1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "transaction.h" 32 #include "btrfs_inode.h" 33 #include "print-tree.h" 34 #include "volumes.h" 35 #include "locking.h" 36 #include "inode-map.h" 37 #include "backref.h" 38 #include "rcu-string.h" 39 #include "send.h" 40 #include "dev-replace.h" 41 #include "props.h" 42 #include "sysfs.h" 43 #include "qgroup.h" 44 #include "tree-log.h" 45 #include "compression.h" 46 #include "space-info.h" 47 #include "delalloc-space.h" 48 #include "block-group.h" 49 50 #ifdef CONFIG_64BIT 51 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 52 * structures are incorrect, as the timespec structure from userspace 53 * is 4 bytes too small. We define these alternatives here to teach 54 * the kernel about the 32-bit struct packing. 55 */ 56 struct btrfs_ioctl_timespec_32 { 57 __u64 sec; 58 __u32 nsec; 59 } __attribute__ ((__packed__)); 60 61 struct btrfs_ioctl_received_subvol_args_32 { 62 char uuid[BTRFS_UUID_SIZE]; /* in */ 63 __u64 stransid; /* in */ 64 __u64 rtransid; /* out */ 65 struct btrfs_ioctl_timespec_32 stime; /* in */ 66 struct btrfs_ioctl_timespec_32 rtime; /* out */ 67 __u64 flags; /* in */ 68 __u64 reserved[16]; /* in */ 69 } __attribute__ ((__packed__)); 70 71 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 72 struct btrfs_ioctl_received_subvol_args_32) 73 #endif 74 75 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 76 struct btrfs_ioctl_send_args_32 { 77 __s64 send_fd; /* in */ 78 __u64 clone_sources_count; /* in */ 79 compat_uptr_t clone_sources; /* in */ 80 __u64 parent_root; /* in */ 81 __u64 flags; /* in */ 82 __u64 reserved[4]; /* in */ 83 } __attribute__ ((__packed__)); 84 85 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 86 struct btrfs_ioctl_send_args_32) 87 #endif 88 89 static int btrfs_clone(struct inode *src, struct inode *inode, 90 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 91 int no_time_update); 92 93 /* Mask out flags that are inappropriate for the given type of inode. */ 94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 95 unsigned int flags) 96 { 97 if (S_ISDIR(inode->i_mode)) 98 return flags; 99 else if (S_ISREG(inode->i_mode)) 100 return flags & ~FS_DIRSYNC_FL; 101 else 102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 103 } 104 105 /* 106 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 107 * ioctl. 108 */ 109 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 110 { 111 unsigned int iflags = 0; 112 113 if (flags & BTRFS_INODE_SYNC) 114 iflags |= FS_SYNC_FL; 115 if (flags & BTRFS_INODE_IMMUTABLE) 116 iflags |= FS_IMMUTABLE_FL; 117 if (flags & BTRFS_INODE_APPEND) 118 iflags |= FS_APPEND_FL; 119 if (flags & BTRFS_INODE_NODUMP) 120 iflags |= FS_NODUMP_FL; 121 if (flags & BTRFS_INODE_NOATIME) 122 iflags |= FS_NOATIME_FL; 123 if (flags & BTRFS_INODE_DIRSYNC) 124 iflags |= FS_DIRSYNC_FL; 125 if (flags & BTRFS_INODE_NODATACOW) 126 iflags |= FS_NOCOW_FL; 127 128 if (flags & BTRFS_INODE_NOCOMPRESS) 129 iflags |= FS_NOCOMP_FL; 130 else if (flags & BTRFS_INODE_COMPRESS) 131 iflags |= FS_COMPR_FL; 132 133 return iflags; 134 } 135 136 /* 137 * Update inode->i_flags based on the btrfs internal flags. 138 */ 139 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 140 { 141 struct btrfs_inode *binode = BTRFS_I(inode); 142 unsigned int new_fl = 0; 143 144 if (binode->flags & BTRFS_INODE_SYNC) 145 new_fl |= S_SYNC; 146 if (binode->flags & BTRFS_INODE_IMMUTABLE) 147 new_fl |= S_IMMUTABLE; 148 if (binode->flags & BTRFS_INODE_APPEND) 149 new_fl |= S_APPEND; 150 if (binode->flags & BTRFS_INODE_NOATIME) 151 new_fl |= S_NOATIME; 152 if (binode->flags & BTRFS_INODE_DIRSYNC) 153 new_fl |= S_DIRSYNC; 154 155 set_mask_bits(&inode->i_flags, 156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 157 new_fl); 158 } 159 160 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 161 { 162 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 163 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 164 165 if (copy_to_user(arg, &flags, sizeof(flags))) 166 return -EFAULT; 167 return 0; 168 } 169 170 /* Check if @flags are a supported and valid set of FS_*_FL flags */ 171 static int check_fsflags(unsigned int flags) 172 { 173 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 174 FS_NOATIME_FL | FS_NODUMP_FL | \ 175 FS_SYNC_FL | FS_DIRSYNC_FL | \ 176 FS_NOCOMP_FL | FS_COMPR_FL | 177 FS_NOCOW_FL)) 178 return -EOPNOTSUPP; 179 180 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 181 return -EINVAL; 182 183 return 0; 184 } 185 186 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 187 { 188 struct inode *inode = file_inode(file); 189 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 190 struct btrfs_inode *binode = BTRFS_I(inode); 191 struct btrfs_root *root = binode->root; 192 struct btrfs_trans_handle *trans; 193 unsigned int fsflags, old_fsflags; 194 int ret; 195 const char *comp = NULL; 196 u32 binode_flags = binode->flags; 197 198 if (!inode_owner_or_capable(inode)) 199 return -EPERM; 200 201 if (btrfs_root_readonly(root)) 202 return -EROFS; 203 204 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 205 return -EFAULT; 206 207 ret = check_fsflags(fsflags); 208 if (ret) 209 return ret; 210 211 ret = mnt_want_write_file(file); 212 if (ret) 213 return ret; 214 215 inode_lock(inode); 216 217 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 218 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 219 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 220 if (ret) 221 goto out_unlock; 222 223 if (fsflags & FS_SYNC_FL) 224 binode_flags |= BTRFS_INODE_SYNC; 225 else 226 binode_flags &= ~BTRFS_INODE_SYNC; 227 if (fsflags & FS_IMMUTABLE_FL) 228 binode_flags |= BTRFS_INODE_IMMUTABLE; 229 else 230 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 231 if (fsflags & FS_APPEND_FL) 232 binode_flags |= BTRFS_INODE_APPEND; 233 else 234 binode_flags &= ~BTRFS_INODE_APPEND; 235 if (fsflags & FS_NODUMP_FL) 236 binode_flags |= BTRFS_INODE_NODUMP; 237 else 238 binode_flags &= ~BTRFS_INODE_NODUMP; 239 if (fsflags & FS_NOATIME_FL) 240 binode_flags |= BTRFS_INODE_NOATIME; 241 else 242 binode_flags &= ~BTRFS_INODE_NOATIME; 243 if (fsflags & FS_DIRSYNC_FL) 244 binode_flags |= BTRFS_INODE_DIRSYNC; 245 else 246 binode_flags &= ~BTRFS_INODE_DIRSYNC; 247 if (fsflags & FS_NOCOW_FL) { 248 if (S_ISREG(inode->i_mode)) { 249 /* 250 * It's safe to turn csums off here, no extents exist. 251 * Otherwise we want the flag to reflect the real COW 252 * status of the file and will not set it. 253 */ 254 if (inode->i_size == 0) 255 binode_flags |= BTRFS_INODE_NODATACOW | 256 BTRFS_INODE_NODATASUM; 257 } else { 258 binode_flags |= BTRFS_INODE_NODATACOW; 259 } 260 } else { 261 /* 262 * Revert back under same assumptions as above 263 */ 264 if (S_ISREG(inode->i_mode)) { 265 if (inode->i_size == 0) 266 binode_flags &= ~(BTRFS_INODE_NODATACOW | 267 BTRFS_INODE_NODATASUM); 268 } else { 269 binode_flags &= ~BTRFS_INODE_NODATACOW; 270 } 271 } 272 273 /* 274 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 275 * flag may be changed automatically if compression code won't make 276 * things smaller. 277 */ 278 if (fsflags & FS_NOCOMP_FL) { 279 binode_flags &= ~BTRFS_INODE_COMPRESS; 280 binode_flags |= BTRFS_INODE_NOCOMPRESS; 281 } else if (fsflags & FS_COMPR_FL) { 282 283 if (IS_SWAPFILE(inode)) { 284 ret = -ETXTBSY; 285 goto out_unlock; 286 } 287 288 binode_flags |= BTRFS_INODE_COMPRESS; 289 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 290 291 comp = btrfs_compress_type2str(fs_info->compress_type); 292 if (!comp || comp[0] == 0) 293 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 294 } else { 295 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 296 } 297 298 /* 299 * 1 for inode item 300 * 2 for properties 301 */ 302 trans = btrfs_start_transaction(root, 3); 303 if (IS_ERR(trans)) { 304 ret = PTR_ERR(trans); 305 goto out_unlock; 306 } 307 308 if (comp) { 309 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 310 strlen(comp), 0); 311 if (ret) { 312 btrfs_abort_transaction(trans, ret); 313 goto out_end_trans; 314 } 315 } else { 316 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 317 0, 0); 318 if (ret && ret != -ENODATA) { 319 btrfs_abort_transaction(trans, ret); 320 goto out_end_trans; 321 } 322 } 323 324 binode->flags = binode_flags; 325 btrfs_sync_inode_flags_to_i_flags(inode); 326 inode_inc_iversion(inode); 327 inode->i_ctime = current_time(inode); 328 ret = btrfs_update_inode(trans, root, inode); 329 330 out_end_trans: 331 btrfs_end_transaction(trans); 332 out_unlock: 333 inode_unlock(inode); 334 mnt_drop_write_file(file); 335 return ret; 336 } 337 338 /* 339 * Translate btrfs internal inode flags to xflags as expected by the 340 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 341 * silently dropped. 342 */ 343 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 344 { 345 unsigned int xflags = 0; 346 347 if (flags & BTRFS_INODE_APPEND) 348 xflags |= FS_XFLAG_APPEND; 349 if (flags & BTRFS_INODE_IMMUTABLE) 350 xflags |= FS_XFLAG_IMMUTABLE; 351 if (flags & BTRFS_INODE_NOATIME) 352 xflags |= FS_XFLAG_NOATIME; 353 if (flags & BTRFS_INODE_NODUMP) 354 xflags |= FS_XFLAG_NODUMP; 355 if (flags & BTRFS_INODE_SYNC) 356 xflags |= FS_XFLAG_SYNC; 357 358 return xflags; 359 } 360 361 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 362 static int check_xflags(unsigned int flags) 363 { 364 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 365 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 366 return -EOPNOTSUPP; 367 return 0; 368 } 369 370 /* 371 * Set the xflags from the internal inode flags. The remaining items of fsxattr 372 * are zeroed. 373 */ 374 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 375 { 376 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 377 struct fsxattr fa; 378 379 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags)); 380 if (copy_to_user(arg, &fa, sizeof(fa))) 381 return -EFAULT; 382 383 return 0; 384 } 385 386 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 387 { 388 struct inode *inode = file_inode(file); 389 struct btrfs_inode *binode = BTRFS_I(inode); 390 struct btrfs_root *root = binode->root; 391 struct btrfs_trans_handle *trans; 392 struct fsxattr fa, old_fa; 393 unsigned old_flags; 394 unsigned old_i_flags; 395 int ret = 0; 396 397 if (!inode_owner_or_capable(inode)) 398 return -EPERM; 399 400 if (btrfs_root_readonly(root)) 401 return -EROFS; 402 403 if (copy_from_user(&fa, arg, sizeof(fa))) 404 return -EFAULT; 405 406 ret = check_xflags(fa.fsx_xflags); 407 if (ret) 408 return ret; 409 410 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 411 return -EOPNOTSUPP; 412 413 ret = mnt_want_write_file(file); 414 if (ret) 415 return ret; 416 417 inode_lock(inode); 418 419 old_flags = binode->flags; 420 old_i_flags = inode->i_flags; 421 422 simple_fill_fsxattr(&old_fa, 423 btrfs_inode_flags_to_xflags(binode->flags)); 424 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 425 if (ret) 426 goto out_unlock; 427 428 if (fa.fsx_xflags & FS_XFLAG_SYNC) 429 binode->flags |= BTRFS_INODE_SYNC; 430 else 431 binode->flags &= ~BTRFS_INODE_SYNC; 432 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 433 binode->flags |= BTRFS_INODE_IMMUTABLE; 434 else 435 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 436 if (fa.fsx_xflags & FS_XFLAG_APPEND) 437 binode->flags |= BTRFS_INODE_APPEND; 438 else 439 binode->flags &= ~BTRFS_INODE_APPEND; 440 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 441 binode->flags |= BTRFS_INODE_NODUMP; 442 else 443 binode->flags &= ~BTRFS_INODE_NODUMP; 444 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 445 binode->flags |= BTRFS_INODE_NOATIME; 446 else 447 binode->flags &= ~BTRFS_INODE_NOATIME; 448 449 /* 1 item for the inode */ 450 trans = btrfs_start_transaction(root, 1); 451 if (IS_ERR(trans)) { 452 ret = PTR_ERR(trans); 453 goto out_unlock; 454 } 455 456 btrfs_sync_inode_flags_to_i_flags(inode); 457 inode_inc_iversion(inode); 458 inode->i_ctime = current_time(inode); 459 ret = btrfs_update_inode(trans, root, inode); 460 461 btrfs_end_transaction(trans); 462 463 out_unlock: 464 if (ret) { 465 binode->flags = old_flags; 466 inode->i_flags = old_i_flags; 467 } 468 469 inode_unlock(inode); 470 mnt_drop_write_file(file); 471 472 return ret; 473 } 474 475 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 476 { 477 struct inode *inode = file_inode(file); 478 479 return put_user(inode->i_generation, arg); 480 } 481 482 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 483 void __user *arg) 484 { 485 struct btrfs_device *device; 486 struct request_queue *q; 487 struct fstrim_range range; 488 u64 minlen = ULLONG_MAX; 489 u64 num_devices = 0; 490 int ret; 491 492 if (!capable(CAP_SYS_ADMIN)) 493 return -EPERM; 494 495 /* 496 * If the fs is mounted with nologreplay, which requires it to be 497 * mounted in RO mode as well, we can not allow discard on free space 498 * inside block groups, because log trees refer to extents that are not 499 * pinned in a block group's free space cache (pinning the extents is 500 * precisely the first phase of replaying a log tree). 501 */ 502 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 503 return -EROFS; 504 505 rcu_read_lock(); 506 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 507 dev_list) { 508 if (!device->bdev) 509 continue; 510 q = bdev_get_queue(device->bdev); 511 if (blk_queue_discard(q)) { 512 num_devices++; 513 minlen = min_t(u64, q->limits.discard_granularity, 514 minlen); 515 } 516 } 517 rcu_read_unlock(); 518 519 if (!num_devices) 520 return -EOPNOTSUPP; 521 if (copy_from_user(&range, arg, sizeof(range))) 522 return -EFAULT; 523 524 /* 525 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 526 * block group is in the logical address space, which can be any 527 * sectorsize aligned bytenr in the range [0, U64_MAX]. 528 */ 529 if (range.len < fs_info->sb->s_blocksize) 530 return -EINVAL; 531 532 range.minlen = max(range.minlen, minlen); 533 ret = btrfs_trim_fs(fs_info, &range); 534 if (ret < 0) 535 return ret; 536 537 if (copy_to_user(arg, &range, sizeof(range))) 538 return -EFAULT; 539 540 return 0; 541 } 542 543 int __pure btrfs_is_empty_uuid(u8 *uuid) 544 { 545 int i; 546 547 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 548 if (uuid[i]) 549 return 0; 550 } 551 return 1; 552 } 553 554 static noinline int create_subvol(struct inode *dir, 555 struct dentry *dentry, 556 const char *name, int namelen, 557 u64 *async_transid, 558 struct btrfs_qgroup_inherit *inherit) 559 { 560 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 561 struct btrfs_trans_handle *trans; 562 struct btrfs_key key; 563 struct btrfs_root_item *root_item; 564 struct btrfs_inode_item *inode_item; 565 struct extent_buffer *leaf; 566 struct btrfs_root *root = BTRFS_I(dir)->root; 567 struct btrfs_root *new_root; 568 struct btrfs_block_rsv block_rsv; 569 struct timespec64 cur_time = current_time(dir); 570 struct inode *inode; 571 int ret; 572 int err; 573 u64 objectid; 574 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 575 u64 index = 0; 576 uuid_le new_uuid; 577 578 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 579 if (!root_item) 580 return -ENOMEM; 581 582 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 583 if (ret) 584 goto fail_free; 585 586 /* 587 * Don't create subvolume whose level is not zero. Or qgroup will be 588 * screwed up since it assumes subvolume qgroup's level to be 0. 589 */ 590 if (btrfs_qgroup_level(objectid)) { 591 ret = -ENOSPC; 592 goto fail_free; 593 } 594 595 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 596 /* 597 * The same as the snapshot creation, please see the comment 598 * of create_snapshot(). 599 */ 600 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 601 if (ret) 602 goto fail_free; 603 604 trans = btrfs_start_transaction(root, 0); 605 if (IS_ERR(trans)) { 606 ret = PTR_ERR(trans); 607 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 608 goto fail_free; 609 } 610 trans->block_rsv = &block_rsv; 611 trans->bytes_reserved = block_rsv.size; 612 613 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 614 if (ret) 615 goto fail; 616 617 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 618 if (IS_ERR(leaf)) { 619 ret = PTR_ERR(leaf); 620 goto fail; 621 } 622 623 btrfs_mark_buffer_dirty(leaf); 624 625 inode_item = &root_item->inode; 626 btrfs_set_stack_inode_generation(inode_item, 1); 627 btrfs_set_stack_inode_size(inode_item, 3); 628 btrfs_set_stack_inode_nlink(inode_item, 1); 629 btrfs_set_stack_inode_nbytes(inode_item, 630 fs_info->nodesize); 631 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 632 633 btrfs_set_root_flags(root_item, 0); 634 btrfs_set_root_limit(root_item, 0); 635 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 636 637 btrfs_set_root_bytenr(root_item, leaf->start); 638 btrfs_set_root_generation(root_item, trans->transid); 639 btrfs_set_root_level(root_item, 0); 640 btrfs_set_root_refs(root_item, 1); 641 btrfs_set_root_used(root_item, leaf->len); 642 btrfs_set_root_last_snapshot(root_item, 0); 643 644 btrfs_set_root_generation_v2(root_item, 645 btrfs_root_generation(root_item)); 646 uuid_le_gen(&new_uuid); 647 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 648 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 649 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 650 root_item->ctime = root_item->otime; 651 btrfs_set_root_ctransid(root_item, trans->transid); 652 btrfs_set_root_otransid(root_item, trans->transid); 653 654 btrfs_tree_unlock(leaf); 655 free_extent_buffer(leaf); 656 leaf = NULL; 657 658 btrfs_set_root_dirid(root_item, new_dirid); 659 660 key.objectid = objectid; 661 key.offset = 0; 662 key.type = BTRFS_ROOT_ITEM_KEY; 663 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 664 root_item); 665 if (ret) 666 goto fail; 667 668 key.offset = (u64)-1; 669 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 670 if (IS_ERR(new_root)) { 671 ret = PTR_ERR(new_root); 672 btrfs_abort_transaction(trans, ret); 673 goto fail; 674 } 675 676 btrfs_record_root_in_trans(trans, new_root); 677 678 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 679 if (ret) { 680 /* We potentially lose an unused inode item here */ 681 btrfs_abort_transaction(trans, ret); 682 goto fail; 683 } 684 685 mutex_lock(&new_root->objectid_mutex); 686 new_root->highest_objectid = new_dirid; 687 mutex_unlock(&new_root->objectid_mutex); 688 689 /* 690 * insert the directory item 691 */ 692 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 693 if (ret) { 694 btrfs_abort_transaction(trans, ret); 695 goto fail; 696 } 697 698 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 699 BTRFS_FT_DIR, index); 700 if (ret) { 701 btrfs_abort_transaction(trans, ret); 702 goto fail; 703 } 704 705 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 706 ret = btrfs_update_inode(trans, root, dir); 707 if (ret) { 708 btrfs_abort_transaction(trans, ret); 709 goto fail; 710 } 711 712 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 713 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 714 if (ret) { 715 btrfs_abort_transaction(trans, ret); 716 goto fail; 717 } 718 719 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 720 BTRFS_UUID_KEY_SUBVOL, objectid); 721 if (ret) 722 btrfs_abort_transaction(trans, ret); 723 724 fail: 725 kfree(root_item); 726 trans->block_rsv = NULL; 727 trans->bytes_reserved = 0; 728 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 729 730 if (async_transid) { 731 *async_transid = trans->transid; 732 err = btrfs_commit_transaction_async(trans, 1); 733 if (err) 734 err = btrfs_commit_transaction(trans); 735 } else { 736 err = btrfs_commit_transaction(trans); 737 } 738 if (err && !ret) 739 ret = err; 740 741 if (!ret) { 742 inode = btrfs_lookup_dentry(dir, dentry); 743 if (IS_ERR(inode)) 744 return PTR_ERR(inode); 745 d_instantiate(dentry, inode); 746 } 747 return ret; 748 749 fail_free: 750 kfree(root_item); 751 return ret; 752 } 753 754 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 755 struct dentry *dentry, 756 u64 *async_transid, bool readonly, 757 struct btrfs_qgroup_inherit *inherit) 758 { 759 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 760 struct inode *inode; 761 struct btrfs_pending_snapshot *pending_snapshot; 762 struct btrfs_trans_handle *trans; 763 int ret; 764 bool snapshot_force_cow = false; 765 766 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 767 return -EINVAL; 768 769 if (atomic_read(&root->nr_swapfiles)) { 770 btrfs_warn(fs_info, 771 "cannot snapshot subvolume with active swapfile"); 772 return -ETXTBSY; 773 } 774 775 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 776 if (!pending_snapshot) 777 return -ENOMEM; 778 779 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 780 GFP_KERNEL); 781 pending_snapshot->path = btrfs_alloc_path(); 782 if (!pending_snapshot->root_item || !pending_snapshot->path) { 783 ret = -ENOMEM; 784 goto free_pending; 785 } 786 787 /* 788 * Force new buffered writes to reserve space even when NOCOW is 789 * possible. This is to avoid later writeback (running dealloc) to 790 * fallback to COW mode and unexpectedly fail with ENOSPC. 791 */ 792 atomic_inc(&root->will_be_snapshotted); 793 smp_mb__after_atomic(); 794 /* wait for no snapshot writes */ 795 wait_event(root->subv_writers->wait, 796 percpu_counter_sum(&root->subv_writers->counter) == 0); 797 798 ret = btrfs_start_delalloc_snapshot(root); 799 if (ret) 800 goto dec_and_free; 801 802 /* 803 * All previous writes have started writeback in NOCOW mode, so now 804 * we force future writes to fallback to COW mode during snapshot 805 * creation. 806 */ 807 atomic_inc(&root->snapshot_force_cow); 808 snapshot_force_cow = true; 809 810 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 811 812 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 813 BTRFS_BLOCK_RSV_TEMP); 814 /* 815 * 1 - parent dir inode 816 * 2 - dir entries 817 * 1 - root item 818 * 2 - root ref/backref 819 * 1 - root of snapshot 820 * 1 - UUID item 821 */ 822 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 823 &pending_snapshot->block_rsv, 8, 824 false); 825 if (ret) 826 goto dec_and_free; 827 828 pending_snapshot->dentry = dentry; 829 pending_snapshot->root = root; 830 pending_snapshot->readonly = readonly; 831 pending_snapshot->dir = dir; 832 pending_snapshot->inherit = inherit; 833 834 trans = btrfs_start_transaction(root, 0); 835 if (IS_ERR(trans)) { 836 ret = PTR_ERR(trans); 837 goto fail; 838 } 839 840 spin_lock(&fs_info->trans_lock); 841 list_add(&pending_snapshot->list, 842 &trans->transaction->pending_snapshots); 843 spin_unlock(&fs_info->trans_lock); 844 if (async_transid) { 845 *async_transid = trans->transid; 846 ret = btrfs_commit_transaction_async(trans, 1); 847 if (ret) 848 ret = btrfs_commit_transaction(trans); 849 } else { 850 ret = btrfs_commit_transaction(trans); 851 } 852 if (ret) 853 goto fail; 854 855 ret = pending_snapshot->error; 856 if (ret) 857 goto fail; 858 859 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 860 if (ret) 861 goto fail; 862 863 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 864 if (IS_ERR(inode)) { 865 ret = PTR_ERR(inode); 866 goto fail; 867 } 868 869 d_instantiate(dentry, inode); 870 ret = 0; 871 fail: 872 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 873 dec_and_free: 874 if (snapshot_force_cow) 875 atomic_dec(&root->snapshot_force_cow); 876 if (atomic_dec_and_test(&root->will_be_snapshotted)) 877 wake_up_var(&root->will_be_snapshotted); 878 free_pending: 879 kfree(pending_snapshot->root_item); 880 btrfs_free_path(pending_snapshot->path); 881 kfree(pending_snapshot); 882 883 return ret; 884 } 885 886 /* copy of may_delete in fs/namei.c() 887 * Check whether we can remove a link victim from directory dir, check 888 * whether the type of victim is right. 889 * 1. We can't do it if dir is read-only (done in permission()) 890 * 2. We should have write and exec permissions on dir 891 * 3. We can't remove anything from append-only dir 892 * 4. We can't do anything with immutable dir (done in permission()) 893 * 5. If the sticky bit on dir is set we should either 894 * a. be owner of dir, or 895 * b. be owner of victim, or 896 * c. have CAP_FOWNER capability 897 * 6. If the victim is append-only or immutable we can't do anything with 898 * links pointing to it. 899 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 900 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 901 * 9. We can't remove a root or mountpoint. 902 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 903 * nfs_async_unlink(). 904 */ 905 906 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 907 { 908 int error; 909 910 if (d_really_is_negative(victim)) 911 return -ENOENT; 912 913 BUG_ON(d_inode(victim->d_parent) != dir); 914 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 915 916 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 917 if (error) 918 return error; 919 if (IS_APPEND(dir)) 920 return -EPERM; 921 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 922 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 923 return -EPERM; 924 if (isdir) { 925 if (!d_is_dir(victim)) 926 return -ENOTDIR; 927 if (IS_ROOT(victim)) 928 return -EBUSY; 929 } else if (d_is_dir(victim)) 930 return -EISDIR; 931 if (IS_DEADDIR(dir)) 932 return -ENOENT; 933 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 934 return -EBUSY; 935 return 0; 936 } 937 938 /* copy of may_create in fs/namei.c() */ 939 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 940 { 941 if (d_really_is_positive(child)) 942 return -EEXIST; 943 if (IS_DEADDIR(dir)) 944 return -ENOENT; 945 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 946 } 947 948 /* 949 * Create a new subvolume below @parent. This is largely modeled after 950 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 951 * inside this filesystem so it's quite a bit simpler. 952 */ 953 static noinline int btrfs_mksubvol(const struct path *parent, 954 const char *name, int namelen, 955 struct btrfs_root *snap_src, 956 u64 *async_transid, bool readonly, 957 struct btrfs_qgroup_inherit *inherit) 958 { 959 struct inode *dir = d_inode(parent->dentry); 960 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 961 struct dentry *dentry; 962 int error; 963 964 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 965 if (error == -EINTR) 966 return error; 967 968 dentry = lookup_one_len(name, parent->dentry, namelen); 969 error = PTR_ERR(dentry); 970 if (IS_ERR(dentry)) 971 goto out_unlock; 972 973 error = btrfs_may_create(dir, dentry); 974 if (error) 975 goto out_dput; 976 977 /* 978 * even if this name doesn't exist, we may get hash collisions. 979 * check for them now when we can safely fail 980 */ 981 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 982 dir->i_ino, name, 983 namelen); 984 if (error) 985 goto out_dput; 986 987 down_read(&fs_info->subvol_sem); 988 989 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 990 goto out_up_read; 991 992 if (snap_src) { 993 error = create_snapshot(snap_src, dir, dentry, 994 async_transid, readonly, inherit); 995 } else { 996 error = create_subvol(dir, dentry, name, namelen, 997 async_transid, inherit); 998 } 999 if (!error) 1000 fsnotify_mkdir(dir, dentry); 1001 out_up_read: 1002 up_read(&fs_info->subvol_sem); 1003 out_dput: 1004 dput(dentry); 1005 out_unlock: 1006 inode_unlock(dir); 1007 return error; 1008 } 1009 1010 /* 1011 * When we're defragging a range, we don't want to kick it off again 1012 * if it is really just waiting for delalloc to send it down. 1013 * If we find a nice big extent or delalloc range for the bytes in the 1014 * file you want to defrag, we return 0 to let you know to skip this 1015 * part of the file 1016 */ 1017 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1018 { 1019 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1020 struct extent_map *em = NULL; 1021 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1022 u64 end; 1023 1024 read_lock(&em_tree->lock); 1025 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1026 read_unlock(&em_tree->lock); 1027 1028 if (em) { 1029 end = extent_map_end(em); 1030 free_extent_map(em); 1031 if (end - offset > thresh) 1032 return 0; 1033 } 1034 /* if we already have a nice delalloc here, just stop */ 1035 thresh /= 2; 1036 end = count_range_bits(io_tree, &offset, offset + thresh, 1037 thresh, EXTENT_DELALLOC, 1); 1038 if (end >= thresh) 1039 return 0; 1040 return 1; 1041 } 1042 1043 /* 1044 * helper function to walk through a file and find extents 1045 * newer than a specific transid, and smaller than thresh. 1046 * 1047 * This is used by the defragging code to find new and small 1048 * extents 1049 */ 1050 static int find_new_extents(struct btrfs_root *root, 1051 struct inode *inode, u64 newer_than, 1052 u64 *off, u32 thresh) 1053 { 1054 struct btrfs_path *path; 1055 struct btrfs_key min_key; 1056 struct extent_buffer *leaf; 1057 struct btrfs_file_extent_item *extent; 1058 int type; 1059 int ret; 1060 u64 ino = btrfs_ino(BTRFS_I(inode)); 1061 1062 path = btrfs_alloc_path(); 1063 if (!path) 1064 return -ENOMEM; 1065 1066 min_key.objectid = ino; 1067 min_key.type = BTRFS_EXTENT_DATA_KEY; 1068 min_key.offset = *off; 1069 1070 while (1) { 1071 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1072 if (ret != 0) 1073 goto none; 1074 process_slot: 1075 if (min_key.objectid != ino) 1076 goto none; 1077 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1078 goto none; 1079 1080 leaf = path->nodes[0]; 1081 extent = btrfs_item_ptr(leaf, path->slots[0], 1082 struct btrfs_file_extent_item); 1083 1084 type = btrfs_file_extent_type(leaf, extent); 1085 if (type == BTRFS_FILE_EXTENT_REG && 1086 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1087 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1088 *off = min_key.offset; 1089 btrfs_free_path(path); 1090 return 0; 1091 } 1092 1093 path->slots[0]++; 1094 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1095 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1096 goto process_slot; 1097 } 1098 1099 if (min_key.offset == (u64)-1) 1100 goto none; 1101 1102 min_key.offset++; 1103 btrfs_release_path(path); 1104 } 1105 none: 1106 btrfs_free_path(path); 1107 return -ENOENT; 1108 } 1109 1110 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1111 { 1112 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1113 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1114 struct extent_map *em; 1115 u64 len = PAGE_SIZE; 1116 1117 /* 1118 * hopefully we have this extent in the tree already, try without 1119 * the full extent lock 1120 */ 1121 read_lock(&em_tree->lock); 1122 em = lookup_extent_mapping(em_tree, start, len); 1123 read_unlock(&em_tree->lock); 1124 1125 if (!em) { 1126 struct extent_state *cached = NULL; 1127 u64 end = start + len - 1; 1128 1129 /* get the big lock and read metadata off disk */ 1130 lock_extent_bits(io_tree, start, end, &cached); 1131 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 1132 unlock_extent_cached(io_tree, start, end, &cached); 1133 1134 if (IS_ERR(em)) 1135 return NULL; 1136 } 1137 1138 return em; 1139 } 1140 1141 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1142 { 1143 struct extent_map *next; 1144 bool ret = true; 1145 1146 /* this is the last extent */ 1147 if (em->start + em->len >= i_size_read(inode)) 1148 return false; 1149 1150 next = defrag_lookup_extent(inode, em->start + em->len); 1151 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1152 ret = false; 1153 else if ((em->block_start + em->block_len == next->block_start) && 1154 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1155 ret = false; 1156 1157 free_extent_map(next); 1158 return ret; 1159 } 1160 1161 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1162 u64 *last_len, u64 *skip, u64 *defrag_end, 1163 int compress) 1164 { 1165 struct extent_map *em; 1166 int ret = 1; 1167 bool next_mergeable = true; 1168 bool prev_mergeable = true; 1169 1170 /* 1171 * make sure that once we start defragging an extent, we keep on 1172 * defragging it 1173 */ 1174 if (start < *defrag_end) 1175 return 1; 1176 1177 *skip = 0; 1178 1179 em = defrag_lookup_extent(inode, start); 1180 if (!em) 1181 return 0; 1182 1183 /* this will cover holes, and inline extents */ 1184 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1185 ret = 0; 1186 goto out; 1187 } 1188 1189 if (!*defrag_end) 1190 prev_mergeable = false; 1191 1192 next_mergeable = defrag_check_next_extent(inode, em); 1193 /* 1194 * we hit a real extent, if it is big or the next extent is not a 1195 * real extent, don't bother defragging it 1196 */ 1197 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1198 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1199 ret = 0; 1200 out: 1201 /* 1202 * last_len ends up being a counter of how many bytes we've defragged. 1203 * every time we choose not to defrag an extent, we reset *last_len 1204 * so that the next tiny extent will force a defrag. 1205 * 1206 * The end result of this is that tiny extents before a single big 1207 * extent will force at least part of that big extent to be defragged. 1208 */ 1209 if (ret) { 1210 *defrag_end = extent_map_end(em); 1211 } else { 1212 *last_len = 0; 1213 *skip = extent_map_end(em); 1214 *defrag_end = 0; 1215 } 1216 1217 free_extent_map(em); 1218 return ret; 1219 } 1220 1221 /* 1222 * it doesn't do much good to defrag one or two pages 1223 * at a time. This pulls in a nice chunk of pages 1224 * to COW and defrag. 1225 * 1226 * It also makes sure the delalloc code has enough 1227 * dirty data to avoid making new small extents as part 1228 * of the defrag 1229 * 1230 * It's a good idea to start RA on this range 1231 * before calling this. 1232 */ 1233 static int cluster_pages_for_defrag(struct inode *inode, 1234 struct page **pages, 1235 unsigned long start_index, 1236 unsigned long num_pages) 1237 { 1238 unsigned long file_end; 1239 u64 isize = i_size_read(inode); 1240 u64 page_start; 1241 u64 page_end; 1242 u64 page_cnt; 1243 int ret; 1244 int i; 1245 int i_done; 1246 struct btrfs_ordered_extent *ordered; 1247 struct extent_state *cached_state = NULL; 1248 struct extent_io_tree *tree; 1249 struct extent_changeset *data_reserved = NULL; 1250 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1251 1252 file_end = (isize - 1) >> PAGE_SHIFT; 1253 if (!isize || start_index > file_end) 1254 return 0; 1255 1256 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1257 1258 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1259 start_index << PAGE_SHIFT, 1260 page_cnt << PAGE_SHIFT); 1261 if (ret) 1262 return ret; 1263 i_done = 0; 1264 tree = &BTRFS_I(inode)->io_tree; 1265 1266 /* step one, lock all the pages */ 1267 for (i = 0; i < page_cnt; i++) { 1268 struct page *page; 1269 again: 1270 page = find_or_create_page(inode->i_mapping, 1271 start_index + i, mask); 1272 if (!page) 1273 break; 1274 1275 page_start = page_offset(page); 1276 page_end = page_start + PAGE_SIZE - 1; 1277 while (1) { 1278 lock_extent_bits(tree, page_start, page_end, 1279 &cached_state); 1280 ordered = btrfs_lookup_ordered_extent(inode, 1281 page_start); 1282 unlock_extent_cached(tree, page_start, page_end, 1283 &cached_state); 1284 if (!ordered) 1285 break; 1286 1287 unlock_page(page); 1288 btrfs_start_ordered_extent(inode, ordered, 1); 1289 btrfs_put_ordered_extent(ordered); 1290 lock_page(page); 1291 /* 1292 * we unlocked the page above, so we need check if 1293 * it was released or not. 1294 */ 1295 if (page->mapping != inode->i_mapping) { 1296 unlock_page(page); 1297 put_page(page); 1298 goto again; 1299 } 1300 } 1301 1302 if (!PageUptodate(page)) { 1303 btrfs_readpage(NULL, page); 1304 lock_page(page); 1305 if (!PageUptodate(page)) { 1306 unlock_page(page); 1307 put_page(page); 1308 ret = -EIO; 1309 break; 1310 } 1311 } 1312 1313 if (page->mapping != inode->i_mapping) { 1314 unlock_page(page); 1315 put_page(page); 1316 goto again; 1317 } 1318 1319 pages[i] = page; 1320 i_done++; 1321 } 1322 if (!i_done || ret) 1323 goto out; 1324 1325 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1326 goto out; 1327 1328 /* 1329 * so now we have a nice long stream of locked 1330 * and up to date pages, lets wait on them 1331 */ 1332 for (i = 0; i < i_done; i++) 1333 wait_on_page_writeback(pages[i]); 1334 1335 page_start = page_offset(pages[0]); 1336 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1337 1338 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1339 page_start, page_end - 1, &cached_state); 1340 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1341 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1342 EXTENT_DEFRAG, 0, 0, &cached_state); 1343 1344 if (i_done != page_cnt) { 1345 spin_lock(&BTRFS_I(inode)->lock); 1346 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1347 spin_unlock(&BTRFS_I(inode)->lock); 1348 btrfs_delalloc_release_space(inode, data_reserved, 1349 start_index << PAGE_SHIFT, 1350 (page_cnt - i_done) << PAGE_SHIFT, true); 1351 } 1352 1353 1354 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1355 &cached_state); 1356 1357 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1358 page_start, page_end - 1, &cached_state); 1359 1360 for (i = 0; i < i_done; i++) { 1361 clear_page_dirty_for_io(pages[i]); 1362 ClearPageChecked(pages[i]); 1363 set_page_extent_mapped(pages[i]); 1364 set_page_dirty(pages[i]); 1365 unlock_page(pages[i]); 1366 put_page(pages[i]); 1367 } 1368 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1369 extent_changeset_free(data_reserved); 1370 return i_done; 1371 out: 1372 for (i = 0; i < i_done; i++) { 1373 unlock_page(pages[i]); 1374 put_page(pages[i]); 1375 } 1376 btrfs_delalloc_release_space(inode, data_reserved, 1377 start_index << PAGE_SHIFT, 1378 page_cnt << PAGE_SHIFT, true); 1379 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1380 extent_changeset_free(data_reserved); 1381 return ret; 1382 1383 } 1384 1385 int btrfs_defrag_file(struct inode *inode, struct file *file, 1386 struct btrfs_ioctl_defrag_range_args *range, 1387 u64 newer_than, unsigned long max_to_defrag) 1388 { 1389 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1390 struct btrfs_root *root = BTRFS_I(inode)->root; 1391 struct file_ra_state *ra = NULL; 1392 unsigned long last_index; 1393 u64 isize = i_size_read(inode); 1394 u64 last_len = 0; 1395 u64 skip = 0; 1396 u64 defrag_end = 0; 1397 u64 newer_off = range->start; 1398 unsigned long i; 1399 unsigned long ra_index = 0; 1400 int ret; 1401 int defrag_count = 0; 1402 int compress_type = BTRFS_COMPRESS_ZLIB; 1403 u32 extent_thresh = range->extent_thresh; 1404 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1405 unsigned long cluster = max_cluster; 1406 u64 new_align = ~((u64)SZ_128K - 1); 1407 struct page **pages = NULL; 1408 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1409 1410 if (isize == 0) 1411 return 0; 1412 1413 if (range->start >= isize) 1414 return -EINVAL; 1415 1416 if (do_compress) { 1417 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1418 return -EINVAL; 1419 if (range->compress_type) 1420 compress_type = range->compress_type; 1421 } 1422 1423 if (extent_thresh == 0) 1424 extent_thresh = SZ_256K; 1425 1426 /* 1427 * If we were not given a file, allocate a readahead context. As 1428 * readahead is just an optimization, defrag will work without it so 1429 * we don't error out. 1430 */ 1431 if (!file) { 1432 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1433 if (ra) 1434 file_ra_state_init(ra, inode->i_mapping); 1435 } else { 1436 ra = &file->f_ra; 1437 } 1438 1439 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1440 if (!pages) { 1441 ret = -ENOMEM; 1442 goto out_ra; 1443 } 1444 1445 /* find the last page to defrag */ 1446 if (range->start + range->len > range->start) { 1447 last_index = min_t(u64, isize - 1, 1448 range->start + range->len - 1) >> PAGE_SHIFT; 1449 } else { 1450 last_index = (isize - 1) >> PAGE_SHIFT; 1451 } 1452 1453 if (newer_than) { 1454 ret = find_new_extents(root, inode, newer_than, 1455 &newer_off, SZ_64K); 1456 if (!ret) { 1457 range->start = newer_off; 1458 /* 1459 * we always align our defrag to help keep 1460 * the extents in the file evenly spaced 1461 */ 1462 i = (newer_off & new_align) >> PAGE_SHIFT; 1463 } else 1464 goto out_ra; 1465 } else { 1466 i = range->start >> PAGE_SHIFT; 1467 } 1468 if (!max_to_defrag) 1469 max_to_defrag = last_index - i + 1; 1470 1471 /* 1472 * make writeback starts from i, so the defrag range can be 1473 * written sequentially. 1474 */ 1475 if (i < inode->i_mapping->writeback_index) 1476 inode->i_mapping->writeback_index = i; 1477 1478 while (i <= last_index && defrag_count < max_to_defrag && 1479 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1480 /* 1481 * make sure we stop running if someone unmounts 1482 * the FS 1483 */ 1484 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1485 break; 1486 1487 if (btrfs_defrag_cancelled(fs_info)) { 1488 btrfs_debug(fs_info, "defrag_file cancelled"); 1489 ret = -EAGAIN; 1490 break; 1491 } 1492 1493 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1494 extent_thresh, &last_len, &skip, 1495 &defrag_end, do_compress)){ 1496 unsigned long next; 1497 /* 1498 * the should_defrag function tells us how much to skip 1499 * bump our counter by the suggested amount 1500 */ 1501 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1502 i = max(i + 1, next); 1503 continue; 1504 } 1505 1506 if (!newer_than) { 1507 cluster = (PAGE_ALIGN(defrag_end) >> 1508 PAGE_SHIFT) - i; 1509 cluster = min(cluster, max_cluster); 1510 } else { 1511 cluster = max_cluster; 1512 } 1513 1514 if (i + cluster > ra_index) { 1515 ra_index = max(i, ra_index); 1516 if (ra) 1517 page_cache_sync_readahead(inode->i_mapping, ra, 1518 file, ra_index, cluster); 1519 ra_index += cluster; 1520 } 1521 1522 inode_lock(inode); 1523 if (IS_SWAPFILE(inode)) { 1524 ret = -ETXTBSY; 1525 } else { 1526 if (do_compress) 1527 BTRFS_I(inode)->defrag_compress = compress_type; 1528 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1529 } 1530 if (ret < 0) { 1531 inode_unlock(inode); 1532 goto out_ra; 1533 } 1534 1535 defrag_count += ret; 1536 balance_dirty_pages_ratelimited(inode->i_mapping); 1537 inode_unlock(inode); 1538 1539 if (newer_than) { 1540 if (newer_off == (u64)-1) 1541 break; 1542 1543 if (ret > 0) 1544 i += ret; 1545 1546 newer_off = max(newer_off + 1, 1547 (u64)i << PAGE_SHIFT); 1548 1549 ret = find_new_extents(root, inode, newer_than, 1550 &newer_off, SZ_64K); 1551 if (!ret) { 1552 range->start = newer_off; 1553 i = (newer_off & new_align) >> PAGE_SHIFT; 1554 } else { 1555 break; 1556 } 1557 } else { 1558 if (ret > 0) { 1559 i += ret; 1560 last_len += ret << PAGE_SHIFT; 1561 } else { 1562 i++; 1563 last_len = 0; 1564 } 1565 } 1566 } 1567 1568 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1569 filemap_flush(inode->i_mapping); 1570 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1571 &BTRFS_I(inode)->runtime_flags)) 1572 filemap_flush(inode->i_mapping); 1573 } 1574 1575 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1576 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1577 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1578 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1579 } 1580 1581 ret = defrag_count; 1582 1583 out_ra: 1584 if (do_compress) { 1585 inode_lock(inode); 1586 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1587 inode_unlock(inode); 1588 } 1589 if (!file) 1590 kfree(ra); 1591 kfree(pages); 1592 return ret; 1593 } 1594 1595 static noinline int btrfs_ioctl_resize(struct file *file, 1596 void __user *arg) 1597 { 1598 struct inode *inode = file_inode(file); 1599 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1600 u64 new_size; 1601 u64 old_size; 1602 u64 devid = 1; 1603 struct btrfs_root *root = BTRFS_I(inode)->root; 1604 struct btrfs_ioctl_vol_args *vol_args; 1605 struct btrfs_trans_handle *trans; 1606 struct btrfs_device *device = NULL; 1607 char *sizestr; 1608 char *retptr; 1609 char *devstr = NULL; 1610 int ret = 0; 1611 int mod = 0; 1612 1613 if (!capable(CAP_SYS_ADMIN)) 1614 return -EPERM; 1615 1616 ret = mnt_want_write_file(file); 1617 if (ret) 1618 return ret; 1619 1620 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1621 mnt_drop_write_file(file); 1622 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1623 } 1624 1625 vol_args = memdup_user(arg, sizeof(*vol_args)); 1626 if (IS_ERR(vol_args)) { 1627 ret = PTR_ERR(vol_args); 1628 goto out; 1629 } 1630 1631 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1632 1633 sizestr = vol_args->name; 1634 devstr = strchr(sizestr, ':'); 1635 if (devstr) { 1636 sizestr = devstr + 1; 1637 *devstr = '\0'; 1638 devstr = vol_args->name; 1639 ret = kstrtoull(devstr, 10, &devid); 1640 if (ret) 1641 goto out_free; 1642 if (!devid) { 1643 ret = -EINVAL; 1644 goto out_free; 1645 } 1646 btrfs_info(fs_info, "resizing devid %llu", devid); 1647 } 1648 1649 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 1650 if (!device) { 1651 btrfs_info(fs_info, "resizer unable to find device %llu", 1652 devid); 1653 ret = -ENODEV; 1654 goto out_free; 1655 } 1656 1657 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1658 btrfs_info(fs_info, 1659 "resizer unable to apply on readonly device %llu", 1660 devid); 1661 ret = -EPERM; 1662 goto out_free; 1663 } 1664 1665 if (!strcmp(sizestr, "max")) 1666 new_size = device->bdev->bd_inode->i_size; 1667 else { 1668 if (sizestr[0] == '-') { 1669 mod = -1; 1670 sizestr++; 1671 } else if (sizestr[0] == '+') { 1672 mod = 1; 1673 sizestr++; 1674 } 1675 new_size = memparse(sizestr, &retptr); 1676 if (*retptr != '\0' || new_size == 0) { 1677 ret = -EINVAL; 1678 goto out_free; 1679 } 1680 } 1681 1682 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1683 ret = -EPERM; 1684 goto out_free; 1685 } 1686 1687 old_size = btrfs_device_get_total_bytes(device); 1688 1689 if (mod < 0) { 1690 if (new_size > old_size) { 1691 ret = -EINVAL; 1692 goto out_free; 1693 } 1694 new_size = old_size - new_size; 1695 } else if (mod > 0) { 1696 if (new_size > ULLONG_MAX - old_size) { 1697 ret = -ERANGE; 1698 goto out_free; 1699 } 1700 new_size = old_size + new_size; 1701 } 1702 1703 if (new_size < SZ_256M) { 1704 ret = -EINVAL; 1705 goto out_free; 1706 } 1707 if (new_size > device->bdev->bd_inode->i_size) { 1708 ret = -EFBIG; 1709 goto out_free; 1710 } 1711 1712 new_size = round_down(new_size, fs_info->sectorsize); 1713 1714 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1715 rcu_str_deref(device->name), new_size); 1716 1717 if (new_size > old_size) { 1718 trans = btrfs_start_transaction(root, 0); 1719 if (IS_ERR(trans)) { 1720 ret = PTR_ERR(trans); 1721 goto out_free; 1722 } 1723 ret = btrfs_grow_device(trans, device, new_size); 1724 btrfs_commit_transaction(trans); 1725 } else if (new_size < old_size) { 1726 ret = btrfs_shrink_device(device, new_size); 1727 } /* equal, nothing need to do */ 1728 1729 out_free: 1730 kfree(vol_args); 1731 out: 1732 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1733 mnt_drop_write_file(file); 1734 return ret; 1735 } 1736 1737 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1738 const char *name, unsigned long fd, int subvol, 1739 u64 *transid, bool readonly, 1740 struct btrfs_qgroup_inherit *inherit) 1741 { 1742 int namelen; 1743 int ret = 0; 1744 1745 if (!S_ISDIR(file_inode(file)->i_mode)) 1746 return -ENOTDIR; 1747 1748 ret = mnt_want_write_file(file); 1749 if (ret) 1750 goto out; 1751 1752 namelen = strlen(name); 1753 if (strchr(name, '/')) { 1754 ret = -EINVAL; 1755 goto out_drop_write; 1756 } 1757 1758 if (name[0] == '.' && 1759 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1760 ret = -EEXIST; 1761 goto out_drop_write; 1762 } 1763 1764 if (subvol) { 1765 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1766 NULL, transid, readonly, inherit); 1767 } else { 1768 struct fd src = fdget(fd); 1769 struct inode *src_inode; 1770 if (!src.file) { 1771 ret = -EINVAL; 1772 goto out_drop_write; 1773 } 1774 1775 src_inode = file_inode(src.file); 1776 if (src_inode->i_sb != file_inode(file)->i_sb) { 1777 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1778 "Snapshot src from another FS"); 1779 ret = -EXDEV; 1780 } else if (!inode_owner_or_capable(src_inode)) { 1781 /* 1782 * Subvolume creation is not restricted, but snapshots 1783 * are limited to own subvolumes only 1784 */ 1785 ret = -EPERM; 1786 } else { 1787 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1788 BTRFS_I(src_inode)->root, 1789 transid, readonly, inherit); 1790 } 1791 fdput(src); 1792 } 1793 out_drop_write: 1794 mnt_drop_write_file(file); 1795 out: 1796 return ret; 1797 } 1798 1799 static noinline int btrfs_ioctl_snap_create(struct file *file, 1800 void __user *arg, int subvol) 1801 { 1802 struct btrfs_ioctl_vol_args *vol_args; 1803 int ret; 1804 1805 if (!S_ISDIR(file_inode(file)->i_mode)) 1806 return -ENOTDIR; 1807 1808 vol_args = memdup_user(arg, sizeof(*vol_args)); 1809 if (IS_ERR(vol_args)) 1810 return PTR_ERR(vol_args); 1811 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1812 1813 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1814 vol_args->fd, subvol, 1815 NULL, false, NULL); 1816 1817 kfree(vol_args); 1818 return ret; 1819 } 1820 1821 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1822 void __user *arg, int subvol) 1823 { 1824 struct btrfs_ioctl_vol_args_v2 *vol_args; 1825 int ret; 1826 u64 transid = 0; 1827 u64 *ptr = NULL; 1828 bool readonly = false; 1829 struct btrfs_qgroup_inherit *inherit = NULL; 1830 1831 if (!S_ISDIR(file_inode(file)->i_mode)) 1832 return -ENOTDIR; 1833 1834 vol_args = memdup_user(arg, sizeof(*vol_args)); 1835 if (IS_ERR(vol_args)) 1836 return PTR_ERR(vol_args); 1837 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1838 1839 if (vol_args->flags & 1840 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1841 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1842 ret = -EOPNOTSUPP; 1843 goto free_args; 1844 } 1845 1846 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1847 struct inode *inode = file_inode(file); 1848 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1849 1850 btrfs_warn(fs_info, 1851 "SNAP_CREATE_V2 ioctl with CREATE_ASYNC is deprecated and will be removed in kernel 5.7"); 1852 1853 ptr = &transid; 1854 } 1855 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1856 readonly = true; 1857 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1858 if (vol_args->size > PAGE_SIZE) { 1859 ret = -EINVAL; 1860 goto free_args; 1861 } 1862 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1863 if (IS_ERR(inherit)) { 1864 ret = PTR_ERR(inherit); 1865 goto free_args; 1866 } 1867 } 1868 1869 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1870 vol_args->fd, subvol, ptr, 1871 readonly, inherit); 1872 if (ret) 1873 goto free_inherit; 1874 1875 if (ptr && copy_to_user(arg + 1876 offsetof(struct btrfs_ioctl_vol_args_v2, 1877 transid), 1878 ptr, sizeof(*ptr))) 1879 ret = -EFAULT; 1880 1881 free_inherit: 1882 kfree(inherit); 1883 free_args: 1884 kfree(vol_args); 1885 return ret; 1886 } 1887 1888 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1889 void __user *arg) 1890 { 1891 struct inode *inode = file_inode(file); 1892 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1893 struct btrfs_root *root = BTRFS_I(inode)->root; 1894 int ret = 0; 1895 u64 flags = 0; 1896 1897 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1898 return -EINVAL; 1899 1900 down_read(&fs_info->subvol_sem); 1901 if (btrfs_root_readonly(root)) 1902 flags |= BTRFS_SUBVOL_RDONLY; 1903 up_read(&fs_info->subvol_sem); 1904 1905 if (copy_to_user(arg, &flags, sizeof(flags))) 1906 ret = -EFAULT; 1907 1908 return ret; 1909 } 1910 1911 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1912 void __user *arg) 1913 { 1914 struct inode *inode = file_inode(file); 1915 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1916 struct btrfs_root *root = BTRFS_I(inode)->root; 1917 struct btrfs_trans_handle *trans; 1918 u64 root_flags; 1919 u64 flags; 1920 int ret = 0; 1921 1922 if (!inode_owner_or_capable(inode)) 1923 return -EPERM; 1924 1925 ret = mnt_want_write_file(file); 1926 if (ret) 1927 goto out; 1928 1929 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1930 ret = -EINVAL; 1931 goto out_drop_write; 1932 } 1933 1934 if (copy_from_user(&flags, arg, sizeof(flags))) { 1935 ret = -EFAULT; 1936 goto out_drop_write; 1937 } 1938 1939 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1940 ret = -EINVAL; 1941 goto out_drop_write; 1942 } 1943 1944 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1945 ret = -EOPNOTSUPP; 1946 goto out_drop_write; 1947 } 1948 1949 down_write(&fs_info->subvol_sem); 1950 1951 /* nothing to do */ 1952 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1953 goto out_drop_sem; 1954 1955 root_flags = btrfs_root_flags(&root->root_item); 1956 if (flags & BTRFS_SUBVOL_RDONLY) { 1957 btrfs_set_root_flags(&root->root_item, 1958 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1959 } else { 1960 /* 1961 * Block RO -> RW transition if this subvolume is involved in 1962 * send 1963 */ 1964 spin_lock(&root->root_item_lock); 1965 if (root->send_in_progress == 0) { 1966 btrfs_set_root_flags(&root->root_item, 1967 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1968 spin_unlock(&root->root_item_lock); 1969 } else { 1970 spin_unlock(&root->root_item_lock); 1971 btrfs_warn(fs_info, 1972 "Attempt to set subvolume %llu read-write during send", 1973 root->root_key.objectid); 1974 ret = -EPERM; 1975 goto out_drop_sem; 1976 } 1977 } 1978 1979 trans = btrfs_start_transaction(root, 1); 1980 if (IS_ERR(trans)) { 1981 ret = PTR_ERR(trans); 1982 goto out_reset; 1983 } 1984 1985 ret = btrfs_update_root(trans, fs_info->tree_root, 1986 &root->root_key, &root->root_item); 1987 if (ret < 0) { 1988 btrfs_end_transaction(trans); 1989 goto out_reset; 1990 } 1991 1992 ret = btrfs_commit_transaction(trans); 1993 1994 out_reset: 1995 if (ret) 1996 btrfs_set_root_flags(&root->root_item, root_flags); 1997 out_drop_sem: 1998 up_write(&fs_info->subvol_sem); 1999 out_drop_write: 2000 mnt_drop_write_file(file); 2001 out: 2002 return ret; 2003 } 2004 2005 static noinline int key_in_sk(struct btrfs_key *key, 2006 struct btrfs_ioctl_search_key *sk) 2007 { 2008 struct btrfs_key test; 2009 int ret; 2010 2011 test.objectid = sk->min_objectid; 2012 test.type = sk->min_type; 2013 test.offset = sk->min_offset; 2014 2015 ret = btrfs_comp_cpu_keys(key, &test); 2016 if (ret < 0) 2017 return 0; 2018 2019 test.objectid = sk->max_objectid; 2020 test.type = sk->max_type; 2021 test.offset = sk->max_offset; 2022 2023 ret = btrfs_comp_cpu_keys(key, &test); 2024 if (ret > 0) 2025 return 0; 2026 return 1; 2027 } 2028 2029 static noinline int copy_to_sk(struct btrfs_path *path, 2030 struct btrfs_key *key, 2031 struct btrfs_ioctl_search_key *sk, 2032 size_t *buf_size, 2033 char __user *ubuf, 2034 unsigned long *sk_offset, 2035 int *num_found) 2036 { 2037 u64 found_transid; 2038 struct extent_buffer *leaf; 2039 struct btrfs_ioctl_search_header sh; 2040 struct btrfs_key test; 2041 unsigned long item_off; 2042 unsigned long item_len; 2043 int nritems; 2044 int i; 2045 int slot; 2046 int ret = 0; 2047 2048 leaf = path->nodes[0]; 2049 slot = path->slots[0]; 2050 nritems = btrfs_header_nritems(leaf); 2051 2052 if (btrfs_header_generation(leaf) > sk->max_transid) { 2053 i = nritems; 2054 goto advance_key; 2055 } 2056 found_transid = btrfs_header_generation(leaf); 2057 2058 for (i = slot; i < nritems; i++) { 2059 item_off = btrfs_item_ptr_offset(leaf, i); 2060 item_len = btrfs_item_size_nr(leaf, i); 2061 2062 btrfs_item_key_to_cpu(leaf, key, i); 2063 if (!key_in_sk(key, sk)) 2064 continue; 2065 2066 if (sizeof(sh) + item_len > *buf_size) { 2067 if (*num_found) { 2068 ret = 1; 2069 goto out; 2070 } 2071 2072 /* 2073 * return one empty item back for v1, which does not 2074 * handle -EOVERFLOW 2075 */ 2076 2077 *buf_size = sizeof(sh) + item_len; 2078 item_len = 0; 2079 ret = -EOVERFLOW; 2080 } 2081 2082 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2083 ret = 1; 2084 goto out; 2085 } 2086 2087 sh.objectid = key->objectid; 2088 sh.offset = key->offset; 2089 sh.type = key->type; 2090 sh.len = item_len; 2091 sh.transid = found_transid; 2092 2093 /* copy search result header */ 2094 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2095 ret = -EFAULT; 2096 goto out; 2097 } 2098 2099 *sk_offset += sizeof(sh); 2100 2101 if (item_len) { 2102 char __user *up = ubuf + *sk_offset; 2103 /* copy the item */ 2104 if (read_extent_buffer_to_user(leaf, up, 2105 item_off, item_len)) { 2106 ret = -EFAULT; 2107 goto out; 2108 } 2109 2110 *sk_offset += item_len; 2111 } 2112 (*num_found)++; 2113 2114 if (ret) /* -EOVERFLOW from above */ 2115 goto out; 2116 2117 if (*num_found >= sk->nr_items) { 2118 ret = 1; 2119 goto out; 2120 } 2121 } 2122 advance_key: 2123 ret = 0; 2124 test.objectid = sk->max_objectid; 2125 test.type = sk->max_type; 2126 test.offset = sk->max_offset; 2127 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2128 ret = 1; 2129 else if (key->offset < (u64)-1) 2130 key->offset++; 2131 else if (key->type < (u8)-1) { 2132 key->offset = 0; 2133 key->type++; 2134 } else if (key->objectid < (u64)-1) { 2135 key->offset = 0; 2136 key->type = 0; 2137 key->objectid++; 2138 } else 2139 ret = 1; 2140 out: 2141 /* 2142 * 0: all items from this leaf copied, continue with next 2143 * 1: * more items can be copied, but unused buffer is too small 2144 * * all items were found 2145 * Either way, it will stops the loop which iterates to the next 2146 * leaf 2147 * -EOVERFLOW: item was to large for buffer 2148 * -EFAULT: could not copy extent buffer back to userspace 2149 */ 2150 return ret; 2151 } 2152 2153 static noinline int search_ioctl(struct inode *inode, 2154 struct btrfs_ioctl_search_key *sk, 2155 size_t *buf_size, 2156 char __user *ubuf) 2157 { 2158 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2159 struct btrfs_root *root; 2160 struct btrfs_key key; 2161 struct btrfs_path *path; 2162 int ret; 2163 int num_found = 0; 2164 unsigned long sk_offset = 0; 2165 2166 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2167 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2168 return -EOVERFLOW; 2169 } 2170 2171 path = btrfs_alloc_path(); 2172 if (!path) 2173 return -ENOMEM; 2174 2175 if (sk->tree_id == 0) { 2176 /* search the root of the inode that was passed */ 2177 root = BTRFS_I(inode)->root; 2178 } else { 2179 key.objectid = sk->tree_id; 2180 key.type = BTRFS_ROOT_ITEM_KEY; 2181 key.offset = (u64)-1; 2182 root = btrfs_read_fs_root_no_name(info, &key); 2183 if (IS_ERR(root)) { 2184 btrfs_free_path(path); 2185 return PTR_ERR(root); 2186 } 2187 } 2188 2189 key.objectid = sk->min_objectid; 2190 key.type = sk->min_type; 2191 key.offset = sk->min_offset; 2192 2193 while (1) { 2194 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2195 if (ret != 0) { 2196 if (ret > 0) 2197 ret = 0; 2198 goto err; 2199 } 2200 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2201 &sk_offset, &num_found); 2202 btrfs_release_path(path); 2203 if (ret) 2204 break; 2205 2206 } 2207 if (ret > 0) 2208 ret = 0; 2209 err: 2210 sk->nr_items = num_found; 2211 btrfs_free_path(path); 2212 return ret; 2213 } 2214 2215 static noinline int btrfs_ioctl_tree_search(struct file *file, 2216 void __user *argp) 2217 { 2218 struct btrfs_ioctl_search_args __user *uargs; 2219 struct btrfs_ioctl_search_key sk; 2220 struct inode *inode; 2221 int ret; 2222 size_t buf_size; 2223 2224 if (!capable(CAP_SYS_ADMIN)) 2225 return -EPERM; 2226 2227 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2228 2229 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2230 return -EFAULT; 2231 2232 buf_size = sizeof(uargs->buf); 2233 2234 inode = file_inode(file); 2235 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2236 2237 /* 2238 * In the origin implementation an overflow is handled by returning a 2239 * search header with a len of zero, so reset ret. 2240 */ 2241 if (ret == -EOVERFLOW) 2242 ret = 0; 2243 2244 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2245 ret = -EFAULT; 2246 return ret; 2247 } 2248 2249 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2250 void __user *argp) 2251 { 2252 struct btrfs_ioctl_search_args_v2 __user *uarg; 2253 struct btrfs_ioctl_search_args_v2 args; 2254 struct inode *inode; 2255 int ret; 2256 size_t buf_size; 2257 const size_t buf_limit = SZ_16M; 2258 2259 if (!capable(CAP_SYS_ADMIN)) 2260 return -EPERM; 2261 2262 /* copy search header and buffer size */ 2263 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2264 if (copy_from_user(&args, uarg, sizeof(args))) 2265 return -EFAULT; 2266 2267 buf_size = args.buf_size; 2268 2269 /* limit result size to 16MB */ 2270 if (buf_size > buf_limit) 2271 buf_size = buf_limit; 2272 2273 inode = file_inode(file); 2274 ret = search_ioctl(inode, &args.key, &buf_size, 2275 (char __user *)(&uarg->buf[0])); 2276 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2277 ret = -EFAULT; 2278 else if (ret == -EOVERFLOW && 2279 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2280 ret = -EFAULT; 2281 2282 return ret; 2283 } 2284 2285 /* 2286 * Search INODE_REFs to identify path name of 'dirid' directory 2287 * in a 'tree_id' tree. and sets path name to 'name'. 2288 */ 2289 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2290 u64 tree_id, u64 dirid, char *name) 2291 { 2292 struct btrfs_root *root; 2293 struct btrfs_key key; 2294 char *ptr; 2295 int ret = -1; 2296 int slot; 2297 int len; 2298 int total_len = 0; 2299 struct btrfs_inode_ref *iref; 2300 struct extent_buffer *l; 2301 struct btrfs_path *path; 2302 2303 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2304 name[0]='\0'; 2305 return 0; 2306 } 2307 2308 path = btrfs_alloc_path(); 2309 if (!path) 2310 return -ENOMEM; 2311 2312 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2313 2314 key.objectid = tree_id; 2315 key.type = BTRFS_ROOT_ITEM_KEY; 2316 key.offset = (u64)-1; 2317 root = btrfs_read_fs_root_no_name(info, &key); 2318 if (IS_ERR(root)) { 2319 ret = PTR_ERR(root); 2320 goto out; 2321 } 2322 2323 key.objectid = dirid; 2324 key.type = BTRFS_INODE_REF_KEY; 2325 key.offset = (u64)-1; 2326 2327 while (1) { 2328 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2329 if (ret < 0) 2330 goto out; 2331 else if (ret > 0) { 2332 ret = btrfs_previous_item(root, path, dirid, 2333 BTRFS_INODE_REF_KEY); 2334 if (ret < 0) 2335 goto out; 2336 else if (ret > 0) { 2337 ret = -ENOENT; 2338 goto out; 2339 } 2340 } 2341 2342 l = path->nodes[0]; 2343 slot = path->slots[0]; 2344 btrfs_item_key_to_cpu(l, &key, slot); 2345 2346 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2347 len = btrfs_inode_ref_name_len(l, iref); 2348 ptr -= len + 1; 2349 total_len += len + 1; 2350 if (ptr < name) { 2351 ret = -ENAMETOOLONG; 2352 goto out; 2353 } 2354 2355 *(ptr + len) = '/'; 2356 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2357 2358 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2359 break; 2360 2361 btrfs_release_path(path); 2362 key.objectid = key.offset; 2363 key.offset = (u64)-1; 2364 dirid = key.objectid; 2365 } 2366 memmove(name, ptr, total_len); 2367 name[total_len] = '\0'; 2368 ret = 0; 2369 out: 2370 btrfs_free_path(path); 2371 return ret; 2372 } 2373 2374 static int btrfs_search_path_in_tree_user(struct inode *inode, 2375 struct btrfs_ioctl_ino_lookup_user_args *args) 2376 { 2377 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2378 struct super_block *sb = inode->i_sb; 2379 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2380 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2381 u64 dirid = args->dirid; 2382 unsigned long item_off; 2383 unsigned long item_len; 2384 struct btrfs_inode_ref *iref; 2385 struct btrfs_root_ref *rref; 2386 struct btrfs_root *root; 2387 struct btrfs_path *path; 2388 struct btrfs_key key, key2; 2389 struct extent_buffer *leaf; 2390 struct inode *temp_inode; 2391 char *ptr; 2392 int slot; 2393 int len; 2394 int total_len = 0; 2395 int ret; 2396 2397 path = btrfs_alloc_path(); 2398 if (!path) 2399 return -ENOMEM; 2400 2401 /* 2402 * If the bottom subvolume does not exist directly under upper_limit, 2403 * construct the path in from the bottom up. 2404 */ 2405 if (dirid != upper_limit.objectid) { 2406 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2407 2408 key.objectid = treeid; 2409 key.type = BTRFS_ROOT_ITEM_KEY; 2410 key.offset = (u64)-1; 2411 root = btrfs_read_fs_root_no_name(fs_info, &key); 2412 if (IS_ERR(root)) { 2413 ret = PTR_ERR(root); 2414 goto out; 2415 } 2416 2417 key.objectid = dirid; 2418 key.type = BTRFS_INODE_REF_KEY; 2419 key.offset = (u64)-1; 2420 while (1) { 2421 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2422 if (ret < 0) { 2423 goto out; 2424 } else if (ret > 0) { 2425 ret = btrfs_previous_item(root, path, dirid, 2426 BTRFS_INODE_REF_KEY); 2427 if (ret < 0) { 2428 goto out; 2429 } else if (ret > 0) { 2430 ret = -ENOENT; 2431 goto out; 2432 } 2433 } 2434 2435 leaf = path->nodes[0]; 2436 slot = path->slots[0]; 2437 btrfs_item_key_to_cpu(leaf, &key, slot); 2438 2439 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2440 len = btrfs_inode_ref_name_len(leaf, iref); 2441 ptr -= len + 1; 2442 total_len += len + 1; 2443 if (ptr < args->path) { 2444 ret = -ENAMETOOLONG; 2445 goto out; 2446 } 2447 2448 *(ptr + len) = '/'; 2449 read_extent_buffer(leaf, ptr, 2450 (unsigned long)(iref + 1), len); 2451 2452 /* Check the read+exec permission of this directory */ 2453 ret = btrfs_previous_item(root, path, dirid, 2454 BTRFS_INODE_ITEM_KEY); 2455 if (ret < 0) { 2456 goto out; 2457 } else if (ret > 0) { 2458 ret = -ENOENT; 2459 goto out; 2460 } 2461 2462 leaf = path->nodes[0]; 2463 slot = path->slots[0]; 2464 btrfs_item_key_to_cpu(leaf, &key2, slot); 2465 if (key2.objectid != dirid) { 2466 ret = -ENOENT; 2467 goto out; 2468 } 2469 2470 temp_inode = btrfs_iget(sb, &key2, root); 2471 if (IS_ERR(temp_inode)) { 2472 ret = PTR_ERR(temp_inode); 2473 goto out; 2474 } 2475 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2476 iput(temp_inode); 2477 if (ret) { 2478 ret = -EACCES; 2479 goto out; 2480 } 2481 2482 if (key.offset == upper_limit.objectid) 2483 break; 2484 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2485 ret = -EACCES; 2486 goto out; 2487 } 2488 2489 btrfs_release_path(path); 2490 key.objectid = key.offset; 2491 key.offset = (u64)-1; 2492 dirid = key.objectid; 2493 } 2494 2495 memmove(args->path, ptr, total_len); 2496 args->path[total_len] = '\0'; 2497 btrfs_release_path(path); 2498 } 2499 2500 /* Get the bottom subvolume's name from ROOT_REF */ 2501 root = fs_info->tree_root; 2502 key.objectid = treeid; 2503 key.type = BTRFS_ROOT_REF_KEY; 2504 key.offset = args->treeid; 2505 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2506 if (ret < 0) { 2507 goto out; 2508 } else if (ret > 0) { 2509 ret = -ENOENT; 2510 goto out; 2511 } 2512 2513 leaf = path->nodes[0]; 2514 slot = path->slots[0]; 2515 btrfs_item_key_to_cpu(leaf, &key, slot); 2516 2517 item_off = btrfs_item_ptr_offset(leaf, slot); 2518 item_len = btrfs_item_size_nr(leaf, slot); 2519 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2520 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2521 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2522 ret = -EINVAL; 2523 goto out; 2524 } 2525 2526 /* Copy subvolume's name */ 2527 item_off += sizeof(struct btrfs_root_ref); 2528 item_len -= sizeof(struct btrfs_root_ref); 2529 read_extent_buffer(leaf, args->name, item_off, item_len); 2530 args->name[item_len] = 0; 2531 2532 out: 2533 btrfs_free_path(path); 2534 return ret; 2535 } 2536 2537 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2538 void __user *argp) 2539 { 2540 struct btrfs_ioctl_ino_lookup_args *args; 2541 struct inode *inode; 2542 int ret = 0; 2543 2544 args = memdup_user(argp, sizeof(*args)); 2545 if (IS_ERR(args)) 2546 return PTR_ERR(args); 2547 2548 inode = file_inode(file); 2549 2550 /* 2551 * Unprivileged query to obtain the containing subvolume root id. The 2552 * path is reset so it's consistent with btrfs_search_path_in_tree. 2553 */ 2554 if (args->treeid == 0) 2555 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2556 2557 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2558 args->name[0] = 0; 2559 goto out; 2560 } 2561 2562 if (!capable(CAP_SYS_ADMIN)) { 2563 ret = -EPERM; 2564 goto out; 2565 } 2566 2567 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2568 args->treeid, args->objectid, 2569 args->name); 2570 2571 out: 2572 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2573 ret = -EFAULT; 2574 2575 kfree(args); 2576 return ret; 2577 } 2578 2579 /* 2580 * Version of ino_lookup ioctl (unprivileged) 2581 * 2582 * The main differences from ino_lookup ioctl are: 2583 * 2584 * 1. Read + Exec permission will be checked using inode_permission() during 2585 * path construction. -EACCES will be returned in case of failure. 2586 * 2. Path construction will be stopped at the inode number which corresponds 2587 * to the fd with which this ioctl is called. If constructed path does not 2588 * exist under fd's inode, -EACCES will be returned. 2589 * 3. The name of bottom subvolume is also searched and filled. 2590 */ 2591 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2592 { 2593 struct btrfs_ioctl_ino_lookup_user_args *args; 2594 struct inode *inode; 2595 int ret; 2596 2597 args = memdup_user(argp, sizeof(*args)); 2598 if (IS_ERR(args)) 2599 return PTR_ERR(args); 2600 2601 inode = file_inode(file); 2602 2603 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2604 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2605 /* 2606 * The subvolume does not exist under fd with which this is 2607 * called 2608 */ 2609 kfree(args); 2610 return -EACCES; 2611 } 2612 2613 ret = btrfs_search_path_in_tree_user(inode, args); 2614 2615 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2616 ret = -EFAULT; 2617 2618 kfree(args); 2619 return ret; 2620 } 2621 2622 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2623 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2624 { 2625 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2626 struct btrfs_fs_info *fs_info; 2627 struct btrfs_root *root; 2628 struct btrfs_path *path; 2629 struct btrfs_key key; 2630 struct btrfs_root_item *root_item; 2631 struct btrfs_root_ref *rref; 2632 struct extent_buffer *leaf; 2633 unsigned long item_off; 2634 unsigned long item_len; 2635 struct inode *inode; 2636 int slot; 2637 int ret = 0; 2638 2639 path = btrfs_alloc_path(); 2640 if (!path) 2641 return -ENOMEM; 2642 2643 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2644 if (!subvol_info) { 2645 btrfs_free_path(path); 2646 return -ENOMEM; 2647 } 2648 2649 inode = file_inode(file); 2650 fs_info = BTRFS_I(inode)->root->fs_info; 2651 2652 /* Get root_item of inode's subvolume */ 2653 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2654 key.type = BTRFS_ROOT_ITEM_KEY; 2655 key.offset = (u64)-1; 2656 root = btrfs_read_fs_root_no_name(fs_info, &key); 2657 if (IS_ERR(root)) { 2658 ret = PTR_ERR(root); 2659 goto out; 2660 } 2661 root_item = &root->root_item; 2662 2663 subvol_info->treeid = key.objectid; 2664 2665 subvol_info->generation = btrfs_root_generation(root_item); 2666 subvol_info->flags = btrfs_root_flags(root_item); 2667 2668 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2669 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2670 BTRFS_UUID_SIZE); 2671 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2672 BTRFS_UUID_SIZE); 2673 2674 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2675 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2676 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2677 2678 subvol_info->otransid = btrfs_root_otransid(root_item); 2679 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2680 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2681 2682 subvol_info->stransid = btrfs_root_stransid(root_item); 2683 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2684 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2685 2686 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2687 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2688 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2689 2690 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2691 /* Search root tree for ROOT_BACKREF of this subvolume */ 2692 root = fs_info->tree_root; 2693 2694 key.type = BTRFS_ROOT_BACKREF_KEY; 2695 key.offset = 0; 2696 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2697 if (ret < 0) { 2698 goto out; 2699 } else if (path->slots[0] >= 2700 btrfs_header_nritems(path->nodes[0])) { 2701 ret = btrfs_next_leaf(root, path); 2702 if (ret < 0) { 2703 goto out; 2704 } else if (ret > 0) { 2705 ret = -EUCLEAN; 2706 goto out; 2707 } 2708 } 2709 2710 leaf = path->nodes[0]; 2711 slot = path->slots[0]; 2712 btrfs_item_key_to_cpu(leaf, &key, slot); 2713 if (key.objectid == subvol_info->treeid && 2714 key.type == BTRFS_ROOT_BACKREF_KEY) { 2715 subvol_info->parent_id = key.offset; 2716 2717 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2718 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2719 2720 item_off = btrfs_item_ptr_offset(leaf, slot) 2721 + sizeof(struct btrfs_root_ref); 2722 item_len = btrfs_item_size_nr(leaf, slot) 2723 - sizeof(struct btrfs_root_ref); 2724 read_extent_buffer(leaf, subvol_info->name, 2725 item_off, item_len); 2726 } else { 2727 ret = -ENOENT; 2728 goto out; 2729 } 2730 } 2731 2732 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2733 ret = -EFAULT; 2734 2735 out: 2736 btrfs_free_path(path); 2737 kzfree(subvol_info); 2738 return ret; 2739 } 2740 2741 /* 2742 * Return ROOT_REF information of the subvolume containing this inode 2743 * except the subvolume name. 2744 */ 2745 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2746 { 2747 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2748 struct btrfs_root_ref *rref; 2749 struct btrfs_root *root; 2750 struct btrfs_path *path; 2751 struct btrfs_key key; 2752 struct extent_buffer *leaf; 2753 struct inode *inode; 2754 u64 objectid; 2755 int slot; 2756 int ret; 2757 u8 found; 2758 2759 path = btrfs_alloc_path(); 2760 if (!path) 2761 return -ENOMEM; 2762 2763 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2764 if (IS_ERR(rootrefs)) { 2765 btrfs_free_path(path); 2766 return PTR_ERR(rootrefs); 2767 } 2768 2769 inode = file_inode(file); 2770 root = BTRFS_I(inode)->root->fs_info->tree_root; 2771 objectid = BTRFS_I(inode)->root->root_key.objectid; 2772 2773 key.objectid = objectid; 2774 key.type = BTRFS_ROOT_REF_KEY; 2775 key.offset = rootrefs->min_treeid; 2776 found = 0; 2777 2778 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2779 if (ret < 0) { 2780 goto out; 2781 } else if (path->slots[0] >= 2782 btrfs_header_nritems(path->nodes[0])) { 2783 ret = btrfs_next_leaf(root, path); 2784 if (ret < 0) { 2785 goto out; 2786 } else if (ret > 0) { 2787 ret = -EUCLEAN; 2788 goto out; 2789 } 2790 } 2791 while (1) { 2792 leaf = path->nodes[0]; 2793 slot = path->slots[0]; 2794 2795 btrfs_item_key_to_cpu(leaf, &key, slot); 2796 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2797 ret = 0; 2798 goto out; 2799 } 2800 2801 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2802 ret = -EOVERFLOW; 2803 goto out; 2804 } 2805 2806 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2807 rootrefs->rootref[found].treeid = key.offset; 2808 rootrefs->rootref[found].dirid = 2809 btrfs_root_ref_dirid(leaf, rref); 2810 found++; 2811 2812 ret = btrfs_next_item(root, path); 2813 if (ret < 0) { 2814 goto out; 2815 } else if (ret > 0) { 2816 ret = -EUCLEAN; 2817 goto out; 2818 } 2819 } 2820 2821 out: 2822 if (!ret || ret == -EOVERFLOW) { 2823 rootrefs->num_items = found; 2824 /* update min_treeid for next search */ 2825 if (found) 2826 rootrefs->min_treeid = 2827 rootrefs->rootref[found - 1].treeid + 1; 2828 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2829 ret = -EFAULT; 2830 } 2831 2832 kfree(rootrefs); 2833 btrfs_free_path(path); 2834 2835 return ret; 2836 } 2837 2838 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2839 void __user *arg) 2840 { 2841 struct dentry *parent = file->f_path.dentry; 2842 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2843 struct dentry *dentry; 2844 struct inode *dir = d_inode(parent); 2845 struct inode *inode; 2846 struct btrfs_root *root = BTRFS_I(dir)->root; 2847 struct btrfs_root *dest = NULL; 2848 struct btrfs_ioctl_vol_args *vol_args; 2849 int namelen; 2850 int err = 0; 2851 2852 if (!S_ISDIR(dir->i_mode)) 2853 return -ENOTDIR; 2854 2855 vol_args = memdup_user(arg, sizeof(*vol_args)); 2856 if (IS_ERR(vol_args)) 2857 return PTR_ERR(vol_args); 2858 2859 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2860 namelen = strlen(vol_args->name); 2861 if (strchr(vol_args->name, '/') || 2862 strncmp(vol_args->name, "..", namelen) == 0) { 2863 err = -EINVAL; 2864 goto out; 2865 } 2866 2867 err = mnt_want_write_file(file); 2868 if (err) 2869 goto out; 2870 2871 2872 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2873 if (err == -EINTR) 2874 goto out_drop_write; 2875 dentry = lookup_one_len(vol_args->name, parent, namelen); 2876 if (IS_ERR(dentry)) { 2877 err = PTR_ERR(dentry); 2878 goto out_unlock_dir; 2879 } 2880 2881 if (d_really_is_negative(dentry)) { 2882 err = -ENOENT; 2883 goto out_dput; 2884 } 2885 2886 inode = d_inode(dentry); 2887 dest = BTRFS_I(inode)->root; 2888 if (!capable(CAP_SYS_ADMIN)) { 2889 /* 2890 * Regular user. Only allow this with a special mount 2891 * option, when the user has write+exec access to the 2892 * subvol root, and when rmdir(2) would have been 2893 * allowed. 2894 * 2895 * Note that this is _not_ check that the subvol is 2896 * empty or doesn't contain data that we wouldn't 2897 * otherwise be able to delete. 2898 * 2899 * Users who want to delete empty subvols should try 2900 * rmdir(2). 2901 */ 2902 err = -EPERM; 2903 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2904 goto out_dput; 2905 2906 /* 2907 * Do not allow deletion if the parent dir is the same 2908 * as the dir to be deleted. That means the ioctl 2909 * must be called on the dentry referencing the root 2910 * of the subvol, not a random directory contained 2911 * within it. 2912 */ 2913 err = -EINVAL; 2914 if (root == dest) 2915 goto out_dput; 2916 2917 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2918 if (err) 2919 goto out_dput; 2920 } 2921 2922 /* check if subvolume may be deleted by a user */ 2923 err = btrfs_may_delete(dir, dentry, 1); 2924 if (err) 2925 goto out_dput; 2926 2927 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2928 err = -EINVAL; 2929 goto out_dput; 2930 } 2931 2932 inode_lock(inode); 2933 err = btrfs_delete_subvolume(dir, dentry); 2934 inode_unlock(inode); 2935 if (!err) { 2936 fsnotify_rmdir(dir, dentry); 2937 d_delete(dentry); 2938 } 2939 2940 out_dput: 2941 dput(dentry); 2942 out_unlock_dir: 2943 inode_unlock(dir); 2944 out_drop_write: 2945 mnt_drop_write_file(file); 2946 out: 2947 kfree(vol_args); 2948 return err; 2949 } 2950 2951 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2952 { 2953 struct inode *inode = file_inode(file); 2954 struct btrfs_root *root = BTRFS_I(inode)->root; 2955 struct btrfs_ioctl_defrag_range_args *range; 2956 int ret; 2957 2958 ret = mnt_want_write_file(file); 2959 if (ret) 2960 return ret; 2961 2962 if (btrfs_root_readonly(root)) { 2963 ret = -EROFS; 2964 goto out; 2965 } 2966 2967 switch (inode->i_mode & S_IFMT) { 2968 case S_IFDIR: 2969 if (!capable(CAP_SYS_ADMIN)) { 2970 ret = -EPERM; 2971 goto out; 2972 } 2973 ret = btrfs_defrag_root(root); 2974 break; 2975 case S_IFREG: 2976 /* 2977 * Note that this does not check the file descriptor for write 2978 * access. This prevents defragmenting executables that are 2979 * running and allows defrag on files open in read-only mode. 2980 */ 2981 if (!capable(CAP_SYS_ADMIN) && 2982 inode_permission(inode, MAY_WRITE)) { 2983 ret = -EPERM; 2984 goto out; 2985 } 2986 2987 range = kzalloc(sizeof(*range), GFP_KERNEL); 2988 if (!range) { 2989 ret = -ENOMEM; 2990 goto out; 2991 } 2992 2993 if (argp) { 2994 if (copy_from_user(range, argp, 2995 sizeof(*range))) { 2996 ret = -EFAULT; 2997 kfree(range); 2998 goto out; 2999 } 3000 /* compression requires us to start the IO */ 3001 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3002 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 3003 range->extent_thresh = (u32)-1; 3004 } 3005 } else { 3006 /* the rest are all set to zero by kzalloc */ 3007 range->len = (u64)-1; 3008 } 3009 ret = btrfs_defrag_file(file_inode(file), file, 3010 range, BTRFS_OLDEST_GENERATION, 0); 3011 if (ret > 0) 3012 ret = 0; 3013 kfree(range); 3014 break; 3015 default: 3016 ret = -EINVAL; 3017 } 3018 out: 3019 mnt_drop_write_file(file); 3020 return ret; 3021 } 3022 3023 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3024 { 3025 struct btrfs_ioctl_vol_args *vol_args; 3026 int ret; 3027 3028 if (!capable(CAP_SYS_ADMIN)) 3029 return -EPERM; 3030 3031 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 3032 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3033 3034 vol_args = memdup_user(arg, sizeof(*vol_args)); 3035 if (IS_ERR(vol_args)) { 3036 ret = PTR_ERR(vol_args); 3037 goto out; 3038 } 3039 3040 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3041 ret = btrfs_init_new_device(fs_info, vol_args->name); 3042 3043 if (!ret) 3044 btrfs_info(fs_info, "disk added %s", vol_args->name); 3045 3046 kfree(vol_args); 3047 out: 3048 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3049 return ret; 3050 } 3051 3052 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3053 { 3054 struct inode *inode = file_inode(file); 3055 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3056 struct btrfs_ioctl_vol_args_v2 *vol_args; 3057 int ret; 3058 3059 if (!capable(CAP_SYS_ADMIN)) 3060 return -EPERM; 3061 3062 ret = mnt_want_write_file(file); 3063 if (ret) 3064 return ret; 3065 3066 vol_args = memdup_user(arg, sizeof(*vol_args)); 3067 if (IS_ERR(vol_args)) { 3068 ret = PTR_ERR(vol_args); 3069 goto err_drop; 3070 } 3071 3072 /* Check for compatibility reject unknown flags */ 3073 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) { 3074 ret = -EOPNOTSUPP; 3075 goto out; 3076 } 3077 3078 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3079 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3080 goto out; 3081 } 3082 3083 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3084 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3085 } else { 3086 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3087 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3088 } 3089 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3090 3091 if (!ret) { 3092 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3093 btrfs_info(fs_info, "device deleted: id %llu", 3094 vol_args->devid); 3095 else 3096 btrfs_info(fs_info, "device deleted: %s", 3097 vol_args->name); 3098 } 3099 out: 3100 kfree(vol_args); 3101 err_drop: 3102 mnt_drop_write_file(file); 3103 return ret; 3104 } 3105 3106 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3107 { 3108 struct inode *inode = file_inode(file); 3109 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3110 struct btrfs_ioctl_vol_args *vol_args; 3111 int ret; 3112 3113 if (!capable(CAP_SYS_ADMIN)) 3114 return -EPERM; 3115 3116 ret = mnt_want_write_file(file); 3117 if (ret) 3118 return ret; 3119 3120 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3121 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3122 goto out_drop_write; 3123 } 3124 3125 vol_args = memdup_user(arg, sizeof(*vol_args)); 3126 if (IS_ERR(vol_args)) { 3127 ret = PTR_ERR(vol_args); 3128 goto out; 3129 } 3130 3131 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3132 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3133 3134 if (!ret) 3135 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3136 kfree(vol_args); 3137 out: 3138 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3139 out_drop_write: 3140 mnt_drop_write_file(file); 3141 3142 return ret; 3143 } 3144 3145 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3146 void __user *arg) 3147 { 3148 struct btrfs_ioctl_fs_info_args *fi_args; 3149 struct btrfs_device *device; 3150 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3151 int ret = 0; 3152 3153 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 3154 if (!fi_args) 3155 return -ENOMEM; 3156 3157 rcu_read_lock(); 3158 fi_args->num_devices = fs_devices->num_devices; 3159 3160 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3161 if (device->devid > fi_args->max_id) 3162 fi_args->max_id = device->devid; 3163 } 3164 rcu_read_unlock(); 3165 3166 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3167 fi_args->nodesize = fs_info->nodesize; 3168 fi_args->sectorsize = fs_info->sectorsize; 3169 fi_args->clone_alignment = fs_info->sectorsize; 3170 3171 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3172 ret = -EFAULT; 3173 3174 kfree(fi_args); 3175 return ret; 3176 } 3177 3178 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3179 void __user *arg) 3180 { 3181 struct btrfs_ioctl_dev_info_args *di_args; 3182 struct btrfs_device *dev; 3183 int ret = 0; 3184 char *s_uuid = NULL; 3185 3186 di_args = memdup_user(arg, sizeof(*di_args)); 3187 if (IS_ERR(di_args)) 3188 return PTR_ERR(di_args); 3189 3190 if (!btrfs_is_empty_uuid(di_args->uuid)) 3191 s_uuid = di_args->uuid; 3192 3193 rcu_read_lock(); 3194 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3195 NULL, true); 3196 3197 if (!dev) { 3198 ret = -ENODEV; 3199 goto out; 3200 } 3201 3202 di_args->devid = dev->devid; 3203 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3204 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3205 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3206 if (dev->name) { 3207 strncpy(di_args->path, rcu_str_deref(dev->name), 3208 sizeof(di_args->path) - 1); 3209 di_args->path[sizeof(di_args->path) - 1] = 0; 3210 } else { 3211 di_args->path[0] = '\0'; 3212 } 3213 3214 out: 3215 rcu_read_unlock(); 3216 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3217 ret = -EFAULT; 3218 3219 kfree(di_args); 3220 return ret; 3221 } 3222 3223 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 3224 struct inode *inode2, u64 loff2, u64 len) 3225 { 3226 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3227 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3228 } 3229 3230 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 3231 struct inode *inode2, u64 loff2, u64 len) 3232 { 3233 if (inode1 < inode2) { 3234 swap(inode1, inode2); 3235 swap(loff1, loff2); 3236 } else if (inode1 == inode2 && loff2 < loff1) { 3237 swap(loff1, loff2); 3238 } 3239 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3240 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3241 } 3242 3243 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len, 3244 struct inode *dst, u64 dst_loff) 3245 { 3246 const u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3247 int ret; 3248 3249 /* 3250 * Lock destination range to serialize with concurrent readpages() and 3251 * source range to serialize with relocation. 3252 */ 3253 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 3254 ret = btrfs_clone(src, dst, loff, len, ALIGN(len, bs), dst_loff, 1); 3255 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3256 3257 return ret; 3258 } 3259 3260 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3261 3262 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3263 struct inode *dst, u64 dst_loff) 3264 { 3265 int ret; 3266 u64 i, tail_len, chunk_count; 3267 struct btrfs_root *root_dst = BTRFS_I(dst)->root; 3268 3269 spin_lock(&root_dst->root_item_lock); 3270 if (root_dst->send_in_progress) { 3271 btrfs_warn_rl(root_dst->fs_info, 3272 "cannot deduplicate to root %llu while send operations are using it (%d in progress)", 3273 root_dst->root_key.objectid, 3274 root_dst->send_in_progress); 3275 spin_unlock(&root_dst->root_item_lock); 3276 return -EAGAIN; 3277 } 3278 root_dst->dedupe_in_progress++; 3279 spin_unlock(&root_dst->root_item_lock); 3280 3281 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 3282 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 3283 3284 for (i = 0; i < chunk_count; i++) { 3285 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 3286 dst, dst_loff); 3287 if (ret) 3288 goto out; 3289 3290 loff += BTRFS_MAX_DEDUPE_LEN; 3291 dst_loff += BTRFS_MAX_DEDUPE_LEN; 3292 } 3293 3294 if (tail_len > 0) 3295 ret = btrfs_extent_same_range(src, loff, tail_len, dst, 3296 dst_loff); 3297 out: 3298 spin_lock(&root_dst->root_item_lock); 3299 root_dst->dedupe_in_progress--; 3300 spin_unlock(&root_dst->root_item_lock); 3301 3302 return ret; 3303 } 3304 3305 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3306 struct inode *inode, 3307 u64 endoff, 3308 const u64 destoff, 3309 const u64 olen, 3310 int no_time_update) 3311 { 3312 struct btrfs_root *root = BTRFS_I(inode)->root; 3313 int ret; 3314 3315 inode_inc_iversion(inode); 3316 if (!no_time_update) 3317 inode->i_mtime = inode->i_ctime = current_time(inode); 3318 /* 3319 * We round up to the block size at eof when determining which 3320 * extents to clone above, but shouldn't round up the file size. 3321 */ 3322 if (endoff > destoff + olen) 3323 endoff = destoff + olen; 3324 if (endoff > inode->i_size) 3325 btrfs_i_size_write(BTRFS_I(inode), endoff); 3326 3327 ret = btrfs_update_inode(trans, root, inode); 3328 if (ret) { 3329 btrfs_abort_transaction(trans, ret); 3330 btrfs_end_transaction(trans); 3331 goto out; 3332 } 3333 ret = btrfs_end_transaction(trans); 3334 out: 3335 return ret; 3336 } 3337 3338 /* 3339 * Make sure we do not end up inserting an inline extent into a file that has 3340 * already other (non-inline) extents. If a file has an inline extent it can 3341 * not have any other extents and the (single) inline extent must start at the 3342 * file offset 0. Failing to respect these rules will lead to file corruption, 3343 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3344 * 3345 * We can have extents that have been already written to disk or we can have 3346 * dirty ranges still in delalloc, in which case the extent maps and items are 3347 * created only when we run delalloc, and the delalloc ranges might fall outside 3348 * the range we are currently locking in the inode's io tree. So we check the 3349 * inode's i_size because of that (i_size updates are done while holding the 3350 * i_mutex, which we are holding here). 3351 * We also check to see if the inode has a size not greater than "datal" but has 3352 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3353 * protected against such concurrent fallocate calls by the i_mutex). 3354 * 3355 * If the file has no extents but a size greater than datal, do not allow the 3356 * copy because we would need turn the inline extent into a non-inline one (even 3357 * with NO_HOLES enabled). If we find our destination inode only has one inline 3358 * extent, just overwrite it with the source inline extent if its size is less 3359 * than the source extent's size, or we could copy the source inline extent's 3360 * data into the destination inode's inline extent if the later is greater then 3361 * the former. 3362 */ 3363 static int clone_copy_inline_extent(struct inode *dst, 3364 struct btrfs_trans_handle *trans, 3365 struct btrfs_path *path, 3366 struct btrfs_key *new_key, 3367 const u64 drop_start, 3368 const u64 datal, 3369 const u64 skip, 3370 const u64 size, 3371 char *inline_data) 3372 { 3373 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3374 struct btrfs_root *root = BTRFS_I(dst)->root; 3375 const u64 aligned_end = ALIGN(new_key->offset + datal, 3376 fs_info->sectorsize); 3377 int ret; 3378 struct btrfs_key key; 3379 3380 if (new_key->offset > 0) 3381 return -EOPNOTSUPP; 3382 3383 key.objectid = btrfs_ino(BTRFS_I(dst)); 3384 key.type = BTRFS_EXTENT_DATA_KEY; 3385 key.offset = 0; 3386 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3387 if (ret < 0) { 3388 return ret; 3389 } else if (ret > 0) { 3390 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3391 ret = btrfs_next_leaf(root, path); 3392 if (ret < 0) 3393 return ret; 3394 else if (ret > 0) 3395 goto copy_inline_extent; 3396 } 3397 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3398 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3399 key.type == BTRFS_EXTENT_DATA_KEY) { 3400 ASSERT(key.offset > 0); 3401 return -EOPNOTSUPP; 3402 } 3403 } else if (i_size_read(dst) <= datal) { 3404 struct btrfs_file_extent_item *ei; 3405 u64 ext_len; 3406 3407 /* 3408 * If the file size is <= datal, make sure there are no other 3409 * extents following (can happen do to an fallocate call with 3410 * the flag FALLOC_FL_KEEP_SIZE). 3411 */ 3412 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3413 struct btrfs_file_extent_item); 3414 /* 3415 * If it's an inline extent, it can not have other extents 3416 * following it. 3417 */ 3418 if (btrfs_file_extent_type(path->nodes[0], ei) == 3419 BTRFS_FILE_EXTENT_INLINE) 3420 goto copy_inline_extent; 3421 3422 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3423 if (ext_len > aligned_end) 3424 return -EOPNOTSUPP; 3425 3426 ret = btrfs_next_item(root, path); 3427 if (ret < 0) { 3428 return ret; 3429 } else if (ret == 0) { 3430 btrfs_item_key_to_cpu(path->nodes[0], &key, 3431 path->slots[0]); 3432 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3433 key.type == BTRFS_EXTENT_DATA_KEY) 3434 return -EOPNOTSUPP; 3435 } 3436 } 3437 3438 copy_inline_extent: 3439 /* 3440 * We have no extent items, or we have an extent at offset 0 which may 3441 * or may not be inlined. All these cases are dealt the same way. 3442 */ 3443 if (i_size_read(dst) > datal) { 3444 /* 3445 * If the destination inode has an inline extent... 3446 * This would require copying the data from the source inline 3447 * extent into the beginning of the destination's inline extent. 3448 * But this is really complex, both extents can be compressed 3449 * or just one of them, which would require decompressing and 3450 * re-compressing data (which could increase the new compressed 3451 * size, not allowing the compressed data to fit anymore in an 3452 * inline extent). 3453 * So just don't support this case for now (it should be rare, 3454 * we are not really saving space when cloning inline extents). 3455 */ 3456 return -EOPNOTSUPP; 3457 } 3458 3459 btrfs_release_path(path); 3460 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3461 if (ret) 3462 return ret; 3463 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3464 if (ret) 3465 return ret; 3466 3467 if (skip) { 3468 const u32 start = btrfs_file_extent_calc_inline_size(0); 3469 3470 memmove(inline_data + start, inline_data + start + skip, datal); 3471 } 3472 3473 write_extent_buffer(path->nodes[0], inline_data, 3474 btrfs_item_ptr_offset(path->nodes[0], 3475 path->slots[0]), 3476 size); 3477 inode_add_bytes(dst, datal); 3478 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags); 3479 3480 return 0; 3481 } 3482 3483 /** 3484 * btrfs_clone() - clone a range from inode file to another 3485 * 3486 * @src: Inode to clone from 3487 * @inode: Inode to clone to 3488 * @off: Offset within source to start clone from 3489 * @olen: Original length, passed by user, of range to clone 3490 * @olen_aligned: Block-aligned value of olen 3491 * @destoff: Offset within @inode to start clone 3492 * @no_time_update: Whether to update mtime/ctime on the target inode 3493 */ 3494 static int btrfs_clone(struct inode *src, struct inode *inode, 3495 const u64 off, const u64 olen, const u64 olen_aligned, 3496 const u64 destoff, int no_time_update) 3497 { 3498 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3499 struct btrfs_root *root = BTRFS_I(inode)->root; 3500 struct btrfs_path *path = NULL; 3501 struct extent_buffer *leaf; 3502 struct btrfs_trans_handle *trans; 3503 char *buf = NULL; 3504 struct btrfs_key key; 3505 u32 nritems; 3506 int slot; 3507 int ret; 3508 const u64 len = olen_aligned; 3509 u64 last_dest_end = destoff; 3510 3511 ret = -ENOMEM; 3512 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 3513 if (!buf) 3514 return ret; 3515 3516 path = btrfs_alloc_path(); 3517 if (!path) { 3518 kvfree(buf); 3519 return ret; 3520 } 3521 3522 path->reada = READA_FORWARD; 3523 /* clone data */ 3524 key.objectid = btrfs_ino(BTRFS_I(src)); 3525 key.type = BTRFS_EXTENT_DATA_KEY; 3526 key.offset = off; 3527 3528 while (1) { 3529 u64 next_key_min_offset = key.offset + 1; 3530 struct btrfs_file_extent_item *extent; 3531 int type; 3532 u32 size; 3533 struct btrfs_key new_key; 3534 u64 disko = 0, diskl = 0; 3535 u64 datao = 0, datal = 0; 3536 u8 comp; 3537 u64 drop_start; 3538 3539 /* 3540 * note the key will change type as we walk through the 3541 * tree. 3542 */ 3543 path->leave_spinning = 1; 3544 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3545 0, 0); 3546 if (ret < 0) 3547 goto out; 3548 /* 3549 * First search, if no extent item that starts at offset off was 3550 * found but the previous item is an extent item, it's possible 3551 * it might overlap our target range, therefore process it. 3552 */ 3553 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3554 btrfs_item_key_to_cpu(path->nodes[0], &key, 3555 path->slots[0] - 1); 3556 if (key.type == BTRFS_EXTENT_DATA_KEY) 3557 path->slots[0]--; 3558 } 3559 3560 nritems = btrfs_header_nritems(path->nodes[0]); 3561 process_slot: 3562 if (path->slots[0] >= nritems) { 3563 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3564 if (ret < 0) 3565 goto out; 3566 if (ret > 0) 3567 break; 3568 nritems = btrfs_header_nritems(path->nodes[0]); 3569 } 3570 leaf = path->nodes[0]; 3571 slot = path->slots[0]; 3572 3573 btrfs_item_key_to_cpu(leaf, &key, slot); 3574 if (key.type > BTRFS_EXTENT_DATA_KEY || 3575 key.objectid != btrfs_ino(BTRFS_I(src))) 3576 break; 3577 3578 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 3579 3580 extent = btrfs_item_ptr(leaf, slot, 3581 struct btrfs_file_extent_item); 3582 comp = btrfs_file_extent_compression(leaf, extent); 3583 type = btrfs_file_extent_type(leaf, extent); 3584 if (type == BTRFS_FILE_EXTENT_REG || 3585 type == BTRFS_FILE_EXTENT_PREALLOC) { 3586 disko = btrfs_file_extent_disk_bytenr(leaf, extent); 3587 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent); 3588 datao = btrfs_file_extent_offset(leaf, extent); 3589 datal = btrfs_file_extent_num_bytes(leaf, extent); 3590 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3591 /* Take upper bound, may be compressed */ 3592 datal = btrfs_file_extent_ram_bytes(leaf, extent); 3593 } 3594 3595 /* 3596 * The first search might have left us at an extent item that 3597 * ends before our target range's start, can happen if we have 3598 * holes and NO_HOLES feature enabled. 3599 */ 3600 if (key.offset + datal <= off) { 3601 path->slots[0]++; 3602 goto process_slot; 3603 } else if (key.offset >= off + len) { 3604 break; 3605 } 3606 next_key_min_offset = key.offset + datal; 3607 size = btrfs_item_size_nr(leaf, slot); 3608 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot), 3609 size); 3610 3611 btrfs_release_path(path); 3612 path->leave_spinning = 0; 3613 3614 memcpy(&new_key, &key, sizeof(new_key)); 3615 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 3616 if (off <= key.offset) 3617 new_key.offset = key.offset + destoff - off; 3618 else 3619 new_key.offset = destoff; 3620 3621 /* 3622 * Deal with a hole that doesn't have an extent item that 3623 * represents it (NO_HOLES feature enabled). 3624 * This hole is either in the middle of the cloning range or at 3625 * the beginning (fully overlaps it or partially overlaps it). 3626 */ 3627 if (new_key.offset != last_dest_end) 3628 drop_start = last_dest_end; 3629 else 3630 drop_start = new_key.offset; 3631 3632 if (type == BTRFS_FILE_EXTENT_REG || 3633 type == BTRFS_FILE_EXTENT_PREALLOC) { 3634 struct btrfs_clone_extent_info clone_info; 3635 3636 /* 3637 * a | --- range to clone ---| b 3638 * | ------------- extent ------------- | 3639 */ 3640 3641 /* Subtract range b */ 3642 if (key.offset + datal > off + len) 3643 datal = off + len - key.offset; 3644 3645 /* Subtract range a */ 3646 if (off > key.offset) { 3647 datao += off - key.offset; 3648 datal -= off - key.offset; 3649 } 3650 3651 clone_info.disk_offset = disko; 3652 clone_info.disk_len = diskl; 3653 clone_info.data_offset = datao; 3654 clone_info.data_len = datal; 3655 clone_info.file_offset = new_key.offset; 3656 clone_info.extent_buf = buf; 3657 clone_info.item_size = size; 3658 ret = btrfs_punch_hole_range(inode, path, 3659 drop_start, 3660 new_key.offset + datal - 1, 3661 &clone_info, &trans); 3662 if (ret) 3663 goto out; 3664 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3665 u64 skip = 0; 3666 u64 trim = 0; 3667 3668 if (off > key.offset) { 3669 skip = off - key.offset; 3670 new_key.offset += skip; 3671 } 3672 3673 if (key.offset + datal > off + len) 3674 trim = key.offset + datal - (off + len); 3675 3676 if (comp && (skip || trim)) { 3677 ret = -EINVAL; 3678 goto out; 3679 } 3680 size -= skip + trim; 3681 datal -= skip + trim; 3682 3683 /* 3684 * If our extent is inline, we know we will drop or 3685 * adjust at most 1 extent item in the destination root. 3686 * 3687 * 1 - adjusting old extent (we may have to split it) 3688 * 1 - add new extent 3689 * 1 - inode update 3690 */ 3691 trans = btrfs_start_transaction(root, 3); 3692 if (IS_ERR(trans)) { 3693 ret = PTR_ERR(trans); 3694 goto out; 3695 } 3696 3697 ret = clone_copy_inline_extent(inode, trans, path, 3698 &new_key, drop_start, 3699 datal, skip, size, buf); 3700 if (ret) { 3701 if (ret != -EOPNOTSUPP) 3702 btrfs_abort_transaction(trans, ret); 3703 btrfs_end_transaction(trans); 3704 goto out; 3705 } 3706 } 3707 3708 btrfs_release_path(path); 3709 3710 last_dest_end = ALIGN(new_key.offset + datal, 3711 fs_info->sectorsize); 3712 ret = clone_finish_inode_update(trans, inode, last_dest_end, 3713 destoff, olen, no_time_update); 3714 if (ret) 3715 goto out; 3716 if (new_key.offset + datal >= destoff + len) 3717 break; 3718 3719 btrfs_release_path(path); 3720 key.offset = next_key_min_offset; 3721 3722 if (fatal_signal_pending(current)) { 3723 ret = -EINTR; 3724 goto out; 3725 } 3726 } 3727 ret = 0; 3728 3729 if (last_dest_end < destoff + len) { 3730 /* 3731 * We have an implicit hole that fully or partially overlaps our 3732 * cloning range at its end. This means that we either have the 3733 * NO_HOLES feature enabled or the implicit hole happened due to 3734 * mixing buffered and direct IO writes against this file. 3735 */ 3736 btrfs_release_path(path); 3737 path->leave_spinning = 0; 3738 3739 ret = btrfs_punch_hole_range(inode, path, 3740 last_dest_end, destoff + len - 1, 3741 NULL, &trans); 3742 if (ret) 3743 goto out; 3744 3745 ret = clone_finish_inode_update(trans, inode, destoff + len, 3746 destoff, olen, no_time_update); 3747 } 3748 3749 out: 3750 btrfs_free_path(path); 3751 kvfree(buf); 3752 return ret; 3753 } 3754 3755 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3756 u64 off, u64 olen, u64 destoff) 3757 { 3758 struct inode *inode = file_inode(file); 3759 struct inode *src = file_inode(file_src); 3760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3761 int ret; 3762 u64 len = olen; 3763 u64 bs = fs_info->sb->s_blocksize; 3764 3765 /* 3766 * TODO: 3767 * - split compressed inline extents. annoying: we need to 3768 * decompress into destination's address_space (the file offset 3769 * may change, so source mapping won't do), then recompress (or 3770 * otherwise reinsert) a subrange. 3771 * 3772 * - split destination inode's inline extents. The inline extents can 3773 * be either compressed or non-compressed. 3774 */ 3775 3776 /* 3777 * VFS's generic_remap_file_range_prep() protects us from cloning the 3778 * eof block into the middle of a file, which would result in corruption 3779 * if the file size is not blocksize aligned. So we don't need to check 3780 * for that case here. 3781 */ 3782 if (off + len == src->i_size) 3783 len = ALIGN(src->i_size, bs) - off; 3784 3785 if (destoff > inode->i_size) { 3786 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); 3787 3788 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3789 if (ret) 3790 return ret; 3791 /* 3792 * We may have truncated the last block if the inode's size is 3793 * not sector size aligned, so we need to wait for writeback to 3794 * complete before proceeding further, otherwise we can race 3795 * with cloning and attempt to increment a reference to an 3796 * extent that no longer exists (writeback completed right after 3797 * we found the previous extent covering eof and before we 3798 * attempted to increment its reference count). 3799 */ 3800 ret = btrfs_wait_ordered_range(inode, wb_start, 3801 destoff - wb_start); 3802 if (ret) 3803 return ret; 3804 } 3805 3806 /* 3807 * Lock destination range to serialize with concurrent readpages() and 3808 * source range to serialize with relocation. 3809 */ 3810 btrfs_double_extent_lock(src, off, inode, destoff, len); 3811 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3812 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3813 /* 3814 * Truncate page cache pages so that future reads will see the cloned 3815 * data immediately and not the previous data. 3816 */ 3817 truncate_inode_pages_range(&inode->i_data, 3818 round_down(destoff, PAGE_SIZE), 3819 round_up(destoff + len, PAGE_SIZE) - 1); 3820 3821 return ret; 3822 } 3823 3824 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, 3825 struct file *file_out, loff_t pos_out, 3826 loff_t *len, unsigned int remap_flags) 3827 { 3828 struct inode *inode_in = file_inode(file_in); 3829 struct inode *inode_out = file_inode(file_out); 3830 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize; 3831 bool same_inode = inode_out == inode_in; 3832 u64 wb_len; 3833 int ret; 3834 3835 if (!(remap_flags & REMAP_FILE_DEDUP)) { 3836 struct btrfs_root *root_out = BTRFS_I(inode_out)->root; 3837 3838 if (btrfs_root_readonly(root_out)) 3839 return -EROFS; 3840 3841 if (file_in->f_path.mnt != file_out->f_path.mnt || 3842 inode_in->i_sb != inode_out->i_sb) 3843 return -EXDEV; 3844 } 3845 3846 /* don't make the dst file partly checksummed */ 3847 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) != 3848 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) { 3849 return -EINVAL; 3850 } 3851 3852 /* 3853 * Now that the inodes are locked, we need to start writeback ourselves 3854 * and can not rely on the writeback from the VFS's generic helper 3855 * generic_remap_file_range_prep() because: 3856 * 3857 * 1) For compression we must call filemap_fdatawrite_range() range 3858 * twice (btrfs_fdatawrite_range() does it for us), and the generic 3859 * helper only calls it once; 3860 * 3861 * 2) filemap_fdatawrite_range(), called by the generic helper only 3862 * waits for the writeback to complete, i.e. for IO to be done, and 3863 * not for the ordered extents to complete. We need to wait for them 3864 * to complete so that new file extent items are in the fs tree. 3865 */ 3866 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) 3867 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs); 3868 else 3869 wb_len = ALIGN(*len, bs); 3870 3871 /* 3872 * Since we don't lock ranges, wait for ongoing lockless dio writes (as 3873 * any in progress could create its ordered extents after we wait for 3874 * existing ordered extents below). 3875 */ 3876 inode_dio_wait(inode_in); 3877 if (!same_inode) 3878 inode_dio_wait(inode_out); 3879 3880 /* 3881 * Workaround to make sure NOCOW buffered write reach disk as NOCOW. 3882 * 3883 * Btrfs' back references do not have a block level granularity, they 3884 * work at the whole extent level. 3885 * NOCOW buffered write without data space reserved may not be able 3886 * to fall back to CoW due to lack of data space, thus could cause 3887 * data loss. 3888 * 3889 * Here we take a shortcut by flushing the whole inode, so that all 3890 * nocow write should reach disk as nocow before we increase the 3891 * reference of the extent. We could do better by only flushing NOCOW 3892 * data, but that needs extra accounting. 3893 * 3894 * Also we don't need to check ASYNC_EXTENT, as async extent will be 3895 * CoWed anyway, not affecting nocow part. 3896 */ 3897 ret = filemap_flush(inode_in->i_mapping); 3898 if (ret < 0) 3899 return ret; 3900 3901 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), 3902 wb_len); 3903 if (ret < 0) 3904 return ret; 3905 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), 3906 wb_len); 3907 if (ret < 0) 3908 return ret; 3909 3910 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 3911 len, remap_flags); 3912 } 3913 3914 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, 3915 struct file *dst_file, loff_t destoff, loff_t len, 3916 unsigned int remap_flags) 3917 { 3918 struct inode *src_inode = file_inode(src_file); 3919 struct inode *dst_inode = file_inode(dst_file); 3920 bool same_inode = dst_inode == src_inode; 3921 int ret; 3922 3923 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 3924 return -EINVAL; 3925 3926 if (same_inode) 3927 inode_lock(src_inode); 3928 else 3929 lock_two_nondirectories(src_inode, dst_inode); 3930 3931 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, 3932 &len, remap_flags); 3933 if (ret < 0 || len == 0) 3934 goto out_unlock; 3935 3936 if (remap_flags & REMAP_FILE_DEDUP) 3937 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff); 3938 else 3939 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); 3940 3941 out_unlock: 3942 if (same_inode) 3943 inode_unlock(src_inode); 3944 else 3945 unlock_two_nondirectories(src_inode, dst_inode); 3946 3947 return ret < 0 ? ret : len; 3948 } 3949 3950 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3951 { 3952 struct inode *inode = file_inode(file); 3953 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3954 struct btrfs_root *root = BTRFS_I(inode)->root; 3955 struct btrfs_root *new_root; 3956 struct btrfs_dir_item *di; 3957 struct btrfs_trans_handle *trans; 3958 struct btrfs_path *path; 3959 struct btrfs_key location; 3960 struct btrfs_disk_key disk_key; 3961 u64 objectid = 0; 3962 u64 dir_id; 3963 int ret; 3964 3965 if (!capable(CAP_SYS_ADMIN)) 3966 return -EPERM; 3967 3968 ret = mnt_want_write_file(file); 3969 if (ret) 3970 return ret; 3971 3972 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3973 ret = -EFAULT; 3974 goto out; 3975 } 3976 3977 if (!objectid) 3978 objectid = BTRFS_FS_TREE_OBJECTID; 3979 3980 location.objectid = objectid; 3981 location.type = BTRFS_ROOT_ITEM_KEY; 3982 location.offset = (u64)-1; 3983 3984 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 3985 if (IS_ERR(new_root)) { 3986 ret = PTR_ERR(new_root); 3987 goto out; 3988 } 3989 if (!is_fstree(new_root->root_key.objectid)) { 3990 ret = -ENOENT; 3991 goto out; 3992 } 3993 3994 path = btrfs_alloc_path(); 3995 if (!path) { 3996 ret = -ENOMEM; 3997 goto out; 3998 } 3999 path->leave_spinning = 1; 4000 4001 trans = btrfs_start_transaction(root, 1); 4002 if (IS_ERR(trans)) { 4003 btrfs_free_path(path); 4004 ret = PTR_ERR(trans); 4005 goto out; 4006 } 4007 4008 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4009 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4010 dir_id, "default", 7, 1); 4011 if (IS_ERR_OR_NULL(di)) { 4012 btrfs_free_path(path); 4013 btrfs_end_transaction(trans); 4014 btrfs_err(fs_info, 4015 "Umm, you don't have the default diritem, this isn't going to work"); 4016 ret = -ENOENT; 4017 goto out; 4018 } 4019 4020 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4021 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4022 btrfs_mark_buffer_dirty(path->nodes[0]); 4023 btrfs_free_path(path); 4024 4025 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4026 btrfs_end_transaction(trans); 4027 out: 4028 mnt_drop_write_file(file); 4029 return ret; 4030 } 4031 4032 static void get_block_group_info(struct list_head *groups_list, 4033 struct btrfs_ioctl_space_info *space) 4034 { 4035 struct btrfs_block_group *block_group; 4036 4037 space->total_bytes = 0; 4038 space->used_bytes = 0; 4039 space->flags = 0; 4040 list_for_each_entry(block_group, groups_list, list) { 4041 space->flags = block_group->flags; 4042 space->total_bytes += block_group->length; 4043 space->used_bytes += block_group->used; 4044 } 4045 } 4046 4047 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4048 void __user *arg) 4049 { 4050 struct btrfs_ioctl_space_args space_args; 4051 struct btrfs_ioctl_space_info space; 4052 struct btrfs_ioctl_space_info *dest; 4053 struct btrfs_ioctl_space_info *dest_orig; 4054 struct btrfs_ioctl_space_info __user *user_dest; 4055 struct btrfs_space_info *info; 4056 static const u64 types[] = { 4057 BTRFS_BLOCK_GROUP_DATA, 4058 BTRFS_BLOCK_GROUP_SYSTEM, 4059 BTRFS_BLOCK_GROUP_METADATA, 4060 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 4061 }; 4062 int num_types = 4; 4063 int alloc_size; 4064 int ret = 0; 4065 u64 slot_count = 0; 4066 int i, c; 4067 4068 if (copy_from_user(&space_args, 4069 (struct btrfs_ioctl_space_args __user *)arg, 4070 sizeof(space_args))) 4071 return -EFAULT; 4072 4073 for (i = 0; i < num_types; i++) { 4074 struct btrfs_space_info *tmp; 4075 4076 info = NULL; 4077 rcu_read_lock(); 4078 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4079 list) { 4080 if (tmp->flags == types[i]) { 4081 info = tmp; 4082 break; 4083 } 4084 } 4085 rcu_read_unlock(); 4086 4087 if (!info) 4088 continue; 4089 4090 down_read(&info->groups_sem); 4091 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4092 if (!list_empty(&info->block_groups[c])) 4093 slot_count++; 4094 } 4095 up_read(&info->groups_sem); 4096 } 4097 4098 /* 4099 * Global block reserve, exported as a space_info 4100 */ 4101 slot_count++; 4102 4103 /* space_slots == 0 means they are asking for a count */ 4104 if (space_args.space_slots == 0) { 4105 space_args.total_spaces = slot_count; 4106 goto out; 4107 } 4108 4109 slot_count = min_t(u64, space_args.space_slots, slot_count); 4110 4111 alloc_size = sizeof(*dest) * slot_count; 4112 4113 /* we generally have at most 6 or so space infos, one for each raid 4114 * level. So, a whole page should be more than enough for everyone 4115 */ 4116 if (alloc_size > PAGE_SIZE) 4117 return -ENOMEM; 4118 4119 space_args.total_spaces = 0; 4120 dest = kmalloc(alloc_size, GFP_KERNEL); 4121 if (!dest) 4122 return -ENOMEM; 4123 dest_orig = dest; 4124 4125 /* now we have a buffer to copy into */ 4126 for (i = 0; i < num_types; i++) { 4127 struct btrfs_space_info *tmp; 4128 4129 if (!slot_count) 4130 break; 4131 4132 info = NULL; 4133 rcu_read_lock(); 4134 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4135 list) { 4136 if (tmp->flags == types[i]) { 4137 info = tmp; 4138 break; 4139 } 4140 } 4141 rcu_read_unlock(); 4142 4143 if (!info) 4144 continue; 4145 down_read(&info->groups_sem); 4146 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4147 if (!list_empty(&info->block_groups[c])) { 4148 get_block_group_info(&info->block_groups[c], 4149 &space); 4150 memcpy(dest, &space, sizeof(space)); 4151 dest++; 4152 space_args.total_spaces++; 4153 slot_count--; 4154 } 4155 if (!slot_count) 4156 break; 4157 } 4158 up_read(&info->groups_sem); 4159 } 4160 4161 /* 4162 * Add global block reserve 4163 */ 4164 if (slot_count) { 4165 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4166 4167 spin_lock(&block_rsv->lock); 4168 space.total_bytes = block_rsv->size; 4169 space.used_bytes = block_rsv->size - block_rsv->reserved; 4170 spin_unlock(&block_rsv->lock); 4171 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4172 memcpy(dest, &space, sizeof(space)); 4173 space_args.total_spaces++; 4174 } 4175 4176 user_dest = (struct btrfs_ioctl_space_info __user *) 4177 (arg + sizeof(struct btrfs_ioctl_space_args)); 4178 4179 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4180 ret = -EFAULT; 4181 4182 kfree(dest_orig); 4183 out: 4184 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4185 ret = -EFAULT; 4186 4187 return ret; 4188 } 4189 4190 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4191 void __user *argp) 4192 { 4193 struct btrfs_trans_handle *trans; 4194 u64 transid; 4195 int ret; 4196 4197 trans = btrfs_attach_transaction_barrier(root); 4198 if (IS_ERR(trans)) { 4199 if (PTR_ERR(trans) != -ENOENT) 4200 return PTR_ERR(trans); 4201 4202 /* No running transaction, don't bother */ 4203 transid = root->fs_info->last_trans_committed; 4204 goto out; 4205 } 4206 transid = trans->transid; 4207 ret = btrfs_commit_transaction_async(trans, 0); 4208 if (ret) { 4209 btrfs_end_transaction(trans); 4210 return ret; 4211 } 4212 out: 4213 if (argp) 4214 if (copy_to_user(argp, &transid, sizeof(transid))) 4215 return -EFAULT; 4216 return 0; 4217 } 4218 4219 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4220 void __user *argp) 4221 { 4222 u64 transid; 4223 4224 if (argp) { 4225 if (copy_from_user(&transid, argp, sizeof(transid))) 4226 return -EFAULT; 4227 } else { 4228 transid = 0; /* current trans */ 4229 } 4230 return btrfs_wait_for_commit(fs_info, transid); 4231 } 4232 4233 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4234 { 4235 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4236 struct btrfs_ioctl_scrub_args *sa; 4237 int ret; 4238 4239 if (!capable(CAP_SYS_ADMIN)) 4240 return -EPERM; 4241 4242 sa = memdup_user(arg, sizeof(*sa)); 4243 if (IS_ERR(sa)) 4244 return PTR_ERR(sa); 4245 4246 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4247 ret = mnt_want_write_file(file); 4248 if (ret) 4249 goto out; 4250 } 4251 4252 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4253 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4254 0); 4255 4256 /* 4257 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 4258 * error. This is important as it allows user space to know how much 4259 * progress scrub has done. For example, if scrub is canceled we get 4260 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 4261 * space. Later user space can inspect the progress from the structure 4262 * btrfs_ioctl_scrub_args and resume scrub from where it left off 4263 * previously (btrfs-progs does this). 4264 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 4265 * then return -EFAULT to signal the structure was not copied or it may 4266 * be corrupt and unreliable due to a partial copy. 4267 */ 4268 if (copy_to_user(arg, sa, sizeof(*sa))) 4269 ret = -EFAULT; 4270 4271 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4272 mnt_drop_write_file(file); 4273 out: 4274 kfree(sa); 4275 return ret; 4276 } 4277 4278 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4279 { 4280 if (!capable(CAP_SYS_ADMIN)) 4281 return -EPERM; 4282 4283 return btrfs_scrub_cancel(fs_info); 4284 } 4285 4286 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4287 void __user *arg) 4288 { 4289 struct btrfs_ioctl_scrub_args *sa; 4290 int ret; 4291 4292 if (!capable(CAP_SYS_ADMIN)) 4293 return -EPERM; 4294 4295 sa = memdup_user(arg, sizeof(*sa)); 4296 if (IS_ERR(sa)) 4297 return PTR_ERR(sa); 4298 4299 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4300 4301 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4302 ret = -EFAULT; 4303 4304 kfree(sa); 4305 return ret; 4306 } 4307 4308 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4309 void __user *arg) 4310 { 4311 struct btrfs_ioctl_get_dev_stats *sa; 4312 int ret; 4313 4314 sa = memdup_user(arg, sizeof(*sa)); 4315 if (IS_ERR(sa)) 4316 return PTR_ERR(sa); 4317 4318 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4319 kfree(sa); 4320 return -EPERM; 4321 } 4322 4323 ret = btrfs_get_dev_stats(fs_info, sa); 4324 4325 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4326 ret = -EFAULT; 4327 4328 kfree(sa); 4329 return ret; 4330 } 4331 4332 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4333 void __user *arg) 4334 { 4335 struct btrfs_ioctl_dev_replace_args *p; 4336 int ret; 4337 4338 if (!capable(CAP_SYS_ADMIN)) 4339 return -EPERM; 4340 4341 p = memdup_user(arg, sizeof(*p)); 4342 if (IS_ERR(p)) 4343 return PTR_ERR(p); 4344 4345 switch (p->cmd) { 4346 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4347 if (sb_rdonly(fs_info->sb)) { 4348 ret = -EROFS; 4349 goto out; 4350 } 4351 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4352 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4353 } else { 4354 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4355 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4356 } 4357 break; 4358 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4359 btrfs_dev_replace_status(fs_info, p); 4360 ret = 0; 4361 break; 4362 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4363 p->result = btrfs_dev_replace_cancel(fs_info); 4364 ret = 0; 4365 break; 4366 default: 4367 ret = -EINVAL; 4368 break; 4369 } 4370 4371 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 4372 ret = -EFAULT; 4373 out: 4374 kfree(p); 4375 return ret; 4376 } 4377 4378 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4379 { 4380 int ret = 0; 4381 int i; 4382 u64 rel_ptr; 4383 int size; 4384 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4385 struct inode_fs_paths *ipath = NULL; 4386 struct btrfs_path *path; 4387 4388 if (!capable(CAP_DAC_READ_SEARCH)) 4389 return -EPERM; 4390 4391 path = btrfs_alloc_path(); 4392 if (!path) { 4393 ret = -ENOMEM; 4394 goto out; 4395 } 4396 4397 ipa = memdup_user(arg, sizeof(*ipa)); 4398 if (IS_ERR(ipa)) { 4399 ret = PTR_ERR(ipa); 4400 ipa = NULL; 4401 goto out; 4402 } 4403 4404 size = min_t(u32, ipa->size, 4096); 4405 ipath = init_ipath(size, root, path); 4406 if (IS_ERR(ipath)) { 4407 ret = PTR_ERR(ipath); 4408 ipath = NULL; 4409 goto out; 4410 } 4411 4412 ret = paths_from_inode(ipa->inum, ipath); 4413 if (ret < 0) 4414 goto out; 4415 4416 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4417 rel_ptr = ipath->fspath->val[i] - 4418 (u64)(unsigned long)ipath->fspath->val; 4419 ipath->fspath->val[i] = rel_ptr; 4420 } 4421 4422 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4423 ipath->fspath, size); 4424 if (ret) { 4425 ret = -EFAULT; 4426 goto out; 4427 } 4428 4429 out: 4430 btrfs_free_path(path); 4431 free_ipath(ipath); 4432 kfree(ipa); 4433 4434 return ret; 4435 } 4436 4437 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4438 { 4439 struct btrfs_data_container *inodes = ctx; 4440 const size_t c = 3 * sizeof(u64); 4441 4442 if (inodes->bytes_left >= c) { 4443 inodes->bytes_left -= c; 4444 inodes->val[inodes->elem_cnt] = inum; 4445 inodes->val[inodes->elem_cnt + 1] = offset; 4446 inodes->val[inodes->elem_cnt + 2] = root; 4447 inodes->elem_cnt += 3; 4448 } else { 4449 inodes->bytes_missing += c - inodes->bytes_left; 4450 inodes->bytes_left = 0; 4451 inodes->elem_missed += 3; 4452 } 4453 4454 return 0; 4455 } 4456 4457 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4458 void __user *arg, int version) 4459 { 4460 int ret = 0; 4461 int size; 4462 struct btrfs_ioctl_logical_ino_args *loi; 4463 struct btrfs_data_container *inodes = NULL; 4464 struct btrfs_path *path = NULL; 4465 bool ignore_offset; 4466 4467 if (!capable(CAP_SYS_ADMIN)) 4468 return -EPERM; 4469 4470 loi = memdup_user(arg, sizeof(*loi)); 4471 if (IS_ERR(loi)) 4472 return PTR_ERR(loi); 4473 4474 if (version == 1) { 4475 ignore_offset = false; 4476 size = min_t(u32, loi->size, SZ_64K); 4477 } else { 4478 /* All reserved bits must be 0 for now */ 4479 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4480 ret = -EINVAL; 4481 goto out_loi; 4482 } 4483 /* Only accept flags we have defined so far */ 4484 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4485 ret = -EINVAL; 4486 goto out_loi; 4487 } 4488 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4489 size = min_t(u32, loi->size, SZ_16M); 4490 } 4491 4492 path = btrfs_alloc_path(); 4493 if (!path) { 4494 ret = -ENOMEM; 4495 goto out; 4496 } 4497 4498 inodes = init_data_container(size); 4499 if (IS_ERR(inodes)) { 4500 ret = PTR_ERR(inodes); 4501 inodes = NULL; 4502 goto out; 4503 } 4504 4505 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4506 build_ino_list, inodes, ignore_offset); 4507 if (ret == -EINVAL) 4508 ret = -ENOENT; 4509 if (ret < 0) 4510 goto out; 4511 4512 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4513 size); 4514 if (ret) 4515 ret = -EFAULT; 4516 4517 out: 4518 btrfs_free_path(path); 4519 kvfree(inodes); 4520 out_loi: 4521 kfree(loi); 4522 4523 return ret; 4524 } 4525 4526 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4527 struct btrfs_ioctl_balance_args *bargs) 4528 { 4529 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4530 4531 bargs->flags = bctl->flags; 4532 4533 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4534 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4535 if (atomic_read(&fs_info->balance_pause_req)) 4536 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4537 if (atomic_read(&fs_info->balance_cancel_req)) 4538 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4539 4540 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4541 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4542 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4543 4544 spin_lock(&fs_info->balance_lock); 4545 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4546 spin_unlock(&fs_info->balance_lock); 4547 } 4548 4549 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4550 { 4551 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4552 struct btrfs_fs_info *fs_info = root->fs_info; 4553 struct btrfs_ioctl_balance_args *bargs; 4554 struct btrfs_balance_control *bctl; 4555 bool need_unlock; /* for mut. excl. ops lock */ 4556 int ret; 4557 4558 if (!capable(CAP_SYS_ADMIN)) 4559 return -EPERM; 4560 4561 ret = mnt_want_write_file(file); 4562 if (ret) 4563 return ret; 4564 4565 again: 4566 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4567 mutex_lock(&fs_info->balance_mutex); 4568 need_unlock = true; 4569 goto locked; 4570 } 4571 4572 /* 4573 * mut. excl. ops lock is locked. Three possibilities: 4574 * (1) some other op is running 4575 * (2) balance is running 4576 * (3) balance is paused -- special case (think resume) 4577 */ 4578 mutex_lock(&fs_info->balance_mutex); 4579 if (fs_info->balance_ctl) { 4580 /* this is either (2) or (3) */ 4581 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4582 mutex_unlock(&fs_info->balance_mutex); 4583 /* 4584 * Lock released to allow other waiters to continue, 4585 * we'll reexamine the status again. 4586 */ 4587 mutex_lock(&fs_info->balance_mutex); 4588 4589 if (fs_info->balance_ctl && 4590 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4591 /* this is (3) */ 4592 need_unlock = false; 4593 goto locked; 4594 } 4595 4596 mutex_unlock(&fs_info->balance_mutex); 4597 goto again; 4598 } else { 4599 /* this is (2) */ 4600 mutex_unlock(&fs_info->balance_mutex); 4601 ret = -EINPROGRESS; 4602 goto out; 4603 } 4604 } else { 4605 /* this is (1) */ 4606 mutex_unlock(&fs_info->balance_mutex); 4607 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4608 goto out; 4609 } 4610 4611 locked: 4612 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4613 4614 if (arg) { 4615 bargs = memdup_user(arg, sizeof(*bargs)); 4616 if (IS_ERR(bargs)) { 4617 ret = PTR_ERR(bargs); 4618 goto out_unlock; 4619 } 4620 4621 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4622 if (!fs_info->balance_ctl) { 4623 ret = -ENOTCONN; 4624 goto out_bargs; 4625 } 4626 4627 bctl = fs_info->balance_ctl; 4628 spin_lock(&fs_info->balance_lock); 4629 bctl->flags |= BTRFS_BALANCE_RESUME; 4630 spin_unlock(&fs_info->balance_lock); 4631 4632 goto do_balance; 4633 } 4634 } else { 4635 bargs = NULL; 4636 } 4637 4638 if (fs_info->balance_ctl) { 4639 ret = -EINPROGRESS; 4640 goto out_bargs; 4641 } 4642 4643 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4644 if (!bctl) { 4645 ret = -ENOMEM; 4646 goto out_bargs; 4647 } 4648 4649 if (arg) { 4650 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4651 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4652 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4653 4654 bctl->flags = bargs->flags; 4655 } else { 4656 /* balance everything - no filters */ 4657 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4658 } 4659 4660 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4661 ret = -EINVAL; 4662 goto out_bctl; 4663 } 4664 4665 do_balance: 4666 /* 4667 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to 4668 * btrfs_balance. bctl is freed in reset_balance_state, or, if 4669 * restriper was paused all the way until unmount, in free_fs_info. 4670 * The flag should be cleared after reset_balance_state. 4671 */ 4672 need_unlock = false; 4673 4674 ret = btrfs_balance(fs_info, bctl, bargs); 4675 bctl = NULL; 4676 4677 if ((ret == 0 || ret == -ECANCELED) && arg) { 4678 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4679 ret = -EFAULT; 4680 } 4681 4682 out_bctl: 4683 kfree(bctl); 4684 out_bargs: 4685 kfree(bargs); 4686 out_unlock: 4687 mutex_unlock(&fs_info->balance_mutex); 4688 if (need_unlock) 4689 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4690 out: 4691 mnt_drop_write_file(file); 4692 return ret; 4693 } 4694 4695 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4696 { 4697 if (!capable(CAP_SYS_ADMIN)) 4698 return -EPERM; 4699 4700 switch (cmd) { 4701 case BTRFS_BALANCE_CTL_PAUSE: 4702 return btrfs_pause_balance(fs_info); 4703 case BTRFS_BALANCE_CTL_CANCEL: 4704 return btrfs_cancel_balance(fs_info); 4705 } 4706 4707 return -EINVAL; 4708 } 4709 4710 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4711 void __user *arg) 4712 { 4713 struct btrfs_ioctl_balance_args *bargs; 4714 int ret = 0; 4715 4716 if (!capable(CAP_SYS_ADMIN)) 4717 return -EPERM; 4718 4719 mutex_lock(&fs_info->balance_mutex); 4720 if (!fs_info->balance_ctl) { 4721 ret = -ENOTCONN; 4722 goto out; 4723 } 4724 4725 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4726 if (!bargs) { 4727 ret = -ENOMEM; 4728 goto out; 4729 } 4730 4731 btrfs_update_ioctl_balance_args(fs_info, bargs); 4732 4733 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4734 ret = -EFAULT; 4735 4736 kfree(bargs); 4737 out: 4738 mutex_unlock(&fs_info->balance_mutex); 4739 return ret; 4740 } 4741 4742 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4743 { 4744 struct inode *inode = file_inode(file); 4745 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4746 struct btrfs_ioctl_quota_ctl_args *sa; 4747 int ret; 4748 4749 if (!capable(CAP_SYS_ADMIN)) 4750 return -EPERM; 4751 4752 ret = mnt_want_write_file(file); 4753 if (ret) 4754 return ret; 4755 4756 sa = memdup_user(arg, sizeof(*sa)); 4757 if (IS_ERR(sa)) { 4758 ret = PTR_ERR(sa); 4759 goto drop_write; 4760 } 4761 4762 down_write(&fs_info->subvol_sem); 4763 4764 switch (sa->cmd) { 4765 case BTRFS_QUOTA_CTL_ENABLE: 4766 ret = btrfs_quota_enable(fs_info); 4767 break; 4768 case BTRFS_QUOTA_CTL_DISABLE: 4769 ret = btrfs_quota_disable(fs_info); 4770 break; 4771 default: 4772 ret = -EINVAL; 4773 break; 4774 } 4775 4776 kfree(sa); 4777 up_write(&fs_info->subvol_sem); 4778 drop_write: 4779 mnt_drop_write_file(file); 4780 return ret; 4781 } 4782 4783 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4784 { 4785 struct inode *inode = file_inode(file); 4786 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4787 struct btrfs_root *root = BTRFS_I(inode)->root; 4788 struct btrfs_ioctl_qgroup_assign_args *sa; 4789 struct btrfs_trans_handle *trans; 4790 int ret; 4791 int err; 4792 4793 if (!capable(CAP_SYS_ADMIN)) 4794 return -EPERM; 4795 4796 ret = mnt_want_write_file(file); 4797 if (ret) 4798 return ret; 4799 4800 sa = memdup_user(arg, sizeof(*sa)); 4801 if (IS_ERR(sa)) { 4802 ret = PTR_ERR(sa); 4803 goto drop_write; 4804 } 4805 4806 trans = btrfs_join_transaction(root); 4807 if (IS_ERR(trans)) { 4808 ret = PTR_ERR(trans); 4809 goto out; 4810 } 4811 4812 if (sa->assign) { 4813 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4814 } else { 4815 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4816 } 4817 4818 /* update qgroup status and info */ 4819 err = btrfs_run_qgroups(trans); 4820 if (err < 0) 4821 btrfs_handle_fs_error(fs_info, err, 4822 "failed to update qgroup status and info"); 4823 err = btrfs_end_transaction(trans); 4824 if (err && !ret) 4825 ret = err; 4826 4827 out: 4828 kfree(sa); 4829 drop_write: 4830 mnt_drop_write_file(file); 4831 return ret; 4832 } 4833 4834 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4835 { 4836 struct inode *inode = file_inode(file); 4837 struct btrfs_root *root = BTRFS_I(inode)->root; 4838 struct btrfs_ioctl_qgroup_create_args *sa; 4839 struct btrfs_trans_handle *trans; 4840 int ret; 4841 int err; 4842 4843 if (!capable(CAP_SYS_ADMIN)) 4844 return -EPERM; 4845 4846 ret = mnt_want_write_file(file); 4847 if (ret) 4848 return ret; 4849 4850 sa = memdup_user(arg, sizeof(*sa)); 4851 if (IS_ERR(sa)) { 4852 ret = PTR_ERR(sa); 4853 goto drop_write; 4854 } 4855 4856 if (!sa->qgroupid) { 4857 ret = -EINVAL; 4858 goto out; 4859 } 4860 4861 trans = btrfs_join_transaction(root); 4862 if (IS_ERR(trans)) { 4863 ret = PTR_ERR(trans); 4864 goto out; 4865 } 4866 4867 if (sa->create) { 4868 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4869 } else { 4870 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4871 } 4872 4873 err = btrfs_end_transaction(trans); 4874 if (err && !ret) 4875 ret = err; 4876 4877 out: 4878 kfree(sa); 4879 drop_write: 4880 mnt_drop_write_file(file); 4881 return ret; 4882 } 4883 4884 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4885 { 4886 struct inode *inode = file_inode(file); 4887 struct btrfs_root *root = BTRFS_I(inode)->root; 4888 struct btrfs_ioctl_qgroup_limit_args *sa; 4889 struct btrfs_trans_handle *trans; 4890 int ret; 4891 int err; 4892 u64 qgroupid; 4893 4894 if (!capable(CAP_SYS_ADMIN)) 4895 return -EPERM; 4896 4897 ret = mnt_want_write_file(file); 4898 if (ret) 4899 return ret; 4900 4901 sa = memdup_user(arg, sizeof(*sa)); 4902 if (IS_ERR(sa)) { 4903 ret = PTR_ERR(sa); 4904 goto drop_write; 4905 } 4906 4907 trans = btrfs_join_transaction(root); 4908 if (IS_ERR(trans)) { 4909 ret = PTR_ERR(trans); 4910 goto out; 4911 } 4912 4913 qgroupid = sa->qgroupid; 4914 if (!qgroupid) { 4915 /* take the current subvol as qgroup */ 4916 qgroupid = root->root_key.objectid; 4917 } 4918 4919 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4920 4921 err = btrfs_end_transaction(trans); 4922 if (err && !ret) 4923 ret = err; 4924 4925 out: 4926 kfree(sa); 4927 drop_write: 4928 mnt_drop_write_file(file); 4929 return ret; 4930 } 4931 4932 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4933 { 4934 struct inode *inode = file_inode(file); 4935 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4936 struct btrfs_ioctl_quota_rescan_args *qsa; 4937 int ret; 4938 4939 if (!capable(CAP_SYS_ADMIN)) 4940 return -EPERM; 4941 4942 ret = mnt_want_write_file(file); 4943 if (ret) 4944 return ret; 4945 4946 qsa = memdup_user(arg, sizeof(*qsa)); 4947 if (IS_ERR(qsa)) { 4948 ret = PTR_ERR(qsa); 4949 goto drop_write; 4950 } 4951 4952 if (qsa->flags) { 4953 ret = -EINVAL; 4954 goto out; 4955 } 4956 4957 ret = btrfs_qgroup_rescan(fs_info); 4958 4959 out: 4960 kfree(qsa); 4961 drop_write: 4962 mnt_drop_write_file(file); 4963 return ret; 4964 } 4965 4966 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4967 void __user *arg) 4968 { 4969 struct btrfs_ioctl_quota_rescan_args *qsa; 4970 int ret = 0; 4971 4972 if (!capable(CAP_SYS_ADMIN)) 4973 return -EPERM; 4974 4975 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4976 if (!qsa) 4977 return -ENOMEM; 4978 4979 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4980 qsa->flags = 1; 4981 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4982 } 4983 4984 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4985 ret = -EFAULT; 4986 4987 kfree(qsa); 4988 return ret; 4989 } 4990 4991 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4992 void __user *arg) 4993 { 4994 if (!capable(CAP_SYS_ADMIN)) 4995 return -EPERM; 4996 4997 return btrfs_qgroup_wait_for_completion(fs_info, true); 4998 } 4999 5000 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5001 struct btrfs_ioctl_received_subvol_args *sa) 5002 { 5003 struct inode *inode = file_inode(file); 5004 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5005 struct btrfs_root *root = BTRFS_I(inode)->root; 5006 struct btrfs_root_item *root_item = &root->root_item; 5007 struct btrfs_trans_handle *trans; 5008 struct timespec64 ct = current_time(inode); 5009 int ret = 0; 5010 int received_uuid_changed; 5011 5012 if (!inode_owner_or_capable(inode)) 5013 return -EPERM; 5014 5015 ret = mnt_want_write_file(file); 5016 if (ret < 0) 5017 return ret; 5018 5019 down_write(&fs_info->subvol_sem); 5020 5021 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5022 ret = -EINVAL; 5023 goto out; 5024 } 5025 5026 if (btrfs_root_readonly(root)) { 5027 ret = -EROFS; 5028 goto out; 5029 } 5030 5031 /* 5032 * 1 - root item 5033 * 2 - uuid items (received uuid + subvol uuid) 5034 */ 5035 trans = btrfs_start_transaction(root, 3); 5036 if (IS_ERR(trans)) { 5037 ret = PTR_ERR(trans); 5038 trans = NULL; 5039 goto out; 5040 } 5041 5042 sa->rtransid = trans->transid; 5043 sa->rtime.sec = ct.tv_sec; 5044 sa->rtime.nsec = ct.tv_nsec; 5045 5046 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5047 BTRFS_UUID_SIZE); 5048 if (received_uuid_changed && 5049 !btrfs_is_empty_uuid(root_item->received_uuid)) { 5050 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 5051 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5052 root->root_key.objectid); 5053 if (ret && ret != -ENOENT) { 5054 btrfs_abort_transaction(trans, ret); 5055 btrfs_end_transaction(trans); 5056 goto out; 5057 } 5058 } 5059 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5060 btrfs_set_root_stransid(root_item, sa->stransid); 5061 btrfs_set_root_rtransid(root_item, sa->rtransid); 5062 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5063 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5064 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5065 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5066 5067 ret = btrfs_update_root(trans, fs_info->tree_root, 5068 &root->root_key, &root->root_item); 5069 if (ret < 0) { 5070 btrfs_end_transaction(trans); 5071 goto out; 5072 } 5073 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5074 ret = btrfs_uuid_tree_add(trans, sa->uuid, 5075 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5076 root->root_key.objectid); 5077 if (ret < 0 && ret != -EEXIST) { 5078 btrfs_abort_transaction(trans, ret); 5079 btrfs_end_transaction(trans); 5080 goto out; 5081 } 5082 } 5083 ret = btrfs_commit_transaction(trans); 5084 out: 5085 up_write(&fs_info->subvol_sem); 5086 mnt_drop_write_file(file); 5087 return ret; 5088 } 5089 5090 #ifdef CONFIG_64BIT 5091 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5092 void __user *arg) 5093 { 5094 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5095 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5096 int ret = 0; 5097 5098 args32 = memdup_user(arg, sizeof(*args32)); 5099 if (IS_ERR(args32)) 5100 return PTR_ERR(args32); 5101 5102 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5103 if (!args64) { 5104 ret = -ENOMEM; 5105 goto out; 5106 } 5107 5108 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5109 args64->stransid = args32->stransid; 5110 args64->rtransid = args32->rtransid; 5111 args64->stime.sec = args32->stime.sec; 5112 args64->stime.nsec = args32->stime.nsec; 5113 args64->rtime.sec = args32->rtime.sec; 5114 args64->rtime.nsec = args32->rtime.nsec; 5115 args64->flags = args32->flags; 5116 5117 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5118 if (ret) 5119 goto out; 5120 5121 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5122 args32->stransid = args64->stransid; 5123 args32->rtransid = args64->rtransid; 5124 args32->stime.sec = args64->stime.sec; 5125 args32->stime.nsec = args64->stime.nsec; 5126 args32->rtime.sec = args64->rtime.sec; 5127 args32->rtime.nsec = args64->rtime.nsec; 5128 args32->flags = args64->flags; 5129 5130 ret = copy_to_user(arg, args32, sizeof(*args32)); 5131 if (ret) 5132 ret = -EFAULT; 5133 5134 out: 5135 kfree(args32); 5136 kfree(args64); 5137 return ret; 5138 } 5139 #endif 5140 5141 static long btrfs_ioctl_set_received_subvol(struct file *file, 5142 void __user *arg) 5143 { 5144 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5145 int ret = 0; 5146 5147 sa = memdup_user(arg, sizeof(*sa)); 5148 if (IS_ERR(sa)) 5149 return PTR_ERR(sa); 5150 5151 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5152 5153 if (ret) 5154 goto out; 5155 5156 ret = copy_to_user(arg, sa, sizeof(*sa)); 5157 if (ret) 5158 ret = -EFAULT; 5159 5160 out: 5161 kfree(sa); 5162 return ret; 5163 } 5164 5165 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 5166 void __user *arg) 5167 { 5168 size_t len; 5169 int ret; 5170 char label[BTRFS_LABEL_SIZE]; 5171 5172 spin_lock(&fs_info->super_lock); 5173 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5174 spin_unlock(&fs_info->super_lock); 5175 5176 len = strnlen(label, BTRFS_LABEL_SIZE); 5177 5178 if (len == BTRFS_LABEL_SIZE) { 5179 btrfs_warn(fs_info, 5180 "label is too long, return the first %zu bytes", 5181 --len); 5182 } 5183 5184 ret = copy_to_user(arg, label, len); 5185 5186 return ret ? -EFAULT : 0; 5187 } 5188 5189 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5190 { 5191 struct inode *inode = file_inode(file); 5192 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5193 struct btrfs_root *root = BTRFS_I(inode)->root; 5194 struct btrfs_super_block *super_block = fs_info->super_copy; 5195 struct btrfs_trans_handle *trans; 5196 char label[BTRFS_LABEL_SIZE]; 5197 int ret; 5198 5199 if (!capable(CAP_SYS_ADMIN)) 5200 return -EPERM; 5201 5202 if (copy_from_user(label, arg, sizeof(label))) 5203 return -EFAULT; 5204 5205 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5206 btrfs_err(fs_info, 5207 "unable to set label with more than %d bytes", 5208 BTRFS_LABEL_SIZE - 1); 5209 return -EINVAL; 5210 } 5211 5212 ret = mnt_want_write_file(file); 5213 if (ret) 5214 return ret; 5215 5216 trans = btrfs_start_transaction(root, 0); 5217 if (IS_ERR(trans)) { 5218 ret = PTR_ERR(trans); 5219 goto out_unlock; 5220 } 5221 5222 spin_lock(&fs_info->super_lock); 5223 strcpy(super_block->label, label); 5224 spin_unlock(&fs_info->super_lock); 5225 ret = btrfs_commit_transaction(trans); 5226 5227 out_unlock: 5228 mnt_drop_write_file(file); 5229 return ret; 5230 } 5231 5232 #define INIT_FEATURE_FLAGS(suffix) \ 5233 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5234 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5235 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5236 5237 int btrfs_ioctl_get_supported_features(void __user *arg) 5238 { 5239 static const struct btrfs_ioctl_feature_flags features[3] = { 5240 INIT_FEATURE_FLAGS(SUPP), 5241 INIT_FEATURE_FLAGS(SAFE_SET), 5242 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5243 }; 5244 5245 if (copy_to_user(arg, &features, sizeof(features))) 5246 return -EFAULT; 5247 5248 return 0; 5249 } 5250 5251 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 5252 void __user *arg) 5253 { 5254 struct btrfs_super_block *super_block = fs_info->super_copy; 5255 struct btrfs_ioctl_feature_flags features; 5256 5257 features.compat_flags = btrfs_super_compat_flags(super_block); 5258 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5259 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5260 5261 if (copy_to_user(arg, &features, sizeof(features))) 5262 return -EFAULT; 5263 5264 return 0; 5265 } 5266 5267 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5268 enum btrfs_feature_set set, 5269 u64 change_mask, u64 flags, u64 supported_flags, 5270 u64 safe_set, u64 safe_clear) 5271 { 5272 const char *type = btrfs_feature_set_name(set); 5273 char *names; 5274 u64 disallowed, unsupported; 5275 u64 set_mask = flags & change_mask; 5276 u64 clear_mask = ~flags & change_mask; 5277 5278 unsupported = set_mask & ~supported_flags; 5279 if (unsupported) { 5280 names = btrfs_printable_features(set, unsupported); 5281 if (names) { 5282 btrfs_warn(fs_info, 5283 "this kernel does not support the %s feature bit%s", 5284 names, strchr(names, ',') ? "s" : ""); 5285 kfree(names); 5286 } else 5287 btrfs_warn(fs_info, 5288 "this kernel does not support %s bits 0x%llx", 5289 type, unsupported); 5290 return -EOPNOTSUPP; 5291 } 5292 5293 disallowed = set_mask & ~safe_set; 5294 if (disallowed) { 5295 names = btrfs_printable_features(set, disallowed); 5296 if (names) { 5297 btrfs_warn(fs_info, 5298 "can't set the %s feature bit%s while mounted", 5299 names, strchr(names, ',') ? "s" : ""); 5300 kfree(names); 5301 } else 5302 btrfs_warn(fs_info, 5303 "can't set %s bits 0x%llx while mounted", 5304 type, disallowed); 5305 return -EPERM; 5306 } 5307 5308 disallowed = clear_mask & ~safe_clear; 5309 if (disallowed) { 5310 names = btrfs_printable_features(set, disallowed); 5311 if (names) { 5312 btrfs_warn(fs_info, 5313 "can't clear the %s feature bit%s while mounted", 5314 names, strchr(names, ',') ? "s" : ""); 5315 kfree(names); 5316 } else 5317 btrfs_warn(fs_info, 5318 "can't clear %s bits 0x%llx while mounted", 5319 type, disallowed); 5320 return -EPERM; 5321 } 5322 5323 return 0; 5324 } 5325 5326 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5327 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5328 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5329 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5330 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5331 5332 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5333 { 5334 struct inode *inode = file_inode(file); 5335 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5336 struct btrfs_root *root = BTRFS_I(inode)->root; 5337 struct btrfs_super_block *super_block = fs_info->super_copy; 5338 struct btrfs_ioctl_feature_flags flags[2]; 5339 struct btrfs_trans_handle *trans; 5340 u64 newflags; 5341 int ret; 5342 5343 if (!capable(CAP_SYS_ADMIN)) 5344 return -EPERM; 5345 5346 if (copy_from_user(flags, arg, sizeof(flags))) 5347 return -EFAULT; 5348 5349 /* Nothing to do */ 5350 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5351 !flags[0].incompat_flags) 5352 return 0; 5353 5354 ret = check_feature(fs_info, flags[0].compat_flags, 5355 flags[1].compat_flags, COMPAT); 5356 if (ret) 5357 return ret; 5358 5359 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5360 flags[1].compat_ro_flags, COMPAT_RO); 5361 if (ret) 5362 return ret; 5363 5364 ret = check_feature(fs_info, flags[0].incompat_flags, 5365 flags[1].incompat_flags, INCOMPAT); 5366 if (ret) 5367 return ret; 5368 5369 ret = mnt_want_write_file(file); 5370 if (ret) 5371 return ret; 5372 5373 trans = btrfs_start_transaction(root, 0); 5374 if (IS_ERR(trans)) { 5375 ret = PTR_ERR(trans); 5376 goto out_drop_write; 5377 } 5378 5379 spin_lock(&fs_info->super_lock); 5380 newflags = btrfs_super_compat_flags(super_block); 5381 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5382 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5383 btrfs_set_super_compat_flags(super_block, newflags); 5384 5385 newflags = btrfs_super_compat_ro_flags(super_block); 5386 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5387 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5388 btrfs_set_super_compat_ro_flags(super_block, newflags); 5389 5390 newflags = btrfs_super_incompat_flags(super_block); 5391 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5392 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5393 btrfs_set_super_incompat_flags(super_block, newflags); 5394 spin_unlock(&fs_info->super_lock); 5395 5396 ret = btrfs_commit_transaction(trans); 5397 out_drop_write: 5398 mnt_drop_write_file(file); 5399 5400 return ret; 5401 } 5402 5403 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 5404 { 5405 struct btrfs_ioctl_send_args *arg; 5406 int ret; 5407 5408 if (compat) { 5409 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5410 struct btrfs_ioctl_send_args_32 args32; 5411 5412 ret = copy_from_user(&args32, argp, sizeof(args32)); 5413 if (ret) 5414 return -EFAULT; 5415 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5416 if (!arg) 5417 return -ENOMEM; 5418 arg->send_fd = args32.send_fd; 5419 arg->clone_sources_count = args32.clone_sources_count; 5420 arg->clone_sources = compat_ptr(args32.clone_sources); 5421 arg->parent_root = args32.parent_root; 5422 arg->flags = args32.flags; 5423 memcpy(arg->reserved, args32.reserved, 5424 sizeof(args32.reserved)); 5425 #else 5426 return -ENOTTY; 5427 #endif 5428 } else { 5429 arg = memdup_user(argp, sizeof(*arg)); 5430 if (IS_ERR(arg)) 5431 return PTR_ERR(arg); 5432 } 5433 ret = btrfs_ioctl_send(file, arg); 5434 kfree(arg); 5435 return ret; 5436 } 5437 5438 long btrfs_ioctl(struct file *file, unsigned int 5439 cmd, unsigned long arg) 5440 { 5441 struct inode *inode = file_inode(file); 5442 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5443 struct btrfs_root *root = BTRFS_I(inode)->root; 5444 void __user *argp = (void __user *)arg; 5445 5446 switch (cmd) { 5447 case FS_IOC_GETFLAGS: 5448 return btrfs_ioctl_getflags(file, argp); 5449 case FS_IOC_SETFLAGS: 5450 return btrfs_ioctl_setflags(file, argp); 5451 case FS_IOC_GETVERSION: 5452 return btrfs_ioctl_getversion(file, argp); 5453 case FS_IOC_GETFSLABEL: 5454 return btrfs_ioctl_get_fslabel(fs_info, argp); 5455 case FS_IOC_SETFSLABEL: 5456 return btrfs_ioctl_set_fslabel(file, argp); 5457 case FITRIM: 5458 return btrfs_ioctl_fitrim(fs_info, argp); 5459 case BTRFS_IOC_SNAP_CREATE: 5460 return btrfs_ioctl_snap_create(file, argp, 0); 5461 case BTRFS_IOC_SNAP_CREATE_V2: 5462 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5463 case BTRFS_IOC_SUBVOL_CREATE: 5464 return btrfs_ioctl_snap_create(file, argp, 1); 5465 case BTRFS_IOC_SUBVOL_CREATE_V2: 5466 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5467 case BTRFS_IOC_SNAP_DESTROY: 5468 return btrfs_ioctl_snap_destroy(file, argp); 5469 case BTRFS_IOC_SUBVOL_GETFLAGS: 5470 return btrfs_ioctl_subvol_getflags(file, argp); 5471 case BTRFS_IOC_SUBVOL_SETFLAGS: 5472 return btrfs_ioctl_subvol_setflags(file, argp); 5473 case BTRFS_IOC_DEFAULT_SUBVOL: 5474 return btrfs_ioctl_default_subvol(file, argp); 5475 case BTRFS_IOC_DEFRAG: 5476 return btrfs_ioctl_defrag(file, NULL); 5477 case BTRFS_IOC_DEFRAG_RANGE: 5478 return btrfs_ioctl_defrag(file, argp); 5479 case BTRFS_IOC_RESIZE: 5480 return btrfs_ioctl_resize(file, argp); 5481 case BTRFS_IOC_ADD_DEV: 5482 return btrfs_ioctl_add_dev(fs_info, argp); 5483 case BTRFS_IOC_RM_DEV: 5484 return btrfs_ioctl_rm_dev(file, argp); 5485 case BTRFS_IOC_RM_DEV_V2: 5486 return btrfs_ioctl_rm_dev_v2(file, argp); 5487 case BTRFS_IOC_FS_INFO: 5488 return btrfs_ioctl_fs_info(fs_info, argp); 5489 case BTRFS_IOC_DEV_INFO: 5490 return btrfs_ioctl_dev_info(fs_info, argp); 5491 case BTRFS_IOC_BALANCE: 5492 return btrfs_ioctl_balance(file, NULL); 5493 case BTRFS_IOC_TREE_SEARCH: 5494 return btrfs_ioctl_tree_search(file, argp); 5495 case BTRFS_IOC_TREE_SEARCH_V2: 5496 return btrfs_ioctl_tree_search_v2(file, argp); 5497 case BTRFS_IOC_INO_LOOKUP: 5498 return btrfs_ioctl_ino_lookup(file, argp); 5499 case BTRFS_IOC_INO_PATHS: 5500 return btrfs_ioctl_ino_to_path(root, argp); 5501 case BTRFS_IOC_LOGICAL_INO: 5502 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5503 case BTRFS_IOC_LOGICAL_INO_V2: 5504 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5505 case BTRFS_IOC_SPACE_INFO: 5506 return btrfs_ioctl_space_info(fs_info, argp); 5507 case BTRFS_IOC_SYNC: { 5508 int ret; 5509 5510 ret = btrfs_start_delalloc_roots(fs_info, -1); 5511 if (ret) 5512 return ret; 5513 ret = btrfs_sync_fs(inode->i_sb, 1); 5514 /* 5515 * The transaction thread may want to do more work, 5516 * namely it pokes the cleaner kthread that will start 5517 * processing uncleaned subvols. 5518 */ 5519 wake_up_process(fs_info->transaction_kthread); 5520 return ret; 5521 } 5522 case BTRFS_IOC_START_SYNC: 5523 return btrfs_ioctl_start_sync(root, argp); 5524 case BTRFS_IOC_WAIT_SYNC: 5525 return btrfs_ioctl_wait_sync(fs_info, argp); 5526 case BTRFS_IOC_SCRUB: 5527 return btrfs_ioctl_scrub(file, argp); 5528 case BTRFS_IOC_SCRUB_CANCEL: 5529 return btrfs_ioctl_scrub_cancel(fs_info); 5530 case BTRFS_IOC_SCRUB_PROGRESS: 5531 return btrfs_ioctl_scrub_progress(fs_info, argp); 5532 case BTRFS_IOC_BALANCE_V2: 5533 return btrfs_ioctl_balance(file, argp); 5534 case BTRFS_IOC_BALANCE_CTL: 5535 return btrfs_ioctl_balance_ctl(fs_info, arg); 5536 case BTRFS_IOC_BALANCE_PROGRESS: 5537 return btrfs_ioctl_balance_progress(fs_info, argp); 5538 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5539 return btrfs_ioctl_set_received_subvol(file, argp); 5540 #ifdef CONFIG_64BIT 5541 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5542 return btrfs_ioctl_set_received_subvol_32(file, argp); 5543 #endif 5544 case BTRFS_IOC_SEND: 5545 return _btrfs_ioctl_send(file, argp, false); 5546 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5547 case BTRFS_IOC_SEND_32: 5548 return _btrfs_ioctl_send(file, argp, true); 5549 #endif 5550 case BTRFS_IOC_GET_DEV_STATS: 5551 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5552 case BTRFS_IOC_QUOTA_CTL: 5553 return btrfs_ioctl_quota_ctl(file, argp); 5554 case BTRFS_IOC_QGROUP_ASSIGN: 5555 return btrfs_ioctl_qgroup_assign(file, argp); 5556 case BTRFS_IOC_QGROUP_CREATE: 5557 return btrfs_ioctl_qgroup_create(file, argp); 5558 case BTRFS_IOC_QGROUP_LIMIT: 5559 return btrfs_ioctl_qgroup_limit(file, argp); 5560 case BTRFS_IOC_QUOTA_RESCAN: 5561 return btrfs_ioctl_quota_rescan(file, argp); 5562 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5563 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5564 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5565 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5566 case BTRFS_IOC_DEV_REPLACE: 5567 return btrfs_ioctl_dev_replace(fs_info, argp); 5568 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5569 return btrfs_ioctl_get_supported_features(argp); 5570 case BTRFS_IOC_GET_FEATURES: 5571 return btrfs_ioctl_get_features(fs_info, argp); 5572 case BTRFS_IOC_SET_FEATURES: 5573 return btrfs_ioctl_set_features(file, argp); 5574 case FS_IOC_FSGETXATTR: 5575 return btrfs_ioctl_fsgetxattr(file, argp); 5576 case FS_IOC_FSSETXATTR: 5577 return btrfs_ioctl_fssetxattr(file, argp); 5578 case BTRFS_IOC_GET_SUBVOL_INFO: 5579 return btrfs_ioctl_get_subvol_info(file, argp); 5580 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5581 return btrfs_ioctl_get_subvol_rootref(file, argp); 5582 case BTRFS_IOC_INO_LOOKUP_USER: 5583 return btrfs_ioctl_ino_lookup_user(file, argp); 5584 } 5585 5586 return -ENOTTY; 5587 } 5588 5589 #ifdef CONFIG_COMPAT 5590 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5591 { 5592 /* 5593 * These all access 32-bit values anyway so no further 5594 * handling is necessary. 5595 */ 5596 switch (cmd) { 5597 case FS_IOC32_GETFLAGS: 5598 cmd = FS_IOC_GETFLAGS; 5599 break; 5600 case FS_IOC32_SETFLAGS: 5601 cmd = FS_IOC_SETFLAGS; 5602 break; 5603 case FS_IOC32_GETVERSION: 5604 cmd = FS_IOC_GETVERSION; 5605 break; 5606 } 5607 5608 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5609 } 5610 #endif 5611