xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 6b342707)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "export.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "volumes.h"
38 #include "locking.h"
39 #include "backref.h"
40 #include "rcu-string.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "delalloc-space.h"
50 #include "block-group.h"
51 #include "subpage.h"
52 
53 #ifdef CONFIG_64BIT
54 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
55  * structures are incorrect, as the timespec structure from userspace
56  * is 4 bytes too small. We define these alternatives here to teach
57  * the kernel about the 32-bit struct packing.
58  */
59 struct btrfs_ioctl_timespec_32 {
60 	__u64 sec;
61 	__u32 nsec;
62 } __attribute__ ((__packed__));
63 
64 struct btrfs_ioctl_received_subvol_args_32 {
65 	char	uuid[BTRFS_UUID_SIZE];	/* in */
66 	__u64	stransid;		/* in */
67 	__u64	rtransid;		/* out */
68 	struct btrfs_ioctl_timespec_32 stime; /* in */
69 	struct btrfs_ioctl_timespec_32 rtime; /* out */
70 	__u64	flags;			/* in */
71 	__u64	reserved[16];		/* in */
72 } __attribute__ ((__packed__));
73 
74 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
75 				struct btrfs_ioctl_received_subvol_args_32)
76 #endif
77 
78 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
79 struct btrfs_ioctl_send_args_32 {
80 	__s64 send_fd;			/* in */
81 	__u64 clone_sources_count;	/* in */
82 	compat_uptr_t clone_sources;	/* in */
83 	__u64 parent_root;		/* in */
84 	__u64 flags;			/* in */
85 	__u32 version;			/* in */
86 	__u8  reserved[28];		/* in */
87 } __attribute__ ((__packed__));
88 
89 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
90 			       struct btrfs_ioctl_send_args_32)
91 #endif
92 
93 /* Mask out flags that are inappropriate for the given type of inode. */
94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
95 		unsigned int flags)
96 {
97 	if (S_ISDIR(inode->i_mode))
98 		return flags;
99 	else if (S_ISREG(inode->i_mode))
100 		return flags & ~FS_DIRSYNC_FL;
101 	else
102 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104 
105 /*
106  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
107  * ioctl.
108  */
109 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
110 {
111 	unsigned int iflags = 0;
112 	u32 flags = binode->flags;
113 	u32 ro_flags = binode->ro_flags;
114 
115 	if (flags & BTRFS_INODE_SYNC)
116 		iflags |= FS_SYNC_FL;
117 	if (flags & BTRFS_INODE_IMMUTABLE)
118 		iflags |= FS_IMMUTABLE_FL;
119 	if (flags & BTRFS_INODE_APPEND)
120 		iflags |= FS_APPEND_FL;
121 	if (flags & BTRFS_INODE_NODUMP)
122 		iflags |= FS_NODUMP_FL;
123 	if (flags & BTRFS_INODE_NOATIME)
124 		iflags |= FS_NOATIME_FL;
125 	if (flags & BTRFS_INODE_DIRSYNC)
126 		iflags |= FS_DIRSYNC_FL;
127 	if (flags & BTRFS_INODE_NODATACOW)
128 		iflags |= FS_NOCOW_FL;
129 	if (ro_flags & BTRFS_INODE_RO_VERITY)
130 		iflags |= FS_VERITY_FL;
131 
132 	if (flags & BTRFS_INODE_NOCOMPRESS)
133 		iflags |= FS_NOCOMP_FL;
134 	else if (flags & BTRFS_INODE_COMPRESS)
135 		iflags |= FS_COMPR_FL;
136 
137 	return iflags;
138 }
139 
140 /*
141  * Update inode->i_flags based on the btrfs internal flags.
142  */
143 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
144 {
145 	struct btrfs_inode *binode = BTRFS_I(inode);
146 	unsigned int new_fl = 0;
147 
148 	if (binode->flags & BTRFS_INODE_SYNC)
149 		new_fl |= S_SYNC;
150 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
151 		new_fl |= S_IMMUTABLE;
152 	if (binode->flags & BTRFS_INODE_APPEND)
153 		new_fl |= S_APPEND;
154 	if (binode->flags & BTRFS_INODE_NOATIME)
155 		new_fl |= S_NOATIME;
156 	if (binode->flags & BTRFS_INODE_DIRSYNC)
157 		new_fl |= S_DIRSYNC;
158 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
159 		new_fl |= S_VERITY;
160 
161 	set_mask_bits(&inode->i_flags,
162 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
163 		      S_VERITY, new_fl);
164 }
165 
166 /*
167  * Check if @flags are a supported and valid set of FS_*_FL flags and that
168  * the old and new flags are not conflicting
169  */
170 static int check_fsflags(unsigned int old_flags, unsigned int flags)
171 {
172 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
173 		      FS_NOATIME_FL | FS_NODUMP_FL | \
174 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
175 		      FS_NOCOMP_FL | FS_COMPR_FL |
176 		      FS_NOCOW_FL))
177 		return -EOPNOTSUPP;
178 
179 	/* COMPR and NOCOMP on new/old are valid */
180 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
181 		return -EINVAL;
182 
183 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
184 		return -EINVAL;
185 
186 	/* NOCOW and compression options are mutually exclusive */
187 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
188 		return -EINVAL;
189 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
190 		return -EINVAL;
191 
192 	return 0;
193 }
194 
195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
196 				    unsigned int flags)
197 {
198 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
199 		return -EPERM;
200 
201 	return 0;
202 }
203 
204 /*
205  * Set flags/xflags from the internal inode flags. The remaining items of
206  * fsxattr are zeroed.
207  */
208 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
209 {
210 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
211 
212 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
213 	return 0;
214 }
215 
216 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
217 		       struct dentry *dentry, struct fileattr *fa)
218 {
219 	struct inode *inode = d_inode(dentry);
220 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
221 	struct btrfs_inode *binode = BTRFS_I(inode);
222 	struct btrfs_root *root = binode->root;
223 	struct btrfs_trans_handle *trans;
224 	unsigned int fsflags, old_fsflags;
225 	int ret;
226 	const char *comp = NULL;
227 	u32 binode_flags;
228 
229 	if (btrfs_root_readonly(root))
230 		return -EROFS;
231 
232 	if (fileattr_has_fsx(fa))
233 		return -EOPNOTSUPP;
234 
235 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
236 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
237 	ret = check_fsflags(old_fsflags, fsflags);
238 	if (ret)
239 		return ret;
240 
241 	ret = check_fsflags_compatible(fs_info, fsflags);
242 	if (ret)
243 		return ret;
244 
245 	binode_flags = binode->flags;
246 	if (fsflags & FS_SYNC_FL)
247 		binode_flags |= BTRFS_INODE_SYNC;
248 	else
249 		binode_flags &= ~BTRFS_INODE_SYNC;
250 	if (fsflags & FS_IMMUTABLE_FL)
251 		binode_flags |= BTRFS_INODE_IMMUTABLE;
252 	else
253 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
254 	if (fsflags & FS_APPEND_FL)
255 		binode_flags |= BTRFS_INODE_APPEND;
256 	else
257 		binode_flags &= ~BTRFS_INODE_APPEND;
258 	if (fsflags & FS_NODUMP_FL)
259 		binode_flags |= BTRFS_INODE_NODUMP;
260 	else
261 		binode_flags &= ~BTRFS_INODE_NODUMP;
262 	if (fsflags & FS_NOATIME_FL)
263 		binode_flags |= BTRFS_INODE_NOATIME;
264 	else
265 		binode_flags &= ~BTRFS_INODE_NOATIME;
266 
267 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
268 	if (!fa->flags_valid) {
269 		/* 1 item for the inode */
270 		trans = btrfs_start_transaction(root, 1);
271 		if (IS_ERR(trans))
272 			return PTR_ERR(trans);
273 		goto update_flags;
274 	}
275 
276 	if (fsflags & FS_DIRSYNC_FL)
277 		binode_flags |= BTRFS_INODE_DIRSYNC;
278 	else
279 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
280 	if (fsflags & FS_NOCOW_FL) {
281 		if (S_ISREG(inode->i_mode)) {
282 			/*
283 			 * It's safe to turn csums off here, no extents exist.
284 			 * Otherwise we want the flag to reflect the real COW
285 			 * status of the file and will not set it.
286 			 */
287 			if (inode->i_size == 0)
288 				binode_flags |= BTRFS_INODE_NODATACOW |
289 						BTRFS_INODE_NODATASUM;
290 		} else {
291 			binode_flags |= BTRFS_INODE_NODATACOW;
292 		}
293 	} else {
294 		/*
295 		 * Revert back under same assumptions as above
296 		 */
297 		if (S_ISREG(inode->i_mode)) {
298 			if (inode->i_size == 0)
299 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
300 						  BTRFS_INODE_NODATASUM);
301 		} else {
302 			binode_flags &= ~BTRFS_INODE_NODATACOW;
303 		}
304 	}
305 
306 	/*
307 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
308 	 * flag may be changed automatically if compression code won't make
309 	 * things smaller.
310 	 */
311 	if (fsflags & FS_NOCOMP_FL) {
312 		binode_flags &= ~BTRFS_INODE_COMPRESS;
313 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
314 	} else if (fsflags & FS_COMPR_FL) {
315 
316 		if (IS_SWAPFILE(inode))
317 			return -ETXTBSY;
318 
319 		binode_flags |= BTRFS_INODE_COMPRESS;
320 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
321 
322 		comp = btrfs_compress_type2str(fs_info->compress_type);
323 		if (!comp || comp[0] == 0)
324 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
325 	} else {
326 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
327 	}
328 
329 	/*
330 	 * 1 for inode item
331 	 * 2 for properties
332 	 */
333 	trans = btrfs_start_transaction(root, 3);
334 	if (IS_ERR(trans))
335 		return PTR_ERR(trans);
336 
337 	if (comp) {
338 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
339 				     strlen(comp), 0);
340 		if (ret) {
341 			btrfs_abort_transaction(trans, ret);
342 			goto out_end_trans;
343 		}
344 	} else {
345 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
346 				     0, 0);
347 		if (ret && ret != -ENODATA) {
348 			btrfs_abort_transaction(trans, ret);
349 			goto out_end_trans;
350 		}
351 	}
352 
353 update_flags:
354 	binode->flags = binode_flags;
355 	btrfs_sync_inode_flags_to_i_flags(inode);
356 	inode_inc_iversion(inode);
357 	inode->i_ctime = current_time(inode);
358 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
359 
360  out_end_trans:
361 	btrfs_end_transaction(trans);
362 	return ret;
363 }
364 
365 /*
366  * Start exclusive operation @type, return true on success
367  */
368 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
369 			enum btrfs_exclusive_operation type)
370 {
371 	bool ret = false;
372 
373 	spin_lock(&fs_info->super_lock);
374 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
375 		fs_info->exclusive_operation = type;
376 		ret = true;
377 	}
378 	spin_unlock(&fs_info->super_lock);
379 
380 	return ret;
381 }
382 
383 /*
384  * Conditionally allow to enter the exclusive operation in case it's compatible
385  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
386  * btrfs_exclop_finish.
387  *
388  * Compatibility:
389  * - the same type is already running
390  * - when trying to add a device and balance has been paused
391  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
392  *   must check the condition first that would allow none -> @type
393  */
394 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
395 				 enum btrfs_exclusive_operation type)
396 {
397 	spin_lock(&fs_info->super_lock);
398 	if (fs_info->exclusive_operation == type ||
399 	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
400 	     type == BTRFS_EXCLOP_DEV_ADD))
401 		return true;
402 
403 	spin_unlock(&fs_info->super_lock);
404 	return false;
405 }
406 
407 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
408 {
409 	spin_unlock(&fs_info->super_lock);
410 }
411 
412 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
413 {
414 	spin_lock(&fs_info->super_lock);
415 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
416 	spin_unlock(&fs_info->super_lock);
417 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
418 }
419 
420 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
421 			  enum btrfs_exclusive_operation op)
422 {
423 	switch (op) {
424 	case BTRFS_EXCLOP_BALANCE_PAUSED:
425 		spin_lock(&fs_info->super_lock);
426 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
427 		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD);
428 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
429 		spin_unlock(&fs_info->super_lock);
430 		break;
431 	case BTRFS_EXCLOP_BALANCE:
432 		spin_lock(&fs_info->super_lock);
433 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
434 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
435 		spin_unlock(&fs_info->super_lock);
436 		break;
437 	default:
438 		btrfs_warn(fs_info,
439 			"invalid exclop balance operation %d requested", op);
440 	}
441 }
442 
443 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
444 {
445 	struct inode *inode = file_inode(file);
446 
447 	return put_user(inode->i_generation, arg);
448 }
449 
450 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
451 					void __user *arg)
452 {
453 	struct btrfs_device *device;
454 	struct request_queue *q;
455 	struct fstrim_range range;
456 	u64 minlen = ULLONG_MAX;
457 	u64 num_devices = 0;
458 	int ret;
459 
460 	if (!capable(CAP_SYS_ADMIN))
461 		return -EPERM;
462 
463 	/*
464 	 * btrfs_trim_block_group() depends on space cache, which is not
465 	 * available in zoned filesystem. So, disallow fitrim on a zoned
466 	 * filesystem for now.
467 	 */
468 	if (btrfs_is_zoned(fs_info))
469 		return -EOPNOTSUPP;
470 
471 	/*
472 	 * If the fs is mounted with nologreplay, which requires it to be
473 	 * mounted in RO mode as well, we can not allow discard on free space
474 	 * inside block groups, because log trees refer to extents that are not
475 	 * pinned in a block group's free space cache (pinning the extents is
476 	 * precisely the first phase of replaying a log tree).
477 	 */
478 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
479 		return -EROFS;
480 
481 	rcu_read_lock();
482 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
483 				dev_list) {
484 		if (!device->bdev)
485 			continue;
486 		q = bdev_get_queue(device->bdev);
487 		if (blk_queue_discard(q)) {
488 			num_devices++;
489 			minlen = min_t(u64, q->limits.discard_granularity,
490 				     minlen);
491 		}
492 	}
493 	rcu_read_unlock();
494 
495 	if (!num_devices)
496 		return -EOPNOTSUPP;
497 	if (copy_from_user(&range, arg, sizeof(range)))
498 		return -EFAULT;
499 
500 	/*
501 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
502 	 * block group is in the logical address space, which can be any
503 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
504 	 */
505 	if (range.len < fs_info->sb->s_blocksize)
506 		return -EINVAL;
507 
508 	range.minlen = max(range.minlen, minlen);
509 	ret = btrfs_trim_fs(fs_info, &range);
510 	if (ret < 0)
511 		return ret;
512 
513 	if (copy_to_user(arg, &range, sizeof(range)))
514 		return -EFAULT;
515 
516 	return 0;
517 }
518 
519 int __pure btrfs_is_empty_uuid(u8 *uuid)
520 {
521 	int i;
522 
523 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
524 		if (uuid[i])
525 			return 0;
526 	}
527 	return 1;
528 }
529 
530 static noinline int create_subvol(struct user_namespace *mnt_userns,
531 				  struct inode *dir, struct dentry *dentry,
532 				  const char *name, int namelen,
533 				  struct btrfs_qgroup_inherit *inherit)
534 {
535 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
536 	struct btrfs_trans_handle *trans;
537 	struct btrfs_key key;
538 	struct btrfs_root_item *root_item;
539 	struct btrfs_inode_item *inode_item;
540 	struct extent_buffer *leaf;
541 	struct btrfs_root *root = BTRFS_I(dir)->root;
542 	struct btrfs_root *new_root;
543 	struct btrfs_block_rsv block_rsv;
544 	struct timespec64 cur_time = current_time(dir);
545 	struct inode *inode;
546 	int ret;
547 	dev_t anon_dev = 0;
548 	u64 objectid;
549 	u64 index = 0;
550 
551 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
552 	if (!root_item)
553 		return -ENOMEM;
554 
555 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
556 	if (ret)
557 		goto fail_free;
558 
559 	ret = get_anon_bdev(&anon_dev);
560 	if (ret < 0)
561 		goto fail_free;
562 
563 	/*
564 	 * Don't create subvolume whose level is not zero. Or qgroup will be
565 	 * screwed up since it assumes subvolume qgroup's level to be 0.
566 	 */
567 	if (btrfs_qgroup_level(objectid)) {
568 		ret = -ENOSPC;
569 		goto fail_free;
570 	}
571 
572 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
573 	/*
574 	 * The same as the snapshot creation, please see the comment
575 	 * of create_snapshot().
576 	 */
577 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
578 	if (ret)
579 		goto fail_free;
580 
581 	trans = btrfs_start_transaction(root, 0);
582 	if (IS_ERR(trans)) {
583 		ret = PTR_ERR(trans);
584 		btrfs_subvolume_release_metadata(root, &block_rsv);
585 		goto fail_free;
586 	}
587 	trans->block_rsv = &block_rsv;
588 	trans->bytes_reserved = block_rsv.size;
589 
590 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
591 	if (ret)
592 		goto fail;
593 
594 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
595 				      BTRFS_NESTING_NORMAL);
596 	if (IS_ERR(leaf)) {
597 		ret = PTR_ERR(leaf);
598 		goto fail;
599 	}
600 
601 	btrfs_mark_buffer_dirty(leaf);
602 
603 	inode_item = &root_item->inode;
604 	btrfs_set_stack_inode_generation(inode_item, 1);
605 	btrfs_set_stack_inode_size(inode_item, 3);
606 	btrfs_set_stack_inode_nlink(inode_item, 1);
607 	btrfs_set_stack_inode_nbytes(inode_item,
608 				     fs_info->nodesize);
609 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
610 
611 	btrfs_set_root_flags(root_item, 0);
612 	btrfs_set_root_limit(root_item, 0);
613 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
614 
615 	btrfs_set_root_bytenr(root_item, leaf->start);
616 	btrfs_set_root_generation(root_item, trans->transid);
617 	btrfs_set_root_level(root_item, 0);
618 	btrfs_set_root_refs(root_item, 1);
619 	btrfs_set_root_used(root_item, leaf->len);
620 	btrfs_set_root_last_snapshot(root_item, 0);
621 
622 	btrfs_set_root_generation_v2(root_item,
623 			btrfs_root_generation(root_item));
624 	generate_random_guid(root_item->uuid);
625 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
626 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
627 	root_item->ctime = root_item->otime;
628 	btrfs_set_root_ctransid(root_item, trans->transid);
629 	btrfs_set_root_otransid(root_item, trans->transid);
630 
631 	btrfs_tree_unlock(leaf);
632 
633 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
634 
635 	key.objectid = objectid;
636 	key.offset = 0;
637 	key.type = BTRFS_ROOT_ITEM_KEY;
638 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
639 				root_item);
640 	if (ret) {
641 		/*
642 		 * Since we don't abort the transaction in this case, free the
643 		 * tree block so that we don't leak space and leave the
644 		 * filesystem in an inconsistent state (an extent item in the
645 		 * extent tree with a backreference for a root that does not
646 		 * exists).
647 		 */
648 		btrfs_tree_lock(leaf);
649 		btrfs_clean_tree_block(leaf);
650 		btrfs_tree_unlock(leaf);
651 		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
652 		free_extent_buffer(leaf);
653 		goto fail;
654 	}
655 
656 	free_extent_buffer(leaf);
657 	leaf = NULL;
658 
659 	key.offset = (u64)-1;
660 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
661 	if (IS_ERR(new_root)) {
662 		free_anon_bdev(anon_dev);
663 		ret = PTR_ERR(new_root);
664 		btrfs_abort_transaction(trans, ret);
665 		goto fail;
666 	}
667 	/* Freeing will be done in btrfs_put_root() of new_root */
668 	anon_dev = 0;
669 
670 	ret = btrfs_record_root_in_trans(trans, new_root);
671 	if (ret) {
672 		btrfs_put_root(new_root);
673 		btrfs_abort_transaction(trans, ret);
674 		goto fail;
675 	}
676 
677 	ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns);
678 	btrfs_put_root(new_root);
679 	if (ret) {
680 		/* We potentially lose an unused inode item here */
681 		btrfs_abort_transaction(trans, ret);
682 		goto fail;
683 	}
684 
685 	/*
686 	 * insert the directory item
687 	 */
688 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
689 	if (ret) {
690 		btrfs_abort_transaction(trans, ret);
691 		goto fail;
692 	}
693 
694 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
695 				    BTRFS_FT_DIR, index);
696 	if (ret) {
697 		btrfs_abort_transaction(trans, ret);
698 		goto fail;
699 	}
700 
701 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
702 	ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
703 	if (ret) {
704 		btrfs_abort_transaction(trans, ret);
705 		goto fail;
706 	}
707 
708 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
709 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
710 	if (ret) {
711 		btrfs_abort_transaction(trans, ret);
712 		goto fail;
713 	}
714 
715 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
716 				  BTRFS_UUID_KEY_SUBVOL, objectid);
717 	if (ret)
718 		btrfs_abort_transaction(trans, ret);
719 
720 fail:
721 	kfree(root_item);
722 	trans->block_rsv = NULL;
723 	trans->bytes_reserved = 0;
724 	btrfs_subvolume_release_metadata(root, &block_rsv);
725 
726 	if (ret)
727 		btrfs_end_transaction(trans);
728 	else
729 		ret = btrfs_commit_transaction(trans);
730 
731 	if (!ret) {
732 		inode = btrfs_lookup_dentry(dir, dentry);
733 		if (IS_ERR(inode))
734 			return PTR_ERR(inode);
735 		d_instantiate(dentry, inode);
736 	}
737 	return ret;
738 
739 fail_free:
740 	if (anon_dev)
741 		free_anon_bdev(anon_dev);
742 	kfree(root_item);
743 	return ret;
744 }
745 
746 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
747 			   struct dentry *dentry, bool readonly,
748 			   struct btrfs_qgroup_inherit *inherit)
749 {
750 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
751 	struct inode *inode;
752 	struct btrfs_pending_snapshot *pending_snapshot;
753 	struct btrfs_trans_handle *trans;
754 	int ret;
755 
756 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
757 		return -EINVAL;
758 
759 	if (atomic_read(&root->nr_swapfiles)) {
760 		btrfs_warn(fs_info,
761 			   "cannot snapshot subvolume with active swapfile");
762 		return -ETXTBSY;
763 	}
764 
765 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
766 	if (!pending_snapshot)
767 		return -ENOMEM;
768 
769 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
770 	if (ret < 0)
771 		goto free_pending;
772 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
773 			GFP_KERNEL);
774 	pending_snapshot->path = btrfs_alloc_path();
775 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
776 		ret = -ENOMEM;
777 		goto free_pending;
778 	}
779 
780 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
781 			     BTRFS_BLOCK_RSV_TEMP);
782 	/*
783 	 * 1 - parent dir inode
784 	 * 2 - dir entries
785 	 * 1 - root item
786 	 * 2 - root ref/backref
787 	 * 1 - root of snapshot
788 	 * 1 - UUID item
789 	 */
790 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
791 					&pending_snapshot->block_rsv, 8,
792 					false);
793 	if (ret)
794 		goto free_pending;
795 
796 	pending_snapshot->dentry = dentry;
797 	pending_snapshot->root = root;
798 	pending_snapshot->readonly = readonly;
799 	pending_snapshot->dir = dir;
800 	pending_snapshot->inherit = inherit;
801 
802 	trans = btrfs_start_transaction(root, 0);
803 	if (IS_ERR(trans)) {
804 		ret = PTR_ERR(trans);
805 		goto fail;
806 	}
807 
808 	trans->pending_snapshot = pending_snapshot;
809 
810 	ret = btrfs_commit_transaction(trans);
811 	if (ret)
812 		goto fail;
813 
814 	ret = pending_snapshot->error;
815 	if (ret)
816 		goto fail;
817 
818 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
819 	if (ret)
820 		goto fail;
821 
822 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
823 	if (IS_ERR(inode)) {
824 		ret = PTR_ERR(inode);
825 		goto fail;
826 	}
827 
828 	d_instantiate(dentry, inode);
829 	ret = 0;
830 	pending_snapshot->anon_dev = 0;
831 fail:
832 	/* Prevent double freeing of anon_dev */
833 	if (ret && pending_snapshot->snap)
834 		pending_snapshot->snap->anon_dev = 0;
835 	btrfs_put_root(pending_snapshot->snap);
836 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
837 free_pending:
838 	if (pending_snapshot->anon_dev)
839 		free_anon_bdev(pending_snapshot->anon_dev);
840 	kfree(pending_snapshot->root_item);
841 	btrfs_free_path(pending_snapshot->path);
842 	kfree(pending_snapshot);
843 
844 	return ret;
845 }
846 
847 /*  copy of may_delete in fs/namei.c()
848  *	Check whether we can remove a link victim from directory dir, check
849  *  whether the type of victim is right.
850  *  1. We can't do it if dir is read-only (done in permission())
851  *  2. We should have write and exec permissions on dir
852  *  3. We can't remove anything from append-only dir
853  *  4. We can't do anything with immutable dir (done in permission())
854  *  5. If the sticky bit on dir is set we should either
855  *	a. be owner of dir, or
856  *	b. be owner of victim, or
857  *	c. have CAP_FOWNER capability
858  *  6. If the victim is append-only or immutable we can't do anything with
859  *     links pointing to it.
860  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
861  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
862  *  9. We can't remove a root or mountpoint.
863  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
864  *     nfs_async_unlink().
865  */
866 
867 static int btrfs_may_delete(struct user_namespace *mnt_userns,
868 			    struct inode *dir, struct dentry *victim, int isdir)
869 {
870 	int error;
871 
872 	if (d_really_is_negative(victim))
873 		return -ENOENT;
874 
875 	BUG_ON(d_inode(victim->d_parent) != dir);
876 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
877 
878 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
879 	if (error)
880 		return error;
881 	if (IS_APPEND(dir))
882 		return -EPERM;
883 	if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
884 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
885 	    IS_SWAPFILE(d_inode(victim)))
886 		return -EPERM;
887 	if (isdir) {
888 		if (!d_is_dir(victim))
889 			return -ENOTDIR;
890 		if (IS_ROOT(victim))
891 			return -EBUSY;
892 	} else if (d_is_dir(victim))
893 		return -EISDIR;
894 	if (IS_DEADDIR(dir))
895 		return -ENOENT;
896 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
897 		return -EBUSY;
898 	return 0;
899 }
900 
901 /* copy of may_create in fs/namei.c() */
902 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
903 				   struct inode *dir, struct dentry *child)
904 {
905 	if (d_really_is_positive(child))
906 		return -EEXIST;
907 	if (IS_DEADDIR(dir))
908 		return -ENOENT;
909 	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
910 		return -EOVERFLOW;
911 	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
912 }
913 
914 /*
915  * Create a new subvolume below @parent.  This is largely modeled after
916  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
917  * inside this filesystem so it's quite a bit simpler.
918  */
919 static noinline int btrfs_mksubvol(const struct path *parent,
920 				   struct user_namespace *mnt_userns,
921 				   const char *name, int namelen,
922 				   struct btrfs_root *snap_src,
923 				   bool readonly,
924 				   struct btrfs_qgroup_inherit *inherit)
925 {
926 	struct inode *dir = d_inode(parent->dentry);
927 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
928 	struct dentry *dentry;
929 	int error;
930 
931 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
932 	if (error == -EINTR)
933 		return error;
934 
935 	dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
936 	error = PTR_ERR(dentry);
937 	if (IS_ERR(dentry))
938 		goto out_unlock;
939 
940 	error = btrfs_may_create(mnt_userns, dir, dentry);
941 	if (error)
942 		goto out_dput;
943 
944 	/*
945 	 * even if this name doesn't exist, we may get hash collisions.
946 	 * check for them now when we can safely fail
947 	 */
948 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
949 					       dir->i_ino, name,
950 					       namelen);
951 	if (error)
952 		goto out_dput;
953 
954 	down_read(&fs_info->subvol_sem);
955 
956 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
957 		goto out_up_read;
958 
959 	if (snap_src)
960 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
961 	else
962 		error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit);
963 
964 	if (!error)
965 		fsnotify_mkdir(dir, dentry);
966 out_up_read:
967 	up_read(&fs_info->subvol_sem);
968 out_dput:
969 	dput(dentry);
970 out_unlock:
971 	btrfs_inode_unlock(dir, 0);
972 	return error;
973 }
974 
975 static noinline int btrfs_mksnapshot(const struct path *parent,
976 				   struct user_namespace *mnt_userns,
977 				   const char *name, int namelen,
978 				   struct btrfs_root *root,
979 				   bool readonly,
980 				   struct btrfs_qgroup_inherit *inherit)
981 {
982 	int ret;
983 	bool snapshot_force_cow = false;
984 
985 	/*
986 	 * Force new buffered writes to reserve space even when NOCOW is
987 	 * possible. This is to avoid later writeback (running dealloc) to
988 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
989 	 */
990 	btrfs_drew_read_lock(&root->snapshot_lock);
991 
992 	ret = btrfs_start_delalloc_snapshot(root, false);
993 	if (ret)
994 		goto out;
995 
996 	/*
997 	 * All previous writes have started writeback in NOCOW mode, so now
998 	 * we force future writes to fallback to COW mode during snapshot
999 	 * creation.
1000 	 */
1001 	atomic_inc(&root->snapshot_force_cow);
1002 	snapshot_force_cow = true;
1003 
1004 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1005 
1006 	ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
1007 			     root, readonly, inherit);
1008 out:
1009 	if (snapshot_force_cow)
1010 		atomic_dec(&root->snapshot_force_cow);
1011 	btrfs_drew_read_unlock(&root->snapshot_lock);
1012 	return ret;
1013 }
1014 
1015 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
1016 					       bool locked)
1017 {
1018 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1019 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1020 	struct extent_map *em;
1021 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
1022 
1023 	/*
1024 	 * hopefully we have this extent in the tree already, try without
1025 	 * the full extent lock
1026 	 */
1027 	read_lock(&em_tree->lock);
1028 	em = lookup_extent_mapping(em_tree, start, sectorsize);
1029 	read_unlock(&em_tree->lock);
1030 
1031 	if (!em) {
1032 		struct extent_state *cached = NULL;
1033 		u64 end = start + sectorsize - 1;
1034 
1035 		/* get the big lock and read metadata off disk */
1036 		if (!locked)
1037 			lock_extent_bits(io_tree, start, end, &cached);
1038 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, sectorsize);
1039 		if (!locked)
1040 			unlock_extent_cached(io_tree, start, end, &cached);
1041 
1042 		if (IS_ERR(em))
1043 			return NULL;
1044 	}
1045 
1046 	return em;
1047 }
1048 
1049 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
1050 				     bool locked)
1051 {
1052 	struct extent_map *next;
1053 	bool ret = true;
1054 
1055 	/* this is the last extent */
1056 	if (em->start + em->len >= i_size_read(inode))
1057 		return false;
1058 
1059 	next = defrag_lookup_extent(inode, em->start + em->len, locked);
1060 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1061 		ret = false;
1062 	else if ((em->block_start + em->block_len == next->block_start) &&
1063 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1064 		ret = false;
1065 
1066 	free_extent_map(next);
1067 	return ret;
1068 }
1069 
1070 /*
1071  * Prepare one page to be defragged.
1072  *
1073  * This will ensure:
1074  *
1075  * - Returned page is locked and has been set up properly.
1076  * - No ordered extent exists in the page.
1077  * - The page is uptodate.
1078  *
1079  * NOTE: Caller should also wait for page writeback after the cluster is
1080  * prepared, here we don't do writeback wait for each page.
1081  */
1082 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
1083 					    pgoff_t index)
1084 {
1085 	struct address_space *mapping = inode->vfs_inode.i_mapping;
1086 	gfp_t mask = btrfs_alloc_write_mask(mapping);
1087 	u64 page_start = (u64)index << PAGE_SHIFT;
1088 	u64 page_end = page_start + PAGE_SIZE - 1;
1089 	struct extent_state *cached_state = NULL;
1090 	struct page *page;
1091 	int ret;
1092 
1093 again:
1094 	page = find_or_create_page(mapping, index, mask);
1095 	if (!page)
1096 		return ERR_PTR(-ENOMEM);
1097 
1098 	/*
1099 	 * Since we can defragment files opened read-only, we can encounter
1100 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
1101 	 * can't do I/O using huge pages yet, so return an error for now.
1102 	 * Filesystem transparent huge pages are typically only used for
1103 	 * executables that explicitly enable them, so this isn't very
1104 	 * restrictive.
1105 	 */
1106 	if (PageCompound(page)) {
1107 		unlock_page(page);
1108 		put_page(page);
1109 		return ERR_PTR(-ETXTBSY);
1110 	}
1111 
1112 	ret = set_page_extent_mapped(page);
1113 	if (ret < 0) {
1114 		unlock_page(page);
1115 		put_page(page);
1116 		return ERR_PTR(ret);
1117 	}
1118 
1119 	/* Wait for any existing ordered extent in the range */
1120 	while (1) {
1121 		struct btrfs_ordered_extent *ordered;
1122 
1123 		lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
1124 		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
1125 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
1126 				     &cached_state);
1127 		if (!ordered)
1128 			break;
1129 
1130 		unlock_page(page);
1131 		btrfs_start_ordered_extent(ordered, 1);
1132 		btrfs_put_ordered_extent(ordered);
1133 		lock_page(page);
1134 		/*
1135 		 * We unlocked the page above, so we need check if it was
1136 		 * released or not.
1137 		 */
1138 		if (page->mapping != mapping || !PagePrivate(page)) {
1139 			unlock_page(page);
1140 			put_page(page);
1141 			goto again;
1142 		}
1143 	}
1144 
1145 	/*
1146 	 * Now the page range has no ordered extent any more.  Read the page to
1147 	 * make it uptodate.
1148 	 */
1149 	if (!PageUptodate(page)) {
1150 		btrfs_readpage(NULL, page);
1151 		lock_page(page);
1152 		if (page->mapping != mapping || !PagePrivate(page)) {
1153 			unlock_page(page);
1154 			put_page(page);
1155 			goto again;
1156 		}
1157 		if (!PageUptodate(page)) {
1158 			unlock_page(page);
1159 			put_page(page);
1160 			return ERR_PTR(-EIO);
1161 		}
1162 	}
1163 	return page;
1164 }
1165 
1166 struct defrag_target_range {
1167 	struct list_head list;
1168 	u64 start;
1169 	u64 len;
1170 };
1171 
1172 /*
1173  * Collect all valid target extents.
1174  *
1175  * @start:	   file offset to lookup
1176  * @len:	   length to lookup
1177  * @extent_thresh: file extent size threshold, any extent size >= this value
1178  *		   will be ignored
1179  * @newer_than:    only defrag extents newer than this value
1180  * @do_compress:   whether the defrag is doing compression
1181  *		   if true, @extent_thresh will be ignored and all regular
1182  *		   file extents meeting @newer_than will be targets.
1183  * @locked:	   if the range has already held extent lock
1184  * @target_list:   list of targets file extents
1185  */
1186 static int defrag_collect_targets(struct btrfs_inode *inode,
1187 				  u64 start, u64 len, u32 extent_thresh,
1188 				  u64 newer_than, bool do_compress,
1189 				  bool locked, struct list_head *target_list)
1190 {
1191 	u64 cur = start;
1192 	int ret = 0;
1193 
1194 	while (cur < start + len) {
1195 		struct extent_map *em;
1196 		struct defrag_target_range *new;
1197 		bool next_mergeable = true;
1198 		u64 range_len;
1199 
1200 		em = defrag_lookup_extent(&inode->vfs_inode, cur, locked);
1201 		if (!em)
1202 			break;
1203 
1204 		/* Skip hole/inline/preallocated extents */
1205 		if (em->block_start >= EXTENT_MAP_LAST_BYTE ||
1206 		    test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1207 			goto next;
1208 
1209 		/* Skip older extent */
1210 		if (em->generation < newer_than)
1211 			goto next;
1212 
1213 		/* This em is under writeback, no need to defrag */
1214 		if (em->generation == (u64)-1)
1215 			goto next;
1216 
1217 		/*
1218 		 * Our start offset might be in the middle of an existing extent
1219 		 * map, so take that into account.
1220 		 */
1221 		range_len = em->len - (cur - em->start);
1222 		/*
1223 		 * If this range of the extent map is already flagged for delalloc,
1224 		 * skip it, because:
1225 		 *
1226 		 * 1) We could deadlock later, when trying to reserve space for
1227 		 *    delalloc, because in case we can't immediately reserve space
1228 		 *    the flusher can start delalloc and wait for the respective
1229 		 *    ordered extents to complete. The deadlock would happen
1230 		 *    because we do the space reservation while holding the range
1231 		 *    locked, and starting writeback, or finishing an ordered
1232 		 *    extent, requires locking the range;
1233 		 *
1234 		 * 2) If there's delalloc there, it means there's dirty pages for
1235 		 *    which writeback has not started yet (we clean the delalloc
1236 		 *    flag when starting writeback and after creating an ordered
1237 		 *    extent). If we mark pages in an adjacent range for defrag,
1238 		 *    then we will have a larger contiguous range for delalloc,
1239 		 *    very likely resulting in a larger extent after writeback is
1240 		 *    triggered (except in a case of free space fragmentation).
1241 		 */
1242 		if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
1243 				   EXTENT_DELALLOC, 0, NULL))
1244 			goto next;
1245 
1246 		/*
1247 		 * For do_compress case, we want to compress all valid file
1248 		 * extents, thus no @extent_thresh or mergeable check.
1249 		 */
1250 		if (do_compress)
1251 			goto add;
1252 
1253 		/* Skip too large extent */
1254 		if (range_len >= extent_thresh)
1255 			goto next;
1256 
1257 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1258 							  locked);
1259 		if (!next_mergeable) {
1260 			struct defrag_target_range *last;
1261 
1262 			/* Empty target list, no way to merge with last entry */
1263 			if (list_empty(target_list))
1264 				goto next;
1265 			last = list_entry(target_list->prev,
1266 					  struct defrag_target_range, list);
1267 			/* Not mergeable with last entry */
1268 			if (last->start + last->len != cur)
1269 				goto next;
1270 
1271 			/* Mergeable, fall through to add it to @target_list. */
1272 		}
1273 
1274 add:
1275 		range_len = min(extent_map_end(em), start + len) - cur;
1276 		/*
1277 		 * This one is a good target, check if it can be merged into
1278 		 * last range of the target list.
1279 		 */
1280 		if (!list_empty(target_list)) {
1281 			struct defrag_target_range *last;
1282 
1283 			last = list_entry(target_list->prev,
1284 					  struct defrag_target_range, list);
1285 			ASSERT(last->start + last->len <= cur);
1286 			if (last->start + last->len == cur) {
1287 				/* Mergeable, enlarge the last entry */
1288 				last->len += range_len;
1289 				goto next;
1290 			}
1291 			/* Fall through to allocate a new entry */
1292 		}
1293 
1294 		/* Allocate new defrag_target_range */
1295 		new = kmalloc(sizeof(*new), GFP_NOFS);
1296 		if (!new) {
1297 			free_extent_map(em);
1298 			ret = -ENOMEM;
1299 			break;
1300 		}
1301 		new->start = cur;
1302 		new->len = range_len;
1303 		list_add_tail(&new->list, target_list);
1304 
1305 next:
1306 		cur = extent_map_end(em);
1307 		free_extent_map(em);
1308 	}
1309 	if (ret < 0) {
1310 		struct defrag_target_range *entry;
1311 		struct defrag_target_range *tmp;
1312 
1313 		list_for_each_entry_safe(entry, tmp, target_list, list) {
1314 			list_del_init(&entry->list);
1315 			kfree(entry);
1316 		}
1317 	}
1318 	return ret;
1319 }
1320 
1321 #define CLUSTER_SIZE	(SZ_256K)
1322 
1323 /*
1324  * Defrag one contiguous target range.
1325  *
1326  * @inode:	target inode
1327  * @target:	target range to defrag
1328  * @pages:	locked pages covering the defrag range
1329  * @nr_pages:	number of locked pages
1330  *
1331  * Caller should ensure:
1332  *
1333  * - Pages are prepared
1334  *   Pages should be locked, no ordered extent in the pages range,
1335  *   no writeback.
1336  *
1337  * - Extent bits are locked
1338  */
1339 static int defrag_one_locked_target(struct btrfs_inode *inode,
1340 				    struct defrag_target_range *target,
1341 				    struct page **pages, int nr_pages,
1342 				    struct extent_state **cached_state)
1343 {
1344 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1345 	struct extent_changeset *data_reserved = NULL;
1346 	const u64 start = target->start;
1347 	const u64 len = target->len;
1348 	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1349 	unsigned long start_index = start >> PAGE_SHIFT;
1350 	unsigned long first_index = page_index(pages[0]);
1351 	int ret = 0;
1352 	int i;
1353 
1354 	ASSERT(last_index - first_index + 1 <= nr_pages);
1355 
1356 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1357 	if (ret < 0)
1358 		return ret;
1359 	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1360 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1361 			 EXTENT_DEFRAG, 0, 0, cached_state);
1362 	set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1363 
1364 	/* Update the page status */
1365 	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1366 		ClearPageChecked(pages[i]);
1367 		btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1368 	}
1369 	btrfs_delalloc_release_extents(inode, len);
1370 	extent_changeset_free(data_reserved);
1371 
1372 	return ret;
1373 }
1374 
1375 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1376 			    u32 extent_thresh, u64 newer_than, bool do_compress)
1377 {
1378 	struct extent_state *cached_state = NULL;
1379 	struct defrag_target_range *entry;
1380 	struct defrag_target_range *tmp;
1381 	LIST_HEAD(target_list);
1382 	struct page **pages;
1383 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1384 	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1385 	u64 start_index = start >> PAGE_SHIFT;
1386 	unsigned int nr_pages = last_index - start_index + 1;
1387 	int ret = 0;
1388 	int i;
1389 
1390 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1391 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1392 
1393 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1394 	if (!pages)
1395 		return -ENOMEM;
1396 
1397 	/* Prepare all pages */
1398 	for (i = 0; i < nr_pages; i++) {
1399 		pages[i] = defrag_prepare_one_page(inode, start_index + i);
1400 		if (IS_ERR(pages[i])) {
1401 			ret = PTR_ERR(pages[i]);
1402 			pages[i] = NULL;
1403 			goto free_pages;
1404 		}
1405 	}
1406 	for (i = 0; i < nr_pages; i++)
1407 		wait_on_page_writeback(pages[i]);
1408 
1409 	/* Lock the pages range */
1410 	lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT,
1411 			 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1412 			 &cached_state);
1413 	/*
1414 	 * Now we have a consistent view about the extent map, re-check
1415 	 * which range really needs to be defragged.
1416 	 *
1417 	 * And this time we have extent locked already, pass @locked = true
1418 	 * so that we won't relock the extent range and cause deadlock.
1419 	 */
1420 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1421 				     newer_than, do_compress, true,
1422 				     &target_list);
1423 	if (ret < 0)
1424 		goto unlock_extent;
1425 
1426 	list_for_each_entry(entry, &target_list, list) {
1427 		ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1428 					       &cached_state);
1429 		if (ret < 0)
1430 			break;
1431 	}
1432 
1433 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1434 		list_del_init(&entry->list);
1435 		kfree(entry);
1436 	}
1437 unlock_extent:
1438 	unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT,
1439 			     (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1440 			     &cached_state);
1441 free_pages:
1442 	for (i = 0; i < nr_pages; i++) {
1443 		if (pages[i]) {
1444 			unlock_page(pages[i]);
1445 			put_page(pages[i]);
1446 		}
1447 	}
1448 	kfree(pages);
1449 	return ret;
1450 }
1451 
1452 static int defrag_one_cluster(struct btrfs_inode *inode,
1453 			      struct file_ra_state *ra,
1454 			      u64 start, u32 len, u32 extent_thresh,
1455 			      u64 newer_than, bool do_compress,
1456 			      unsigned long *sectors_defragged,
1457 			      unsigned long max_sectors)
1458 {
1459 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1460 	struct defrag_target_range *entry;
1461 	struct defrag_target_range *tmp;
1462 	LIST_HEAD(target_list);
1463 	int ret;
1464 
1465 	BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1466 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1467 				     newer_than, do_compress, false,
1468 				     &target_list);
1469 	if (ret < 0)
1470 		goto out;
1471 
1472 	list_for_each_entry(entry, &target_list, list) {
1473 		u32 range_len = entry->len;
1474 
1475 		/* Reached or beyond the limit */
1476 		if (max_sectors && *sectors_defragged >= max_sectors) {
1477 			ret = 1;
1478 			break;
1479 		}
1480 
1481 		if (max_sectors)
1482 			range_len = min_t(u32, range_len,
1483 				(max_sectors - *sectors_defragged) * sectorsize);
1484 
1485 		if (ra)
1486 			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1487 				ra, NULL, entry->start >> PAGE_SHIFT,
1488 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1489 				(entry->start >> PAGE_SHIFT) + 1);
1490 		/*
1491 		 * Here we may not defrag any range if holes are punched before
1492 		 * we locked the pages.
1493 		 * But that's fine, it only affects the @sectors_defragged
1494 		 * accounting.
1495 		 */
1496 		ret = defrag_one_range(inode, entry->start, range_len,
1497 				       extent_thresh, newer_than, do_compress);
1498 		if (ret < 0)
1499 			break;
1500 		*sectors_defragged += range_len >>
1501 				      inode->root->fs_info->sectorsize_bits;
1502 	}
1503 out:
1504 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1505 		list_del_init(&entry->list);
1506 		kfree(entry);
1507 	}
1508 	return ret;
1509 }
1510 
1511 /*
1512  * Entry point to file defragmentation.
1513  *
1514  * @inode:	   inode to be defragged
1515  * @ra:		   readahead state (can be NUL)
1516  * @range:	   defrag options including range and flags
1517  * @newer_than:	   minimum transid to defrag
1518  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1519  *		   will be defragged.
1520  *
1521  * Return <0 for error.
1522  * Return >=0 for the number of sectors defragged, and range->start will be updated
1523  * to indicate the file offset where next defrag should be started at.
1524  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1525  *  defragging all the range).
1526  */
1527 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1528 		      struct btrfs_ioctl_defrag_range_args *range,
1529 		      u64 newer_than, unsigned long max_to_defrag)
1530 {
1531 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1532 	unsigned long sectors_defragged = 0;
1533 	u64 isize = i_size_read(inode);
1534 	u64 cur;
1535 	u64 last_byte;
1536 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1537 	bool ra_allocated = false;
1538 	int compress_type = BTRFS_COMPRESS_ZLIB;
1539 	int ret = 0;
1540 	u32 extent_thresh = range->extent_thresh;
1541 	pgoff_t start_index;
1542 
1543 	if (isize == 0)
1544 		return 0;
1545 
1546 	if (range->start >= isize)
1547 		return -EINVAL;
1548 
1549 	if (do_compress) {
1550 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1551 			return -EINVAL;
1552 		if (range->compress_type)
1553 			compress_type = range->compress_type;
1554 	}
1555 
1556 	if (extent_thresh == 0)
1557 		extent_thresh = SZ_256K;
1558 
1559 	if (range->start + range->len > range->start) {
1560 		/* Got a specific range */
1561 		last_byte = min(isize, range->start + range->len);
1562 	} else {
1563 		/* Defrag until file end */
1564 		last_byte = isize;
1565 	}
1566 
1567 	/* Align the range */
1568 	cur = round_down(range->start, fs_info->sectorsize);
1569 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1570 
1571 	/*
1572 	 * If we were not given a ra, allocate a readahead context. As
1573 	 * readahead is just an optimization, defrag will work without it so
1574 	 * we don't error out.
1575 	 */
1576 	if (!ra) {
1577 		ra_allocated = true;
1578 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1579 		if (ra)
1580 			file_ra_state_init(ra, inode->i_mapping);
1581 	}
1582 
1583 	/*
1584 	 * Make writeback start from the beginning of the range, so that the
1585 	 * defrag range can be written sequentially.
1586 	 */
1587 	start_index = cur >> PAGE_SHIFT;
1588 	if (start_index < inode->i_mapping->writeback_index)
1589 		inode->i_mapping->writeback_index = start_index;
1590 
1591 	while (cur < last_byte) {
1592 		const unsigned long prev_sectors_defragged = sectors_defragged;
1593 		u64 cluster_end;
1594 
1595 		/* The cluster size 256K should always be page aligned */
1596 		BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1597 
1598 		if (btrfs_defrag_cancelled(fs_info)) {
1599 			ret = -EAGAIN;
1600 			break;
1601 		}
1602 
1603 		/* We want the cluster end at page boundary when possible */
1604 		cluster_end = (((cur >> PAGE_SHIFT) +
1605 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1606 		cluster_end = min(cluster_end, last_byte);
1607 
1608 		btrfs_inode_lock(inode, 0);
1609 		if (IS_SWAPFILE(inode)) {
1610 			ret = -ETXTBSY;
1611 			btrfs_inode_unlock(inode, 0);
1612 			break;
1613 		}
1614 		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1615 			btrfs_inode_unlock(inode, 0);
1616 			break;
1617 		}
1618 		if (do_compress)
1619 			BTRFS_I(inode)->defrag_compress = compress_type;
1620 		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1621 				cluster_end + 1 - cur, extent_thresh,
1622 				newer_than, do_compress,
1623 				&sectors_defragged, max_to_defrag);
1624 
1625 		if (sectors_defragged > prev_sectors_defragged)
1626 			balance_dirty_pages_ratelimited(inode->i_mapping);
1627 
1628 		btrfs_inode_unlock(inode, 0);
1629 		if (ret < 0)
1630 			break;
1631 		cur = cluster_end + 1;
1632 		if (ret > 0) {
1633 			ret = 0;
1634 			break;
1635 		}
1636 		cond_resched();
1637 	}
1638 
1639 	if (ra_allocated)
1640 		kfree(ra);
1641 	/*
1642 	 * Update range.start for autodefrag, this will indicate where to start
1643 	 * in next run.
1644 	 */
1645 	range->start = cur;
1646 	if (sectors_defragged) {
1647 		/*
1648 		 * We have defragged some sectors, for compression case they
1649 		 * need to be written back immediately.
1650 		 */
1651 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1652 			filemap_flush(inode->i_mapping);
1653 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1654 				     &BTRFS_I(inode)->runtime_flags))
1655 				filemap_flush(inode->i_mapping);
1656 		}
1657 		if (range->compress_type == BTRFS_COMPRESS_LZO)
1658 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1659 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1660 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1661 		ret = sectors_defragged;
1662 	}
1663 	if (do_compress) {
1664 		btrfs_inode_lock(inode, 0);
1665 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1666 		btrfs_inode_unlock(inode, 0);
1667 	}
1668 	return ret;
1669 }
1670 
1671 /*
1672  * Try to start exclusive operation @type or cancel it if it's running.
1673  *
1674  * Return:
1675  *   0        - normal mode, newly claimed op started
1676  *  >0        - normal mode, something else is running,
1677  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1678  * ECANCELED  - cancel mode, successful cancel
1679  * ENOTCONN   - cancel mode, operation not running anymore
1680  */
1681 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1682 			enum btrfs_exclusive_operation type, bool cancel)
1683 {
1684 	if (!cancel) {
1685 		/* Start normal op */
1686 		if (!btrfs_exclop_start(fs_info, type))
1687 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1688 		/* Exclusive operation is now claimed */
1689 		return 0;
1690 	}
1691 
1692 	/* Cancel running op */
1693 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1694 		/*
1695 		 * This blocks any exclop finish from setting it to NONE, so we
1696 		 * request cancellation. Either it runs and we will wait for it,
1697 		 * or it has finished and no waiting will happen.
1698 		 */
1699 		atomic_inc(&fs_info->reloc_cancel_req);
1700 		btrfs_exclop_start_unlock(fs_info);
1701 
1702 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1703 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1704 				    TASK_INTERRUPTIBLE);
1705 
1706 		return -ECANCELED;
1707 	}
1708 
1709 	/* Something else is running or none */
1710 	return -ENOTCONN;
1711 }
1712 
1713 static noinline int btrfs_ioctl_resize(struct file *file,
1714 					void __user *arg)
1715 {
1716 	BTRFS_DEV_LOOKUP_ARGS(args);
1717 	struct inode *inode = file_inode(file);
1718 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1719 	u64 new_size;
1720 	u64 old_size;
1721 	u64 devid = 1;
1722 	struct btrfs_root *root = BTRFS_I(inode)->root;
1723 	struct btrfs_ioctl_vol_args *vol_args;
1724 	struct btrfs_trans_handle *trans;
1725 	struct btrfs_device *device = NULL;
1726 	char *sizestr;
1727 	char *retptr;
1728 	char *devstr = NULL;
1729 	int ret = 0;
1730 	int mod = 0;
1731 	bool cancel;
1732 
1733 	if (!capable(CAP_SYS_ADMIN))
1734 		return -EPERM;
1735 
1736 	ret = mnt_want_write_file(file);
1737 	if (ret)
1738 		return ret;
1739 
1740 	/*
1741 	 * Read the arguments before checking exclusivity to be able to
1742 	 * distinguish regular resize and cancel
1743 	 */
1744 	vol_args = memdup_user(arg, sizeof(*vol_args));
1745 	if (IS_ERR(vol_args)) {
1746 		ret = PTR_ERR(vol_args);
1747 		goto out_drop;
1748 	}
1749 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1750 	sizestr = vol_args->name;
1751 	cancel = (strcmp("cancel", sizestr) == 0);
1752 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1753 	if (ret)
1754 		goto out_free;
1755 	/* Exclusive operation is now claimed */
1756 
1757 	devstr = strchr(sizestr, ':');
1758 	if (devstr) {
1759 		sizestr = devstr + 1;
1760 		*devstr = '\0';
1761 		devstr = vol_args->name;
1762 		ret = kstrtoull(devstr, 10, &devid);
1763 		if (ret)
1764 			goto out_finish;
1765 		if (!devid) {
1766 			ret = -EINVAL;
1767 			goto out_finish;
1768 		}
1769 		btrfs_info(fs_info, "resizing devid %llu", devid);
1770 	}
1771 
1772 	args.devid = devid;
1773 	device = btrfs_find_device(fs_info->fs_devices, &args);
1774 	if (!device) {
1775 		btrfs_info(fs_info, "resizer unable to find device %llu",
1776 			   devid);
1777 		ret = -ENODEV;
1778 		goto out_finish;
1779 	}
1780 
1781 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1782 		btrfs_info(fs_info,
1783 			   "resizer unable to apply on readonly device %llu",
1784 		       devid);
1785 		ret = -EPERM;
1786 		goto out_finish;
1787 	}
1788 
1789 	if (!strcmp(sizestr, "max"))
1790 		new_size = bdev_nr_bytes(device->bdev);
1791 	else {
1792 		if (sizestr[0] == '-') {
1793 			mod = -1;
1794 			sizestr++;
1795 		} else if (sizestr[0] == '+') {
1796 			mod = 1;
1797 			sizestr++;
1798 		}
1799 		new_size = memparse(sizestr, &retptr);
1800 		if (*retptr != '\0' || new_size == 0) {
1801 			ret = -EINVAL;
1802 			goto out_finish;
1803 		}
1804 	}
1805 
1806 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1807 		ret = -EPERM;
1808 		goto out_finish;
1809 	}
1810 
1811 	old_size = btrfs_device_get_total_bytes(device);
1812 
1813 	if (mod < 0) {
1814 		if (new_size > old_size) {
1815 			ret = -EINVAL;
1816 			goto out_finish;
1817 		}
1818 		new_size = old_size - new_size;
1819 	} else if (mod > 0) {
1820 		if (new_size > ULLONG_MAX - old_size) {
1821 			ret = -ERANGE;
1822 			goto out_finish;
1823 		}
1824 		new_size = old_size + new_size;
1825 	}
1826 
1827 	if (new_size < SZ_256M) {
1828 		ret = -EINVAL;
1829 		goto out_finish;
1830 	}
1831 	if (new_size > bdev_nr_bytes(device->bdev)) {
1832 		ret = -EFBIG;
1833 		goto out_finish;
1834 	}
1835 
1836 	new_size = round_down(new_size, fs_info->sectorsize);
1837 
1838 	if (new_size > old_size) {
1839 		trans = btrfs_start_transaction(root, 0);
1840 		if (IS_ERR(trans)) {
1841 			ret = PTR_ERR(trans);
1842 			goto out_finish;
1843 		}
1844 		ret = btrfs_grow_device(trans, device, new_size);
1845 		btrfs_commit_transaction(trans);
1846 	} else if (new_size < old_size) {
1847 		ret = btrfs_shrink_device(device, new_size);
1848 	} /* equal, nothing need to do */
1849 
1850 	if (ret == 0 && new_size != old_size)
1851 		btrfs_info_in_rcu(fs_info,
1852 			"resize device %s (devid %llu) from %llu to %llu",
1853 			rcu_str_deref(device->name), device->devid,
1854 			old_size, new_size);
1855 out_finish:
1856 	btrfs_exclop_finish(fs_info);
1857 out_free:
1858 	kfree(vol_args);
1859 out_drop:
1860 	mnt_drop_write_file(file);
1861 	return ret;
1862 }
1863 
1864 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1865 				struct user_namespace *mnt_userns,
1866 				const char *name, unsigned long fd, int subvol,
1867 				bool readonly,
1868 				struct btrfs_qgroup_inherit *inherit)
1869 {
1870 	int namelen;
1871 	int ret = 0;
1872 
1873 	if (!S_ISDIR(file_inode(file)->i_mode))
1874 		return -ENOTDIR;
1875 
1876 	ret = mnt_want_write_file(file);
1877 	if (ret)
1878 		goto out;
1879 
1880 	namelen = strlen(name);
1881 	if (strchr(name, '/')) {
1882 		ret = -EINVAL;
1883 		goto out_drop_write;
1884 	}
1885 
1886 	if (name[0] == '.' &&
1887 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1888 		ret = -EEXIST;
1889 		goto out_drop_write;
1890 	}
1891 
1892 	if (subvol) {
1893 		ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
1894 				     namelen, NULL, readonly, inherit);
1895 	} else {
1896 		struct fd src = fdget(fd);
1897 		struct inode *src_inode;
1898 		if (!src.file) {
1899 			ret = -EINVAL;
1900 			goto out_drop_write;
1901 		}
1902 
1903 		src_inode = file_inode(src.file);
1904 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1905 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1906 				   "Snapshot src from another FS");
1907 			ret = -EXDEV;
1908 		} else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
1909 			/*
1910 			 * Subvolume creation is not restricted, but snapshots
1911 			 * are limited to own subvolumes only
1912 			 */
1913 			ret = -EPERM;
1914 		} else {
1915 			ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
1916 					       name, namelen,
1917 					       BTRFS_I(src_inode)->root,
1918 					       readonly, inherit);
1919 		}
1920 		fdput(src);
1921 	}
1922 out_drop_write:
1923 	mnt_drop_write_file(file);
1924 out:
1925 	return ret;
1926 }
1927 
1928 static noinline int btrfs_ioctl_snap_create(struct file *file,
1929 					    void __user *arg, int subvol)
1930 {
1931 	struct btrfs_ioctl_vol_args *vol_args;
1932 	int ret;
1933 
1934 	if (!S_ISDIR(file_inode(file)->i_mode))
1935 		return -ENOTDIR;
1936 
1937 	vol_args = memdup_user(arg, sizeof(*vol_args));
1938 	if (IS_ERR(vol_args))
1939 		return PTR_ERR(vol_args);
1940 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1941 
1942 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1943 					vol_args->name, vol_args->fd, subvol,
1944 					false, NULL);
1945 
1946 	kfree(vol_args);
1947 	return ret;
1948 }
1949 
1950 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1951 					       void __user *arg, int subvol)
1952 {
1953 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1954 	int ret;
1955 	bool readonly = false;
1956 	struct btrfs_qgroup_inherit *inherit = NULL;
1957 
1958 	if (!S_ISDIR(file_inode(file)->i_mode))
1959 		return -ENOTDIR;
1960 
1961 	vol_args = memdup_user(arg, sizeof(*vol_args));
1962 	if (IS_ERR(vol_args))
1963 		return PTR_ERR(vol_args);
1964 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1965 
1966 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1967 		ret = -EOPNOTSUPP;
1968 		goto free_args;
1969 	}
1970 
1971 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1972 		readonly = true;
1973 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1974 		u64 nums;
1975 
1976 		if (vol_args->size < sizeof(*inherit) ||
1977 		    vol_args->size > PAGE_SIZE) {
1978 			ret = -EINVAL;
1979 			goto free_args;
1980 		}
1981 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1982 		if (IS_ERR(inherit)) {
1983 			ret = PTR_ERR(inherit);
1984 			goto free_args;
1985 		}
1986 
1987 		if (inherit->num_qgroups > PAGE_SIZE ||
1988 		    inherit->num_ref_copies > PAGE_SIZE ||
1989 		    inherit->num_excl_copies > PAGE_SIZE) {
1990 			ret = -EINVAL;
1991 			goto free_inherit;
1992 		}
1993 
1994 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1995 		       2 * inherit->num_excl_copies;
1996 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1997 			ret = -EINVAL;
1998 			goto free_inherit;
1999 		}
2000 	}
2001 
2002 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2003 					vol_args->name, vol_args->fd, subvol,
2004 					readonly, inherit);
2005 	if (ret)
2006 		goto free_inherit;
2007 free_inherit:
2008 	kfree(inherit);
2009 free_args:
2010 	kfree(vol_args);
2011 	return ret;
2012 }
2013 
2014 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
2015 						void __user *arg)
2016 {
2017 	struct inode *inode = file_inode(file);
2018 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2019 	struct btrfs_root *root = BTRFS_I(inode)->root;
2020 	int ret = 0;
2021 	u64 flags = 0;
2022 
2023 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
2024 		return -EINVAL;
2025 
2026 	down_read(&fs_info->subvol_sem);
2027 	if (btrfs_root_readonly(root))
2028 		flags |= BTRFS_SUBVOL_RDONLY;
2029 	up_read(&fs_info->subvol_sem);
2030 
2031 	if (copy_to_user(arg, &flags, sizeof(flags)))
2032 		ret = -EFAULT;
2033 
2034 	return ret;
2035 }
2036 
2037 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
2038 					      void __user *arg)
2039 {
2040 	struct inode *inode = file_inode(file);
2041 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2042 	struct btrfs_root *root = BTRFS_I(inode)->root;
2043 	struct btrfs_trans_handle *trans;
2044 	u64 root_flags;
2045 	u64 flags;
2046 	int ret = 0;
2047 
2048 	if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
2049 		return -EPERM;
2050 
2051 	ret = mnt_want_write_file(file);
2052 	if (ret)
2053 		goto out;
2054 
2055 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2056 		ret = -EINVAL;
2057 		goto out_drop_write;
2058 	}
2059 
2060 	if (copy_from_user(&flags, arg, sizeof(flags))) {
2061 		ret = -EFAULT;
2062 		goto out_drop_write;
2063 	}
2064 
2065 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
2066 		ret = -EOPNOTSUPP;
2067 		goto out_drop_write;
2068 	}
2069 
2070 	down_write(&fs_info->subvol_sem);
2071 
2072 	/* nothing to do */
2073 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2074 		goto out_drop_sem;
2075 
2076 	root_flags = btrfs_root_flags(&root->root_item);
2077 	if (flags & BTRFS_SUBVOL_RDONLY) {
2078 		btrfs_set_root_flags(&root->root_item,
2079 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2080 	} else {
2081 		/*
2082 		 * Block RO -> RW transition if this subvolume is involved in
2083 		 * send
2084 		 */
2085 		spin_lock(&root->root_item_lock);
2086 		if (root->send_in_progress == 0) {
2087 			btrfs_set_root_flags(&root->root_item,
2088 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2089 			spin_unlock(&root->root_item_lock);
2090 		} else {
2091 			spin_unlock(&root->root_item_lock);
2092 			btrfs_warn(fs_info,
2093 				   "Attempt to set subvolume %llu read-write during send",
2094 				   root->root_key.objectid);
2095 			ret = -EPERM;
2096 			goto out_drop_sem;
2097 		}
2098 	}
2099 
2100 	trans = btrfs_start_transaction(root, 1);
2101 	if (IS_ERR(trans)) {
2102 		ret = PTR_ERR(trans);
2103 		goto out_reset;
2104 	}
2105 
2106 	ret = btrfs_update_root(trans, fs_info->tree_root,
2107 				&root->root_key, &root->root_item);
2108 	if (ret < 0) {
2109 		btrfs_end_transaction(trans);
2110 		goto out_reset;
2111 	}
2112 
2113 	ret = btrfs_commit_transaction(trans);
2114 
2115 out_reset:
2116 	if (ret)
2117 		btrfs_set_root_flags(&root->root_item, root_flags);
2118 out_drop_sem:
2119 	up_write(&fs_info->subvol_sem);
2120 out_drop_write:
2121 	mnt_drop_write_file(file);
2122 out:
2123 	return ret;
2124 }
2125 
2126 static noinline int key_in_sk(struct btrfs_key *key,
2127 			      struct btrfs_ioctl_search_key *sk)
2128 {
2129 	struct btrfs_key test;
2130 	int ret;
2131 
2132 	test.objectid = sk->min_objectid;
2133 	test.type = sk->min_type;
2134 	test.offset = sk->min_offset;
2135 
2136 	ret = btrfs_comp_cpu_keys(key, &test);
2137 	if (ret < 0)
2138 		return 0;
2139 
2140 	test.objectid = sk->max_objectid;
2141 	test.type = sk->max_type;
2142 	test.offset = sk->max_offset;
2143 
2144 	ret = btrfs_comp_cpu_keys(key, &test);
2145 	if (ret > 0)
2146 		return 0;
2147 	return 1;
2148 }
2149 
2150 static noinline int copy_to_sk(struct btrfs_path *path,
2151 			       struct btrfs_key *key,
2152 			       struct btrfs_ioctl_search_key *sk,
2153 			       size_t *buf_size,
2154 			       char __user *ubuf,
2155 			       unsigned long *sk_offset,
2156 			       int *num_found)
2157 {
2158 	u64 found_transid;
2159 	struct extent_buffer *leaf;
2160 	struct btrfs_ioctl_search_header sh;
2161 	struct btrfs_key test;
2162 	unsigned long item_off;
2163 	unsigned long item_len;
2164 	int nritems;
2165 	int i;
2166 	int slot;
2167 	int ret = 0;
2168 
2169 	leaf = path->nodes[0];
2170 	slot = path->slots[0];
2171 	nritems = btrfs_header_nritems(leaf);
2172 
2173 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2174 		i = nritems;
2175 		goto advance_key;
2176 	}
2177 	found_transid = btrfs_header_generation(leaf);
2178 
2179 	for (i = slot; i < nritems; i++) {
2180 		item_off = btrfs_item_ptr_offset(leaf, i);
2181 		item_len = btrfs_item_size(leaf, i);
2182 
2183 		btrfs_item_key_to_cpu(leaf, key, i);
2184 		if (!key_in_sk(key, sk))
2185 			continue;
2186 
2187 		if (sizeof(sh) + item_len > *buf_size) {
2188 			if (*num_found) {
2189 				ret = 1;
2190 				goto out;
2191 			}
2192 
2193 			/*
2194 			 * return one empty item back for v1, which does not
2195 			 * handle -EOVERFLOW
2196 			 */
2197 
2198 			*buf_size = sizeof(sh) + item_len;
2199 			item_len = 0;
2200 			ret = -EOVERFLOW;
2201 		}
2202 
2203 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2204 			ret = 1;
2205 			goto out;
2206 		}
2207 
2208 		sh.objectid = key->objectid;
2209 		sh.offset = key->offset;
2210 		sh.type = key->type;
2211 		sh.len = item_len;
2212 		sh.transid = found_transid;
2213 
2214 		/*
2215 		 * Copy search result header. If we fault then loop again so we
2216 		 * can fault in the pages and -EFAULT there if there's a
2217 		 * problem. Otherwise we'll fault and then copy the buffer in
2218 		 * properly this next time through
2219 		 */
2220 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2221 			ret = 0;
2222 			goto out;
2223 		}
2224 
2225 		*sk_offset += sizeof(sh);
2226 
2227 		if (item_len) {
2228 			char __user *up = ubuf + *sk_offset;
2229 			/*
2230 			 * Copy the item, same behavior as above, but reset the
2231 			 * * sk_offset so we copy the full thing again.
2232 			 */
2233 			if (read_extent_buffer_to_user_nofault(leaf, up,
2234 						item_off, item_len)) {
2235 				ret = 0;
2236 				*sk_offset -= sizeof(sh);
2237 				goto out;
2238 			}
2239 
2240 			*sk_offset += item_len;
2241 		}
2242 		(*num_found)++;
2243 
2244 		if (ret) /* -EOVERFLOW from above */
2245 			goto out;
2246 
2247 		if (*num_found >= sk->nr_items) {
2248 			ret = 1;
2249 			goto out;
2250 		}
2251 	}
2252 advance_key:
2253 	ret = 0;
2254 	test.objectid = sk->max_objectid;
2255 	test.type = sk->max_type;
2256 	test.offset = sk->max_offset;
2257 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2258 		ret = 1;
2259 	else if (key->offset < (u64)-1)
2260 		key->offset++;
2261 	else if (key->type < (u8)-1) {
2262 		key->offset = 0;
2263 		key->type++;
2264 	} else if (key->objectid < (u64)-1) {
2265 		key->offset = 0;
2266 		key->type = 0;
2267 		key->objectid++;
2268 	} else
2269 		ret = 1;
2270 out:
2271 	/*
2272 	 *  0: all items from this leaf copied, continue with next
2273 	 *  1: * more items can be copied, but unused buffer is too small
2274 	 *     * all items were found
2275 	 *     Either way, it will stops the loop which iterates to the next
2276 	 *     leaf
2277 	 *  -EOVERFLOW: item was to large for buffer
2278 	 *  -EFAULT: could not copy extent buffer back to userspace
2279 	 */
2280 	return ret;
2281 }
2282 
2283 static noinline int search_ioctl(struct inode *inode,
2284 				 struct btrfs_ioctl_search_key *sk,
2285 				 size_t *buf_size,
2286 				 char __user *ubuf)
2287 {
2288 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2289 	struct btrfs_root *root;
2290 	struct btrfs_key key;
2291 	struct btrfs_path *path;
2292 	int ret;
2293 	int num_found = 0;
2294 	unsigned long sk_offset = 0;
2295 
2296 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2297 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2298 		return -EOVERFLOW;
2299 	}
2300 
2301 	path = btrfs_alloc_path();
2302 	if (!path)
2303 		return -ENOMEM;
2304 
2305 	if (sk->tree_id == 0) {
2306 		/* search the root of the inode that was passed */
2307 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2308 	} else {
2309 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2310 		if (IS_ERR(root)) {
2311 			btrfs_free_path(path);
2312 			return PTR_ERR(root);
2313 		}
2314 	}
2315 
2316 	key.objectid = sk->min_objectid;
2317 	key.type = sk->min_type;
2318 	key.offset = sk->min_offset;
2319 
2320 	while (1) {
2321 		ret = -EFAULT;
2322 		if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset))
2323 			break;
2324 
2325 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2326 		if (ret != 0) {
2327 			if (ret > 0)
2328 				ret = 0;
2329 			goto err;
2330 		}
2331 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2332 				 &sk_offset, &num_found);
2333 		btrfs_release_path(path);
2334 		if (ret)
2335 			break;
2336 
2337 	}
2338 	if (ret > 0)
2339 		ret = 0;
2340 err:
2341 	sk->nr_items = num_found;
2342 	btrfs_put_root(root);
2343 	btrfs_free_path(path);
2344 	return ret;
2345 }
2346 
2347 static noinline int btrfs_ioctl_tree_search(struct file *file,
2348 					   void __user *argp)
2349 {
2350 	struct btrfs_ioctl_search_args __user *uargs;
2351 	struct btrfs_ioctl_search_key sk;
2352 	struct inode *inode;
2353 	int ret;
2354 	size_t buf_size;
2355 
2356 	if (!capable(CAP_SYS_ADMIN))
2357 		return -EPERM;
2358 
2359 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2360 
2361 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2362 		return -EFAULT;
2363 
2364 	buf_size = sizeof(uargs->buf);
2365 
2366 	inode = file_inode(file);
2367 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2368 
2369 	/*
2370 	 * In the origin implementation an overflow is handled by returning a
2371 	 * search header with a len of zero, so reset ret.
2372 	 */
2373 	if (ret == -EOVERFLOW)
2374 		ret = 0;
2375 
2376 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2377 		ret = -EFAULT;
2378 	return ret;
2379 }
2380 
2381 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2382 					       void __user *argp)
2383 {
2384 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2385 	struct btrfs_ioctl_search_args_v2 args;
2386 	struct inode *inode;
2387 	int ret;
2388 	size_t buf_size;
2389 	const size_t buf_limit = SZ_16M;
2390 
2391 	if (!capable(CAP_SYS_ADMIN))
2392 		return -EPERM;
2393 
2394 	/* copy search header and buffer size */
2395 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2396 	if (copy_from_user(&args, uarg, sizeof(args)))
2397 		return -EFAULT;
2398 
2399 	buf_size = args.buf_size;
2400 
2401 	/* limit result size to 16MB */
2402 	if (buf_size > buf_limit)
2403 		buf_size = buf_limit;
2404 
2405 	inode = file_inode(file);
2406 	ret = search_ioctl(inode, &args.key, &buf_size,
2407 			   (char __user *)(&uarg->buf[0]));
2408 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2409 		ret = -EFAULT;
2410 	else if (ret == -EOVERFLOW &&
2411 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2412 		ret = -EFAULT;
2413 
2414 	return ret;
2415 }
2416 
2417 /*
2418  * Search INODE_REFs to identify path name of 'dirid' directory
2419  * in a 'tree_id' tree. and sets path name to 'name'.
2420  */
2421 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2422 				u64 tree_id, u64 dirid, char *name)
2423 {
2424 	struct btrfs_root *root;
2425 	struct btrfs_key key;
2426 	char *ptr;
2427 	int ret = -1;
2428 	int slot;
2429 	int len;
2430 	int total_len = 0;
2431 	struct btrfs_inode_ref *iref;
2432 	struct extent_buffer *l;
2433 	struct btrfs_path *path;
2434 
2435 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2436 		name[0]='\0';
2437 		return 0;
2438 	}
2439 
2440 	path = btrfs_alloc_path();
2441 	if (!path)
2442 		return -ENOMEM;
2443 
2444 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2445 
2446 	root = btrfs_get_fs_root(info, tree_id, true);
2447 	if (IS_ERR(root)) {
2448 		ret = PTR_ERR(root);
2449 		root = NULL;
2450 		goto out;
2451 	}
2452 
2453 	key.objectid = dirid;
2454 	key.type = BTRFS_INODE_REF_KEY;
2455 	key.offset = (u64)-1;
2456 
2457 	while (1) {
2458 		ret = btrfs_search_backwards(root, &key, path);
2459 		if (ret < 0)
2460 			goto out;
2461 		else if (ret > 0) {
2462 			ret = -ENOENT;
2463 			goto out;
2464 		}
2465 
2466 		l = path->nodes[0];
2467 		slot = path->slots[0];
2468 
2469 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2470 		len = btrfs_inode_ref_name_len(l, iref);
2471 		ptr -= len + 1;
2472 		total_len += len + 1;
2473 		if (ptr < name) {
2474 			ret = -ENAMETOOLONG;
2475 			goto out;
2476 		}
2477 
2478 		*(ptr + len) = '/';
2479 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2480 
2481 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2482 			break;
2483 
2484 		btrfs_release_path(path);
2485 		key.objectid = key.offset;
2486 		key.offset = (u64)-1;
2487 		dirid = key.objectid;
2488 	}
2489 	memmove(name, ptr, total_len);
2490 	name[total_len] = '\0';
2491 	ret = 0;
2492 out:
2493 	btrfs_put_root(root);
2494 	btrfs_free_path(path);
2495 	return ret;
2496 }
2497 
2498 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2499 				struct inode *inode,
2500 				struct btrfs_ioctl_ino_lookup_user_args *args)
2501 {
2502 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2503 	struct super_block *sb = inode->i_sb;
2504 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2505 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2506 	u64 dirid = args->dirid;
2507 	unsigned long item_off;
2508 	unsigned long item_len;
2509 	struct btrfs_inode_ref *iref;
2510 	struct btrfs_root_ref *rref;
2511 	struct btrfs_root *root = NULL;
2512 	struct btrfs_path *path;
2513 	struct btrfs_key key, key2;
2514 	struct extent_buffer *leaf;
2515 	struct inode *temp_inode;
2516 	char *ptr;
2517 	int slot;
2518 	int len;
2519 	int total_len = 0;
2520 	int ret;
2521 
2522 	path = btrfs_alloc_path();
2523 	if (!path)
2524 		return -ENOMEM;
2525 
2526 	/*
2527 	 * If the bottom subvolume does not exist directly under upper_limit,
2528 	 * construct the path in from the bottom up.
2529 	 */
2530 	if (dirid != upper_limit.objectid) {
2531 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2532 
2533 		root = btrfs_get_fs_root(fs_info, treeid, true);
2534 		if (IS_ERR(root)) {
2535 			ret = PTR_ERR(root);
2536 			goto out;
2537 		}
2538 
2539 		key.objectid = dirid;
2540 		key.type = BTRFS_INODE_REF_KEY;
2541 		key.offset = (u64)-1;
2542 		while (1) {
2543 			ret = btrfs_search_backwards(root, &key, path);
2544 			if (ret < 0)
2545 				goto out_put;
2546 			else if (ret > 0) {
2547 				ret = -ENOENT;
2548 				goto out_put;
2549 			}
2550 
2551 			leaf = path->nodes[0];
2552 			slot = path->slots[0];
2553 
2554 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2555 			len = btrfs_inode_ref_name_len(leaf, iref);
2556 			ptr -= len + 1;
2557 			total_len += len + 1;
2558 			if (ptr < args->path) {
2559 				ret = -ENAMETOOLONG;
2560 				goto out_put;
2561 			}
2562 
2563 			*(ptr + len) = '/';
2564 			read_extent_buffer(leaf, ptr,
2565 					(unsigned long)(iref + 1), len);
2566 
2567 			/* Check the read+exec permission of this directory */
2568 			ret = btrfs_previous_item(root, path, dirid,
2569 						  BTRFS_INODE_ITEM_KEY);
2570 			if (ret < 0) {
2571 				goto out_put;
2572 			} else if (ret > 0) {
2573 				ret = -ENOENT;
2574 				goto out_put;
2575 			}
2576 
2577 			leaf = path->nodes[0];
2578 			slot = path->slots[0];
2579 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2580 			if (key2.objectid != dirid) {
2581 				ret = -ENOENT;
2582 				goto out_put;
2583 			}
2584 
2585 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2586 			if (IS_ERR(temp_inode)) {
2587 				ret = PTR_ERR(temp_inode);
2588 				goto out_put;
2589 			}
2590 			ret = inode_permission(mnt_userns, temp_inode,
2591 					       MAY_READ | MAY_EXEC);
2592 			iput(temp_inode);
2593 			if (ret) {
2594 				ret = -EACCES;
2595 				goto out_put;
2596 			}
2597 
2598 			if (key.offset == upper_limit.objectid)
2599 				break;
2600 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2601 				ret = -EACCES;
2602 				goto out_put;
2603 			}
2604 
2605 			btrfs_release_path(path);
2606 			key.objectid = key.offset;
2607 			key.offset = (u64)-1;
2608 			dirid = key.objectid;
2609 		}
2610 
2611 		memmove(args->path, ptr, total_len);
2612 		args->path[total_len] = '\0';
2613 		btrfs_put_root(root);
2614 		root = NULL;
2615 		btrfs_release_path(path);
2616 	}
2617 
2618 	/* Get the bottom subvolume's name from ROOT_REF */
2619 	key.objectid = treeid;
2620 	key.type = BTRFS_ROOT_REF_KEY;
2621 	key.offset = args->treeid;
2622 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2623 	if (ret < 0) {
2624 		goto out;
2625 	} else if (ret > 0) {
2626 		ret = -ENOENT;
2627 		goto out;
2628 	}
2629 
2630 	leaf = path->nodes[0];
2631 	slot = path->slots[0];
2632 	btrfs_item_key_to_cpu(leaf, &key, slot);
2633 
2634 	item_off = btrfs_item_ptr_offset(leaf, slot);
2635 	item_len = btrfs_item_size(leaf, slot);
2636 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2637 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2638 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2639 		ret = -EINVAL;
2640 		goto out;
2641 	}
2642 
2643 	/* Copy subvolume's name */
2644 	item_off += sizeof(struct btrfs_root_ref);
2645 	item_len -= sizeof(struct btrfs_root_ref);
2646 	read_extent_buffer(leaf, args->name, item_off, item_len);
2647 	args->name[item_len] = 0;
2648 
2649 out_put:
2650 	btrfs_put_root(root);
2651 out:
2652 	btrfs_free_path(path);
2653 	return ret;
2654 }
2655 
2656 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2657 					   void __user *argp)
2658 {
2659 	struct btrfs_ioctl_ino_lookup_args *args;
2660 	struct inode *inode;
2661 	int ret = 0;
2662 
2663 	args = memdup_user(argp, sizeof(*args));
2664 	if (IS_ERR(args))
2665 		return PTR_ERR(args);
2666 
2667 	inode = file_inode(file);
2668 
2669 	/*
2670 	 * Unprivileged query to obtain the containing subvolume root id. The
2671 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2672 	 */
2673 	if (args->treeid == 0)
2674 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2675 
2676 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2677 		args->name[0] = 0;
2678 		goto out;
2679 	}
2680 
2681 	if (!capable(CAP_SYS_ADMIN)) {
2682 		ret = -EPERM;
2683 		goto out;
2684 	}
2685 
2686 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2687 					args->treeid, args->objectid,
2688 					args->name);
2689 
2690 out:
2691 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2692 		ret = -EFAULT;
2693 
2694 	kfree(args);
2695 	return ret;
2696 }
2697 
2698 /*
2699  * Version of ino_lookup ioctl (unprivileged)
2700  *
2701  * The main differences from ino_lookup ioctl are:
2702  *
2703  *   1. Read + Exec permission will be checked using inode_permission() during
2704  *      path construction. -EACCES will be returned in case of failure.
2705  *   2. Path construction will be stopped at the inode number which corresponds
2706  *      to the fd with which this ioctl is called. If constructed path does not
2707  *      exist under fd's inode, -EACCES will be returned.
2708  *   3. The name of bottom subvolume is also searched and filled.
2709  */
2710 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2711 {
2712 	struct btrfs_ioctl_ino_lookup_user_args *args;
2713 	struct inode *inode;
2714 	int ret;
2715 
2716 	args = memdup_user(argp, sizeof(*args));
2717 	if (IS_ERR(args))
2718 		return PTR_ERR(args);
2719 
2720 	inode = file_inode(file);
2721 
2722 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2723 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2724 		/*
2725 		 * The subvolume does not exist under fd with which this is
2726 		 * called
2727 		 */
2728 		kfree(args);
2729 		return -EACCES;
2730 	}
2731 
2732 	ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2733 
2734 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2735 		ret = -EFAULT;
2736 
2737 	kfree(args);
2738 	return ret;
2739 }
2740 
2741 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2742 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2743 {
2744 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2745 	struct btrfs_fs_info *fs_info;
2746 	struct btrfs_root *root;
2747 	struct btrfs_path *path;
2748 	struct btrfs_key key;
2749 	struct btrfs_root_item *root_item;
2750 	struct btrfs_root_ref *rref;
2751 	struct extent_buffer *leaf;
2752 	unsigned long item_off;
2753 	unsigned long item_len;
2754 	struct inode *inode;
2755 	int slot;
2756 	int ret = 0;
2757 
2758 	path = btrfs_alloc_path();
2759 	if (!path)
2760 		return -ENOMEM;
2761 
2762 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2763 	if (!subvol_info) {
2764 		btrfs_free_path(path);
2765 		return -ENOMEM;
2766 	}
2767 
2768 	inode = file_inode(file);
2769 	fs_info = BTRFS_I(inode)->root->fs_info;
2770 
2771 	/* Get root_item of inode's subvolume */
2772 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2773 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2774 	if (IS_ERR(root)) {
2775 		ret = PTR_ERR(root);
2776 		goto out_free;
2777 	}
2778 	root_item = &root->root_item;
2779 
2780 	subvol_info->treeid = key.objectid;
2781 
2782 	subvol_info->generation = btrfs_root_generation(root_item);
2783 	subvol_info->flags = btrfs_root_flags(root_item);
2784 
2785 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2786 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2787 						    BTRFS_UUID_SIZE);
2788 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2789 						    BTRFS_UUID_SIZE);
2790 
2791 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2792 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2793 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2794 
2795 	subvol_info->otransid = btrfs_root_otransid(root_item);
2796 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2797 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2798 
2799 	subvol_info->stransid = btrfs_root_stransid(root_item);
2800 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2801 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2802 
2803 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2804 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2805 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2806 
2807 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2808 		/* Search root tree for ROOT_BACKREF of this subvolume */
2809 		key.type = BTRFS_ROOT_BACKREF_KEY;
2810 		key.offset = 0;
2811 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2812 		if (ret < 0) {
2813 			goto out;
2814 		} else if (path->slots[0] >=
2815 			   btrfs_header_nritems(path->nodes[0])) {
2816 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2817 			if (ret < 0) {
2818 				goto out;
2819 			} else if (ret > 0) {
2820 				ret = -EUCLEAN;
2821 				goto out;
2822 			}
2823 		}
2824 
2825 		leaf = path->nodes[0];
2826 		slot = path->slots[0];
2827 		btrfs_item_key_to_cpu(leaf, &key, slot);
2828 		if (key.objectid == subvol_info->treeid &&
2829 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2830 			subvol_info->parent_id = key.offset;
2831 
2832 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2833 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2834 
2835 			item_off = btrfs_item_ptr_offset(leaf, slot)
2836 					+ sizeof(struct btrfs_root_ref);
2837 			item_len = btrfs_item_size(leaf, slot)
2838 					- sizeof(struct btrfs_root_ref);
2839 			read_extent_buffer(leaf, subvol_info->name,
2840 					   item_off, item_len);
2841 		} else {
2842 			ret = -ENOENT;
2843 			goto out;
2844 		}
2845 	}
2846 
2847 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2848 		ret = -EFAULT;
2849 
2850 out:
2851 	btrfs_put_root(root);
2852 out_free:
2853 	btrfs_free_path(path);
2854 	kfree(subvol_info);
2855 	return ret;
2856 }
2857 
2858 /*
2859  * Return ROOT_REF information of the subvolume containing this inode
2860  * except the subvolume name.
2861  */
2862 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2863 {
2864 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2865 	struct btrfs_root_ref *rref;
2866 	struct btrfs_root *root;
2867 	struct btrfs_path *path;
2868 	struct btrfs_key key;
2869 	struct extent_buffer *leaf;
2870 	struct inode *inode;
2871 	u64 objectid;
2872 	int slot;
2873 	int ret;
2874 	u8 found;
2875 
2876 	path = btrfs_alloc_path();
2877 	if (!path)
2878 		return -ENOMEM;
2879 
2880 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2881 	if (IS_ERR(rootrefs)) {
2882 		btrfs_free_path(path);
2883 		return PTR_ERR(rootrefs);
2884 	}
2885 
2886 	inode = file_inode(file);
2887 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2888 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2889 
2890 	key.objectid = objectid;
2891 	key.type = BTRFS_ROOT_REF_KEY;
2892 	key.offset = rootrefs->min_treeid;
2893 	found = 0;
2894 
2895 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2896 	if (ret < 0) {
2897 		goto out;
2898 	} else if (path->slots[0] >=
2899 		   btrfs_header_nritems(path->nodes[0])) {
2900 		ret = btrfs_next_leaf(root, path);
2901 		if (ret < 0) {
2902 			goto out;
2903 		} else if (ret > 0) {
2904 			ret = -EUCLEAN;
2905 			goto out;
2906 		}
2907 	}
2908 	while (1) {
2909 		leaf = path->nodes[0];
2910 		slot = path->slots[0];
2911 
2912 		btrfs_item_key_to_cpu(leaf, &key, slot);
2913 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2914 			ret = 0;
2915 			goto out;
2916 		}
2917 
2918 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2919 			ret = -EOVERFLOW;
2920 			goto out;
2921 		}
2922 
2923 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2924 		rootrefs->rootref[found].treeid = key.offset;
2925 		rootrefs->rootref[found].dirid =
2926 				  btrfs_root_ref_dirid(leaf, rref);
2927 		found++;
2928 
2929 		ret = btrfs_next_item(root, path);
2930 		if (ret < 0) {
2931 			goto out;
2932 		} else if (ret > 0) {
2933 			ret = -EUCLEAN;
2934 			goto out;
2935 		}
2936 	}
2937 
2938 out:
2939 	if (!ret || ret == -EOVERFLOW) {
2940 		rootrefs->num_items = found;
2941 		/* update min_treeid for next search */
2942 		if (found)
2943 			rootrefs->min_treeid =
2944 				rootrefs->rootref[found - 1].treeid + 1;
2945 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2946 			ret = -EFAULT;
2947 	}
2948 
2949 	kfree(rootrefs);
2950 	btrfs_free_path(path);
2951 
2952 	return ret;
2953 }
2954 
2955 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2956 					     void __user *arg,
2957 					     bool destroy_v2)
2958 {
2959 	struct dentry *parent = file->f_path.dentry;
2960 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2961 	struct dentry *dentry;
2962 	struct inode *dir = d_inode(parent);
2963 	struct inode *inode;
2964 	struct btrfs_root *root = BTRFS_I(dir)->root;
2965 	struct btrfs_root *dest = NULL;
2966 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2967 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2968 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
2969 	char *subvol_name, *subvol_name_ptr = NULL;
2970 	int subvol_namelen;
2971 	int err = 0;
2972 	bool destroy_parent = false;
2973 
2974 	if (destroy_v2) {
2975 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2976 		if (IS_ERR(vol_args2))
2977 			return PTR_ERR(vol_args2);
2978 
2979 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2980 			err = -EOPNOTSUPP;
2981 			goto out;
2982 		}
2983 
2984 		/*
2985 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2986 		 * name, same as v1 currently does.
2987 		 */
2988 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2989 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2990 			subvol_name = vol_args2->name;
2991 
2992 			err = mnt_want_write_file(file);
2993 			if (err)
2994 				goto out;
2995 		} else {
2996 			struct inode *old_dir;
2997 
2998 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2999 				err = -EINVAL;
3000 				goto out;
3001 			}
3002 
3003 			err = mnt_want_write_file(file);
3004 			if (err)
3005 				goto out;
3006 
3007 			dentry = btrfs_get_dentry(fs_info->sb,
3008 					BTRFS_FIRST_FREE_OBJECTID,
3009 					vol_args2->subvolid, 0, 0);
3010 			if (IS_ERR(dentry)) {
3011 				err = PTR_ERR(dentry);
3012 				goto out_drop_write;
3013 			}
3014 
3015 			/*
3016 			 * Change the default parent since the subvolume being
3017 			 * deleted can be outside of the current mount point.
3018 			 */
3019 			parent = btrfs_get_parent(dentry);
3020 
3021 			/*
3022 			 * At this point dentry->d_name can point to '/' if the
3023 			 * subvolume we want to destroy is outsite of the
3024 			 * current mount point, so we need to release the
3025 			 * current dentry and execute the lookup to return a new
3026 			 * one with ->d_name pointing to the
3027 			 * <mount point>/subvol_name.
3028 			 */
3029 			dput(dentry);
3030 			if (IS_ERR(parent)) {
3031 				err = PTR_ERR(parent);
3032 				goto out_drop_write;
3033 			}
3034 			old_dir = dir;
3035 			dir = d_inode(parent);
3036 
3037 			/*
3038 			 * If v2 was used with SPEC_BY_ID, a new parent was
3039 			 * allocated since the subvolume can be outside of the
3040 			 * current mount point. Later on we need to release this
3041 			 * new parent dentry.
3042 			 */
3043 			destroy_parent = true;
3044 
3045 			/*
3046 			 * On idmapped mounts, deletion via subvolid is
3047 			 * restricted to subvolumes that are immediate
3048 			 * ancestors of the inode referenced by the file
3049 			 * descriptor in the ioctl. Otherwise the idmapping
3050 			 * could potentially be abused to delete subvolumes
3051 			 * anywhere in the filesystem the user wouldn't be able
3052 			 * to delete without an idmapped mount.
3053 			 */
3054 			if (old_dir != dir && mnt_userns != &init_user_ns) {
3055 				err = -EOPNOTSUPP;
3056 				goto free_parent;
3057 			}
3058 
3059 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3060 						fs_info, vol_args2->subvolid);
3061 			if (IS_ERR(subvol_name_ptr)) {
3062 				err = PTR_ERR(subvol_name_ptr);
3063 				goto free_parent;
3064 			}
3065 			/* subvol_name_ptr is already nul terminated */
3066 			subvol_name = (char *)kbasename(subvol_name_ptr);
3067 		}
3068 	} else {
3069 		vol_args = memdup_user(arg, sizeof(*vol_args));
3070 		if (IS_ERR(vol_args))
3071 			return PTR_ERR(vol_args);
3072 
3073 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3074 		subvol_name = vol_args->name;
3075 
3076 		err = mnt_want_write_file(file);
3077 		if (err)
3078 			goto out;
3079 	}
3080 
3081 	subvol_namelen = strlen(subvol_name);
3082 
3083 	if (strchr(subvol_name, '/') ||
3084 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
3085 		err = -EINVAL;
3086 		goto free_subvol_name;
3087 	}
3088 
3089 	if (!S_ISDIR(dir->i_mode)) {
3090 		err = -ENOTDIR;
3091 		goto free_subvol_name;
3092 	}
3093 
3094 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3095 	if (err == -EINTR)
3096 		goto free_subvol_name;
3097 	dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3098 	if (IS_ERR(dentry)) {
3099 		err = PTR_ERR(dentry);
3100 		goto out_unlock_dir;
3101 	}
3102 
3103 	if (d_really_is_negative(dentry)) {
3104 		err = -ENOENT;
3105 		goto out_dput;
3106 	}
3107 
3108 	inode = d_inode(dentry);
3109 	dest = BTRFS_I(inode)->root;
3110 	if (!capable(CAP_SYS_ADMIN)) {
3111 		/*
3112 		 * Regular user.  Only allow this with a special mount
3113 		 * option, when the user has write+exec access to the
3114 		 * subvol root, and when rmdir(2) would have been
3115 		 * allowed.
3116 		 *
3117 		 * Note that this is _not_ check that the subvol is
3118 		 * empty or doesn't contain data that we wouldn't
3119 		 * otherwise be able to delete.
3120 		 *
3121 		 * Users who want to delete empty subvols should try
3122 		 * rmdir(2).
3123 		 */
3124 		err = -EPERM;
3125 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3126 			goto out_dput;
3127 
3128 		/*
3129 		 * Do not allow deletion if the parent dir is the same
3130 		 * as the dir to be deleted.  That means the ioctl
3131 		 * must be called on the dentry referencing the root
3132 		 * of the subvol, not a random directory contained
3133 		 * within it.
3134 		 */
3135 		err = -EINVAL;
3136 		if (root == dest)
3137 			goto out_dput;
3138 
3139 		err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3140 		if (err)
3141 			goto out_dput;
3142 	}
3143 
3144 	/* check if subvolume may be deleted by a user */
3145 	err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3146 	if (err)
3147 		goto out_dput;
3148 
3149 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3150 		err = -EINVAL;
3151 		goto out_dput;
3152 	}
3153 
3154 	btrfs_inode_lock(inode, 0);
3155 	err = btrfs_delete_subvolume(dir, dentry);
3156 	btrfs_inode_unlock(inode, 0);
3157 	if (!err)
3158 		d_delete_notify(dir, dentry);
3159 
3160 out_dput:
3161 	dput(dentry);
3162 out_unlock_dir:
3163 	btrfs_inode_unlock(dir, 0);
3164 free_subvol_name:
3165 	kfree(subvol_name_ptr);
3166 free_parent:
3167 	if (destroy_parent)
3168 		dput(parent);
3169 out_drop_write:
3170 	mnt_drop_write_file(file);
3171 out:
3172 	kfree(vol_args2);
3173 	kfree(vol_args);
3174 	return err;
3175 }
3176 
3177 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3178 {
3179 	struct inode *inode = file_inode(file);
3180 	struct btrfs_root *root = BTRFS_I(inode)->root;
3181 	struct btrfs_ioctl_defrag_range_args range = {0};
3182 	int ret;
3183 
3184 	ret = mnt_want_write_file(file);
3185 	if (ret)
3186 		return ret;
3187 
3188 	if (btrfs_root_readonly(root)) {
3189 		ret = -EROFS;
3190 		goto out;
3191 	}
3192 
3193 	switch (inode->i_mode & S_IFMT) {
3194 	case S_IFDIR:
3195 		if (!capable(CAP_SYS_ADMIN)) {
3196 			ret = -EPERM;
3197 			goto out;
3198 		}
3199 		ret = btrfs_defrag_root(root);
3200 		break;
3201 	case S_IFREG:
3202 		/*
3203 		 * Note that this does not check the file descriptor for write
3204 		 * access. This prevents defragmenting executables that are
3205 		 * running and allows defrag on files open in read-only mode.
3206 		 */
3207 		if (!capable(CAP_SYS_ADMIN) &&
3208 		    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3209 			ret = -EPERM;
3210 			goto out;
3211 		}
3212 
3213 		if (argp) {
3214 			if (copy_from_user(&range, argp, sizeof(range))) {
3215 				ret = -EFAULT;
3216 				goto out;
3217 			}
3218 			/* compression requires us to start the IO */
3219 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3220 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3221 				range.extent_thresh = (u32)-1;
3222 			}
3223 		} else {
3224 			/* the rest are all set to zero by kzalloc */
3225 			range.len = (u64)-1;
3226 		}
3227 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
3228 					&range, BTRFS_OLDEST_GENERATION, 0);
3229 		if (ret > 0)
3230 			ret = 0;
3231 		break;
3232 	default:
3233 		ret = -EINVAL;
3234 	}
3235 out:
3236 	mnt_drop_write_file(file);
3237 	return ret;
3238 }
3239 
3240 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3241 {
3242 	struct btrfs_ioctl_vol_args *vol_args;
3243 	bool restore_op = false;
3244 	int ret;
3245 
3246 	if (!capable(CAP_SYS_ADMIN))
3247 		return -EPERM;
3248 
3249 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
3250 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
3251 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3252 
3253 		/*
3254 		 * We can do the device add because we have a paused balanced,
3255 		 * change the exclusive op type and remember we should bring
3256 		 * back the paused balance
3257 		 */
3258 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
3259 		btrfs_exclop_start_unlock(fs_info);
3260 		restore_op = true;
3261 	}
3262 
3263 	vol_args = memdup_user(arg, sizeof(*vol_args));
3264 	if (IS_ERR(vol_args)) {
3265 		ret = PTR_ERR(vol_args);
3266 		goto out;
3267 	}
3268 
3269 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3270 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3271 
3272 	if (!ret)
3273 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3274 
3275 	kfree(vol_args);
3276 out:
3277 	if (restore_op)
3278 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
3279 	else
3280 		btrfs_exclop_finish(fs_info);
3281 	return ret;
3282 }
3283 
3284 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3285 {
3286 	BTRFS_DEV_LOOKUP_ARGS(args);
3287 	struct inode *inode = file_inode(file);
3288 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3289 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3290 	struct block_device *bdev = NULL;
3291 	fmode_t mode;
3292 	int ret;
3293 	bool cancel = false;
3294 
3295 	if (!capable(CAP_SYS_ADMIN))
3296 		return -EPERM;
3297 
3298 	vol_args = memdup_user(arg, sizeof(*vol_args));
3299 	if (IS_ERR(vol_args))
3300 		return PTR_ERR(vol_args);
3301 
3302 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3303 		ret = -EOPNOTSUPP;
3304 		goto out;
3305 	}
3306 
3307 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3308 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3309 		args.devid = vol_args->devid;
3310 	} else if (!strcmp("cancel", vol_args->name)) {
3311 		cancel = true;
3312 	} else {
3313 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3314 		if (ret)
3315 			goto out;
3316 	}
3317 
3318 	ret = mnt_want_write_file(file);
3319 	if (ret)
3320 		goto out;
3321 
3322 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3323 					   cancel);
3324 	if (ret)
3325 		goto err_drop;
3326 
3327 	/* Exclusive operation is now claimed */
3328 	ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3329 
3330 	btrfs_exclop_finish(fs_info);
3331 
3332 	if (!ret) {
3333 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3334 			btrfs_info(fs_info, "device deleted: id %llu",
3335 					vol_args->devid);
3336 		else
3337 			btrfs_info(fs_info, "device deleted: %s",
3338 					vol_args->name);
3339 	}
3340 err_drop:
3341 	mnt_drop_write_file(file);
3342 	if (bdev)
3343 		blkdev_put(bdev, mode);
3344 out:
3345 	btrfs_put_dev_args_from_path(&args);
3346 	kfree(vol_args);
3347 	return ret;
3348 }
3349 
3350 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3351 {
3352 	BTRFS_DEV_LOOKUP_ARGS(args);
3353 	struct inode *inode = file_inode(file);
3354 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3355 	struct btrfs_ioctl_vol_args *vol_args;
3356 	struct block_device *bdev = NULL;
3357 	fmode_t mode;
3358 	int ret;
3359 	bool cancel = false;
3360 
3361 	if (!capable(CAP_SYS_ADMIN))
3362 		return -EPERM;
3363 
3364 	vol_args = memdup_user(arg, sizeof(*vol_args));
3365 	if (IS_ERR(vol_args))
3366 		return PTR_ERR(vol_args);
3367 
3368 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3369 	if (!strcmp("cancel", vol_args->name)) {
3370 		cancel = true;
3371 	} else {
3372 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3373 		if (ret)
3374 			goto out;
3375 	}
3376 
3377 	ret = mnt_want_write_file(file);
3378 	if (ret)
3379 		goto out;
3380 
3381 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3382 					   cancel);
3383 	if (ret == 0) {
3384 		ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3385 		if (!ret)
3386 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3387 		btrfs_exclop_finish(fs_info);
3388 	}
3389 
3390 	mnt_drop_write_file(file);
3391 	if (bdev)
3392 		blkdev_put(bdev, mode);
3393 out:
3394 	btrfs_put_dev_args_from_path(&args);
3395 	kfree(vol_args);
3396 	return ret;
3397 }
3398 
3399 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3400 				void __user *arg)
3401 {
3402 	struct btrfs_ioctl_fs_info_args *fi_args;
3403 	struct btrfs_device *device;
3404 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3405 	u64 flags_in;
3406 	int ret = 0;
3407 
3408 	fi_args = memdup_user(arg, sizeof(*fi_args));
3409 	if (IS_ERR(fi_args))
3410 		return PTR_ERR(fi_args);
3411 
3412 	flags_in = fi_args->flags;
3413 	memset(fi_args, 0, sizeof(*fi_args));
3414 
3415 	rcu_read_lock();
3416 	fi_args->num_devices = fs_devices->num_devices;
3417 
3418 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3419 		if (device->devid > fi_args->max_id)
3420 			fi_args->max_id = device->devid;
3421 	}
3422 	rcu_read_unlock();
3423 
3424 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3425 	fi_args->nodesize = fs_info->nodesize;
3426 	fi_args->sectorsize = fs_info->sectorsize;
3427 	fi_args->clone_alignment = fs_info->sectorsize;
3428 
3429 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3430 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3431 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3432 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3433 	}
3434 
3435 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3436 		fi_args->generation = fs_info->generation;
3437 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3438 	}
3439 
3440 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3441 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3442 		       sizeof(fi_args->metadata_uuid));
3443 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3444 	}
3445 
3446 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3447 		ret = -EFAULT;
3448 
3449 	kfree(fi_args);
3450 	return ret;
3451 }
3452 
3453 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3454 				 void __user *arg)
3455 {
3456 	BTRFS_DEV_LOOKUP_ARGS(args);
3457 	struct btrfs_ioctl_dev_info_args *di_args;
3458 	struct btrfs_device *dev;
3459 	int ret = 0;
3460 
3461 	di_args = memdup_user(arg, sizeof(*di_args));
3462 	if (IS_ERR(di_args))
3463 		return PTR_ERR(di_args);
3464 
3465 	args.devid = di_args->devid;
3466 	if (!btrfs_is_empty_uuid(di_args->uuid))
3467 		args.uuid = di_args->uuid;
3468 
3469 	rcu_read_lock();
3470 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3471 	if (!dev) {
3472 		ret = -ENODEV;
3473 		goto out;
3474 	}
3475 
3476 	di_args->devid = dev->devid;
3477 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3478 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3479 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3480 	if (dev->name) {
3481 		strncpy(di_args->path, rcu_str_deref(dev->name),
3482 				sizeof(di_args->path) - 1);
3483 		di_args->path[sizeof(di_args->path) - 1] = 0;
3484 	} else {
3485 		di_args->path[0] = '\0';
3486 	}
3487 
3488 out:
3489 	rcu_read_unlock();
3490 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3491 		ret = -EFAULT;
3492 
3493 	kfree(di_args);
3494 	return ret;
3495 }
3496 
3497 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3498 {
3499 	struct inode *inode = file_inode(file);
3500 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3501 	struct btrfs_root *root = BTRFS_I(inode)->root;
3502 	struct btrfs_root *new_root;
3503 	struct btrfs_dir_item *di;
3504 	struct btrfs_trans_handle *trans;
3505 	struct btrfs_path *path = NULL;
3506 	struct btrfs_disk_key disk_key;
3507 	u64 objectid = 0;
3508 	u64 dir_id;
3509 	int ret;
3510 
3511 	if (!capable(CAP_SYS_ADMIN))
3512 		return -EPERM;
3513 
3514 	ret = mnt_want_write_file(file);
3515 	if (ret)
3516 		return ret;
3517 
3518 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3519 		ret = -EFAULT;
3520 		goto out;
3521 	}
3522 
3523 	if (!objectid)
3524 		objectid = BTRFS_FS_TREE_OBJECTID;
3525 
3526 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3527 	if (IS_ERR(new_root)) {
3528 		ret = PTR_ERR(new_root);
3529 		goto out;
3530 	}
3531 	if (!is_fstree(new_root->root_key.objectid)) {
3532 		ret = -ENOENT;
3533 		goto out_free;
3534 	}
3535 
3536 	path = btrfs_alloc_path();
3537 	if (!path) {
3538 		ret = -ENOMEM;
3539 		goto out_free;
3540 	}
3541 
3542 	trans = btrfs_start_transaction(root, 1);
3543 	if (IS_ERR(trans)) {
3544 		ret = PTR_ERR(trans);
3545 		goto out_free;
3546 	}
3547 
3548 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3549 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3550 				   dir_id, "default", 7, 1);
3551 	if (IS_ERR_OR_NULL(di)) {
3552 		btrfs_release_path(path);
3553 		btrfs_end_transaction(trans);
3554 		btrfs_err(fs_info,
3555 			  "Umm, you don't have the default diritem, this isn't going to work");
3556 		ret = -ENOENT;
3557 		goto out_free;
3558 	}
3559 
3560 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3561 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3562 	btrfs_mark_buffer_dirty(path->nodes[0]);
3563 	btrfs_release_path(path);
3564 
3565 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3566 	btrfs_end_transaction(trans);
3567 out_free:
3568 	btrfs_put_root(new_root);
3569 	btrfs_free_path(path);
3570 out:
3571 	mnt_drop_write_file(file);
3572 	return ret;
3573 }
3574 
3575 static void get_block_group_info(struct list_head *groups_list,
3576 				 struct btrfs_ioctl_space_info *space)
3577 {
3578 	struct btrfs_block_group *block_group;
3579 
3580 	space->total_bytes = 0;
3581 	space->used_bytes = 0;
3582 	space->flags = 0;
3583 	list_for_each_entry(block_group, groups_list, list) {
3584 		space->flags = block_group->flags;
3585 		space->total_bytes += block_group->length;
3586 		space->used_bytes += block_group->used;
3587 	}
3588 }
3589 
3590 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3591 				   void __user *arg)
3592 {
3593 	struct btrfs_ioctl_space_args space_args;
3594 	struct btrfs_ioctl_space_info space;
3595 	struct btrfs_ioctl_space_info *dest;
3596 	struct btrfs_ioctl_space_info *dest_orig;
3597 	struct btrfs_ioctl_space_info __user *user_dest;
3598 	struct btrfs_space_info *info;
3599 	static const u64 types[] = {
3600 		BTRFS_BLOCK_GROUP_DATA,
3601 		BTRFS_BLOCK_GROUP_SYSTEM,
3602 		BTRFS_BLOCK_GROUP_METADATA,
3603 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3604 	};
3605 	int num_types = 4;
3606 	int alloc_size;
3607 	int ret = 0;
3608 	u64 slot_count = 0;
3609 	int i, c;
3610 
3611 	if (copy_from_user(&space_args,
3612 			   (struct btrfs_ioctl_space_args __user *)arg,
3613 			   sizeof(space_args)))
3614 		return -EFAULT;
3615 
3616 	for (i = 0; i < num_types; i++) {
3617 		struct btrfs_space_info *tmp;
3618 
3619 		info = NULL;
3620 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3621 			if (tmp->flags == types[i]) {
3622 				info = tmp;
3623 				break;
3624 			}
3625 		}
3626 
3627 		if (!info)
3628 			continue;
3629 
3630 		down_read(&info->groups_sem);
3631 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3632 			if (!list_empty(&info->block_groups[c]))
3633 				slot_count++;
3634 		}
3635 		up_read(&info->groups_sem);
3636 	}
3637 
3638 	/*
3639 	 * Global block reserve, exported as a space_info
3640 	 */
3641 	slot_count++;
3642 
3643 	/* space_slots == 0 means they are asking for a count */
3644 	if (space_args.space_slots == 0) {
3645 		space_args.total_spaces = slot_count;
3646 		goto out;
3647 	}
3648 
3649 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3650 
3651 	alloc_size = sizeof(*dest) * slot_count;
3652 
3653 	/* we generally have at most 6 or so space infos, one for each raid
3654 	 * level.  So, a whole page should be more than enough for everyone
3655 	 */
3656 	if (alloc_size > PAGE_SIZE)
3657 		return -ENOMEM;
3658 
3659 	space_args.total_spaces = 0;
3660 	dest = kmalloc(alloc_size, GFP_KERNEL);
3661 	if (!dest)
3662 		return -ENOMEM;
3663 	dest_orig = dest;
3664 
3665 	/* now we have a buffer to copy into */
3666 	for (i = 0; i < num_types; i++) {
3667 		struct btrfs_space_info *tmp;
3668 
3669 		if (!slot_count)
3670 			break;
3671 
3672 		info = NULL;
3673 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3674 			if (tmp->flags == types[i]) {
3675 				info = tmp;
3676 				break;
3677 			}
3678 		}
3679 
3680 		if (!info)
3681 			continue;
3682 		down_read(&info->groups_sem);
3683 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3684 			if (!list_empty(&info->block_groups[c])) {
3685 				get_block_group_info(&info->block_groups[c],
3686 						     &space);
3687 				memcpy(dest, &space, sizeof(space));
3688 				dest++;
3689 				space_args.total_spaces++;
3690 				slot_count--;
3691 			}
3692 			if (!slot_count)
3693 				break;
3694 		}
3695 		up_read(&info->groups_sem);
3696 	}
3697 
3698 	/*
3699 	 * Add global block reserve
3700 	 */
3701 	if (slot_count) {
3702 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3703 
3704 		spin_lock(&block_rsv->lock);
3705 		space.total_bytes = block_rsv->size;
3706 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3707 		spin_unlock(&block_rsv->lock);
3708 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3709 		memcpy(dest, &space, sizeof(space));
3710 		space_args.total_spaces++;
3711 	}
3712 
3713 	user_dest = (struct btrfs_ioctl_space_info __user *)
3714 		(arg + sizeof(struct btrfs_ioctl_space_args));
3715 
3716 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3717 		ret = -EFAULT;
3718 
3719 	kfree(dest_orig);
3720 out:
3721 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3722 		ret = -EFAULT;
3723 
3724 	return ret;
3725 }
3726 
3727 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3728 					    void __user *argp)
3729 {
3730 	struct btrfs_trans_handle *trans;
3731 	u64 transid;
3732 
3733 	trans = btrfs_attach_transaction_barrier(root);
3734 	if (IS_ERR(trans)) {
3735 		if (PTR_ERR(trans) != -ENOENT)
3736 			return PTR_ERR(trans);
3737 
3738 		/* No running transaction, don't bother */
3739 		transid = root->fs_info->last_trans_committed;
3740 		goto out;
3741 	}
3742 	transid = trans->transid;
3743 	btrfs_commit_transaction_async(trans);
3744 out:
3745 	if (argp)
3746 		if (copy_to_user(argp, &transid, sizeof(transid)))
3747 			return -EFAULT;
3748 	return 0;
3749 }
3750 
3751 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3752 					   void __user *argp)
3753 {
3754 	u64 transid;
3755 
3756 	if (argp) {
3757 		if (copy_from_user(&transid, argp, sizeof(transid)))
3758 			return -EFAULT;
3759 	} else {
3760 		transid = 0;  /* current trans */
3761 	}
3762 	return btrfs_wait_for_commit(fs_info, transid);
3763 }
3764 
3765 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3766 {
3767 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3768 	struct btrfs_ioctl_scrub_args *sa;
3769 	int ret;
3770 
3771 	if (!capable(CAP_SYS_ADMIN))
3772 		return -EPERM;
3773 
3774 	sa = memdup_user(arg, sizeof(*sa));
3775 	if (IS_ERR(sa))
3776 		return PTR_ERR(sa);
3777 
3778 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3779 		ret = mnt_want_write_file(file);
3780 		if (ret)
3781 			goto out;
3782 	}
3783 
3784 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3785 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3786 			      0);
3787 
3788 	/*
3789 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3790 	 * error. This is important as it allows user space to know how much
3791 	 * progress scrub has done. For example, if scrub is canceled we get
3792 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3793 	 * space. Later user space can inspect the progress from the structure
3794 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3795 	 * previously (btrfs-progs does this).
3796 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3797 	 * then return -EFAULT to signal the structure was not copied or it may
3798 	 * be corrupt and unreliable due to a partial copy.
3799 	 */
3800 	if (copy_to_user(arg, sa, sizeof(*sa)))
3801 		ret = -EFAULT;
3802 
3803 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3804 		mnt_drop_write_file(file);
3805 out:
3806 	kfree(sa);
3807 	return ret;
3808 }
3809 
3810 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3811 {
3812 	if (!capable(CAP_SYS_ADMIN))
3813 		return -EPERM;
3814 
3815 	return btrfs_scrub_cancel(fs_info);
3816 }
3817 
3818 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3819 				       void __user *arg)
3820 {
3821 	struct btrfs_ioctl_scrub_args *sa;
3822 	int ret;
3823 
3824 	if (!capable(CAP_SYS_ADMIN))
3825 		return -EPERM;
3826 
3827 	sa = memdup_user(arg, sizeof(*sa));
3828 	if (IS_ERR(sa))
3829 		return PTR_ERR(sa);
3830 
3831 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3832 
3833 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3834 		ret = -EFAULT;
3835 
3836 	kfree(sa);
3837 	return ret;
3838 }
3839 
3840 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3841 				      void __user *arg)
3842 {
3843 	struct btrfs_ioctl_get_dev_stats *sa;
3844 	int ret;
3845 
3846 	sa = memdup_user(arg, sizeof(*sa));
3847 	if (IS_ERR(sa))
3848 		return PTR_ERR(sa);
3849 
3850 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3851 		kfree(sa);
3852 		return -EPERM;
3853 	}
3854 
3855 	ret = btrfs_get_dev_stats(fs_info, sa);
3856 
3857 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3858 		ret = -EFAULT;
3859 
3860 	kfree(sa);
3861 	return ret;
3862 }
3863 
3864 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3865 				    void __user *arg)
3866 {
3867 	struct btrfs_ioctl_dev_replace_args *p;
3868 	int ret;
3869 
3870 	if (!capable(CAP_SYS_ADMIN))
3871 		return -EPERM;
3872 
3873 	p = memdup_user(arg, sizeof(*p));
3874 	if (IS_ERR(p))
3875 		return PTR_ERR(p);
3876 
3877 	switch (p->cmd) {
3878 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3879 		if (sb_rdonly(fs_info->sb)) {
3880 			ret = -EROFS;
3881 			goto out;
3882 		}
3883 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3884 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3885 		} else {
3886 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3887 			btrfs_exclop_finish(fs_info);
3888 		}
3889 		break;
3890 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3891 		btrfs_dev_replace_status(fs_info, p);
3892 		ret = 0;
3893 		break;
3894 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3895 		p->result = btrfs_dev_replace_cancel(fs_info);
3896 		ret = 0;
3897 		break;
3898 	default:
3899 		ret = -EINVAL;
3900 		break;
3901 	}
3902 
3903 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3904 		ret = -EFAULT;
3905 out:
3906 	kfree(p);
3907 	return ret;
3908 }
3909 
3910 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3911 {
3912 	int ret = 0;
3913 	int i;
3914 	u64 rel_ptr;
3915 	int size;
3916 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3917 	struct inode_fs_paths *ipath = NULL;
3918 	struct btrfs_path *path;
3919 
3920 	if (!capable(CAP_DAC_READ_SEARCH))
3921 		return -EPERM;
3922 
3923 	path = btrfs_alloc_path();
3924 	if (!path) {
3925 		ret = -ENOMEM;
3926 		goto out;
3927 	}
3928 
3929 	ipa = memdup_user(arg, sizeof(*ipa));
3930 	if (IS_ERR(ipa)) {
3931 		ret = PTR_ERR(ipa);
3932 		ipa = NULL;
3933 		goto out;
3934 	}
3935 
3936 	size = min_t(u32, ipa->size, 4096);
3937 	ipath = init_ipath(size, root, path);
3938 	if (IS_ERR(ipath)) {
3939 		ret = PTR_ERR(ipath);
3940 		ipath = NULL;
3941 		goto out;
3942 	}
3943 
3944 	ret = paths_from_inode(ipa->inum, ipath);
3945 	if (ret < 0)
3946 		goto out;
3947 
3948 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3949 		rel_ptr = ipath->fspath->val[i] -
3950 			  (u64)(unsigned long)ipath->fspath->val;
3951 		ipath->fspath->val[i] = rel_ptr;
3952 	}
3953 
3954 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3955 			   ipath->fspath, size);
3956 	if (ret) {
3957 		ret = -EFAULT;
3958 		goto out;
3959 	}
3960 
3961 out:
3962 	btrfs_free_path(path);
3963 	free_ipath(ipath);
3964 	kfree(ipa);
3965 
3966 	return ret;
3967 }
3968 
3969 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3970 {
3971 	struct btrfs_data_container *inodes = ctx;
3972 	const size_t c = 3 * sizeof(u64);
3973 
3974 	if (inodes->bytes_left >= c) {
3975 		inodes->bytes_left -= c;
3976 		inodes->val[inodes->elem_cnt] = inum;
3977 		inodes->val[inodes->elem_cnt + 1] = offset;
3978 		inodes->val[inodes->elem_cnt + 2] = root;
3979 		inodes->elem_cnt += 3;
3980 	} else {
3981 		inodes->bytes_missing += c - inodes->bytes_left;
3982 		inodes->bytes_left = 0;
3983 		inodes->elem_missed += 3;
3984 	}
3985 
3986 	return 0;
3987 }
3988 
3989 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3990 					void __user *arg, int version)
3991 {
3992 	int ret = 0;
3993 	int size;
3994 	struct btrfs_ioctl_logical_ino_args *loi;
3995 	struct btrfs_data_container *inodes = NULL;
3996 	struct btrfs_path *path = NULL;
3997 	bool ignore_offset;
3998 
3999 	if (!capable(CAP_SYS_ADMIN))
4000 		return -EPERM;
4001 
4002 	loi = memdup_user(arg, sizeof(*loi));
4003 	if (IS_ERR(loi))
4004 		return PTR_ERR(loi);
4005 
4006 	if (version == 1) {
4007 		ignore_offset = false;
4008 		size = min_t(u32, loi->size, SZ_64K);
4009 	} else {
4010 		/* All reserved bits must be 0 for now */
4011 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4012 			ret = -EINVAL;
4013 			goto out_loi;
4014 		}
4015 		/* Only accept flags we have defined so far */
4016 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4017 			ret = -EINVAL;
4018 			goto out_loi;
4019 		}
4020 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4021 		size = min_t(u32, loi->size, SZ_16M);
4022 	}
4023 
4024 	path = btrfs_alloc_path();
4025 	if (!path) {
4026 		ret = -ENOMEM;
4027 		goto out;
4028 	}
4029 
4030 	inodes = init_data_container(size);
4031 	if (IS_ERR(inodes)) {
4032 		ret = PTR_ERR(inodes);
4033 		inodes = NULL;
4034 		goto out;
4035 	}
4036 
4037 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4038 					  build_ino_list, inodes, ignore_offset);
4039 	if (ret == -EINVAL)
4040 		ret = -ENOENT;
4041 	if (ret < 0)
4042 		goto out;
4043 
4044 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4045 			   size);
4046 	if (ret)
4047 		ret = -EFAULT;
4048 
4049 out:
4050 	btrfs_free_path(path);
4051 	kvfree(inodes);
4052 out_loi:
4053 	kfree(loi);
4054 
4055 	return ret;
4056 }
4057 
4058 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4059 			       struct btrfs_ioctl_balance_args *bargs)
4060 {
4061 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4062 
4063 	bargs->flags = bctl->flags;
4064 
4065 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4066 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4067 	if (atomic_read(&fs_info->balance_pause_req))
4068 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4069 	if (atomic_read(&fs_info->balance_cancel_req))
4070 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4071 
4072 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4073 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4074 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4075 
4076 	spin_lock(&fs_info->balance_lock);
4077 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4078 	spin_unlock(&fs_info->balance_lock);
4079 }
4080 
4081 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4082 {
4083 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4084 	struct btrfs_fs_info *fs_info = root->fs_info;
4085 	struct btrfs_ioctl_balance_args *bargs;
4086 	struct btrfs_balance_control *bctl;
4087 	bool need_unlock; /* for mut. excl. ops lock */
4088 	int ret;
4089 
4090 	if (!arg)
4091 		btrfs_warn(fs_info,
4092 	"IOC_BALANCE ioctl (v1) is deprecated and will be removed in kernel 5.18");
4093 
4094 	if (!capable(CAP_SYS_ADMIN))
4095 		return -EPERM;
4096 
4097 	ret = mnt_want_write_file(file);
4098 	if (ret)
4099 		return ret;
4100 
4101 again:
4102 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4103 		mutex_lock(&fs_info->balance_mutex);
4104 		need_unlock = true;
4105 		goto locked;
4106 	}
4107 
4108 	/*
4109 	 * mut. excl. ops lock is locked.  Three possibilities:
4110 	 *   (1) some other op is running
4111 	 *   (2) balance is running
4112 	 *   (3) balance is paused -- special case (think resume)
4113 	 */
4114 	mutex_lock(&fs_info->balance_mutex);
4115 	if (fs_info->balance_ctl) {
4116 		/* this is either (2) or (3) */
4117 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4118 			mutex_unlock(&fs_info->balance_mutex);
4119 			/*
4120 			 * Lock released to allow other waiters to continue,
4121 			 * we'll reexamine the status again.
4122 			 */
4123 			mutex_lock(&fs_info->balance_mutex);
4124 
4125 			if (fs_info->balance_ctl &&
4126 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4127 				/* this is (3) */
4128 				need_unlock = false;
4129 				goto locked;
4130 			}
4131 
4132 			mutex_unlock(&fs_info->balance_mutex);
4133 			goto again;
4134 		} else {
4135 			/* this is (2) */
4136 			mutex_unlock(&fs_info->balance_mutex);
4137 			ret = -EINPROGRESS;
4138 			goto out;
4139 		}
4140 	} else {
4141 		/* this is (1) */
4142 		mutex_unlock(&fs_info->balance_mutex);
4143 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4144 		goto out;
4145 	}
4146 
4147 locked:
4148 
4149 	if (arg) {
4150 		bargs = memdup_user(arg, sizeof(*bargs));
4151 		if (IS_ERR(bargs)) {
4152 			ret = PTR_ERR(bargs);
4153 			goto out_unlock;
4154 		}
4155 
4156 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4157 			if (!fs_info->balance_ctl) {
4158 				ret = -ENOTCONN;
4159 				goto out_bargs;
4160 			}
4161 
4162 			bctl = fs_info->balance_ctl;
4163 			spin_lock(&fs_info->balance_lock);
4164 			bctl->flags |= BTRFS_BALANCE_RESUME;
4165 			spin_unlock(&fs_info->balance_lock);
4166 			btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
4167 
4168 			goto do_balance;
4169 		}
4170 	} else {
4171 		bargs = NULL;
4172 	}
4173 
4174 	if (fs_info->balance_ctl) {
4175 		ret = -EINPROGRESS;
4176 		goto out_bargs;
4177 	}
4178 
4179 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4180 	if (!bctl) {
4181 		ret = -ENOMEM;
4182 		goto out_bargs;
4183 	}
4184 
4185 	if (arg) {
4186 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4187 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4188 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4189 
4190 		bctl->flags = bargs->flags;
4191 	} else {
4192 		/* balance everything - no filters */
4193 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4194 	}
4195 
4196 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4197 		ret = -EINVAL;
4198 		goto out_bctl;
4199 	}
4200 
4201 do_balance:
4202 	/*
4203 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4204 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4205 	 * all the way until unmount, in free_fs_info.  The flag should be
4206 	 * cleared after reset_balance_state.
4207 	 */
4208 	need_unlock = false;
4209 
4210 	ret = btrfs_balance(fs_info, bctl, bargs);
4211 	bctl = NULL;
4212 
4213 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4214 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4215 			ret = -EFAULT;
4216 	}
4217 
4218 out_bctl:
4219 	kfree(bctl);
4220 out_bargs:
4221 	kfree(bargs);
4222 out_unlock:
4223 	mutex_unlock(&fs_info->balance_mutex);
4224 	if (need_unlock)
4225 		btrfs_exclop_finish(fs_info);
4226 out:
4227 	mnt_drop_write_file(file);
4228 	return ret;
4229 }
4230 
4231 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4232 {
4233 	if (!capable(CAP_SYS_ADMIN))
4234 		return -EPERM;
4235 
4236 	switch (cmd) {
4237 	case BTRFS_BALANCE_CTL_PAUSE:
4238 		return btrfs_pause_balance(fs_info);
4239 	case BTRFS_BALANCE_CTL_CANCEL:
4240 		return btrfs_cancel_balance(fs_info);
4241 	}
4242 
4243 	return -EINVAL;
4244 }
4245 
4246 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4247 					 void __user *arg)
4248 {
4249 	struct btrfs_ioctl_balance_args *bargs;
4250 	int ret = 0;
4251 
4252 	if (!capable(CAP_SYS_ADMIN))
4253 		return -EPERM;
4254 
4255 	mutex_lock(&fs_info->balance_mutex);
4256 	if (!fs_info->balance_ctl) {
4257 		ret = -ENOTCONN;
4258 		goto out;
4259 	}
4260 
4261 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4262 	if (!bargs) {
4263 		ret = -ENOMEM;
4264 		goto out;
4265 	}
4266 
4267 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4268 
4269 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4270 		ret = -EFAULT;
4271 
4272 	kfree(bargs);
4273 out:
4274 	mutex_unlock(&fs_info->balance_mutex);
4275 	return ret;
4276 }
4277 
4278 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4279 {
4280 	struct inode *inode = file_inode(file);
4281 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4282 	struct btrfs_ioctl_quota_ctl_args *sa;
4283 	int ret;
4284 
4285 	if (!capable(CAP_SYS_ADMIN))
4286 		return -EPERM;
4287 
4288 	ret = mnt_want_write_file(file);
4289 	if (ret)
4290 		return ret;
4291 
4292 	sa = memdup_user(arg, sizeof(*sa));
4293 	if (IS_ERR(sa)) {
4294 		ret = PTR_ERR(sa);
4295 		goto drop_write;
4296 	}
4297 
4298 	down_write(&fs_info->subvol_sem);
4299 
4300 	switch (sa->cmd) {
4301 	case BTRFS_QUOTA_CTL_ENABLE:
4302 		ret = btrfs_quota_enable(fs_info);
4303 		break;
4304 	case BTRFS_QUOTA_CTL_DISABLE:
4305 		ret = btrfs_quota_disable(fs_info);
4306 		break;
4307 	default:
4308 		ret = -EINVAL;
4309 		break;
4310 	}
4311 
4312 	kfree(sa);
4313 	up_write(&fs_info->subvol_sem);
4314 drop_write:
4315 	mnt_drop_write_file(file);
4316 	return ret;
4317 }
4318 
4319 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4320 {
4321 	struct inode *inode = file_inode(file);
4322 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4323 	struct btrfs_root *root = BTRFS_I(inode)->root;
4324 	struct btrfs_ioctl_qgroup_assign_args *sa;
4325 	struct btrfs_trans_handle *trans;
4326 	int ret;
4327 	int err;
4328 
4329 	if (!capable(CAP_SYS_ADMIN))
4330 		return -EPERM;
4331 
4332 	ret = mnt_want_write_file(file);
4333 	if (ret)
4334 		return ret;
4335 
4336 	sa = memdup_user(arg, sizeof(*sa));
4337 	if (IS_ERR(sa)) {
4338 		ret = PTR_ERR(sa);
4339 		goto drop_write;
4340 	}
4341 
4342 	trans = btrfs_join_transaction(root);
4343 	if (IS_ERR(trans)) {
4344 		ret = PTR_ERR(trans);
4345 		goto out;
4346 	}
4347 
4348 	if (sa->assign) {
4349 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4350 	} else {
4351 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4352 	}
4353 
4354 	/* update qgroup status and info */
4355 	err = btrfs_run_qgroups(trans);
4356 	if (err < 0)
4357 		btrfs_handle_fs_error(fs_info, err,
4358 				      "failed to update qgroup status and info");
4359 	err = btrfs_end_transaction(trans);
4360 	if (err && !ret)
4361 		ret = err;
4362 
4363 out:
4364 	kfree(sa);
4365 drop_write:
4366 	mnt_drop_write_file(file);
4367 	return ret;
4368 }
4369 
4370 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4371 {
4372 	struct inode *inode = file_inode(file);
4373 	struct btrfs_root *root = BTRFS_I(inode)->root;
4374 	struct btrfs_ioctl_qgroup_create_args *sa;
4375 	struct btrfs_trans_handle *trans;
4376 	int ret;
4377 	int err;
4378 
4379 	if (!capable(CAP_SYS_ADMIN))
4380 		return -EPERM;
4381 
4382 	ret = mnt_want_write_file(file);
4383 	if (ret)
4384 		return ret;
4385 
4386 	sa = memdup_user(arg, sizeof(*sa));
4387 	if (IS_ERR(sa)) {
4388 		ret = PTR_ERR(sa);
4389 		goto drop_write;
4390 	}
4391 
4392 	if (!sa->qgroupid) {
4393 		ret = -EINVAL;
4394 		goto out;
4395 	}
4396 
4397 	trans = btrfs_join_transaction(root);
4398 	if (IS_ERR(trans)) {
4399 		ret = PTR_ERR(trans);
4400 		goto out;
4401 	}
4402 
4403 	if (sa->create) {
4404 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4405 	} else {
4406 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4407 	}
4408 
4409 	err = btrfs_end_transaction(trans);
4410 	if (err && !ret)
4411 		ret = err;
4412 
4413 out:
4414 	kfree(sa);
4415 drop_write:
4416 	mnt_drop_write_file(file);
4417 	return ret;
4418 }
4419 
4420 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4421 {
4422 	struct inode *inode = file_inode(file);
4423 	struct btrfs_root *root = BTRFS_I(inode)->root;
4424 	struct btrfs_ioctl_qgroup_limit_args *sa;
4425 	struct btrfs_trans_handle *trans;
4426 	int ret;
4427 	int err;
4428 	u64 qgroupid;
4429 
4430 	if (!capable(CAP_SYS_ADMIN))
4431 		return -EPERM;
4432 
4433 	ret = mnt_want_write_file(file);
4434 	if (ret)
4435 		return ret;
4436 
4437 	sa = memdup_user(arg, sizeof(*sa));
4438 	if (IS_ERR(sa)) {
4439 		ret = PTR_ERR(sa);
4440 		goto drop_write;
4441 	}
4442 
4443 	trans = btrfs_join_transaction(root);
4444 	if (IS_ERR(trans)) {
4445 		ret = PTR_ERR(trans);
4446 		goto out;
4447 	}
4448 
4449 	qgroupid = sa->qgroupid;
4450 	if (!qgroupid) {
4451 		/* take the current subvol as qgroup */
4452 		qgroupid = root->root_key.objectid;
4453 	}
4454 
4455 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4456 
4457 	err = btrfs_end_transaction(trans);
4458 	if (err && !ret)
4459 		ret = err;
4460 
4461 out:
4462 	kfree(sa);
4463 drop_write:
4464 	mnt_drop_write_file(file);
4465 	return ret;
4466 }
4467 
4468 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4469 {
4470 	struct inode *inode = file_inode(file);
4471 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4472 	struct btrfs_ioctl_quota_rescan_args *qsa;
4473 	int ret;
4474 
4475 	if (!capable(CAP_SYS_ADMIN))
4476 		return -EPERM;
4477 
4478 	ret = mnt_want_write_file(file);
4479 	if (ret)
4480 		return ret;
4481 
4482 	qsa = memdup_user(arg, sizeof(*qsa));
4483 	if (IS_ERR(qsa)) {
4484 		ret = PTR_ERR(qsa);
4485 		goto drop_write;
4486 	}
4487 
4488 	if (qsa->flags) {
4489 		ret = -EINVAL;
4490 		goto out;
4491 	}
4492 
4493 	ret = btrfs_qgroup_rescan(fs_info);
4494 
4495 out:
4496 	kfree(qsa);
4497 drop_write:
4498 	mnt_drop_write_file(file);
4499 	return ret;
4500 }
4501 
4502 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4503 						void __user *arg)
4504 {
4505 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
4506 
4507 	if (!capable(CAP_SYS_ADMIN))
4508 		return -EPERM;
4509 
4510 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4511 		qsa.flags = 1;
4512 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4513 	}
4514 
4515 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
4516 		return -EFAULT;
4517 
4518 	return 0;
4519 }
4520 
4521 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4522 						void __user *arg)
4523 {
4524 	if (!capable(CAP_SYS_ADMIN))
4525 		return -EPERM;
4526 
4527 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4528 }
4529 
4530 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4531 					    struct user_namespace *mnt_userns,
4532 					    struct btrfs_ioctl_received_subvol_args *sa)
4533 {
4534 	struct inode *inode = file_inode(file);
4535 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4536 	struct btrfs_root *root = BTRFS_I(inode)->root;
4537 	struct btrfs_root_item *root_item = &root->root_item;
4538 	struct btrfs_trans_handle *trans;
4539 	struct timespec64 ct = current_time(inode);
4540 	int ret = 0;
4541 	int received_uuid_changed;
4542 
4543 	if (!inode_owner_or_capable(mnt_userns, inode))
4544 		return -EPERM;
4545 
4546 	ret = mnt_want_write_file(file);
4547 	if (ret < 0)
4548 		return ret;
4549 
4550 	down_write(&fs_info->subvol_sem);
4551 
4552 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4553 		ret = -EINVAL;
4554 		goto out;
4555 	}
4556 
4557 	if (btrfs_root_readonly(root)) {
4558 		ret = -EROFS;
4559 		goto out;
4560 	}
4561 
4562 	/*
4563 	 * 1 - root item
4564 	 * 2 - uuid items (received uuid + subvol uuid)
4565 	 */
4566 	trans = btrfs_start_transaction(root, 3);
4567 	if (IS_ERR(trans)) {
4568 		ret = PTR_ERR(trans);
4569 		trans = NULL;
4570 		goto out;
4571 	}
4572 
4573 	sa->rtransid = trans->transid;
4574 	sa->rtime.sec = ct.tv_sec;
4575 	sa->rtime.nsec = ct.tv_nsec;
4576 
4577 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4578 				       BTRFS_UUID_SIZE);
4579 	if (received_uuid_changed &&
4580 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4581 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4582 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4583 					  root->root_key.objectid);
4584 		if (ret && ret != -ENOENT) {
4585 		        btrfs_abort_transaction(trans, ret);
4586 		        btrfs_end_transaction(trans);
4587 		        goto out;
4588 		}
4589 	}
4590 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4591 	btrfs_set_root_stransid(root_item, sa->stransid);
4592 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4593 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4594 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4595 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4596 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4597 
4598 	ret = btrfs_update_root(trans, fs_info->tree_root,
4599 				&root->root_key, &root->root_item);
4600 	if (ret < 0) {
4601 		btrfs_end_transaction(trans);
4602 		goto out;
4603 	}
4604 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4605 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4606 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4607 					  root->root_key.objectid);
4608 		if (ret < 0 && ret != -EEXIST) {
4609 			btrfs_abort_transaction(trans, ret);
4610 			btrfs_end_transaction(trans);
4611 			goto out;
4612 		}
4613 	}
4614 	ret = btrfs_commit_transaction(trans);
4615 out:
4616 	up_write(&fs_info->subvol_sem);
4617 	mnt_drop_write_file(file);
4618 	return ret;
4619 }
4620 
4621 #ifdef CONFIG_64BIT
4622 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4623 						void __user *arg)
4624 {
4625 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4626 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4627 	int ret = 0;
4628 
4629 	args32 = memdup_user(arg, sizeof(*args32));
4630 	if (IS_ERR(args32))
4631 		return PTR_ERR(args32);
4632 
4633 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4634 	if (!args64) {
4635 		ret = -ENOMEM;
4636 		goto out;
4637 	}
4638 
4639 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4640 	args64->stransid = args32->stransid;
4641 	args64->rtransid = args32->rtransid;
4642 	args64->stime.sec = args32->stime.sec;
4643 	args64->stime.nsec = args32->stime.nsec;
4644 	args64->rtime.sec = args32->rtime.sec;
4645 	args64->rtime.nsec = args32->rtime.nsec;
4646 	args64->flags = args32->flags;
4647 
4648 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4649 	if (ret)
4650 		goto out;
4651 
4652 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4653 	args32->stransid = args64->stransid;
4654 	args32->rtransid = args64->rtransid;
4655 	args32->stime.sec = args64->stime.sec;
4656 	args32->stime.nsec = args64->stime.nsec;
4657 	args32->rtime.sec = args64->rtime.sec;
4658 	args32->rtime.nsec = args64->rtime.nsec;
4659 	args32->flags = args64->flags;
4660 
4661 	ret = copy_to_user(arg, args32, sizeof(*args32));
4662 	if (ret)
4663 		ret = -EFAULT;
4664 
4665 out:
4666 	kfree(args32);
4667 	kfree(args64);
4668 	return ret;
4669 }
4670 #endif
4671 
4672 static long btrfs_ioctl_set_received_subvol(struct file *file,
4673 					    void __user *arg)
4674 {
4675 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4676 	int ret = 0;
4677 
4678 	sa = memdup_user(arg, sizeof(*sa));
4679 	if (IS_ERR(sa))
4680 		return PTR_ERR(sa);
4681 
4682 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4683 
4684 	if (ret)
4685 		goto out;
4686 
4687 	ret = copy_to_user(arg, sa, sizeof(*sa));
4688 	if (ret)
4689 		ret = -EFAULT;
4690 
4691 out:
4692 	kfree(sa);
4693 	return ret;
4694 }
4695 
4696 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4697 					void __user *arg)
4698 {
4699 	size_t len;
4700 	int ret;
4701 	char label[BTRFS_LABEL_SIZE];
4702 
4703 	spin_lock(&fs_info->super_lock);
4704 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4705 	spin_unlock(&fs_info->super_lock);
4706 
4707 	len = strnlen(label, BTRFS_LABEL_SIZE);
4708 
4709 	if (len == BTRFS_LABEL_SIZE) {
4710 		btrfs_warn(fs_info,
4711 			   "label is too long, return the first %zu bytes",
4712 			   --len);
4713 	}
4714 
4715 	ret = copy_to_user(arg, label, len);
4716 
4717 	return ret ? -EFAULT : 0;
4718 }
4719 
4720 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4721 {
4722 	struct inode *inode = file_inode(file);
4723 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4724 	struct btrfs_root *root = BTRFS_I(inode)->root;
4725 	struct btrfs_super_block *super_block = fs_info->super_copy;
4726 	struct btrfs_trans_handle *trans;
4727 	char label[BTRFS_LABEL_SIZE];
4728 	int ret;
4729 
4730 	if (!capable(CAP_SYS_ADMIN))
4731 		return -EPERM;
4732 
4733 	if (copy_from_user(label, arg, sizeof(label)))
4734 		return -EFAULT;
4735 
4736 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4737 		btrfs_err(fs_info,
4738 			  "unable to set label with more than %d bytes",
4739 			  BTRFS_LABEL_SIZE - 1);
4740 		return -EINVAL;
4741 	}
4742 
4743 	ret = mnt_want_write_file(file);
4744 	if (ret)
4745 		return ret;
4746 
4747 	trans = btrfs_start_transaction(root, 0);
4748 	if (IS_ERR(trans)) {
4749 		ret = PTR_ERR(trans);
4750 		goto out_unlock;
4751 	}
4752 
4753 	spin_lock(&fs_info->super_lock);
4754 	strcpy(super_block->label, label);
4755 	spin_unlock(&fs_info->super_lock);
4756 	ret = btrfs_commit_transaction(trans);
4757 
4758 out_unlock:
4759 	mnt_drop_write_file(file);
4760 	return ret;
4761 }
4762 
4763 #define INIT_FEATURE_FLAGS(suffix) \
4764 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4765 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4766 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4767 
4768 int btrfs_ioctl_get_supported_features(void __user *arg)
4769 {
4770 	static const struct btrfs_ioctl_feature_flags features[3] = {
4771 		INIT_FEATURE_FLAGS(SUPP),
4772 		INIT_FEATURE_FLAGS(SAFE_SET),
4773 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4774 	};
4775 
4776 	if (copy_to_user(arg, &features, sizeof(features)))
4777 		return -EFAULT;
4778 
4779 	return 0;
4780 }
4781 
4782 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4783 					void __user *arg)
4784 {
4785 	struct btrfs_super_block *super_block = fs_info->super_copy;
4786 	struct btrfs_ioctl_feature_flags features;
4787 
4788 	features.compat_flags = btrfs_super_compat_flags(super_block);
4789 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4790 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4791 
4792 	if (copy_to_user(arg, &features, sizeof(features)))
4793 		return -EFAULT;
4794 
4795 	return 0;
4796 }
4797 
4798 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4799 			      enum btrfs_feature_set set,
4800 			      u64 change_mask, u64 flags, u64 supported_flags,
4801 			      u64 safe_set, u64 safe_clear)
4802 {
4803 	const char *type = btrfs_feature_set_name(set);
4804 	char *names;
4805 	u64 disallowed, unsupported;
4806 	u64 set_mask = flags & change_mask;
4807 	u64 clear_mask = ~flags & change_mask;
4808 
4809 	unsupported = set_mask & ~supported_flags;
4810 	if (unsupported) {
4811 		names = btrfs_printable_features(set, unsupported);
4812 		if (names) {
4813 			btrfs_warn(fs_info,
4814 				   "this kernel does not support the %s feature bit%s",
4815 				   names, strchr(names, ',') ? "s" : "");
4816 			kfree(names);
4817 		} else
4818 			btrfs_warn(fs_info,
4819 				   "this kernel does not support %s bits 0x%llx",
4820 				   type, unsupported);
4821 		return -EOPNOTSUPP;
4822 	}
4823 
4824 	disallowed = set_mask & ~safe_set;
4825 	if (disallowed) {
4826 		names = btrfs_printable_features(set, disallowed);
4827 		if (names) {
4828 			btrfs_warn(fs_info,
4829 				   "can't set the %s feature bit%s while mounted",
4830 				   names, strchr(names, ',') ? "s" : "");
4831 			kfree(names);
4832 		} else
4833 			btrfs_warn(fs_info,
4834 				   "can't set %s bits 0x%llx while mounted",
4835 				   type, disallowed);
4836 		return -EPERM;
4837 	}
4838 
4839 	disallowed = clear_mask & ~safe_clear;
4840 	if (disallowed) {
4841 		names = btrfs_printable_features(set, disallowed);
4842 		if (names) {
4843 			btrfs_warn(fs_info,
4844 				   "can't clear the %s feature bit%s while mounted",
4845 				   names, strchr(names, ',') ? "s" : "");
4846 			kfree(names);
4847 		} else
4848 			btrfs_warn(fs_info,
4849 				   "can't clear %s bits 0x%llx while mounted",
4850 				   type, disallowed);
4851 		return -EPERM;
4852 	}
4853 
4854 	return 0;
4855 }
4856 
4857 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4858 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4859 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4860 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4861 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4862 
4863 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4864 {
4865 	struct inode *inode = file_inode(file);
4866 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4867 	struct btrfs_root *root = BTRFS_I(inode)->root;
4868 	struct btrfs_super_block *super_block = fs_info->super_copy;
4869 	struct btrfs_ioctl_feature_flags flags[2];
4870 	struct btrfs_trans_handle *trans;
4871 	u64 newflags;
4872 	int ret;
4873 
4874 	if (!capable(CAP_SYS_ADMIN))
4875 		return -EPERM;
4876 
4877 	if (copy_from_user(flags, arg, sizeof(flags)))
4878 		return -EFAULT;
4879 
4880 	/* Nothing to do */
4881 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4882 	    !flags[0].incompat_flags)
4883 		return 0;
4884 
4885 	ret = check_feature(fs_info, flags[0].compat_flags,
4886 			    flags[1].compat_flags, COMPAT);
4887 	if (ret)
4888 		return ret;
4889 
4890 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4891 			    flags[1].compat_ro_flags, COMPAT_RO);
4892 	if (ret)
4893 		return ret;
4894 
4895 	ret = check_feature(fs_info, flags[0].incompat_flags,
4896 			    flags[1].incompat_flags, INCOMPAT);
4897 	if (ret)
4898 		return ret;
4899 
4900 	ret = mnt_want_write_file(file);
4901 	if (ret)
4902 		return ret;
4903 
4904 	trans = btrfs_start_transaction(root, 0);
4905 	if (IS_ERR(trans)) {
4906 		ret = PTR_ERR(trans);
4907 		goto out_drop_write;
4908 	}
4909 
4910 	spin_lock(&fs_info->super_lock);
4911 	newflags = btrfs_super_compat_flags(super_block);
4912 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4913 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4914 	btrfs_set_super_compat_flags(super_block, newflags);
4915 
4916 	newflags = btrfs_super_compat_ro_flags(super_block);
4917 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4918 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4919 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4920 
4921 	newflags = btrfs_super_incompat_flags(super_block);
4922 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4923 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4924 	btrfs_set_super_incompat_flags(super_block, newflags);
4925 	spin_unlock(&fs_info->super_lock);
4926 
4927 	ret = btrfs_commit_transaction(trans);
4928 out_drop_write:
4929 	mnt_drop_write_file(file);
4930 
4931 	return ret;
4932 }
4933 
4934 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4935 {
4936 	struct btrfs_ioctl_send_args *arg;
4937 	int ret;
4938 
4939 	if (compat) {
4940 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4941 		struct btrfs_ioctl_send_args_32 args32;
4942 
4943 		ret = copy_from_user(&args32, argp, sizeof(args32));
4944 		if (ret)
4945 			return -EFAULT;
4946 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4947 		if (!arg)
4948 			return -ENOMEM;
4949 		arg->send_fd = args32.send_fd;
4950 		arg->clone_sources_count = args32.clone_sources_count;
4951 		arg->clone_sources = compat_ptr(args32.clone_sources);
4952 		arg->parent_root = args32.parent_root;
4953 		arg->flags = args32.flags;
4954 		memcpy(arg->reserved, args32.reserved,
4955 		       sizeof(args32.reserved));
4956 #else
4957 		return -ENOTTY;
4958 #endif
4959 	} else {
4960 		arg = memdup_user(argp, sizeof(*arg));
4961 		if (IS_ERR(arg))
4962 			return PTR_ERR(arg);
4963 	}
4964 	ret = btrfs_ioctl_send(file, arg);
4965 	kfree(arg);
4966 	return ret;
4967 }
4968 
4969 long btrfs_ioctl(struct file *file, unsigned int
4970 		cmd, unsigned long arg)
4971 {
4972 	struct inode *inode = file_inode(file);
4973 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4974 	struct btrfs_root *root = BTRFS_I(inode)->root;
4975 	void __user *argp = (void __user *)arg;
4976 
4977 	switch (cmd) {
4978 	case FS_IOC_GETVERSION:
4979 		return btrfs_ioctl_getversion(file, argp);
4980 	case FS_IOC_GETFSLABEL:
4981 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4982 	case FS_IOC_SETFSLABEL:
4983 		return btrfs_ioctl_set_fslabel(file, argp);
4984 	case FITRIM:
4985 		return btrfs_ioctl_fitrim(fs_info, argp);
4986 	case BTRFS_IOC_SNAP_CREATE:
4987 		return btrfs_ioctl_snap_create(file, argp, 0);
4988 	case BTRFS_IOC_SNAP_CREATE_V2:
4989 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4990 	case BTRFS_IOC_SUBVOL_CREATE:
4991 		return btrfs_ioctl_snap_create(file, argp, 1);
4992 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4993 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4994 	case BTRFS_IOC_SNAP_DESTROY:
4995 		return btrfs_ioctl_snap_destroy(file, argp, false);
4996 	case BTRFS_IOC_SNAP_DESTROY_V2:
4997 		return btrfs_ioctl_snap_destroy(file, argp, true);
4998 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4999 		return btrfs_ioctl_subvol_getflags(file, argp);
5000 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5001 		return btrfs_ioctl_subvol_setflags(file, argp);
5002 	case BTRFS_IOC_DEFAULT_SUBVOL:
5003 		return btrfs_ioctl_default_subvol(file, argp);
5004 	case BTRFS_IOC_DEFRAG:
5005 		return btrfs_ioctl_defrag(file, NULL);
5006 	case BTRFS_IOC_DEFRAG_RANGE:
5007 		return btrfs_ioctl_defrag(file, argp);
5008 	case BTRFS_IOC_RESIZE:
5009 		return btrfs_ioctl_resize(file, argp);
5010 	case BTRFS_IOC_ADD_DEV:
5011 		return btrfs_ioctl_add_dev(fs_info, argp);
5012 	case BTRFS_IOC_RM_DEV:
5013 		return btrfs_ioctl_rm_dev(file, argp);
5014 	case BTRFS_IOC_RM_DEV_V2:
5015 		return btrfs_ioctl_rm_dev_v2(file, argp);
5016 	case BTRFS_IOC_FS_INFO:
5017 		return btrfs_ioctl_fs_info(fs_info, argp);
5018 	case BTRFS_IOC_DEV_INFO:
5019 		return btrfs_ioctl_dev_info(fs_info, argp);
5020 	case BTRFS_IOC_BALANCE:
5021 		return btrfs_ioctl_balance(file, NULL);
5022 	case BTRFS_IOC_TREE_SEARCH:
5023 		return btrfs_ioctl_tree_search(file, argp);
5024 	case BTRFS_IOC_TREE_SEARCH_V2:
5025 		return btrfs_ioctl_tree_search_v2(file, argp);
5026 	case BTRFS_IOC_INO_LOOKUP:
5027 		return btrfs_ioctl_ino_lookup(file, argp);
5028 	case BTRFS_IOC_INO_PATHS:
5029 		return btrfs_ioctl_ino_to_path(root, argp);
5030 	case BTRFS_IOC_LOGICAL_INO:
5031 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5032 	case BTRFS_IOC_LOGICAL_INO_V2:
5033 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5034 	case BTRFS_IOC_SPACE_INFO:
5035 		return btrfs_ioctl_space_info(fs_info, argp);
5036 	case BTRFS_IOC_SYNC: {
5037 		int ret;
5038 
5039 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5040 		if (ret)
5041 			return ret;
5042 		ret = btrfs_sync_fs(inode->i_sb, 1);
5043 		/*
5044 		 * The transaction thread may want to do more work,
5045 		 * namely it pokes the cleaner kthread that will start
5046 		 * processing uncleaned subvols.
5047 		 */
5048 		wake_up_process(fs_info->transaction_kthread);
5049 		return ret;
5050 	}
5051 	case BTRFS_IOC_START_SYNC:
5052 		return btrfs_ioctl_start_sync(root, argp);
5053 	case BTRFS_IOC_WAIT_SYNC:
5054 		return btrfs_ioctl_wait_sync(fs_info, argp);
5055 	case BTRFS_IOC_SCRUB:
5056 		return btrfs_ioctl_scrub(file, argp);
5057 	case BTRFS_IOC_SCRUB_CANCEL:
5058 		return btrfs_ioctl_scrub_cancel(fs_info);
5059 	case BTRFS_IOC_SCRUB_PROGRESS:
5060 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5061 	case BTRFS_IOC_BALANCE_V2:
5062 		return btrfs_ioctl_balance(file, argp);
5063 	case BTRFS_IOC_BALANCE_CTL:
5064 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5065 	case BTRFS_IOC_BALANCE_PROGRESS:
5066 		return btrfs_ioctl_balance_progress(fs_info, argp);
5067 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5068 		return btrfs_ioctl_set_received_subvol(file, argp);
5069 #ifdef CONFIG_64BIT
5070 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5071 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5072 #endif
5073 	case BTRFS_IOC_SEND:
5074 		return _btrfs_ioctl_send(file, argp, false);
5075 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5076 	case BTRFS_IOC_SEND_32:
5077 		return _btrfs_ioctl_send(file, argp, true);
5078 #endif
5079 	case BTRFS_IOC_GET_DEV_STATS:
5080 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5081 	case BTRFS_IOC_QUOTA_CTL:
5082 		return btrfs_ioctl_quota_ctl(file, argp);
5083 	case BTRFS_IOC_QGROUP_ASSIGN:
5084 		return btrfs_ioctl_qgroup_assign(file, argp);
5085 	case BTRFS_IOC_QGROUP_CREATE:
5086 		return btrfs_ioctl_qgroup_create(file, argp);
5087 	case BTRFS_IOC_QGROUP_LIMIT:
5088 		return btrfs_ioctl_qgroup_limit(file, argp);
5089 	case BTRFS_IOC_QUOTA_RESCAN:
5090 		return btrfs_ioctl_quota_rescan(file, argp);
5091 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5092 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5093 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5094 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5095 	case BTRFS_IOC_DEV_REPLACE:
5096 		return btrfs_ioctl_dev_replace(fs_info, argp);
5097 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5098 		return btrfs_ioctl_get_supported_features(argp);
5099 	case BTRFS_IOC_GET_FEATURES:
5100 		return btrfs_ioctl_get_features(fs_info, argp);
5101 	case BTRFS_IOC_SET_FEATURES:
5102 		return btrfs_ioctl_set_features(file, argp);
5103 	case BTRFS_IOC_GET_SUBVOL_INFO:
5104 		return btrfs_ioctl_get_subvol_info(file, argp);
5105 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5106 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5107 	case BTRFS_IOC_INO_LOOKUP_USER:
5108 		return btrfs_ioctl_ino_lookup_user(file, argp);
5109 	case FS_IOC_ENABLE_VERITY:
5110 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5111 	case FS_IOC_MEASURE_VERITY:
5112 		return fsverity_ioctl_measure(file, argp);
5113 	}
5114 
5115 	return -ENOTTY;
5116 }
5117 
5118 #ifdef CONFIG_COMPAT
5119 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5120 {
5121 	/*
5122 	 * These all access 32-bit values anyway so no further
5123 	 * handling is necessary.
5124 	 */
5125 	switch (cmd) {
5126 	case FS_IOC32_GETVERSION:
5127 		cmd = FS_IOC_GETVERSION;
5128 		break;
5129 	}
5130 
5131 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5132 }
5133 #endif
5134