1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include "compat.h" 45 #include "ctree.h" 46 #include "disk-io.h" 47 #include "transaction.h" 48 #include "btrfs_inode.h" 49 #include "ioctl.h" 50 #include "print-tree.h" 51 #include "volumes.h" 52 #include "locking.h" 53 #include "inode-map.h" 54 55 /* Mask out flags that are inappropriate for the given type of inode. */ 56 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 57 { 58 if (S_ISDIR(mode)) 59 return flags; 60 else if (S_ISREG(mode)) 61 return flags & ~FS_DIRSYNC_FL; 62 else 63 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 64 } 65 66 /* 67 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 68 */ 69 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 70 { 71 unsigned int iflags = 0; 72 73 if (flags & BTRFS_INODE_SYNC) 74 iflags |= FS_SYNC_FL; 75 if (flags & BTRFS_INODE_IMMUTABLE) 76 iflags |= FS_IMMUTABLE_FL; 77 if (flags & BTRFS_INODE_APPEND) 78 iflags |= FS_APPEND_FL; 79 if (flags & BTRFS_INODE_NODUMP) 80 iflags |= FS_NODUMP_FL; 81 if (flags & BTRFS_INODE_NOATIME) 82 iflags |= FS_NOATIME_FL; 83 if (flags & BTRFS_INODE_DIRSYNC) 84 iflags |= FS_DIRSYNC_FL; 85 if (flags & BTRFS_INODE_NODATACOW) 86 iflags |= FS_NOCOW_FL; 87 88 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 89 iflags |= FS_COMPR_FL; 90 else if (flags & BTRFS_INODE_NOCOMPRESS) 91 iflags |= FS_NOCOMP_FL; 92 93 return iflags; 94 } 95 96 /* 97 * Update inode->i_flags based on the btrfs internal flags. 98 */ 99 void btrfs_update_iflags(struct inode *inode) 100 { 101 struct btrfs_inode *ip = BTRFS_I(inode); 102 103 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 104 105 if (ip->flags & BTRFS_INODE_SYNC) 106 inode->i_flags |= S_SYNC; 107 if (ip->flags & BTRFS_INODE_IMMUTABLE) 108 inode->i_flags |= S_IMMUTABLE; 109 if (ip->flags & BTRFS_INODE_APPEND) 110 inode->i_flags |= S_APPEND; 111 if (ip->flags & BTRFS_INODE_NOATIME) 112 inode->i_flags |= S_NOATIME; 113 if (ip->flags & BTRFS_INODE_DIRSYNC) 114 inode->i_flags |= S_DIRSYNC; 115 } 116 117 /* 118 * Inherit flags from the parent inode. 119 * 120 * Unlike extN we don't have any flags we don't want to inherit currently. 121 */ 122 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 123 { 124 unsigned int flags; 125 126 if (!dir) 127 return; 128 129 flags = BTRFS_I(dir)->flags; 130 131 if (S_ISREG(inode->i_mode)) 132 flags &= ~BTRFS_INODE_DIRSYNC; 133 else if (!S_ISDIR(inode->i_mode)) 134 flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME); 135 136 BTRFS_I(inode)->flags = flags; 137 btrfs_update_iflags(inode); 138 } 139 140 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 141 { 142 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode); 143 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 144 145 if (copy_to_user(arg, &flags, sizeof(flags))) 146 return -EFAULT; 147 return 0; 148 } 149 150 static int check_flags(unsigned int flags) 151 { 152 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 153 FS_NOATIME_FL | FS_NODUMP_FL | \ 154 FS_SYNC_FL | FS_DIRSYNC_FL | \ 155 FS_NOCOMP_FL | FS_COMPR_FL | 156 FS_NOCOW_FL)) 157 return -EOPNOTSUPP; 158 159 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 160 return -EINVAL; 161 162 return 0; 163 } 164 165 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 166 { 167 struct inode *inode = file->f_path.dentry->d_inode; 168 struct btrfs_inode *ip = BTRFS_I(inode); 169 struct btrfs_root *root = ip->root; 170 struct btrfs_trans_handle *trans; 171 unsigned int flags, oldflags; 172 int ret; 173 174 if (btrfs_root_readonly(root)) 175 return -EROFS; 176 177 if (copy_from_user(&flags, arg, sizeof(flags))) 178 return -EFAULT; 179 180 ret = check_flags(flags); 181 if (ret) 182 return ret; 183 184 if (!inode_owner_or_capable(inode)) 185 return -EACCES; 186 187 mutex_lock(&inode->i_mutex); 188 189 flags = btrfs_mask_flags(inode->i_mode, flags); 190 oldflags = btrfs_flags_to_ioctl(ip->flags); 191 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 192 if (!capable(CAP_LINUX_IMMUTABLE)) { 193 ret = -EPERM; 194 goto out_unlock; 195 } 196 } 197 198 ret = mnt_want_write(file->f_path.mnt); 199 if (ret) 200 goto out_unlock; 201 202 if (flags & FS_SYNC_FL) 203 ip->flags |= BTRFS_INODE_SYNC; 204 else 205 ip->flags &= ~BTRFS_INODE_SYNC; 206 if (flags & FS_IMMUTABLE_FL) 207 ip->flags |= BTRFS_INODE_IMMUTABLE; 208 else 209 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 210 if (flags & FS_APPEND_FL) 211 ip->flags |= BTRFS_INODE_APPEND; 212 else 213 ip->flags &= ~BTRFS_INODE_APPEND; 214 if (flags & FS_NODUMP_FL) 215 ip->flags |= BTRFS_INODE_NODUMP; 216 else 217 ip->flags &= ~BTRFS_INODE_NODUMP; 218 if (flags & FS_NOATIME_FL) 219 ip->flags |= BTRFS_INODE_NOATIME; 220 else 221 ip->flags &= ~BTRFS_INODE_NOATIME; 222 if (flags & FS_DIRSYNC_FL) 223 ip->flags |= BTRFS_INODE_DIRSYNC; 224 else 225 ip->flags &= ~BTRFS_INODE_DIRSYNC; 226 if (flags & FS_NOCOW_FL) 227 ip->flags |= BTRFS_INODE_NODATACOW; 228 else 229 ip->flags &= ~BTRFS_INODE_NODATACOW; 230 231 /* 232 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 233 * flag may be changed automatically if compression code won't make 234 * things smaller. 235 */ 236 if (flags & FS_NOCOMP_FL) { 237 ip->flags &= ~BTRFS_INODE_COMPRESS; 238 ip->flags |= BTRFS_INODE_NOCOMPRESS; 239 } else if (flags & FS_COMPR_FL) { 240 ip->flags |= BTRFS_INODE_COMPRESS; 241 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 242 } else { 243 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 244 } 245 246 trans = btrfs_join_transaction(root); 247 BUG_ON(IS_ERR(trans)); 248 249 ret = btrfs_update_inode(trans, root, inode); 250 BUG_ON(ret); 251 252 btrfs_update_iflags(inode); 253 inode->i_ctime = CURRENT_TIME; 254 btrfs_end_transaction(trans, root); 255 256 mnt_drop_write(file->f_path.mnt); 257 258 ret = 0; 259 out_unlock: 260 mutex_unlock(&inode->i_mutex); 261 return ret; 262 } 263 264 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 265 { 266 struct inode *inode = file->f_path.dentry->d_inode; 267 268 return put_user(inode->i_generation, arg); 269 } 270 271 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 272 { 273 struct btrfs_root *root = fdentry(file)->d_sb->s_fs_info; 274 struct btrfs_fs_info *fs_info = root->fs_info; 275 struct btrfs_device *device; 276 struct request_queue *q; 277 struct fstrim_range range; 278 u64 minlen = ULLONG_MAX; 279 u64 num_devices = 0; 280 int ret; 281 282 if (!capable(CAP_SYS_ADMIN)) 283 return -EPERM; 284 285 rcu_read_lock(); 286 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 287 dev_list) { 288 if (!device->bdev) 289 continue; 290 q = bdev_get_queue(device->bdev); 291 if (blk_queue_discard(q)) { 292 num_devices++; 293 minlen = min((u64)q->limits.discard_granularity, 294 minlen); 295 } 296 } 297 rcu_read_unlock(); 298 if (!num_devices) 299 return -EOPNOTSUPP; 300 301 if (copy_from_user(&range, arg, sizeof(range))) 302 return -EFAULT; 303 304 range.minlen = max(range.minlen, minlen); 305 ret = btrfs_trim_fs(root, &range); 306 if (ret < 0) 307 return ret; 308 309 if (copy_to_user(arg, &range, sizeof(range))) 310 return -EFAULT; 311 312 return 0; 313 } 314 315 static noinline int create_subvol(struct btrfs_root *root, 316 struct dentry *dentry, 317 char *name, int namelen, 318 u64 *async_transid) 319 { 320 struct btrfs_trans_handle *trans; 321 struct btrfs_key key; 322 struct btrfs_root_item root_item; 323 struct btrfs_inode_item *inode_item; 324 struct extent_buffer *leaf; 325 struct btrfs_root *new_root; 326 struct dentry *parent = dentry->d_parent; 327 struct inode *dir; 328 int ret; 329 int err; 330 u64 objectid; 331 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 332 u64 index = 0; 333 334 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 335 if (ret) 336 return ret; 337 338 dir = parent->d_inode; 339 340 /* 341 * 1 - inode item 342 * 2 - refs 343 * 1 - root item 344 * 2 - dir items 345 */ 346 trans = btrfs_start_transaction(root, 6); 347 if (IS_ERR(trans)) 348 return PTR_ERR(trans); 349 350 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 351 0, objectid, NULL, 0, 0, 0); 352 if (IS_ERR(leaf)) { 353 ret = PTR_ERR(leaf); 354 goto fail; 355 } 356 357 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 358 btrfs_set_header_bytenr(leaf, leaf->start); 359 btrfs_set_header_generation(leaf, trans->transid); 360 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 361 btrfs_set_header_owner(leaf, objectid); 362 363 write_extent_buffer(leaf, root->fs_info->fsid, 364 (unsigned long)btrfs_header_fsid(leaf), 365 BTRFS_FSID_SIZE); 366 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 367 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 368 BTRFS_UUID_SIZE); 369 btrfs_mark_buffer_dirty(leaf); 370 371 inode_item = &root_item.inode; 372 memset(inode_item, 0, sizeof(*inode_item)); 373 inode_item->generation = cpu_to_le64(1); 374 inode_item->size = cpu_to_le64(3); 375 inode_item->nlink = cpu_to_le32(1); 376 inode_item->nbytes = cpu_to_le64(root->leafsize); 377 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 378 379 root_item.flags = 0; 380 root_item.byte_limit = 0; 381 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT); 382 383 btrfs_set_root_bytenr(&root_item, leaf->start); 384 btrfs_set_root_generation(&root_item, trans->transid); 385 btrfs_set_root_level(&root_item, 0); 386 btrfs_set_root_refs(&root_item, 1); 387 btrfs_set_root_used(&root_item, leaf->len); 388 btrfs_set_root_last_snapshot(&root_item, 0); 389 390 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress)); 391 root_item.drop_level = 0; 392 393 btrfs_tree_unlock(leaf); 394 free_extent_buffer(leaf); 395 leaf = NULL; 396 397 btrfs_set_root_dirid(&root_item, new_dirid); 398 399 key.objectid = objectid; 400 key.offset = 0; 401 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 402 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 403 &root_item); 404 if (ret) 405 goto fail; 406 407 key.offset = (u64)-1; 408 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 409 BUG_ON(IS_ERR(new_root)); 410 411 btrfs_record_root_in_trans(trans, new_root); 412 413 ret = btrfs_create_subvol_root(trans, new_root, new_dirid); 414 /* 415 * insert the directory item 416 */ 417 ret = btrfs_set_inode_index(dir, &index); 418 BUG_ON(ret); 419 420 ret = btrfs_insert_dir_item(trans, root, 421 name, namelen, dir, &key, 422 BTRFS_FT_DIR, index); 423 if (ret) 424 goto fail; 425 426 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 427 ret = btrfs_update_inode(trans, root, dir); 428 BUG_ON(ret); 429 430 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 431 objectid, root->root_key.objectid, 432 btrfs_ino(dir), index, name, namelen); 433 434 BUG_ON(ret); 435 436 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry)); 437 fail: 438 if (async_transid) { 439 *async_transid = trans->transid; 440 err = btrfs_commit_transaction_async(trans, root, 1); 441 } else { 442 err = btrfs_commit_transaction(trans, root); 443 } 444 if (err && !ret) 445 ret = err; 446 return ret; 447 } 448 449 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry, 450 char *name, int namelen, u64 *async_transid, 451 bool readonly) 452 { 453 struct inode *inode; 454 struct btrfs_pending_snapshot *pending_snapshot; 455 struct btrfs_trans_handle *trans; 456 int ret; 457 458 if (!root->ref_cows) 459 return -EINVAL; 460 461 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 462 if (!pending_snapshot) 463 return -ENOMEM; 464 465 btrfs_init_block_rsv(&pending_snapshot->block_rsv); 466 pending_snapshot->dentry = dentry; 467 pending_snapshot->root = root; 468 pending_snapshot->readonly = readonly; 469 470 trans = btrfs_start_transaction(root->fs_info->extent_root, 5); 471 if (IS_ERR(trans)) { 472 ret = PTR_ERR(trans); 473 goto fail; 474 } 475 476 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot); 477 BUG_ON(ret); 478 479 spin_lock(&root->fs_info->trans_lock); 480 list_add(&pending_snapshot->list, 481 &trans->transaction->pending_snapshots); 482 spin_unlock(&root->fs_info->trans_lock); 483 if (async_transid) { 484 *async_transid = trans->transid; 485 ret = btrfs_commit_transaction_async(trans, 486 root->fs_info->extent_root, 1); 487 } else { 488 ret = btrfs_commit_transaction(trans, 489 root->fs_info->extent_root); 490 } 491 BUG_ON(ret); 492 493 ret = pending_snapshot->error; 494 if (ret) 495 goto fail; 496 497 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 498 if (ret) 499 goto fail; 500 501 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry); 502 if (IS_ERR(inode)) { 503 ret = PTR_ERR(inode); 504 goto fail; 505 } 506 BUG_ON(!inode); 507 d_instantiate(dentry, inode); 508 ret = 0; 509 fail: 510 kfree(pending_snapshot); 511 return ret; 512 } 513 514 /* copy of check_sticky in fs/namei.c() 515 * It's inline, so penalty for filesystems that don't use sticky bit is 516 * minimal. 517 */ 518 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode) 519 { 520 uid_t fsuid = current_fsuid(); 521 522 if (!(dir->i_mode & S_ISVTX)) 523 return 0; 524 if (inode->i_uid == fsuid) 525 return 0; 526 if (dir->i_uid == fsuid) 527 return 0; 528 return !capable(CAP_FOWNER); 529 } 530 531 /* copy of may_delete in fs/namei.c() 532 * Check whether we can remove a link victim from directory dir, check 533 * whether the type of victim is right. 534 * 1. We can't do it if dir is read-only (done in permission()) 535 * 2. We should have write and exec permissions on dir 536 * 3. We can't remove anything from append-only dir 537 * 4. We can't do anything with immutable dir (done in permission()) 538 * 5. If the sticky bit on dir is set we should either 539 * a. be owner of dir, or 540 * b. be owner of victim, or 541 * c. have CAP_FOWNER capability 542 * 6. If the victim is append-only or immutable we can't do antyhing with 543 * links pointing to it. 544 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 545 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 546 * 9. We can't remove a root or mountpoint. 547 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 548 * nfs_async_unlink(). 549 */ 550 551 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir) 552 { 553 int error; 554 555 if (!victim->d_inode) 556 return -ENOENT; 557 558 BUG_ON(victim->d_parent->d_inode != dir); 559 audit_inode_child(victim, dir); 560 561 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 562 if (error) 563 return error; 564 if (IS_APPEND(dir)) 565 return -EPERM; 566 if (btrfs_check_sticky(dir, victim->d_inode)|| 567 IS_APPEND(victim->d_inode)|| 568 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 569 return -EPERM; 570 if (isdir) { 571 if (!S_ISDIR(victim->d_inode->i_mode)) 572 return -ENOTDIR; 573 if (IS_ROOT(victim)) 574 return -EBUSY; 575 } else if (S_ISDIR(victim->d_inode->i_mode)) 576 return -EISDIR; 577 if (IS_DEADDIR(dir)) 578 return -ENOENT; 579 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 580 return -EBUSY; 581 return 0; 582 } 583 584 /* copy of may_create in fs/namei.c() */ 585 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 586 { 587 if (child->d_inode) 588 return -EEXIST; 589 if (IS_DEADDIR(dir)) 590 return -ENOENT; 591 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 592 } 593 594 /* 595 * Create a new subvolume below @parent. This is largely modeled after 596 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 597 * inside this filesystem so it's quite a bit simpler. 598 */ 599 static noinline int btrfs_mksubvol(struct path *parent, 600 char *name, int namelen, 601 struct btrfs_root *snap_src, 602 u64 *async_transid, bool readonly) 603 { 604 struct inode *dir = parent->dentry->d_inode; 605 struct dentry *dentry; 606 int error; 607 608 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 609 610 dentry = lookup_one_len(name, parent->dentry, namelen); 611 error = PTR_ERR(dentry); 612 if (IS_ERR(dentry)) 613 goto out_unlock; 614 615 error = -EEXIST; 616 if (dentry->d_inode) 617 goto out_dput; 618 619 error = mnt_want_write(parent->mnt); 620 if (error) 621 goto out_dput; 622 623 error = btrfs_may_create(dir, dentry); 624 if (error) 625 goto out_drop_write; 626 627 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 628 629 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 630 goto out_up_read; 631 632 if (snap_src) { 633 error = create_snapshot(snap_src, dentry, 634 name, namelen, async_transid, readonly); 635 } else { 636 error = create_subvol(BTRFS_I(dir)->root, dentry, 637 name, namelen, async_transid); 638 } 639 if (!error) 640 fsnotify_mkdir(dir, dentry); 641 out_up_read: 642 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 643 out_drop_write: 644 mnt_drop_write(parent->mnt); 645 out_dput: 646 dput(dentry); 647 out_unlock: 648 mutex_unlock(&dir->i_mutex); 649 return error; 650 } 651 652 /* 653 * When we're defragging a range, we don't want to kick it off again 654 * if it is really just waiting for delalloc to send it down. 655 * If we find a nice big extent or delalloc range for the bytes in the 656 * file you want to defrag, we return 0 to let you know to skip this 657 * part of the file 658 */ 659 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh) 660 { 661 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 662 struct extent_map *em = NULL; 663 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 664 u64 end; 665 666 read_lock(&em_tree->lock); 667 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 668 read_unlock(&em_tree->lock); 669 670 if (em) { 671 end = extent_map_end(em); 672 free_extent_map(em); 673 if (end - offset > thresh) 674 return 0; 675 } 676 /* if we already have a nice delalloc here, just stop */ 677 thresh /= 2; 678 end = count_range_bits(io_tree, &offset, offset + thresh, 679 thresh, EXTENT_DELALLOC, 1); 680 if (end >= thresh) 681 return 0; 682 return 1; 683 } 684 685 /* 686 * helper function to walk through a file and find extents 687 * newer than a specific transid, and smaller than thresh. 688 * 689 * This is used by the defragging code to find new and small 690 * extents 691 */ 692 static int find_new_extents(struct btrfs_root *root, 693 struct inode *inode, u64 newer_than, 694 u64 *off, int thresh) 695 { 696 struct btrfs_path *path; 697 struct btrfs_key min_key; 698 struct btrfs_key max_key; 699 struct extent_buffer *leaf; 700 struct btrfs_file_extent_item *extent; 701 int type; 702 int ret; 703 u64 ino = btrfs_ino(inode); 704 705 path = btrfs_alloc_path(); 706 if (!path) 707 return -ENOMEM; 708 709 min_key.objectid = ino; 710 min_key.type = BTRFS_EXTENT_DATA_KEY; 711 min_key.offset = *off; 712 713 max_key.objectid = ino; 714 max_key.type = (u8)-1; 715 max_key.offset = (u64)-1; 716 717 path->keep_locks = 1; 718 719 while(1) { 720 ret = btrfs_search_forward(root, &min_key, &max_key, 721 path, 0, newer_than); 722 if (ret != 0) 723 goto none; 724 if (min_key.objectid != ino) 725 goto none; 726 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 727 goto none; 728 729 leaf = path->nodes[0]; 730 extent = btrfs_item_ptr(leaf, path->slots[0], 731 struct btrfs_file_extent_item); 732 733 type = btrfs_file_extent_type(leaf, extent); 734 if (type == BTRFS_FILE_EXTENT_REG && 735 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 736 check_defrag_in_cache(inode, min_key.offset, thresh)) { 737 *off = min_key.offset; 738 btrfs_free_path(path); 739 return 0; 740 } 741 742 if (min_key.offset == (u64)-1) 743 goto none; 744 745 min_key.offset++; 746 btrfs_release_path(path); 747 } 748 none: 749 btrfs_free_path(path); 750 return -ENOENT; 751 } 752 753 static int should_defrag_range(struct inode *inode, u64 start, u64 len, 754 int thresh, u64 *last_len, u64 *skip, 755 u64 *defrag_end) 756 { 757 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 758 struct extent_map *em = NULL; 759 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 760 int ret = 1; 761 762 /* 763 * make sure that once we start defragging and extent, we keep on 764 * defragging it 765 */ 766 if (start < *defrag_end) 767 return 1; 768 769 *skip = 0; 770 771 /* 772 * hopefully we have this extent in the tree already, try without 773 * the full extent lock 774 */ 775 read_lock(&em_tree->lock); 776 em = lookup_extent_mapping(em_tree, start, len); 777 read_unlock(&em_tree->lock); 778 779 if (!em) { 780 /* get the big lock and read metadata off disk */ 781 lock_extent(io_tree, start, start + len - 1, GFP_NOFS); 782 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 783 unlock_extent(io_tree, start, start + len - 1, GFP_NOFS); 784 785 if (IS_ERR(em)) 786 return 0; 787 } 788 789 /* this will cover holes, and inline extents */ 790 if (em->block_start >= EXTENT_MAP_LAST_BYTE) 791 ret = 0; 792 793 /* 794 * we hit a real extent, if it is big don't bother defragging it again 795 */ 796 if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh) 797 ret = 0; 798 799 /* 800 * last_len ends up being a counter of how many bytes we've defragged. 801 * every time we choose not to defrag an extent, we reset *last_len 802 * so that the next tiny extent will force a defrag. 803 * 804 * The end result of this is that tiny extents before a single big 805 * extent will force at least part of that big extent to be defragged. 806 */ 807 if (ret) { 808 *last_len += len; 809 *defrag_end = extent_map_end(em); 810 } else { 811 *last_len = 0; 812 *skip = extent_map_end(em); 813 *defrag_end = 0; 814 } 815 816 free_extent_map(em); 817 return ret; 818 } 819 820 /* 821 * it doesn't do much good to defrag one or two pages 822 * at a time. This pulls in a nice chunk of pages 823 * to COW and defrag. 824 * 825 * It also makes sure the delalloc code has enough 826 * dirty data to avoid making new small extents as part 827 * of the defrag 828 * 829 * It's a good idea to start RA on this range 830 * before calling this. 831 */ 832 static int cluster_pages_for_defrag(struct inode *inode, 833 struct page **pages, 834 unsigned long start_index, 835 int num_pages) 836 { 837 unsigned long file_end; 838 u64 isize = i_size_read(inode); 839 u64 page_start; 840 u64 page_end; 841 int ret; 842 int i; 843 int i_done; 844 struct btrfs_ordered_extent *ordered; 845 struct extent_state *cached_state = NULL; 846 847 if (isize == 0) 848 return 0; 849 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 850 851 ret = btrfs_delalloc_reserve_space(inode, 852 num_pages << PAGE_CACHE_SHIFT); 853 if (ret) 854 return ret; 855 again: 856 ret = 0; 857 i_done = 0; 858 859 /* step one, lock all the pages */ 860 for (i = 0; i < num_pages; i++) { 861 struct page *page; 862 page = grab_cache_page(inode->i_mapping, 863 start_index + i); 864 if (!page) 865 break; 866 867 if (!PageUptodate(page)) { 868 btrfs_readpage(NULL, page); 869 lock_page(page); 870 if (!PageUptodate(page)) { 871 unlock_page(page); 872 page_cache_release(page); 873 ret = -EIO; 874 break; 875 } 876 } 877 isize = i_size_read(inode); 878 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 879 if (!isize || page->index > file_end || 880 page->mapping != inode->i_mapping) { 881 /* whoops, we blew past eof, skip this page */ 882 unlock_page(page); 883 page_cache_release(page); 884 break; 885 } 886 pages[i] = page; 887 i_done++; 888 } 889 if (!i_done || ret) 890 goto out; 891 892 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 893 goto out; 894 895 /* 896 * so now we have a nice long stream of locked 897 * and up to date pages, lets wait on them 898 */ 899 for (i = 0; i < i_done; i++) 900 wait_on_page_writeback(pages[i]); 901 902 page_start = page_offset(pages[0]); 903 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 904 905 lock_extent_bits(&BTRFS_I(inode)->io_tree, 906 page_start, page_end - 1, 0, &cached_state, 907 GFP_NOFS); 908 ordered = btrfs_lookup_first_ordered_extent(inode, page_end - 1); 909 if (ordered && 910 ordered->file_offset + ordered->len > page_start && 911 ordered->file_offset < page_end) { 912 btrfs_put_ordered_extent(ordered); 913 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 914 page_start, page_end - 1, 915 &cached_state, GFP_NOFS); 916 for (i = 0; i < i_done; i++) { 917 unlock_page(pages[i]); 918 page_cache_release(pages[i]); 919 } 920 btrfs_wait_ordered_range(inode, page_start, 921 page_end - page_start); 922 goto again; 923 } 924 if (ordered) 925 btrfs_put_ordered_extent(ordered); 926 927 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 928 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 929 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state, 930 GFP_NOFS); 931 932 if (i_done != num_pages) { 933 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 934 btrfs_delalloc_release_space(inode, 935 (num_pages - i_done) << PAGE_CACHE_SHIFT); 936 } 937 938 939 btrfs_set_extent_delalloc(inode, page_start, page_end - 1, 940 &cached_state); 941 942 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 943 page_start, page_end - 1, &cached_state, 944 GFP_NOFS); 945 946 for (i = 0; i < i_done; i++) { 947 clear_page_dirty_for_io(pages[i]); 948 ClearPageChecked(pages[i]); 949 set_page_extent_mapped(pages[i]); 950 set_page_dirty(pages[i]); 951 unlock_page(pages[i]); 952 page_cache_release(pages[i]); 953 } 954 return i_done; 955 out: 956 for (i = 0; i < i_done; i++) { 957 unlock_page(pages[i]); 958 page_cache_release(pages[i]); 959 } 960 btrfs_delalloc_release_space(inode, num_pages << PAGE_CACHE_SHIFT); 961 return ret; 962 963 } 964 965 int btrfs_defrag_file(struct inode *inode, struct file *file, 966 struct btrfs_ioctl_defrag_range_args *range, 967 u64 newer_than, unsigned long max_to_defrag) 968 { 969 struct btrfs_root *root = BTRFS_I(inode)->root; 970 struct btrfs_super_block *disk_super; 971 struct file_ra_state *ra = NULL; 972 unsigned long last_index; 973 u64 features; 974 u64 last_len = 0; 975 u64 skip = 0; 976 u64 defrag_end = 0; 977 u64 newer_off = range->start; 978 int newer_left = 0; 979 unsigned long i; 980 int ret; 981 int defrag_count = 0; 982 int compress_type = BTRFS_COMPRESS_ZLIB; 983 int extent_thresh = range->extent_thresh; 984 int newer_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 985 u64 new_align = ~((u64)128 * 1024 - 1); 986 struct page **pages = NULL; 987 988 if (extent_thresh == 0) 989 extent_thresh = 256 * 1024; 990 991 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 992 if (range->compress_type > BTRFS_COMPRESS_TYPES) 993 return -EINVAL; 994 if (range->compress_type) 995 compress_type = range->compress_type; 996 } 997 998 if (inode->i_size == 0) 999 return 0; 1000 1001 /* 1002 * if we were not given a file, allocate a readahead 1003 * context 1004 */ 1005 if (!file) { 1006 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1007 if (!ra) 1008 return -ENOMEM; 1009 file_ra_state_init(ra, inode->i_mapping); 1010 } else { 1011 ra = &file->f_ra; 1012 } 1013 1014 pages = kmalloc(sizeof(struct page *) * newer_cluster, 1015 GFP_NOFS); 1016 if (!pages) { 1017 ret = -ENOMEM; 1018 goto out_ra; 1019 } 1020 1021 /* find the last page to defrag */ 1022 if (range->start + range->len > range->start) { 1023 last_index = min_t(u64, inode->i_size - 1, 1024 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1025 } else { 1026 last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT; 1027 } 1028 1029 if (newer_than) { 1030 ret = find_new_extents(root, inode, newer_than, 1031 &newer_off, 64 * 1024); 1032 if (!ret) { 1033 range->start = newer_off; 1034 /* 1035 * we always align our defrag to help keep 1036 * the extents in the file evenly spaced 1037 */ 1038 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1039 newer_left = newer_cluster; 1040 } else 1041 goto out_ra; 1042 } else { 1043 i = range->start >> PAGE_CACHE_SHIFT; 1044 } 1045 if (!max_to_defrag) 1046 max_to_defrag = last_index - 1; 1047 1048 while (i <= last_index && defrag_count < max_to_defrag) { 1049 /* 1050 * make sure we stop running if someone unmounts 1051 * the FS 1052 */ 1053 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1054 break; 1055 1056 if (!newer_than && 1057 !should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1058 PAGE_CACHE_SIZE, 1059 extent_thresh, 1060 &last_len, &skip, 1061 &defrag_end)) { 1062 unsigned long next; 1063 /* 1064 * the should_defrag function tells us how much to skip 1065 * bump our counter by the suggested amount 1066 */ 1067 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1068 i = max(i + 1, next); 1069 continue; 1070 } 1071 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1072 BTRFS_I(inode)->force_compress = compress_type; 1073 1074 btrfs_force_ra(inode->i_mapping, ra, file, i, newer_cluster); 1075 1076 ret = cluster_pages_for_defrag(inode, pages, i, newer_cluster); 1077 if (ret < 0) 1078 goto out_ra; 1079 1080 defrag_count += ret; 1081 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret); 1082 i += ret; 1083 1084 if (newer_than) { 1085 if (newer_off == (u64)-1) 1086 break; 1087 1088 newer_off = max(newer_off + 1, 1089 (u64)i << PAGE_CACHE_SHIFT); 1090 1091 ret = find_new_extents(root, inode, 1092 newer_than, &newer_off, 1093 64 * 1024); 1094 if (!ret) { 1095 range->start = newer_off; 1096 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1097 newer_left = newer_cluster; 1098 } else { 1099 break; 1100 } 1101 } else { 1102 i++; 1103 } 1104 } 1105 1106 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) 1107 filemap_flush(inode->i_mapping); 1108 1109 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1110 /* the filemap_flush will queue IO into the worker threads, but 1111 * we have to make sure the IO is actually started and that 1112 * ordered extents get created before we return 1113 */ 1114 atomic_inc(&root->fs_info->async_submit_draining); 1115 while (atomic_read(&root->fs_info->nr_async_submits) || 1116 atomic_read(&root->fs_info->async_delalloc_pages)) { 1117 wait_event(root->fs_info->async_submit_wait, 1118 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1119 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1120 } 1121 atomic_dec(&root->fs_info->async_submit_draining); 1122 1123 mutex_lock(&inode->i_mutex); 1124 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1125 mutex_unlock(&inode->i_mutex); 1126 } 1127 1128 disk_super = &root->fs_info->super_copy; 1129 features = btrfs_super_incompat_flags(disk_super); 1130 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1131 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 1132 btrfs_set_super_incompat_flags(disk_super, features); 1133 } 1134 1135 if (!file) 1136 kfree(ra); 1137 return defrag_count; 1138 1139 out_ra: 1140 if (!file) 1141 kfree(ra); 1142 kfree(pages); 1143 return ret; 1144 } 1145 1146 static noinline int btrfs_ioctl_resize(struct btrfs_root *root, 1147 void __user *arg) 1148 { 1149 u64 new_size; 1150 u64 old_size; 1151 u64 devid = 1; 1152 struct btrfs_ioctl_vol_args *vol_args; 1153 struct btrfs_trans_handle *trans; 1154 struct btrfs_device *device = NULL; 1155 char *sizestr; 1156 char *devstr = NULL; 1157 int ret = 0; 1158 int mod = 0; 1159 1160 if (root->fs_info->sb->s_flags & MS_RDONLY) 1161 return -EROFS; 1162 1163 if (!capable(CAP_SYS_ADMIN)) 1164 return -EPERM; 1165 1166 vol_args = memdup_user(arg, sizeof(*vol_args)); 1167 if (IS_ERR(vol_args)) 1168 return PTR_ERR(vol_args); 1169 1170 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1171 1172 mutex_lock(&root->fs_info->volume_mutex); 1173 sizestr = vol_args->name; 1174 devstr = strchr(sizestr, ':'); 1175 if (devstr) { 1176 char *end; 1177 sizestr = devstr + 1; 1178 *devstr = '\0'; 1179 devstr = vol_args->name; 1180 devid = simple_strtoull(devstr, &end, 10); 1181 printk(KERN_INFO "resizing devid %llu\n", 1182 (unsigned long long)devid); 1183 } 1184 device = btrfs_find_device(root, devid, NULL, NULL); 1185 if (!device) { 1186 printk(KERN_INFO "resizer unable to find device %llu\n", 1187 (unsigned long long)devid); 1188 ret = -EINVAL; 1189 goto out_unlock; 1190 } 1191 if (!strcmp(sizestr, "max")) 1192 new_size = device->bdev->bd_inode->i_size; 1193 else { 1194 if (sizestr[0] == '-') { 1195 mod = -1; 1196 sizestr++; 1197 } else if (sizestr[0] == '+') { 1198 mod = 1; 1199 sizestr++; 1200 } 1201 new_size = memparse(sizestr, NULL); 1202 if (new_size == 0) { 1203 ret = -EINVAL; 1204 goto out_unlock; 1205 } 1206 } 1207 1208 old_size = device->total_bytes; 1209 1210 if (mod < 0) { 1211 if (new_size > old_size) { 1212 ret = -EINVAL; 1213 goto out_unlock; 1214 } 1215 new_size = old_size - new_size; 1216 } else if (mod > 0) { 1217 new_size = old_size + new_size; 1218 } 1219 1220 if (new_size < 256 * 1024 * 1024) { 1221 ret = -EINVAL; 1222 goto out_unlock; 1223 } 1224 if (new_size > device->bdev->bd_inode->i_size) { 1225 ret = -EFBIG; 1226 goto out_unlock; 1227 } 1228 1229 do_div(new_size, root->sectorsize); 1230 new_size *= root->sectorsize; 1231 1232 printk(KERN_INFO "new size for %s is %llu\n", 1233 device->name, (unsigned long long)new_size); 1234 1235 if (new_size > old_size) { 1236 trans = btrfs_start_transaction(root, 0); 1237 if (IS_ERR(trans)) { 1238 ret = PTR_ERR(trans); 1239 goto out_unlock; 1240 } 1241 ret = btrfs_grow_device(trans, device, new_size); 1242 btrfs_commit_transaction(trans, root); 1243 } else { 1244 ret = btrfs_shrink_device(device, new_size); 1245 } 1246 1247 out_unlock: 1248 mutex_unlock(&root->fs_info->volume_mutex); 1249 kfree(vol_args); 1250 return ret; 1251 } 1252 1253 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1254 char *name, 1255 unsigned long fd, 1256 int subvol, 1257 u64 *transid, 1258 bool readonly) 1259 { 1260 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 1261 struct file *src_file; 1262 int namelen; 1263 int ret = 0; 1264 1265 if (root->fs_info->sb->s_flags & MS_RDONLY) 1266 return -EROFS; 1267 1268 namelen = strlen(name); 1269 if (strchr(name, '/')) { 1270 ret = -EINVAL; 1271 goto out; 1272 } 1273 1274 if (subvol) { 1275 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1276 NULL, transid, readonly); 1277 } else { 1278 struct inode *src_inode; 1279 src_file = fget(fd); 1280 if (!src_file) { 1281 ret = -EINVAL; 1282 goto out; 1283 } 1284 1285 src_inode = src_file->f_path.dentry->d_inode; 1286 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) { 1287 printk(KERN_INFO "btrfs: Snapshot src from " 1288 "another FS\n"); 1289 ret = -EINVAL; 1290 fput(src_file); 1291 goto out; 1292 } 1293 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1294 BTRFS_I(src_inode)->root, 1295 transid, readonly); 1296 fput(src_file); 1297 } 1298 out: 1299 return ret; 1300 } 1301 1302 static noinline int btrfs_ioctl_snap_create(struct file *file, 1303 void __user *arg, int subvol) 1304 { 1305 struct btrfs_ioctl_vol_args *vol_args; 1306 int ret; 1307 1308 vol_args = memdup_user(arg, sizeof(*vol_args)); 1309 if (IS_ERR(vol_args)) 1310 return PTR_ERR(vol_args); 1311 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1312 1313 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1314 vol_args->fd, subvol, 1315 NULL, false); 1316 1317 kfree(vol_args); 1318 return ret; 1319 } 1320 1321 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1322 void __user *arg, int subvol) 1323 { 1324 struct btrfs_ioctl_vol_args_v2 *vol_args; 1325 int ret; 1326 u64 transid = 0; 1327 u64 *ptr = NULL; 1328 bool readonly = false; 1329 1330 vol_args = memdup_user(arg, sizeof(*vol_args)); 1331 if (IS_ERR(vol_args)) 1332 return PTR_ERR(vol_args); 1333 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1334 1335 if (vol_args->flags & 1336 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) { 1337 ret = -EOPNOTSUPP; 1338 goto out; 1339 } 1340 1341 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1342 ptr = &transid; 1343 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1344 readonly = true; 1345 1346 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1347 vol_args->fd, subvol, 1348 ptr, readonly); 1349 1350 if (ret == 0 && ptr && 1351 copy_to_user(arg + 1352 offsetof(struct btrfs_ioctl_vol_args_v2, 1353 transid), ptr, sizeof(*ptr))) 1354 ret = -EFAULT; 1355 out: 1356 kfree(vol_args); 1357 return ret; 1358 } 1359 1360 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1361 void __user *arg) 1362 { 1363 struct inode *inode = fdentry(file)->d_inode; 1364 struct btrfs_root *root = BTRFS_I(inode)->root; 1365 int ret = 0; 1366 u64 flags = 0; 1367 1368 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1369 return -EINVAL; 1370 1371 down_read(&root->fs_info->subvol_sem); 1372 if (btrfs_root_readonly(root)) 1373 flags |= BTRFS_SUBVOL_RDONLY; 1374 up_read(&root->fs_info->subvol_sem); 1375 1376 if (copy_to_user(arg, &flags, sizeof(flags))) 1377 ret = -EFAULT; 1378 1379 return ret; 1380 } 1381 1382 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1383 void __user *arg) 1384 { 1385 struct inode *inode = fdentry(file)->d_inode; 1386 struct btrfs_root *root = BTRFS_I(inode)->root; 1387 struct btrfs_trans_handle *trans; 1388 u64 root_flags; 1389 u64 flags; 1390 int ret = 0; 1391 1392 if (root->fs_info->sb->s_flags & MS_RDONLY) 1393 return -EROFS; 1394 1395 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1396 return -EINVAL; 1397 1398 if (copy_from_user(&flags, arg, sizeof(flags))) 1399 return -EFAULT; 1400 1401 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) 1402 return -EINVAL; 1403 1404 if (flags & ~BTRFS_SUBVOL_RDONLY) 1405 return -EOPNOTSUPP; 1406 1407 if (!inode_owner_or_capable(inode)) 1408 return -EACCES; 1409 1410 down_write(&root->fs_info->subvol_sem); 1411 1412 /* nothing to do */ 1413 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1414 goto out; 1415 1416 root_flags = btrfs_root_flags(&root->root_item); 1417 if (flags & BTRFS_SUBVOL_RDONLY) 1418 btrfs_set_root_flags(&root->root_item, 1419 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1420 else 1421 btrfs_set_root_flags(&root->root_item, 1422 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1423 1424 trans = btrfs_start_transaction(root, 1); 1425 if (IS_ERR(trans)) { 1426 ret = PTR_ERR(trans); 1427 goto out_reset; 1428 } 1429 1430 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1431 &root->root_key, &root->root_item); 1432 1433 btrfs_commit_transaction(trans, root); 1434 out_reset: 1435 if (ret) 1436 btrfs_set_root_flags(&root->root_item, root_flags); 1437 out: 1438 up_write(&root->fs_info->subvol_sem); 1439 return ret; 1440 } 1441 1442 /* 1443 * helper to check if the subvolume references other subvolumes 1444 */ 1445 static noinline int may_destroy_subvol(struct btrfs_root *root) 1446 { 1447 struct btrfs_path *path; 1448 struct btrfs_key key; 1449 int ret; 1450 1451 path = btrfs_alloc_path(); 1452 if (!path) 1453 return -ENOMEM; 1454 1455 key.objectid = root->root_key.objectid; 1456 key.type = BTRFS_ROOT_REF_KEY; 1457 key.offset = (u64)-1; 1458 1459 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1460 &key, path, 0, 0); 1461 if (ret < 0) 1462 goto out; 1463 BUG_ON(ret == 0); 1464 1465 ret = 0; 1466 if (path->slots[0] > 0) { 1467 path->slots[0]--; 1468 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1469 if (key.objectid == root->root_key.objectid && 1470 key.type == BTRFS_ROOT_REF_KEY) 1471 ret = -ENOTEMPTY; 1472 } 1473 out: 1474 btrfs_free_path(path); 1475 return ret; 1476 } 1477 1478 static noinline int key_in_sk(struct btrfs_key *key, 1479 struct btrfs_ioctl_search_key *sk) 1480 { 1481 struct btrfs_key test; 1482 int ret; 1483 1484 test.objectid = sk->min_objectid; 1485 test.type = sk->min_type; 1486 test.offset = sk->min_offset; 1487 1488 ret = btrfs_comp_cpu_keys(key, &test); 1489 if (ret < 0) 1490 return 0; 1491 1492 test.objectid = sk->max_objectid; 1493 test.type = sk->max_type; 1494 test.offset = sk->max_offset; 1495 1496 ret = btrfs_comp_cpu_keys(key, &test); 1497 if (ret > 0) 1498 return 0; 1499 return 1; 1500 } 1501 1502 static noinline int copy_to_sk(struct btrfs_root *root, 1503 struct btrfs_path *path, 1504 struct btrfs_key *key, 1505 struct btrfs_ioctl_search_key *sk, 1506 char *buf, 1507 unsigned long *sk_offset, 1508 int *num_found) 1509 { 1510 u64 found_transid; 1511 struct extent_buffer *leaf; 1512 struct btrfs_ioctl_search_header sh; 1513 unsigned long item_off; 1514 unsigned long item_len; 1515 int nritems; 1516 int i; 1517 int slot; 1518 int ret = 0; 1519 1520 leaf = path->nodes[0]; 1521 slot = path->slots[0]; 1522 nritems = btrfs_header_nritems(leaf); 1523 1524 if (btrfs_header_generation(leaf) > sk->max_transid) { 1525 i = nritems; 1526 goto advance_key; 1527 } 1528 found_transid = btrfs_header_generation(leaf); 1529 1530 for (i = slot; i < nritems; i++) { 1531 item_off = btrfs_item_ptr_offset(leaf, i); 1532 item_len = btrfs_item_size_nr(leaf, i); 1533 1534 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE) 1535 item_len = 0; 1536 1537 if (sizeof(sh) + item_len + *sk_offset > 1538 BTRFS_SEARCH_ARGS_BUFSIZE) { 1539 ret = 1; 1540 goto overflow; 1541 } 1542 1543 btrfs_item_key_to_cpu(leaf, key, i); 1544 if (!key_in_sk(key, sk)) 1545 continue; 1546 1547 sh.objectid = key->objectid; 1548 sh.offset = key->offset; 1549 sh.type = key->type; 1550 sh.len = item_len; 1551 sh.transid = found_transid; 1552 1553 /* copy search result header */ 1554 memcpy(buf + *sk_offset, &sh, sizeof(sh)); 1555 *sk_offset += sizeof(sh); 1556 1557 if (item_len) { 1558 char *p = buf + *sk_offset; 1559 /* copy the item */ 1560 read_extent_buffer(leaf, p, 1561 item_off, item_len); 1562 *sk_offset += item_len; 1563 } 1564 (*num_found)++; 1565 1566 if (*num_found >= sk->nr_items) 1567 break; 1568 } 1569 advance_key: 1570 ret = 0; 1571 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 1572 key->offset++; 1573 else if (key->type < (u8)-1 && key->type < sk->max_type) { 1574 key->offset = 0; 1575 key->type++; 1576 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 1577 key->offset = 0; 1578 key->type = 0; 1579 key->objectid++; 1580 } else 1581 ret = 1; 1582 overflow: 1583 return ret; 1584 } 1585 1586 static noinline int search_ioctl(struct inode *inode, 1587 struct btrfs_ioctl_search_args *args) 1588 { 1589 struct btrfs_root *root; 1590 struct btrfs_key key; 1591 struct btrfs_key max_key; 1592 struct btrfs_path *path; 1593 struct btrfs_ioctl_search_key *sk = &args->key; 1594 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 1595 int ret; 1596 int num_found = 0; 1597 unsigned long sk_offset = 0; 1598 1599 path = btrfs_alloc_path(); 1600 if (!path) 1601 return -ENOMEM; 1602 1603 if (sk->tree_id == 0) { 1604 /* search the root of the inode that was passed */ 1605 root = BTRFS_I(inode)->root; 1606 } else { 1607 key.objectid = sk->tree_id; 1608 key.type = BTRFS_ROOT_ITEM_KEY; 1609 key.offset = (u64)-1; 1610 root = btrfs_read_fs_root_no_name(info, &key); 1611 if (IS_ERR(root)) { 1612 printk(KERN_ERR "could not find root %llu\n", 1613 sk->tree_id); 1614 btrfs_free_path(path); 1615 return -ENOENT; 1616 } 1617 } 1618 1619 key.objectid = sk->min_objectid; 1620 key.type = sk->min_type; 1621 key.offset = sk->min_offset; 1622 1623 max_key.objectid = sk->max_objectid; 1624 max_key.type = sk->max_type; 1625 max_key.offset = sk->max_offset; 1626 1627 path->keep_locks = 1; 1628 1629 while(1) { 1630 ret = btrfs_search_forward(root, &key, &max_key, path, 0, 1631 sk->min_transid); 1632 if (ret != 0) { 1633 if (ret > 0) 1634 ret = 0; 1635 goto err; 1636 } 1637 ret = copy_to_sk(root, path, &key, sk, args->buf, 1638 &sk_offset, &num_found); 1639 btrfs_release_path(path); 1640 if (ret || num_found >= sk->nr_items) 1641 break; 1642 1643 } 1644 ret = 0; 1645 err: 1646 sk->nr_items = num_found; 1647 btrfs_free_path(path); 1648 return ret; 1649 } 1650 1651 static noinline int btrfs_ioctl_tree_search(struct file *file, 1652 void __user *argp) 1653 { 1654 struct btrfs_ioctl_search_args *args; 1655 struct inode *inode; 1656 int ret; 1657 1658 if (!capable(CAP_SYS_ADMIN)) 1659 return -EPERM; 1660 1661 args = memdup_user(argp, sizeof(*args)); 1662 if (IS_ERR(args)) 1663 return PTR_ERR(args); 1664 1665 inode = fdentry(file)->d_inode; 1666 ret = search_ioctl(inode, args); 1667 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1668 ret = -EFAULT; 1669 kfree(args); 1670 return ret; 1671 } 1672 1673 /* 1674 * Search INODE_REFs to identify path name of 'dirid' directory 1675 * in a 'tree_id' tree. and sets path name to 'name'. 1676 */ 1677 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1678 u64 tree_id, u64 dirid, char *name) 1679 { 1680 struct btrfs_root *root; 1681 struct btrfs_key key; 1682 char *ptr; 1683 int ret = -1; 1684 int slot; 1685 int len; 1686 int total_len = 0; 1687 struct btrfs_inode_ref *iref; 1688 struct extent_buffer *l; 1689 struct btrfs_path *path; 1690 1691 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1692 name[0]='\0'; 1693 return 0; 1694 } 1695 1696 path = btrfs_alloc_path(); 1697 if (!path) 1698 return -ENOMEM; 1699 1700 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 1701 1702 key.objectid = tree_id; 1703 key.type = BTRFS_ROOT_ITEM_KEY; 1704 key.offset = (u64)-1; 1705 root = btrfs_read_fs_root_no_name(info, &key); 1706 if (IS_ERR(root)) { 1707 printk(KERN_ERR "could not find root %llu\n", tree_id); 1708 ret = -ENOENT; 1709 goto out; 1710 } 1711 1712 key.objectid = dirid; 1713 key.type = BTRFS_INODE_REF_KEY; 1714 key.offset = (u64)-1; 1715 1716 while(1) { 1717 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1718 if (ret < 0) 1719 goto out; 1720 1721 l = path->nodes[0]; 1722 slot = path->slots[0]; 1723 if (ret > 0 && slot > 0) 1724 slot--; 1725 btrfs_item_key_to_cpu(l, &key, slot); 1726 1727 if (ret > 0 && (key.objectid != dirid || 1728 key.type != BTRFS_INODE_REF_KEY)) { 1729 ret = -ENOENT; 1730 goto out; 1731 } 1732 1733 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1734 len = btrfs_inode_ref_name_len(l, iref); 1735 ptr -= len + 1; 1736 total_len += len + 1; 1737 if (ptr < name) 1738 goto out; 1739 1740 *(ptr + len) = '/'; 1741 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len); 1742 1743 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1744 break; 1745 1746 btrfs_release_path(path); 1747 key.objectid = key.offset; 1748 key.offset = (u64)-1; 1749 dirid = key.objectid; 1750 1751 } 1752 if (ptr < name) 1753 goto out; 1754 memcpy(name, ptr, total_len); 1755 name[total_len]='\0'; 1756 ret = 0; 1757 out: 1758 btrfs_free_path(path); 1759 return ret; 1760 } 1761 1762 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 1763 void __user *argp) 1764 { 1765 struct btrfs_ioctl_ino_lookup_args *args; 1766 struct inode *inode; 1767 int ret; 1768 1769 if (!capable(CAP_SYS_ADMIN)) 1770 return -EPERM; 1771 1772 args = memdup_user(argp, sizeof(*args)); 1773 if (IS_ERR(args)) 1774 return PTR_ERR(args); 1775 1776 inode = fdentry(file)->d_inode; 1777 1778 if (args->treeid == 0) 1779 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 1780 1781 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 1782 args->treeid, args->objectid, 1783 args->name); 1784 1785 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1786 ret = -EFAULT; 1787 1788 kfree(args); 1789 return ret; 1790 } 1791 1792 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 1793 void __user *arg) 1794 { 1795 struct dentry *parent = fdentry(file); 1796 struct dentry *dentry; 1797 struct inode *dir = parent->d_inode; 1798 struct inode *inode; 1799 struct btrfs_root *root = BTRFS_I(dir)->root; 1800 struct btrfs_root *dest = NULL; 1801 struct btrfs_ioctl_vol_args *vol_args; 1802 struct btrfs_trans_handle *trans; 1803 int namelen; 1804 int ret; 1805 int err = 0; 1806 1807 vol_args = memdup_user(arg, sizeof(*vol_args)); 1808 if (IS_ERR(vol_args)) 1809 return PTR_ERR(vol_args); 1810 1811 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1812 namelen = strlen(vol_args->name); 1813 if (strchr(vol_args->name, '/') || 1814 strncmp(vol_args->name, "..", namelen) == 0) { 1815 err = -EINVAL; 1816 goto out; 1817 } 1818 1819 err = mnt_want_write(file->f_path.mnt); 1820 if (err) 1821 goto out; 1822 1823 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 1824 dentry = lookup_one_len(vol_args->name, parent, namelen); 1825 if (IS_ERR(dentry)) { 1826 err = PTR_ERR(dentry); 1827 goto out_unlock_dir; 1828 } 1829 1830 if (!dentry->d_inode) { 1831 err = -ENOENT; 1832 goto out_dput; 1833 } 1834 1835 inode = dentry->d_inode; 1836 dest = BTRFS_I(inode)->root; 1837 if (!capable(CAP_SYS_ADMIN)){ 1838 /* 1839 * Regular user. Only allow this with a special mount 1840 * option, when the user has write+exec access to the 1841 * subvol root, and when rmdir(2) would have been 1842 * allowed. 1843 * 1844 * Note that this is _not_ check that the subvol is 1845 * empty or doesn't contain data that we wouldn't 1846 * otherwise be able to delete. 1847 * 1848 * Users who want to delete empty subvols should try 1849 * rmdir(2). 1850 */ 1851 err = -EPERM; 1852 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 1853 goto out_dput; 1854 1855 /* 1856 * Do not allow deletion if the parent dir is the same 1857 * as the dir to be deleted. That means the ioctl 1858 * must be called on the dentry referencing the root 1859 * of the subvol, not a random directory contained 1860 * within it. 1861 */ 1862 err = -EINVAL; 1863 if (root == dest) 1864 goto out_dput; 1865 1866 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 1867 if (err) 1868 goto out_dput; 1869 1870 /* check if subvolume may be deleted by a non-root user */ 1871 err = btrfs_may_delete(dir, dentry, 1); 1872 if (err) 1873 goto out_dput; 1874 } 1875 1876 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1877 err = -EINVAL; 1878 goto out_dput; 1879 } 1880 1881 mutex_lock(&inode->i_mutex); 1882 err = d_invalidate(dentry); 1883 if (err) 1884 goto out_unlock; 1885 1886 down_write(&root->fs_info->subvol_sem); 1887 1888 err = may_destroy_subvol(dest); 1889 if (err) 1890 goto out_up_write; 1891 1892 trans = btrfs_start_transaction(root, 0); 1893 if (IS_ERR(trans)) { 1894 err = PTR_ERR(trans); 1895 goto out_up_write; 1896 } 1897 trans->block_rsv = &root->fs_info->global_block_rsv; 1898 1899 ret = btrfs_unlink_subvol(trans, root, dir, 1900 dest->root_key.objectid, 1901 dentry->d_name.name, 1902 dentry->d_name.len); 1903 BUG_ON(ret); 1904 1905 btrfs_record_root_in_trans(trans, dest); 1906 1907 memset(&dest->root_item.drop_progress, 0, 1908 sizeof(dest->root_item.drop_progress)); 1909 dest->root_item.drop_level = 0; 1910 btrfs_set_root_refs(&dest->root_item, 0); 1911 1912 if (!xchg(&dest->orphan_item_inserted, 1)) { 1913 ret = btrfs_insert_orphan_item(trans, 1914 root->fs_info->tree_root, 1915 dest->root_key.objectid); 1916 BUG_ON(ret); 1917 } 1918 1919 ret = btrfs_end_transaction(trans, root); 1920 BUG_ON(ret); 1921 inode->i_flags |= S_DEAD; 1922 out_up_write: 1923 up_write(&root->fs_info->subvol_sem); 1924 out_unlock: 1925 mutex_unlock(&inode->i_mutex); 1926 if (!err) { 1927 shrink_dcache_sb(root->fs_info->sb); 1928 btrfs_invalidate_inodes(dest); 1929 d_delete(dentry); 1930 } 1931 out_dput: 1932 dput(dentry); 1933 out_unlock_dir: 1934 mutex_unlock(&dir->i_mutex); 1935 mnt_drop_write(file->f_path.mnt); 1936 out: 1937 kfree(vol_args); 1938 return err; 1939 } 1940 1941 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 1942 { 1943 struct inode *inode = fdentry(file)->d_inode; 1944 struct btrfs_root *root = BTRFS_I(inode)->root; 1945 struct btrfs_ioctl_defrag_range_args *range; 1946 int ret; 1947 1948 if (btrfs_root_readonly(root)) 1949 return -EROFS; 1950 1951 ret = mnt_want_write(file->f_path.mnt); 1952 if (ret) 1953 return ret; 1954 1955 switch (inode->i_mode & S_IFMT) { 1956 case S_IFDIR: 1957 if (!capable(CAP_SYS_ADMIN)) { 1958 ret = -EPERM; 1959 goto out; 1960 } 1961 ret = btrfs_defrag_root(root, 0); 1962 if (ret) 1963 goto out; 1964 ret = btrfs_defrag_root(root->fs_info->extent_root, 0); 1965 break; 1966 case S_IFREG: 1967 if (!(file->f_mode & FMODE_WRITE)) { 1968 ret = -EINVAL; 1969 goto out; 1970 } 1971 1972 range = kzalloc(sizeof(*range), GFP_KERNEL); 1973 if (!range) { 1974 ret = -ENOMEM; 1975 goto out; 1976 } 1977 1978 if (argp) { 1979 if (copy_from_user(range, argp, 1980 sizeof(*range))) { 1981 ret = -EFAULT; 1982 kfree(range); 1983 goto out; 1984 } 1985 /* compression requires us to start the IO */ 1986 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1987 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 1988 range->extent_thresh = (u32)-1; 1989 } 1990 } else { 1991 /* the rest are all set to zero by kzalloc */ 1992 range->len = (u64)-1; 1993 } 1994 ret = btrfs_defrag_file(fdentry(file)->d_inode, file, 1995 range, 0, 0); 1996 if (ret > 0) 1997 ret = 0; 1998 kfree(range); 1999 break; 2000 default: 2001 ret = -EINVAL; 2002 } 2003 out: 2004 mnt_drop_write(file->f_path.mnt); 2005 return ret; 2006 } 2007 2008 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2009 { 2010 struct btrfs_ioctl_vol_args *vol_args; 2011 int ret; 2012 2013 if (!capable(CAP_SYS_ADMIN)) 2014 return -EPERM; 2015 2016 vol_args = memdup_user(arg, sizeof(*vol_args)); 2017 if (IS_ERR(vol_args)) 2018 return PTR_ERR(vol_args); 2019 2020 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2021 ret = btrfs_init_new_device(root, vol_args->name); 2022 2023 kfree(vol_args); 2024 return ret; 2025 } 2026 2027 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg) 2028 { 2029 struct btrfs_ioctl_vol_args *vol_args; 2030 int ret; 2031 2032 if (!capable(CAP_SYS_ADMIN)) 2033 return -EPERM; 2034 2035 if (root->fs_info->sb->s_flags & MS_RDONLY) 2036 return -EROFS; 2037 2038 vol_args = memdup_user(arg, sizeof(*vol_args)); 2039 if (IS_ERR(vol_args)) 2040 return PTR_ERR(vol_args); 2041 2042 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2043 ret = btrfs_rm_device(root, vol_args->name); 2044 2045 kfree(vol_args); 2046 return ret; 2047 } 2048 2049 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2050 { 2051 struct btrfs_ioctl_fs_info_args *fi_args; 2052 struct btrfs_device *device; 2053 struct btrfs_device *next; 2054 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2055 int ret = 0; 2056 2057 if (!capable(CAP_SYS_ADMIN)) 2058 return -EPERM; 2059 2060 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2061 if (!fi_args) 2062 return -ENOMEM; 2063 2064 fi_args->num_devices = fs_devices->num_devices; 2065 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2066 2067 mutex_lock(&fs_devices->device_list_mutex); 2068 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 2069 if (device->devid > fi_args->max_id) 2070 fi_args->max_id = device->devid; 2071 } 2072 mutex_unlock(&fs_devices->device_list_mutex); 2073 2074 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2075 ret = -EFAULT; 2076 2077 kfree(fi_args); 2078 return ret; 2079 } 2080 2081 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2082 { 2083 struct btrfs_ioctl_dev_info_args *di_args; 2084 struct btrfs_device *dev; 2085 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2086 int ret = 0; 2087 char *s_uuid = NULL; 2088 char empty_uuid[BTRFS_UUID_SIZE] = {0}; 2089 2090 if (!capable(CAP_SYS_ADMIN)) 2091 return -EPERM; 2092 2093 di_args = memdup_user(arg, sizeof(*di_args)); 2094 if (IS_ERR(di_args)) 2095 return PTR_ERR(di_args); 2096 2097 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0) 2098 s_uuid = di_args->uuid; 2099 2100 mutex_lock(&fs_devices->device_list_mutex); 2101 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL); 2102 mutex_unlock(&fs_devices->device_list_mutex); 2103 2104 if (!dev) { 2105 ret = -ENODEV; 2106 goto out; 2107 } 2108 2109 di_args->devid = dev->devid; 2110 di_args->bytes_used = dev->bytes_used; 2111 di_args->total_bytes = dev->total_bytes; 2112 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2113 strncpy(di_args->path, dev->name, sizeof(di_args->path)); 2114 2115 out: 2116 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2117 ret = -EFAULT; 2118 2119 kfree(di_args); 2120 return ret; 2121 } 2122 2123 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 2124 u64 off, u64 olen, u64 destoff) 2125 { 2126 struct inode *inode = fdentry(file)->d_inode; 2127 struct btrfs_root *root = BTRFS_I(inode)->root; 2128 struct file *src_file; 2129 struct inode *src; 2130 struct btrfs_trans_handle *trans; 2131 struct btrfs_path *path; 2132 struct extent_buffer *leaf; 2133 char *buf; 2134 struct btrfs_key key; 2135 u32 nritems; 2136 int slot; 2137 int ret; 2138 u64 len = olen; 2139 u64 bs = root->fs_info->sb->s_blocksize; 2140 u64 hint_byte; 2141 2142 /* 2143 * TODO: 2144 * - split compressed inline extents. annoying: we need to 2145 * decompress into destination's address_space (the file offset 2146 * may change, so source mapping won't do), then recompress (or 2147 * otherwise reinsert) a subrange. 2148 * - allow ranges within the same file to be cloned (provided 2149 * they don't overlap)? 2150 */ 2151 2152 /* the destination must be opened for writing */ 2153 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 2154 return -EINVAL; 2155 2156 if (btrfs_root_readonly(root)) 2157 return -EROFS; 2158 2159 ret = mnt_want_write(file->f_path.mnt); 2160 if (ret) 2161 return ret; 2162 2163 src_file = fget(srcfd); 2164 if (!src_file) { 2165 ret = -EBADF; 2166 goto out_drop_write; 2167 } 2168 2169 src = src_file->f_dentry->d_inode; 2170 2171 ret = -EINVAL; 2172 if (src == inode) 2173 goto out_fput; 2174 2175 /* the src must be open for reading */ 2176 if (!(src_file->f_mode & FMODE_READ)) 2177 goto out_fput; 2178 2179 ret = -EISDIR; 2180 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 2181 goto out_fput; 2182 2183 ret = -EXDEV; 2184 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root) 2185 goto out_fput; 2186 2187 ret = -ENOMEM; 2188 buf = vmalloc(btrfs_level_size(root, 0)); 2189 if (!buf) 2190 goto out_fput; 2191 2192 path = btrfs_alloc_path(); 2193 if (!path) { 2194 vfree(buf); 2195 goto out_fput; 2196 } 2197 path->reada = 2; 2198 2199 if (inode < src) { 2200 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 2201 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 2202 } else { 2203 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 2204 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 2205 } 2206 2207 /* determine range to clone */ 2208 ret = -EINVAL; 2209 if (off + len > src->i_size || off + len < off) 2210 goto out_unlock; 2211 if (len == 0) 2212 olen = len = src->i_size - off; 2213 /* if we extend to eof, continue to block boundary */ 2214 if (off + len == src->i_size) 2215 len = ALIGN(src->i_size, bs) - off; 2216 2217 /* verify the end result is block aligned */ 2218 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 2219 !IS_ALIGNED(destoff, bs)) 2220 goto out_unlock; 2221 2222 /* do any pending delalloc/csum calc on src, one way or 2223 another, and lock file content */ 2224 while (1) { 2225 struct btrfs_ordered_extent *ordered; 2226 lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 2227 ordered = btrfs_lookup_first_ordered_extent(src, off+len); 2228 if (!ordered && 2229 !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len, 2230 EXTENT_DELALLOC, 0, NULL)) 2231 break; 2232 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 2233 if (ordered) 2234 btrfs_put_ordered_extent(ordered); 2235 btrfs_wait_ordered_range(src, off, len); 2236 } 2237 2238 /* clone data */ 2239 key.objectid = btrfs_ino(src); 2240 key.type = BTRFS_EXTENT_DATA_KEY; 2241 key.offset = 0; 2242 2243 while (1) { 2244 /* 2245 * note the key will change type as we walk through the 2246 * tree. 2247 */ 2248 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2249 if (ret < 0) 2250 goto out; 2251 2252 nritems = btrfs_header_nritems(path->nodes[0]); 2253 if (path->slots[0] >= nritems) { 2254 ret = btrfs_next_leaf(root, path); 2255 if (ret < 0) 2256 goto out; 2257 if (ret > 0) 2258 break; 2259 nritems = btrfs_header_nritems(path->nodes[0]); 2260 } 2261 leaf = path->nodes[0]; 2262 slot = path->slots[0]; 2263 2264 btrfs_item_key_to_cpu(leaf, &key, slot); 2265 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || 2266 key.objectid != btrfs_ino(src)) 2267 break; 2268 2269 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { 2270 struct btrfs_file_extent_item *extent; 2271 int type; 2272 u32 size; 2273 struct btrfs_key new_key; 2274 u64 disko = 0, diskl = 0; 2275 u64 datao = 0, datal = 0; 2276 u8 comp; 2277 u64 endoff; 2278 2279 size = btrfs_item_size_nr(leaf, slot); 2280 read_extent_buffer(leaf, buf, 2281 btrfs_item_ptr_offset(leaf, slot), 2282 size); 2283 2284 extent = btrfs_item_ptr(leaf, slot, 2285 struct btrfs_file_extent_item); 2286 comp = btrfs_file_extent_compression(leaf, extent); 2287 type = btrfs_file_extent_type(leaf, extent); 2288 if (type == BTRFS_FILE_EXTENT_REG || 2289 type == BTRFS_FILE_EXTENT_PREALLOC) { 2290 disko = btrfs_file_extent_disk_bytenr(leaf, 2291 extent); 2292 diskl = btrfs_file_extent_disk_num_bytes(leaf, 2293 extent); 2294 datao = btrfs_file_extent_offset(leaf, extent); 2295 datal = btrfs_file_extent_num_bytes(leaf, 2296 extent); 2297 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2298 /* take upper bound, may be compressed */ 2299 datal = btrfs_file_extent_ram_bytes(leaf, 2300 extent); 2301 } 2302 btrfs_release_path(path); 2303 2304 if (key.offset + datal <= off || 2305 key.offset >= off+len) 2306 goto next; 2307 2308 memcpy(&new_key, &key, sizeof(new_key)); 2309 new_key.objectid = btrfs_ino(inode); 2310 if (off <= key.offset) 2311 new_key.offset = key.offset + destoff - off; 2312 else 2313 new_key.offset = destoff; 2314 2315 trans = btrfs_start_transaction(root, 1); 2316 if (IS_ERR(trans)) { 2317 ret = PTR_ERR(trans); 2318 goto out; 2319 } 2320 2321 if (type == BTRFS_FILE_EXTENT_REG || 2322 type == BTRFS_FILE_EXTENT_PREALLOC) { 2323 if (off > key.offset) { 2324 datao += off - key.offset; 2325 datal -= off - key.offset; 2326 } 2327 2328 if (key.offset + datal > off + len) 2329 datal = off + len - key.offset; 2330 2331 ret = btrfs_drop_extents(trans, inode, 2332 new_key.offset, 2333 new_key.offset + datal, 2334 &hint_byte, 1); 2335 BUG_ON(ret); 2336 2337 ret = btrfs_insert_empty_item(trans, root, path, 2338 &new_key, size); 2339 BUG_ON(ret); 2340 2341 leaf = path->nodes[0]; 2342 slot = path->slots[0]; 2343 write_extent_buffer(leaf, buf, 2344 btrfs_item_ptr_offset(leaf, slot), 2345 size); 2346 2347 extent = btrfs_item_ptr(leaf, slot, 2348 struct btrfs_file_extent_item); 2349 2350 /* disko == 0 means it's a hole */ 2351 if (!disko) 2352 datao = 0; 2353 2354 btrfs_set_file_extent_offset(leaf, extent, 2355 datao); 2356 btrfs_set_file_extent_num_bytes(leaf, extent, 2357 datal); 2358 if (disko) { 2359 inode_add_bytes(inode, datal); 2360 ret = btrfs_inc_extent_ref(trans, root, 2361 disko, diskl, 0, 2362 root->root_key.objectid, 2363 btrfs_ino(inode), 2364 new_key.offset - datao); 2365 BUG_ON(ret); 2366 } 2367 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2368 u64 skip = 0; 2369 u64 trim = 0; 2370 if (off > key.offset) { 2371 skip = off - key.offset; 2372 new_key.offset += skip; 2373 } 2374 2375 if (key.offset + datal > off+len) 2376 trim = key.offset + datal - (off+len); 2377 2378 if (comp && (skip || trim)) { 2379 ret = -EINVAL; 2380 btrfs_end_transaction(trans, root); 2381 goto out; 2382 } 2383 size -= skip + trim; 2384 datal -= skip + trim; 2385 2386 ret = btrfs_drop_extents(trans, inode, 2387 new_key.offset, 2388 new_key.offset + datal, 2389 &hint_byte, 1); 2390 BUG_ON(ret); 2391 2392 ret = btrfs_insert_empty_item(trans, root, path, 2393 &new_key, size); 2394 BUG_ON(ret); 2395 2396 if (skip) { 2397 u32 start = 2398 btrfs_file_extent_calc_inline_size(0); 2399 memmove(buf+start, buf+start+skip, 2400 datal); 2401 } 2402 2403 leaf = path->nodes[0]; 2404 slot = path->slots[0]; 2405 write_extent_buffer(leaf, buf, 2406 btrfs_item_ptr_offset(leaf, slot), 2407 size); 2408 inode_add_bytes(inode, datal); 2409 } 2410 2411 btrfs_mark_buffer_dirty(leaf); 2412 btrfs_release_path(path); 2413 2414 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2415 2416 /* 2417 * we round up to the block size at eof when 2418 * determining which extents to clone above, 2419 * but shouldn't round up the file size 2420 */ 2421 endoff = new_key.offset + datal; 2422 if (endoff > destoff+olen) 2423 endoff = destoff+olen; 2424 if (endoff > inode->i_size) 2425 btrfs_i_size_write(inode, endoff); 2426 2427 BTRFS_I(inode)->flags = BTRFS_I(src)->flags; 2428 ret = btrfs_update_inode(trans, root, inode); 2429 BUG_ON(ret); 2430 btrfs_end_transaction(trans, root); 2431 } 2432 next: 2433 btrfs_release_path(path); 2434 key.offset++; 2435 } 2436 ret = 0; 2437 out: 2438 btrfs_release_path(path); 2439 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 2440 out_unlock: 2441 mutex_unlock(&src->i_mutex); 2442 mutex_unlock(&inode->i_mutex); 2443 vfree(buf); 2444 btrfs_free_path(path); 2445 out_fput: 2446 fput(src_file); 2447 out_drop_write: 2448 mnt_drop_write(file->f_path.mnt); 2449 return ret; 2450 } 2451 2452 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 2453 { 2454 struct btrfs_ioctl_clone_range_args args; 2455 2456 if (copy_from_user(&args, argp, sizeof(args))) 2457 return -EFAULT; 2458 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 2459 args.src_length, args.dest_offset); 2460 } 2461 2462 /* 2463 * there are many ways the trans_start and trans_end ioctls can lead 2464 * to deadlocks. They should only be used by applications that 2465 * basically own the machine, and have a very in depth understanding 2466 * of all the possible deadlocks and enospc problems. 2467 */ 2468 static long btrfs_ioctl_trans_start(struct file *file) 2469 { 2470 struct inode *inode = fdentry(file)->d_inode; 2471 struct btrfs_root *root = BTRFS_I(inode)->root; 2472 struct btrfs_trans_handle *trans; 2473 int ret; 2474 2475 ret = -EPERM; 2476 if (!capable(CAP_SYS_ADMIN)) 2477 goto out; 2478 2479 ret = -EINPROGRESS; 2480 if (file->private_data) 2481 goto out; 2482 2483 ret = -EROFS; 2484 if (btrfs_root_readonly(root)) 2485 goto out; 2486 2487 ret = mnt_want_write(file->f_path.mnt); 2488 if (ret) 2489 goto out; 2490 2491 atomic_inc(&root->fs_info->open_ioctl_trans); 2492 2493 ret = -ENOMEM; 2494 trans = btrfs_start_ioctl_transaction(root); 2495 if (IS_ERR(trans)) 2496 goto out_drop; 2497 2498 file->private_data = trans; 2499 return 0; 2500 2501 out_drop: 2502 atomic_dec(&root->fs_info->open_ioctl_trans); 2503 mnt_drop_write(file->f_path.mnt); 2504 out: 2505 return ret; 2506 } 2507 2508 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2509 { 2510 struct inode *inode = fdentry(file)->d_inode; 2511 struct btrfs_root *root = BTRFS_I(inode)->root; 2512 struct btrfs_root *new_root; 2513 struct btrfs_dir_item *di; 2514 struct btrfs_trans_handle *trans; 2515 struct btrfs_path *path; 2516 struct btrfs_key location; 2517 struct btrfs_disk_key disk_key; 2518 struct btrfs_super_block *disk_super; 2519 u64 features; 2520 u64 objectid = 0; 2521 u64 dir_id; 2522 2523 if (!capable(CAP_SYS_ADMIN)) 2524 return -EPERM; 2525 2526 if (copy_from_user(&objectid, argp, sizeof(objectid))) 2527 return -EFAULT; 2528 2529 if (!objectid) 2530 objectid = root->root_key.objectid; 2531 2532 location.objectid = objectid; 2533 location.type = BTRFS_ROOT_ITEM_KEY; 2534 location.offset = (u64)-1; 2535 2536 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 2537 if (IS_ERR(new_root)) 2538 return PTR_ERR(new_root); 2539 2540 if (btrfs_root_refs(&new_root->root_item) == 0) 2541 return -ENOENT; 2542 2543 path = btrfs_alloc_path(); 2544 if (!path) 2545 return -ENOMEM; 2546 path->leave_spinning = 1; 2547 2548 trans = btrfs_start_transaction(root, 1); 2549 if (IS_ERR(trans)) { 2550 btrfs_free_path(path); 2551 return PTR_ERR(trans); 2552 } 2553 2554 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy); 2555 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 2556 dir_id, "default", 7, 1); 2557 if (IS_ERR_OR_NULL(di)) { 2558 btrfs_free_path(path); 2559 btrfs_end_transaction(trans, root); 2560 printk(KERN_ERR "Umm, you don't have the default dir item, " 2561 "this isn't going to work\n"); 2562 return -ENOENT; 2563 } 2564 2565 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2566 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2567 btrfs_mark_buffer_dirty(path->nodes[0]); 2568 btrfs_free_path(path); 2569 2570 disk_super = &root->fs_info->super_copy; 2571 features = btrfs_super_incompat_flags(disk_super); 2572 if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) { 2573 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL; 2574 btrfs_set_super_incompat_flags(disk_super, features); 2575 } 2576 btrfs_end_transaction(trans, root); 2577 2578 return 0; 2579 } 2580 2581 static void get_block_group_info(struct list_head *groups_list, 2582 struct btrfs_ioctl_space_info *space) 2583 { 2584 struct btrfs_block_group_cache *block_group; 2585 2586 space->total_bytes = 0; 2587 space->used_bytes = 0; 2588 space->flags = 0; 2589 list_for_each_entry(block_group, groups_list, list) { 2590 space->flags = block_group->flags; 2591 space->total_bytes += block_group->key.offset; 2592 space->used_bytes += 2593 btrfs_block_group_used(&block_group->item); 2594 } 2595 } 2596 2597 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 2598 { 2599 struct btrfs_ioctl_space_args space_args; 2600 struct btrfs_ioctl_space_info space; 2601 struct btrfs_ioctl_space_info *dest; 2602 struct btrfs_ioctl_space_info *dest_orig; 2603 struct btrfs_ioctl_space_info __user *user_dest; 2604 struct btrfs_space_info *info; 2605 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 2606 BTRFS_BLOCK_GROUP_SYSTEM, 2607 BTRFS_BLOCK_GROUP_METADATA, 2608 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 2609 int num_types = 4; 2610 int alloc_size; 2611 int ret = 0; 2612 u64 slot_count = 0; 2613 int i, c; 2614 2615 if (copy_from_user(&space_args, 2616 (struct btrfs_ioctl_space_args __user *)arg, 2617 sizeof(space_args))) 2618 return -EFAULT; 2619 2620 for (i = 0; i < num_types; i++) { 2621 struct btrfs_space_info *tmp; 2622 2623 info = NULL; 2624 rcu_read_lock(); 2625 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2626 list) { 2627 if (tmp->flags == types[i]) { 2628 info = tmp; 2629 break; 2630 } 2631 } 2632 rcu_read_unlock(); 2633 2634 if (!info) 2635 continue; 2636 2637 down_read(&info->groups_sem); 2638 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2639 if (!list_empty(&info->block_groups[c])) 2640 slot_count++; 2641 } 2642 up_read(&info->groups_sem); 2643 } 2644 2645 /* space_slots == 0 means they are asking for a count */ 2646 if (space_args.space_slots == 0) { 2647 space_args.total_spaces = slot_count; 2648 goto out; 2649 } 2650 2651 slot_count = min_t(u64, space_args.space_slots, slot_count); 2652 2653 alloc_size = sizeof(*dest) * slot_count; 2654 2655 /* we generally have at most 6 or so space infos, one for each raid 2656 * level. So, a whole page should be more than enough for everyone 2657 */ 2658 if (alloc_size > PAGE_CACHE_SIZE) 2659 return -ENOMEM; 2660 2661 space_args.total_spaces = 0; 2662 dest = kmalloc(alloc_size, GFP_NOFS); 2663 if (!dest) 2664 return -ENOMEM; 2665 dest_orig = dest; 2666 2667 /* now we have a buffer to copy into */ 2668 for (i = 0; i < num_types; i++) { 2669 struct btrfs_space_info *tmp; 2670 2671 if (!slot_count) 2672 break; 2673 2674 info = NULL; 2675 rcu_read_lock(); 2676 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2677 list) { 2678 if (tmp->flags == types[i]) { 2679 info = tmp; 2680 break; 2681 } 2682 } 2683 rcu_read_unlock(); 2684 2685 if (!info) 2686 continue; 2687 down_read(&info->groups_sem); 2688 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2689 if (!list_empty(&info->block_groups[c])) { 2690 get_block_group_info(&info->block_groups[c], 2691 &space); 2692 memcpy(dest, &space, sizeof(space)); 2693 dest++; 2694 space_args.total_spaces++; 2695 slot_count--; 2696 } 2697 if (!slot_count) 2698 break; 2699 } 2700 up_read(&info->groups_sem); 2701 } 2702 2703 user_dest = (struct btrfs_ioctl_space_info *) 2704 (arg + sizeof(struct btrfs_ioctl_space_args)); 2705 2706 if (copy_to_user(user_dest, dest_orig, alloc_size)) 2707 ret = -EFAULT; 2708 2709 kfree(dest_orig); 2710 out: 2711 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 2712 ret = -EFAULT; 2713 2714 return ret; 2715 } 2716 2717 /* 2718 * there are many ways the trans_start and trans_end ioctls can lead 2719 * to deadlocks. They should only be used by applications that 2720 * basically own the machine, and have a very in depth understanding 2721 * of all the possible deadlocks and enospc problems. 2722 */ 2723 long btrfs_ioctl_trans_end(struct file *file) 2724 { 2725 struct inode *inode = fdentry(file)->d_inode; 2726 struct btrfs_root *root = BTRFS_I(inode)->root; 2727 struct btrfs_trans_handle *trans; 2728 2729 trans = file->private_data; 2730 if (!trans) 2731 return -EINVAL; 2732 file->private_data = NULL; 2733 2734 btrfs_end_transaction(trans, root); 2735 2736 atomic_dec(&root->fs_info->open_ioctl_trans); 2737 2738 mnt_drop_write(file->f_path.mnt); 2739 return 0; 2740 } 2741 2742 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp) 2743 { 2744 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 2745 struct btrfs_trans_handle *trans; 2746 u64 transid; 2747 int ret; 2748 2749 trans = btrfs_start_transaction(root, 0); 2750 if (IS_ERR(trans)) 2751 return PTR_ERR(trans); 2752 transid = trans->transid; 2753 ret = btrfs_commit_transaction_async(trans, root, 0); 2754 if (ret) { 2755 btrfs_end_transaction(trans, root); 2756 return ret; 2757 } 2758 2759 if (argp) 2760 if (copy_to_user(argp, &transid, sizeof(transid))) 2761 return -EFAULT; 2762 return 0; 2763 } 2764 2765 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp) 2766 { 2767 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 2768 u64 transid; 2769 2770 if (argp) { 2771 if (copy_from_user(&transid, argp, sizeof(transid))) 2772 return -EFAULT; 2773 } else { 2774 transid = 0; /* current trans */ 2775 } 2776 return btrfs_wait_for_commit(root, transid); 2777 } 2778 2779 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg) 2780 { 2781 int ret; 2782 struct btrfs_ioctl_scrub_args *sa; 2783 2784 if (!capable(CAP_SYS_ADMIN)) 2785 return -EPERM; 2786 2787 sa = memdup_user(arg, sizeof(*sa)); 2788 if (IS_ERR(sa)) 2789 return PTR_ERR(sa); 2790 2791 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end, 2792 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY); 2793 2794 if (copy_to_user(arg, sa, sizeof(*sa))) 2795 ret = -EFAULT; 2796 2797 kfree(sa); 2798 return ret; 2799 } 2800 2801 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 2802 { 2803 if (!capable(CAP_SYS_ADMIN)) 2804 return -EPERM; 2805 2806 return btrfs_scrub_cancel(root); 2807 } 2808 2809 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 2810 void __user *arg) 2811 { 2812 struct btrfs_ioctl_scrub_args *sa; 2813 int ret; 2814 2815 if (!capable(CAP_SYS_ADMIN)) 2816 return -EPERM; 2817 2818 sa = memdup_user(arg, sizeof(*sa)); 2819 if (IS_ERR(sa)) 2820 return PTR_ERR(sa); 2821 2822 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 2823 2824 if (copy_to_user(arg, sa, sizeof(*sa))) 2825 ret = -EFAULT; 2826 2827 kfree(sa); 2828 return ret; 2829 } 2830 2831 long btrfs_ioctl(struct file *file, unsigned int 2832 cmd, unsigned long arg) 2833 { 2834 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 2835 void __user *argp = (void __user *)arg; 2836 2837 switch (cmd) { 2838 case FS_IOC_GETFLAGS: 2839 return btrfs_ioctl_getflags(file, argp); 2840 case FS_IOC_SETFLAGS: 2841 return btrfs_ioctl_setflags(file, argp); 2842 case FS_IOC_GETVERSION: 2843 return btrfs_ioctl_getversion(file, argp); 2844 case FITRIM: 2845 return btrfs_ioctl_fitrim(file, argp); 2846 case BTRFS_IOC_SNAP_CREATE: 2847 return btrfs_ioctl_snap_create(file, argp, 0); 2848 case BTRFS_IOC_SNAP_CREATE_V2: 2849 return btrfs_ioctl_snap_create_v2(file, argp, 0); 2850 case BTRFS_IOC_SUBVOL_CREATE: 2851 return btrfs_ioctl_snap_create(file, argp, 1); 2852 case BTRFS_IOC_SNAP_DESTROY: 2853 return btrfs_ioctl_snap_destroy(file, argp); 2854 case BTRFS_IOC_SUBVOL_GETFLAGS: 2855 return btrfs_ioctl_subvol_getflags(file, argp); 2856 case BTRFS_IOC_SUBVOL_SETFLAGS: 2857 return btrfs_ioctl_subvol_setflags(file, argp); 2858 case BTRFS_IOC_DEFAULT_SUBVOL: 2859 return btrfs_ioctl_default_subvol(file, argp); 2860 case BTRFS_IOC_DEFRAG: 2861 return btrfs_ioctl_defrag(file, NULL); 2862 case BTRFS_IOC_DEFRAG_RANGE: 2863 return btrfs_ioctl_defrag(file, argp); 2864 case BTRFS_IOC_RESIZE: 2865 return btrfs_ioctl_resize(root, argp); 2866 case BTRFS_IOC_ADD_DEV: 2867 return btrfs_ioctl_add_dev(root, argp); 2868 case BTRFS_IOC_RM_DEV: 2869 return btrfs_ioctl_rm_dev(root, argp); 2870 case BTRFS_IOC_FS_INFO: 2871 return btrfs_ioctl_fs_info(root, argp); 2872 case BTRFS_IOC_DEV_INFO: 2873 return btrfs_ioctl_dev_info(root, argp); 2874 case BTRFS_IOC_BALANCE: 2875 return btrfs_balance(root->fs_info->dev_root); 2876 case BTRFS_IOC_CLONE: 2877 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 2878 case BTRFS_IOC_CLONE_RANGE: 2879 return btrfs_ioctl_clone_range(file, argp); 2880 case BTRFS_IOC_TRANS_START: 2881 return btrfs_ioctl_trans_start(file); 2882 case BTRFS_IOC_TRANS_END: 2883 return btrfs_ioctl_trans_end(file); 2884 case BTRFS_IOC_TREE_SEARCH: 2885 return btrfs_ioctl_tree_search(file, argp); 2886 case BTRFS_IOC_INO_LOOKUP: 2887 return btrfs_ioctl_ino_lookup(file, argp); 2888 case BTRFS_IOC_SPACE_INFO: 2889 return btrfs_ioctl_space_info(root, argp); 2890 case BTRFS_IOC_SYNC: 2891 btrfs_sync_fs(file->f_dentry->d_sb, 1); 2892 return 0; 2893 case BTRFS_IOC_START_SYNC: 2894 return btrfs_ioctl_start_sync(file, argp); 2895 case BTRFS_IOC_WAIT_SYNC: 2896 return btrfs_ioctl_wait_sync(file, argp); 2897 case BTRFS_IOC_SCRUB: 2898 return btrfs_ioctl_scrub(root, argp); 2899 case BTRFS_IOC_SCRUB_CANCEL: 2900 return btrfs_ioctl_scrub_cancel(root, argp); 2901 case BTRFS_IOC_SCRUB_PROGRESS: 2902 return btrfs_ioctl_scrub_progress(root, argp); 2903 } 2904 2905 return -ENOTTY; 2906 } 2907