xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 84d517f3)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 
62 #ifdef CONFIG_64BIT
63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
64  * structures are incorrect, as the timespec structure from userspace
65  * is 4 bytes too small. We define these alternatives here to teach
66  * the kernel about the 32-bit struct packing.
67  */
68 struct btrfs_ioctl_timespec_32 {
69 	__u64 sec;
70 	__u32 nsec;
71 } __attribute__ ((__packed__));
72 
73 struct btrfs_ioctl_received_subvol_args_32 {
74 	char	uuid[BTRFS_UUID_SIZE];	/* in */
75 	__u64	stransid;		/* in */
76 	__u64	rtransid;		/* out */
77 	struct btrfs_ioctl_timespec_32 stime; /* in */
78 	struct btrfs_ioctl_timespec_32 rtime; /* out */
79 	__u64	flags;			/* in */
80 	__u64	reserved[16];		/* in */
81 } __attribute__ ((__packed__));
82 
83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
84 				struct btrfs_ioctl_received_subvol_args_32)
85 #endif
86 
87 
88 static int btrfs_clone(struct inode *src, struct inode *inode,
89 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff);
90 
91 /* Mask out flags that are inappropriate for the given type of inode. */
92 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
93 {
94 	if (S_ISDIR(mode))
95 		return flags;
96 	else if (S_ISREG(mode))
97 		return flags & ~FS_DIRSYNC_FL;
98 	else
99 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100 }
101 
102 /*
103  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
104  */
105 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
106 {
107 	unsigned int iflags = 0;
108 
109 	if (flags & BTRFS_INODE_SYNC)
110 		iflags |= FS_SYNC_FL;
111 	if (flags & BTRFS_INODE_IMMUTABLE)
112 		iflags |= FS_IMMUTABLE_FL;
113 	if (flags & BTRFS_INODE_APPEND)
114 		iflags |= FS_APPEND_FL;
115 	if (flags & BTRFS_INODE_NODUMP)
116 		iflags |= FS_NODUMP_FL;
117 	if (flags & BTRFS_INODE_NOATIME)
118 		iflags |= FS_NOATIME_FL;
119 	if (flags & BTRFS_INODE_DIRSYNC)
120 		iflags |= FS_DIRSYNC_FL;
121 	if (flags & BTRFS_INODE_NODATACOW)
122 		iflags |= FS_NOCOW_FL;
123 
124 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
125 		iflags |= FS_COMPR_FL;
126 	else if (flags & BTRFS_INODE_NOCOMPRESS)
127 		iflags |= FS_NOCOMP_FL;
128 
129 	return iflags;
130 }
131 
132 /*
133  * Update inode->i_flags based on the btrfs internal flags.
134  */
135 void btrfs_update_iflags(struct inode *inode)
136 {
137 	struct btrfs_inode *ip = BTRFS_I(inode);
138 
139 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
140 
141 	if (ip->flags & BTRFS_INODE_SYNC)
142 		inode->i_flags |= S_SYNC;
143 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
144 		inode->i_flags |= S_IMMUTABLE;
145 	if (ip->flags & BTRFS_INODE_APPEND)
146 		inode->i_flags |= S_APPEND;
147 	if (ip->flags & BTRFS_INODE_NOATIME)
148 		inode->i_flags |= S_NOATIME;
149 	if (ip->flags & BTRFS_INODE_DIRSYNC)
150 		inode->i_flags |= S_DIRSYNC;
151 }
152 
153 /*
154  * Inherit flags from the parent inode.
155  *
156  * Currently only the compression flags and the cow flags are inherited.
157  */
158 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
159 {
160 	unsigned int flags;
161 
162 	if (!dir)
163 		return;
164 
165 	flags = BTRFS_I(dir)->flags;
166 
167 	if (flags & BTRFS_INODE_NOCOMPRESS) {
168 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
169 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
170 	} else if (flags & BTRFS_INODE_COMPRESS) {
171 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
172 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
173 	}
174 
175 	if (flags & BTRFS_INODE_NODATACOW) {
176 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
177 		if (S_ISREG(inode->i_mode))
178 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
179 	}
180 
181 	btrfs_update_iflags(inode);
182 }
183 
184 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
185 {
186 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
187 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
188 
189 	if (copy_to_user(arg, &flags, sizeof(flags)))
190 		return -EFAULT;
191 	return 0;
192 }
193 
194 static int check_flags(unsigned int flags)
195 {
196 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
197 		      FS_NOATIME_FL | FS_NODUMP_FL | \
198 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
199 		      FS_NOCOMP_FL | FS_COMPR_FL |
200 		      FS_NOCOW_FL))
201 		return -EOPNOTSUPP;
202 
203 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
204 		return -EINVAL;
205 
206 	return 0;
207 }
208 
209 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
210 {
211 	struct inode *inode = file_inode(file);
212 	struct btrfs_inode *ip = BTRFS_I(inode);
213 	struct btrfs_root *root = ip->root;
214 	struct btrfs_trans_handle *trans;
215 	unsigned int flags, oldflags;
216 	int ret;
217 	u64 ip_oldflags;
218 	unsigned int i_oldflags;
219 	umode_t mode;
220 
221 	if (!inode_owner_or_capable(inode))
222 		return -EPERM;
223 
224 	if (btrfs_root_readonly(root))
225 		return -EROFS;
226 
227 	if (copy_from_user(&flags, arg, sizeof(flags)))
228 		return -EFAULT;
229 
230 	ret = check_flags(flags);
231 	if (ret)
232 		return ret;
233 
234 	ret = mnt_want_write_file(file);
235 	if (ret)
236 		return ret;
237 
238 	mutex_lock(&inode->i_mutex);
239 
240 	ip_oldflags = ip->flags;
241 	i_oldflags = inode->i_flags;
242 	mode = inode->i_mode;
243 
244 	flags = btrfs_mask_flags(inode->i_mode, flags);
245 	oldflags = btrfs_flags_to_ioctl(ip->flags);
246 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
247 		if (!capable(CAP_LINUX_IMMUTABLE)) {
248 			ret = -EPERM;
249 			goto out_unlock;
250 		}
251 	}
252 
253 	if (flags & FS_SYNC_FL)
254 		ip->flags |= BTRFS_INODE_SYNC;
255 	else
256 		ip->flags &= ~BTRFS_INODE_SYNC;
257 	if (flags & FS_IMMUTABLE_FL)
258 		ip->flags |= BTRFS_INODE_IMMUTABLE;
259 	else
260 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
261 	if (flags & FS_APPEND_FL)
262 		ip->flags |= BTRFS_INODE_APPEND;
263 	else
264 		ip->flags &= ~BTRFS_INODE_APPEND;
265 	if (flags & FS_NODUMP_FL)
266 		ip->flags |= BTRFS_INODE_NODUMP;
267 	else
268 		ip->flags &= ~BTRFS_INODE_NODUMP;
269 	if (flags & FS_NOATIME_FL)
270 		ip->flags |= BTRFS_INODE_NOATIME;
271 	else
272 		ip->flags &= ~BTRFS_INODE_NOATIME;
273 	if (flags & FS_DIRSYNC_FL)
274 		ip->flags |= BTRFS_INODE_DIRSYNC;
275 	else
276 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
277 	if (flags & FS_NOCOW_FL) {
278 		if (S_ISREG(mode)) {
279 			/*
280 			 * It's safe to turn csums off here, no extents exist.
281 			 * Otherwise we want the flag to reflect the real COW
282 			 * status of the file and will not set it.
283 			 */
284 			if (inode->i_size == 0)
285 				ip->flags |= BTRFS_INODE_NODATACOW
286 					   | BTRFS_INODE_NODATASUM;
287 		} else {
288 			ip->flags |= BTRFS_INODE_NODATACOW;
289 		}
290 	} else {
291 		/*
292 		 * Revert back under same assuptions as above
293 		 */
294 		if (S_ISREG(mode)) {
295 			if (inode->i_size == 0)
296 				ip->flags &= ~(BTRFS_INODE_NODATACOW
297 				             | BTRFS_INODE_NODATASUM);
298 		} else {
299 			ip->flags &= ~BTRFS_INODE_NODATACOW;
300 		}
301 	}
302 
303 	/*
304 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
305 	 * flag may be changed automatically if compression code won't make
306 	 * things smaller.
307 	 */
308 	if (flags & FS_NOCOMP_FL) {
309 		ip->flags &= ~BTRFS_INODE_COMPRESS;
310 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
311 
312 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
313 		if (ret && ret != -ENODATA)
314 			goto out_drop;
315 	} else if (flags & FS_COMPR_FL) {
316 		const char *comp;
317 
318 		ip->flags |= BTRFS_INODE_COMPRESS;
319 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
320 
321 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
322 			comp = "lzo";
323 		else
324 			comp = "zlib";
325 		ret = btrfs_set_prop(inode, "btrfs.compression",
326 				     comp, strlen(comp), 0);
327 		if (ret)
328 			goto out_drop;
329 
330 	} else {
331 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
332 	}
333 
334 	trans = btrfs_start_transaction(root, 1);
335 	if (IS_ERR(trans)) {
336 		ret = PTR_ERR(trans);
337 		goto out_drop;
338 	}
339 
340 	btrfs_update_iflags(inode);
341 	inode_inc_iversion(inode);
342 	inode->i_ctime = CURRENT_TIME;
343 	ret = btrfs_update_inode(trans, root, inode);
344 
345 	btrfs_end_transaction(trans, root);
346  out_drop:
347 	if (ret) {
348 		ip->flags = ip_oldflags;
349 		inode->i_flags = i_oldflags;
350 	}
351 
352  out_unlock:
353 	mutex_unlock(&inode->i_mutex);
354 	mnt_drop_write_file(file);
355 	return ret;
356 }
357 
358 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
359 {
360 	struct inode *inode = file_inode(file);
361 
362 	return put_user(inode->i_generation, arg);
363 }
364 
365 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
366 {
367 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
368 	struct btrfs_device *device;
369 	struct request_queue *q;
370 	struct fstrim_range range;
371 	u64 minlen = ULLONG_MAX;
372 	u64 num_devices = 0;
373 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
374 	int ret;
375 
376 	if (!capable(CAP_SYS_ADMIN))
377 		return -EPERM;
378 
379 	rcu_read_lock();
380 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
381 				dev_list) {
382 		if (!device->bdev)
383 			continue;
384 		q = bdev_get_queue(device->bdev);
385 		if (blk_queue_discard(q)) {
386 			num_devices++;
387 			minlen = min((u64)q->limits.discard_granularity,
388 				     minlen);
389 		}
390 	}
391 	rcu_read_unlock();
392 
393 	if (!num_devices)
394 		return -EOPNOTSUPP;
395 	if (copy_from_user(&range, arg, sizeof(range)))
396 		return -EFAULT;
397 	if (range.start > total_bytes ||
398 	    range.len < fs_info->sb->s_blocksize)
399 		return -EINVAL;
400 
401 	range.len = min(range.len, total_bytes - range.start);
402 	range.minlen = max(range.minlen, minlen);
403 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
404 	if (ret < 0)
405 		return ret;
406 
407 	if (copy_to_user(arg, &range, sizeof(range)))
408 		return -EFAULT;
409 
410 	return 0;
411 }
412 
413 int btrfs_is_empty_uuid(u8 *uuid)
414 {
415 	int i;
416 
417 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
418 		if (uuid[i])
419 			return 0;
420 	}
421 	return 1;
422 }
423 
424 static noinline int create_subvol(struct inode *dir,
425 				  struct dentry *dentry,
426 				  char *name, int namelen,
427 				  u64 *async_transid,
428 				  struct btrfs_qgroup_inherit *inherit)
429 {
430 	struct btrfs_trans_handle *trans;
431 	struct btrfs_key key;
432 	struct btrfs_root_item root_item;
433 	struct btrfs_inode_item *inode_item;
434 	struct extent_buffer *leaf;
435 	struct btrfs_root *root = BTRFS_I(dir)->root;
436 	struct btrfs_root *new_root;
437 	struct btrfs_block_rsv block_rsv;
438 	struct timespec cur_time = CURRENT_TIME;
439 	struct inode *inode;
440 	int ret;
441 	int err;
442 	u64 objectid;
443 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
444 	u64 index = 0;
445 	u64 qgroup_reserved;
446 	uuid_le new_uuid;
447 
448 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
449 	if (ret)
450 		return ret;
451 
452 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
453 	/*
454 	 * The same as the snapshot creation, please see the comment
455 	 * of create_snapshot().
456 	 */
457 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
458 					       8, &qgroup_reserved, false);
459 	if (ret)
460 		return ret;
461 
462 	trans = btrfs_start_transaction(root, 0);
463 	if (IS_ERR(trans)) {
464 		ret = PTR_ERR(trans);
465 		btrfs_subvolume_release_metadata(root, &block_rsv,
466 						 qgroup_reserved);
467 		return ret;
468 	}
469 	trans->block_rsv = &block_rsv;
470 	trans->bytes_reserved = block_rsv.size;
471 
472 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
473 	if (ret)
474 		goto fail;
475 
476 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
477 				      0, objectid, NULL, 0, 0, 0);
478 	if (IS_ERR(leaf)) {
479 		ret = PTR_ERR(leaf);
480 		goto fail;
481 	}
482 
483 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
484 	btrfs_set_header_bytenr(leaf, leaf->start);
485 	btrfs_set_header_generation(leaf, trans->transid);
486 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
487 	btrfs_set_header_owner(leaf, objectid);
488 
489 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
490 			    BTRFS_FSID_SIZE);
491 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
492 			    btrfs_header_chunk_tree_uuid(leaf),
493 			    BTRFS_UUID_SIZE);
494 	btrfs_mark_buffer_dirty(leaf);
495 
496 	memset(&root_item, 0, sizeof(root_item));
497 
498 	inode_item = &root_item.inode;
499 	btrfs_set_stack_inode_generation(inode_item, 1);
500 	btrfs_set_stack_inode_size(inode_item, 3);
501 	btrfs_set_stack_inode_nlink(inode_item, 1);
502 	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
503 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
504 
505 	btrfs_set_root_flags(&root_item, 0);
506 	btrfs_set_root_limit(&root_item, 0);
507 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
508 
509 	btrfs_set_root_bytenr(&root_item, leaf->start);
510 	btrfs_set_root_generation(&root_item, trans->transid);
511 	btrfs_set_root_level(&root_item, 0);
512 	btrfs_set_root_refs(&root_item, 1);
513 	btrfs_set_root_used(&root_item, leaf->len);
514 	btrfs_set_root_last_snapshot(&root_item, 0);
515 
516 	btrfs_set_root_generation_v2(&root_item,
517 			btrfs_root_generation(&root_item));
518 	uuid_le_gen(&new_uuid);
519 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
520 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
521 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
522 	root_item.ctime = root_item.otime;
523 	btrfs_set_root_ctransid(&root_item, trans->transid);
524 	btrfs_set_root_otransid(&root_item, trans->transid);
525 
526 	btrfs_tree_unlock(leaf);
527 	free_extent_buffer(leaf);
528 	leaf = NULL;
529 
530 	btrfs_set_root_dirid(&root_item, new_dirid);
531 
532 	key.objectid = objectid;
533 	key.offset = 0;
534 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
535 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
536 				&root_item);
537 	if (ret)
538 		goto fail;
539 
540 	key.offset = (u64)-1;
541 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
542 	if (IS_ERR(new_root)) {
543 		btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
544 		ret = PTR_ERR(new_root);
545 		goto fail;
546 	}
547 
548 	btrfs_record_root_in_trans(trans, new_root);
549 
550 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
551 	if (ret) {
552 		/* We potentially lose an unused inode item here */
553 		btrfs_abort_transaction(trans, root, ret);
554 		goto fail;
555 	}
556 
557 	/*
558 	 * insert the directory item
559 	 */
560 	ret = btrfs_set_inode_index(dir, &index);
561 	if (ret) {
562 		btrfs_abort_transaction(trans, root, ret);
563 		goto fail;
564 	}
565 
566 	ret = btrfs_insert_dir_item(trans, root,
567 				    name, namelen, dir, &key,
568 				    BTRFS_FT_DIR, index);
569 	if (ret) {
570 		btrfs_abort_transaction(trans, root, ret);
571 		goto fail;
572 	}
573 
574 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
575 	ret = btrfs_update_inode(trans, root, dir);
576 	BUG_ON(ret);
577 
578 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
579 				 objectid, root->root_key.objectid,
580 				 btrfs_ino(dir), index, name, namelen);
581 	BUG_ON(ret);
582 
583 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
584 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
585 				  objectid);
586 	if (ret)
587 		btrfs_abort_transaction(trans, root, ret);
588 
589 fail:
590 	trans->block_rsv = NULL;
591 	trans->bytes_reserved = 0;
592 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
593 
594 	if (async_transid) {
595 		*async_transid = trans->transid;
596 		err = btrfs_commit_transaction_async(trans, root, 1);
597 		if (err)
598 			err = btrfs_commit_transaction(trans, root);
599 	} else {
600 		err = btrfs_commit_transaction(trans, root);
601 	}
602 	if (err && !ret)
603 		ret = err;
604 
605 	if (!ret) {
606 		inode = btrfs_lookup_dentry(dir, dentry);
607 		if (IS_ERR(inode))
608 			return PTR_ERR(inode);
609 		d_instantiate(dentry, inode);
610 	}
611 	return ret;
612 }
613 
614 static void btrfs_wait_nocow_write(struct btrfs_root *root)
615 {
616 	s64 writers;
617 	DEFINE_WAIT(wait);
618 
619 	do {
620 		prepare_to_wait(&root->subv_writers->wait, &wait,
621 				TASK_UNINTERRUPTIBLE);
622 
623 		writers = percpu_counter_sum(&root->subv_writers->counter);
624 		if (writers)
625 			schedule();
626 
627 		finish_wait(&root->subv_writers->wait, &wait);
628 	} while (writers);
629 }
630 
631 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
632 			   struct dentry *dentry, char *name, int namelen,
633 			   u64 *async_transid, bool readonly,
634 			   struct btrfs_qgroup_inherit *inherit)
635 {
636 	struct inode *inode;
637 	struct btrfs_pending_snapshot *pending_snapshot;
638 	struct btrfs_trans_handle *trans;
639 	int ret;
640 
641 	if (!root->ref_cows)
642 		return -EINVAL;
643 
644 	atomic_inc(&root->will_be_snapshoted);
645 	smp_mb__after_atomic();
646 	btrfs_wait_nocow_write(root);
647 
648 	ret = btrfs_start_delalloc_inodes(root, 0);
649 	if (ret)
650 		goto out;
651 
652 	btrfs_wait_ordered_extents(root, -1);
653 
654 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
655 	if (!pending_snapshot) {
656 		ret = -ENOMEM;
657 		goto out;
658 	}
659 
660 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
661 			     BTRFS_BLOCK_RSV_TEMP);
662 	/*
663 	 * 1 - parent dir inode
664 	 * 2 - dir entries
665 	 * 1 - root item
666 	 * 2 - root ref/backref
667 	 * 1 - root of snapshot
668 	 * 1 - UUID item
669 	 */
670 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
671 					&pending_snapshot->block_rsv, 8,
672 					&pending_snapshot->qgroup_reserved,
673 					false);
674 	if (ret)
675 		goto free;
676 
677 	pending_snapshot->dentry = dentry;
678 	pending_snapshot->root = root;
679 	pending_snapshot->readonly = readonly;
680 	pending_snapshot->dir = dir;
681 	pending_snapshot->inherit = inherit;
682 
683 	trans = btrfs_start_transaction(root, 0);
684 	if (IS_ERR(trans)) {
685 		ret = PTR_ERR(trans);
686 		goto fail;
687 	}
688 
689 	spin_lock(&root->fs_info->trans_lock);
690 	list_add(&pending_snapshot->list,
691 		 &trans->transaction->pending_snapshots);
692 	spin_unlock(&root->fs_info->trans_lock);
693 	if (async_transid) {
694 		*async_transid = trans->transid;
695 		ret = btrfs_commit_transaction_async(trans,
696 				     root->fs_info->extent_root, 1);
697 		if (ret)
698 			ret = btrfs_commit_transaction(trans, root);
699 	} else {
700 		ret = btrfs_commit_transaction(trans,
701 					       root->fs_info->extent_root);
702 	}
703 	if (ret)
704 		goto fail;
705 
706 	ret = pending_snapshot->error;
707 	if (ret)
708 		goto fail;
709 
710 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
711 	if (ret)
712 		goto fail;
713 
714 	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
715 	if (IS_ERR(inode)) {
716 		ret = PTR_ERR(inode);
717 		goto fail;
718 	}
719 
720 	d_instantiate(dentry, inode);
721 	ret = 0;
722 fail:
723 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
724 					 &pending_snapshot->block_rsv,
725 					 pending_snapshot->qgroup_reserved);
726 free:
727 	kfree(pending_snapshot);
728 out:
729 	atomic_dec(&root->will_be_snapshoted);
730 	return ret;
731 }
732 
733 /*  copy of check_sticky in fs/namei.c()
734 * It's inline, so penalty for filesystems that don't use sticky bit is
735 * minimal.
736 */
737 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
738 {
739 	kuid_t fsuid = current_fsuid();
740 
741 	if (!(dir->i_mode & S_ISVTX))
742 		return 0;
743 	if (uid_eq(inode->i_uid, fsuid))
744 		return 0;
745 	if (uid_eq(dir->i_uid, fsuid))
746 		return 0;
747 	return !capable(CAP_FOWNER);
748 }
749 
750 /*  copy of may_delete in fs/namei.c()
751  *	Check whether we can remove a link victim from directory dir, check
752  *  whether the type of victim is right.
753  *  1. We can't do it if dir is read-only (done in permission())
754  *  2. We should have write and exec permissions on dir
755  *  3. We can't remove anything from append-only dir
756  *  4. We can't do anything with immutable dir (done in permission())
757  *  5. If the sticky bit on dir is set we should either
758  *	a. be owner of dir, or
759  *	b. be owner of victim, or
760  *	c. have CAP_FOWNER capability
761  *  6. If the victim is append-only or immutable we can't do antyhing with
762  *     links pointing to it.
763  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
764  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
765  *  9. We can't remove a root or mountpoint.
766  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
767  *     nfs_async_unlink().
768  */
769 
770 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
771 {
772 	int error;
773 
774 	if (!victim->d_inode)
775 		return -ENOENT;
776 
777 	BUG_ON(victim->d_parent->d_inode != dir);
778 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
779 
780 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
781 	if (error)
782 		return error;
783 	if (IS_APPEND(dir))
784 		return -EPERM;
785 	if (btrfs_check_sticky(dir, victim->d_inode)||
786 		IS_APPEND(victim->d_inode)||
787 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
788 		return -EPERM;
789 	if (isdir) {
790 		if (!S_ISDIR(victim->d_inode->i_mode))
791 			return -ENOTDIR;
792 		if (IS_ROOT(victim))
793 			return -EBUSY;
794 	} else if (S_ISDIR(victim->d_inode->i_mode))
795 		return -EISDIR;
796 	if (IS_DEADDIR(dir))
797 		return -ENOENT;
798 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
799 		return -EBUSY;
800 	return 0;
801 }
802 
803 /* copy of may_create in fs/namei.c() */
804 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
805 {
806 	if (child->d_inode)
807 		return -EEXIST;
808 	if (IS_DEADDIR(dir))
809 		return -ENOENT;
810 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
811 }
812 
813 /*
814  * Create a new subvolume below @parent.  This is largely modeled after
815  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
816  * inside this filesystem so it's quite a bit simpler.
817  */
818 static noinline int btrfs_mksubvol(struct path *parent,
819 				   char *name, int namelen,
820 				   struct btrfs_root *snap_src,
821 				   u64 *async_transid, bool readonly,
822 				   struct btrfs_qgroup_inherit *inherit)
823 {
824 	struct inode *dir  = parent->dentry->d_inode;
825 	struct dentry *dentry;
826 	int error;
827 
828 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
829 	if (error == -EINTR)
830 		return error;
831 
832 	dentry = lookup_one_len(name, parent->dentry, namelen);
833 	error = PTR_ERR(dentry);
834 	if (IS_ERR(dentry))
835 		goto out_unlock;
836 
837 	error = -EEXIST;
838 	if (dentry->d_inode)
839 		goto out_dput;
840 
841 	error = btrfs_may_create(dir, dentry);
842 	if (error)
843 		goto out_dput;
844 
845 	/*
846 	 * even if this name doesn't exist, we may get hash collisions.
847 	 * check for them now when we can safely fail
848 	 */
849 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
850 					       dir->i_ino, name,
851 					       namelen);
852 	if (error)
853 		goto out_dput;
854 
855 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
856 
857 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
858 		goto out_up_read;
859 
860 	if (snap_src) {
861 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
862 					async_transid, readonly, inherit);
863 	} else {
864 		error = create_subvol(dir, dentry, name, namelen,
865 				      async_transid, inherit);
866 	}
867 	if (!error)
868 		fsnotify_mkdir(dir, dentry);
869 out_up_read:
870 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
871 out_dput:
872 	dput(dentry);
873 out_unlock:
874 	mutex_unlock(&dir->i_mutex);
875 	return error;
876 }
877 
878 /*
879  * When we're defragging a range, we don't want to kick it off again
880  * if it is really just waiting for delalloc to send it down.
881  * If we find a nice big extent or delalloc range for the bytes in the
882  * file you want to defrag, we return 0 to let you know to skip this
883  * part of the file
884  */
885 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
886 {
887 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
888 	struct extent_map *em = NULL;
889 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
890 	u64 end;
891 
892 	read_lock(&em_tree->lock);
893 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
894 	read_unlock(&em_tree->lock);
895 
896 	if (em) {
897 		end = extent_map_end(em);
898 		free_extent_map(em);
899 		if (end - offset > thresh)
900 			return 0;
901 	}
902 	/* if we already have a nice delalloc here, just stop */
903 	thresh /= 2;
904 	end = count_range_bits(io_tree, &offset, offset + thresh,
905 			       thresh, EXTENT_DELALLOC, 1);
906 	if (end >= thresh)
907 		return 0;
908 	return 1;
909 }
910 
911 /*
912  * helper function to walk through a file and find extents
913  * newer than a specific transid, and smaller than thresh.
914  *
915  * This is used by the defragging code to find new and small
916  * extents
917  */
918 static int find_new_extents(struct btrfs_root *root,
919 			    struct inode *inode, u64 newer_than,
920 			    u64 *off, int thresh)
921 {
922 	struct btrfs_path *path;
923 	struct btrfs_key min_key;
924 	struct extent_buffer *leaf;
925 	struct btrfs_file_extent_item *extent;
926 	int type;
927 	int ret;
928 	u64 ino = btrfs_ino(inode);
929 
930 	path = btrfs_alloc_path();
931 	if (!path)
932 		return -ENOMEM;
933 
934 	min_key.objectid = ino;
935 	min_key.type = BTRFS_EXTENT_DATA_KEY;
936 	min_key.offset = *off;
937 
938 	while (1) {
939 		path->keep_locks = 1;
940 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
941 		if (ret != 0)
942 			goto none;
943 		path->keep_locks = 0;
944 		btrfs_unlock_up_safe(path, 1);
945 process_slot:
946 		if (min_key.objectid != ino)
947 			goto none;
948 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
949 			goto none;
950 
951 		leaf = path->nodes[0];
952 		extent = btrfs_item_ptr(leaf, path->slots[0],
953 					struct btrfs_file_extent_item);
954 
955 		type = btrfs_file_extent_type(leaf, extent);
956 		if (type == BTRFS_FILE_EXTENT_REG &&
957 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
958 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
959 			*off = min_key.offset;
960 			btrfs_free_path(path);
961 			return 0;
962 		}
963 
964 		path->slots[0]++;
965 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
966 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
967 			goto process_slot;
968 		}
969 
970 		if (min_key.offset == (u64)-1)
971 			goto none;
972 
973 		min_key.offset++;
974 		btrfs_release_path(path);
975 	}
976 none:
977 	btrfs_free_path(path);
978 	return -ENOENT;
979 }
980 
981 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
982 {
983 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
984 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
985 	struct extent_map *em;
986 	u64 len = PAGE_CACHE_SIZE;
987 
988 	/*
989 	 * hopefully we have this extent in the tree already, try without
990 	 * the full extent lock
991 	 */
992 	read_lock(&em_tree->lock);
993 	em = lookup_extent_mapping(em_tree, start, len);
994 	read_unlock(&em_tree->lock);
995 
996 	if (!em) {
997 		struct extent_state *cached = NULL;
998 		u64 end = start + len - 1;
999 
1000 		/* get the big lock and read metadata off disk */
1001 		lock_extent_bits(io_tree, start, end, 0, &cached);
1002 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1003 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1004 
1005 		if (IS_ERR(em))
1006 			return NULL;
1007 	}
1008 
1009 	return em;
1010 }
1011 
1012 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1013 {
1014 	struct extent_map *next;
1015 	bool ret = true;
1016 
1017 	/* this is the last extent */
1018 	if (em->start + em->len >= i_size_read(inode))
1019 		return false;
1020 
1021 	next = defrag_lookup_extent(inode, em->start + em->len);
1022 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE ||
1023 	    (em->block_start + em->block_len == next->block_start))
1024 		ret = false;
1025 
1026 	free_extent_map(next);
1027 	return ret;
1028 }
1029 
1030 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
1031 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1032 			       int compress)
1033 {
1034 	struct extent_map *em;
1035 	int ret = 1;
1036 	bool next_mergeable = true;
1037 
1038 	/*
1039 	 * make sure that once we start defragging an extent, we keep on
1040 	 * defragging it
1041 	 */
1042 	if (start < *defrag_end)
1043 		return 1;
1044 
1045 	*skip = 0;
1046 
1047 	em = defrag_lookup_extent(inode, start);
1048 	if (!em)
1049 		return 0;
1050 
1051 	/* this will cover holes, and inline extents */
1052 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1053 		ret = 0;
1054 		goto out;
1055 	}
1056 
1057 	next_mergeable = defrag_check_next_extent(inode, em);
1058 
1059 	/*
1060 	 * we hit a real extent, if it is big or the next extent is not a
1061 	 * real extent, don't bother defragging it
1062 	 */
1063 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1064 	    (em->len >= thresh || !next_mergeable))
1065 		ret = 0;
1066 out:
1067 	/*
1068 	 * last_len ends up being a counter of how many bytes we've defragged.
1069 	 * every time we choose not to defrag an extent, we reset *last_len
1070 	 * so that the next tiny extent will force a defrag.
1071 	 *
1072 	 * The end result of this is that tiny extents before a single big
1073 	 * extent will force at least part of that big extent to be defragged.
1074 	 */
1075 	if (ret) {
1076 		*defrag_end = extent_map_end(em);
1077 	} else {
1078 		*last_len = 0;
1079 		*skip = extent_map_end(em);
1080 		*defrag_end = 0;
1081 	}
1082 
1083 	free_extent_map(em);
1084 	return ret;
1085 }
1086 
1087 /*
1088  * it doesn't do much good to defrag one or two pages
1089  * at a time.  This pulls in a nice chunk of pages
1090  * to COW and defrag.
1091  *
1092  * It also makes sure the delalloc code has enough
1093  * dirty data to avoid making new small extents as part
1094  * of the defrag
1095  *
1096  * It's a good idea to start RA on this range
1097  * before calling this.
1098  */
1099 static int cluster_pages_for_defrag(struct inode *inode,
1100 				    struct page **pages,
1101 				    unsigned long start_index,
1102 				    unsigned long num_pages)
1103 {
1104 	unsigned long file_end;
1105 	u64 isize = i_size_read(inode);
1106 	u64 page_start;
1107 	u64 page_end;
1108 	u64 page_cnt;
1109 	int ret;
1110 	int i;
1111 	int i_done;
1112 	struct btrfs_ordered_extent *ordered;
1113 	struct extent_state *cached_state = NULL;
1114 	struct extent_io_tree *tree;
1115 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1116 
1117 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1118 	if (!isize || start_index > file_end)
1119 		return 0;
1120 
1121 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1122 
1123 	ret = btrfs_delalloc_reserve_space(inode,
1124 					   page_cnt << PAGE_CACHE_SHIFT);
1125 	if (ret)
1126 		return ret;
1127 	i_done = 0;
1128 	tree = &BTRFS_I(inode)->io_tree;
1129 
1130 	/* step one, lock all the pages */
1131 	for (i = 0; i < page_cnt; i++) {
1132 		struct page *page;
1133 again:
1134 		page = find_or_create_page(inode->i_mapping,
1135 					   start_index + i, mask);
1136 		if (!page)
1137 			break;
1138 
1139 		page_start = page_offset(page);
1140 		page_end = page_start + PAGE_CACHE_SIZE - 1;
1141 		while (1) {
1142 			lock_extent_bits(tree, page_start, page_end,
1143 					 0, &cached_state);
1144 			ordered = btrfs_lookup_ordered_extent(inode,
1145 							      page_start);
1146 			unlock_extent_cached(tree, page_start, page_end,
1147 					     &cached_state, GFP_NOFS);
1148 			if (!ordered)
1149 				break;
1150 
1151 			unlock_page(page);
1152 			btrfs_start_ordered_extent(inode, ordered, 1);
1153 			btrfs_put_ordered_extent(ordered);
1154 			lock_page(page);
1155 			/*
1156 			 * we unlocked the page above, so we need check if
1157 			 * it was released or not.
1158 			 */
1159 			if (page->mapping != inode->i_mapping) {
1160 				unlock_page(page);
1161 				page_cache_release(page);
1162 				goto again;
1163 			}
1164 		}
1165 
1166 		if (!PageUptodate(page)) {
1167 			btrfs_readpage(NULL, page);
1168 			lock_page(page);
1169 			if (!PageUptodate(page)) {
1170 				unlock_page(page);
1171 				page_cache_release(page);
1172 				ret = -EIO;
1173 				break;
1174 			}
1175 		}
1176 
1177 		if (page->mapping != inode->i_mapping) {
1178 			unlock_page(page);
1179 			page_cache_release(page);
1180 			goto again;
1181 		}
1182 
1183 		pages[i] = page;
1184 		i_done++;
1185 	}
1186 	if (!i_done || ret)
1187 		goto out;
1188 
1189 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1190 		goto out;
1191 
1192 	/*
1193 	 * so now we have a nice long stream of locked
1194 	 * and up to date pages, lets wait on them
1195 	 */
1196 	for (i = 0; i < i_done; i++)
1197 		wait_on_page_writeback(pages[i]);
1198 
1199 	page_start = page_offset(pages[0]);
1200 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1201 
1202 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1203 			 page_start, page_end - 1, 0, &cached_state);
1204 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1205 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1206 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1207 			  &cached_state, GFP_NOFS);
1208 
1209 	if (i_done != page_cnt) {
1210 		spin_lock(&BTRFS_I(inode)->lock);
1211 		BTRFS_I(inode)->outstanding_extents++;
1212 		spin_unlock(&BTRFS_I(inode)->lock);
1213 		btrfs_delalloc_release_space(inode,
1214 				     (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1215 	}
1216 
1217 
1218 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1219 			  &cached_state, GFP_NOFS);
1220 
1221 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1222 			     page_start, page_end - 1, &cached_state,
1223 			     GFP_NOFS);
1224 
1225 	for (i = 0; i < i_done; i++) {
1226 		clear_page_dirty_for_io(pages[i]);
1227 		ClearPageChecked(pages[i]);
1228 		set_page_extent_mapped(pages[i]);
1229 		set_page_dirty(pages[i]);
1230 		unlock_page(pages[i]);
1231 		page_cache_release(pages[i]);
1232 	}
1233 	return i_done;
1234 out:
1235 	for (i = 0; i < i_done; i++) {
1236 		unlock_page(pages[i]);
1237 		page_cache_release(pages[i]);
1238 	}
1239 	btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1240 	return ret;
1241 
1242 }
1243 
1244 int btrfs_defrag_file(struct inode *inode, struct file *file,
1245 		      struct btrfs_ioctl_defrag_range_args *range,
1246 		      u64 newer_than, unsigned long max_to_defrag)
1247 {
1248 	struct btrfs_root *root = BTRFS_I(inode)->root;
1249 	struct file_ra_state *ra = NULL;
1250 	unsigned long last_index;
1251 	u64 isize = i_size_read(inode);
1252 	u64 last_len = 0;
1253 	u64 skip = 0;
1254 	u64 defrag_end = 0;
1255 	u64 newer_off = range->start;
1256 	unsigned long i;
1257 	unsigned long ra_index = 0;
1258 	int ret;
1259 	int defrag_count = 0;
1260 	int compress_type = BTRFS_COMPRESS_ZLIB;
1261 	int extent_thresh = range->extent_thresh;
1262 	unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1263 	unsigned long cluster = max_cluster;
1264 	u64 new_align = ~((u64)128 * 1024 - 1);
1265 	struct page **pages = NULL;
1266 
1267 	if (isize == 0)
1268 		return 0;
1269 
1270 	if (range->start >= isize)
1271 		return -EINVAL;
1272 
1273 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1274 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1275 			return -EINVAL;
1276 		if (range->compress_type)
1277 			compress_type = range->compress_type;
1278 	}
1279 
1280 	if (extent_thresh == 0)
1281 		extent_thresh = 256 * 1024;
1282 
1283 	/*
1284 	 * if we were not given a file, allocate a readahead
1285 	 * context
1286 	 */
1287 	if (!file) {
1288 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1289 		if (!ra)
1290 			return -ENOMEM;
1291 		file_ra_state_init(ra, inode->i_mapping);
1292 	} else {
1293 		ra = &file->f_ra;
1294 	}
1295 
1296 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1297 			GFP_NOFS);
1298 	if (!pages) {
1299 		ret = -ENOMEM;
1300 		goto out_ra;
1301 	}
1302 
1303 	/* find the last page to defrag */
1304 	if (range->start + range->len > range->start) {
1305 		last_index = min_t(u64, isize - 1,
1306 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1307 	} else {
1308 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1309 	}
1310 
1311 	if (newer_than) {
1312 		ret = find_new_extents(root, inode, newer_than,
1313 				       &newer_off, 64 * 1024);
1314 		if (!ret) {
1315 			range->start = newer_off;
1316 			/*
1317 			 * we always align our defrag to help keep
1318 			 * the extents in the file evenly spaced
1319 			 */
1320 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1321 		} else
1322 			goto out_ra;
1323 	} else {
1324 		i = range->start >> PAGE_CACHE_SHIFT;
1325 	}
1326 	if (!max_to_defrag)
1327 		max_to_defrag = last_index + 1;
1328 
1329 	/*
1330 	 * make writeback starts from i, so the defrag range can be
1331 	 * written sequentially.
1332 	 */
1333 	if (i < inode->i_mapping->writeback_index)
1334 		inode->i_mapping->writeback_index = i;
1335 
1336 	while (i <= last_index && defrag_count < max_to_defrag &&
1337 	       (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1338 		PAGE_CACHE_SHIFT)) {
1339 		/*
1340 		 * make sure we stop running if someone unmounts
1341 		 * the FS
1342 		 */
1343 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1344 			break;
1345 
1346 		if (btrfs_defrag_cancelled(root->fs_info)) {
1347 			printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1348 			ret = -EAGAIN;
1349 			break;
1350 		}
1351 
1352 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1353 					 extent_thresh, &last_len, &skip,
1354 					 &defrag_end, range->flags &
1355 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1356 			unsigned long next;
1357 			/*
1358 			 * the should_defrag function tells us how much to skip
1359 			 * bump our counter by the suggested amount
1360 			 */
1361 			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1362 			i = max(i + 1, next);
1363 			continue;
1364 		}
1365 
1366 		if (!newer_than) {
1367 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1368 				   PAGE_CACHE_SHIFT) - i;
1369 			cluster = min(cluster, max_cluster);
1370 		} else {
1371 			cluster = max_cluster;
1372 		}
1373 
1374 		if (i + cluster > ra_index) {
1375 			ra_index = max(i, ra_index);
1376 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1377 				       cluster);
1378 			ra_index += max_cluster;
1379 		}
1380 
1381 		mutex_lock(&inode->i_mutex);
1382 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1383 			BTRFS_I(inode)->force_compress = compress_type;
1384 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1385 		if (ret < 0) {
1386 			mutex_unlock(&inode->i_mutex);
1387 			goto out_ra;
1388 		}
1389 
1390 		defrag_count += ret;
1391 		balance_dirty_pages_ratelimited(inode->i_mapping);
1392 		mutex_unlock(&inode->i_mutex);
1393 
1394 		if (newer_than) {
1395 			if (newer_off == (u64)-1)
1396 				break;
1397 
1398 			if (ret > 0)
1399 				i += ret;
1400 
1401 			newer_off = max(newer_off + 1,
1402 					(u64)i << PAGE_CACHE_SHIFT);
1403 
1404 			ret = find_new_extents(root, inode,
1405 					       newer_than, &newer_off,
1406 					       64 * 1024);
1407 			if (!ret) {
1408 				range->start = newer_off;
1409 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1410 			} else {
1411 				break;
1412 			}
1413 		} else {
1414 			if (ret > 0) {
1415 				i += ret;
1416 				last_len += ret << PAGE_CACHE_SHIFT;
1417 			} else {
1418 				i++;
1419 				last_len = 0;
1420 			}
1421 		}
1422 	}
1423 
1424 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1425 		filemap_flush(inode->i_mapping);
1426 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1427 			     &BTRFS_I(inode)->runtime_flags))
1428 			filemap_flush(inode->i_mapping);
1429 	}
1430 
1431 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1432 		/* the filemap_flush will queue IO into the worker threads, but
1433 		 * we have to make sure the IO is actually started and that
1434 		 * ordered extents get created before we return
1435 		 */
1436 		atomic_inc(&root->fs_info->async_submit_draining);
1437 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1438 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1439 			wait_event(root->fs_info->async_submit_wait,
1440 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1441 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1442 		}
1443 		atomic_dec(&root->fs_info->async_submit_draining);
1444 	}
1445 
1446 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1447 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1448 	}
1449 
1450 	ret = defrag_count;
1451 
1452 out_ra:
1453 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1454 		mutex_lock(&inode->i_mutex);
1455 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1456 		mutex_unlock(&inode->i_mutex);
1457 	}
1458 	if (!file)
1459 		kfree(ra);
1460 	kfree(pages);
1461 	return ret;
1462 }
1463 
1464 static noinline int btrfs_ioctl_resize(struct file *file,
1465 					void __user *arg)
1466 {
1467 	u64 new_size;
1468 	u64 old_size;
1469 	u64 devid = 1;
1470 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1471 	struct btrfs_ioctl_vol_args *vol_args;
1472 	struct btrfs_trans_handle *trans;
1473 	struct btrfs_device *device = NULL;
1474 	char *sizestr;
1475 	char *retptr;
1476 	char *devstr = NULL;
1477 	int ret = 0;
1478 	int mod = 0;
1479 
1480 	if (!capable(CAP_SYS_ADMIN))
1481 		return -EPERM;
1482 
1483 	ret = mnt_want_write_file(file);
1484 	if (ret)
1485 		return ret;
1486 
1487 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1488 			1)) {
1489 		mnt_drop_write_file(file);
1490 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1491 	}
1492 
1493 	mutex_lock(&root->fs_info->volume_mutex);
1494 	vol_args = memdup_user(arg, sizeof(*vol_args));
1495 	if (IS_ERR(vol_args)) {
1496 		ret = PTR_ERR(vol_args);
1497 		goto out;
1498 	}
1499 
1500 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1501 
1502 	sizestr = vol_args->name;
1503 	devstr = strchr(sizestr, ':');
1504 	if (devstr) {
1505 		char *end;
1506 		sizestr = devstr + 1;
1507 		*devstr = '\0';
1508 		devstr = vol_args->name;
1509 		devid = simple_strtoull(devstr, &end, 10);
1510 		if (!devid) {
1511 			ret = -EINVAL;
1512 			goto out_free;
1513 		}
1514 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1515 	}
1516 
1517 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1518 	if (!device) {
1519 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1520 		       devid);
1521 		ret = -ENODEV;
1522 		goto out_free;
1523 	}
1524 
1525 	if (!device->writeable) {
1526 		btrfs_info(root->fs_info,
1527 			   "resizer unable to apply on readonly device %llu",
1528 		       devid);
1529 		ret = -EPERM;
1530 		goto out_free;
1531 	}
1532 
1533 	if (!strcmp(sizestr, "max"))
1534 		new_size = device->bdev->bd_inode->i_size;
1535 	else {
1536 		if (sizestr[0] == '-') {
1537 			mod = -1;
1538 			sizestr++;
1539 		} else if (sizestr[0] == '+') {
1540 			mod = 1;
1541 			sizestr++;
1542 		}
1543 		new_size = memparse(sizestr, &retptr);
1544 		if (*retptr != '\0' || new_size == 0) {
1545 			ret = -EINVAL;
1546 			goto out_free;
1547 		}
1548 	}
1549 
1550 	if (device->is_tgtdev_for_dev_replace) {
1551 		ret = -EPERM;
1552 		goto out_free;
1553 	}
1554 
1555 	old_size = device->total_bytes;
1556 
1557 	if (mod < 0) {
1558 		if (new_size > old_size) {
1559 			ret = -EINVAL;
1560 			goto out_free;
1561 		}
1562 		new_size = old_size - new_size;
1563 	} else if (mod > 0) {
1564 		if (new_size > ULLONG_MAX - old_size) {
1565 			ret = -EINVAL;
1566 			goto out_free;
1567 		}
1568 		new_size = old_size + new_size;
1569 	}
1570 
1571 	if (new_size < 256 * 1024 * 1024) {
1572 		ret = -EINVAL;
1573 		goto out_free;
1574 	}
1575 	if (new_size > device->bdev->bd_inode->i_size) {
1576 		ret = -EFBIG;
1577 		goto out_free;
1578 	}
1579 
1580 	do_div(new_size, root->sectorsize);
1581 	new_size *= root->sectorsize;
1582 
1583 	printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1584 		      rcu_str_deref(device->name), new_size);
1585 
1586 	if (new_size > old_size) {
1587 		trans = btrfs_start_transaction(root, 0);
1588 		if (IS_ERR(trans)) {
1589 			ret = PTR_ERR(trans);
1590 			goto out_free;
1591 		}
1592 		ret = btrfs_grow_device(trans, device, new_size);
1593 		btrfs_commit_transaction(trans, root);
1594 	} else if (new_size < old_size) {
1595 		ret = btrfs_shrink_device(device, new_size);
1596 	} /* equal, nothing need to do */
1597 
1598 out_free:
1599 	kfree(vol_args);
1600 out:
1601 	mutex_unlock(&root->fs_info->volume_mutex);
1602 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1603 	mnt_drop_write_file(file);
1604 	return ret;
1605 }
1606 
1607 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1608 				char *name, unsigned long fd, int subvol,
1609 				u64 *transid, bool readonly,
1610 				struct btrfs_qgroup_inherit *inherit)
1611 {
1612 	int namelen;
1613 	int ret = 0;
1614 
1615 	ret = mnt_want_write_file(file);
1616 	if (ret)
1617 		goto out;
1618 
1619 	namelen = strlen(name);
1620 	if (strchr(name, '/')) {
1621 		ret = -EINVAL;
1622 		goto out_drop_write;
1623 	}
1624 
1625 	if (name[0] == '.' &&
1626 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1627 		ret = -EEXIST;
1628 		goto out_drop_write;
1629 	}
1630 
1631 	if (subvol) {
1632 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1633 				     NULL, transid, readonly, inherit);
1634 	} else {
1635 		struct fd src = fdget(fd);
1636 		struct inode *src_inode;
1637 		if (!src.file) {
1638 			ret = -EINVAL;
1639 			goto out_drop_write;
1640 		}
1641 
1642 		src_inode = file_inode(src.file);
1643 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1644 			btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1645 				   "Snapshot src from another FS");
1646 			ret = -EXDEV;
1647 		} else if (!inode_owner_or_capable(src_inode)) {
1648 			/*
1649 			 * Subvolume creation is not restricted, but snapshots
1650 			 * are limited to own subvolumes only
1651 			 */
1652 			ret = -EPERM;
1653 		} else {
1654 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1655 					     BTRFS_I(src_inode)->root,
1656 					     transid, readonly, inherit);
1657 		}
1658 		fdput(src);
1659 	}
1660 out_drop_write:
1661 	mnt_drop_write_file(file);
1662 out:
1663 	return ret;
1664 }
1665 
1666 static noinline int btrfs_ioctl_snap_create(struct file *file,
1667 					    void __user *arg, int subvol)
1668 {
1669 	struct btrfs_ioctl_vol_args *vol_args;
1670 	int ret;
1671 
1672 	vol_args = memdup_user(arg, sizeof(*vol_args));
1673 	if (IS_ERR(vol_args))
1674 		return PTR_ERR(vol_args);
1675 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1676 
1677 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1678 					      vol_args->fd, subvol,
1679 					      NULL, false, NULL);
1680 
1681 	kfree(vol_args);
1682 	return ret;
1683 }
1684 
1685 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1686 					       void __user *arg, int subvol)
1687 {
1688 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1689 	int ret;
1690 	u64 transid = 0;
1691 	u64 *ptr = NULL;
1692 	bool readonly = false;
1693 	struct btrfs_qgroup_inherit *inherit = NULL;
1694 
1695 	vol_args = memdup_user(arg, sizeof(*vol_args));
1696 	if (IS_ERR(vol_args))
1697 		return PTR_ERR(vol_args);
1698 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1699 
1700 	if (vol_args->flags &
1701 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1702 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1703 		ret = -EOPNOTSUPP;
1704 		goto out;
1705 	}
1706 
1707 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1708 		ptr = &transid;
1709 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1710 		readonly = true;
1711 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1712 		if (vol_args->size > PAGE_CACHE_SIZE) {
1713 			ret = -EINVAL;
1714 			goto out;
1715 		}
1716 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1717 		if (IS_ERR(inherit)) {
1718 			ret = PTR_ERR(inherit);
1719 			goto out;
1720 		}
1721 	}
1722 
1723 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1724 					      vol_args->fd, subvol, ptr,
1725 					      readonly, inherit);
1726 
1727 	if (ret == 0 && ptr &&
1728 	    copy_to_user(arg +
1729 			 offsetof(struct btrfs_ioctl_vol_args_v2,
1730 				  transid), ptr, sizeof(*ptr)))
1731 		ret = -EFAULT;
1732 out:
1733 	kfree(vol_args);
1734 	kfree(inherit);
1735 	return ret;
1736 }
1737 
1738 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1739 						void __user *arg)
1740 {
1741 	struct inode *inode = file_inode(file);
1742 	struct btrfs_root *root = BTRFS_I(inode)->root;
1743 	int ret = 0;
1744 	u64 flags = 0;
1745 
1746 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1747 		return -EINVAL;
1748 
1749 	down_read(&root->fs_info->subvol_sem);
1750 	if (btrfs_root_readonly(root))
1751 		flags |= BTRFS_SUBVOL_RDONLY;
1752 	up_read(&root->fs_info->subvol_sem);
1753 
1754 	if (copy_to_user(arg, &flags, sizeof(flags)))
1755 		ret = -EFAULT;
1756 
1757 	return ret;
1758 }
1759 
1760 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1761 					      void __user *arg)
1762 {
1763 	struct inode *inode = file_inode(file);
1764 	struct btrfs_root *root = BTRFS_I(inode)->root;
1765 	struct btrfs_trans_handle *trans;
1766 	u64 root_flags;
1767 	u64 flags;
1768 	int ret = 0;
1769 
1770 	if (!inode_owner_or_capable(inode))
1771 		return -EPERM;
1772 
1773 	ret = mnt_want_write_file(file);
1774 	if (ret)
1775 		goto out;
1776 
1777 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1778 		ret = -EINVAL;
1779 		goto out_drop_write;
1780 	}
1781 
1782 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1783 		ret = -EFAULT;
1784 		goto out_drop_write;
1785 	}
1786 
1787 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1788 		ret = -EINVAL;
1789 		goto out_drop_write;
1790 	}
1791 
1792 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1793 		ret = -EOPNOTSUPP;
1794 		goto out_drop_write;
1795 	}
1796 
1797 	down_write(&root->fs_info->subvol_sem);
1798 
1799 	/* nothing to do */
1800 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1801 		goto out_drop_sem;
1802 
1803 	root_flags = btrfs_root_flags(&root->root_item);
1804 	if (flags & BTRFS_SUBVOL_RDONLY) {
1805 		btrfs_set_root_flags(&root->root_item,
1806 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1807 	} else {
1808 		/*
1809 		 * Block RO -> RW transition if this subvolume is involved in
1810 		 * send
1811 		 */
1812 		spin_lock(&root->root_item_lock);
1813 		if (root->send_in_progress == 0) {
1814 			btrfs_set_root_flags(&root->root_item,
1815 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1816 			spin_unlock(&root->root_item_lock);
1817 		} else {
1818 			spin_unlock(&root->root_item_lock);
1819 			btrfs_warn(root->fs_info,
1820 			"Attempt to set subvolume %llu read-write during send",
1821 					root->root_key.objectid);
1822 			ret = -EPERM;
1823 			goto out_drop_sem;
1824 		}
1825 	}
1826 
1827 	trans = btrfs_start_transaction(root, 1);
1828 	if (IS_ERR(trans)) {
1829 		ret = PTR_ERR(trans);
1830 		goto out_reset;
1831 	}
1832 
1833 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1834 				&root->root_key, &root->root_item);
1835 
1836 	btrfs_commit_transaction(trans, root);
1837 out_reset:
1838 	if (ret)
1839 		btrfs_set_root_flags(&root->root_item, root_flags);
1840 out_drop_sem:
1841 	up_write(&root->fs_info->subvol_sem);
1842 out_drop_write:
1843 	mnt_drop_write_file(file);
1844 out:
1845 	return ret;
1846 }
1847 
1848 /*
1849  * helper to check if the subvolume references other subvolumes
1850  */
1851 static noinline int may_destroy_subvol(struct btrfs_root *root)
1852 {
1853 	struct btrfs_path *path;
1854 	struct btrfs_dir_item *di;
1855 	struct btrfs_key key;
1856 	u64 dir_id;
1857 	int ret;
1858 
1859 	path = btrfs_alloc_path();
1860 	if (!path)
1861 		return -ENOMEM;
1862 
1863 	/* Make sure this root isn't set as the default subvol */
1864 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1865 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1866 				   dir_id, "default", 7, 0);
1867 	if (di && !IS_ERR(di)) {
1868 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1869 		if (key.objectid == root->root_key.objectid) {
1870 			ret = -EPERM;
1871 			btrfs_err(root->fs_info, "deleting default subvolume "
1872 				  "%llu is not allowed", key.objectid);
1873 			goto out;
1874 		}
1875 		btrfs_release_path(path);
1876 	}
1877 
1878 	key.objectid = root->root_key.objectid;
1879 	key.type = BTRFS_ROOT_REF_KEY;
1880 	key.offset = (u64)-1;
1881 
1882 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1883 				&key, path, 0, 0);
1884 	if (ret < 0)
1885 		goto out;
1886 	BUG_ON(ret == 0);
1887 
1888 	ret = 0;
1889 	if (path->slots[0] > 0) {
1890 		path->slots[0]--;
1891 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1892 		if (key.objectid == root->root_key.objectid &&
1893 		    key.type == BTRFS_ROOT_REF_KEY)
1894 			ret = -ENOTEMPTY;
1895 	}
1896 out:
1897 	btrfs_free_path(path);
1898 	return ret;
1899 }
1900 
1901 static noinline int key_in_sk(struct btrfs_key *key,
1902 			      struct btrfs_ioctl_search_key *sk)
1903 {
1904 	struct btrfs_key test;
1905 	int ret;
1906 
1907 	test.objectid = sk->min_objectid;
1908 	test.type = sk->min_type;
1909 	test.offset = sk->min_offset;
1910 
1911 	ret = btrfs_comp_cpu_keys(key, &test);
1912 	if (ret < 0)
1913 		return 0;
1914 
1915 	test.objectid = sk->max_objectid;
1916 	test.type = sk->max_type;
1917 	test.offset = sk->max_offset;
1918 
1919 	ret = btrfs_comp_cpu_keys(key, &test);
1920 	if (ret > 0)
1921 		return 0;
1922 	return 1;
1923 }
1924 
1925 static noinline int copy_to_sk(struct btrfs_root *root,
1926 			       struct btrfs_path *path,
1927 			       struct btrfs_key *key,
1928 			       struct btrfs_ioctl_search_key *sk,
1929 			       char *buf,
1930 			       unsigned long *sk_offset,
1931 			       int *num_found)
1932 {
1933 	u64 found_transid;
1934 	struct extent_buffer *leaf;
1935 	struct btrfs_ioctl_search_header sh;
1936 	unsigned long item_off;
1937 	unsigned long item_len;
1938 	int nritems;
1939 	int i;
1940 	int slot;
1941 	int ret = 0;
1942 
1943 	leaf = path->nodes[0];
1944 	slot = path->slots[0];
1945 	nritems = btrfs_header_nritems(leaf);
1946 
1947 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1948 		i = nritems;
1949 		goto advance_key;
1950 	}
1951 	found_transid = btrfs_header_generation(leaf);
1952 
1953 	for (i = slot; i < nritems; i++) {
1954 		item_off = btrfs_item_ptr_offset(leaf, i);
1955 		item_len = btrfs_item_size_nr(leaf, i);
1956 
1957 		btrfs_item_key_to_cpu(leaf, key, i);
1958 		if (!key_in_sk(key, sk))
1959 			continue;
1960 
1961 		if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1962 			item_len = 0;
1963 
1964 		if (sizeof(sh) + item_len + *sk_offset >
1965 		    BTRFS_SEARCH_ARGS_BUFSIZE) {
1966 			ret = 1;
1967 			goto overflow;
1968 		}
1969 
1970 		sh.objectid = key->objectid;
1971 		sh.offset = key->offset;
1972 		sh.type = key->type;
1973 		sh.len = item_len;
1974 		sh.transid = found_transid;
1975 
1976 		/* copy search result header */
1977 		memcpy(buf + *sk_offset, &sh, sizeof(sh));
1978 		*sk_offset += sizeof(sh);
1979 
1980 		if (item_len) {
1981 			char *p = buf + *sk_offset;
1982 			/* copy the item */
1983 			read_extent_buffer(leaf, p,
1984 					   item_off, item_len);
1985 			*sk_offset += item_len;
1986 		}
1987 		(*num_found)++;
1988 
1989 		if (*num_found >= sk->nr_items)
1990 			break;
1991 	}
1992 advance_key:
1993 	ret = 0;
1994 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1995 		key->offset++;
1996 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
1997 		key->offset = 0;
1998 		key->type++;
1999 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
2000 		key->offset = 0;
2001 		key->type = 0;
2002 		key->objectid++;
2003 	} else
2004 		ret = 1;
2005 overflow:
2006 	return ret;
2007 }
2008 
2009 static noinline int search_ioctl(struct inode *inode,
2010 				 struct btrfs_ioctl_search_args *args)
2011 {
2012 	struct btrfs_root *root;
2013 	struct btrfs_key key;
2014 	struct btrfs_path *path;
2015 	struct btrfs_ioctl_search_key *sk = &args->key;
2016 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2017 	int ret;
2018 	int num_found = 0;
2019 	unsigned long sk_offset = 0;
2020 
2021 	path = btrfs_alloc_path();
2022 	if (!path)
2023 		return -ENOMEM;
2024 
2025 	if (sk->tree_id == 0) {
2026 		/* search the root of the inode that was passed */
2027 		root = BTRFS_I(inode)->root;
2028 	} else {
2029 		key.objectid = sk->tree_id;
2030 		key.type = BTRFS_ROOT_ITEM_KEY;
2031 		key.offset = (u64)-1;
2032 		root = btrfs_read_fs_root_no_name(info, &key);
2033 		if (IS_ERR(root)) {
2034 			printk(KERN_ERR "BTRFS: could not find root %llu\n",
2035 			       sk->tree_id);
2036 			btrfs_free_path(path);
2037 			return -ENOENT;
2038 		}
2039 	}
2040 
2041 	key.objectid = sk->min_objectid;
2042 	key.type = sk->min_type;
2043 	key.offset = sk->min_offset;
2044 
2045 	path->keep_locks = 1;
2046 
2047 	while (1) {
2048 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2049 		if (ret != 0) {
2050 			if (ret > 0)
2051 				ret = 0;
2052 			goto err;
2053 		}
2054 		ret = copy_to_sk(root, path, &key, sk, args->buf,
2055 				 &sk_offset, &num_found);
2056 		btrfs_release_path(path);
2057 		if (ret || num_found >= sk->nr_items)
2058 			break;
2059 
2060 	}
2061 	ret = 0;
2062 err:
2063 	sk->nr_items = num_found;
2064 	btrfs_free_path(path);
2065 	return ret;
2066 }
2067 
2068 static noinline int btrfs_ioctl_tree_search(struct file *file,
2069 					   void __user *argp)
2070 {
2071 	 struct btrfs_ioctl_search_args *args;
2072 	 struct inode *inode;
2073 	 int ret;
2074 
2075 	if (!capable(CAP_SYS_ADMIN))
2076 		return -EPERM;
2077 
2078 	args = memdup_user(argp, sizeof(*args));
2079 	if (IS_ERR(args))
2080 		return PTR_ERR(args);
2081 
2082 	inode = file_inode(file);
2083 	ret = search_ioctl(inode, args);
2084 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2085 		ret = -EFAULT;
2086 	kfree(args);
2087 	return ret;
2088 }
2089 
2090 /*
2091  * Search INODE_REFs to identify path name of 'dirid' directory
2092  * in a 'tree_id' tree. and sets path name to 'name'.
2093  */
2094 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2095 				u64 tree_id, u64 dirid, char *name)
2096 {
2097 	struct btrfs_root *root;
2098 	struct btrfs_key key;
2099 	char *ptr;
2100 	int ret = -1;
2101 	int slot;
2102 	int len;
2103 	int total_len = 0;
2104 	struct btrfs_inode_ref *iref;
2105 	struct extent_buffer *l;
2106 	struct btrfs_path *path;
2107 
2108 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2109 		name[0]='\0';
2110 		return 0;
2111 	}
2112 
2113 	path = btrfs_alloc_path();
2114 	if (!path)
2115 		return -ENOMEM;
2116 
2117 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2118 
2119 	key.objectid = tree_id;
2120 	key.type = BTRFS_ROOT_ITEM_KEY;
2121 	key.offset = (u64)-1;
2122 	root = btrfs_read_fs_root_no_name(info, &key);
2123 	if (IS_ERR(root)) {
2124 		printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2125 		ret = -ENOENT;
2126 		goto out;
2127 	}
2128 
2129 	key.objectid = dirid;
2130 	key.type = BTRFS_INODE_REF_KEY;
2131 	key.offset = (u64)-1;
2132 
2133 	while (1) {
2134 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2135 		if (ret < 0)
2136 			goto out;
2137 		else if (ret > 0) {
2138 			ret = btrfs_previous_item(root, path, dirid,
2139 						  BTRFS_INODE_REF_KEY);
2140 			if (ret < 0)
2141 				goto out;
2142 			else if (ret > 0) {
2143 				ret = -ENOENT;
2144 				goto out;
2145 			}
2146 		}
2147 
2148 		l = path->nodes[0];
2149 		slot = path->slots[0];
2150 		btrfs_item_key_to_cpu(l, &key, slot);
2151 
2152 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2153 		len = btrfs_inode_ref_name_len(l, iref);
2154 		ptr -= len + 1;
2155 		total_len += len + 1;
2156 		if (ptr < name) {
2157 			ret = -ENAMETOOLONG;
2158 			goto out;
2159 		}
2160 
2161 		*(ptr + len) = '/';
2162 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2163 
2164 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2165 			break;
2166 
2167 		btrfs_release_path(path);
2168 		key.objectid = key.offset;
2169 		key.offset = (u64)-1;
2170 		dirid = key.objectid;
2171 	}
2172 	memmove(name, ptr, total_len);
2173 	name[total_len] = '\0';
2174 	ret = 0;
2175 out:
2176 	btrfs_free_path(path);
2177 	return ret;
2178 }
2179 
2180 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2181 					   void __user *argp)
2182 {
2183 	 struct btrfs_ioctl_ino_lookup_args *args;
2184 	 struct inode *inode;
2185 	 int ret;
2186 
2187 	if (!capable(CAP_SYS_ADMIN))
2188 		return -EPERM;
2189 
2190 	args = memdup_user(argp, sizeof(*args));
2191 	if (IS_ERR(args))
2192 		return PTR_ERR(args);
2193 
2194 	inode = file_inode(file);
2195 
2196 	if (args->treeid == 0)
2197 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2198 
2199 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2200 					args->treeid, args->objectid,
2201 					args->name);
2202 
2203 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2204 		ret = -EFAULT;
2205 
2206 	kfree(args);
2207 	return ret;
2208 }
2209 
2210 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2211 					     void __user *arg)
2212 {
2213 	struct dentry *parent = file->f_path.dentry;
2214 	struct dentry *dentry;
2215 	struct inode *dir = parent->d_inode;
2216 	struct inode *inode;
2217 	struct btrfs_root *root = BTRFS_I(dir)->root;
2218 	struct btrfs_root *dest = NULL;
2219 	struct btrfs_ioctl_vol_args *vol_args;
2220 	struct btrfs_trans_handle *trans;
2221 	struct btrfs_block_rsv block_rsv;
2222 	u64 qgroup_reserved;
2223 	int namelen;
2224 	int ret;
2225 	int err = 0;
2226 
2227 	vol_args = memdup_user(arg, sizeof(*vol_args));
2228 	if (IS_ERR(vol_args))
2229 		return PTR_ERR(vol_args);
2230 
2231 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2232 	namelen = strlen(vol_args->name);
2233 	if (strchr(vol_args->name, '/') ||
2234 	    strncmp(vol_args->name, "..", namelen) == 0) {
2235 		err = -EINVAL;
2236 		goto out;
2237 	}
2238 
2239 	err = mnt_want_write_file(file);
2240 	if (err)
2241 		goto out;
2242 
2243 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2244 	if (err == -EINTR)
2245 		goto out_drop_write;
2246 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2247 	if (IS_ERR(dentry)) {
2248 		err = PTR_ERR(dentry);
2249 		goto out_unlock_dir;
2250 	}
2251 
2252 	if (!dentry->d_inode) {
2253 		err = -ENOENT;
2254 		goto out_dput;
2255 	}
2256 
2257 	inode = dentry->d_inode;
2258 	dest = BTRFS_I(inode)->root;
2259 	if (!capable(CAP_SYS_ADMIN)) {
2260 		/*
2261 		 * Regular user.  Only allow this with a special mount
2262 		 * option, when the user has write+exec access to the
2263 		 * subvol root, and when rmdir(2) would have been
2264 		 * allowed.
2265 		 *
2266 		 * Note that this is _not_ check that the subvol is
2267 		 * empty or doesn't contain data that we wouldn't
2268 		 * otherwise be able to delete.
2269 		 *
2270 		 * Users who want to delete empty subvols should try
2271 		 * rmdir(2).
2272 		 */
2273 		err = -EPERM;
2274 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2275 			goto out_dput;
2276 
2277 		/*
2278 		 * Do not allow deletion if the parent dir is the same
2279 		 * as the dir to be deleted.  That means the ioctl
2280 		 * must be called on the dentry referencing the root
2281 		 * of the subvol, not a random directory contained
2282 		 * within it.
2283 		 */
2284 		err = -EINVAL;
2285 		if (root == dest)
2286 			goto out_dput;
2287 
2288 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2289 		if (err)
2290 			goto out_dput;
2291 	}
2292 
2293 	/* check if subvolume may be deleted by a user */
2294 	err = btrfs_may_delete(dir, dentry, 1);
2295 	if (err)
2296 		goto out_dput;
2297 
2298 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2299 		err = -EINVAL;
2300 		goto out_dput;
2301 	}
2302 
2303 	mutex_lock(&inode->i_mutex);
2304 	err = d_invalidate(dentry);
2305 	if (err)
2306 		goto out_unlock;
2307 
2308 	down_write(&root->fs_info->subvol_sem);
2309 
2310 	err = may_destroy_subvol(dest);
2311 	if (err)
2312 		goto out_up_write;
2313 
2314 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2315 	/*
2316 	 * One for dir inode, two for dir entries, two for root
2317 	 * ref/backref.
2318 	 */
2319 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2320 					       5, &qgroup_reserved, true);
2321 	if (err)
2322 		goto out_up_write;
2323 
2324 	trans = btrfs_start_transaction(root, 0);
2325 	if (IS_ERR(trans)) {
2326 		err = PTR_ERR(trans);
2327 		goto out_release;
2328 	}
2329 	trans->block_rsv = &block_rsv;
2330 	trans->bytes_reserved = block_rsv.size;
2331 
2332 	ret = btrfs_unlink_subvol(trans, root, dir,
2333 				dest->root_key.objectid,
2334 				dentry->d_name.name,
2335 				dentry->d_name.len);
2336 	if (ret) {
2337 		err = ret;
2338 		btrfs_abort_transaction(trans, root, ret);
2339 		goto out_end_trans;
2340 	}
2341 
2342 	btrfs_record_root_in_trans(trans, dest);
2343 
2344 	memset(&dest->root_item.drop_progress, 0,
2345 		sizeof(dest->root_item.drop_progress));
2346 	dest->root_item.drop_level = 0;
2347 	btrfs_set_root_refs(&dest->root_item, 0);
2348 
2349 	if (!xchg(&dest->orphan_item_inserted, 1)) {
2350 		ret = btrfs_insert_orphan_item(trans,
2351 					root->fs_info->tree_root,
2352 					dest->root_key.objectid);
2353 		if (ret) {
2354 			btrfs_abort_transaction(trans, root, ret);
2355 			err = ret;
2356 			goto out_end_trans;
2357 		}
2358 	}
2359 
2360 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2361 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2362 				  dest->root_key.objectid);
2363 	if (ret && ret != -ENOENT) {
2364 		btrfs_abort_transaction(trans, root, ret);
2365 		err = ret;
2366 		goto out_end_trans;
2367 	}
2368 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2369 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2370 					  dest->root_item.received_uuid,
2371 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2372 					  dest->root_key.objectid);
2373 		if (ret && ret != -ENOENT) {
2374 			btrfs_abort_transaction(trans, root, ret);
2375 			err = ret;
2376 			goto out_end_trans;
2377 		}
2378 	}
2379 
2380 out_end_trans:
2381 	trans->block_rsv = NULL;
2382 	trans->bytes_reserved = 0;
2383 	ret = btrfs_end_transaction(trans, root);
2384 	if (ret && !err)
2385 		err = ret;
2386 	inode->i_flags |= S_DEAD;
2387 out_release:
2388 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2389 out_up_write:
2390 	up_write(&root->fs_info->subvol_sem);
2391 out_unlock:
2392 	mutex_unlock(&inode->i_mutex);
2393 	if (!err) {
2394 		shrink_dcache_sb(root->fs_info->sb);
2395 		btrfs_invalidate_inodes(dest);
2396 		d_delete(dentry);
2397 
2398 		/* the last ref */
2399 		if (dest->cache_inode) {
2400 			iput(dest->cache_inode);
2401 			dest->cache_inode = NULL;
2402 		}
2403 	}
2404 out_dput:
2405 	dput(dentry);
2406 out_unlock_dir:
2407 	mutex_unlock(&dir->i_mutex);
2408 out_drop_write:
2409 	mnt_drop_write_file(file);
2410 out:
2411 	kfree(vol_args);
2412 	return err;
2413 }
2414 
2415 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2416 {
2417 	struct inode *inode = file_inode(file);
2418 	struct btrfs_root *root = BTRFS_I(inode)->root;
2419 	struct btrfs_ioctl_defrag_range_args *range;
2420 	int ret;
2421 
2422 	ret = mnt_want_write_file(file);
2423 	if (ret)
2424 		return ret;
2425 
2426 	if (btrfs_root_readonly(root)) {
2427 		ret = -EROFS;
2428 		goto out;
2429 	}
2430 
2431 	switch (inode->i_mode & S_IFMT) {
2432 	case S_IFDIR:
2433 		if (!capable(CAP_SYS_ADMIN)) {
2434 			ret = -EPERM;
2435 			goto out;
2436 		}
2437 		ret = btrfs_defrag_root(root);
2438 		if (ret)
2439 			goto out;
2440 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2441 		break;
2442 	case S_IFREG:
2443 		if (!(file->f_mode & FMODE_WRITE)) {
2444 			ret = -EINVAL;
2445 			goto out;
2446 		}
2447 
2448 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2449 		if (!range) {
2450 			ret = -ENOMEM;
2451 			goto out;
2452 		}
2453 
2454 		if (argp) {
2455 			if (copy_from_user(range, argp,
2456 					   sizeof(*range))) {
2457 				ret = -EFAULT;
2458 				kfree(range);
2459 				goto out;
2460 			}
2461 			/* compression requires us to start the IO */
2462 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2463 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2464 				range->extent_thresh = (u32)-1;
2465 			}
2466 		} else {
2467 			/* the rest are all set to zero by kzalloc */
2468 			range->len = (u64)-1;
2469 		}
2470 		ret = btrfs_defrag_file(file_inode(file), file,
2471 					range, 0, 0);
2472 		if (ret > 0)
2473 			ret = 0;
2474 		kfree(range);
2475 		break;
2476 	default:
2477 		ret = -EINVAL;
2478 	}
2479 out:
2480 	mnt_drop_write_file(file);
2481 	return ret;
2482 }
2483 
2484 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2485 {
2486 	struct btrfs_ioctl_vol_args *vol_args;
2487 	int ret;
2488 
2489 	if (!capable(CAP_SYS_ADMIN))
2490 		return -EPERM;
2491 
2492 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2493 			1)) {
2494 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2495 	}
2496 
2497 	mutex_lock(&root->fs_info->volume_mutex);
2498 	vol_args = memdup_user(arg, sizeof(*vol_args));
2499 	if (IS_ERR(vol_args)) {
2500 		ret = PTR_ERR(vol_args);
2501 		goto out;
2502 	}
2503 
2504 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2505 	ret = btrfs_init_new_device(root, vol_args->name);
2506 
2507 	kfree(vol_args);
2508 out:
2509 	mutex_unlock(&root->fs_info->volume_mutex);
2510 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2511 	return ret;
2512 }
2513 
2514 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2515 {
2516 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2517 	struct btrfs_ioctl_vol_args *vol_args;
2518 	int ret;
2519 
2520 	if (!capable(CAP_SYS_ADMIN))
2521 		return -EPERM;
2522 
2523 	ret = mnt_want_write_file(file);
2524 	if (ret)
2525 		return ret;
2526 
2527 	vol_args = memdup_user(arg, sizeof(*vol_args));
2528 	if (IS_ERR(vol_args)) {
2529 		ret = PTR_ERR(vol_args);
2530 		goto out;
2531 	}
2532 
2533 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2534 
2535 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2536 			1)) {
2537 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2538 		goto out;
2539 	}
2540 
2541 	mutex_lock(&root->fs_info->volume_mutex);
2542 	ret = btrfs_rm_device(root, vol_args->name);
2543 	mutex_unlock(&root->fs_info->volume_mutex);
2544 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2545 
2546 out:
2547 	kfree(vol_args);
2548 	mnt_drop_write_file(file);
2549 	return ret;
2550 }
2551 
2552 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2553 {
2554 	struct btrfs_ioctl_fs_info_args *fi_args;
2555 	struct btrfs_device *device;
2556 	struct btrfs_device *next;
2557 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2558 	int ret = 0;
2559 
2560 	if (!capable(CAP_SYS_ADMIN))
2561 		return -EPERM;
2562 
2563 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2564 	if (!fi_args)
2565 		return -ENOMEM;
2566 
2567 	mutex_lock(&fs_devices->device_list_mutex);
2568 	fi_args->num_devices = fs_devices->num_devices;
2569 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2570 
2571 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2572 		if (device->devid > fi_args->max_id)
2573 			fi_args->max_id = device->devid;
2574 	}
2575 	mutex_unlock(&fs_devices->device_list_mutex);
2576 
2577 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2578 		ret = -EFAULT;
2579 
2580 	kfree(fi_args);
2581 	return ret;
2582 }
2583 
2584 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2585 {
2586 	struct btrfs_ioctl_dev_info_args *di_args;
2587 	struct btrfs_device *dev;
2588 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2589 	int ret = 0;
2590 	char *s_uuid = NULL;
2591 
2592 	if (!capable(CAP_SYS_ADMIN))
2593 		return -EPERM;
2594 
2595 	di_args = memdup_user(arg, sizeof(*di_args));
2596 	if (IS_ERR(di_args))
2597 		return PTR_ERR(di_args);
2598 
2599 	if (!btrfs_is_empty_uuid(di_args->uuid))
2600 		s_uuid = di_args->uuid;
2601 
2602 	mutex_lock(&fs_devices->device_list_mutex);
2603 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2604 
2605 	if (!dev) {
2606 		ret = -ENODEV;
2607 		goto out;
2608 	}
2609 
2610 	di_args->devid = dev->devid;
2611 	di_args->bytes_used = dev->bytes_used;
2612 	di_args->total_bytes = dev->total_bytes;
2613 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2614 	if (dev->name) {
2615 		struct rcu_string *name;
2616 
2617 		rcu_read_lock();
2618 		name = rcu_dereference(dev->name);
2619 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2620 		rcu_read_unlock();
2621 		di_args->path[sizeof(di_args->path) - 1] = 0;
2622 	} else {
2623 		di_args->path[0] = '\0';
2624 	}
2625 
2626 out:
2627 	mutex_unlock(&fs_devices->device_list_mutex);
2628 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2629 		ret = -EFAULT;
2630 
2631 	kfree(di_args);
2632 	return ret;
2633 }
2634 
2635 static struct page *extent_same_get_page(struct inode *inode, u64 off)
2636 {
2637 	struct page *page;
2638 	pgoff_t index;
2639 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2640 
2641 	index = off >> PAGE_CACHE_SHIFT;
2642 
2643 	page = grab_cache_page(inode->i_mapping, index);
2644 	if (!page)
2645 		return NULL;
2646 
2647 	if (!PageUptodate(page)) {
2648 		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2649 						 0))
2650 			return NULL;
2651 		lock_page(page);
2652 		if (!PageUptodate(page)) {
2653 			unlock_page(page);
2654 			page_cache_release(page);
2655 			return NULL;
2656 		}
2657 	}
2658 	unlock_page(page);
2659 
2660 	return page;
2661 }
2662 
2663 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2664 {
2665 	/* do any pending delalloc/csum calc on src, one way or
2666 	   another, and lock file content */
2667 	while (1) {
2668 		struct btrfs_ordered_extent *ordered;
2669 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2670 		ordered = btrfs_lookup_first_ordered_extent(inode,
2671 							    off + len - 1);
2672 		if (!ordered &&
2673 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2674 				    off + len - 1, EXTENT_DELALLOC, 0, NULL))
2675 			break;
2676 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2677 		if (ordered)
2678 			btrfs_put_ordered_extent(ordered);
2679 		btrfs_wait_ordered_range(inode, off, len);
2680 	}
2681 }
2682 
2683 static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2684 				struct inode *inode2, u64 loff2, u64 len)
2685 {
2686 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2687 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2688 
2689 	mutex_unlock(&inode1->i_mutex);
2690 	mutex_unlock(&inode2->i_mutex);
2691 }
2692 
2693 static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2694 			      struct inode *inode2, u64 loff2, u64 len)
2695 {
2696 	if (inode1 < inode2) {
2697 		swap(inode1, inode2);
2698 		swap(loff1, loff2);
2699 	}
2700 
2701 	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2702 	lock_extent_range(inode1, loff1, len);
2703 	if (inode1 != inode2) {
2704 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2705 		lock_extent_range(inode2, loff2, len);
2706 	}
2707 }
2708 
2709 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2710 			  u64 dst_loff, u64 len)
2711 {
2712 	int ret = 0;
2713 	struct page *src_page, *dst_page;
2714 	unsigned int cmp_len = PAGE_CACHE_SIZE;
2715 	void *addr, *dst_addr;
2716 
2717 	while (len) {
2718 		if (len < PAGE_CACHE_SIZE)
2719 			cmp_len = len;
2720 
2721 		src_page = extent_same_get_page(src, loff);
2722 		if (!src_page)
2723 			return -EINVAL;
2724 		dst_page = extent_same_get_page(dst, dst_loff);
2725 		if (!dst_page) {
2726 			page_cache_release(src_page);
2727 			return -EINVAL;
2728 		}
2729 		addr = kmap_atomic(src_page);
2730 		dst_addr = kmap_atomic(dst_page);
2731 
2732 		flush_dcache_page(src_page);
2733 		flush_dcache_page(dst_page);
2734 
2735 		if (memcmp(addr, dst_addr, cmp_len))
2736 			ret = BTRFS_SAME_DATA_DIFFERS;
2737 
2738 		kunmap_atomic(addr);
2739 		kunmap_atomic(dst_addr);
2740 		page_cache_release(src_page);
2741 		page_cache_release(dst_page);
2742 
2743 		if (ret)
2744 			break;
2745 
2746 		loff += cmp_len;
2747 		dst_loff += cmp_len;
2748 		len -= cmp_len;
2749 	}
2750 
2751 	return ret;
2752 }
2753 
2754 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2755 {
2756 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2757 
2758 	if (off + len > inode->i_size || off + len < off)
2759 		return -EINVAL;
2760 	/* Check that we are block aligned - btrfs_clone() requires this */
2761 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2762 		return -EINVAL;
2763 
2764 	return 0;
2765 }
2766 
2767 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2768 			     struct inode *dst, u64 dst_loff)
2769 {
2770 	int ret;
2771 
2772 	/*
2773 	 * btrfs_clone() can't handle extents in the same file
2774 	 * yet. Once that works, we can drop this check and replace it
2775 	 * with a check for the same inode, but overlapping extents.
2776 	 */
2777 	if (src == dst)
2778 		return -EINVAL;
2779 
2780 	btrfs_double_lock(src, loff, dst, dst_loff, len);
2781 
2782 	ret = extent_same_check_offsets(src, loff, len);
2783 	if (ret)
2784 		goto out_unlock;
2785 
2786 	ret = extent_same_check_offsets(dst, dst_loff, len);
2787 	if (ret)
2788 		goto out_unlock;
2789 
2790 	/* don't make the dst file partly checksummed */
2791 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2792 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2793 		ret = -EINVAL;
2794 		goto out_unlock;
2795 	}
2796 
2797 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2798 	if (ret == 0)
2799 		ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2800 
2801 out_unlock:
2802 	btrfs_double_unlock(src, loff, dst, dst_loff, len);
2803 
2804 	return ret;
2805 }
2806 
2807 #define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
2808 
2809 static long btrfs_ioctl_file_extent_same(struct file *file,
2810 			struct btrfs_ioctl_same_args __user *argp)
2811 {
2812 	struct btrfs_ioctl_same_args *same;
2813 	struct btrfs_ioctl_same_extent_info *info;
2814 	struct inode *src = file_inode(file);
2815 	u64 off;
2816 	u64 len;
2817 	int i;
2818 	int ret;
2819 	unsigned long size;
2820 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2821 	bool is_admin = capable(CAP_SYS_ADMIN);
2822 	u16 count;
2823 
2824 	if (!(file->f_mode & FMODE_READ))
2825 		return -EINVAL;
2826 
2827 	ret = mnt_want_write_file(file);
2828 	if (ret)
2829 		return ret;
2830 
2831 	if (get_user(count, &argp->dest_count)) {
2832 		ret = -EFAULT;
2833 		goto out;
2834 	}
2835 
2836 	size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
2837 
2838 	same = memdup_user(argp, size);
2839 
2840 	if (IS_ERR(same)) {
2841 		ret = PTR_ERR(same);
2842 		goto out;
2843 	}
2844 
2845 	off = same->logical_offset;
2846 	len = same->length;
2847 
2848 	/*
2849 	 * Limit the total length we will dedupe for each operation.
2850 	 * This is intended to bound the total time spent in this
2851 	 * ioctl to something sane.
2852 	 */
2853 	if (len > BTRFS_MAX_DEDUPE_LEN)
2854 		len = BTRFS_MAX_DEDUPE_LEN;
2855 
2856 	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
2857 		/*
2858 		 * Btrfs does not support blocksize < page_size. As a
2859 		 * result, btrfs_cmp_data() won't correctly handle
2860 		 * this situation without an update.
2861 		 */
2862 		ret = -EINVAL;
2863 		goto out;
2864 	}
2865 
2866 	ret = -EISDIR;
2867 	if (S_ISDIR(src->i_mode))
2868 		goto out;
2869 
2870 	ret = -EACCES;
2871 	if (!S_ISREG(src->i_mode))
2872 		goto out;
2873 
2874 	/* pre-format output fields to sane values */
2875 	for (i = 0; i < count; i++) {
2876 		same->info[i].bytes_deduped = 0ULL;
2877 		same->info[i].status = 0;
2878 	}
2879 
2880 	for (i = 0, info = same->info; i < count; i++, info++) {
2881 		struct inode *dst;
2882 		struct fd dst_file = fdget(info->fd);
2883 		if (!dst_file.file) {
2884 			info->status = -EBADF;
2885 			continue;
2886 		}
2887 		dst = file_inode(dst_file.file);
2888 
2889 		if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
2890 			info->status = -EINVAL;
2891 		} else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
2892 			info->status = -EXDEV;
2893 		} else if (S_ISDIR(dst->i_mode)) {
2894 			info->status = -EISDIR;
2895 		} else if (!S_ISREG(dst->i_mode)) {
2896 			info->status = -EACCES;
2897 		} else {
2898 			info->status = btrfs_extent_same(src, off, len, dst,
2899 							info->logical_offset);
2900 			if (info->status == 0)
2901 				info->bytes_deduped += len;
2902 		}
2903 		fdput(dst_file);
2904 	}
2905 
2906 	ret = copy_to_user(argp, same, size);
2907 	if (ret)
2908 		ret = -EFAULT;
2909 
2910 out:
2911 	mnt_drop_write_file(file);
2912 	return ret;
2913 }
2914 
2915 /**
2916  * btrfs_clone() - clone a range from inode file to another
2917  *
2918  * @src: Inode to clone from
2919  * @inode: Inode to clone to
2920  * @off: Offset within source to start clone from
2921  * @olen: Original length, passed by user, of range to clone
2922  * @olen_aligned: Block-aligned value of olen, extent_same uses
2923  *               identical values here
2924  * @destoff: Offset within @inode to start clone
2925  */
2926 static int btrfs_clone(struct inode *src, struct inode *inode,
2927 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff)
2928 {
2929 	struct btrfs_root *root = BTRFS_I(inode)->root;
2930 	struct btrfs_path *path = NULL;
2931 	struct extent_buffer *leaf;
2932 	struct btrfs_trans_handle *trans;
2933 	char *buf = NULL;
2934 	struct btrfs_key key;
2935 	u32 nritems;
2936 	int slot;
2937 	int ret;
2938 	u64 len = olen_aligned;
2939 
2940 	ret = -ENOMEM;
2941 	buf = vmalloc(btrfs_level_size(root, 0));
2942 	if (!buf)
2943 		return ret;
2944 
2945 	path = btrfs_alloc_path();
2946 	if (!path) {
2947 		vfree(buf);
2948 		return ret;
2949 	}
2950 
2951 	path->reada = 2;
2952 	/* clone data */
2953 	key.objectid = btrfs_ino(src);
2954 	key.type = BTRFS_EXTENT_DATA_KEY;
2955 	key.offset = 0;
2956 
2957 	while (1) {
2958 		/*
2959 		 * note the key will change type as we walk through the
2960 		 * tree.
2961 		 */
2962 		path->leave_spinning = 1;
2963 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2964 				0, 0);
2965 		if (ret < 0)
2966 			goto out;
2967 
2968 		nritems = btrfs_header_nritems(path->nodes[0]);
2969 process_slot:
2970 		if (path->slots[0] >= nritems) {
2971 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2972 			if (ret < 0)
2973 				goto out;
2974 			if (ret > 0)
2975 				break;
2976 			nritems = btrfs_header_nritems(path->nodes[0]);
2977 		}
2978 		leaf = path->nodes[0];
2979 		slot = path->slots[0];
2980 
2981 		btrfs_item_key_to_cpu(leaf, &key, slot);
2982 		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2983 		    key.objectid != btrfs_ino(src))
2984 			break;
2985 
2986 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2987 			struct btrfs_file_extent_item *extent;
2988 			int type;
2989 			u32 size;
2990 			struct btrfs_key new_key;
2991 			u64 disko = 0, diskl = 0;
2992 			u64 datao = 0, datal = 0;
2993 			u8 comp;
2994 			u64 endoff;
2995 
2996 			extent = btrfs_item_ptr(leaf, slot,
2997 						struct btrfs_file_extent_item);
2998 			comp = btrfs_file_extent_compression(leaf, extent);
2999 			type = btrfs_file_extent_type(leaf, extent);
3000 			if (type == BTRFS_FILE_EXTENT_REG ||
3001 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3002 				disko = btrfs_file_extent_disk_bytenr(leaf,
3003 								      extent);
3004 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3005 								 extent);
3006 				datao = btrfs_file_extent_offset(leaf, extent);
3007 				datal = btrfs_file_extent_num_bytes(leaf,
3008 								    extent);
3009 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3010 				/* take upper bound, may be compressed */
3011 				datal = btrfs_file_extent_ram_bytes(leaf,
3012 								    extent);
3013 			}
3014 
3015 			if (key.offset + datal <= off ||
3016 			    key.offset >= off + len - 1) {
3017 				path->slots[0]++;
3018 				goto process_slot;
3019 			}
3020 
3021 			size = btrfs_item_size_nr(leaf, slot);
3022 			read_extent_buffer(leaf, buf,
3023 					   btrfs_item_ptr_offset(leaf, slot),
3024 					   size);
3025 
3026 			btrfs_release_path(path);
3027 			path->leave_spinning = 0;
3028 
3029 			memcpy(&new_key, &key, sizeof(new_key));
3030 			new_key.objectid = btrfs_ino(inode);
3031 			if (off <= key.offset)
3032 				new_key.offset = key.offset + destoff - off;
3033 			else
3034 				new_key.offset = destoff;
3035 
3036 			/*
3037 			 * 1 - adjusting old extent (we may have to split it)
3038 			 * 1 - add new extent
3039 			 * 1 - inode update
3040 			 */
3041 			trans = btrfs_start_transaction(root, 3);
3042 			if (IS_ERR(trans)) {
3043 				ret = PTR_ERR(trans);
3044 				goto out;
3045 			}
3046 
3047 			if (type == BTRFS_FILE_EXTENT_REG ||
3048 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3049 				/*
3050 				 *    a  | --- range to clone ---|  b
3051 				 * | ------------- extent ------------- |
3052 				 */
3053 
3054 				/* substract range b */
3055 				if (key.offset + datal > off + len)
3056 					datal = off + len - key.offset;
3057 
3058 				/* substract range a */
3059 				if (off > key.offset) {
3060 					datao += off - key.offset;
3061 					datal -= off - key.offset;
3062 				}
3063 
3064 				ret = btrfs_drop_extents(trans, root, inode,
3065 							 new_key.offset,
3066 							 new_key.offset + datal,
3067 							 1);
3068 				if (ret) {
3069 					if (ret != -EOPNOTSUPP)
3070 						btrfs_abort_transaction(trans,
3071 								root, ret);
3072 					btrfs_end_transaction(trans, root);
3073 					goto out;
3074 				}
3075 
3076 				ret = btrfs_insert_empty_item(trans, root, path,
3077 							      &new_key, size);
3078 				if (ret) {
3079 					btrfs_abort_transaction(trans, root,
3080 								ret);
3081 					btrfs_end_transaction(trans, root);
3082 					goto out;
3083 				}
3084 
3085 				leaf = path->nodes[0];
3086 				slot = path->slots[0];
3087 				write_extent_buffer(leaf, buf,
3088 					    btrfs_item_ptr_offset(leaf, slot),
3089 					    size);
3090 
3091 				extent = btrfs_item_ptr(leaf, slot,
3092 						struct btrfs_file_extent_item);
3093 
3094 				/* disko == 0 means it's a hole */
3095 				if (!disko)
3096 					datao = 0;
3097 
3098 				btrfs_set_file_extent_offset(leaf, extent,
3099 							     datao);
3100 				btrfs_set_file_extent_num_bytes(leaf, extent,
3101 								datal);
3102 				if (disko) {
3103 					inode_add_bytes(inode, datal);
3104 					ret = btrfs_inc_extent_ref(trans, root,
3105 							disko, diskl, 0,
3106 							root->root_key.objectid,
3107 							btrfs_ino(inode),
3108 							new_key.offset - datao,
3109 							0);
3110 					if (ret) {
3111 						btrfs_abort_transaction(trans,
3112 									root,
3113 									ret);
3114 						btrfs_end_transaction(trans,
3115 								      root);
3116 						goto out;
3117 
3118 					}
3119 				}
3120 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3121 				u64 skip = 0;
3122 				u64 trim = 0;
3123 				u64 aligned_end = 0;
3124 
3125 				if (off > key.offset) {
3126 					skip = off - key.offset;
3127 					new_key.offset += skip;
3128 				}
3129 
3130 				if (key.offset + datal > off + len)
3131 					trim = key.offset + datal - (off + len);
3132 
3133 				if (comp && (skip || trim)) {
3134 					ret = -EINVAL;
3135 					btrfs_end_transaction(trans, root);
3136 					goto out;
3137 				}
3138 				size -= skip + trim;
3139 				datal -= skip + trim;
3140 
3141 				aligned_end = ALIGN(new_key.offset + datal,
3142 						    root->sectorsize);
3143 				ret = btrfs_drop_extents(trans, root, inode,
3144 							 new_key.offset,
3145 							 aligned_end,
3146 							 1);
3147 				if (ret) {
3148 					if (ret != -EOPNOTSUPP)
3149 						btrfs_abort_transaction(trans,
3150 							root, ret);
3151 					btrfs_end_transaction(trans, root);
3152 					goto out;
3153 				}
3154 
3155 				ret = btrfs_insert_empty_item(trans, root, path,
3156 							      &new_key, size);
3157 				if (ret) {
3158 					btrfs_abort_transaction(trans, root,
3159 								ret);
3160 					btrfs_end_transaction(trans, root);
3161 					goto out;
3162 				}
3163 
3164 				if (skip) {
3165 					u32 start =
3166 					  btrfs_file_extent_calc_inline_size(0);
3167 					memmove(buf+start, buf+start+skip,
3168 						datal);
3169 				}
3170 
3171 				leaf = path->nodes[0];
3172 				slot = path->slots[0];
3173 				write_extent_buffer(leaf, buf,
3174 					    btrfs_item_ptr_offset(leaf, slot),
3175 					    size);
3176 				inode_add_bytes(inode, datal);
3177 			}
3178 
3179 			btrfs_mark_buffer_dirty(leaf);
3180 			btrfs_release_path(path);
3181 
3182 			inode_inc_iversion(inode);
3183 			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3184 
3185 			/*
3186 			 * we round up to the block size at eof when
3187 			 * determining which extents to clone above,
3188 			 * but shouldn't round up the file size
3189 			 */
3190 			endoff = new_key.offset + datal;
3191 			if (endoff > destoff+olen)
3192 				endoff = destoff+olen;
3193 			if (endoff > inode->i_size)
3194 				btrfs_i_size_write(inode, endoff);
3195 
3196 			ret = btrfs_update_inode(trans, root, inode);
3197 			if (ret) {
3198 				btrfs_abort_transaction(trans, root, ret);
3199 				btrfs_end_transaction(trans, root);
3200 				goto out;
3201 			}
3202 			ret = btrfs_end_transaction(trans, root);
3203 		}
3204 		btrfs_release_path(path);
3205 		key.offset++;
3206 	}
3207 	ret = 0;
3208 
3209 out:
3210 	btrfs_release_path(path);
3211 	btrfs_free_path(path);
3212 	vfree(buf);
3213 	return ret;
3214 }
3215 
3216 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3217 				       u64 off, u64 olen, u64 destoff)
3218 {
3219 	struct inode *inode = file_inode(file);
3220 	struct btrfs_root *root = BTRFS_I(inode)->root;
3221 	struct fd src_file;
3222 	struct inode *src;
3223 	int ret;
3224 	u64 len = olen;
3225 	u64 bs = root->fs_info->sb->s_blocksize;
3226 	int same_inode = 0;
3227 
3228 	/*
3229 	 * TODO:
3230 	 * - split compressed inline extents.  annoying: we need to
3231 	 *   decompress into destination's address_space (the file offset
3232 	 *   may change, so source mapping won't do), then recompress (or
3233 	 *   otherwise reinsert) a subrange.
3234 	 *
3235 	 * - split destination inode's inline extents.  The inline extents can
3236 	 *   be either compressed or non-compressed.
3237 	 */
3238 
3239 	/* the destination must be opened for writing */
3240 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3241 		return -EINVAL;
3242 
3243 	if (btrfs_root_readonly(root))
3244 		return -EROFS;
3245 
3246 	ret = mnt_want_write_file(file);
3247 	if (ret)
3248 		return ret;
3249 
3250 	src_file = fdget(srcfd);
3251 	if (!src_file.file) {
3252 		ret = -EBADF;
3253 		goto out_drop_write;
3254 	}
3255 
3256 	ret = -EXDEV;
3257 	if (src_file.file->f_path.mnt != file->f_path.mnt)
3258 		goto out_fput;
3259 
3260 	src = file_inode(src_file.file);
3261 
3262 	ret = -EINVAL;
3263 	if (src == inode)
3264 		same_inode = 1;
3265 
3266 	/* the src must be open for reading */
3267 	if (!(src_file.file->f_mode & FMODE_READ))
3268 		goto out_fput;
3269 
3270 	/* don't make the dst file partly checksummed */
3271 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3272 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3273 		goto out_fput;
3274 
3275 	ret = -EISDIR;
3276 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3277 		goto out_fput;
3278 
3279 	ret = -EXDEV;
3280 	if (src->i_sb != inode->i_sb)
3281 		goto out_fput;
3282 
3283 	if (!same_inode) {
3284 		if (inode < src) {
3285 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3286 			mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3287 		} else {
3288 			mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3289 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3290 		}
3291 	} else {
3292 		mutex_lock(&src->i_mutex);
3293 	}
3294 
3295 	/* determine range to clone */
3296 	ret = -EINVAL;
3297 	if (off + len > src->i_size || off + len < off)
3298 		goto out_unlock;
3299 	if (len == 0)
3300 		olen = len = src->i_size - off;
3301 	/* if we extend to eof, continue to block boundary */
3302 	if (off + len == src->i_size)
3303 		len = ALIGN(src->i_size, bs) - off;
3304 
3305 	/* verify the end result is block aligned */
3306 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3307 	    !IS_ALIGNED(destoff, bs))
3308 		goto out_unlock;
3309 
3310 	/* verify if ranges are overlapped within the same file */
3311 	if (same_inode) {
3312 		if (destoff + len > off && destoff < off + len)
3313 			goto out_unlock;
3314 	}
3315 
3316 	if (destoff > inode->i_size) {
3317 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3318 		if (ret)
3319 			goto out_unlock;
3320 	}
3321 
3322 	/* truncate page cache pages from target inode range */
3323 	truncate_inode_pages_range(&inode->i_data, destoff,
3324 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3325 
3326 	lock_extent_range(src, off, len);
3327 
3328 	ret = btrfs_clone(src, inode, off, olen, len, destoff);
3329 
3330 	unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3331 out_unlock:
3332 	if (!same_inode) {
3333 		if (inode < src) {
3334 			mutex_unlock(&src->i_mutex);
3335 			mutex_unlock(&inode->i_mutex);
3336 		} else {
3337 			mutex_unlock(&inode->i_mutex);
3338 			mutex_unlock(&src->i_mutex);
3339 		}
3340 	} else {
3341 		mutex_unlock(&src->i_mutex);
3342 	}
3343 out_fput:
3344 	fdput(src_file);
3345 out_drop_write:
3346 	mnt_drop_write_file(file);
3347 	return ret;
3348 }
3349 
3350 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3351 {
3352 	struct btrfs_ioctl_clone_range_args args;
3353 
3354 	if (copy_from_user(&args, argp, sizeof(args)))
3355 		return -EFAULT;
3356 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3357 				 args.src_length, args.dest_offset);
3358 }
3359 
3360 /*
3361  * there are many ways the trans_start and trans_end ioctls can lead
3362  * to deadlocks.  They should only be used by applications that
3363  * basically own the machine, and have a very in depth understanding
3364  * of all the possible deadlocks and enospc problems.
3365  */
3366 static long btrfs_ioctl_trans_start(struct file *file)
3367 {
3368 	struct inode *inode = file_inode(file);
3369 	struct btrfs_root *root = BTRFS_I(inode)->root;
3370 	struct btrfs_trans_handle *trans;
3371 	int ret;
3372 
3373 	ret = -EPERM;
3374 	if (!capable(CAP_SYS_ADMIN))
3375 		goto out;
3376 
3377 	ret = -EINPROGRESS;
3378 	if (file->private_data)
3379 		goto out;
3380 
3381 	ret = -EROFS;
3382 	if (btrfs_root_readonly(root))
3383 		goto out;
3384 
3385 	ret = mnt_want_write_file(file);
3386 	if (ret)
3387 		goto out;
3388 
3389 	atomic_inc(&root->fs_info->open_ioctl_trans);
3390 
3391 	ret = -ENOMEM;
3392 	trans = btrfs_start_ioctl_transaction(root);
3393 	if (IS_ERR(trans))
3394 		goto out_drop;
3395 
3396 	file->private_data = trans;
3397 	return 0;
3398 
3399 out_drop:
3400 	atomic_dec(&root->fs_info->open_ioctl_trans);
3401 	mnt_drop_write_file(file);
3402 out:
3403 	return ret;
3404 }
3405 
3406 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3407 {
3408 	struct inode *inode = file_inode(file);
3409 	struct btrfs_root *root = BTRFS_I(inode)->root;
3410 	struct btrfs_root *new_root;
3411 	struct btrfs_dir_item *di;
3412 	struct btrfs_trans_handle *trans;
3413 	struct btrfs_path *path;
3414 	struct btrfs_key location;
3415 	struct btrfs_disk_key disk_key;
3416 	u64 objectid = 0;
3417 	u64 dir_id;
3418 	int ret;
3419 
3420 	if (!capable(CAP_SYS_ADMIN))
3421 		return -EPERM;
3422 
3423 	ret = mnt_want_write_file(file);
3424 	if (ret)
3425 		return ret;
3426 
3427 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3428 		ret = -EFAULT;
3429 		goto out;
3430 	}
3431 
3432 	if (!objectid)
3433 		objectid = BTRFS_FS_TREE_OBJECTID;
3434 
3435 	location.objectid = objectid;
3436 	location.type = BTRFS_ROOT_ITEM_KEY;
3437 	location.offset = (u64)-1;
3438 
3439 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3440 	if (IS_ERR(new_root)) {
3441 		ret = PTR_ERR(new_root);
3442 		goto out;
3443 	}
3444 
3445 	path = btrfs_alloc_path();
3446 	if (!path) {
3447 		ret = -ENOMEM;
3448 		goto out;
3449 	}
3450 	path->leave_spinning = 1;
3451 
3452 	trans = btrfs_start_transaction(root, 1);
3453 	if (IS_ERR(trans)) {
3454 		btrfs_free_path(path);
3455 		ret = PTR_ERR(trans);
3456 		goto out;
3457 	}
3458 
3459 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3460 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3461 				   dir_id, "default", 7, 1);
3462 	if (IS_ERR_OR_NULL(di)) {
3463 		btrfs_free_path(path);
3464 		btrfs_end_transaction(trans, root);
3465 		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3466 			   "item, this isn't going to work");
3467 		ret = -ENOENT;
3468 		goto out;
3469 	}
3470 
3471 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3472 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3473 	btrfs_mark_buffer_dirty(path->nodes[0]);
3474 	btrfs_free_path(path);
3475 
3476 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3477 	btrfs_end_transaction(trans, root);
3478 out:
3479 	mnt_drop_write_file(file);
3480 	return ret;
3481 }
3482 
3483 void btrfs_get_block_group_info(struct list_head *groups_list,
3484 				struct btrfs_ioctl_space_info *space)
3485 {
3486 	struct btrfs_block_group_cache *block_group;
3487 
3488 	space->total_bytes = 0;
3489 	space->used_bytes = 0;
3490 	space->flags = 0;
3491 	list_for_each_entry(block_group, groups_list, list) {
3492 		space->flags = block_group->flags;
3493 		space->total_bytes += block_group->key.offset;
3494 		space->used_bytes +=
3495 			btrfs_block_group_used(&block_group->item);
3496 	}
3497 }
3498 
3499 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3500 {
3501 	struct btrfs_ioctl_space_args space_args;
3502 	struct btrfs_ioctl_space_info space;
3503 	struct btrfs_ioctl_space_info *dest;
3504 	struct btrfs_ioctl_space_info *dest_orig;
3505 	struct btrfs_ioctl_space_info __user *user_dest;
3506 	struct btrfs_space_info *info;
3507 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3508 		       BTRFS_BLOCK_GROUP_SYSTEM,
3509 		       BTRFS_BLOCK_GROUP_METADATA,
3510 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3511 	int num_types = 4;
3512 	int alloc_size;
3513 	int ret = 0;
3514 	u64 slot_count = 0;
3515 	int i, c;
3516 
3517 	if (copy_from_user(&space_args,
3518 			   (struct btrfs_ioctl_space_args __user *)arg,
3519 			   sizeof(space_args)))
3520 		return -EFAULT;
3521 
3522 	for (i = 0; i < num_types; i++) {
3523 		struct btrfs_space_info *tmp;
3524 
3525 		info = NULL;
3526 		rcu_read_lock();
3527 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3528 					list) {
3529 			if (tmp->flags == types[i]) {
3530 				info = tmp;
3531 				break;
3532 			}
3533 		}
3534 		rcu_read_unlock();
3535 
3536 		if (!info)
3537 			continue;
3538 
3539 		down_read(&info->groups_sem);
3540 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3541 			if (!list_empty(&info->block_groups[c]))
3542 				slot_count++;
3543 		}
3544 		up_read(&info->groups_sem);
3545 	}
3546 
3547 	/*
3548 	 * Global block reserve, exported as a space_info
3549 	 */
3550 	slot_count++;
3551 
3552 	/* space_slots == 0 means they are asking for a count */
3553 	if (space_args.space_slots == 0) {
3554 		space_args.total_spaces = slot_count;
3555 		goto out;
3556 	}
3557 
3558 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3559 
3560 	alloc_size = sizeof(*dest) * slot_count;
3561 
3562 	/* we generally have at most 6 or so space infos, one for each raid
3563 	 * level.  So, a whole page should be more than enough for everyone
3564 	 */
3565 	if (alloc_size > PAGE_CACHE_SIZE)
3566 		return -ENOMEM;
3567 
3568 	space_args.total_spaces = 0;
3569 	dest = kmalloc(alloc_size, GFP_NOFS);
3570 	if (!dest)
3571 		return -ENOMEM;
3572 	dest_orig = dest;
3573 
3574 	/* now we have a buffer to copy into */
3575 	for (i = 0; i < num_types; i++) {
3576 		struct btrfs_space_info *tmp;
3577 
3578 		if (!slot_count)
3579 			break;
3580 
3581 		info = NULL;
3582 		rcu_read_lock();
3583 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3584 					list) {
3585 			if (tmp->flags == types[i]) {
3586 				info = tmp;
3587 				break;
3588 			}
3589 		}
3590 		rcu_read_unlock();
3591 
3592 		if (!info)
3593 			continue;
3594 		down_read(&info->groups_sem);
3595 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3596 			if (!list_empty(&info->block_groups[c])) {
3597 				btrfs_get_block_group_info(
3598 					&info->block_groups[c], &space);
3599 				memcpy(dest, &space, sizeof(space));
3600 				dest++;
3601 				space_args.total_spaces++;
3602 				slot_count--;
3603 			}
3604 			if (!slot_count)
3605 				break;
3606 		}
3607 		up_read(&info->groups_sem);
3608 	}
3609 
3610 	/*
3611 	 * Add global block reserve
3612 	 */
3613 	if (slot_count) {
3614 		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
3615 
3616 		spin_lock(&block_rsv->lock);
3617 		space.total_bytes = block_rsv->size;
3618 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3619 		spin_unlock(&block_rsv->lock);
3620 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3621 		memcpy(dest, &space, sizeof(space));
3622 		space_args.total_spaces++;
3623 	}
3624 
3625 	user_dest = (struct btrfs_ioctl_space_info __user *)
3626 		(arg + sizeof(struct btrfs_ioctl_space_args));
3627 
3628 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3629 		ret = -EFAULT;
3630 
3631 	kfree(dest_orig);
3632 out:
3633 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3634 		ret = -EFAULT;
3635 
3636 	return ret;
3637 }
3638 
3639 /*
3640  * there are many ways the trans_start and trans_end ioctls can lead
3641  * to deadlocks.  They should only be used by applications that
3642  * basically own the machine, and have a very in depth understanding
3643  * of all the possible deadlocks and enospc problems.
3644  */
3645 long btrfs_ioctl_trans_end(struct file *file)
3646 {
3647 	struct inode *inode = file_inode(file);
3648 	struct btrfs_root *root = BTRFS_I(inode)->root;
3649 	struct btrfs_trans_handle *trans;
3650 
3651 	trans = file->private_data;
3652 	if (!trans)
3653 		return -EINVAL;
3654 	file->private_data = NULL;
3655 
3656 	btrfs_end_transaction(trans, root);
3657 
3658 	atomic_dec(&root->fs_info->open_ioctl_trans);
3659 
3660 	mnt_drop_write_file(file);
3661 	return 0;
3662 }
3663 
3664 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3665 					    void __user *argp)
3666 {
3667 	struct btrfs_trans_handle *trans;
3668 	u64 transid;
3669 	int ret;
3670 
3671 	trans = btrfs_attach_transaction_barrier(root);
3672 	if (IS_ERR(trans)) {
3673 		if (PTR_ERR(trans) != -ENOENT)
3674 			return PTR_ERR(trans);
3675 
3676 		/* No running transaction, don't bother */
3677 		transid = root->fs_info->last_trans_committed;
3678 		goto out;
3679 	}
3680 	transid = trans->transid;
3681 	ret = btrfs_commit_transaction_async(trans, root, 0);
3682 	if (ret) {
3683 		btrfs_end_transaction(trans, root);
3684 		return ret;
3685 	}
3686 out:
3687 	if (argp)
3688 		if (copy_to_user(argp, &transid, sizeof(transid)))
3689 			return -EFAULT;
3690 	return 0;
3691 }
3692 
3693 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3694 					   void __user *argp)
3695 {
3696 	u64 transid;
3697 
3698 	if (argp) {
3699 		if (copy_from_user(&transid, argp, sizeof(transid)))
3700 			return -EFAULT;
3701 	} else {
3702 		transid = 0;  /* current trans */
3703 	}
3704 	return btrfs_wait_for_commit(root, transid);
3705 }
3706 
3707 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3708 {
3709 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3710 	struct btrfs_ioctl_scrub_args *sa;
3711 	int ret;
3712 
3713 	if (!capable(CAP_SYS_ADMIN))
3714 		return -EPERM;
3715 
3716 	sa = memdup_user(arg, sizeof(*sa));
3717 	if (IS_ERR(sa))
3718 		return PTR_ERR(sa);
3719 
3720 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3721 		ret = mnt_want_write_file(file);
3722 		if (ret)
3723 			goto out;
3724 	}
3725 
3726 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3727 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3728 			      0);
3729 
3730 	if (copy_to_user(arg, sa, sizeof(*sa)))
3731 		ret = -EFAULT;
3732 
3733 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3734 		mnt_drop_write_file(file);
3735 out:
3736 	kfree(sa);
3737 	return ret;
3738 }
3739 
3740 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3741 {
3742 	if (!capable(CAP_SYS_ADMIN))
3743 		return -EPERM;
3744 
3745 	return btrfs_scrub_cancel(root->fs_info);
3746 }
3747 
3748 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3749 				       void __user *arg)
3750 {
3751 	struct btrfs_ioctl_scrub_args *sa;
3752 	int ret;
3753 
3754 	if (!capable(CAP_SYS_ADMIN))
3755 		return -EPERM;
3756 
3757 	sa = memdup_user(arg, sizeof(*sa));
3758 	if (IS_ERR(sa))
3759 		return PTR_ERR(sa);
3760 
3761 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3762 
3763 	if (copy_to_user(arg, sa, sizeof(*sa)))
3764 		ret = -EFAULT;
3765 
3766 	kfree(sa);
3767 	return ret;
3768 }
3769 
3770 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3771 				      void __user *arg)
3772 {
3773 	struct btrfs_ioctl_get_dev_stats *sa;
3774 	int ret;
3775 
3776 	sa = memdup_user(arg, sizeof(*sa));
3777 	if (IS_ERR(sa))
3778 		return PTR_ERR(sa);
3779 
3780 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3781 		kfree(sa);
3782 		return -EPERM;
3783 	}
3784 
3785 	ret = btrfs_get_dev_stats(root, sa);
3786 
3787 	if (copy_to_user(arg, sa, sizeof(*sa)))
3788 		ret = -EFAULT;
3789 
3790 	kfree(sa);
3791 	return ret;
3792 }
3793 
3794 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3795 {
3796 	struct btrfs_ioctl_dev_replace_args *p;
3797 	int ret;
3798 
3799 	if (!capable(CAP_SYS_ADMIN))
3800 		return -EPERM;
3801 
3802 	p = memdup_user(arg, sizeof(*p));
3803 	if (IS_ERR(p))
3804 		return PTR_ERR(p);
3805 
3806 	switch (p->cmd) {
3807 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3808 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
3809 			ret = -EROFS;
3810 			goto out;
3811 		}
3812 		if (atomic_xchg(
3813 			&root->fs_info->mutually_exclusive_operation_running,
3814 			1)) {
3815 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3816 		} else {
3817 			ret = btrfs_dev_replace_start(root, p);
3818 			atomic_set(
3819 			 &root->fs_info->mutually_exclusive_operation_running,
3820 			 0);
3821 		}
3822 		break;
3823 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3824 		btrfs_dev_replace_status(root->fs_info, p);
3825 		ret = 0;
3826 		break;
3827 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3828 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
3829 		break;
3830 	default:
3831 		ret = -EINVAL;
3832 		break;
3833 	}
3834 
3835 	if (copy_to_user(arg, p, sizeof(*p)))
3836 		ret = -EFAULT;
3837 out:
3838 	kfree(p);
3839 	return ret;
3840 }
3841 
3842 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3843 {
3844 	int ret = 0;
3845 	int i;
3846 	u64 rel_ptr;
3847 	int size;
3848 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3849 	struct inode_fs_paths *ipath = NULL;
3850 	struct btrfs_path *path;
3851 
3852 	if (!capable(CAP_DAC_READ_SEARCH))
3853 		return -EPERM;
3854 
3855 	path = btrfs_alloc_path();
3856 	if (!path) {
3857 		ret = -ENOMEM;
3858 		goto out;
3859 	}
3860 
3861 	ipa = memdup_user(arg, sizeof(*ipa));
3862 	if (IS_ERR(ipa)) {
3863 		ret = PTR_ERR(ipa);
3864 		ipa = NULL;
3865 		goto out;
3866 	}
3867 
3868 	size = min_t(u32, ipa->size, 4096);
3869 	ipath = init_ipath(size, root, path);
3870 	if (IS_ERR(ipath)) {
3871 		ret = PTR_ERR(ipath);
3872 		ipath = NULL;
3873 		goto out;
3874 	}
3875 
3876 	ret = paths_from_inode(ipa->inum, ipath);
3877 	if (ret < 0)
3878 		goto out;
3879 
3880 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3881 		rel_ptr = ipath->fspath->val[i] -
3882 			  (u64)(unsigned long)ipath->fspath->val;
3883 		ipath->fspath->val[i] = rel_ptr;
3884 	}
3885 
3886 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3887 			   (void *)(unsigned long)ipath->fspath, size);
3888 	if (ret) {
3889 		ret = -EFAULT;
3890 		goto out;
3891 	}
3892 
3893 out:
3894 	btrfs_free_path(path);
3895 	free_ipath(ipath);
3896 	kfree(ipa);
3897 
3898 	return ret;
3899 }
3900 
3901 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3902 {
3903 	struct btrfs_data_container *inodes = ctx;
3904 	const size_t c = 3 * sizeof(u64);
3905 
3906 	if (inodes->bytes_left >= c) {
3907 		inodes->bytes_left -= c;
3908 		inodes->val[inodes->elem_cnt] = inum;
3909 		inodes->val[inodes->elem_cnt + 1] = offset;
3910 		inodes->val[inodes->elem_cnt + 2] = root;
3911 		inodes->elem_cnt += 3;
3912 	} else {
3913 		inodes->bytes_missing += c - inodes->bytes_left;
3914 		inodes->bytes_left = 0;
3915 		inodes->elem_missed += 3;
3916 	}
3917 
3918 	return 0;
3919 }
3920 
3921 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3922 					void __user *arg)
3923 {
3924 	int ret = 0;
3925 	int size;
3926 	struct btrfs_ioctl_logical_ino_args *loi;
3927 	struct btrfs_data_container *inodes = NULL;
3928 	struct btrfs_path *path = NULL;
3929 
3930 	if (!capable(CAP_SYS_ADMIN))
3931 		return -EPERM;
3932 
3933 	loi = memdup_user(arg, sizeof(*loi));
3934 	if (IS_ERR(loi)) {
3935 		ret = PTR_ERR(loi);
3936 		loi = NULL;
3937 		goto out;
3938 	}
3939 
3940 	path = btrfs_alloc_path();
3941 	if (!path) {
3942 		ret = -ENOMEM;
3943 		goto out;
3944 	}
3945 
3946 	size = min_t(u32, loi->size, 64 * 1024);
3947 	inodes = init_data_container(size);
3948 	if (IS_ERR(inodes)) {
3949 		ret = PTR_ERR(inodes);
3950 		inodes = NULL;
3951 		goto out;
3952 	}
3953 
3954 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3955 					  build_ino_list, inodes);
3956 	if (ret == -EINVAL)
3957 		ret = -ENOENT;
3958 	if (ret < 0)
3959 		goto out;
3960 
3961 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
3962 			   (void *)(unsigned long)inodes, size);
3963 	if (ret)
3964 		ret = -EFAULT;
3965 
3966 out:
3967 	btrfs_free_path(path);
3968 	vfree(inodes);
3969 	kfree(loi);
3970 
3971 	return ret;
3972 }
3973 
3974 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3975 			       struct btrfs_ioctl_balance_args *bargs)
3976 {
3977 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3978 
3979 	bargs->flags = bctl->flags;
3980 
3981 	if (atomic_read(&fs_info->balance_running))
3982 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3983 	if (atomic_read(&fs_info->balance_pause_req))
3984 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3985 	if (atomic_read(&fs_info->balance_cancel_req))
3986 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3987 
3988 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3989 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3990 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3991 
3992 	if (lock) {
3993 		spin_lock(&fs_info->balance_lock);
3994 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3995 		spin_unlock(&fs_info->balance_lock);
3996 	} else {
3997 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3998 	}
3999 }
4000 
4001 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4002 {
4003 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4004 	struct btrfs_fs_info *fs_info = root->fs_info;
4005 	struct btrfs_ioctl_balance_args *bargs;
4006 	struct btrfs_balance_control *bctl;
4007 	bool need_unlock; /* for mut. excl. ops lock */
4008 	int ret;
4009 
4010 	if (!capable(CAP_SYS_ADMIN))
4011 		return -EPERM;
4012 
4013 	ret = mnt_want_write_file(file);
4014 	if (ret)
4015 		return ret;
4016 
4017 again:
4018 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4019 		mutex_lock(&fs_info->volume_mutex);
4020 		mutex_lock(&fs_info->balance_mutex);
4021 		need_unlock = true;
4022 		goto locked;
4023 	}
4024 
4025 	/*
4026 	 * mut. excl. ops lock is locked.  Three possibilites:
4027 	 *   (1) some other op is running
4028 	 *   (2) balance is running
4029 	 *   (3) balance is paused -- special case (think resume)
4030 	 */
4031 	mutex_lock(&fs_info->balance_mutex);
4032 	if (fs_info->balance_ctl) {
4033 		/* this is either (2) or (3) */
4034 		if (!atomic_read(&fs_info->balance_running)) {
4035 			mutex_unlock(&fs_info->balance_mutex);
4036 			if (!mutex_trylock(&fs_info->volume_mutex))
4037 				goto again;
4038 			mutex_lock(&fs_info->balance_mutex);
4039 
4040 			if (fs_info->balance_ctl &&
4041 			    !atomic_read(&fs_info->balance_running)) {
4042 				/* this is (3) */
4043 				need_unlock = false;
4044 				goto locked;
4045 			}
4046 
4047 			mutex_unlock(&fs_info->balance_mutex);
4048 			mutex_unlock(&fs_info->volume_mutex);
4049 			goto again;
4050 		} else {
4051 			/* this is (2) */
4052 			mutex_unlock(&fs_info->balance_mutex);
4053 			ret = -EINPROGRESS;
4054 			goto out;
4055 		}
4056 	} else {
4057 		/* this is (1) */
4058 		mutex_unlock(&fs_info->balance_mutex);
4059 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4060 		goto out;
4061 	}
4062 
4063 locked:
4064 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4065 
4066 	if (arg) {
4067 		bargs = memdup_user(arg, sizeof(*bargs));
4068 		if (IS_ERR(bargs)) {
4069 			ret = PTR_ERR(bargs);
4070 			goto out_unlock;
4071 		}
4072 
4073 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4074 			if (!fs_info->balance_ctl) {
4075 				ret = -ENOTCONN;
4076 				goto out_bargs;
4077 			}
4078 
4079 			bctl = fs_info->balance_ctl;
4080 			spin_lock(&fs_info->balance_lock);
4081 			bctl->flags |= BTRFS_BALANCE_RESUME;
4082 			spin_unlock(&fs_info->balance_lock);
4083 
4084 			goto do_balance;
4085 		}
4086 	} else {
4087 		bargs = NULL;
4088 	}
4089 
4090 	if (fs_info->balance_ctl) {
4091 		ret = -EINPROGRESS;
4092 		goto out_bargs;
4093 	}
4094 
4095 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4096 	if (!bctl) {
4097 		ret = -ENOMEM;
4098 		goto out_bargs;
4099 	}
4100 
4101 	bctl->fs_info = fs_info;
4102 	if (arg) {
4103 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4104 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4105 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4106 
4107 		bctl->flags = bargs->flags;
4108 	} else {
4109 		/* balance everything - no filters */
4110 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4111 	}
4112 
4113 do_balance:
4114 	/*
4115 	 * Ownership of bctl and mutually_exclusive_operation_running
4116 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4117 	 * or, if restriper was paused all the way until unmount, in
4118 	 * free_fs_info.  mutually_exclusive_operation_running is
4119 	 * cleared in __cancel_balance.
4120 	 */
4121 	need_unlock = false;
4122 
4123 	ret = btrfs_balance(bctl, bargs);
4124 
4125 	if (arg) {
4126 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4127 			ret = -EFAULT;
4128 	}
4129 
4130 out_bargs:
4131 	kfree(bargs);
4132 out_unlock:
4133 	mutex_unlock(&fs_info->balance_mutex);
4134 	mutex_unlock(&fs_info->volume_mutex);
4135 	if (need_unlock)
4136 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4137 out:
4138 	mnt_drop_write_file(file);
4139 	return ret;
4140 }
4141 
4142 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4143 {
4144 	if (!capable(CAP_SYS_ADMIN))
4145 		return -EPERM;
4146 
4147 	switch (cmd) {
4148 	case BTRFS_BALANCE_CTL_PAUSE:
4149 		return btrfs_pause_balance(root->fs_info);
4150 	case BTRFS_BALANCE_CTL_CANCEL:
4151 		return btrfs_cancel_balance(root->fs_info);
4152 	}
4153 
4154 	return -EINVAL;
4155 }
4156 
4157 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4158 					 void __user *arg)
4159 {
4160 	struct btrfs_fs_info *fs_info = root->fs_info;
4161 	struct btrfs_ioctl_balance_args *bargs;
4162 	int ret = 0;
4163 
4164 	if (!capable(CAP_SYS_ADMIN))
4165 		return -EPERM;
4166 
4167 	mutex_lock(&fs_info->balance_mutex);
4168 	if (!fs_info->balance_ctl) {
4169 		ret = -ENOTCONN;
4170 		goto out;
4171 	}
4172 
4173 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4174 	if (!bargs) {
4175 		ret = -ENOMEM;
4176 		goto out;
4177 	}
4178 
4179 	update_ioctl_balance_args(fs_info, 1, bargs);
4180 
4181 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4182 		ret = -EFAULT;
4183 
4184 	kfree(bargs);
4185 out:
4186 	mutex_unlock(&fs_info->balance_mutex);
4187 	return ret;
4188 }
4189 
4190 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4191 {
4192 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4193 	struct btrfs_ioctl_quota_ctl_args *sa;
4194 	struct btrfs_trans_handle *trans = NULL;
4195 	int ret;
4196 	int err;
4197 
4198 	if (!capable(CAP_SYS_ADMIN))
4199 		return -EPERM;
4200 
4201 	ret = mnt_want_write_file(file);
4202 	if (ret)
4203 		return ret;
4204 
4205 	sa = memdup_user(arg, sizeof(*sa));
4206 	if (IS_ERR(sa)) {
4207 		ret = PTR_ERR(sa);
4208 		goto drop_write;
4209 	}
4210 
4211 	down_write(&root->fs_info->subvol_sem);
4212 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4213 	if (IS_ERR(trans)) {
4214 		ret = PTR_ERR(trans);
4215 		goto out;
4216 	}
4217 
4218 	switch (sa->cmd) {
4219 	case BTRFS_QUOTA_CTL_ENABLE:
4220 		ret = btrfs_quota_enable(trans, root->fs_info);
4221 		break;
4222 	case BTRFS_QUOTA_CTL_DISABLE:
4223 		ret = btrfs_quota_disable(trans, root->fs_info);
4224 		break;
4225 	default:
4226 		ret = -EINVAL;
4227 		break;
4228 	}
4229 
4230 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4231 	if (err && !ret)
4232 		ret = err;
4233 out:
4234 	kfree(sa);
4235 	up_write(&root->fs_info->subvol_sem);
4236 drop_write:
4237 	mnt_drop_write_file(file);
4238 	return ret;
4239 }
4240 
4241 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4242 {
4243 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4244 	struct btrfs_ioctl_qgroup_assign_args *sa;
4245 	struct btrfs_trans_handle *trans;
4246 	int ret;
4247 	int err;
4248 
4249 	if (!capable(CAP_SYS_ADMIN))
4250 		return -EPERM;
4251 
4252 	ret = mnt_want_write_file(file);
4253 	if (ret)
4254 		return ret;
4255 
4256 	sa = memdup_user(arg, sizeof(*sa));
4257 	if (IS_ERR(sa)) {
4258 		ret = PTR_ERR(sa);
4259 		goto drop_write;
4260 	}
4261 
4262 	trans = btrfs_join_transaction(root);
4263 	if (IS_ERR(trans)) {
4264 		ret = PTR_ERR(trans);
4265 		goto out;
4266 	}
4267 
4268 	/* FIXME: check if the IDs really exist */
4269 	if (sa->assign) {
4270 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4271 						sa->src, sa->dst);
4272 	} else {
4273 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4274 						sa->src, sa->dst);
4275 	}
4276 
4277 	err = btrfs_end_transaction(trans, root);
4278 	if (err && !ret)
4279 		ret = err;
4280 
4281 out:
4282 	kfree(sa);
4283 drop_write:
4284 	mnt_drop_write_file(file);
4285 	return ret;
4286 }
4287 
4288 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4289 {
4290 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4291 	struct btrfs_ioctl_qgroup_create_args *sa;
4292 	struct btrfs_trans_handle *trans;
4293 	int ret;
4294 	int err;
4295 
4296 	if (!capable(CAP_SYS_ADMIN))
4297 		return -EPERM;
4298 
4299 	ret = mnt_want_write_file(file);
4300 	if (ret)
4301 		return ret;
4302 
4303 	sa = memdup_user(arg, sizeof(*sa));
4304 	if (IS_ERR(sa)) {
4305 		ret = PTR_ERR(sa);
4306 		goto drop_write;
4307 	}
4308 
4309 	if (!sa->qgroupid) {
4310 		ret = -EINVAL;
4311 		goto out;
4312 	}
4313 
4314 	trans = btrfs_join_transaction(root);
4315 	if (IS_ERR(trans)) {
4316 		ret = PTR_ERR(trans);
4317 		goto out;
4318 	}
4319 
4320 	/* FIXME: check if the IDs really exist */
4321 	if (sa->create) {
4322 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
4323 					  NULL);
4324 	} else {
4325 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4326 	}
4327 
4328 	err = btrfs_end_transaction(trans, root);
4329 	if (err && !ret)
4330 		ret = err;
4331 
4332 out:
4333 	kfree(sa);
4334 drop_write:
4335 	mnt_drop_write_file(file);
4336 	return ret;
4337 }
4338 
4339 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4340 {
4341 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4342 	struct btrfs_ioctl_qgroup_limit_args *sa;
4343 	struct btrfs_trans_handle *trans;
4344 	int ret;
4345 	int err;
4346 	u64 qgroupid;
4347 
4348 	if (!capable(CAP_SYS_ADMIN))
4349 		return -EPERM;
4350 
4351 	ret = mnt_want_write_file(file);
4352 	if (ret)
4353 		return ret;
4354 
4355 	sa = memdup_user(arg, sizeof(*sa));
4356 	if (IS_ERR(sa)) {
4357 		ret = PTR_ERR(sa);
4358 		goto drop_write;
4359 	}
4360 
4361 	trans = btrfs_join_transaction(root);
4362 	if (IS_ERR(trans)) {
4363 		ret = PTR_ERR(trans);
4364 		goto out;
4365 	}
4366 
4367 	qgroupid = sa->qgroupid;
4368 	if (!qgroupid) {
4369 		/* take the current subvol as qgroup */
4370 		qgroupid = root->root_key.objectid;
4371 	}
4372 
4373 	/* FIXME: check if the IDs really exist */
4374 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4375 
4376 	err = btrfs_end_transaction(trans, root);
4377 	if (err && !ret)
4378 		ret = err;
4379 
4380 out:
4381 	kfree(sa);
4382 drop_write:
4383 	mnt_drop_write_file(file);
4384 	return ret;
4385 }
4386 
4387 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4388 {
4389 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4390 	struct btrfs_ioctl_quota_rescan_args *qsa;
4391 	int ret;
4392 
4393 	if (!capable(CAP_SYS_ADMIN))
4394 		return -EPERM;
4395 
4396 	ret = mnt_want_write_file(file);
4397 	if (ret)
4398 		return ret;
4399 
4400 	qsa = memdup_user(arg, sizeof(*qsa));
4401 	if (IS_ERR(qsa)) {
4402 		ret = PTR_ERR(qsa);
4403 		goto drop_write;
4404 	}
4405 
4406 	if (qsa->flags) {
4407 		ret = -EINVAL;
4408 		goto out;
4409 	}
4410 
4411 	ret = btrfs_qgroup_rescan(root->fs_info);
4412 
4413 out:
4414 	kfree(qsa);
4415 drop_write:
4416 	mnt_drop_write_file(file);
4417 	return ret;
4418 }
4419 
4420 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4421 {
4422 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4423 	struct btrfs_ioctl_quota_rescan_args *qsa;
4424 	int ret = 0;
4425 
4426 	if (!capable(CAP_SYS_ADMIN))
4427 		return -EPERM;
4428 
4429 	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4430 	if (!qsa)
4431 		return -ENOMEM;
4432 
4433 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4434 		qsa->flags = 1;
4435 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4436 	}
4437 
4438 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4439 		ret = -EFAULT;
4440 
4441 	kfree(qsa);
4442 	return ret;
4443 }
4444 
4445 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4446 {
4447 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4448 
4449 	if (!capable(CAP_SYS_ADMIN))
4450 		return -EPERM;
4451 
4452 	return btrfs_qgroup_wait_for_completion(root->fs_info);
4453 }
4454 
4455 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4456 					    struct btrfs_ioctl_received_subvol_args *sa)
4457 {
4458 	struct inode *inode = file_inode(file);
4459 	struct btrfs_root *root = BTRFS_I(inode)->root;
4460 	struct btrfs_root_item *root_item = &root->root_item;
4461 	struct btrfs_trans_handle *trans;
4462 	struct timespec ct = CURRENT_TIME;
4463 	int ret = 0;
4464 	int received_uuid_changed;
4465 
4466 	if (!inode_owner_or_capable(inode))
4467 		return -EPERM;
4468 
4469 	ret = mnt_want_write_file(file);
4470 	if (ret < 0)
4471 		return ret;
4472 
4473 	down_write(&root->fs_info->subvol_sem);
4474 
4475 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4476 		ret = -EINVAL;
4477 		goto out;
4478 	}
4479 
4480 	if (btrfs_root_readonly(root)) {
4481 		ret = -EROFS;
4482 		goto out;
4483 	}
4484 
4485 	/*
4486 	 * 1 - root item
4487 	 * 2 - uuid items (received uuid + subvol uuid)
4488 	 */
4489 	trans = btrfs_start_transaction(root, 3);
4490 	if (IS_ERR(trans)) {
4491 		ret = PTR_ERR(trans);
4492 		trans = NULL;
4493 		goto out;
4494 	}
4495 
4496 	sa->rtransid = trans->transid;
4497 	sa->rtime.sec = ct.tv_sec;
4498 	sa->rtime.nsec = ct.tv_nsec;
4499 
4500 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4501 				       BTRFS_UUID_SIZE);
4502 	if (received_uuid_changed &&
4503 	    !btrfs_is_empty_uuid(root_item->received_uuid))
4504 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4505 				    root_item->received_uuid,
4506 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4507 				    root->root_key.objectid);
4508 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4509 	btrfs_set_root_stransid(root_item, sa->stransid);
4510 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4511 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4512 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4513 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4514 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4515 
4516 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4517 				&root->root_key, &root->root_item);
4518 	if (ret < 0) {
4519 		btrfs_end_transaction(trans, root);
4520 		goto out;
4521 	}
4522 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4523 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4524 					  sa->uuid,
4525 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4526 					  root->root_key.objectid);
4527 		if (ret < 0 && ret != -EEXIST) {
4528 			btrfs_abort_transaction(trans, root, ret);
4529 			goto out;
4530 		}
4531 	}
4532 	ret = btrfs_commit_transaction(trans, root);
4533 	if (ret < 0) {
4534 		btrfs_abort_transaction(trans, root, ret);
4535 		goto out;
4536 	}
4537 
4538 out:
4539 	up_write(&root->fs_info->subvol_sem);
4540 	mnt_drop_write_file(file);
4541 	return ret;
4542 }
4543 
4544 #ifdef CONFIG_64BIT
4545 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4546 						void __user *arg)
4547 {
4548 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4549 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4550 	int ret = 0;
4551 
4552 	args32 = memdup_user(arg, sizeof(*args32));
4553 	if (IS_ERR(args32)) {
4554 		ret = PTR_ERR(args32);
4555 		args32 = NULL;
4556 		goto out;
4557 	}
4558 
4559 	args64 = kmalloc(sizeof(*args64), GFP_NOFS);
4560 	if (!args64) {
4561 		ret = -ENOMEM;
4562 		goto out;
4563 	}
4564 
4565 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4566 	args64->stransid = args32->stransid;
4567 	args64->rtransid = args32->rtransid;
4568 	args64->stime.sec = args32->stime.sec;
4569 	args64->stime.nsec = args32->stime.nsec;
4570 	args64->rtime.sec = args32->rtime.sec;
4571 	args64->rtime.nsec = args32->rtime.nsec;
4572 	args64->flags = args32->flags;
4573 
4574 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4575 	if (ret)
4576 		goto out;
4577 
4578 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4579 	args32->stransid = args64->stransid;
4580 	args32->rtransid = args64->rtransid;
4581 	args32->stime.sec = args64->stime.sec;
4582 	args32->stime.nsec = args64->stime.nsec;
4583 	args32->rtime.sec = args64->rtime.sec;
4584 	args32->rtime.nsec = args64->rtime.nsec;
4585 	args32->flags = args64->flags;
4586 
4587 	ret = copy_to_user(arg, args32, sizeof(*args32));
4588 	if (ret)
4589 		ret = -EFAULT;
4590 
4591 out:
4592 	kfree(args32);
4593 	kfree(args64);
4594 	return ret;
4595 }
4596 #endif
4597 
4598 static long btrfs_ioctl_set_received_subvol(struct file *file,
4599 					    void __user *arg)
4600 {
4601 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4602 	int ret = 0;
4603 
4604 	sa = memdup_user(arg, sizeof(*sa));
4605 	if (IS_ERR(sa)) {
4606 		ret = PTR_ERR(sa);
4607 		sa = NULL;
4608 		goto out;
4609 	}
4610 
4611 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4612 
4613 	if (ret)
4614 		goto out;
4615 
4616 	ret = copy_to_user(arg, sa, sizeof(*sa));
4617 	if (ret)
4618 		ret = -EFAULT;
4619 
4620 out:
4621 	kfree(sa);
4622 	return ret;
4623 }
4624 
4625 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
4626 {
4627 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4628 	size_t len;
4629 	int ret;
4630 	char label[BTRFS_LABEL_SIZE];
4631 
4632 	spin_lock(&root->fs_info->super_lock);
4633 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4634 	spin_unlock(&root->fs_info->super_lock);
4635 
4636 	len = strnlen(label, BTRFS_LABEL_SIZE);
4637 
4638 	if (len == BTRFS_LABEL_SIZE) {
4639 		btrfs_warn(root->fs_info,
4640 			"label is too long, return the first %zu bytes", --len);
4641 	}
4642 
4643 	ret = copy_to_user(arg, label, len);
4644 
4645 	return ret ? -EFAULT : 0;
4646 }
4647 
4648 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4649 {
4650 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4651 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
4652 	struct btrfs_trans_handle *trans;
4653 	char label[BTRFS_LABEL_SIZE];
4654 	int ret;
4655 
4656 	if (!capable(CAP_SYS_ADMIN))
4657 		return -EPERM;
4658 
4659 	if (copy_from_user(label, arg, sizeof(label)))
4660 		return -EFAULT;
4661 
4662 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4663 		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
4664 		       BTRFS_LABEL_SIZE - 1);
4665 		return -EINVAL;
4666 	}
4667 
4668 	ret = mnt_want_write_file(file);
4669 	if (ret)
4670 		return ret;
4671 
4672 	trans = btrfs_start_transaction(root, 0);
4673 	if (IS_ERR(trans)) {
4674 		ret = PTR_ERR(trans);
4675 		goto out_unlock;
4676 	}
4677 
4678 	spin_lock(&root->fs_info->super_lock);
4679 	strcpy(super_block->label, label);
4680 	spin_unlock(&root->fs_info->super_lock);
4681 	ret = btrfs_commit_transaction(trans, root);
4682 
4683 out_unlock:
4684 	mnt_drop_write_file(file);
4685 	return ret;
4686 }
4687 
4688 #define INIT_FEATURE_FLAGS(suffix) \
4689 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4690 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4691 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4692 
4693 static int btrfs_ioctl_get_supported_features(struct file *file,
4694 					      void __user *arg)
4695 {
4696 	static struct btrfs_ioctl_feature_flags features[3] = {
4697 		INIT_FEATURE_FLAGS(SUPP),
4698 		INIT_FEATURE_FLAGS(SAFE_SET),
4699 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4700 	};
4701 
4702 	if (copy_to_user(arg, &features, sizeof(features)))
4703 		return -EFAULT;
4704 
4705 	return 0;
4706 }
4707 
4708 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
4709 {
4710 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4711 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
4712 	struct btrfs_ioctl_feature_flags features;
4713 
4714 	features.compat_flags = btrfs_super_compat_flags(super_block);
4715 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4716 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4717 
4718 	if (copy_to_user(arg, &features, sizeof(features)))
4719 		return -EFAULT;
4720 
4721 	return 0;
4722 }
4723 
4724 static int check_feature_bits(struct btrfs_root *root,
4725 			      enum btrfs_feature_set set,
4726 			      u64 change_mask, u64 flags, u64 supported_flags,
4727 			      u64 safe_set, u64 safe_clear)
4728 {
4729 	const char *type = btrfs_feature_set_names[set];
4730 	char *names;
4731 	u64 disallowed, unsupported;
4732 	u64 set_mask = flags & change_mask;
4733 	u64 clear_mask = ~flags & change_mask;
4734 
4735 	unsupported = set_mask & ~supported_flags;
4736 	if (unsupported) {
4737 		names = btrfs_printable_features(set, unsupported);
4738 		if (names) {
4739 			btrfs_warn(root->fs_info,
4740 			   "this kernel does not support the %s feature bit%s",
4741 			   names, strchr(names, ',') ? "s" : "");
4742 			kfree(names);
4743 		} else
4744 			btrfs_warn(root->fs_info,
4745 			   "this kernel does not support %s bits 0x%llx",
4746 			   type, unsupported);
4747 		return -EOPNOTSUPP;
4748 	}
4749 
4750 	disallowed = set_mask & ~safe_set;
4751 	if (disallowed) {
4752 		names = btrfs_printable_features(set, disallowed);
4753 		if (names) {
4754 			btrfs_warn(root->fs_info,
4755 			   "can't set the %s feature bit%s while mounted",
4756 			   names, strchr(names, ',') ? "s" : "");
4757 			kfree(names);
4758 		} else
4759 			btrfs_warn(root->fs_info,
4760 			   "can't set %s bits 0x%llx while mounted",
4761 			   type, disallowed);
4762 		return -EPERM;
4763 	}
4764 
4765 	disallowed = clear_mask & ~safe_clear;
4766 	if (disallowed) {
4767 		names = btrfs_printable_features(set, disallowed);
4768 		if (names) {
4769 			btrfs_warn(root->fs_info,
4770 			   "can't clear the %s feature bit%s while mounted",
4771 			   names, strchr(names, ',') ? "s" : "");
4772 			kfree(names);
4773 		} else
4774 			btrfs_warn(root->fs_info,
4775 			   "can't clear %s bits 0x%llx while mounted",
4776 			   type, disallowed);
4777 		return -EPERM;
4778 	}
4779 
4780 	return 0;
4781 }
4782 
4783 #define check_feature(root, change_mask, flags, mask_base)	\
4784 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
4785 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4786 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4787 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4788 
4789 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4790 {
4791 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4792 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
4793 	struct btrfs_ioctl_feature_flags flags[2];
4794 	struct btrfs_trans_handle *trans;
4795 	u64 newflags;
4796 	int ret;
4797 
4798 	if (!capable(CAP_SYS_ADMIN))
4799 		return -EPERM;
4800 
4801 	if (copy_from_user(flags, arg, sizeof(flags)))
4802 		return -EFAULT;
4803 
4804 	/* Nothing to do */
4805 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4806 	    !flags[0].incompat_flags)
4807 		return 0;
4808 
4809 	ret = check_feature(root, flags[0].compat_flags,
4810 			    flags[1].compat_flags, COMPAT);
4811 	if (ret)
4812 		return ret;
4813 
4814 	ret = check_feature(root, flags[0].compat_ro_flags,
4815 			    flags[1].compat_ro_flags, COMPAT_RO);
4816 	if (ret)
4817 		return ret;
4818 
4819 	ret = check_feature(root, flags[0].incompat_flags,
4820 			    flags[1].incompat_flags, INCOMPAT);
4821 	if (ret)
4822 		return ret;
4823 
4824 	trans = btrfs_start_transaction(root, 0);
4825 	if (IS_ERR(trans))
4826 		return PTR_ERR(trans);
4827 
4828 	spin_lock(&root->fs_info->super_lock);
4829 	newflags = btrfs_super_compat_flags(super_block);
4830 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4831 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4832 	btrfs_set_super_compat_flags(super_block, newflags);
4833 
4834 	newflags = btrfs_super_compat_ro_flags(super_block);
4835 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4836 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4837 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4838 
4839 	newflags = btrfs_super_incompat_flags(super_block);
4840 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4841 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4842 	btrfs_set_super_incompat_flags(super_block, newflags);
4843 	spin_unlock(&root->fs_info->super_lock);
4844 
4845 	return btrfs_commit_transaction(trans, root);
4846 }
4847 
4848 long btrfs_ioctl(struct file *file, unsigned int
4849 		cmd, unsigned long arg)
4850 {
4851 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4852 	void __user *argp = (void __user *)arg;
4853 
4854 	switch (cmd) {
4855 	case FS_IOC_GETFLAGS:
4856 		return btrfs_ioctl_getflags(file, argp);
4857 	case FS_IOC_SETFLAGS:
4858 		return btrfs_ioctl_setflags(file, argp);
4859 	case FS_IOC_GETVERSION:
4860 		return btrfs_ioctl_getversion(file, argp);
4861 	case FITRIM:
4862 		return btrfs_ioctl_fitrim(file, argp);
4863 	case BTRFS_IOC_SNAP_CREATE:
4864 		return btrfs_ioctl_snap_create(file, argp, 0);
4865 	case BTRFS_IOC_SNAP_CREATE_V2:
4866 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4867 	case BTRFS_IOC_SUBVOL_CREATE:
4868 		return btrfs_ioctl_snap_create(file, argp, 1);
4869 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4870 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4871 	case BTRFS_IOC_SNAP_DESTROY:
4872 		return btrfs_ioctl_snap_destroy(file, argp);
4873 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4874 		return btrfs_ioctl_subvol_getflags(file, argp);
4875 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4876 		return btrfs_ioctl_subvol_setflags(file, argp);
4877 	case BTRFS_IOC_DEFAULT_SUBVOL:
4878 		return btrfs_ioctl_default_subvol(file, argp);
4879 	case BTRFS_IOC_DEFRAG:
4880 		return btrfs_ioctl_defrag(file, NULL);
4881 	case BTRFS_IOC_DEFRAG_RANGE:
4882 		return btrfs_ioctl_defrag(file, argp);
4883 	case BTRFS_IOC_RESIZE:
4884 		return btrfs_ioctl_resize(file, argp);
4885 	case BTRFS_IOC_ADD_DEV:
4886 		return btrfs_ioctl_add_dev(root, argp);
4887 	case BTRFS_IOC_RM_DEV:
4888 		return btrfs_ioctl_rm_dev(file, argp);
4889 	case BTRFS_IOC_FS_INFO:
4890 		return btrfs_ioctl_fs_info(root, argp);
4891 	case BTRFS_IOC_DEV_INFO:
4892 		return btrfs_ioctl_dev_info(root, argp);
4893 	case BTRFS_IOC_BALANCE:
4894 		return btrfs_ioctl_balance(file, NULL);
4895 	case BTRFS_IOC_CLONE:
4896 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
4897 	case BTRFS_IOC_CLONE_RANGE:
4898 		return btrfs_ioctl_clone_range(file, argp);
4899 	case BTRFS_IOC_TRANS_START:
4900 		return btrfs_ioctl_trans_start(file);
4901 	case BTRFS_IOC_TRANS_END:
4902 		return btrfs_ioctl_trans_end(file);
4903 	case BTRFS_IOC_TREE_SEARCH:
4904 		return btrfs_ioctl_tree_search(file, argp);
4905 	case BTRFS_IOC_INO_LOOKUP:
4906 		return btrfs_ioctl_ino_lookup(file, argp);
4907 	case BTRFS_IOC_INO_PATHS:
4908 		return btrfs_ioctl_ino_to_path(root, argp);
4909 	case BTRFS_IOC_LOGICAL_INO:
4910 		return btrfs_ioctl_logical_to_ino(root, argp);
4911 	case BTRFS_IOC_SPACE_INFO:
4912 		return btrfs_ioctl_space_info(root, argp);
4913 	case BTRFS_IOC_SYNC: {
4914 		int ret;
4915 
4916 		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
4917 		if (ret)
4918 			return ret;
4919 		ret = btrfs_sync_fs(file->f_dentry->d_sb, 1);
4920 		return ret;
4921 	}
4922 	case BTRFS_IOC_START_SYNC:
4923 		return btrfs_ioctl_start_sync(root, argp);
4924 	case BTRFS_IOC_WAIT_SYNC:
4925 		return btrfs_ioctl_wait_sync(root, argp);
4926 	case BTRFS_IOC_SCRUB:
4927 		return btrfs_ioctl_scrub(file, argp);
4928 	case BTRFS_IOC_SCRUB_CANCEL:
4929 		return btrfs_ioctl_scrub_cancel(root, argp);
4930 	case BTRFS_IOC_SCRUB_PROGRESS:
4931 		return btrfs_ioctl_scrub_progress(root, argp);
4932 	case BTRFS_IOC_BALANCE_V2:
4933 		return btrfs_ioctl_balance(file, argp);
4934 	case BTRFS_IOC_BALANCE_CTL:
4935 		return btrfs_ioctl_balance_ctl(root, arg);
4936 	case BTRFS_IOC_BALANCE_PROGRESS:
4937 		return btrfs_ioctl_balance_progress(root, argp);
4938 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4939 		return btrfs_ioctl_set_received_subvol(file, argp);
4940 #ifdef CONFIG_64BIT
4941 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4942 		return btrfs_ioctl_set_received_subvol_32(file, argp);
4943 #endif
4944 	case BTRFS_IOC_SEND:
4945 		return btrfs_ioctl_send(file, argp);
4946 	case BTRFS_IOC_GET_DEV_STATS:
4947 		return btrfs_ioctl_get_dev_stats(root, argp);
4948 	case BTRFS_IOC_QUOTA_CTL:
4949 		return btrfs_ioctl_quota_ctl(file, argp);
4950 	case BTRFS_IOC_QGROUP_ASSIGN:
4951 		return btrfs_ioctl_qgroup_assign(file, argp);
4952 	case BTRFS_IOC_QGROUP_CREATE:
4953 		return btrfs_ioctl_qgroup_create(file, argp);
4954 	case BTRFS_IOC_QGROUP_LIMIT:
4955 		return btrfs_ioctl_qgroup_limit(file, argp);
4956 	case BTRFS_IOC_QUOTA_RESCAN:
4957 		return btrfs_ioctl_quota_rescan(file, argp);
4958 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4959 		return btrfs_ioctl_quota_rescan_status(file, argp);
4960 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4961 		return btrfs_ioctl_quota_rescan_wait(file, argp);
4962 	case BTRFS_IOC_DEV_REPLACE:
4963 		return btrfs_ioctl_dev_replace(root, argp);
4964 	case BTRFS_IOC_GET_FSLABEL:
4965 		return btrfs_ioctl_get_fslabel(file, argp);
4966 	case BTRFS_IOC_SET_FSLABEL:
4967 		return btrfs_ioctl_set_fslabel(file, argp);
4968 	case BTRFS_IOC_FILE_EXTENT_SAME:
4969 		return btrfs_ioctl_file_extent_same(file, argp);
4970 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4971 		return btrfs_ioctl_get_supported_features(file, argp);
4972 	case BTRFS_IOC_GET_FEATURES:
4973 		return btrfs_ioctl_get_features(file, argp);
4974 	case BTRFS_IOC_SET_FEATURES:
4975 		return btrfs_ioctl_set_features(file, argp);
4976 	}
4977 
4978 	return -ENOTTY;
4979 }
4980