1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/compat.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/security.h> 39 #include <linux/xattr.h> 40 #include <linux/mm.h> 41 #include <linux/slab.h> 42 #include <linux/blkdev.h> 43 #include <linux/uuid.h> 44 #include <linux/btrfs.h> 45 #include <linux/uaccess.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "volumes.h" 52 #include "locking.h" 53 #include "inode-map.h" 54 #include "backref.h" 55 #include "rcu-string.h" 56 #include "send.h" 57 #include "dev-replace.h" 58 #include "props.h" 59 #include "sysfs.h" 60 #include "qgroup.h" 61 #include "tree-log.h" 62 #include "compression.h" 63 64 #ifdef CONFIG_64BIT 65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 66 * structures are incorrect, as the timespec structure from userspace 67 * is 4 bytes too small. We define these alternatives here to teach 68 * the kernel about the 32-bit struct packing. 69 */ 70 struct btrfs_ioctl_timespec_32 { 71 __u64 sec; 72 __u32 nsec; 73 } __attribute__ ((__packed__)); 74 75 struct btrfs_ioctl_received_subvol_args_32 { 76 char uuid[BTRFS_UUID_SIZE]; /* in */ 77 __u64 stransid; /* in */ 78 __u64 rtransid; /* out */ 79 struct btrfs_ioctl_timespec_32 stime; /* in */ 80 struct btrfs_ioctl_timespec_32 rtime; /* out */ 81 __u64 flags; /* in */ 82 __u64 reserved[16]; /* in */ 83 } __attribute__ ((__packed__)); 84 85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 86 struct btrfs_ioctl_received_subvol_args_32) 87 #endif 88 89 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 90 struct btrfs_ioctl_send_args_32 { 91 __s64 send_fd; /* in */ 92 __u64 clone_sources_count; /* in */ 93 compat_uptr_t clone_sources; /* in */ 94 __u64 parent_root; /* in */ 95 __u64 flags; /* in */ 96 __u64 reserved[4]; /* in */ 97 } __attribute__ ((__packed__)); 98 99 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 100 struct btrfs_ioctl_send_args_32) 101 #endif 102 103 static int btrfs_clone(struct inode *src, struct inode *inode, 104 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 105 int no_time_update); 106 107 /* Mask out flags that are inappropriate for the given type of inode. */ 108 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 109 { 110 if (S_ISDIR(mode)) 111 return flags; 112 else if (S_ISREG(mode)) 113 return flags & ~FS_DIRSYNC_FL; 114 else 115 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 116 } 117 118 /* 119 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 120 */ 121 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 122 { 123 unsigned int iflags = 0; 124 125 if (flags & BTRFS_INODE_SYNC) 126 iflags |= FS_SYNC_FL; 127 if (flags & BTRFS_INODE_IMMUTABLE) 128 iflags |= FS_IMMUTABLE_FL; 129 if (flags & BTRFS_INODE_APPEND) 130 iflags |= FS_APPEND_FL; 131 if (flags & BTRFS_INODE_NODUMP) 132 iflags |= FS_NODUMP_FL; 133 if (flags & BTRFS_INODE_NOATIME) 134 iflags |= FS_NOATIME_FL; 135 if (flags & BTRFS_INODE_DIRSYNC) 136 iflags |= FS_DIRSYNC_FL; 137 if (flags & BTRFS_INODE_NODATACOW) 138 iflags |= FS_NOCOW_FL; 139 140 if (flags & BTRFS_INODE_NOCOMPRESS) 141 iflags |= FS_NOCOMP_FL; 142 else if (flags & BTRFS_INODE_COMPRESS) 143 iflags |= FS_COMPR_FL; 144 145 return iflags; 146 } 147 148 /* 149 * Update inode->i_flags based on the btrfs internal flags. 150 */ 151 void btrfs_update_iflags(struct inode *inode) 152 { 153 struct btrfs_inode *ip = BTRFS_I(inode); 154 unsigned int new_fl = 0; 155 156 if (ip->flags & BTRFS_INODE_SYNC) 157 new_fl |= S_SYNC; 158 if (ip->flags & BTRFS_INODE_IMMUTABLE) 159 new_fl |= S_IMMUTABLE; 160 if (ip->flags & BTRFS_INODE_APPEND) 161 new_fl |= S_APPEND; 162 if (ip->flags & BTRFS_INODE_NOATIME) 163 new_fl |= S_NOATIME; 164 if (ip->flags & BTRFS_INODE_DIRSYNC) 165 new_fl |= S_DIRSYNC; 166 167 set_mask_bits(&inode->i_flags, 168 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 169 new_fl); 170 } 171 172 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 173 { 174 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 175 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 176 177 if (copy_to_user(arg, &flags, sizeof(flags))) 178 return -EFAULT; 179 return 0; 180 } 181 182 static int check_flags(unsigned int flags) 183 { 184 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 185 FS_NOATIME_FL | FS_NODUMP_FL | \ 186 FS_SYNC_FL | FS_DIRSYNC_FL | \ 187 FS_NOCOMP_FL | FS_COMPR_FL | 188 FS_NOCOW_FL)) 189 return -EOPNOTSUPP; 190 191 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 192 return -EINVAL; 193 194 return 0; 195 } 196 197 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 198 { 199 struct inode *inode = file_inode(file); 200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 201 struct btrfs_inode *ip = BTRFS_I(inode); 202 struct btrfs_root *root = ip->root; 203 struct btrfs_trans_handle *trans; 204 unsigned int flags, oldflags; 205 int ret; 206 u64 ip_oldflags; 207 unsigned int i_oldflags; 208 umode_t mode; 209 210 if (!inode_owner_or_capable(inode)) 211 return -EPERM; 212 213 if (btrfs_root_readonly(root)) 214 return -EROFS; 215 216 if (copy_from_user(&flags, arg, sizeof(flags))) 217 return -EFAULT; 218 219 ret = check_flags(flags); 220 if (ret) 221 return ret; 222 223 ret = mnt_want_write_file(file); 224 if (ret) 225 return ret; 226 227 inode_lock(inode); 228 229 ip_oldflags = ip->flags; 230 i_oldflags = inode->i_flags; 231 mode = inode->i_mode; 232 233 flags = btrfs_mask_flags(inode->i_mode, flags); 234 oldflags = btrfs_flags_to_ioctl(ip->flags); 235 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 236 if (!capable(CAP_LINUX_IMMUTABLE)) { 237 ret = -EPERM; 238 goto out_unlock; 239 } 240 } 241 242 if (flags & FS_SYNC_FL) 243 ip->flags |= BTRFS_INODE_SYNC; 244 else 245 ip->flags &= ~BTRFS_INODE_SYNC; 246 if (flags & FS_IMMUTABLE_FL) 247 ip->flags |= BTRFS_INODE_IMMUTABLE; 248 else 249 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 250 if (flags & FS_APPEND_FL) 251 ip->flags |= BTRFS_INODE_APPEND; 252 else 253 ip->flags &= ~BTRFS_INODE_APPEND; 254 if (flags & FS_NODUMP_FL) 255 ip->flags |= BTRFS_INODE_NODUMP; 256 else 257 ip->flags &= ~BTRFS_INODE_NODUMP; 258 if (flags & FS_NOATIME_FL) 259 ip->flags |= BTRFS_INODE_NOATIME; 260 else 261 ip->flags &= ~BTRFS_INODE_NOATIME; 262 if (flags & FS_DIRSYNC_FL) 263 ip->flags |= BTRFS_INODE_DIRSYNC; 264 else 265 ip->flags &= ~BTRFS_INODE_DIRSYNC; 266 if (flags & FS_NOCOW_FL) { 267 if (S_ISREG(mode)) { 268 /* 269 * It's safe to turn csums off here, no extents exist. 270 * Otherwise we want the flag to reflect the real COW 271 * status of the file and will not set it. 272 */ 273 if (inode->i_size == 0) 274 ip->flags |= BTRFS_INODE_NODATACOW 275 | BTRFS_INODE_NODATASUM; 276 } else { 277 ip->flags |= BTRFS_INODE_NODATACOW; 278 } 279 } else { 280 /* 281 * Revert back under same assumptions as above 282 */ 283 if (S_ISREG(mode)) { 284 if (inode->i_size == 0) 285 ip->flags &= ~(BTRFS_INODE_NODATACOW 286 | BTRFS_INODE_NODATASUM); 287 } else { 288 ip->flags &= ~BTRFS_INODE_NODATACOW; 289 } 290 } 291 292 /* 293 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 294 * flag may be changed automatically if compression code won't make 295 * things smaller. 296 */ 297 if (flags & FS_NOCOMP_FL) { 298 ip->flags &= ~BTRFS_INODE_COMPRESS; 299 ip->flags |= BTRFS_INODE_NOCOMPRESS; 300 301 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 302 if (ret && ret != -ENODATA) 303 goto out_drop; 304 } else if (flags & FS_COMPR_FL) { 305 const char *comp; 306 307 ip->flags |= BTRFS_INODE_COMPRESS; 308 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 309 310 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 311 comp = "lzo"; 312 else if (fs_info->compress_type == BTRFS_COMPRESS_ZLIB) 313 comp = "zlib"; 314 else 315 comp = "zstd"; 316 ret = btrfs_set_prop(inode, "btrfs.compression", 317 comp, strlen(comp), 0); 318 if (ret) 319 goto out_drop; 320 321 } else { 322 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 323 if (ret && ret != -ENODATA) 324 goto out_drop; 325 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 326 } 327 328 trans = btrfs_start_transaction(root, 1); 329 if (IS_ERR(trans)) { 330 ret = PTR_ERR(trans); 331 goto out_drop; 332 } 333 334 btrfs_update_iflags(inode); 335 inode_inc_iversion(inode); 336 inode->i_ctime = current_time(inode); 337 ret = btrfs_update_inode(trans, root, inode); 338 339 btrfs_end_transaction(trans); 340 out_drop: 341 if (ret) { 342 ip->flags = ip_oldflags; 343 inode->i_flags = i_oldflags; 344 } 345 346 out_unlock: 347 inode_unlock(inode); 348 mnt_drop_write_file(file); 349 return ret; 350 } 351 352 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 353 { 354 struct inode *inode = file_inode(file); 355 356 return put_user(inode->i_generation, arg); 357 } 358 359 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 360 { 361 struct inode *inode = file_inode(file); 362 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 363 struct btrfs_device *device; 364 struct request_queue *q; 365 struct fstrim_range range; 366 u64 minlen = ULLONG_MAX; 367 u64 num_devices = 0; 368 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 369 int ret; 370 371 if (!capable(CAP_SYS_ADMIN)) 372 return -EPERM; 373 374 rcu_read_lock(); 375 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 376 dev_list) { 377 if (!device->bdev) 378 continue; 379 q = bdev_get_queue(device->bdev); 380 if (blk_queue_discard(q)) { 381 num_devices++; 382 minlen = min_t(u64, q->limits.discard_granularity, 383 minlen); 384 } 385 } 386 rcu_read_unlock(); 387 388 if (!num_devices) 389 return -EOPNOTSUPP; 390 if (copy_from_user(&range, arg, sizeof(range))) 391 return -EFAULT; 392 if (range.start > total_bytes || 393 range.len < fs_info->sb->s_blocksize) 394 return -EINVAL; 395 396 range.len = min(range.len, total_bytes - range.start); 397 range.minlen = max(range.minlen, minlen); 398 ret = btrfs_trim_fs(fs_info, &range); 399 if (ret < 0) 400 return ret; 401 402 if (copy_to_user(arg, &range, sizeof(range))) 403 return -EFAULT; 404 405 return 0; 406 } 407 408 int btrfs_is_empty_uuid(u8 *uuid) 409 { 410 int i; 411 412 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 413 if (uuid[i]) 414 return 0; 415 } 416 return 1; 417 } 418 419 static noinline int create_subvol(struct inode *dir, 420 struct dentry *dentry, 421 const char *name, int namelen, 422 u64 *async_transid, 423 struct btrfs_qgroup_inherit *inherit) 424 { 425 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 426 struct btrfs_trans_handle *trans; 427 struct btrfs_key key; 428 struct btrfs_root_item *root_item; 429 struct btrfs_inode_item *inode_item; 430 struct extent_buffer *leaf; 431 struct btrfs_root *root = BTRFS_I(dir)->root; 432 struct btrfs_root *new_root; 433 struct btrfs_block_rsv block_rsv; 434 struct timespec cur_time = current_time(dir); 435 struct inode *inode; 436 int ret; 437 int err; 438 u64 objectid; 439 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 440 u64 index = 0; 441 u64 qgroup_reserved; 442 uuid_le new_uuid; 443 444 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 445 if (!root_item) 446 return -ENOMEM; 447 448 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 449 if (ret) 450 goto fail_free; 451 452 /* 453 * Don't create subvolume whose level is not zero. Or qgroup will be 454 * screwed up since it assumes subvolume qgroup's level to be 0. 455 */ 456 if (btrfs_qgroup_level(objectid)) { 457 ret = -ENOSPC; 458 goto fail_free; 459 } 460 461 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 462 /* 463 * The same as the snapshot creation, please see the comment 464 * of create_snapshot(). 465 */ 466 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 467 8, &qgroup_reserved, false); 468 if (ret) 469 goto fail_free; 470 471 trans = btrfs_start_transaction(root, 0); 472 if (IS_ERR(trans)) { 473 ret = PTR_ERR(trans); 474 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 475 goto fail_free; 476 } 477 trans->block_rsv = &block_rsv; 478 trans->bytes_reserved = block_rsv.size; 479 480 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit); 481 if (ret) 482 goto fail; 483 484 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 485 if (IS_ERR(leaf)) { 486 ret = PTR_ERR(leaf); 487 goto fail; 488 } 489 490 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 491 btrfs_set_header_bytenr(leaf, leaf->start); 492 btrfs_set_header_generation(leaf, trans->transid); 493 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 494 btrfs_set_header_owner(leaf, objectid); 495 496 write_extent_buffer_fsid(leaf, fs_info->fsid); 497 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 498 btrfs_mark_buffer_dirty(leaf); 499 500 inode_item = &root_item->inode; 501 btrfs_set_stack_inode_generation(inode_item, 1); 502 btrfs_set_stack_inode_size(inode_item, 3); 503 btrfs_set_stack_inode_nlink(inode_item, 1); 504 btrfs_set_stack_inode_nbytes(inode_item, 505 fs_info->nodesize); 506 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 507 508 btrfs_set_root_flags(root_item, 0); 509 btrfs_set_root_limit(root_item, 0); 510 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 511 512 btrfs_set_root_bytenr(root_item, leaf->start); 513 btrfs_set_root_generation(root_item, trans->transid); 514 btrfs_set_root_level(root_item, 0); 515 btrfs_set_root_refs(root_item, 1); 516 btrfs_set_root_used(root_item, leaf->len); 517 btrfs_set_root_last_snapshot(root_item, 0); 518 519 btrfs_set_root_generation_v2(root_item, 520 btrfs_root_generation(root_item)); 521 uuid_le_gen(&new_uuid); 522 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 523 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 524 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 525 root_item->ctime = root_item->otime; 526 btrfs_set_root_ctransid(root_item, trans->transid); 527 btrfs_set_root_otransid(root_item, trans->transid); 528 529 btrfs_tree_unlock(leaf); 530 free_extent_buffer(leaf); 531 leaf = NULL; 532 533 btrfs_set_root_dirid(root_item, new_dirid); 534 535 key.objectid = objectid; 536 key.offset = 0; 537 key.type = BTRFS_ROOT_ITEM_KEY; 538 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 539 root_item); 540 if (ret) 541 goto fail; 542 543 key.offset = (u64)-1; 544 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 545 if (IS_ERR(new_root)) { 546 ret = PTR_ERR(new_root); 547 btrfs_abort_transaction(trans, ret); 548 goto fail; 549 } 550 551 btrfs_record_root_in_trans(trans, new_root); 552 553 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 554 if (ret) { 555 /* We potentially lose an unused inode item here */ 556 btrfs_abort_transaction(trans, ret); 557 goto fail; 558 } 559 560 mutex_lock(&new_root->objectid_mutex); 561 new_root->highest_objectid = new_dirid; 562 mutex_unlock(&new_root->objectid_mutex); 563 564 /* 565 * insert the directory item 566 */ 567 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 568 if (ret) { 569 btrfs_abort_transaction(trans, ret); 570 goto fail; 571 } 572 573 ret = btrfs_insert_dir_item(trans, root, 574 name, namelen, BTRFS_I(dir), &key, 575 BTRFS_FT_DIR, index); 576 if (ret) { 577 btrfs_abort_transaction(trans, ret); 578 goto fail; 579 } 580 581 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 582 ret = btrfs_update_inode(trans, root, dir); 583 BUG_ON(ret); 584 585 ret = btrfs_add_root_ref(trans, fs_info, 586 objectid, root->root_key.objectid, 587 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 588 BUG_ON(ret); 589 590 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid, 591 BTRFS_UUID_KEY_SUBVOL, objectid); 592 if (ret) 593 btrfs_abort_transaction(trans, ret); 594 595 fail: 596 kfree(root_item); 597 trans->block_rsv = NULL; 598 trans->bytes_reserved = 0; 599 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 600 601 if (async_transid) { 602 *async_transid = trans->transid; 603 err = btrfs_commit_transaction_async(trans, 1); 604 if (err) 605 err = btrfs_commit_transaction(trans); 606 } else { 607 err = btrfs_commit_transaction(trans); 608 } 609 if (err && !ret) 610 ret = err; 611 612 if (!ret) { 613 inode = btrfs_lookup_dentry(dir, dentry); 614 if (IS_ERR(inode)) 615 return PTR_ERR(inode); 616 d_instantiate(dentry, inode); 617 } 618 return ret; 619 620 fail_free: 621 kfree(root_item); 622 return ret; 623 } 624 625 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 626 struct dentry *dentry, 627 u64 *async_transid, bool readonly, 628 struct btrfs_qgroup_inherit *inherit) 629 { 630 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 631 struct inode *inode; 632 struct btrfs_pending_snapshot *pending_snapshot; 633 struct btrfs_trans_handle *trans; 634 int ret; 635 636 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 637 return -EINVAL; 638 639 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 640 if (!pending_snapshot) 641 return -ENOMEM; 642 643 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 644 GFP_KERNEL); 645 pending_snapshot->path = btrfs_alloc_path(); 646 if (!pending_snapshot->root_item || !pending_snapshot->path) { 647 ret = -ENOMEM; 648 goto free_pending; 649 } 650 651 atomic_inc(&root->will_be_snapshotted); 652 smp_mb__after_atomic(); 653 /* wait for no snapshot writes */ 654 wait_event(root->subv_writers->wait, 655 percpu_counter_sum(&root->subv_writers->counter) == 0); 656 657 ret = btrfs_start_delalloc_inodes(root, 0); 658 if (ret) 659 goto dec_and_free; 660 661 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 662 663 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 664 BTRFS_BLOCK_RSV_TEMP); 665 /* 666 * 1 - parent dir inode 667 * 2 - dir entries 668 * 1 - root item 669 * 2 - root ref/backref 670 * 1 - root of snapshot 671 * 1 - UUID item 672 */ 673 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 674 &pending_snapshot->block_rsv, 8, 675 &pending_snapshot->qgroup_reserved, 676 false); 677 if (ret) 678 goto dec_and_free; 679 680 pending_snapshot->dentry = dentry; 681 pending_snapshot->root = root; 682 pending_snapshot->readonly = readonly; 683 pending_snapshot->dir = dir; 684 pending_snapshot->inherit = inherit; 685 686 trans = btrfs_start_transaction(root, 0); 687 if (IS_ERR(trans)) { 688 ret = PTR_ERR(trans); 689 goto fail; 690 } 691 692 spin_lock(&fs_info->trans_lock); 693 list_add(&pending_snapshot->list, 694 &trans->transaction->pending_snapshots); 695 spin_unlock(&fs_info->trans_lock); 696 if (async_transid) { 697 *async_transid = trans->transid; 698 ret = btrfs_commit_transaction_async(trans, 1); 699 if (ret) 700 ret = btrfs_commit_transaction(trans); 701 } else { 702 ret = btrfs_commit_transaction(trans); 703 } 704 if (ret) 705 goto fail; 706 707 ret = pending_snapshot->error; 708 if (ret) 709 goto fail; 710 711 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 712 if (ret) 713 goto fail; 714 715 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 716 if (IS_ERR(inode)) { 717 ret = PTR_ERR(inode); 718 goto fail; 719 } 720 721 d_instantiate(dentry, inode); 722 ret = 0; 723 fail: 724 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 725 dec_and_free: 726 if (atomic_dec_and_test(&root->will_be_snapshotted)) 727 wake_up_atomic_t(&root->will_be_snapshotted); 728 free_pending: 729 kfree(pending_snapshot->root_item); 730 btrfs_free_path(pending_snapshot->path); 731 kfree(pending_snapshot); 732 733 return ret; 734 } 735 736 /* copy of may_delete in fs/namei.c() 737 * Check whether we can remove a link victim from directory dir, check 738 * whether the type of victim is right. 739 * 1. We can't do it if dir is read-only (done in permission()) 740 * 2. We should have write and exec permissions on dir 741 * 3. We can't remove anything from append-only dir 742 * 4. We can't do anything with immutable dir (done in permission()) 743 * 5. If the sticky bit on dir is set we should either 744 * a. be owner of dir, or 745 * b. be owner of victim, or 746 * c. have CAP_FOWNER capability 747 * 6. If the victim is append-only or immutable we can't do anything with 748 * links pointing to it. 749 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 750 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 751 * 9. We can't remove a root or mountpoint. 752 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 753 * nfs_async_unlink(). 754 */ 755 756 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 757 { 758 int error; 759 760 if (d_really_is_negative(victim)) 761 return -ENOENT; 762 763 BUG_ON(d_inode(victim->d_parent) != dir); 764 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 765 766 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 767 if (error) 768 return error; 769 if (IS_APPEND(dir)) 770 return -EPERM; 771 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 772 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 773 return -EPERM; 774 if (isdir) { 775 if (!d_is_dir(victim)) 776 return -ENOTDIR; 777 if (IS_ROOT(victim)) 778 return -EBUSY; 779 } else if (d_is_dir(victim)) 780 return -EISDIR; 781 if (IS_DEADDIR(dir)) 782 return -ENOENT; 783 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 784 return -EBUSY; 785 return 0; 786 } 787 788 /* copy of may_create in fs/namei.c() */ 789 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 790 { 791 if (d_really_is_positive(child)) 792 return -EEXIST; 793 if (IS_DEADDIR(dir)) 794 return -ENOENT; 795 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 796 } 797 798 /* 799 * Create a new subvolume below @parent. This is largely modeled after 800 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 801 * inside this filesystem so it's quite a bit simpler. 802 */ 803 static noinline int btrfs_mksubvol(const struct path *parent, 804 const char *name, int namelen, 805 struct btrfs_root *snap_src, 806 u64 *async_transid, bool readonly, 807 struct btrfs_qgroup_inherit *inherit) 808 { 809 struct inode *dir = d_inode(parent->dentry); 810 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 811 struct dentry *dentry; 812 int error; 813 814 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 815 if (error == -EINTR) 816 return error; 817 818 dentry = lookup_one_len(name, parent->dentry, namelen); 819 error = PTR_ERR(dentry); 820 if (IS_ERR(dentry)) 821 goto out_unlock; 822 823 error = btrfs_may_create(dir, dentry); 824 if (error) 825 goto out_dput; 826 827 /* 828 * even if this name doesn't exist, we may get hash collisions. 829 * check for them now when we can safely fail 830 */ 831 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 832 dir->i_ino, name, 833 namelen); 834 if (error) 835 goto out_dput; 836 837 down_read(&fs_info->subvol_sem); 838 839 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 840 goto out_up_read; 841 842 if (snap_src) { 843 error = create_snapshot(snap_src, dir, dentry, 844 async_transid, readonly, inherit); 845 } else { 846 error = create_subvol(dir, dentry, name, namelen, 847 async_transid, inherit); 848 } 849 if (!error) 850 fsnotify_mkdir(dir, dentry); 851 out_up_read: 852 up_read(&fs_info->subvol_sem); 853 out_dput: 854 dput(dentry); 855 out_unlock: 856 inode_unlock(dir); 857 return error; 858 } 859 860 /* 861 * When we're defragging a range, we don't want to kick it off again 862 * if it is really just waiting for delalloc to send it down. 863 * If we find a nice big extent or delalloc range for the bytes in the 864 * file you want to defrag, we return 0 to let you know to skip this 865 * part of the file 866 */ 867 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 868 { 869 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 870 struct extent_map *em = NULL; 871 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 872 u64 end; 873 874 read_lock(&em_tree->lock); 875 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 876 read_unlock(&em_tree->lock); 877 878 if (em) { 879 end = extent_map_end(em); 880 free_extent_map(em); 881 if (end - offset > thresh) 882 return 0; 883 } 884 /* if we already have a nice delalloc here, just stop */ 885 thresh /= 2; 886 end = count_range_bits(io_tree, &offset, offset + thresh, 887 thresh, EXTENT_DELALLOC, 1); 888 if (end >= thresh) 889 return 0; 890 return 1; 891 } 892 893 /* 894 * helper function to walk through a file and find extents 895 * newer than a specific transid, and smaller than thresh. 896 * 897 * This is used by the defragging code to find new and small 898 * extents 899 */ 900 static int find_new_extents(struct btrfs_root *root, 901 struct inode *inode, u64 newer_than, 902 u64 *off, u32 thresh) 903 { 904 struct btrfs_path *path; 905 struct btrfs_key min_key; 906 struct extent_buffer *leaf; 907 struct btrfs_file_extent_item *extent; 908 int type; 909 int ret; 910 u64 ino = btrfs_ino(BTRFS_I(inode)); 911 912 path = btrfs_alloc_path(); 913 if (!path) 914 return -ENOMEM; 915 916 min_key.objectid = ino; 917 min_key.type = BTRFS_EXTENT_DATA_KEY; 918 min_key.offset = *off; 919 920 while (1) { 921 ret = btrfs_search_forward(root, &min_key, path, newer_than); 922 if (ret != 0) 923 goto none; 924 process_slot: 925 if (min_key.objectid != ino) 926 goto none; 927 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 928 goto none; 929 930 leaf = path->nodes[0]; 931 extent = btrfs_item_ptr(leaf, path->slots[0], 932 struct btrfs_file_extent_item); 933 934 type = btrfs_file_extent_type(leaf, extent); 935 if (type == BTRFS_FILE_EXTENT_REG && 936 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 937 check_defrag_in_cache(inode, min_key.offset, thresh)) { 938 *off = min_key.offset; 939 btrfs_free_path(path); 940 return 0; 941 } 942 943 path->slots[0]++; 944 if (path->slots[0] < btrfs_header_nritems(leaf)) { 945 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 946 goto process_slot; 947 } 948 949 if (min_key.offset == (u64)-1) 950 goto none; 951 952 min_key.offset++; 953 btrfs_release_path(path); 954 } 955 none: 956 btrfs_free_path(path); 957 return -ENOENT; 958 } 959 960 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 961 { 962 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 963 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 964 struct extent_map *em; 965 u64 len = PAGE_SIZE; 966 967 /* 968 * hopefully we have this extent in the tree already, try without 969 * the full extent lock 970 */ 971 read_lock(&em_tree->lock); 972 em = lookup_extent_mapping(em_tree, start, len); 973 read_unlock(&em_tree->lock); 974 975 if (!em) { 976 struct extent_state *cached = NULL; 977 u64 end = start + len - 1; 978 979 /* get the big lock and read metadata off disk */ 980 lock_extent_bits(io_tree, start, end, &cached); 981 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 982 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 983 984 if (IS_ERR(em)) 985 return NULL; 986 } 987 988 return em; 989 } 990 991 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 992 { 993 struct extent_map *next; 994 bool ret = true; 995 996 /* this is the last extent */ 997 if (em->start + em->len >= i_size_read(inode)) 998 return false; 999 1000 next = defrag_lookup_extent(inode, em->start + em->len); 1001 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1002 ret = false; 1003 else if ((em->block_start + em->block_len == next->block_start) && 1004 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1005 ret = false; 1006 1007 free_extent_map(next); 1008 return ret; 1009 } 1010 1011 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1012 u64 *last_len, u64 *skip, u64 *defrag_end, 1013 int compress) 1014 { 1015 struct extent_map *em; 1016 int ret = 1; 1017 bool next_mergeable = true; 1018 bool prev_mergeable = true; 1019 1020 /* 1021 * make sure that once we start defragging an extent, we keep on 1022 * defragging it 1023 */ 1024 if (start < *defrag_end) 1025 return 1; 1026 1027 *skip = 0; 1028 1029 em = defrag_lookup_extent(inode, start); 1030 if (!em) 1031 return 0; 1032 1033 /* this will cover holes, and inline extents */ 1034 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1035 ret = 0; 1036 goto out; 1037 } 1038 1039 if (!*defrag_end) 1040 prev_mergeable = false; 1041 1042 next_mergeable = defrag_check_next_extent(inode, em); 1043 /* 1044 * we hit a real extent, if it is big or the next extent is not a 1045 * real extent, don't bother defragging it 1046 */ 1047 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1048 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1049 ret = 0; 1050 out: 1051 /* 1052 * last_len ends up being a counter of how many bytes we've defragged. 1053 * every time we choose not to defrag an extent, we reset *last_len 1054 * so that the next tiny extent will force a defrag. 1055 * 1056 * The end result of this is that tiny extents before a single big 1057 * extent will force at least part of that big extent to be defragged. 1058 */ 1059 if (ret) { 1060 *defrag_end = extent_map_end(em); 1061 } else { 1062 *last_len = 0; 1063 *skip = extent_map_end(em); 1064 *defrag_end = 0; 1065 } 1066 1067 free_extent_map(em); 1068 return ret; 1069 } 1070 1071 /* 1072 * it doesn't do much good to defrag one or two pages 1073 * at a time. This pulls in a nice chunk of pages 1074 * to COW and defrag. 1075 * 1076 * It also makes sure the delalloc code has enough 1077 * dirty data to avoid making new small extents as part 1078 * of the defrag 1079 * 1080 * It's a good idea to start RA on this range 1081 * before calling this. 1082 */ 1083 static int cluster_pages_for_defrag(struct inode *inode, 1084 struct page **pages, 1085 unsigned long start_index, 1086 unsigned long num_pages) 1087 { 1088 unsigned long file_end; 1089 u64 isize = i_size_read(inode); 1090 u64 page_start; 1091 u64 page_end; 1092 u64 page_cnt; 1093 int ret; 1094 int i; 1095 int i_done; 1096 struct btrfs_ordered_extent *ordered; 1097 struct extent_state *cached_state = NULL; 1098 struct extent_io_tree *tree; 1099 struct extent_changeset *data_reserved = NULL; 1100 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1101 1102 file_end = (isize - 1) >> PAGE_SHIFT; 1103 if (!isize || start_index > file_end) 1104 return 0; 1105 1106 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1107 1108 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1109 start_index << PAGE_SHIFT, 1110 page_cnt << PAGE_SHIFT); 1111 if (ret) 1112 return ret; 1113 i_done = 0; 1114 tree = &BTRFS_I(inode)->io_tree; 1115 1116 /* step one, lock all the pages */ 1117 for (i = 0; i < page_cnt; i++) { 1118 struct page *page; 1119 again: 1120 page = find_or_create_page(inode->i_mapping, 1121 start_index + i, mask); 1122 if (!page) 1123 break; 1124 1125 page_start = page_offset(page); 1126 page_end = page_start + PAGE_SIZE - 1; 1127 while (1) { 1128 lock_extent_bits(tree, page_start, page_end, 1129 &cached_state); 1130 ordered = btrfs_lookup_ordered_extent(inode, 1131 page_start); 1132 unlock_extent_cached(tree, page_start, page_end, 1133 &cached_state, GFP_NOFS); 1134 if (!ordered) 1135 break; 1136 1137 unlock_page(page); 1138 btrfs_start_ordered_extent(inode, ordered, 1); 1139 btrfs_put_ordered_extent(ordered); 1140 lock_page(page); 1141 /* 1142 * we unlocked the page above, so we need check if 1143 * it was released or not. 1144 */ 1145 if (page->mapping != inode->i_mapping) { 1146 unlock_page(page); 1147 put_page(page); 1148 goto again; 1149 } 1150 } 1151 1152 if (!PageUptodate(page)) { 1153 btrfs_readpage(NULL, page); 1154 lock_page(page); 1155 if (!PageUptodate(page)) { 1156 unlock_page(page); 1157 put_page(page); 1158 ret = -EIO; 1159 break; 1160 } 1161 } 1162 1163 if (page->mapping != inode->i_mapping) { 1164 unlock_page(page); 1165 put_page(page); 1166 goto again; 1167 } 1168 1169 pages[i] = page; 1170 i_done++; 1171 } 1172 if (!i_done || ret) 1173 goto out; 1174 1175 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1176 goto out; 1177 1178 /* 1179 * so now we have a nice long stream of locked 1180 * and up to date pages, lets wait on them 1181 */ 1182 for (i = 0; i < i_done; i++) 1183 wait_on_page_writeback(pages[i]); 1184 1185 page_start = page_offset(pages[0]); 1186 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1187 1188 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1189 page_start, page_end - 1, &cached_state); 1190 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1191 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1192 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1193 &cached_state, GFP_NOFS); 1194 1195 if (i_done != page_cnt) { 1196 spin_lock(&BTRFS_I(inode)->lock); 1197 BTRFS_I(inode)->outstanding_extents++; 1198 spin_unlock(&BTRFS_I(inode)->lock); 1199 btrfs_delalloc_release_space(inode, data_reserved, 1200 start_index << PAGE_SHIFT, 1201 (page_cnt - i_done) << PAGE_SHIFT); 1202 } 1203 1204 1205 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1206 &cached_state); 1207 1208 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1209 page_start, page_end - 1, &cached_state, 1210 GFP_NOFS); 1211 1212 for (i = 0; i < i_done; i++) { 1213 clear_page_dirty_for_io(pages[i]); 1214 ClearPageChecked(pages[i]); 1215 set_page_extent_mapped(pages[i]); 1216 set_page_dirty(pages[i]); 1217 unlock_page(pages[i]); 1218 put_page(pages[i]); 1219 } 1220 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1221 extent_changeset_free(data_reserved); 1222 return i_done; 1223 out: 1224 for (i = 0; i < i_done; i++) { 1225 unlock_page(pages[i]); 1226 put_page(pages[i]); 1227 } 1228 btrfs_delalloc_release_space(inode, data_reserved, 1229 start_index << PAGE_SHIFT, 1230 page_cnt << PAGE_SHIFT); 1231 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1232 extent_changeset_free(data_reserved); 1233 return ret; 1234 1235 } 1236 1237 int btrfs_defrag_file(struct inode *inode, struct file *file, 1238 struct btrfs_ioctl_defrag_range_args *range, 1239 u64 newer_than, unsigned long max_to_defrag) 1240 { 1241 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1242 struct btrfs_root *root = BTRFS_I(inode)->root; 1243 struct file_ra_state *ra = NULL; 1244 unsigned long last_index; 1245 u64 isize = i_size_read(inode); 1246 u64 last_len = 0; 1247 u64 skip = 0; 1248 u64 defrag_end = 0; 1249 u64 newer_off = range->start; 1250 unsigned long i; 1251 unsigned long ra_index = 0; 1252 int ret; 1253 int defrag_count = 0; 1254 int compress_type = BTRFS_COMPRESS_ZLIB; 1255 u32 extent_thresh = range->extent_thresh; 1256 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1257 unsigned long cluster = max_cluster; 1258 u64 new_align = ~((u64)SZ_128K - 1); 1259 struct page **pages = NULL; 1260 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1261 1262 if (isize == 0) 1263 return 0; 1264 1265 if (range->start >= isize) 1266 return -EINVAL; 1267 1268 if (do_compress) { 1269 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1270 return -EINVAL; 1271 if (range->compress_type) 1272 compress_type = range->compress_type; 1273 } 1274 1275 if (extent_thresh == 0) 1276 extent_thresh = SZ_256K; 1277 1278 /* 1279 * If we were not given a file, allocate a readahead context. As 1280 * readahead is just an optimization, defrag will work without it so 1281 * we don't error out. 1282 */ 1283 if (!file) { 1284 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1285 if (ra) 1286 file_ra_state_init(ra, inode->i_mapping); 1287 } else { 1288 ra = &file->f_ra; 1289 } 1290 1291 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1292 if (!pages) { 1293 ret = -ENOMEM; 1294 goto out_ra; 1295 } 1296 1297 /* find the last page to defrag */ 1298 if (range->start + range->len > range->start) { 1299 last_index = min_t(u64, isize - 1, 1300 range->start + range->len - 1) >> PAGE_SHIFT; 1301 } else { 1302 last_index = (isize - 1) >> PAGE_SHIFT; 1303 } 1304 1305 if (newer_than) { 1306 ret = find_new_extents(root, inode, newer_than, 1307 &newer_off, SZ_64K); 1308 if (!ret) { 1309 range->start = newer_off; 1310 /* 1311 * we always align our defrag to help keep 1312 * the extents in the file evenly spaced 1313 */ 1314 i = (newer_off & new_align) >> PAGE_SHIFT; 1315 } else 1316 goto out_ra; 1317 } else { 1318 i = range->start >> PAGE_SHIFT; 1319 } 1320 if (!max_to_defrag) 1321 max_to_defrag = last_index - i + 1; 1322 1323 /* 1324 * make writeback starts from i, so the defrag range can be 1325 * written sequentially. 1326 */ 1327 if (i < inode->i_mapping->writeback_index) 1328 inode->i_mapping->writeback_index = i; 1329 1330 while (i <= last_index && defrag_count < max_to_defrag && 1331 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1332 /* 1333 * make sure we stop running if someone unmounts 1334 * the FS 1335 */ 1336 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1337 break; 1338 1339 if (btrfs_defrag_cancelled(fs_info)) { 1340 btrfs_debug(fs_info, "defrag_file cancelled"); 1341 ret = -EAGAIN; 1342 break; 1343 } 1344 1345 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1346 extent_thresh, &last_len, &skip, 1347 &defrag_end, do_compress)){ 1348 unsigned long next; 1349 /* 1350 * the should_defrag function tells us how much to skip 1351 * bump our counter by the suggested amount 1352 */ 1353 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1354 i = max(i + 1, next); 1355 continue; 1356 } 1357 1358 if (!newer_than) { 1359 cluster = (PAGE_ALIGN(defrag_end) >> 1360 PAGE_SHIFT) - i; 1361 cluster = min(cluster, max_cluster); 1362 } else { 1363 cluster = max_cluster; 1364 } 1365 1366 if (i + cluster > ra_index) { 1367 ra_index = max(i, ra_index); 1368 if (ra) 1369 page_cache_sync_readahead(inode->i_mapping, ra, 1370 file, ra_index, cluster); 1371 ra_index += cluster; 1372 } 1373 1374 inode_lock(inode); 1375 if (do_compress) 1376 BTRFS_I(inode)->defrag_compress = compress_type; 1377 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1378 if (ret < 0) { 1379 inode_unlock(inode); 1380 goto out_ra; 1381 } 1382 1383 defrag_count += ret; 1384 balance_dirty_pages_ratelimited(inode->i_mapping); 1385 inode_unlock(inode); 1386 1387 if (newer_than) { 1388 if (newer_off == (u64)-1) 1389 break; 1390 1391 if (ret > 0) 1392 i += ret; 1393 1394 newer_off = max(newer_off + 1, 1395 (u64)i << PAGE_SHIFT); 1396 1397 ret = find_new_extents(root, inode, newer_than, 1398 &newer_off, SZ_64K); 1399 if (!ret) { 1400 range->start = newer_off; 1401 i = (newer_off & new_align) >> PAGE_SHIFT; 1402 } else { 1403 break; 1404 } 1405 } else { 1406 if (ret > 0) { 1407 i += ret; 1408 last_len += ret << PAGE_SHIFT; 1409 } else { 1410 i++; 1411 last_len = 0; 1412 } 1413 } 1414 } 1415 1416 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1417 filemap_flush(inode->i_mapping); 1418 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1419 &BTRFS_I(inode)->runtime_flags)) 1420 filemap_flush(inode->i_mapping); 1421 } 1422 1423 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1424 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1425 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1426 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1427 } 1428 1429 ret = defrag_count; 1430 1431 out_ra: 1432 if (do_compress) { 1433 inode_lock(inode); 1434 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1435 inode_unlock(inode); 1436 } 1437 if (!file) 1438 kfree(ra); 1439 kfree(pages); 1440 return ret; 1441 } 1442 1443 static noinline int btrfs_ioctl_resize(struct file *file, 1444 void __user *arg) 1445 { 1446 struct inode *inode = file_inode(file); 1447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1448 u64 new_size; 1449 u64 old_size; 1450 u64 devid = 1; 1451 struct btrfs_root *root = BTRFS_I(inode)->root; 1452 struct btrfs_ioctl_vol_args *vol_args; 1453 struct btrfs_trans_handle *trans; 1454 struct btrfs_device *device = NULL; 1455 char *sizestr; 1456 char *retptr; 1457 char *devstr = NULL; 1458 int ret = 0; 1459 int mod = 0; 1460 1461 if (!capable(CAP_SYS_ADMIN)) 1462 return -EPERM; 1463 1464 ret = mnt_want_write_file(file); 1465 if (ret) 1466 return ret; 1467 1468 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1469 mnt_drop_write_file(file); 1470 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1471 } 1472 1473 mutex_lock(&fs_info->volume_mutex); 1474 vol_args = memdup_user(arg, sizeof(*vol_args)); 1475 if (IS_ERR(vol_args)) { 1476 ret = PTR_ERR(vol_args); 1477 goto out; 1478 } 1479 1480 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1481 1482 sizestr = vol_args->name; 1483 devstr = strchr(sizestr, ':'); 1484 if (devstr) { 1485 sizestr = devstr + 1; 1486 *devstr = '\0'; 1487 devstr = vol_args->name; 1488 ret = kstrtoull(devstr, 10, &devid); 1489 if (ret) 1490 goto out_free; 1491 if (!devid) { 1492 ret = -EINVAL; 1493 goto out_free; 1494 } 1495 btrfs_info(fs_info, "resizing devid %llu", devid); 1496 } 1497 1498 device = btrfs_find_device(fs_info, devid, NULL, NULL); 1499 if (!device) { 1500 btrfs_info(fs_info, "resizer unable to find device %llu", 1501 devid); 1502 ret = -ENODEV; 1503 goto out_free; 1504 } 1505 1506 if (!device->writeable) { 1507 btrfs_info(fs_info, 1508 "resizer unable to apply on readonly device %llu", 1509 devid); 1510 ret = -EPERM; 1511 goto out_free; 1512 } 1513 1514 if (!strcmp(sizestr, "max")) 1515 new_size = device->bdev->bd_inode->i_size; 1516 else { 1517 if (sizestr[0] == '-') { 1518 mod = -1; 1519 sizestr++; 1520 } else if (sizestr[0] == '+') { 1521 mod = 1; 1522 sizestr++; 1523 } 1524 new_size = memparse(sizestr, &retptr); 1525 if (*retptr != '\0' || new_size == 0) { 1526 ret = -EINVAL; 1527 goto out_free; 1528 } 1529 } 1530 1531 if (device->is_tgtdev_for_dev_replace) { 1532 ret = -EPERM; 1533 goto out_free; 1534 } 1535 1536 old_size = btrfs_device_get_total_bytes(device); 1537 1538 if (mod < 0) { 1539 if (new_size > old_size) { 1540 ret = -EINVAL; 1541 goto out_free; 1542 } 1543 new_size = old_size - new_size; 1544 } else if (mod > 0) { 1545 if (new_size > ULLONG_MAX - old_size) { 1546 ret = -ERANGE; 1547 goto out_free; 1548 } 1549 new_size = old_size + new_size; 1550 } 1551 1552 if (new_size < SZ_256M) { 1553 ret = -EINVAL; 1554 goto out_free; 1555 } 1556 if (new_size > device->bdev->bd_inode->i_size) { 1557 ret = -EFBIG; 1558 goto out_free; 1559 } 1560 1561 new_size = round_down(new_size, fs_info->sectorsize); 1562 1563 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1564 rcu_str_deref(device->name), new_size); 1565 1566 if (new_size > old_size) { 1567 trans = btrfs_start_transaction(root, 0); 1568 if (IS_ERR(trans)) { 1569 ret = PTR_ERR(trans); 1570 goto out_free; 1571 } 1572 ret = btrfs_grow_device(trans, device, new_size); 1573 btrfs_commit_transaction(trans); 1574 } else if (new_size < old_size) { 1575 ret = btrfs_shrink_device(device, new_size); 1576 } /* equal, nothing need to do */ 1577 1578 out_free: 1579 kfree(vol_args); 1580 out: 1581 mutex_unlock(&fs_info->volume_mutex); 1582 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1583 mnt_drop_write_file(file); 1584 return ret; 1585 } 1586 1587 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1588 const char *name, unsigned long fd, int subvol, 1589 u64 *transid, bool readonly, 1590 struct btrfs_qgroup_inherit *inherit) 1591 { 1592 int namelen; 1593 int ret = 0; 1594 1595 if (!S_ISDIR(file_inode(file)->i_mode)) 1596 return -ENOTDIR; 1597 1598 ret = mnt_want_write_file(file); 1599 if (ret) 1600 goto out; 1601 1602 namelen = strlen(name); 1603 if (strchr(name, '/')) { 1604 ret = -EINVAL; 1605 goto out_drop_write; 1606 } 1607 1608 if (name[0] == '.' && 1609 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1610 ret = -EEXIST; 1611 goto out_drop_write; 1612 } 1613 1614 if (subvol) { 1615 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1616 NULL, transid, readonly, inherit); 1617 } else { 1618 struct fd src = fdget(fd); 1619 struct inode *src_inode; 1620 if (!src.file) { 1621 ret = -EINVAL; 1622 goto out_drop_write; 1623 } 1624 1625 src_inode = file_inode(src.file); 1626 if (src_inode->i_sb != file_inode(file)->i_sb) { 1627 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1628 "Snapshot src from another FS"); 1629 ret = -EXDEV; 1630 } else if (!inode_owner_or_capable(src_inode)) { 1631 /* 1632 * Subvolume creation is not restricted, but snapshots 1633 * are limited to own subvolumes only 1634 */ 1635 ret = -EPERM; 1636 } else { 1637 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1638 BTRFS_I(src_inode)->root, 1639 transid, readonly, inherit); 1640 } 1641 fdput(src); 1642 } 1643 out_drop_write: 1644 mnt_drop_write_file(file); 1645 out: 1646 return ret; 1647 } 1648 1649 static noinline int btrfs_ioctl_snap_create(struct file *file, 1650 void __user *arg, int subvol) 1651 { 1652 struct btrfs_ioctl_vol_args *vol_args; 1653 int ret; 1654 1655 if (!S_ISDIR(file_inode(file)->i_mode)) 1656 return -ENOTDIR; 1657 1658 vol_args = memdup_user(arg, sizeof(*vol_args)); 1659 if (IS_ERR(vol_args)) 1660 return PTR_ERR(vol_args); 1661 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1662 1663 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1664 vol_args->fd, subvol, 1665 NULL, false, NULL); 1666 1667 kfree(vol_args); 1668 return ret; 1669 } 1670 1671 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1672 void __user *arg, int subvol) 1673 { 1674 struct btrfs_ioctl_vol_args_v2 *vol_args; 1675 int ret; 1676 u64 transid = 0; 1677 u64 *ptr = NULL; 1678 bool readonly = false; 1679 struct btrfs_qgroup_inherit *inherit = NULL; 1680 1681 if (!S_ISDIR(file_inode(file)->i_mode)) 1682 return -ENOTDIR; 1683 1684 vol_args = memdup_user(arg, sizeof(*vol_args)); 1685 if (IS_ERR(vol_args)) 1686 return PTR_ERR(vol_args); 1687 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1688 1689 if (vol_args->flags & 1690 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1691 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1692 ret = -EOPNOTSUPP; 1693 goto free_args; 1694 } 1695 1696 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1697 ptr = &transid; 1698 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1699 readonly = true; 1700 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1701 if (vol_args->size > PAGE_SIZE) { 1702 ret = -EINVAL; 1703 goto free_args; 1704 } 1705 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1706 if (IS_ERR(inherit)) { 1707 ret = PTR_ERR(inherit); 1708 goto free_args; 1709 } 1710 } 1711 1712 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1713 vol_args->fd, subvol, ptr, 1714 readonly, inherit); 1715 if (ret) 1716 goto free_inherit; 1717 1718 if (ptr && copy_to_user(arg + 1719 offsetof(struct btrfs_ioctl_vol_args_v2, 1720 transid), 1721 ptr, sizeof(*ptr))) 1722 ret = -EFAULT; 1723 1724 free_inherit: 1725 kfree(inherit); 1726 free_args: 1727 kfree(vol_args); 1728 return ret; 1729 } 1730 1731 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1732 void __user *arg) 1733 { 1734 struct inode *inode = file_inode(file); 1735 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1736 struct btrfs_root *root = BTRFS_I(inode)->root; 1737 int ret = 0; 1738 u64 flags = 0; 1739 1740 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1741 return -EINVAL; 1742 1743 down_read(&fs_info->subvol_sem); 1744 if (btrfs_root_readonly(root)) 1745 flags |= BTRFS_SUBVOL_RDONLY; 1746 up_read(&fs_info->subvol_sem); 1747 1748 if (copy_to_user(arg, &flags, sizeof(flags))) 1749 ret = -EFAULT; 1750 1751 return ret; 1752 } 1753 1754 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1755 void __user *arg) 1756 { 1757 struct inode *inode = file_inode(file); 1758 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1759 struct btrfs_root *root = BTRFS_I(inode)->root; 1760 struct btrfs_trans_handle *trans; 1761 u64 root_flags; 1762 u64 flags; 1763 int ret = 0; 1764 1765 if (!inode_owner_or_capable(inode)) 1766 return -EPERM; 1767 1768 ret = mnt_want_write_file(file); 1769 if (ret) 1770 goto out; 1771 1772 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1773 ret = -EINVAL; 1774 goto out_drop_write; 1775 } 1776 1777 if (copy_from_user(&flags, arg, sizeof(flags))) { 1778 ret = -EFAULT; 1779 goto out_drop_write; 1780 } 1781 1782 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1783 ret = -EINVAL; 1784 goto out_drop_write; 1785 } 1786 1787 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1788 ret = -EOPNOTSUPP; 1789 goto out_drop_write; 1790 } 1791 1792 down_write(&fs_info->subvol_sem); 1793 1794 /* nothing to do */ 1795 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1796 goto out_drop_sem; 1797 1798 root_flags = btrfs_root_flags(&root->root_item); 1799 if (flags & BTRFS_SUBVOL_RDONLY) { 1800 btrfs_set_root_flags(&root->root_item, 1801 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1802 } else { 1803 /* 1804 * Block RO -> RW transition if this subvolume is involved in 1805 * send 1806 */ 1807 spin_lock(&root->root_item_lock); 1808 if (root->send_in_progress == 0) { 1809 btrfs_set_root_flags(&root->root_item, 1810 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1811 spin_unlock(&root->root_item_lock); 1812 } else { 1813 spin_unlock(&root->root_item_lock); 1814 btrfs_warn(fs_info, 1815 "Attempt to set subvolume %llu read-write during send", 1816 root->root_key.objectid); 1817 ret = -EPERM; 1818 goto out_drop_sem; 1819 } 1820 } 1821 1822 trans = btrfs_start_transaction(root, 1); 1823 if (IS_ERR(trans)) { 1824 ret = PTR_ERR(trans); 1825 goto out_reset; 1826 } 1827 1828 ret = btrfs_update_root(trans, fs_info->tree_root, 1829 &root->root_key, &root->root_item); 1830 if (ret < 0) { 1831 btrfs_end_transaction(trans); 1832 goto out_reset; 1833 } 1834 1835 ret = btrfs_commit_transaction(trans); 1836 1837 out_reset: 1838 if (ret) 1839 btrfs_set_root_flags(&root->root_item, root_flags); 1840 out_drop_sem: 1841 up_write(&fs_info->subvol_sem); 1842 out_drop_write: 1843 mnt_drop_write_file(file); 1844 out: 1845 return ret; 1846 } 1847 1848 /* 1849 * helper to check if the subvolume references other subvolumes 1850 */ 1851 static noinline int may_destroy_subvol(struct btrfs_root *root) 1852 { 1853 struct btrfs_fs_info *fs_info = root->fs_info; 1854 struct btrfs_path *path; 1855 struct btrfs_dir_item *di; 1856 struct btrfs_key key; 1857 u64 dir_id; 1858 int ret; 1859 1860 path = btrfs_alloc_path(); 1861 if (!path) 1862 return -ENOMEM; 1863 1864 /* Make sure this root isn't set as the default subvol */ 1865 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1866 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 1867 dir_id, "default", 7, 0); 1868 if (di && !IS_ERR(di)) { 1869 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1870 if (key.objectid == root->root_key.objectid) { 1871 ret = -EPERM; 1872 btrfs_err(fs_info, 1873 "deleting default subvolume %llu is not allowed", 1874 key.objectid); 1875 goto out; 1876 } 1877 btrfs_release_path(path); 1878 } 1879 1880 key.objectid = root->root_key.objectid; 1881 key.type = BTRFS_ROOT_REF_KEY; 1882 key.offset = (u64)-1; 1883 1884 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1885 if (ret < 0) 1886 goto out; 1887 BUG_ON(ret == 0); 1888 1889 ret = 0; 1890 if (path->slots[0] > 0) { 1891 path->slots[0]--; 1892 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1893 if (key.objectid == root->root_key.objectid && 1894 key.type == BTRFS_ROOT_REF_KEY) 1895 ret = -ENOTEMPTY; 1896 } 1897 out: 1898 btrfs_free_path(path); 1899 return ret; 1900 } 1901 1902 static noinline int key_in_sk(struct btrfs_key *key, 1903 struct btrfs_ioctl_search_key *sk) 1904 { 1905 struct btrfs_key test; 1906 int ret; 1907 1908 test.objectid = sk->min_objectid; 1909 test.type = sk->min_type; 1910 test.offset = sk->min_offset; 1911 1912 ret = btrfs_comp_cpu_keys(key, &test); 1913 if (ret < 0) 1914 return 0; 1915 1916 test.objectid = sk->max_objectid; 1917 test.type = sk->max_type; 1918 test.offset = sk->max_offset; 1919 1920 ret = btrfs_comp_cpu_keys(key, &test); 1921 if (ret > 0) 1922 return 0; 1923 return 1; 1924 } 1925 1926 static noinline int copy_to_sk(struct btrfs_path *path, 1927 struct btrfs_key *key, 1928 struct btrfs_ioctl_search_key *sk, 1929 size_t *buf_size, 1930 char __user *ubuf, 1931 unsigned long *sk_offset, 1932 int *num_found) 1933 { 1934 u64 found_transid; 1935 struct extent_buffer *leaf; 1936 struct btrfs_ioctl_search_header sh; 1937 struct btrfs_key test; 1938 unsigned long item_off; 1939 unsigned long item_len; 1940 int nritems; 1941 int i; 1942 int slot; 1943 int ret = 0; 1944 1945 leaf = path->nodes[0]; 1946 slot = path->slots[0]; 1947 nritems = btrfs_header_nritems(leaf); 1948 1949 if (btrfs_header_generation(leaf) > sk->max_transid) { 1950 i = nritems; 1951 goto advance_key; 1952 } 1953 found_transid = btrfs_header_generation(leaf); 1954 1955 for (i = slot; i < nritems; i++) { 1956 item_off = btrfs_item_ptr_offset(leaf, i); 1957 item_len = btrfs_item_size_nr(leaf, i); 1958 1959 btrfs_item_key_to_cpu(leaf, key, i); 1960 if (!key_in_sk(key, sk)) 1961 continue; 1962 1963 if (sizeof(sh) + item_len > *buf_size) { 1964 if (*num_found) { 1965 ret = 1; 1966 goto out; 1967 } 1968 1969 /* 1970 * return one empty item back for v1, which does not 1971 * handle -EOVERFLOW 1972 */ 1973 1974 *buf_size = sizeof(sh) + item_len; 1975 item_len = 0; 1976 ret = -EOVERFLOW; 1977 } 1978 1979 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1980 ret = 1; 1981 goto out; 1982 } 1983 1984 sh.objectid = key->objectid; 1985 sh.offset = key->offset; 1986 sh.type = key->type; 1987 sh.len = item_len; 1988 sh.transid = found_transid; 1989 1990 /* copy search result header */ 1991 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 1992 ret = -EFAULT; 1993 goto out; 1994 } 1995 1996 *sk_offset += sizeof(sh); 1997 1998 if (item_len) { 1999 char __user *up = ubuf + *sk_offset; 2000 /* copy the item */ 2001 if (read_extent_buffer_to_user(leaf, up, 2002 item_off, item_len)) { 2003 ret = -EFAULT; 2004 goto out; 2005 } 2006 2007 *sk_offset += item_len; 2008 } 2009 (*num_found)++; 2010 2011 if (ret) /* -EOVERFLOW from above */ 2012 goto out; 2013 2014 if (*num_found >= sk->nr_items) { 2015 ret = 1; 2016 goto out; 2017 } 2018 } 2019 advance_key: 2020 ret = 0; 2021 test.objectid = sk->max_objectid; 2022 test.type = sk->max_type; 2023 test.offset = sk->max_offset; 2024 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2025 ret = 1; 2026 else if (key->offset < (u64)-1) 2027 key->offset++; 2028 else if (key->type < (u8)-1) { 2029 key->offset = 0; 2030 key->type++; 2031 } else if (key->objectid < (u64)-1) { 2032 key->offset = 0; 2033 key->type = 0; 2034 key->objectid++; 2035 } else 2036 ret = 1; 2037 out: 2038 /* 2039 * 0: all items from this leaf copied, continue with next 2040 * 1: * more items can be copied, but unused buffer is too small 2041 * * all items were found 2042 * Either way, it will stops the loop which iterates to the next 2043 * leaf 2044 * -EOVERFLOW: item was to large for buffer 2045 * -EFAULT: could not copy extent buffer back to userspace 2046 */ 2047 return ret; 2048 } 2049 2050 static noinline int search_ioctl(struct inode *inode, 2051 struct btrfs_ioctl_search_key *sk, 2052 size_t *buf_size, 2053 char __user *ubuf) 2054 { 2055 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2056 struct btrfs_root *root; 2057 struct btrfs_key key; 2058 struct btrfs_path *path; 2059 int ret; 2060 int num_found = 0; 2061 unsigned long sk_offset = 0; 2062 2063 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2064 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2065 return -EOVERFLOW; 2066 } 2067 2068 path = btrfs_alloc_path(); 2069 if (!path) 2070 return -ENOMEM; 2071 2072 if (sk->tree_id == 0) { 2073 /* search the root of the inode that was passed */ 2074 root = BTRFS_I(inode)->root; 2075 } else { 2076 key.objectid = sk->tree_id; 2077 key.type = BTRFS_ROOT_ITEM_KEY; 2078 key.offset = (u64)-1; 2079 root = btrfs_read_fs_root_no_name(info, &key); 2080 if (IS_ERR(root)) { 2081 btrfs_free_path(path); 2082 return -ENOENT; 2083 } 2084 } 2085 2086 key.objectid = sk->min_objectid; 2087 key.type = sk->min_type; 2088 key.offset = sk->min_offset; 2089 2090 while (1) { 2091 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2092 if (ret != 0) { 2093 if (ret > 0) 2094 ret = 0; 2095 goto err; 2096 } 2097 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2098 &sk_offset, &num_found); 2099 btrfs_release_path(path); 2100 if (ret) 2101 break; 2102 2103 } 2104 if (ret > 0) 2105 ret = 0; 2106 err: 2107 sk->nr_items = num_found; 2108 btrfs_free_path(path); 2109 return ret; 2110 } 2111 2112 static noinline int btrfs_ioctl_tree_search(struct file *file, 2113 void __user *argp) 2114 { 2115 struct btrfs_ioctl_search_args __user *uargs; 2116 struct btrfs_ioctl_search_key sk; 2117 struct inode *inode; 2118 int ret; 2119 size_t buf_size; 2120 2121 if (!capable(CAP_SYS_ADMIN)) 2122 return -EPERM; 2123 2124 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2125 2126 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2127 return -EFAULT; 2128 2129 buf_size = sizeof(uargs->buf); 2130 2131 inode = file_inode(file); 2132 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2133 2134 /* 2135 * In the origin implementation an overflow is handled by returning a 2136 * search header with a len of zero, so reset ret. 2137 */ 2138 if (ret == -EOVERFLOW) 2139 ret = 0; 2140 2141 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2142 ret = -EFAULT; 2143 return ret; 2144 } 2145 2146 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2147 void __user *argp) 2148 { 2149 struct btrfs_ioctl_search_args_v2 __user *uarg; 2150 struct btrfs_ioctl_search_args_v2 args; 2151 struct inode *inode; 2152 int ret; 2153 size_t buf_size; 2154 const size_t buf_limit = SZ_16M; 2155 2156 if (!capable(CAP_SYS_ADMIN)) 2157 return -EPERM; 2158 2159 /* copy search header and buffer size */ 2160 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2161 if (copy_from_user(&args, uarg, sizeof(args))) 2162 return -EFAULT; 2163 2164 buf_size = args.buf_size; 2165 2166 /* limit result size to 16MB */ 2167 if (buf_size > buf_limit) 2168 buf_size = buf_limit; 2169 2170 inode = file_inode(file); 2171 ret = search_ioctl(inode, &args.key, &buf_size, 2172 (char __user *)(&uarg->buf[0])); 2173 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2174 ret = -EFAULT; 2175 else if (ret == -EOVERFLOW && 2176 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2177 ret = -EFAULT; 2178 2179 return ret; 2180 } 2181 2182 /* 2183 * Search INODE_REFs to identify path name of 'dirid' directory 2184 * in a 'tree_id' tree. and sets path name to 'name'. 2185 */ 2186 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2187 u64 tree_id, u64 dirid, char *name) 2188 { 2189 struct btrfs_root *root; 2190 struct btrfs_key key; 2191 char *ptr; 2192 int ret = -1; 2193 int slot; 2194 int len; 2195 int total_len = 0; 2196 struct btrfs_inode_ref *iref; 2197 struct extent_buffer *l; 2198 struct btrfs_path *path; 2199 2200 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2201 name[0]='\0'; 2202 return 0; 2203 } 2204 2205 path = btrfs_alloc_path(); 2206 if (!path) 2207 return -ENOMEM; 2208 2209 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2210 2211 key.objectid = tree_id; 2212 key.type = BTRFS_ROOT_ITEM_KEY; 2213 key.offset = (u64)-1; 2214 root = btrfs_read_fs_root_no_name(info, &key); 2215 if (IS_ERR(root)) { 2216 btrfs_err(info, "could not find root %llu", tree_id); 2217 ret = -ENOENT; 2218 goto out; 2219 } 2220 2221 key.objectid = dirid; 2222 key.type = BTRFS_INODE_REF_KEY; 2223 key.offset = (u64)-1; 2224 2225 while (1) { 2226 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2227 if (ret < 0) 2228 goto out; 2229 else if (ret > 0) { 2230 ret = btrfs_previous_item(root, path, dirid, 2231 BTRFS_INODE_REF_KEY); 2232 if (ret < 0) 2233 goto out; 2234 else if (ret > 0) { 2235 ret = -ENOENT; 2236 goto out; 2237 } 2238 } 2239 2240 l = path->nodes[0]; 2241 slot = path->slots[0]; 2242 btrfs_item_key_to_cpu(l, &key, slot); 2243 2244 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2245 len = btrfs_inode_ref_name_len(l, iref); 2246 ptr -= len + 1; 2247 total_len += len + 1; 2248 if (ptr < name) { 2249 ret = -ENAMETOOLONG; 2250 goto out; 2251 } 2252 2253 *(ptr + len) = '/'; 2254 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2255 2256 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2257 break; 2258 2259 btrfs_release_path(path); 2260 key.objectid = key.offset; 2261 key.offset = (u64)-1; 2262 dirid = key.objectid; 2263 } 2264 memmove(name, ptr, total_len); 2265 name[total_len] = '\0'; 2266 ret = 0; 2267 out: 2268 btrfs_free_path(path); 2269 return ret; 2270 } 2271 2272 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2273 void __user *argp) 2274 { 2275 struct btrfs_ioctl_ino_lookup_args *args; 2276 struct inode *inode; 2277 int ret = 0; 2278 2279 args = memdup_user(argp, sizeof(*args)); 2280 if (IS_ERR(args)) 2281 return PTR_ERR(args); 2282 2283 inode = file_inode(file); 2284 2285 /* 2286 * Unprivileged query to obtain the containing subvolume root id. The 2287 * path is reset so it's consistent with btrfs_search_path_in_tree. 2288 */ 2289 if (args->treeid == 0) 2290 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2291 2292 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2293 args->name[0] = 0; 2294 goto out; 2295 } 2296 2297 if (!capable(CAP_SYS_ADMIN)) { 2298 ret = -EPERM; 2299 goto out; 2300 } 2301 2302 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2303 args->treeid, args->objectid, 2304 args->name); 2305 2306 out: 2307 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2308 ret = -EFAULT; 2309 2310 kfree(args); 2311 return ret; 2312 } 2313 2314 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2315 void __user *arg) 2316 { 2317 struct dentry *parent = file->f_path.dentry; 2318 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2319 struct dentry *dentry; 2320 struct inode *dir = d_inode(parent); 2321 struct inode *inode; 2322 struct btrfs_root *root = BTRFS_I(dir)->root; 2323 struct btrfs_root *dest = NULL; 2324 struct btrfs_ioctl_vol_args *vol_args; 2325 struct btrfs_trans_handle *trans; 2326 struct btrfs_block_rsv block_rsv; 2327 u64 root_flags; 2328 u64 qgroup_reserved; 2329 int namelen; 2330 int ret; 2331 int err = 0; 2332 2333 if (!S_ISDIR(dir->i_mode)) 2334 return -ENOTDIR; 2335 2336 vol_args = memdup_user(arg, sizeof(*vol_args)); 2337 if (IS_ERR(vol_args)) 2338 return PTR_ERR(vol_args); 2339 2340 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2341 namelen = strlen(vol_args->name); 2342 if (strchr(vol_args->name, '/') || 2343 strncmp(vol_args->name, "..", namelen) == 0) { 2344 err = -EINVAL; 2345 goto out; 2346 } 2347 2348 err = mnt_want_write_file(file); 2349 if (err) 2350 goto out; 2351 2352 2353 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2354 if (err == -EINTR) 2355 goto out_drop_write; 2356 dentry = lookup_one_len(vol_args->name, parent, namelen); 2357 if (IS_ERR(dentry)) { 2358 err = PTR_ERR(dentry); 2359 goto out_unlock_dir; 2360 } 2361 2362 if (d_really_is_negative(dentry)) { 2363 err = -ENOENT; 2364 goto out_dput; 2365 } 2366 2367 inode = d_inode(dentry); 2368 dest = BTRFS_I(inode)->root; 2369 if (!capable(CAP_SYS_ADMIN)) { 2370 /* 2371 * Regular user. Only allow this with a special mount 2372 * option, when the user has write+exec access to the 2373 * subvol root, and when rmdir(2) would have been 2374 * allowed. 2375 * 2376 * Note that this is _not_ check that the subvol is 2377 * empty or doesn't contain data that we wouldn't 2378 * otherwise be able to delete. 2379 * 2380 * Users who want to delete empty subvols should try 2381 * rmdir(2). 2382 */ 2383 err = -EPERM; 2384 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2385 goto out_dput; 2386 2387 /* 2388 * Do not allow deletion if the parent dir is the same 2389 * as the dir to be deleted. That means the ioctl 2390 * must be called on the dentry referencing the root 2391 * of the subvol, not a random directory contained 2392 * within it. 2393 */ 2394 err = -EINVAL; 2395 if (root == dest) 2396 goto out_dput; 2397 2398 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2399 if (err) 2400 goto out_dput; 2401 } 2402 2403 /* check if subvolume may be deleted by a user */ 2404 err = btrfs_may_delete(dir, dentry, 1); 2405 if (err) 2406 goto out_dput; 2407 2408 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2409 err = -EINVAL; 2410 goto out_dput; 2411 } 2412 2413 inode_lock(inode); 2414 2415 /* 2416 * Don't allow to delete a subvolume with send in progress. This is 2417 * inside the i_mutex so the error handling that has to drop the bit 2418 * again is not run concurrently. 2419 */ 2420 spin_lock(&dest->root_item_lock); 2421 root_flags = btrfs_root_flags(&dest->root_item); 2422 if (dest->send_in_progress == 0) { 2423 btrfs_set_root_flags(&dest->root_item, 2424 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2425 spin_unlock(&dest->root_item_lock); 2426 } else { 2427 spin_unlock(&dest->root_item_lock); 2428 btrfs_warn(fs_info, 2429 "Attempt to delete subvolume %llu during send", 2430 dest->root_key.objectid); 2431 err = -EPERM; 2432 goto out_unlock_inode; 2433 } 2434 2435 down_write(&fs_info->subvol_sem); 2436 2437 err = may_destroy_subvol(dest); 2438 if (err) 2439 goto out_up_write; 2440 2441 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2442 /* 2443 * One for dir inode, two for dir entries, two for root 2444 * ref/backref. 2445 */ 2446 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2447 5, &qgroup_reserved, true); 2448 if (err) 2449 goto out_up_write; 2450 2451 trans = btrfs_start_transaction(root, 0); 2452 if (IS_ERR(trans)) { 2453 err = PTR_ERR(trans); 2454 goto out_release; 2455 } 2456 trans->block_rsv = &block_rsv; 2457 trans->bytes_reserved = block_rsv.size; 2458 2459 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 2460 2461 ret = btrfs_unlink_subvol(trans, root, dir, 2462 dest->root_key.objectid, 2463 dentry->d_name.name, 2464 dentry->d_name.len); 2465 if (ret) { 2466 err = ret; 2467 btrfs_abort_transaction(trans, ret); 2468 goto out_end_trans; 2469 } 2470 2471 btrfs_record_root_in_trans(trans, dest); 2472 2473 memset(&dest->root_item.drop_progress, 0, 2474 sizeof(dest->root_item.drop_progress)); 2475 dest->root_item.drop_level = 0; 2476 btrfs_set_root_refs(&dest->root_item, 0); 2477 2478 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2479 ret = btrfs_insert_orphan_item(trans, 2480 fs_info->tree_root, 2481 dest->root_key.objectid); 2482 if (ret) { 2483 btrfs_abort_transaction(trans, ret); 2484 err = ret; 2485 goto out_end_trans; 2486 } 2487 } 2488 2489 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid, 2490 BTRFS_UUID_KEY_SUBVOL, 2491 dest->root_key.objectid); 2492 if (ret && ret != -ENOENT) { 2493 btrfs_abort_transaction(trans, ret); 2494 err = ret; 2495 goto out_end_trans; 2496 } 2497 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2498 ret = btrfs_uuid_tree_rem(trans, fs_info, 2499 dest->root_item.received_uuid, 2500 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2501 dest->root_key.objectid); 2502 if (ret && ret != -ENOENT) { 2503 btrfs_abort_transaction(trans, ret); 2504 err = ret; 2505 goto out_end_trans; 2506 } 2507 } 2508 2509 out_end_trans: 2510 trans->block_rsv = NULL; 2511 trans->bytes_reserved = 0; 2512 ret = btrfs_end_transaction(trans); 2513 if (ret && !err) 2514 err = ret; 2515 inode->i_flags |= S_DEAD; 2516 out_release: 2517 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 2518 out_up_write: 2519 up_write(&fs_info->subvol_sem); 2520 if (err) { 2521 spin_lock(&dest->root_item_lock); 2522 root_flags = btrfs_root_flags(&dest->root_item); 2523 btrfs_set_root_flags(&dest->root_item, 2524 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2525 spin_unlock(&dest->root_item_lock); 2526 } 2527 out_unlock_inode: 2528 inode_unlock(inode); 2529 if (!err) { 2530 d_invalidate(dentry); 2531 btrfs_invalidate_inodes(dest); 2532 d_delete(dentry); 2533 ASSERT(dest->send_in_progress == 0); 2534 2535 /* the last ref */ 2536 if (dest->ino_cache_inode) { 2537 iput(dest->ino_cache_inode); 2538 dest->ino_cache_inode = NULL; 2539 } 2540 } 2541 out_dput: 2542 dput(dentry); 2543 out_unlock_dir: 2544 inode_unlock(dir); 2545 out_drop_write: 2546 mnt_drop_write_file(file); 2547 out: 2548 kfree(vol_args); 2549 return err; 2550 } 2551 2552 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2553 { 2554 struct inode *inode = file_inode(file); 2555 struct btrfs_root *root = BTRFS_I(inode)->root; 2556 struct btrfs_ioctl_defrag_range_args *range; 2557 int ret; 2558 2559 ret = mnt_want_write_file(file); 2560 if (ret) 2561 return ret; 2562 2563 if (btrfs_root_readonly(root)) { 2564 ret = -EROFS; 2565 goto out; 2566 } 2567 2568 switch (inode->i_mode & S_IFMT) { 2569 case S_IFDIR: 2570 if (!capable(CAP_SYS_ADMIN)) { 2571 ret = -EPERM; 2572 goto out; 2573 } 2574 ret = btrfs_defrag_root(root); 2575 break; 2576 case S_IFREG: 2577 if (!(file->f_mode & FMODE_WRITE)) { 2578 ret = -EINVAL; 2579 goto out; 2580 } 2581 2582 range = kzalloc(sizeof(*range), GFP_KERNEL); 2583 if (!range) { 2584 ret = -ENOMEM; 2585 goto out; 2586 } 2587 2588 if (argp) { 2589 if (copy_from_user(range, argp, 2590 sizeof(*range))) { 2591 ret = -EFAULT; 2592 kfree(range); 2593 goto out; 2594 } 2595 /* compression requires us to start the IO */ 2596 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2597 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2598 range->extent_thresh = (u32)-1; 2599 } 2600 } else { 2601 /* the rest are all set to zero by kzalloc */ 2602 range->len = (u64)-1; 2603 } 2604 ret = btrfs_defrag_file(file_inode(file), file, 2605 range, 0, 0); 2606 if (ret > 0) 2607 ret = 0; 2608 kfree(range); 2609 break; 2610 default: 2611 ret = -EINVAL; 2612 } 2613 out: 2614 mnt_drop_write_file(file); 2615 return ret; 2616 } 2617 2618 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2619 { 2620 struct btrfs_ioctl_vol_args *vol_args; 2621 int ret; 2622 2623 if (!capable(CAP_SYS_ADMIN)) 2624 return -EPERM; 2625 2626 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 2627 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2628 2629 mutex_lock(&fs_info->volume_mutex); 2630 vol_args = memdup_user(arg, sizeof(*vol_args)); 2631 if (IS_ERR(vol_args)) { 2632 ret = PTR_ERR(vol_args); 2633 goto out; 2634 } 2635 2636 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2637 ret = btrfs_init_new_device(fs_info, vol_args->name); 2638 2639 if (!ret) 2640 btrfs_info(fs_info, "disk added %s", vol_args->name); 2641 2642 kfree(vol_args); 2643 out: 2644 mutex_unlock(&fs_info->volume_mutex); 2645 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 2646 return ret; 2647 } 2648 2649 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2650 { 2651 struct inode *inode = file_inode(file); 2652 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2653 struct btrfs_ioctl_vol_args_v2 *vol_args; 2654 int ret; 2655 2656 if (!capable(CAP_SYS_ADMIN)) 2657 return -EPERM; 2658 2659 ret = mnt_want_write_file(file); 2660 if (ret) 2661 return ret; 2662 2663 vol_args = memdup_user(arg, sizeof(*vol_args)); 2664 if (IS_ERR(vol_args)) { 2665 ret = PTR_ERR(vol_args); 2666 goto err_drop; 2667 } 2668 2669 /* Check for compatibility reject unknown flags */ 2670 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) 2671 return -EOPNOTSUPP; 2672 2673 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 2674 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2675 goto out; 2676 } 2677 2678 mutex_lock(&fs_info->volume_mutex); 2679 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2680 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 2681 } else { 2682 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2683 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 2684 } 2685 mutex_unlock(&fs_info->volume_mutex); 2686 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 2687 2688 if (!ret) { 2689 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2690 btrfs_info(fs_info, "device deleted: id %llu", 2691 vol_args->devid); 2692 else 2693 btrfs_info(fs_info, "device deleted: %s", 2694 vol_args->name); 2695 } 2696 out: 2697 kfree(vol_args); 2698 err_drop: 2699 mnt_drop_write_file(file); 2700 return ret; 2701 } 2702 2703 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2704 { 2705 struct inode *inode = file_inode(file); 2706 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2707 struct btrfs_ioctl_vol_args *vol_args; 2708 int ret; 2709 2710 if (!capable(CAP_SYS_ADMIN)) 2711 return -EPERM; 2712 2713 ret = mnt_want_write_file(file); 2714 if (ret) 2715 return ret; 2716 2717 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 2718 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2719 goto out_drop_write; 2720 } 2721 2722 vol_args = memdup_user(arg, sizeof(*vol_args)); 2723 if (IS_ERR(vol_args)) { 2724 ret = PTR_ERR(vol_args); 2725 goto out; 2726 } 2727 2728 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2729 mutex_lock(&fs_info->volume_mutex); 2730 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 2731 mutex_unlock(&fs_info->volume_mutex); 2732 2733 if (!ret) 2734 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2735 kfree(vol_args); 2736 out: 2737 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 2738 out_drop_write: 2739 mnt_drop_write_file(file); 2740 2741 return ret; 2742 } 2743 2744 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2745 void __user *arg) 2746 { 2747 struct btrfs_ioctl_fs_info_args *fi_args; 2748 struct btrfs_device *device; 2749 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2750 int ret = 0; 2751 2752 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2753 if (!fi_args) 2754 return -ENOMEM; 2755 2756 mutex_lock(&fs_devices->device_list_mutex); 2757 fi_args->num_devices = fs_devices->num_devices; 2758 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid)); 2759 2760 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2761 if (device->devid > fi_args->max_id) 2762 fi_args->max_id = device->devid; 2763 } 2764 mutex_unlock(&fs_devices->device_list_mutex); 2765 2766 fi_args->nodesize = fs_info->nodesize; 2767 fi_args->sectorsize = fs_info->sectorsize; 2768 fi_args->clone_alignment = fs_info->sectorsize; 2769 2770 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2771 ret = -EFAULT; 2772 2773 kfree(fi_args); 2774 return ret; 2775 } 2776 2777 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2778 void __user *arg) 2779 { 2780 struct btrfs_ioctl_dev_info_args *di_args; 2781 struct btrfs_device *dev; 2782 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2783 int ret = 0; 2784 char *s_uuid = NULL; 2785 2786 di_args = memdup_user(arg, sizeof(*di_args)); 2787 if (IS_ERR(di_args)) 2788 return PTR_ERR(di_args); 2789 2790 if (!btrfs_is_empty_uuid(di_args->uuid)) 2791 s_uuid = di_args->uuid; 2792 2793 mutex_lock(&fs_devices->device_list_mutex); 2794 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL); 2795 2796 if (!dev) { 2797 ret = -ENODEV; 2798 goto out; 2799 } 2800 2801 di_args->devid = dev->devid; 2802 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2803 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2804 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2805 if (dev->name) { 2806 struct rcu_string *name; 2807 2808 rcu_read_lock(); 2809 name = rcu_dereference(dev->name); 2810 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2811 rcu_read_unlock(); 2812 di_args->path[sizeof(di_args->path) - 1] = 0; 2813 } else { 2814 di_args->path[0] = '\0'; 2815 } 2816 2817 out: 2818 mutex_unlock(&fs_devices->device_list_mutex); 2819 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2820 ret = -EFAULT; 2821 2822 kfree(di_args); 2823 return ret; 2824 } 2825 2826 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 2827 { 2828 struct page *page; 2829 2830 page = grab_cache_page(inode->i_mapping, index); 2831 if (!page) 2832 return ERR_PTR(-ENOMEM); 2833 2834 if (!PageUptodate(page)) { 2835 int ret; 2836 2837 ret = btrfs_readpage(NULL, page); 2838 if (ret) 2839 return ERR_PTR(ret); 2840 lock_page(page); 2841 if (!PageUptodate(page)) { 2842 unlock_page(page); 2843 put_page(page); 2844 return ERR_PTR(-EIO); 2845 } 2846 if (page->mapping != inode->i_mapping) { 2847 unlock_page(page); 2848 put_page(page); 2849 return ERR_PTR(-EAGAIN); 2850 } 2851 } 2852 2853 return page; 2854 } 2855 2856 static int gather_extent_pages(struct inode *inode, struct page **pages, 2857 int num_pages, u64 off) 2858 { 2859 int i; 2860 pgoff_t index = off >> PAGE_SHIFT; 2861 2862 for (i = 0; i < num_pages; i++) { 2863 again: 2864 pages[i] = extent_same_get_page(inode, index + i); 2865 if (IS_ERR(pages[i])) { 2866 int err = PTR_ERR(pages[i]); 2867 2868 if (err == -EAGAIN) 2869 goto again; 2870 pages[i] = NULL; 2871 return err; 2872 } 2873 } 2874 return 0; 2875 } 2876 2877 static int lock_extent_range(struct inode *inode, u64 off, u64 len, 2878 bool retry_range_locking) 2879 { 2880 /* 2881 * Do any pending delalloc/csum calculations on inode, one way or 2882 * another, and lock file content. 2883 * The locking order is: 2884 * 2885 * 1) pages 2886 * 2) range in the inode's io tree 2887 */ 2888 while (1) { 2889 struct btrfs_ordered_extent *ordered; 2890 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2891 ordered = btrfs_lookup_first_ordered_extent(inode, 2892 off + len - 1); 2893 if ((!ordered || 2894 ordered->file_offset + ordered->len <= off || 2895 ordered->file_offset >= off + len) && 2896 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2897 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2898 if (ordered) 2899 btrfs_put_ordered_extent(ordered); 2900 break; 2901 } 2902 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2903 if (ordered) 2904 btrfs_put_ordered_extent(ordered); 2905 if (!retry_range_locking) 2906 return -EAGAIN; 2907 btrfs_wait_ordered_range(inode, off, len); 2908 } 2909 return 0; 2910 } 2911 2912 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 2913 { 2914 inode_unlock(inode1); 2915 inode_unlock(inode2); 2916 } 2917 2918 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 2919 { 2920 if (inode1 < inode2) 2921 swap(inode1, inode2); 2922 2923 inode_lock_nested(inode1, I_MUTEX_PARENT); 2924 inode_lock_nested(inode2, I_MUTEX_CHILD); 2925 } 2926 2927 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 2928 struct inode *inode2, u64 loff2, u64 len) 2929 { 2930 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2931 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2932 } 2933 2934 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 2935 struct inode *inode2, u64 loff2, u64 len, 2936 bool retry_range_locking) 2937 { 2938 int ret; 2939 2940 if (inode1 < inode2) { 2941 swap(inode1, inode2); 2942 swap(loff1, loff2); 2943 } 2944 ret = lock_extent_range(inode1, loff1, len, retry_range_locking); 2945 if (ret) 2946 return ret; 2947 ret = lock_extent_range(inode2, loff2, len, retry_range_locking); 2948 if (ret) 2949 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, 2950 loff1 + len - 1); 2951 return ret; 2952 } 2953 2954 struct cmp_pages { 2955 int num_pages; 2956 struct page **src_pages; 2957 struct page **dst_pages; 2958 }; 2959 2960 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 2961 { 2962 int i; 2963 struct page *pg; 2964 2965 for (i = 0; i < cmp->num_pages; i++) { 2966 pg = cmp->src_pages[i]; 2967 if (pg) { 2968 unlock_page(pg); 2969 put_page(pg); 2970 } 2971 pg = cmp->dst_pages[i]; 2972 if (pg) { 2973 unlock_page(pg); 2974 put_page(pg); 2975 } 2976 } 2977 kfree(cmp->src_pages); 2978 kfree(cmp->dst_pages); 2979 } 2980 2981 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 2982 struct inode *dst, u64 dst_loff, 2983 u64 len, struct cmp_pages *cmp) 2984 { 2985 int ret; 2986 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT; 2987 struct page **src_pgarr, **dst_pgarr; 2988 2989 /* 2990 * We must gather up all the pages before we initiate our 2991 * extent locking. We use an array for the page pointers. Size 2992 * of the array is bounded by len, which is in turn bounded by 2993 * BTRFS_MAX_DEDUPE_LEN. 2994 */ 2995 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 2996 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 2997 if (!src_pgarr || !dst_pgarr) { 2998 kfree(src_pgarr); 2999 kfree(dst_pgarr); 3000 return -ENOMEM; 3001 } 3002 cmp->num_pages = num_pages; 3003 cmp->src_pages = src_pgarr; 3004 cmp->dst_pages = dst_pgarr; 3005 3006 /* 3007 * If deduping ranges in the same inode, locking rules make it mandatory 3008 * to always lock pages in ascending order to avoid deadlocks with 3009 * concurrent tasks (such as starting writeback/delalloc). 3010 */ 3011 if (src == dst && dst_loff < loff) { 3012 swap(src_pgarr, dst_pgarr); 3013 swap(loff, dst_loff); 3014 } 3015 3016 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff); 3017 if (ret) 3018 goto out; 3019 3020 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff); 3021 3022 out: 3023 if (ret) 3024 btrfs_cmp_data_free(cmp); 3025 return ret; 3026 } 3027 3028 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp) 3029 { 3030 int ret = 0; 3031 int i; 3032 struct page *src_page, *dst_page; 3033 unsigned int cmp_len = PAGE_SIZE; 3034 void *addr, *dst_addr; 3035 3036 i = 0; 3037 while (len) { 3038 if (len < PAGE_SIZE) 3039 cmp_len = len; 3040 3041 BUG_ON(i >= cmp->num_pages); 3042 3043 src_page = cmp->src_pages[i]; 3044 dst_page = cmp->dst_pages[i]; 3045 ASSERT(PageLocked(src_page)); 3046 ASSERT(PageLocked(dst_page)); 3047 3048 addr = kmap_atomic(src_page); 3049 dst_addr = kmap_atomic(dst_page); 3050 3051 flush_dcache_page(src_page); 3052 flush_dcache_page(dst_page); 3053 3054 if (memcmp(addr, dst_addr, cmp_len)) 3055 ret = -EBADE; 3056 3057 kunmap_atomic(addr); 3058 kunmap_atomic(dst_addr); 3059 3060 if (ret) 3061 break; 3062 3063 len -= cmp_len; 3064 i++; 3065 } 3066 3067 return ret; 3068 } 3069 3070 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 3071 u64 olen) 3072 { 3073 u64 len = *plen; 3074 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 3075 3076 if (off + olen > inode->i_size || off + olen < off) 3077 return -EINVAL; 3078 3079 /* if we extend to eof, continue to block boundary */ 3080 if (off + len == inode->i_size) 3081 *plen = len = ALIGN(inode->i_size, bs) - off; 3082 3083 /* Check that we are block aligned - btrfs_clone() requires this */ 3084 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 3085 return -EINVAL; 3086 3087 return 0; 3088 } 3089 3090 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3091 struct inode *dst, u64 dst_loff) 3092 { 3093 int ret; 3094 u64 len = olen; 3095 struct cmp_pages cmp; 3096 bool same_inode = (src == dst); 3097 u64 same_lock_start = 0; 3098 u64 same_lock_len = 0; 3099 3100 if (len == 0) 3101 return 0; 3102 3103 if (same_inode) 3104 inode_lock(src); 3105 else 3106 btrfs_double_inode_lock(src, dst); 3107 3108 ret = extent_same_check_offsets(src, loff, &len, olen); 3109 if (ret) 3110 goto out_unlock; 3111 3112 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3113 if (ret) 3114 goto out_unlock; 3115 3116 if (same_inode) { 3117 /* 3118 * Single inode case wants the same checks, except we 3119 * don't want our length pushed out past i_size as 3120 * comparing that data range makes no sense. 3121 * 3122 * extent_same_check_offsets() will do this for an 3123 * unaligned length at i_size, so catch it here and 3124 * reject the request. 3125 * 3126 * This effectively means we require aligned extents 3127 * for the single-inode case, whereas the other cases 3128 * allow an unaligned length so long as it ends at 3129 * i_size. 3130 */ 3131 if (len != olen) { 3132 ret = -EINVAL; 3133 goto out_unlock; 3134 } 3135 3136 /* Check for overlapping ranges */ 3137 if (dst_loff + len > loff && dst_loff < loff + len) { 3138 ret = -EINVAL; 3139 goto out_unlock; 3140 } 3141 3142 same_lock_start = min_t(u64, loff, dst_loff); 3143 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3144 } 3145 3146 /* don't make the dst file partly checksummed */ 3147 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3148 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3149 ret = -EINVAL; 3150 goto out_unlock; 3151 } 3152 3153 again: 3154 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp); 3155 if (ret) 3156 goto out_unlock; 3157 3158 if (same_inode) 3159 ret = lock_extent_range(src, same_lock_start, same_lock_len, 3160 false); 3161 else 3162 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len, 3163 false); 3164 /* 3165 * If one of the inodes has dirty pages in the respective range or 3166 * ordered extents, we need to flush dellaloc and wait for all ordered 3167 * extents in the range. We must unlock the pages and the ranges in the 3168 * io trees to avoid deadlocks when flushing delalloc (requires locking 3169 * pages) and when waiting for ordered extents to complete (they require 3170 * range locking). 3171 */ 3172 if (ret == -EAGAIN) { 3173 /* 3174 * Ranges in the io trees already unlocked. Now unlock all 3175 * pages before waiting for all IO to complete. 3176 */ 3177 btrfs_cmp_data_free(&cmp); 3178 if (same_inode) { 3179 btrfs_wait_ordered_range(src, same_lock_start, 3180 same_lock_len); 3181 } else { 3182 btrfs_wait_ordered_range(src, loff, len); 3183 btrfs_wait_ordered_range(dst, dst_loff, len); 3184 } 3185 goto again; 3186 } 3187 ASSERT(ret == 0); 3188 if (WARN_ON(ret)) { 3189 /* ranges in the io trees already unlocked */ 3190 btrfs_cmp_data_free(&cmp); 3191 return ret; 3192 } 3193 3194 /* pass original length for comparison so we stay within i_size */ 3195 ret = btrfs_cmp_data(olen, &cmp); 3196 if (ret == 0) 3197 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3198 3199 if (same_inode) 3200 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3201 same_lock_start + same_lock_len - 1); 3202 else 3203 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3204 3205 btrfs_cmp_data_free(&cmp); 3206 out_unlock: 3207 if (same_inode) 3208 inode_unlock(src); 3209 else 3210 btrfs_double_inode_unlock(src, dst); 3211 3212 return ret; 3213 } 3214 3215 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3216 3217 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen, 3218 struct file *dst_file, u64 dst_loff) 3219 { 3220 struct inode *src = file_inode(src_file); 3221 struct inode *dst = file_inode(dst_file); 3222 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3223 ssize_t res; 3224 3225 if (olen > BTRFS_MAX_DEDUPE_LEN) 3226 olen = BTRFS_MAX_DEDUPE_LEN; 3227 3228 if (WARN_ON_ONCE(bs < PAGE_SIZE)) { 3229 /* 3230 * Btrfs does not support blocksize < page_size. As a 3231 * result, btrfs_cmp_data() won't correctly handle 3232 * this situation without an update. 3233 */ 3234 return -EINVAL; 3235 } 3236 3237 res = btrfs_extent_same(src, loff, olen, dst, dst_loff); 3238 if (res) 3239 return res; 3240 return olen; 3241 } 3242 3243 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3244 struct inode *inode, 3245 u64 endoff, 3246 const u64 destoff, 3247 const u64 olen, 3248 int no_time_update) 3249 { 3250 struct btrfs_root *root = BTRFS_I(inode)->root; 3251 int ret; 3252 3253 inode_inc_iversion(inode); 3254 if (!no_time_update) 3255 inode->i_mtime = inode->i_ctime = current_time(inode); 3256 /* 3257 * We round up to the block size at eof when determining which 3258 * extents to clone above, but shouldn't round up the file size. 3259 */ 3260 if (endoff > destoff + olen) 3261 endoff = destoff + olen; 3262 if (endoff > inode->i_size) 3263 btrfs_i_size_write(BTRFS_I(inode), endoff); 3264 3265 ret = btrfs_update_inode(trans, root, inode); 3266 if (ret) { 3267 btrfs_abort_transaction(trans, ret); 3268 btrfs_end_transaction(trans); 3269 goto out; 3270 } 3271 ret = btrfs_end_transaction(trans); 3272 out: 3273 return ret; 3274 } 3275 3276 static void clone_update_extent_map(struct btrfs_inode *inode, 3277 const struct btrfs_trans_handle *trans, 3278 const struct btrfs_path *path, 3279 const u64 hole_offset, 3280 const u64 hole_len) 3281 { 3282 struct extent_map_tree *em_tree = &inode->extent_tree; 3283 struct extent_map *em; 3284 int ret; 3285 3286 em = alloc_extent_map(); 3287 if (!em) { 3288 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3289 return; 3290 } 3291 3292 if (path) { 3293 struct btrfs_file_extent_item *fi; 3294 3295 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3296 struct btrfs_file_extent_item); 3297 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3298 em->generation = -1; 3299 if (btrfs_file_extent_type(path->nodes[0], fi) == 3300 BTRFS_FILE_EXTENT_INLINE) 3301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3302 &inode->runtime_flags); 3303 } else { 3304 em->start = hole_offset; 3305 em->len = hole_len; 3306 em->ram_bytes = em->len; 3307 em->orig_start = hole_offset; 3308 em->block_start = EXTENT_MAP_HOLE; 3309 em->block_len = 0; 3310 em->orig_block_len = 0; 3311 em->compress_type = BTRFS_COMPRESS_NONE; 3312 em->generation = trans->transid; 3313 } 3314 3315 while (1) { 3316 write_lock(&em_tree->lock); 3317 ret = add_extent_mapping(em_tree, em, 1); 3318 write_unlock(&em_tree->lock); 3319 if (ret != -EEXIST) { 3320 free_extent_map(em); 3321 break; 3322 } 3323 btrfs_drop_extent_cache(inode, em->start, 3324 em->start + em->len - 1, 0); 3325 } 3326 3327 if (ret) 3328 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3329 } 3330 3331 /* 3332 * Make sure we do not end up inserting an inline extent into a file that has 3333 * already other (non-inline) extents. If a file has an inline extent it can 3334 * not have any other extents and the (single) inline extent must start at the 3335 * file offset 0. Failing to respect these rules will lead to file corruption, 3336 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3337 * 3338 * We can have extents that have been already written to disk or we can have 3339 * dirty ranges still in delalloc, in which case the extent maps and items are 3340 * created only when we run delalloc, and the delalloc ranges might fall outside 3341 * the range we are currently locking in the inode's io tree. So we check the 3342 * inode's i_size because of that (i_size updates are done while holding the 3343 * i_mutex, which we are holding here). 3344 * We also check to see if the inode has a size not greater than "datal" but has 3345 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3346 * protected against such concurrent fallocate calls by the i_mutex). 3347 * 3348 * If the file has no extents but a size greater than datal, do not allow the 3349 * copy because we would need turn the inline extent into a non-inline one (even 3350 * with NO_HOLES enabled). If we find our destination inode only has one inline 3351 * extent, just overwrite it with the source inline extent if its size is less 3352 * than the source extent's size, or we could copy the source inline extent's 3353 * data into the destination inode's inline extent if the later is greater then 3354 * the former. 3355 */ 3356 static int clone_copy_inline_extent(struct inode *dst, 3357 struct btrfs_trans_handle *trans, 3358 struct btrfs_path *path, 3359 struct btrfs_key *new_key, 3360 const u64 drop_start, 3361 const u64 datal, 3362 const u64 skip, 3363 const u64 size, 3364 char *inline_data) 3365 { 3366 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3367 struct btrfs_root *root = BTRFS_I(dst)->root; 3368 const u64 aligned_end = ALIGN(new_key->offset + datal, 3369 fs_info->sectorsize); 3370 int ret; 3371 struct btrfs_key key; 3372 3373 if (new_key->offset > 0) 3374 return -EOPNOTSUPP; 3375 3376 key.objectid = btrfs_ino(BTRFS_I(dst)); 3377 key.type = BTRFS_EXTENT_DATA_KEY; 3378 key.offset = 0; 3379 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3380 if (ret < 0) { 3381 return ret; 3382 } else if (ret > 0) { 3383 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3384 ret = btrfs_next_leaf(root, path); 3385 if (ret < 0) 3386 return ret; 3387 else if (ret > 0) 3388 goto copy_inline_extent; 3389 } 3390 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3391 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3392 key.type == BTRFS_EXTENT_DATA_KEY) { 3393 ASSERT(key.offset > 0); 3394 return -EOPNOTSUPP; 3395 } 3396 } else if (i_size_read(dst) <= datal) { 3397 struct btrfs_file_extent_item *ei; 3398 u64 ext_len; 3399 3400 /* 3401 * If the file size is <= datal, make sure there are no other 3402 * extents following (can happen do to an fallocate call with 3403 * the flag FALLOC_FL_KEEP_SIZE). 3404 */ 3405 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3406 struct btrfs_file_extent_item); 3407 /* 3408 * If it's an inline extent, it can not have other extents 3409 * following it. 3410 */ 3411 if (btrfs_file_extent_type(path->nodes[0], ei) == 3412 BTRFS_FILE_EXTENT_INLINE) 3413 goto copy_inline_extent; 3414 3415 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3416 if (ext_len > aligned_end) 3417 return -EOPNOTSUPP; 3418 3419 ret = btrfs_next_item(root, path); 3420 if (ret < 0) { 3421 return ret; 3422 } else if (ret == 0) { 3423 btrfs_item_key_to_cpu(path->nodes[0], &key, 3424 path->slots[0]); 3425 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3426 key.type == BTRFS_EXTENT_DATA_KEY) 3427 return -EOPNOTSUPP; 3428 } 3429 } 3430 3431 copy_inline_extent: 3432 /* 3433 * We have no extent items, or we have an extent at offset 0 which may 3434 * or may not be inlined. All these cases are dealt the same way. 3435 */ 3436 if (i_size_read(dst) > datal) { 3437 /* 3438 * If the destination inode has an inline extent... 3439 * This would require copying the data from the source inline 3440 * extent into the beginning of the destination's inline extent. 3441 * But this is really complex, both extents can be compressed 3442 * or just one of them, which would require decompressing and 3443 * re-compressing data (which could increase the new compressed 3444 * size, not allowing the compressed data to fit anymore in an 3445 * inline extent). 3446 * So just don't support this case for now (it should be rare, 3447 * we are not really saving space when cloning inline extents). 3448 */ 3449 return -EOPNOTSUPP; 3450 } 3451 3452 btrfs_release_path(path); 3453 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3454 if (ret) 3455 return ret; 3456 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3457 if (ret) 3458 return ret; 3459 3460 if (skip) { 3461 const u32 start = btrfs_file_extent_calc_inline_size(0); 3462 3463 memmove(inline_data + start, inline_data + start + skip, datal); 3464 } 3465 3466 write_extent_buffer(path->nodes[0], inline_data, 3467 btrfs_item_ptr_offset(path->nodes[0], 3468 path->slots[0]), 3469 size); 3470 inode_add_bytes(dst, datal); 3471 3472 return 0; 3473 } 3474 3475 /** 3476 * btrfs_clone() - clone a range from inode file to another 3477 * 3478 * @src: Inode to clone from 3479 * @inode: Inode to clone to 3480 * @off: Offset within source to start clone from 3481 * @olen: Original length, passed by user, of range to clone 3482 * @olen_aligned: Block-aligned value of olen 3483 * @destoff: Offset within @inode to start clone 3484 * @no_time_update: Whether to update mtime/ctime on the target inode 3485 */ 3486 static int btrfs_clone(struct inode *src, struct inode *inode, 3487 const u64 off, const u64 olen, const u64 olen_aligned, 3488 const u64 destoff, int no_time_update) 3489 { 3490 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3491 struct btrfs_root *root = BTRFS_I(inode)->root; 3492 struct btrfs_path *path = NULL; 3493 struct extent_buffer *leaf; 3494 struct btrfs_trans_handle *trans; 3495 char *buf = NULL; 3496 struct btrfs_key key; 3497 u32 nritems; 3498 int slot; 3499 int ret; 3500 const u64 len = olen_aligned; 3501 u64 last_dest_end = destoff; 3502 3503 ret = -ENOMEM; 3504 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 3505 if (!buf) 3506 return ret; 3507 3508 path = btrfs_alloc_path(); 3509 if (!path) { 3510 kvfree(buf); 3511 return ret; 3512 } 3513 3514 path->reada = READA_FORWARD; 3515 /* clone data */ 3516 key.objectid = btrfs_ino(BTRFS_I(src)); 3517 key.type = BTRFS_EXTENT_DATA_KEY; 3518 key.offset = off; 3519 3520 while (1) { 3521 u64 next_key_min_offset = key.offset + 1; 3522 3523 /* 3524 * note the key will change type as we walk through the 3525 * tree. 3526 */ 3527 path->leave_spinning = 1; 3528 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3529 0, 0); 3530 if (ret < 0) 3531 goto out; 3532 /* 3533 * First search, if no extent item that starts at offset off was 3534 * found but the previous item is an extent item, it's possible 3535 * it might overlap our target range, therefore process it. 3536 */ 3537 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3538 btrfs_item_key_to_cpu(path->nodes[0], &key, 3539 path->slots[0] - 1); 3540 if (key.type == BTRFS_EXTENT_DATA_KEY) 3541 path->slots[0]--; 3542 } 3543 3544 nritems = btrfs_header_nritems(path->nodes[0]); 3545 process_slot: 3546 if (path->slots[0] >= nritems) { 3547 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3548 if (ret < 0) 3549 goto out; 3550 if (ret > 0) 3551 break; 3552 nritems = btrfs_header_nritems(path->nodes[0]); 3553 } 3554 leaf = path->nodes[0]; 3555 slot = path->slots[0]; 3556 3557 btrfs_item_key_to_cpu(leaf, &key, slot); 3558 if (key.type > BTRFS_EXTENT_DATA_KEY || 3559 key.objectid != btrfs_ino(BTRFS_I(src))) 3560 break; 3561 3562 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3563 struct btrfs_file_extent_item *extent; 3564 int type; 3565 u32 size; 3566 struct btrfs_key new_key; 3567 u64 disko = 0, diskl = 0; 3568 u64 datao = 0, datal = 0; 3569 u8 comp; 3570 u64 drop_start; 3571 3572 extent = btrfs_item_ptr(leaf, slot, 3573 struct btrfs_file_extent_item); 3574 comp = btrfs_file_extent_compression(leaf, extent); 3575 type = btrfs_file_extent_type(leaf, extent); 3576 if (type == BTRFS_FILE_EXTENT_REG || 3577 type == BTRFS_FILE_EXTENT_PREALLOC) { 3578 disko = btrfs_file_extent_disk_bytenr(leaf, 3579 extent); 3580 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3581 extent); 3582 datao = btrfs_file_extent_offset(leaf, extent); 3583 datal = btrfs_file_extent_num_bytes(leaf, 3584 extent); 3585 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3586 /* take upper bound, may be compressed */ 3587 datal = btrfs_file_extent_ram_bytes(leaf, 3588 extent); 3589 } 3590 3591 /* 3592 * The first search might have left us at an extent 3593 * item that ends before our target range's start, can 3594 * happen if we have holes and NO_HOLES feature enabled. 3595 */ 3596 if (key.offset + datal <= off) { 3597 path->slots[0]++; 3598 goto process_slot; 3599 } else if (key.offset >= off + len) { 3600 break; 3601 } 3602 next_key_min_offset = key.offset + datal; 3603 size = btrfs_item_size_nr(leaf, slot); 3604 read_extent_buffer(leaf, buf, 3605 btrfs_item_ptr_offset(leaf, slot), 3606 size); 3607 3608 btrfs_release_path(path); 3609 path->leave_spinning = 0; 3610 3611 memcpy(&new_key, &key, sizeof(new_key)); 3612 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 3613 if (off <= key.offset) 3614 new_key.offset = key.offset + destoff - off; 3615 else 3616 new_key.offset = destoff; 3617 3618 /* 3619 * Deal with a hole that doesn't have an extent item 3620 * that represents it (NO_HOLES feature enabled). 3621 * This hole is either in the middle of the cloning 3622 * range or at the beginning (fully overlaps it or 3623 * partially overlaps it). 3624 */ 3625 if (new_key.offset != last_dest_end) 3626 drop_start = last_dest_end; 3627 else 3628 drop_start = new_key.offset; 3629 3630 /* 3631 * 1 - adjusting old extent (we may have to split it) 3632 * 1 - add new extent 3633 * 1 - inode update 3634 */ 3635 trans = btrfs_start_transaction(root, 3); 3636 if (IS_ERR(trans)) { 3637 ret = PTR_ERR(trans); 3638 goto out; 3639 } 3640 3641 if (type == BTRFS_FILE_EXTENT_REG || 3642 type == BTRFS_FILE_EXTENT_PREALLOC) { 3643 /* 3644 * a | --- range to clone ---| b 3645 * | ------------- extent ------------- | 3646 */ 3647 3648 /* subtract range b */ 3649 if (key.offset + datal > off + len) 3650 datal = off + len - key.offset; 3651 3652 /* subtract range a */ 3653 if (off > key.offset) { 3654 datao += off - key.offset; 3655 datal -= off - key.offset; 3656 } 3657 3658 ret = btrfs_drop_extents(trans, root, inode, 3659 drop_start, 3660 new_key.offset + datal, 3661 1); 3662 if (ret) { 3663 if (ret != -EOPNOTSUPP) 3664 btrfs_abort_transaction(trans, 3665 ret); 3666 btrfs_end_transaction(trans); 3667 goto out; 3668 } 3669 3670 ret = btrfs_insert_empty_item(trans, root, path, 3671 &new_key, size); 3672 if (ret) { 3673 btrfs_abort_transaction(trans, ret); 3674 btrfs_end_transaction(trans); 3675 goto out; 3676 } 3677 3678 leaf = path->nodes[0]; 3679 slot = path->slots[0]; 3680 write_extent_buffer(leaf, buf, 3681 btrfs_item_ptr_offset(leaf, slot), 3682 size); 3683 3684 extent = btrfs_item_ptr(leaf, slot, 3685 struct btrfs_file_extent_item); 3686 3687 /* disko == 0 means it's a hole */ 3688 if (!disko) 3689 datao = 0; 3690 3691 btrfs_set_file_extent_offset(leaf, extent, 3692 datao); 3693 btrfs_set_file_extent_num_bytes(leaf, extent, 3694 datal); 3695 3696 if (disko) { 3697 inode_add_bytes(inode, datal); 3698 ret = btrfs_inc_extent_ref(trans, 3699 root, 3700 disko, diskl, 0, 3701 root->root_key.objectid, 3702 btrfs_ino(BTRFS_I(inode)), 3703 new_key.offset - datao); 3704 if (ret) { 3705 btrfs_abort_transaction(trans, 3706 ret); 3707 btrfs_end_transaction(trans); 3708 goto out; 3709 3710 } 3711 } 3712 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3713 u64 skip = 0; 3714 u64 trim = 0; 3715 3716 if (off > key.offset) { 3717 skip = off - key.offset; 3718 new_key.offset += skip; 3719 } 3720 3721 if (key.offset + datal > off + len) 3722 trim = key.offset + datal - (off + len); 3723 3724 if (comp && (skip || trim)) { 3725 ret = -EINVAL; 3726 btrfs_end_transaction(trans); 3727 goto out; 3728 } 3729 size -= skip + trim; 3730 datal -= skip + trim; 3731 3732 ret = clone_copy_inline_extent(inode, 3733 trans, path, 3734 &new_key, 3735 drop_start, 3736 datal, 3737 skip, size, buf); 3738 if (ret) { 3739 if (ret != -EOPNOTSUPP) 3740 btrfs_abort_transaction(trans, 3741 ret); 3742 btrfs_end_transaction(trans); 3743 goto out; 3744 } 3745 leaf = path->nodes[0]; 3746 slot = path->slots[0]; 3747 } 3748 3749 /* If we have an implicit hole (NO_HOLES feature). */ 3750 if (drop_start < new_key.offset) 3751 clone_update_extent_map(BTRFS_I(inode), trans, 3752 NULL, drop_start, 3753 new_key.offset - drop_start); 3754 3755 clone_update_extent_map(BTRFS_I(inode), trans, 3756 path, 0, 0); 3757 3758 btrfs_mark_buffer_dirty(leaf); 3759 btrfs_release_path(path); 3760 3761 last_dest_end = ALIGN(new_key.offset + datal, 3762 fs_info->sectorsize); 3763 ret = clone_finish_inode_update(trans, inode, 3764 last_dest_end, 3765 destoff, olen, 3766 no_time_update); 3767 if (ret) 3768 goto out; 3769 if (new_key.offset + datal >= destoff + len) 3770 break; 3771 } 3772 btrfs_release_path(path); 3773 key.offset = next_key_min_offset; 3774 3775 if (fatal_signal_pending(current)) { 3776 ret = -EINTR; 3777 goto out; 3778 } 3779 } 3780 ret = 0; 3781 3782 if (last_dest_end < destoff + len) { 3783 /* 3784 * We have an implicit hole (NO_HOLES feature is enabled) that 3785 * fully or partially overlaps our cloning range at its end. 3786 */ 3787 btrfs_release_path(path); 3788 3789 /* 3790 * 1 - remove extent(s) 3791 * 1 - inode update 3792 */ 3793 trans = btrfs_start_transaction(root, 2); 3794 if (IS_ERR(trans)) { 3795 ret = PTR_ERR(trans); 3796 goto out; 3797 } 3798 ret = btrfs_drop_extents(trans, root, inode, 3799 last_dest_end, destoff + len, 1); 3800 if (ret) { 3801 if (ret != -EOPNOTSUPP) 3802 btrfs_abort_transaction(trans, ret); 3803 btrfs_end_transaction(trans); 3804 goto out; 3805 } 3806 clone_update_extent_map(BTRFS_I(inode), trans, NULL, 3807 last_dest_end, 3808 destoff + len - last_dest_end); 3809 ret = clone_finish_inode_update(trans, inode, destoff + len, 3810 destoff, olen, no_time_update); 3811 } 3812 3813 out: 3814 btrfs_free_path(path); 3815 kvfree(buf); 3816 return ret; 3817 } 3818 3819 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3820 u64 off, u64 olen, u64 destoff) 3821 { 3822 struct inode *inode = file_inode(file); 3823 struct inode *src = file_inode(file_src); 3824 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3825 struct btrfs_root *root = BTRFS_I(inode)->root; 3826 int ret; 3827 u64 len = olen; 3828 u64 bs = fs_info->sb->s_blocksize; 3829 int same_inode = src == inode; 3830 3831 /* 3832 * TODO: 3833 * - split compressed inline extents. annoying: we need to 3834 * decompress into destination's address_space (the file offset 3835 * may change, so source mapping won't do), then recompress (or 3836 * otherwise reinsert) a subrange. 3837 * 3838 * - split destination inode's inline extents. The inline extents can 3839 * be either compressed or non-compressed. 3840 */ 3841 3842 if (btrfs_root_readonly(root)) 3843 return -EROFS; 3844 3845 if (file_src->f_path.mnt != file->f_path.mnt || 3846 src->i_sb != inode->i_sb) 3847 return -EXDEV; 3848 3849 /* don't make the dst file partly checksummed */ 3850 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3851 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3852 return -EINVAL; 3853 3854 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3855 return -EISDIR; 3856 3857 if (!same_inode) { 3858 btrfs_double_inode_lock(src, inode); 3859 } else { 3860 inode_lock(src); 3861 } 3862 3863 /* determine range to clone */ 3864 ret = -EINVAL; 3865 if (off + len > src->i_size || off + len < off) 3866 goto out_unlock; 3867 if (len == 0) 3868 olen = len = src->i_size - off; 3869 /* if we extend to eof, continue to block boundary */ 3870 if (off + len == src->i_size) 3871 len = ALIGN(src->i_size, bs) - off; 3872 3873 if (len == 0) { 3874 ret = 0; 3875 goto out_unlock; 3876 } 3877 3878 /* verify the end result is block aligned */ 3879 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3880 !IS_ALIGNED(destoff, bs)) 3881 goto out_unlock; 3882 3883 /* verify if ranges are overlapped within the same file */ 3884 if (same_inode) { 3885 if (destoff + len > off && destoff < off + len) 3886 goto out_unlock; 3887 } 3888 3889 if (destoff > inode->i_size) { 3890 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3891 if (ret) 3892 goto out_unlock; 3893 } 3894 3895 /* 3896 * Lock the target range too. Right after we replace the file extent 3897 * items in the fs tree (which now point to the cloned data), we might 3898 * have a worker replace them with extent items relative to a write 3899 * operation that was issued before this clone operation (i.e. confront 3900 * with inode.c:btrfs_finish_ordered_io). 3901 */ 3902 if (same_inode) { 3903 u64 lock_start = min_t(u64, off, destoff); 3904 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3905 3906 ret = lock_extent_range(src, lock_start, lock_len, true); 3907 } else { 3908 ret = btrfs_double_extent_lock(src, off, inode, destoff, len, 3909 true); 3910 } 3911 ASSERT(ret == 0); 3912 if (WARN_ON(ret)) { 3913 /* ranges in the io trees already unlocked */ 3914 goto out_unlock; 3915 } 3916 3917 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3918 3919 if (same_inode) { 3920 u64 lock_start = min_t(u64, off, destoff); 3921 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3922 3923 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3924 } else { 3925 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3926 } 3927 /* 3928 * Truncate page cache pages so that future reads will see the cloned 3929 * data immediately and not the previous data. 3930 */ 3931 truncate_inode_pages_range(&inode->i_data, 3932 round_down(destoff, PAGE_SIZE), 3933 round_up(destoff + len, PAGE_SIZE) - 1); 3934 out_unlock: 3935 if (!same_inode) 3936 btrfs_double_inode_unlock(src, inode); 3937 else 3938 inode_unlock(src); 3939 return ret; 3940 } 3941 3942 int btrfs_clone_file_range(struct file *src_file, loff_t off, 3943 struct file *dst_file, loff_t destoff, u64 len) 3944 { 3945 return btrfs_clone_files(dst_file, src_file, off, len, destoff); 3946 } 3947 3948 /* 3949 * there are many ways the trans_start and trans_end ioctls can lead 3950 * to deadlocks. They should only be used by applications that 3951 * basically own the machine, and have a very in depth understanding 3952 * of all the possible deadlocks and enospc problems. 3953 */ 3954 static long btrfs_ioctl_trans_start(struct file *file) 3955 { 3956 struct inode *inode = file_inode(file); 3957 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3958 struct btrfs_root *root = BTRFS_I(inode)->root; 3959 struct btrfs_trans_handle *trans; 3960 struct btrfs_file_private *private; 3961 int ret; 3962 static bool warned = false; 3963 3964 ret = -EPERM; 3965 if (!capable(CAP_SYS_ADMIN)) 3966 goto out; 3967 3968 if (!warned) { 3969 btrfs_warn(fs_info, 3970 "Userspace transaction mechanism is considered " 3971 "deprecated and slated to be removed in 4.17. " 3972 "If you have a valid use case please " 3973 "speak up on the mailing list"); 3974 WARN_ON(1); 3975 warned = true; 3976 } 3977 3978 ret = -EINPROGRESS; 3979 private = file->private_data; 3980 if (private && private->trans) 3981 goto out; 3982 if (!private) { 3983 private = kzalloc(sizeof(struct btrfs_file_private), 3984 GFP_KERNEL); 3985 if (!private) 3986 return -ENOMEM; 3987 file->private_data = private; 3988 } 3989 3990 ret = -EROFS; 3991 if (btrfs_root_readonly(root)) 3992 goto out; 3993 3994 ret = mnt_want_write_file(file); 3995 if (ret) 3996 goto out; 3997 3998 atomic_inc(&fs_info->open_ioctl_trans); 3999 4000 ret = -ENOMEM; 4001 trans = btrfs_start_ioctl_transaction(root); 4002 if (IS_ERR(trans)) 4003 goto out_drop; 4004 4005 private->trans = trans; 4006 return 0; 4007 4008 out_drop: 4009 atomic_dec(&fs_info->open_ioctl_trans); 4010 mnt_drop_write_file(file); 4011 out: 4012 return ret; 4013 } 4014 4015 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4016 { 4017 struct inode *inode = file_inode(file); 4018 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4019 struct btrfs_root *root = BTRFS_I(inode)->root; 4020 struct btrfs_root *new_root; 4021 struct btrfs_dir_item *di; 4022 struct btrfs_trans_handle *trans; 4023 struct btrfs_path *path; 4024 struct btrfs_key location; 4025 struct btrfs_disk_key disk_key; 4026 u64 objectid = 0; 4027 u64 dir_id; 4028 int ret; 4029 4030 if (!capable(CAP_SYS_ADMIN)) 4031 return -EPERM; 4032 4033 ret = mnt_want_write_file(file); 4034 if (ret) 4035 return ret; 4036 4037 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4038 ret = -EFAULT; 4039 goto out; 4040 } 4041 4042 if (!objectid) 4043 objectid = BTRFS_FS_TREE_OBJECTID; 4044 4045 location.objectid = objectid; 4046 location.type = BTRFS_ROOT_ITEM_KEY; 4047 location.offset = (u64)-1; 4048 4049 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 4050 if (IS_ERR(new_root)) { 4051 ret = PTR_ERR(new_root); 4052 goto out; 4053 } 4054 if (!is_fstree(new_root->objectid)) { 4055 ret = -ENOENT; 4056 goto out; 4057 } 4058 4059 path = btrfs_alloc_path(); 4060 if (!path) { 4061 ret = -ENOMEM; 4062 goto out; 4063 } 4064 path->leave_spinning = 1; 4065 4066 trans = btrfs_start_transaction(root, 1); 4067 if (IS_ERR(trans)) { 4068 btrfs_free_path(path); 4069 ret = PTR_ERR(trans); 4070 goto out; 4071 } 4072 4073 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4074 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4075 dir_id, "default", 7, 1); 4076 if (IS_ERR_OR_NULL(di)) { 4077 btrfs_free_path(path); 4078 btrfs_end_transaction(trans); 4079 btrfs_err(fs_info, 4080 "Umm, you don't have the default diritem, this isn't going to work"); 4081 ret = -ENOENT; 4082 goto out; 4083 } 4084 4085 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4086 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4087 btrfs_mark_buffer_dirty(path->nodes[0]); 4088 btrfs_free_path(path); 4089 4090 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4091 btrfs_end_transaction(trans); 4092 out: 4093 mnt_drop_write_file(file); 4094 return ret; 4095 } 4096 4097 void btrfs_get_block_group_info(struct list_head *groups_list, 4098 struct btrfs_ioctl_space_info *space) 4099 { 4100 struct btrfs_block_group_cache *block_group; 4101 4102 space->total_bytes = 0; 4103 space->used_bytes = 0; 4104 space->flags = 0; 4105 list_for_each_entry(block_group, groups_list, list) { 4106 space->flags = block_group->flags; 4107 space->total_bytes += block_group->key.offset; 4108 space->used_bytes += 4109 btrfs_block_group_used(&block_group->item); 4110 } 4111 } 4112 4113 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4114 void __user *arg) 4115 { 4116 struct btrfs_ioctl_space_args space_args; 4117 struct btrfs_ioctl_space_info space; 4118 struct btrfs_ioctl_space_info *dest; 4119 struct btrfs_ioctl_space_info *dest_orig; 4120 struct btrfs_ioctl_space_info __user *user_dest; 4121 struct btrfs_space_info *info; 4122 static const u64 types[] = { 4123 BTRFS_BLOCK_GROUP_DATA, 4124 BTRFS_BLOCK_GROUP_SYSTEM, 4125 BTRFS_BLOCK_GROUP_METADATA, 4126 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 4127 }; 4128 int num_types = 4; 4129 int alloc_size; 4130 int ret = 0; 4131 u64 slot_count = 0; 4132 int i, c; 4133 4134 if (copy_from_user(&space_args, 4135 (struct btrfs_ioctl_space_args __user *)arg, 4136 sizeof(space_args))) 4137 return -EFAULT; 4138 4139 for (i = 0; i < num_types; i++) { 4140 struct btrfs_space_info *tmp; 4141 4142 info = NULL; 4143 rcu_read_lock(); 4144 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4145 list) { 4146 if (tmp->flags == types[i]) { 4147 info = tmp; 4148 break; 4149 } 4150 } 4151 rcu_read_unlock(); 4152 4153 if (!info) 4154 continue; 4155 4156 down_read(&info->groups_sem); 4157 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4158 if (!list_empty(&info->block_groups[c])) 4159 slot_count++; 4160 } 4161 up_read(&info->groups_sem); 4162 } 4163 4164 /* 4165 * Global block reserve, exported as a space_info 4166 */ 4167 slot_count++; 4168 4169 /* space_slots == 0 means they are asking for a count */ 4170 if (space_args.space_slots == 0) { 4171 space_args.total_spaces = slot_count; 4172 goto out; 4173 } 4174 4175 slot_count = min_t(u64, space_args.space_slots, slot_count); 4176 4177 alloc_size = sizeof(*dest) * slot_count; 4178 4179 /* we generally have at most 6 or so space infos, one for each raid 4180 * level. So, a whole page should be more than enough for everyone 4181 */ 4182 if (alloc_size > PAGE_SIZE) 4183 return -ENOMEM; 4184 4185 space_args.total_spaces = 0; 4186 dest = kmalloc(alloc_size, GFP_KERNEL); 4187 if (!dest) 4188 return -ENOMEM; 4189 dest_orig = dest; 4190 4191 /* now we have a buffer to copy into */ 4192 for (i = 0; i < num_types; i++) { 4193 struct btrfs_space_info *tmp; 4194 4195 if (!slot_count) 4196 break; 4197 4198 info = NULL; 4199 rcu_read_lock(); 4200 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4201 list) { 4202 if (tmp->flags == types[i]) { 4203 info = tmp; 4204 break; 4205 } 4206 } 4207 rcu_read_unlock(); 4208 4209 if (!info) 4210 continue; 4211 down_read(&info->groups_sem); 4212 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4213 if (!list_empty(&info->block_groups[c])) { 4214 btrfs_get_block_group_info( 4215 &info->block_groups[c], &space); 4216 memcpy(dest, &space, sizeof(space)); 4217 dest++; 4218 space_args.total_spaces++; 4219 slot_count--; 4220 } 4221 if (!slot_count) 4222 break; 4223 } 4224 up_read(&info->groups_sem); 4225 } 4226 4227 /* 4228 * Add global block reserve 4229 */ 4230 if (slot_count) { 4231 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4232 4233 spin_lock(&block_rsv->lock); 4234 space.total_bytes = block_rsv->size; 4235 space.used_bytes = block_rsv->size - block_rsv->reserved; 4236 spin_unlock(&block_rsv->lock); 4237 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4238 memcpy(dest, &space, sizeof(space)); 4239 space_args.total_spaces++; 4240 } 4241 4242 user_dest = (struct btrfs_ioctl_space_info __user *) 4243 (arg + sizeof(struct btrfs_ioctl_space_args)); 4244 4245 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4246 ret = -EFAULT; 4247 4248 kfree(dest_orig); 4249 out: 4250 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4251 ret = -EFAULT; 4252 4253 return ret; 4254 } 4255 4256 /* 4257 * there are many ways the trans_start and trans_end ioctls can lead 4258 * to deadlocks. They should only be used by applications that 4259 * basically own the machine, and have a very in depth understanding 4260 * of all the possible deadlocks and enospc problems. 4261 */ 4262 long btrfs_ioctl_trans_end(struct file *file) 4263 { 4264 struct inode *inode = file_inode(file); 4265 struct btrfs_root *root = BTRFS_I(inode)->root; 4266 struct btrfs_file_private *private = file->private_data; 4267 4268 if (!private || !private->trans) 4269 return -EINVAL; 4270 4271 btrfs_end_transaction(private->trans); 4272 private->trans = NULL; 4273 4274 atomic_dec(&root->fs_info->open_ioctl_trans); 4275 4276 mnt_drop_write_file(file); 4277 return 0; 4278 } 4279 4280 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4281 void __user *argp) 4282 { 4283 struct btrfs_trans_handle *trans; 4284 u64 transid; 4285 int ret; 4286 4287 trans = btrfs_attach_transaction_barrier(root); 4288 if (IS_ERR(trans)) { 4289 if (PTR_ERR(trans) != -ENOENT) 4290 return PTR_ERR(trans); 4291 4292 /* No running transaction, don't bother */ 4293 transid = root->fs_info->last_trans_committed; 4294 goto out; 4295 } 4296 transid = trans->transid; 4297 ret = btrfs_commit_transaction_async(trans, 0); 4298 if (ret) { 4299 btrfs_end_transaction(trans); 4300 return ret; 4301 } 4302 out: 4303 if (argp) 4304 if (copy_to_user(argp, &transid, sizeof(transid))) 4305 return -EFAULT; 4306 return 0; 4307 } 4308 4309 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4310 void __user *argp) 4311 { 4312 u64 transid; 4313 4314 if (argp) { 4315 if (copy_from_user(&transid, argp, sizeof(transid))) 4316 return -EFAULT; 4317 } else { 4318 transid = 0; /* current trans */ 4319 } 4320 return btrfs_wait_for_commit(fs_info, transid); 4321 } 4322 4323 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4324 { 4325 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4326 struct btrfs_ioctl_scrub_args *sa; 4327 int ret; 4328 4329 if (!capable(CAP_SYS_ADMIN)) 4330 return -EPERM; 4331 4332 sa = memdup_user(arg, sizeof(*sa)); 4333 if (IS_ERR(sa)) 4334 return PTR_ERR(sa); 4335 4336 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4337 ret = mnt_want_write_file(file); 4338 if (ret) 4339 goto out; 4340 } 4341 4342 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4343 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4344 0); 4345 4346 if (copy_to_user(arg, sa, sizeof(*sa))) 4347 ret = -EFAULT; 4348 4349 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4350 mnt_drop_write_file(file); 4351 out: 4352 kfree(sa); 4353 return ret; 4354 } 4355 4356 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4357 { 4358 if (!capable(CAP_SYS_ADMIN)) 4359 return -EPERM; 4360 4361 return btrfs_scrub_cancel(fs_info); 4362 } 4363 4364 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4365 void __user *arg) 4366 { 4367 struct btrfs_ioctl_scrub_args *sa; 4368 int ret; 4369 4370 if (!capable(CAP_SYS_ADMIN)) 4371 return -EPERM; 4372 4373 sa = memdup_user(arg, sizeof(*sa)); 4374 if (IS_ERR(sa)) 4375 return PTR_ERR(sa); 4376 4377 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4378 4379 if (copy_to_user(arg, sa, sizeof(*sa))) 4380 ret = -EFAULT; 4381 4382 kfree(sa); 4383 return ret; 4384 } 4385 4386 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4387 void __user *arg) 4388 { 4389 struct btrfs_ioctl_get_dev_stats *sa; 4390 int ret; 4391 4392 sa = memdup_user(arg, sizeof(*sa)); 4393 if (IS_ERR(sa)) 4394 return PTR_ERR(sa); 4395 4396 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4397 kfree(sa); 4398 return -EPERM; 4399 } 4400 4401 ret = btrfs_get_dev_stats(fs_info, sa); 4402 4403 if (copy_to_user(arg, sa, sizeof(*sa))) 4404 ret = -EFAULT; 4405 4406 kfree(sa); 4407 return ret; 4408 } 4409 4410 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4411 void __user *arg) 4412 { 4413 struct btrfs_ioctl_dev_replace_args *p; 4414 int ret; 4415 4416 if (!capable(CAP_SYS_ADMIN)) 4417 return -EPERM; 4418 4419 p = memdup_user(arg, sizeof(*p)); 4420 if (IS_ERR(p)) 4421 return PTR_ERR(p); 4422 4423 switch (p->cmd) { 4424 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4425 if (sb_rdonly(fs_info->sb)) { 4426 ret = -EROFS; 4427 goto out; 4428 } 4429 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4430 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4431 } else { 4432 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4433 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4434 } 4435 break; 4436 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4437 btrfs_dev_replace_status(fs_info, p); 4438 ret = 0; 4439 break; 4440 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4441 ret = btrfs_dev_replace_cancel(fs_info, p); 4442 break; 4443 default: 4444 ret = -EINVAL; 4445 break; 4446 } 4447 4448 if (copy_to_user(arg, p, sizeof(*p))) 4449 ret = -EFAULT; 4450 out: 4451 kfree(p); 4452 return ret; 4453 } 4454 4455 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4456 { 4457 int ret = 0; 4458 int i; 4459 u64 rel_ptr; 4460 int size; 4461 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4462 struct inode_fs_paths *ipath = NULL; 4463 struct btrfs_path *path; 4464 4465 if (!capable(CAP_DAC_READ_SEARCH)) 4466 return -EPERM; 4467 4468 path = btrfs_alloc_path(); 4469 if (!path) { 4470 ret = -ENOMEM; 4471 goto out; 4472 } 4473 4474 ipa = memdup_user(arg, sizeof(*ipa)); 4475 if (IS_ERR(ipa)) { 4476 ret = PTR_ERR(ipa); 4477 ipa = NULL; 4478 goto out; 4479 } 4480 4481 size = min_t(u32, ipa->size, 4096); 4482 ipath = init_ipath(size, root, path); 4483 if (IS_ERR(ipath)) { 4484 ret = PTR_ERR(ipath); 4485 ipath = NULL; 4486 goto out; 4487 } 4488 4489 ret = paths_from_inode(ipa->inum, ipath); 4490 if (ret < 0) 4491 goto out; 4492 4493 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4494 rel_ptr = ipath->fspath->val[i] - 4495 (u64)(unsigned long)ipath->fspath->val; 4496 ipath->fspath->val[i] = rel_ptr; 4497 } 4498 4499 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4500 ipath->fspath, size); 4501 if (ret) { 4502 ret = -EFAULT; 4503 goto out; 4504 } 4505 4506 out: 4507 btrfs_free_path(path); 4508 free_ipath(ipath); 4509 kfree(ipa); 4510 4511 return ret; 4512 } 4513 4514 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4515 { 4516 struct btrfs_data_container *inodes = ctx; 4517 const size_t c = 3 * sizeof(u64); 4518 4519 if (inodes->bytes_left >= c) { 4520 inodes->bytes_left -= c; 4521 inodes->val[inodes->elem_cnt] = inum; 4522 inodes->val[inodes->elem_cnt + 1] = offset; 4523 inodes->val[inodes->elem_cnt + 2] = root; 4524 inodes->elem_cnt += 3; 4525 } else { 4526 inodes->bytes_missing += c - inodes->bytes_left; 4527 inodes->bytes_left = 0; 4528 inodes->elem_missed += 3; 4529 } 4530 4531 return 0; 4532 } 4533 4534 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4535 void __user *arg, int version) 4536 { 4537 int ret = 0; 4538 int size; 4539 struct btrfs_ioctl_logical_ino_args *loi; 4540 struct btrfs_data_container *inodes = NULL; 4541 struct btrfs_path *path = NULL; 4542 bool ignore_offset; 4543 4544 if (!capable(CAP_SYS_ADMIN)) 4545 return -EPERM; 4546 4547 loi = memdup_user(arg, sizeof(*loi)); 4548 if (IS_ERR(loi)) 4549 return PTR_ERR(loi); 4550 4551 if (version == 1) { 4552 ignore_offset = false; 4553 size = min_t(u32, loi->size, SZ_64K); 4554 } else { 4555 /* All reserved bits must be 0 for now */ 4556 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4557 ret = -EINVAL; 4558 goto out_loi; 4559 } 4560 /* Only accept flags we have defined so far */ 4561 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4562 ret = -EINVAL; 4563 goto out_loi; 4564 } 4565 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4566 size = min_t(u32, loi->size, SZ_16M); 4567 } 4568 4569 path = btrfs_alloc_path(); 4570 if (!path) { 4571 ret = -ENOMEM; 4572 goto out; 4573 } 4574 4575 inodes = init_data_container(size); 4576 if (IS_ERR(inodes)) { 4577 ret = PTR_ERR(inodes); 4578 inodes = NULL; 4579 goto out; 4580 } 4581 4582 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4583 build_ino_list, inodes, ignore_offset); 4584 if (ret == -EINVAL) 4585 ret = -ENOENT; 4586 if (ret < 0) 4587 goto out; 4588 4589 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4590 size); 4591 if (ret) 4592 ret = -EFAULT; 4593 4594 out: 4595 btrfs_free_path(path); 4596 kvfree(inodes); 4597 out_loi: 4598 kfree(loi); 4599 4600 return ret; 4601 } 4602 4603 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4604 struct btrfs_ioctl_balance_args *bargs) 4605 { 4606 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4607 4608 bargs->flags = bctl->flags; 4609 4610 if (atomic_read(&fs_info->balance_running)) 4611 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4612 if (atomic_read(&fs_info->balance_pause_req)) 4613 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4614 if (atomic_read(&fs_info->balance_cancel_req)) 4615 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4616 4617 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4618 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4619 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4620 4621 if (lock) { 4622 spin_lock(&fs_info->balance_lock); 4623 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4624 spin_unlock(&fs_info->balance_lock); 4625 } else { 4626 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4627 } 4628 } 4629 4630 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4631 { 4632 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4633 struct btrfs_fs_info *fs_info = root->fs_info; 4634 struct btrfs_ioctl_balance_args *bargs; 4635 struct btrfs_balance_control *bctl; 4636 bool need_unlock; /* for mut. excl. ops lock */ 4637 int ret; 4638 4639 if (!capable(CAP_SYS_ADMIN)) 4640 return -EPERM; 4641 4642 ret = mnt_want_write_file(file); 4643 if (ret) 4644 return ret; 4645 4646 again: 4647 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4648 mutex_lock(&fs_info->volume_mutex); 4649 mutex_lock(&fs_info->balance_mutex); 4650 need_unlock = true; 4651 goto locked; 4652 } 4653 4654 /* 4655 * mut. excl. ops lock is locked. Three possibilities: 4656 * (1) some other op is running 4657 * (2) balance is running 4658 * (3) balance is paused -- special case (think resume) 4659 */ 4660 mutex_lock(&fs_info->balance_mutex); 4661 if (fs_info->balance_ctl) { 4662 /* this is either (2) or (3) */ 4663 if (!atomic_read(&fs_info->balance_running)) { 4664 mutex_unlock(&fs_info->balance_mutex); 4665 if (!mutex_trylock(&fs_info->volume_mutex)) 4666 goto again; 4667 mutex_lock(&fs_info->balance_mutex); 4668 4669 if (fs_info->balance_ctl && 4670 !atomic_read(&fs_info->balance_running)) { 4671 /* this is (3) */ 4672 need_unlock = false; 4673 goto locked; 4674 } 4675 4676 mutex_unlock(&fs_info->balance_mutex); 4677 mutex_unlock(&fs_info->volume_mutex); 4678 goto again; 4679 } else { 4680 /* this is (2) */ 4681 mutex_unlock(&fs_info->balance_mutex); 4682 ret = -EINPROGRESS; 4683 goto out; 4684 } 4685 } else { 4686 /* this is (1) */ 4687 mutex_unlock(&fs_info->balance_mutex); 4688 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4689 goto out; 4690 } 4691 4692 locked: 4693 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4694 4695 if (arg) { 4696 bargs = memdup_user(arg, sizeof(*bargs)); 4697 if (IS_ERR(bargs)) { 4698 ret = PTR_ERR(bargs); 4699 goto out_unlock; 4700 } 4701 4702 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4703 if (!fs_info->balance_ctl) { 4704 ret = -ENOTCONN; 4705 goto out_bargs; 4706 } 4707 4708 bctl = fs_info->balance_ctl; 4709 spin_lock(&fs_info->balance_lock); 4710 bctl->flags |= BTRFS_BALANCE_RESUME; 4711 spin_unlock(&fs_info->balance_lock); 4712 4713 goto do_balance; 4714 } 4715 } else { 4716 bargs = NULL; 4717 } 4718 4719 if (fs_info->balance_ctl) { 4720 ret = -EINPROGRESS; 4721 goto out_bargs; 4722 } 4723 4724 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4725 if (!bctl) { 4726 ret = -ENOMEM; 4727 goto out_bargs; 4728 } 4729 4730 bctl->fs_info = fs_info; 4731 if (arg) { 4732 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4733 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4734 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4735 4736 bctl->flags = bargs->flags; 4737 } else { 4738 /* balance everything - no filters */ 4739 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4740 } 4741 4742 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4743 ret = -EINVAL; 4744 goto out_bctl; 4745 } 4746 4747 do_balance: 4748 /* 4749 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP 4750 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4751 * or, if restriper was paused all the way until unmount, in 4752 * free_fs_info. The flag is cleared in __cancel_balance. 4753 */ 4754 need_unlock = false; 4755 4756 ret = btrfs_balance(bctl, bargs); 4757 bctl = NULL; 4758 4759 if (arg) { 4760 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4761 ret = -EFAULT; 4762 } 4763 4764 out_bctl: 4765 kfree(bctl); 4766 out_bargs: 4767 kfree(bargs); 4768 out_unlock: 4769 mutex_unlock(&fs_info->balance_mutex); 4770 mutex_unlock(&fs_info->volume_mutex); 4771 if (need_unlock) 4772 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4773 out: 4774 mnt_drop_write_file(file); 4775 return ret; 4776 } 4777 4778 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4779 { 4780 if (!capable(CAP_SYS_ADMIN)) 4781 return -EPERM; 4782 4783 switch (cmd) { 4784 case BTRFS_BALANCE_CTL_PAUSE: 4785 return btrfs_pause_balance(fs_info); 4786 case BTRFS_BALANCE_CTL_CANCEL: 4787 return btrfs_cancel_balance(fs_info); 4788 } 4789 4790 return -EINVAL; 4791 } 4792 4793 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4794 void __user *arg) 4795 { 4796 struct btrfs_ioctl_balance_args *bargs; 4797 int ret = 0; 4798 4799 if (!capable(CAP_SYS_ADMIN)) 4800 return -EPERM; 4801 4802 mutex_lock(&fs_info->balance_mutex); 4803 if (!fs_info->balance_ctl) { 4804 ret = -ENOTCONN; 4805 goto out; 4806 } 4807 4808 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4809 if (!bargs) { 4810 ret = -ENOMEM; 4811 goto out; 4812 } 4813 4814 update_ioctl_balance_args(fs_info, 1, bargs); 4815 4816 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4817 ret = -EFAULT; 4818 4819 kfree(bargs); 4820 out: 4821 mutex_unlock(&fs_info->balance_mutex); 4822 return ret; 4823 } 4824 4825 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4826 { 4827 struct inode *inode = file_inode(file); 4828 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4829 struct btrfs_ioctl_quota_ctl_args *sa; 4830 struct btrfs_trans_handle *trans = NULL; 4831 int ret; 4832 int err; 4833 4834 if (!capable(CAP_SYS_ADMIN)) 4835 return -EPERM; 4836 4837 ret = mnt_want_write_file(file); 4838 if (ret) 4839 return ret; 4840 4841 sa = memdup_user(arg, sizeof(*sa)); 4842 if (IS_ERR(sa)) { 4843 ret = PTR_ERR(sa); 4844 goto drop_write; 4845 } 4846 4847 down_write(&fs_info->subvol_sem); 4848 trans = btrfs_start_transaction(fs_info->tree_root, 2); 4849 if (IS_ERR(trans)) { 4850 ret = PTR_ERR(trans); 4851 goto out; 4852 } 4853 4854 switch (sa->cmd) { 4855 case BTRFS_QUOTA_CTL_ENABLE: 4856 ret = btrfs_quota_enable(trans, fs_info); 4857 break; 4858 case BTRFS_QUOTA_CTL_DISABLE: 4859 ret = btrfs_quota_disable(trans, fs_info); 4860 break; 4861 default: 4862 ret = -EINVAL; 4863 break; 4864 } 4865 4866 err = btrfs_commit_transaction(trans); 4867 if (err && !ret) 4868 ret = err; 4869 out: 4870 kfree(sa); 4871 up_write(&fs_info->subvol_sem); 4872 drop_write: 4873 mnt_drop_write_file(file); 4874 return ret; 4875 } 4876 4877 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4878 { 4879 struct inode *inode = file_inode(file); 4880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4881 struct btrfs_root *root = BTRFS_I(inode)->root; 4882 struct btrfs_ioctl_qgroup_assign_args *sa; 4883 struct btrfs_trans_handle *trans; 4884 int ret; 4885 int err; 4886 4887 if (!capable(CAP_SYS_ADMIN)) 4888 return -EPERM; 4889 4890 ret = mnt_want_write_file(file); 4891 if (ret) 4892 return ret; 4893 4894 sa = memdup_user(arg, sizeof(*sa)); 4895 if (IS_ERR(sa)) { 4896 ret = PTR_ERR(sa); 4897 goto drop_write; 4898 } 4899 4900 trans = btrfs_join_transaction(root); 4901 if (IS_ERR(trans)) { 4902 ret = PTR_ERR(trans); 4903 goto out; 4904 } 4905 4906 if (sa->assign) { 4907 ret = btrfs_add_qgroup_relation(trans, fs_info, 4908 sa->src, sa->dst); 4909 } else { 4910 ret = btrfs_del_qgroup_relation(trans, fs_info, 4911 sa->src, sa->dst); 4912 } 4913 4914 /* update qgroup status and info */ 4915 err = btrfs_run_qgroups(trans, fs_info); 4916 if (err < 0) 4917 btrfs_handle_fs_error(fs_info, err, 4918 "failed to update qgroup status and info"); 4919 err = btrfs_end_transaction(trans); 4920 if (err && !ret) 4921 ret = err; 4922 4923 out: 4924 kfree(sa); 4925 drop_write: 4926 mnt_drop_write_file(file); 4927 return ret; 4928 } 4929 4930 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4931 { 4932 struct inode *inode = file_inode(file); 4933 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4934 struct btrfs_root *root = BTRFS_I(inode)->root; 4935 struct btrfs_ioctl_qgroup_create_args *sa; 4936 struct btrfs_trans_handle *trans; 4937 int ret; 4938 int err; 4939 4940 if (!capable(CAP_SYS_ADMIN)) 4941 return -EPERM; 4942 4943 ret = mnt_want_write_file(file); 4944 if (ret) 4945 return ret; 4946 4947 sa = memdup_user(arg, sizeof(*sa)); 4948 if (IS_ERR(sa)) { 4949 ret = PTR_ERR(sa); 4950 goto drop_write; 4951 } 4952 4953 if (!sa->qgroupid) { 4954 ret = -EINVAL; 4955 goto out; 4956 } 4957 4958 trans = btrfs_join_transaction(root); 4959 if (IS_ERR(trans)) { 4960 ret = PTR_ERR(trans); 4961 goto out; 4962 } 4963 4964 if (sa->create) { 4965 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid); 4966 } else { 4967 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid); 4968 } 4969 4970 err = btrfs_end_transaction(trans); 4971 if (err && !ret) 4972 ret = err; 4973 4974 out: 4975 kfree(sa); 4976 drop_write: 4977 mnt_drop_write_file(file); 4978 return ret; 4979 } 4980 4981 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4982 { 4983 struct inode *inode = file_inode(file); 4984 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4985 struct btrfs_root *root = BTRFS_I(inode)->root; 4986 struct btrfs_ioctl_qgroup_limit_args *sa; 4987 struct btrfs_trans_handle *trans; 4988 int ret; 4989 int err; 4990 u64 qgroupid; 4991 4992 if (!capable(CAP_SYS_ADMIN)) 4993 return -EPERM; 4994 4995 ret = mnt_want_write_file(file); 4996 if (ret) 4997 return ret; 4998 4999 sa = memdup_user(arg, sizeof(*sa)); 5000 if (IS_ERR(sa)) { 5001 ret = PTR_ERR(sa); 5002 goto drop_write; 5003 } 5004 5005 trans = btrfs_join_transaction(root); 5006 if (IS_ERR(trans)) { 5007 ret = PTR_ERR(trans); 5008 goto out; 5009 } 5010 5011 qgroupid = sa->qgroupid; 5012 if (!qgroupid) { 5013 /* take the current subvol as qgroup */ 5014 qgroupid = root->root_key.objectid; 5015 } 5016 5017 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim); 5018 5019 err = btrfs_end_transaction(trans); 5020 if (err && !ret) 5021 ret = err; 5022 5023 out: 5024 kfree(sa); 5025 drop_write: 5026 mnt_drop_write_file(file); 5027 return ret; 5028 } 5029 5030 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5031 { 5032 struct inode *inode = file_inode(file); 5033 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5034 struct btrfs_ioctl_quota_rescan_args *qsa; 5035 int ret; 5036 5037 if (!capable(CAP_SYS_ADMIN)) 5038 return -EPERM; 5039 5040 ret = mnt_want_write_file(file); 5041 if (ret) 5042 return ret; 5043 5044 qsa = memdup_user(arg, sizeof(*qsa)); 5045 if (IS_ERR(qsa)) { 5046 ret = PTR_ERR(qsa); 5047 goto drop_write; 5048 } 5049 5050 if (qsa->flags) { 5051 ret = -EINVAL; 5052 goto out; 5053 } 5054 5055 ret = btrfs_qgroup_rescan(fs_info); 5056 5057 out: 5058 kfree(qsa); 5059 drop_write: 5060 mnt_drop_write_file(file); 5061 return ret; 5062 } 5063 5064 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5065 { 5066 struct inode *inode = file_inode(file); 5067 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5068 struct btrfs_ioctl_quota_rescan_args *qsa; 5069 int ret = 0; 5070 5071 if (!capable(CAP_SYS_ADMIN)) 5072 return -EPERM; 5073 5074 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5075 if (!qsa) 5076 return -ENOMEM; 5077 5078 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5079 qsa->flags = 1; 5080 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 5081 } 5082 5083 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5084 ret = -EFAULT; 5085 5086 kfree(qsa); 5087 return ret; 5088 } 5089 5090 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5091 { 5092 struct inode *inode = file_inode(file); 5093 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5094 5095 if (!capable(CAP_SYS_ADMIN)) 5096 return -EPERM; 5097 5098 return btrfs_qgroup_wait_for_completion(fs_info, true); 5099 } 5100 5101 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5102 struct btrfs_ioctl_received_subvol_args *sa) 5103 { 5104 struct inode *inode = file_inode(file); 5105 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5106 struct btrfs_root *root = BTRFS_I(inode)->root; 5107 struct btrfs_root_item *root_item = &root->root_item; 5108 struct btrfs_trans_handle *trans; 5109 struct timespec ct = current_time(inode); 5110 int ret = 0; 5111 int received_uuid_changed; 5112 5113 if (!inode_owner_or_capable(inode)) 5114 return -EPERM; 5115 5116 ret = mnt_want_write_file(file); 5117 if (ret < 0) 5118 return ret; 5119 5120 down_write(&fs_info->subvol_sem); 5121 5122 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5123 ret = -EINVAL; 5124 goto out; 5125 } 5126 5127 if (btrfs_root_readonly(root)) { 5128 ret = -EROFS; 5129 goto out; 5130 } 5131 5132 /* 5133 * 1 - root item 5134 * 2 - uuid items (received uuid + subvol uuid) 5135 */ 5136 trans = btrfs_start_transaction(root, 3); 5137 if (IS_ERR(trans)) { 5138 ret = PTR_ERR(trans); 5139 trans = NULL; 5140 goto out; 5141 } 5142 5143 sa->rtransid = trans->transid; 5144 sa->rtime.sec = ct.tv_sec; 5145 sa->rtime.nsec = ct.tv_nsec; 5146 5147 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5148 BTRFS_UUID_SIZE); 5149 if (received_uuid_changed && 5150 !btrfs_is_empty_uuid(root_item->received_uuid)) 5151 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid, 5152 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5153 root->root_key.objectid); 5154 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5155 btrfs_set_root_stransid(root_item, sa->stransid); 5156 btrfs_set_root_rtransid(root_item, sa->rtransid); 5157 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5158 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5159 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5160 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5161 5162 ret = btrfs_update_root(trans, fs_info->tree_root, 5163 &root->root_key, &root->root_item); 5164 if (ret < 0) { 5165 btrfs_end_transaction(trans); 5166 goto out; 5167 } 5168 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5169 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid, 5170 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5171 root->root_key.objectid); 5172 if (ret < 0 && ret != -EEXIST) { 5173 btrfs_abort_transaction(trans, ret); 5174 btrfs_end_transaction(trans); 5175 goto out; 5176 } 5177 } 5178 ret = btrfs_commit_transaction(trans); 5179 out: 5180 up_write(&fs_info->subvol_sem); 5181 mnt_drop_write_file(file); 5182 return ret; 5183 } 5184 5185 #ifdef CONFIG_64BIT 5186 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5187 void __user *arg) 5188 { 5189 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5190 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5191 int ret = 0; 5192 5193 args32 = memdup_user(arg, sizeof(*args32)); 5194 if (IS_ERR(args32)) 5195 return PTR_ERR(args32); 5196 5197 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5198 if (!args64) { 5199 ret = -ENOMEM; 5200 goto out; 5201 } 5202 5203 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5204 args64->stransid = args32->stransid; 5205 args64->rtransid = args32->rtransid; 5206 args64->stime.sec = args32->stime.sec; 5207 args64->stime.nsec = args32->stime.nsec; 5208 args64->rtime.sec = args32->rtime.sec; 5209 args64->rtime.nsec = args32->rtime.nsec; 5210 args64->flags = args32->flags; 5211 5212 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5213 if (ret) 5214 goto out; 5215 5216 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5217 args32->stransid = args64->stransid; 5218 args32->rtransid = args64->rtransid; 5219 args32->stime.sec = args64->stime.sec; 5220 args32->stime.nsec = args64->stime.nsec; 5221 args32->rtime.sec = args64->rtime.sec; 5222 args32->rtime.nsec = args64->rtime.nsec; 5223 args32->flags = args64->flags; 5224 5225 ret = copy_to_user(arg, args32, sizeof(*args32)); 5226 if (ret) 5227 ret = -EFAULT; 5228 5229 out: 5230 kfree(args32); 5231 kfree(args64); 5232 return ret; 5233 } 5234 #endif 5235 5236 static long btrfs_ioctl_set_received_subvol(struct file *file, 5237 void __user *arg) 5238 { 5239 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5240 int ret = 0; 5241 5242 sa = memdup_user(arg, sizeof(*sa)); 5243 if (IS_ERR(sa)) 5244 return PTR_ERR(sa); 5245 5246 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5247 5248 if (ret) 5249 goto out; 5250 5251 ret = copy_to_user(arg, sa, sizeof(*sa)); 5252 if (ret) 5253 ret = -EFAULT; 5254 5255 out: 5256 kfree(sa); 5257 return ret; 5258 } 5259 5260 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5261 { 5262 struct inode *inode = file_inode(file); 5263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5264 size_t len; 5265 int ret; 5266 char label[BTRFS_LABEL_SIZE]; 5267 5268 spin_lock(&fs_info->super_lock); 5269 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5270 spin_unlock(&fs_info->super_lock); 5271 5272 len = strnlen(label, BTRFS_LABEL_SIZE); 5273 5274 if (len == BTRFS_LABEL_SIZE) { 5275 btrfs_warn(fs_info, 5276 "label is too long, return the first %zu bytes", 5277 --len); 5278 } 5279 5280 ret = copy_to_user(arg, label, len); 5281 5282 return ret ? -EFAULT : 0; 5283 } 5284 5285 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5286 { 5287 struct inode *inode = file_inode(file); 5288 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5289 struct btrfs_root *root = BTRFS_I(inode)->root; 5290 struct btrfs_super_block *super_block = fs_info->super_copy; 5291 struct btrfs_trans_handle *trans; 5292 char label[BTRFS_LABEL_SIZE]; 5293 int ret; 5294 5295 if (!capable(CAP_SYS_ADMIN)) 5296 return -EPERM; 5297 5298 if (copy_from_user(label, arg, sizeof(label))) 5299 return -EFAULT; 5300 5301 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5302 btrfs_err(fs_info, 5303 "unable to set label with more than %d bytes", 5304 BTRFS_LABEL_SIZE - 1); 5305 return -EINVAL; 5306 } 5307 5308 ret = mnt_want_write_file(file); 5309 if (ret) 5310 return ret; 5311 5312 trans = btrfs_start_transaction(root, 0); 5313 if (IS_ERR(trans)) { 5314 ret = PTR_ERR(trans); 5315 goto out_unlock; 5316 } 5317 5318 spin_lock(&fs_info->super_lock); 5319 strcpy(super_block->label, label); 5320 spin_unlock(&fs_info->super_lock); 5321 ret = btrfs_commit_transaction(trans); 5322 5323 out_unlock: 5324 mnt_drop_write_file(file); 5325 return ret; 5326 } 5327 5328 #define INIT_FEATURE_FLAGS(suffix) \ 5329 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5330 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5331 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5332 5333 int btrfs_ioctl_get_supported_features(void __user *arg) 5334 { 5335 static const struct btrfs_ioctl_feature_flags features[3] = { 5336 INIT_FEATURE_FLAGS(SUPP), 5337 INIT_FEATURE_FLAGS(SAFE_SET), 5338 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5339 }; 5340 5341 if (copy_to_user(arg, &features, sizeof(features))) 5342 return -EFAULT; 5343 5344 return 0; 5345 } 5346 5347 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5348 { 5349 struct inode *inode = file_inode(file); 5350 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5351 struct btrfs_super_block *super_block = fs_info->super_copy; 5352 struct btrfs_ioctl_feature_flags features; 5353 5354 features.compat_flags = btrfs_super_compat_flags(super_block); 5355 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5356 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5357 5358 if (copy_to_user(arg, &features, sizeof(features))) 5359 return -EFAULT; 5360 5361 return 0; 5362 } 5363 5364 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5365 enum btrfs_feature_set set, 5366 u64 change_mask, u64 flags, u64 supported_flags, 5367 u64 safe_set, u64 safe_clear) 5368 { 5369 const char *type = btrfs_feature_set_names[set]; 5370 char *names; 5371 u64 disallowed, unsupported; 5372 u64 set_mask = flags & change_mask; 5373 u64 clear_mask = ~flags & change_mask; 5374 5375 unsupported = set_mask & ~supported_flags; 5376 if (unsupported) { 5377 names = btrfs_printable_features(set, unsupported); 5378 if (names) { 5379 btrfs_warn(fs_info, 5380 "this kernel does not support the %s feature bit%s", 5381 names, strchr(names, ',') ? "s" : ""); 5382 kfree(names); 5383 } else 5384 btrfs_warn(fs_info, 5385 "this kernel does not support %s bits 0x%llx", 5386 type, unsupported); 5387 return -EOPNOTSUPP; 5388 } 5389 5390 disallowed = set_mask & ~safe_set; 5391 if (disallowed) { 5392 names = btrfs_printable_features(set, disallowed); 5393 if (names) { 5394 btrfs_warn(fs_info, 5395 "can't set the %s feature bit%s while mounted", 5396 names, strchr(names, ',') ? "s" : ""); 5397 kfree(names); 5398 } else 5399 btrfs_warn(fs_info, 5400 "can't set %s bits 0x%llx while mounted", 5401 type, disallowed); 5402 return -EPERM; 5403 } 5404 5405 disallowed = clear_mask & ~safe_clear; 5406 if (disallowed) { 5407 names = btrfs_printable_features(set, disallowed); 5408 if (names) { 5409 btrfs_warn(fs_info, 5410 "can't clear the %s feature bit%s while mounted", 5411 names, strchr(names, ',') ? "s" : ""); 5412 kfree(names); 5413 } else 5414 btrfs_warn(fs_info, 5415 "can't clear %s bits 0x%llx while mounted", 5416 type, disallowed); 5417 return -EPERM; 5418 } 5419 5420 return 0; 5421 } 5422 5423 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5424 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5425 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5426 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5427 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5428 5429 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5430 { 5431 struct inode *inode = file_inode(file); 5432 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5433 struct btrfs_root *root = BTRFS_I(inode)->root; 5434 struct btrfs_super_block *super_block = fs_info->super_copy; 5435 struct btrfs_ioctl_feature_flags flags[2]; 5436 struct btrfs_trans_handle *trans; 5437 u64 newflags; 5438 int ret; 5439 5440 if (!capable(CAP_SYS_ADMIN)) 5441 return -EPERM; 5442 5443 if (copy_from_user(flags, arg, sizeof(flags))) 5444 return -EFAULT; 5445 5446 /* Nothing to do */ 5447 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5448 !flags[0].incompat_flags) 5449 return 0; 5450 5451 ret = check_feature(fs_info, flags[0].compat_flags, 5452 flags[1].compat_flags, COMPAT); 5453 if (ret) 5454 return ret; 5455 5456 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5457 flags[1].compat_ro_flags, COMPAT_RO); 5458 if (ret) 5459 return ret; 5460 5461 ret = check_feature(fs_info, flags[0].incompat_flags, 5462 flags[1].incompat_flags, INCOMPAT); 5463 if (ret) 5464 return ret; 5465 5466 ret = mnt_want_write_file(file); 5467 if (ret) 5468 return ret; 5469 5470 trans = btrfs_start_transaction(root, 0); 5471 if (IS_ERR(trans)) { 5472 ret = PTR_ERR(trans); 5473 goto out_drop_write; 5474 } 5475 5476 spin_lock(&fs_info->super_lock); 5477 newflags = btrfs_super_compat_flags(super_block); 5478 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5479 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5480 btrfs_set_super_compat_flags(super_block, newflags); 5481 5482 newflags = btrfs_super_compat_ro_flags(super_block); 5483 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5484 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5485 btrfs_set_super_compat_ro_flags(super_block, newflags); 5486 5487 newflags = btrfs_super_incompat_flags(super_block); 5488 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5489 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5490 btrfs_set_super_incompat_flags(super_block, newflags); 5491 spin_unlock(&fs_info->super_lock); 5492 5493 ret = btrfs_commit_transaction(trans); 5494 out_drop_write: 5495 mnt_drop_write_file(file); 5496 5497 return ret; 5498 } 5499 5500 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 5501 { 5502 struct btrfs_ioctl_send_args *arg; 5503 int ret; 5504 5505 if (compat) { 5506 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5507 struct btrfs_ioctl_send_args_32 args32; 5508 5509 ret = copy_from_user(&args32, argp, sizeof(args32)); 5510 if (ret) 5511 return -EFAULT; 5512 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5513 if (!arg) 5514 return -ENOMEM; 5515 arg->send_fd = args32.send_fd; 5516 arg->clone_sources_count = args32.clone_sources_count; 5517 arg->clone_sources = compat_ptr(args32.clone_sources); 5518 arg->parent_root = args32.parent_root; 5519 arg->flags = args32.flags; 5520 memcpy(arg->reserved, args32.reserved, 5521 sizeof(args32.reserved)); 5522 #else 5523 return -ENOTTY; 5524 #endif 5525 } else { 5526 arg = memdup_user(argp, sizeof(*arg)); 5527 if (IS_ERR(arg)) 5528 return PTR_ERR(arg); 5529 } 5530 ret = btrfs_ioctl_send(file, arg); 5531 kfree(arg); 5532 return ret; 5533 } 5534 5535 long btrfs_ioctl(struct file *file, unsigned int 5536 cmd, unsigned long arg) 5537 { 5538 struct inode *inode = file_inode(file); 5539 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5540 struct btrfs_root *root = BTRFS_I(inode)->root; 5541 void __user *argp = (void __user *)arg; 5542 5543 switch (cmd) { 5544 case FS_IOC_GETFLAGS: 5545 return btrfs_ioctl_getflags(file, argp); 5546 case FS_IOC_SETFLAGS: 5547 return btrfs_ioctl_setflags(file, argp); 5548 case FS_IOC_GETVERSION: 5549 return btrfs_ioctl_getversion(file, argp); 5550 case FITRIM: 5551 return btrfs_ioctl_fitrim(file, argp); 5552 case BTRFS_IOC_SNAP_CREATE: 5553 return btrfs_ioctl_snap_create(file, argp, 0); 5554 case BTRFS_IOC_SNAP_CREATE_V2: 5555 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5556 case BTRFS_IOC_SUBVOL_CREATE: 5557 return btrfs_ioctl_snap_create(file, argp, 1); 5558 case BTRFS_IOC_SUBVOL_CREATE_V2: 5559 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5560 case BTRFS_IOC_SNAP_DESTROY: 5561 return btrfs_ioctl_snap_destroy(file, argp); 5562 case BTRFS_IOC_SUBVOL_GETFLAGS: 5563 return btrfs_ioctl_subvol_getflags(file, argp); 5564 case BTRFS_IOC_SUBVOL_SETFLAGS: 5565 return btrfs_ioctl_subvol_setflags(file, argp); 5566 case BTRFS_IOC_DEFAULT_SUBVOL: 5567 return btrfs_ioctl_default_subvol(file, argp); 5568 case BTRFS_IOC_DEFRAG: 5569 return btrfs_ioctl_defrag(file, NULL); 5570 case BTRFS_IOC_DEFRAG_RANGE: 5571 return btrfs_ioctl_defrag(file, argp); 5572 case BTRFS_IOC_RESIZE: 5573 return btrfs_ioctl_resize(file, argp); 5574 case BTRFS_IOC_ADD_DEV: 5575 return btrfs_ioctl_add_dev(fs_info, argp); 5576 case BTRFS_IOC_RM_DEV: 5577 return btrfs_ioctl_rm_dev(file, argp); 5578 case BTRFS_IOC_RM_DEV_V2: 5579 return btrfs_ioctl_rm_dev_v2(file, argp); 5580 case BTRFS_IOC_FS_INFO: 5581 return btrfs_ioctl_fs_info(fs_info, argp); 5582 case BTRFS_IOC_DEV_INFO: 5583 return btrfs_ioctl_dev_info(fs_info, argp); 5584 case BTRFS_IOC_BALANCE: 5585 return btrfs_ioctl_balance(file, NULL); 5586 case BTRFS_IOC_TRANS_START: 5587 return btrfs_ioctl_trans_start(file); 5588 case BTRFS_IOC_TRANS_END: 5589 return btrfs_ioctl_trans_end(file); 5590 case BTRFS_IOC_TREE_SEARCH: 5591 return btrfs_ioctl_tree_search(file, argp); 5592 case BTRFS_IOC_TREE_SEARCH_V2: 5593 return btrfs_ioctl_tree_search_v2(file, argp); 5594 case BTRFS_IOC_INO_LOOKUP: 5595 return btrfs_ioctl_ino_lookup(file, argp); 5596 case BTRFS_IOC_INO_PATHS: 5597 return btrfs_ioctl_ino_to_path(root, argp); 5598 case BTRFS_IOC_LOGICAL_INO: 5599 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5600 case BTRFS_IOC_LOGICAL_INO_V2: 5601 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5602 case BTRFS_IOC_SPACE_INFO: 5603 return btrfs_ioctl_space_info(fs_info, argp); 5604 case BTRFS_IOC_SYNC: { 5605 int ret; 5606 5607 ret = btrfs_start_delalloc_roots(fs_info, 0, -1); 5608 if (ret) 5609 return ret; 5610 ret = btrfs_sync_fs(inode->i_sb, 1); 5611 /* 5612 * The transaction thread may want to do more work, 5613 * namely it pokes the cleaner kthread that will start 5614 * processing uncleaned subvols. 5615 */ 5616 wake_up_process(fs_info->transaction_kthread); 5617 return ret; 5618 } 5619 case BTRFS_IOC_START_SYNC: 5620 return btrfs_ioctl_start_sync(root, argp); 5621 case BTRFS_IOC_WAIT_SYNC: 5622 return btrfs_ioctl_wait_sync(fs_info, argp); 5623 case BTRFS_IOC_SCRUB: 5624 return btrfs_ioctl_scrub(file, argp); 5625 case BTRFS_IOC_SCRUB_CANCEL: 5626 return btrfs_ioctl_scrub_cancel(fs_info); 5627 case BTRFS_IOC_SCRUB_PROGRESS: 5628 return btrfs_ioctl_scrub_progress(fs_info, argp); 5629 case BTRFS_IOC_BALANCE_V2: 5630 return btrfs_ioctl_balance(file, argp); 5631 case BTRFS_IOC_BALANCE_CTL: 5632 return btrfs_ioctl_balance_ctl(fs_info, arg); 5633 case BTRFS_IOC_BALANCE_PROGRESS: 5634 return btrfs_ioctl_balance_progress(fs_info, argp); 5635 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5636 return btrfs_ioctl_set_received_subvol(file, argp); 5637 #ifdef CONFIG_64BIT 5638 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5639 return btrfs_ioctl_set_received_subvol_32(file, argp); 5640 #endif 5641 case BTRFS_IOC_SEND: 5642 return _btrfs_ioctl_send(file, argp, false); 5643 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5644 case BTRFS_IOC_SEND_32: 5645 return _btrfs_ioctl_send(file, argp, true); 5646 #endif 5647 case BTRFS_IOC_GET_DEV_STATS: 5648 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5649 case BTRFS_IOC_QUOTA_CTL: 5650 return btrfs_ioctl_quota_ctl(file, argp); 5651 case BTRFS_IOC_QGROUP_ASSIGN: 5652 return btrfs_ioctl_qgroup_assign(file, argp); 5653 case BTRFS_IOC_QGROUP_CREATE: 5654 return btrfs_ioctl_qgroup_create(file, argp); 5655 case BTRFS_IOC_QGROUP_LIMIT: 5656 return btrfs_ioctl_qgroup_limit(file, argp); 5657 case BTRFS_IOC_QUOTA_RESCAN: 5658 return btrfs_ioctl_quota_rescan(file, argp); 5659 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5660 return btrfs_ioctl_quota_rescan_status(file, argp); 5661 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5662 return btrfs_ioctl_quota_rescan_wait(file, argp); 5663 case BTRFS_IOC_DEV_REPLACE: 5664 return btrfs_ioctl_dev_replace(fs_info, argp); 5665 case BTRFS_IOC_GET_FSLABEL: 5666 return btrfs_ioctl_get_fslabel(file, argp); 5667 case BTRFS_IOC_SET_FSLABEL: 5668 return btrfs_ioctl_set_fslabel(file, argp); 5669 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5670 return btrfs_ioctl_get_supported_features(argp); 5671 case BTRFS_IOC_GET_FEATURES: 5672 return btrfs_ioctl_get_features(file, argp); 5673 case BTRFS_IOC_SET_FEATURES: 5674 return btrfs_ioctl_set_features(file, argp); 5675 } 5676 5677 return -ENOTTY; 5678 } 5679 5680 #ifdef CONFIG_COMPAT 5681 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5682 { 5683 /* 5684 * These all access 32-bit values anyway so no further 5685 * handling is necessary. 5686 */ 5687 switch (cmd) { 5688 case FS_IOC32_GETFLAGS: 5689 cmd = FS_IOC_GETFLAGS; 5690 break; 5691 case FS_IOC32_SETFLAGS: 5692 cmd = FS_IOC_SETFLAGS; 5693 break; 5694 case FS_IOC32_GETVERSION: 5695 cmd = FS_IOC_GETVERSION; 5696 break; 5697 } 5698 5699 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5700 } 5701 #endif 5702