1306 cluster = max_cluster; 1307 } 1308 1309 if (i + cluster > ra_index) { 1310 ra_index = max(i, ra_index); 1311 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1312 cluster); 1313 ra_index += max_cluster; 1314 } 1315 1316 mutex_lock(&inode->i_mutex); 1317 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1318 BTRFS_I(inode)->force_compress = compress_type; 1319 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1320 if (ret < 0) { 1321 mutex_unlock(&inode->i_mutex); 1322 goto out_ra; 1323 } 1324 1325 defrag_count += ret; 1326 balance_dirty_pages_ratelimited(inode->i_mapping); 1327 mutex_unlock(&inode->i_mutex); 1328 1329 if (newer_than) { 1330 if (newer_off == (u64)-1) 1331 break; 1332 1333 if (ret > 0) 1334 i += ret; 1335 1336 newer_off = max(newer_off + 1, 1337 (u64)i << PAGE_CACHE_SHIFT); 1338 1339 ret = find_new_extents(root, inode, 1340 newer_than, &newer_off, 1341 64 * 1024); 1342 if (!ret) { 1343 range->start = newer_off; 1344 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1345 } else { 1346 break; 1347 } 1348 } else { 1349 if (ret > 0) { 1350 i += ret; 1351 last_len += ret << PAGE_CACHE_SHIFT; 1352 } else { 1353 i++; 1354 last_len = 0; 1355 } 1356 } 1357 } 1358 1359 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) 1360 filemap_flush(inode->i_mapping); 1361 1362 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1363 /* the filemap_flush will queue IO into the worker threads, but 1364 * we have to make sure the IO is actually started and that 1365 * ordered extents get created before we return 1366 */ 1367 atomic_inc(&root->fs_info->async_submit_draining); 1368 while (atomic_read(&root->fs_info->nr_async_submits) || 1369 atomic_read(&root->fs_info->async_delalloc_pages)) { 1370 wait_event(root->fs_info->async_submit_wait, 1371 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1372 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1373 } 1374 atomic_dec(&root->fs_info->async_submit_draining); 1375 } 1376 1377 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1378 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1379 } 1380 1381 ret = defrag_count; 1382 1383 out_ra: 1384 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1385 mutex_lock(&inode->i_mutex); 1386 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1387 mutex_unlock(&inode->i_mutex); 1388 } 1389 if (!file) 1390 kfree(ra); 1391 kfree(pages); 1392 return ret; 1393 } 1394 1395 static noinline int btrfs_ioctl_resize(struct file *file, 1396 void __user *arg) 1397 { 1398 u64 new_size; 1399 u64 old_size; 1400 u64 devid = 1; 1401 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 1402 struct btrfs_ioctl_vol_args *vol_args; 1403 struct btrfs_trans_handle *trans; 1404 struct btrfs_device *device = NULL; 1405 char *sizestr; 1406 char *devstr = NULL; 1407 int ret = 0; 1408 int mod = 0; 1409 1410 if (!capable(CAP_SYS_ADMIN)) 1411 return -EPERM; 1412 1413 ret = mnt_want_write_file(file); 1414 if (ret) 1415 return ret; 1416 1417 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 1418 1)) { 1419 mnt_drop_write_file(file); 1420 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1421 } 1422 1423 mutex_lock(&root->fs_info->volume_mutex); 1424 vol_args = memdup_user(arg, sizeof(*vol_args)); 1425 if (IS_ERR(vol_args)) { 1426 ret = PTR_ERR(vol_args); 1427 goto out; 1428 } 1429 1430 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1431 1432 sizestr = vol_args->name; 1433 devstr = strchr(sizestr, ':'); 1434 if (devstr) { 1435 char *end; 1436 sizestr = devstr + 1; 1437 *devstr = '\0'; 1438 devstr = vol_args->name; 1439 devid = simple_strtoull(devstr, &end, 10); 1440 if (!devid) { 1441 ret = -EINVAL; 1442 goto out_free; 1443 } 1444 btrfs_info(root->fs_info, "resizing devid %llu", devid); 1445 } 1446 1447 device = btrfs_find_device(root->fs_info, devid, NULL, NULL); 1448 if (!device) { 1449 btrfs_info(root->fs_info, "resizer unable to find device %llu", 1450 devid); 1451 ret = -ENODEV; 1452 goto out_free; 1453 } 1454 1455 if (!device->writeable) { 1456 btrfs_info(root->fs_info, 1457 "resizer unable to apply on readonly device %llu", 1458 devid); 1459 ret = -EPERM; 1460 goto out_free; 1461 } 1462 1463 if (!strcmp(sizestr, "max")) 1464 new_size = device->bdev->bd_inode->i_size; 1465 else { 1466 if (sizestr[0] == '-') { 1467 mod = -1; 1468 sizestr++; 1469 } else if (sizestr[0] == '+') { 1470 mod = 1; 1471 sizestr++; 1472 } 1473 new_size = memparse(sizestr, NULL); 1474 if (new_size == 0) { 1475 ret = -EINVAL; 1476 goto out_free; 1477 } 1478 } 1479 1480 if (device->is_tgtdev_for_dev_replace) { 1481 ret = -EPERM; 1482 goto out_free; 1483 } 1484 1485 old_size = device->total_bytes; 1486 1487 if (mod < 0) { 1488 if (new_size > old_size) { 1489 ret = -EINVAL; 1490 goto out_free; 1491 } 1492 new_size = old_size - new_size; 1493 } else if (mod > 0) { 1494 if (new_size > ULLONG_MAX - old_size) { 1495 ret = -EINVAL; 1496 goto out_free; 1497 } 1498 new_size = old_size + new_size; 1499 } 1500 1501 if (new_size < 256 * 1024 * 1024) { 1502 ret = -EINVAL; 1503 goto out_free; 1504 } 1505 if (new_size > device->bdev->bd_inode->i_size) { 1506 ret = -EFBIG; 1507 goto out_free; 1508 } 1509 1510 do_div(new_size, root->sectorsize); 1511 new_size *= root->sectorsize; 1512 1513 printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n", 1514 rcu_str_deref(device->name), new_size); 1515 1516 if (new_size > old_size) { 1517 trans = btrfs_start_transaction(root, 0); 1518 if (IS_ERR(trans)) { 1519 ret = PTR_ERR(trans); 1520 goto out_free; 1521 } 1522 ret = btrfs_grow_device(trans, device, new_size); 1523 btrfs_commit_transaction(trans, root); 1524 } else if (new_size < old_size) { 1525 ret = btrfs_shrink_device(device, new_size); 1526 } /* equal, nothing need to do */ 1527 1528 out_free: 1529 kfree(vol_args); 1530 out: 1531 mutex_unlock(&root->fs_info->volume_mutex); 1532 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 1533 mnt_drop_write_file(file); 1534 return ret; 1535 } 1536 1537 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1538 char *name, unsigned long fd, int subvol, 1539 u64 *transid, bool readonly, 1540 struct btrfs_qgroup_inherit *inherit) 1541 { 1542 int namelen; 1543 int ret = 0; 1544 1545 ret = mnt_want_write_file(file); 1546 if (ret) 1547 goto out; 1548 1549 namelen = strlen(name); 1550 if (strchr(name, '/')) { 1551 ret = -EINVAL; 1552 goto out_drop_write; 1553 } 1554 1555 if (name[0] == '.' && 1556 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1557 ret = -EEXIST; 1558 goto out_drop_write; 1559 } 1560 1561 if (subvol) { 1562 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1563 NULL, transid, readonly, inherit); 1564 } else { 1565 struct fd src = fdget(fd); 1566 struct inode *src_inode; 1567 if (!src.file) { 1568 ret = -EINVAL; 1569 goto out_drop_write; 1570 } 1571 1572 src_inode = file_inode(src.file); 1573 if (src_inode->i_sb != file_inode(file)->i_sb) { 1574 btrfs_info(BTRFS_I(src_inode)->root->fs_info, 1575 "Snapshot src from another FS"); 1576 ret = -EINVAL; 1577 } else if (!inode_owner_or_capable(src_inode)) { 1578 /* 1579 * Subvolume creation is not restricted, but snapshots 1580 * are limited to own subvolumes only 1581 */ 1582 ret = -EPERM; 1583 } else { 1584 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1585 BTRFS_I(src_inode)->root, 1586 transid, readonly, inherit); 1587 } 1588 fdput(src); 1589 } 1590 out_drop_write: 1591 mnt_drop_write_file(file); 1592 out: 1593 return ret; 1594 } 1595 1596 static noinline int btrfs_ioctl_snap_create(struct file *file, 1597 void __user *arg, int subvol) 1598 { 1599 struct btrfs_ioctl_vol_args *vol_args; 1600 int ret; 1601 1602 vol_args = memdup_user(arg, sizeof(*vol_args)); 1603 if (IS_ERR(vol_args)) 1604 return PTR_ERR(vol_args); 1605 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1606 1607 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1608 vol_args->fd, subvol, 1609 NULL, false, NULL); 1610 1611 kfree(vol_args); 1612 return ret; 1613 } 1614 1615 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1616 void __user *arg, int subvol) 1617 { 1618 struct btrfs_ioctl_vol_args_v2 *vol_args; 1619 int ret; 1620 u64 transid = 0; 1621 u64 *ptr = NULL; 1622 bool readonly = false; 1623 struct btrfs_qgroup_inherit *inherit = NULL; 1624 1625 vol_args = memdup_user(arg, sizeof(*vol_args)); 1626 if (IS_ERR(vol_args)) 1627 return PTR_ERR(vol_args); 1628 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1629 1630 if (vol_args->flags & 1631 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1632 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1633 ret = -EOPNOTSUPP; 1634 goto out; 1635 } 1636 1637 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1638 ptr = &transid; 1639 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1640 readonly = true; 1641 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1642 if (vol_args->size > PAGE_CACHE_SIZE) { 1643 ret = -EINVAL; 1644 goto out; 1645 } 1646 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1647 if (IS_ERR(inherit)) { 1648 ret = PTR_ERR(inherit); 1649 goto out; 1650 } 1651 } 1652 1653 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1654 vol_args->fd, subvol, ptr, 1655 readonly, inherit); 1656 1657 if (ret == 0 && ptr && 1658 copy_to_user(arg + 1659 offsetof(struct btrfs_ioctl_vol_args_v2, 1660 transid), ptr, sizeof(*ptr))) 1661 ret = -EFAULT; 1662 out: 1663 kfree(vol_args); 1664 kfree(inherit); 1665 return ret; 1666 } 1667 1668 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1669 void __user *arg) 1670 { 1671 struct inode *inode = file_inode(file); 1672 struct btrfs_root *root = BTRFS_I(inode)->root; 1673 int ret = 0; 1674 u64 flags = 0; 1675 1676 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1677 return -EINVAL; 1678 1679 down_read(&root->fs_info->subvol_sem); 1680 if (btrfs_root_readonly(root)) 1681 flags |= BTRFS_SUBVOL_RDONLY; 1682 up_read(&root->fs_info->subvol_sem); 1683 1684 if (copy_to_user(arg, &flags, sizeof(flags))) 1685 ret = -EFAULT; 1686 1687 return ret; 1688 } 1689 1690 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1691 void __user *arg) 1692 { 1693 struct inode *inode = file_inode(file); 1694 struct btrfs_root *root = BTRFS_I(inode)->root; 1695 struct btrfs_trans_handle *trans; 1696 u64 root_flags; 1697 u64 flags; 1698 int ret = 0; 1699 1700 if (!inode_owner_or_capable(inode)) 1701 return -EPERM; 1702 1703 ret = mnt_want_write_file(file); 1704 if (ret) 1705 goto out; 1706 1707 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1708 ret = -EINVAL; 1709 goto out_drop_write; 1710 } 1711 1712 if (copy_from_user(&flags, arg, sizeof(flags))) { 1713 ret = -EFAULT; 1714 goto out_drop_write; 1715 } 1716 1717 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1718 ret = -EINVAL; 1719 goto out_drop_write; 1720 } 1721 1722 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1723 ret = -EOPNOTSUPP; 1724 goto out_drop_write; 1725 } 1726 1727 down_write(&root->fs_info->subvol_sem); 1728 1729 /* nothing to do */ 1730 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1731 goto out_drop_sem; 1732 1733 root_flags = btrfs_root_flags(&root->root_item); 1734 if (flags & BTRFS_SUBVOL_RDONLY) { 1735 btrfs_set_root_flags(&root->root_item, 1736 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1737 } else { 1738 /* 1739 * Block RO -> RW transition if this subvolume is involved in 1740 * send 1741 */ 1742 spin_lock(&root->root_item_lock); 1743 if (root->send_in_progress == 0) { 1744 btrfs_set_root_flags(&root->root_item, 1745 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1746 spin_unlock(&root->root_item_lock); 1747 } else { 1748 spin_unlock(&root->root_item_lock); 1749 btrfs_warn(root->fs_info, 1750 "Attempt to set subvolume %llu read-write during send", 1751 root->root_key.objectid); 1752 ret = -EPERM; 1753 goto out_drop_sem; 1754 } 1755 } 1756 1757 trans = btrfs_start_transaction(root, 1); 1758 if (IS_ERR(trans)) { 1759 ret = PTR_ERR(trans); 1760 goto out_reset; 1761 } 1762 1763 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1764 &root->root_key, &root->root_item); 1765 1766 btrfs_commit_transaction(trans, root); 1767 out_reset: 1768 if (ret) 1769 btrfs_set_root_flags(&root->root_item, root_flags); 1770 out_drop_sem: 1771 up_write(&root->fs_info->subvol_sem); 1772 out_drop_write: 1773 mnt_drop_write_file(file); 1774 out: 1775 return ret; 1776 } 1777 1778 /* 1779 * helper to check if the subvolume references other subvolumes 1780 */ 1781 static noinline int may_destroy_subvol(struct btrfs_root *root) 1782 { 1783 struct btrfs_path *path; 1784 struct btrfs_dir_item *di; 1785 struct btrfs_key key; 1786 u64 dir_id; 1787 int ret; 1788 1789 path = btrfs_alloc_path(); 1790 if (!path) 1791 return -ENOMEM; 1792 1793 /* Make sure this root isn't set as the default subvol */ 1794 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 1795 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path, 1796 dir_id, "default", 7, 0); 1797 if (di && !IS_ERR(di)) { 1798 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1799 if (key.objectid == root->root_key.objectid) { 1800 ret = -ENOTEMPTY; 1801 goto out; 1802 } 1803 btrfs_release_path(path); 1804 } 1805 1806 key.objectid = root->root_key.objectid; 1807 key.type = BTRFS_ROOT_REF_KEY; 1808 key.offset = (u64)-1; 1809 1810 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1811 &key, path, 0, 0); 1812 if (ret < 0) 1813 goto out; 1814 BUG_ON(ret == 0); 1815 1816 ret = 0; 1817 if (path->slots[0] > 0) { 1818 path->slots[0]--; 1819 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1820 if (key.objectid == root->root_key.objectid && 1821 key.type == BTRFS_ROOT_REF_KEY) 1822 ret = -ENOTEMPTY; 1823 } 1824 out: 1825 btrfs_free_path(path); 1826 return ret; 1827 } 1828 1829 static noinline int key_in_sk(struct btrfs_key *key, 1830 struct btrfs_ioctl_search_key *sk) 1831 { 1832 struct btrfs_key test; 1833 int ret; 1834 1835 test.objectid = sk->min_objectid; 1836 test.type = sk->min_type; 1837 test.offset = sk->min_offset; 1838 1839 ret = btrfs_comp_cpu_keys(key, &test); 1840 if (ret < 0) 1841 return 0; 1842 1843 test.objectid = sk->max_objectid; 1844 test.type = sk->max_type; 1845 test.offset = sk->max_offset; 1846 1847 ret = btrfs_comp_cpu_keys(key, &test); 1848 if (ret > 0) 1849 return 0; 1850 return 1; 1851 } 1852 1853 static noinline int copy_to_sk(struct btrfs_root *root, 1854 struct btrfs_path *path, 1855 struct btrfs_key *key, 1856 struct btrfs_ioctl_search_key *sk, 1857 char *buf, 1858 unsigned long *sk_offset, 1859 int *num_found) 1860 { 1861 u64 found_transid; 1862 struct extent_buffer *leaf; 1863 struct btrfs_ioctl_search_header sh; 1864 unsigned long item_off; 1865 unsigned long item_len; 1866 int nritems; 1867 int i; 1868 int slot; 1869 int ret = 0; 1870 1871 leaf = path->nodes[0]; 1872 slot = path->slots[0]; 1873 nritems = btrfs_header_nritems(leaf); 1874 1875 if (btrfs_header_generation(leaf) > sk->max_transid) { 1876 i = nritems; 1877 goto advance_key; 1878 } 1879 found_transid = btrfs_header_generation(leaf); 1880 1881 for (i = slot; i < nritems; i++) { 1882 item_off = btrfs_item_ptr_offset(leaf, i); 1883 item_len = btrfs_item_size_nr(leaf, i); 1884 1885 btrfs_item_key_to_cpu(leaf, key, i); 1886 if (!key_in_sk(key, sk)) 1887 continue; 1888 1889 if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE) 1890 item_len = 0; 1891 1892 if (sizeof(sh) + item_len + *sk_offset > 1893 BTRFS_SEARCH_ARGS_BUFSIZE) { 1894 ret = 1; 1895 goto overflow; 1896 } 1897 1898 sh.objectid = key->objectid; 1899 sh.offset = key->offset; 1900 sh.type = key->type; 1901 sh.len = item_len; 1902 sh.transid = found_transid; 1903 1904 /* copy search result header */ 1905 memcpy(buf + *sk_offset, &sh, sizeof(sh)); 1906 *sk_offset += sizeof(sh); 1907 1908 if (item_len) { 1909 char *p = buf + *sk_offset; 1910 /* copy the item */ 1911 read_extent_buffer(leaf, p, 1912 item_off, item_len); 1913 *sk_offset += item_len; 1914 } 1915 (*num_found)++; 1916 1917 if (*num_found >= sk->nr_items) 1918 break; 1919 } 1920 advance_key: 1921 ret = 0; 1922 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 1923 key->offset++; 1924 else if (key->type < (u8)-1 && key->type < sk->max_type) { 1925 key->offset = 0; 1926 key->type++; 1927 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 1928 key->offset = 0; 1929 key->type = 0; 1930 key->objectid++; 1931 } else 1932 ret = 1; 1933 overflow: 1934 return ret; 1935 } 1936 1937 static noinline int search_ioctl(struct inode *inode, 1938 struct btrfs_ioctl_search_args *args) 1939 { 1940 struct btrfs_root *root; 1941 struct btrfs_key key; 1942 struct btrfs_path *path; 1943 struct btrfs_ioctl_search_key *sk = &args->key; 1944 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 1945 int ret; 1946 int num_found = 0; 1947 unsigned long sk_offset = 0; 1948 1949 path = btrfs_alloc_path(); 1950 if (!path) 1951 return -ENOMEM; 1952 1953 if (sk->tree_id == 0) { 1954 /* search the root of the inode that was passed */ 1955 root = BTRFS_I(inode)->root; 1956 } else { 1957 key.objectid = sk->tree_id; 1958 key.type = BTRFS_ROOT_ITEM_KEY; 1959 key.offset = (u64)-1; 1960 root = btrfs_read_fs_root_no_name(info, &key); 1961 if (IS_ERR(root)) { 1962 printk(KERN_ERR "BTRFS: could not find root %llu\n", 1963 sk->tree_id); 1964 btrfs_free_path(path); 1965 return -ENOENT; 1966 } 1967 } 1968 1969 key.objectid = sk->min_objectid; 1970 key.type = sk->min_type; 1971 key.offset = sk->min_offset; 1972 1973 path->keep_locks = 1; 1974 1975 while (1) { 1976 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 1977 if (ret != 0) { 1978 if (ret > 0) 1979 ret = 0; 1980 goto err; 1981 } 1982 ret = copy_to_sk(root, path, &key, sk, args->buf, 1983 &sk_offset, &num_found); 1984 btrfs_release_path(path); 1985 if (ret || num_found >= sk->nr_items) 1986 break; 1987 1988 } 1989 ret = 0; 1990 err: 1991 sk->nr_items = num_found; 1992 btrfs_free_path(path); 1993 return ret; 1994 } 1995 1996 static noinline int btrfs_ioctl_tree_search(struct file *file, 1997 void __user *argp) 1998 { 1999 struct btrfs_ioctl_search_args *args; 2000 struct inode *inode; 2001 int ret; 2002 2003 if (!capable(CAP_SYS_ADMIN)) 2004 return -EPERM; 2005 2006 args = memdup_user(argp, sizeof(*args)); 2007 if (IS_ERR(args)) 2008 return PTR_ERR(args); 2009 2010 inode = file_inode(file); 2011 ret = search_ioctl(inode, args); 2012 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2013 ret = -EFAULT; 2014 kfree(args); 2015 return ret; 2016 } 2017 2018 /* 2019 * Search INODE_REFs to identify path name of 'dirid' directory 2020 * in a 'tree_id' tree. and sets path name to 'name'. 2021 */ 2022 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2023 u64 tree_id, u64 dirid, char *name) 2024 { 2025 struct btrfs_root *root; 2026 struct btrfs_key key; 2027 char *ptr; 2028 int ret = -1; 2029 int slot; 2030 int len; 2031 int total_len = 0; 2032 struct btrfs_inode_ref *iref; 2033 struct extent_buffer *l; 2034 struct btrfs_path *path; 2035 2036 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2037 name[0]='\0'; 2038 return 0; 2039 } 2040 2041 path = btrfs_alloc_path(); 2042 if (!path) 2043 return -ENOMEM; 2044 2045 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2046 2047 key.objectid = tree_id; 2048 key.type = BTRFS_ROOT_ITEM_KEY; 2049 key.offset = (u64)-1; 2050 root = btrfs_read_fs_root_no_name(info, &key); 2051 if (IS_ERR(root)) { 2052 printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id); 2053 ret = -ENOENT; 2054 goto out; 2055 } 2056 2057 key.objectid = dirid; 2058 key.type = BTRFS_INODE_REF_KEY; 2059 key.offset = (u64)-1; 2060 2061 while (1) { 2062 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2063 if (ret < 0) 2064 goto out; 2065 else if (ret > 0) { 2066 ret = btrfs_previous_item(root, path, dirid, 2067 BTRFS_INODE_REF_KEY); 2068 if (ret < 0) 2069 goto out; 2070 else if (ret > 0) { 2071 ret = -ENOENT; 2072 goto out; 2073 } 2074 } 2075 2076 l = path->nodes[0]; 2077 slot = path->slots[0]; 2078 btrfs_item_key_to_cpu(l, &key, slot); 2079 2080 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2081 len = btrfs_inode_ref_name_len(l, iref); 2082 ptr -= len + 1; 2083 total_len += len + 1; 2084 if (ptr < name) { 2085 ret = -ENAMETOOLONG; 2086 goto out; 2087 } 2088 2089 *(ptr + len) = '/'; 2090 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2091 2092 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2093 break; 2094 2095 btrfs_release_path(path); 2096 key.objectid = key.offset; 2097 key.offset = (u64)-1; 2098 dirid = key.objectid; 2099 } 2100 memmove(name, ptr, total_len); 2101 name[total_len] = '\0'; 2102 ret = 0; 2103 out: 2104 btrfs_free_path(path); 2105 return ret; 2106 } 2107 2108 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2109 void __user *argp) 2110 { 2111 struct btrfs_ioctl_ino_lookup_args *args; 2112 struct inode *inode; 2113 int ret; 2114 2115 if (!capable(CAP_SYS_ADMIN)) 2116 return -EPERM; 2117 2118 args = memdup_user(argp, sizeof(*args)); 2119 if (IS_ERR(args)) 2120 return PTR_ERR(args); 2121 2122 inode = file_inode(file); 2123 2124 if (args->treeid == 0) 2125 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2126 2127 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2128 args->treeid, args->objectid, 2129 args->name); 2130 2131 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2132 ret = -EFAULT; 2133 2134 kfree(args); 2135 return ret; 2136 } 2137 2138 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2139 void __user *arg) 2140 { 2141 struct dentry *parent = file->f_path.dentry; 2142 struct dentry *dentry; 2143 struct inode *dir = parent->d_inode; 2144 struct inode *inode; 2145 struct btrfs_root *root = BTRFS_I(dir)->root; 2146 struct btrfs_root *dest = NULL; 2147 struct btrfs_ioctl_vol_args *vol_args; 2148 struct btrfs_trans_handle *trans; 2149 struct btrfs_block_rsv block_rsv; 2150 u64 qgroup_reserved; 2151 int namelen; 2152 int ret; 2153 int err = 0; 2154 2155 vol_args = memdup_user(arg, sizeof(*vol_args)); 2156 if (IS_ERR(vol_args)) 2157 return PTR_ERR(vol_args); 2158 2159 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2160 namelen = strlen(vol_args->name); 2161 if (strchr(vol_args->name, '/') || 2162 strncmp(vol_args->name, "..", namelen) == 0) { 2163 err = -EINVAL; 2164 goto out; 2165 } 2166 2167 err = mnt_want_write_file(file); 2168 if (err) 2169 goto out; 2170 2171 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 2172 if (err == -EINTR) 2173 goto out_drop_write; 2174 dentry = lookup_one_len(vol_args->name, parent, namelen); 2175 if (IS_ERR(dentry)) { 2176 err = PTR_ERR(dentry); 2177 goto out_unlock_dir; 2178 } 2179 2180 if (!dentry->d_inode) { 2181 err = -ENOENT; 2182 goto out_dput; 2183 } 2184 2185 inode = dentry->d_inode; 2186 dest = BTRFS_I(inode)->root; 2187 if (!capable(CAP_SYS_ADMIN)) { 2188 /* 2189 * Regular user. Only allow this with a special mount 2190 * option, when the user has write+exec access to the 2191 * subvol root, and when rmdir(2) would have been 2192 * allowed. 2193 * 2194 * Note that this is _not_ check that the subvol is 2195 * empty or doesn't contain data that we wouldn't 2196 * otherwise be able to delete. 2197 * 2198 * Users who want to delete empty subvols should try 2199 * rmdir(2). 2200 */ 2201 err = -EPERM; 2202 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 2203 goto out_dput; 2204 2205 /* 2206 * Do not allow deletion if the parent dir is the same 2207 * as the dir to be deleted. That means the ioctl 2208 * must be called on the dentry referencing the root 2209 * of the subvol, not a random directory contained 2210 * within it. 2211 */ 2212 err = -EINVAL; 2213 if (root == dest) 2214 goto out_dput; 2215 2216 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2217 if (err) 2218 goto out_dput; 2219 } 2220 2221 /* check if subvolume may be deleted by a user */ 2222 err = btrfs_may_delete(dir, dentry, 1); 2223 if (err) 2224 goto out_dput; 2225 2226 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2227 err = -EINVAL; 2228 goto out_dput; 2229 } 2230 2231 mutex_lock(&inode->i_mutex); 2232 err = d_invalidate(dentry); 2233 if (err) 2234 goto out_unlock; 2235 2236 down_write(&root->fs_info->subvol_sem); 2237 2238 err = may_destroy_subvol(dest); 2239 if (err) 2240 goto out_up_write; 2241 2242 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2243 /* 2244 * One for dir inode, two for dir entries, two for root 2245 * ref/backref. 2246 */ 2247 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2248 5, &qgroup_reserved, true); 2249 if (err) 2250 goto out_up_write; 2251 2252 trans = btrfs_start_transaction(root, 0); 2253 if (IS_ERR(trans)) { 2254 err = PTR_ERR(trans); 2255 goto out_release; 2256 } 2257 trans->block_rsv = &block_rsv; 2258 trans->bytes_reserved = block_rsv.size; 2259 2260 ret = btrfs_unlink_subvol(trans, root, dir, 2261 dest->root_key.objectid, 2262 dentry->d_name.name, 2263 dentry->d_name.len); 2264 if (ret) { 2265 err = ret; 2266 btrfs_abort_transaction(trans, root, ret); 2267 goto out_end_trans; 2268 } 2269 2270 btrfs_record_root_in_trans(trans, dest); 2271 2272 memset(&dest->root_item.drop_progress, 0, 2273 sizeof(dest->root_item.drop_progress)); 2274 dest->root_item.drop_level = 0; 2275 btrfs_set_root_refs(&dest->root_item, 0); 2276 2277 if (!xchg(&dest->orphan_item_inserted, 1)) { 2278 ret = btrfs_insert_orphan_item(trans, 2279 root->fs_info->tree_root, 2280 dest->root_key.objectid); 2281 if (ret) { 2282 btrfs_abort_transaction(trans, root, ret); 2283 err = ret; 2284 goto out_end_trans; 2285 } 2286 } 2287 2288 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2289 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 2290 dest->root_key.objectid); 2291 if (ret && ret != -ENOENT) { 2292 btrfs_abort_transaction(trans, root, ret); 2293 err = ret; 2294 goto out_end_trans; 2295 } 2296 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2297 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2298 dest->root_item.received_uuid, 2299 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2300 dest->root_key.objectid); 2301 if (ret && ret != -ENOENT) { 2302 btrfs_abort_transaction(trans, root, ret); 2303 err = ret; 2304 goto out_end_trans; 2305 } 2306 } 2307 2308 out_end_trans: 2309 trans->block_rsv = NULL; 2310 trans->bytes_reserved = 0; 2311 ret = btrfs_end_transaction(trans, root); 2312 if (ret && !err) 2313 err = ret; 2314 inode->i_flags |= S_DEAD; 2315 out_release: 2316 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 2317 out_up_write: 2318 up_write(&root->fs_info->subvol_sem); 2319 out_unlock: 2320 mutex_unlock(&inode->i_mutex); 2321 if (!err) { 2322 shrink_dcache_sb(root->fs_info->sb); 2323 btrfs_invalidate_inodes(dest); 2324 d_delete(dentry); 2325 2326 /* the last ref */ 2327 if (dest->cache_inode) { 2328 iput(dest->cache_inode); 2329 dest->cache_inode = NULL; 2330 } 2331 } 2332 out_dput: 2333 dput(dentry); 2334 out_unlock_dir: 2335 mutex_unlock(&dir->i_mutex); 2336 out_drop_write: 2337 mnt_drop_write_file(file); 2338 out: 2339 kfree(vol_args); 2340 return err; 2341 } 2342 2343 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2344 { 2345 struct inode *inode = file_inode(file); 2346 struct btrfs_root *root = BTRFS_I(inode)->root; 2347 struct btrfs_ioctl_defrag_range_args *range; 2348 int ret; 2349 2350 ret = mnt_want_write_file(file); 2351 if (ret) 2352 return ret; 2353 2354 if (btrfs_root_readonly(root)) { 2355 ret = -EROFS; 2356 goto out; 2357 } 2358 2359 switch (inode->i_mode & S_IFMT) { 2360 case S_IFDIR: 2361 if (!capable(CAP_SYS_ADMIN)) { 2362 ret = -EPERM; 2363 goto out; 2364 } 2365 ret = btrfs_defrag_root(root); 2366 if (ret) 2367 goto out; 2368 ret = btrfs_defrag_root(root->fs_info->extent_root); 2369 break; 2370 case S_IFREG: 2371 if (!(file->f_mode & FMODE_WRITE)) { 2372 ret = -EINVAL; 2373 goto out; 2374 } 2375 2376 range = kzalloc(sizeof(*range), GFP_KERNEL); 2377 if (!range) { 2378 ret = -ENOMEM; 2379 goto out; 2380 } 2381 2382 if (argp) { 2383 if (copy_from_user(range, argp, 2384 sizeof(*range))) { 2385 ret = -EFAULT; 2386 kfree(range); 2387 goto out; 2388 } 2389 /* compression requires us to start the IO */ 2390 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2391 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2392 range->extent_thresh = (u32)-1; 2393 } 2394 } else { 2395 /* the rest are all set to zero by kzalloc */ 2396 range->len = (u64)-1; 2397 } 2398 ret = btrfs_defrag_file(file_inode(file), file, 2399 range, 0, 0); 2400 if (ret > 0) 2401 ret = 0; 2402 kfree(range); 2403 break; 2404 default: 2405 ret = -EINVAL; 2406 } 2407 out: 2408 mnt_drop_write_file(file); 2409 return ret; 2410 } 2411 2412 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2413 { 2414 struct btrfs_ioctl_vol_args *vol_args; 2415 int ret; 2416 2417 if (!capable(CAP_SYS_ADMIN)) 2418 return -EPERM; 2419 2420 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2421 1)) { 2422 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2423 } 2424 2425 mutex_lock(&root->fs_info->volume_mutex); 2426 vol_args = memdup_user(arg, sizeof(*vol_args)); 2427 if (IS_ERR(vol_args)) { 2428 ret = PTR_ERR(vol_args); 2429 goto out; 2430 } 2431 2432 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2433 ret = btrfs_init_new_device(root, vol_args->name); 2434 2435 kfree(vol_args); 2436 out: 2437 mutex_unlock(&root->fs_info->volume_mutex); 2438 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2439 return ret; 2440 } 2441 2442 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2443 { 2444 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2445 struct btrfs_ioctl_vol_args *vol_args; 2446 int ret; 2447 2448 if (!capable(CAP_SYS_ADMIN)) 2449 return -EPERM; 2450 2451 ret = mnt_want_write_file(file); 2452 if (ret) 2453 return ret; 2454 2455 vol_args = memdup_user(arg, sizeof(*vol_args)); 2456 if (IS_ERR(vol_args)) { 2457 ret = PTR_ERR(vol_args); 2458 goto out; 2459 } 2460 2461 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2462 2463 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2464 1)) { 2465 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2466 goto out; 2467 } 2468 2469 mutex_lock(&root->fs_info->volume_mutex); 2470 ret = btrfs_rm_device(root, vol_args->name); 2471 mutex_unlock(&root->fs_info->volume_mutex); 2472 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2473 2474 out: 2475 kfree(vol_args); 2476 mnt_drop_write_file(file); 2477 return ret; 2478 } 2479 2480 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2481 { 2482 struct btrfs_ioctl_fs_info_args *fi_args; 2483 struct btrfs_device *device; 2484 struct btrfs_device *next; 2485 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2486 int ret = 0; 2487 2488 if (!capable(CAP_SYS_ADMIN)) 2489 return -EPERM; 2490 2491 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2492 if (!fi_args) 2493 return -ENOMEM; 2494 2495 mutex_lock(&fs_devices->device_list_mutex); 2496 fi_args->num_devices = fs_devices->num_devices; 2497 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2498 2499 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 2500 if (device->devid > fi_args->max_id) 2501 fi_args->max_id = device->devid; 2502 } 2503 mutex_unlock(&fs_devices->device_list_mutex); 2504 2505 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2506 ret = -EFAULT; 2507 2508 kfree(fi_args); 2509 return ret; 2510 } 2511 2512 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2513 { 2514 struct btrfs_ioctl_dev_info_args *di_args; 2515 struct btrfs_device *dev; 2516 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2517 int ret = 0; 2518 char *s_uuid = NULL; 2519 2520 if (!capable(CAP_SYS_ADMIN)) 2521 return -EPERM; 2522 2523 di_args = memdup_user(arg, sizeof(*di_args)); 2524 if (IS_ERR(di_args)) 2525 return PTR_ERR(di_args); 2526 2527 if (!btrfs_is_empty_uuid(di_args->uuid)) 2528 s_uuid = di_args->uuid; 2529 2530 mutex_lock(&fs_devices->device_list_mutex); 2531 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL); 2532 2533 if (!dev) { 2534 ret = -ENODEV; 2535 goto out; 2536 } 2537 2538 di_args->devid = dev->devid; 2539 di_args->bytes_used = dev->bytes_used; 2540 di_args->total_bytes = dev->total_bytes; 2541 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2542 if (dev->name) { 2543 struct rcu_string *name; 2544 2545 rcu_read_lock(); 2546 name = rcu_dereference(dev->name); 2547 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2548 rcu_read_unlock(); 2549 di_args->path[sizeof(di_args->path) - 1] = 0; 2550 } else { 2551 di_args->path[0] = '\0'; 2552 } 2553 2554 out: 2555 mutex_unlock(&fs_devices->device_list_mutex); 2556 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2557 ret = -EFAULT; 2558 2559 kfree(di_args); 2560 return ret; 2561 } 2562 2563 static struct page *extent_same_get_page(struct inode *inode, u64 off) 2564 { 2565 struct page *page; 2566 pgoff_t index; 2567 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2568 2569 index = off >> PAGE_CACHE_SHIFT; 2570 2571 page = grab_cache_page(inode->i_mapping, index); 2572 if (!page) 2573 return NULL; 2574 2575 if (!PageUptodate(page)) { 2576 if (extent_read_full_page_nolock(tree, page, btrfs_get_extent, 2577 0)) 2578 return NULL; 2579 lock_page(page); 2580 if (!PageUptodate(page)) { 2581 unlock_page(page); 2582 page_cache_release(page); 2583 return NULL; 2584 } 2585 } 2586 unlock_page(page); 2587 2588 return page; 2589 } 2590 2591 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len) 2592 { 2593 /* do any pending delalloc/csum calc on src, one way or 2594 another, and lock file content */ 2595 while (1) { 2596 struct btrfs_ordered_extent *ordered; 2597 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2598 ordered = btrfs_lookup_first_ordered_extent(inode, 2599 off + len - 1); 2600 if (!ordered && 2601 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2602 off + len - 1, EXTENT_DELALLOC, 0, NULL)) 2603 break; 2604 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2605 if (ordered) 2606 btrfs_put_ordered_extent(ordered); 2607 btrfs_wait_ordered_range(inode, off, len); 2608 } 2609 } 2610 2611 static void btrfs_double_unlock(struct inode *inode1, u64 loff1, 2612 struct inode *inode2, u64 loff2, u64 len) 2613 { 2614 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2615 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2616 2617 mutex_unlock(&inode1->i_mutex); 2618 mutex_unlock(&inode2->i_mutex); 2619 } 2620 2621 static void btrfs_double_lock(struct inode *inode1, u64 loff1, 2622 struct inode *inode2, u64 loff2, u64 len) 2623 { 2624 if (inode1 < inode2) { 2625 swap(inode1, inode2); 2626 swap(loff1, loff2); 2627 } 2628 2629 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 2630 lock_extent_range(inode1, loff1, len); 2631 if (inode1 != inode2) { 2632 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 2633 lock_extent_range(inode2, loff2, len); 2634 } 2635 } 2636 2637 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst, 2638 u64 dst_loff, u64 len) 2639 { 2640 int ret = 0; 2641 struct page *src_page, *dst_page; 2642 unsigned int cmp_len = PAGE_CACHE_SIZE; 2643 void *addr, *dst_addr; 2644 2645 while (len) { 2646 if (len < PAGE_CACHE_SIZE) 2647 cmp_len = len; 2648 2649 src_page = extent_same_get_page(src, loff); 2650 if (!src_page) 2651 return -EINVAL; 2652 dst_page = extent_same_get_page(dst, dst_loff); 2653 if (!dst_page) { 2654 page_cache_release(src_page); 2655 return -EINVAL; 2656 } 2657 addr = kmap_atomic(src_page); 2658 dst_addr = kmap_atomic(dst_page); 2659 2660 flush_dcache_page(src_page); 2661 flush_dcache_page(dst_page); 2662 2663 if (memcmp(addr, dst_addr, cmp_len)) 2664 ret = BTRFS_SAME_DATA_DIFFERS; 2665 2666 kunmap_atomic(addr); 2667 kunmap_atomic(dst_addr); 2668 page_cache_release(src_page); 2669 page_cache_release(dst_page); 2670 2671 if (ret) 2672 break; 2673 2674 loff += cmp_len; 2675 dst_loff += cmp_len; 2676 len -= cmp_len; 2677 } 2678 2679 return ret; 2680 } 2681 2682 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len) 2683 { 2684 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 2685 2686 if (off + len > inode->i_size || off + len < off) 2687 return -EINVAL; 2688 /* Check that we are block aligned - btrfs_clone() requires this */ 2689 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 2690 return -EINVAL; 2691 2692 return 0; 2693 } 2694 2695 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len, 2696 struct inode *dst, u64 dst_loff) 2697 { 2698 int ret; 2699 2700 /* 2701 * btrfs_clone() can't handle extents in the same file 2702 * yet. Once that works, we can drop this check and replace it 2703 * with a check for the same inode, but overlapping extents. 2704 */ 2705 if (src == dst) 2706 return -EINVAL; 2707 2708 btrfs_double_lock(src, loff, dst, dst_loff, len); 2709 2710 ret = extent_same_check_offsets(src, loff, len); 2711 if (ret) 2712 goto out_unlock; 2713 2714 ret = extent_same_check_offsets(dst, dst_loff, len); 2715 if (ret) 2716 goto out_unlock; 2717 2718 /* don't make the dst file partly checksummed */ 2719 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 2720 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 2721 ret = -EINVAL; 2722 goto out_unlock; 2723 } 2724 2725 ret = btrfs_cmp_data(src, loff, dst, dst_loff, len); 2726 if (ret == 0) 2727 ret = btrfs_clone(src, dst, loff, len, len, dst_loff); 2728 2729 out_unlock: 2730 btrfs_double_unlock(src, loff, dst, dst_loff, len); 2731 2732 return ret; 2733 } 2734 2735 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024) 2736 2737 static long btrfs_ioctl_file_extent_same(struct file *file, 2738 struct btrfs_ioctl_same_args __user *argp) 2739 { 2740 struct btrfs_ioctl_same_args *same; 2741 struct btrfs_ioctl_same_extent_info *info; 2742 struct inode *src = file_inode(file); 2743 u64 off; 2744 u64 len; 2745 int i; 2746 int ret; 2747 unsigned long size; 2748 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 2749 bool is_admin = capable(CAP_SYS_ADMIN); 2750 u16 count; 2751 2752 if (!(file->f_mode & FMODE_READ)) 2753 return -EINVAL; 2754 2755 ret = mnt_want_write_file(file); 2756 if (ret) 2757 return ret; 2758 2759 if (get_user(count, &argp->dest_count)) { 2760 ret = -EFAULT; 2761 goto out; 2762 } 2763 2764 size = offsetof(struct btrfs_ioctl_same_args __user, info[count]); 2765 2766 same = memdup_user(argp, size); 2767 2768 if (IS_ERR(same)) { 2769 ret = PTR_ERR(same); 2770 goto out; 2771 } 2772 2773 off = same->logical_offset; 2774 len = same->length; 2775 2776 /* 2777 * Limit the total length we will dedupe for each operation. 2778 * This is intended to bound the total time spent in this 2779 * ioctl to something sane. 2780 */ 2781 if (len > BTRFS_MAX_DEDUPE_LEN) 2782 len = BTRFS_MAX_DEDUPE_LEN; 2783 2784 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) { 2785 /* 2786 * Btrfs does not support blocksize < page_size. As a 2787 * result, btrfs_cmp_data() won't correctly handle 2788 * this situation without an update. 2789 */ 2790 ret = -EINVAL; 2791 goto out; 2792 } 2793 2794 ret = -EISDIR; 2795 if (S_ISDIR(src->i_mode)) 2796 goto out; 2797 2798 ret = -EACCES; 2799 if (!S_ISREG(src->i_mode)) 2800 goto out; 2801 2802 /* pre-format output fields to sane values */ 2803 for (i = 0; i < count; i++) { 2804 same->info[i].bytes_deduped = 0ULL; 2805 same->info[i].status = 0; 2806 } 2807 2808 for (i = 0, info = same->info; i < count; i++, info++) { 2809 struct inode *dst; 2810 struct fd dst_file = fdget(info->fd); 2811 if (!dst_file.file) { 2812 info->status = -EBADF; 2813 continue; 2814 } 2815 dst = file_inode(dst_file.file); 2816 2817 if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) { 2818 info->status = -EINVAL; 2819 } else if (file->f_path.mnt != dst_file.file->f_path.mnt) { 2820 info->status = -EXDEV; 2821 } else if (S_ISDIR(dst->i_mode)) { 2822 info->status = -EISDIR; 2823 } else if (!S_ISREG(dst->i_mode)) { 2824 info->status = -EACCES; 2825 } else { 2826 info->status = btrfs_extent_same(src, off, len, dst, 2827 info->logical_offset); 2828 if (info->status == 0) 2829 info->bytes_deduped += len; 2830 } 2831 fdput(dst_file); 2832 } 2833 2834 ret = copy_to_user(argp, same, size); 2835 if (ret) 2836 ret = -EFAULT; 2837 2838 out: 2839 mnt_drop_write_file(file); 2840 return ret; 2841 } 2842 2843 /** 2844 * btrfs_clone() - clone a range from inode file to another 2845 * 2846 * @src: Inode to clone from 2847 * @inode: Inode to clone to 2848 * @off: Offset within source to start clone from 2849 * @olen: Original length, passed by user, of range to clone 2850 * @olen_aligned: Block-aligned value of olen, extent_same uses 2851 * identical values here 2852 * @destoff: Offset within @inode to start clone 2853 */ 2854 static int btrfs_clone(struct inode *src, struct inode *inode, 2855 u64 off, u64 olen, u64 olen_aligned, u64 destoff) 2856 { 2857 struct btrfs_root *root = BTRFS_I(inode)->root; 2858 struct btrfs_path *path = NULL; 2859 struct extent_buffer *leaf; 2860 struct btrfs_trans_handle *trans; 2861 char *buf = NULL; 2862 struct btrfs_key key; 2863 u32 nritems; 2864 int slot; 2865 int ret; 2866 u64 len = olen_aligned; 2867 2868 ret = -ENOMEM; 2869 buf = vmalloc(btrfs_level_size(root, 0)); 2870 if (!buf) 2871 return ret; 2872 2873 path = btrfs_alloc_path(); 2874 if (!path) { 2875 vfree(buf); 2876 return ret; 2877 } 2878 2879 path->reada = 2; 2880 /* clone data */ 2881 key.objectid = btrfs_ino(src); 2882 key.type = BTRFS_EXTENT_DATA_KEY; 2883 key.offset = 0; 2884 2885 while (1) { 2886 /* 2887 * note the key will change type as we walk through the 2888 * tree. 2889 */ 2890 path->leave_spinning = 1; 2891 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 2892 0, 0); 2893 if (ret < 0) 2894 goto out; 2895 2896 nritems = btrfs_header_nritems(path->nodes[0]); 2897 process_slot: 2898 if (path->slots[0] >= nritems) { 2899 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 2900 if (ret < 0) 2901 goto out; 2902 if (ret > 0) 2903 break; 2904 nritems = btrfs_header_nritems(path->nodes[0]); 2905 } 2906 leaf = path->nodes[0]; 2907 slot = path->slots[0]; 2908 2909 btrfs_item_key_to_cpu(leaf, &key, slot); 2910 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || 2911 key.objectid != btrfs_ino(src)) 2912 break; 2913 2914 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { 2915 struct btrfs_file_extent_item *extent; 2916 int type; 2917 u32 size; 2918 struct btrfs_key new_key; 2919 u64 disko = 0, diskl = 0; 2920 u64 datao = 0, datal = 0; 2921 u8 comp; 2922 u64 endoff; 2923 2924 extent = btrfs_item_ptr(leaf, slot, 2925 struct btrfs_file_extent_item); 2926 comp = btrfs_file_extent_compression(leaf, extent); 2927 type = btrfs_file_extent_type(leaf, extent); 2928 if (type == BTRFS_FILE_EXTENT_REG || 2929 type == BTRFS_FILE_EXTENT_PREALLOC) { 2930 disko = btrfs_file_extent_disk_bytenr(leaf, 2931 extent); 2932 diskl = btrfs_file_extent_disk_num_bytes(leaf, 2933 extent); 2934 datao = btrfs_file_extent_offset(leaf, extent); 2935 datal = btrfs_file_extent_num_bytes(leaf, 2936 extent); 2937 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2938 /* take upper bound, may be compressed */ 2939 datal = btrfs_file_extent_ram_bytes(leaf, 2940 extent); 2941 } 2942 2943 if (key.offset + datal <= off || 2944 key.offset >= off + len - 1) { 2945 path->slots[0]++; 2946 goto process_slot; 2947 } 2948 2949 size = btrfs_item_size_nr(leaf, slot); 2950 read_extent_buffer(leaf, buf, 2951 btrfs_item_ptr_offset(leaf, slot), 2952 size); 2953 2954 btrfs_release_path(path); 2955 path->leave_spinning = 0; 2956 2957 memcpy(&new_key, &key, sizeof(new_key)); 2958 new_key.objectid = btrfs_ino(inode); 2959 if (off <= key.offset) 2960 new_key.offset = key.offset + destoff - off; 2961 else 2962 new_key.offset = destoff; 2963 2964 /* 2965 * 1 - adjusting old extent (we may have to split it) 2966 * 1 - add new extent 2967 * 1 - inode update 2968 */ 2969 trans = btrfs_start_transaction(root, 3); 2970 if (IS_ERR(trans)) { 2971 ret = PTR_ERR(trans); 2972 goto out; 2973 } 2974 2975 if (type == BTRFS_FILE_EXTENT_REG || 2976 type == BTRFS_FILE_EXTENT_PREALLOC) { 2977 /* 2978 * a | --- range to clone ---| b 2979 * | ------------- extent ------------- | 2980 */ 2981 2982 /* substract range b */ 2983 if (key.offset + datal > off + len) 2984 datal = off + len - key.offset; 2985 2986 /* substract range a */ 2987 if (off > key.offset) { 2988 datao += off - key.offset; 2989 datal -= off - key.offset; 2990 } 2991 2992 ret = btrfs_drop_extents(trans, root, inode, 2993 new_key.offset, 2994 new_key.offset + datal, 2995 1); 2996 if (ret) { 2997 btrfs_abort_transaction(trans, root, 2998 ret); 2999 btrfs_end_transaction(trans, root); 3000 goto out; 3001 } 3002 3003 ret = btrfs_insert_empty_item(trans, root, path, 3004 &new_key, size); 3005 if (ret) { 3006 btrfs_abort_transaction(trans, root, 3007 ret); 3008 btrfs_end_transaction(trans, root); 3009 goto out; 3010 } 3011 3012 leaf = path->nodes[0]; 3013 slot = path->slots[0]; 3014 write_extent_buffer(leaf, buf, 3015 btrfs_item_ptr_offset(leaf, slot), 3016 size); 3017 3018 extent = btrfs_item_ptr(leaf, slot, 3019 struct btrfs_file_extent_item); 3020 3021 /* disko == 0 means it's a hole */ 3022 if (!disko) 3023 datao = 0; 3024 3025 btrfs_set_file_extent_offset(leaf, extent, 3026 datao); 3027 btrfs_set_file_extent_num_bytes(leaf, extent, 3028 datal); 3029 if (disko) { 3030 inode_add_bytes(inode, datal); 3031 ret = btrfs_inc_extent_ref(trans, root, 3032 disko, diskl, 0, 3033 root->root_key.objectid, 3034 btrfs_ino(inode), 3035 new_key.offset - datao, 3036 0); 3037 if (ret) { 3038 btrfs_abort_transaction(trans, 3039 root, 3040 ret); 3041 btrfs_end_transaction(trans, 3042 root); 3043 goto out; 3044 3045 } 3046 } 3047 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3048 u64 skip = 0; 3049 u64 trim = 0; 3050 if (off > key.offset) { 3051 skip = off - key.offset; 3052 new_key.offset += skip; 3053 } 3054 3055 if (key.offset + datal > off + len) 3056 trim = key.offset + datal - (off + len); 3057 3058 if (comp && (skip || trim)) { 3059 ret = -EINVAL; 3060 btrfs_end_transaction(trans, root); 3061 goto out; 3062 } 3063 size -= skip + trim; 3064 datal -= skip + trim; 3065 3066 ret = btrfs_drop_extents(trans, root, inode, 3067 new_key.offset, 3068 new_key.offset + datal, 3069 1); 3070 if (ret) { 3071 btrfs_abort_transaction(trans, root, 3072 ret); 3073 btrfs_end_transaction(trans, root); 3074 goto out; 3075 } 3076 3077 ret = btrfs_insert_empty_item(trans, root, path, 3078 &new_key, size); 3079 if (ret) { 3080 btrfs_abort_transaction(trans, root, 3081 ret); 3082 btrfs_end_transaction(trans, root); 3083 goto out; 3084 } 3085 3086 if (skip) { 3087 u32 start = 3088 btrfs_file_extent_calc_inline_size(0); 3089 memmove(buf+start, buf+start+skip, 3090 datal); 3091 } 3092 3093 leaf = path->nodes[0]; 3094 slot = path->slots[0]; 3095 write_extent_buffer(leaf, buf, 3096 btrfs_item_ptr_offset(leaf, slot), 3097 size); 3098 inode_add_bytes(inode, datal); 3099 } 3100 3101 btrfs_mark_buffer_dirty(leaf); 3102 btrfs_release_path(path); 3103 3104 inode_inc_iversion(inode); 3105 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3106 3107 /* 3108 * we round up to the block size at eof when 3109 * determining which extents to clone above, 3110 * but shouldn't round up the file size 3111 */ 3112 endoff = new_key.offset + datal; 3113 if (endoff > destoff+olen) 3114 endoff = destoff+olen; 3115 if (endoff > inode->i_size) 3116 btrfs_i_size_write(inode, endoff); 3117 3118 ret = btrfs_update_inode(trans, root, inode); 3119 if (ret) { 3120 btrfs_abort_transaction(trans, root, ret); 3121 btrfs_end_transaction(trans, root); 3122 goto out; 3123 } 3124 ret = btrfs_end_transaction(trans, root); 3125 } 3126 btrfs_release_path(path); 3127 key.offset++; 3128 } 3129 ret = 0; 3130 3131 out: 3132 btrfs_release_path(path); 3133 btrfs_free_path(path); 3134 vfree(buf); 3135 return ret; 3136 } 3137 3138 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 3139 u64 off, u64 olen, u64 destoff) 3140 { 3141 struct inode *inode = file_inode(file); 3142 struct btrfs_root *root = BTRFS_I(inode)->root; 3143 struct fd src_file; 3144 struct inode *src; 3145 int ret; 3146 u64 len = olen; 3147 u64 bs = root->fs_info->sb->s_blocksize; 3148 int same_inode = 0; 3149 3150 /* 3151 * TODO: 3152 * - split compressed inline extents. annoying: we need to 3153 * decompress into destination's address_space (the file offset 3154 * may change, so source mapping won't do), then recompress (or 3155 * otherwise reinsert) a subrange. 3156 * - allow ranges within the same file to be cloned (provided 3157 * they don't overlap)? 3158 */ 3159 3160 /* the destination must be opened for writing */ 3161 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 3162 return -EINVAL; 3163 3164 if (btrfs_root_readonly(root)) 3165 return -EROFS; 3166 3167 ret = mnt_want_write_file(file); 3168 if (ret) 3169 return ret; 3170 3171 src_file = fdget(srcfd); 3172 if (!src_file.file) { 3173 ret = -EBADF; 3174 goto out_drop_write; 3175 } 3176 3177 ret = -EXDEV; 3178 if (src_file.file->f_path.mnt != file->f_path.mnt) 3179 goto out_fput; 3180 3181 src = file_inode(src_file.file); 3182 3183 ret = -EINVAL; 3184 if (src == inode) 3185 same_inode = 1; 3186 3187 /* the src must be open for reading */ 3188 if (!(src_file.file->f_mode & FMODE_READ)) 3189 goto out_fput; 3190 3191 /* don't make the dst file partly checksummed */ 3192 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3193 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3194 goto out_fput; 3195 3196 ret = -EISDIR; 3197 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3198 goto out_fput; 3199 3200 ret = -EXDEV; 3201 if (src->i_sb != inode->i_sb) 3202 goto out_fput; 3203 3204 if (!same_inode) { 3205 if (inode < src) { 3206 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 3207 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 3208 } else { 3209 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 3210 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 3211 } 3212 } else { 3213 mutex_lock(&src->i_mutex); 3214 } 3215 3216 /* determine range to clone */ 3217 ret = -EINVAL; 3218 if (off + len > src->i_size || off + len < off) 3219 goto out_unlock; 3220 if (len == 0) 3221 olen = len = src->i_size - off; 3222 /* if we extend to eof, continue to block boundary */ 3223 if (off + len == src->i_size) 3224 len = ALIGN(src->i_size, bs) - off; 3225 3226 /* verify the end result is block aligned */ 3227 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3228 !IS_ALIGNED(destoff, bs)) 3229 goto out_unlock; 3230 3231 /* verify if ranges are overlapped within the same file */ 3232 if (same_inode) { 3233 if (destoff + len > off && destoff < off + len) 3234 goto out_unlock; 3235 } 3236 3237 if (destoff > inode->i_size) { 3238 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3239 if (ret) 3240 goto out_unlock; 3241 } 3242 3243 /* truncate page cache pages from target inode range */ 3244 truncate_inode_pages_range(&inode->i_data, destoff, 3245 PAGE_CACHE_ALIGN(destoff + len) - 1); 3246 3247 lock_extent_range(src, off, len); 3248 3249 ret = btrfs_clone(src, inode, off, olen, len, destoff); 3250 3251 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 3252 out_unlock: 3253 if (!same_inode) { 3254 if (inode < src) { 3255 mutex_unlock(&src->i_mutex); 3256 mutex_unlock(&inode->i_mutex); 3257 } else { 3258 mutex_unlock(&inode->i_mutex); 3259 mutex_unlock(&src->i_mutex); 3260 } 3261 } else { 3262 mutex_unlock(&src->i_mutex); 3263 } 3264 out_fput: 3265 fdput(src_file); 3266 out_drop_write: 3267 mnt_drop_write_file(file); 3268 return ret; 3269 } 3270 3271 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 3272 { 3273 struct btrfs_ioctl_clone_range_args args; 3274 3275 if (copy_from_user(&args, argp, sizeof(args))) 3276 return -EFAULT; 3277 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 3278 args.src_length, args.dest_offset); 3279 } 3280 3281 /* 3282 * there are many ways the trans_start and trans_end ioctls can lead 3283 * to deadlocks. They should only be used by applications that 3284 * basically own the machine, and have a very in depth understanding 3285 * of all the possible deadlocks and enospc problems. 3286 */ 3287 static long btrfs_ioctl_trans_start(struct file *file) 3288 { 3289 struct inode *inode = file_inode(file); 3290 struct btrfs_root *root = BTRFS_I(inode)->root; 3291 struct btrfs_trans_handle *trans; 3292 int ret; 3293 3294 ret = -EPERM; 3295 if (!capable(CAP_SYS_ADMIN)) 3296 goto out; 3297 3298 ret = -EINPROGRESS; 3299 if (file->private_data) 3300 goto out; 3301 3302 ret = -EROFS; 3303 if (btrfs_root_readonly(root)) 3304 goto out; 3305 3306 ret = mnt_want_write_file(file); 3307 if (ret) 3308 goto out; 3309 3310 atomic_inc(&root->fs_info->open_ioctl_trans); 3311 3312 ret = -ENOMEM; 3313 trans = btrfs_start_ioctl_transaction(root); 3314 if (IS_ERR(trans)) 3315 goto out_drop; 3316 3317 file->private_data = trans; 3318 return 0; 3319 3320 out_drop: 3321 atomic_dec(&root->fs_info->open_ioctl_trans); 3322 mnt_drop_write_file(file); 3323 out: 3324 return ret; 3325 } 3326 3327 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3328 { 3329 struct inode *inode = file_inode(file); 3330 struct btrfs_root *root = BTRFS_I(inode)->root; 3331 struct btrfs_root *new_root; 3332 struct btrfs_dir_item *di; 3333 struct btrfs_trans_handle *trans; 3334 struct btrfs_path *path; 3335 struct btrfs_key location; 3336 struct btrfs_disk_key disk_key; 3337 u64 objectid = 0; 3338 u64 dir_id; 3339 int ret; 3340 3341 if (!capable(CAP_SYS_ADMIN)) 3342 return -EPERM; 3343 3344 ret = mnt_want_write_file(file); 3345 if (ret) 3346 return ret; 3347 3348 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3349 ret = -EFAULT; 3350 goto out; 3351 } 3352 3353 if (!objectid) 3354 objectid = BTRFS_FS_TREE_OBJECTID; 3355 3356 location.objectid = objectid; 3357 location.type = BTRFS_ROOT_ITEM_KEY; 3358 location.offset = (u64)-1; 3359 3360 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 3361 if (IS_ERR(new_root)) { 3362 ret = PTR_ERR(new_root); 3363 goto out; 3364 } 3365 3366 path = btrfs_alloc_path(); 3367 if (!path) { 3368 ret = -ENOMEM; 3369 goto out; 3370 } 3371 path->leave_spinning = 1; 3372 3373 trans = btrfs_start_transaction(root, 1); 3374 if (IS_ERR(trans)) { 3375 btrfs_free_path(path); 3376 ret = PTR_ERR(trans); 3377 goto out; 3378 } 3379 3380 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 3381 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 3382 dir_id, "default", 7, 1); 3383 if (IS_ERR_OR_NULL(di)) { 3384 btrfs_free_path(path); 3385 btrfs_end_transaction(trans, root); 3386 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir" 3387 "item, this isn't going to work"); 3388 ret = -ENOENT; 3389 goto out; 3390 } 3391 3392 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3393 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3394 btrfs_mark_buffer_dirty(path->nodes[0]); 3395 btrfs_free_path(path); 3396 3397 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 3398 btrfs_end_transaction(trans, root); 3399 out: 3400 mnt_drop_write_file(file); 3401 return ret; 3402 } 3403 3404 void btrfs_get_block_group_info(struct list_head *groups_list, 3405 struct btrfs_ioctl_space_info *space) 3406 { 3407 struct btrfs_block_group_cache *block_group; 3408 3409 space->total_bytes = 0; 3410 space->used_bytes = 0; 3411 space->flags = 0; 3412 list_for_each_entry(block_group, groups_list, list) { 3413 space->flags = block_group->flags; 3414 space->total_bytes += block_group->key.offset; 3415 space->used_bytes += 3416 btrfs_block_group_used(&block_group->item); 3417 } 3418 } 3419 3420 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 3421 { 3422 struct btrfs_ioctl_space_args space_args; 3423 struct btrfs_ioctl_space_info space; 3424 struct btrfs_ioctl_space_info *dest; 3425 struct btrfs_ioctl_space_info *dest_orig; 3426 struct btrfs_ioctl_space_info __user *user_dest; 3427 struct btrfs_space_info *info; 3428 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3429 BTRFS_BLOCK_GROUP_SYSTEM, 3430 BTRFS_BLOCK_GROUP_METADATA, 3431 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3432 int num_types = 4; 3433 int alloc_size; 3434 int ret = 0; 3435 u64 slot_count = 0; 3436 int i, c; 3437 3438 if (copy_from_user(&space_args, 3439 (struct btrfs_ioctl_space_args __user *)arg, 3440 sizeof(space_args))) 3441 return -EFAULT; 3442 3443 for (i = 0; i < num_types; i++) { 3444 struct btrfs_space_info *tmp; 3445 3446 info = NULL; 3447 rcu_read_lock(); 3448 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 3449 list) { 3450 if (tmp->flags == types[i]) { 3451 info = tmp; 3452 break; 3453 } 3454 } 3455 rcu_read_unlock(); 3456 3457 if (!info) 3458 continue; 3459 3460 down_read(&info->groups_sem); 3461 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3462 if (!list_empty(&info->block_groups[c])) 3463 slot_count++; 3464 } 3465 up_read(&info->groups_sem); 3466 } 3467 3468 /* space_slots == 0 means they are asking for a count */ 3469 if (space_args.space_slots == 0) { 3470 space_args.total_spaces = slot_count; 3471 goto out; 3472 } 3473 3474 slot_count = min_t(u64, space_args.space_slots, slot_count); 3475 3476 alloc_size = sizeof(*dest) * slot_count; 3477 3478 /* we generally have at most 6 or so space infos, one for each raid 3479 * level. So, a whole page should be more than enough for everyone 3480 */ 3481 if (alloc_size > PAGE_CACHE_SIZE) 3482 return -ENOMEM; 3483 3484 space_args.total_spaces = 0; 3485 dest = kmalloc(alloc_size, GFP_NOFS); 3486 if (!dest) 3487 return -ENOMEM; 3488 dest_orig = dest; 3489 3490 /* now we have a buffer to copy into */ 3491 for (i = 0; i < num_types; i++) { 3492 struct btrfs_space_info *tmp; 3493 3494 if (!slot_count) 3495 break; 3496 3497 info = NULL; 3498 rcu_read_lock(); 3499 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 3500 list) { 3501 if (tmp->flags == types[i]) { 3502 info = tmp; 3503 break; 3504 } 3505 } 3506 rcu_read_unlock(); 3507 3508 if (!info) 3509 continue; 3510 down_read(&info->groups_sem); 3511 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3512 if (!list_empty(&info->block_groups[c])) { 3513 btrfs_get_block_group_info( 3514 &info->block_groups[c], &space); 3515 memcpy(dest, &space, sizeof(space)); 3516 dest++; 3517 space_args.total_spaces++; 3518 slot_count--; 3519 } 3520 if (!slot_count) 3521 break; 3522 } 3523 up_read(&info->groups_sem); 3524 } 3525 3526 user_dest = (struct btrfs_ioctl_space_info __user *) 3527 (arg + sizeof(struct btrfs_ioctl_space_args)); 3528 3529 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3530 ret = -EFAULT; 3531 3532 kfree(dest_orig); 3533 out: 3534 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3535 ret = -EFAULT; 3536 3537 return ret; 3538 } 3539 3540 static long btrfs_ioctl_global_rsv(struct btrfs_root *root, void __user *arg) 3541 { 3542 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv; 3543 u64 reserved; 3544 3545 spin_lock(&block_rsv->lock); 3546 reserved = block_rsv->reserved; 3547 spin_unlock(&block_rsv->lock); 3548 3549 if (arg && copy_to_user(arg, &reserved, sizeof(reserved))) 3550 return -EFAULT; 3551 return 0; 3552 } 3553 3554 /* 3555 * there are many ways the trans_start and trans_end ioctls can lead 3556 * to deadlocks. They should only be used by applications that 3557 * basically own the machine, and have a very in depth understanding 3558 * of all the possible deadlocks and enospc problems. 3559 */ 3560 long btrfs_ioctl_trans_end(struct file *file) 3561 { 3562 struct inode *inode = file_inode(file); 3563 struct btrfs_root *root = BTRFS_I(inode)->root; 3564 struct btrfs_trans_handle *trans; 3565 3566 trans = file->private_data; 3567 if (!trans) 3568 return -EINVAL; 3569 file->private_data = NULL; 3570 3571 btrfs_end_transaction(trans, root); 3572 3573 atomic_dec(&root->fs_info->open_ioctl_trans); 3574 3575 mnt_drop_write_file(file); 3576 return 0; 3577 } 3578 3579 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3580 void __user *argp) 3581 { 3582 struct btrfs_trans_handle *trans; 3583 u64 transid; 3584 int ret; 3585 3586 trans = btrfs_attach_transaction_barrier(root); 3587 if (IS_ERR(trans)) { 3588 if (PTR_ERR(trans) != -ENOENT) 3589 return PTR_ERR(trans); 3590 3591 /* No running transaction, don't bother */ 3592 transid = root->fs_info->last_trans_committed; 3593 goto out; 3594 } 3595 transid = trans->transid; 3596 ret = btrfs_commit_transaction_async(trans, root, 0); 3597 if (ret) { 3598 btrfs_end_transaction(trans, root); 3599 return ret; 3600 } 3601 out: 3602 if (argp) 3603 if (copy_to_user(argp, &transid, sizeof(transid))) 3604 return -EFAULT; 3605 return 0; 3606 } 3607 3608 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root, 3609 void __user *argp) 3610 { 3611 u64 transid; 3612 3613 if (argp) { 3614 if (copy_from_user(&transid, argp, sizeof(transid))) 3615 return -EFAULT; 3616 } else { 3617 transid = 0; /* current trans */ 3618 } 3619 return btrfs_wait_for_commit(root, transid); 3620 } 3621 3622 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3623 { 3624 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3625 struct btrfs_ioctl_scrub_args *sa; 3626 int ret; 3627 3628 if (!capable(CAP_SYS_ADMIN)) 3629 return -EPERM; 3630 3631 sa = memdup_user(arg, sizeof(*sa)); 3632 if (IS_ERR(sa)) 3633 return PTR_ERR(sa); 3634 3635 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3636 ret = mnt_want_write_file(file); 3637 if (ret) 3638 goto out; 3639 } 3640 3641 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end, 3642 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3643 0); 3644 3645 if (copy_to_user(arg, sa, sizeof(*sa))) 3646 ret = -EFAULT; 3647 3648 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3649 mnt_drop_write_file(file); 3650 out: 3651 kfree(sa); 3652 return ret; 3653 } 3654 3655 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 3656 { 3657 if (!capable(CAP_SYS_ADMIN)) 3658 return -EPERM; 3659 3660 return btrfs_scrub_cancel(root->fs_info); 3661 } 3662 3663 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 3664 void __user *arg) 3665 { 3666 struct btrfs_ioctl_scrub_args *sa; 3667 int ret; 3668 3669 if (!capable(CAP_SYS_ADMIN)) 3670 return -EPERM; 3671 3672 sa = memdup_user(arg, sizeof(*sa)); 3673 if (IS_ERR(sa)) 3674 return PTR_ERR(sa); 3675 3676 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 3677 3678 if (copy_to_user(arg, sa, sizeof(*sa))) 3679 ret = -EFAULT; 3680 3681 kfree(sa); 3682 return ret; 3683 } 3684 3685 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 3686 void __user *arg) 3687 { 3688 struct btrfs_ioctl_get_dev_stats *sa; 3689 int ret; 3690 3691 sa = memdup_user(arg, sizeof(*sa)); 3692 if (IS_ERR(sa)) 3693 return PTR_ERR(sa); 3694 3695 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3696 kfree(sa); 3697 return -EPERM; 3698 } 3699 3700 ret = btrfs_get_dev_stats(root, sa); 3701 3702 if (copy_to_user(arg, sa, sizeof(*sa))) 3703 ret = -EFAULT; 3704 3705 kfree(sa); 3706 return ret; 3707 } 3708 3709 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg) 3710 { 3711 struct btrfs_ioctl_dev_replace_args *p; 3712 int ret; 3713 3714 if (!capable(CAP_SYS_ADMIN)) 3715 return -EPERM; 3716 3717 p = memdup_user(arg, sizeof(*p)); 3718 if (IS_ERR(p)) 3719 return PTR_ERR(p); 3720 3721 switch (p->cmd) { 3722 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3723 if (root->fs_info->sb->s_flags & MS_RDONLY) { 3724 ret = -EROFS; 3725 goto out; 3726 } 3727 if (atomic_xchg( 3728 &root->fs_info->mutually_exclusive_operation_running, 3729 1)) { 3730 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3731 } else { 3732 ret = btrfs_dev_replace_start(root, p); 3733 atomic_set( 3734 &root->fs_info->mutually_exclusive_operation_running, 3735 0); 3736 } 3737 break; 3738 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3739 btrfs_dev_replace_status(root->fs_info, p); 3740 ret = 0; 3741 break; 3742 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3743 ret = btrfs_dev_replace_cancel(root->fs_info, p); 3744 break; 3745 default: 3746 ret = -EINVAL; 3747 break; 3748 } 3749 3750 if (copy_to_user(arg, p, sizeof(*p))) 3751 ret = -EFAULT; 3752 out: 3753 kfree(p); 3754 return ret; 3755 } 3756 3757 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3758 { 3759 int ret = 0; 3760 int i; 3761 u64 rel_ptr; 3762 int size; 3763 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3764 struct inode_fs_paths *ipath = NULL; 3765 struct btrfs_path *path; 3766 3767 if (!capable(CAP_DAC_READ_SEARCH)) 3768 return -EPERM; 3769 3770 path = btrfs_alloc_path(); 3771 if (!path) { 3772 ret = -ENOMEM; 3773 goto out; 3774 } 3775 3776 ipa = memdup_user(arg, sizeof(*ipa)); 3777 if (IS_ERR(ipa)) { 3778 ret = PTR_ERR(ipa); 3779 ipa = NULL; 3780 goto out; 3781 } 3782 3783 size = min_t(u32, ipa->size, 4096); 3784 ipath = init_ipath(size, root, path); 3785 if (IS_ERR(ipath)) { 3786 ret = PTR_ERR(ipath); 3787 ipath = NULL; 3788 goto out; 3789 } 3790 3791 ret = paths_from_inode(ipa->inum, ipath); 3792 if (ret < 0) 3793 goto out; 3794 3795 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3796 rel_ptr = ipath->fspath->val[i] - 3797 (u64)(unsigned long)ipath->fspath->val; 3798 ipath->fspath->val[i] = rel_ptr; 3799 } 3800 3801 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 3802 (void *)(unsigned long)ipath->fspath, size); 3803 if (ret) { 3804 ret = -EFAULT; 3805 goto out; 3806 } 3807 3808 out: 3809 btrfs_free_path(path); 3810 free_ipath(ipath); 3811 kfree(ipa); 3812 3813 return ret; 3814 } 3815 3816 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3817 { 3818 struct btrfs_data_container *inodes = ctx; 3819 const size_t c = 3 * sizeof(u64); 3820 3821 if (inodes->bytes_left >= c) { 3822 inodes->bytes_left -= c; 3823 inodes->val[inodes->elem_cnt] = inum; 3824 inodes->val[inodes->elem_cnt + 1] = offset; 3825 inodes->val[inodes->elem_cnt + 2] = root; 3826 inodes->elem_cnt += 3; 3827 } else { 3828 inodes->bytes_missing += c - inodes->bytes_left; 3829 inodes->bytes_left = 0; 3830 inodes->elem_missed += 3; 3831 } 3832 3833 return 0; 3834 } 3835 3836 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 3837 void __user *arg) 3838 { 3839 int ret = 0; 3840 int size; 3841 struct btrfs_ioctl_logical_ino_args *loi; 3842 struct btrfs_data_container *inodes = NULL; 3843 struct btrfs_path *path = NULL; 3844 3845 if (!capable(CAP_SYS_ADMIN)) 3846 return -EPERM; 3847 3848 loi = memdup_user(arg, sizeof(*loi)); 3849 if (IS_ERR(loi)) { 3850 ret = PTR_ERR(loi); 3851 loi = NULL; 3852 goto out; 3853 } 3854 3855 path = btrfs_alloc_path(); 3856 if (!path) { 3857 ret = -ENOMEM; 3858 goto out; 3859 } 3860 3861 size = min_t(u32, loi->size, 64 * 1024); 3862 inodes = init_data_container(size); 3863 if (IS_ERR(inodes)) { 3864 ret = PTR_ERR(inodes); 3865 inodes = NULL; 3866 goto out; 3867 } 3868 3869 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 3870 build_ino_list, inodes); 3871 if (ret == -EINVAL) 3872 ret = -ENOENT; 3873 if (ret < 0) 3874 goto out; 3875 3876 ret = copy_to_user((void *)(unsigned long)loi->inodes, 3877 (void *)(unsigned long)inodes, size); 3878 if (ret) 3879 ret = -EFAULT; 3880 3881 out: 3882 btrfs_free_path(path); 3883 vfree(inodes); 3884 kfree(loi); 3885 3886 return ret; 3887 } 3888 3889 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 3890 struct btrfs_ioctl_balance_args *bargs) 3891 { 3892 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3893 3894 bargs->flags = bctl->flags; 3895 3896 if (atomic_read(&fs_info->balance_running)) 3897 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3898 if (atomic_read(&fs_info->balance_pause_req)) 3899 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3900 if (atomic_read(&fs_info->balance_cancel_req)) 3901 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3902 3903 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3904 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3905 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3906 3907 if (lock) { 3908 spin_lock(&fs_info->balance_lock); 3909 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3910 spin_unlock(&fs_info->balance_lock); 3911 } else { 3912 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3913 } 3914 } 3915 3916 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3917 { 3918 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3919 struct btrfs_fs_info *fs_info = root->fs_info; 3920 struct btrfs_ioctl_balance_args *bargs; 3921 struct btrfs_balance_control *bctl; 3922 bool need_unlock; /* for mut. excl. ops lock */ 3923 int ret; 3924 3925 if (!capable(CAP_SYS_ADMIN)) 3926 return -EPERM; 3927 3928 ret = mnt_want_write_file(file); 3929 if (ret) 3930 return ret; 3931 3932 again: 3933 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 3934 mutex_lock(&fs_info->volume_mutex); 3935 mutex_lock(&fs_info->balance_mutex); 3936 need_unlock = true; 3937 goto locked; 3938 } 3939 3940 /* 3941 * mut. excl. ops lock is locked. Three possibilites: 3942 * (1) some other op is running 3943 * (2) balance is running 3944 * (3) balance is paused -- special case (think resume) 3945 */ 3946 mutex_lock(&fs_info->balance_mutex); 3947 if (fs_info->balance_ctl) { 3948 /* this is either (2) or (3) */ 3949 if (!atomic_read(&fs_info->balance_running)) { 3950 mutex_unlock(&fs_info->balance_mutex); 3951 if (!mutex_trylock(&fs_info->volume_mutex)) 3952 goto again; 3953 mutex_lock(&fs_info->balance_mutex); 3954 3955 if (fs_info->balance_ctl && 3956 !atomic_read(&fs_info->balance_running)) { 3957 /* this is (3) */ 3958 need_unlock = false; 3959 goto locked; 3960 } 3961 3962 mutex_unlock(&fs_info->balance_mutex); 3963 mutex_unlock(&fs_info->volume_mutex); 3964 goto again; 3965 } else { 3966 /* this is (2) */ 3967 mutex_unlock(&fs_info->balance_mutex); 3968 ret = -EINPROGRESS; 3969 goto out; 3970 } 3971 } else { 3972 /* this is (1) */ 3973 mutex_unlock(&fs_info->balance_mutex); 3974 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3975 goto out; 3976 } 3977 3978 locked: 3979 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 3980 3981 if (arg) { 3982 bargs = memdup_user(arg, sizeof(*bargs)); 3983 if (IS_ERR(bargs)) { 3984 ret = PTR_ERR(bargs); 3985 goto out_unlock; 3986 } 3987 3988 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3989 if (!fs_info->balance_ctl) { 3990 ret = -ENOTCONN; 3991 goto out_bargs; 3992 } 3993 3994 bctl = fs_info->balance_ctl; 3995 spin_lock(&fs_info->balance_lock); 3996 bctl->flags |= BTRFS_BALANCE_RESUME; 3997 spin_unlock(&fs_info->balance_lock); 3998 3999 goto do_balance; 4000 } 4001 } else { 4002 bargs = NULL; 4003 } 4004 4005 if (fs_info->balance_ctl) { 4006 ret = -EINPROGRESS; 4007 goto out_bargs; 4008 } 4009 4010 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4011 if (!bctl) { 4012 ret = -ENOMEM; 4013 goto out_bargs; 4014 } 4015 4016 bctl->fs_info = fs_info; 4017 if (arg) { 4018 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4019 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4020 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4021 4022 bctl->flags = bargs->flags; 4023 } else { 4024 /* balance everything - no filters */ 4025 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4026 } 4027 4028 do_balance: 4029 /* 4030 * Ownership of bctl and mutually_exclusive_operation_running 4031 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4032 * or, if restriper was paused all the way until unmount, in 4033 * free_fs_info. mutually_exclusive_operation_running is 4034 * cleared in __cancel_balance. 4035 */ 4036 need_unlock = false; 4037 4038 ret = btrfs_balance(bctl, bargs); 4039 4040 if (arg) { 4041 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4042 ret = -EFAULT; 4043 } 4044 4045 out_bargs: 4046 kfree(bargs); 4047 out_unlock: 4048 mutex_unlock(&fs_info->balance_mutex); 4049 mutex_unlock(&fs_info->volume_mutex); 4050 if (need_unlock) 4051 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 4052 out: 4053 mnt_drop_write_file(file); 4054 return ret; 4055 } 4056 4057 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 4058 { 4059 if (!capable(CAP_SYS_ADMIN)) 4060 return -EPERM; 4061 4062 switch (cmd) { 4063 case BTRFS_BALANCE_CTL_PAUSE: 4064 return btrfs_pause_balance(root->fs_info); 4065 case BTRFS_BALANCE_CTL_CANCEL: 4066 return btrfs_cancel_balance(root->fs_info); 4067 } 4068 4069 return -EINVAL; 4070 } 4071 4072 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 4073 void __user *arg) 4074 { 4075 struct btrfs_fs_info *fs_info = root->fs_info; 4076 struct btrfs_ioctl_balance_args *bargs; 4077 int ret = 0; 4078 4079 if (!capable(CAP_SYS_ADMIN)) 4080 return -EPERM; 4081 4082 mutex_lock(&fs_info->balance_mutex); 4083 if (!fs_info->balance_ctl) { 4084 ret = -ENOTCONN; 4085 goto out; 4086 } 4087 4088 bargs = kzalloc(sizeof(*bargs), GFP_NOFS); 4089 if (!bargs) { 4090 ret = -ENOMEM; 4091 goto out; 4092 } 4093 4094 update_ioctl_balance_args(fs_info, 1, bargs); 4095 4096 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4097 ret = -EFAULT; 4098 4099 kfree(bargs); 4100 out: 4101 mutex_unlock(&fs_info->balance_mutex); 4102 return ret; 4103 } 4104 4105 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4106 { 4107 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4108 struct btrfs_ioctl_quota_ctl_args *sa; 4109 struct btrfs_trans_handle *trans = NULL; 4110 int ret; 4111 int err; 4112 4113 if (!capable(CAP_SYS_ADMIN)) 4114 return -EPERM; 4115 4116 ret = mnt_want_write_file(file); 4117 if (ret) 4118 return ret; 4119 4120 sa = memdup_user(arg, sizeof(*sa)); 4121 if (IS_ERR(sa)) { 4122 ret = PTR_ERR(sa); 4123 goto drop_write; 4124 } 4125 4126 down_write(&root->fs_info->subvol_sem); 4127 trans = btrfs_start_transaction(root->fs_info->tree_root, 2); 4128 if (IS_ERR(trans)) { 4129 ret = PTR_ERR(trans); 4130 goto out; 4131 } 4132 4133 switch (sa->cmd) { 4134 case BTRFS_QUOTA_CTL_ENABLE: 4135 ret = btrfs_quota_enable(trans, root->fs_info); 4136 break; 4137 case BTRFS_QUOTA_CTL_DISABLE: 4138 ret = btrfs_quota_disable(trans, root->fs_info); 4139 break; 4140 default: 4141 ret = -EINVAL; 4142 break; 4143 } 4144 4145 err = btrfs_commit_transaction(trans, root->fs_info->tree_root); 4146 if (err && !ret) 4147 ret = err; 4148 out: 4149 kfree(sa); 4150 up_write(&root->fs_info->subvol_sem); 4151 drop_write: 4152 mnt_drop_write_file(file); 4153 return ret; 4154 } 4155 4156 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4157 { 4158 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4159 struct btrfs_ioctl_qgroup_assign_args *sa; 4160 struct btrfs_trans_handle *trans; 4161 int ret; 4162 int err; 4163 4164 if (!capable(CAP_SYS_ADMIN)) 4165 return -EPERM; 4166 4167 ret = mnt_want_write_file(file); 4168 if (ret) 4169 return ret; 4170 4171 sa = memdup_user(arg, sizeof(*sa)); 4172 if (IS_ERR(sa)) { 4173 ret = PTR_ERR(sa); 4174 goto drop_write; 4175 } 4176 4177 trans = btrfs_join_transaction(root); 4178 if (IS_ERR(trans)) { 4179 ret = PTR_ERR(trans); 4180 goto out; 4181 } 4182 4183 /* FIXME: check if the IDs really exist */ 4184 if (sa->assign) { 4185 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 4186 sa->src, sa->dst); 4187 } else { 4188 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 4189 sa->src, sa->dst); 4190 } 4191 4192 err = btrfs_end_transaction(trans, root); 4193 if (err && !ret) 4194 ret = err; 4195 4196 out: 4197 kfree(sa); 4198 drop_write: 4199 mnt_drop_write_file(file); 4200 return ret; 4201 } 4202 4203 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4204 { 4205 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4206 struct btrfs_ioctl_qgroup_create_args *sa; 4207 struct btrfs_trans_handle *trans; 4208 int ret; 4209 int err; 4210 4211 if (!capable(CAP_SYS_ADMIN)) 4212 return -EPERM; 4213 4214 ret = mnt_want_write_file(file); 4215 if (ret) 4216 return ret; 4217 4218 sa = memdup_user(arg, sizeof(*sa)); 4219 if (IS_ERR(sa)) { 4220 ret = PTR_ERR(sa); 4221 goto drop_write; 4222 } 4223 4224 if (!sa->qgroupid) { 4225 ret = -EINVAL; 4226 goto out; 4227 } 4228 4229 trans = btrfs_join_transaction(root); 4230 if (IS_ERR(trans)) { 4231 ret = PTR_ERR(trans); 4232 goto out; 4233 } 4234 4235 /* FIXME: check if the IDs really exist */ 4236 if (sa->create) { 4237 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid, 4238 NULL); 4239 } else { 4240 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 4241 } 4242 4243 err = btrfs_end_transaction(trans, root); 4244 if (err && !ret) 4245 ret = err; 4246 4247 out: 4248 kfree(sa); 4249 drop_write: 4250 mnt_drop_write_file(file); 4251 return ret; 4252 } 4253 4254 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4255 { 4256 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4257 struct btrfs_ioctl_qgroup_limit_args *sa; 4258 struct btrfs_trans_handle *trans; 4259 int ret; 4260 int err; 4261 u64 qgroupid; 4262 4263 if (!capable(CAP_SYS_ADMIN)) 4264 return -EPERM; 4265 4266 ret = mnt_want_write_file(file); 4267 if (ret) 4268 return ret; 4269 4270 sa = memdup_user(arg, sizeof(*sa)); 4271 if (IS_ERR(sa)) { 4272 ret = PTR_ERR(sa); 4273 goto drop_write; 4274 } 4275 4276 trans = btrfs_join_transaction(root); 4277 if (IS_ERR(trans)) { 4278 ret = PTR_ERR(trans); 4279 goto out; 4280 } 4281 4282 qgroupid = sa->qgroupid; 4283 if (!qgroupid) { 4284 /* take the current subvol as qgroup */ 4285 qgroupid = root->root_key.objectid; 4286 } 4287 4288 /* FIXME: check if the IDs really exist */ 4289 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 4290 4291 err = btrfs_end_transaction(trans, root); 4292 if (err && !ret) 4293 ret = err; 4294 4295 out: 4296 kfree(sa); 4297 drop_write: 4298 mnt_drop_write_file(file); 4299 return ret; 4300 } 4301 4302 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4303 { 4304 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4305 struct btrfs_ioctl_quota_rescan_args *qsa; 4306 int ret; 4307 4308 if (!capable(CAP_SYS_ADMIN)) 4309 return -EPERM; 4310 4311 ret = mnt_want_write_file(file); 4312 if (ret) 4313 return ret; 4314 4315 qsa = memdup_user(arg, sizeof(*qsa)); 4316 if (IS_ERR(qsa)) { 4317 ret = PTR_ERR(qsa); 4318 goto drop_write; 4319 } 4320 4321 if (qsa->flags) { 4322 ret = -EINVAL; 4323 goto out; 4324 } 4325 4326 ret = btrfs_qgroup_rescan(root->fs_info); 4327 4328 out: 4329 kfree(qsa); 4330 drop_write: 4331 mnt_drop_write_file(file); 4332 return ret; 4333 } 4334 4335 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 4336 { 4337 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4338 struct btrfs_ioctl_quota_rescan_args *qsa; 4339 int ret = 0; 4340 4341 if (!capable(CAP_SYS_ADMIN)) 4342 return -EPERM; 4343 4344 qsa = kzalloc(sizeof(*qsa), GFP_NOFS); 4345 if (!qsa) 4346 return -ENOMEM; 4347 4348 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4349 qsa->flags = 1; 4350 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid; 4351 } 4352 4353 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4354 ret = -EFAULT; 4355 4356 kfree(qsa); 4357 return ret; 4358 } 4359 4360 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 4361 { 4362 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4363 4364 if (!capable(CAP_SYS_ADMIN)) 4365 return -EPERM; 4366 4367 return btrfs_qgroup_wait_for_completion(root->fs_info); 4368 } 4369 4370 static long btrfs_ioctl_set_received_subvol(struct file *file, 4371 void __user *arg) 4372 { 4373 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4374 struct inode *inode = file_inode(file); 4375 struct btrfs_root *root = BTRFS_I(inode)->root; 4376 struct btrfs_root_item *root_item = &root->root_item; 4377 struct btrfs_trans_handle *trans; 4378 struct timespec ct = CURRENT_TIME; 4379 int ret = 0; 4380 int received_uuid_changed; 4381 4382 if (!inode_owner_or_capable(inode)) 4383 return -EPERM; 4384 4385 ret = mnt_want_write_file(file); 4386 if (ret < 0) 4387 return ret; 4388 4389 down_write(&root->fs_info->subvol_sem); 4390 4391 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 4392 ret = -EINVAL; 4393 goto out; 4394 } 4395 4396 if (btrfs_root_readonly(root)) { 4397 ret = -EROFS; 4398 goto out; 4399 } 4400 4401 sa = memdup_user(arg, sizeof(*sa)); 4402 if (IS_ERR(sa)) { 4403 ret = PTR_ERR(sa); 4404 sa = NULL; 4405 goto out; 4406 } 4407 4408 /* 4409 * 1 - root item 4410 * 2 - uuid items (received uuid + subvol uuid) 4411 */ 4412 trans = btrfs_start_transaction(root, 3); 4413 if (IS_ERR(trans)) { 4414 ret = PTR_ERR(trans); 4415 trans = NULL; 4416 goto out; 4417 } 4418 4419 sa->rtransid = trans->transid; 4420 sa->rtime.sec = ct.tv_sec; 4421 sa->rtime.nsec = ct.tv_nsec; 4422 4423 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4424 BTRFS_UUID_SIZE); 4425 if (received_uuid_changed && 4426 !btrfs_is_empty_uuid(root_item->received_uuid)) 4427 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 4428 root_item->received_uuid, 4429 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4430 root->root_key.objectid); 4431 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4432 btrfs_set_root_stransid(root_item, sa->stransid); 4433 btrfs_set_root_rtransid(root_item, sa->rtransid); 4434 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4435 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4436 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4437 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4438 4439 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4440 &root->root_key, &root->root_item); 4441 if (ret < 0) { 4442 btrfs_end_transaction(trans, root); 4443 goto out; 4444 } 4445 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4446 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 4447 sa->uuid, 4448 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4449 root->root_key.objectid); 4450 if (ret < 0 && ret != -EEXIST) { 4451 btrfs_abort_transaction(trans, root, ret); 4452 goto out; 4453 } 4454 } 4455 ret = btrfs_commit_transaction(trans, root); 4456 if (ret < 0) { 4457 btrfs_abort_transaction(trans, root, ret); 4458 goto out; 4459 } 4460 4461 ret = copy_to_user(arg, sa, sizeof(*sa)); 4462 if (ret) 4463 ret = -EFAULT; 4464 4465 out: 4466 kfree(sa); 4467 up_write(&root->fs_info->subvol_sem); 4468 mnt_drop_write_file(file); 4469 return ret; 4470 } 4471 4472 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 4473 { 4474 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4475 size_t len; 4476 int ret; 4477 char label[BTRFS_LABEL_SIZE]; 4478 4479 spin_lock(&root->fs_info->super_lock); 4480 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4481 spin_unlock(&root->fs_info->super_lock); 4482 4483 len = strnlen(label, BTRFS_LABEL_SIZE); 4484 4485 if (len == BTRFS_LABEL_SIZE) { 4486 btrfs_warn(root->fs_info, 4487 "label is too long, return the first %zu bytes", --len); 4488 } 4489 4490 ret = copy_to_user(arg, label, len); 4491 4492 return ret ? -EFAULT : 0; 4493 } 4494 4495 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4496 { 4497 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4498 struct btrfs_super_block *super_block = root->fs_info->super_copy; 4499 struct btrfs_trans_handle *trans; 4500 char label[BTRFS_LABEL_SIZE]; 4501 int ret; 4502 4503 if (!capable(CAP_SYS_ADMIN)) 4504 return -EPERM; 4505 4506 if (copy_from_user(label, arg, sizeof(label))) 4507 return -EFAULT; 4508 4509 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4510 btrfs_err(root->fs_info, "unable to set label with more than %d bytes", 4511 BTRFS_LABEL_SIZE - 1); 4512 return -EINVAL; 4513 } 4514 4515 ret = mnt_want_write_file(file); 4516 if (ret) 4517 return ret; 4518 4519 trans = btrfs_start_transaction(root, 0); 4520 if (IS_ERR(trans)) { 4521 ret = PTR_ERR(trans); 4522 goto out_unlock; 4523 } 4524 4525 spin_lock(&root->fs_info->super_lock); 4526 strcpy(super_block->label, label); 4527 spin_unlock(&root->fs_info->super_lock); 4528 ret = btrfs_end_transaction(trans, root); 4529 4530 out_unlock: 4531 mnt_drop_write_file(file); 4532 return ret; 4533 } 4534 4535 #define INIT_FEATURE_FLAGS(suffix) \ 4536 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4537 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4538 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4539 4540 static int btrfs_ioctl_get_supported_features(struct file *file, 4541 void __user *arg) 4542 { 4543 static struct btrfs_ioctl_feature_flags features[3] = { 4544 INIT_FEATURE_FLAGS(SUPP), 4545 INIT_FEATURE_FLAGS(SAFE_SET), 4546 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4547 }; 4548 4549 if (copy_to_user(arg, &features, sizeof(features))) 4550 return -EFAULT; 4551 4552 return 0; 4553 } 4554 4555 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 4556 { 4557 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4558 struct btrfs_super_block *super_block = root->fs_info->super_copy; 4559 struct btrfs_ioctl_feature_flags features; 4560 4561 features.compat_flags = btrfs_super_compat_flags(super_block); 4562 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4563 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4564 4565 if (copy_to_user(arg, &features, sizeof(features))) 4566 return -EFAULT; 4567 4568 return 0; 4569 } 4570 4571 static int check_feature_bits(struct btrfs_root *root, 4572 enum btrfs_feature_set set, 4573 u64 change_mask, u64 flags, u64 supported_flags, 4574 u64 safe_set, u64 safe_clear) 4575 { 4576 const char *type = btrfs_feature_set_names[set]; 4577 char *names; 4578 u64 disallowed, unsupported; 4579 u64 set_mask = flags & change_mask; 4580 u64 clear_mask = ~flags & change_mask; 4581 4582 unsupported = set_mask & ~supported_flags; 4583 if (unsupported) { 4584 names = btrfs_printable_features(set, unsupported); 4585 if (names) { 4586 btrfs_warn(root->fs_info, 4587 "this kernel does not support the %s feature bit%s", 4588 names, strchr(names, ',') ? "s" : ""); 4589 kfree(names); 4590 } else 4591 btrfs_warn(root->fs_info, 4592 "this kernel does not support %s bits 0x%llx", 4593 type, unsupported); 4594 return -EOPNOTSUPP; 4595 } 4596 4597 disallowed = set_mask & ~safe_set; 4598 if (disallowed) { 4599 names = btrfs_printable_features(set, disallowed); 4600 if (names) { 4601 btrfs_warn(root->fs_info, 4602 "can't set the %s feature bit%s while mounted", 4603 names, strchr(names, ',') ? "s" : ""); 4604 kfree(names); 4605 } else 4606 btrfs_warn(root->fs_info, 4607 "can't set %s bits 0x%llx while mounted", 4608 type, disallowed); 4609 return -EPERM; 4610 } 4611 4612 disallowed = clear_mask & ~safe_clear; 4613 if (disallowed) { 4614 names = btrfs_printable_features(set, disallowed); 4615 if (names) { 4616 btrfs_warn(root->fs_info, 4617 "can't clear the %s feature bit%s while mounted", 4618 names, strchr(names, ',') ? "s" : ""); 4619 kfree(names); 4620 } else 4621 btrfs_warn(root->fs_info, 4622 "can't clear %s bits 0x%llx while mounted", 4623 type, disallowed); 4624 return -EPERM; 4625 } 4626 4627 return 0; 4628 } 4629 4630 #define check_feature(root, change_mask, flags, mask_base) \ 4631 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \ 4632 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4633 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4634 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4635 4636 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4637 { 4638 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4639 struct btrfs_super_block *super_block = root->fs_info->super_copy; 4640 struct btrfs_ioctl_feature_flags flags[2]; 4641 struct btrfs_trans_handle *trans; 4642 u64 newflags; 4643 int ret; 4644 4645 if (!capable(CAP_SYS_ADMIN)) 4646 return -EPERM; 4647 4648 if (copy_from_user(flags, arg, sizeof(flags))) 4649 return -EFAULT; 4650 4651 /* Nothing to do */ 4652 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4653 !flags[0].incompat_flags) 4654 return 0; 4655 4656 ret = check_feature(root, flags[0].compat_flags, 4657 flags[1].compat_flags, COMPAT); 4658 if (ret) 4659 return ret; 4660 4661 ret = check_feature(root, flags[0].compat_ro_flags, 4662 flags[1].compat_ro_flags, COMPAT_RO); 4663 if (ret) 4664 return ret; 4665 4666 ret = check_feature(root, flags[0].incompat_flags, 4667 flags[1].incompat_flags, INCOMPAT); 4668 if (ret) 4669 return ret; 4670 4671 trans = btrfs_start_transaction(root, 1); 4672 if (IS_ERR(trans)) 4673 return PTR_ERR(trans); 4674 4675 spin_lock(&root->fs_info->super_lock); 4676 newflags = btrfs_super_compat_flags(super_block); 4677 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4678 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4679 btrfs_set_super_compat_flags(super_block, newflags); 4680 4681 newflags = btrfs_super_compat_ro_flags(super_block); 4682 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4683 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4684 btrfs_set_super_compat_ro_flags(super_block, newflags); 4685 4686 newflags = btrfs_super_incompat_flags(super_block); 4687 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4688 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4689 btrfs_set_super_incompat_flags(super_block, newflags); 4690 spin_unlock(&root->fs_info->super_lock); 4691 4692 return btrfs_end_transaction(trans, root); 4693 } 4694 4695 long btrfs_ioctl(struct file *file, unsigned int 4696 cmd, unsigned long arg) 4697 { 4698 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4699 void __user *argp = (void __user *)arg; 4700 4701 switch (cmd) { 4702 case FS_IOC_GETFLAGS: 4703 return btrfs_ioctl_getflags(file, argp); 4704 case FS_IOC_SETFLAGS: 4705 return btrfs_ioctl_setflags(file, argp); 4706 case FS_IOC_GETVERSION: 4707 return btrfs_ioctl_getversion(file, argp); 4708 case FITRIM: 4709 return btrfs_ioctl_fitrim(file, argp); 4710 case BTRFS_IOC_SNAP_CREATE: 4711 return btrfs_ioctl_snap_create(file, argp, 0); 4712 case BTRFS_IOC_SNAP_CREATE_V2: 4713 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4714 case BTRFS_IOC_SUBVOL_CREATE: 4715 return btrfs_ioctl_snap_create(file, argp, 1); 4716 case BTRFS_IOC_SUBVOL_CREATE_V2: 4717 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4718 case BTRFS_IOC_SNAP_DESTROY: 4719 return btrfs_ioctl_snap_destroy(file, argp); 4720 case BTRFS_IOC_SUBVOL_GETFLAGS: 4721 return btrfs_ioctl_subvol_getflags(file, argp); 4722 case BTRFS_IOC_SUBVOL_SETFLAGS: 4723 return btrfs_ioctl_subvol_setflags(file, argp); 4724 case BTRFS_IOC_DEFAULT_SUBVOL: 4725 return btrfs_ioctl_default_subvol(file, argp); 4726 case BTRFS_IOC_DEFRAG: 4727 return btrfs_ioctl_defrag(file, NULL); 4728 case BTRFS_IOC_DEFRAG_RANGE: 4729 return btrfs_ioctl_defrag(file, argp); 4730 case BTRFS_IOC_RESIZE: 4731 return btrfs_ioctl_resize(file, argp); 4732 case BTRFS_IOC_ADD_DEV: 4733 return btrfs_ioctl_add_dev(root, argp); 4734 case BTRFS_IOC_RM_DEV: 4735 return btrfs_ioctl_rm_dev(file, argp); 4736 case BTRFS_IOC_FS_INFO: 4737 return btrfs_ioctl_fs_info(root, argp); 4738 case BTRFS_IOC_DEV_INFO: 4739 return btrfs_ioctl_dev_info(root, argp); 4740 case BTRFS_IOC_BALANCE: 4741 return btrfs_ioctl_balance(file, NULL); 4742 case BTRFS_IOC_CLONE: 4743 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 4744 case BTRFS_IOC_CLONE_RANGE: 4745 return btrfs_ioctl_clone_range(file, argp); 4746 case BTRFS_IOC_TRANS_START: 4747 return btrfs_ioctl_trans_start(file); 4748 case BTRFS_IOC_TRANS_END: 4749 return btrfs_ioctl_trans_end(file); 4750 case BTRFS_IOC_TREE_SEARCH: 4751 return btrfs_ioctl_tree_search(file, argp); 4752 case BTRFS_IOC_INO_LOOKUP: 4753 return btrfs_ioctl_ino_lookup(file, argp); 4754 case BTRFS_IOC_INO_PATHS: 4755 return btrfs_ioctl_ino_to_path(root, argp); 4756 case BTRFS_IOC_LOGICAL_INO: 4757 return btrfs_ioctl_logical_to_ino(root, argp); 4758 case BTRFS_IOC_SPACE_INFO: 4759 return btrfs_ioctl_space_info(root, argp); 4760 case BTRFS_IOC_GLOBAL_RSV: 4761 return btrfs_ioctl_global_rsv(root, argp); 4762 case BTRFS_IOC_SYNC: { 4763 int ret; 4764 4765 ret = btrfs_start_delalloc_roots(root->fs_info, 0); 4766 if (ret) 4767 return ret; 4768 ret = btrfs_sync_fs(file->f_dentry->d_sb, 1); 4769 return ret; 4770 } 4771 case BTRFS_IOC_START_SYNC: 4772 return btrfs_ioctl_start_sync(root, argp); 4773 case BTRFS_IOC_WAIT_SYNC: 4774 return btrfs_ioctl_wait_sync(root, argp); 4775 case BTRFS_IOC_SCRUB: 4776 return btrfs_ioctl_scrub(file, argp); 4777 case BTRFS_IOC_SCRUB_CANCEL: 4778 return btrfs_ioctl_scrub_cancel(root, argp); 4779 case BTRFS_IOC_SCRUB_PROGRESS: 4780 return btrfs_ioctl_scrub_progress(root, argp); 4781 case BTRFS_IOC_BALANCE_V2: 4782 return btrfs_ioctl_balance(file, argp); 4783 case BTRFS_IOC_BALANCE_CTL: 4784 return btrfs_ioctl_balance_ctl(root, arg); 4785 case BTRFS_IOC_BALANCE_PROGRESS: 4786 return btrfs_ioctl_balance_progress(root, argp); 4787 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4788 return btrfs_ioctl_set_received_subvol(file, argp); 4789 case BTRFS_IOC_SEND: 4790 return btrfs_ioctl_send(file, argp); 4791 case BTRFS_IOC_GET_DEV_STATS: 4792 return btrfs_ioctl_get_dev_stats(root, argp); 4793 case BTRFS_IOC_QUOTA_CTL: 4794 return btrfs_ioctl_quota_ctl(file, argp); 4795 case BTRFS_IOC_QGROUP_ASSIGN: 4796 return btrfs_ioctl_qgroup_assign(file, argp); 4797 case BTRFS_IOC_QGROUP_CREATE: 4798 return btrfs_ioctl_qgroup_create(file, argp); 4799 case BTRFS_IOC_QGROUP_LIMIT: 4800 return btrfs_ioctl_qgroup_limit(file, argp); 4801 case BTRFS_IOC_QUOTA_RESCAN: 4802 return btrfs_ioctl_quota_rescan(file, argp); 4803 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4804 return btrfs_ioctl_quota_rescan_status(file, argp); 4805 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4806 return btrfs_ioctl_quota_rescan_wait(file, argp); 4807 case BTRFS_IOC_DEV_REPLACE: 4808 return btrfs_ioctl_dev_replace(root, argp); 4809 case BTRFS_IOC_GET_FSLABEL: 4810 return btrfs_ioctl_get_fslabel(file, argp); 4811 case BTRFS_IOC_SET_FSLABEL: 4812 return btrfs_ioctl_set_fslabel(file, argp); 4813 case BTRFS_IOC_FILE_EXTENT_SAME: 4814 return btrfs_ioctl_file_extent_same(file, argp); 4815 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4816 return btrfs_ioctl_get_supported_features(file, argp); 4817 case BTRFS_IOC_GET_FEATURES: 4818 return btrfs_ioctl_get_features(file, argp); 4819 case BTRFS_IOC_SET_FEATURES: 4820 return btrfs_ioctl_set_features(file, argp); 4821 } 4822 4823 return -ENOTTY; 4824 } 4825