1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "export.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "volumes.h" 39 #include "locking.h" 40 #include "backref.h" 41 #include "rcu-string.h" 42 #include "send.h" 43 #include "dev-replace.h" 44 #include "props.h" 45 #include "sysfs.h" 46 #include "qgroup.h" 47 #include "tree-log.h" 48 #include "compression.h" 49 #include "space-info.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "subpage.h" 53 54 #ifdef CONFIG_64BIT 55 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 56 * structures are incorrect, as the timespec structure from userspace 57 * is 4 bytes too small. We define these alternatives here to teach 58 * the kernel about the 32-bit struct packing. 59 */ 60 struct btrfs_ioctl_timespec_32 { 61 __u64 sec; 62 __u32 nsec; 63 } __attribute__ ((__packed__)); 64 65 struct btrfs_ioctl_received_subvol_args_32 { 66 char uuid[BTRFS_UUID_SIZE]; /* in */ 67 __u64 stransid; /* in */ 68 __u64 rtransid; /* out */ 69 struct btrfs_ioctl_timespec_32 stime; /* in */ 70 struct btrfs_ioctl_timespec_32 rtime; /* out */ 71 __u64 flags; /* in */ 72 __u64 reserved[16]; /* in */ 73 } __attribute__ ((__packed__)); 74 75 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 76 struct btrfs_ioctl_received_subvol_args_32) 77 #endif 78 79 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 80 struct btrfs_ioctl_send_args_32 { 81 __s64 send_fd; /* in */ 82 __u64 clone_sources_count; /* in */ 83 compat_uptr_t clone_sources; /* in */ 84 __u64 parent_root; /* in */ 85 __u64 flags; /* in */ 86 __u32 version; /* in */ 87 __u8 reserved[28]; /* in */ 88 } __attribute__ ((__packed__)); 89 90 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 91 struct btrfs_ioctl_send_args_32) 92 93 struct btrfs_ioctl_encoded_io_args_32 { 94 compat_uptr_t iov; 95 compat_ulong_t iovcnt; 96 __s64 offset; 97 __u64 flags; 98 __u64 len; 99 __u64 unencoded_len; 100 __u64 unencoded_offset; 101 __u32 compression; 102 __u32 encryption; 103 __u8 reserved[64]; 104 }; 105 106 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 107 struct btrfs_ioctl_encoded_io_args_32) 108 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 109 struct btrfs_ioctl_encoded_io_args_32) 110 #endif 111 112 /* Mask out flags that are inappropriate for the given type of inode. */ 113 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 114 unsigned int flags) 115 { 116 if (S_ISDIR(inode->i_mode)) 117 return flags; 118 else if (S_ISREG(inode->i_mode)) 119 return flags & ~FS_DIRSYNC_FL; 120 else 121 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 122 } 123 124 /* 125 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 126 * ioctl. 127 */ 128 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 129 { 130 unsigned int iflags = 0; 131 u32 flags = binode->flags; 132 u32 ro_flags = binode->ro_flags; 133 134 if (flags & BTRFS_INODE_SYNC) 135 iflags |= FS_SYNC_FL; 136 if (flags & BTRFS_INODE_IMMUTABLE) 137 iflags |= FS_IMMUTABLE_FL; 138 if (flags & BTRFS_INODE_APPEND) 139 iflags |= FS_APPEND_FL; 140 if (flags & BTRFS_INODE_NODUMP) 141 iflags |= FS_NODUMP_FL; 142 if (flags & BTRFS_INODE_NOATIME) 143 iflags |= FS_NOATIME_FL; 144 if (flags & BTRFS_INODE_DIRSYNC) 145 iflags |= FS_DIRSYNC_FL; 146 if (flags & BTRFS_INODE_NODATACOW) 147 iflags |= FS_NOCOW_FL; 148 if (ro_flags & BTRFS_INODE_RO_VERITY) 149 iflags |= FS_VERITY_FL; 150 151 if (flags & BTRFS_INODE_NOCOMPRESS) 152 iflags |= FS_NOCOMP_FL; 153 else if (flags & BTRFS_INODE_COMPRESS) 154 iflags |= FS_COMPR_FL; 155 156 return iflags; 157 } 158 159 /* 160 * Update inode->i_flags based on the btrfs internal flags. 161 */ 162 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 163 { 164 struct btrfs_inode *binode = BTRFS_I(inode); 165 unsigned int new_fl = 0; 166 167 if (binode->flags & BTRFS_INODE_SYNC) 168 new_fl |= S_SYNC; 169 if (binode->flags & BTRFS_INODE_IMMUTABLE) 170 new_fl |= S_IMMUTABLE; 171 if (binode->flags & BTRFS_INODE_APPEND) 172 new_fl |= S_APPEND; 173 if (binode->flags & BTRFS_INODE_NOATIME) 174 new_fl |= S_NOATIME; 175 if (binode->flags & BTRFS_INODE_DIRSYNC) 176 new_fl |= S_DIRSYNC; 177 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 178 new_fl |= S_VERITY; 179 180 set_mask_bits(&inode->i_flags, 181 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 182 S_VERITY, new_fl); 183 } 184 185 /* 186 * Check if @flags are a supported and valid set of FS_*_FL flags and that 187 * the old and new flags are not conflicting 188 */ 189 static int check_fsflags(unsigned int old_flags, unsigned int flags) 190 { 191 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 192 FS_NOATIME_FL | FS_NODUMP_FL | \ 193 FS_SYNC_FL | FS_DIRSYNC_FL | \ 194 FS_NOCOMP_FL | FS_COMPR_FL | 195 FS_NOCOW_FL)) 196 return -EOPNOTSUPP; 197 198 /* COMPR and NOCOMP on new/old are valid */ 199 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 200 return -EINVAL; 201 202 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 203 return -EINVAL; 204 205 /* NOCOW and compression options are mutually exclusive */ 206 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 207 return -EINVAL; 208 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 209 return -EINVAL; 210 211 return 0; 212 } 213 214 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 215 unsigned int flags) 216 { 217 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 218 return -EPERM; 219 220 return 0; 221 } 222 223 /* 224 * Set flags/xflags from the internal inode flags. The remaining items of 225 * fsxattr are zeroed. 226 */ 227 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 228 { 229 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 230 231 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 232 return 0; 233 } 234 235 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 236 struct dentry *dentry, struct fileattr *fa) 237 { 238 struct inode *inode = d_inode(dentry); 239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 240 struct btrfs_inode *binode = BTRFS_I(inode); 241 struct btrfs_root *root = binode->root; 242 struct btrfs_trans_handle *trans; 243 unsigned int fsflags, old_fsflags; 244 int ret; 245 const char *comp = NULL; 246 u32 binode_flags; 247 248 if (btrfs_root_readonly(root)) 249 return -EROFS; 250 251 if (fileattr_has_fsx(fa)) 252 return -EOPNOTSUPP; 253 254 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 255 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 256 ret = check_fsflags(old_fsflags, fsflags); 257 if (ret) 258 return ret; 259 260 ret = check_fsflags_compatible(fs_info, fsflags); 261 if (ret) 262 return ret; 263 264 binode_flags = binode->flags; 265 if (fsflags & FS_SYNC_FL) 266 binode_flags |= BTRFS_INODE_SYNC; 267 else 268 binode_flags &= ~BTRFS_INODE_SYNC; 269 if (fsflags & FS_IMMUTABLE_FL) 270 binode_flags |= BTRFS_INODE_IMMUTABLE; 271 else 272 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 273 if (fsflags & FS_APPEND_FL) 274 binode_flags |= BTRFS_INODE_APPEND; 275 else 276 binode_flags &= ~BTRFS_INODE_APPEND; 277 if (fsflags & FS_NODUMP_FL) 278 binode_flags |= BTRFS_INODE_NODUMP; 279 else 280 binode_flags &= ~BTRFS_INODE_NODUMP; 281 if (fsflags & FS_NOATIME_FL) 282 binode_flags |= BTRFS_INODE_NOATIME; 283 else 284 binode_flags &= ~BTRFS_INODE_NOATIME; 285 286 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 287 if (!fa->flags_valid) { 288 /* 1 item for the inode */ 289 trans = btrfs_start_transaction(root, 1); 290 if (IS_ERR(trans)) 291 return PTR_ERR(trans); 292 goto update_flags; 293 } 294 295 if (fsflags & FS_DIRSYNC_FL) 296 binode_flags |= BTRFS_INODE_DIRSYNC; 297 else 298 binode_flags &= ~BTRFS_INODE_DIRSYNC; 299 if (fsflags & FS_NOCOW_FL) { 300 if (S_ISREG(inode->i_mode)) { 301 /* 302 * It's safe to turn csums off here, no extents exist. 303 * Otherwise we want the flag to reflect the real COW 304 * status of the file and will not set it. 305 */ 306 if (inode->i_size == 0) 307 binode_flags |= BTRFS_INODE_NODATACOW | 308 BTRFS_INODE_NODATASUM; 309 } else { 310 binode_flags |= BTRFS_INODE_NODATACOW; 311 } 312 } else { 313 /* 314 * Revert back under same assumptions as above 315 */ 316 if (S_ISREG(inode->i_mode)) { 317 if (inode->i_size == 0) 318 binode_flags &= ~(BTRFS_INODE_NODATACOW | 319 BTRFS_INODE_NODATASUM); 320 } else { 321 binode_flags &= ~BTRFS_INODE_NODATACOW; 322 } 323 } 324 325 /* 326 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 327 * flag may be changed automatically if compression code won't make 328 * things smaller. 329 */ 330 if (fsflags & FS_NOCOMP_FL) { 331 binode_flags &= ~BTRFS_INODE_COMPRESS; 332 binode_flags |= BTRFS_INODE_NOCOMPRESS; 333 } else if (fsflags & FS_COMPR_FL) { 334 335 if (IS_SWAPFILE(inode)) 336 return -ETXTBSY; 337 338 binode_flags |= BTRFS_INODE_COMPRESS; 339 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 340 341 comp = btrfs_compress_type2str(fs_info->compress_type); 342 if (!comp || comp[0] == 0) 343 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 344 } else { 345 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 346 } 347 348 /* 349 * 1 for inode item 350 * 2 for properties 351 */ 352 trans = btrfs_start_transaction(root, 3); 353 if (IS_ERR(trans)) 354 return PTR_ERR(trans); 355 356 if (comp) { 357 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 358 strlen(comp), 0); 359 if (ret) { 360 btrfs_abort_transaction(trans, ret); 361 goto out_end_trans; 362 } 363 } else { 364 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 365 0, 0); 366 if (ret && ret != -ENODATA) { 367 btrfs_abort_transaction(trans, ret); 368 goto out_end_trans; 369 } 370 } 371 372 update_flags: 373 binode->flags = binode_flags; 374 btrfs_sync_inode_flags_to_i_flags(inode); 375 inode_inc_iversion(inode); 376 inode->i_ctime = current_time(inode); 377 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 378 379 out_end_trans: 380 btrfs_end_transaction(trans); 381 return ret; 382 } 383 384 /* 385 * Start exclusive operation @type, return true on success 386 */ 387 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 388 enum btrfs_exclusive_operation type) 389 { 390 bool ret = false; 391 392 spin_lock(&fs_info->super_lock); 393 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 394 fs_info->exclusive_operation = type; 395 ret = true; 396 } 397 spin_unlock(&fs_info->super_lock); 398 399 return ret; 400 } 401 402 /* 403 * Conditionally allow to enter the exclusive operation in case it's compatible 404 * with the running one. This must be paired with btrfs_exclop_start_unlock and 405 * btrfs_exclop_finish. 406 * 407 * Compatibility: 408 * - the same type is already running 409 * - when trying to add a device and balance has been paused 410 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 411 * must check the condition first that would allow none -> @type 412 */ 413 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 414 enum btrfs_exclusive_operation type) 415 { 416 spin_lock(&fs_info->super_lock); 417 if (fs_info->exclusive_operation == type || 418 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 419 type == BTRFS_EXCLOP_DEV_ADD)) 420 return true; 421 422 spin_unlock(&fs_info->super_lock); 423 return false; 424 } 425 426 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 427 { 428 spin_unlock(&fs_info->super_lock); 429 } 430 431 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 432 { 433 spin_lock(&fs_info->super_lock); 434 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 435 spin_unlock(&fs_info->super_lock); 436 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 437 } 438 439 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 440 enum btrfs_exclusive_operation op) 441 { 442 switch (op) { 443 case BTRFS_EXCLOP_BALANCE_PAUSED: 444 spin_lock(&fs_info->super_lock); 445 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 446 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD); 447 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 448 spin_unlock(&fs_info->super_lock); 449 break; 450 case BTRFS_EXCLOP_BALANCE: 451 spin_lock(&fs_info->super_lock); 452 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 453 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 454 spin_unlock(&fs_info->super_lock); 455 break; 456 default: 457 btrfs_warn(fs_info, 458 "invalid exclop balance operation %d requested", op); 459 } 460 } 461 462 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 463 { 464 return put_user(inode->i_generation, arg); 465 } 466 467 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 468 void __user *arg) 469 { 470 struct btrfs_device *device; 471 struct request_queue *q; 472 struct fstrim_range range; 473 u64 minlen = ULLONG_MAX; 474 u64 num_devices = 0; 475 int ret; 476 477 if (!capable(CAP_SYS_ADMIN)) 478 return -EPERM; 479 480 /* 481 * btrfs_trim_block_group() depends on space cache, which is not 482 * available in zoned filesystem. So, disallow fitrim on a zoned 483 * filesystem for now. 484 */ 485 if (btrfs_is_zoned(fs_info)) 486 return -EOPNOTSUPP; 487 488 /* 489 * If the fs is mounted with nologreplay, which requires it to be 490 * mounted in RO mode as well, we can not allow discard on free space 491 * inside block groups, because log trees refer to extents that are not 492 * pinned in a block group's free space cache (pinning the extents is 493 * precisely the first phase of replaying a log tree). 494 */ 495 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 496 return -EROFS; 497 498 rcu_read_lock(); 499 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 500 dev_list) { 501 if (!device->bdev) 502 continue; 503 q = bdev_get_queue(device->bdev); 504 if (blk_queue_discard(q)) { 505 num_devices++; 506 minlen = min_t(u64, q->limits.discard_granularity, 507 minlen); 508 } 509 } 510 rcu_read_unlock(); 511 512 if (!num_devices) 513 return -EOPNOTSUPP; 514 if (copy_from_user(&range, arg, sizeof(range))) 515 return -EFAULT; 516 517 /* 518 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 519 * block group is in the logical address space, which can be any 520 * sectorsize aligned bytenr in the range [0, U64_MAX]. 521 */ 522 if (range.len < fs_info->sb->s_blocksize) 523 return -EINVAL; 524 525 range.minlen = max(range.minlen, minlen); 526 ret = btrfs_trim_fs(fs_info, &range); 527 if (ret < 0) 528 return ret; 529 530 if (copy_to_user(arg, &range, sizeof(range))) 531 return -EFAULT; 532 533 return 0; 534 } 535 536 int __pure btrfs_is_empty_uuid(u8 *uuid) 537 { 538 int i; 539 540 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 541 if (uuid[i]) 542 return 0; 543 } 544 return 1; 545 } 546 547 static noinline int create_subvol(struct user_namespace *mnt_userns, 548 struct inode *dir, struct dentry *dentry, 549 const char *name, int namelen, 550 struct btrfs_qgroup_inherit *inherit) 551 { 552 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 553 struct btrfs_trans_handle *trans; 554 struct btrfs_key key; 555 struct btrfs_root_item *root_item; 556 struct btrfs_inode_item *inode_item; 557 struct extent_buffer *leaf; 558 struct btrfs_root *root = BTRFS_I(dir)->root; 559 struct btrfs_root *new_root; 560 struct btrfs_block_rsv block_rsv; 561 struct timespec64 cur_time = current_time(dir); 562 struct inode *inode; 563 int ret; 564 dev_t anon_dev = 0; 565 u64 objectid; 566 u64 index = 0; 567 568 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 569 if (!root_item) 570 return -ENOMEM; 571 572 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 573 if (ret) 574 goto fail_free; 575 576 ret = get_anon_bdev(&anon_dev); 577 if (ret < 0) 578 goto fail_free; 579 580 /* 581 * Don't create subvolume whose level is not zero. Or qgroup will be 582 * screwed up since it assumes subvolume qgroup's level to be 0. 583 */ 584 if (btrfs_qgroup_level(objectid)) { 585 ret = -ENOSPC; 586 goto fail_free; 587 } 588 589 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 590 /* 591 * The same as the snapshot creation, please see the comment 592 * of create_snapshot(). 593 */ 594 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 595 if (ret) 596 goto fail_free; 597 598 trans = btrfs_start_transaction(root, 0); 599 if (IS_ERR(trans)) { 600 ret = PTR_ERR(trans); 601 btrfs_subvolume_release_metadata(root, &block_rsv); 602 goto fail_free; 603 } 604 trans->block_rsv = &block_rsv; 605 trans->bytes_reserved = block_rsv.size; 606 607 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 608 if (ret) 609 goto fail; 610 611 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 612 BTRFS_NESTING_NORMAL); 613 if (IS_ERR(leaf)) { 614 ret = PTR_ERR(leaf); 615 goto fail; 616 } 617 618 btrfs_mark_buffer_dirty(leaf); 619 620 inode_item = &root_item->inode; 621 btrfs_set_stack_inode_generation(inode_item, 1); 622 btrfs_set_stack_inode_size(inode_item, 3); 623 btrfs_set_stack_inode_nlink(inode_item, 1); 624 btrfs_set_stack_inode_nbytes(inode_item, 625 fs_info->nodesize); 626 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 627 628 btrfs_set_root_flags(root_item, 0); 629 btrfs_set_root_limit(root_item, 0); 630 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 631 632 btrfs_set_root_bytenr(root_item, leaf->start); 633 btrfs_set_root_generation(root_item, trans->transid); 634 btrfs_set_root_level(root_item, 0); 635 btrfs_set_root_refs(root_item, 1); 636 btrfs_set_root_used(root_item, leaf->len); 637 btrfs_set_root_last_snapshot(root_item, 0); 638 639 btrfs_set_root_generation_v2(root_item, 640 btrfs_root_generation(root_item)); 641 generate_random_guid(root_item->uuid); 642 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 643 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 644 root_item->ctime = root_item->otime; 645 btrfs_set_root_ctransid(root_item, trans->transid); 646 btrfs_set_root_otransid(root_item, trans->transid); 647 648 btrfs_tree_unlock(leaf); 649 650 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 651 652 key.objectid = objectid; 653 key.offset = 0; 654 key.type = BTRFS_ROOT_ITEM_KEY; 655 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 656 root_item); 657 if (ret) { 658 /* 659 * Since we don't abort the transaction in this case, free the 660 * tree block so that we don't leak space and leave the 661 * filesystem in an inconsistent state (an extent item in the 662 * extent tree with a backreference for a root that does not 663 * exists). 664 */ 665 btrfs_tree_lock(leaf); 666 btrfs_clean_tree_block(leaf); 667 btrfs_tree_unlock(leaf); 668 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 669 free_extent_buffer(leaf); 670 goto fail; 671 } 672 673 free_extent_buffer(leaf); 674 leaf = NULL; 675 676 key.offset = (u64)-1; 677 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 678 if (IS_ERR(new_root)) { 679 free_anon_bdev(anon_dev); 680 ret = PTR_ERR(new_root); 681 btrfs_abort_transaction(trans, ret); 682 goto fail; 683 } 684 /* Freeing will be done in btrfs_put_root() of new_root */ 685 anon_dev = 0; 686 687 ret = btrfs_record_root_in_trans(trans, new_root); 688 if (ret) { 689 btrfs_put_root(new_root); 690 btrfs_abort_transaction(trans, ret); 691 goto fail; 692 } 693 694 ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns); 695 btrfs_put_root(new_root); 696 if (ret) { 697 /* We potentially lose an unused inode item here */ 698 btrfs_abort_transaction(trans, ret); 699 goto fail; 700 } 701 702 /* 703 * insert the directory item 704 */ 705 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 706 if (ret) { 707 btrfs_abort_transaction(trans, ret); 708 goto fail; 709 } 710 711 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 712 BTRFS_FT_DIR, index); 713 if (ret) { 714 btrfs_abort_transaction(trans, ret); 715 goto fail; 716 } 717 718 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 719 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 720 if (ret) { 721 btrfs_abort_transaction(trans, ret); 722 goto fail; 723 } 724 725 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 726 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 727 if (ret) { 728 btrfs_abort_transaction(trans, ret); 729 goto fail; 730 } 731 732 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 733 BTRFS_UUID_KEY_SUBVOL, objectid); 734 if (ret) 735 btrfs_abort_transaction(trans, ret); 736 737 fail: 738 kfree(root_item); 739 trans->block_rsv = NULL; 740 trans->bytes_reserved = 0; 741 btrfs_subvolume_release_metadata(root, &block_rsv); 742 743 if (ret) 744 btrfs_end_transaction(trans); 745 else 746 ret = btrfs_commit_transaction(trans); 747 748 if (!ret) { 749 inode = btrfs_lookup_dentry(dir, dentry); 750 if (IS_ERR(inode)) 751 return PTR_ERR(inode); 752 d_instantiate(dentry, inode); 753 } 754 return ret; 755 756 fail_free: 757 if (anon_dev) 758 free_anon_bdev(anon_dev); 759 kfree(root_item); 760 return ret; 761 } 762 763 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 764 struct dentry *dentry, bool readonly, 765 struct btrfs_qgroup_inherit *inherit) 766 { 767 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 768 struct inode *inode; 769 struct btrfs_pending_snapshot *pending_snapshot; 770 struct btrfs_trans_handle *trans; 771 int ret; 772 773 /* We do not support snapshotting right now. */ 774 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 775 btrfs_warn(fs_info, 776 "extent tree v2 doesn't support snapshotting yet"); 777 return -EOPNOTSUPP; 778 } 779 780 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 781 return -EINVAL; 782 783 if (atomic_read(&root->nr_swapfiles)) { 784 btrfs_warn(fs_info, 785 "cannot snapshot subvolume with active swapfile"); 786 return -ETXTBSY; 787 } 788 789 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 790 if (!pending_snapshot) 791 return -ENOMEM; 792 793 ret = get_anon_bdev(&pending_snapshot->anon_dev); 794 if (ret < 0) 795 goto free_pending; 796 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 797 GFP_KERNEL); 798 pending_snapshot->path = btrfs_alloc_path(); 799 if (!pending_snapshot->root_item || !pending_snapshot->path) { 800 ret = -ENOMEM; 801 goto free_pending; 802 } 803 804 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 805 BTRFS_BLOCK_RSV_TEMP); 806 /* 807 * 1 - parent dir inode 808 * 2 - dir entries 809 * 1 - root item 810 * 2 - root ref/backref 811 * 1 - root of snapshot 812 * 1 - UUID item 813 */ 814 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 815 &pending_snapshot->block_rsv, 8, 816 false); 817 if (ret) 818 goto free_pending; 819 820 pending_snapshot->dentry = dentry; 821 pending_snapshot->root = root; 822 pending_snapshot->readonly = readonly; 823 pending_snapshot->dir = dir; 824 pending_snapshot->inherit = inherit; 825 826 trans = btrfs_start_transaction(root, 0); 827 if (IS_ERR(trans)) { 828 ret = PTR_ERR(trans); 829 goto fail; 830 } 831 832 trans->pending_snapshot = pending_snapshot; 833 834 ret = btrfs_commit_transaction(trans); 835 if (ret) 836 goto fail; 837 838 ret = pending_snapshot->error; 839 if (ret) 840 goto fail; 841 842 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 843 if (ret) 844 goto fail; 845 846 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 847 if (IS_ERR(inode)) { 848 ret = PTR_ERR(inode); 849 goto fail; 850 } 851 852 d_instantiate(dentry, inode); 853 ret = 0; 854 pending_snapshot->anon_dev = 0; 855 fail: 856 /* Prevent double freeing of anon_dev */ 857 if (ret && pending_snapshot->snap) 858 pending_snapshot->snap->anon_dev = 0; 859 btrfs_put_root(pending_snapshot->snap); 860 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 861 free_pending: 862 if (pending_snapshot->anon_dev) 863 free_anon_bdev(pending_snapshot->anon_dev); 864 kfree(pending_snapshot->root_item); 865 btrfs_free_path(pending_snapshot->path); 866 kfree(pending_snapshot); 867 868 return ret; 869 } 870 871 /* copy of may_delete in fs/namei.c() 872 * Check whether we can remove a link victim from directory dir, check 873 * whether the type of victim is right. 874 * 1. We can't do it if dir is read-only (done in permission()) 875 * 2. We should have write and exec permissions on dir 876 * 3. We can't remove anything from append-only dir 877 * 4. We can't do anything with immutable dir (done in permission()) 878 * 5. If the sticky bit on dir is set we should either 879 * a. be owner of dir, or 880 * b. be owner of victim, or 881 * c. have CAP_FOWNER capability 882 * 6. If the victim is append-only or immutable we can't do anything with 883 * links pointing to it. 884 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 885 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 886 * 9. We can't remove a root or mountpoint. 887 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 888 * nfs_async_unlink(). 889 */ 890 891 static int btrfs_may_delete(struct user_namespace *mnt_userns, 892 struct inode *dir, struct dentry *victim, int isdir) 893 { 894 int error; 895 896 if (d_really_is_negative(victim)) 897 return -ENOENT; 898 899 BUG_ON(d_inode(victim->d_parent) != dir); 900 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 901 902 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 903 if (error) 904 return error; 905 if (IS_APPEND(dir)) 906 return -EPERM; 907 if (check_sticky(mnt_userns, dir, d_inode(victim)) || 908 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 909 IS_SWAPFILE(d_inode(victim))) 910 return -EPERM; 911 if (isdir) { 912 if (!d_is_dir(victim)) 913 return -ENOTDIR; 914 if (IS_ROOT(victim)) 915 return -EBUSY; 916 } else if (d_is_dir(victim)) 917 return -EISDIR; 918 if (IS_DEADDIR(dir)) 919 return -ENOENT; 920 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 921 return -EBUSY; 922 return 0; 923 } 924 925 /* copy of may_create in fs/namei.c() */ 926 static inline int btrfs_may_create(struct user_namespace *mnt_userns, 927 struct inode *dir, struct dentry *child) 928 { 929 if (d_really_is_positive(child)) 930 return -EEXIST; 931 if (IS_DEADDIR(dir)) 932 return -ENOENT; 933 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 934 return -EOVERFLOW; 935 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 936 } 937 938 /* 939 * Create a new subvolume below @parent. This is largely modeled after 940 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 941 * inside this filesystem so it's quite a bit simpler. 942 */ 943 static noinline int btrfs_mksubvol(const struct path *parent, 944 struct user_namespace *mnt_userns, 945 const char *name, int namelen, 946 struct btrfs_root *snap_src, 947 bool readonly, 948 struct btrfs_qgroup_inherit *inherit) 949 { 950 struct inode *dir = d_inode(parent->dentry); 951 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 952 struct dentry *dentry; 953 int error; 954 955 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 956 if (error == -EINTR) 957 return error; 958 959 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen); 960 error = PTR_ERR(dentry); 961 if (IS_ERR(dentry)) 962 goto out_unlock; 963 964 error = btrfs_may_create(mnt_userns, dir, dentry); 965 if (error) 966 goto out_dput; 967 968 /* 969 * even if this name doesn't exist, we may get hash collisions. 970 * check for them now when we can safely fail 971 */ 972 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 973 dir->i_ino, name, 974 namelen); 975 if (error) 976 goto out_dput; 977 978 down_read(&fs_info->subvol_sem); 979 980 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 981 goto out_up_read; 982 983 if (snap_src) 984 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 985 else 986 error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit); 987 988 if (!error) 989 fsnotify_mkdir(dir, dentry); 990 out_up_read: 991 up_read(&fs_info->subvol_sem); 992 out_dput: 993 dput(dentry); 994 out_unlock: 995 btrfs_inode_unlock(dir, 0); 996 return error; 997 } 998 999 static noinline int btrfs_mksnapshot(const struct path *parent, 1000 struct user_namespace *mnt_userns, 1001 const char *name, int namelen, 1002 struct btrfs_root *root, 1003 bool readonly, 1004 struct btrfs_qgroup_inherit *inherit) 1005 { 1006 int ret; 1007 bool snapshot_force_cow = false; 1008 1009 /* 1010 * Force new buffered writes to reserve space even when NOCOW is 1011 * possible. This is to avoid later writeback (running dealloc) to 1012 * fallback to COW mode and unexpectedly fail with ENOSPC. 1013 */ 1014 btrfs_drew_read_lock(&root->snapshot_lock); 1015 1016 ret = btrfs_start_delalloc_snapshot(root, false); 1017 if (ret) 1018 goto out; 1019 1020 /* 1021 * All previous writes have started writeback in NOCOW mode, so now 1022 * we force future writes to fallback to COW mode during snapshot 1023 * creation. 1024 */ 1025 atomic_inc(&root->snapshot_force_cow); 1026 snapshot_force_cow = true; 1027 1028 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1029 1030 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen, 1031 root, readonly, inherit); 1032 out: 1033 if (snapshot_force_cow) 1034 atomic_dec(&root->snapshot_force_cow); 1035 btrfs_drew_read_unlock(&root->snapshot_lock); 1036 return ret; 1037 } 1038 1039 /* 1040 * Defrag specific helper to get an extent map. 1041 * 1042 * Differences between this and btrfs_get_extent() are: 1043 * 1044 * - No extent_map will be added to inode->extent_tree 1045 * To reduce memory usage in the long run. 1046 * 1047 * - Extra optimization to skip file extents older than @newer_than 1048 * By using btrfs_search_forward() we can skip entire file ranges that 1049 * have extents created in past transactions, because btrfs_search_forward() 1050 * will not visit leaves and nodes with a generation smaller than given 1051 * minimal generation threshold (@newer_than). 1052 * 1053 * Return valid em if we find a file extent matching the requirement. 1054 * Return NULL if we can not find a file extent matching the requirement. 1055 * 1056 * Return ERR_PTR() for error. 1057 */ 1058 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode, 1059 u64 start, u64 newer_than) 1060 { 1061 struct btrfs_root *root = inode->root; 1062 struct btrfs_file_extent_item *fi; 1063 struct btrfs_path path = { 0 }; 1064 struct extent_map *em; 1065 struct btrfs_key key; 1066 u64 ino = btrfs_ino(inode); 1067 int ret; 1068 1069 em = alloc_extent_map(); 1070 if (!em) { 1071 ret = -ENOMEM; 1072 goto err; 1073 } 1074 1075 key.objectid = ino; 1076 key.type = BTRFS_EXTENT_DATA_KEY; 1077 key.offset = start; 1078 1079 if (newer_than) { 1080 ret = btrfs_search_forward(root, &key, &path, newer_than); 1081 if (ret < 0) 1082 goto err; 1083 /* Can't find anything newer */ 1084 if (ret > 0) 1085 goto not_found; 1086 } else { 1087 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); 1088 if (ret < 0) 1089 goto err; 1090 } 1091 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { 1092 /* 1093 * If btrfs_search_slot() makes path to point beyond nritems, 1094 * we should not have an empty leaf, as this inode must at 1095 * least have its INODE_ITEM. 1096 */ 1097 ASSERT(btrfs_header_nritems(path.nodes[0])); 1098 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1; 1099 } 1100 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 1101 /* Perfect match, no need to go one slot back */ 1102 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY && 1103 key.offset == start) 1104 goto iterate; 1105 1106 /* We didn't find a perfect match, needs to go one slot back */ 1107 if (path.slots[0] > 0) { 1108 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 1109 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) 1110 path.slots[0]--; 1111 } 1112 1113 iterate: 1114 /* Iterate through the path to find a file extent covering @start */ 1115 while (true) { 1116 u64 extent_end; 1117 1118 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) 1119 goto next; 1120 1121 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); 1122 1123 /* 1124 * We may go one slot back to INODE_REF/XATTR item, then 1125 * need to go forward until we reach an EXTENT_DATA. 1126 * But we should still has the correct ino as key.objectid. 1127 */ 1128 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY) 1129 goto next; 1130 1131 /* It's beyond our target range, definitely not extent found */ 1132 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY) 1133 goto not_found; 1134 1135 /* 1136 * | |<- File extent ->| 1137 * \- start 1138 * 1139 * This means there is a hole between start and key.offset. 1140 */ 1141 if (key.offset > start) { 1142 em->start = start; 1143 em->orig_start = start; 1144 em->block_start = EXTENT_MAP_HOLE; 1145 em->len = key.offset - start; 1146 break; 1147 } 1148 1149 fi = btrfs_item_ptr(path.nodes[0], path.slots[0], 1150 struct btrfs_file_extent_item); 1151 extent_end = btrfs_file_extent_end(&path); 1152 1153 /* 1154 * |<- file extent ->| | 1155 * \- start 1156 * 1157 * We haven't reached start, search next slot. 1158 */ 1159 if (extent_end <= start) 1160 goto next; 1161 1162 /* Now this extent covers @start, convert it to em */ 1163 btrfs_extent_item_to_extent_map(inode, &path, fi, false, em); 1164 break; 1165 next: 1166 ret = btrfs_next_item(root, &path); 1167 if (ret < 0) 1168 goto err; 1169 if (ret > 0) 1170 goto not_found; 1171 } 1172 btrfs_release_path(&path); 1173 return em; 1174 1175 not_found: 1176 btrfs_release_path(&path); 1177 free_extent_map(em); 1178 return NULL; 1179 1180 err: 1181 btrfs_release_path(&path); 1182 free_extent_map(em); 1183 return ERR_PTR(ret); 1184 } 1185 1186 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, 1187 u64 newer_than, bool locked) 1188 { 1189 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1190 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1191 struct extent_map *em; 1192 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; 1193 1194 /* 1195 * hopefully we have this extent in the tree already, try without 1196 * the full extent lock 1197 */ 1198 read_lock(&em_tree->lock); 1199 em = lookup_extent_mapping(em_tree, start, sectorsize); 1200 read_unlock(&em_tree->lock); 1201 1202 /* 1203 * We can get a merged extent, in that case, we need to re-search 1204 * tree to get the original em for defrag. 1205 * 1206 * If @newer_than is 0 or em::generation < newer_than, we can trust 1207 * this em, as either we don't care about the generation, or the 1208 * merged extent map will be rejected anyway. 1209 */ 1210 if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) && 1211 newer_than && em->generation >= newer_than) { 1212 free_extent_map(em); 1213 em = NULL; 1214 } 1215 1216 if (!em) { 1217 struct extent_state *cached = NULL; 1218 u64 end = start + sectorsize - 1; 1219 1220 /* get the big lock and read metadata off disk */ 1221 if (!locked) 1222 lock_extent_bits(io_tree, start, end, &cached); 1223 em = defrag_get_extent(BTRFS_I(inode), start, newer_than); 1224 if (!locked) 1225 unlock_extent_cached(io_tree, start, end, &cached); 1226 1227 if (IS_ERR(em)) 1228 return NULL; 1229 } 1230 1231 return em; 1232 } 1233 1234 static u32 get_extent_max_capacity(const struct extent_map *em) 1235 { 1236 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 1237 return BTRFS_MAX_COMPRESSED; 1238 return BTRFS_MAX_EXTENT_SIZE; 1239 } 1240 1241 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, 1242 u32 extent_thresh, u64 newer_than, bool locked) 1243 { 1244 struct extent_map *next; 1245 bool ret = false; 1246 1247 /* this is the last extent */ 1248 if (em->start + em->len >= i_size_read(inode)) 1249 return false; 1250 1251 /* 1252 * Here we need to pass @newer_then when checking the next extent, or 1253 * we will hit a case we mark current extent for defrag, but the next 1254 * one will not be a target. 1255 * This will just cause extra IO without really reducing the fragments. 1256 */ 1257 next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked); 1258 /* No more em or hole */ 1259 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1260 goto out; 1261 if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags)) 1262 goto out; 1263 /* 1264 * If the next extent is at its max capacity, defragging current extent 1265 * makes no sense, as the total number of extents won't change. 1266 */ 1267 if (next->len >= get_extent_max_capacity(em)) 1268 goto out; 1269 /* Skip older extent */ 1270 if (next->generation < newer_than) 1271 goto out; 1272 /* Also check extent size */ 1273 if (next->len >= extent_thresh) 1274 goto out; 1275 1276 ret = true; 1277 out: 1278 free_extent_map(next); 1279 return ret; 1280 } 1281 1282 /* 1283 * Prepare one page to be defragged. 1284 * 1285 * This will ensure: 1286 * 1287 * - Returned page is locked and has been set up properly. 1288 * - No ordered extent exists in the page. 1289 * - The page is uptodate. 1290 * 1291 * NOTE: Caller should also wait for page writeback after the cluster is 1292 * prepared, here we don't do writeback wait for each page. 1293 */ 1294 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, 1295 pgoff_t index) 1296 { 1297 struct address_space *mapping = inode->vfs_inode.i_mapping; 1298 gfp_t mask = btrfs_alloc_write_mask(mapping); 1299 u64 page_start = (u64)index << PAGE_SHIFT; 1300 u64 page_end = page_start + PAGE_SIZE - 1; 1301 struct extent_state *cached_state = NULL; 1302 struct page *page; 1303 int ret; 1304 1305 again: 1306 page = find_or_create_page(mapping, index, mask); 1307 if (!page) 1308 return ERR_PTR(-ENOMEM); 1309 1310 /* 1311 * Since we can defragment files opened read-only, we can encounter 1312 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We 1313 * can't do I/O using huge pages yet, so return an error for now. 1314 * Filesystem transparent huge pages are typically only used for 1315 * executables that explicitly enable them, so this isn't very 1316 * restrictive. 1317 */ 1318 if (PageCompound(page)) { 1319 unlock_page(page); 1320 put_page(page); 1321 return ERR_PTR(-ETXTBSY); 1322 } 1323 1324 ret = set_page_extent_mapped(page); 1325 if (ret < 0) { 1326 unlock_page(page); 1327 put_page(page); 1328 return ERR_PTR(ret); 1329 } 1330 1331 /* Wait for any existing ordered extent in the range */ 1332 while (1) { 1333 struct btrfs_ordered_extent *ordered; 1334 1335 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 1336 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 1337 unlock_extent_cached(&inode->io_tree, page_start, page_end, 1338 &cached_state); 1339 if (!ordered) 1340 break; 1341 1342 unlock_page(page); 1343 btrfs_start_ordered_extent(ordered, 1); 1344 btrfs_put_ordered_extent(ordered); 1345 lock_page(page); 1346 /* 1347 * We unlocked the page above, so we need check if it was 1348 * released or not. 1349 */ 1350 if (page->mapping != mapping || !PagePrivate(page)) { 1351 unlock_page(page); 1352 put_page(page); 1353 goto again; 1354 } 1355 } 1356 1357 /* 1358 * Now the page range has no ordered extent any more. Read the page to 1359 * make it uptodate. 1360 */ 1361 if (!PageUptodate(page)) { 1362 btrfs_readpage(NULL, page); 1363 lock_page(page); 1364 if (page->mapping != mapping || !PagePrivate(page)) { 1365 unlock_page(page); 1366 put_page(page); 1367 goto again; 1368 } 1369 if (!PageUptodate(page)) { 1370 unlock_page(page); 1371 put_page(page); 1372 return ERR_PTR(-EIO); 1373 } 1374 } 1375 return page; 1376 } 1377 1378 struct defrag_target_range { 1379 struct list_head list; 1380 u64 start; 1381 u64 len; 1382 }; 1383 1384 /* 1385 * Collect all valid target extents. 1386 * 1387 * @start: file offset to lookup 1388 * @len: length to lookup 1389 * @extent_thresh: file extent size threshold, any extent size >= this value 1390 * will be ignored 1391 * @newer_than: only defrag extents newer than this value 1392 * @do_compress: whether the defrag is doing compression 1393 * if true, @extent_thresh will be ignored and all regular 1394 * file extents meeting @newer_than will be targets. 1395 * @locked: if the range has already held extent lock 1396 * @target_list: list of targets file extents 1397 */ 1398 static int defrag_collect_targets(struct btrfs_inode *inode, 1399 u64 start, u64 len, u32 extent_thresh, 1400 u64 newer_than, bool do_compress, 1401 bool locked, struct list_head *target_list, 1402 u64 *last_scanned_ret) 1403 { 1404 bool last_is_target = false; 1405 u64 cur = start; 1406 int ret = 0; 1407 1408 while (cur < start + len) { 1409 struct extent_map *em; 1410 struct defrag_target_range *new; 1411 bool next_mergeable = true; 1412 u64 range_len; 1413 1414 last_is_target = false; 1415 em = defrag_lookup_extent(&inode->vfs_inode, cur, 1416 newer_than, locked); 1417 if (!em) 1418 break; 1419 1420 /* Skip hole/inline/preallocated extents */ 1421 if (em->block_start >= EXTENT_MAP_LAST_BYTE || 1422 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1423 goto next; 1424 1425 /* Skip older extent */ 1426 if (em->generation < newer_than) 1427 goto next; 1428 1429 /* This em is under writeback, no need to defrag */ 1430 if (em->generation == (u64)-1) 1431 goto next; 1432 1433 /* 1434 * Our start offset might be in the middle of an existing extent 1435 * map, so take that into account. 1436 */ 1437 range_len = em->len - (cur - em->start); 1438 /* 1439 * If this range of the extent map is already flagged for delalloc, 1440 * skip it, because: 1441 * 1442 * 1) We could deadlock later, when trying to reserve space for 1443 * delalloc, because in case we can't immediately reserve space 1444 * the flusher can start delalloc and wait for the respective 1445 * ordered extents to complete. The deadlock would happen 1446 * because we do the space reservation while holding the range 1447 * locked, and starting writeback, or finishing an ordered 1448 * extent, requires locking the range; 1449 * 1450 * 2) If there's delalloc there, it means there's dirty pages for 1451 * which writeback has not started yet (we clean the delalloc 1452 * flag when starting writeback and after creating an ordered 1453 * extent). If we mark pages in an adjacent range for defrag, 1454 * then we will have a larger contiguous range for delalloc, 1455 * very likely resulting in a larger extent after writeback is 1456 * triggered (except in a case of free space fragmentation). 1457 */ 1458 if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1, 1459 EXTENT_DELALLOC, 0, NULL)) 1460 goto next; 1461 1462 /* 1463 * For do_compress case, we want to compress all valid file 1464 * extents, thus no @extent_thresh or mergeable check. 1465 */ 1466 if (do_compress) 1467 goto add; 1468 1469 /* Skip too large extent */ 1470 if (range_len >= extent_thresh) 1471 goto next; 1472 1473 /* 1474 * Skip extents already at its max capacity, this is mostly for 1475 * compressed extents, which max cap is only 128K. 1476 */ 1477 if (em->len >= get_extent_max_capacity(em)) 1478 goto next; 1479 1480 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, 1481 extent_thresh, newer_than, locked); 1482 if (!next_mergeable) { 1483 struct defrag_target_range *last; 1484 1485 /* Empty target list, no way to merge with last entry */ 1486 if (list_empty(target_list)) 1487 goto next; 1488 last = list_entry(target_list->prev, 1489 struct defrag_target_range, list); 1490 /* Not mergeable with last entry */ 1491 if (last->start + last->len != cur) 1492 goto next; 1493 1494 /* Mergeable, fall through to add it to @target_list. */ 1495 } 1496 1497 add: 1498 last_is_target = true; 1499 range_len = min(extent_map_end(em), start + len) - cur; 1500 /* 1501 * This one is a good target, check if it can be merged into 1502 * last range of the target list. 1503 */ 1504 if (!list_empty(target_list)) { 1505 struct defrag_target_range *last; 1506 1507 last = list_entry(target_list->prev, 1508 struct defrag_target_range, list); 1509 ASSERT(last->start + last->len <= cur); 1510 if (last->start + last->len == cur) { 1511 /* Mergeable, enlarge the last entry */ 1512 last->len += range_len; 1513 goto next; 1514 } 1515 /* Fall through to allocate a new entry */ 1516 } 1517 1518 /* Allocate new defrag_target_range */ 1519 new = kmalloc(sizeof(*new), GFP_NOFS); 1520 if (!new) { 1521 free_extent_map(em); 1522 ret = -ENOMEM; 1523 break; 1524 } 1525 new->start = cur; 1526 new->len = range_len; 1527 list_add_tail(&new->list, target_list); 1528 1529 next: 1530 cur = extent_map_end(em); 1531 free_extent_map(em); 1532 } 1533 if (ret < 0) { 1534 struct defrag_target_range *entry; 1535 struct defrag_target_range *tmp; 1536 1537 list_for_each_entry_safe(entry, tmp, target_list, list) { 1538 list_del_init(&entry->list); 1539 kfree(entry); 1540 } 1541 } 1542 if (!ret && last_scanned_ret) { 1543 /* 1544 * If the last extent is not a target, the caller can skip to 1545 * the end of that extent. 1546 * Otherwise, we can only go the end of the specified range. 1547 */ 1548 if (!last_is_target) 1549 *last_scanned_ret = max(cur, *last_scanned_ret); 1550 else 1551 *last_scanned_ret = max(start + len, *last_scanned_ret); 1552 } 1553 return ret; 1554 } 1555 1556 #define CLUSTER_SIZE (SZ_256K) 1557 static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1558 1559 /* 1560 * Defrag one contiguous target range. 1561 * 1562 * @inode: target inode 1563 * @target: target range to defrag 1564 * @pages: locked pages covering the defrag range 1565 * @nr_pages: number of locked pages 1566 * 1567 * Caller should ensure: 1568 * 1569 * - Pages are prepared 1570 * Pages should be locked, no ordered extent in the pages range, 1571 * no writeback. 1572 * 1573 * - Extent bits are locked 1574 */ 1575 static int defrag_one_locked_target(struct btrfs_inode *inode, 1576 struct defrag_target_range *target, 1577 struct page **pages, int nr_pages, 1578 struct extent_state **cached_state) 1579 { 1580 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1581 struct extent_changeset *data_reserved = NULL; 1582 const u64 start = target->start; 1583 const u64 len = target->len; 1584 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; 1585 unsigned long start_index = start >> PAGE_SHIFT; 1586 unsigned long first_index = page_index(pages[0]); 1587 int ret = 0; 1588 int i; 1589 1590 ASSERT(last_index - first_index + 1 <= nr_pages); 1591 1592 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); 1593 if (ret < 0) 1594 return ret; 1595 clear_extent_bit(&inode->io_tree, start, start + len - 1, 1596 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1597 EXTENT_DEFRAG, 0, 0, cached_state); 1598 set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state); 1599 1600 /* Update the page status */ 1601 for (i = start_index - first_index; i <= last_index - first_index; i++) { 1602 ClearPageChecked(pages[i]); 1603 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len); 1604 } 1605 btrfs_delalloc_release_extents(inode, len); 1606 extent_changeset_free(data_reserved); 1607 1608 return ret; 1609 } 1610 1611 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, 1612 u32 extent_thresh, u64 newer_than, bool do_compress, 1613 u64 *last_scanned_ret) 1614 { 1615 struct extent_state *cached_state = NULL; 1616 struct defrag_target_range *entry; 1617 struct defrag_target_range *tmp; 1618 LIST_HEAD(target_list); 1619 struct page **pages; 1620 const u32 sectorsize = inode->root->fs_info->sectorsize; 1621 u64 last_index = (start + len - 1) >> PAGE_SHIFT; 1622 u64 start_index = start >> PAGE_SHIFT; 1623 unsigned int nr_pages = last_index - start_index + 1; 1624 int ret = 0; 1625 int i; 1626 1627 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); 1628 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); 1629 1630 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 1631 if (!pages) 1632 return -ENOMEM; 1633 1634 /* Prepare all pages */ 1635 for (i = 0; i < nr_pages; i++) { 1636 pages[i] = defrag_prepare_one_page(inode, start_index + i); 1637 if (IS_ERR(pages[i])) { 1638 ret = PTR_ERR(pages[i]); 1639 pages[i] = NULL; 1640 goto free_pages; 1641 } 1642 } 1643 for (i = 0; i < nr_pages; i++) 1644 wait_on_page_writeback(pages[i]); 1645 1646 /* Lock the pages range */ 1647 lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT, 1648 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1649 &cached_state); 1650 /* 1651 * Now we have a consistent view about the extent map, re-check 1652 * which range really needs to be defragged. 1653 * 1654 * And this time we have extent locked already, pass @locked = true 1655 * so that we won't relock the extent range and cause deadlock. 1656 */ 1657 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1658 newer_than, do_compress, true, 1659 &target_list, last_scanned_ret); 1660 if (ret < 0) 1661 goto unlock_extent; 1662 1663 list_for_each_entry(entry, &target_list, list) { 1664 ret = defrag_one_locked_target(inode, entry, pages, nr_pages, 1665 &cached_state); 1666 if (ret < 0) 1667 break; 1668 } 1669 1670 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1671 list_del_init(&entry->list); 1672 kfree(entry); 1673 } 1674 unlock_extent: 1675 unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT, 1676 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1677 &cached_state); 1678 free_pages: 1679 for (i = 0; i < nr_pages; i++) { 1680 if (pages[i]) { 1681 unlock_page(pages[i]); 1682 put_page(pages[i]); 1683 } 1684 } 1685 kfree(pages); 1686 return ret; 1687 } 1688 1689 static int defrag_one_cluster(struct btrfs_inode *inode, 1690 struct file_ra_state *ra, 1691 u64 start, u32 len, u32 extent_thresh, 1692 u64 newer_than, bool do_compress, 1693 unsigned long *sectors_defragged, 1694 unsigned long max_sectors, 1695 u64 *last_scanned_ret) 1696 { 1697 const u32 sectorsize = inode->root->fs_info->sectorsize; 1698 struct defrag_target_range *entry; 1699 struct defrag_target_range *tmp; 1700 LIST_HEAD(target_list); 1701 int ret; 1702 1703 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1704 newer_than, do_compress, false, 1705 &target_list, NULL); 1706 if (ret < 0) 1707 goto out; 1708 1709 list_for_each_entry(entry, &target_list, list) { 1710 u32 range_len = entry->len; 1711 1712 /* Reached or beyond the limit */ 1713 if (max_sectors && *sectors_defragged >= max_sectors) { 1714 ret = 1; 1715 break; 1716 } 1717 1718 if (max_sectors) 1719 range_len = min_t(u32, range_len, 1720 (max_sectors - *sectors_defragged) * sectorsize); 1721 1722 /* 1723 * If defrag_one_range() has updated last_scanned_ret, 1724 * our range may already be invalid (e.g. hole punched). 1725 * Skip if our range is before last_scanned_ret, as there is 1726 * no need to defrag the range anymore. 1727 */ 1728 if (entry->start + range_len <= *last_scanned_ret) 1729 continue; 1730 1731 if (ra) 1732 page_cache_sync_readahead(inode->vfs_inode.i_mapping, 1733 ra, NULL, entry->start >> PAGE_SHIFT, 1734 ((entry->start + range_len - 1) >> PAGE_SHIFT) - 1735 (entry->start >> PAGE_SHIFT) + 1); 1736 /* 1737 * Here we may not defrag any range if holes are punched before 1738 * we locked the pages. 1739 * But that's fine, it only affects the @sectors_defragged 1740 * accounting. 1741 */ 1742 ret = defrag_one_range(inode, entry->start, range_len, 1743 extent_thresh, newer_than, do_compress, 1744 last_scanned_ret); 1745 if (ret < 0) 1746 break; 1747 *sectors_defragged += range_len >> 1748 inode->root->fs_info->sectorsize_bits; 1749 } 1750 out: 1751 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1752 list_del_init(&entry->list); 1753 kfree(entry); 1754 } 1755 if (ret >= 0) 1756 *last_scanned_ret = max(*last_scanned_ret, start + len); 1757 return ret; 1758 } 1759 1760 /* 1761 * Entry point to file defragmentation. 1762 * 1763 * @inode: inode to be defragged 1764 * @ra: readahead state (can be NUL) 1765 * @range: defrag options including range and flags 1766 * @newer_than: minimum transid to defrag 1767 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode 1768 * will be defragged. 1769 * 1770 * Return <0 for error. 1771 * Return >=0 for the number of sectors defragged, and range->start will be updated 1772 * to indicate the file offset where next defrag should be started at. 1773 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without 1774 * defragging all the range). 1775 */ 1776 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 1777 struct btrfs_ioctl_defrag_range_args *range, 1778 u64 newer_than, unsigned long max_to_defrag) 1779 { 1780 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1781 unsigned long sectors_defragged = 0; 1782 u64 isize = i_size_read(inode); 1783 u64 cur; 1784 u64 last_byte; 1785 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1786 bool ra_allocated = false; 1787 int compress_type = BTRFS_COMPRESS_ZLIB; 1788 int ret = 0; 1789 u32 extent_thresh = range->extent_thresh; 1790 pgoff_t start_index; 1791 1792 if (isize == 0) 1793 return 0; 1794 1795 if (range->start >= isize) 1796 return -EINVAL; 1797 1798 if (do_compress) { 1799 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1800 return -EINVAL; 1801 if (range->compress_type) 1802 compress_type = range->compress_type; 1803 } 1804 1805 if (extent_thresh == 0) 1806 extent_thresh = SZ_256K; 1807 1808 if (range->start + range->len > range->start) { 1809 /* Got a specific range */ 1810 last_byte = min(isize, range->start + range->len); 1811 } else { 1812 /* Defrag until file end */ 1813 last_byte = isize; 1814 } 1815 1816 /* Align the range */ 1817 cur = round_down(range->start, fs_info->sectorsize); 1818 last_byte = round_up(last_byte, fs_info->sectorsize) - 1; 1819 1820 /* 1821 * If we were not given a ra, allocate a readahead context. As 1822 * readahead is just an optimization, defrag will work without it so 1823 * we don't error out. 1824 */ 1825 if (!ra) { 1826 ra_allocated = true; 1827 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1828 if (ra) 1829 file_ra_state_init(ra, inode->i_mapping); 1830 } 1831 1832 /* 1833 * Make writeback start from the beginning of the range, so that the 1834 * defrag range can be written sequentially. 1835 */ 1836 start_index = cur >> PAGE_SHIFT; 1837 if (start_index < inode->i_mapping->writeback_index) 1838 inode->i_mapping->writeback_index = start_index; 1839 1840 while (cur < last_byte) { 1841 const unsigned long prev_sectors_defragged = sectors_defragged; 1842 u64 last_scanned = cur; 1843 u64 cluster_end; 1844 1845 if (btrfs_defrag_cancelled(fs_info)) { 1846 ret = -EAGAIN; 1847 break; 1848 } 1849 1850 /* We want the cluster end at page boundary when possible */ 1851 cluster_end = (((cur >> PAGE_SHIFT) + 1852 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; 1853 cluster_end = min(cluster_end, last_byte); 1854 1855 btrfs_inode_lock(inode, 0); 1856 if (IS_SWAPFILE(inode)) { 1857 ret = -ETXTBSY; 1858 btrfs_inode_unlock(inode, 0); 1859 break; 1860 } 1861 if (!(inode->i_sb->s_flags & SB_ACTIVE)) { 1862 btrfs_inode_unlock(inode, 0); 1863 break; 1864 } 1865 if (do_compress) 1866 BTRFS_I(inode)->defrag_compress = compress_type; 1867 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, 1868 cluster_end + 1 - cur, extent_thresh, 1869 newer_than, do_compress, §ors_defragged, 1870 max_to_defrag, &last_scanned); 1871 1872 if (sectors_defragged > prev_sectors_defragged) 1873 balance_dirty_pages_ratelimited(inode->i_mapping); 1874 1875 btrfs_inode_unlock(inode, 0); 1876 if (ret < 0) 1877 break; 1878 cur = max(cluster_end + 1, last_scanned); 1879 if (ret > 0) { 1880 ret = 0; 1881 break; 1882 } 1883 cond_resched(); 1884 } 1885 1886 if (ra_allocated) 1887 kfree(ra); 1888 /* 1889 * Update range.start for autodefrag, this will indicate where to start 1890 * in next run. 1891 */ 1892 range->start = cur; 1893 if (sectors_defragged) { 1894 /* 1895 * We have defragged some sectors, for compression case they 1896 * need to be written back immediately. 1897 */ 1898 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { 1899 filemap_flush(inode->i_mapping); 1900 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1901 &BTRFS_I(inode)->runtime_flags)) 1902 filemap_flush(inode->i_mapping); 1903 } 1904 if (range->compress_type == BTRFS_COMPRESS_LZO) 1905 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1906 else if (range->compress_type == BTRFS_COMPRESS_ZSTD) 1907 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1908 ret = sectors_defragged; 1909 } 1910 if (do_compress) { 1911 btrfs_inode_lock(inode, 0); 1912 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1913 btrfs_inode_unlock(inode, 0); 1914 } 1915 return ret; 1916 } 1917 1918 /* 1919 * Try to start exclusive operation @type or cancel it if it's running. 1920 * 1921 * Return: 1922 * 0 - normal mode, newly claimed op started 1923 * >0 - normal mode, something else is running, 1924 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1925 * ECANCELED - cancel mode, successful cancel 1926 * ENOTCONN - cancel mode, operation not running anymore 1927 */ 1928 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1929 enum btrfs_exclusive_operation type, bool cancel) 1930 { 1931 if (!cancel) { 1932 /* Start normal op */ 1933 if (!btrfs_exclop_start(fs_info, type)) 1934 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1935 /* Exclusive operation is now claimed */ 1936 return 0; 1937 } 1938 1939 /* Cancel running op */ 1940 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1941 /* 1942 * This blocks any exclop finish from setting it to NONE, so we 1943 * request cancellation. Either it runs and we will wait for it, 1944 * or it has finished and no waiting will happen. 1945 */ 1946 atomic_inc(&fs_info->reloc_cancel_req); 1947 btrfs_exclop_start_unlock(fs_info); 1948 1949 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1950 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1951 TASK_INTERRUPTIBLE); 1952 1953 return -ECANCELED; 1954 } 1955 1956 /* Something else is running or none */ 1957 return -ENOTCONN; 1958 } 1959 1960 static noinline int btrfs_ioctl_resize(struct file *file, 1961 void __user *arg) 1962 { 1963 BTRFS_DEV_LOOKUP_ARGS(args); 1964 struct inode *inode = file_inode(file); 1965 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1966 u64 new_size; 1967 u64 old_size; 1968 u64 devid = 1; 1969 struct btrfs_root *root = BTRFS_I(inode)->root; 1970 struct btrfs_ioctl_vol_args *vol_args; 1971 struct btrfs_trans_handle *trans; 1972 struct btrfs_device *device = NULL; 1973 char *sizestr; 1974 char *retptr; 1975 char *devstr = NULL; 1976 int ret = 0; 1977 int mod = 0; 1978 bool cancel; 1979 1980 if (!capable(CAP_SYS_ADMIN)) 1981 return -EPERM; 1982 1983 ret = mnt_want_write_file(file); 1984 if (ret) 1985 return ret; 1986 1987 /* 1988 * Read the arguments before checking exclusivity to be able to 1989 * distinguish regular resize and cancel 1990 */ 1991 vol_args = memdup_user(arg, sizeof(*vol_args)); 1992 if (IS_ERR(vol_args)) { 1993 ret = PTR_ERR(vol_args); 1994 goto out_drop; 1995 } 1996 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1997 sizestr = vol_args->name; 1998 cancel = (strcmp("cancel", sizestr) == 0); 1999 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 2000 if (ret) 2001 goto out_free; 2002 /* Exclusive operation is now claimed */ 2003 2004 devstr = strchr(sizestr, ':'); 2005 if (devstr) { 2006 sizestr = devstr + 1; 2007 *devstr = '\0'; 2008 devstr = vol_args->name; 2009 ret = kstrtoull(devstr, 10, &devid); 2010 if (ret) 2011 goto out_finish; 2012 if (!devid) { 2013 ret = -EINVAL; 2014 goto out_finish; 2015 } 2016 btrfs_info(fs_info, "resizing devid %llu", devid); 2017 } 2018 2019 args.devid = devid; 2020 device = btrfs_find_device(fs_info->fs_devices, &args); 2021 if (!device) { 2022 btrfs_info(fs_info, "resizer unable to find device %llu", 2023 devid); 2024 ret = -ENODEV; 2025 goto out_finish; 2026 } 2027 2028 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2029 btrfs_info(fs_info, 2030 "resizer unable to apply on readonly device %llu", 2031 devid); 2032 ret = -EPERM; 2033 goto out_finish; 2034 } 2035 2036 if (!strcmp(sizestr, "max")) 2037 new_size = bdev_nr_bytes(device->bdev); 2038 else { 2039 if (sizestr[0] == '-') { 2040 mod = -1; 2041 sizestr++; 2042 } else if (sizestr[0] == '+') { 2043 mod = 1; 2044 sizestr++; 2045 } 2046 new_size = memparse(sizestr, &retptr); 2047 if (*retptr != '\0' || new_size == 0) { 2048 ret = -EINVAL; 2049 goto out_finish; 2050 } 2051 } 2052 2053 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2054 ret = -EPERM; 2055 goto out_finish; 2056 } 2057 2058 old_size = btrfs_device_get_total_bytes(device); 2059 2060 if (mod < 0) { 2061 if (new_size > old_size) { 2062 ret = -EINVAL; 2063 goto out_finish; 2064 } 2065 new_size = old_size - new_size; 2066 } else if (mod > 0) { 2067 if (new_size > ULLONG_MAX - old_size) { 2068 ret = -ERANGE; 2069 goto out_finish; 2070 } 2071 new_size = old_size + new_size; 2072 } 2073 2074 if (new_size < SZ_256M) { 2075 ret = -EINVAL; 2076 goto out_finish; 2077 } 2078 if (new_size > bdev_nr_bytes(device->bdev)) { 2079 ret = -EFBIG; 2080 goto out_finish; 2081 } 2082 2083 new_size = round_down(new_size, fs_info->sectorsize); 2084 2085 if (new_size > old_size) { 2086 trans = btrfs_start_transaction(root, 0); 2087 if (IS_ERR(trans)) { 2088 ret = PTR_ERR(trans); 2089 goto out_finish; 2090 } 2091 ret = btrfs_grow_device(trans, device, new_size); 2092 btrfs_commit_transaction(trans); 2093 } else if (new_size < old_size) { 2094 ret = btrfs_shrink_device(device, new_size); 2095 } /* equal, nothing need to do */ 2096 2097 if (ret == 0 && new_size != old_size) 2098 btrfs_info_in_rcu(fs_info, 2099 "resize device %s (devid %llu) from %llu to %llu", 2100 rcu_str_deref(device->name), device->devid, 2101 old_size, new_size); 2102 out_finish: 2103 btrfs_exclop_finish(fs_info); 2104 out_free: 2105 kfree(vol_args); 2106 out_drop: 2107 mnt_drop_write_file(file); 2108 return ret; 2109 } 2110 2111 static noinline int __btrfs_ioctl_snap_create(struct file *file, 2112 struct user_namespace *mnt_userns, 2113 const char *name, unsigned long fd, int subvol, 2114 bool readonly, 2115 struct btrfs_qgroup_inherit *inherit) 2116 { 2117 int namelen; 2118 int ret = 0; 2119 2120 if (!S_ISDIR(file_inode(file)->i_mode)) 2121 return -ENOTDIR; 2122 2123 ret = mnt_want_write_file(file); 2124 if (ret) 2125 goto out; 2126 2127 namelen = strlen(name); 2128 if (strchr(name, '/')) { 2129 ret = -EINVAL; 2130 goto out_drop_write; 2131 } 2132 2133 if (name[0] == '.' && 2134 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 2135 ret = -EEXIST; 2136 goto out_drop_write; 2137 } 2138 2139 if (subvol) { 2140 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name, 2141 namelen, NULL, readonly, inherit); 2142 } else { 2143 struct fd src = fdget(fd); 2144 struct inode *src_inode; 2145 if (!src.file) { 2146 ret = -EINVAL; 2147 goto out_drop_write; 2148 } 2149 2150 src_inode = file_inode(src.file); 2151 if (src_inode->i_sb != file_inode(file)->i_sb) { 2152 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 2153 "Snapshot src from another FS"); 2154 ret = -EXDEV; 2155 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) { 2156 /* 2157 * Subvolume creation is not restricted, but snapshots 2158 * are limited to own subvolumes only 2159 */ 2160 ret = -EPERM; 2161 } else { 2162 ret = btrfs_mksnapshot(&file->f_path, mnt_userns, 2163 name, namelen, 2164 BTRFS_I(src_inode)->root, 2165 readonly, inherit); 2166 } 2167 fdput(src); 2168 } 2169 out_drop_write: 2170 mnt_drop_write_file(file); 2171 out: 2172 return ret; 2173 } 2174 2175 static noinline int btrfs_ioctl_snap_create(struct file *file, 2176 void __user *arg, int subvol) 2177 { 2178 struct btrfs_ioctl_vol_args *vol_args; 2179 int ret; 2180 2181 if (!S_ISDIR(file_inode(file)->i_mode)) 2182 return -ENOTDIR; 2183 2184 vol_args = memdup_user(arg, sizeof(*vol_args)); 2185 if (IS_ERR(vol_args)) 2186 return PTR_ERR(vol_args); 2187 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2188 2189 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 2190 vol_args->name, vol_args->fd, subvol, 2191 false, NULL); 2192 2193 kfree(vol_args); 2194 return ret; 2195 } 2196 2197 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 2198 void __user *arg, int subvol) 2199 { 2200 struct btrfs_ioctl_vol_args_v2 *vol_args; 2201 int ret; 2202 bool readonly = false; 2203 struct btrfs_qgroup_inherit *inherit = NULL; 2204 2205 if (!S_ISDIR(file_inode(file)->i_mode)) 2206 return -ENOTDIR; 2207 2208 vol_args = memdup_user(arg, sizeof(*vol_args)); 2209 if (IS_ERR(vol_args)) 2210 return PTR_ERR(vol_args); 2211 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2212 2213 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 2214 ret = -EOPNOTSUPP; 2215 goto free_args; 2216 } 2217 2218 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 2219 readonly = true; 2220 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 2221 u64 nums; 2222 2223 if (vol_args->size < sizeof(*inherit) || 2224 vol_args->size > PAGE_SIZE) { 2225 ret = -EINVAL; 2226 goto free_args; 2227 } 2228 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 2229 if (IS_ERR(inherit)) { 2230 ret = PTR_ERR(inherit); 2231 goto free_args; 2232 } 2233 2234 if (inherit->num_qgroups > PAGE_SIZE || 2235 inherit->num_ref_copies > PAGE_SIZE || 2236 inherit->num_excl_copies > PAGE_SIZE) { 2237 ret = -EINVAL; 2238 goto free_inherit; 2239 } 2240 2241 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 2242 2 * inherit->num_excl_copies; 2243 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 2244 ret = -EINVAL; 2245 goto free_inherit; 2246 } 2247 } 2248 2249 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 2250 vol_args->name, vol_args->fd, subvol, 2251 readonly, inherit); 2252 if (ret) 2253 goto free_inherit; 2254 free_inherit: 2255 kfree(inherit); 2256 free_args: 2257 kfree(vol_args); 2258 return ret; 2259 } 2260 2261 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 2262 void __user *arg) 2263 { 2264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2265 struct btrfs_root *root = BTRFS_I(inode)->root; 2266 int ret = 0; 2267 u64 flags = 0; 2268 2269 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 2270 return -EINVAL; 2271 2272 down_read(&fs_info->subvol_sem); 2273 if (btrfs_root_readonly(root)) 2274 flags |= BTRFS_SUBVOL_RDONLY; 2275 up_read(&fs_info->subvol_sem); 2276 2277 if (copy_to_user(arg, &flags, sizeof(flags))) 2278 ret = -EFAULT; 2279 2280 return ret; 2281 } 2282 2283 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 2284 void __user *arg) 2285 { 2286 struct inode *inode = file_inode(file); 2287 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2288 struct btrfs_root *root = BTRFS_I(inode)->root; 2289 struct btrfs_trans_handle *trans; 2290 u64 root_flags; 2291 u64 flags; 2292 int ret = 0; 2293 2294 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode)) 2295 return -EPERM; 2296 2297 ret = mnt_want_write_file(file); 2298 if (ret) 2299 goto out; 2300 2301 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2302 ret = -EINVAL; 2303 goto out_drop_write; 2304 } 2305 2306 if (copy_from_user(&flags, arg, sizeof(flags))) { 2307 ret = -EFAULT; 2308 goto out_drop_write; 2309 } 2310 2311 if (flags & ~BTRFS_SUBVOL_RDONLY) { 2312 ret = -EOPNOTSUPP; 2313 goto out_drop_write; 2314 } 2315 2316 down_write(&fs_info->subvol_sem); 2317 2318 /* nothing to do */ 2319 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 2320 goto out_drop_sem; 2321 2322 root_flags = btrfs_root_flags(&root->root_item); 2323 if (flags & BTRFS_SUBVOL_RDONLY) { 2324 btrfs_set_root_flags(&root->root_item, 2325 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 2326 } else { 2327 /* 2328 * Block RO -> RW transition if this subvolume is involved in 2329 * send 2330 */ 2331 spin_lock(&root->root_item_lock); 2332 if (root->send_in_progress == 0) { 2333 btrfs_set_root_flags(&root->root_item, 2334 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 2335 spin_unlock(&root->root_item_lock); 2336 } else { 2337 spin_unlock(&root->root_item_lock); 2338 btrfs_warn(fs_info, 2339 "Attempt to set subvolume %llu read-write during send", 2340 root->root_key.objectid); 2341 ret = -EPERM; 2342 goto out_drop_sem; 2343 } 2344 } 2345 2346 trans = btrfs_start_transaction(root, 1); 2347 if (IS_ERR(trans)) { 2348 ret = PTR_ERR(trans); 2349 goto out_reset; 2350 } 2351 2352 ret = btrfs_update_root(trans, fs_info->tree_root, 2353 &root->root_key, &root->root_item); 2354 if (ret < 0) { 2355 btrfs_end_transaction(trans); 2356 goto out_reset; 2357 } 2358 2359 ret = btrfs_commit_transaction(trans); 2360 2361 out_reset: 2362 if (ret) 2363 btrfs_set_root_flags(&root->root_item, root_flags); 2364 out_drop_sem: 2365 up_write(&fs_info->subvol_sem); 2366 out_drop_write: 2367 mnt_drop_write_file(file); 2368 out: 2369 return ret; 2370 } 2371 2372 static noinline int key_in_sk(struct btrfs_key *key, 2373 struct btrfs_ioctl_search_key *sk) 2374 { 2375 struct btrfs_key test; 2376 int ret; 2377 2378 test.objectid = sk->min_objectid; 2379 test.type = sk->min_type; 2380 test.offset = sk->min_offset; 2381 2382 ret = btrfs_comp_cpu_keys(key, &test); 2383 if (ret < 0) 2384 return 0; 2385 2386 test.objectid = sk->max_objectid; 2387 test.type = sk->max_type; 2388 test.offset = sk->max_offset; 2389 2390 ret = btrfs_comp_cpu_keys(key, &test); 2391 if (ret > 0) 2392 return 0; 2393 return 1; 2394 } 2395 2396 static noinline int copy_to_sk(struct btrfs_path *path, 2397 struct btrfs_key *key, 2398 struct btrfs_ioctl_search_key *sk, 2399 size_t *buf_size, 2400 char __user *ubuf, 2401 unsigned long *sk_offset, 2402 int *num_found) 2403 { 2404 u64 found_transid; 2405 struct extent_buffer *leaf; 2406 struct btrfs_ioctl_search_header sh; 2407 struct btrfs_key test; 2408 unsigned long item_off; 2409 unsigned long item_len; 2410 int nritems; 2411 int i; 2412 int slot; 2413 int ret = 0; 2414 2415 leaf = path->nodes[0]; 2416 slot = path->slots[0]; 2417 nritems = btrfs_header_nritems(leaf); 2418 2419 if (btrfs_header_generation(leaf) > sk->max_transid) { 2420 i = nritems; 2421 goto advance_key; 2422 } 2423 found_transid = btrfs_header_generation(leaf); 2424 2425 for (i = slot; i < nritems; i++) { 2426 item_off = btrfs_item_ptr_offset(leaf, i); 2427 item_len = btrfs_item_size(leaf, i); 2428 2429 btrfs_item_key_to_cpu(leaf, key, i); 2430 if (!key_in_sk(key, sk)) 2431 continue; 2432 2433 if (sizeof(sh) + item_len > *buf_size) { 2434 if (*num_found) { 2435 ret = 1; 2436 goto out; 2437 } 2438 2439 /* 2440 * return one empty item back for v1, which does not 2441 * handle -EOVERFLOW 2442 */ 2443 2444 *buf_size = sizeof(sh) + item_len; 2445 item_len = 0; 2446 ret = -EOVERFLOW; 2447 } 2448 2449 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2450 ret = 1; 2451 goto out; 2452 } 2453 2454 sh.objectid = key->objectid; 2455 sh.offset = key->offset; 2456 sh.type = key->type; 2457 sh.len = item_len; 2458 sh.transid = found_transid; 2459 2460 /* 2461 * Copy search result header. If we fault then loop again so we 2462 * can fault in the pages and -EFAULT there if there's a 2463 * problem. Otherwise we'll fault and then copy the buffer in 2464 * properly this next time through 2465 */ 2466 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2467 ret = 0; 2468 goto out; 2469 } 2470 2471 *sk_offset += sizeof(sh); 2472 2473 if (item_len) { 2474 char __user *up = ubuf + *sk_offset; 2475 /* 2476 * Copy the item, same behavior as above, but reset the 2477 * * sk_offset so we copy the full thing again. 2478 */ 2479 if (read_extent_buffer_to_user_nofault(leaf, up, 2480 item_off, item_len)) { 2481 ret = 0; 2482 *sk_offset -= sizeof(sh); 2483 goto out; 2484 } 2485 2486 *sk_offset += item_len; 2487 } 2488 (*num_found)++; 2489 2490 if (ret) /* -EOVERFLOW from above */ 2491 goto out; 2492 2493 if (*num_found >= sk->nr_items) { 2494 ret = 1; 2495 goto out; 2496 } 2497 } 2498 advance_key: 2499 ret = 0; 2500 test.objectid = sk->max_objectid; 2501 test.type = sk->max_type; 2502 test.offset = sk->max_offset; 2503 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2504 ret = 1; 2505 else if (key->offset < (u64)-1) 2506 key->offset++; 2507 else if (key->type < (u8)-1) { 2508 key->offset = 0; 2509 key->type++; 2510 } else if (key->objectid < (u64)-1) { 2511 key->offset = 0; 2512 key->type = 0; 2513 key->objectid++; 2514 } else 2515 ret = 1; 2516 out: 2517 /* 2518 * 0: all items from this leaf copied, continue with next 2519 * 1: * more items can be copied, but unused buffer is too small 2520 * * all items were found 2521 * Either way, it will stops the loop which iterates to the next 2522 * leaf 2523 * -EOVERFLOW: item was to large for buffer 2524 * -EFAULT: could not copy extent buffer back to userspace 2525 */ 2526 return ret; 2527 } 2528 2529 static noinline int search_ioctl(struct inode *inode, 2530 struct btrfs_ioctl_search_key *sk, 2531 size_t *buf_size, 2532 char __user *ubuf) 2533 { 2534 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2535 struct btrfs_root *root; 2536 struct btrfs_key key; 2537 struct btrfs_path *path; 2538 int ret; 2539 int num_found = 0; 2540 unsigned long sk_offset = 0; 2541 2542 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2543 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2544 return -EOVERFLOW; 2545 } 2546 2547 path = btrfs_alloc_path(); 2548 if (!path) 2549 return -ENOMEM; 2550 2551 if (sk->tree_id == 0) { 2552 /* search the root of the inode that was passed */ 2553 root = btrfs_grab_root(BTRFS_I(inode)->root); 2554 } else { 2555 root = btrfs_get_fs_root(info, sk->tree_id, true); 2556 if (IS_ERR(root)) { 2557 btrfs_free_path(path); 2558 return PTR_ERR(root); 2559 } 2560 } 2561 2562 key.objectid = sk->min_objectid; 2563 key.type = sk->min_type; 2564 key.offset = sk->min_offset; 2565 2566 while (1) { 2567 ret = -EFAULT; 2568 if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset)) 2569 break; 2570 2571 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2572 if (ret != 0) { 2573 if (ret > 0) 2574 ret = 0; 2575 goto err; 2576 } 2577 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2578 &sk_offset, &num_found); 2579 btrfs_release_path(path); 2580 if (ret) 2581 break; 2582 2583 } 2584 if (ret > 0) 2585 ret = 0; 2586 err: 2587 sk->nr_items = num_found; 2588 btrfs_put_root(root); 2589 btrfs_free_path(path); 2590 return ret; 2591 } 2592 2593 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 2594 void __user *argp) 2595 { 2596 struct btrfs_ioctl_search_args __user *uargs; 2597 struct btrfs_ioctl_search_key sk; 2598 int ret; 2599 size_t buf_size; 2600 2601 if (!capable(CAP_SYS_ADMIN)) 2602 return -EPERM; 2603 2604 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2605 2606 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2607 return -EFAULT; 2608 2609 buf_size = sizeof(uargs->buf); 2610 2611 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2612 2613 /* 2614 * In the origin implementation an overflow is handled by returning a 2615 * search header with a len of zero, so reset ret. 2616 */ 2617 if (ret == -EOVERFLOW) 2618 ret = 0; 2619 2620 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2621 ret = -EFAULT; 2622 return ret; 2623 } 2624 2625 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 2626 void __user *argp) 2627 { 2628 struct btrfs_ioctl_search_args_v2 __user *uarg; 2629 struct btrfs_ioctl_search_args_v2 args; 2630 int ret; 2631 size_t buf_size; 2632 const size_t buf_limit = SZ_16M; 2633 2634 if (!capable(CAP_SYS_ADMIN)) 2635 return -EPERM; 2636 2637 /* copy search header and buffer size */ 2638 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2639 if (copy_from_user(&args, uarg, sizeof(args))) 2640 return -EFAULT; 2641 2642 buf_size = args.buf_size; 2643 2644 /* limit result size to 16MB */ 2645 if (buf_size > buf_limit) 2646 buf_size = buf_limit; 2647 2648 ret = search_ioctl(inode, &args.key, &buf_size, 2649 (char __user *)(&uarg->buf[0])); 2650 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2651 ret = -EFAULT; 2652 else if (ret == -EOVERFLOW && 2653 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2654 ret = -EFAULT; 2655 2656 return ret; 2657 } 2658 2659 /* 2660 * Search INODE_REFs to identify path name of 'dirid' directory 2661 * in a 'tree_id' tree. and sets path name to 'name'. 2662 */ 2663 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2664 u64 tree_id, u64 dirid, char *name) 2665 { 2666 struct btrfs_root *root; 2667 struct btrfs_key key; 2668 char *ptr; 2669 int ret = -1; 2670 int slot; 2671 int len; 2672 int total_len = 0; 2673 struct btrfs_inode_ref *iref; 2674 struct extent_buffer *l; 2675 struct btrfs_path *path; 2676 2677 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2678 name[0]='\0'; 2679 return 0; 2680 } 2681 2682 path = btrfs_alloc_path(); 2683 if (!path) 2684 return -ENOMEM; 2685 2686 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2687 2688 root = btrfs_get_fs_root(info, tree_id, true); 2689 if (IS_ERR(root)) { 2690 ret = PTR_ERR(root); 2691 root = NULL; 2692 goto out; 2693 } 2694 2695 key.objectid = dirid; 2696 key.type = BTRFS_INODE_REF_KEY; 2697 key.offset = (u64)-1; 2698 2699 while (1) { 2700 ret = btrfs_search_backwards(root, &key, path); 2701 if (ret < 0) 2702 goto out; 2703 else if (ret > 0) { 2704 ret = -ENOENT; 2705 goto out; 2706 } 2707 2708 l = path->nodes[0]; 2709 slot = path->slots[0]; 2710 2711 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2712 len = btrfs_inode_ref_name_len(l, iref); 2713 ptr -= len + 1; 2714 total_len += len + 1; 2715 if (ptr < name) { 2716 ret = -ENAMETOOLONG; 2717 goto out; 2718 } 2719 2720 *(ptr + len) = '/'; 2721 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2722 2723 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2724 break; 2725 2726 btrfs_release_path(path); 2727 key.objectid = key.offset; 2728 key.offset = (u64)-1; 2729 dirid = key.objectid; 2730 } 2731 memmove(name, ptr, total_len); 2732 name[total_len] = '\0'; 2733 ret = 0; 2734 out: 2735 btrfs_put_root(root); 2736 btrfs_free_path(path); 2737 return ret; 2738 } 2739 2740 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns, 2741 struct inode *inode, 2742 struct btrfs_ioctl_ino_lookup_user_args *args) 2743 { 2744 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2745 struct super_block *sb = inode->i_sb; 2746 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2747 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2748 u64 dirid = args->dirid; 2749 unsigned long item_off; 2750 unsigned long item_len; 2751 struct btrfs_inode_ref *iref; 2752 struct btrfs_root_ref *rref; 2753 struct btrfs_root *root = NULL; 2754 struct btrfs_path *path; 2755 struct btrfs_key key, key2; 2756 struct extent_buffer *leaf; 2757 struct inode *temp_inode; 2758 char *ptr; 2759 int slot; 2760 int len; 2761 int total_len = 0; 2762 int ret; 2763 2764 path = btrfs_alloc_path(); 2765 if (!path) 2766 return -ENOMEM; 2767 2768 /* 2769 * If the bottom subvolume does not exist directly under upper_limit, 2770 * construct the path in from the bottom up. 2771 */ 2772 if (dirid != upper_limit.objectid) { 2773 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2774 2775 root = btrfs_get_fs_root(fs_info, treeid, true); 2776 if (IS_ERR(root)) { 2777 ret = PTR_ERR(root); 2778 goto out; 2779 } 2780 2781 key.objectid = dirid; 2782 key.type = BTRFS_INODE_REF_KEY; 2783 key.offset = (u64)-1; 2784 while (1) { 2785 ret = btrfs_search_backwards(root, &key, path); 2786 if (ret < 0) 2787 goto out_put; 2788 else if (ret > 0) { 2789 ret = -ENOENT; 2790 goto out_put; 2791 } 2792 2793 leaf = path->nodes[0]; 2794 slot = path->slots[0]; 2795 2796 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2797 len = btrfs_inode_ref_name_len(leaf, iref); 2798 ptr -= len + 1; 2799 total_len += len + 1; 2800 if (ptr < args->path) { 2801 ret = -ENAMETOOLONG; 2802 goto out_put; 2803 } 2804 2805 *(ptr + len) = '/'; 2806 read_extent_buffer(leaf, ptr, 2807 (unsigned long)(iref + 1), len); 2808 2809 /* Check the read+exec permission of this directory */ 2810 ret = btrfs_previous_item(root, path, dirid, 2811 BTRFS_INODE_ITEM_KEY); 2812 if (ret < 0) { 2813 goto out_put; 2814 } else if (ret > 0) { 2815 ret = -ENOENT; 2816 goto out_put; 2817 } 2818 2819 leaf = path->nodes[0]; 2820 slot = path->slots[0]; 2821 btrfs_item_key_to_cpu(leaf, &key2, slot); 2822 if (key2.objectid != dirid) { 2823 ret = -ENOENT; 2824 goto out_put; 2825 } 2826 2827 temp_inode = btrfs_iget(sb, key2.objectid, root); 2828 if (IS_ERR(temp_inode)) { 2829 ret = PTR_ERR(temp_inode); 2830 goto out_put; 2831 } 2832 ret = inode_permission(mnt_userns, temp_inode, 2833 MAY_READ | MAY_EXEC); 2834 iput(temp_inode); 2835 if (ret) { 2836 ret = -EACCES; 2837 goto out_put; 2838 } 2839 2840 if (key.offset == upper_limit.objectid) 2841 break; 2842 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2843 ret = -EACCES; 2844 goto out_put; 2845 } 2846 2847 btrfs_release_path(path); 2848 key.objectid = key.offset; 2849 key.offset = (u64)-1; 2850 dirid = key.objectid; 2851 } 2852 2853 memmove(args->path, ptr, total_len); 2854 args->path[total_len] = '\0'; 2855 btrfs_put_root(root); 2856 root = NULL; 2857 btrfs_release_path(path); 2858 } 2859 2860 /* Get the bottom subvolume's name from ROOT_REF */ 2861 key.objectid = treeid; 2862 key.type = BTRFS_ROOT_REF_KEY; 2863 key.offset = args->treeid; 2864 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2865 if (ret < 0) { 2866 goto out; 2867 } else if (ret > 0) { 2868 ret = -ENOENT; 2869 goto out; 2870 } 2871 2872 leaf = path->nodes[0]; 2873 slot = path->slots[0]; 2874 btrfs_item_key_to_cpu(leaf, &key, slot); 2875 2876 item_off = btrfs_item_ptr_offset(leaf, slot); 2877 item_len = btrfs_item_size(leaf, slot); 2878 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2879 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2880 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2881 ret = -EINVAL; 2882 goto out; 2883 } 2884 2885 /* Copy subvolume's name */ 2886 item_off += sizeof(struct btrfs_root_ref); 2887 item_len -= sizeof(struct btrfs_root_ref); 2888 read_extent_buffer(leaf, args->name, item_off, item_len); 2889 args->name[item_len] = 0; 2890 2891 out_put: 2892 btrfs_put_root(root); 2893 out: 2894 btrfs_free_path(path); 2895 return ret; 2896 } 2897 2898 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 2899 void __user *argp) 2900 { 2901 struct btrfs_ioctl_ino_lookup_args *args; 2902 int ret = 0; 2903 2904 args = memdup_user(argp, sizeof(*args)); 2905 if (IS_ERR(args)) 2906 return PTR_ERR(args); 2907 2908 /* 2909 * Unprivileged query to obtain the containing subvolume root id. The 2910 * path is reset so it's consistent with btrfs_search_path_in_tree. 2911 */ 2912 if (args->treeid == 0) 2913 args->treeid = root->root_key.objectid; 2914 2915 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2916 args->name[0] = 0; 2917 goto out; 2918 } 2919 2920 if (!capable(CAP_SYS_ADMIN)) { 2921 ret = -EPERM; 2922 goto out; 2923 } 2924 2925 ret = btrfs_search_path_in_tree(root->fs_info, 2926 args->treeid, args->objectid, 2927 args->name); 2928 2929 out: 2930 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2931 ret = -EFAULT; 2932 2933 kfree(args); 2934 return ret; 2935 } 2936 2937 /* 2938 * Version of ino_lookup ioctl (unprivileged) 2939 * 2940 * The main differences from ino_lookup ioctl are: 2941 * 2942 * 1. Read + Exec permission will be checked using inode_permission() during 2943 * path construction. -EACCES will be returned in case of failure. 2944 * 2. Path construction will be stopped at the inode number which corresponds 2945 * to the fd with which this ioctl is called. If constructed path does not 2946 * exist under fd's inode, -EACCES will be returned. 2947 * 3. The name of bottom subvolume is also searched and filled. 2948 */ 2949 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2950 { 2951 struct btrfs_ioctl_ino_lookup_user_args *args; 2952 struct inode *inode; 2953 int ret; 2954 2955 args = memdup_user(argp, sizeof(*args)); 2956 if (IS_ERR(args)) 2957 return PTR_ERR(args); 2958 2959 inode = file_inode(file); 2960 2961 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2962 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2963 /* 2964 * The subvolume does not exist under fd with which this is 2965 * called 2966 */ 2967 kfree(args); 2968 return -EACCES; 2969 } 2970 2971 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args); 2972 2973 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2974 ret = -EFAULT; 2975 2976 kfree(args); 2977 return ret; 2978 } 2979 2980 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2981 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2982 { 2983 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2984 struct btrfs_fs_info *fs_info; 2985 struct btrfs_root *root; 2986 struct btrfs_path *path; 2987 struct btrfs_key key; 2988 struct btrfs_root_item *root_item; 2989 struct btrfs_root_ref *rref; 2990 struct extent_buffer *leaf; 2991 unsigned long item_off; 2992 unsigned long item_len; 2993 int slot; 2994 int ret = 0; 2995 2996 path = btrfs_alloc_path(); 2997 if (!path) 2998 return -ENOMEM; 2999 3000 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 3001 if (!subvol_info) { 3002 btrfs_free_path(path); 3003 return -ENOMEM; 3004 } 3005 3006 fs_info = BTRFS_I(inode)->root->fs_info; 3007 3008 /* Get root_item of inode's subvolume */ 3009 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 3010 root = btrfs_get_fs_root(fs_info, key.objectid, true); 3011 if (IS_ERR(root)) { 3012 ret = PTR_ERR(root); 3013 goto out_free; 3014 } 3015 root_item = &root->root_item; 3016 3017 subvol_info->treeid = key.objectid; 3018 3019 subvol_info->generation = btrfs_root_generation(root_item); 3020 subvol_info->flags = btrfs_root_flags(root_item); 3021 3022 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 3023 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 3024 BTRFS_UUID_SIZE); 3025 memcpy(subvol_info->received_uuid, root_item->received_uuid, 3026 BTRFS_UUID_SIZE); 3027 3028 subvol_info->ctransid = btrfs_root_ctransid(root_item); 3029 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 3030 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 3031 3032 subvol_info->otransid = btrfs_root_otransid(root_item); 3033 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 3034 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 3035 3036 subvol_info->stransid = btrfs_root_stransid(root_item); 3037 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 3038 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 3039 3040 subvol_info->rtransid = btrfs_root_rtransid(root_item); 3041 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 3042 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 3043 3044 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 3045 /* Search root tree for ROOT_BACKREF of this subvolume */ 3046 key.type = BTRFS_ROOT_BACKREF_KEY; 3047 key.offset = 0; 3048 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3049 if (ret < 0) { 3050 goto out; 3051 } else if (path->slots[0] >= 3052 btrfs_header_nritems(path->nodes[0])) { 3053 ret = btrfs_next_leaf(fs_info->tree_root, path); 3054 if (ret < 0) { 3055 goto out; 3056 } else if (ret > 0) { 3057 ret = -EUCLEAN; 3058 goto out; 3059 } 3060 } 3061 3062 leaf = path->nodes[0]; 3063 slot = path->slots[0]; 3064 btrfs_item_key_to_cpu(leaf, &key, slot); 3065 if (key.objectid == subvol_info->treeid && 3066 key.type == BTRFS_ROOT_BACKREF_KEY) { 3067 subvol_info->parent_id = key.offset; 3068 3069 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 3070 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 3071 3072 item_off = btrfs_item_ptr_offset(leaf, slot) 3073 + sizeof(struct btrfs_root_ref); 3074 item_len = btrfs_item_size(leaf, slot) 3075 - sizeof(struct btrfs_root_ref); 3076 read_extent_buffer(leaf, subvol_info->name, 3077 item_off, item_len); 3078 } else { 3079 ret = -ENOENT; 3080 goto out; 3081 } 3082 } 3083 3084 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 3085 ret = -EFAULT; 3086 3087 out: 3088 btrfs_put_root(root); 3089 out_free: 3090 btrfs_free_path(path); 3091 kfree(subvol_info); 3092 return ret; 3093 } 3094 3095 /* 3096 * Return ROOT_REF information of the subvolume containing this inode 3097 * except the subvolume name. 3098 */ 3099 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 3100 void __user *argp) 3101 { 3102 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 3103 struct btrfs_root_ref *rref; 3104 struct btrfs_path *path; 3105 struct btrfs_key key; 3106 struct extent_buffer *leaf; 3107 u64 objectid; 3108 int slot; 3109 int ret; 3110 u8 found; 3111 3112 path = btrfs_alloc_path(); 3113 if (!path) 3114 return -ENOMEM; 3115 3116 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 3117 if (IS_ERR(rootrefs)) { 3118 btrfs_free_path(path); 3119 return PTR_ERR(rootrefs); 3120 } 3121 3122 objectid = root->root_key.objectid; 3123 key.objectid = objectid; 3124 key.type = BTRFS_ROOT_REF_KEY; 3125 key.offset = rootrefs->min_treeid; 3126 found = 0; 3127 3128 root = root->fs_info->tree_root; 3129 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3130 if (ret < 0) { 3131 goto out; 3132 } else if (path->slots[0] >= 3133 btrfs_header_nritems(path->nodes[0])) { 3134 ret = btrfs_next_leaf(root, path); 3135 if (ret < 0) { 3136 goto out; 3137 } else if (ret > 0) { 3138 ret = -EUCLEAN; 3139 goto out; 3140 } 3141 } 3142 while (1) { 3143 leaf = path->nodes[0]; 3144 slot = path->slots[0]; 3145 3146 btrfs_item_key_to_cpu(leaf, &key, slot); 3147 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 3148 ret = 0; 3149 goto out; 3150 } 3151 3152 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 3153 ret = -EOVERFLOW; 3154 goto out; 3155 } 3156 3157 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 3158 rootrefs->rootref[found].treeid = key.offset; 3159 rootrefs->rootref[found].dirid = 3160 btrfs_root_ref_dirid(leaf, rref); 3161 found++; 3162 3163 ret = btrfs_next_item(root, path); 3164 if (ret < 0) { 3165 goto out; 3166 } else if (ret > 0) { 3167 ret = -EUCLEAN; 3168 goto out; 3169 } 3170 } 3171 3172 out: 3173 if (!ret || ret == -EOVERFLOW) { 3174 rootrefs->num_items = found; 3175 /* update min_treeid for next search */ 3176 if (found) 3177 rootrefs->min_treeid = 3178 rootrefs->rootref[found - 1].treeid + 1; 3179 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 3180 ret = -EFAULT; 3181 } 3182 3183 kfree(rootrefs); 3184 btrfs_free_path(path); 3185 3186 return ret; 3187 } 3188 3189 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 3190 void __user *arg, 3191 bool destroy_v2) 3192 { 3193 struct dentry *parent = file->f_path.dentry; 3194 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 3195 struct dentry *dentry; 3196 struct inode *dir = d_inode(parent); 3197 struct inode *inode; 3198 struct btrfs_root *root = BTRFS_I(dir)->root; 3199 struct btrfs_root *dest = NULL; 3200 struct btrfs_ioctl_vol_args *vol_args = NULL; 3201 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 3202 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 3203 char *subvol_name, *subvol_name_ptr = NULL; 3204 int subvol_namelen; 3205 int err = 0; 3206 bool destroy_parent = false; 3207 3208 /* We don't support snapshots with extent tree v2 yet. */ 3209 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3210 btrfs_err(fs_info, 3211 "extent tree v2 doesn't support snapshot deletion yet"); 3212 return -EOPNOTSUPP; 3213 } 3214 3215 if (destroy_v2) { 3216 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 3217 if (IS_ERR(vol_args2)) 3218 return PTR_ERR(vol_args2); 3219 3220 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 3221 err = -EOPNOTSUPP; 3222 goto out; 3223 } 3224 3225 /* 3226 * If SPEC_BY_ID is not set, we are looking for the subvolume by 3227 * name, same as v1 currently does. 3228 */ 3229 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 3230 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 3231 subvol_name = vol_args2->name; 3232 3233 err = mnt_want_write_file(file); 3234 if (err) 3235 goto out; 3236 } else { 3237 struct inode *old_dir; 3238 3239 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 3240 err = -EINVAL; 3241 goto out; 3242 } 3243 3244 err = mnt_want_write_file(file); 3245 if (err) 3246 goto out; 3247 3248 dentry = btrfs_get_dentry(fs_info->sb, 3249 BTRFS_FIRST_FREE_OBJECTID, 3250 vol_args2->subvolid, 0, 0); 3251 if (IS_ERR(dentry)) { 3252 err = PTR_ERR(dentry); 3253 goto out_drop_write; 3254 } 3255 3256 /* 3257 * Change the default parent since the subvolume being 3258 * deleted can be outside of the current mount point. 3259 */ 3260 parent = btrfs_get_parent(dentry); 3261 3262 /* 3263 * At this point dentry->d_name can point to '/' if the 3264 * subvolume we want to destroy is outsite of the 3265 * current mount point, so we need to release the 3266 * current dentry and execute the lookup to return a new 3267 * one with ->d_name pointing to the 3268 * <mount point>/subvol_name. 3269 */ 3270 dput(dentry); 3271 if (IS_ERR(parent)) { 3272 err = PTR_ERR(parent); 3273 goto out_drop_write; 3274 } 3275 old_dir = dir; 3276 dir = d_inode(parent); 3277 3278 /* 3279 * If v2 was used with SPEC_BY_ID, a new parent was 3280 * allocated since the subvolume can be outside of the 3281 * current mount point. Later on we need to release this 3282 * new parent dentry. 3283 */ 3284 destroy_parent = true; 3285 3286 /* 3287 * On idmapped mounts, deletion via subvolid is 3288 * restricted to subvolumes that are immediate 3289 * ancestors of the inode referenced by the file 3290 * descriptor in the ioctl. Otherwise the idmapping 3291 * could potentially be abused to delete subvolumes 3292 * anywhere in the filesystem the user wouldn't be able 3293 * to delete without an idmapped mount. 3294 */ 3295 if (old_dir != dir && mnt_userns != &init_user_ns) { 3296 err = -EOPNOTSUPP; 3297 goto free_parent; 3298 } 3299 3300 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 3301 fs_info, vol_args2->subvolid); 3302 if (IS_ERR(subvol_name_ptr)) { 3303 err = PTR_ERR(subvol_name_ptr); 3304 goto free_parent; 3305 } 3306 /* subvol_name_ptr is already nul terminated */ 3307 subvol_name = (char *)kbasename(subvol_name_ptr); 3308 } 3309 } else { 3310 vol_args = memdup_user(arg, sizeof(*vol_args)); 3311 if (IS_ERR(vol_args)) 3312 return PTR_ERR(vol_args); 3313 3314 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 3315 subvol_name = vol_args->name; 3316 3317 err = mnt_want_write_file(file); 3318 if (err) 3319 goto out; 3320 } 3321 3322 subvol_namelen = strlen(subvol_name); 3323 3324 if (strchr(subvol_name, '/') || 3325 strncmp(subvol_name, "..", subvol_namelen) == 0) { 3326 err = -EINVAL; 3327 goto free_subvol_name; 3328 } 3329 3330 if (!S_ISDIR(dir->i_mode)) { 3331 err = -ENOTDIR; 3332 goto free_subvol_name; 3333 } 3334 3335 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3336 if (err == -EINTR) 3337 goto free_subvol_name; 3338 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen); 3339 if (IS_ERR(dentry)) { 3340 err = PTR_ERR(dentry); 3341 goto out_unlock_dir; 3342 } 3343 3344 if (d_really_is_negative(dentry)) { 3345 err = -ENOENT; 3346 goto out_dput; 3347 } 3348 3349 inode = d_inode(dentry); 3350 dest = BTRFS_I(inode)->root; 3351 if (!capable(CAP_SYS_ADMIN)) { 3352 /* 3353 * Regular user. Only allow this with a special mount 3354 * option, when the user has write+exec access to the 3355 * subvol root, and when rmdir(2) would have been 3356 * allowed. 3357 * 3358 * Note that this is _not_ check that the subvol is 3359 * empty or doesn't contain data that we wouldn't 3360 * otherwise be able to delete. 3361 * 3362 * Users who want to delete empty subvols should try 3363 * rmdir(2). 3364 */ 3365 err = -EPERM; 3366 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3367 goto out_dput; 3368 3369 /* 3370 * Do not allow deletion if the parent dir is the same 3371 * as the dir to be deleted. That means the ioctl 3372 * must be called on the dentry referencing the root 3373 * of the subvol, not a random directory contained 3374 * within it. 3375 */ 3376 err = -EINVAL; 3377 if (root == dest) 3378 goto out_dput; 3379 3380 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC); 3381 if (err) 3382 goto out_dput; 3383 } 3384 3385 /* check if subvolume may be deleted by a user */ 3386 err = btrfs_may_delete(mnt_userns, dir, dentry, 1); 3387 if (err) 3388 goto out_dput; 3389 3390 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3391 err = -EINVAL; 3392 goto out_dput; 3393 } 3394 3395 btrfs_inode_lock(inode, 0); 3396 err = btrfs_delete_subvolume(dir, dentry); 3397 btrfs_inode_unlock(inode, 0); 3398 if (!err) 3399 d_delete_notify(dir, dentry); 3400 3401 out_dput: 3402 dput(dentry); 3403 out_unlock_dir: 3404 btrfs_inode_unlock(dir, 0); 3405 free_subvol_name: 3406 kfree(subvol_name_ptr); 3407 free_parent: 3408 if (destroy_parent) 3409 dput(parent); 3410 out_drop_write: 3411 mnt_drop_write_file(file); 3412 out: 3413 kfree(vol_args2); 3414 kfree(vol_args); 3415 return err; 3416 } 3417 3418 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3419 { 3420 struct inode *inode = file_inode(file); 3421 struct btrfs_root *root = BTRFS_I(inode)->root; 3422 struct btrfs_ioctl_defrag_range_args range = {0}; 3423 int ret; 3424 3425 ret = mnt_want_write_file(file); 3426 if (ret) 3427 return ret; 3428 3429 if (btrfs_root_readonly(root)) { 3430 ret = -EROFS; 3431 goto out; 3432 } 3433 3434 switch (inode->i_mode & S_IFMT) { 3435 case S_IFDIR: 3436 if (!capable(CAP_SYS_ADMIN)) { 3437 ret = -EPERM; 3438 goto out; 3439 } 3440 ret = btrfs_defrag_root(root); 3441 break; 3442 case S_IFREG: 3443 /* 3444 * Note that this does not check the file descriptor for write 3445 * access. This prevents defragmenting executables that are 3446 * running and allows defrag on files open in read-only mode. 3447 */ 3448 if (!capable(CAP_SYS_ADMIN) && 3449 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3450 ret = -EPERM; 3451 goto out; 3452 } 3453 3454 if (argp) { 3455 if (copy_from_user(&range, argp, sizeof(range))) { 3456 ret = -EFAULT; 3457 goto out; 3458 } 3459 /* compression requires us to start the IO */ 3460 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3461 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 3462 range.extent_thresh = (u32)-1; 3463 } 3464 } else { 3465 /* the rest are all set to zero by kzalloc */ 3466 range.len = (u64)-1; 3467 } 3468 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 3469 &range, BTRFS_OLDEST_GENERATION, 0); 3470 if (ret > 0) 3471 ret = 0; 3472 break; 3473 default: 3474 ret = -EINVAL; 3475 } 3476 out: 3477 mnt_drop_write_file(file); 3478 return ret; 3479 } 3480 3481 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3482 { 3483 struct btrfs_ioctl_vol_args *vol_args; 3484 bool restore_op = false; 3485 int ret; 3486 3487 if (!capable(CAP_SYS_ADMIN)) 3488 return -EPERM; 3489 3490 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3491 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 3492 return -EINVAL; 3493 } 3494 3495 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 3496 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3497 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3498 3499 /* 3500 * We can do the device add because we have a paused balanced, 3501 * change the exclusive op type and remember we should bring 3502 * back the paused balance 3503 */ 3504 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 3505 btrfs_exclop_start_unlock(fs_info); 3506 restore_op = true; 3507 } 3508 3509 vol_args = memdup_user(arg, sizeof(*vol_args)); 3510 if (IS_ERR(vol_args)) { 3511 ret = PTR_ERR(vol_args); 3512 goto out; 3513 } 3514 3515 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3516 ret = btrfs_init_new_device(fs_info, vol_args->name); 3517 3518 if (!ret) 3519 btrfs_info(fs_info, "disk added %s", vol_args->name); 3520 3521 kfree(vol_args); 3522 out: 3523 if (restore_op) 3524 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 3525 else 3526 btrfs_exclop_finish(fs_info); 3527 return ret; 3528 } 3529 3530 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3531 { 3532 BTRFS_DEV_LOOKUP_ARGS(args); 3533 struct inode *inode = file_inode(file); 3534 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3535 struct btrfs_ioctl_vol_args_v2 *vol_args; 3536 struct block_device *bdev = NULL; 3537 fmode_t mode; 3538 int ret; 3539 bool cancel = false; 3540 3541 if (!capable(CAP_SYS_ADMIN)) 3542 return -EPERM; 3543 3544 vol_args = memdup_user(arg, sizeof(*vol_args)); 3545 if (IS_ERR(vol_args)) 3546 return PTR_ERR(vol_args); 3547 3548 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3549 ret = -EOPNOTSUPP; 3550 goto out; 3551 } 3552 3553 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3554 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3555 args.devid = vol_args->devid; 3556 } else if (!strcmp("cancel", vol_args->name)) { 3557 cancel = true; 3558 } else { 3559 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3560 if (ret) 3561 goto out; 3562 } 3563 3564 ret = mnt_want_write_file(file); 3565 if (ret) 3566 goto out; 3567 3568 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3569 cancel); 3570 if (ret) 3571 goto err_drop; 3572 3573 /* Exclusive operation is now claimed */ 3574 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3575 3576 btrfs_exclop_finish(fs_info); 3577 3578 if (!ret) { 3579 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3580 btrfs_info(fs_info, "device deleted: id %llu", 3581 vol_args->devid); 3582 else 3583 btrfs_info(fs_info, "device deleted: %s", 3584 vol_args->name); 3585 } 3586 err_drop: 3587 mnt_drop_write_file(file); 3588 if (bdev) 3589 blkdev_put(bdev, mode); 3590 out: 3591 btrfs_put_dev_args_from_path(&args); 3592 kfree(vol_args); 3593 return ret; 3594 } 3595 3596 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3597 { 3598 BTRFS_DEV_LOOKUP_ARGS(args); 3599 struct inode *inode = file_inode(file); 3600 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3601 struct btrfs_ioctl_vol_args *vol_args; 3602 struct block_device *bdev = NULL; 3603 fmode_t mode; 3604 int ret; 3605 bool cancel = false; 3606 3607 if (!capable(CAP_SYS_ADMIN)) 3608 return -EPERM; 3609 3610 vol_args = memdup_user(arg, sizeof(*vol_args)); 3611 if (IS_ERR(vol_args)) 3612 return PTR_ERR(vol_args); 3613 3614 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3615 if (!strcmp("cancel", vol_args->name)) { 3616 cancel = true; 3617 } else { 3618 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3619 if (ret) 3620 goto out; 3621 } 3622 3623 ret = mnt_want_write_file(file); 3624 if (ret) 3625 goto out; 3626 3627 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3628 cancel); 3629 if (ret == 0) { 3630 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3631 if (!ret) 3632 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3633 btrfs_exclop_finish(fs_info); 3634 } 3635 3636 mnt_drop_write_file(file); 3637 if (bdev) 3638 blkdev_put(bdev, mode); 3639 out: 3640 btrfs_put_dev_args_from_path(&args); 3641 kfree(vol_args); 3642 return ret; 3643 } 3644 3645 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3646 void __user *arg) 3647 { 3648 struct btrfs_ioctl_fs_info_args *fi_args; 3649 struct btrfs_device *device; 3650 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3651 u64 flags_in; 3652 int ret = 0; 3653 3654 fi_args = memdup_user(arg, sizeof(*fi_args)); 3655 if (IS_ERR(fi_args)) 3656 return PTR_ERR(fi_args); 3657 3658 flags_in = fi_args->flags; 3659 memset(fi_args, 0, sizeof(*fi_args)); 3660 3661 rcu_read_lock(); 3662 fi_args->num_devices = fs_devices->num_devices; 3663 3664 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3665 if (device->devid > fi_args->max_id) 3666 fi_args->max_id = device->devid; 3667 } 3668 rcu_read_unlock(); 3669 3670 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3671 fi_args->nodesize = fs_info->nodesize; 3672 fi_args->sectorsize = fs_info->sectorsize; 3673 fi_args->clone_alignment = fs_info->sectorsize; 3674 3675 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3676 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3677 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3678 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3679 } 3680 3681 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3682 fi_args->generation = fs_info->generation; 3683 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3684 } 3685 3686 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3687 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3688 sizeof(fi_args->metadata_uuid)); 3689 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3690 } 3691 3692 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3693 ret = -EFAULT; 3694 3695 kfree(fi_args); 3696 return ret; 3697 } 3698 3699 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3700 void __user *arg) 3701 { 3702 BTRFS_DEV_LOOKUP_ARGS(args); 3703 struct btrfs_ioctl_dev_info_args *di_args; 3704 struct btrfs_device *dev; 3705 int ret = 0; 3706 3707 di_args = memdup_user(arg, sizeof(*di_args)); 3708 if (IS_ERR(di_args)) 3709 return PTR_ERR(di_args); 3710 3711 args.devid = di_args->devid; 3712 if (!btrfs_is_empty_uuid(di_args->uuid)) 3713 args.uuid = di_args->uuid; 3714 3715 rcu_read_lock(); 3716 dev = btrfs_find_device(fs_info->fs_devices, &args); 3717 if (!dev) { 3718 ret = -ENODEV; 3719 goto out; 3720 } 3721 3722 di_args->devid = dev->devid; 3723 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3724 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3725 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3726 if (dev->name) { 3727 strncpy(di_args->path, rcu_str_deref(dev->name), 3728 sizeof(di_args->path) - 1); 3729 di_args->path[sizeof(di_args->path) - 1] = 0; 3730 } else { 3731 di_args->path[0] = '\0'; 3732 } 3733 3734 out: 3735 rcu_read_unlock(); 3736 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3737 ret = -EFAULT; 3738 3739 kfree(di_args); 3740 return ret; 3741 } 3742 3743 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3744 { 3745 struct inode *inode = file_inode(file); 3746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3747 struct btrfs_root *root = BTRFS_I(inode)->root; 3748 struct btrfs_root *new_root; 3749 struct btrfs_dir_item *di; 3750 struct btrfs_trans_handle *trans; 3751 struct btrfs_path *path = NULL; 3752 struct btrfs_disk_key disk_key; 3753 u64 objectid = 0; 3754 u64 dir_id; 3755 int ret; 3756 3757 if (!capable(CAP_SYS_ADMIN)) 3758 return -EPERM; 3759 3760 ret = mnt_want_write_file(file); 3761 if (ret) 3762 return ret; 3763 3764 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3765 ret = -EFAULT; 3766 goto out; 3767 } 3768 3769 if (!objectid) 3770 objectid = BTRFS_FS_TREE_OBJECTID; 3771 3772 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3773 if (IS_ERR(new_root)) { 3774 ret = PTR_ERR(new_root); 3775 goto out; 3776 } 3777 if (!is_fstree(new_root->root_key.objectid)) { 3778 ret = -ENOENT; 3779 goto out_free; 3780 } 3781 3782 path = btrfs_alloc_path(); 3783 if (!path) { 3784 ret = -ENOMEM; 3785 goto out_free; 3786 } 3787 3788 trans = btrfs_start_transaction(root, 1); 3789 if (IS_ERR(trans)) { 3790 ret = PTR_ERR(trans); 3791 goto out_free; 3792 } 3793 3794 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3795 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3796 dir_id, "default", 7, 1); 3797 if (IS_ERR_OR_NULL(di)) { 3798 btrfs_release_path(path); 3799 btrfs_end_transaction(trans); 3800 btrfs_err(fs_info, 3801 "Umm, you don't have the default diritem, this isn't going to work"); 3802 ret = -ENOENT; 3803 goto out_free; 3804 } 3805 3806 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3807 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3808 btrfs_mark_buffer_dirty(path->nodes[0]); 3809 btrfs_release_path(path); 3810 3811 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3812 btrfs_end_transaction(trans); 3813 out_free: 3814 btrfs_put_root(new_root); 3815 btrfs_free_path(path); 3816 out: 3817 mnt_drop_write_file(file); 3818 return ret; 3819 } 3820 3821 static void get_block_group_info(struct list_head *groups_list, 3822 struct btrfs_ioctl_space_info *space) 3823 { 3824 struct btrfs_block_group *block_group; 3825 3826 space->total_bytes = 0; 3827 space->used_bytes = 0; 3828 space->flags = 0; 3829 list_for_each_entry(block_group, groups_list, list) { 3830 space->flags = block_group->flags; 3831 space->total_bytes += block_group->length; 3832 space->used_bytes += block_group->used; 3833 } 3834 } 3835 3836 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3837 void __user *arg) 3838 { 3839 struct btrfs_ioctl_space_args space_args; 3840 struct btrfs_ioctl_space_info space; 3841 struct btrfs_ioctl_space_info *dest; 3842 struct btrfs_ioctl_space_info *dest_orig; 3843 struct btrfs_ioctl_space_info __user *user_dest; 3844 struct btrfs_space_info *info; 3845 static const u64 types[] = { 3846 BTRFS_BLOCK_GROUP_DATA, 3847 BTRFS_BLOCK_GROUP_SYSTEM, 3848 BTRFS_BLOCK_GROUP_METADATA, 3849 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3850 }; 3851 int num_types = 4; 3852 int alloc_size; 3853 int ret = 0; 3854 u64 slot_count = 0; 3855 int i, c; 3856 3857 if (copy_from_user(&space_args, 3858 (struct btrfs_ioctl_space_args __user *)arg, 3859 sizeof(space_args))) 3860 return -EFAULT; 3861 3862 for (i = 0; i < num_types; i++) { 3863 struct btrfs_space_info *tmp; 3864 3865 info = NULL; 3866 list_for_each_entry(tmp, &fs_info->space_info, list) { 3867 if (tmp->flags == types[i]) { 3868 info = tmp; 3869 break; 3870 } 3871 } 3872 3873 if (!info) 3874 continue; 3875 3876 down_read(&info->groups_sem); 3877 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3878 if (!list_empty(&info->block_groups[c])) 3879 slot_count++; 3880 } 3881 up_read(&info->groups_sem); 3882 } 3883 3884 /* 3885 * Global block reserve, exported as a space_info 3886 */ 3887 slot_count++; 3888 3889 /* space_slots == 0 means they are asking for a count */ 3890 if (space_args.space_slots == 0) { 3891 space_args.total_spaces = slot_count; 3892 goto out; 3893 } 3894 3895 slot_count = min_t(u64, space_args.space_slots, slot_count); 3896 3897 alloc_size = sizeof(*dest) * slot_count; 3898 3899 /* we generally have at most 6 or so space infos, one for each raid 3900 * level. So, a whole page should be more than enough for everyone 3901 */ 3902 if (alloc_size > PAGE_SIZE) 3903 return -ENOMEM; 3904 3905 space_args.total_spaces = 0; 3906 dest = kmalloc(alloc_size, GFP_KERNEL); 3907 if (!dest) 3908 return -ENOMEM; 3909 dest_orig = dest; 3910 3911 /* now we have a buffer to copy into */ 3912 for (i = 0; i < num_types; i++) { 3913 struct btrfs_space_info *tmp; 3914 3915 if (!slot_count) 3916 break; 3917 3918 info = NULL; 3919 list_for_each_entry(tmp, &fs_info->space_info, list) { 3920 if (tmp->flags == types[i]) { 3921 info = tmp; 3922 break; 3923 } 3924 } 3925 3926 if (!info) 3927 continue; 3928 down_read(&info->groups_sem); 3929 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3930 if (!list_empty(&info->block_groups[c])) { 3931 get_block_group_info(&info->block_groups[c], 3932 &space); 3933 memcpy(dest, &space, sizeof(space)); 3934 dest++; 3935 space_args.total_spaces++; 3936 slot_count--; 3937 } 3938 if (!slot_count) 3939 break; 3940 } 3941 up_read(&info->groups_sem); 3942 } 3943 3944 /* 3945 * Add global block reserve 3946 */ 3947 if (slot_count) { 3948 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3949 3950 spin_lock(&block_rsv->lock); 3951 space.total_bytes = block_rsv->size; 3952 space.used_bytes = block_rsv->size - block_rsv->reserved; 3953 spin_unlock(&block_rsv->lock); 3954 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3955 memcpy(dest, &space, sizeof(space)); 3956 space_args.total_spaces++; 3957 } 3958 3959 user_dest = (struct btrfs_ioctl_space_info __user *) 3960 (arg + sizeof(struct btrfs_ioctl_space_args)); 3961 3962 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3963 ret = -EFAULT; 3964 3965 kfree(dest_orig); 3966 out: 3967 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3968 ret = -EFAULT; 3969 3970 return ret; 3971 } 3972 3973 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3974 void __user *argp) 3975 { 3976 struct btrfs_trans_handle *trans; 3977 u64 transid; 3978 3979 trans = btrfs_attach_transaction_barrier(root); 3980 if (IS_ERR(trans)) { 3981 if (PTR_ERR(trans) != -ENOENT) 3982 return PTR_ERR(trans); 3983 3984 /* No running transaction, don't bother */ 3985 transid = root->fs_info->last_trans_committed; 3986 goto out; 3987 } 3988 transid = trans->transid; 3989 btrfs_commit_transaction_async(trans); 3990 out: 3991 if (argp) 3992 if (copy_to_user(argp, &transid, sizeof(transid))) 3993 return -EFAULT; 3994 return 0; 3995 } 3996 3997 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3998 void __user *argp) 3999 { 4000 u64 transid; 4001 4002 if (argp) { 4003 if (copy_from_user(&transid, argp, sizeof(transid))) 4004 return -EFAULT; 4005 } else { 4006 transid = 0; /* current trans */ 4007 } 4008 return btrfs_wait_for_commit(fs_info, transid); 4009 } 4010 4011 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4012 { 4013 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4014 struct btrfs_ioctl_scrub_args *sa; 4015 int ret; 4016 4017 if (!capable(CAP_SYS_ADMIN)) 4018 return -EPERM; 4019 4020 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 4021 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 4022 return -EINVAL; 4023 } 4024 4025 sa = memdup_user(arg, sizeof(*sa)); 4026 if (IS_ERR(sa)) 4027 return PTR_ERR(sa); 4028 4029 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4030 ret = mnt_want_write_file(file); 4031 if (ret) 4032 goto out; 4033 } 4034 4035 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4036 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4037 0); 4038 4039 /* 4040 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 4041 * error. This is important as it allows user space to know how much 4042 * progress scrub has done. For example, if scrub is canceled we get 4043 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 4044 * space. Later user space can inspect the progress from the structure 4045 * btrfs_ioctl_scrub_args and resume scrub from where it left off 4046 * previously (btrfs-progs does this). 4047 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 4048 * then return -EFAULT to signal the structure was not copied or it may 4049 * be corrupt and unreliable due to a partial copy. 4050 */ 4051 if (copy_to_user(arg, sa, sizeof(*sa))) 4052 ret = -EFAULT; 4053 4054 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4055 mnt_drop_write_file(file); 4056 out: 4057 kfree(sa); 4058 return ret; 4059 } 4060 4061 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4062 { 4063 if (!capable(CAP_SYS_ADMIN)) 4064 return -EPERM; 4065 4066 return btrfs_scrub_cancel(fs_info); 4067 } 4068 4069 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4070 void __user *arg) 4071 { 4072 struct btrfs_ioctl_scrub_args *sa; 4073 int ret; 4074 4075 if (!capable(CAP_SYS_ADMIN)) 4076 return -EPERM; 4077 4078 sa = memdup_user(arg, sizeof(*sa)); 4079 if (IS_ERR(sa)) 4080 return PTR_ERR(sa); 4081 4082 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4083 4084 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4085 ret = -EFAULT; 4086 4087 kfree(sa); 4088 return ret; 4089 } 4090 4091 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4092 void __user *arg) 4093 { 4094 struct btrfs_ioctl_get_dev_stats *sa; 4095 int ret; 4096 4097 sa = memdup_user(arg, sizeof(*sa)); 4098 if (IS_ERR(sa)) 4099 return PTR_ERR(sa); 4100 4101 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4102 kfree(sa); 4103 return -EPERM; 4104 } 4105 4106 ret = btrfs_get_dev_stats(fs_info, sa); 4107 4108 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4109 ret = -EFAULT; 4110 4111 kfree(sa); 4112 return ret; 4113 } 4114 4115 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4116 void __user *arg) 4117 { 4118 struct btrfs_ioctl_dev_replace_args *p; 4119 int ret; 4120 4121 if (!capable(CAP_SYS_ADMIN)) 4122 return -EPERM; 4123 4124 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 4125 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 4126 return -EINVAL; 4127 } 4128 4129 p = memdup_user(arg, sizeof(*p)); 4130 if (IS_ERR(p)) 4131 return PTR_ERR(p); 4132 4133 switch (p->cmd) { 4134 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4135 if (sb_rdonly(fs_info->sb)) { 4136 ret = -EROFS; 4137 goto out; 4138 } 4139 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 4140 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4141 } else { 4142 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4143 btrfs_exclop_finish(fs_info); 4144 } 4145 break; 4146 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4147 btrfs_dev_replace_status(fs_info, p); 4148 ret = 0; 4149 break; 4150 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4151 p->result = btrfs_dev_replace_cancel(fs_info); 4152 ret = 0; 4153 break; 4154 default: 4155 ret = -EINVAL; 4156 break; 4157 } 4158 4159 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 4160 ret = -EFAULT; 4161 out: 4162 kfree(p); 4163 return ret; 4164 } 4165 4166 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4167 { 4168 int ret = 0; 4169 int i; 4170 u64 rel_ptr; 4171 int size; 4172 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4173 struct inode_fs_paths *ipath = NULL; 4174 struct btrfs_path *path; 4175 4176 if (!capable(CAP_DAC_READ_SEARCH)) 4177 return -EPERM; 4178 4179 path = btrfs_alloc_path(); 4180 if (!path) { 4181 ret = -ENOMEM; 4182 goto out; 4183 } 4184 4185 ipa = memdup_user(arg, sizeof(*ipa)); 4186 if (IS_ERR(ipa)) { 4187 ret = PTR_ERR(ipa); 4188 ipa = NULL; 4189 goto out; 4190 } 4191 4192 size = min_t(u32, ipa->size, 4096); 4193 ipath = init_ipath(size, root, path); 4194 if (IS_ERR(ipath)) { 4195 ret = PTR_ERR(ipath); 4196 ipath = NULL; 4197 goto out; 4198 } 4199 4200 ret = paths_from_inode(ipa->inum, ipath); 4201 if (ret < 0) 4202 goto out; 4203 4204 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4205 rel_ptr = ipath->fspath->val[i] - 4206 (u64)(unsigned long)ipath->fspath->val; 4207 ipath->fspath->val[i] = rel_ptr; 4208 } 4209 4210 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4211 ipath->fspath, size); 4212 if (ret) { 4213 ret = -EFAULT; 4214 goto out; 4215 } 4216 4217 out: 4218 btrfs_free_path(path); 4219 free_ipath(ipath); 4220 kfree(ipa); 4221 4222 return ret; 4223 } 4224 4225 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4226 { 4227 struct btrfs_data_container *inodes = ctx; 4228 const size_t c = 3 * sizeof(u64); 4229 4230 if (inodes->bytes_left >= c) { 4231 inodes->bytes_left -= c; 4232 inodes->val[inodes->elem_cnt] = inum; 4233 inodes->val[inodes->elem_cnt + 1] = offset; 4234 inodes->val[inodes->elem_cnt + 2] = root; 4235 inodes->elem_cnt += 3; 4236 } else { 4237 inodes->bytes_missing += c - inodes->bytes_left; 4238 inodes->bytes_left = 0; 4239 inodes->elem_missed += 3; 4240 } 4241 4242 return 0; 4243 } 4244 4245 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4246 void __user *arg, int version) 4247 { 4248 int ret = 0; 4249 int size; 4250 struct btrfs_ioctl_logical_ino_args *loi; 4251 struct btrfs_data_container *inodes = NULL; 4252 struct btrfs_path *path = NULL; 4253 bool ignore_offset; 4254 4255 if (!capable(CAP_SYS_ADMIN)) 4256 return -EPERM; 4257 4258 loi = memdup_user(arg, sizeof(*loi)); 4259 if (IS_ERR(loi)) 4260 return PTR_ERR(loi); 4261 4262 if (version == 1) { 4263 ignore_offset = false; 4264 size = min_t(u32, loi->size, SZ_64K); 4265 } else { 4266 /* All reserved bits must be 0 for now */ 4267 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4268 ret = -EINVAL; 4269 goto out_loi; 4270 } 4271 /* Only accept flags we have defined so far */ 4272 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4273 ret = -EINVAL; 4274 goto out_loi; 4275 } 4276 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4277 size = min_t(u32, loi->size, SZ_16M); 4278 } 4279 4280 path = btrfs_alloc_path(); 4281 if (!path) { 4282 ret = -ENOMEM; 4283 goto out; 4284 } 4285 4286 inodes = init_data_container(size); 4287 if (IS_ERR(inodes)) { 4288 ret = PTR_ERR(inodes); 4289 inodes = NULL; 4290 goto out; 4291 } 4292 4293 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4294 build_ino_list, inodes, ignore_offset); 4295 if (ret == -EINVAL) 4296 ret = -ENOENT; 4297 if (ret < 0) 4298 goto out; 4299 4300 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4301 size); 4302 if (ret) 4303 ret = -EFAULT; 4304 4305 out: 4306 btrfs_free_path(path); 4307 kvfree(inodes); 4308 out_loi: 4309 kfree(loi); 4310 4311 return ret; 4312 } 4313 4314 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4315 struct btrfs_ioctl_balance_args *bargs) 4316 { 4317 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4318 4319 bargs->flags = bctl->flags; 4320 4321 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4322 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4323 if (atomic_read(&fs_info->balance_pause_req)) 4324 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4325 if (atomic_read(&fs_info->balance_cancel_req)) 4326 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4327 4328 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4329 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4330 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4331 4332 spin_lock(&fs_info->balance_lock); 4333 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4334 spin_unlock(&fs_info->balance_lock); 4335 } 4336 4337 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4338 { 4339 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4340 struct btrfs_fs_info *fs_info = root->fs_info; 4341 struct btrfs_ioctl_balance_args *bargs; 4342 struct btrfs_balance_control *bctl; 4343 bool need_unlock; /* for mut. excl. ops lock */ 4344 int ret; 4345 4346 if (!arg) 4347 btrfs_warn(fs_info, 4348 "IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18"); 4349 4350 if (!capable(CAP_SYS_ADMIN)) 4351 return -EPERM; 4352 4353 ret = mnt_want_write_file(file); 4354 if (ret) 4355 return ret; 4356 4357 again: 4358 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4359 mutex_lock(&fs_info->balance_mutex); 4360 need_unlock = true; 4361 goto locked; 4362 } 4363 4364 /* 4365 * mut. excl. ops lock is locked. Three possibilities: 4366 * (1) some other op is running 4367 * (2) balance is running 4368 * (3) balance is paused -- special case (think resume) 4369 */ 4370 mutex_lock(&fs_info->balance_mutex); 4371 if (fs_info->balance_ctl) { 4372 /* this is either (2) or (3) */ 4373 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4374 mutex_unlock(&fs_info->balance_mutex); 4375 /* 4376 * Lock released to allow other waiters to continue, 4377 * we'll reexamine the status again. 4378 */ 4379 mutex_lock(&fs_info->balance_mutex); 4380 4381 if (fs_info->balance_ctl && 4382 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4383 /* this is (3) */ 4384 need_unlock = false; 4385 goto locked; 4386 } 4387 4388 mutex_unlock(&fs_info->balance_mutex); 4389 goto again; 4390 } else { 4391 /* this is (2) */ 4392 mutex_unlock(&fs_info->balance_mutex); 4393 ret = -EINPROGRESS; 4394 goto out; 4395 } 4396 } else { 4397 /* this is (1) */ 4398 mutex_unlock(&fs_info->balance_mutex); 4399 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4400 goto out; 4401 } 4402 4403 locked: 4404 4405 if (arg) { 4406 bargs = memdup_user(arg, sizeof(*bargs)); 4407 if (IS_ERR(bargs)) { 4408 ret = PTR_ERR(bargs); 4409 goto out_unlock; 4410 } 4411 4412 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4413 if (!fs_info->balance_ctl) { 4414 ret = -ENOTCONN; 4415 goto out_bargs; 4416 } 4417 4418 bctl = fs_info->balance_ctl; 4419 spin_lock(&fs_info->balance_lock); 4420 bctl->flags |= BTRFS_BALANCE_RESUME; 4421 spin_unlock(&fs_info->balance_lock); 4422 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 4423 4424 goto do_balance; 4425 } 4426 } else { 4427 bargs = NULL; 4428 } 4429 4430 if (fs_info->balance_ctl) { 4431 ret = -EINPROGRESS; 4432 goto out_bargs; 4433 } 4434 4435 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4436 if (!bctl) { 4437 ret = -ENOMEM; 4438 goto out_bargs; 4439 } 4440 4441 if (arg) { 4442 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4443 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4444 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4445 4446 bctl->flags = bargs->flags; 4447 } else { 4448 /* balance everything - no filters */ 4449 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4450 } 4451 4452 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4453 ret = -EINVAL; 4454 goto out_bctl; 4455 } 4456 4457 do_balance: 4458 /* 4459 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4460 * bctl is freed in reset_balance_state, or, if restriper was paused 4461 * all the way until unmount, in free_fs_info. The flag should be 4462 * cleared after reset_balance_state. 4463 */ 4464 need_unlock = false; 4465 4466 ret = btrfs_balance(fs_info, bctl, bargs); 4467 bctl = NULL; 4468 4469 if ((ret == 0 || ret == -ECANCELED) && arg) { 4470 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4471 ret = -EFAULT; 4472 } 4473 4474 out_bctl: 4475 kfree(bctl); 4476 out_bargs: 4477 kfree(bargs); 4478 out_unlock: 4479 mutex_unlock(&fs_info->balance_mutex); 4480 if (need_unlock) 4481 btrfs_exclop_finish(fs_info); 4482 out: 4483 mnt_drop_write_file(file); 4484 return ret; 4485 } 4486 4487 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4488 { 4489 if (!capable(CAP_SYS_ADMIN)) 4490 return -EPERM; 4491 4492 switch (cmd) { 4493 case BTRFS_BALANCE_CTL_PAUSE: 4494 return btrfs_pause_balance(fs_info); 4495 case BTRFS_BALANCE_CTL_CANCEL: 4496 return btrfs_cancel_balance(fs_info); 4497 } 4498 4499 return -EINVAL; 4500 } 4501 4502 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4503 void __user *arg) 4504 { 4505 struct btrfs_ioctl_balance_args *bargs; 4506 int ret = 0; 4507 4508 if (!capable(CAP_SYS_ADMIN)) 4509 return -EPERM; 4510 4511 mutex_lock(&fs_info->balance_mutex); 4512 if (!fs_info->balance_ctl) { 4513 ret = -ENOTCONN; 4514 goto out; 4515 } 4516 4517 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4518 if (!bargs) { 4519 ret = -ENOMEM; 4520 goto out; 4521 } 4522 4523 btrfs_update_ioctl_balance_args(fs_info, bargs); 4524 4525 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4526 ret = -EFAULT; 4527 4528 kfree(bargs); 4529 out: 4530 mutex_unlock(&fs_info->balance_mutex); 4531 return ret; 4532 } 4533 4534 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4535 { 4536 struct inode *inode = file_inode(file); 4537 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4538 struct btrfs_ioctl_quota_ctl_args *sa; 4539 int ret; 4540 4541 if (!capable(CAP_SYS_ADMIN)) 4542 return -EPERM; 4543 4544 ret = mnt_want_write_file(file); 4545 if (ret) 4546 return ret; 4547 4548 sa = memdup_user(arg, sizeof(*sa)); 4549 if (IS_ERR(sa)) { 4550 ret = PTR_ERR(sa); 4551 goto drop_write; 4552 } 4553 4554 down_write(&fs_info->subvol_sem); 4555 4556 switch (sa->cmd) { 4557 case BTRFS_QUOTA_CTL_ENABLE: 4558 ret = btrfs_quota_enable(fs_info); 4559 break; 4560 case BTRFS_QUOTA_CTL_DISABLE: 4561 ret = btrfs_quota_disable(fs_info); 4562 break; 4563 default: 4564 ret = -EINVAL; 4565 break; 4566 } 4567 4568 kfree(sa); 4569 up_write(&fs_info->subvol_sem); 4570 drop_write: 4571 mnt_drop_write_file(file); 4572 return ret; 4573 } 4574 4575 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4576 { 4577 struct inode *inode = file_inode(file); 4578 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4579 struct btrfs_root *root = BTRFS_I(inode)->root; 4580 struct btrfs_ioctl_qgroup_assign_args *sa; 4581 struct btrfs_trans_handle *trans; 4582 int ret; 4583 int err; 4584 4585 if (!capable(CAP_SYS_ADMIN)) 4586 return -EPERM; 4587 4588 ret = mnt_want_write_file(file); 4589 if (ret) 4590 return ret; 4591 4592 sa = memdup_user(arg, sizeof(*sa)); 4593 if (IS_ERR(sa)) { 4594 ret = PTR_ERR(sa); 4595 goto drop_write; 4596 } 4597 4598 trans = btrfs_join_transaction(root); 4599 if (IS_ERR(trans)) { 4600 ret = PTR_ERR(trans); 4601 goto out; 4602 } 4603 4604 if (sa->assign) { 4605 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4606 } else { 4607 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4608 } 4609 4610 /* update qgroup status and info */ 4611 err = btrfs_run_qgroups(trans); 4612 if (err < 0) 4613 btrfs_handle_fs_error(fs_info, err, 4614 "failed to update qgroup status and info"); 4615 err = btrfs_end_transaction(trans); 4616 if (err && !ret) 4617 ret = err; 4618 4619 out: 4620 kfree(sa); 4621 drop_write: 4622 mnt_drop_write_file(file); 4623 return ret; 4624 } 4625 4626 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4627 { 4628 struct inode *inode = file_inode(file); 4629 struct btrfs_root *root = BTRFS_I(inode)->root; 4630 struct btrfs_ioctl_qgroup_create_args *sa; 4631 struct btrfs_trans_handle *trans; 4632 int ret; 4633 int err; 4634 4635 if (!capable(CAP_SYS_ADMIN)) 4636 return -EPERM; 4637 4638 ret = mnt_want_write_file(file); 4639 if (ret) 4640 return ret; 4641 4642 sa = memdup_user(arg, sizeof(*sa)); 4643 if (IS_ERR(sa)) { 4644 ret = PTR_ERR(sa); 4645 goto drop_write; 4646 } 4647 4648 if (!sa->qgroupid) { 4649 ret = -EINVAL; 4650 goto out; 4651 } 4652 4653 trans = btrfs_join_transaction(root); 4654 if (IS_ERR(trans)) { 4655 ret = PTR_ERR(trans); 4656 goto out; 4657 } 4658 4659 if (sa->create) { 4660 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4661 } else { 4662 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4663 } 4664 4665 err = btrfs_end_transaction(trans); 4666 if (err && !ret) 4667 ret = err; 4668 4669 out: 4670 kfree(sa); 4671 drop_write: 4672 mnt_drop_write_file(file); 4673 return ret; 4674 } 4675 4676 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4677 { 4678 struct inode *inode = file_inode(file); 4679 struct btrfs_root *root = BTRFS_I(inode)->root; 4680 struct btrfs_ioctl_qgroup_limit_args *sa; 4681 struct btrfs_trans_handle *trans; 4682 int ret; 4683 int err; 4684 u64 qgroupid; 4685 4686 if (!capable(CAP_SYS_ADMIN)) 4687 return -EPERM; 4688 4689 ret = mnt_want_write_file(file); 4690 if (ret) 4691 return ret; 4692 4693 sa = memdup_user(arg, sizeof(*sa)); 4694 if (IS_ERR(sa)) { 4695 ret = PTR_ERR(sa); 4696 goto drop_write; 4697 } 4698 4699 trans = btrfs_join_transaction(root); 4700 if (IS_ERR(trans)) { 4701 ret = PTR_ERR(trans); 4702 goto out; 4703 } 4704 4705 qgroupid = sa->qgroupid; 4706 if (!qgroupid) { 4707 /* take the current subvol as qgroup */ 4708 qgroupid = root->root_key.objectid; 4709 } 4710 4711 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4712 4713 err = btrfs_end_transaction(trans); 4714 if (err && !ret) 4715 ret = err; 4716 4717 out: 4718 kfree(sa); 4719 drop_write: 4720 mnt_drop_write_file(file); 4721 return ret; 4722 } 4723 4724 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4725 { 4726 struct inode *inode = file_inode(file); 4727 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4728 struct btrfs_ioctl_quota_rescan_args *qsa; 4729 int ret; 4730 4731 if (!capable(CAP_SYS_ADMIN)) 4732 return -EPERM; 4733 4734 ret = mnt_want_write_file(file); 4735 if (ret) 4736 return ret; 4737 4738 qsa = memdup_user(arg, sizeof(*qsa)); 4739 if (IS_ERR(qsa)) { 4740 ret = PTR_ERR(qsa); 4741 goto drop_write; 4742 } 4743 4744 if (qsa->flags) { 4745 ret = -EINVAL; 4746 goto out; 4747 } 4748 4749 ret = btrfs_qgroup_rescan(fs_info); 4750 4751 out: 4752 kfree(qsa); 4753 drop_write: 4754 mnt_drop_write_file(file); 4755 return ret; 4756 } 4757 4758 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4759 void __user *arg) 4760 { 4761 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 4762 4763 if (!capable(CAP_SYS_ADMIN)) 4764 return -EPERM; 4765 4766 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4767 qsa.flags = 1; 4768 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 4769 } 4770 4771 if (copy_to_user(arg, &qsa, sizeof(qsa))) 4772 return -EFAULT; 4773 4774 return 0; 4775 } 4776 4777 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4778 void __user *arg) 4779 { 4780 if (!capable(CAP_SYS_ADMIN)) 4781 return -EPERM; 4782 4783 return btrfs_qgroup_wait_for_completion(fs_info, true); 4784 } 4785 4786 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4787 struct user_namespace *mnt_userns, 4788 struct btrfs_ioctl_received_subvol_args *sa) 4789 { 4790 struct inode *inode = file_inode(file); 4791 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4792 struct btrfs_root *root = BTRFS_I(inode)->root; 4793 struct btrfs_root_item *root_item = &root->root_item; 4794 struct btrfs_trans_handle *trans; 4795 struct timespec64 ct = current_time(inode); 4796 int ret = 0; 4797 int received_uuid_changed; 4798 4799 if (!inode_owner_or_capable(mnt_userns, inode)) 4800 return -EPERM; 4801 4802 ret = mnt_want_write_file(file); 4803 if (ret < 0) 4804 return ret; 4805 4806 down_write(&fs_info->subvol_sem); 4807 4808 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4809 ret = -EINVAL; 4810 goto out; 4811 } 4812 4813 if (btrfs_root_readonly(root)) { 4814 ret = -EROFS; 4815 goto out; 4816 } 4817 4818 /* 4819 * 1 - root item 4820 * 2 - uuid items (received uuid + subvol uuid) 4821 */ 4822 trans = btrfs_start_transaction(root, 3); 4823 if (IS_ERR(trans)) { 4824 ret = PTR_ERR(trans); 4825 trans = NULL; 4826 goto out; 4827 } 4828 4829 sa->rtransid = trans->transid; 4830 sa->rtime.sec = ct.tv_sec; 4831 sa->rtime.nsec = ct.tv_nsec; 4832 4833 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4834 BTRFS_UUID_SIZE); 4835 if (received_uuid_changed && 4836 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4837 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4838 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4839 root->root_key.objectid); 4840 if (ret && ret != -ENOENT) { 4841 btrfs_abort_transaction(trans, ret); 4842 btrfs_end_transaction(trans); 4843 goto out; 4844 } 4845 } 4846 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4847 btrfs_set_root_stransid(root_item, sa->stransid); 4848 btrfs_set_root_rtransid(root_item, sa->rtransid); 4849 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4850 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4851 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4852 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4853 4854 ret = btrfs_update_root(trans, fs_info->tree_root, 4855 &root->root_key, &root->root_item); 4856 if (ret < 0) { 4857 btrfs_end_transaction(trans); 4858 goto out; 4859 } 4860 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4861 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4862 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4863 root->root_key.objectid); 4864 if (ret < 0 && ret != -EEXIST) { 4865 btrfs_abort_transaction(trans, ret); 4866 btrfs_end_transaction(trans); 4867 goto out; 4868 } 4869 } 4870 ret = btrfs_commit_transaction(trans); 4871 out: 4872 up_write(&fs_info->subvol_sem); 4873 mnt_drop_write_file(file); 4874 return ret; 4875 } 4876 4877 #ifdef CONFIG_64BIT 4878 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4879 void __user *arg) 4880 { 4881 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4882 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4883 int ret = 0; 4884 4885 args32 = memdup_user(arg, sizeof(*args32)); 4886 if (IS_ERR(args32)) 4887 return PTR_ERR(args32); 4888 4889 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4890 if (!args64) { 4891 ret = -ENOMEM; 4892 goto out; 4893 } 4894 4895 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4896 args64->stransid = args32->stransid; 4897 args64->rtransid = args32->rtransid; 4898 args64->stime.sec = args32->stime.sec; 4899 args64->stime.nsec = args32->stime.nsec; 4900 args64->rtime.sec = args32->rtime.sec; 4901 args64->rtime.nsec = args32->rtime.nsec; 4902 args64->flags = args32->flags; 4903 4904 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64); 4905 if (ret) 4906 goto out; 4907 4908 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4909 args32->stransid = args64->stransid; 4910 args32->rtransid = args64->rtransid; 4911 args32->stime.sec = args64->stime.sec; 4912 args32->stime.nsec = args64->stime.nsec; 4913 args32->rtime.sec = args64->rtime.sec; 4914 args32->rtime.nsec = args64->rtime.nsec; 4915 args32->flags = args64->flags; 4916 4917 ret = copy_to_user(arg, args32, sizeof(*args32)); 4918 if (ret) 4919 ret = -EFAULT; 4920 4921 out: 4922 kfree(args32); 4923 kfree(args64); 4924 return ret; 4925 } 4926 #endif 4927 4928 static long btrfs_ioctl_set_received_subvol(struct file *file, 4929 void __user *arg) 4930 { 4931 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4932 int ret = 0; 4933 4934 sa = memdup_user(arg, sizeof(*sa)); 4935 if (IS_ERR(sa)) 4936 return PTR_ERR(sa); 4937 4938 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa); 4939 4940 if (ret) 4941 goto out; 4942 4943 ret = copy_to_user(arg, sa, sizeof(*sa)); 4944 if (ret) 4945 ret = -EFAULT; 4946 4947 out: 4948 kfree(sa); 4949 return ret; 4950 } 4951 4952 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4953 void __user *arg) 4954 { 4955 size_t len; 4956 int ret; 4957 char label[BTRFS_LABEL_SIZE]; 4958 4959 spin_lock(&fs_info->super_lock); 4960 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4961 spin_unlock(&fs_info->super_lock); 4962 4963 len = strnlen(label, BTRFS_LABEL_SIZE); 4964 4965 if (len == BTRFS_LABEL_SIZE) { 4966 btrfs_warn(fs_info, 4967 "label is too long, return the first %zu bytes", 4968 --len); 4969 } 4970 4971 ret = copy_to_user(arg, label, len); 4972 4973 return ret ? -EFAULT : 0; 4974 } 4975 4976 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4977 { 4978 struct inode *inode = file_inode(file); 4979 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4980 struct btrfs_root *root = BTRFS_I(inode)->root; 4981 struct btrfs_super_block *super_block = fs_info->super_copy; 4982 struct btrfs_trans_handle *trans; 4983 char label[BTRFS_LABEL_SIZE]; 4984 int ret; 4985 4986 if (!capable(CAP_SYS_ADMIN)) 4987 return -EPERM; 4988 4989 if (copy_from_user(label, arg, sizeof(label))) 4990 return -EFAULT; 4991 4992 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4993 btrfs_err(fs_info, 4994 "unable to set label with more than %d bytes", 4995 BTRFS_LABEL_SIZE - 1); 4996 return -EINVAL; 4997 } 4998 4999 ret = mnt_want_write_file(file); 5000 if (ret) 5001 return ret; 5002 5003 trans = btrfs_start_transaction(root, 0); 5004 if (IS_ERR(trans)) { 5005 ret = PTR_ERR(trans); 5006 goto out_unlock; 5007 } 5008 5009 spin_lock(&fs_info->super_lock); 5010 strcpy(super_block->label, label); 5011 spin_unlock(&fs_info->super_lock); 5012 ret = btrfs_commit_transaction(trans); 5013 5014 out_unlock: 5015 mnt_drop_write_file(file); 5016 return ret; 5017 } 5018 5019 #define INIT_FEATURE_FLAGS(suffix) \ 5020 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5021 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5022 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5023 5024 int btrfs_ioctl_get_supported_features(void __user *arg) 5025 { 5026 static const struct btrfs_ioctl_feature_flags features[3] = { 5027 INIT_FEATURE_FLAGS(SUPP), 5028 INIT_FEATURE_FLAGS(SAFE_SET), 5029 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5030 }; 5031 5032 if (copy_to_user(arg, &features, sizeof(features))) 5033 return -EFAULT; 5034 5035 return 0; 5036 } 5037 5038 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 5039 void __user *arg) 5040 { 5041 struct btrfs_super_block *super_block = fs_info->super_copy; 5042 struct btrfs_ioctl_feature_flags features; 5043 5044 features.compat_flags = btrfs_super_compat_flags(super_block); 5045 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5046 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5047 5048 if (copy_to_user(arg, &features, sizeof(features))) 5049 return -EFAULT; 5050 5051 return 0; 5052 } 5053 5054 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5055 enum btrfs_feature_set set, 5056 u64 change_mask, u64 flags, u64 supported_flags, 5057 u64 safe_set, u64 safe_clear) 5058 { 5059 const char *type = btrfs_feature_set_name(set); 5060 char *names; 5061 u64 disallowed, unsupported; 5062 u64 set_mask = flags & change_mask; 5063 u64 clear_mask = ~flags & change_mask; 5064 5065 unsupported = set_mask & ~supported_flags; 5066 if (unsupported) { 5067 names = btrfs_printable_features(set, unsupported); 5068 if (names) { 5069 btrfs_warn(fs_info, 5070 "this kernel does not support the %s feature bit%s", 5071 names, strchr(names, ',') ? "s" : ""); 5072 kfree(names); 5073 } else 5074 btrfs_warn(fs_info, 5075 "this kernel does not support %s bits 0x%llx", 5076 type, unsupported); 5077 return -EOPNOTSUPP; 5078 } 5079 5080 disallowed = set_mask & ~safe_set; 5081 if (disallowed) { 5082 names = btrfs_printable_features(set, disallowed); 5083 if (names) { 5084 btrfs_warn(fs_info, 5085 "can't set the %s feature bit%s while mounted", 5086 names, strchr(names, ',') ? "s" : ""); 5087 kfree(names); 5088 } else 5089 btrfs_warn(fs_info, 5090 "can't set %s bits 0x%llx while mounted", 5091 type, disallowed); 5092 return -EPERM; 5093 } 5094 5095 disallowed = clear_mask & ~safe_clear; 5096 if (disallowed) { 5097 names = btrfs_printable_features(set, disallowed); 5098 if (names) { 5099 btrfs_warn(fs_info, 5100 "can't clear the %s feature bit%s while mounted", 5101 names, strchr(names, ',') ? "s" : ""); 5102 kfree(names); 5103 } else 5104 btrfs_warn(fs_info, 5105 "can't clear %s bits 0x%llx while mounted", 5106 type, disallowed); 5107 return -EPERM; 5108 } 5109 5110 return 0; 5111 } 5112 5113 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5114 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5115 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5116 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5117 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5118 5119 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5120 { 5121 struct inode *inode = file_inode(file); 5122 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5123 struct btrfs_root *root = BTRFS_I(inode)->root; 5124 struct btrfs_super_block *super_block = fs_info->super_copy; 5125 struct btrfs_ioctl_feature_flags flags[2]; 5126 struct btrfs_trans_handle *trans; 5127 u64 newflags; 5128 int ret; 5129 5130 if (!capable(CAP_SYS_ADMIN)) 5131 return -EPERM; 5132 5133 if (copy_from_user(flags, arg, sizeof(flags))) 5134 return -EFAULT; 5135 5136 /* Nothing to do */ 5137 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5138 !flags[0].incompat_flags) 5139 return 0; 5140 5141 ret = check_feature(fs_info, flags[0].compat_flags, 5142 flags[1].compat_flags, COMPAT); 5143 if (ret) 5144 return ret; 5145 5146 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5147 flags[1].compat_ro_flags, COMPAT_RO); 5148 if (ret) 5149 return ret; 5150 5151 ret = check_feature(fs_info, flags[0].incompat_flags, 5152 flags[1].incompat_flags, INCOMPAT); 5153 if (ret) 5154 return ret; 5155 5156 ret = mnt_want_write_file(file); 5157 if (ret) 5158 return ret; 5159 5160 trans = btrfs_start_transaction(root, 0); 5161 if (IS_ERR(trans)) { 5162 ret = PTR_ERR(trans); 5163 goto out_drop_write; 5164 } 5165 5166 spin_lock(&fs_info->super_lock); 5167 newflags = btrfs_super_compat_flags(super_block); 5168 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5169 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5170 btrfs_set_super_compat_flags(super_block, newflags); 5171 5172 newflags = btrfs_super_compat_ro_flags(super_block); 5173 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5174 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5175 btrfs_set_super_compat_ro_flags(super_block, newflags); 5176 5177 newflags = btrfs_super_incompat_flags(super_block); 5178 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5179 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5180 btrfs_set_super_incompat_flags(super_block, newflags); 5181 spin_unlock(&fs_info->super_lock); 5182 5183 ret = btrfs_commit_transaction(trans); 5184 out_drop_write: 5185 mnt_drop_write_file(file); 5186 5187 return ret; 5188 } 5189 5190 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat) 5191 { 5192 struct btrfs_ioctl_send_args *arg; 5193 int ret; 5194 5195 if (compat) { 5196 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5197 struct btrfs_ioctl_send_args_32 args32; 5198 5199 ret = copy_from_user(&args32, argp, sizeof(args32)); 5200 if (ret) 5201 return -EFAULT; 5202 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5203 if (!arg) 5204 return -ENOMEM; 5205 arg->send_fd = args32.send_fd; 5206 arg->clone_sources_count = args32.clone_sources_count; 5207 arg->clone_sources = compat_ptr(args32.clone_sources); 5208 arg->parent_root = args32.parent_root; 5209 arg->flags = args32.flags; 5210 memcpy(arg->reserved, args32.reserved, 5211 sizeof(args32.reserved)); 5212 #else 5213 return -ENOTTY; 5214 #endif 5215 } else { 5216 arg = memdup_user(argp, sizeof(*arg)); 5217 if (IS_ERR(arg)) 5218 return PTR_ERR(arg); 5219 } 5220 ret = btrfs_ioctl_send(inode, arg); 5221 kfree(arg); 5222 return ret; 5223 } 5224 5225 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 5226 bool compat) 5227 { 5228 struct btrfs_ioctl_encoded_io_args args = { 0 }; 5229 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 5230 flags); 5231 size_t copy_end; 5232 struct iovec iovstack[UIO_FASTIOV]; 5233 struct iovec *iov = iovstack; 5234 struct iov_iter iter; 5235 loff_t pos; 5236 struct kiocb kiocb; 5237 ssize_t ret; 5238 5239 if (!capable(CAP_SYS_ADMIN)) { 5240 ret = -EPERM; 5241 goto out_acct; 5242 } 5243 5244 if (compat) { 5245 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5246 struct btrfs_ioctl_encoded_io_args_32 args32; 5247 5248 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 5249 flags); 5250 if (copy_from_user(&args32, argp, copy_end)) { 5251 ret = -EFAULT; 5252 goto out_acct; 5253 } 5254 args.iov = compat_ptr(args32.iov); 5255 args.iovcnt = args32.iovcnt; 5256 args.offset = args32.offset; 5257 args.flags = args32.flags; 5258 #else 5259 return -ENOTTY; 5260 #endif 5261 } else { 5262 copy_end = copy_end_kernel; 5263 if (copy_from_user(&args, argp, copy_end)) { 5264 ret = -EFAULT; 5265 goto out_acct; 5266 } 5267 } 5268 if (args.flags != 0) { 5269 ret = -EINVAL; 5270 goto out_acct; 5271 } 5272 5273 ret = import_iovec(READ, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 5274 &iov, &iter); 5275 if (ret < 0) 5276 goto out_acct; 5277 5278 if (iov_iter_count(&iter) == 0) { 5279 ret = 0; 5280 goto out_iov; 5281 } 5282 pos = args.offset; 5283 ret = rw_verify_area(READ, file, &pos, args.len); 5284 if (ret < 0) 5285 goto out_iov; 5286 5287 init_sync_kiocb(&kiocb, file); 5288 kiocb.ki_pos = pos; 5289 5290 ret = btrfs_encoded_read(&kiocb, &iter, &args); 5291 if (ret >= 0) { 5292 fsnotify_access(file); 5293 if (copy_to_user(argp + copy_end, 5294 (char *)&args + copy_end_kernel, 5295 sizeof(args) - copy_end_kernel)) 5296 ret = -EFAULT; 5297 } 5298 5299 out_iov: 5300 kfree(iov); 5301 out_acct: 5302 if (ret > 0) 5303 add_rchar(current, ret); 5304 inc_syscr(current); 5305 return ret; 5306 } 5307 5308 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 5309 { 5310 struct btrfs_ioctl_encoded_io_args args; 5311 struct iovec iovstack[UIO_FASTIOV]; 5312 struct iovec *iov = iovstack; 5313 struct iov_iter iter; 5314 loff_t pos; 5315 struct kiocb kiocb; 5316 ssize_t ret; 5317 5318 if (!capable(CAP_SYS_ADMIN)) { 5319 ret = -EPERM; 5320 goto out_acct; 5321 } 5322 5323 if (!(file->f_mode & FMODE_WRITE)) { 5324 ret = -EBADF; 5325 goto out_acct; 5326 } 5327 5328 if (compat) { 5329 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5330 struct btrfs_ioctl_encoded_io_args_32 args32; 5331 5332 if (copy_from_user(&args32, argp, sizeof(args32))) { 5333 ret = -EFAULT; 5334 goto out_acct; 5335 } 5336 args.iov = compat_ptr(args32.iov); 5337 args.iovcnt = args32.iovcnt; 5338 args.offset = args32.offset; 5339 args.flags = args32.flags; 5340 args.len = args32.len; 5341 args.unencoded_len = args32.unencoded_len; 5342 args.unencoded_offset = args32.unencoded_offset; 5343 args.compression = args32.compression; 5344 args.encryption = args32.encryption; 5345 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 5346 #else 5347 return -ENOTTY; 5348 #endif 5349 } else { 5350 if (copy_from_user(&args, argp, sizeof(args))) { 5351 ret = -EFAULT; 5352 goto out_acct; 5353 } 5354 } 5355 5356 ret = -EINVAL; 5357 if (args.flags != 0) 5358 goto out_acct; 5359 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 5360 goto out_acct; 5361 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 5362 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 5363 goto out_acct; 5364 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 5365 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 5366 goto out_acct; 5367 if (args.unencoded_offset > args.unencoded_len) 5368 goto out_acct; 5369 if (args.len > args.unencoded_len - args.unencoded_offset) 5370 goto out_acct; 5371 5372 ret = import_iovec(WRITE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 5373 &iov, &iter); 5374 if (ret < 0) 5375 goto out_acct; 5376 5377 file_start_write(file); 5378 5379 if (iov_iter_count(&iter) == 0) { 5380 ret = 0; 5381 goto out_end_write; 5382 } 5383 pos = args.offset; 5384 ret = rw_verify_area(WRITE, file, &pos, args.len); 5385 if (ret < 0) 5386 goto out_end_write; 5387 5388 init_sync_kiocb(&kiocb, file); 5389 ret = kiocb_set_rw_flags(&kiocb, 0); 5390 if (ret) 5391 goto out_end_write; 5392 kiocb.ki_pos = pos; 5393 5394 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 5395 if (ret > 0) 5396 fsnotify_modify(file); 5397 5398 out_end_write: 5399 file_end_write(file); 5400 kfree(iov); 5401 out_acct: 5402 if (ret > 0) 5403 add_wchar(current, ret); 5404 inc_syscw(current); 5405 return ret; 5406 } 5407 5408 long btrfs_ioctl(struct file *file, unsigned int 5409 cmd, unsigned long arg) 5410 { 5411 struct inode *inode = file_inode(file); 5412 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5413 struct btrfs_root *root = BTRFS_I(inode)->root; 5414 void __user *argp = (void __user *)arg; 5415 5416 switch (cmd) { 5417 case FS_IOC_GETVERSION: 5418 return btrfs_ioctl_getversion(inode, argp); 5419 case FS_IOC_GETFSLABEL: 5420 return btrfs_ioctl_get_fslabel(fs_info, argp); 5421 case FS_IOC_SETFSLABEL: 5422 return btrfs_ioctl_set_fslabel(file, argp); 5423 case FITRIM: 5424 return btrfs_ioctl_fitrim(fs_info, argp); 5425 case BTRFS_IOC_SNAP_CREATE: 5426 return btrfs_ioctl_snap_create(file, argp, 0); 5427 case BTRFS_IOC_SNAP_CREATE_V2: 5428 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5429 case BTRFS_IOC_SUBVOL_CREATE: 5430 return btrfs_ioctl_snap_create(file, argp, 1); 5431 case BTRFS_IOC_SUBVOL_CREATE_V2: 5432 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5433 case BTRFS_IOC_SNAP_DESTROY: 5434 return btrfs_ioctl_snap_destroy(file, argp, false); 5435 case BTRFS_IOC_SNAP_DESTROY_V2: 5436 return btrfs_ioctl_snap_destroy(file, argp, true); 5437 case BTRFS_IOC_SUBVOL_GETFLAGS: 5438 return btrfs_ioctl_subvol_getflags(inode, argp); 5439 case BTRFS_IOC_SUBVOL_SETFLAGS: 5440 return btrfs_ioctl_subvol_setflags(file, argp); 5441 case BTRFS_IOC_DEFAULT_SUBVOL: 5442 return btrfs_ioctl_default_subvol(file, argp); 5443 case BTRFS_IOC_DEFRAG: 5444 return btrfs_ioctl_defrag(file, NULL); 5445 case BTRFS_IOC_DEFRAG_RANGE: 5446 return btrfs_ioctl_defrag(file, argp); 5447 case BTRFS_IOC_RESIZE: 5448 return btrfs_ioctl_resize(file, argp); 5449 case BTRFS_IOC_ADD_DEV: 5450 return btrfs_ioctl_add_dev(fs_info, argp); 5451 case BTRFS_IOC_RM_DEV: 5452 return btrfs_ioctl_rm_dev(file, argp); 5453 case BTRFS_IOC_RM_DEV_V2: 5454 return btrfs_ioctl_rm_dev_v2(file, argp); 5455 case BTRFS_IOC_FS_INFO: 5456 return btrfs_ioctl_fs_info(fs_info, argp); 5457 case BTRFS_IOC_DEV_INFO: 5458 return btrfs_ioctl_dev_info(fs_info, argp); 5459 case BTRFS_IOC_TREE_SEARCH: 5460 return btrfs_ioctl_tree_search(inode, argp); 5461 case BTRFS_IOC_TREE_SEARCH_V2: 5462 return btrfs_ioctl_tree_search_v2(inode, argp); 5463 case BTRFS_IOC_INO_LOOKUP: 5464 return btrfs_ioctl_ino_lookup(root, argp); 5465 case BTRFS_IOC_INO_PATHS: 5466 return btrfs_ioctl_ino_to_path(root, argp); 5467 case BTRFS_IOC_LOGICAL_INO: 5468 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5469 case BTRFS_IOC_LOGICAL_INO_V2: 5470 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5471 case BTRFS_IOC_SPACE_INFO: 5472 return btrfs_ioctl_space_info(fs_info, argp); 5473 case BTRFS_IOC_SYNC: { 5474 int ret; 5475 5476 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 5477 if (ret) 5478 return ret; 5479 ret = btrfs_sync_fs(inode->i_sb, 1); 5480 /* 5481 * The transaction thread may want to do more work, 5482 * namely it pokes the cleaner kthread that will start 5483 * processing uncleaned subvols. 5484 */ 5485 wake_up_process(fs_info->transaction_kthread); 5486 return ret; 5487 } 5488 case BTRFS_IOC_START_SYNC: 5489 return btrfs_ioctl_start_sync(root, argp); 5490 case BTRFS_IOC_WAIT_SYNC: 5491 return btrfs_ioctl_wait_sync(fs_info, argp); 5492 case BTRFS_IOC_SCRUB: 5493 return btrfs_ioctl_scrub(file, argp); 5494 case BTRFS_IOC_SCRUB_CANCEL: 5495 return btrfs_ioctl_scrub_cancel(fs_info); 5496 case BTRFS_IOC_SCRUB_PROGRESS: 5497 return btrfs_ioctl_scrub_progress(fs_info, argp); 5498 case BTRFS_IOC_BALANCE_V2: 5499 return btrfs_ioctl_balance(file, argp); 5500 case BTRFS_IOC_BALANCE_CTL: 5501 return btrfs_ioctl_balance_ctl(fs_info, arg); 5502 case BTRFS_IOC_BALANCE_PROGRESS: 5503 return btrfs_ioctl_balance_progress(fs_info, argp); 5504 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5505 return btrfs_ioctl_set_received_subvol(file, argp); 5506 #ifdef CONFIG_64BIT 5507 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5508 return btrfs_ioctl_set_received_subvol_32(file, argp); 5509 #endif 5510 case BTRFS_IOC_SEND: 5511 return _btrfs_ioctl_send(inode, argp, false); 5512 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5513 case BTRFS_IOC_SEND_32: 5514 return _btrfs_ioctl_send(inode, argp, true); 5515 #endif 5516 case BTRFS_IOC_GET_DEV_STATS: 5517 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5518 case BTRFS_IOC_QUOTA_CTL: 5519 return btrfs_ioctl_quota_ctl(file, argp); 5520 case BTRFS_IOC_QGROUP_ASSIGN: 5521 return btrfs_ioctl_qgroup_assign(file, argp); 5522 case BTRFS_IOC_QGROUP_CREATE: 5523 return btrfs_ioctl_qgroup_create(file, argp); 5524 case BTRFS_IOC_QGROUP_LIMIT: 5525 return btrfs_ioctl_qgroup_limit(file, argp); 5526 case BTRFS_IOC_QUOTA_RESCAN: 5527 return btrfs_ioctl_quota_rescan(file, argp); 5528 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5529 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5530 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5531 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5532 case BTRFS_IOC_DEV_REPLACE: 5533 return btrfs_ioctl_dev_replace(fs_info, argp); 5534 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5535 return btrfs_ioctl_get_supported_features(argp); 5536 case BTRFS_IOC_GET_FEATURES: 5537 return btrfs_ioctl_get_features(fs_info, argp); 5538 case BTRFS_IOC_SET_FEATURES: 5539 return btrfs_ioctl_set_features(file, argp); 5540 case BTRFS_IOC_GET_SUBVOL_INFO: 5541 return btrfs_ioctl_get_subvol_info(inode, argp); 5542 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5543 return btrfs_ioctl_get_subvol_rootref(root, argp); 5544 case BTRFS_IOC_INO_LOOKUP_USER: 5545 return btrfs_ioctl_ino_lookup_user(file, argp); 5546 case FS_IOC_ENABLE_VERITY: 5547 return fsverity_ioctl_enable(file, (const void __user *)argp); 5548 case FS_IOC_MEASURE_VERITY: 5549 return fsverity_ioctl_measure(file, argp); 5550 case BTRFS_IOC_ENCODED_READ: 5551 return btrfs_ioctl_encoded_read(file, argp, false); 5552 case BTRFS_IOC_ENCODED_WRITE: 5553 return btrfs_ioctl_encoded_write(file, argp, false); 5554 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5555 case BTRFS_IOC_ENCODED_READ_32: 5556 return btrfs_ioctl_encoded_read(file, argp, true); 5557 case BTRFS_IOC_ENCODED_WRITE_32: 5558 return btrfs_ioctl_encoded_write(file, argp, true); 5559 #endif 5560 } 5561 5562 return -ENOTTY; 5563 } 5564 5565 #ifdef CONFIG_COMPAT 5566 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5567 { 5568 /* 5569 * These all access 32-bit values anyway so no further 5570 * handling is necessary. 5571 */ 5572 switch (cmd) { 5573 case FS_IOC32_GETVERSION: 5574 cmd = FS_IOC_GETVERSION; 5575 break; 5576 } 5577 5578 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5579 } 5580 #endif 5581