xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 7132fe4f)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 
63 #ifdef CONFIG_64BIT
64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
65  * structures are incorrect, as the timespec structure from userspace
66  * is 4 bytes too small. We define these alternatives here to teach
67  * the kernel about the 32-bit struct packing.
68  */
69 struct btrfs_ioctl_timespec_32 {
70 	__u64 sec;
71 	__u32 nsec;
72 } __attribute__ ((__packed__));
73 
74 struct btrfs_ioctl_received_subvol_args_32 {
75 	char	uuid[BTRFS_UUID_SIZE];	/* in */
76 	__u64	stransid;		/* in */
77 	__u64	rtransid;		/* out */
78 	struct btrfs_ioctl_timespec_32 stime; /* in */
79 	struct btrfs_ioctl_timespec_32 rtime; /* out */
80 	__u64	flags;			/* in */
81 	__u64	reserved[16];		/* in */
82 } __attribute__ ((__packed__));
83 
84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
85 				struct btrfs_ioctl_received_subvol_args_32)
86 #endif
87 
88 
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff);
91 
92 /* Mask out flags that are inappropriate for the given type of inode. */
93 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
94 {
95 	if (S_ISDIR(mode))
96 		return flags;
97 	else if (S_ISREG(mode))
98 		return flags & ~FS_DIRSYNC_FL;
99 	else
100 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
101 }
102 
103 /*
104  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
105  */
106 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
126 		iflags |= FS_COMPR_FL;
127 	else if (flags & BTRFS_INODE_NOCOMPRESS)
128 		iflags |= FS_NOCOMP_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
136 void btrfs_update_iflags(struct inode *inode)
137 {
138 	struct btrfs_inode *ip = BTRFS_I(inode);
139 	unsigned int new_fl = 0;
140 
141 	if (ip->flags & BTRFS_INODE_SYNC)
142 		new_fl |= S_SYNC;
143 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
144 		new_fl |= S_IMMUTABLE;
145 	if (ip->flags & BTRFS_INODE_APPEND)
146 		new_fl |= S_APPEND;
147 	if (ip->flags & BTRFS_INODE_NOATIME)
148 		new_fl |= S_NOATIME;
149 	if (ip->flags & BTRFS_INODE_DIRSYNC)
150 		new_fl |= S_DIRSYNC;
151 
152 	set_mask_bits(&inode->i_flags,
153 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 		      new_fl);
155 }
156 
157 /*
158  * Inherit flags from the parent inode.
159  *
160  * Currently only the compression flags and the cow flags are inherited.
161  */
162 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
163 {
164 	unsigned int flags;
165 
166 	if (!dir)
167 		return;
168 
169 	flags = BTRFS_I(dir)->flags;
170 
171 	if (flags & BTRFS_INODE_NOCOMPRESS) {
172 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
173 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
174 	} else if (flags & BTRFS_INODE_COMPRESS) {
175 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
176 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
177 	}
178 
179 	if (flags & BTRFS_INODE_NODATACOW) {
180 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
181 		if (S_ISREG(inode->i_mode))
182 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
183 	}
184 
185 	btrfs_update_iflags(inode);
186 }
187 
188 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
189 {
190 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
191 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
192 
193 	if (copy_to_user(arg, &flags, sizeof(flags)))
194 		return -EFAULT;
195 	return 0;
196 }
197 
198 static int check_flags(unsigned int flags)
199 {
200 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
201 		      FS_NOATIME_FL | FS_NODUMP_FL | \
202 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
203 		      FS_NOCOMP_FL | FS_COMPR_FL |
204 		      FS_NOCOW_FL))
205 		return -EOPNOTSUPP;
206 
207 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
208 		return -EINVAL;
209 
210 	return 0;
211 }
212 
213 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
214 {
215 	struct inode *inode = file_inode(file);
216 	struct btrfs_inode *ip = BTRFS_I(inode);
217 	struct btrfs_root *root = ip->root;
218 	struct btrfs_trans_handle *trans;
219 	unsigned int flags, oldflags;
220 	int ret;
221 	u64 ip_oldflags;
222 	unsigned int i_oldflags;
223 	umode_t mode;
224 
225 	if (!inode_owner_or_capable(inode))
226 		return -EPERM;
227 
228 	if (btrfs_root_readonly(root))
229 		return -EROFS;
230 
231 	if (copy_from_user(&flags, arg, sizeof(flags)))
232 		return -EFAULT;
233 
234 	ret = check_flags(flags);
235 	if (ret)
236 		return ret;
237 
238 	ret = mnt_want_write_file(file);
239 	if (ret)
240 		return ret;
241 
242 	mutex_lock(&inode->i_mutex);
243 
244 	ip_oldflags = ip->flags;
245 	i_oldflags = inode->i_flags;
246 	mode = inode->i_mode;
247 
248 	flags = btrfs_mask_flags(inode->i_mode, flags);
249 	oldflags = btrfs_flags_to_ioctl(ip->flags);
250 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
251 		if (!capable(CAP_LINUX_IMMUTABLE)) {
252 			ret = -EPERM;
253 			goto out_unlock;
254 		}
255 	}
256 
257 	if (flags & FS_SYNC_FL)
258 		ip->flags |= BTRFS_INODE_SYNC;
259 	else
260 		ip->flags &= ~BTRFS_INODE_SYNC;
261 	if (flags & FS_IMMUTABLE_FL)
262 		ip->flags |= BTRFS_INODE_IMMUTABLE;
263 	else
264 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
265 	if (flags & FS_APPEND_FL)
266 		ip->flags |= BTRFS_INODE_APPEND;
267 	else
268 		ip->flags &= ~BTRFS_INODE_APPEND;
269 	if (flags & FS_NODUMP_FL)
270 		ip->flags |= BTRFS_INODE_NODUMP;
271 	else
272 		ip->flags &= ~BTRFS_INODE_NODUMP;
273 	if (flags & FS_NOATIME_FL)
274 		ip->flags |= BTRFS_INODE_NOATIME;
275 	else
276 		ip->flags &= ~BTRFS_INODE_NOATIME;
277 	if (flags & FS_DIRSYNC_FL)
278 		ip->flags |= BTRFS_INODE_DIRSYNC;
279 	else
280 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
281 	if (flags & FS_NOCOW_FL) {
282 		if (S_ISREG(mode)) {
283 			/*
284 			 * It's safe to turn csums off here, no extents exist.
285 			 * Otherwise we want the flag to reflect the real COW
286 			 * status of the file and will not set it.
287 			 */
288 			if (inode->i_size == 0)
289 				ip->flags |= BTRFS_INODE_NODATACOW
290 					   | BTRFS_INODE_NODATASUM;
291 		} else {
292 			ip->flags |= BTRFS_INODE_NODATACOW;
293 		}
294 	} else {
295 		/*
296 		 * Revert back under same assuptions as above
297 		 */
298 		if (S_ISREG(mode)) {
299 			if (inode->i_size == 0)
300 				ip->flags &= ~(BTRFS_INODE_NODATACOW
301 				             | BTRFS_INODE_NODATASUM);
302 		} else {
303 			ip->flags &= ~BTRFS_INODE_NODATACOW;
304 		}
305 	}
306 
307 	/*
308 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
309 	 * flag may be changed automatically if compression code won't make
310 	 * things smaller.
311 	 */
312 	if (flags & FS_NOCOMP_FL) {
313 		ip->flags &= ~BTRFS_INODE_COMPRESS;
314 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
315 
316 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
317 		if (ret && ret != -ENODATA)
318 			goto out_drop;
319 	} else if (flags & FS_COMPR_FL) {
320 		const char *comp;
321 
322 		ip->flags |= BTRFS_INODE_COMPRESS;
323 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
324 
325 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
326 			comp = "lzo";
327 		else
328 			comp = "zlib";
329 		ret = btrfs_set_prop(inode, "btrfs.compression",
330 				     comp, strlen(comp), 0);
331 		if (ret)
332 			goto out_drop;
333 
334 	} else {
335 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
336 	}
337 
338 	trans = btrfs_start_transaction(root, 1);
339 	if (IS_ERR(trans)) {
340 		ret = PTR_ERR(trans);
341 		goto out_drop;
342 	}
343 
344 	btrfs_update_iflags(inode);
345 	inode_inc_iversion(inode);
346 	inode->i_ctime = CURRENT_TIME;
347 	ret = btrfs_update_inode(trans, root, inode);
348 
349 	btrfs_end_transaction(trans, root);
350  out_drop:
351 	if (ret) {
352 		ip->flags = ip_oldflags;
353 		inode->i_flags = i_oldflags;
354 	}
355 
356  out_unlock:
357 	mutex_unlock(&inode->i_mutex);
358 	mnt_drop_write_file(file);
359 	return ret;
360 }
361 
362 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
363 {
364 	struct inode *inode = file_inode(file);
365 
366 	return put_user(inode->i_generation, arg);
367 }
368 
369 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
370 {
371 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
372 	struct btrfs_device *device;
373 	struct request_queue *q;
374 	struct fstrim_range range;
375 	u64 minlen = ULLONG_MAX;
376 	u64 num_devices = 0;
377 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
378 	int ret;
379 
380 	if (!capable(CAP_SYS_ADMIN))
381 		return -EPERM;
382 
383 	rcu_read_lock();
384 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
385 				dev_list) {
386 		if (!device->bdev)
387 			continue;
388 		q = bdev_get_queue(device->bdev);
389 		if (blk_queue_discard(q)) {
390 			num_devices++;
391 			minlen = min((u64)q->limits.discard_granularity,
392 				     minlen);
393 		}
394 	}
395 	rcu_read_unlock();
396 
397 	if (!num_devices)
398 		return -EOPNOTSUPP;
399 	if (copy_from_user(&range, arg, sizeof(range)))
400 		return -EFAULT;
401 	if (range.start > total_bytes ||
402 	    range.len < fs_info->sb->s_blocksize)
403 		return -EINVAL;
404 
405 	range.len = min(range.len, total_bytes - range.start);
406 	range.minlen = max(range.minlen, minlen);
407 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
408 	if (ret < 0)
409 		return ret;
410 
411 	if (copy_to_user(arg, &range, sizeof(range)))
412 		return -EFAULT;
413 
414 	return 0;
415 }
416 
417 int btrfs_is_empty_uuid(u8 *uuid)
418 {
419 	int i;
420 
421 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
422 		if (uuid[i])
423 			return 0;
424 	}
425 	return 1;
426 }
427 
428 static noinline int create_subvol(struct inode *dir,
429 				  struct dentry *dentry,
430 				  char *name, int namelen,
431 				  u64 *async_transid,
432 				  struct btrfs_qgroup_inherit *inherit)
433 {
434 	struct btrfs_trans_handle *trans;
435 	struct btrfs_key key;
436 	struct btrfs_root_item root_item;
437 	struct btrfs_inode_item *inode_item;
438 	struct extent_buffer *leaf;
439 	struct btrfs_root *root = BTRFS_I(dir)->root;
440 	struct btrfs_root *new_root;
441 	struct btrfs_block_rsv block_rsv;
442 	struct timespec cur_time = CURRENT_TIME;
443 	struct inode *inode;
444 	int ret;
445 	int err;
446 	u64 objectid;
447 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
448 	u64 index = 0;
449 	u64 qgroup_reserved;
450 	uuid_le new_uuid;
451 
452 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
453 	if (ret)
454 		return ret;
455 
456 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
457 	/*
458 	 * The same as the snapshot creation, please see the comment
459 	 * of create_snapshot().
460 	 */
461 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
462 					       8, &qgroup_reserved, false);
463 	if (ret)
464 		return ret;
465 
466 	trans = btrfs_start_transaction(root, 0);
467 	if (IS_ERR(trans)) {
468 		ret = PTR_ERR(trans);
469 		btrfs_subvolume_release_metadata(root, &block_rsv,
470 						 qgroup_reserved);
471 		return ret;
472 	}
473 	trans->block_rsv = &block_rsv;
474 	trans->bytes_reserved = block_rsv.size;
475 
476 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
477 	if (ret)
478 		goto fail;
479 
480 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
481 				      0, objectid, NULL, 0, 0, 0);
482 	if (IS_ERR(leaf)) {
483 		ret = PTR_ERR(leaf);
484 		goto fail;
485 	}
486 
487 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
488 	btrfs_set_header_bytenr(leaf, leaf->start);
489 	btrfs_set_header_generation(leaf, trans->transid);
490 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
491 	btrfs_set_header_owner(leaf, objectid);
492 
493 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
494 			    BTRFS_FSID_SIZE);
495 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
496 			    btrfs_header_chunk_tree_uuid(leaf),
497 			    BTRFS_UUID_SIZE);
498 	btrfs_mark_buffer_dirty(leaf);
499 
500 	memset(&root_item, 0, sizeof(root_item));
501 
502 	inode_item = &root_item.inode;
503 	btrfs_set_stack_inode_generation(inode_item, 1);
504 	btrfs_set_stack_inode_size(inode_item, 3);
505 	btrfs_set_stack_inode_nlink(inode_item, 1);
506 	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
507 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
508 
509 	btrfs_set_root_flags(&root_item, 0);
510 	btrfs_set_root_limit(&root_item, 0);
511 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
512 
513 	btrfs_set_root_bytenr(&root_item, leaf->start);
514 	btrfs_set_root_generation(&root_item, trans->transid);
515 	btrfs_set_root_level(&root_item, 0);
516 	btrfs_set_root_refs(&root_item, 1);
517 	btrfs_set_root_used(&root_item, leaf->len);
518 	btrfs_set_root_last_snapshot(&root_item, 0);
519 
520 	btrfs_set_root_generation_v2(&root_item,
521 			btrfs_root_generation(&root_item));
522 	uuid_le_gen(&new_uuid);
523 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
524 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
525 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
526 	root_item.ctime = root_item.otime;
527 	btrfs_set_root_ctransid(&root_item, trans->transid);
528 	btrfs_set_root_otransid(&root_item, trans->transid);
529 
530 	btrfs_tree_unlock(leaf);
531 	free_extent_buffer(leaf);
532 	leaf = NULL;
533 
534 	btrfs_set_root_dirid(&root_item, new_dirid);
535 
536 	key.objectid = objectid;
537 	key.offset = 0;
538 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
539 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
540 				&root_item);
541 	if (ret)
542 		goto fail;
543 
544 	key.offset = (u64)-1;
545 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
546 	if (IS_ERR(new_root)) {
547 		btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
548 		ret = PTR_ERR(new_root);
549 		goto fail;
550 	}
551 
552 	btrfs_record_root_in_trans(trans, new_root);
553 
554 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
555 	if (ret) {
556 		/* We potentially lose an unused inode item here */
557 		btrfs_abort_transaction(trans, root, ret);
558 		goto fail;
559 	}
560 
561 	/*
562 	 * insert the directory item
563 	 */
564 	ret = btrfs_set_inode_index(dir, &index);
565 	if (ret) {
566 		btrfs_abort_transaction(trans, root, ret);
567 		goto fail;
568 	}
569 
570 	ret = btrfs_insert_dir_item(trans, root,
571 				    name, namelen, dir, &key,
572 				    BTRFS_FT_DIR, index);
573 	if (ret) {
574 		btrfs_abort_transaction(trans, root, ret);
575 		goto fail;
576 	}
577 
578 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
579 	ret = btrfs_update_inode(trans, root, dir);
580 	BUG_ON(ret);
581 
582 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
583 				 objectid, root->root_key.objectid,
584 				 btrfs_ino(dir), index, name, namelen);
585 	BUG_ON(ret);
586 
587 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
588 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
589 				  objectid);
590 	if (ret)
591 		btrfs_abort_transaction(trans, root, ret);
592 
593 fail:
594 	trans->block_rsv = NULL;
595 	trans->bytes_reserved = 0;
596 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
597 
598 	if (async_transid) {
599 		*async_transid = trans->transid;
600 		err = btrfs_commit_transaction_async(trans, root, 1);
601 		if (err)
602 			err = btrfs_commit_transaction(trans, root);
603 	} else {
604 		err = btrfs_commit_transaction(trans, root);
605 	}
606 	if (err && !ret)
607 		ret = err;
608 
609 	if (!ret) {
610 		inode = btrfs_lookup_dentry(dir, dentry);
611 		if (IS_ERR(inode))
612 			return PTR_ERR(inode);
613 		d_instantiate(dentry, inode);
614 	}
615 	return ret;
616 }
617 
618 static void btrfs_wait_nocow_write(struct btrfs_root *root)
619 {
620 	s64 writers;
621 	DEFINE_WAIT(wait);
622 
623 	do {
624 		prepare_to_wait(&root->subv_writers->wait, &wait,
625 				TASK_UNINTERRUPTIBLE);
626 
627 		writers = percpu_counter_sum(&root->subv_writers->counter);
628 		if (writers)
629 			schedule();
630 
631 		finish_wait(&root->subv_writers->wait, &wait);
632 	} while (writers);
633 }
634 
635 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
636 			   struct dentry *dentry, char *name, int namelen,
637 			   u64 *async_transid, bool readonly,
638 			   struct btrfs_qgroup_inherit *inherit)
639 {
640 	struct inode *inode;
641 	struct btrfs_pending_snapshot *pending_snapshot;
642 	struct btrfs_trans_handle *trans;
643 	int ret;
644 
645 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
646 		return -EINVAL;
647 
648 	atomic_inc(&root->will_be_snapshoted);
649 	smp_mb__after_atomic();
650 	btrfs_wait_nocow_write(root);
651 
652 	ret = btrfs_start_delalloc_inodes(root, 0);
653 	if (ret)
654 		goto out;
655 
656 	btrfs_wait_ordered_extents(root, -1);
657 
658 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
659 	if (!pending_snapshot) {
660 		ret = -ENOMEM;
661 		goto out;
662 	}
663 
664 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
665 			     BTRFS_BLOCK_RSV_TEMP);
666 	/*
667 	 * 1 - parent dir inode
668 	 * 2 - dir entries
669 	 * 1 - root item
670 	 * 2 - root ref/backref
671 	 * 1 - root of snapshot
672 	 * 1 - UUID item
673 	 */
674 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
675 					&pending_snapshot->block_rsv, 8,
676 					&pending_snapshot->qgroup_reserved,
677 					false);
678 	if (ret)
679 		goto free;
680 
681 	pending_snapshot->dentry = dentry;
682 	pending_snapshot->root = root;
683 	pending_snapshot->readonly = readonly;
684 	pending_snapshot->dir = dir;
685 	pending_snapshot->inherit = inherit;
686 
687 	trans = btrfs_start_transaction(root, 0);
688 	if (IS_ERR(trans)) {
689 		ret = PTR_ERR(trans);
690 		goto fail;
691 	}
692 
693 	spin_lock(&root->fs_info->trans_lock);
694 	list_add(&pending_snapshot->list,
695 		 &trans->transaction->pending_snapshots);
696 	spin_unlock(&root->fs_info->trans_lock);
697 	if (async_transid) {
698 		*async_transid = trans->transid;
699 		ret = btrfs_commit_transaction_async(trans,
700 				     root->fs_info->extent_root, 1);
701 		if (ret)
702 			ret = btrfs_commit_transaction(trans, root);
703 	} else {
704 		ret = btrfs_commit_transaction(trans,
705 					       root->fs_info->extent_root);
706 	}
707 	if (ret)
708 		goto fail;
709 
710 	ret = pending_snapshot->error;
711 	if (ret)
712 		goto fail;
713 
714 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
715 	if (ret)
716 		goto fail;
717 
718 	/*
719 	 * If orphan cleanup did remove any orphans, it means the tree was
720 	 * modified and therefore the commit root is not the same as the
721 	 * current root anymore. This is a problem, because send uses the
722 	 * commit root and therefore can see inode items that don't exist
723 	 * in the current root anymore, and for example make calls to
724 	 * btrfs_iget, which will do tree lookups based on the current root
725 	 * and not on the commit root. Those lookups will fail, returning a
726 	 * -ESTALE error, and making send fail with that error. So make sure
727 	 * a send does not see any orphans we have just removed, and that it
728 	 * will see the same inodes regardless of whether a transaction
729 	 * commit happened before it started (meaning that the commit root
730 	 * will be the same as the current root) or not.
731 	 */
732 	if (readonly && pending_snapshot->snap->node !=
733 	    pending_snapshot->snap->commit_root) {
734 		trans = btrfs_join_transaction(pending_snapshot->snap);
735 		if (IS_ERR(trans) && PTR_ERR(trans) != -ENOENT) {
736 			ret = PTR_ERR(trans);
737 			goto fail;
738 		}
739 		if (!IS_ERR(trans)) {
740 			ret = btrfs_commit_transaction(trans,
741 						       pending_snapshot->snap);
742 			if (ret)
743 				goto fail;
744 		}
745 	}
746 
747 	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
748 	if (IS_ERR(inode)) {
749 		ret = PTR_ERR(inode);
750 		goto fail;
751 	}
752 
753 	d_instantiate(dentry, inode);
754 	ret = 0;
755 fail:
756 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
757 					 &pending_snapshot->block_rsv,
758 					 pending_snapshot->qgroup_reserved);
759 free:
760 	kfree(pending_snapshot);
761 out:
762 	atomic_dec(&root->will_be_snapshoted);
763 	return ret;
764 }
765 
766 /*  copy of check_sticky in fs/namei.c()
767 * It's inline, so penalty for filesystems that don't use sticky bit is
768 * minimal.
769 */
770 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
771 {
772 	kuid_t fsuid = current_fsuid();
773 
774 	if (!(dir->i_mode & S_ISVTX))
775 		return 0;
776 	if (uid_eq(inode->i_uid, fsuid))
777 		return 0;
778 	if (uid_eq(dir->i_uid, fsuid))
779 		return 0;
780 	return !capable(CAP_FOWNER);
781 }
782 
783 /*  copy of may_delete in fs/namei.c()
784  *	Check whether we can remove a link victim from directory dir, check
785  *  whether the type of victim is right.
786  *  1. We can't do it if dir is read-only (done in permission())
787  *  2. We should have write and exec permissions on dir
788  *  3. We can't remove anything from append-only dir
789  *  4. We can't do anything with immutable dir (done in permission())
790  *  5. If the sticky bit on dir is set we should either
791  *	a. be owner of dir, or
792  *	b. be owner of victim, or
793  *	c. have CAP_FOWNER capability
794  *  6. If the victim is append-only or immutable we can't do antyhing with
795  *     links pointing to it.
796  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
797  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
798  *  9. We can't remove a root or mountpoint.
799  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
800  *     nfs_async_unlink().
801  */
802 
803 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
804 {
805 	int error;
806 
807 	if (!victim->d_inode)
808 		return -ENOENT;
809 
810 	BUG_ON(victim->d_parent->d_inode != dir);
811 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
812 
813 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
814 	if (error)
815 		return error;
816 	if (IS_APPEND(dir))
817 		return -EPERM;
818 	if (btrfs_check_sticky(dir, victim->d_inode)||
819 		IS_APPEND(victim->d_inode)||
820 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
821 		return -EPERM;
822 	if (isdir) {
823 		if (!S_ISDIR(victim->d_inode->i_mode))
824 			return -ENOTDIR;
825 		if (IS_ROOT(victim))
826 			return -EBUSY;
827 	} else if (S_ISDIR(victim->d_inode->i_mode))
828 		return -EISDIR;
829 	if (IS_DEADDIR(dir))
830 		return -ENOENT;
831 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
832 		return -EBUSY;
833 	return 0;
834 }
835 
836 /* copy of may_create in fs/namei.c() */
837 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
838 {
839 	if (child->d_inode)
840 		return -EEXIST;
841 	if (IS_DEADDIR(dir))
842 		return -ENOENT;
843 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
844 }
845 
846 /*
847  * Create a new subvolume below @parent.  This is largely modeled after
848  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
849  * inside this filesystem so it's quite a bit simpler.
850  */
851 static noinline int btrfs_mksubvol(struct path *parent,
852 				   char *name, int namelen,
853 				   struct btrfs_root *snap_src,
854 				   u64 *async_transid, bool readonly,
855 				   struct btrfs_qgroup_inherit *inherit)
856 {
857 	struct inode *dir  = parent->dentry->d_inode;
858 	struct dentry *dentry;
859 	int error;
860 
861 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
862 	if (error == -EINTR)
863 		return error;
864 
865 	dentry = lookup_one_len(name, parent->dentry, namelen);
866 	error = PTR_ERR(dentry);
867 	if (IS_ERR(dentry))
868 		goto out_unlock;
869 
870 	error = -EEXIST;
871 	if (dentry->d_inode)
872 		goto out_dput;
873 
874 	error = btrfs_may_create(dir, dentry);
875 	if (error)
876 		goto out_dput;
877 
878 	/*
879 	 * even if this name doesn't exist, we may get hash collisions.
880 	 * check for them now when we can safely fail
881 	 */
882 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
883 					       dir->i_ino, name,
884 					       namelen);
885 	if (error)
886 		goto out_dput;
887 
888 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
889 
890 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
891 		goto out_up_read;
892 
893 	if (snap_src) {
894 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
895 					async_transid, readonly, inherit);
896 	} else {
897 		error = create_subvol(dir, dentry, name, namelen,
898 				      async_transid, inherit);
899 	}
900 	if (!error)
901 		fsnotify_mkdir(dir, dentry);
902 out_up_read:
903 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
904 out_dput:
905 	dput(dentry);
906 out_unlock:
907 	mutex_unlock(&dir->i_mutex);
908 	return error;
909 }
910 
911 /*
912  * When we're defragging a range, we don't want to kick it off again
913  * if it is really just waiting for delalloc to send it down.
914  * If we find a nice big extent or delalloc range for the bytes in the
915  * file you want to defrag, we return 0 to let you know to skip this
916  * part of the file
917  */
918 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
919 {
920 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
921 	struct extent_map *em = NULL;
922 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
923 	u64 end;
924 
925 	read_lock(&em_tree->lock);
926 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
927 	read_unlock(&em_tree->lock);
928 
929 	if (em) {
930 		end = extent_map_end(em);
931 		free_extent_map(em);
932 		if (end - offset > thresh)
933 			return 0;
934 	}
935 	/* if we already have a nice delalloc here, just stop */
936 	thresh /= 2;
937 	end = count_range_bits(io_tree, &offset, offset + thresh,
938 			       thresh, EXTENT_DELALLOC, 1);
939 	if (end >= thresh)
940 		return 0;
941 	return 1;
942 }
943 
944 /*
945  * helper function to walk through a file and find extents
946  * newer than a specific transid, and smaller than thresh.
947  *
948  * This is used by the defragging code to find new and small
949  * extents
950  */
951 static int find_new_extents(struct btrfs_root *root,
952 			    struct inode *inode, u64 newer_than,
953 			    u64 *off, int thresh)
954 {
955 	struct btrfs_path *path;
956 	struct btrfs_key min_key;
957 	struct extent_buffer *leaf;
958 	struct btrfs_file_extent_item *extent;
959 	int type;
960 	int ret;
961 	u64 ino = btrfs_ino(inode);
962 
963 	path = btrfs_alloc_path();
964 	if (!path)
965 		return -ENOMEM;
966 
967 	min_key.objectid = ino;
968 	min_key.type = BTRFS_EXTENT_DATA_KEY;
969 	min_key.offset = *off;
970 
971 	while (1) {
972 		path->keep_locks = 1;
973 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
974 		if (ret != 0)
975 			goto none;
976 		path->keep_locks = 0;
977 		btrfs_unlock_up_safe(path, 1);
978 process_slot:
979 		if (min_key.objectid != ino)
980 			goto none;
981 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
982 			goto none;
983 
984 		leaf = path->nodes[0];
985 		extent = btrfs_item_ptr(leaf, path->slots[0],
986 					struct btrfs_file_extent_item);
987 
988 		type = btrfs_file_extent_type(leaf, extent);
989 		if (type == BTRFS_FILE_EXTENT_REG &&
990 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
991 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
992 			*off = min_key.offset;
993 			btrfs_free_path(path);
994 			return 0;
995 		}
996 
997 		path->slots[0]++;
998 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
999 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1000 			goto process_slot;
1001 		}
1002 
1003 		if (min_key.offset == (u64)-1)
1004 			goto none;
1005 
1006 		min_key.offset++;
1007 		btrfs_release_path(path);
1008 	}
1009 none:
1010 	btrfs_free_path(path);
1011 	return -ENOENT;
1012 }
1013 
1014 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1015 {
1016 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1017 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1018 	struct extent_map *em;
1019 	u64 len = PAGE_CACHE_SIZE;
1020 
1021 	/*
1022 	 * hopefully we have this extent in the tree already, try without
1023 	 * the full extent lock
1024 	 */
1025 	read_lock(&em_tree->lock);
1026 	em = lookup_extent_mapping(em_tree, start, len);
1027 	read_unlock(&em_tree->lock);
1028 
1029 	if (!em) {
1030 		struct extent_state *cached = NULL;
1031 		u64 end = start + len - 1;
1032 
1033 		/* get the big lock and read metadata off disk */
1034 		lock_extent_bits(io_tree, start, end, 0, &cached);
1035 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1036 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1037 
1038 		if (IS_ERR(em))
1039 			return NULL;
1040 	}
1041 
1042 	return em;
1043 }
1044 
1045 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1046 {
1047 	struct extent_map *next;
1048 	bool ret = true;
1049 
1050 	/* this is the last extent */
1051 	if (em->start + em->len >= i_size_read(inode))
1052 		return false;
1053 
1054 	next = defrag_lookup_extent(inode, em->start + em->len);
1055 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE ||
1056 	    (em->block_start + em->block_len == next->block_start))
1057 		ret = false;
1058 
1059 	free_extent_map(next);
1060 	return ret;
1061 }
1062 
1063 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
1064 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1065 			       int compress)
1066 {
1067 	struct extent_map *em;
1068 	int ret = 1;
1069 	bool next_mergeable = true;
1070 
1071 	/*
1072 	 * make sure that once we start defragging an extent, we keep on
1073 	 * defragging it
1074 	 */
1075 	if (start < *defrag_end)
1076 		return 1;
1077 
1078 	*skip = 0;
1079 
1080 	em = defrag_lookup_extent(inode, start);
1081 	if (!em)
1082 		return 0;
1083 
1084 	/* this will cover holes, and inline extents */
1085 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1086 		ret = 0;
1087 		goto out;
1088 	}
1089 
1090 	next_mergeable = defrag_check_next_extent(inode, em);
1091 
1092 	/*
1093 	 * we hit a real extent, if it is big or the next extent is not a
1094 	 * real extent, don't bother defragging it
1095 	 */
1096 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1097 	    (em->len >= thresh || !next_mergeable))
1098 		ret = 0;
1099 out:
1100 	/*
1101 	 * last_len ends up being a counter of how many bytes we've defragged.
1102 	 * every time we choose not to defrag an extent, we reset *last_len
1103 	 * so that the next tiny extent will force a defrag.
1104 	 *
1105 	 * The end result of this is that tiny extents before a single big
1106 	 * extent will force at least part of that big extent to be defragged.
1107 	 */
1108 	if (ret) {
1109 		*defrag_end = extent_map_end(em);
1110 	} else {
1111 		*last_len = 0;
1112 		*skip = extent_map_end(em);
1113 		*defrag_end = 0;
1114 	}
1115 
1116 	free_extent_map(em);
1117 	return ret;
1118 }
1119 
1120 /*
1121  * it doesn't do much good to defrag one or two pages
1122  * at a time.  This pulls in a nice chunk of pages
1123  * to COW and defrag.
1124  *
1125  * It also makes sure the delalloc code has enough
1126  * dirty data to avoid making new small extents as part
1127  * of the defrag
1128  *
1129  * It's a good idea to start RA on this range
1130  * before calling this.
1131  */
1132 static int cluster_pages_for_defrag(struct inode *inode,
1133 				    struct page **pages,
1134 				    unsigned long start_index,
1135 				    unsigned long num_pages)
1136 {
1137 	unsigned long file_end;
1138 	u64 isize = i_size_read(inode);
1139 	u64 page_start;
1140 	u64 page_end;
1141 	u64 page_cnt;
1142 	int ret;
1143 	int i;
1144 	int i_done;
1145 	struct btrfs_ordered_extent *ordered;
1146 	struct extent_state *cached_state = NULL;
1147 	struct extent_io_tree *tree;
1148 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1149 
1150 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1151 	if (!isize || start_index > file_end)
1152 		return 0;
1153 
1154 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1155 
1156 	ret = btrfs_delalloc_reserve_space(inode,
1157 					   page_cnt << PAGE_CACHE_SHIFT);
1158 	if (ret)
1159 		return ret;
1160 	i_done = 0;
1161 	tree = &BTRFS_I(inode)->io_tree;
1162 
1163 	/* step one, lock all the pages */
1164 	for (i = 0; i < page_cnt; i++) {
1165 		struct page *page;
1166 again:
1167 		page = find_or_create_page(inode->i_mapping,
1168 					   start_index + i, mask);
1169 		if (!page)
1170 			break;
1171 
1172 		page_start = page_offset(page);
1173 		page_end = page_start + PAGE_CACHE_SIZE - 1;
1174 		while (1) {
1175 			lock_extent_bits(tree, page_start, page_end,
1176 					 0, &cached_state);
1177 			ordered = btrfs_lookup_ordered_extent(inode,
1178 							      page_start);
1179 			unlock_extent_cached(tree, page_start, page_end,
1180 					     &cached_state, GFP_NOFS);
1181 			if (!ordered)
1182 				break;
1183 
1184 			unlock_page(page);
1185 			btrfs_start_ordered_extent(inode, ordered, 1);
1186 			btrfs_put_ordered_extent(ordered);
1187 			lock_page(page);
1188 			/*
1189 			 * we unlocked the page above, so we need check if
1190 			 * it was released or not.
1191 			 */
1192 			if (page->mapping != inode->i_mapping) {
1193 				unlock_page(page);
1194 				page_cache_release(page);
1195 				goto again;
1196 			}
1197 		}
1198 
1199 		if (!PageUptodate(page)) {
1200 			btrfs_readpage(NULL, page);
1201 			lock_page(page);
1202 			if (!PageUptodate(page)) {
1203 				unlock_page(page);
1204 				page_cache_release(page);
1205 				ret = -EIO;
1206 				break;
1207 			}
1208 		}
1209 
1210 		if (page->mapping != inode->i_mapping) {
1211 			unlock_page(page);
1212 			page_cache_release(page);
1213 			goto again;
1214 		}
1215 
1216 		pages[i] = page;
1217 		i_done++;
1218 	}
1219 	if (!i_done || ret)
1220 		goto out;
1221 
1222 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1223 		goto out;
1224 
1225 	/*
1226 	 * so now we have a nice long stream of locked
1227 	 * and up to date pages, lets wait on them
1228 	 */
1229 	for (i = 0; i < i_done; i++)
1230 		wait_on_page_writeback(pages[i]);
1231 
1232 	page_start = page_offset(pages[0]);
1233 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1234 
1235 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1236 			 page_start, page_end - 1, 0, &cached_state);
1237 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1238 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1239 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1240 			  &cached_state, GFP_NOFS);
1241 
1242 	if (i_done != page_cnt) {
1243 		spin_lock(&BTRFS_I(inode)->lock);
1244 		BTRFS_I(inode)->outstanding_extents++;
1245 		spin_unlock(&BTRFS_I(inode)->lock);
1246 		btrfs_delalloc_release_space(inode,
1247 				     (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1248 	}
1249 
1250 
1251 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1252 			  &cached_state, GFP_NOFS);
1253 
1254 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1255 			     page_start, page_end - 1, &cached_state,
1256 			     GFP_NOFS);
1257 
1258 	for (i = 0; i < i_done; i++) {
1259 		clear_page_dirty_for_io(pages[i]);
1260 		ClearPageChecked(pages[i]);
1261 		set_page_extent_mapped(pages[i]);
1262 		set_page_dirty(pages[i]);
1263 		unlock_page(pages[i]);
1264 		page_cache_release(pages[i]);
1265 	}
1266 	return i_done;
1267 out:
1268 	for (i = 0; i < i_done; i++) {
1269 		unlock_page(pages[i]);
1270 		page_cache_release(pages[i]);
1271 	}
1272 	btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1273 	return ret;
1274 
1275 }
1276 
1277 int btrfs_defrag_file(struct inode *inode, struct file *file,
1278 		      struct btrfs_ioctl_defrag_range_args *range,
1279 		      u64 newer_than, unsigned long max_to_defrag)
1280 {
1281 	struct btrfs_root *root = BTRFS_I(inode)->root;
1282 	struct file_ra_state *ra = NULL;
1283 	unsigned long last_index;
1284 	u64 isize = i_size_read(inode);
1285 	u64 last_len = 0;
1286 	u64 skip = 0;
1287 	u64 defrag_end = 0;
1288 	u64 newer_off = range->start;
1289 	unsigned long i;
1290 	unsigned long ra_index = 0;
1291 	int ret;
1292 	int defrag_count = 0;
1293 	int compress_type = BTRFS_COMPRESS_ZLIB;
1294 	int extent_thresh = range->extent_thresh;
1295 	unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1296 	unsigned long cluster = max_cluster;
1297 	u64 new_align = ~((u64)128 * 1024 - 1);
1298 	struct page **pages = NULL;
1299 
1300 	if (isize == 0)
1301 		return 0;
1302 
1303 	if (range->start >= isize)
1304 		return -EINVAL;
1305 
1306 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1307 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1308 			return -EINVAL;
1309 		if (range->compress_type)
1310 			compress_type = range->compress_type;
1311 	}
1312 
1313 	if (extent_thresh == 0)
1314 		extent_thresh = 256 * 1024;
1315 
1316 	/*
1317 	 * if we were not given a file, allocate a readahead
1318 	 * context
1319 	 */
1320 	if (!file) {
1321 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1322 		if (!ra)
1323 			return -ENOMEM;
1324 		file_ra_state_init(ra, inode->i_mapping);
1325 	} else {
1326 		ra = &file->f_ra;
1327 	}
1328 
1329 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1330 			GFP_NOFS);
1331 	if (!pages) {
1332 		ret = -ENOMEM;
1333 		goto out_ra;
1334 	}
1335 
1336 	/* find the last page to defrag */
1337 	if (range->start + range->len > range->start) {
1338 		last_index = min_t(u64, isize - 1,
1339 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1340 	} else {
1341 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1342 	}
1343 
1344 	if (newer_than) {
1345 		ret = find_new_extents(root, inode, newer_than,
1346 				       &newer_off, 64 * 1024);
1347 		if (!ret) {
1348 			range->start = newer_off;
1349 			/*
1350 			 * we always align our defrag to help keep
1351 			 * the extents in the file evenly spaced
1352 			 */
1353 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1354 		} else
1355 			goto out_ra;
1356 	} else {
1357 		i = range->start >> PAGE_CACHE_SHIFT;
1358 	}
1359 	if (!max_to_defrag)
1360 		max_to_defrag = last_index + 1;
1361 
1362 	/*
1363 	 * make writeback starts from i, so the defrag range can be
1364 	 * written sequentially.
1365 	 */
1366 	if (i < inode->i_mapping->writeback_index)
1367 		inode->i_mapping->writeback_index = i;
1368 
1369 	while (i <= last_index && defrag_count < max_to_defrag &&
1370 	       (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1371 		PAGE_CACHE_SHIFT)) {
1372 		/*
1373 		 * make sure we stop running if someone unmounts
1374 		 * the FS
1375 		 */
1376 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1377 			break;
1378 
1379 		if (btrfs_defrag_cancelled(root->fs_info)) {
1380 			printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1381 			ret = -EAGAIN;
1382 			break;
1383 		}
1384 
1385 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1386 					 extent_thresh, &last_len, &skip,
1387 					 &defrag_end, range->flags &
1388 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1389 			unsigned long next;
1390 			/*
1391 			 * the should_defrag function tells us how much to skip
1392 			 * bump our counter by the suggested amount
1393 			 */
1394 			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1395 			i = max(i + 1, next);
1396 			continue;
1397 		}
1398 
1399 		if (!newer_than) {
1400 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1401 				   PAGE_CACHE_SHIFT) - i;
1402 			cluster = min(cluster, max_cluster);
1403 		} else {
1404 			cluster = max_cluster;
1405 		}
1406 
1407 		if (i + cluster > ra_index) {
1408 			ra_index = max(i, ra_index);
1409 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1410 				       cluster);
1411 			ra_index += max_cluster;
1412 		}
1413 
1414 		mutex_lock(&inode->i_mutex);
1415 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1416 			BTRFS_I(inode)->force_compress = compress_type;
1417 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1418 		if (ret < 0) {
1419 			mutex_unlock(&inode->i_mutex);
1420 			goto out_ra;
1421 		}
1422 
1423 		defrag_count += ret;
1424 		balance_dirty_pages_ratelimited(inode->i_mapping);
1425 		mutex_unlock(&inode->i_mutex);
1426 
1427 		if (newer_than) {
1428 			if (newer_off == (u64)-1)
1429 				break;
1430 
1431 			if (ret > 0)
1432 				i += ret;
1433 
1434 			newer_off = max(newer_off + 1,
1435 					(u64)i << PAGE_CACHE_SHIFT);
1436 
1437 			ret = find_new_extents(root, inode,
1438 					       newer_than, &newer_off,
1439 					       64 * 1024);
1440 			if (!ret) {
1441 				range->start = newer_off;
1442 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1443 			} else {
1444 				break;
1445 			}
1446 		} else {
1447 			if (ret > 0) {
1448 				i += ret;
1449 				last_len += ret << PAGE_CACHE_SHIFT;
1450 			} else {
1451 				i++;
1452 				last_len = 0;
1453 			}
1454 		}
1455 	}
1456 
1457 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1458 		filemap_flush(inode->i_mapping);
1459 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1460 			     &BTRFS_I(inode)->runtime_flags))
1461 			filemap_flush(inode->i_mapping);
1462 	}
1463 
1464 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1465 		/* the filemap_flush will queue IO into the worker threads, but
1466 		 * we have to make sure the IO is actually started and that
1467 		 * ordered extents get created before we return
1468 		 */
1469 		atomic_inc(&root->fs_info->async_submit_draining);
1470 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1471 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1472 			wait_event(root->fs_info->async_submit_wait,
1473 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1474 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1475 		}
1476 		atomic_dec(&root->fs_info->async_submit_draining);
1477 	}
1478 
1479 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1480 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1481 	}
1482 
1483 	ret = defrag_count;
1484 
1485 out_ra:
1486 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1487 		mutex_lock(&inode->i_mutex);
1488 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1489 		mutex_unlock(&inode->i_mutex);
1490 	}
1491 	if (!file)
1492 		kfree(ra);
1493 	kfree(pages);
1494 	return ret;
1495 }
1496 
1497 static noinline int btrfs_ioctl_resize(struct file *file,
1498 					void __user *arg)
1499 {
1500 	u64 new_size;
1501 	u64 old_size;
1502 	u64 devid = 1;
1503 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1504 	struct btrfs_ioctl_vol_args *vol_args;
1505 	struct btrfs_trans_handle *trans;
1506 	struct btrfs_device *device = NULL;
1507 	char *sizestr;
1508 	char *retptr;
1509 	char *devstr = NULL;
1510 	int ret = 0;
1511 	int mod = 0;
1512 
1513 	if (!capable(CAP_SYS_ADMIN))
1514 		return -EPERM;
1515 
1516 	ret = mnt_want_write_file(file);
1517 	if (ret)
1518 		return ret;
1519 
1520 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1521 			1)) {
1522 		mnt_drop_write_file(file);
1523 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1524 	}
1525 
1526 	mutex_lock(&root->fs_info->volume_mutex);
1527 	vol_args = memdup_user(arg, sizeof(*vol_args));
1528 	if (IS_ERR(vol_args)) {
1529 		ret = PTR_ERR(vol_args);
1530 		goto out;
1531 	}
1532 
1533 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1534 
1535 	sizestr = vol_args->name;
1536 	devstr = strchr(sizestr, ':');
1537 	if (devstr) {
1538 		sizestr = devstr + 1;
1539 		*devstr = '\0';
1540 		devstr = vol_args->name;
1541 		ret = kstrtoull(devstr, 10, &devid);
1542 		if (ret)
1543 			goto out_free;
1544 		if (!devid) {
1545 			ret = -EINVAL;
1546 			goto out_free;
1547 		}
1548 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1549 	}
1550 
1551 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1552 	if (!device) {
1553 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1554 		       devid);
1555 		ret = -ENODEV;
1556 		goto out_free;
1557 	}
1558 
1559 	if (!device->writeable) {
1560 		btrfs_info(root->fs_info,
1561 			   "resizer unable to apply on readonly device %llu",
1562 		       devid);
1563 		ret = -EPERM;
1564 		goto out_free;
1565 	}
1566 
1567 	if (!strcmp(sizestr, "max"))
1568 		new_size = device->bdev->bd_inode->i_size;
1569 	else {
1570 		if (sizestr[0] == '-') {
1571 			mod = -1;
1572 			sizestr++;
1573 		} else if (sizestr[0] == '+') {
1574 			mod = 1;
1575 			sizestr++;
1576 		}
1577 		new_size = memparse(sizestr, &retptr);
1578 		if (*retptr != '\0' || new_size == 0) {
1579 			ret = -EINVAL;
1580 			goto out_free;
1581 		}
1582 	}
1583 
1584 	if (device->is_tgtdev_for_dev_replace) {
1585 		ret = -EPERM;
1586 		goto out_free;
1587 	}
1588 
1589 	old_size = device->total_bytes;
1590 
1591 	if (mod < 0) {
1592 		if (new_size > old_size) {
1593 			ret = -EINVAL;
1594 			goto out_free;
1595 		}
1596 		new_size = old_size - new_size;
1597 	} else if (mod > 0) {
1598 		if (new_size > ULLONG_MAX - old_size) {
1599 			ret = -ERANGE;
1600 			goto out_free;
1601 		}
1602 		new_size = old_size + new_size;
1603 	}
1604 
1605 	if (new_size < 256 * 1024 * 1024) {
1606 		ret = -EINVAL;
1607 		goto out_free;
1608 	}
1609 	if (new_size > device->bdev->bd_inode->i_size) {
1610 		ret = -EFBIG;
1611 		goto out_free;
1612 	}
1613 
1614 	do_div(new_size, root->sectorsize);
1615 	new_size *= root->sectorsize;
1616 
1617 	printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1618 		      rcu_str_deref(device->name), new_size);
1619 
1620 	if (new_size > old_size) {
1621 		trans = btrfs_start_transaction(root, 0);
1622 		if (IS_ERR(trans)) {
1623 			ret = PTR_ERR(trans);
1624 			goto out_free;
1625 		}
1626 		ret = btrfs_grow_device(trans, device, new_size);
1627 		btrfs_commit_transaction(trans, root);
1628 	} else if (new_size < old_size) {
1629 		ret = btrfs_shrink_device(device, new_size);
1630 	} /* equal, nothing need to do */
1631 
1632 out_free:
1633 	kfree(vol_args);
1634 out:
1635 	mutex_unlock(&root->fs_info->volume_mutex);
1636 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1637 	mnt_drop_write_file(file);
1638 	return ret;
1639 }
1640 
1641 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1642 				char *name, unsigned long fd, int subvol,
1643 				u64 *transid, bool readonly,
1644 				struct btrfs_qgroup_inherit *inherit)
1645 {
1646 	int namelen;
1647 	int ret = 0;
1648 
1649 	ret = mnt_want_write_file(file);
1650 	if (ret)
1651 		goto out;
1652 
1653 	namelen = strlen(name);
1654 	if (strchr(name, '/')) {
1655 		ret = -EINVAL;
1656 		goto out_drop_write;
1657 	}
1658 
1659 	if (name[0] == '.' &&
1660 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1661 		ret = -EEXIST;
1662 		goto out_drop_write;
1663 	}
1664 
1665 	if (subvol) {
1666 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1667 				     NULL, transid, readonly, inherit);
1668 	} else {
1669 		struct fd src = fdget(fd);
1670 		struct inode *src_inode;
1671 		if (!src.file) {
1672 			ret = -EINVAL;
1673 			goto out_drop_write;
1674 		}
1675 
1676 		src_inode = file_inode(src.file);
1677 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1678 			btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1679 				   "Snapshot src from another FS");
1680 			ret = -EXDEV;
1681 		} else if (!inode_owner_or_capable(src_inode)) {
1682 			/*
1683 			 * Subvolume creation is not restricted, but snapshots
1684 			 * are limited to own subvolumes only
1685 			 */
1686 			ret = -EPERM;
1687 		} else {
1688 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1689 					     BTRFS_I(src_inode)->root,
1690 					     transid, readonly, inherit);
1691 		}
1692 		fdput(src);
1693 	}
1694 out_drop_write:
1695 	mnt_drop_write_file(file);
1696 out:
1697 	return ret;
1698 }
1699 
1700 static noinline int btrfs_ioctl_snap_create(struct file *file,
1701 					    void __user *arg, int subvol)
1702 {
1703 	struct btrfs_ioctl_vol_args *vol_args;
1704 	int ret;
1705 
1706 	vol_args = memdup_user(arg, sizeof(*vol_args));
1707 	if (IS_ERR(vol_args))
1708 		return PTR_ERR(vol_args);
1709 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1710 
1711 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1712 					      vol_args->fd, subvol,
1713 					      NULL, false, NULL);
1714 
1715 	kfree(vol_args);
1716 	return ret;
1717 }
1718 
1719 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1720 					       void __user *arg, int subvol)
1721 {
1722 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1723 	int ret;
1724 	u64 transid = 0;
1725 	u64 *ptr = NULL;
1726 	bool readonly = false;
1727 	struct btrfs_qgroup_inherit *inherit = NULL;
1728 
1729 	vol_args = memdup_user(arg, sizeof(*vol_args));
1730 	if (IS_ERR(vol_args))
1731 		return PTR_ERR(vol_args);
1732 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1733 
1734 	if (vol_args->flags &
1735 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1736 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1737 		ret = -EOPNOTSUPP;
1738 		goto out;
1739 	}
1740 
1741 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1742 		ptr = &transid;
1743 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1744 		readonly = true;
1745 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1746 		if (vol_args->size > PAGE_CACHE_SIZE) {
1747 			ret = -EINVAL;
1748 			goto out;
1749 		}
1750 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1751 		if (IS_ERR(inherit)) {
1752 			ret = PTR_ERR(inherit);
1753 			goto out;
1754 		}
1755 	}
1756 
1757 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1758 					      vol_args->fd, subvol, ptr,
1759 					      readonly, inherit);
1760 
1761 	if (ret == 0 && ptr &&
1762 	    copy_to_user(arg +
1763 			 offsetof(struct btrfs_ioctl_vol_args_v2,
1764 				  transid), ptr, sizeof(*ptr)))
1765 		ret = -EFAULT;
1766 out:
1767 	kfree(vol_args);
1768 	kfree(inherit);
1769 	return ret;
1770 }
1771 
1772 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1773 						void __user *arg)
1774 {
1775 	struct inode *inode = file_inode(file);
1776 	struct btrfs_root *root = BTRFS_I(inode)->root;
1777 	int ret = 0;
1778 	u64 flags = 0;
1779 
1780 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1781 		return -EINVAL;
1782 
1783 	down_read(&root->fs_info->subvol_sem);
1784 	if (btrfs_root_readonly(root))
1785 		flags |= BTRFS_SUBVOL_RDONLY;
1786 	up_read(&root->fs_info->subvol_sem);
1787 
1788 	if (copy_to_user(arg, &flags, sizeof(flags)))
1789 		ret = -EFAULT;
1790 
1791 	return ret;
1792 }
1793 
1794 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1795 					      void __user *arg)
1796 {
1797 	struct inode *inode = file_inode(file);
1798 	struct btrfs_root *root = BTRFS_I(inode)->root;
1799 	struct btrfs_trans_handle *trans;
1800 	u64 root_flags;
1801 	u64 flags;
1802 	int ret = 0;
1803 
1804 	if (!inode_owner_or_capable(inode))
1805 		return -EPERM;
1806 
1807 	ret = mnt_want_write_file(file);
1808 	if (ret)
1809 		goto out;
1810 
1811 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1812 		ret = -EINVAL;
1813 		goto out_drop_write;
1814 	}
1815 
1816 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1817 		ret = -EFAULT;
1818 		goto out_drop_write;
1819 	}
1820 
1821 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1822 		ret = -EINVAL;
1823 		goto out_drop_write;
1824 	}
1825 
1826 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1827 		ret = -EOPNOTSUPP;
1828 		goto out_drop_write;
1829 	}
1830 
1831 	down_write(&root->fs_info->subvol_sem);
1832 
1833 	/* nothing to do */
1834 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1835 		goto out_drop_sem;
1836 
1837 	root_flags = btrfs_root_flags(&root->root_item);
1838 	if (flags & BTRFS_SUBVOL_RDONLY) {
1839 		btrfs_set_root_flags(&root->root_item,
1840 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1841 	} else {
1842 		/*
1843 		 * Block RO -> RW transition if this subvolume is involved in
1844 		 * send
1845 		 */
1846 		spin_lock(&root->root_item_lock);
1847 		if (root->send_in_progress == 0) {
1848 			btrfs_set_root_flags(&root->root_item,
1849 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1850 			spin_unlock(&root->root_item_lock);
1851 		} else {
1852 			spin_unlock(&root->root_item_lock);
1853 			btrfs_warn(root->fs_info,
1854 			"Attempt to set subvolume %llu read-write during send",
1855 					root->root_key.objectid);
1856 			ret = -EPERM;
1857 			goto out_drop_sem;
1858 		}
1859 	}
1860 
1861 	trans = btrfs_start_transaction(root, 1);
1862 	if (IS_ERR(trans)) {
1863 		ret = PTR_ERR(trans);
1864 		goto out_reset;
1865 	}
1866 
1867 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1868 				&root->root_key, &root->root_item);
1869 
1870 	btrfs_commit_transaction(trans, root);
1871 out_reset:
1872 	if (ret)
1873 		btrfs_set_root_flags(&root->root_item, root_flags);
1874 out_drop_sem:
1875 	up_write(&root->fs_info->subvol_sem);
1876 out_drop_write:
1877 	mnt_drop_write_file(file);
1878 out:
1879 	return ret;
1880 }
1881 
1882 /*
1883  * helper to check if the subvolume references other subvolumes
1884  */
1885 static noinline int may_destroy_subvol(struct btrfs_root *root)
1886 {
1887 	struct btrfs_path *path;
1888 	struct btrfs_dir_item *di;
1889 	struct btrfs_key key;
1890 	u64 dir_id;
1891 	int ret;
1892 
1893 	path = btrfs_alloc_path();
1894 	if (!path)
1895 		return -ENOMEM;
1896 
1897 	/* Make sure this root isn't set as the default subvol */
1898 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1899 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1900 				   dir_id, "default", 7, 0);
1901 	if (di && !IS_ERR(di)) {
1902 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1903 		if (key.objectid == root->root_key.objectid) {
1904 			ret = -EPERM;
1905 			btrfs_err(root->fs_info, "deleting default subvolume "
1906 				  "%llu is not allowed", key.objectid);
1907 			goto out;
1908 		}
1909 		btrfs_release_path(path);
1910 	}
1911 
1912 	key.objectid = root->root_key.objectid;
1913 	key.type = BTRFS_ROOT_REF_KEY;
1914 	key.offset = (u64)-1;
1915 
1916 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1917 				&key, path, 0, 0);
1918 	if (ret < 0)
1919 		goto out;
1920 	BUG_ON(ret == 0);
1921 
1922 	ret = 0;
1923 	if (path->slots[0] > 0) {
1924 		path->slots[0]--;
1925 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1926 		if (key.objectid == root->root_key.objectid &&
1927 		    key.type == BTRFS_ROOT_REF_KEY)
1928 			ret = -ENOTEMPTY;
1929 	}
1930 out:
1931 	btrfs_free_path(path);
1932 	return ret;
1933 }
1934 
1935 static noinline int key_in_sk(struct btrfs_key *key,
1936 			      struct btrfs_ioctl_search_key *sk)
1937 {
1938 	struct btrfs_key test;
1939 	int ret;
1940 
1941 	test.objectid = sk->min_objectid;
1942 	test.type = sk->min_type;
1943 	test.offset = sk->min_offset;
1944 
1945 	ret = btrfs_comp_cpu_keys(key, &test);
1946 	if (ret < 0)
1947 		return 0;
1948 
1949 	test.objectid = sk->max_objectid;
1950 	test.type = sk->max_type;
1951 	test.offset = sk->max_offset;
1952 
1953 	ret = btrfs_comp_cpu_keys(key, &test);
1954 	if (ret > 0)
1955 		return 0;
1956 	return 1;
1957 }
1958 
1959 static noinline int copy_to_sk(struct btrfs_root *root,
1960 			       struct btrfs_path *path,
1961 			       struct btrfs_key *key,
1962 			       struct btrfs_ioctl_search_key *sk,
1963 			       size_t *buf_size,
1964 			       char __user *ubuf,
1965 			       unsigned long *sk_offset,
1966 			       int *num_found)
1967 {
1968 	u64 found_transid;
1969 	struct extent_buffer *leaf;
1970 	struct btrfs_ioctl_search_header sh;
1971 	unsigned long item_off;
1972 	unsigned long item_len;
1973 	int nritems;
1974 	int i;
1975 	int slot;
1976 	int ret = 0;
1977 
1978 	leaf = path->nodes[0];
1979 	slot = path->slots[0];
1980 	nritems = btrfs_header_nritems(leaf);
1981 
1982 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1983 		i = nritems;
1984 		goto advance_key;
1985 	}
1986 	found_transid = btrfs_header_generation(leaf);
1987 
1988 	for (i = slot; i < nritems; i++) {
1989 		item_off = btrfs_item_ptr_offset(leaf, i);
1990 		item_len = btrfs_item_size_nr(leaf, i);
1991 
1992 		btrfs_item_key_to_cpu(leaf, key, i);
1993 		if (!key_in_sk(key, sk))
1994 			continue;
1995 
1996 		if (sizeof(sh) + item_len > *buf_size) {
1997 			if (*num_found) {
1998 				ret = 1;
1999 				goto out;
2000 			}
2001 
2002 			/*
2003 			 * return one empty item back for v1, which does not
2004 			 * handle -EOVERFLOW
2005 			 */
2006 
2007 			*buf_size = sizeof(sh) + item_len;
2008 			item_len = 0;
2009 			ret = -EOVERFLOW;
2010 		}
2011 
2012 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2013 			ret = 1;
2014 			goto out;
2015 		}
2016 
2017 		sh.objectid = key->objectid;
2018 		sh.offset = key->offset;
2019 		sh.type = key->type;
2020 		sh.len = item_len;
2021 		sh.transid = found_transid;
2022 
2023 		/* copy search result header */
2024 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2025 			ret = -EFAULT;
2026 			goto out;
2027 		}
2028 
2029 		*sk_offset += sizeof(sh);
2030 
2031 		if (item_len) {
2032 			char __user *up = ubuf + *sk_offset;
2033 			/* copy the item */
2034 			if (read_extent_buffer_to_user(leaf, up,
2035 						       item_off, item_len)) {
2036 				ret = -EFAULT;
2037 				goto out;
2038 			}
2039 
2040 			*sk_offset += item_len;
2041 		}
2042 		(*num_found)++;
2043 
2044 		if (ret) /* -EOVERFLOW from above */
2045 			goto out;
2046 
2047 		if (*num_found >= sk->nr_items) {
2048 			ret = 1;
2049 			goto out;
2050 		}
2051 	}
2052 advance_key:
2053 	ret = 0;
2054 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
2055 		key->offset++;
2056 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
2057 		key->offset = 0;
2058 		key->type++;
2059 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
2060 		key->offset = 0;
2061 		key->type = 0;
2062 		key->objectid++;
2063 	} else
2064 		ret = 1;
2065 out:
2066 	/*
2067 	 *  0: all items from this leaf copied, continue with next
2068 	 *  1: * more items can be copied, but unused buffer is too small
2069 	 *     * all items were found
2070 	 *     Either way, it will stops the loop which iterates to the next
2071 	 *     leaf
2072 	 *  -EOVERFLOW: item was to large for buffer
2073 	 *  -EFAULT: could not copy extent buffer back to userspace
2074 	 */
2075 	return ret;
2076 }
2077 
2078 static noinline int search_ioctl(struct inode *inode,
2079 				 struct btrfs_ioctl_search_key *sk,
2080 				 size_t *buf_size,
2081 				 char __user *ubuf)
2082 {
2083 	struct btrfs_root *root;
2084 	struct btrfs_key key;
2085 	struct btrfs_path *path;
2086 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2087 	int ret;
2088 	int num_found = 0;
2089 	unsigned long sk_offset = 0;
2090 
2091 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2092 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2093 		return -EOVERFLOW;
2094 	}
2095 
2096 	path = btrfs_alloc_path();
2097 	if (!path)
2098 		return -ENOMEM;
2099 
2100 	if (sk->tree_id == 0) {
2101 		/* search the root of the inode that was passed */
2102 		root = BTRFS_I(inode)->root;
2103 	} else {
2104 		key.objectid = sk->tree_id;
2105 		key.type = BTRFS_ROOT_ITEM_KEY;
2106 		key.offset = (u64)-1;
2107 		root = btrfs_read_fs_root_no_name(info, &key);
2108 		if (IS_ERR(root)) {
2109 			printk(KERN_ERR "BTRFS: could not find root %llu\n",
2110 			       sk->tree_id);
2111 			btrfs_free_path(path);
2112 			return -ENOENT;
2113 		}
2114 	}
2115 
2116 	key.objectid = sk->min_objectid;
2117 	key.type = sk->min_type;
2118 	key.offset = sk->min_offset;
2119 
2120 	path->keep_locks = 1;
2121 
2122 	while (1) {
2123 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2124 		if (ret != 0) {
2125 			if (ret > 0)
2126 				ret = 0;
2127 			goto err;
2128 		}
2129 		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2130 				 &sk_offset, &num_found);
2131 		btrfs_release_path(path);
2132 		if (ret)
2133 			break;
2134 
2135 	}
2136 	if (ret > 0)
2137 		ret = 0;
2138 err:
2139 	sk->nr_items = num_found;
2140 	btrfs_free_path(path);
2141 	return ret;
2142 }
2143 
2144 static noinline int btrfs_ioctl_tree_search(struct file *file,
2145 					   void __user *argp)
2146 {
2147 	struct btrfs_ioctl_search_args __user *uargs;
2148 	struct btrfs_ioctl_search_key sk;
2149 	struct inode *inode;
2150 	int ret;
2151 	size_t buf_size;
2152 
2153 	if (!capable(CAP_SYS_ADMIN))
2154 		return -EPERM;
2155 
2156 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2157 
2158 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2159 		return -EFAULT;
2160 
2161 	buf_size = sizeof(uargs->buf);
2162 
2163 	inode = file_inode(file);
2164 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2165 
2166 	/*
2167 	 * In the origin implementation an overflow is handled by returning a
2168 	 * search header with a len of zero, so reset ret.
2169 	 */
2170 	if (ret == -EOVERFLOW)
2171 		ret = 0;
2172 
2173 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2174 		ret = -EFAULT;
2175 	return ret;
2176 }
2177 
2178 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2179 					       void __user *argp)
2180 {
2181 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2182 	struct btrfs_ioctl_search_args_v2 args;
2183 	struct inode *inode;
2184 	int ret;
2185 	size_t buf_size;
2186 	const size_t buf_limit = 16 * 1024 * 1024;
2187 
2188 	if (!capable(CAP_SYS_ADMIN))
2189 		return -EPERM;
2190 
2191 	/* copy search header and buffer size */
2192 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2193 	if (copy_from_user(&args, uarg, sizeof(args)))
2194 		return -EFAULT;
2195 
2196 	buf_size = args.buf_size;
2197 
2198 	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2199 		return -EOVERFLOW;
2200 
2201 	/* limit result size to 16MB */
2202 	if (buf_size > buf_limit)
2203 		buf_size = buf_limit;
2204 
2205 	inode = file_inode(file);
2206 	ret = search_ioctl(inode, &args.key, &buf_size,
2207 			   (char *)(&uarg->buf[0]));
2208 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2209 		ret = -EFAULT;
2210 	else if (ret == -EOVERFLOW &&
2211 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2212 		ret = -EFAULT;
2213 
2214 	return ret;
2215 }
2216 
2217 /*
2218  * Search INODE_REFs to identify path name of 'dirid' directory
2219  * in a 'tree_id' tree. and sets path name to 'name'.
2220  */
2221 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2222 				u64 tree_id, u64 dirid, char *name)
2223 {
2224 	struct btrfs_root *root;
2225 	struct btrfs_key key;
2226 	char *ptr;
2227 	int ret = -1;
2228 	int slot;
2229 	int len;
2230 	int total_len = 0;
2231 	struct btrfs_inode_ref *iref;
2232 	struct extent_buffer *l;
2233 	struct btrfs_path *path;
2234 
2235 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2236 		name[0]='\0';
2237 		return 0;
2238 	}
2239 
2240 	path = btrfs_alloc_path();
2241 	if (!path)
2242 		return -ENOMEM;
2243 
2244 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2245 
2246 	key.objectid = tree_id;
2247 	key.type = BTRFS_ROOT_ITEM_KEY;
2248 	key.offset = (u64)-1;
2249 	root = btrfs_read_fs_root_no_name(info, &key);
2250 	if (IS_ERR(root)) {
2251 		printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2252 		ret = -ENOENT;
2253 		goto out;
2254 	}
2255 
2256 	key.objectid = dirid;
2257 	key.type = BTRFS_INODE_REF_KEY;
2258 	key.offset = (u64)-1;
2259 
2260 	while (1) {
2261 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2262 		if (ret < 0)
2263 			goto out;
2264 		else if (ret > 0) {
2265 			ret = btrfs_previous_item(root, path, dirid,
2266 						  BTRFS_INODE_REF_KEY);
2267 			if (ret < 0)
2268 				goto out;
2269 			else if (ret > 0) {
2270 				ret = -ENOENT;
2271 				goto out;
2272 			}
2273 		}
2274 
2275 		l = path->nodes[0];
2276 		slot = path->slots[0];
2277 		btrfs_item_key_to_cpu(l, &key, slot);
2278 
2279 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2280 		len = btrfs_inode_ref_name_len(l, iref);
2281 		ptr -= len + 1;
2282 		total_len += len + 1;
2283 		if (ptr < name) {
2284 			ret = -ENAMETOOLONG;
2285 			goto out;
2286 		}
2287 
2288 		*(ptr + len) = '/';
2289 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2290 
2291 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2292 			break;
2293 
2294 		btrfs_release_path(path);
2295 		key.objectid = key.offset;
2296 		key.offset = (u64)-1;
2297 		dirid = key.objectid;
2298 	}
2299 	memmove(name, ptr, total_len);
2300 	name[total_len] = '\0';
2301 	ret = 0;
2302 out:
2303 	btrfs_free_path(path);
2304 	return ret;
2305 }
2306 
2307 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2308 					   void __user *argp)
2309 {
2310 	 struct btrfs_ioctl_ino_lookup_args *args;
2311 	 struct inode *inode;
2312 	 int ret;
2313 
2314 	if (!capable(CAP_SYS_ADMIN))
2315 		return -EPERM;
2316 
2317 	args = memdup_user(argp, sizeof(*args));
2318 	if (IS_ERR(args))
2319 		return PTR_ERR(args);
2320 
2321 	inode = file_inode(file);
2322 
2323 	if (args->treeid == 0)
2324 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2325 
2326 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2327 					args->treeid, args->objectid,
2328 					args->name);
2329 
2330 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2331 		ret = -EFAULT;
2332 
2333 	kfree(args);
2334 	return ret;
2335 }
2336 
2337 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2338 					     void __user *arg)
2339 {
2340 	struct dentry *parent = file->f_path.dentry;
2341 	struct dentry *dentry;
2342 	struct inode *dir = parent->d_inode;
2343 	struct inode *inode;
2344 	struct btrfs_root *root = BTRFS_I(dir)->root;
2345 	struct btrfs_root *dest = NULL;
2346 	struct btrfs_ioctl_vol_args *vol_args;
2347 	struct btrfs_trans_handle *trans;
2348 	struct btrfs_block_rsv block_rsv;
2349 	u64 root_flags;
2350 	u64 qgroup_reserved;
2351 	int namelen;
2352 	int ret;
2353 	int err = 0;
2354 
2355 	vol_args = memdup_user(arg, sizeof(*vol_args));
2356 	if (IS_ERR(vol_args))
2357 		return PTR_ERR(vol_args);
2358 
2359 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2360 	namelen = strlen(vol_args->name);
2361 	if (strchr(vol_args->name, '/') ||
2362 	    strncmp(vol_args->name, "..", namelen) == 0) {
2363 		err = -EINVAL;
2364 		goto out;
2365 	}
2366 
2367 	err = mnt_want_write_file(file);
2368 	if (err)
2369 		goto out;
2370 
2371 
2372 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2373 	if (err == -EINTR)
2374 		goto out_drop_write;
2375 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2376 	if (IS_ERR(dentry)) {
2377 		err = PTR_ERR(dentry);
2378 		goto out_unlock_dir;
2379 	}
2380 
2381 	if (!dentry->d_inode) {
2382 		err = -ENOENT;
2383 		goto out_dput;
2384 	}
2385 
2386 	inode = dentry->d_inode;
2387 	dest = BTRFS_I(inode)->root;
2388 	if (!capable(CAP_SYS_ADMIN)) {
2389 		/*
2390 		 * Regular user.  Only allow this with a special mount
2391 		 * option, when the user has write+exec access to the
2392 		 * subvol root, and when rmdir(2) would have been
2393 		 * allowed.
2394 		 *
2395 		 * Note that this is _not_ check that the subvol is
2396 		 * empty or doesn't contain data that we wouldn't
2397 		 * otherwise be able to delete.
2398 		 *
2399 		 * Users who want to delete empty subvols should try
2400 		 * rmdir(2).
2401 		 */
2402 		err = -EPERM;
2403 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2404 			goto out_dput;
2405 
2406 		/*
2407 		 * Do not allow deletion if the parent dir is the same
2408 		 * as the dir to be deleted.  That means the ioctl
2409 		 * must be called on the dentry referencing the root
2410 		 * of the subvol, not a random directory contained
2411 		 * within it.
2412 		 */
2413 		err = -EINVAL;
2414 		if (root == dest)
2415 			goto out_dput;
2416 
2417 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2418 		if (err)
2419 			goto out_dput;
2420 	}
2421 
2422 	/* check if subvolume may be deleted by a user */
2423 	err = btrfs_may_delete(dir, dentry, 1);
2424 	if (err)
2425 		goto out_dput;
2426 
2427 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2428 		err = -EINVAL;
2429 		goto out_dput;
2430 	}
2431 
2432 	mutex_lock(&inode->i_mutex);
2433 
2434 	/*
2435 	 * Don't allow to delete a subvolume with send in progress. This is
2436 	 * inside the i_mutex so the error handling that has to drop the bit
2437 	 * again is not run concurrently.
2438 	 */
2439 	spin_lock(&dest->root_item_lock);
2440 	root_flags = btrfs_root_flags(&dest->root_item);
2441 	if (dest->send_in_progress == 0) {
2442 		btrfs_set_root_flags(&dest->root_item,
2443 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2444 		spin_unlock(&dest->root_item_lock);
2445 	} else {
2446 		spin_unlock(&dest->root_item_lock);
2447 		btrfs_warn(root->fs_info,
2448 			"Attempt to delete subvolume %llu during send",
2449 			dest->root_key.objectid);
2450 		err = -EPERM;
2451 		goto out_dput;
2452 	}
2453 
2454 	err = d_invalidate(dentry);
2455 	if (err)
2456 		goto out_unlock;
2457 
2458 	down_write(&root->fs_info->subvol_sem);
2459 
2460 	err = may_destroy_subvol(dest);
2461 	if (err)
2462 		goto out_up_write;
2463 
2464 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2465 	/*
2466 	 * One for dir inode, two for dir entries, two for root
2467 	 * ref/backref.
2468 	 */
2469 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2470 					       5, &qgroup_reserved, true);
2471 	if (err)
2472 		goto out_up_write;
2473 
2474 	trans = btrfs_start_transaction(root, 0);
2475 	if (IS_ERR(trans)) {
2476 		err = PTR_ERR(trans);
2477 		goto out_release;
2478 	}
2479 	trans->block_rsv = &block_rsv;
2480 	trans->bytes_reserved = block_rsv.size;
2481 
2482 	ret = btrfs_unlink_subvol(trans, root, dir,
2483 				dest->root_key.objectid,
2484 				dentry->d_name.name,
2485 				dentry->d_name.len);
2486 	if (ret) {
2487 		err = ret;
2488 		btrfs_abort_transaction(trans, root, ret);
2489 		goto out_end_trans;
2490 	}
2491 
2492 	btrfs_record_root_in_trans(trans, dest);
2493 
2494 	memset(&dest->root_item.drop_progress, 0,
2495 		sizeof(dest->root_item.drop_progress));
2496 	dest->root_item.drop_level = 0;
2497 	btrfs_set_root_refs(&dest->root_item, 0);
2498 
2499 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2500 		ret = btrfs_insert_orphan_item(trans,
2501 					root->fs_info->tree_root,
2502 					dest->root_key.objectid);
2503 		if (ret) {
2504 			btrfs_abort_transaction(trans, root, ret);
2505 			err = ret;
2506 			goto out_end_trans;
2507 		}
2508 	}
2509 
2510 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2511 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2512 				  dest->root_key.objectid);
2513 	if (ret && ret != -ENOENT) {
2514 		btrfs_abort_transaction(trans, root, ret);
2515 		err = ret;
2516 		goto out_end_trans;
2517 	}
2518 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2519 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2520 					  dest->root_item.received_uuid,
2521 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2522 					  dest->root_key.objectid);
2523 		if (ret && ret != -ENOENT) {
2524 			btrfs_abort_transaction(trans, root, ret);
2525 			err = ret;
2526 			goto out_end_trans;
2527 		}
2528 	}
2529 
2530 out_end_trans:
2531 	trans->block_rsv = NULL;
2532 	trans->bytes_reserved = 0;
2533 	ret = btrfs_end_transaction(trans, root);
2534 	if (ret && !err)
2535 		err = ret;
2536 	inode->i_flags |= S_DEAD;
2537 out_release:
2538 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2539 out_up_write:
2540 	up_write(&root->fs_info->subvol_sem);
2541 out_unlock:
2542 	if (err) {
2543 		spin_lock(&dest->root_item_lock);
2544 		root_flags = btrfs_root_flags(&dest->root_item);
2545 		btrfs_set_root_flags(&dest->root_item,
2546 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2547 		spin_unlock(&dest->root_item_lock);
2548 	}
2549 	mutex_unlock(&inode->i_mutex);
2550 	if (!err) {
2551 		shrink_dcache_sb(root->fs_info->sb);
2552 		btrfs_invalidate_inodes(dest);
2553 		d_delete(dentry);
2554 		ASSERT(dest->send_in_progress == 0);
2555 
2556 		/* the last ref */
2557 		if (dest->cache_inode) {
2558 			iput(dest->cache_inode);
2559 			dest->cache_inode = NULL;
2560 		}
2561 	}
2562 out_dput:
2563 	dput(dentry);
2564 out_unlock_dir:
2565 	mutex_unlock(&dir->i_mutex);
2566 out_drop_write:
2567 	mnt_drop_write_file(file);
2568 out:
2569 	kfree(vol_args);
2570 	return err;
2571 }
2572 
2573 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2574 {
2575 	struct inode *inode = file_inode(file);
2576 	struct btrfs_root *root = BTRFS_I(inode)->root;
2577 	struct btrfs_ioctl_defrag_range_args *range;
2578 	int ret;
2579 
2580 	ret = mnt_want_write_file(file);
2581 	if (ret)
2582 		return ret;
2583 
2584 	if (btrfs_root_readonly(root)) {
2585 		ret = -EROFS;
2586 		goto out;
2587 	}
2588 
2589 	switch (inode->i_mode & S_IFMT) {
2590 	case S_IFDIR:
2591 		if (!capable(CAP_SYS_ADMIN)) {
2592 			ret = -EPERM;
2593 			goto out;
2594 		}
2595 		ret = btrfs_defrag_root(root);
2596 		if (ret)
2597 			goto out;
2598 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2599 		break;
2600 	case S_IFREG:
2601 		if (!(file->f_mode & FMODE_WRITE)) {
2602 			ret = -EINVAL;
2603 			goto out;
2604 		}
2605 
2606 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2607 		if (!range) {
2608 			ret = -ENOMEM;
2609 			goto out;
2610 		}
2611 
2612 		if (argp) {
2613 			if (copy_from_user(range, argp,
2614 					   sizeof(*range))) {
2615 				ret = -EFAULT;
2616 				kfree(range);
2617 				goto out;
2618 			}
2619 			/* compression requires us to start the IO */
2620 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2621 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2622 				range->extent_thresh = (u32)-1;
2623 			}
2624 		} else {
2625 			/* the rest are all set to zero by kzalloc */
2626 			range->len = (u64)-1;
2627 		}
2628 		ret = btrfs_defrag_file(file_inode(file), file,
2629 					range, 0, 0);
2630 		if (ret > 0)
2631 			ret = 0;
2632 		kfree(range);
2633 		break;
2634 	default:
2635 		ret = -EINVAL;
2636 	}
2637 out:
2638 	mnt_drop_write_file(file);
2639 	return ret;
2640 }
2641 
2642 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2643 {
2644 	struct btrfs_ioctl_vol_args *vol_args;
2645 	int ret;
2646 
2647 	if (!capable(CAP_SYS_ADMIN))
2648 		return -EPERM;
2649 
2650 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2651 			1)) {
2652 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2653 	}
2654 
2655 	mutex_lock(&root->fs_info->volume_mutex);
2656 	vol_args = memdup_user(arg, sizeof(*vol_args));
2657 	if (IS_ERR(vol_args)) {
2658 		ret = PTR_ERR(vol_args);
2659 		goto out;
2660 	}
2661 
2662 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2663 	ret = btrfs_init_new_device(root, vol_args->name);
2664 
2665 	kfree(vol_args);
2666 out:
2667 	mutex_unlock(&root->fs_info->volume_mutex);
2668 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2669 	return ret;
2670 }
2671 
2672 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2673 {
2674 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2675 	struct btrfs_ioctl_vol_args *vol_args;
2676 	int ret;
2677 
2678 	if (!capable(CAP_SYS_ADMIN))
2679 		return -EPERM;
2680 
2681 	ret = mnt_want_write_file(file);
2682 	if (ret)
2683 		return ret;
2684 
2685 	vol_args = memdup_user(arg, sizeof(*vol_args));
2686 	if (IS_ERR(vol_args)) {
2687 		ret = PTR_ERR(vol_args);
2688 		goto out;
2689 	}
2690 
2691 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2692 
2693 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2694 			1)) {
2695 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2696 		goto out;
2697 	}
2698 
2699 	mutex_lock(&root->fs_info->volume_mutex);
2700 	ret = btrfs_rm_device(root, vol_args->name);
2701 	mutex_unlock(&root->fs_info->volume_mutex);
2702 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2703 
2704 out:
2705 	kfree(vol_args);
2706 	mnt_drop_write_file(file);
2707 	return ret;
2708 }
2709 
2710 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2711 {
2712 	struct btrfs_ioctl_fs_info_args *fi_args;
2713 	struct btrfs_device *device;
2714 	struct btrfs_device *next;
2715 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2716 	int ret = 0;
2717 
2718 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2719 	if (!fi_args)
2720 		return -ENOMEM;
2721 
2722 	mutex_lock(&fs_devices->device_list_mutex);
2723 	fi_args->num_devices = fs_devices->num_devices;
2724 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2725 
2726 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2727 		if (device->devid > fi_args->max_id)
2728 			fi_args->max_id = device->devid;
2729 	}
2730 	mutex_unlock(&fs_devices->device_list_mutex);
2731 
2732 	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2733 	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2734 	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2735 
2736 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2737 		ret = -EFAULT;
2738 
2739 	kfree(fi_args);
2740 	return ret;
2741 }
2742 
2743 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2744 {
2745 	struct btrfs_ioctl_dev_info_args *di_args;
2746 	struct btrfs_device *dev;
2747 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2748 	int ret = 0;
2749 	char *s_uuid = NULL;
2750 
2751 	di_args = memdup_user(arg, sizeof(*di_args));
2752 	if (IS_ERR(di_args))
2753 		return PTR_ERR(di_args);
2754 
2755 	if (!btrfs_is_empty_uuid(di_args->uuid))
2756 		s_uuid = di_args->uuid;
2757 
2758 	mutex_lock(&fs_devices->device_list_mutex);
2759 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2760 
2761 	if (!dev) {
2762 		ret = -ENODEV;
2763 		goto out;
2764 	}
2765 
2766 	di_args->devid = dev->devid;
2767 	di_args->bytes_used = dev->bytes_used;
2768 	di_args->total_bytes = dev->total_bytes;
2769 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2770 	if (dev->name) {
2771 		struct rcu_string *name;
2772 
2773 		rcu_read_lock();
2774 		name = rcu_dereference(dev->name);
2775 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2776 		rcu_read_unlock();
2777 		di_args->path[sizeof(di_args->path) - 1] = 0;
2778 	} else {
2779 		di_args->path[0] = '\0';
2780 	}
2781 
2782 out:
2783 	mutex_unlock(&fs_devices->device_list_mutex);
2784 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2785 		ret = -EFAULT;
2786 
2787 	kfree(di_args);
2788 	return ret;
2789 }
2790 
2791 static struct page *extent_same_get_page(struct inode *inode, u64 off)
2792 {
2793 	struct page *page;
2794 	pgoff_t index;
2795 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2796 
2797 	index = off >> PAGE_CACHE_SHIFT;
2798 
2799 	page = grab_cache_page(inode->i_mapping, index);
2800 	if (!page)
2801 		return NULL;
2802 
2803 	if (!PageUptodate(page)) {
2804 		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2805 						 0))
2806 			return NULL;
2807 		lock_page(page);
2808 		if (!PageUptodate(page)) {
2809 			unlock_page(page);
2810 			page_cache_release(page);
2811 			return NULL;
2812 		}
2813 	}
2814 	unlock_page(page);
2815 
2816 	return page;
2817 }
2818 
2819 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2820 {
2821 	/* do any pending delalloc/csum calc on src, one way or
2822 	   another, and lock file content */
2823 	while (1) {
2824 		struct btrfs_ordered_extent *ordered;
2825 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2826 		ordered = btrfs_lookup_first_ordered_extent(inode,
2827 							    off + len - 1);
2828 		if ((!ordered ||
2829 		     ordered->file_offset + ordered->len <= off ||
2830 		     ordered->file_offset >= off + len) &&
2831 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2832 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2833 			if (ordered)
2834 				btrfs_put_ordered_extent(ordered);
2835 			break;
2836 		}
2837 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2838 		if (ordered)
2839 			btrfs_put_ordered_extent(ordered);
2840 		btrfs_wait_ordered_range(inode, off, len);
2841 	}
2842 }
2843 
2844 static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2845 				struct inode *inode2, u64 loff2, u64 len)
2846 {
2847 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2848 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2849 
2850 	mutex_unlock(&inode1->i_mutex);
2851 	mutex_unlock(&inode2->i_mutex);
2852 }
2853 
2854 static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2855 			      struct inode *inode2, u64 loff2, u64 len)
2856 {
2857 	if (inode1 < inode2) {
2858 		swap(inode1, inode2);
2859 		swap(loff1, loff2);
2860 	}
2861 
2862 	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2863 	lock_extent_range(inode1, loff1, len);
2864 	if (inode1 != inode2) {
2865 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2866 		lock_extent_range(inode2, loff2, len);
2867 	}
2868 }
2869 
2870 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2871 			  u64 dst_loff, u64 len)
2872 {
2873 	int ret = 0;
2874 	struct page *src_page, *dst_page;
2875 	unsigned int cmp_len = PAGE_CACHE_SIZE;
2876 	void *addr, *dst_addr;
2877 
2878 	while (len) {
2879 		if (len < PAGE_CACHE_SIZE)
2880 			cmp_len = len;
2881 
2882 		src_page = extent_same_get_page(src, loff);
2883 		if (!src_page)
2884 			return -EINVAL;
2885 		dst_page = extent_same_get_page(dst, dst_loff);
2886 		if (!dst_page) {
2887 			page_cache_release(src_page);
2888 			return -EINVAL;
2889 		}
2890 		addr = kmap_atomic(src_page);
2891 		dst_addr = kmap_atomic(dst_page);
2892 
2893 		flush_dcache_page(src_page);
2894 		flush_dcache_page(dst_page);
2895 
2896 		if (memcmp(addr, dst_addr, cmp_len))
2897 			ret = BTRFS_SAME_DATA_DIFFERS;
2898 
2899 		kunmap_atomic(addr);
2900 		kunmap_atomic(dst_addr);
2901 		page_cache_release(src_page);
2902 		page_cache_release(dst_page);
2903 
2904 		if (ret)
2905 			break;
2906 
2907 		loff += cmp_len;
2908 		dst_loff += cmp_len;
2909 		len -= cmp_len;
2910 	}
2911 
2912 	return ret;
2913 }
2914 
2915 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2916 {
2917 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2918 
2919 	if (off + len > inode->i_size || off + len < off)
2920 		return -EINVAL;
2921 	/* Check that we are block aligned - btrfs_clone() requires this */
2922 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2923 		return -EINVAL;
2924 
2925 	return 0;
2926 }
2927 
2928 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2929 			     struct inode *dst, u64 dst_loff)
2930 {
2931 	int ret;
2932 
2933 	/*
2934 	 * btrfs_clone() can't handle extents in the same file
2935 	 * yet. Once that works, we can drop this check and replace it
2936 	 * with a check for the same inode, but overlapping extents.
2937 	 */
2938 	if (src == dst)
2939 		return -EINVAL;
2940 
2941 	btrfs_double_lock(src, loff, dst, dst_loff, len);
2942 
2943 	ret = extent_same_check_offsets(src, loff, len);
2944 	if (ret)
2945 		goto out_unlock;
2946 
2947 	ret = extent_same_check_offsets(dst, dst_loff, len);
2948 	if (ret)
2949 		goto out_unlock;
2950 
2951 	/* don't make the dst file partly checksummed */
2952 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2953 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2954 		ret = -EINVAL;
2955 		goto out_unlock;
2956 	}
2957 
2958 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2959 	if (ret == 0)
2960 		ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2961 
2962 out_unlock:
2963 	btrfs_double_unlock(src, loff, dst, dst_loff, len);
2964 
2965 	return ret;
2966 }
2967 
2968 #define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
2969 
2970 static long btrfs_ioctl_file_extent_same(struct file *file,
2971 			struct btrfs_ioctl_same_args __user *argp)
2972 {
2973 	struct btrfs_ioctl_same_args *same;
2974 	struct btrfs_ioctl_same_extent_info *info;
2975 	struct inode *src = file_inode(file);
2976 	u64 off;
2977 	u64 len;
2978 	int i;
2979 	int ret;
2980 	unsigned long size;
2981 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2982 	bool is_admin = capable(CAP_SYS_ADMIN);
2983 	u16 count;
2984 
2985 	if (!(file->f_mode & FMODE_READ))
2986 		return -EINVAL;
2987 
2988 	ret = mnt_want_write_file(file);
2989 	if (ret)
2990 		return ret;
2991 
2992 	if (get_user(count, &argp->dest_count)) {
2993 		ret = -EFAULT;
2994 		goto out;
2995 	}
2996 
2997 	size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
2998 
2999 	same = memdup_user(argp, size);
3000 
3001 	if (IS_ERR(same)) {
3002 		ret = PTR_ERR(same);
3003 		goto out;
3004 	}
3005 
3006 	off = same->logical_offset;
3007 	len = same->length;
3008 
3009 	/*
3010 	 * Limit the total length we will dedupe for each operation.
3011 	 * This is intended to bound the total time spent in this
3012 	 * ioctl to something sane.
3013 	 */
3014 	if (len > BTRFS_MAX_DEDUPE_LEN)
3015 		len = BTRFS_MAX_DEDUPE_LEN;
3016 
3017 	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
3018 		/*
3019 		 * Btrfs does not support blocksize < page_size. As a
3020 		 * result, btrfs_cmp_data() won't correctly handle
3021 		 * this situation without an update.
3022 		 */
3023 		ret = -EINVAL;
3024 		goto out;
3025 	}
3026 
3027 	ret = -EISDIR;
3028 	if (S_ISDIR(src->i_mode))
3029 		goto out;
3030 
3031 	ret = -EACCES;
3032 	if (!S_ISREG(src->i_mode))
3033 		goto out;
3034 
3035 	/* pre-format output fields to sane values */
3036 	for (i = 0; i < count; i++) {
3037 		same->info[i].bytes_deduped = 0ULL;
3038 		same->info[i].status = 0;
3039 	}
3040 
3041 	for (i = 0, info = same->info; i < count; i++, info++) {
3042 		struct inode *dst;
3043 		struct fd dst_file = fdget(info->fd);
3044 		if (!dst_file.file) {
3045 			info->status = -EBADF;
3046 			continue;
3047 		}
3048 		dst = file_inode(dst_file.file);
3049 
3050 		if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
3051 			info->status = -EINVAL;
3052 		} else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
3053 			info->status = -EXDEV;
3054 		} else if (S_ISDIR(dst->i_mode)) {
3055 			info->status = -EISDIR;
3056 		} else if (!S_ISREG(dst->i_mode)) {
3057 			info->status = -EACCES;
3058 		} else {
3059 			info->status = btrfs_extent_same(src, off, len, dst,
3060 							info->logical_offset);
3061 			if (info->status == 0)
3062 				info->bytes_deduped += len;
3063 		}
3064 		fdput(dst_file);
3065 	}
3066 
3067 	ret = copy_to_user(argp, same, size);
3068 	if (ret)
3069 		ret = -EFAULT;
3070 
3071 out:
3072 	mnt_drop_write_file(file);
3073 	return ret;
3074 }
3075 
3076 /* Helper to check and see if this root currently has a ref on the given disk
3077  * bytenr.  If it does then we need to update the quota for this root.  This
3078  * doesn't do anything if quotas aren't enabled.
3079  */
3080 static int check_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3081 		     u64 disko)
3082 {
3083 	struct seq_list tree_mod_seq_elem = {};
3084 	struct ulist *roots;
3085 	struct ulist_iterator uiter;
3086 	struct ulist_node *root_node = NULL;
3087 	int ret;
3088 
3089 	if (!root->fs_info->quota_enabled)
3090 		return 1;
3091 
3092 	btrfs_get_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3093 	ret = btrfs_find_all_roots(trans, root->fs_info, disko,
3094 				   tree_mod_seq_elem.seq, &roots);
3095 	if (ret < 0)
3096 		goto out;
3097 	ret = 0;
3098 	ULIST_ITER_INIT(&uiter);
3099 	while ((root_node = ulist_next(roots, &uiter))) {
3100 		if (root_node->val == root->objectid) {
3101 			ret = 1;
3102 			break;
3103 		}
3104 	}
3105 	ulist_free(roots);
3106 out:
3107 	btrfs_put_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3108 	return ret;
3109 }
3110 
3111 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3112 				     struct inode *inode,
3113 				     u64 endoff,
3114 				     const u64 destoff,
3115 				     const u64 olen)
3116 {
3117 	struct btrfs_root *root = BTRFS_I(inode)->root;
3118 	int ret;
3119 
3120 	inode_inc_iversion(inode);
3121 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3122 	/*
3123 	 * We round up to the block size at eof when determining which
3124 	 * extents to clone above, but shouldn't round up the file size.
3125 	 */
3126 	if (endoff > destoff + olen)
3127 		endoff = destoff + olen;
3128 	if (endoff > inode->i_size)
3129 		btrfs_i_size_write(inode, endoff);
3130 
3131 	ret = btrfs_update_inode(trans, root, inode);
3132 	if (ret) {
3133 		btrfs_abort_transaction(trans, root, ret);
3134 		btrfs_end_transaction(trans, root);
3135 		goto out;
3136 	}
3137 	ret = btrfs_end_transaction(trans, root);
3138 out:
3139 	return ret;
3140 }
3141 
3142 static void clone_update_extent_map(struct inode *inode,
3143 				    const struct btrfs_trans_handle *trans,
3144 				    const struct btrfs_path *path,
3145 				    const u64 hole_offset,
3146 				    const u64 hole_len)
3147 {
3148 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3149 	struct extent_map *em;
3150 	int ret;
3151 
3152 	em = alloc_extent_map();
3153 	if (!em) {
3154 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3155 			&BTRFS_I(inode)->runtime_flags);
3156 		return;
3157 	}
3158 
3159 	if (path) {
3160 		struct btrfs_file_extent_item *fi;
3161 
3162 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3163 				    struct btrfs_file_extent_item);
3164 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3165 		em->generation = -1;
3166 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3167 		    BTRFS_FILE_EXTENT_INLINE)
3168 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3169 				&BTRFS_I(inode)->runtime_flags);
3170 	} else {
3171 		em->start = hole_offset;
3172 		em->len = hole_len;
3173 		em->ram_bytes = em->len;
3174 		em->orig_start = hole_offset;
3175 		em->block_start = EXTENT_MAP_HOLE;
3176 		em->block_len = 0;
3177 		em->orig_block_len = 0;
3178 		em->compress_type = BTRFS_COMPRESS_NONE;
3179 		em->generation = trans->transid;
3180 	}
3181 
3182 	while (1) {
3183 		write_lock(&em_tree->lock);
3184 		ret = add_extent_mapping(em_tree, em, 1);
3185 		write_unlock(&em_tree->lock);
3186 		if (ret != -EEXIST) {
3187 			free_extent_map(em);
3188 			break;
3189 		}
3190 		btrfs_drop_extent_cache(inode, em->start,
3191 					em->start + em->len - 1, 0);
3192 	}
3193 
3194 	if (unlikely(ret))
3195 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3196 			&BTRFS_I(inode)->runtime_flags);
3197 }
3198 
3199 /**
3200  * btrfs_clone() - clone a range from inode file to another
3201  *
3202  * @src: Inode to clone from
3203  * @inode: Inode to clone to
3204  * @off: Offset within source to start clone from
3205  * @olen: Original length, passed by user, of range to clone
3206  * @olen_aligned: Block-aligned value of olen, extent_same uses
3207  *               identical values here
3208  * @destoff: Offset within @inode to start clone
3209  */
3210 static int btrfs_clone(struct inode *src, struct inode *inode,
3211 		       const u64 off, const u64 olen, const u64 olen_aligned,
3212 		       const u64 destoff)
3213 {
3214 	struct btrfs_root *root = BTRFS_I(inode)->root;
3215 	struct btrfs_path *path = NULL;
3216 	struct extent_buffer *leaf;
3217 	struct btrfs_trans_handle *trans;
3218 	char *buf = NULL;
3219 	struct btrfs_key key;
3220 	u32 nritems;
3221 	int slot;
3222 	int ret;
3223 	int no_quota;
3224 	const u64 len = olen_aligned;
3225 	u64 last_disko = 0;
3226 	u64 last_dest_end = destoff;
3227 
3228 	ret = -ENOMEM;
3229 	buf = vmalloc(btrfs_level_size(root, 0));
3230 	if (!buf)
3231 		return ret;
3232 
3233 	path = btrfs_alloc_path();
3234 	if (!path) {
3235 		vfree(buf);
3236 		return ret;
3237 	}
3238 
3239 	path->reada = 2;
3240 	/* clone data */
3241 	key.objectid = btrfs_ino(src);
3242 	key.type = BTRFS_EXTENT_DATA_KEY;
3243 	key.offset = off;
3244 
3245 	while (1) {
3246 		/*
3247 		 * note the key will change type as we walk through the
3248 		 * tree.
3249 		 */
3250 		path->leave_spinning = 1;
3251 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3252 				0, 0);
3253 		if (ret < 0)
3254 			goto out;
3255 		/*
3256 		 * First search, if no extent item that starts at offset off was
3257 		 * found but the previous item is an extent item, it's possible
3258 		 * it might overlap our target range, therefore process it.
3259 		 */
3260 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3261 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3262 					      path->slots[0] - 1);
3263 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3264 				path->slots[0]--;
3265 		}
3266 
3267 		nritems = btrfs_header_nritems(path->nodes[0]);
3268 process_slot:
3269 		no_quota = 1;
3270 		if (path->slots[0] >= nritems) {
3271 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3272 			if (ret < 0)
3273 				goto out;
3274 			if (ret > 0)
3275 				break;
3276 			nritems = btrfs_header_nritems(path->nodes[0]);
3277 		}
3278 		leaf = path->nodes[0];
3279 		slot = path->slots[0];
3280 
3281 		btrfs_item_key_to_cpu(leaf, &key, slot);
3282 		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
3283 		    key.objectid != btrfs_ino(src))
3284 			break;
3285 
3286 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
3287 			struct btrfs_file_extent_item *extent;
3288 			int type;
3289 			u32 size;
3290 			struct btrfs_key new_key;
3291 			u64 disko = 0, diskl = 0;
3292 			u64 datao = 0, datal = 0;
3293 			u8 comp;
3294 			u64 drop_start;
3295 
3296 			extent = btrfs_item_ptr(leaf, slot,
3297 						struct btrfs_file_extent_item);
3298 			comp = btrfs_file_extent_compression(leaf, extent);
3299 			type = btrfs_file_extent_type(leaf, extent);
3300 			if (type == BTRFS_FILE_EXTENT_REG ||
3301 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3302 				disko = btrfs_file_extent_disk_bytenr(leaf,
3303 								      extent);
3304 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3305 								 extent);
3306 				datao = btrfs_file_extent_offset(leaf, extent);
3307 				datal = btrfs_file_extent_num_bytes(leaf,
3308 								    extent);
3309 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3310 				/* take upper bound, may be compressed */
3311 				datal = btrfs_file_extent_ram_bytes(leaf,
3312 								    extent);
3313 			}
3314 
3315 			/*
3316 			 * The first search might have left us at an extent
3317 			 * item that ends before our target range's start, can
3318 			 * happen if we have holes and NO_HOLES feature enabled.
3319 			 */
3320 			if (key.offset + datal <= off) {
3321 				path->slots[0]++;
3322 				goto process_slot;
3323 			} else if (key.offset >= off + len) {
3324 				break;
3325 			}
3326 
3327 			size = btrfs_item_size_nr(leaf, slot);
3328 			read_extent_buffer(leaf, buf,
3329 					   btrfs_item_ptr_offset(leaf, slot),
3330 					   size);
3331 
3332 			btrfs_release_path(path);
3333 			path->leave_spinning = 0;
3334 
3335 			memcpy(&new_key, &key, sizeof(new_key));
3336 			new_key.objectid = btrfs_ino(inode);
3337 			if (off <= key.offset)
3338 				new_key.offset = key.offset + destoff - off;
3339 			else
3340 				new_key.offset = destoff;
3341 
3342 			/*
3343 			 * Deal with a hole that doesn't have an extent item
3344 			 * that represents it (NO_HOLES feature enabled).
3345 			 * This hole is either in the middle of the cloning
3346 			 * range or at the beginning (fully overlaps it or
3347 			 * partially overlaps it).
3348 			 */
3349 			if (new_key.offset != last_dest_end)
3350 				drop_start = last_dest_end;
3351 			else
3352 				drop_start = new_key.offset;
3353 
3354 			/*
3355 			 * 1 - adjusting old extent (we may have to split it)
3356 			 * 1 - add new extent
3357 			 * 1 - inode update
3358 			 */
3359 			trans = btrfs_start_transaction(root, 3);
3360 			if (IS_ERR(trans)) {
3361 				ret = PTR_ERR(trans);
3362 				goto out;
3363 			}
3364 
3365 			if (type == BTRFS_FILE_EXTENT_REG ||
3366 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3367 				/*
3368 				 *    a  | --- range to clone ---|  b
3369 				 * | ------------- extent ------------- |
3370 				 */
3371 
3372 				/* subtract range b */
3373 				if (key.offset + datal > off + len)
3374 					datal = off + len - key.offset;
3375 
3376 				/* subtract range a */
3377 				if (off > key.offset) {
3378 					datao += off - key.offset;
3379 					datal -= off - key.offset;
3380 				}
3381 
3382 				ret = btrfs_drop_extents(trans, root, inode,
3383 							 drop_start,
3384 							 new_key.offset + datal,
3385 							 1);
3386 				if (ret) {
3387 					if (ret != -EOPNOTSUPP)
3388 						btrfs_abort_transaction(trans,
3389 								root, ret);
3390 					btrfs_end_transaction(trans, root);
3391 					goto out;
3392 				}
3393 
3394 				ret = btrfs_insert_empty_item(trans, root, path,
3395 							      &new_key, size);
3396 				if (ret) {
3397 					btrfs_abort_transaction(trans, root,
3398 								ret);
3399 					btrfs_end_transaction(trans, root);
3400 					goto out;
3401 				}
3402 
3403 				leaf = path->nodes[0];
3404 				slot = path->slots[0];
3405 				write_extent_buffer(leaf, buf,
3406 					    btrfs_item_ptr_offset(leaf, slot),
3407 					    size);
3408 
3409 				extent = btrfs_item_ptr(leaf, slot,
3410 						struct btrfs_file_extent_item);
3411 
3412 				/* disko == 0 means it's a hole */
3413 				if (!disko)
3414 					datao = 0;
3415 
3416 				btrfs_set_file_extent_offset(leaf, extent,
3417 							     datao);
3418 				btrfs_set_file_extent_num_bytes(leaf, extent,
3419 								datal);
3420 
3421 				/*
3422 				 * We need to look up the roots that point at
3423 				 * this bytenr and see if the new root does.  If
3424 				 * it does not we need to make sure we update
3425 				 * quotas appropriately.
3426 				 */
3427 				if (disko && root != BTRFS_I(src)->root &&
3428 				    disko != last_disko) {
3429 					no_quota = check_ref(trans, root,
3430 							     disko);
3431 					if (no_quota < 0) {
3432 						btrfs_abort_transaction(trans,
3433 									root,
3434 									ret);
3435 						btrfs_end_transaction(trans,
3436 								      root);
3437 						ret = no_quota;
3438 						goto out;
3439 					}
3440 				}
3441 
3442 				if (disko) {
3443 					inode_add_bytes(inode, datal);
3444 					ret = btrfs_inc_extent_ref(trans, root,
3445 							disko, diskl, 0,
3446 							root->root_key.objectid,
3447 							btrfs_ino(inode),
3448 							new_key.offset - datao,
3449 							no_quota);
3450 					if (ret) {
3451 						btrfs_abort_transaction(trans,
3452 									root,
3453 									ret);
3454 						btrfs_end_transaction(trans,
3455 								      root);
3456 						goto out;
3457 
3458 					}
3459 				}
3460 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3461 				u64 skip = 0;
3462 				u64 trim = 0;
3463 				u64 aligned_end = 0;
3464 
3465 				if (off > key.offset) {
3466 					skip = off - key.offset;
3467 					new_key.offset += skip;
3468 				}
3469 
3470 				if (key.offset + datal > off + len)
3471 					trim = key.offset + datal - (off + len);
3472 
3473 				if (comp && (skip || trim)) {
3474 					ret = -EINVAL;
3475 					btrfs_end_transaction(trans, root);
3476 					goto out;
3477 				}
3478 				size -= skip + trim;
3479 				datal -= skip + trim;
3480 
3481 				aligned_end = ALIGN(new_key.offset + datal,
3482 						    root->sectorsize);
3483 				ret = btrfs_drop_extents(trans, root, inode,
3484 							 drop_start,
3485 							 aligned_end,
3486 							 1);
3487 				if (ret) {
3488 					if (ret != -EOPNOTSUPP)
3489 						btrfs_abort_transaction(trans,
3490 							root, ret);
3491 					btrfs_end_transaction(trans, root);
3492 					goto out;
3493 				}
3494 
3495 				ret = btrfs_insert_empty_item(trans, root, path,
3496 							      &new_key, size);
3497 				if (ret) {
3498 					btrfs_abort_transaction(trans, root,
3499 								ret);
3500 					btrfs_end_transaction(trans, root);
3501 					goto out;
3502 				}
3503 
3504 				if (skip) {
3505 					u32 start =
3506 					  btrfs_file_extent_calc_inline_size(0);
3507 					memmove(buf+start, buf+start+skip,
3508 						datal);
3509 				}
3510 
3511 				leaf = path->nodes[0];
3512 				slot = path->slots[0];
3513 				write_extent_buffer(leaf, buf,
3514 					    btrfs_item_ptr_offset(leaf, slot),
3515 					    size);
3516 				inode_add_bytes(inode, datal);
3517 			}
3518 
3519 			/* If we have an implicit hole (NO_HOLES feature). */
3520 			if (drop_start < new_key.offset)
3521 				clone_update_extent_map(inode, trans,
3522 						NULL, drop_start,
3523 						new_key.offset - drop_start);
3524 
3525 			clone_update_extent_map(inode, trans, path, 0, 0);
3526 
3527 			btrfs_mark_buffer_dirty(leaf);
3528 			btrfs_release_path(path);
3529 
3530 			last_dest_end = new_key.offset + datal;
3531 			ret = clone_finish_inode_update(trans, inode,
3532 							last_dest_end,
3533 							destoff, olen);
3534 			if (ret)
3535 				goto out;
3536 			if (new_key.offset + datal >= destoff + len)
3537 				break;
3538 		}
3539 		btrfs_release_path(path);
3540 		key.offset++;
3541 	}
3542 	ret = 0;
3543 
3544 	if (last_dest_end < destoff + len) {
3545 		/*
3546 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3547 		 * fully or partially overlaps our cloning range at its end.
3548 		 */
3549 		btrfs_release_path(path);
3550 
3551 		/*
3552 		 * 1 - remove extent(s)
3553 		 * 1 - inode update
3554 		 */
3555 		trans = btrfs_start_transaction(root, 2);
3556 		if (IS_ERR(trans)) {
3557 			ret = PTR_ERR(trans);
3558 			goto out;
3559 		}
3560 		ret = btrfs_drop_extents(trans, root, inode,
3561 					 last_dest_end, destoff + len, 1);
3562 		if (ret) {
3563 			if (ret != -EOPNOTSUPP)
3564 				btrfs_abort_transaction(trans, root, ret);
3565 			btrfs_end_transaction(trans, root);
3566 			goto out;
3567 		}
3568 		clone_update_extent_map(inode, trans, NULL, last_dest_end,
3569 					destoff + len - last_dest_end);
3570 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3571 						destoff, olen);
3572 	}
3573 
3574 out:
3575 	btrfs_free_path(path);
3576 	vfree(buf);
3577 	return ret;
3578 }
3579 
3580 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3581 				       u64 off, u64 olen, u64 destoff)
3582 {
3583 	struct inode *inode = file_inode(file);
3584 	struct btrfs_root *root = BTRFS_I(inode)->root;
3585 	struct fd src_file;
3586 	struct inode *src;
3587 	int ret;
3588 	u64 len = olen;
3589 	u64 bs = root->fs_info->sb->s_blocksize;
3590 	int same_inode = 0;
3591 
3592 	/*
3593 	 * TODO:
3594 	 * - split compressed inline extents.  annoying: we need to
3595 	 *   decompress into destination's address_space (the file offset
3596 	 *   may change, so source mapping won't do), then recompress (or
3597 	 *   otherwise reinsert) a subrange.
3598 	 *
3599 	 * - split destination inode's inline extents.  The inline extents can
3600 	 *   be either compressed or non-compressed.
3601 	 */
3602 
3603 	/* the destination must be opened for writing */
3604 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3605 		return -EINVAL;
3606 
3607 	if (btrfs_root_readonly(root))
3608 		return -EROFS;
3609 
3610 	ret = mnt_want_write_file(file);
3611 	if (ret)
3612 		return ret;
3613 
3614 	src_file = fdget(srcfd);
3615 	if (!src_file.file) {
3616 		ret = -EBADF;
3617 		goto out_drop_write;
3618 	}
3619 
3620 	ret = -EXDEV;
3621 	if (src_file.file->f_path.mnt != file->f_path.mnt)
3622 		goto out_fput;
3623 
3624 	src = file_inode(src_file.file);
3625 
3626 	ret = -EINVAL;
3627 	if (src == inode)
3628 		same_inode = 1;
3629 
3630 	/* the src must be open for reading */
3631 	if (!(src_file.file->f_mode & FMODE_READ))
3632 		goto out_fput;
3633 
3634 	/* don't make the dst file partly checksummed */
3635 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3636 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3637 		goto out_fput;
3638 
3639 	ret = -EISDIR;
3640 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3641 		goto out_fput;
3642 
3643 	ret = -EXDEV;
3644 	if (src->i_sb != inode->i_sb)
3645 		goto out_fput;
3646 
3647 	if (!same_inode) {
3648 		if (inode < src) {
3649 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3650 			mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3651 		} else {
3652 			mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3653 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3654 		}
3655 	} else {
3656 		mutex_lock(&src->i_mutex);
3657 	}
3658 
3659 	/* determine range to clone */
3660 	ret = -EINVAL;
3661 	if (off + len > src->i_size || off + len < off)
3662 		goto out_unlock;
3663 	if (len == 0)
3664 		olen = len = src->i_size - off;
3665 	/* if we extend to eof, continue to block boundary */
3666 	if (off + len == src->i_size)
3667 		len = ALIGN(src->i_size, bs) - off;
3668 
3669 	/* verify the end result is block aligned */
3670 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3671 	    !IS_ALIGNED(destoff, bs))
3672 		goto out_unlock;
3673 
3674 	/* verify if ranges are overlapped within the same file */
3675 	if (same_inode) {
3676 		if (destoff + len > off && destoff < off + len)
3677 			goto out_unlock;
3678 	}
3679 
3680 	if (destoff > inode->i_size) {
3681 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3682 		if (ret)
3683 			goto out_unlock;
3684 	}
3685 
3686 	/*
3687 	 * Lock the target range too. Right after we replace the file extent
3688 	 * items in the fs tree (which now point to the cloned data), we might
3689 	 * have a worker replace them with extent items relative to a write
3690 	 * operation that was issued before this clone operation (i.e. confront
3691 	 * with inode.c:btrfs_finish_ordered_io).
3692 	 */
3693 	if (same_inode) {
3694 		u64 lock_start = min_t(u64, off, destoff);
3695 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3696 
3697 		lock_extent_range(src, lock_start, lock_len);
3698 	} else {
3699 		lock_extent_range(src, off, len);
3700 		lock_extent_range(inode, destoff, len);
3701 	}
3702 
3703 	ret = btrfs_clone(src, inode, off, olen, len, destoff);
3704 
3705 	if (same_inode) {
3706 		u64 lock_start = min_t(u64, off, destoff);
3707 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3708 
3709 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3710 	} else {
3711 		unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3712 		unlock_extent(&BTRFS_I(inode)->io_tree, destoff,
3713 			      destoff + len - 1);
3714 	}
3715 	/*
3716 	 * Truncate page cache pages so that future reads will see the cloned
3717 	 * data immediately and not the previous data.
3718 	 */
3719 	truncate_inode_pages_range(&inode->i_data, destoff,
3720 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3721 out_unlock:
3722 	if (!same_inode) {
3723 		if (inode < src) {
3724 			mutex_unlock(&src->i_mutex);
3725 			mutex_unlock(&inode->i_mutex);
3726 		} else {
3727 			mutex_unlock(&inode->i_mutex);
3728 			mutex_unlock(&src->i_mutex);
3729 		}
3730 	} else {
3731 		mutex_unlock(&src->i_mutex);
3732 	}
3733 out_fput:
3734 	fdput(src_file);
3735 out_drop_write:
3736 	mnt_drop_write_file(file);
3737 	return ret;
3738 }
3739 
3740 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3741 {
3742 	struct btrfs_ioctl_clone_range_args args;
3743 
3744 	if (copy_from_user(&args, argp, sizeof(args)))
3745 		return -EFAULT;
3746 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3747 				 args.src_length, args.dest_offset);
3748 }
3749 
3750 /*
3751  * there are many ways the trans_start and trans_end ioctls can lead
3752  * to deadlocks.  They should only be used by applications that
3753  * basically own the machine, and have a very in depth understanding
3754  * of all the possible deadlocks and enospc problems.
3755  */
3756 static long btrfs_ioctl_trans_start(struct file *file)
3757 {
3758 	struct inode *inode = file_inode(file);
3759 	struct btrfs_root *root = BTRFS_I(inode)->root;
3760 	struct btrfs_trans_handle *trans;
3761 	int ret;
3762 
3763 	ret = -EPERM;
3764 	if (!capable(CAP_SYS_ADMIN))
3765 		goto out;
3766 
3767 	ret = -EINPROGRESS;
3768 	if (file->private_data)
3769 		goto out;
3770 
3771 	ret = -EROFS;
3772 	if (btrfs_root_readonly(root))
3773 		goto out;
3774 
3775 	ret = mnt_want_write_file(file);
3776 	if (ret)
3777 		goto out;
3778 
3779 	atomic_inc(&root->fs_info->open_ioctl_trans);
3780 
3781 	ret = -ENOMEM;
3782 	trans = btrfs_start_ioctl_transaction(root);
3783 	if (IS_ERR(trans))
3784 		goto out_drop;
3785 
3786 	file->private_data = trans;
3787 	return 0;
3788 
3789 out_drop:
3790 	atomic_dec(&root->fs_info->open_ioctl_trans);
3791 	mnt_drop_write_file(file);
3792 out:
3793 	return ret;
3794 }
3795 
3796 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3797 {
3798 	struct inode *inode = file_inode(file);
3799 	struct btrfs_root *root = BTRFS_I(inode)->root;
3800 	struct btrfs_root *new_root;
3801 	struct btrfs_dir_item *di;
3802 	struct btrfs_trans_handle *trans;
3803 	struct btrfs_path *path;
3804 	struct btrfs_key location;
3805 	struct btrfs_disk_key disk_key;
3806 	u64 objectid = 0;
3807 	u64 dir_id;
3808 	int ret;
3809 
3810 	if (!capable(CAP_SYS_ADMIN))
3811 		return -EPERM;
3812 
3813 	ret = mnt_want_write_file(file);
3814 	if (ret)
3815 		return ret;
3816 
3817 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3818 		ret = -EFAULT;
3819 		goto out;
3820 	}
3821 
3822 	if (!objectid)
3823 		objectid = BTRFS_FS_TREE_OBJECTID;
3824 
3825 	location.objectid = objectid;
3826 	location.type = BTRFS_ROOT_ITEM_KEY;
3827 	location.offset = (u64)-1;
3828 
3829 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3830 	if (IS_ERR(new_root)) {
3831 		ret = PTR_ERR(new_root);
3832 		goto out;
3833 	}
3834 
3835 	path = btrfs_alloc_path();
3836 	if (!path) {
3837 		ret = -ENOMEM;
3838 		goto out;
3839 	}
3840 	path->leave_spinning = 1;
3841 
3842 	trans = btrfs_start_transaction(root, 1);
3843 	if (IS_ERR(trans)) {
3844 		btrfs_free_path(path);
3845 		ret = PTR_ERR(trans);
3846 		goto out;
3847 	}
3848 
3849 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3850 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3851 				   dir_id, "default", 7, 1);
3852 	if (IS_ERR_OR_NULL(di)) {
3853 		btrfs_free_path(path);
3854 		btrfs_end_transaction(trans, root);
3855 		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3856 			   "item, this isn't going to work");
3857 		ret = -ENOENT;
3858 		goto out;
3859 	}
3860 
3861 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3862 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3863 	btrfs_mark_buffer_dirty(path->nodes[0]);
3864 	btrfs_free_path(path);
3865 
3866 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3867 	btrfs_end_transaction(trans, root);
3868 out:
3869 	mnt_drop_write_file(file);
3870 	return ret;
3871 }
3872 
3873 void btrfs_get_block_group_info(struct list_head *groups_list,
3874 				struct btrfs_ioctl_space_info *space)
3875 {
3876 	struct btrfs_block_group_cache *block_group;
3877 
3878 	space->total_bytes = 0;
3879 	space->used_bytes = 0;
3880 	space->flags = 0;
3881 	list_for_each_entry(block_group, groups_list, list) {
3882 		space->flags = block_group->flags;
3883 		space->total_bytes += block_group->key.offset;
3884 		space->used_bytes +=
3885 			btrfs_block_group_used(&block_group->item);
3886 	}
3887 }
3888 
3889 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3890 {
3891 	struct btrfs_ioctl_space_args space_args;
3892 	struct btrfs_ioctl_space_info space;
3893 	struct btrfs_ioctl_space_info *dest;
3894 	struct btrfs_ioctl_space_info *dest_orig;
3895 	struct btrfs_ioctl_space_info __user *user_dest;
3896 	struct btrfs_space_info *info;
3897 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3898 		       BTRFS_BLOCK_GROUP_SYSTEM,
3899 		       BTRFS_BLOCK_GROUP_METADATA,
3900 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3901 	int num_types = 4;
3902 	int alloc_size;
3903 	int ret = 0;
3904 	u64 slot_count = 0;
3905 	int i, c;
3906 
3907 	if (copy_from_user(&space_args,
3908 			   (struct btrfs_ioctl_space_args __user *)arg,
3909 			   sizeof(space_args)))
3910 		return -EFAULT;
3911 
3912 	for (i = 0; i < num_types; i++) {
3913 		struct btrfs_space_info *tmp;
3914 
3915 		info = NULL;
3916 		rcu_read_lock();
3917 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3918 					list) {
3919 			if (tmp->flags == types[i]) {
3920 				info = tmp;
3921 				break;
3922 			}
3923 		}
3924 		rcu_read_unlock();
3925 
3926 		if (!info)
3927 			continue;
3928 
3929 		down_read(&info->groups_sem);
3930 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3931 			if (!list_empty(&info->block_groups[c]))
3932 				slot_count++;
3933 		}
3934 		up_read(&info->groups_sem);
3935 	}
3936 
3937 	/*
3938 	 * Global block reserve, exported as a space_info
3939 	 */
3940 	slot_count++;
3941 
3942 	/* space_slots == 0 means they are asking for a count */
3943 	if (space_args.space_slots == 0) {
3944 		space_args.total_spaces = slot_count;
3945 		goto out;
3946 	}
3947 
3948 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3949 
3950 	alloc_size = sizeof(*dest) * slot_count;
3951 
3952 	/* we generally have at most 6 or so space infos, one for each raid
3953 	 * level.  So, a whole page should be more than enough for everyone
3954 	 */
3955 	if (alloc_size > PAGE_CACHE_SIZE)
3956 		return -ENOMEM;
3957 
3958 	space_args.total_spaces = 0;
3959 	dest = kmalloc(alloc_size, GFP_NOFS);
3960 	if (!dest)
3961 		return -ENOMEM;
3962 	dest_orig = dest;
3963 
3964 	/* now we have a buffer to copy into */
3965 	for (i = 0; i < num_types; i++) {
3966 		struct btrfs_space_info *tmp;
3967 
3968 		if (!slot_count)
3969 			break;
3970 
3971 		info = NULL;
3972 		rcu_read_lock();
3973 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3974 					list) {
3975 			if (tmp->flags == types[i]) {
3976 				info = tmp;
3977 				break;
3978 			}
3979 		}
3980 		rcu_read_unlock();
3981 
3982 		if (!info)
3983 			continue;
3984 		down_read(&info->groups_sem);
3985 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3986 			if (!list_empty(&info->block_groups[c])) {
3987 				btrfs_get_block_group_info(
3988 					&info->block_groups[c], &space);
3989 				memcpy(dest, &space, sizeof(space));
3990 				dest++;
3991 				space_args.total_spaces++;
3992 				slot_count--;
3993 			}
3994 			if (!slot_count)
3995 				break;
3996 		}
3997 		up_read(&info->groups_sem);
3998 	}
3999 
4000 	/*
4001 	 * Add global block reserve
4002 	 */
4003 	if (slot_count) {
4004 		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4005 
4006 		spin_lock(&block_rsv->lock);
4007 		space.total_bytes = block_rsv->size;
4008 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4009 		spin_unlock(&block_rsv->lock);
4010 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4011 		memcpy(dest, &space, sizeof(space));
4012 		space_args.total_spaces++;
4013 	}
4014 
4015 	user_dest = (struct btrfs_ioctl_space_info __user *)
4016 		(arg + sizeof(struct btrfs_ioctl_space_args));
4017 
4018 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4019 		ret = -EFAULT;
4020 
4021 	kfree(dest_orig);
4022 out:
4023 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4024 		ret = -EFAULT;
4025 
4026 	return ret;
4027 }
4028 
4029 /*
4030  * there are many ways the trans_start and trans_end ioctls can lead
4031  * to deadlocks.  They should only be used by applications that
4032  * basically own the machine, and have a very in depth understanding
4033  * of all the possible deadlocks and enospc problems.
4034  */
4035 long btrfs_ioctl_trans_end(struct file *file)
4036 {
4037 	struct inode *inode = file_inode(file);
4038 	struct btrfs_root *root = BTRFS_I(inode)->root;
4039 	struct btrfs_trans_handle *trans;
4040 
4041 	trans = file->private_data;
4042 	if (!trans)
4043 		return -EINVAL;
4044 	file->private_data = NULL;
4045 
4046 	btrfs_end_transaction(trans, root);
4047 
4048 	atomic_dec(&root->fs_info->open_ioctl_trans);
4049 
4050 	mnt_drop_write_file(file);
4051 	return 0;
4052 }
4053 
4054 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4055 					    void __user *argp)
4056 {
4057 	struct btrfs_trans_handle *trans;
4058 	u64 transid;
4059 	int ret;
4060 
4061 	trans = btrfs_attach_transaction_barrier(root);
4062 	if (IS_ERR(trans)) {
4063 		if (PTR_ERR(trans) != -ENOENT)
4064 			return PTR_ERR(trans);
4065 
4066 		/* No running transaction, don't bother */
4067 		transid = root->fs_info->last_trans_committed;
4068 		goto out;
4069 	}
4070 	transid = trans->transid;
4071 	ret = btrfs_commit_transaction_async(trans, root, 0);
4072 	if (ret) {
4073 		btrfs_end_transaction(trans, root);
4074 		return ret;
4075 	}
4076 out:
4077 	if (argp)
4078 		if (copy_to_user(argp, &transid, sizeof(transid)))
4079 			return -EFAULT;
4080 	return 0;
4081 }
4082 
4083 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4084 					   void __user *argp)
4085 {
4086 	u64 transid;
4087 
4088 	if (argp) {
4089 		if (copy_from_user(&transid, argp, sizeof(transid)))
4090 			return -EFAULT;
4091 	} else {
4092 		transid = 0;  /* current trans */
4093 	}
4094 	return btrfs_wait_for_commit(root, transid);
4095 }
4096 
4097 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4098 {
4099 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4100 	struct btrfs_ioctl_scrub_args *sa;
4101 	int ret;
4102 
4103 	if (!capable(CAP_SYS_ADMIN))
4104 		return -EPERM;
4105 
4106 	sa = memdup_user(arg, sizeof(*sa));
4107 	if (IS_ERR(sa))
4108 		return PTR_ERR(sa);
4109 
4110 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4111 		ret = mnt_want_write_file(file);
4112 		if (ret)
4113 			goto out;
4114 	}
4115 
4116 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4117 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4118 			      0);
4119 
4120 	if (copy_to_user(arg, sa, sizeof(*sa)))
4121 		ret = -EFAULT;
4122 
4123 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4124 		mnt_drop_write_file(file);
4125 out:
4126 	kfree(sa);
4127 	return ret;
4128 }
4129 
4130 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4131 {
4132 	if (!capable(CAP_SYS_ADMIN))
4133 		return -EPERM;
4134 
4135 	return btrfs_scrub_cancel(root->fs_info);
4136 }
4137 
4138 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4139 				       void __user *arg)
4140 {
4141 	struct btrfs_ioctl_scrub_args *sa;
4142 	int ret;
4143 
4144 	if (!capable(CAP_SYS_ADMIN))
4145 		return -EPERM;
4146 
4147 	sa = memdup_user(arg, sizeof(*sa));
4148 	if (IS_ERR(sa))
4149 		return PTR_ERR(sa);
4150 
4151 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4152 
4153 	if (copy_to_user(arg, sa, sizeof(*sa)))
4154 		ret = -EFAULT;
4155 
4156 	kfree(sa);
4157 	return ret;
4158 }
4159 
4160 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4161 				      void __user *arg)
4162 {
4163 	struct btrfs_ioctl_get_dev_stats *sa;
4164 	int ret;
4165 
4166 	sa = memdup_user(arg, sizeof(*sa));
4167 	if (IS_ERR(sa))
4168 		return PTR_ERR(sa);
4169 
4170 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4171 		kfree(sa);
4172 		return -EPERM;
4173 	}
4174 
4175 	ret = btrfs_get_dev_stats(root, sa);
4176 
4177 	if (copy_to_user(arg, sa, sizeof(*sa)))
4178 		ret = -EFAULT;
4179 
4180 	kfree(sa);
4181 	return ret;
4182 }
4183 
4184 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4185 {
4186 	struct btrfs_ioctl_dev_replace_args *p;
4187 	int ret;
4188 
4189 	if (!capable(CAP_SYS_ADMIN))
4190 		return -EPERM;
4191 
4192 	p = memdup_user(arg, sizeof(*p));
4193 	if (IS_ERR(p))
4194 		return PTR_ERR(p);
4195 
4196 	switch (p->cmd) {
4197 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4198 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4199 			ret = -EROFS;
4200 			goto out;
4201 		}
4202 		if (atomic_xchg(
4203 			&root->fs_info->mutually_exclusive_operation_running,
4204 			1)) {
4205 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4206 		} else {
4207 			ret = btrfs_dev_replace_start(root, p);
4208 			atomic_set(
4209 			 &root->fs_info->mutually_exclusive_operation_running,
4210 			 0);
4211 		}
4212 		break;
4213 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4214 		btrfs_dev_replace_status(root->fs_info, p);
4215 		ret = 0;
4216 		break;
4217 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4218 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
4219 		break;
4220 	default:
4221 		ret = -EINVAL;
4222 		break;
4223 	}
4224 
4225 	if (copy_to_user(arg, p, sizeof(*p)))
4226 		ret = -EFAULT;
4227 out:
4228 	kfree(p);
4229 	return ret;
4230 }
4231 
4232 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4233 {
4234 	int ret = 0;
4235 	int i;
4236 	u64 rel_ptr;
4237 	int size;
4238 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4239 	struct inode_fs_paths *ipath = NULL;
4240 	struct btrfs_path *path;
4241 
4242 	if (!capable(CAP_DAC_READ_SEARCH))
4243 		return -EPERM;
4244 
4245 	path = btrfs_alloc_path();
4246 	if (!path) {
4247 		ret = -ENOMEM;
4248 		goto out;
4249 	}
4250 
4251 	ipa = memdup_user(arg, sizeof(*ipa));
4252 	if (IS_ERR(ipa)) {
4253 		ret = PTR_ERR(ipa);
4254 		ipa = NULL;
4255 		goto out;
4256 	}
4257 
4258 	size = min_t(u32, ipa->size, 4096);
4259 	ipath = init_ipath(size, root, path);
4260 	if (IS_ERR(ipath)) {
4261 		ret = PTR_ERR(ipath);
4262 		ipath = NULL;
4263 		goto out;
4264 	}
4265 
4266 	ret = paths_from_inode(ipa->inum, ipath);
4267 	if (ret < 0)
4268 		goto out;
4269 
4270 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4271 		rel_ptr = ipath->fspath->val[i] -
4272 			  (u64)(unsigned long)ipath->fspath->val;
4273 		ipath->fspath->val[i] = rel_ptr;
4274 	}
4275 
4276 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4277 			   (void *)(unsigned long)ipath->fspath, size);
4278 	if (ret) {
4279 		ret = -EFAULT;
4280 		goto out;
4281 	}
4282 
4283 out:
4284 	btrfs_free_path(path);
4285 	free_ipath(ipath);
4286 	kfree(ipa);
4287 
4288 	return ret;
4289 }
4290 
4291 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4292 {
4293 	struct btrfs_data_container *inodes = ctx;
4294 	const size_t c = 3 * sizeof(u64);
4295 
4296 	if (inodes->bytes_left >= c) {
4297 		inodes->bytes_left -= c;
4298 		inodes->val[inodes->elem_cnt] = inum;
4299 		inodes->val[inodes->elem_cnt + 1] = offset;
4300 		inodes->val[inodes->elem_cnt + 2] = root;
4301 		inodes->elem_cnt += 3;
4302 	} else {
4303 		inodes->bytes_missing += c - inodes->bytes_left;
4304 		inodes->bytes_left = 0;
4305 		inodes->elem_missed += 3;
4306 	}
4307 
4308 	return 0;
4309 }
4310 
4311 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4312 					void __user *arg)
4313 {
4314 	int ret = 0;
4315 	int size;
4316 	struct btrfs_ioctl_logical_ino_args *loi;
4317 	struct btrfs_data_container *inodes = NULL;
4318 	struct btrfs_path *path = NULL;
4319 
4320 	if (!capable(CAP_SYS_ADMIN))
4321 		return -EPERM;
4322 
4323 	loi = memdup_user(arg, sizeof(*loi));
4324 	if (IS_ERR(loi)) {
4325 		ret = PTR_ERR(loi);
4326 		loi = NULL;
4327 		goto out;
4328 	}
4329 
4330 	path = btrfs_alloc_path();
4331 	if (!path) {
4332 		ret = -ENOMEM;
4333 		goto out;
4334 	}
4335 
4336 	size = min_t(u32, loi->size, 64 * 1024);
4337 	inodes = init_data_container(size);
4338 	if (IS_ERR(inodes)) {
4339 		ret = PTR_ERR(inodes);
4340 		inodes = NULL;
4341 		goto out;
4342 	}
4343 
4344 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4345 					  build_ino_list, inodes);
4346 	if (ret == -EINVAL)
4347 		ret = -ENOENT;
4348 	if (ret < 0)
4349 		goto out;
4350 
4351 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4352 			   (void *)(unsigned long)inodes, size);
4353 	if (ret)
4354 		ret = -EFAULT;
4355 
4356 out:
4357 	btrfs_free_path(path);
4358 	vfree(inodes);
4359 	kfree(loi);
4360 
4361 	return ret;
4362 }
4363 
4364 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4365 			       struct btrfs_ioctl_balance_args *bargs)
4366 {
4367 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4368 
4369 	bargs->flags = bctl->flags;
4370 
4371 	if (atomic_read(&fs_info->balance_running))
4372 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4373 	if (atomic_read(&fs_info->balance_pause_req))
4374 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4375 	if (atomic_read(&fs_info->balance_cancel_req))
4376 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4377 
4378 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4379 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4380 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4381 
4382 	if (lock) {
4383 		spin_lock(&fs_info->balance_lock);
4384 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4385 		spin_unlock(&fs_info->balance_lock);
4386 	} else {
4387 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4388 	}
4389 }
4390 
4391 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4392 {
4393 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4394 	struct btrfs_fs_info *fs_info = root->fs_info;
4395 	struct btrfs_ioctl_balance_args *bargs;
4396 	struct btrfs_balance_control *bctl;
4397 	bool need_unlock; /* for mut. excl. ops lock */
4398 	int ret;
4399 
4400 	if (!capable(CAP_SYS_ADMIN))
4401 		return -EPERM;
4402 
4403 	ret = mnt_want_write_file(file);
4404 	if (ret)
4405 		return ret;
4406 
4407 again:
4408 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4409 		mutex_lock(&fs_info->volume_mutex);
4410 		mutex_lock(&fs_info->balance_mutex);
4411 		need_unlock = true;
4412 		goto locked;
4413 	}
4414 
4415 	/*
4416 	 * mut. excl. ops lock is locked.  Three possibilites:
4417 	 *   (1) some other op is running
4418 	 *   (2) balance is running
4419 	 *   (3) balance is paused -- special case (think resume)
4420 	 */
4421 	mutex_lock(&fs_info->balance_mutex);
4422 	if (fs_info->balance_ctl) {
4423 		/* this is either (2) or (3) */
4424 		if (!atomic_read(&fs_info->balance_running)) {
4425 			mutex_unlock(&fs_info->balance_mutex);
4426 			if (!mutex_trylock(&fs_info->volume_mutex))
4427 				goto again;
4428 			mutex_lock(&fs_info->balance_mutex);
4429 
4430 			if (fs_info->balance_ctl &&
4431 			    !atomic_read(&fs_info->balance_running)) {
4432 				/* this is (3) */
4433 				need_unlock = false;
4434 				goto locked;
4435 			}
4436 
4437 			mutex_unlock(&fs_info->balance_mutex);
4438 			mutex_unlock(&fs_info->volume_mutex);
4439 			goto again;
4440 		} else {
4441 			/* this is (2) */
4442 			mutex_unlock(&fs_info->balance_mutex);
4443 			ret = -EINPROGRESS;
4444 			goto out;
4445 		}
4446 	} else {
4447 		/* this is (1) */
4448 		mutex_unlock(&fs_info->balance_mutex);
4449 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4450 		goto out;
4451 	}
4452 
4453 locked:
4454 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4455 
4456 	if (arg) {
4457 		bargs = memdup_user(arg, sizeof(*bargs));
4458 		if (IS_ERR(bargs)) {
4459 			ret = PTR_ERR(bargs);
4460 			goto out_unlock;
4461 		}
4462 
4463 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4464 			if (!fs_info->balance_ctl) {
4465 				ret = -ENOTCONN;
4466 				goto out_bargs;
4467 			}
4468 
4469 			bctl = fs_info->balance_ctl;
4470 			spin_lock(&fs_info->balance_lock);
4471 			bctl->flags |= BTRFS_BALANCE_RESUME;
4472 			spin_unlock(&fs_info->balance_lock);
4473 
4474 			goto do_balance;
4475 		}
4476 	} else {
4477 		bargs = NULL;
4478 	}
4479 
4480 	if (fs_info->balance_ctl) {
4481 		ret = -EINPROGRESS;
4482 		goto out_bargs;
4483 	}
4484 
4485 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4486 	if (!bctl) {
4487 		ret = -ENOMEM;
4488 		goto out_bargs;
4489 	}
4490 
4491 	bctl->fs_info = fs_info;
4492 	if (arg) {
4493 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4494 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4495 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4496 
4497 		bctl->flags = bargs->flags;
4498 	} else {
4499 		/* balance everything - no filters */
4500 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4501 	}
4502 
4503 do_balance:
4504 	/*
4505 	 * Ownership of bctl and mutually_exclusive_operation_running
4506 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4507 	 * or, if restriper was paused all the way until unmount, in
4508 	 * free_fs_info.  mutually_exclusive_operation_running is
4509 	 * cleared in __cancel_balance.
4510 	 */
4511 	need_unlock = false;
4512 
4513 	ret = btrfs_balance(bctl, bargs);
4514 
4515 	if (arg) {
4516 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4517 			ret = -EFAULT;
4518 	}
4519 
4520 out_bargs:
4521 	kfree(bargs);
4522 out_unlock:
4523 	mutex_unlock(&fs_info->balance_mutex);
4524 	mutex_unlock(&fs_info->volume_mutex);
4525 	if (need_unlock)
4526 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4527 out:
4528 	mnt_drop_write_file(file);
4529 	return ret;
4530 }
4531 
4532 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4533 {
4534 	if (!capable(CAP_SYS_ADMIN))
4535 		return -EPERM;
4536 
4537 	switch (cmd) {
4538 	case BTRFS_BALANCE_CTL_PAUSE:
4539 		return btrfs_pause_balance(root->fs_info);
4540 	case BTRFS_BALANCE_CTL_CANCEL:
4541 		return btrfs_cancel_balance(root->fs_info);
4542 	}
4543 
4544 	return -EINVAL;
4545 }
4546 
4547 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4548 					 void __user *arg)
4549 {
4550 	struct btrfs_fs_info *fs_info = root->fs_info;
4551 	struct btrfs_ioctl_balance_args *bargs;
4552 	int ret = 0;
4553 
4554 	if (!capable(CAP_SYS_ADMIN))
4555 		return -EPERM;
4556 
4557 	mutex_lock(&fs_info->balance_mutex);
4558 	if (!fs_info->balance_ctl) {
4559 		ret = -ENOTCONN;
4560 		goto out;
4561 	}
4562 
4563 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4564 	if (!bargs) {
4565 		ret = -ENOMEM;
4566 		goto out;
4567 	}
4568 
4569 	update_ioctl_balance_args(fs_info, 1, bargs);
4570 
4571 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4572 		ret = -EFAULT;
4573 
4574 	kfree(bargs);
4575 out:
4576 	mutex_unlock(&fs_info->balance_mutex);
4577 	return ret;
4578 }
4579 
4580 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4581 {
4582 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4583 	struct btrfs_ioctl_quota_ctl_args *sa;
4584 	struct btrfs_trans_handle *trans = NULL;
4585 	int ret;
4586 	int err;
4587 
4588 	if (!capable(CAP_SYS_ADMIN))
4589 		return -EPERM;
4590 
4591 	ret = mnt_want_write_file(file);
4592 	if (ret)
4593 		return ret;
4594 
4595 	sa = memdup_user(arg, sizeof(*sa));
4596 	if (IS_ERR(sa)) {
4597 		ret = PTR_ERR(sa);
4598 		goto drop_write;
4599 	}
4600 
4601 	down_write(&root->fs_info->subvol_sem);
4602 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4603 	if (IS_ERR(trans)) {
4604 		ret = PTR_ERR(trans);
4605 		goto out;
4606 	}
4607 
4608 	switch (sa->cmd) {
4609 	case BTRFS_QUOTA_CTL_ENABLE:
4610 		ret = btrfs_quota_enable(trans, root->fs_info);
4611 		break;
4612 	case BTRFS_QUOTA_CTL_DISABLE:
4613 		ret = btrfs_quota_disable(trans, root->fs_info);
4614 		break;
4615 	default:
4616 		ret = -EINVAL;
4617 		break;
4618 	}
4619 
4620 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4621 	if (err && !ret)
4622 		ret = err;
4623 out:
4624 	kfree(sa);
4625 	up_write(&root->fs_info->subvol_sem);
4626 drop_write:
4627 	mnt_drop_write_file(file);
4628 	return ret;
4629 }
4630 
4631 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4632 {
4633 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4634 	struct btrfs_ioctl_qgroup_assign_args *sa;
4635 	struct btrfs_trans_handle *trans;
4636 	int ret;
4637 	int err;
4638 
4639 	if (!capable(CAP_SYS_ADMIN))
4640 		return -EPERM;
4641 
4642 	ret = mnt_want_write_file(file);
4643 	if (ret)
4644 		return ret;
4645 
4646 	sa = memdup_user(arg, sizeof(*sa));
4647 	if (IS_ERR(sa)) {
4648 		ret = PTR_ERR(sa);
4649 		goto drop_write;
4650 	}
4651 
4652 	trans = btrfs_join_transaction(root);
4653 	if (IS_ERR(trans)) {
4654 		ret = PTR_ERR(trans);
4655 		goto out;
4656 	}
4657 
4658 	/* FIXME: check if the IDs really exist */
4659 	if (sa->assign) {
4660 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4661 						sa->src, sa->dst);
4662 	} else {
4663 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4664 						sa->src, sa->dst);
4665 	}
4666 
4667 	err = btrfs_end_transaction(trans, root);
4668 	if (err && !ret)
4669 		ret = err;
4670 
4671 out:
4672 	kfree(sa);
4673 drop_write:
4674 	mnt_drop_write_file(file);
4675 	return ret;
4676 }
4677 
4678 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4679 {
4680 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4681 	struct btrfs_ioctl_qgroup_create_args *sa;
4682 	struct btrfs_trans_handle *trans;
4683 	int ret;
4684 	int err;
4685 
4686 	if (!capable(CAP_SYS_ADMIN))
4687 		return -EPERM;
4688 
4689 	ret = mnt_want_write_file(file);
4690 	if (ret)
4691 		return ret;
4692 
4693 	sa = memdup_user(arg, sizeof(*sa));
4694 	if (IS_ERR(sa)) {
4695 		ret = PTR_ERR(sa);
4696 		goto drop_write;
4697 	}
4698 
4699 	if (!sa->qgroupid) {
4700 		ret = -EINVAL;
4701 		goto out;
4702 	}
4703 
4704 	trans = btrfs_join_transaction(root);
4705 	if (IS_ERR(trans)) {
4706 		ret = PTR_ERR(trans);
4707 		goto out;
4708 	}
4709 
4710 	/* FIXME: check if the IDs really exist */
4711 	if (sa->create) {
4712 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
4713 					  NULL);
4714 	} else {
4715 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4716 	}
4717 
4718 	err = btrfs_end_transaction(trans, root);
4719 	if (err && !ret)
4720 		ret = err;
4721 
4722 out:
4723 	kfree(sa);
4724 drop_write:
4725 	mnt_drop_write_file(file);
4726 	return ret;
4727 }
4728 
4729 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4730 {
4731 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4732 	struct btrfs_ioctl_qgroup_limit_args *sa;
4733 	struct btrfs_trans_handle *trans;
4734 	int ret;
4735 	int err;
4736 	u64 qgroupid;
4737 
4738 	if (!capable(CAP_SYS_ADMIN))
4739 		return -EPERM;
4740 
4741 	ret = mnt_want_write_file(file);
4742 	if (ret)
4743 		return ret;
4744 
4745 	sa = memdup_user(arg, sizeof(*sa));
4746 	if (IS_ERR(sa)) {
4747 		ret = PTR_ERR(sa);
4748 		goto drop_write;
4749 	}
4750 
4751 	trans = btrfs_join_transaction(root);
4752 	if (IS_ERR(trans)) {
4753 		ret = PTR_ERR(trans);
4754 		goto out;
4755 	}
4756 
4757 	qgroupid = sa->qgroupid;
4758 	if (!qgroupid) {
4759 		/* take the current subvol as qgroup */
4760 		qgroupid = root->root_key.objectid;
4761 	}
4762 
4763 	/* FIXME: check if the IDs really exist */
4764 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4765 
4766 	err = btrfs_end_transaction(trans, root);
4767 	if (err && !ret)
4768 		ret = err;
4769 
4770 out:
4771 	kfree(sa);
4772 drop_write:
4773 	mnt_drop_write_file(file);
4774 	return ret;
4775 }
4776 
4777 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4778 {
4779 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4780 	struct btrfs_ioctl_quota_rescan_args *qsa;
4781 	int ret;
4782 
4783 	if (!capable(CAP_SYS_ADMIN))
4784 		return -EPERM;
4785 
4786 	ret = mnt_want_write_file(file);
4787 	if (ret)
4788 		return ret;
4789 
4790 	qsa = memdup_user(arg, sizeof(*qsa));
4791 	if (IS_ERR(qsa)) {
4792 		ret = PTR_ERR(qsa);
4793 		goto drop_write;
4794 	}
4795 
4796 	if (qsa->flags) {
4797 		ret = -EINVAL;
4798 		goto out;
4799 	}
4800 
4801 	ret = btrfs_qgroup_rescan(root->fs_info);
4802 
4803 out:
4804 	kfree(qsa);
4805 drop_write:
4806 	mnt_drop_write_file(file);
4807 	return ret;
4808 }
4809 
4810 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4811 {
4812 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4813 	struct btrfs_ioctl_quota_rescan_args *qsa;
4814 	int ret = 0;
4815 
4816 	if (!capable(CAP_SYS_ADMIN))
4817 		return -EPERM;
4818 
4819 	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4820 	if (!qsa)
4821 		return -ENOMEM;
4822 
4823 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4824 		qsa->flags = 1;
4825 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4826 	}
4827 
4828 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4829 		ret = -EFAULT;
4830 
4831 	kfree(qsa);
4832 	return ret;
4833 }
4834 
4835 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4836 {
4837 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4838 
4839 	if (!capable(CAP_SYS_ADMIN))
4840 		return -EPERM;
4841 
4842 	return btrfs_qgroup_wait_for_completion(root->fs_info);
4843 }
4844 
4845 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4846 					    struct btrfs_ioctl_received_subvol_args *sa)
4847 {
4848 	struct inode *inode = file_inode(file);
4849 	struct btrfs_root *root = BTRFS_I(inode)->root;
4850 	struct btrfs_root_item *root_item = &root->root_item;
4851 	struct btrfs_trans_handle *trans;
4852 	struct timespec ct = CURRENT_TIME;
4853 	int ret = 0;
4854 	int received_uuid_changed;
4855 
4856 	if (!inode_owner_or_capable(inode))
4857 		return -EPERM;
4858 
4859 	ret = mnt_want_write_file(file);
4860 	if (ret < 0)
4861 		return ret;
4862 
4863 	down_write(&root->fs_info->subvol_sem);
4864 
4865 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4866 		ret = -EINVAL;
4867 		goto out;
4868 	}
4869 
4870 	if (btrfs_root_readonly(root)) {
4871 		ret = -EROFS;
4872 		goto out;
4873 	}
4874 
4875 	/*
4876 	 * 1 - root item
4877 	 * 2 - uuid items (received uuid + subvol uuid)
4878 	 */
4879 	trans = btrfs_start_transaction(root, 3);
4880 	if (IS_ERR(trans)) {
4881 		ret = PTR_ERR(trans);
4882 		trans = NULL;
4883 		goto out;
4884 	}
4885 
4886 	sa->rtransid = trans->transid;
4887 	sa->rtime.sec = ct.tv_sec;
4888 	sa->rtime.nsec = ct.tv_nsec;
4889 
4890 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4891 				       BTRFS_UUID_SIZE);
4892 	if (received_uuid_changed &&
4893 	    !btrfs_is_empty_uuid(root_item->received_uuid))
4894 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4895 				    root_item->received_uuid,
4896 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4897 				    root->root_key.objectid);
4898 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4899 	btrfs_set_root_stransid(root_item, sa->stransid);
4900 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4901 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4902 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4903 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4904 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4905 
4906 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4907 				&root->root_key, &root->root_item);
4908 	if (ret < 0) {
4909 		btrfs_end_transaction(trans, root);
4910 		goto out;
4911 	}
4912 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4913 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4914 					  sa->uuid,
4915 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4916 					  root->root_key.objectid);
4917 		if (ret < 0 && ret != -EEXIST) {
4918 			btrfs_abort_transaction(trans, root, ret);
4919 			goto out;
4920 		}
4921 	}
4922 	ret = btrfs_commit_transaction(trans, root);
4923 	if (ret < 0) {
4924 		btrfs_abort_transaction(trans, root, ret);
4925 		goto out;
4926 	}
4927 
4928 out:
4929 	up_write(&root->fs_info->subvol_sem);
4930 	mnt_drop_write_file(file);
4931 	return ret;
4932 }
4933 
4934 #ifdef CONFIG_64BIT
4935 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4936 						void __user *arg)
4937 {
4938 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4939 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4940 	int ret = 0;
4941 
4942 	args32 = memdup_user(arg, sizeof(*args32));
4943 	if (IS_ERR(args32)) {
4944 		ret = PTR_ERR(args32);
4945 		args32 = NULL;
4946 		goto out;
4947 	}
4948 
4949 	args64 = kmalloc(sizeof(*args64), GFP_NOFS);
4950 	if (!args64) {
4951 		ret = -ENOMEM;
4952 		goto out;
4953 	}
4954 
4955 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4956 	args64->stransid = args32->stransid;
4957 	args64->rtransid = args32->rtransid;
4958 	args64->stime.sec = args32->stime.sec;
4959 	args64->stime.nsec = args32->stime.nsec;
4960 	args64->rtime.sec = args32->rtime.sec;
4961 	args64->rtime.nsec = args32->rtime.nsec;
4962 	args64->flags = args32->flags;
4963 
4964 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4965 	if (ret)
4966 		goto out;
4967 
4968 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4969 	args32->stransid = args64->stransid;
4970 	args32->rtransid = args64->rtransid;
4971 	args32->stime.sec = args64->stime.sec;
4972 	args32->stime.nsec = args64->stime.nsec;
4973 	args32->rtime.sec = args64->rtime.sec;
4974 	args32->rtime.nsec = args64->rtime.nsec;
4975 	args32->flags = args64->flags;
4976 
4977 	ret = copy_to_user(arg, args32, sizeof(*args32));
4978 	if (ret)
4979 		ret = -EFAULT;
4980 
4981 out:
4982 	kfree(args32);
4983 	kfree(args64);
4984 	return ret;
4985 }
4986 #endif
4987 
4988 static long btrfs_ioctl_set_received_subvol(struct file *file,
4989 					    void __user *arg)
4990 {
4991 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4992 	int ret = 0;
4993 
4994 	sa = memdup_user(arg, sizeof(*sa));
4995 	if (IS_ERR(sa)) {
4996 		ret = PTR_ERR(sa);
4997 		sa = NULL;
4998 		goto out;
4999 	}
5000 
5001 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5002 
5003 	if (ret)
5004 		goto out;
5005 
5006 	ret = copy_to_user(arg, sa, sizeof(*sa));
5007 	if (ret)
5008 		ret = -EFAULT;
5009 
5010 out:
5011 	kfree(sa);
5012 	return ret;
5013 }
5014 
5015 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5016 {
5017 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5018 	size_t len;
5019 	int ret;
5020 	char label[BTRFS_LABEL_SIZE];
5021 
5022 	spin_lock(&root->fs_info->super_lock);
5023 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5024 	spin_unlock(&root->fs_info->super_lock);
5025 
5026 	len = strnlen(label, BTRFS_LABEL_SIZE);
5027 
5028 	if (len == BTRFS_LABEL_SIZE) {
5029 		btrfs_warn(root->fs_info,
5030 			"label is too long, return the first %zu bytes", --len);
5031 	}
5032 
5033 	ret = copy_to_user(arg, label, len);
5034 
5035 	return ret ? -EFAULT : 0;
5036 }
5037 
5038 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5039 {
5040 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5041 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5042 	struct btrfs_trans_handle *trans;
5043 	char label[BTRFS_LABEL_SIZE];
5044 	int ret;
5045 
5046 	if (!capable(CAP_SYS_ADMIN))
5047 		return -EPERM;
5048 
5049 	if (copy_from_user(label, arg, sizeof(label)))
5050 		return -EFAULT;
5051 
5052 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5053 		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5054 		       BTRFS_LABEL_SIZE - 1);
5055 		return -EINVAL;
5056 	}
5057 
5058 	ret = mnt_want_write_file(file);
5059 	if (ret)
5060 		return ret;
5061 
5062 	trans = btrfs_start_transaction(root, 0);
5063 	if (IS_ERR(trans)) {
5064 		ret = PTR_ERR(trans);
5065 		goto out_unlock;
5066 	}
5067 
5068 	spin_lock(&root->fs_info->super_lock);
5069 	strcpy(super_block->label, label);
5070 	spin_unlock(&root->fs_info->super_lock);
5071 	ret = btrfs_commit_transaction(trans, root);
5072 
5073 out_unlock:
5074 	mnt_drop_write_file(file);
5075 	return ret;
5076 }
5077 
5078 #define INIT_FEATURE_FLAGS(suffix) \
5079 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5080 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5081 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5082 
5083 static int btrfs_ioctl_get_supported_features(struct file *file,
5084 					      void __user *arg)
5085 {
5086 	static struct btrfs_ioctl_feature_flags features[3] = {
5087 		INIT_FEATURE_FLAGS(SUPP),
5088 		INIT_FEATURE_FLAGS(SAFE_SET),
5089 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5090 	};
5091 
5092 	if (copy_to_user(arg, &features, sizeof(features)))
5093 		return -EFAULT;
5094 
5095 	return 0;
5096 }
5097 
5098 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5099 {
5100 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5101 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5102 	struct btrfs_ioctl_feature_flags features;
5103 
5104 	features.compat_flags = btrfs_super_compat_flags(super_block);
5105 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5106 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5107 
5108 	if (copy_to_user(arg, &features, sizeof(features)))
5109 		return -EFAULT;
5110 
5111 	return 0;
5112 }
5113 
5114 static int check_feature_bits(struct btrfs_root *root,
5115 			      enum btrfs_feature_set set,
5116 			      u64 change_mask, u64 flags, u64 supported_flags,
5117 			      u64 safe_set, u64 safe_clear)
5118 {
5119 	const char *type = btrfs_feature_set_names[set];
5120 	char *names;
5121 	u64 disallowed, unsupported;
5122 	u64 set_mask = flags & change_mask;
5123 	u64 clear_mask = ~flags & change_mask;
5124 
5125 	unsupported = set_mask & ~supported_flags;
5126 	if (unsupported) {
5127 		names = btrfs_printable_features(set, unsupported);
5128 		if (names) {
5129 			btrfs_warn(root->fs_info,
5130 			   "this kernel does not support the %s feature bit%s",
5131 			   names, strchr(names, ',') ? "s" : "");
5132 			kfree(names);
5133 		} else
5134 			btrfs_warn(root->fs_info,
5135 			   "this kernel does not support %s bits 0x%llx",
5136 			   type, unsupported);
5137 		return -EOPNOTSUPP;
5138 	}
5139 
5140 	disallowed = set_mask & ~safe_set;
5141 	if (disallowed) {
5142 		names = btrfs_printable_features(set, disallowed);
5143 		if (names) {
5144 			btrfs_warn(root->fs_info,
5145 			   "can't set the %s feature bit%s while mounted",
5146 			   names, strchr(names, ',') ? "s" : "");
5147 			kfree(names);
5148 		} else
5149 			btrfs_warn(root->fs_info,
5150 			   "can't set %s bits 0x%llx while mounted",
5151 			   type, disallowed);
5152 		return -EPERM;
5153 	}
5154 
5155 	disallowed = clear_mask & ~safe_clear;
5156 	if (disallowed) {
5157 		names = btrfs_printable_features(set, disallowed);
5158 		if (names) {
5159 			btrfs_warn(root->fs_info,
5160 			   "can't clear the %s feature bit%s while mounted",
5161 			   names, strchr(names, ',') ? "s" : "");
5162 			kfree(names);
5163 		} else
5164 			btrfs_warn(root->fs_info,
5165 			   "can't clear %s bits 0x%llx while mounted",
5166 			   type, disallowed);
5167 		return -EPERM;
5168 	}
5169 
5170 	return 0;
5171 }
5172 
5173 #define check_feature(root, change_mask, flags, mask_base)	\
5174 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5175 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5176 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5177 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5178 
5179 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5180 {
5181 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5182 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5183 	struct btrfs_ioctl_feature_flags flags[2];
5184 	struct btrfs_trans_handle *trans;
5185 	u64 newflags;
5186 	int ret;
5187 
5188 	if (!capable(CAP_SYS_ADMIN))
5189 		return -EPERM;
5190 
5191 	if (copy_from_user(flags, arg, sizeof(flags)))
5192 		return -EFAULT;
5193 
5194 	/* Nothing to do */
5195 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5196 	    !flags[0].incompat_flags)
5197 		return 0;
5198 
5199 	ret = check_feature(root, flags[0].compat_flags,
5200 			    flags[1].compat_flags, COMPAT);
5201 	if (ret)
5202 		return ret;
5203 
5204 	ret = check_feature(root, flags[0].compat_ro_flags,
5205 			    flags[1].compat_ro_flags, COMPAT_RO);
5206 	if (ret)
5207 		return ret;
5208 
5209 	ret = check_feature(root, flags[0].incompat_flags,
5210 			    flags[1].incompat_flags, INCOMPAT);
5211 	if (ret)
5212 		return ret;
5213 
5214 	trans = btrfs_start_transaction(root, 0);
5215 	if (IS_ERR(trans))
5216 		return PTR_ERR(trans);
5217 
5218 	spin_lock(&root->fs_info->super_lock);
5219 	newflags = btrfs_super_compat_flags(super_block);
5220 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5221 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5222 	btrfs_set_super_compat_flags(super_block, newflags);
5223 
5224 	newflags = btrfs_super_compat_ro_flags(super_block);
5225 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5226 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5227 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5228 
5229 	newflags = btrfs_super_incompat_flags(super_block);
5230 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5231 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5232 	btrfs_set_super_incompat_flags(super_block, newflags);
5233 	spin_unlock(&root->fs_info->super_lock);
5234 
5235 	return btrfs_commit_transaction(trans, root);
5236 }
5237 
5238 long btrfs_ioctl(struct file *file, unsigned int
5239 		cmd, unsigned long arg)
5240 {
5241 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5242 	void __user *argp = (void __user *)arg;
5243 
5244 	switch (cmd) {
5245 	case FS_IOC_GETFLAGS:
5246 		return btrfs_ioctl_getflags(file, argp);
5247 	case FS_IOC_SETFLAGS:
5248 		return btrfs_ioctl_setflags(file, argp);
5249 	case FS_IOC_GETVERSION:
5250 		return btrfs_ioctl_getversion(file, argp);
5251 	case FITRIM:
5252 		return btrfs_ioctl_fitrim(file, argp);
5253 	case BTRFS_IOC_SNAP_CREATE:
5254 		return btrfs_ioctl_snap_create(file, argp, 0);
5255 	case BTRFS_IOC_SNAP_CREATE_V2:
5256 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5257 	case BTRFS_IOC_SUBVOL_CREATE:
5258 		return btrfs_ioctl_snap_create(file, argp, 1);
5259 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5260 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5261 	case BTRFS_IOC_SNAP_DESTROY:
5262 		return btrfs_ioctl_snap_destroy(file, argp);
5263 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5264 		return btrfs_ioctl_subvol_getflags(file, argp);
5265 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5266 		return btrfs_ioctl_subvol_setflags(file, argp);
5267 	case BTRFS_IOC_DEFAULT_SUBVOL:
5268 		return btrfs_ioctl_default_subvol(file, argp);
5269 	case BTRFS_IOC_DEFRAG:
5270 		return btrfs_ioctl_defrag(file, NULL);
5271 	case BTRFS_IOC_DEFRAG_RANGE:
5272 		return btrfs_ioctl_defrag(file, argp);
5273 	case BTRFS_IOC_RESIZE:
5274 		return btrfs_ioctl_resize(file, argp);
5275 	case BTRFS_IOC_ADD_DEV:
5276 		return btrfs_ioctl_add_dev(root, argp);
5277 	case BTRFS_IOC_RM_DEV:
5278 		return btrfs_ioctl_rm_dev(file, argp);
5279 	case BTRFS_IOC_FS_INFO:
5280 		return btrfs_ioctl_fs_info(root, argp);
5281 	case BTRFS_IOC_DEV_INFO:
5282 		return btrfs_ioctl_dev_info(root, argp);
5283 	case BTRFS_IOC_BALANCE:
5284 		return btrfs_ioctl_balance(file, NULL);
5285 	case BTRFS_IOC_CLONE:
5286 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
5287 	case BTRFS_IOC_CLONE_RANGE:
5288 		return btrfs_ioctl_clone_range(file, argp);
5289 	case BTRFS_IOC_TRANS_START:
5290 		return btrfs_ioctl_trans_start(file);
5291 	case BTRFS_IOC_TRANS_END:
5292 		return btrfs_ioctl_trans_end(file);
5293 	case BTRFS_IOC_TREE_SEARCH:
5294 		return btrfs_ioctl_tree_search(file, argp);
5295 	case BTRFS_IOC_TREE_SEARCH_V2:
5296 		return btrfs_ioctl_tree_search_v2(file, argp);
5297 	case BTRFS_IOC_INO_LOOKUP:
5298 		return btrfs_ioctl_ino_lookup(file, argp);
5299 	case BTRFS_IOC_INO_PATHS:
5300 		return btrfs_ioctl_ino_to_path(root, argp);
5301 	case BTRFS_IOC_LOGICAL_INO:
5302 		return btrfs_ioctl_logical_to_ino(root, argp);
5303 	case BTRFS_IOC_SPACE_INFO:
5304 		return btrfs_ioctl_space_info(root, argp);
5305 	case BTRFS_IOC_SYNC: {
5306 		int ret;
5307 
5308 		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5309 		if (ret)
5310 			return ret;
5311 		ret = btrfs_sync_fs(file->f_dentry->d_sb, 1);
5312 		return ret;
5313 	}
5314 	case BTRFS_IOC_START_SYNC:
5315 		return btrfs_ioctl_start_sync(root, argp);
5316 	case BTRFS_IOC_WAIT_SYNC:
5317 		return btrfs_ioctl_wait_sync(root, argp);
5318 	case BTRFS_IOC_SCRUB:
5319 		return btrfs_ioctl_scrub(file, argp);
5320 	case BTRFS_IOC_SCRUB_CANCEL:
5321 		return btrfs_ioctl_scrub_cancel(root, argp);
5322 	case BTRFS_IOC_SCRUB_PROGRESS:
5323 		return btrfs_ioctl_scrub_progress(root, argp);
5324 	case BTRFS_IOC_BALANCE_V2:
5325 		return btrfs_ioctl_balance(file, argp);
5326 	case BTRFS_IOC_BALANCE_CTL:
5327 		return btrfs_ioctl_balance_ctl(root, arg);
5328 	case BTRFS_IOC_BALANCE_PROGRESS:
5329 		return btrfs_ioctl_balance_progress(root, argp);
5330 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5331 		return btrfs_ioctl_set_received_subvol(file, argp);
5332 #ifdef CONFIG_64BIT
5333 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5334 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5335 #endif
5336 	case BTRFS_IOC_SEND:
5337 		return btrfs_ioctl_send(file, argp);
5338 	case BTRFS_IOC_GET_DEV_STATS:
5339 		return btrfs_ioctl_get_dev_stats(root, argp);
5340 	case BTRFS_IOC_QUOTA_CTL:
5341 		return btrfs_ioctl_quota_ctl(file, argp);
5342 	case BTRFS_IOC_QGROUP_ASSIGN:
5343 		return btrfs_ioctl_qgroup_assign(file, argp);
5344 	case BTRFS_IOC_QGROUP_CREATE:
5345 		return btrfs_ioctl_qgroup_create(file, argp);
5346 	case BTRFS_IOC_QGROUP_LIMIT:
5347 		return btrfs_ioctl_qgroup_limit(file, argp);
5348 	case BTRFS_IOC_QUOTA_RESCAN:
5349 		return btrfs_ioctl_quota_rescan(file, argp);
5350 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5351 		return btrfs_ioctl_quota_rescan_status(file, argp);
5352 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5353 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5354 	case BTRFS_IOC_DEV_REPLACE:
5355 		return btrfs_ioctl_dev_replace(root, argp);
5356 	case BTRFS_IOC_GET_FSLABEL:
5357 		return btrfs_ioctl_get_fslabel(file, argp);
5358 	case BTRFS_IOC_SET_FSLABEL:
5359 		return btrfs_ioctl_set_fslabel(file, argp);
5360 	case BTRFS_IOC_FILE_EXTENT_SAME:
5361 		return btrfs_ioctl_file_extent_same(file, argp);
5362 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5363 		return btrfs_ioctl_get_supported_features(file, argp);
5364 	case BTRFS_IOC_GET_FEATURES:
5365 		return btrfs_ioctl_get_features(file, argp);
5366 	case BTRFS_IOC_SET_FEATURES:
5367 		return btrfs_ioctl_set_features(file, argp);
5368 	}
5369 
5370 	return -ENOTTY;
5371 }
5372