1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "export.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "volumes.h" 39 #include "locking.h" 40 #include "backref.h" 41 #include "rcu-string.h" 42 #include "send.h" 43 #include "dev-replace.h" 44 #include "props.h" 45 #include "sysfs.h" 46 #include "qgroup.h" 47 #include "tree-log.h" 48 #include "compression.h" 49 #include "space-info.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "subpage.h" 53 54 #ifdef CONFIG_64BIT 55 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 56 * structures are incorrect, as the timespec structure from userspace 57 * is 4 bytes too small. We define these alternatives here to teach 58 * the kernel about the 32-bit struct packing. 59 */ 60 struct btrfs_ioctl_timespec_32 { 61 __u64 sec; 62 __u32 nsec; 63 } __attribute__ ((__packed__)); 64 65 struct btrfs_ioctl_received_subvol_args_32 { 66 char uuid[BTRFS_UUID_SIZE]; /* in */ 67 __u64 stransid; /* in */ 68 __u64 rtransid; /* out */ 69 struct btrfs_ioctl_timespec_32 stime; /* in */ 70 struct btrfs_ioctl_timespec_32 rtime; /* out */ 71 __u64 flags; /* in */ 72 __u64 reserved[16]; /* in */ 73 } __attribute__ ((__packed__)); 74 75 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 76 struct btrfs_ioctl_received_subvol_args_32) 77 #endif 78 79 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 80 struct btrfs_ioctl_send_args_32 { 81 __s64 send_fd; /* in */ 82 __u64 clone_sources_count; /* in */ 83 compat_uptr_t clone_sources; /* in */ 84 __u64 parent_root; /* in */ 85 __u64 flags; /* in */ 86 __u32 version; /* in */ 87 __u8 reserved[28]; /* in */ 88 } __attribute__ ((__packed__)); 89 90 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 91 struct btrfs_ioctl_send_args_32) 92 93 struct btrfs_ioctl_encoded_io_args_32 { 94 compat_uptr_t iov; 95 compat_ulong_t iovcnt; 96 __s64 offset; 97 __u64 flags; 98 __u64 len; 99 __u64 unencoded_len; 100 __u64 unencoded_offset; 101 __u32 compression; 102 __u32 encryption; 103 __u8 reserved[64]; 104 }; 105 106 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 107 struct btrfs_ioctl_encoded_io_args_32) 108 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 109 struct btrfs_ioctl_encoded_io_args_32) 110 #endif 111 112 /* Mask out flags that are inappropriate for the given type of inode. */ 113 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 114 unsigned int flags) 115 { 116 if (S_ISDIR(inode->i_mode)) 117 return flags; 118 else if (S_ISREG(inode->i_mode)) 119 return flags & ~FS_DIRSYNC_FL; 120 else 121 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 122 } 123 124 /* 125 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 126 * ioctl. 127 */ 128 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 129 { 130 unsigned int iflags = 0; 131 u32 flags = binode->flags; 132 u32 ro_flags = binode->ro_flags; 133 134 if (flags & BTRFS_INODE_SYNC) 135 iflags |= FS_SYNC_FL; 136 if (flags & BTRFS_INODE_IMMUTABLE) 137 iflags |= FS_IMMUTABLE_FL; 138 if (flags & BTRFS_INODE_APPEND) 139 iflags |= FS_APPEND_FL; 140 if (flags & BTRFS_INODE_NODUMP) 141 iflags |= FS_NODUMP_FL; 142 if (flags & BTRFS_INODE_NOATIME) 143 iflags |= FS_NOATIME_FL; 144 if (flags & BTRFS_INODE_DIRSYNC) 145 iflags |= FS_DIRSYNC_FL; 146 if (flags & BTRFS_INODE_NODATACOW) 147 iflags |= FS_NOCOW_FL; 148 if (ro_flags & BTRFS_INODE_RO_VERITY) 149 iflags |= FS_VERITY_FL; 150 151 if (flags & BTRFS_INODE_NOCOMPRESS) 152 iflags |= FS_NOCOMP_FL; 153 else if (flags & BTRFS_INODE_COMPRESS) 154 iflags |= FS_COMPR_FL; 155 156 return iflags; 157 } 158 159 /* 160 * Update inode->i_flags based on the btrfs internal flags. 161 */ 162 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 163 { 164 struct btrfs_inode *binode = BTRFS_I(inode); 165 unsigned int new_fl = 0; 166 167 if (binode->flags & BTRFS_INODE_SYNC) 168 new_fl |= S_SYNC; 169 if (binode->flags & BTRFS_INODE_IMMUTABLE) 170 new_fl |= S_IMMUTABLE; 171 if (binode->flags & BTRFS_INODE_APPEND) 172 new_fl |= S_APPEND; 173 if (binode->flags & BTRFS_INODE_NOATIME) 174 new_fl |= S_NOATIME; 175 if (binode->flags & BTRFS_INODE_DIRSYNC) 176 new_fl |= S_DIRSYNC; 177 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 178 new_fl |= S_VERITY; 179 180 set_mask_bits(&inode->i_flags, 181 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 182 S_VERITY, new_fl); 183 } 184 185 /* 186 * Check if @flags are a supported and valid set of FS_*_FL flags and that 187 * the old and new flags are not conflicting 188 */ 189 static int check_fsflags(unsigned int old_flags, unsigned int flags) 190 { 191 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 192 FS_NOATIME_FL | FS_NODUMP_FL | \ 193 FS_SYNC_FL | FS_DIRSYNC_FL | \ 194 FS_NOCOMP_FL | FS_COMPR_FL | 195 FS_NOCOW_FL)) 196 return -EOPNOTSUPP; 197 198 /* COMPR and NOCOMP on new/old are valid */ 199 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 200 return -EINVAL; 201 202 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 203 return -EINVAL; 204 205 /* NOCOW and compression options are mutually exclusive */ 206 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 207 return -EINVAL; 208 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 209 return -EINVAL; 210 211 return 0; 212 } 213 214 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 215 unsigned int flags) 216 { 217 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 218 return -EPERM; 219 220 return 0; 221 } 222 223 /* 224 * Set flags/xflags from the internal inode flags. The remaining items of 225 * fsxattr are zeroed. 226 */ 227 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 228 { 229 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 230 231 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 232 return 0; 233 } 234 235 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 236 struct dentry *dentry, struct fileattr *fa) 237 { 238 struct inode *inode = d_inode(dentry); 239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 240 struct btrfs_inode *binode = BTRFS_I(inode); 241 struct btrfs_root *root = binode->root; 242 struct btrfs_trans_handle *trans; 243 unsigned int fsflags, old_fsflags; 244 int ret; 245 const char *comp = NULL; 246 u32 binode_flags; 247 248 if (btrfs_root_readonly(root)) 249 return -EROFS; 250 251 if (fileattr_has_fsx(fa)) 252 return -EOPNOTSUPP; 253 254 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 255 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 256 ret = check_fsflags(old_fsflags, fsflags); 257 if (ret) 258 return ret; 259 260 ret = check_fsflags_compatible(fs_info, fsflags); 261 if (ret) 262 return ret; 263 264 binode_flags = binode->flags; 265 if (fsflags & FS_SYNC_FL) 266 binode_flags |= BTRFS_INODE_SYNC; 267 else 268 binode_flags &= ~BTRFS_INODE_SYNC; 269 if (fsflags & FS_IMMUTABLE_FL) 270 binode_flags |= BTRFS_INODE_IMMUTABLE; 271 else 272 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 273 if (fsflags & FS_APPEND_FL) 274 binode_flags |= BTRFS_INODE_APPEND; 275 else 276 binode_flags &= ~BTRFS_INODE_APPEND; 277 if (fsflags & FS_NODUMP_FL) 278 binode_flags |= BTRFS_INODE_NODUMP; 279 else 280 binode_flags &= ~BTRFS_INODE_NODUMP; 281 if (fsflags & FS_NOATIME_FL) 282 binode_flags |= BTRFS_INODE_NOATIME; 283 else 284 binode_flags &= ~BTRFS_INODE_NOATIME; 285 286 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 287 if (!fa->flags_valid) { 288 /* 1 item for the inode */ 289 trans = btrfs_start_transaction(root, 1); 290 if (IS_ERR(trans)) 291 return PTR_ERR(trans); 292 goto update_flags; 293 } 294 295 if (fsflags & FS_DIRSYNC_FL) 296 binode_flags |= BTRFS_INODE_DIRSYNC; 297 else 298 binode_flags &= ~BTRFS_INODE_DIRSYNC; 299 if (fsflags & FS_NOCOW_FL) { 300 if (S_ISREG(inode->i_mode)) { 301 /* 302 * It's safe to turn csums off here, no extents exist. 303 * Otherwise we want the flag to reflect the real COW 304 * status of the file and will not set it. 305 */ 306 if (inode->i_size == 0) 307 binode_flags |= BTRFS_INODE_NODATACOW | 308 BTRFS_INODE_NODATASUM; 309 } else { 310 binode_flags |= BTRFS_INODE_NODATACOW; 311 } 312 } else { 313 /* 314 * Revert back under same assumptions as above 315 */ 316 if (S_ISREG(inode->i_mode)) { 317 if (inode->i_size == 0) 318 binode_flags &= ~(BTRFS_INODE_NODATACOW | 319 BTRFS_INODE_NODATASUM); 320 } else { 321 binode_flags &= ~BTRFS_INODE_NODATACOW; 322 } 323 } 324 325 /* 326 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 327 * flag may be changed automatically if compression code won't make 328 * things smaller. 329 */ 330 if (fsflags & FS_NOCOMP_FL) { 331 binode_flags &= ~BTRFS_INODE_COMPRESS; 332 binode_flags |= BTRFS_INODE_NOCOMPRESS; 333 } else if (fsflags & FS_COMPR_FL) { 334 335 if (IS_SWAPFILE(inode)) 336 return -ETXTBSY; 337 338 binode_flags |= BTRFS_INODE_COMPRESS; 339 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 340 341 comp = btrfs_compress_type2str(fs_info->compress_type); 342 if (!comp || comp[0] == 0) 343 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 344 } else { 345 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 346 } 347 348 /* 349 * 1 for inode item 350 * 2 for properties 351 */ 352 trans = btrfs_start_transaction(root, 3); 353 if (IS_ERR(trans)) 354 return PTR_ERR(trans); 355 356 if (comp) { 357 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 358 strlen(comp), 0); 359 if (ret) { 360 btrfs_abort_transaction(trans, ret); 361 goto out_end_trans; 362 } 363 } else { 364 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 365 0, 0); 366 if (ret && ret != -ENODATA) { 367 btrfs_abort_transaction(trans, ret); 368 goto out_end_trans; 369 } 370 } 371 372 update_flags: 373 binode->flags = binode_flags; 374 btrfs_sync_inode_flags_to_i_flags(inode); 375 inode_inc_iversion(inode); 376 inode->i_ctime = current_time(inode); 377 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 378 379 out_end_trans: 380 btrfs_end_transaction(trans); 381 return ret; 382 } 383 384 /* 385 * Start exclusive operation @type, return true on success 386 */ 387 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 388 enum btrfs_exclusive_operation type) 389 { 390 bool ret = false; 391 392 spin_lock(&fs_info->super_lock); 393 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 394 fs_info->exclusive_operation = type; 395 ret = true; 396 } 397 spin_unlock(&fs_info->super_lock); 398 399 return ret; 400 } 401 402 /* 403 * Conditionally allow to enter the exclusive operation in case it's compatible 404 * with the running one. This must be paired with btrfs_exclop_start_unlock and 405 * btrfs_exclop_finish. 406 * 407 * Compatibility: 408 * - the same type is already running 409 * - when trying to add a device and balance has been paused 410 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 411 * must check the condition first that would allow none -> @type 412 */ 413 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 414 enum btrfs_exclusive_operation type) 415 { 416 spin_lock(&fs_info->super_lock); 417 if (fs_info->exclusive_operation == type || 418 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 419 type == BTRFS_EXCLOP_DEV_ADD)) 420 return true; 421 422 spin_unlock(&fs_info->super_lock); 423 return false; 424 } 425 426 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 427 { 428 spin_unlock(&fs_info->super_lock); 429 } 430 431 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 432 { 433 spin_lock(&fs_info->super_lock); 434 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 435 spin_unlock(&fs_info->super_lock); 436 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 437 } 438 439 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 440 enum btrfs_exclusive_operation op) 441 { 442 switch (op) { 443 case BTRFS_EXCLOP_BALANCE_PAUSED: 444 spin_lock(&fs_info->super_lock); 445 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 446 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD); 447 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 448 spin_unlock(&fs_info->super_lock); 449 break; 450 case BTRFS_EXCLOP_BALANCE: 451 spin_lock(&fs_info->super_lock); 452 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 453 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 454 spin_unlock(&fs_info->super_lock); 455 break; 456 default: 457 btrfs_warn(fs_info, 458 "invalid exclop balance operation %d requested", op); 459 } 460 } 461 462 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 463 { 464 return put_user(inode->i_generation, arg); 465 } 466 467 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 468 void __user *arg) 469 { 470 struct btrfs_device *device; 471 struct fstrim_range range; 472 u64 minlen = ULLONG_MAX; 473 u64 num_devices = 0; 474 int ret; 475 476 if (!capable(CAP_SYS_ADMIN)) 477 return -EPERM; 478 479 /* 480 * btrfs_trim_block_group() depends on space cache, which is not 481 * available in zoned filesystem. So, disallow fitrim on a zoned 482 * filesystem for now. 483 */ 484 if (btrfs_is_zoned(fs_info)) 485 return -EOPNOTSUPP; 486 487 /* 488 * If the fs is mounted with nologreplay, which requires it to be 489 * mounted in RO mode as well, we can not allow discard on free space 490 * inside block groups, because log trees refer to extents that are not 491 * pinned in a block group's free space cache (pinning the extents is 492 * precisely the first phase of replaying a log tree). 493 */ 494 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 495 return -EROFS; 496 497 rcu_read_lock(); 498 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 499 dev_list) { 500 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 501 continue; 502 num_devices++; 503 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 504 minlen); 505 } 506 rcu_read_unlock(); 507 508 if (!num_devices) 509 return -EOPNOTSUPP; 510 if (copy_from_user(&range, arg, sizeof(range))) 511 return -EFAULT; 512 513 /* 514 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 515 * block group is in the logical address space, which can be any 516 * sectorsize aligned bytenr in the range [0, U64_MAX]. 517 */ 518 if (range.len < fs_info->sb->s_blocksize) 519 return -EINVAL; 520 521 range.minlen = max(range.minlen, minlen); 522 ret = btrfs_trim_fs(fs_info, &range); 523 if (ret < 0) 524 return ret; 525 526 if (copy_to_user(arg, &range, sizeof(range))) 527 return -EFAULT; 528 529 return 0; 530 } 531 532 int __pure btrfs_is_empty_uuid(u8 *uuid) 533 { 534 int i; 535 536 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 537 if (uuid[i]) 538 return 0; 539 } 540 return 1; 541 } 542 543 /* 544 * Calculate the number of transaction items to reserve for creating a subvolume 545 * or snapshot, not including the inode, directory entries, or parent directory. 546 */ 547 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) 548 { 549 /* 550 * 1 to add root block 551 * 1 to add root item 552 * 1 to add root ref 553 * 1 to add root backref 554 * 1 to add UUID item 555 * 1 to add qgroup info 556 * 1 to add qgroup limit 557 * 558 * Ideally the last two would only be accounted if qgroups are enabled, 559 * but that can change between now and the time we would insert them. 560 */ 561 unsigned int num_items = 7; 562 563 if (inherit) { 564 /* 2 to add qgroup relations for each inherited qgroup */ 565 num_items += 2 * inherit->num_qgroups; 566 } 567 return num_items; 568 } 569 570 static noinline int create_subvol(struct user_namespace *mnt_userns, 571 struct inode *dir, struct dentry *dentry, 572 struct btrfs_qgroup_inherit *inherit) 573 { 574 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 575 struct btrfs_trans_handle *trans; 576 struct btrfs_key key; 577 struct btrfs_root_item *root_item; 578 struct btrfs_inode_item *inode_item; 579 struct extent_buffer *leaf; 580 struct btrfs_root *root = BTRFS_I(dir)->root; 581 struct btrfs_root *new_root; 582 struct btrfs_block_rsv block_rsv; 583 struct timespec64 cur_time = current_time(dir); 584 struct btrfs_new_inode_args new_inode_args = { 585 .dir = dir, 586 .dentry = dentry, 587 .subvol = true, 588 }; 589 unsigned int trans_num_items; 590 int ret; 591 dev_t anon_dev; 592 u64 objectid; 593 594 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 595 if (!root_item) 596 return -ENOMEM; 597 598 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 599 if (ret) 600 goto out_root_item; 601 602 /* 603 * Don't create subvolume whose level is not zero. Or qgroup will be 604 * screwed up since it assumes subvolume qgroup's level to be 0. 605 */ 606 if (btrfs_qgroup_level(objectid)) { 607 ret = -ENOSPC; 608 goto out_root_item; 609 } 610 611 ret = get_anon_bdev(&anon_dev); 612 if (ret < 0) 613 goto out_root_item; 614 615 new_inode_args.inode = btrfs_new_subvol_inode(mnt_userns, dir); 616 if (!new_inode_args.inode) { 617 ret = -ENOMEM; 618 goto out_anon_dev; 619 } 620 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 621 if (ret) 622 goto out_inode; 623 trans_num_items += create_subvol_num_items(inherit); 624 625 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 626 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 627 trans_num_items, false); 628 if (ret) 629 goto out_new_inode_args; 630 631 trans = btrfs_start_transaction(root, 0); 632 if (IS_ERR(trans)) { 633 ret = PTR_ERR(trans); 634 btrfs_subvolume_release_metadata(root, &block_rsv); 635 goto out_new_inode_args; 636 } 637 trans->block_rsv = &block_rsv; 638 trans->bytes_reserved = block_rsv.size; 639 640 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 641 if (ret) 642 goto out; 643 644 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 645 BTRFS_NESTING_NORMAL); 646 if (IS_ERR(leaf)) { 647 ret = PTR_ERR(leaf); 648 goto out; 649 } 650 651 btrfs_mark_buffer_dirty(leaf); 652 653 inode_item = &root_item->inode; 654 btrfs_set_stack_inode_generation(inode_item, 1); 655 btrfs_set_stack_inode_size(inode_item, 3); 656 btrfs_set_stack_inode_nlink(inode_item, 1); 657 btrfs_set_stack_inode_nbytes(inode_item, 658 fs_info->nodesize); 659 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 660 661 btrfs_set_root_flags(root_item, 0); 662 btrfs_set_root_limit(root_item, 0); 663 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 664 665 btrfs_set_root_bytenr(root_item, leaf->start); 666 btrfs_set_root_generation(root_item, trans->transid); 667 btrfs_set_root_level(root_item, 0); 668 btrfs_set_root_refs(root_item, 1); 669 btrfs_set_root_used(root_item, leaf->len); 670 btrfs_set_root_last_snapshot(root_item, 0); 671 672 btrfs_set_root_generation_v2(root_item, 673 btrfs_root_generation(root_item)); 674 generate_random_guid(root_item->uuid); 675 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 676 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 677 root_item->ctime = root_item->otime; 678 btrfs_set_root_ctransid(root_item, trans->transid); 679 btrfs_set_root_otransid(root_item, trans->transid); 680 681 btrfs_tree_unlock(leaf); 682 683 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 684 685 key.objectid = objectid; 686 key.offset = 0; 687 key.type = BTRFS_ROOT_ITEM_KEY; 688 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 689 root_item); 690 if (ret) { 691 /* 692 * Since we don't abort the transaction in this case, free the 693 * tree block so that we don't leak space and leave the 694 * filesystem in an inconsistent state (an extent item in the 695 * extent tree with a backreference for a root that does not 696 * exists). 697 */ 698 btrfs_tree_lock(leaf); 699 btrfs_clean_tree_block(leaf); 700 btrfs_tree_unlock(leaf); 701 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 702 free_extent_buffer(leaf); 703 goto out; 704 } 705 706 free_extent_buffer(leaf); 707 leaf = NULL; 708 709 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 710 if (IS_ERR(new_root)) { 711 ret = PTR_ERR(new_root); 712 btrfs_abort_transaction(trans, ret); 713 goto out; 714 } 715 /* anon_dev is owned by new_root now. */ 716 anon_dev = 0; 717 BTRFS_I(new_inode_args.inode)->root = new_root; 718 /* ... and new_root is owned by new_inode_args.inode now. */ 719 720 ret = btrfs_record_root_in_trans(trans, new_root); 721 if (ret) { 722 btrfs_abort_transaction(trans, ret); 723 goto out; 724 } 725 726 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 727 BTRFS_UUID_KEY_SUBVOL, objectid); 728 if (ret) { 729 btrfs_abort_transaction(trans, ret); 730 goto out; 731 } 732 733 ret = btrfs_create_new_inode(trans, &new_inode_args); 734 if (ret) { 735 btrfs_abort_transaction(trans, ret); 736 goto out; 737 } 738 739 d_instantiate_new(dentry, new_inode_args.inode); 740 new_inode_args.inode = NULL; 741 742 out: 743 trans->block_rsv = NULL; 744 trans->bytes_reserved = 0; 745 btrfs_subvolume_release_metadata(root, &block_rsv); 746 747 if (ret) 748 btrfs_end_transaction(trans); 749 else 750 ret = btrfs_commit_transaction(trans); 751 out_new_inode_args: 752 btrfs_new_inode_args_destroy(&new_inode_args); 753 out_inode: 754 iput(new_inode_args.inode); 755 out_anon_dev: 756 if (anon_dev) 757 free_anon_bdev(anon_dev); 758 out_root_item: 759 kfree(root_item); 760 return ret; 761 } 762 763 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 764 struct dentry *dentry, bool readonly, 765 struct btrfs_qgroup_inherit *inherit) 766 { 767 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 768 struct inode *inode; 769 struct btrfs_pending_snapshot *pending_snapshot; 770 unsigned int trans_num_items; 771 struct btrfs_trans_handle *trans; 772 int ret; 773 774 /* We do not support snapshotting right now. */ 775 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 776 btrfs_warn(fs_info, 777 "extent tree v2 doesn't support snapshotting yet"); 778 return -EOPNOTSUPP; 779 } 780 781 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 782 return -EINVAL; 783 784 if (atomic_read(&root->nr_swapfiles)) { 785 btrfs_warn(fs_info, 786 "cannot snapshot subvolume with active swapfile"); 787 return -ETXTBSY; 788 } 789 790 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 791 if (!pending_snapshot) 792 return -ENOMEM; 793 794 ret = get_anon_bdev(&pending_snapshot->anon_dev); 795 if (ret < 0) 796 goto free_pending; 797 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 798 GFP_KERNEL); 799 pending_snapshot->path = btrfs_alloc_path(); 800 if (!pending_snapshot->root_item || !pending_snapshot->path) { 801 ret = -ENOMEM; 802 goto free_pending; 803 } 804 805 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 806 BTRFS_BLOCK_RSV_TEMP); 807 /* 808 * 1 to add dir item 809 * 1 to add dir index 810 * 1 to update parent inode item 811 */ 812 trans_num_items = create_subvol_num_items(inherit) + 3; 813 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 814 &pending_snapshot->block_rsv, 815 trans_num_items, false); 816 if (ret) 817 goto free_pending; 818 819 pending_snapshot->dentry = dentry; 820 pending_snapshot->root = root; 821 pending_snapshot->readonly = readonly; 822 pending_snapshot->dir = dir; 823 pending_snapshot->inherit = inherit; 824 825 trans = btrfs_start_transaction(root, 0); 826 if (IS_ERR(trans)) { 827 ret = PTR_ERR(trans); 828 goto fail; 829 } 830 831 trans->pending_snapshot = pending_snapshot; 832 833 ret = btrfs_commit_transaction(trans); 834 if (ret) 835 goto fail; 836 837 ret = pending_snapshot->error; 838 if (ret) 839 goto fail; 840 841 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 842 if (ret) 843 goto fail; 844 845 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 846 if (IS_ERR(inode)) { 847 ret = PTR_ERR(inode); 848 goto fail; 849 } 850 851 d_instantiate(dentry, inode); 852 ret = 0; 853 pending_snapshot->anon_dev = 0; 854 fail: 855 /* Prevent double freeing of anon_dev */ 856 if (ret && pending_snapshot->snap) 857 pending_snapshot->snap->anon_dev = 0; 858 btrfs_put_root(pending_snapshot->snap); 859 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 860 free_pending: 861 if (pending_snapshot->anon_dev) 862 free_anon_bdev(pending_snapshot->anon_dev); 863 kfree(pending_snapshot->root_item); 864 btrfs_free_path(pending_snapshot->path); 865 kfree(pending_snapshot); 866 867 return ret; 868 } 869 870 /* copy of may_delete in fs/namei.c() 871 * Check whether we can remove a link victim from directory dir, check 872 * whether the type of victim is right. 873 * 1. We can't do it if dir is read-only (done in permission()) 874 * 2. We should have write and exec permissions on dir 875 * 3. We can't remove anything from append-only dir 876 * 4. We can't do anything with immutable dir (done in permission()) 877 * 5. If the sticky bit on dir is set we should either 878 * a. be owner of dir, or 879 * b. be owner of victim, or 880 * c. have CAP_FOWNER capability 881 * 6. If the victim is append-only or immutable we can't do anything with 882 * links pointing to it. 883 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 884 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 885 * 9. We can't remove a root or mountpoint. 886 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 887 * nfs_async_unlink(). 888 */ 889 890 static int btrfs_may_delete(struct user_namespace *mnt_userns, 891 struct inode *dir, struct dentry *victim, int isdir) 892 { 893 int error; 894 895 if (d_really_is_negative(victim)) 896 return -ENOENT; 897 898 BUG_ON(d_inode(victim->d_parent) != dir); 899 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 900 901 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 902 if (error) 903 return error; 904 if (IS_APPEND(dir)) 905 return -EPERM; 906 if (check_sticky(mnt_userns, dir, d_inode(victim)) || 907 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 908 IS_SWAPFILE(d_inode(victim))) 909 return -EPERM; 910 if (isdir) { 911 if (!d_is_dir(victim)) 912 return -ENOTDIR; 913 if (IS_ROOT(victim)) 914 return -EBUSY; 915 } else if (d_is_dir(victim)) 916 return -EISDIR; 917 if (IS_DEADDIR(dir)) 918 return -ENOENT; 919 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 920 return -EBUSY; 921 return 0; 922 } 923 924 /* copy of may_create in fs/namei.c() */ 925 static inline int btrfs_may_create(struct user_namespace *mnt_userns, 926 struct inode *dir, struct dentry *child) 927 { 928 if (d_really_is_positive(child)) 929 return -EEXIST; 930 if (IS_DEADDIR(dir)) 931 return -ENOENT; 932 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 933 return -EOVERFLOW; 934 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 935 } 936 937 /* 938 * Create a new subvolume below @parent. This is largely modeled after 939 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 940 * inside this filesystem so it's quite a bit simpler. 941 */ 942 static noinline int btrfs_mksubvol(const struct path *parent, 943 struct user_namespace *mnt_userns, 944 const char *name, int namelen, 945 struct btrfs_root *snap_src, 946 bool readonly, 947 struct btrfs_qgroup_inherit *inherit) 948 { 949 struct inode *dir = d_inode(parent->dentry); 950 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 951 struct dentry *dentry; 952 int error; 953 954 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 955 if (error == -EINTR) 956 return error; 957 958 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen); 959 error = PTR_ERR(dentry); 960 if (IS_ERR(dentry)) 961 goto out_unlock; 962 963 error = btrfs_may_create(mnt_userns, dir, dentry); 964 if (error) 965 goto out_dput; 966 967 /* 968 * even if this name doesn't exist, we may get hash collisions. 969 * check for them now when we can safely fail 970 */ 971 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 972 dir->i_ino, name, 973 namelen); 974 if (error) 975 goto out_dput; 976 977 down_read(&fs_info->subvol_sem); 978 979 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 980 goto out_up_read; 981 982 if (snap_src) 983 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 984 else 985 error = create_subvol(mnt_userns, dir, dentry, inherit); 986 987 if (!error) 988 fsnotify_mkdir(dir, dentry); 989 out_up_read: 990 up_read(&fs_info->subvol_sem); 991 out_dput: 992 dput(dentry); 993 out_unlock: 994 btrfs_inode_unlock(dir, 0); 995 return error; 996 } 997 998 static noinline int btrfs_mksnapshot(const struct path *parent, 999 struct user_namespace *mnt_userns, 1000 const char *name, int namelen, 1001 struct btrfs_root *root, 1002 bool readonly, 1003 struct btrfs_qgroup_inherit *inherit) 1004 { 1005 int ret; 1006 bool snapshot_force_cow = false; 1007 1008 /* 1009 * Force new buffered writes to reserve space even when NOCOW is 1010 * possible. This is to avoid later writeback (running dealloc) to 1011 * fallback to COW mode and unexpectedly fail with ENOSPC. 1012 */ 1013 btrfs_drew_read_lock(&root->snapshot_lock); 1014 1015 ret = btrfs_start_delalloc_snapshot(root, false); 1016 if (ret) 1017 goto out; 1018 1019 /* 1020 * All previous writes have started writeback in NOCOW mode, so now 1021 * we force future writes to fallback to COW mode during snapshot 1022 * creation. 1023 */ 1024 atomic_inc(&root->snapshot_force_cow); 1025 snapshot_force_cow = true; 1026 1027 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1028 1029 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen, 1030 root, readonly, inherit); 1031 out: 1032 if (snapshot_force_cow) 1033 atomic_dec(&root->snapshot_force_cow); 1034 btrfs_drew_read_unlock(&root->snapshot_lock); 1035 return ret; 1036 } 1037 1038 /* 1039 * Defrag specific helper to get an extent map. 1040 * 1041 * Differences between this and btrfs_get_extent() are: 1042 * 1043 * - No extent_map will be added to inode->extent_tree 1044 * To reduce memory usage in the long run. 1045 * 1046 * - Extra optimization to skip file extents older than @newer_than 1047 * By using btrfs_search_forward() we can skip entire file ranges that 1048 * have extents created in past transactions, because btrfs_search_forward() 1049 * will not visit leaves and nodes with a generation smaller than given 1050 * minimal generation threshold (@newer_than). 1051 * 1052 * Return valid em if we find a file extent matching the requirement. 1053 * Return NULL if we can not find a file extent matching the requirement. 1054 * 1055 * Return ERR_PTR() for error. 1056 */ 1057 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode, 1058 u64 start, u64 newer_than) 1059 { 1060 struct btrfs_root *root = inode->root; 1061 struct btrfs_file_extent_item *fi; 1062 struct btrfs_path path = { 0 }; 1063 struct extent_map *em; 1064 struct btrfs_key key; 1065 u64 ino = btrfs_ino(inode); 1066 int ret; 1067 1068 em = alloc_extent_map(); 1069 if (!em) { 1070 ret = -ENOMEM; 1071 goto err; 1072 } 1073 1074 key.objectid = ino; 1075 key.type = BTRFS_EXTENT_DATA_KEY; 1076 key.offset = start; 1077 1078 if (newer_than) { 1079 ret = btrfs_search_forward(root, &key, &path, newer_than); 1080 if (ret < 0) 1081 goto err; 1082 /* Can't find anything newer */ 1083 if (ret > 0) 1084 goto not_found; 1085 } else { 1086 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); 1087 if (ret < 0) 1088 goto err; 1089 } 1090 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { 1091 /* 1092 * If btrfs_search_slot() makes path to point beyond nritems, 1093 * we should not have an empty leaf, as this inode must at 1094 * least have its INODE_ITEM. 1095 */ 1096 ASSERT(btrfs_header_nritems(path.nodes[0])); 1097 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1; 1098 } 1099 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 1100 /* Perfect match, no need to go one slot back */ 1101 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY && 1102 key.offset == start) 1103 goto iterate; 1104 1105 /* We didn't find a perfect match, needs to go one slot back */ 1106 if (path.slots[0] > 0) { 1107 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 1108 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 1109 path.slots[0]--; 1110 } 1111 1112 iterate: 1113 /* Iterate through the path to find a file extent covering @start */ 1114 while (true) { 1115 u64 extent_end; 1116 1117 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) 1118 goto next; 1119 1120 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 1121 1122 /* 1123 * We may go one slot back to INODE_REF/XATTR item, then 1124 * need to go forward until we reach an EXTENT_DATA. 1125 * But we should still has the correct ino as key.objectid. 1126 */ 1127 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY) 1128 goto next; 1129 1130 /* It's beyond our target range, definitely not extent found */ 1131 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY) 1132 goto not_found; 1133 1134 /* 1135 * | |<- File extent ->| 1136 * \- start 1137 * 1138 * This means there is a hole between start and key.offset. 1139 */ 1140 if (key.offset > start) { 1141 em->start = start; 1142 em->orig_start = start; 1143 em->block_start = EXTENT_MAP_HOLE; 1144 em->len = key.offset - start; 1145 break; 1146 } 1147 1148 fi = btrfs_item_ptr(path.nodes[0], path.slots[0], 1149 struct btrfs_file_extent_item); 1150 extent_end = btrfs_file_extent_end(&path); 1151 1152 /* 1153 * |<- file extent ->| | 1154 * \- start 1155 * 1156 * We haven't reached start, search next slot. 1157 */ 1158 if (extent_end <= start) 1159 goto next; 1160 1161 /* Now this extent covers @start, convert it to em */ 1162 btrfs_extent_item_to_extent_map(inode, &path, fi, false, em); 1163 break; 1164 next: 1165 ret = btrfs_next_item(root, &path); 1166 if (ret < 0) 1167 goto err; 1168 if (ret > 0) 1169 goto not_found; 1170 } 1171 btrfs_release_path(&path); 1172 return em; 1173 1174 not_found: 1175 btrfs_release_path(&path); 1176 free_extent_map(em); 1177 return NULL; 1178 1179 err: 1180 btrfs_release_path(&path); 1181 free_extent_map(em); 1182 return ERR_PTR(ret); 1183 } 1184 1185 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, 1186 u64 newer_than, bool locked) 1187 { 1188 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1189 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1190 struct extent_map *em; 1191 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; 1192 1193 /* 1194 * hopefully we have this extent in the tree already, try without 1195 * the full extent lock 1196 */ 1197 read_lock(&em_tree->lock); 1198 em = lookup_extent_mapping(em_tree, start, sectorsize); 1199 read_unlock(&em_tree->lock); 1200 1201 /* 1202 * We can get a merged extent, in that case, we need to re-search 1203 * tree to get the original em for defrag. 1204 * 1205 * If @newer_than is 0 or em::generation < newer_than, we can trust 1206 * this em, as either we don't care about the generation, or the 1207 * merged extent map will be rejected anyway. 1208 */ 1209 if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) && 1210 newer_than && em->generation >= newer_than) { 1211 free_extent_map(em); 1212 em = NULL; 1213 } 1214 1215 if (!em) { 1216 struct extent_state *cached = NULL; 1217 u64 end = start + sectorsize - 1; 1218 1219 /* get the big lock and read metadata off disk */ 1220 if (!locked) 1221 lock_extent(io_tree, start, end, &cached); 1222 em = defrag_get_extent(BTRFS_I(inode), start, newer_than); 1223 if (!locked) 1224 unlock_extent(io_tree, start, end, &cached); 1225 1226 if (IS_ERR(em)) 1227 return NULL; 1228 } 1229 1230 return em; 1231 } 1232 1233 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info, 1234 const struct extent_map *em) 1235 { 1236 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1237 return BTRFS_MAX_COMPRESSED; 1238 return fs_info->max_extent_size; 1239 } 1240 1241 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, 1242 u32 extent_thresh, u64 newer_than, bool locked) 1243 { 1244 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1245 struct extent_map *next; 1246 bool ret = false; 1247 1248 /* this is the last extent */ 1249 if (em->start + em->len >= i_size_read(inode)) 1250 return false; 1251 1252 /* 1253 * Here we need to pass @newer_then when checking the next extent, or 1254 * we will hit a case we mark current extent for defrag, but the next 1255 * one will not be a target. 1256 * This will just cause extra IO without really reducing the fragments. 1257 */ 1258 next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked); 1259 /* No more em or hole */ 1260 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1261 goto out; 1262 if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags)) 1263 goto out; 1264 /* 1265 * If the next extent is at its max capacity, defragging current extent 1266 * makes no sense, as the total number of extents won't change. 1267 */ 1268 if (next->len >= get_extent_max_capacity(fs_info, em)) 1269 goto out; 1270 /* Skip older extent */ 1271 if (next->generation < newer_than) 1272 goto out; 1273 /* Also check extent size */ 1274 if (next->len >= extent_thresh) 1275 goto out; 1276 1277 ret = true; 1278 out: 1279 free_extent_map(next); 1280 return ret; 1281 } 1282 1283 /* 1284 * Prepare one page to be defragged. 1285 * 1286 * This will ensure: 1287 * 1288 * - Returned page is locked and has been set up properly. 1289 * - No ordered extent exists in the page. 1290 * - The page is uptodate. 1291 * 1292 * NOTE: Caller should also wait for page writeback after the cluster is 1293 * prepared, here we don't do writeback wait for each page. 1294 */ 1295 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, 1296 pgoff_t index) 1297 { 1298 struct address_space *mapping = inode->vfs_inode.i_mapping; 1299 gfp_t mask = btrfs_alloc_write_mask(mapping); 1300 u64 page_start = (u64)index << PAGE_SHIFT; 1301 u64 page_end = page_start + PAGE_SIZE - 1; 1302 struct extent_state *cached_state = NULL; 1303 struct page *page; 1304 int ret; 1305 1306 again: 1307 page = find_or_create_page(mapping, index, mask); 1308 if (!page) 1309 return ERR_PTR(-ENOMEM); 1310 1311 /* 1312 * Since we can defragment files opened read-only, we can encounter 1313 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We 1314 * can't do I/O using huge pages yet, so return an error for now. 1315 * Filesystem transparent huge pages are typically only used for 1316 * executables that explicitly enable them, so this isn't very 1317 * restrictive. 1318 */ 1319 if (PageCompound(page)) { 1320 unlock_page(page); 1321 put_page(page); 1322 return ERR_PTR(-ETXTBSY); 1323 } 1324 1325 ret = set_page_extent_mapped(page); 1326 if (ret < 0) { 1327 unlock_page(page); 1328 put_page(page); 1329 return ERR_PTR(ret); 1330 } 1331 1332 /* Wait for any existing ordered extent in the range */ 1333 while (1) { 1334 struct btrfs_ordered_extent *ordered; 1335 1336 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 1337 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 1338 unlock_extent(&inode->io_tree, page_start, page_end, 1339 &cached_state); 1340 if (!ordered) 1341 break; 1342 1343 unlock_page(page); 1344 btrfs_start_ordered_extent(ordered, 1); 1345 btrfs_put_ordered_extent(ordered); 1346 lock_page(page); 1347 /* 1348 * We unlocked the page above, so we need check if it was 1349 * released or not. 1350 */ 1351 if (page->mapping != mapping || !PagePrivate(page)) { 1352 unlock_page(page); 1353 put_page(page); 1354 goto again; 1355 } 1356 } 1357 1358 /* 1359 * Now the page range has no ordered extent any more. Read the page to 1360 * make it uptodate. 1361 */ 1362 if (!PageUptodate(page)) { 1363 btrfs_read_folio(NULL, page_folio(page)); 1364 lock_page(page); 1365 if (page->mapping != mapping || !PagePrivate(page)) { 1366 unlock_page(page); 1367 put_page(page); 1368 goto again; 1369 } 1370 if (!PageUptodate(page)) { 1371 unlock_page(page); 1372 put_page(page); 1373 return ERR_PTR(-EIO); 1374 } 1375 } 1376 return page; 1377 } 1378 1379 struct defrag_target_range { 1380 struct list_head list; 1381 u64 start; 1382 u64 len; 1383 }; 1384 1385 /* 1386 * Collect all valid target extents. 1387 * 1388 * @start: file offset to lookup 1389 * @len: length to lookup 1390 * @extent_thresh: file extent size threshold, any extent size >= this value 1391 * will be ignored 1392 * @newer_than: only defrag extents newer than this value 1393 * @do_compress: whether the defrag is doing compression 1394 * if true, @extent_thresh will be ignored and all regular 1395 * file extents meeting @newer_than will be targets. 1396 * @locked: if the range has already held extent lock 1397 * @target_list: list of targets file extents 1398 */ 1399 static int defrag_collect_targets(struct btrfs_inode *inode, 1400 u64 start, u64 len, u32 extent_thresh, 1401 u64 newer_than, bool do_compress, 1402 bool locked, struct list_head *target_list, 1403 u64 *last_scanned_ret) 1404 { 1405 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1406 bool last_is_target = false; 1407 u64 cur = start; 1408 int ret = 0; 1409 1410 while (cur < start + len) { 1411 struct extent_map *em; 1412 struct defrag_target_range *new; 1413 bool next_mergeable = true; 1414 u64 range_len; 1415 1416 last_is_target = false; 1417 em = defrag_lookup_extent(&inode->vfs_inode, cur, 1418 newer_than, locked); 1419 if (!em) 1420 break; 1421 1422 /* 1423 * If the file extent is an inlined one, we may still want to 1424 * defrag it (fallthrough) if it will cause a regular extent. 1425 * This is for users who want to convert inline extents to 1426 * regular ones through max_inline= mount option. 1427 */ 1428 if (em->block_start == EXTENT_MAP_INLINE && 1429 em->len <= inode->root->fs_info->max_inline) 1430 goto next; 1431 1432 /* Skip hole/delalloc/preallocated extents */ 1433 if (em->block_start == EXTENT_MAP_HOLE || 1434 em->block_start == EXTENT_MAP_DELALLOC || 1435 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1436 goto next; 1437 1438 /* Skip older extent */ 1439 if (em->generation < newer_than) 1440 goto next; 1441 1442 /* This em is under writeback, no need to defrag */ 1443 if (em->generation == (u64)-1) 1444 goto next; 1445 1446 /* 1447 * Our start offset might be in the middle of an existing extent 1448 * map, so take that into account. 1449 */ 1450 range_len = em->len - (cur - em->start); 1451 /* 1452 * If this range of the extent map is already flagged for delalloc, 1453 * skip it, because: 1454 * 1455 * 1) We could deadlock later, when trying to reserve space for 1456 * delalloc, because in case we can't immediately reserve space 1457 * the flusher can start delalloc and wait for the respective 1458 * ordered extents to complete. The deadlock would happen 1459 * because we do the space reservation while holding the range 1460 * locked, and starting writeback, or finishing an ordered 1461 * extent, requires locking the range; 1462 * 1463 * 2) If there's delalloc there, it means there's dirty pages for 1464 * which writeback has not started yet (we clean the delalloc 1465 * flag when starting writeback and after creating an ordered 1466 * extent). If we mark pages in an adjacent range for defrag, 1467 * then we will have a larger contiguous range for delalloc, 1468 * very likely resulting in a larger extent after writeback is 1469 * triggered (except in a case of free space fragmentation). 1470 */ 1471 if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1, 1472 EXTENT_DELALLOC, 0, NULL)) 1473 goto next; 1474 1475 /* 1476 * For do_compress case, we want to compress all valid file 1477 * extents, thus no @extent_thresh or mergeable check. 1478 */ 1479 if (do_compress) 1480 goto add; 1481 1482 /* Skip too large extent */ 1483 if (range_len >= extent_thresh) 1484 goto next; 1485 1486 /* 1487 * Skip extents already at its max capacity, this is mostly for 1488 * compressed extents, which max cap is only 128K. 1489 */ 1490 if (em->len >= get_extent_max_capacity(fs_info, em)) 1491 goto next; 1492 1493 /* 1494 * Normally there are no more extents after an inline one, thus 1495 * @next_mergeable will normally be false and not defragged. 1496 * So if an inline extent passed all above checks, just add it 1497 * for defrag, and be converted to regular extents. 1498 */ 1499 if (em->block_start == EXTENT_MAP_INLINE) 1500 goto add; 1501 1502 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, 1503 extent_thresh, newer_than, locked); 1504 if (!next_mergeable) { 1505 struct defrag_target_range *last; 1506 1507 /* Empty target list, no way to merge with last entry */ 1508 if (list_empty(target_list)) 1509 goto next; 1510 last = list_entry(target_list->prev, 1511 struct defrag_target_range, list); 1512 /* Not mergeable with last entry */ 1513 if (last->start + last->len != cur) 1514 goto next; 1515 1516 /* Mergeable, fall through to add it to @target_list. */ 1517 } 1518 1519 add: 1520 last_is_target = true; 1521 range_len = min(extent_map_end(em), start + len) - cur; 1522 /* 1523 * This one is a good target, check if it can be merged into 1524 * last range of the target list. 1525 */ 1526 if (!list_empty(target_list)) { 1527 struct defrag_target_range *last; 1528 1529 last = list_entry(target_list->prev, 1530 struct defrag_target_range, list); 1531 ASSERT(last->start + last->len <= cur); 1532 if (last->start + last->len == cur) { 1533 /* Mergeable, enlarge the last entry */ 1534 last->len += range_len; 1535 goto next; 1536 } 1537 /* Fall through to allocate a new entry */ 1538 } 1539 1540 /* Allocate new defrag_target_range */ 1541 new = kmalloc(sizeof(*new), GFP_NOFS); 1542 if (!new) { 1543 free_extent_map(em); 1544 ret = -ENOMEM; 1545 break; 1546 } 1547 new->start = cur; 1548 new->len = range_len; 1549 list_add_tail(&new->list, target_list); 1550 1551 next: 1552 cur = extent_map_end(em); 1553 free_extent_map(em); 1554 } 1555 if (ret < 0) { 1556 struct defrag_target_range *entry; 1557 struct defrag_target_range *tmp; 1558 1559 list_for_each_entry_safe(entry, tmp, target_list, list) { 1560 list_del_init(&entry->list); 1561 kfree(entry); 1562 } 1563 } 1564 if (!ret && last_scanned_ret) { 1565 /* 1566 * If the last extent is not a target, the caller can skip to 1567 * the end of that extent. 1568 * Otherwise, we can only go the end of the specified range. 1569 */ 1570 if (!last_is_target) 1571 *last_scanned_ret = max(cur, *last_scanned_ret); 1572 else 1573 *last_scanned_ret = max(start + len, *last_scanned_ret); 1574 } 1575 return ret; 1576 } 1577 1578 #define CLUSTER_SIZE (SZ_256K) 1579 static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1580 1581 /* 1582 * Defrag one contiguous target range. 1583 * 1584 * @inode: target inode 1585 * @target: target range to defrag 1586 * @pages: locked pages covering the defrag range 1587 * @nr_pages: number of locked pages 1588 * 1589 * Caller should ensure: 1590 * 1591 * - Pages are prepared 1592 * Pages should be locked, no ordered extent in the pages range, 1593 * no writeback. 1594 * 1595 * - Extent bits are locked 1596 */ 1597 static int defrag_one_locked_target(struct btrfs_inode *inode, 1598 struct defrag_target_range *target, 1599 struct page **pages, int nr_pages, 1600 struct extent_state **cached_state) 1601 { 1602 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1603 struct extent_changeset *data_reserved = NULL; 1604 const u64 start = target->start; 1605 const u64 len = target->len; 1606 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; 1607 unsigned long start_index = start >> PAGE_SHIFT; 1608 unsigned long first_index = page_index(pages[0]); 1609 int ret = 0; 1610 int i; 1611 1612 ASSERT(last_index - first_index + 1 <= nr_pages); 1613 1614 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); 1615 if (ret < 0) 1616 return ret; 1617 clear_extent_bit(&inode->io_tree, start, start + len - 1, 1618 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1619 EXTENT_DEFRAG, cached_state); 1620 set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state); 1621 1622 /* Update the page status */ 1623 for (i = start_index - first_index; i <= last_index - first_index; i++) { 1624 ClearPageChecked(pages[i]); 1625 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len); 1626 } 1627 btrfs_delalloc_release_extents(inode, len); 1628 extent_changeset_free(data_reserved); 1629 1630 return ret; 1631 } 1632 1633 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, 1634 u32 extent_thresh, u64 newer_than, bool do_compress, 1635 u64 *last_scanned_ret) 1636 { 1637 struct extent_state *cached_state = NULL; 1638 struct defrag_target_range *entry; 1639 struct defrag_target_range *tmp; 1640 LIST_HEAD(target_list); 1641 struct page **pages; 1642 const u32 sectorsize = inode->root->fs_info->sectorsize; 1643 u64 last_index = (start + len - 1) >> PAGE_SHIFT; 1644 u64 start_index = start >> PAGE_SHIFT; 1645 unsigned int nr_pages = last_index - start_index + 1; 1646 int ret = 0; 1647 int i; 1648 1649 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); 1650 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); 1651 1652 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 1653 if (!pages) 1654 return -ENOMEM; 1655 1656 /* Prepare all pages */ 1657 for (i = 0; i < nr_pages; i++) { 1658 pages[i] = defrag_prepare_one_page(inode, start_index + i); 1659 if (IS_ERR(pages[i])) { 1660 ret = PTR_ERR(pages[i]); 1661 pages[i] = NULL; 1662 goto free_pages; 1663 } 1664 } 1665 for (i = 0; i < nr_pages; i++) 1666 wait_on_page_writeback(pages[i]); 1667 1668 /* Lock the pages range */ 1669 lock_extent(&inode->io_tree, start_index << PAGE_SHIFT, 1670 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1671 &cached_state); 1672 /* 1673 * Now we have a consistent view about the extent map, re-check 1674 * which range really needs to be defragged. 1675 * 1676 * And this time we have extent locked already, pass @locked = true 1677 * so that we won't relock the extent range and cause deadlock. 1678 */ 1679 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1680 newer_than, do_compress, true, 1681 &target_list, last_scanned_ret); 1682 if (ret < 0) 1683 goto unlock_extent; 1684 1685 list_for_each_entry(entry, &target_list, list) { 1686 ret = defrag_one_locked_target(inode, entry, pages, nr_pages, 1687 &cached_state); 1688 if (ret < 0) 1689 break; 1690 } 1691 1692 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1693 list_del_init(&entry->list); 1694 kfree(entry); 1695 } 1696 unlock_extent: 1697 unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT, 1698 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1699 &cached_state); 1700 free_pages: 1701 for (i = 0; i < nr_pages; i++) { 1702 if (pages[i]) { 1703 unlock_page(pages[i]); 1704 put_page(pages[i]); 1705 } 1706 } 1707 kfree(pages); 1708 return ret; 1709 } 1710 1711 static int defrag_one_cluster(struct btrfs_inode *inode, 1712 struct file_ra_state *ra, 1713 u64 start, u32 len, u32 extent_thresh, 1714 u64 newer_than, bool do_compress, 1715 unsigned long *sectors_defragged, 1716 unsigned long max_sectors, 1717 u64 *last_scanned_ret) 1718 { 1719 const u32 sectorsize = inode->root->fs_info->sectorsize; 1720 struct defrag_target_range *entry; 1721 struct defrag_target_range *tmp; 1722 LIST_HEAD(target_list); 1723 int ret; 1724 1725 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1726 newer_than, do_compress, false, 1727 &target_list, NULL); 1728 if (ret < 0) 1729 goto out; 1730 1731 list_for_each_entry(entry, &target_list, list) { 1732 u32 range_len = entry->len; 1733 1734 /* Reached or beyond the limit */ 1735 if (max_sectors && *sectors_defragged >= max_sectors) { 1736 ret = 1; 1737 break; 1738 } 1739 1740 if (max_sectors) 1741 range_len = min_t(u32, range_len, 1742 (max_sectors - *sectors_defragged) * sectorsize); 1743 1744 /* 1745 * If defrag_one_range() has updated last_scanned_ret, 1746 * our range may already be invalid (e.g. hole punched). 1747 * Skip if our range is before last_scanned_ret, as there is 1748 * no need to defrag the range anymore. 1749 */ 1750 if (entry->start + range_len <= *last_scanned_ret) 1751 continue; 1752 1753 if (ra) 1754 page_cache_sync_readahead(inode->vfs_inode.i_mapping, 1755 ra, NULL, entry->start >> PAGE_SHIFT, 1756 ((entry->start + range_len - 1) >> PAGE_SHIFT) - 1757 (entry->start >> PAGE_SHIFT) + 1); 1758 /* 1759 * Here we may not defrag any range if holes are punched before 1760 * we locked the pages. 1761 * But that's fine, it only affects the @sectors_defragged 1762 * accounting. 1763 */ 1764 ret = defrag_one_range(inode, entry->start, range_len, 1765 extent_thresh, newer_than, do_compress, 1766 last_scanned_ret); 1767 if (ret < 0) 1768 break; 1769 *sectors_defragged += range_len >> 1770 inode->root->fs_info->sectorsize_bits; 1771 } 1772 out: 1773 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1774 list_del_init(&entry->list); 1775 kfree(entry); 1776 } 1777 if (ret >= 0) 1778 *last_scanned_ret = max(*last_scanned_ret, start + len); 1779 return ret; 1780 } 1781 1782 /* 1783 * Entry point to file defragmentation. 1784 * 1785 * @inode: inode to be defragged 1786 * @ra: readahead state (can be NUL) 1787 * @range: defrag options including range and flags 1788 * @newer_than: minimum transid to defrag 1789 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode 1790 * will be defragged. 1791 * 1792 * Return <0 for error. 1793 * Return >=0 for the number of sectors defragged, and range->start will be updated 1794 * to indicate the file offset where next defrag should be started at. 1795 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without 1796 * defragging all the range). 1797 */ 1798 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 1799 struct btrfs_ioctl_defrag_range_args *range, 1800 u64 newer_than, unsigned long max_to_defrag) 1801 { 1802 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1803 unsigned long sectors_defragged = 0; 1804 u64 isize = i_size_read(inode); 1805 u64 cur; 1806 u64 last_byte; 1807 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1808 bool ra_allocated = false; 1809 int compress_type = BTRFS_COMPRESS_ZLIB; 1810 int ret = 0; 1811 u32 extent_thresh = range->extent_thresh; 1812 pgoff_t start_index; 1813 1814 if (isize == 0) 1815 return 0; 1816 1817 if (range->start >= isize) 1818 return -EINVAL; 1819 1820 if (do_compress) { 1821 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1822 return -EINVAL; 1823 if (range->compress_type) 1824 compress_type = range->compress_type; 1825 } 1826 1827 if (extent_thresh == 0) 1828 extent_thresh = SZ_256K; 1829 1830 if (range->start + range->len > range->start) { 1831 /* Got a specific range */ 1832 last_byte = min(isize, range->start + range->len); 1833 } else { 1834 /* Defrag until file end */ 1835 last_byte = isize; 1836 } 1837 1838 /* Align the range */ 1839 cur = round_down(range->start, fs_info->sectorsize); 1840 last_byte = round_up(last_byte, fs_info->sectorsize) - 1; 1841 1842 /* 1843 * If we were not given a ra, allocate a readahead context. As 1844 * readahead is just an optimization, defrag will work without it so 1845 * we don't error out. 1846 */ 1847 if (!ra) { 1848 ra_allocated = true; 1849 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1850 if (ra) 1851 file_ra_state_init(ra, inode->i_mapping); 1852 } 1853 1854 /* 1855 * Make writeback start from the beginning of the range, so that the 1856 * defrag range can be written sequentially. 1857 */ 1858 start_index = cur >> PAGE_SHIFT; 1859 if (start_index < inode->i_mapping->writeback_index) 1860 inode->i_mapping->writeback_index = start_index; 1861 1862 while (cur < last_byte) { 1863 const unsigned long prev_sectors_defragged = sectors_defragged; 1864 u64 last_scanned = cur; 1865 u64 cluster_end; 1866 1867 if (btrfs_defrag_cancelled(fs_info)) { 1868 ret = -EAGAIN; 1869 break; 1870 } 1871 1872 /* We want the cluster end at page boundary when possible */ 1873 cluster_end = (((cur >> PAGE_SHIFT) + 1874 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; 1875 cluster_end = min(cluster_end, last_byte); 1876 1877 btrfs_inode_lock(inode, 0); 1878 if (IS_SWAPFILE(inode)) { 1879 ret = -ETXTBSY; 1880 btrfs_inode_unlock(inode, 0); 1881 break; 1882 } 1883 if (!(inode->i_sb->s_flags & SB_ACTIVE)) { 1884 btrfs_inode_unlock(inode, 0); 1885 break; 1886 } 1887 if (do_compress) 1888 BTRFS_I(inode)->defrag_compress = compress_type; 1889 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, 1890 cluster_end + 1 - cur, extent_thresh, 1891 newer_than, do_compress, §ors_defragged, 1892 max_to_defrag, &last_scanned); 1893 1894 if (sectors_defragged > prev_sectors_defragged) 1895 balance_dirty_pages_ratelimited(inode->i_mapping); 1896 1897 btrfs_inode_unlock(inode, 0); 1898 if (ret < 0) 1899 break; 1900 cur = max(cluster_end + 1, last_scanned); 1901 if (ret > 0) { 1902 ret = 0; 1903 break; 1904 } 1905 cond_resched(); 1906 } 1907 1908 if (ra_allocated) 1909 kfree(ra); 1910 /* 1911 * Update range.start for autodefrag, this will indicate where to start 1912 * in next run. 1913 */ 1914 range->start = cur; 1915 if (sectors_defragged) { 1916 /* 1917 * We have defragged some sectors, for compression case they 1918 * need to be written back immediately. 1919 */ 1920 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { 1921 filemap_flush(inode->i_mapping); 1922 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1923 &BTRFS_I(inode)->runtime_flags)) 1924 filemap_flush(inode->i_mapping); 1925 } 1926 if (range->compress_type == BTRFS_COMPRESS_LZO) 1927 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1928 else if (range->compress_type == BTRFS_COMPRESS_ZSTD) 1929 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1930 ret = sectors_defragged; 1931 } 1932 if (do_compress) { 1933 btrfs_inode_lock(inode, 0); 1934 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1935 btrfs_inode_unlock(inode, 0); 1936 } 1937 return ret; 1938 } 1939 1940 /* 1941 * Try to start exclusive operation @type or cancel it if it's running. 1942 * 1943 * Return: 1944 * 0 - normal mode, newly claimed op started 1945 * >0 - normal mode, something else is running, 1946 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1947 * ECANCELED - cancel mode, successful cancel 1948 * ENOTCONN - cancel mode, operation not running anymore 1949 */ 1950 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1951 enum btrfs_exclusive_operation type, bool cancel) 1952 { 1953 if (!cancel) { 1954 /* Start normal op */ 1955 if (!btrfs_exclop_start(fs_info, type)) 1956 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1957 /* Exclusive operation is now claimed */ 1958 return 0; 1959 } 1960 1961 /* Cancel running op */ 1962 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1963 /* 1964 * This blocks any exclop finish from setting it to NONE, so we 1965 * request cancellation. Either it runs and we will wait for it, 1966 * or it has finished and no waiting will happen. 1967 */ 1968 atomic_inc(&fs_info->reloc_cancel_req); 1969 btrfs_exclop_start_unlock(fs_info); 1970 1971 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1972 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1973 TASK_INTERRUPTIBLE); 1974 1975 return -ECANCELED; 1976 } 1977 1978 /* Something else is running or none */ 1979 return -ENOTCONN; 1980 } 1981 1982 static noinline int btrfs_ioctl_resize(struct file *file, 1983 void __user *arg) 1984 { 1985 BTRFS_DEV_LOOKUP_ARGS(args); 1986 struct inode *inode = file_inode(file); 1987 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1988 u64 new_size; 1989 u64 old_size; 1990 u64 devid = 1; 1991 struct btrfs_root *root = BTRFS_I(inode)->root; 1992 struct btrfs_ioctl_vol_args *vol_args; 1993 struct btrfs_trans_handle *trans; 1994 struct btrfs_device *device = NULL; 1995 char *sizestr; 1996 char *retptr; 1997 char *devstr = NULL; 1998 int ret = 0; 1999 int mod = 0; 2000 bool cancel; 2001 2002 if (!capable(CAP_SYS_ADMIN)) 2003 return -EPERM; 2004 2005 ret = mnt_want_write_file(file); 2006 if (ret) 2007 return ret; 2008 2009 /* 2010 * Read the arguments before checking exclusivity to be able to 2011 * distinguish regular resize and cancel 2012 */ 2013 vol_args = memdup_user(arg, sizeof(*vol_args)); 2014 if (IS_ERR(vol_args)) { 2015 ret = PTR_ERR(vol_args); 2016 goto out_drop; 2017 } 2018 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2019 sizestr = vol_args->name; 2020 cancel = (strcmp("cancel", sizestr) == 0); 2021 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 2022 if (ret) 2023 goto out_free; 2024 /* Exclusive operation is now claimed */ 2025 2026 devstr = strchr(sizestr, ':'); 2027 if (devstr) { 2028 sizestr = devstr + 1; 2029 *devstr = '\0'; 2030 devstr = vol_args->name; 2031 ret = kstrtoull(devstr, 10, &devid); 2032 if (ret) 2033 goto out_finish; 2034 if (!devid) { 2035 ret = -EINVAL; 2036 goto out_finish; 2037 } 2038 btrfs_info(fs_info, "resizing devid %llu", devid); 2039 } 2040 2041 args.devid = devid; 2042 device = btrfs_find_device(fs_info->fs_devices, &args); 2043 if (!device) { 2044 btrfs_info(fs_info, "resizer unable to find device %llu", 2045 devid); 2046 ret = -ENODEV; 2047 goto out_finish; 2048 } 2049 2050 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2051 btrfs_info(fs_info, 2052 "resizer unable to apply on readonly device %llu", 2053 devid); 2054 ret = -EPERM; 2055 goto out_finish; 2056 } 2057 2058 if (!strcmp(sizestr, "max")) 2059 new_size = bdev_nr_bytes(device->bdev); 2060 else { 2061 if (sizestr[0] == '-') { 2062 mod = -1; 2063 sizestr++; 2064 } else if (sizestr[0] == '+') { 2065 mod = 1; 2066 sizestr++; 2067 } 2068 new_size = memparse(sizestr, &retptr); 2069 if (*retptr != '\0' || new_size == 0) { 2070 ret = -EINVAL; 2071 goto out_finish; 2072 } 2073 } 2074 2075 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2076 ret = -EPERM; 2077 goto out_finish; 2078 } 2079 2080 old_size = btrfs_device_get_total_bytes(device); 2081 2082 if (mod < 0) { 2083 if (new_size > old_size) { 2084 ret = -EINVAL; 2085 goto out_finish; 2086 } 2087 new_size = old_size - new_size; 2088 } else if (mod > 0) { 2089 if (new_size > ULLONG_MAX - old_size) { 2090 ret = -ERANGE; 2091 goto out_finish; 2092 } 2093 new_size = old_size + new_size; 2094 } 2095 2096 if (new_size < SZ_256M) { 2097 ret = -EINVAL; 2098 goto out_finish; 2099 } 2100 if (new_size > bdev_nr_bytes(device->bdev)) { 2101 ret = -EFBIG; 2102 goto out_finish; 2103 } 2104 2105 new_size = round_down(new_size, fs_info->sectorsize); 2106 2107 if (new_size > old_size) { 2108 trans = btrfs_start_transaction(root, 0); 2109 if (IS_ERR(trans)) { 2110 ret = PTR_ERR(trans); 2111 goto out_finish; 2112 } 2113 ret = btrfs_grow_device(trans, device, new_size); 2114 btrfs_commit_transaction(trans); 2115 } else if (new_size < old_size) { 2116 ret = btrfs_shrink_device(device, new_size); 2117 } /* equal, nothing need to do */ 2118 2119 if (ret == 0 && new_size != old_size) 2120 btrfs_info_in_rcu(fs_info, 2121 "resize device %s (devid %llu) from %llu to %llu", 2122 rcu_str_deref(device->name), device->devid, 2123 old_size, new_size); 2124 out_finish: 2125 btrfs_exclop_finish(fs_info); 2126 out_free: 2127 kfree(vol_args); 2128 out_drop: 2129 mnt_drop_write_file(file); 2130 return ret; 2131 } 2132 2133 static noinline int __btrfs_ioctl_snap_create(struct file *file, 2134 struct user_namespace *mnt_userns, 2135 const char *name, unsigned long fd, int subvol, 2136 bool readonly, 2137 struct btrfs_qgroup_inherit *inherit) 2138 { 2139 int namelen; 2140 int ret = 0; 2141 2142 if (!S_ISDIR(file_inode(file)->i_mode)) 2143 return -ENOTDIR; 2144 2145 ret = mnt_want_write_file(file); 2146 if (ret) 2147 goto out; 2148 2149 namelen = strlen(name); 2150 if (strchr(name, '/')) { 2151 ret = -EINVAL; 2152 goto out_drop_write; 2153 } 2154 2155 if (name[0] == '.' && 2156 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 2157 ret = -EEXIST; 2158 goto out_drop_write; 2159 } 2160 2161 if (subvol) { 2162 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name, 2163 namelen, NULL, readonly, inherit); 2164 } else { 2165 struct fd src = fdget(fd); 2166 struct inode *src_inode; 2167 if (!src.file) { 2168 ret = -EINVAL; 2169 goto out_drop_write; 2170 } 2171 2172 src_inode = file_inode(src.file); 2173 if (src_inode->i_sb != file_inode(file)->i_sb) { 2174 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 2175 "Snapshot src from another FS"); 2176 ret = -EXDEV; 2177 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) { 2178 /* 2179 * Subvolume creation is not restricted, but snapshots 2180 * are limited to own subvolumes only 2181 */ 2182 ret = -EPERM; 2183 } else { 2184 ret = btrfs_mksnapshot(&file->f_path, mnt_userns, 2185 name, namelen, 2186 BTRFS_I(src_inode)->root, 2187 readonly, inherit); 2188 } 2189 fdput(src); 2190 } 2191 out_drop_write: 2192 mnt_drop_write_file(file); 2193 out: 2194 return ret; 2195 } 2196 2197 static noinline int btrfs_ioctl_snap_create(struct file *file, 2198 void __user *arg, int subvol) 2199 { 2200 struct btrfs_ioctl_vol_args *vol_args; 2201 int ret; 2202 2203 if (!S_ISDIR(file_inode(file)->i_mode)) 2204 return -ENOTDIR; 2205 2206 vol_args = memdup_user(arg, sizeof(*vol_args)); 2207 if (IS_ERR(vol_args)) 2208 return PTR_ERR(vol_args); 2209 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2210 2211 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 2212 vol_args->name, vol_args->fd, subvol, 2213 false, NULL); 2214 2215 kfree(vol_args); 2216 return ret; 2217 } 2218 2219 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 2220 void __user *arg, int subvol) 2221 { 2222 struct btrfs_ioctl_vol_args_v2 *vol_args; 2223 int ret; 2224 bool readonly = false; 2225 struct btrfs_qgroup_inherit *inherit = NULL; 2226 2227 if (!S_ISDIR(file_inode(file)->i_mode)) 2228 return -ENOTDIR; 2229 2230 vol_args = memdup_user(arg, sizeof(*vol_args)); 2231 if (IS_ERR(vol_args)) 2232 return PTR_ERR(vol_args); 2233 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2234 2235 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 2236 ret = -EOPNOTSUPP; 2237 goto free_args; 2238 } 2239 2240 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 2241 readonly = true; 2242 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 2243 u64 nums; 2244 2245 if (vol_args->size < sizeof(*inherit) || 2246 vol_args->size > PAGE_SIZE) { 2247 ret = -EINVAL; 2248 goto free_args; 2249 } 2250 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 2251 if (IS_ERR(inherit)) { 2252 ret = PTR_ERR(inherit); 2253 goto free_args; 2254 } 2255 2256 if (inherit->num_qgroups > PAGE_SIZE || 2257 inherit->num_ref_copies > PAGE_SIZE || 2258 inherit->num_excl_copies > PAGE_SIZE) { 2259 ret = -EINVAL; 2260 goto free_inherit; 2261 } 2262 2263 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 2264 2 * inherit->num_excl_copies; 2265 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 2266 ret = -EINVAL; 2267 goto free_inherit; 2268 } 2269 } 2270 2271 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 2272 vol_args->name, vol_args->fd, subvol, 2273 readonly, inherit); 2274 if (ret) 2275 goto free_inherit; 2276 free_inherit: 2277 kfree(inherit); 2278 free_args: 2279 kfree(vol_args); 2280 return ret; 2281 } 2282 2283 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 2284 void __user *arg) 2285 { 2286 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2287 struct btrfs_root *root = BTRFS_I(inode)->root; 2288 int ret = 0; 2289 u64 flags = 0; 2290 2291 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 2292 return -EINVAL; 2293 2294 down_read(&fs_info->subvol_sem); 2295 if (btrfs_root_readonly(root)) 2296 flags |= BTRFS_SUBVOL_RDONLY; 2297 up_read(&fs_info->subvol_sem); 2298 2299 if (copy_to_user(arg, &flags, sizeof(flags))) 2300 ret = -EFAULT; 2301 2302 return ret; 2303 } 2304 2305 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 2306 void __user *arg) 2307 { 2308 struct inode *inode = file_inode(file); 2309 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2310 struct btrfs_root *root = BTRFS_I(inode)->root; 2311 struct btrfs_trans_handle *trans; 2312 u64 root_flags; 2313 u64 flags; 2314 int ret = 0; 2315 2316 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode)) 2317 return -EPERM; 2318 2319 ret = mnt_want_write_file(file); 2320 if (ret) 2321 goto out; 2322 2323 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2324 ret = -EINVAL; 2325 goto out_drop_write; 2326 } 2327 2328 if (copy_from_user(&flags, arg, sizeof(flags))) { 2329 ret = -EFAULT; 2330 goto out_drop_write; 2331 } 2332 2333 if (flags & ~BTRFS_SUBVOL_RDONLY) { 2334 ret = -EOPNOTSUPP; 2335 goto out_drop_write; 2336 } 2337 2338 down_write(&fs_info->subvol_sem); 2339 2340 /* nothing to do */ 2341 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 2342 goto out_drop_sem; 2343 2344 root_flags = btrfs_root_flags(&root->root_item); 2345 if (flags & BTRFS_SUBVOL_RDONLY) { 2346 btrfs_set_root_flags(&root->root_item, 2347 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 2348 } else { 2349 /* 2350 * Block RO -> RW transition if this subvolume is involved in 2351 * send 2352 */ 2353 spin_lock(&root->root_item_lock); 2354 if (root->send_in_progress == 0) { 2355 btrfs_set_root_flags(&root->root_item, 2356 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 2357 spin_unlock(&root->root_item_lock); 2358 } else { 2359 spin_unlock(&root->root_item_lock); 2360 btrfs_warn(fs_info, 2361 "Attempt to set subvolume %llu read-write during send", 2362 root->root_key.objectid); 2363 ret = -EPERM; 2364 goto out_drop_sem; 2365 } 2366 } 2367 2368 trans = btrfs_start_transaction(root, 1); 2369 if (IS_ERR(trans)) { 2370 ret = PTR_ERR(trans); 2371 goto out_reset; 2372 } 2373 2374 ret = btrfs_update_root(trans, fs_info->tree_root, 2375 &root->root_key, &root->root_item); 2376 if (ret < 0) { 2377 btrfs_end_transaction(trans); 2378 goto out_reset; 2379 } 2380 2381 ret = btrfs_commit_transaction(trans); 2382 2383 out_reset: 2384 if (ret) 2385 btrfs_set_root_flags(&root->root_item, root_flags); 2386 out_drop_sem: 2387 up_write(&fs_info->subvol_sem); 2388 out_drop_write: 2389 mnt_drop_write_file(file); 2390 out: 2391 return ret; 2392 } 2393 2394 static noinline int key_in_sk(struct btrfs_key *key, 2395 struct btrfs_ioctl_search_key *sk) 2396 { 2397 struct btrfs_key test; 2398 int ret; 2399 2400 test.objectid = sk->min_objectid; 2401 test.type = sk->min_type; 2402 test.offset = sk->min_offset; 2403 2404 ret = btrfs_comp_cpu_keys(key, &test); 2405 if (ret < 0) 2406 return 0; 2407 2408 test.objectid = sk->max_objectid; 2409 test.type = sk->max_type; 2410 test.offset = sk->max_offset; 2411 2412 ret = btrfs_comp_cpu_keys(key, &test); 2413 if (ret > 0) 2414 return 0; 2415 return 1; 2416 } 2417 2418 static noinline int copy_to_sk(struct btrfs_path *path, 2419 struct btrfs_key *key, 2420 struct btrfs_ioctl_search_key *sk, 2421 size_t *buf_size, 2422 char __user *ubuf, 2423 unsigned long *sk_offset, 2424 int *num_found) 2425 { 2426 u64 found_transid; 2427 struct extent_buffer *leaf; 2428 struct btrfs_ioctl_search_header sh; 2429 struct btrfs_key test; 2430 unsigned long item_off; 2431 unsigned long item_len; 2432 int nritems; 2433 int i; 2434 int slot; 2435 int ret = 0; 2436 2437 leaf = path->nodes[0]; 2438 slot = path->slots[0]; 2439 nritems = btrfs_header_nritems(leaf); 2440 2441 if (btrfs_header_generation(leaf) > sk->max_transid) { 2442 i = nritems; 2443 goto advance_key; 2444 } 2445 found_transid = btrfs_header_generation(leaf); 2446 2447 for (i = slot; i < nritems; i++) { 2448 item_off = btrfs_item_ptr_offset(leaf, i); 2449 item_len = btrfs_item_size(leaf, i); 2450 2451 btrfs_item_key_to_cpu(leaf, key, i); 2452 if (!key_in_sk(key, sk)) 2453 continue; 2454 2455 if (sizeof(sh) + item_len > *buf_size) { 2456 if (*num_found) { 2457 ret = 1; 2458 goto out; 2459 } 2460 2461 /* 2462 * return one empty item back for v1, which does not 2463 * handle -EOVERFLOW 2464 */ 2465 2466 *buf_size = sizeof(sh) + item_len; 2467 item_len = 0; 2468 ret = -EOVERFLOW; 2469 } 2470 2471 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2472 ret = 1; 2473 goto out; 2474 } 2475 2476 sh.objectid = key->objectid; 2477 sh.offset = key->offset; 2478 sh.type = key->type; 2479 sh.len = item_len; 2480 sh.transid = found_transid; 2481 2482 /* 2483 * Copy search result header. If we fault then loop again so we 2484 * can fault in the pages and -EFAULT there if there's a 2485 * problem. Otherwise we'll fault and then copy the buffer in 2486 * properly this next time through 2487 */ 2488 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2489 ret = 0; 2490 goto out; 2491 } 2492 2493 *sk_offset += sizeof(sh); 2494 2495 if (item_len) { 2496 char __user *up = ubuf + *sk_offset; 2497 /* 2498 * Copy the item, same behavior as above, but reset the 2499 * * sk_offset so we copy the full thing again. 2500 */ 2501 if (read_extent_buffer_to_user_nofault(leaf, up, 2502 item_off, item_len)) { 2503 ret = 0; 2504 *sk_offset -= sizeof(sh); 2505 goto out; 2506 } 2507 2508 *sk_offset += item_len; 2509 } 2510 (*num_found)++; 2511 2512 if (ret) /* -EOVERFLOW from above */ 2513 goto out; 2514 2515 if (*num_found >= sk->nr_items) { 2516 ret = 1; 2517 goto out; 2518 } 2519 } 2520 advance_key: 2521 ret = 0; 2522 test.objectid = sk->max_objectid; 2523 test.type = sk->max_type; 2524 test.offset = sk->max_offset; 2525 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2526 ret = 1; 2527 else if (key->offset < (u64)-1) 2528 key->offset++; 2529 else if (key->type < (u8)-1) { 2530 key->offset = 0; 2531 key->type++; 2532 } else if (key->objectid < (u64)-1) { 2533 key->offset = 0; 2534 key->type = 0; 2535 key->objectid++; 2536 } else 2537 ret = 1; 2538 out: 2539 /* 2540 * 0: all items from this leaf copied, continue with next 2541 * 1: * more items can be copied, but unused buffer is too small 2542 * * all items were found 2543 * Either way, it will stops the loop which iterates to the next 2544 * leaf 2545 * -EOVERFLOW: item was to large for buffer 2546 * -EFAULT: could not copy extent buffer back to userspace 2547 */ 2548 return ret; 2549 } 2550 2551 static noinline int search_ioctl(struct inode *inode, 2552 struct btrfs_ioctl_search_key *sk, 2553 size_t *buf_size, 2554 char __user *ubuf) 2555 { 2556 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2557 struct btrfs_root *root; 2558 struct btrfs_key key; 2559 struct btrfs_path *path; 2560 int ret; 2561 int num_found = 0; 2562 unsigned long sk_offset = 0; 2563 2564 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2565 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2566 return -EOVERFLOW; 2567 } 2568 2569 path = btrfs_alloc_path(); 2570 if (!path) 2571 return -ENOMEM; 2572 2573 if (sk->tree_id == 0) { 2574 /* search the root of the inode that was passed */ 2575 root = btrfs_grab_root(BTRFS_I(inode)->root); 2576 } else { 2577 root = btrfs_get_fs_root(info, sk->tree_id, true); 2578 if (IS_ERR(root)) { 2579 btrfs_free_path(path); 2580 return PTR_ERR(root); 2581 } 2582 } 2583 2584 key.objectid = sk->min_objectid; 2585 key.type = sk->min_type; 2586 key.offset = sk->min_offset; 2587 2588 while (1) { 2589 ret = -EFAULT; 2590 /* 2591 * Ensure that the whole user buffer is faulted in at sub-page 2592 * granularity, otherwise the loop may live-lock. 2593 */ 2594 if (fault_in_subpage_writeable(ubuf + sk_offset, 2595 *buf_size - sk_offset)) 2596 break; 2597 2598 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2599 if (ret != 0) { 2600 if (ret > 0) 2601 ret = 0; 2602 goto err; 2603 } 2604 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2605 &sk_offset, &num_found); 2606 btrfs_release_path(path); 2607 if (ret) 2608 break; 2609 2610 } 2611 if (ret > 0) 2612 ret = 0; 2613 err: 2614 sk->nr_items = num_found; 2615 btrfs_put_root(root); 2616 btrfs_free_path(path); 2617 return ret; 2618 } 2619 2620 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 2621 void __user *argp) 2622 { 2623 struct btrfs_ioctl_search_args __user *uargs = argp; 2624 struct btrfs_ioctl_search_key sk; 2625 int ret; 2626 size_t buf_size; 2627 2628 if (!capable(CAP_SYS_ADMIN)) 2629 return -EPERM; 2630 2631 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2632 return -EFAULT; 2633 2634 buf_size = sizeof(uargs->buf); 2635 2636 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2637 2638 /* 2639 * In the origin implementation an overflow is handled by returning a 2640 * search header with a len of zero, so reset ret. 2641 */ 2642 if (ret == -EOVERFLOW) 2643 ret = 0; 2644 2645 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2646 ret = -EFAULT; 2647 return ret; 2648 } 2649 2650 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 2651 void __user *argp) 2652 { 2653 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 2654 struct btrfs_ioctl_search_args_v2 args; 2655 int ret; 2656 size_t buf_size; 2657 const size_t buf_limit = SZ_16M; 2658 2659 if (!capable(CAP_SYS_ADMIN)) 2660 return -EPERM; 2661 2662 /* copy search header and buffer size */ 2663 if (copy_from_user(&args, uarg, sizeof(args))) 2664 return -EFAULT; 2665 2666 buf_size = args.buf_size; 2667 2668 /* limit result size to 16MB */ 2669 if (buf_size > buf_limit) 2670 buf_size = buf_limit; 2671 2672 ret = search_ioctl(inode, &args.key, &buf_size, 2673 (char __user *)(&uarg->buf[0])); 2674 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2675 ret = -EFAULT; 2676 else if (ret == -EOVERFLOW && 2677 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2678 ret = -EFAULT; 2679 2680 return ret; 2681 } 2682 2683 /* 2684 * Search INODE_REFs to identify path name of 'dirid' directory 2685 * in a 'tree_id' tree. and sets path name to 'name'. 2686 */ 2687 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2688 u64 tree_id, u64 dirid, char *name) 2689 { 2690 struct btrfs_root *root; 2691 struct btrfs_key key; 2692 char *ptr; 2693 int ret = -1; 2694 int slot; 2695 int len; 2696 int total_len = 0; 2697 struct btrfs_inode_ref *iref; 2698 struct extent_buffer *l; 2699 struct btrfs_path *path; 2700 2701 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2702 name[0]='\0'; 2703 return 0; 2704 } 2705 2706 path = btrfs_alloc_path(); 2707 if (!path) 2708 return -ENOMEM; 2709 2710 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2711 2712 root = btrfs_get_fs_root(info, tree_id, true); 2713 if (IS_ERR(root)) { 2714 ret = PTR_ERR(root); 2715 root = NULL; 2716 goto out; 2717 } 2718 2719 key.objectid = dirid; 2720 key.type = BTRFS_INODE_REF_KEY; 2721 key.offset = (u64)-1; 2722 2723 while (1) { 2724 ret = btrfs_search_backwards(root, &key, path); 2725 if (ret < 0) 2726 goto out; 2727 else if (ret > 0) { 2728 ret = -ENOENT; 2729 goto out; 2730 } 2731 2732 l = path->nodes[0]; 2733 slot = path->slots[0]; 2734 2735 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2736 len = btrfs_inode_ref_name_len(l, iref); 2737 ptr -= len + 1; 2738 total_len += len + 1; 2739 if (ptr < name) { 2740 ret = -ENAMETOOLONG; 2741 goto out; 2742 } 2743 2744 *(ptr + len) = '/'; 2745 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2746 2747 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2748 break; 2749 2750 btrfs_release_path(path); 2751 key.objectid = key.offset; 2752 key.offset = (u64)-1; 2753 dirid = key.objectid; 2754 } 2755 memmove(name, ptr, total_len); 2756 name[total_len] = '\0'; 2757 ret = 0; 2758 out: 2759 btrfs_put_root(root); 2760 btrfs_free_path(path); 2761 return ret; 2762 } 2763 2764 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns, 2765 struct inode *inode, 2766 struct btrfs_ioctl_ino_lookup_user_args *args) 2767 { 2768 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2769 struct super_block *sb = inode->i_sb; 2770 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2771 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2772 u64 dirid = args->dirid; 2773 unsigned long item_off; 2774 unsigned long item_len; 2775 struct btrfs_inode_ref *iref; 2776 struct btrfs_root_ref *rref; 2777 struct btrfs_root *root = NULL; 2778 struct btrfs_path *path; 2779 struct btrfs_key key, key2; 2780 struct extent_buffer *leaf; 2781 struct inode *temp_inode; 2782 char *ptr; 2783 int slot; 2784 int len; 2785 int total_len = 0; 2786 int ret; 2787 2788 path = btrfs_alloc_path(); 2789 if (!path) 2790 return -ENOMEM; 2791 2792 /* 2793 * If the bottom subvolume does not exist directly under upper_limit, 2794 * construct the path in from the bottom up. 2795 */ 2796 if (dirid != upper_limit.objectid) { 2797 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2798 2799 root = btrfs_get_fs_root(fs_info, treeid, true); 2800 if (IS_ERR(root)) { 2801 ret = PTR_ERR(root); 2802 goto out; 2803 } 2804 2805 key.objectid = dirid; 2806 key.type = BTRFS_INODE_REF_KEY; 2807 key.offset = (u64)-1; 2808 while (1) { 2809 ret = btrfs_search_backwards(root, &key, path); 2810 if (ret < 0) 2811 goto out_put; 2812 else if (ret > 0) { 2813 ret = -ENOENT; 2814 goto out_put; 2815 } 2816 2817 leaf = path->nodes[0]; 2818 slot = path->slots[0]; 2819 2820 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2821 len = btrfs_inode_ref_name_len(leaf, iref); 2822 ptr -= len + 1; 2823 total_len += len + 1; 2824 if (ptr < args->path) { 2825 ret = -ENAMETOOLONG; 2826 goto out_put; 2827 } 2828 2829 *(ptr + len) = '/'; 2830 read_extent_buffer(leaf, ptr, 2831 (unsigned long)(iref + 1), len); 2832 2833 /* Check the read+exec permission of this directory */ 2834 ret = btrfs_previous_item(root, path, dirid, 2835 BTRFS_INODE_ITEM_KEY); 2836 if (ret < 0) { 2837 goto out_put; 2838 } else if (ret > 0) { 2839 ret = -ENOENT; 2840 goto out_put; 2841 } 2842 2843 leaf = path->nodes[0]; 2844 slot = path->slots[0]; 2845 btrfs_item_key_to_cpu(leaf, &key2, slot); 2846 if (key2.objectid != dirid) { 2847 ret = -ENOENT; 2848 goto out_put; 2849 } 2850 2851 temp_inode = btrfs_iget(sb, key2.objectid, root); 2852 if (IS_ERR(temp_inode)) { 2853 ret = PTR_ERR(temp_inode); 2854 goto out_put; 2855 } 2856 ret = inode_permission(mnt_userns, temp_inode, 2857 MAY_READ | MAY_EXEC); 2858 iput(temp_inode); 2859 if (ret) { 2860 ret = -EACCES; 2861 goto out_put; 2862 } 2863 2864 if (key.offset == upper_limit.objectid) 2865 break; 2866 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2867 ret = -EACCES; 2868 goto out_put; 2869 } 2870 2871 btrfs_release_path(path); 2872 key.objectid = key.offset; 2873 key.offset = (u64)-1; 2874 dirid = key.objectid; 2875 } 2876 2877 memmove(args->path, ptr, total_len); 2878 args->path[total_len] = '\0'; 2879 btrfs_put_root(root); 2880 root = NULL; 2881 btrfs_release_path(path); 2882 } 2883 2884 /* Get the bottom subvolume's name from ROOT_REF */ 2885 key.objectid = treeid; 2886 key.type = BTRFS_ROOT_REF_KEY; 2887 key.offset = args->treeid; 2888 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2889 if (ret < 0) { 2890 goto out; 2891 } else if (ret > 0) { 2892 ret = -ENOENT; 2893 goto out; 2894 } 2895 2896 leaf = path->nodes[0]; 2897 slot = path->slots[0]; 2898 btrfs_item_key_to_cpu(leaf, &key, slot); 2899 2900 item_off = btrfs_item_ptr_offset(leaf, slot); 2901 item_len = btrfs_item_size(leaf, slot); 2902 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2903 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2904 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2905 ret = -EINVAL; 2906 goto out; 2907 } 2908 2909 /* Copy subvolume's name */ 2910 item_off += sizeof(struct btrfs_root_ref); 2911 item_len -= sizeof(struct btrfs_root_ref); 2912 read_extent_buffer(leaf, args->name, item_off, item_len); 2913 args->name[item_len] = 0; 2914 2915 out_put: 2916 btrfs_put_root(root); 2917 out: 2918 btrfs_free_path(path); 2919 return ret; 2920 } 2921 2922 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 2923 void __user *argp) 2924 { 2925 struct btrfs_ioctl_ino_lookup_args *args; 2926 int ret = 0; 2927 2928 args = memdup_user(argp, sizeof(*args)); 2929 if (IS_ERR(args)) 2930 return PTR_ERR(args); 2931 2932 /* 2933 * Unprivileged query to obtain the containing subvolume root id. The 2934 * path is reset so it's consistent with btrfs_search_path_in_tree. 2935 */ 2936 if (args->treeid == 0) 2937 args->treeid = root->root_key.objectid; 2938 2939 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2940 args->name[0] = 0; 2941 goto out; 2942 } 2943 2944 if (!capable(CAP_SYS_ADMIN)) { 2945 ret = -EPERM; 2946 goto out; 2947 } 2948 2949 ret = btrfs_search_path_in_tree(root->fs_info, 2950 args->treeid, args->objectid, 2951 args->name); 2952 2953 out: 2954 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2955 ret = -EFAULT; 2956 2957 kfree(args); 2958 return ret; 2959 } 2960 2961 /* 2962 * Version of ino_lookup ioctl (unprivileged) 2963 * 2964 * The main differences from ino_lookup ioctl are: 2965 * 2966 * 1. Read + Exec permission will be checked using inode_permission() during 2967 * path construction. -EACCES will be returned in case of failure. 2968 * 2. Path construction will be stopped at the inode number which corresponds 2969 * to the fd with which this ioctl is called. If constructed path does not 2970 * exist under fd's inode, -EACCES will be returned. 2971 * 3. The name of bottom subvolume is also searched and filled. 2972 */ 2973 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2974 { 2975 struct btrfs_ioctl_ino_lookup_user_args *args; 2976 struct inode *inode; 2977 int ret; 2978 2979 args = memdup_user(argp, sizeof(*args)); 2980 if (IS_ERR(args)) 2981 return PTR_ERR(args); 2982 2983 inode = file_inode(file); 2984 2985 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2986 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2987 /* 2988 * The subvolume does not exist under fd with which this is 2989 * called 2990 */ 2991 kfree(args); 2992 return -EACCES; 2993 } 2994 2995 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args); 2996 2997 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2998 ret = -EFAULT; 2999 3000 kfree(args); 3001 return ret; 3002 } 3003 3004 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 3005 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 3006 { 3007 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 3008 struct btrfs_fs_info *fs_info; 3009 struct btrfs_root *root; 3010 struct btrfs_path *path; 3011 struct btrfs_key key; 3012 struct btrfs_root_item *root_item; 3013 struct btrfs_root_ref *rref; 3014 struct extent_buffer *leaf; 3015 unsigned long item_off; 3016 unsigned long item_len; 3017 int slot; 3018 int ret = 0; 3019 3020 path = btrfs_alloc_path(); 3021 if (!path) 3022 return -ENOMEM; 3023 3024 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 3025 if (!subvol_info) { 3026 btrfs_free_path(path); 3027 return -ENOMEM; 3028 } 3029 3030 fs_info = BTRFS_I(inode)->root->fs_info; 3031 3032 /* Get root_item of inode's subvolume */ 3033 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 3034 root = btrfs_get_fs_root(fs_info, key.objectid, true); 3035 if (IS_ERR(root)) { 3036 ret = PTR_ERR(root); 3037 goto out_free; 3038 } 3039 root_item = &root->root_item; 3040 3041 subvol_info->treeid = key.objectid; 3042 3043 subvol_info->generation = btrfs_root_generation(root_item); 3044 subvol_info->flags = btrfs_root_flags(root_item); 3045 3046 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 3047 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 3048 BTRFS_UUID_SIZE); 3049 memcpy(subvol_info->received_uuid, root_item->received_uuid, 3050 BTRFS_UUID_SIZE); 3051 3052 subvol_info->ctransid = btrfs_root_ctransid(root_item); 3053 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 3054 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 3055 3056 subvol_info->otransid = btrfs_root_otransid(root_item); 3057 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 3058 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 3059 3060 subvol_info->stransid = btrfs_root_stransid(root_item); 3061 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 3062 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 3063 3064 subvol_info->rtransid = btrfs_root_rtransid(root_item); 3065 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 3066 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 3067 3068 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 3069 /* Search root tree for ROOT_BACKREF of this subvolume */ 3070 key.type = BTRFS_ROOT_BACKREF_KEY; 3071 key.offset = 0; 3072 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3073 if (ret < 0) { 3074 goto out; 3075 } else if (path->slots[0] >= 3076 btrfs_header_nritems(path->nodes[0])) { 3077 ret = btrfs_next_leaf(fs_info->tree_root, path); 3078 if (ret < 0) { 3079 goto out; 3080 } else if (ret > 0) { 3081 ret = -EUCLEAN; 3082 goto out; 3083 } 3084 } 3085 3086 leaf = path->nodes[0]; 3087 slot = path->slots[0]; 3088 btrfs_item_key_to_cpu(leaf, &key, slot); 3089 if (key.objectid == subvol_info->treeid && 3090 key.type == BTRFS_ROOT_BACKREF_KEY) { 3091 subvol_info->parent_id = key.offset; 3092 3093 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 3094 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 3095 3096 item_off = btrfs_item_ptr_offset(leaf, slot) 3097 + sizeof(struct btrfs_root_ref); 3098 item_len = btrfs_item_size(leaf, slot) 3099 - sizeof(struct btrfs_root_ref); 3100 read_extent_buffer(leaf, subvol_info->name, 3101 item_off, item_len); 3102 } else { 3103 ret = -ENOENT; 3104 goto out; 3105 } 3106 } 3107 3108 btrfs_free_path(path); 3109 path = NULL; 3110 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 3111 ret = -EFAULT; 3112 3113 out: 3114 btrfs_put_root(root); 3115 out_free: 3116 btrfs_free_path(path); 3117 kfree(subvol_info); 3118 return ret; 3119 } 3120 3121 /* 3122 * Return ROOT_REF information of the subvolume containing this inode 3123 * except the subvolume name. 3124 */ 3125 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 3126 void __user *argp) 3127 { 3128 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 3129 struct btrfs_root_ref *rref; 3130 struct btrfs_path *path; 3131 struct btrfs_key key; 3132 struct extent_buffer *leaf; 3133 u64 objectid; 3134 int slot; 3135 int ret; 3136 u8 found; 3137 3138 path = btrfs_alloc_path(); 3139 if (!path) 3140 return -ENOMEM; 3141 3142 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 3143 if (IS_ERR(rootrefs)) { 3144 btrfs_free_path(path); 3145 return PTR_ERR(rootrefs); 3146 } 3147 3148 objectid = root->root_key.objectid; 3149 key.objectid = objectid; 3150 key.type = BTRFS_ROOT_REF_KEY; 3151 key.offset = rootrefs->min_treeid; 3152 found = 0; 3153 3154 root = root->fs_info->tree_root; 3155 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3156 if (ret < 0) { 3157 goto out; 3158 } else if (path->slots[0] >= 3159 btrfs_header_nritems(path->nodes[0])) { 3160 ret = btrfs_next_leaf(root, path); 3161 if (ret < 0) { 3162 goto out; 3163 } else if (ret > 0) { 3164 ret = -EUCLEAN; 3165 goto out; 3166 } 3167 } 3168 while (1) { 3169 leaf = path->nodes[0]; 3170 slot = path->slots[0]; 3171 3172 btrfs_item_key_to_cpu(leaf, &key, slot); 3173 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 3174 ret = 0; 3175 goto out; 3176 } 3177 3178 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 3179 ret = -EOVERFLOW; 3180 goto out; 3181 } 3182 3183 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 3184 rootrefs->rootref[found].treeid = key.offset; 3185 rootrefs->rootref[found].dirid = 3186 btrfs_root_ref_dirid(leaf, rref); 3187 found++; 3188 3189 ret = btrfs_next_item(root, path); 3190 if (ret < 0) { 3191 goto out; 3192 } else if (ret > 0) { 3193 ret = -EUCLEAN; 3194 goto out; 3195 } 3196 } 3197 3198 out: 3199 btrfs_free_path(path); 3200 3201 if (!ret || ret == -EOVERFLOW) { 3202 rootrefs->num_items = found; 3203 /* update min_treeid for next search */ 3204 if (found) 3205 rootrefs->min_treeid = 3206 rootrefs->rootref[found - 1].treeid + 1; 3207 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 3208 ret = -EFAULT; 3209 } 3210 3211 kfree(rootrefs); 3212 3213 return ret; 3214 } 3215 3216 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 3217 void __user *arg, 3218 bool destroy_v2) 3219 { 3220 struct dentry *parent = file->f_path.dentry; 3221 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 3222 struct dentry *dentry; 3223 struct inode *dir = d_inode(parent); 3224 struct inode *inode; 3225 struct btrfs_root *root = BTRFS_I(dir)->root; 3226 struct btrfs_root *dest = NULL; 3227 struct btrfs_ioctl_vol_args *vol_args = NULL; 3228 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 3229 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 3230 char *subvol_name, *subvol_name_ptr = NULL; 3231 int subvol_namelen; 3232 int err = 0; 3233 bool destroy_parent = false; 3234 3235 /* We don't support snapshots with extent tree v2 yet. */ 3236 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3237 btrfs_err(fs_info, 3238 "extent tree v2 doesn't support snapshot deletion yet"); 3239 return -EOPNOTSUPP; 3240 } 3241 3242 if (destroy_v2) { 3243 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 3244 if (IS_ERR(vol_args2)) 3245 return PTR_ERR(vol_args2); 3246 3247 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 3248 err = -EOPNOTSUPP; 3249 goto out; 3250 } 3251 3252 /* 3253 * If SPEC_BY_ID is not set, we are looking for the subvolume by 3254 * name, same as v1 currently does. 3255 */ 3256 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 3257 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 3258 subvol_name = vol_args2->name; 3259 3260 err = mnt_want_write_file(file); 3261 if (err) 3262 goto out; 3263 } else { 3264 struct inode *old_dir; 3265 3266 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 3267 err = -EINVAL; 3268 goto out; 3269 } 3270 3271 err = mnt_want_write_file(file); 3272 if (err) 3273 goto out; 3274 3275 dentry = btrfs_get_dentry(fs_info->sb, 3276 BTRFS_FIRST_FREE_OBJECTID, 3277 vol_args2->subvolid, 0, 0); 3278 if (IS_ERR(dentry)) { 3279 err = PTR_ERR(dentry); 3280 goto out_drop_write; 3281 } 3282 3283 /* 3284 * Change the default parent since the subvolume being 3285 * deleted can be outside of the current mount point. 3286 */ 3287 parent = btrfs_get_parent(dentry); 3288 3289 /* 3290 * At this point dentry->d_name can point to '/' if the 3291 * subvolume we want to destroy is outsite of the 3292 * current mount point, so we need to release the 3293 * current dentry and execute the lookup to return a new 3294 * one with ->d_name pointing to the 3295 * <mount point>/subvol_name. 3296 */ 3297 dput(dentry); 3298 if (IS_ERR(parent)) { 3299 err = PTR_ERR(parent); 3300 goto out_drop_write; 3301 } 3302 old_dir = dir; 3303 dir = d_inode(parent); 3304 3305 /* 3306 * If v2 was used with SPEC_BY_ID, a new parent was 3307 * allocated since the subvolume can be outside of the 3308 * current mount point. Later on we need to release this 3309 * new parent dentry. 3310 */ 3311 destroy_parent = true; 3312 3313 /* 3314 * On idmapped mounts, deletion via subvolid is 3315 * restricted to subvolumes that are immediate 3316 * ancestors of the inode referenced by the file 3317 * descriptor in the ioctl. Otherwise the idmapping 3318 * could potentially be abused to delete subvolumes 3319 * anywhere in the filesystem the user wouldn't be able 3320 * to delete without an idmapped mount. 3321 */ 3322 if (old_dir != dir && mnt_userns != &init_user_ns) { 3323 err = -EOPNOTSUPP; 3324 goto free_parent; 3325 } 3326 3327 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 3328 fs_info, vol_args2->subvolid); 3329 if (IS_ERR(subvol_name_ptr)) { 3330 err = PTR_ERR(subvol_name_ptr); 3331 goto free_parent; 3332 } 3333 /* subvol_name_ptr is already nul terminated */ 3334 subvol_name = (char *)kbasename(subvol_name_ptr); 3335 } 3336 } else { 3337 vol_args = memdup_user(arg, sizeof(*vol_args)); 3338 if (IS_ERR(vol_args)) 3339 return PTR_ERR(vol_args); 3340 3341 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 3342 subvol_name = vol_args->name; 3343 3344 err = mnt_want_write_file(file); 3345 if (err) 3346 goto out; 3347 } 3348 3349 subvol_namelen = strlen(subvol_name); 3350 3351 if (strchr(subvol_name, '/') || 3352 strncmp(subvol_name, "..", subvol_namelen) == 0) { 3353 err = -EINVAL; 3354 goto free_subvol_name; 3355 } 3356 3357 if (!S_ISDIR(dir->i_mode)) { 3358 err = -ENOTDIR; 3359 goto free_subvol_name; 3360 } 3361 3362 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3363 if (err == -EINTR) 3364 goto free_subvol_name; 3365 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen); 3366 if (IS_ERR(dentry)) { 3367 err = PTR_ERR(dentry); 3368 goto out_unlock_dir; 3369 } 3370 3371 if (d_really_is_negative(dentry)) { 3372 err = -ENOENT; 3373 goto out_dput; 3374 } 3375 3376 inode = d_inode(dentry); 3377 dest = BTRFS_I(inode)->root; 3378 if (!capable(CAP_SYS_ADMIN)) { 3379 /* 3380 * Regular user. Only allow this with a special mount 3381 * option, when the user has write+exec access to the 3382 * subvol root, and when rmdir(2) would have been 3383 * allowed. 3384 * 3385 * Note that this is _not_ check that the subvol is 3386 * empty or doesn't contain data that we wouldn't 3387 * otherwise be able to delete. 3388 * 3389 * Users who want to delete empty subvols should try 3390 * rmdir(2). 3391 */ 3392 err = -EPERM; 3393 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3394 goto out_dput; 3395 3396 /* 3397 * Do not allow deletion if the parent dir is the same 3398 * as the dir to be deleted. That means the ioctl 3399 * must be called on the dentry referencing the root 3400 * of the subvol, not a random directory contained 3401 * within it. 3402 */ 3403 err = -EINVAL; 3404 if (root == dest) 3405 goto out_dput; 3406 3407 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC); 3408 if (err) 3409 goto out_dput; 3410 } 3411 3412 /* check if subvolume may be deleted by a user */ 3413 err = btrfs_may_delete(mnt_userns, dir, dentry, 1); 3414 if (err) 3415 goto out_dput; 3416 3417 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3418 err = -EINVAL; 3419 goto out_dput; 3420 } 3421 3422 btrfs_inode_lock(inode, 0); 3423 err = btrfs_delete_subvolume(dir, dentry); 3424 btrfs_inode_unlock(inode, 0); 3425 if (!err) 3426 d_delete_notify(dir, dentry); 3427 3428 out_dput: 3429 dput(dentry); 3430 out_unlock_dir: 3431 btrfs_inode_unlock(dir, 0); 3432 free_subvol_name: 3433 kfree(subvol_name_ptr); 3434 free_parent: 3435 if (destroy_parent) 3436 dput(parent); 3437 out_drop_write: 3438 mnt_drop_write_file(file); 3439 out: 3440 kfree(vol_args2); 3441 kfree(vol_args); 3442 return err; 3443 } 3444 3445 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3446 { 3447 struct inode *inode = file_inode(file); 3448 struct btrfs_root *root = BTRFS_I(inode)->root; 3449 struct btrfs_ioctl_defrag_range_args range = {0}; 3450 int ret; 3451 3452 ret = mnt_want_write_file(file); 3453 if (ret) 3454 return ret; 3455 3456 if (btrfs_root_readonly(root)) { 3457 ret = -EROFS; 3458 goto out; 3459 } 3460 3461 switch (inode->i_mode & S_IFMT) { 3462 case S_IFDIR: 3463 if (!capable(CAP_SYS_ADMIN)) { 3464 ret = -EPERM; 3465 goto out; 3466 } 3467 ret = btrfs_defrag_root(root); 3468 break; 3469 case S_IFREG: 3470 /* 3471 * Note that this does not check the file descriptor for write 3472 * access. This prevents defragmenting executables that are 3473 * running and allows defrag on files open in read-only mode. 3474 */ 3475 if (!capable(CAP_SYS_ADMIN) && 3476 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3477 ret = -EPERM; 3478 goto out; 3479 } 3480 3481 if (argp) { 3482 if (copy_from_user(&range, argp, sizeof(range))) { 3483 ret = -EFAULT; 3484 goto out; 3485 } 3486 /* compression requires us to start the IO */ 3487 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3488 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 3489 range.extent_thresh = (u32)-1; 3490 } 3491 } else { 3492 /* the rest are all set to zero by kzalloc */ 3493 range.len = (u64)-1; 3494 } 3495 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 3496 &range, BTRFS_OLDEST_GENERATION, 0); 3497 if (ret > 0) 3498 ret = 0; 3499 break; 3500 default: 3501 ret = -EINVAL; 3502 } 3503 out: 3504 mnt_drop_write_file(file); 3505 return ret; 3506 } 3507 3508 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3509 { 3510 struct btrfs_ioctl_vol_args *vol_args; 3511 bool restore_op = false; 3512 int ret; 3513 3514 if (!capable(CAP_SYS_ADMIN)) 3515 return -EPERM; 3516 3517 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3518 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 3519 return -EINVAL; 3520 } 3521 3522 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 3523 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3524 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3525 3526 /* 3527 * We can do the device add because we have a paused balanced, 3528 * change the exclusive op type and remember we should bring 3529 * back the paused balance 3530 */ 3531 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 3532 btrfs_exclop_start_unlock(fs_info); 3533 restore_op = true; 3534 } 3535 3536 vol_args = memdup_user(arg, sizeof(*vol_args)); 3537 if (IS_ERR(vol_args)) { 3538 ret = PTR_ERR(vol_args); 3539 goto out; 3540 } 3541 3542 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3543 ret = btrfs_init_new_device(fs_info, vol_args->name); 3544 3545 if (!ret) 3546 btrfs_info(fs_info, "disk added %s", vol_args->name); 3547 3548 kfree(vol_args); 3549 out: 3550 if (restore_op) 3551 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 3552 else 3553 btrfs_exclop_finish(fs_info); 3554 return ret; 3555 } 3556 3557 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3558 { 3559 BTRFS_DEV_LOOKUP_ARGS(args); 3560 struct inode *inode = file_inode(file); 3561 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3562 struct btrfs_ioctl_vol_args_v2 *vol_args; 3563 struct block_device *bdev = NULL; 3564 fmode_t mode; 3565 int ret; 3566 bool cancel = false; 3567 3568 if (!capable(CAP_SYS_ADMIN)) 3569 return -EPERM; 3570 3571 vol_args = memdup_user(arg, sizeof(*vol_args)); 3572 if (IS_ERR(vol_args)) 3573 return PTR_ERR(vol_args); 3574 3575 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3576 ret = -EOPNOTSUPP; 3577 goto out; 3578 } 3579 3580 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3581 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3582 args.devid = vol_args->devid; 3583 } else if (!strcmp("cancel", vol_args->name)) { 3584 cancel = true; 3585 } else { 3586 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3587 if (ret) 3588 goto out; 3589 } 3590 3591 ret = mnt_want_write_file(file); 3592 if (ret) 3593 goto out; 3594 3595 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3596 cancel); 3597 if (ret) 3598 goto err_drop; 3599 3600 /* Exclusive operation is now claimed */ 3601 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3602 3603 btrfs_exclop_finish(fs_info); 3604 3605 if (!ret) { 3606 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3607 btrfs_info(fs_info, "device deleted: id %llu", 3608 vol_args->devid); 3609 else 3610 btrfs_info(fs_info, "device deleted: %s", 3611 vol_args->name); 3612 } 3613 err_drop: 3614 mnt_drop_write_file(file); 3615 if (bdev) 3616 blkdev_put(bdev, mode); 3617 out: 3618 btrfs_put_dev_args_from_path(&args); 3619 kfree(vol_args); 3620 return ret; 3621 } 3622 3623 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3624 { 3625 BTRFS_DEV_LOOKUP_ARGS(args); 3626 struct inode *inode = file_inode(file); 3627 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3628 struct btrfs_ioctl_vol_args *vol_args; 3629 struct block_device *bdev = NULL; 3630 fmode_t mode; 3631 int ret; 3632 bool cancel = false; 3633 3634 if (!capable(CAP_SYS_ADMIN)) 3635 return -EPERM; 3636 3637 vol_args = memdup_user(arg, sizeof(*vol_args)); 3638 if (IS_ERR(vol_args)) 3639 return PTR_ERR(vol_args); 3640 3641 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3642 if (!strcmp("cancel", vol_args->name)) { 3643 cancel = true; 3644 } else { 3645 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3646 if (ret) 3647 goto out; 3648 } 3649 3650 ret = mnt_want_write_file(file); 3651 if (ret) 3652 goto out; 3653 3654 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3655 cancel); 3656 if (ret == 0) { 3657 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3658 if (!ret) 3659 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3660 btrfs_exclop_finish(fs_info); 3661 } 3662 3663 mnt_drop_write_file(file); 3664 if (bdev) 3665 blkdev_put(bdev, mode); 3666 out: 3667 btrfs_put_dev_args_from_path(&args); 3668 kfree(vol_args); 3669 return ret; 3670 } 3671 3672 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3673 void __user *arg) 3674 { 3675 struct btrfs_ioctl_fs_info_args *fi_args; 3676 struct btrfs_device *device; 3677 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3678 u64 flags_in; 3679 int ret = 0; 3680 3681 fi_args = memdup_user(arg, sizeof(*fi_args)); 3682 if (IS_ERR(fi_args)) 3683 return PTR_ERR(fi_args); 3684 3685 flags_in = fi_args->flags; 3686 memset(fi_args, 0, sizeof(*fi_args)); 3687 3688 rcu_read_lock(); 3689 fi_args->num_devices = fs_devices->num_devices; 3690 3691 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3692 if (device->devid > fi_args->max_id) 3693 fi_args->max_id = device->devid; 3694 } 3695 rcu_read_unlock(); 3696 3697 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3698 fi_args->nodesize = fs_info->nodesize; 3699 fi_args->sectorsize = fs_info->sectorsize; 3700 fi_args->clone_alignment = fs_info->sectorsize; 3701 3702 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3703 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3704 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3705 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3706 } 3707 3708 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3709 fi_args->generation = fs_info->generation; 3710 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3711 } 3712 3713 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3714 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3715 sizeof(fi_args->metadata_uuid)); 3716 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3717 } 3718 3719 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3720 ret = -EFAULT; 3721 3722 kfree(fi_args); 3723 return ret; 3724 } 3725 3726 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3727 void __user *arg) 3728 { 3729 BTRFS_DEV_LOOKUP_ARGS(args); 3730 struct btrfs_ioctl_dev_info_args *di_args; 3731 struct btrfs_device *dev; 3732 int ret = 0; 3733 3734 di_args = memdup_user(arg, sizeof(*di_args)); 3735 if (IS_ERR(di_args)) 3736 return PTR_ERR(di_args); 3737 3738 args.devid = di_args->devid; 3739 if (!btrfs_is_empty_uuid(di_args->uuid)) 3740 args.uuid = di_args->uuid; 3741 3742 rcu_read_lock(); 3743 dev = btrfs_find_device(fs_info->fs_devices, &args); 3744 if (!dev) { 3745 ret = -ENODEV; 3746 goto out; 3747 } 3748 3749 di_args->devid = dev->devid; 3750 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3751 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3752 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3753 if (dev->name) { 3754 strncpy(di_args->path, rcu_str_deref(dev->name), 3755 sizeof(di_args->path) - 1); 3756 di_args->path[sizeof(di_args->path) - 1] = 0; 3757 } else { 3758 di_args->path[0] = '\0'; 3759 } 3760 3761 out: 3762 rcu_read_unlock(); 3763 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3764 ret = -EFAULT; 3765 3766 kfree(di_args); 3767 return ret; 3768 } 3769 3770 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3771 { 3772 struct inode *inode = file_inode(file); 3773 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3774 struct btrfs_root *root = BTRFS_I(inode)->root; 3775 struct btrfs_root *new_root; 3776 struct btrfs_dir_item *di; 3777 struct btrfs_trans_handle *trans; 3778 struct btrfs_path *path = NULL; 3779 struct btrfs_disk_key disk_key; 3780 u64 objectid = 0; 3781 u64 dir_id; 3782 int ret; 3783 3784 if (!capable(CAP_SYS_ADMIN)) 3785 return -EPERM; 3786 3787 ret = mnt_want_write_file(file); 3788 if (ret) 3789 return ret; 3790 3791 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3792 ret = -EFAULT; 3793 goto out; 3794 } 3795 3796 if (!objectid) 3797 objectid = BTRFS_FS_TREE_OBJECTID; 3798 3799 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3800 if (IS_ERR(new_root)) { 3801 ret = PTR_ERR(new_root); 3802 goto out; 3803 } 3804 if (!is_fstree(new_root->root_key.objectid)) { 3805 ret = -ENOENT; 3806 goto out_free; 3807 } 3808 3809 path = btrfs_alloc_path(); 3810 if (!path) { 3811 ret = -ENOMEM; 3812 goto out_free; 3813 } 3814 3815 trans = btrfs_start_transaction(root, 1); 3816 if (IS_ERR(trans)) { 3817 ret = PTR_ERR(trans); 3818 goto out_free; 3819 } 3820 3821 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3822 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3823 dir_id, "default", 7, 1); 3824 if (IS_ERR_OR_NULL(di)) { 3825 btrfs_release_path(path); 3826 btrfs_end_transaction(trans); 3827 btrfs_err(fs_info, 3828 "Umm, you don't have the default diritem, this isn't going to work"); 3829 ret = -ENOENT; 3830 goto out_free; 3831 } 3832 3833 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3834 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3835 btrfs_mark_buffer_dirty(path->nodes[0]); 3836 btrfs_release_path(path); 3837 3838 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3839 btrfs_end_transaction(trans); 3840 out_free: 3841 btrfs_put_root(new_root); 3842 btrfs_free_path(path); 3843 out: 3844 mnt_drop_write_file(file); 3845 return ret; 3846 } 3847 3848 static void get_block_group_info(struct list_head *groups_list, 3849 struct btrfs_ioctl_space_info *space) 3850 { 3851 struct btrfs_block_group *block_group; 3852 3853 space->total_bytes = 0; 3854 space->used_bytes = 0; 3855 space->flags = 0; 3856 list_for_each_entry(block_group, groups_list, list) { 3857 space->flags = block_group->flags; 3858 space->total_bytes += block_group->length; 3859 space->used_bytes += block_group->used; 3860 } 3861 } 3862 3863 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3864 void __user *arg) 3865 { 3866 struct btrfs_ioctl_space_args space_args; 3867 struct btrfs_ioctl_space_info space; 3868 struct btrfs_ioctl_space_info *dest; 3869 struct btrfs_ioctl_space_info *dest_orig; 3870 struct btrfs_ioctl_space_info __user *user_dest; 3871 struct btrfs_space_info *info; 3872 static const u64 types[] = { 3873 BTRFS_BLOCK_GROUP_DATA, 3874 BTRFS_BLOCK_GROUP_SYSTEM, 3875 BTRFS_BLOCK_GROUP_METADATA, 3876 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3877 }; 3878 int num_types = 4; 3879 int alloc_size; 3880 int ret = 0; 3881 u64 slot_count = 0; 3882 int i, c; 3883 3884 if (copy_from_user(&space_args, 3885 (struct btrfs_ioctl_space_args __user *)arg, 3886 sizeof(space_args))) 3887 return -EFAULT; 3888 3889 for (i = 0; i < num_types; i++) { 3890 struct btrfs_space_info *tmp; 3891 3892 info = NULL; 3893 list_for_each_entry(tmp, &fs_info->space_info, list) { 3894 if (tmp->flags == types[i]) { 3895 info = tmp; 3896 break; 3897 } 3898 } 3899 3900 if (!info) 3901 continue; 3902 3903 down_read(&info->groups_sem); 3904 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3905 if (!list_empty(&info->block_groups[c])) 3906 slot_count++; 3907 } 3908 up_read(&info->groups_sem); 3909 } 3910 3911 /* 3912 * Global block reserve, exported as a space_info 3913 */ 3914 slot_count++; 3915 3916 /* space_slots == 0 means they are asking for a count */ 3917 if (space_args.space_slots == 0) { 3918 space_args.total_spaces = slot_count; 3919 goto out; 3920 } 3921 3922 slot_count = min_t(u64, space_args.space_slots, slot_count); 3923 3924 alloc_size = sizeof(*dest) * slot_count; 3925 3926 /* we generally have at most 6 or so space infos, one for each raid 3927 * level. So, a whole page should be more than enough for everyone 3928 */ 3929 if (alloc_size > PAGE_SIZE) 3930 return -ENOMEM; 3931 3932 space_args.total_spaces = 0; 3933 dest = kmalloc(alloc_size, GFP_KERNEL); 3934 if (!dest) 3935 return -ENOMEM; 3936 dest_orig = dest; 3937 3938 /* now we have a buffer to copy into */ 3939 for (i = 0; i < num_types; i++) { 3940 struct btrfs_space_info *tmp; 3941 3942 if (!slot_count) 3943 break; 3944 3945 info = NULL; 3946 list_for_each_entry(tmp, &fs_info->space_info, list) { 3947 if (tmp->flags == types[i]) { 3948 info = tmp; 3949 break; 3950 } 3951 } 3952 3953 if (!info) 3954 continue; 3955 down_read(&info->groups_sem); 3956 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3957 if (!list_empty(&info->block_groups[c])) { 3958 get_block_group_info(&info->block_groups[c], 3959 &space); 3960 memcpy(dest, &space, sizeof(space)); 3961 dest++; 3962 space_args.total_spaces++; 3963 slot_count--; 3964 } 3965 if (!slot_count) 3966 break; 3967 } 3968 up_read(&info->groups_sem); 3969 } 3970 3971 /* 3972 * Add global block reserve 3973 */ 3974 if (slot_count) { 3975 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3976 3977 spin_lock(&block_rsv->lock); 3978 space.total_bytes = block_rsv->size; 3979 space.used_bytes = block_rsv->size - block_rsv->reserved; 3980 spin_unlock(&block_rsv->lock); 3981 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3982 memcpy(dest, &space, sizeof(space)); 3983 space_args.total_spaces++; 3984 } 3985 3986 user_dest = (struct btrfs_ioctl_space_info __user *) 3987 (arg + sizeof(struct btrfs_ioctl_space_args)); 3988 3989 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3990 ret = -EFAULT; 3991 3992 kfree(dest_orig); 3993 out: 3994 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3995 ret = -EFAULT; 3996 3997 return ret; 3998 } 3999 4000 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4001 void __user *argp) 4002 { 4003 struct btrfs_trans_handle *trans; 4004 u64 transid; 4005 4006 trans = btrfs_attach_transaction_barrier(root); 4007 if (IS_ERR(trans)) { 4008 if (PTR_ERR(trans) != -ENOENT) 4009 return PTR_ERR(trans); 4010 4011 /* No running transaction, don't bother */ 4012 transid = root->fs_info->last_trans_committed; 4013 goto out; 4014 } 4015 transid = trans->transid; 4016 btrfs_commit_transaction_async(trans); 4017 out: 4018 if (argp) 4019 if (copy_to_user(argp, &transid, sizeof(transid))) 4020 return -EFAULT; 4021 return 0; 4022 } 4023 4024 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4025 void __user *argp) 4026 { 4027 u64 transid; 4028 4029 if (argp) { 4030 if (copy_from_user(&transid, argp, sizeof(transid))) 4031 return -EFAULT; 4032 } else { 4033 transid = 0; /* current trans */ 4034 } 4035 return btrfs_wait_for_commit(fs_info, transid); 4036 } 4037 4038 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4039 { 4040 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4041 struct btrfs_ioctl_scrub_args *sa; 4042 int ret; 4043 4044 if (!capable(CAP_SYS_ADMIN)) 4045 return -EPERM; 4046 4047 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 4048 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 4049 return -EINVAL; 4050 } 4051 4052 sa = memdup_user(arg, sizeof(*sa)); 4053 if (IS_ERR(sa)) 4054 return PTR_ERR(sa); 4055 4056 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4057 ret = mnt_want_write_file(file); 4058 if (ret) 4059 goto out; 4060 } 4061 4062 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4063 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4064 0); 4065 4066 /* 4067 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 4068 * error. This is important as it allows user space to know how much 4069 * progress scrub has done. For example, if scrub is canceled we get 4070 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 4071 * space. Later user space can inspect the progress from the structure 4072 * btrfs_ioctl_scrub_args and resume scrub from where it left off 4073 * previously (btrfs-progs does this). 4074 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 4075 * then return -EFAULT to signal the structure was not copied or it may 4076 * be corrupt and unreliable due to a partial copy. 4077 */ 4078 if (copy_to_user(arg, sa, sizeof(*sa))) 4079 ret = -EFAULT; 4080 4081 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4082 mnt_drop_write_file(file); 4083 out: 4084 kfree(sa); 4085 return ret; 4086 } 4087 4088 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4089 { 4090 if (!capable(CAP_SYS_ADMIN)) 4091 return -EPERM; 4092 4093 return btrfs_scrub_cancel(fs_info); 4094 } 4095 4096 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4097 void __user *arg) 4098 { 4099 struct btrfs_ioctl_scrub_args *sa; 4100 int ret; 4101 4102 if (!capable(CAP_SYS_ADMIN)) 4103 return -EPERM; 4104 4105 sa = memdup_user(arg, sizeof(*sa)); 4106 if (IS_ERR(sa)) 4107 return PTR_ERR(sa); 4108 4109 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4110 4111 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4112 ret = -EFAULT; 4113 4114 kfree(sa); 4115 return ret; 4116 } 4117 4118 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4119 void __user *arg) 4120 { 4121 struct btrfs_ioctl_get_dev_stats *sa; 4122 int ret; 4123 4124 sa = memdup_user(arg, sizeof(*sa)); 4125 if (IS_ERR(sa)) 4126 return PTR_ERR(sa); 4127 4128 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4129 kfree(sa); 4130 return -EPERM; 4131 } 4132 4133 ret = btrfs_get_dev_stats(fs_info, sa); 4134 4135 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4136 ret = -EFAULT; 4137 4138 kfree(sa); 4139 return ret; 4140 } 4141 4142 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4143 void __user *arg) 4144 { 4145 struct btrfs_ioctl_dev_replace_args *p; 4146 int ret; 4147 4148 if (!capable(CAP_SYS_ADMIN)) 4149 return -EPERM; 4150 4151 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 4152 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 4153 return -EINVAL; 4154 } 4155 4156 p = memdup_user(arg, sizeof(*p)); 4157 if (IS_ERR(p)) 4158 return PTR_ERR(p); 4159 4160 switch (p->cmd) { 4161 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4162 if (sb_rdonly(fs_info->sb)) { 4163 ret = -EROFS; 4164 goto out; 4165 } 4166 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 4167 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4168 } else { 4169 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4170 btrfs_exclop_finish(fs_info); 4171 } 4172 break; 4173 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4174 btrfs_dev_replace_status(fs_info, p); 4175 ret = 0; 4176 break; 4177 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4178 p->result = btrfs_dev_replace_cancel(fs_info); 4179 ret = 0; 4180 break; 4181 default: 4182 ret = -EINVAL; 4183 break; 4184 } 4185 4186 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 4187 ret = -EFAULT; 4188 out: 4189 kfree(p); 4190 return ret; 4191 } 4192 4193 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4194 { 4195 int ret = 0; 4196 int i; 4197 u64 rel_ptr; 4198 int size; 4199 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4200 struct inode_fs_paths *ipath = NULL; 4201 struct btrfs_path *path; 4202 4203 if (!capable(CAP_DAC_READ_SEARCH)) 4204 return -EPERM; 4205 4206 path = btrfs_alloc_path(); 4207 if (!path) { 4208 ret = -ENOMEM; 4209 goto out; 4210 } 4211 4212 ipa = memdup_user(arg, sizeof(*ipa)); 4213 if (IS_ERR(ipa)) { 4214 ret = PTR_ERR(ipa); 4215 ipa = NULL; 4216 goto out; 4217 } 4218 4219 size = min_t(u32, ipa->size, 4096); 4220 ipath = init_ipath(size, root, path); 4221 if (IS_ERR(ipath)) { 4222 ret = PTR_ERR(ipath); 4223 ipath = NULL; 4224 goto out; 4225 } 4226 4227 ret = paths_from_inode(ipa->inum, ipath); 4228 if (ret < 0) 4229 goto out; 4230 4231 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4232 rel_ptr = ipath->fspath->val[i] - 4233 (u64)(unsigned long)ipath->fspath->val; 4234 ipath->fspath->val[i] = rel_ptr; 4235 } 4236 4237 btrfs_free_path(path); 4238 path = NULL; 4239 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4240 ipath->fspath, size); 4241 if (ret) { 4242 ret = -EFAULT; 4243 goto out; 4244 } 4245 4246 out: 4247 btrfs_free_path(path); 4248 free_ipath(ipath); 4249 kfree(ipa); 4250 4251 return ret; 4252 } 4253 4254 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4255 void __user *arg, int version) 4256 { 4257 int ret = 0; 4258 int size; 4259 struct btrfs_ioctl_logical_ino_args *loi; 4260 struct btrfs_data_container *inodes = NULL; 4261 struct btrfs_path *path = NULL; 4262 bool ignore_offset; 4263 4264 if (!capable(CAP_SYS_ADMIN)) 4265 return -EPERM; 4266 4267 loi = memdup_user(arg, sizeof(*loi)); 4268 if (IS_ERR(loi)) 4269 return PTR_ERR(loi); 4270 4271 if (version == 1) { 4272 ignore_offset = false; 4273 size = min_t(u32, loi->size, SZ_64K); 4274 } else { 4275 /* All reserved bits must be 0 for now */ 4276 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4277 ret = -EINVAL; 4278 goto out_loi; 4279 } 4280 /* Only accept flags we have defined so far */ 4281 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4282 ret = -EINVAL; 4283 goto out_loi; 4284 } 4285 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4286 size = min_t(u32, loi->size, SZ_16M); 4287 } 4288 4289 inodes = init_data_container(size); 4290 if (IS_ERR(inodes)) { 4291 ret = PTR_ERR(inodes); 4292 goto out_loi; 4293 } 4294 4295 path = btrfs_alloc_path(); 4296 if (!path) { 4297 ret = -ENOMEM; 4298 goto out; 4299 } 4300 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4301 inodes, ignore_offset); 4302 btrfs_free_path(path); 4303 if (ret == -EINVAL) 4304 ret = -ENOENT; 4305 if (ret < 0) 4306 goto out; 4307 4308 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4309 size); 4310 if (ret) 4311 ret = -EFAULT; 4312 4313 out: 4314 kvfree(inodes); 4315 out_loi: 4316 kfree(loi); 4317 4318 return ret; 4319 } 4320 4321 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4322 struct btrfs_ioctl_balance_args *bargs) 4323 { 4324 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4325 4326 bargs->flags = bctl->flags; 4327 4328 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4329 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4330 if (atomic_read(&fs_info->balance_pause_req)) 4331 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4332 if (atomic_read(&fs_info->balance_cancel_req)) 4333 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4334 4335 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4336 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4337 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4338 4339 spin_lock(&fs_info->balance_lock); 4340 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4341 spin_unlock(&fs_info->balance_lock); 4342 } 4343 4344 /** 4345 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as 4346 * required. 4347 * 4348 * @fs_info: the filesystem 4349 * @excl_acquired: ptr to boolean value which is set to false in case balance 4350 * is being resumed 4351 * 4352 * Return 0 on success in which case both fs_info::balance is acquired as well 4353 * as exclusive ops are blocked. In case of failure return an error code. 4354 */ 4355 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) 4356 { 4357 int ret; 4358 4359 /* 4360 * Exclusive operation is locked. Three possibilities: 4361 * (1) some other op is running 4362 * (2) balance is running 4363 * (3) balance is paused -- special case (think resume) 4364 */ 4365 while (1) { 4366 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4367 *excl_acquired = true; 4368 mutex_lock(&fs_info->balance_mutex); 4369 return 0; 4370 } 4371 4372 mutex_lock(&fs_info->balance_mutex); 4373 if (fs_info->balance_ctl) { 4374 /* This is either (2) or (3) */ 4375 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4376 /* This is (2) */ 4377 ret = -EINPROGRESS; 4378 goto out_failure; 4379 4380 } else { 4381 mutex_unlock(&fs_info->balance_mutex); 4382 /* 4383 * Lock released to allow other waiters to 4384 * continue, we'll reexamine the status again. 4385 */ 4386 mutex_lock(&fs_info->balance_mutex); 4387 4388 if (fs_info->balance_ctl && 4389 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4390 /* This is (3) */ 4391 *excl_acquired = false; 4392 return 0; 4393 } 4394 } 4395 } else { 4396 /* This is (1) */ 4397 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4398 goto out_failure; 4399 } 4400 4401 mutex_unlock(&fs_info->balance_mutex); 4402 } 4403 4404 out_failure: 4405 mutex_unlock(&fs_info->balance_mutex); 4406 *excl_acquired = false; 4407 return ret; 4408 } 4409 4410 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4411 { 4412 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4413 struct btrfs_fs_info *fs_info = root->fs_info; 4414 struct btrfs_ioctl_balance_args *bargs; 4415 struct btrfs_balance_control *bctl; 4416 bool need_unlock = true; 4417 int ret; 4418 4419 if (!capable(CAP_SYS_ADMIN)) 4420 return -EPERM; 4421 4422 ret = mnt_want_write_file(file); 4423 if (ret) 4424 return ret; 4425 4426 bargs = memdup_user(arg, sizeof(*bargs)); 4427 if (IS_ERR(bargs)) { 4428 ret = PTR_ERR(bargs); 4429 bargs = NULL; 4430 goto out; 4431 } 4432 4433 ret = btrfs_try_lock_balance(fs_info, &need_unlock); 4434 if (ret) 4435 goto out; 4436 4437 lockdep_assert_held(&fs_info->balance_mutex); 4438 4439 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4440 if (!fs_info->balance_ctl) { 4441 ret = -ENOTCONN; 4442 goto out_unlock; 4443 } 4444 4445 bctl = fs_info->balance_ctl; 4446 spin_lock(&fs_info->balance_lock); 4447 bctl->flags |= BTRFS_BALANCE_RESUME; 4448 spin_unlock(&fs_info->balance_lock); 4449 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 4450 4451 goto do_balance; 4452 } 4453 4454 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4455 ret = -EINVAL; 4456 goto out_unlock; 4457 } 4458 4459 if (fs_info->balance_ctl) { 4460 ret = -EINPROGRESS; 4461 goto out_unlock; 4462 } 4463 4464 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4465 if (!bctl) { 4466 ret = -ENOMEM; 4467 goto out_unlock; 4468 } 4469 4470 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4471 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4472 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4473 4474 bctl->flags = bargs->flags; 4475 do_balance: 4476 /* 4477 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4478 * bctl is freed in reset_balance_state, or, if restriper was paused 4479 * all the way until unmount, in free_fs_info. The flag should be 4480 * cleared after reset_balance_state. 4481 */ 4482 need_unlock = false; 4483 4484 ret = btrfs_balance(fs_info, bctl, bargs); 4485 bctl = NULL; 4486 4487 if (ret == 0 || ret == -ECANCELED) { 4488 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4489 ret = -EFAULT; 4490 } 4491 4492 kfree(bctl); 4493 out_unlock: 4494 mutex_unlock(&fs_info->balance_mutex); 4495 if (need_unlock) 4496 btrfs_exclop_finish(fs_info); 4497 out: 4498 mnt_drop_write_file(file); 4499 kfree(bargs); 4500 return ret; 4501 } 4502 4503 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4504 { 4505 if (!capable(CAP_SYS_ADMIN)) 4506 return -EPERM; 4507 4508 switch (cmd) { 4509 case BTRFS_BALANCE_CTL_PAUSE: 4510 return btrfs_pause_balance(fs_info); 4511 case BTRFS_BALANCE_CTL_CANCEL: 4512 return btrfs_cancel_balance(fs_info); 4513 } 4514 4515 return -EINVAL; 4516 } 4517 4518 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4519 void __user *arg) 4520 { 4521 struct btrfs_ioctl_balance_args *bargs; 4522 int ret = 0; 4523 4524 if (!capable(CAP_SYS_ADMIN)) 4525 return -EPERM; 4526 4527 mutex_lock(&fs_info->balance_mutex); 4528 if (!fs_info->balance_ctl) { 4529 ret = -ENOTCONN; 4530 goto out; 4531 } 4532 4533 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4534 if (!bargs) { 4535 ret = -ENOMEM; 4536 goto out; 4537 } 4538 4539 btrfs_update_ioctl_balance_args(fs_info, bargs); 4540 4541 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4542 ret = -EFAULT; 4543 4544 kfree(bargs); 4545 out: 4546 mutex_unlock(&fs_info->balance_mutex); 4547 return ret; 4548 } 4549 4550 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4551 { 4552 struct inode *inode = file_inode(file); 4553 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4554 struct btrfs_ioctl_quota_ctl_args *sa; 4555 int ret; 4556 4557 if (!capable(CAP_SYS_ADMIN)) 4558 return -EPERM; 4559 4560 ret = mnt_want_write_file(file); 4561 if (ret) 4562 return ret; 4563 4564 sa = memdup_user(arg, sizeof(*sa)); 4565 if (IS_ERR(sa)) { 4566 ret = PTR_ERR(sa); 4567 goto drop_write; 4568 } 4569 4570 down_write(&fs_info->subvol_sem); 4571 4572 switch (sa->cmd) { 4573 case BTRFS_QUOTA_CTL_ENABLE: 4574 ret = btrfs_quota_enable(fs_info); 4575 break; 4576 case BTRFS_QUOTA_CTL_DISABLE: 4577 ret = btrfs_quota_disable(fs_info); 4578 break; 4579 default: 4580 ret = -EINVAL; 4581 break; 4582 } 4583 4584 kfree(sa); 4585 up_write(&fs_info->subvol_sem); 4586 drop_write: 4587 mnt_drop_write_file(file); 4588 return ret; 4589 } 4590 4591 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4592 { 4593 struct inode *inode = file_inode(file); 4594 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4595 struct btrfs_root *root = BTRFS_I(inode)->root; 4596 struct btrfs_ioctl_qgroup_assign_args *sa; 4597 struct btrfs_trans_handle *trans; 4598 int ret; 4599 int err; 4600 4601 if (!capable(CAP_SYS_ADMIN)) 4602 return -EPERM; 4603 4604 ret = mnt_want_write_file(file); 4605 if (ret) 4606 return ret; 4607 4608 sa = memdup_user(arg, sizeof(*sa)); 4609 if (IS_ERR(sa)) { 4610 ret = PTR_ERR(sa); 4611 goto drop_write; 4612 } 4613 4614 trans = btrfs_join_transaction(root); 4615 if (IS_ERR(trans)) { 4616 ret = PTR_ERR(trans); 4617 goto out; 4618 } 4619 4620 if (sa->assign) { 4621 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4622 } else { 4623 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4624 } 4625 4626 /* update qgroup status and info */ 4627 err = btrfs_run_qgroups(trans); 4628 if (err < 0) 4629 btrfs_handle_fs_error(fs_info, err, 4630 "failed to update qgroup status and info"); 4631 err = btrfs_end_transaction(trans); 4632 if (err && !ret) 4633 ret = err; 4634 4635 out: 4636 kfree(sa); 4637 drop_write: 4638 mnt_drop_write_file(file); 4639 return ret; 4640 } 4641 4642 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4643 { 4644 struct inode *inode = file_inode(file); 4645 struct btrfs_root *root = BTRFS_I(inode)->root; 4646 struct btrfs_ioctl_qgroup_create_args *sa; 4647 struct btrfs_trans_handle *trans; 4648 int ret; 4649 int err; 4650 4651 if (!capable(CAP_SYS_ADMIN)) 4652 return -EPERM; 4653 4654 ret = mnt_want_write_file(file); 4655 if (ret) 4656 return ret; 4657 4658 sa = memdup_user(arg, sizeof(*sa)); 4659 if (IS_ERR(sa)) { 4660 ret = PTR_ERR(sa); 4661 goto drop_write; 4662 } 4663 4664 if (!sa->qgroupid) { 4665 ret = -EINVAL; 4666 goto out; 4667 } 4668 4669 trans = btrfs_join_transaction(root); 4670 if (IS_ERR(trans)) { 4671 ret = PTR_ERR(trans); 4672 goto out; 4673 } 4674 4675 if (sa->create) { 4676 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4677 } else { 4678 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4679 } 4680 4681 err = btrfs_end_transaction(trans); 4682 if (err && !ret) 4683 ret = err; 4684 4685 out: 4686 kfree(sa); 4687 drop_write: 4688 mnt_drop_write_file(file); 4689 return ret; 4690 } 4691 4692 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4693 { 4694 struct inode *inode = file_inode(file); 4695 struct btrfs_root *root = BTRFS_I(inode)->root; 4696 struct btrfs_ioctl_qgroup_limit_args *sa; 4697 struct btrfs_trans_handle *trans; 4698 int ret; 4699 int err; 4700 u64 qgroupid; 4701 4702 if (!capable(CAP_SYS_ADMIN)) 4703 return -EPERM; 4704 4705 ret = mnt_want_write_file(file); 4706 if (ret) 4707 return ret; 4708 4709 sa = memdup_user(arg, sizeof(*sa)); 4710 if (IS_ERR(sa)) { 4711 ret = PTR_ERR(sa); 4712 goto drop_write; 4713 } 4714 4715 trans = btrfs_join_transaction(root); 4716 if (IS_ERR(trans)) { 4717 ret = PTR_ERR(trans); 4718 goto out; 4719 } 4720 4721 qgroupid = sa->qgroupid; 4722 if (!qgroupid) { 4723 /* take the current subvol as qgroup */ 4724 qgroupid = root->root_key.objectid; 4725 } 4726 4727 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4728 4729 err = btrfs_end_transaction(trans); 4730 if (err && !ret) 4731 ret = err; 4732 4733 out: 4734 kfree(sa); 4735 drop_write: 4736 mnt_drop_write_file(file); 4737 return ret; 4738 } 4739 4740 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4741 { 4742 struct inode *inode = file_inode(file); 4743 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4744 struct btrfs_ioctl_quota_rescan_args *qsa; 4745 int ret; 4746 4747 if (!capable(CAP_SYS_ADMIN)) 4748 return -EPERM; 4749 4750 ret = mnt_want_write_file(file); 4751 if (ret) 4752 return ret; 4753 4754 qsa = memdup_user(arg, sizeof(*qsa)); 4755 if (IS_ERR(qsa)) { 4756 ret = PTR_ERR(qsa); 4757 goto drop_write; 4758 } 4759 4760 if (qsa->flags) { 4761 ret = -EINVAL; 4762 goto out; 4763 } 4764 4765 ret = btrfs_qgroup_rescan(fs_info); 4766 4767 out: 4768 kfree(qsa); 4769 drop_write: 4770 mnt_drop_write_file(file); 4771 return ret; 4772 } 4773 4774 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4775 void __user *arg) 4776 { 4777 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 4778 4779 if (!capable(CAP_SYS_ADMIN)) 4780 return -EPERM; 4781 4782 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4783 qsa.flags = 1; 4784 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 4785 } 4786 4787 if (copy_to_user(arg, &qsa, sizeof(qsa))) 4788 return -EFAULT; 4789 4790 return 0; 4791 } 4792 4793 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4794 void __user *arg) 4795 { 4796 if (!capable(CAP_SYS_ADMIN)) 4797 return -EPERM; 4798 4799 return btrfs_qgroup_wait_for_completion(fs_info, true); 4800 } 4801 4802 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4803 struct user_namespace *mnt_userns, 4804 struct btrfs_ioctl_received_subvol_args *sa) 4805 { 4806 struct inode *inode = file_inode(file); 4807 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4808 struct btrfs_root *root = BTRFS_I(inode)->root; 4809 struct btrfs_root_item *root_item = &root->root_item; 4810 struct btrfs_trans_handle *trans; 4811 struct timespec64 ct = current_time(inode); 4812 int ret = 0; 4813 int received_uuid_changed; 4814 4815 if (!inode_owner_or_capable(mnt_userns, inode)) 4816 return -EPERM; 4817 4818 ret = mnt_want_write_file(file); 4819 if (ret < 0) 4820 return ret; 4821 4822 down_write(&fs_info->subvol_sem); 4823 4824 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4825 ret = -EINVAL; 4826 goto out; 4827 } 4828 4829 if (btrfs_root_readonly(root)) { 4830 ret = -EROFS; 4831 goto out; 4832 } 4833 4834 /* 4835 * 1 - root item 4836 * 2 - uuid items (received uuid + subvol uuid) 4837 */ 4838 trans = btrfs_start_transaction(root, 3); 4839 if (IS_ERR(trans)) { 4840 ret = PTR_ERR(trans); 4841 trans = NULL; 4842 goto out; 4843 } 4844 4845 sa->rtransid = trans->transid; 4846 sa->rtime.sec = ct.tv_sec; 4847 sa->rtime.nsec = ct.tv_nsec; 4848 4849 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4850 BTRFS_UUID_SIZE); 4851 if (received_uuid_changed && 4852 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4853 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4854 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4855 root->root_key.objectid); 4856 if (ret && ret != -ENOENT) { 4857 btrfs_abort_transaction(trans, ret); 4858 btrfs_end_transaction(trans); 4859 goto out; 4860 } 4861 } 4862 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4863 btrfs_set_root_stransid(root_item, sa->stransid); 4864 btrfs_set_root_rtransid(root_item, sa->rtransid); 4865 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4866 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4867 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4868 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4869 4870 ret = btrfs_update_root(trans, fs_info->tree_root, 4871 &root->root_key, &root->root_item); 4872 if (ret < 0) { 4873 btrfs_end_transaction(trans); 4874 goto out; 4875 } 4876 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4877 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4878 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4879 root->root_key.objectid); 4880 if (ret < 0 && ret != -EEXIST) { 4881 btrfs_abort_transaction(trans, ret); 4882 btrfs_end_transaction(trans); 4883 goto out; 4884 } 4885 } 4886 ret = btrfs_commit_transaction(trans); 4887 out: 4888 up_write(&fs_info->subvol_sem); 4889 mnt_drop_write_file(file); 4890 return ret; 4891 } 4892 4893 #ifdef CONFIG_64BIT 4894 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4895 void __user *arg) 4896 { 4897 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4898 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4899 int ret = 0; 4900 4901 args32 = memdup_user(arg, sizeof(*args32)); 4902 if (IS_ERR(args32)) 4903 return PTR_ERR(args32); 4904 4905 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4906 if (!args64) { 4907 ret = -ENOMEM; 4908 goto out; 4909 } 4910 4911 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4912 args64->stransid = args32->stransid; 4913 args64->rtransid = args32->rtransid; 4914 args64->stime.sec = args32->stime.sec; 4915 args64->stime.nsec = args32->stime.nsec; 4916 args64->rtime.sec = args32->rtime.sec; 4917 args64->rtime.nsec = args32->rtime.nsec; 4918 args64->flags = args32->flags; 4919 4920 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64); 4921 if (ret) 4922 goto out; 4923 4924 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4925 args32->stransid = args64->stransid; 4926 args32->rtransid = args64->rtransid; 4927 args32->stime.sec = args64->stime.sec; 4928 args32->stime.nsec = args64->stime.nsec; 4929 args32->rtime.sec = args64->rtime.sec; 4930 args32->rtime.nsec = args64->rtime.nsec; 4931 args32->flags = args64->flags; 4932 4933 ret = copy_to_user(arg, args32, sizeof(*args32)); 4934 if (ret) 4935 ret = -EFAULT; 4936 4937 out: 4938 kfree(args32); 4939 kfree(args64); 4940 return ret; 4941 } 4942 #endif 4943 4944 static long btrfs_ioctl_set_received_subvol(struct file *file, 4945 void __user *arg) 4946 { 4947 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4948 int ret = 0; 4949 4950 sa = memdup_user(arg, sizeof(*sa)); 4951 if (IS_ERR(sa)) 4952 return PTR_ERR(sa); 4953 4954 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa); 4955 4956 if (ret) 4957 goto out; 4958 4959 ret = copy_to_user(arg, sa, sizeof(*sa)); 4960 if (ret) 4961 ret = -EFAULT; 4962 4963 out: 4964 kfree(sa); 4965 return ret; 4966 } 4967 4968 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4969 void __user *arg) 4970 { 4971 size_t len; 4972 int ret; 4973 char label[BTRFS_LABEL_SIZE]; 4974 4975 spin_lock(&fs_info->super_lock); 4976 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4977 spin_unlock(&fs_info->super_lock); 4978 4979 len = strnlen(label, BTRFS_LABEL_SIZE); 4980 4981 if (len == BTRFS_LABEL_SIZE) { 4982 btrfs_warn(fs_info, 4983 "label is too long, return the first %zu bytes", 4984 --len); 4985 } 4986 4987 ret = copy_to_user(arg, label, len); 4988 4989 return ret ? -EFAULT : 0; 4990 } 4991 4992 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4993 { 4994 struct inode *inode = file_inode(file); 4995 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4996 struct btrfs_root *root = BTRFS_I(inode)->root; 4997 struct btrfs_super_block *super_block = fs_info->super_copy; 4998 struct btrfs_trans_handle *trans; 4999 char label[BTRFS_LABEL_SIZE]; 5000 int ret; 5001 5002 if (!capable(CAP_SYS_ADMIN)) 5003 return -EPERM; 5004 5005 if (copy_from_user(label, arg, sizeof(label))) 5006 return -EFAULT; 5007 5008 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5009 btrfs_err(fs_info, 5010 "unable to set label with more than %d bytes", 5011 BTRFS_LABEL_SIZE - 1); 5012 return -EINVAL; 5013 } 5014 5015 ret = mnt_want_write_file(file); 5016 if (ret) 5017 return ret; 5018 5019 trans = btrfs_start_transaction(root, 0); 5020 if (IS_ERR(trans)) { 5021 ret = PTR_ERR(trans); 5022 goto out_unlock; 5023 } 5024 5025 spin_lock(&fs_info->super_lock); 5026 strcpy(super_block->label, label); 5027 spin_unlock(&fs_info->super_lock); 5028 ret = btrfs_commit_transaction(trans); 5029 5030 out_unlock: 5031 mnt_drop_write_file(file); 5032 return ret; 5033 } 5034 5035 #define INIT_FEATURE_FLAGS(suffix) \ 5036 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5037 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5038 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5039 5040 int btrfs_ioctl_get_supported_features(void __user *arg) 5041 { 5042 static const struct btrfs_ioctl_feature_flags features[3] = { 5043 INIT_FEATURE_FLAGS(SUPP), 5044 INIT_FEATURE_FLAGS(SAFE_SET), 5045 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5046 }; 5047 5048 if (copy_to_user(arg, &features, sizeof(features))) 5049 return -EFAULT; 5050 5051 return 0; 5052 } 5053 5054 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 5055 void __user *arg) 5056 { 5057 struct btrfs_super_block *super_block = fs_info->super_copy; 5058 struct btrfs_ioctl_feature_flags features; 5059 5060 features.compat_flags = btrfs_super_compat_flags(super_block); 5061 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5062 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5063 5064 if (copy_to_user(arg, &features, sizeof(features))) 5065 return -EFAULT; 5066 5067 return 0; 5068 } 5069 5070 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5071 enum btrfs_feature_set set, 5072 u64 change_mask, u64 flags, u64 supported_flags, 5073 u64 safe_set, u64 safe_clear) 5074 { 5075 const char *type = btrfs_feature_set_name(set); 5076 char *names; 5077 u64 disallowed, unsupported; 5078 u64 set_mask = flags & change_mask; 5079 u64 clear_mask = ~flags & change_mask; 5080 5081 unsupported = set_mask & ~supported_flags; 5082 if (unsupported) { 5083 names = btrfs_printable_features(set, unsupported); 5084 if (names) { 5085 btrfs_warn(fs_info, 5086 "this kernel does not support the %s feature bit%s", 5087 names, strchr(names, ',') ? "s" : ""); 5088 kfree(names); 5089 } else 5090 btrfs_warn(fs_info, 5091 "this kernel does not support %s bits 0x%llx", 5092 type, unsupported); 5093 return -EOPNOTSUPP; 5094 } 5095 5096 disallowed = set_mask & ~safe_set; 5097 if (disallowed) { 5098 names = btrfs_printable_features(set, disallowed); 5099 if (names) { 5100 btrfs_warn(fs_info, 5101 "can't set the %s feature bit%s while mounted", 5102 names, strchr(names, ',') ? "s" : ""); 5103 kfree(names); 5104 } else 5105 btrfs_warn(fs_info, 5106 "can't set %s bits 0x%llx while mounted", 5107 type, disallowed); 5108 return -EPERM; 5109 } 5110 5111 disallowed = clear_mask & ~safe_clear; 5112 if (disallowed) { 5113 names = btrfs_printable_features(set, disallowed); 5114 if (names) { 5115 btrfs_warn(fs_info, 5116 "can't clear the %s feature bit%s while mounted", 5117 names, strchr(names, ',') ? "s" : ""); 5118 kfree(names); 5119 } else 5120 btrfs_warn(fs_info, 5121 "can't clear %s bits 0x%llx while mounted", 5122 type, disallowed); 5123 return -EPERM; 5124 } 5125 5126 return 0; 5127 } 5128 5129 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5130 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5131 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5132 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5133 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5134 5135 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5136 { 5137 struct inode *inode = file_inode(file); 5138 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5139 struct btrfs_root *root = BTRFS_I(inode)->root; 5140 struct btrfs_super_block *super_block = fs_info->super_copy; 5141 struct btrfs_ioctl_feature_flags flags[2]; 5142 struct btrfs_trans_handle *trans; 5143 u64 newflags; 5144 int ret; 5145 5146 if (!capable(CAP_SYS_ADMIN)) 5147 return -EPERM; 5148 5149 if (copy_from_user(flags, arg, sizeof(flags))) 5150 return -EFAULT; 5151 5152 /* Nothing to do */ 5153 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5154 !flags[0].incompat_flags) 5155 return 0; 5156 5157 ret = check_feature(fs_info, flags[0].compat_flags, 5158 flags[1].compat_flags, COMPAT); 5159 if (ret) 5160 return ret; 5161 5162 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5163 flags[1].compat_ro_flags, COMPAT_RO); 5164 if (ret) 5165 return ret; 5166 5167 ret = check_feature(fs_info, flags[0].incompat_flags, 5168 flags[1].incompat_flags, INCOMPAT); 5169 if (ret) 5170 return ret; 5171 5172 ret = mnt_want_write_file(file); 5173 if (ret) 5174 return ret; 5175 5176 trans = btrfs_start_transaction(root, 0); 5177 if (IS_ERR(trans)) { 5178 ret = PTR_ERR(trans); 5179 goto out_drop_write; 5180 } 5181 5182 spin_lock(&fs_info->super_lock); 5183 newflags = btrfs_super_compat_flags(super_block); 5184 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5185 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5186 btrfs_set_super_compat_flags(super_block, newflags); 5187 5188 newflags = btrfs_super_compat_ro_flags(super_block); 5189 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5190 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5191 btrfs_set_super_compat_ro_flags(super_block, newflags); 5192 5193 newflags = btrfs_super_incompat_flags(super_block); 5194 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5195 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5196 btrfs_set_super_incompat_flags(super_block, newflags); 5197 spin_unlock(&fs_info->super_lock); 5198 5199 ret = btrfs_commit_transaction(trans); 5200 out_drop_write: 5201 mnt_drop_write_file(file); 5202 5203 return ret; 5204 } 5205 5206 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat) 5207 { 5208 struct btrfs_ioctl_send_args *arg; 5209 int ret; 5210 5211 if (compat) { 5212 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5213 struct btrfs_ioctl_send_args_32 args32; 5214 5215 ret = copy_from_user(&args32, argp, sizeof(args32)); 5216 if (ret) 5217 return -EFAULT; 5218 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5219 if (!arg) 5220 return -ENOMEM; 5221 arg->send_fd = args32.send_fd; 5222 arg->clone_sources_count = args32.clone_sources_count; 5223 arg->clone_sources = compat_ptr(args32.clone_sources); 5224 arg->parent_root = args32.parent_root; 5225 arg->flags = args32.flags; 5226 memcpy(arg->reserved, args32.reserved, 5227 sizeof(args32.reserved)); 5228 #else 5229 return -ENOTTY; 5230 #endif 5231 } else { 5232 arg = memdup_user(argp, sizeof(*arg)); 5233 if (IS_ERR(arg)) 5234 return PTR_ERR(arg); 5235 } 5236 ret = btrfs_ioctl_send(inode, arg); 5237 kfree(arg); 5238 return ret; 5239 } 5240 5241 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 5242 bool compat) 5243 { 5244 struct btrfs_ioctl_encoded_io_args args = { 0 }; 5245 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 5246 flags); 5247 size_t copy_end; 5248 struct iovec iovstack[UIO_FASTIOV]; 5249 struct iovec *iov = iovstack; 5250 struct iov_iter iter; 5251 loff_t pos; 5252 struct kiocb kiocb; 5253 ssize_t ret; 5254 5255 if (!capable(CAP_SYS_ADMIN)) { 5256 ret = -EPERM; 5257 goto out_acct; 5258 } 5259 5260 if (compat) { 5261 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5262 struct btrfs_ioctl_encoded_io_args_32 args32; 5263 5264 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 5265 flags); 5266 if (copy_from_user(&args32, argp, copy_end)) { 5267 ret = -EFAULT; 5268 goto out_acct; 5269 } 5270 args.iov = compat_ptr(args32.iov); 5271 args.iovcnt = args32.iovcnt; 5272 args.offset = args32.offset; 5273 args.flags = args32.flags; 5274 #else 5275 return -ENOTTY; 5276 #endif 5277 } else { 5278 copy_end = copy_end_kernel; 5279 if (copy_from_user(&args, argp, copy_end)) { 5280 ret = -EFAULT; 5281 goto out_acct; 5282 } 5283 } 5284 if (args.flags != 0) { 5285 ret = -EINVAL; 5286 goto out_acct; 5287 } 5288 5289 ret = import_iovec(READ, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 5290 &iov, &iter); 5291 if (ret < 0) 5292 goto out_acct; 5293 5294 if (iov_iter_count(&iter) == 0) { 5295 ret = 0; 5296 goto out_iov; 5297 } 5298 pos = args.offset; 5299 ret = rw_verify_area(READ, file, &pos, args.len); 5300 if (ret < 0) 5301 goto out_iov; 5302 5303 init_sync_kiocb(&kiocb, file); 5304 kiocb.ki_pos = pos; 5305 5306 ret = btrfs_encoded_read(&kiocb, &iter, &args); 5307 if (ret >= 0) { 5308 fsnotify_access(file); 5309 if (copy_to_user(argp + copy_end, 5310 (char *)&args + copy_end_kernel, 5311 sizeof(args) - copy_end_kernel)) 5312 ret = -EFAULT; 5313 } 5314 5315 out_iov: 5316 kfree(iov); 5317 out_acct: 5318 if (ret > 0) 5319 add_rchar(current, ret); 5320 inc_syscr(current); 5321 return ret; 5322 } 5323 5324 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 5325 { 5326 struct btrfs_ioctl_encoded_io_args args; 5327 struct iovec iovstack[UIO_FASTIOV]; 5328 struct iovec *iov = iovstack; 5329 struct iov_iter iter; 5330 loff_t pos; 5331 struct kiocb kiocb; 5332 ssize_t ret; 5333 5334 if (!capable(CAP_SYS_ADMIN)) { 5335 ret = -EPERM; 5336 goto out_acct; 5337 } 5338 5339 if (!(file->f_mode & FMODE_WRITE)) { 5340 ret = -EBADF; 5341 goto out_acct; 5342 } 5343 5344 if (compat) { 5345 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5346 struct btrfs_ioctl_encoded_io_args_32 args32; 5347 5348 if (copy_from_user(&args32, argp, sizeof(args32))) { 5349 ret = -EFAULT; 5350 goto out_acct; 5351 } 5352 args.iov = compat_ptr(args32.iov); 5353 args.iovcnt = args32.iovcnt; 5354 args.offset = args32.offset; 5355 args.flags = args32.flags; 5356 args.len = args32.len; 5357 args.unencoded_len = args32.unencoded_len; 5358 args.unencoded_offset = args32.unencoded_offset; 5359 args.compression = args32.compression; 5360 args.encryption = args32.encryption; 5361 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 5362 #else 5363 return -ENOTTY; 5364 #endif 5365 } else { 5366 if (copy_from_user(&args, argp, sizeof(args))) { 5367 ret = -EFAULT; 5368 goto out_acct; 5369 } 5370 } 5371 5372 ret = -EINVAL; 5373 if (args.flags != 0) 5374 goto out_acct; 5375 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 5376 goto out_acct; 5377 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 5378 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 5379 goto out_acct; 5380 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 5381 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 5382 goto out_acct; 5383 if (args.unencoded_offset > args.unencoded_len) 5384 goto out_acct; 5385 if (args.len > args.unencoded_len - args.unencoded_offset) 5386 goto out_acct; 5387 5388 ret = import_iovec(WRITE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 5389 &iov, &iter); 5390 if (ret < 0) 5391 goto out_acct; 5392 5393 file_start_write(file); 5394 5395 if (iov_iter_count(&iter) == 0) { 5396 ret = 0; 5397 goto out_end_write; 5398 } 5399 pos = args.offset; 5400 ret = rw_verify_area(WRITE, file, &pos, args.len); 5401 if (ret < 0) 5402 goto out_end_write; 5403 5404 init_sync_kiocb(&kiocb, file); 5405 ret = kiocb_set_rw_flags(&kiocb, 0); 5406 if (ret) 5407 goto out_end_write; 5408 kiocb.ki_pos = pos; 5409 5410 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 5411 if (ret > 0) 5412 fsnotify_modify(file); 5413 5414 out_end_write: 5415 file_end_write(file); 5416 kfree(iov); 5417 out_acct: 5418 if (ret > 0) 5419 add_wchar(current, ret); 5420 inc_syscw(current); 5421 return ret; 5422 } 5423 5424 long btrfs_ioctl(struct file *file, unsigned int 5425 cmd, unsigned long arg) 5426 { 5427 struct inode *inode = file_inode(file); 5428 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5429 struct btrfs_root *root = BTRFS_I(inode)->root; 5430 void __user *argp = (void __user *)arg; 5431 5432 switch (cmd) { 5433 case FS_IOC_GETVERSION: 5434 return btrfs_ioctl_getversion(inode, argp); 5435 case FS_IOC_GETFSLABEL: 5436 return btrfs_ioctl_get_fslabel(fs_info, argp); 5437 case FS_IOC_SETFSLABEL: 5438 return btrfs_ioctl_set_fslabel(file, argp); 5439 case FITRIM: 5440 return btrfs_ioctl_fitrim(fs_info, argp); 5441 case BTRFS_IOC_SNAP_CREATE: 5442 return btrfs_ioctl_snap_create(file, argp, 0); 5443 case BTRFS_IOC_SNAP_CREATE_V2: 5444 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5445 case BTRFS_IOC_SUBVOL_CREATE: 5446 return btrfs_ioctl_snap_create(file, argp, 1); 5447 case BTRFS_IOC_SUBVOL_CREATE_V2: 5448 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5449 case BTRFS_IOC_SNAP_DESTROY: 5450 return btrfs_ioctl_snap_destroy(file, argp, false); 5451 case BTRFS_IOC_SNAP_DESTROY_V2: 5452 return btrfs_ioctl_snap_destroy(file, argp, true); 5453 case BTRFS_IOC_SUBVOL_GETFLAGS: 5454 return btrfs_ioctl_subvol_getflags(inode, argp); 5455 case BTRFS_IOC_SUBVOL_SETFLAGS: 5456 return btrfs_ioctl_subvol_setflags(file, argp); 5457 case BTRFS_IOC_DEFAULT_SUBVOL: 5458 return btrfs_ioctl_default_subvol(file, argp); 5459 case BTRFS_IOC_DEFRAG: 5460 return btrfs_ioctl_defrag(file, NULL); 5461 case BTRFS_IOC_DEFRAG_RANGE: 5462 return btrfs_ioctl_defrag(file, argp); 5463 case BTRFS_IOC_RESIZE: 5464 return btrfs_ioctl_resize(file, argp); 5465 case BTRFS_IOC_ADD_DEV: 5466 return btrfs_ioctl_add_dev(fs_info, argp); 5467 case BTRFS_IOC_RM_DEV: 5468 return btrfs_ioctl_rm_dev(file, argp); 5469 case BTRFS_IOC_RM_DEV_V2: 5470 return btrfs_ioctl_rm_dev_v2(file, argp); 5471 case BTRFS_IOC_FS_INFO: 5472 return btrfs_ioctl_fs_info(fs_info, argp); 5473 case BTRFS_IOC_DEV_INFO: 5474 return btrfs_ioctl_dev_info(fs_info, argp); 5475 case BTRFS_IOC_TREE_SEARCH: 5476 return btrfs_ioctl_tree_search(inode, argp); 5477 case BTRFS_IOC_TREE_SEARCH_V2: 5478 return btrfs_ioctl_tree_search_v2(inode, argp); 5479 case BTRFS_IOC_INO_LOOKUP: 5480 return btrfs_ioctl_ino_lookup(root, argp); 5481 case BTRFS_IOC_INO_PATHS: 5482 return btrfs_ioctl_ino_to_path(root, argp); 5483 case BTRFS_IOC_LOGICAL_INO: 5484 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5485 case BTRFS_IOC_LOGICAL_INO_V2: 5486 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5487 case BTRFS_IOC_SPACE_INFO: 5488 return btrfs_ioctl_space_info(fs_info, argp); 5489 case BTRFS_IOC_SYNC: { 5490 int ret; 5491 5492 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 5493 if (ret) 5494 return ret; 5495 ret = btrfs_sync_fs(inode->i_sb, 1); 5496 /* 5497 * The transaction thread may want to do more work, 5498 * namely it pokes the cleaner kthread that will start 5499 * processing uncleaned subvols. 5500 */ 5501 wake_up_process(fs_info->transaction_kthread); 5502 return ret; 5503 } 5504 case BTRFS_IOC_START_SYNC: 5505 return btrfs_ioctl_start_sync(root, argp); 5506 case BTRFS_IOC_WAIT_SYNC: 5507 return btrfs_ioctl_wait_sync(fs_info, argp); 5508 case BTRFS_IOC_SCRUB: 5509 return btrfs_ioctl_scrub(file, argp); 5510 case BTRFS_IOC_SCRUB_CANCEL: 5511 return btrfs_ioctl_scrub_cancel(fs_info); 5512 case BTRFS_IOC_SCRUB_PROGRESS: 5513 return btrfs_ioctl_scrub_progress(fs_info, argp); 5514 case BTRFS_IOC_BALANCE_V2: 5515 return btrfs_ioctl_balance(file, argp); 5516 case BTRFS_IOC_BALANCE_CTL: 5517 return btrfs_ioctl_balance_ctl(fs_info, arg); 5518 case BTRFS_IOC_BALANCE_PROGRESS: 5519 return btrfs_ioctl_balance_progress(fs_info, argp); 5520 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5521 return btrfs_ioctl_set_received_subvol(file, argp); 5522 #ifdef CONFIG_64BIT 5523 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5524 return btrfs_ioctl_set_received_subvol_32(file, argp); 5525 #endif 5526 case BTRFS_IOC_SEND: 5527 return _btrfs_ioctl_send(inode, argp, false); 5528 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5529 case BTRFS_IOC_SEND_32: 5530 return _btrfs_ioctl_send(inode, argp, true); 5531 #endif 5532 case BTRFS_IOC_GET_DEV_STATS: 5533 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5534 case BTRFS_IOC_QUOTA_CTL: 5535 return btrfs_ioctl_quota_ctl(file, argp); 5536 case BTRFS_IOC_QGROUP_ASSIGN: 5537 return btrfs_ioctl_qgroup_assign(file, argp); 5538 case BTRFS_IOC_QGROUP_CREATE: 5539 return btrfs_ioctl_qgroup_create(file, argp); 5540 case BTRFS_IOC_QGROUP_LIMIT: 5541 return btrfs_ioctl_qgroup_limit(file, argp); 5542 case BTRFS_IOC_QUOTA_RESCAN: 5543 return btrfs_ioctl_quota_rescan(file, argp); 5544 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5545 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5546 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5547 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5548 case BTRFS_IOC_DEV_REPLACE: 5549 return btrfs_ioctl_dev_replace(fs_info, argp); 5550 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5551 return btrfs_ioctl_get_supported_features(argp); 5552 case BTRFS_IOC_GET_FEATURES: 5553 return btrfs_ioctl_get_features(fs_info, argp); 5554 case BTRFS_IOC_SET_FEATURES: 5555 return btrfs_ioctl_set_features(file, argp); 5556 case BTRFS_IOC_GET_SUBVOL_INFO: 5557 return btrfs_ioctl_get_subvol_info(inode, argp); 5558 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5559 return btrfs_ioctl_get_subvol_rootref(root, argp); 5560 case BTRFS_IOC_INO_LOOKUP_USER: 5561 return btrfs_ioctl_ino_lookup_user(file, argp); 5562 case FS_IOC_ENABLE_VERITY: 5563 return fsverity_ioctl_enable(file, (const void __user *)argp); 5564 case FS_IOC_MEASURE_VERITY: 5565 return fsverity_ioctl_measure(file, argp); 5566 case BTRFS_IOC_ENCODED_READ: 5567 return btrfs_ioctl_encoded_read(file, argp, false); 5568 case BTRFS_IOC_ENCODED_WRITE: 5569 return btrfs_ioctl_encoded_write(file, argp, false); 5570 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5571 case BTRFS_IOC_ENCODED_READ_32: 5572 return btrfs_ioctl_encoded_read(file, argp, true); 5573 case BTRFS_IOC_ENCODED_WRITE_32: 5574 return btrfs_ioctl_encoded_write(file, argp, true); 5575 #endif 5576 } 5577 5578 return -ENOTTY; 5579 } 5580 5581 #ifdef CONFIG_COMPAT 5582 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5583 { 5584 /* 5585 * These all access 32-bit values anyway so no further 5586 * handling is necessary. 5587 */ 5588 switch (cmd) { 5589 case FS_IOC32_GETVERSION: 5590 cmd = FS_IOC_GETVERSION; 5591 break; 5592 } 5593 5594 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5595 } 5596 #endif 5597