xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 6774def6)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 
63 #ifdef CONFIG_64BIT
64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
65  * structures are incorrect, as the timespec structure from userspace
66  * is 4 bytes too small. We define these alternatives here to teach
67  * the kernel about the 32-bit struct packing.
68  */
69 struct btrfs_ioctl_timespec_32 {
70 	__u64 sec;
71 	__u32 nsec;
72 } __attribute__ ((__packed__));
73 
74 struct btrfs_ioctl_received_subvol_args_32 {
75 	char	uuid[BTRFS_UUID_SIZE];	/* in */
76 	__u64	stransid;		/* in */
77 	__u64	rtransid;		/* out */
78 	struct btrfs_ioctl_timespec_32 stime; /* in */
79 	struct btrfs_ioctl_timespec_32 rtime; /* out */
80 	__u64	flags;			/* in */
81 	__u64	reserved[16];		/* in */
82 } __attribute__ ((__packed__));
83 
84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
85 				struct btrfs_ioctl_received_subvol_args_32)
86 #endif
87 
88 
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff);
91 
92 /* Mask out flags that are inappropriate for the given type of inode. */
93 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
94 {
95 	if (S_ISDIR(mode))
96 		return flags;
97 	else if (S_ISREG(mode))
98 		return flags & ~FS_DIRSYNC_FL;
99 	else
100 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
101 }
102 
103 /*
104  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
105  */
106 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
126 		iflags |= FS_COMPR_FL;
127 	else if (flags & BTRFS_INODE_NOCOMPRESS)
128 		iflags |= FS_NOCOMP_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
136 void btrfs_update_iflags(struct inode *inode)
137 {
138 	struct btrfs_inode *ip = BTRFS_I(inode);
139 	unsigned int new_fl = 0;
140 
141 	if (ip->flags & BTRFS_INODE_SYNC)
142 		new_fl |= S_SYNC;
143 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
144 		new_fl |= S_IMMUTABLE;
145 	if (ip->flags & BTRFS_INODE_APPEND)
146 		new_fl |= S_APPEND;
147 	if (ip->flags & BTRFS_INODE_NOATIME)
148 		new_fl |= S_NOATIME;
149 	if (ip->flags & BTRFS_INODE_DIRSYNC)
150 		new_fl |= S_DIRSYNC;
151 
152 	set_mask_bits(&inode->i_flags,
153 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 		      new_fl);
155 }
156 
157 /*
158  * Inherit flags from the parent inode.
159  *
160  * Currently only the compression flags and the cow flags are inherited.
161  */
162 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
163 {
164 	unsigned int flags;
165 
166 	if (!dir)
167 		return;
168 
169 	flags = BTRFS_I(dir)->flags;
170 
171 	if (flags & BTRFS_INODE_NOCOMPRESS) {
172 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
173 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
174 	} else if (flags & BTRFS_INODE_COMPRESS) {
175 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
176 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
177 	}
178 
179 	if (flags & BTRFS_INODE_NODATACOW) {
180 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
181 		if (S_ISREG(inode->i_mode))
182 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
183 	}
184 
185 	btrfs_update_iflags(inode);
186 }
187 
188 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
189 {
190 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
191 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
192 
193 	if (copy_to_user(arg, &flags, sizeof(flags)))
194 		return -EFAULT;
195 	return 0;
196 }
197 
198 static int check_flags(unsigned int flags)
199 {
200 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
201 		      FS_NOATIME_FL | FS_NODUMP_FL | \
202 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
203 		      FS_NOCOMP_FL | FS_COMPR_FL |
204 		      FS_NOCOW_FL))
205 		return -EOPNOTSUPP;
206 
207 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
208 		return -EINVAL;
209 
210 	return 0;
211 }
212 
213 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
214 {
215 	struct inode *inode = file_inode(file);
216 	struct btrfs_inode *ip = BTRFS_I(inode);
217 	struct btrfs_root *root = ip->root;
218 	struct btrfs_trans_handle *trans;
219 	unsigned int flags, oldflags;
220 	int ret;
221 	u64 ip_oldflags;
222 	unsigned int i_oldflags;
223 	umode_t mode;
224 
225 	if (!inode_owner_or_capable(inode))
226 		return -EPERM;
227 
228 	if (btrfs_root_readonly(root))
229 		return -EROFS;
230 
231 	if (copy_from_user(&flags, arg, sizeof(flags)))
232 		return -EFAULT;
233 
234 	ret = check_flags(flags);
235 	if (ret)
236 		return ret;
237 
238 	ret = mnt_want_write_file(file);
239 	if (ret)
240 		return ret;
241 
242 	mutex_lock(&inode->i_mutex);
243 
244 	ip_oldflags = ip->flags;
245 	i_oldflags = inode->i_flags;
246 	mode = inode->i_mode;
247 
248 	flags = btrfs_mask_flags(inode->i_mode, flags);
249 	oldflags = btrfs_flags_to_ioctl(ip->flags);
250 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
251 		if (!capable(CAP_LINUX_IMMUTABLE)) {
252 			ret = -EPERM;
253 			goto out_unlock;
254 		}
255 	}
256 
257 	if (flags & FS_SYNC_FL)
258 		ip->flags |= BTRFS_INODE_SYNC;
259 	else
260 		ip->flags &= ~BTRFS_INODE_SYNC;
261 	if (flags & FS_IMMUTABLE_FL)
262 		ip->flags |= BTRFS_INODE_IMMUTABLE;
263 	else
264 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
265 	if (flags & FS_APPEND_FL)
266 		ip->flags |= BTRFS_INODE_APPEND;
267 	else
268 		ip->flags &= ~BTRFS_INODE_APPEND;
269 	if (flags & FS_NODUMP_FL)
270 		ip->flags |= BTRFS_INODE_NODUMP;
271 	else
272 		ip->flags &= ~BTRFS_INODE_NODUMP;
273 	if (flags & FS_NOATIME_FL)
274 		ip->flags |= BTRFS_INODE_NOATIME;
275 	else
276 		ip->flags &= ~BTRFS_INODE_NOATIME;
277 	if (flags & FS_DIRSYNC_FL)
278 		ip->flags |= BTRFS_INODE_DIRSYNC;
279 	else
280 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
281 	if (flags & FS_NOCOW_FL) {
282 		if (S_ISREG(mode)) {
283 			/*
284 			 * It's safe to turn csums off here, no extents exist.
285 			 * Otherwise we want the flag to reflect the real COW
286 			 * status of the file and will not set it.
287 			 */
288 			if (inode->i_size == 0)
289 				ip->flags |= BTRFS_INODE_NODATACOW
290 					   | BTRFS_INODE_NODATASUM;
291 		} else {
292 			ip->flags |= BTRFS_INODE_NODATACOW;
293 		}
294 	} else {
295 		/*
296 		 * Revert back under same assuptions as above
297 		 */
298 		if (S_ISREG(mode)) {
299 			if (inode->i_size == 0)
300 				ip->flags &= ~(BTRFS_INODE_NODATACOW
301 				             | BTRFS_INODE_NODATASUM);
302 		} else {
303 			ip->flags &= ~BTRFS_INODE_NODATACOW;
304 		}
305 	}
306 
307 	/*
308 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
309 	 * flag may be changed automatically if compression code won't make
310 	 * things smaller.
311 	 */
312 	if (flags & FS_NOCOMP_FL) {
313 		ip->flags &= ~BTRFS_INODE_COMPRESS;
314 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
315 
316 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
317 		if (ret && ret != -ENODATA)
318 			goto out_drop;
319 	} else if (flags & FS_COMPR_FL) {
320 		const char *comp;
321 
322 		ip->flags |= BTRFS_INODE_COMPRESS;
323 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
324 
325 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
326 			comp = "lzo";
327 		else
328 			comp = "zlib";
329 		ret = btrfs_set_prop(inode, "btrfs.compression",
330 				     comp, strlen(comp), 0);
331 		if (ret)
332 			goto out_drop;
333 
334 	} else {
335 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
336 		if (ret && ret != -ENODATA)
337 			goto out_drop;
338 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
339 	}
340 
341 	trans = btrfs_start_transaction(root, 1);
342 	if (IS_ERR(trans)) {
343 		ret = PTR_ERR(trans);
344 		goto out_drop;
345 	}
346 
347 	btrfs_update_iflags(inode);
348 	inode_inc_iversion(inode);
349 	inode->i_ctime = CURRENT_TIME;
350 	ret = btrfs_update_inode(trans, root, inode);
351 
352 	btrfs_end_transaction(trans, root);
353  out_drop:
354 	if (ret) {
355 		ip->flags = ip_oldflags;
356 		inode->i_flags = i_oldflags;
357 	}
358 
359  out_unlock:
360 	mutex_unlock(&inode->i_mutex);
361 	mnt_drop_write_file(file);
362 	return ret;
363 }
364 
365 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
366 {
367 	struct inode *inode = file_inode(file);
368 
369 	return put_user(inode->i_generation, arg);
370 }
371 
372 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
373 {
374 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
375 	struct btrfs_device *device;
376 	struct request_queue *q;
377 	struct fstrim_range range;
378 	u64 minlen = ULLONG_MAX;
379 	u64 num_devices = 0;
380 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
381 	int ret;
382 
383 	if (!capable(CAP_SYS_ADMIN))
384 		return -EPERM;
385 
386 	rcu_read_lock();
387 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
388 				dev_list) {
389 		if (!device->bdev)
390 			continue;
391 		q = bdev_get_queue(device->bdev);
392 		if (blk_queue_discard(q)) {
393 			num_devices++;
394 			minlen = min((u64)q->limits.discard_granularity,
395 				     minlen);
396 		}
397 	}
398 	rcu_read_unlock();
399 
400 	if (!num_devices)
401 		return -EOPNOTSUPP;
402 	if (copy_from_user(&range, arg, sizeof(range)))
403 		return -EFAULT;
404 	if (range.start > total_bytes ||
405 	    range.len < fs_info->sb->s_blocksize)
406 		return -EINVAL;
407 
408 	range.len = min(range.len, total_bytes - range.start);
409 	range.minlen = max(range.minlen, minlen);
410 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
411 	if (ret < 0)
412 		return ret;
413 
414 	if (copy_to_user(arg, &range, sizeof(range)))
415 		return -EFAULT;
416 
417 	return 0;
418 }
419 
420 int btrfs_is_empty_uuid(u8 *uuid)
421 {
422 	int i;
423 
424 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
425 		if (uuid[i])
426 			return 0;
427 	}
428 	return 1;
429 }
430 
431 static noinline int create_subvol(struct inode *dir,
432 				  struct dentry *dentry,
433 				  char *name, int namelen,
434 				  u64 *async_transid,
435 				  struct btrfs_qgroup_inherit *inherit)
436 {
437 	struct btrfs_trans_handle *trans;
438 	struct btrfs_key key;
439 	struct btrfs_root_item root_item;
440 	struct btrfs_inode_item *inode_item;
441 	struct extent_buffer *leaf;
442 	struct btrfs_root *root = BTRFS_I(dir)->root;
443 	struct btrfs_root *new_root;
444 	struct btrfs_block_rsv block_rsv;
445 	struct timespec cur_time = CURRENT_TIME;
446 	struct inode *inode;
447 	int ret;
448 	int err;
449 	u64 objectid;
450 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
451 	u64 index = 0;
452 	u64 qgroup_reserved;
453 	uuid_le new_uuid;
454 
455 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
456 	if (ret)
457 		return ret;
458 
459 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
460 	/*
461 	 * The same as the snapshot creation, please see the comment
462 	 * of create_snapshot().
463 	 */
464 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
465 					       8, &qgroup_reserved, false);
466 	if (ret)
467 		return ret;
468 
469 	trans = btrfs_start_transaction(root, 0);
470 	if (IS_ERR(trans)) {
471 		ret = PTR_ERR(trans);
472 		btrfs_subvolume_release_metadata(root, &block_rsv,
473 						 qgroup_reserved);
474 		return ret;
475 	}
476 	trans->block_rsv = &block_rsv;
477 	trans->bytes_reserved = block_rsv.size;
478 
479 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
480 	if (ret)
481 		goto fail;
482 
483 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
484 	if (IS_ERR(leaf)) {
485 		ret = PTR_ERR(leaf);
486 		goto fail;
487 	}
488 
489 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
490 	btrfs_set_header_bytenr(leaf, leaf->start);
491 	btrfs_set_header_generation(leaf, trans->transid);
492 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
493 	btrfs_set_header_owner(leaf, objectid);
494 
495 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
496 			    BTRFS_FSID_SIZE);
497 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
498 			    btrfs_header_chunk_tree_uuid(leaf),
499 			    BTRFS_UUID_SIZE);
500 	btrfs_mark_buffer_dirty(leaf);
501 
502 	memset(&root_item, 0, sizeof(root_item));
503 
504 	inode_item = &root_item.inode;
505 	btrfs_set_stack_inode_generation(inode_item, 1);
506 	btrfs_set_stack_inode_size(inode_item, 3);
507 	btrfs_set_stack_inode_nlink(inode_item, 1);
508 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
509 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
510 
511 	btrfs_set_root_flags(&root_item, 0);
512 	btrfs_set_root_limit(&root_item, 0);
513 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
514 
515 	btrfs_set_root_bytenr(&root_item, leaf->start);
516 	btrfs_set_root_generation(&root_item, trans->transid);
517 	btrfs_set_root_level(&root_item, 0);
518 	btrfs_set_root_refs(&root_item, 1);
519 	btrfs_set_root_used(&root_item, leaf->len);
520 	btrfs_set_root_last_snapshot(&root_item, 0);
521 
522 	btrfs_set_root_generation_v2(&root_item,
523 			btrfs_root_generation(&root_item));
524 	uuid_le_gen(&new_uuid);
525 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
526 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
527 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
528 	root_item.ctime = root_item.otime;
529 	btrfs_set_root_ctransid(&root_item, trans->transid);
530 	btrfs_set_root_otransid(&root_item, trans->transid);
531 
532 	btrfs_tree_unlock(leaf);
533 	free_extent_buffer(leaf);
534 	leaf = NULL;
535 
536 	btrfs_set_root_dirid(&root_item, new_dirid);
537 
538 	key.objectid = objectid;
539 	key.offset = 0;
540 	key.type = BTRFS_ROOT_ITEM_KEY;
541 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
542 				&root_item);
543 	if (ret)
544 		goto fail;
545 
546 	key.offset = (u64)-1;
547 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
548 	if (IS_ERR(new_root)) {
549 		btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
550 		ret = PTR_ERR(new_root);
551 		goto fail;
552 	}
553 
554 	btrfs_record_root_in_trans(trans, new_root);
555 
556 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
557 	if (ret) {
558 		/* We potentially lose an unused inode item here */
559 		btrfs_abort_transaction(trans, root, ret);
560 		goto fail;
561 	}
562 
563 	/*
564 	 * insert the directory item
565 	 */
566 	ret = btrfs_set_inode_index(dir, &index);
567 	if (ret) {
568 		btrfs_abort_transaction(trans, root, ret);
569 		goto fail;
570 	}
571 
572 	ret = btrfs_insert_dir_item(trans, root,
573 				    name, namelen, dir, &key,
574 				    BTRFS_FT_DIR, index);
575 	if (ret) {
576 		btrfs_abort_transaction(trans, root, ret);
577 		goto fail;
578 	}
579 
580 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
581 	ret = btrfs_update_inode(trans, root, dir);
582 	BUG_ON(ret);
583 
584 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
585 				 objectid, root->root_key.objectid,
586 				 btrfs_ino(dir), index, name, namelen);
587 	BUG_ON(ret);
588 
589 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
590 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
591 				  objectid);
592 	if (ret)
593 		btrfs_abort_transaction(trans, root, ret);
594 
595 fail:
596 	trans->block_rsv = NULL;
597 	trans->bytes_reserved = 0;
598 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
599 
600 	if (async_transid) {
601 		*async_transid = trans->transid;
602 		err = btrfs_commit_transaction_async(trans, root, 1);
603 		if (err)
604 			err = btrfs_commit_transaction(trans, root);
605 	} else {
606 		err = btrfs_commit_transaction(trans, root);
607 	}
608 	if (err && !ret)
609 		ret = err;
610 
611 	if (!ret) {
612 		inode = btrfs_lookup_dentry(dir, dentry);
613 		if (IS_ERR(inode))
614 			return PTR_ERR(inode);
615 		d_instantiate(dentry, inode);
616 	}
617 	return ret;
618 }
619 
620 static void btrfs_wait_nocow_write(struct btrfs_root *root)
621 {
622 	s64 writers;
623 	DEFINE_WAIT(wait);
624 
625 	do {
626 		prepare_to_wait(&root->subv_writers->wait, &wait,
627 				TASK_UNINTERRUPTIBLE);
628 
629 		writers = percpu_counter_sum(&root->subv_writers->counter);
630 		if (writers)
631 			schedule();
632 
633 		finish_wait(&root->subv_writers->wait, &wait);
634 	} while (writers);
635 }
636 
637 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
638 			   struct dentry *dentry, char *name, int namelen,
639 			   u64 *async_transid, bool readonly,
640 			   struct btrfs_qgroup_inherit *inherit)
641 {
642 	struct inode *inode;
643 	struct btrfs_pending_snapshot *pending_snapshot;
644 	struct btrfs_trans_handle *trans;
645 	int ret;
646 
647 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
648 		return -EINVAL;
649 
650 	atomic_inc(&root->will_be_snapshoted);
651 	smp_mb__after_atomic();
652 	btrfs_wait_nocow_write(root);
653 
654 	ret = btrfs_start_delalloc_inodes(root, 0);
655 	if (ret)
656 		goto out;
657 
658 	btrfs_wait_ordered_extents(root, -1);
659 
660 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
661 	if (!pending_snapshot) {
662 		ret = -ENOMEM;
663 		goto out;
664 	}
665 
666 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
667 			     BTRFS_BLOCK_RSV_TEMP);
668 	/*
669 	 * 1 - parent dir inode
670 	 * 2 - dir entries
671 	 * 1 - root item
672 	 * 2 - root ref/backref
673 	 * 1 - root of snapshot
674 	 * 1 - UUID item
675 	 */
676 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
677 					&pending_snapshot->block_rsv, 8,
678 					&pending_snapshot->qgroup_reserved,
679 					false);
680 	if (ret)
681 		goto free;
682 
683 	pending_snapshot->dentry = dentry;
684 	pending_snapshot->root = root;
685 	pending_snapshot->readonly = readonly;
686 	pending_snapshot->dir = dir;
687 	pending_snapshot->inherit = inherit;
688 
689 	trans = btrfs_start_transaction(root, 0);
690 	if (IS_ERR(trans)) {
691 		ret = PTR_ERR(trans);
692 		goto fail;
693 	}
694 
695 	spin_lock(&root->fs_info->trans_lock);
696 	list_add(&pending_snapshot->list,
697 		 &trans->transaction->pending_snapshots);
698 	spin_unlock(&root->fs_info->trans_lock);
699 	if (async_transid) {
700 		*async_transid = trans->transid;
701 		ret = btrfs_commit_transaction_async(trans,
702 				     root->fs_info->extent_root, 1);
703 		if (ret)
704 			ret = btrfs_commit_transaction(trans, root);
705 	} else {
706 		ret = btrfs_commit_transaction(trans,
707 					       root->fs_info->extent_root);
708 	}
709 	if (ret)
710 		goto fail;
711 
712 	ret = pending_snapshot->error;
713 	if (ret)
714 		goto fail;
715 
716 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
717 	if (ret)
718 		goto fail;
719 
720 	/*
721 	 * If orphan cleanup did remove any orphans, it means the tree was
722 	 * modified and therefore the commit root is not the same as the
723 	 * current root anymore. This is a problem, because send uses the
724 	 * commit root and therefore can see inode items that don't exist
725 	 * in the current root anymore, and for example make calls to
726 	 * btrfs_iget, which will do tree lookups based on the current root
727 	 * and not on the commit root. Those lookups will fail, returning a
728 	 * -ESTALE error, and making send fail with that error. So make sure
729 	 * a send does not see any orphans we have just removed, and that it
730 	 * will see the same inodes regardless of whether a transaction
731 	 * commit happened before it started (meaning that the commit root
732 	 * will be the same as the current root) or not.
733 	 */
734 	if (readonly && pending_snapshot->snap->node !=
735 	    pending_snapshot->snap->commit_root) {
736 		trans = btrfs_join_transaction(pending_snapshot->snap);
737 		if (IS_ERR(trans) && PTR_ERR(trans) != -ENOENT) {
738 			ret = PTR_ERR(trans);
739 			goto fail;
740 		}
741 		if (!IS_ERR(trans)) {
742 			ret = btrfs_commit_transaction(trans,
743 						       pending_snapshot->snap);
744 			if (ret)
745 				goto fail;
746 		}
747 	}
748 
749 	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
750 	if (IS_ERR(inode)) {
751 		ret = PTR_ERR(inode);
752 		goto fail;
753 	}
754 
755 	d_instantiate(dentry, inode);
756 	ret = 0;
757 fail:
758 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
759 					 &pending_snapshot->block_rsv,
760 					 pending_snapshot->qgroup_reserved);
761 free:
762 	kfree(pending_snapshot);
763 out:
764 	atomic_dec(&root->will_be_snapshoted);
765 	return ret;
766 }
767 
768 /*  copy of may_delete in fs/namei.c()
769  *	Check whether we can remove a link victim from directory dir, check
770  *  whether the type of victim is right.
771  *  1. We can't do it if dir is read-only (done in permission())
772  *  2. We should have write and exec permissions on dir
773  *  3. We can't remove anything from append-only dir
774  *  4. We can't do anything with immutable dir (done in permission())
775  *  5. If the sticky bit on dir is set we should either
776  *	a. be owner of dir, or
777  *	b. be owner of victim, or
778  *	c. have CAP_FOWNER capability
779  *  6. If the victim is append-only or immutable we can't do antyhing with
780  *     links pointing to it.
781  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
782  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
783  *  9. We can't remove a root or mountpoint.
784  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
785  *     nfs_async_unlink().
786  */
787 
788 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
789 {
790 	int error;
791 
792 	if (!victim->d_inode)
793 		return -ENOENT;
794 
795 	BUG_ON(victim->d_parent->d_inode != dir);
796 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
797 
798 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
799 	if (error)
800 		return error;
801 	if (IS_APPEND(dir))
802 		return -EPERM;
803 	if (check_sticky(dir, victim->d_inode) || IS_APPEND(victim->d_inode) ||
804 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
805 		return -EPERM;
806 	if (isdir) {
807 		if (!S_ISDIR(victim->d_inode->i_mode))
808 			return -ENOTDIR;
809 		if (IS_ROOT(victim))
810 			return -EBUSY;
811 	} else if (S_ISDIR(victim->d_inode->i_mode))
812 		return -EISDIR;
813 	if (IS_DEADDIR(dir))
814 		return -ENOENT;
815 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
816 		return -EBUSY;
817 	return 0;
818 }
819 
820 /* copy of may_create in fs/namei.c() */
821 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
822 {
823 	if (child->d_inode)
824 		return -EEXIST;
825 	if (IS_DEADDIR(dir))
826 		return -ENOENT;
827 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
828 }
829 
830 /*
831  * Create a new subvolume below @parent.  This is largely modeled after
832  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
833  * inside this filesystem so it's quite a bit simpler.
834  */
835 static noinline int btrfs_mksubvol(struct path *parent,
836 				   char *name, int namelen,
837 				   struct btrfs_root *snap_src,
838 				   u64 *async_transid, bool readonly,
839 				   struct btrfs_qgroup_inherit *inherit)
840 {
841 	struct inode *dir  = parent->dentry->d_inode;
842 	struct dentry *dentry;
843 	int error;
844 
845 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
846 	if (error == -EINTR)
847 		return error;
848 
849 	dentry = lookup_one_len(name, parent->dentry, namelen);
850 	error = PTR_ERR(dentry);
851 	if (IS_ERR(dentry))
852 		goto out_unlock;
853 
854 	error = -EEXIST;
855 	if (dentry->d_inode)
856 		goto out_dput;
857 
858 	error = btrfs_may_create(dir, dentry);
859 	if (error)
860 		goto out_dput;
861 
862 	/*
863 	 * even if this name doesn't exist, we may get hash collisions.
864 	 * check for them now when we can safely fail
865 	 */
866 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
867 					       dir->i_ino, name,
868 					       namelen);
869 	if (error)
870 		goto out_dput;
871 
872 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
873 
874 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
875 		goto out_up_read;
876 
877 	if (snap_src) {
878 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
879 					async_transid, readonly, inherit);
880 	} else {
881 		error = create_subvol(dir, dentry, name, namelen,
882 				      async_transid, inherit);
883 	}
884 	if (!error)
885 		fsnotify_mkdir(dir, dentry);
886 out_up_read:
887 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
888 out_dput:
889 	dput(dentry);
890 out_unlock:
891 	mutex_unlock(&dir->i_mutex);
892 	return error;
893 }
894 
895 /*
896  * When we're defragging a range, we don't want to kick it off again
897  * if it is really just waiting for delalloc to send it down.
898  * If we find a nice big extent or delalloc range for the bytes in the
899  * file you want to defrag, we return 0 to let you know to skip this
900  * part of the file
901  */
902 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
903 {
904 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
905 	struct extent_map *em = NULL;
906 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
907 	u64 end;
908 
909 	read_lock(&em_tree->lock);
910 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
911 	read_unlock(&em_tree->lock);
912 
913 	if (em) {
914 		end = extent_map_end(em);
915 		free_extent_map(em);
916 		if (end - offset > thresh)
917 			return 0;
918 	}
919 	/* if we already have a nice delalloc here, just stop */
920 	thresh /= 2;
921 	end = count_range_bits(io_tree, &offset, offset + thresh,
922 			       thresh, EXTENT_DELALLOC, 1);
923 	if (end >= thresh)
924 		return 0;
925 	return 1;
926 }
927 
928 /*
929  * helper function to walk through a file and find extents
930  * newer than a specific transid, and smaller than thresh.
931  *
932  * This is used by the defragging code to find new and small
933  * extents
934  */
935 static int find_new_extents(struct btrfs_root *root,
936 			    struct inode *inode, u64 newer_than,
937 			    u64 *off, u32 thresh)
938 {
939 	struct btrfs_path *path;
940 	struct btrfs_key min_key;
941 	struct extent_buffer *leaf;
942 	struct btrfs_file_extent_item *extent;
943 	int type;
944 	int ret;
945 	u64 ino = btrfs_ino(inode);
946 
947 	path = btrfs_alloc_path();
948 	if (!path)
949 		return -ENOMEM;
950 
951 	min_key.objectid = ino;
952 	min_key.type = BTRFS_EXTENT_DATA_KEY;
953 	min_key.offset = *off;
954 
955 	while (1) {
956 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
957 		if (ret != 0)
958 			goto none;
959 process_slot:
960 		if (min_key.objectid != ino)
961 			goto none;
962 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
963 			goto none;
964 
965 		leaf = path->nodes[0];
966 		extent = btrfs_item_ptr(leaf, path->slots[0],
967 					struct btrfs_file_extent_item);
968 
969 		type = btrfs_file_extent_type(leaf, extent);
970 		if (type == BTRFS_FILE_EXTENT_REG &&
971 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
972 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
973 			*off = min_key.offset;
974 			btrfs_free_path(path);
975 			return 0;
976 		}
977 
978 		path->slots[0]++;
979 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
980 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
981 			goto process_slot;
982 		}
983 
984 		if (min_key.offset == (u64)-1)
985 			goto none;
986 
987 		min_key.offset++;
988 		btrfs_release_path(path);
989 	}
990 none:
991 	btrfs_free_path(path);
992 	return -ENOENT;
993 }
994 
995 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
996 {
997 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
998 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
999 	struct extent_map *em;
1000 	u64 len = PAGE_CACHE_SIZE;
1001 
1002 	/*
1003 	 * hopefully we have this extent in the tree already, try without
1004 	 * the full extent lock
1005 	 */
1006 	read_lock(&em_tree->lock);
1007 	em = lookup_extent_mapping(em_tree, start, len);
1008 	read_unlock(&em_tree->lock);
1009 
1010 	if (!em) {
1011 		struct extent_state *cached = NULL;
1012 		u64 end = start + len - 1;
1013 
1014 		/* get the big lock and read metadata off disk */
1015 		lock_extent_bits(io_tree, start, end, 0, &cached);
1016 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1017 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1018 
1019 		if (IS_ERR(em))
1020 			return NULL;
1021 	}
1022 
1023 	return em;
1024 }
1025 
1026 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1027 {
1028 	struct extent_map *next;
1029 	bool ret = true;
1030 
1031 	/* this is the last extent */
1032 	if (em->start + em->len >= i_size_read(inode))
1033 		return false;
1034 
1035 	next = defrag_lookup_extent(inode, em->start + em->len);
1036 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1037 		ret = false;
1038 	else if ((em->block_start + em->block_len == next->block_start) &&
1039 		 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024))
1040 		ret = false;
1041 
1042 	free_extent_map(next);
1043 	return ret;
1044 }
1045 
1046 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1047 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1048 			       int compress)
1049 {
1050 	struct extent_map *em;
1051 	int ret = 1;
1052 	bool next_mergeable = true;
1053 
1054 	/*
1055 	 * make sure that once we start defragging an extent, we keep on
1056 	 * defragging it
1057 	 */
1058 	if (start < *defrag_end)
1059 		return 1;
1060 
1061 	*skip = 0;
1062 
1063 	em = defrag_lookup_extent(inode, start);
1064 	if (!em)
1065 		return 0;
1066 
1067 	/* this will cover holes, and inline extents */
1068 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1069 		ret = 0;
1070 		goto out;
1071 	}
1072 
1073 	next_mergeable = defrag_check_next_extent(inode, em);
1074 	/*
1075 	 * we hit a real extent, if it is big or the next extent is not a
1076 	 * real extent, don't bother defragging it
1077 	 */
1078 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1079 	    (em->len >= thresh || !next_mergeable))
1080 		ret = 0;
1081 out:
1082 	/*
1083 	 * last_len ends up being a counter of how many bytes we've defragged.
1084 	 * every time we choose not to defrag an extent, we reset *last_len
1085 	 * so that the next tiny extent will force a defrag.
1086 	 *
1087 	 * The end result of this is that tiny extents before a single big
1088 	 * extent will force at least part of that big extent to be defragged.
1089 	 */
1090 	if (ret) {
1091 		*defrag_end = extent_map_end(em);
1092 	} else {
1093 		*last_len = 0;
1094 		*skip = extent_map_end(em);
1095 		*defrag_end = 0;
1096 	}
1097 
1098 	free_extent_map(em);
1099 	return ret;
1100 }
1101 
1102 /*
1103  * it doesn't do much good to defrag one or two pages
1104  * at a time.  This pulls in a nice chunk of pages
1105  * to COW and defrag.
1106  *
1107  * It also makes sure the delalloc code has enough
1108  * dirty data to avoid making new small extents as part
1109  * of the defrag
1110  *
1111  * It's a good idea to start RA on this range
1112  * before calling this.
1113  */
1114 static int cluster_pages_for_defrag(struct inode *inode,
1115 				    struct page **pages,
1116 				    unsigned long start_index,
1117 				    unsigned long num_pages)
1118 {
1119 	unsigned long file_end;
1120 	u64 isize = i_size_read(inode);
1121 	u64 page_start;
1122 	u64 page_end;
1123 	u64 page_cnt;
1124 	int ret;
1125 	int i;
1126 	int i_done;
1127 	struct btrfs_ordered_extent *ordered;
1128 	struct extent_state *cached_state = NULL;
1129 	struct extent_io_tree *tree;
1130 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1131 
1132 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1133 	if (!isize || start_index > file_end)
1134 		return 0;
1135 
1136 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1137 
1138 	ret = btrfs_delalloc_reserve_space(inode,
1139 					   page_cnt << PAGE_CACHE_SHIFT);
1140 	if (ret)
1141 		return ret;
1142 	i_done = 0;
1143 	tree = &BTRFS_I(inode)->io_tree;
1144 
1145 	/* step one, lock all the pages */
1146 	for (i = 0; i < page_cnt; i++) {
1147 		struct page *page;
1148 again:
1149 		page = find_or_create_page(inode->i_mapping,
1150 					   start_index + i, mask);
1151 		if (!page)
1152 			break;
1153 
1154 		page_start = page_offset(page);
1155 		page_end = page_start + PAGE_CACHE_SIZE - 1;
1156 		while (1) {
1157 			lock_extent_bits(tree, page_start, page_end,
1158 					 0, &cached_state);
1159 			ordered = btrfs_lookup_ordered_extent(inode,
1160 							      page_start);
1161 			unlock_extent_cached(tree, page_start, page_end,
1162 					     &cached_state, GFP_NOFS);
1163 			if (!ordered)
1164 				break;
1165 
1166 			unlock_page(page);
1167 			btrfs_start_ordered_extent(inode, ordered, 1);
1168 			btrfs_put_ordered_extent(ordered);
1169 			lock_page(page);
1170 			/*
1171 			 * we unlocked the page above, so we need check if
1172 			 * it was released or not.
1173 			 */
1174 			if (page->mapping != inode->i_mapping) {
1175 				unlock_page(page);
1176 				page_cache_release(page);
1177 				goto again;
1178 			}
1179 		}
1180 
1181 		if (!PageUptodate(page)) {
1182 			btrfs_readpage(NULL, page);
1183 			lock_page(page);
1184 			if (!PageUptodate(page)) {
1185 				unlock_page(page);
1186 				page_cache_release(page);
1187 				ret = -EIO;
1188 				break;
1189 			}
1190 		}
1191 
1192 		if (page->mapping != inode->i_mapping) {
1193 			unlock_page(page);
1194 			page_cache_release(page);
1195 			goto again;
1196 		}
1197 
1198 		pages[i] = page;
1199 		i_done++;
1200 	}
1201 	if (!i_done || ret)
1202 		goto out;
1203 
1204 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1205 		goto out;
1206 
1207 	/*
1208 	 * so now we have a nice long stream of locked
1209 	 * and up to date pages, lets wait on them
1210 	 */
1211 	for (i = 0; i < i_done; i++)
1212 		wait_on_page_writeback(pages[i]);
1213 
1214 	page_start = page_offset(pages[0]);
1215 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1216 
1217 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1218 			 page_start, page_end - 1, 0, &cached_state);
1219 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1220 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1221 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1222 			  &cached_state, GFP_NOFS);
1223 
1224 	if (i_done != page_cnt) {
1225 		spin_lock(&BTRFS_I(inode)->lock);
1226 		BTRFS_I(inode)->outstanding_extents++;
1227 		spin_unlock(&BTRFS_I(inode)->lock);
1228 		btrfs_delalloc_release_space(inode,
1229 				     (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1230 	}
1231 
1232 
1233 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1234 			  &cached_state, GFP_NOFS);
1235 
1236 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1237 			     page_start, page_end - 1, &cached_state,
1238 			     GFP_NOFS);
1239 
1240 	for (i = 0; i < i_done; i++) {
1241 		clear_page_dirty_for_io(pages[i]);
1242 		ClearPageChecked(pages[i]);
1243 		set_page_extent_mapped(pages[i]);
1244 		set_page_dirty(pages[i]);
1245 		unlock_page(pages[i]);
1246 		page_cache_release(pages[i]);
1247 	}
1248 	return i_done;
1249 out:
1250 	for (i = 0; i < i_done; i++) {
1251 		unlock_page(pages[i]);
1252 		page_cache_release(pages[i]);
1253 	}
1254 	btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1255 	return ret;
1256 
1257 }
1258 
1259 int btrfs_defrag_file(struct inode *inode, struct file *file,
1260 		      struct btrfs_ioctl_defrag_range_args *range,
1261 		      u64 newer_than, unsigned long max_to_defrag)
1262 {
1263 	struct btrfs_root *root = BTRFS_I(inode)->root;
1264 	struct file_ra_state *ra = NULL;
1265 	unsigned long last_index;
1266 	u64 isize = i_size_read(inode);
1267 	u64 last_len = 0;
1268 	u64 skip = 0;
1269 	u64 defrag_end = 0;
1270 	u64 newer_off = range->start;
1271 	unsigned long i;
1272 	unsigned long ra_index = 0;
1273 	int ret;
1274 	int defrag_count = 0;
1275 	int compress_type = BTRFS_COMPRESS_ZLIB;
1276 	u32 extent_thresh = range->extent_thresh;
1277 	unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1278 	unsigned long cluster = max_cluster;
1279 	u64 new_align = ~((u64)128 * 1024 - 1);
1280 	struct page **pages = NULL;
1281 
1282 	if (isize == 0)
1283 		return 0;
1284 
1285 	if (range->start >= isize)
1286 		return -EINVAL;
1287 
1288 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1289 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1290 			return -EINVAL;
1291 		if (range->compress_type)
1292 			compress_type = range->compress_type;
1293 	}
1294 
1295 	if (extent_thresh == 0)
1296 		extent_thresh = 256 * 1024;
1297 
1298 	/*
1299 	 * if we were not given a file, allocate a readahead
1300 	 * context
1301 	 */
1302 	if (!file) {
1303 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1304 		if (!ra)
1305 			return -ENOMEM;
1306 		file_ra_state_init(ra, inode->i_mapping);
1307 	} else {
1308 		ra = &file->f_ra;
1309 	}
1310 
1311 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1312 			GFP_NOFS);
1313 	if (!pages) {
1314 		ret = -ENOMEM;
1315 		goto out_ra;
1316 	}
1317 
1318 	/* find the last page to defrag */
1319 	if (range->start + range->len > range->start) {
1320 		last_index = min_t(u64, isize - 1,
1321 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1322 	} else {
1323 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1324 	}
1325 
1326 	if (newer_than) {
1327 		ret = find_new_extents(root, inode, newer_than,
1328 				       &newer_off, 64 * 1024);
1329 		if (!ret) {
1330 			range->start = newer_off;
1331 			/*
1332 			 * we always align our defrag to help keep
1333 			 * the extents in the file evenly spaced
1334 			 */
1335 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1336 		} else
1337 			goto out_ra;
1338 	} else {
1339 		i = range->start >> PAGE_CACHE_SHIFT;
1340 	}
1341 	if (!max_to_defrag)
1342 		max_to_defrag = last_index + 1;
1343 
1344 	/*
1345 	 * make writeback starts from i, so the defrag range can be
1346 	 * written sequentially.
1347 	 */
1348 	if (i < inode->i_mapping->writeback_index)
1349 		inode->i_mapping->writeback_index = i;
1350 
1351 	while (i <= last_index && defrag_count < max_to_defrag &&
1352 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) {
1353 		/*
1354 		 * make sure we stop running if someone unmounts
1355 		 * the FS
1356 		 */
1357 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1358 			break;
1359 
1360 		if (btrfs_defrag_cancelled(root->fs_info)) {
1361 			printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1362 			ret = -EAGAIN;
1363 			break;
1364 		}
1365 
1366 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1367 					 extent_thresh, &last_len, &skip,
1368 					 &defrag_end, range->flags &
1369 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1370 			unsigned long next;
1371 			/*
1372 			 * the should_defrag function tells us how much to skip
1373 			 * bump our counter by the suggested amount
1374 			 */
1375 			next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE);
1376 			i = max(i + 1, next);
1377 			continue;
1378 		}
1379 
1380 		if (!newer_than) {
1381 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1382 				   PAGE_CACHE_SHIFT) - i;
1383 			cluster = min(cluster, max_cluster);
1384 		} else {
1385 			cluster = max_cluster;
1386 		}
1387 
1388 		if (i + cluster > ra_index) {
1389 			ra_index = max(i, ra_index);
1390 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1391 				       cluster);
1392 			ra_index += max_cluster;
1393 		}
1394 
1395 		mutex_lock(&inode->i_mutex);
1396 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1397 			BTRFS_I(inode)->force_compress = compress_type;
1398 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1399 		if (ret < 0) {
1400 			mutex_unlock(&inode->i_mutex);
1401 			goto out_ra;
1402 		}
1403 
1404 		defrag_count += ret;
1405 		balance_dirty_pages_ratelimited(inode->i_mapping);
1406 		mutex_unlock(&inode->i_mutex);
1407 
1408 		if (newer_than) {
1409 			if (newer_off == (u64)-1)
1410 				break;
1411 
1412 			if (ret > 0)
1413 				i += ret;
1414 
1415 			newer_off = max(newer_off + 1,
1416 					(u64)i << PAGE_CACHE_SHIFT);
1417 
1418 			ret = find_new_extents(root, inode,
1419 					       newer_than, &newer_off,
1420 					       64 * 1024);
1421 			if (!ret) {
1422 				range->start = newer_off;
1423 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1424 			} else {
1425 				break;
1426 			}
1427 		} else {
1428 			if (ret > 0) {
1429 				i += ret;
1430 				last_len += ret << PAGE_CACHE_SHIFT;
1431 			} else {
1432 				i++;
1433 				last_len = 0;
1434 			}
1435 		}
1436 	}
1437 
1438 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1439 		filemap_flush(inode->i_mapping);
1440 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1441 			     &BTRFS_I(inode)->runtime_flags))
1442 			filemap_flush(inode->i_mapping);
1443 	}
1444 
1445 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1446 		/* the filemap_flush will queue IO into the worker threads, but
1447 		 * we have to make sure the IO is actually started and that
1448 		 * ordered extents get created before we return
1449 		 */
1450 		atomic_inc(&root->fs_info->async_submit_draining);
1451 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1452 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1453 			wait_event(root->fs_info->async_submit_wait,
1454 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1455 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1456 		}
1457 		atomic_dec(&root->fs_info->async_submit_draining);
1458 	}
1459 
1460 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1461 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1462 	}
1463 
1464 	ret = defrag_count;
1465 
1466 out_ra:
1467 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1468 		mutex_lock(&inode->i_mutex);
1469 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1470 		mutex_unlock(&inode->i_mutex);
1471 	}
1472 	if (!file)
1473 		kfree(ra);
1474 	kfree(pages);
1475 	return ret;
1476 }
1477 
1478 static noinline int btrfs_ioctl_resize(struct file *file,
1479 					void __user *arg)
1480 {
1481 	u64 new_size;
1482 	u64 old_size;
1483 	u64 devid = 1;
1484 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1485 	struct btrfs_ioctl_vol_args *vol_args;
1486 	struct btrfs_trans_handle *trans;
1487 	struct btrfs_device *device = NULL;
1488 	char *sizestr;
1489 	char *retptr;
1490 	char *devstr = NULL;
1491 	int ret = 0;
1492 	int mod = 0;
1493 
1494 	if (!capable(CAP_SYS_ADMIN))
1495 		return -EPERM;
1496 
1497 	ret = mnt_want_write_file(file);
1498 	if (ret)
1499 		return ret;
1500 
1501 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1502 			1)) {
1503 		mnt_drop_write_file(file);
1504 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1505 	}
1506 
1507 	mutex_lock(&root->fs_info->volume_mutex);
1508 	vol_args = memdup_user(arg, sizeof(*vol_args));
1509 	if (IS_ERR(vol_args)) {
1510 		ret = PTR_ERR(vol_args);
1511 		goto out;
1512 	}
1513 
1514 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1515 
1516 	sizestr = vol_args->name;
1517 	devstr = strchr(sizestr, ':');
1518 	if (devstr) {
1519 		sizestr = devstr + 1;
1520 		*devstr = '\0';
1521 		devstr = vol_args->name;
1522 		ret = kstrtoull(devstr, 10, &devid);
1523 		if (ret)
1524 			goto out_free;
1525 		if (!devid) {
1526 			ret = -EINVAL;
1527 			goto out_free;
1528 		}
1529 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1530 	}
1531 
1532 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1533 	if (!device) {
1534 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1535 		       devid);
1536 		ret = -ENODEV;
1537 		goto out_free;
1538 	}
1539 
1540 	if (!device->writeable) {
1541 		btrfs_info(root->fs_info,
1542 			   "resizer unable to apply on readonly device %llu",
1543 		       devid);
1544 		ret = -EPERM;
1545 		goto out_free;
1546 	}
1547 
1548 	if (!strcmp(sizestr, "max"))
1549 		new_size = device->bdev->bd_inode->i_size;
1550 	else {
1551 		if (sizestr[0] == '-') {
1552 			mod = -1;
1553 			sizestr++;
1554 		} else if (sizestr[0] == '+') {
1555 			mod = 1;
1556 			sizestr++;
1557 		}
1558 		new_size = memparse(sizestr, &retptr);
1559 		if (*retptr != '\0' || new_size == 0) {
1560 			ret = -EINVAL;
1561 			goto out_free;
1562 		}
1563 	}
1564 
1565 	if (device->is_tgtdev_for_dev_replace) {
1566 		ret = -EPERM;
1567 		goto out_free;
1568 	}
1569 
1570 	old_size = btrfs_device_get_total_bytes(device);
1571 
1572 	if (mod < 0) {
1573 		if (new_size > old_size) {
1574 			ret = -EINVAL;
1575 			goto out_free;
1576 		}
1577 		new_size = old_size - new_size;
1578 	} else if (mod > 0) {
1579 		if (new_size > ULLONG_MAX - old_size) {
1580 			ret = -ERANGE;
1581 			goto out_free;
1582 		}
1583 		new_size = old_size + new_size;
1584 	}
1585 
1586 	if (new_size < 256 * 1024 * 1024) {
1587 		ret = -EINVAL;
1588 		goto out_free;
1589 	}
1590 	if (new_size > device->bdev->bd_inode->i_size) {
1591 		ret = -EFBIG;
1592 		goto out_free;
1593 	}
1594 
1595 	do_div(new_size, root->sectorsize);
1596 	new_size *= root->sectorsize;
1597 
1598 	printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1599 		      rcu_str_deref(device->name), new_size);
1600 
1601 	if (new_size > old_size) {
1602 		trans = btrfs_start_transaction(root, 0);
1603 		if (IS_ERR(trans)) {
1604 			ret = PTR_ERR(trans);
1605 			goto out_free;
1606 		}
1607 		ret = btrfs_grow_device(trans, device, new_size);
1608 		btrfs_commit_transaction(trans, root);
1609 	} else if (new_size < old_size) {
1610 		ret = btrfs_shrink_device(device, new_size);
1611 	} /* equal, nothing need to do */
1612 
1613 out_free:
1614 	kfree(vol_args);
1615 out:
1616 	mutex_unlock(&root->fs_info->volume_mutex);
1617 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1618 	mnt_drop_write_file(file);
1619 	return ret;
1620 }
1621 
1622 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1623 				char *name, unsigned long fd, int subvol,
1624 				u64 *transid, bool readonly,
1625 				struct btrfs_qgroup_inherit *inherit)
1626 {
1627 	int namelen;
1628 	int ret = 0;
1629 
1630 	ret = mnt_want_write_file(file);
1631 	if (ret)
1632 		goto out;
1633 
1634 	namelen = strlen(name);
1635 	if (strchr(name, '/')) {
1636 		ret = -EINVAL;
1637 		goto out_drop_write;
1638 	}
1639 
1640 	if (name[0] == '.' &&
1641 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1642 		ret = -EEXIST;
1643 		goto out_drop_write;
1644 	}
1645 
1646 	if (subvol) {
1647 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1648 				     NULL, transid, readonly, inherit);
1649 	} else {
1650 		struct fd src = fdget(fd);
1651 		struct inode *src_inode;
1652 		if (!src.file) {
1653 			ret = -EINVAL;
1654 			goto out_drop_write;
1655 		}
1656 
1657 		src_inode = file_inode(src.file);
1658 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1659 			btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1660 				   "Snapshot src from another FS");
1661 			ret = -EXDEV;
1662 		} else if (!inode_owner_or_capable(src_inode)) {
1663 			/*
1664 			 * Subvolume creation is not restricted, but snapshots
1665 			 * are limited to own subvolumes only
1666 			 */
1667 			ret = -EPERM;
1668 		} else {
1669 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1670 					     BTRFS_I(src_inode)->root,
1671 					     transid, readonly, inherit);
1672 		}
1673 		fdput(src);
1674 	}
1675 out_drop_write:
1676 	mnt_drop_write_file(file);
1677 out:
1678 	return ret;
1679 }
1680 
1681 static noinline int btrfs_ioctl_snap_create(struct file *file,
1682 					    void __user *arg, int subvol)
1683 {
1684 	struct btrfs_ioctl_vol_args *vol_args;
1685 	int ret;
1686 
1687 	vol_args = memdup_user(arg, sizeof(*vol_args));
1688 	if (IS_ERR(vol_args))
1689 		return PTR_ERR(vol_args);
1690 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1691 
1692 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1693 					      vol_args->fd, subvol,
1694 					      NULL, false, NULL);
1695 
1696 	kfree(vol_args);
1697 	return ret;
1698 }
1699 
1700 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1701 					       void __user *arg, int subvol)
1702 {
1703 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1704 	int ret;
1705 	u64 transid = 0;
1706 	u64 *ptr = NULL;
1707 	bool readonly = false;
1708 	struct btrfs_qgroup_inherit *inherit = NULL;
1709 
1710 	vol_args = memdup_user(arg, sizeof(*vol_args));
1711 	if (IS_ERR(vol_args))
1712 		return PTR_ERR(vol_args);
1713 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1714 
1715 	if (vol_args->flags &
1716 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1717 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1718 		ret = -EOPNOTSUPP;
1719 		goto free_args;
1720 	}
1721 
1722 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1723 		ptr = &transid;
1724 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1725 		readonly = true;
1726 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1727 		if (vol_args->size > PAGE_CACHE_SIZE) {
1728 			ret = -EINVAL;
1729 			goto free_args;
1730 		}
1731 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1732 		if (IS_ERR(inherit)) {
1733 			ret = PTR_ERR(inherit);
1734 			goto free_args;
1735 		}
1736 	}
1737 
1738 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1739 					      vol_args->fd, subvol, ptr,
1740 					      readonly, inherit);
1741 	if (ret)
1742 		goto free_inherit;
1743 
1744 	if (ptr && copy_to_user(arg +
1745 				offsetof(struct btrfs_ioctl_vol_args_v2,
1746 					transid),
1747 				ptr, sizeof(*ptr)))
1748 		ret = -EFAULT;
1749 
1750 free_inherit:
1751 	kfree(inherit);
1752 free_args:
1753 	kfree(vol_args);
1754 	return ret;
1755 }
1756 
1757 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1758 						void __user *arg)
1759 {
1760 	struct inode *inode = file_inode(file);
1761 	struct btrfs_root *root = BTRFS_I(inode)->root;
1762 	int ret = 0;
1763 	u64 flags = 0;
1764 
1765 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1766 		return -EINVAL;
1767 
1768 	down_read(&root->fs_info->subvol_sem);
1769 	if (btrfs_root_readonly(root))
1770 		flags |= BTRFS_SUBVOL_RDONLY;
1771 	up_read(&root->fs_info->subvol_sem);
1772 
1773 	if (copy_to_user(arg, &flags, sizeof(flags)))
1774 		ret = -EFAULT;
1775 
1776 	return ret;
1777 }
1778 
1779 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1780 					      void __user *arg)
1781 {
1782 	struct inode *inode = file_inode(file);
1783 	struct btrfs_root *root = BTRFS_I(inode)->root;
1784 	struct btrfs_trans_handle *trans;
1785 	u64 root_flags;
1786 	u64 flags;
1787 	int ret = 0;
1788 
1789 	if (!inode_owner_or_capable(inode))
1790 		return -EPERM;
1791 
1792 	ret = mnt_want_write_file(file);
1793 	if (ret)
1794 		goto out;
1795 
1796 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1797 		ret = -EINVAL;
1798 		goto out_drop_write;
1799 	}
1800 
1801 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1802 		ret = -EFAULT;
1803 		goto out_drop_write;
1804 	}
1805 
1806 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1807 		ret = -EINVAL;
1808 		goto out_drop_write;
1809 	}
1810 
1811 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1812 		ret = -EOPNOTSUPP;
1813 		goto out_drop_write;
1814 	}
1815 
1816 	down_write(&root->fs_info->subvol_sem);
1817 
1818 	/* nothing to do */
1819 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1820 		goto out_drop_sem;
1821 
1822 	root_flags = btrfs_root_flags(&root->root_item);
1823 	if (flags & BTRFS_SUBVOL_RDONLY) {
1824 		btrfs_set_root_flags(&root->root_item,
1825 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1826 	} else {
1827 		/*
1828 		 * Block RO -> RW transition if this subvolume is involved in
1829 		 * send
1830 		 */
1831 		spin_lock(&root->root_item_lock);
1832 		if (root->send_in_progress == 0) {
1833 			btrfs_set_root_flags(&root->root_item,
1834 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1835 			spin_unlock(&root->root_item_lock);
1836 		} else {
1837 			spin_unlock(&root->root_item_lock);
1838 			btrfs_warn(root->fs_info,
1839 			"Attempt to set subvolume %llu read-write during send",
1840 					root->root_key.objectid);
1841 			ret = -EPERM;
1842 			goto out_drop_sem;
1843 		}
1844 	}
1845 
1846 	trans = btrfs_start_transaction(root, 1);
1847 	if (IS_ERR(trans)) {
1848 		ret = PTR_ERR(trans);
1849 		goto out_reset;
1850 	}
1851 
1852 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1853 				&root->root_key, &root->root_item);
1854 
1855 	btrfs_commit_transaction(trans, root);
1856 out_reset:
1857 	if (ret)
1858 		btrfs_set_root_flags(&root->root_item, root_flags);
1859 out_drop_sem:
1860 	up_write(&root->fs_info->subvol_sem);
1861 out_drop_write:
1862 	mnt_drop_write_file(file);
1863 out:
1864 	return ret;
1865 }
1866 
1867 /*
1868  * helper to check if the subvolume references other subvolumes
1869  */
1870 static noinline int may_destroy_subvol(struct btrfs_root *root)
1871 {
1872 	struct btrfs_path *path;
1873 	struct btrfs_dir_item *di;
1874 	struct btrfs_key key;
1875 	u64 dir_id;
1876 	int ret;
1877 
1878 	path = btrfs_alloc_path();
1879 	if (!path)
1880 		return -ENOMEM;
1881 
1882 	/* Make sure this root isn't set as the default subvol */
1883 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1884 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1885 				   dir_id, "default", 7, 0);
1886 	if (di && !IS_ERR(di)) {
1887 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1888 		if (key.objectid == root->root_key.objectid) {
1889 			ret = -EPERM;
1890 			btrfs_err(root->fs_info, "deleting default subvolume "
1891 				  "%llu is not allowed", key.objectid);
1892 			goto out;
1893 		}
1894 		btrfs_release_path(path);
1895 	}
1896 
1897 	key.objectid = root->root_key.objectid;
1898 	key.type = BTRFS_ROOT_REF_KEY;
1899 	key.offset = (u64)-1;
1900 
1901 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1902 				&key, path, 0, 0);
1903 	if (ret < 0)
1904 		goto out;
1905 	BUG_ON(ret == 0);
1906 
1907 	ret = 0;
1908 	if (path->slots[0] > 0) {
1909 		path->slots[0]--;
1910 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1911 		if (key.objectid == root->root_key.objectid &&
1912 		    key.type == BTRFS_ROOT_REF_KEY)
1913 			ret = -ENOTEMPTY;
1914 	}
1915 out:
1916 	btrfs_free_path(path);
1917 	return ret;
1918 }
1919 
1920 static noinline int key_in_sk(struct btrfs_key *key,
1921 			      struct btrfs_ioctl_search_key *sk)
1922 {
1923 	struct btrfs_key test;
1924 	int ret;
1925 
1926 	test.objectid = sk->min_objectid;
1927 	test.type = sk->min_type;
1928 	test.offset = sk->min_offset;
1929 
1930 	ret = btrfs_comp_cpu_keys(key, &test);
1931 	if (ret < 0)
1932 		return 0;
1933 
1934 	test.objectid = sk->max_objectid;
1935 	test.type = sk->max_type;
1936 	test.offset = sk->max_offset;
1937 
1938 	ret = btrfs_comp_cpu_keys(key, &test);
1939 	if (ret > 0)
1940 		return 0;
1941 	return 1;
1942 }
1943 
1944 static noinline int copy_to_sk(struct btrfs_root *root,
1945 			       struct btrfs_path *path,
1946 			       struct btrfs_key *key,
1947 			       struct btrfs_ioctl_search_key *sk,
1948 			       size_t *buf_size,
1949 			       char __user *ubuf,
1950 			       unsigned long *sk_offset,
1951 			       int *num_found)
1952 {
1953 	u64 found_transid;
1954 	struct extent_buffer *leaf;
1955 	struct btrfs_ioctl_search_header sh;
1956 	unsigned long item_off;
1957 	unsigned long item_len;
1958 	int nritems;
1959 	int i;
1960 	int slot;
1961 	int ret = 0;
1962 
1963 	leaf = path->nodes[0];
1964 	slot = path->slots[0];
1965 	nritems = btrfs_header_nritems(leaf);
1966 
1967 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1968 		i = nritems;
1969 		goto advance_key;
1970 	}
1971 	found_transid = btrfs_header_generation(leaf);
1972 
1973 	for (i = slot; i < nritems; i++) {
1974 		item_off = btrfs_item_ptr_offset(leaf, i);
1975 		item_len = btrfs_item_size_nr(leaf, i);
1976 
1977 		btrfs_item_key_to_cpu(leaf, key, i);
1978 		if (!key_in_sk(key, sk))
1979 			continue;
1980 
1981 		if (sizeof(sh) + item_len > *buf_size) {
1982 			if (*num_found) {
1983 				ret = 1;
1984 				goto out;
1985 			}
1986 
1987 			/*
1988 			 * return one empty item back for v1, which does not
1989 			 * handle -EOVERFLOW
1990 			 */
1991 
1992 			*buf_size = sizeof(sh) + item_len;
1993 			item_len = 0;
1994 			ret = -EOVERFLOW;
1995 		}
1996 
1997 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1998 			ret = 1;
1999 			goto out;
2000 		}
2001 
2002 		sh.objectid = key->objectid;
2003 		sh.offset = key->offset;
2004 		sh.type = key->type;
2005 		sh.len = item_len;
2006 		sh.transid = found_transid;
2007 
2008 		/* copy search result header */
2009 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2010 			ret = -EFAULT;
2011 			goto out;
2012 		}
2013 
2014 		*sk_offset += sizeof(sh);
2015 
2016 		if (item_len) {
2017 			char __user *up = ubuf + *sk_offset;
2018 			/* copy the item */
2019 			if (read_extent_buffer_to_user(leaf, up,
2020 						       item_off, item_len)) {
2021 				ret = -EFAULT;
2022 				goto out;
2023 			}
2024 
2025 			*sk_offset += item_len;
2026 		}
2027 		(*num_found)++;
2028 
2029 		if (ret) /* -EOVERFLOW from above */
2030 			goto out;
2031 
2032 		if (*num_found >= sk->nr_items) {
2033 			ret = 1;
2034 			goto out;
2035 		}
2036 	}
2037 advance_key:
2038 	ret = 0;
2039 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
2040 		key->offset++;
2041 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
2042 		key->offset = 0;
2043 		key->type++;
2044 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
2045 		key->offset = 0;
2046 		key->type = 0;
2047 		key->objectid++;
2048 	} else
2049 		ret = 1;
2050 out:
2051 	/*
2052 	 *  0: all items from this leaf copied, continue with next
2053 	 *  1: * more items can be copied, but unused buffer is too small
2054 	 *     * all items were found
2055 	 *     Either way, it will stops the loop which iterates to the next
2056 	 *     leaf
2057 	 *  -EOVERFLOW: item was to large for buffer
2058 	 *  -EFAULT: could not copy extent buffer back to userspace
2059 	 */
2060 	return ret;
2061 }
2062 
2063 static noinline int search_ioctl(struct inode *inode,
2064 				 struct btrfs_ioctl_search_key *sk,
2065 				 size_t *buf_size,
2066 				 char __user *ubuf)
2067 {
2068 	struct btrfs_root *root;
2069 	struct btrfs_key key;
2070 	struct btrfs_path *path;
2071 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2072 	int ret;
2073 	int num_found = 0;
2074 	unsigned long sk_offset = 0;
2075 
2076 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2077 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2078 		return -EOVERFLOW;
2079 	}
2080 
2081 	path = btrfs_alloc_path();
2082 	if (!path)
2083 		return -ENOMEM;
2084 
2085 	if (sk->tree_id == 0) {
2086 		/* search the root of the inode that was passed */
2087 		root = BTRFS_I(inode)->root;
2088 	} else {
2089 		key.objectid = sk->tree_id;
2090 		key.type = BTRFS_ROOT_ITEM_KEY;
2091 		key.offset = (u64)-1;
2092 		root = btrfs_read_fs_root_no_name(info, &key);
2093 		if (IS_ERR(root)) {
2094 			printk(KERN_ERR "BTRFS: could not find root %llu\n",
2095 			       sk->tree_id);
2096 			btrfs_free_path(path);
2097 			return -ENOENT;
2098 		}
2099 	}
2100 
2101 	key.objectid = sk->min_objectid;
2102 	key.type = sk->min_type;
2103 	key.offset = sk->min_offset;
2104 
2105 	while (1) {
2106 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2107 		if (ret != 0) {
2108 			if (ret > 0)
2109 				ret = 0;
2110 			goto err;
2111 		}
2112 		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2113 				 &sk_offset, &num_found);
2114 		btrfs_release_path(path);
2115 		if (ret)
2116 			break;
2117 
2118 	}
2119 	if (ret > 0)
2120 		ret = 0;
2121 err:
2122 	sk->nr_items = num_found;
2123 	btrfs_free_path(path);
2124 	return ret;
2125 }
2126 
2127 static noinline int btrfs_ioctl_tree_search(struct file *file,
2128 					   void __user *argp)
2129 {
2130 	struct btrfs_ioctl_search_args __user *uargs;
2131 	struct btrfs_ioctl_search_key sk;
2132 	struct inode *inode;
2133 	int ret;
2134 	size_t buf_size;
2135 
2136 	if (!capable(CAP_SYS_ADMIN))
2137 		return -EPERM;
2138 
2139 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2140 
2141 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2142 		return -EFAULT;
2143 
2144 	buf_size = sizeof(uargs->buf);
2145 
2146 	inode = file_inode(file);
2147 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2148 
2149 	/*
2150 	 * In the origin implementation an overflow is handled by returning a
2151 	 * search header with a len of zero, so reset ret.
2152 	 */
2153 	if (ret == -EOVERFLOW)
2154 		ret = 0;
2155 
2156 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2157 		ret = -EFAULT;
2158 	return ret;
2159 }
2160 
2161 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2162 					       void __user *argp)
2163 {
2164 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2165 	struct btrfs_ioctl_search_args_v2 args;
2166 	struct inode *inode;
2167 	int ret;
2168 	size_t buf_size;
2169 	const size_t buf_limit = 16 * 1024 * 1024;
2170 
2171 	if (!capable(CAP_SYS_ADMIN))
2172 		return -EPERM;
2173 
2174 	/* copy search header and buffer size */
2175 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2176 	if (copy_from_user(&args, uarg, sizeof(args)))
2177 		return -EFAULT;
2178 
2179 	buf_size = args.buf_size;
2180 
2181 	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2182 		return -EOVERFLOW;
2183 
2184 	/* limit result size to 16MB */
2185 	if (buf_size > buf_limit)
2186 		buf_size = buf_limit;
2187 
2188 	inode = file_inode(file);
2189 	ret = search_ioctl(inode, &args.key, &buf_size,
2190 			   (char *)(&uarg->buf[0]));
2191 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2192 		ret = -EFAULT;
2193 	else if (ret == -EOVERFLOW &&
2194 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2195 		ret = -EFAULT;
2196 
2197 	return ret;
2198 }
2199 
2200 /*
2201  * Search INODE_REFs to identify path name of 'dirid' directory
2202  * in a 'tree_id' tree. and sets path name to 'name'.
2203  */
2204 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2205 				u64 tree_id, u64 dirid, char *name)
2206 {
2207 	struct btrfs_root *root;
2208 	struct btrfs_key key;
2209 	char *ptr;
2210 	int ret = -1;
2211 	int slot;
2212 	int len;
2213 	int total_len = 0;
2214 	struct btrfs_inode_ref *iref;
2215 	struct extent_buffer *l;
2216 	struct btrfs_path *path;
2217 
2218 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2219 		name[0]='\0';
2220 		return 0;
2221 	}
2222 
2223 	path = btrfs_alloc_path();
2224 	if (!path)
2225 		return -ENOMEM;
2226 
2227 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2228 
2229 	key.objectid = tree_id;
2230 	key.type = BTRFS_ROOT_ITEM_KEY;
2231 	key.offset = (u64)-1;
2232 	root = btrfs_read_fs_root_no_name(info, &key);
2233 	if (IS_ERR(root)) {
2234 		printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2235 		ret = -ENOENT;
2236 		goto out;
2237 	}
2238 
2239 	key.objectid = dirid;
2240 	key.type = BTRFS_INODE_REF_KEY;
2241 	key.offset = (u64)-1;
2242 
2243 	while (1) {
2244 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2245 		if (ret < 0)
2246 			goto out;
2247 		else if (ret > 0) {
2248 			ret = btrfs_previous_item(root, path, dirid,
2249 						  BTRFS_INODE_REF_KEY);
2250 			if (ret < 0)
2251 				goto out;
2252 			else if (ret > 0) {
2253 				ret = -ENOENT;
2254 				goto out;
2255 			}
2256 		}
2257 
2258 		l = path->nodes[0];
2259 		slot = path->slots[0];
2260 		btrfs_item_key_to_cpu(l, &key, slot);
2261 
2262 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2263 		len = btrfs_inode_ref_name_len(l, iref);
2264 		ptr -= len + 1;
2265 		total_len += len + 1;
2266 		if (ptr < name) {
2267 			ret = -ENAMETOOLONG;
2268 			goto out;
2269 		}
2270 
2271 		*(ptr + len) = '/';
2272 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2273 
2274 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2275 			break;
2276 
2277 		btrfs_release_path(path);
2278 		key.objectid = key.offset;
2279 		key.offset = (u64)-1;
2280 		dirid = key.objectid;
2281 	}
2282 	memmove(name, ptr, total_len);
2283 	name[total_len] = '\0';
2284 	ret = 0;
2285 out:
2286 	btrfs_free_path(path);
2287 	return ret;
2288 }
2289 
2290 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2291 					   void __user *argp)
2292 {
2293 	 struct btrfs_ioctl_ino_lookup_args *args;
2294 	 struct inode *inode;
2295 	 int ret;
2296 
2297 	if (!capable(CAP_SYS_ADMIN))
2298 		return -EPERM;
2299 
2300 	args = memdup_user(argp, sizeof(*args));
2301 	if (IS_ERR(args))
2302 		return PTR_ERR(args);
2303 
2304 	inode = file_inode(file);
2305 
2306 	if (args->treeid == 0)
2307 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2308 
2309 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2310 					args->treeid, args->objectid,
2311 					args->name);
2312 
2313 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2314 		ret = -EFAULT;
2315 
2316 	kfree(args);
2317 	return ret;
2318 }
2319 
2320 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2321 					     void __user *arg)
2322 {
2323 	struct dentry *parent = file->f_path.dentry;
2324 	struct dentry *dentry;
2325 	struct inode *dir = parent->d_inode;
2326 	struct inode *inode;
2327 	struct btrfs_root *root = BTRFS_I(dir)->root;
2328 	struct btrfs_root *dest = NULL;
2329 	struct btrfs_ioctl_vol_args *vol_args;
2330 	struct btrfs_trans_handle *trans;
2331 	struct btrfs_block_rsv block_rsv;
2332 	u64 root_flags;
2333 	u64 qgroup_reserved;
2334 	int namelen;
2335 	int ret;
2336 	int err = 0;
2337 
2338 	vol_args = memdup_user(arg, sizeof(*vol_args));
2339 	if (IS_ERR(vol_args))
2340 		return PTR_ERR(vol_args);
2341 
2342 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2343 	namelen = strlen(vol_args->name);
2344 	if (strchr(vol_args->name, '/') ||
2345 	    strncmp(vol_args->name, "..", namelen) == 0) {
2346 		err = -EINVAL;
2347 		goto out;
2348 	}
2349 
2350 	err = mnt_want_write_file(file);
2351 	if (err)
2352 		goto out;
2353 
2354 
2355 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2356 	if (err == -EINTR)
2357 		goto out_drop_write;
2358 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2359 	if (IS_ERR(dentry)) {
2360 		err = PTR_ERR(dentry);
2361 		goto out_unlock_dir;
2362 	}
2363 
2364 	if (!dentry->d_inode) {
2365 		err = -ENOENT;
2366 		goto out_dput;
2367 	}
2368 
2369 	inode = dentry->d_inode;
2370 	dest = BTRFS_I(inode)->root;
2371 	if (!capable(CAP_SYS_ADMIN)) {
2372 		/*
2373 		 * Regular user.  Only allow this with a special mount
2374 		 * option, when the user has write+exec access to the
2375 		 * subvol root, and when rmdir(2) would have been
2376 		 * allowed.
2377 		 *
2378 		 * Note that this is _not_ check that the subvol is
2379 		 * empty or doesn't contain data that we wouldn't
2380 		 * otherwise be able to delete.
2381 		 *
2382 		 * Users who want to delete empty subvols should try
2383 		 * rmdir(2).
2384 		 */
2385 		err = -EPERM;
2386 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2387 			goto out_dput;
2388 
2389 		/*
2390 		 * Do not allow deletion if the parent dir is the same
2391 		 * as the dir to be deleted.  That means the ioctl
2392 		 * must be called on the dentry referencing the root
2393 		 * of the subvol, not a random directory contained
2394 		 * within it.
2395 		 */
2396 		err = -EINVAL;
2397 		if (root == dest)
2398 			goto out_dput;
2399 
2400 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2401 		if (err)
2402 			goto out_dput;
2403 	}
2404 
2405 	/* check if subvolume may be deleted by a user */
2406 	err = btrfs_may_delete(dir, dentry, 1);
2407 	if (err)
2408 		goto out_dput;
2409 
2410 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2411 		err = -EINVAL;
2412 		goto out_dput;
2413 	}
2414 
2415 	mutex_lock(&inode->i_mutex);
2416 
2417 	/*
2418 	 * Don't allow to delete a subvolume with send in progress. This is
2419 	 * inside the i_mutex so the error handling that has to drop the bit
2420 	 * again is not run concurrently.
2421 	 */
2422 	spin_lock(&dest->root_item_lock);
2423 	root_flags = btrfs_root_flags(&dest->root_item);
2424 	if (dest->send_in_progress == 0) {
2425 		btrfs_set_root_flags(&dest->root_item,
2426 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2427 		spin_unlock(&dest->root_item_lock);
2428 	} else {
2429 		spin_unlock(&dest->root_item_lock);
2430 		btrfs_warn(root->fs_info,
2431 			"Attempt to delete subvolume %llu during send",
2432 			dest->root_key.objectid);
2433 		err = -EPERM;
2434 		goto out_dput;
2435 	}
2436 
2437 	d_invalidate(dentry);
2438 
2439 	down_write(&root->fs_info->subvol_sem);
2440 
2441 	err = may_destroy_subvol(dest);
2442 	if (err)
2443 		goto out_up_write;
2444 
2445 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2446 	/*
2447 	 * One for dir inode, two for dir entries, two for root
2448 	 * ref/backref.
2449 	 */
2450 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2451 					       5, &qgroup_reserved, true);
2452 	if (err)
2453 		goto out_up_write;
2454 
2455 	trans = btrfs_start_transaction(root, 0);
2456 	if (IS_ERR(trans)) {
2457 		err = PTR_ERR(trans);
2458 		goto out_release;
2459 	}
2460 	trans->block_rsv = &block_rsv;
2461 	trans->bytes_reserved = block_rsv.size;
2462 
2463 	ret = btrfs_unlink_subvol(trans, root, dir,
2464 				dest->root_key.objectid,
2465 				dentry->d_name.name,
2466 				dentry->d_name.len);
2467 	if (ret) {
2468 		err = ret;
2469 		btrfs_abort_transaction(trans, root, ret);
2470 		goto out_end_trans;
2471 	}
2472 
2473 	btrfs_record_root_in_trans(trans, dest);
2474 
2475 	memset(&dest->root_item.drop_progress, 0,
2476 		sizeof(dest->root_item.drop_progress));
2477 	dest->root_item.drop_level = 0;
2478 	btrfs_set_root_refs(&dest->root_item, 0);
2479 
2480 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2481 		ret = btrfs_insert_orphan_item(trans,
2482 					root->fs_info->tree_root,
2483 					dest->root_key.objectid);
2484 		if (ret) {
2485 			btrfs_abort_transaction(trans, root, ret);
2486 			err = ret;
2487 			goto out_end_trans;
2488 		}
2489 	}
2490 
2491 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2492 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2493 				  dest->root_key.objectid);
2494 	if (ret && ret != -ENOENT) {
2495 		btrfs_abort_transaction(trans, root, ret);
2496 		err = ret;
2497 		goto out_end_trans;
2498 	}
2499 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2500 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2501 					  dest->root_item.received_uuid,
2502 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2503 					  dest->root_key.objectid);
2504 		if (ret && ret != -ENOENT) {
2505 			btrfs_abort_transaction(trans, root, ret);
2506 			err = ret;
2507 			goto out_end_trans;
2508 		}
2509 	}
2510 
2511 out_end_trans:
2512 	trans->block_rsv = NULL;
2513 	trans->bytes_reserved = 0;
2514 	ret = btrfs_end_transaction(trans, root);
2515 	if (ret && !err)
2516 		err = ret;
2517 	inode->i_flags |= S_DEAD;
2518 out_release:
2519 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2520 out_up_write:
2521 	up_write(&root->fs_info->subvol_sem);
2522 	if (err) {
2523 		spin_lock(&dest->root_item_lock);
2524 		root_flags = btrfs_root_flags(&dest->root_item);
2525 		btrfs_set_root_flags(&dest->root_item,
2526 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2527 		spin_unlock(&dest->root_item_lock);
2528 	}
2529 	mutex_unlock(&inode->i_mutex);
2530 	if (!err) {
2531 		shrink_dcache_sb(root->fs_info->sb);
2532 		btrfs_invalidate_inodes(dest);
2533 		d_delete(dentry);
2534 		ASSERT(dest->send_in_progress == 0);
2535 
2536 		/* the last ref */
2537 		if (dest->ino_cache_inode) {
2538 			iput(dest->ino_cache_inode);
2539 			dest->ino_cache_inode = NULL;
2540 		}
2541 	}
2542 out_dput:
2543 	dput(dentry);
2544 out_unlock_dir:
2545 	mutex_unlock(&dir->i_mutex);
2546 out_drop_write:
2547 	mnt_drop_write_file(file);
2548 out:
2549 	kfree(vol_args);
2550 	return err;
2551 }
2552 
2553 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2554 {
2555 	struct inode *inode = file_inode(file);
2556 	struct btrfs_root *root = BTRFS_I(inode)->root;
2557 	struct btrfs_ioctl_defrag_range_args *range;
2558 	int ret;
2559 
2560 	ret = mnt_want_write_file(file);
2561 	if (ret)
2562 		return ret;
2563 
2564 	if (btrfs_root_readonly(root)) {
2565 		ret = -EROFS;
2566 		goto out;
2567 	}
2568 
2569 	switch (inode->i_mode & S_IFMT) {
2570 	case S_IFDIR:
2571 		if (!capable(CAP_SYS_ADMIN)) {
2572 			ret = -EPERM;
2573 			goto out;
2574 		}
2575 		ret = btrfs_defrag_root(root);
2576 		if (ret)
2577 			goto out;
2578 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2579 		break;
2580 	case S_IFREG:
2581 		if (!(file->f_mode & FMODE_WRITE)) {
2582 			ret = -EINVAL;
2583 			goto out;
2584 		}
2585 
2586 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2587 		if (!range) {
2588 			ret = -ENOMEM;
2589 			goto out;
2590 		}
2591 
2592 		if (argp) {
2593 			if (copy_from_user(range, argp,
2594 					   sizeof(*range))) {
2595 				ret = -EFAULT;
2596 				kfree(range);
2597 				goto out;
2598 			}
2599 			/* compression requires us to start the IO */
2600 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2601 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2602 				range->extent_thresh = (u32)-1;
2603 			}
2604 		} else {
2605 			/* the rest are all set to zero by kzalloc */
2606 			range->len = (u64)-1;
2607 		}
2608 		ret = btrfs_defrag_file(file_inode(file), file,
2609 					range, 0, 0);
2610 		if (ret > 0)
2611 			ret = 0;
2612 		kfree(range);
2613 		break;
2614 	default:
2615 		ret = -EINVAL;
2616 	}
2617 out:
2618 	mnt_drop_write_file(file);
2619 	return ret;
2620 }
2621 
2622 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2623 {
2624 	struct btrfs_ioctl_vol_args *vol_args;
2625 	int ret;
2626 
2627 	if (!capable(CAP_SYS_ADMIN))
2628 		return -EPERM;
2629 
2630 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2631 			1)) {
2632 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2633 	}
2634 
2635 	mutex_lock(&root->fs_info->volume_mutex);
2636 	vol_args = memdup_user(arg, sizeof(*vol_args));
2637 	if (IS_ERR(vol_args)) {
2638 		ret = PTR_ERR(vol_args);
2639 		goto out;
2640 	}
2641 
2642 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2643 	ret = btrfs_init_new_device(root, vol_args->name);
2644 
2645 	if (!ret)
2646 		btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2647 
2648 	kfree(vol_args);
2649 out:
2650 	mutex_unlock(&root->fs_info->volume_mutex);
2651 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2652 	return ret;
2653 }
2654 
2655 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2656 {
2657 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2658 	struct btrfs_ioctl_vol_args *vol_args;
2659 	int ret;
2660 
2661 	if (!capable(CAP_SYS_ADMIN))
2662 		return -EPERM;
2663 
2664 	ret = mnt_want_write_file(file);
2665 	if (ret)
2666 		return ret;
2667 
2668 	vol_args = memdup_user(arg, sizeof(*vol_args));
2669 	if (IS_ERR(vol_args)) {
2670 		ret = PTR_ERR(vol_args);
2671 		goto err_drop;
2672 	}
2673 
2674 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2675 
2676 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2677 			1)) {
2678 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2679 		goto out;
2680 	}
2681 
2682 	mutex_lock(&root->fs_info->volume_mutex);
2683 	ret = btrfs_rm_device(root, vol_args->name);
2684 	mutex_unlock(&root->fs_info->volume_mutex);
2685 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2686 
2687 	if (!ret)
2688 		btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2689 
2690 out:
2691 	kfree(vol_args);
2692 err_drop:
2693 	mnt_drop_write_file(file);
2694 	return ret;
2695 }
2696 
2697 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2698 {
2699 	struct btrfs_ioctl_fs_info_args *fi_args;
2700 	struct btrfs_device *device;
2701 	struct btrfs_device *next;
2702 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2703 	int ret = 0;
2704 
2705 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2706 	if (!fi_args)
2707 		return -ENOMEM;
2708 
2709 	mutex_lock(&fs_devices->device_list_mutex);
2710 	fi_args->num_devices = fs_devices->num_devices;
2711 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2712 
2713 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2714 		if (device->devid > fi_args->max_id)
2715 			fi_args->max_id = device->devid;
2716 	}
2717 	mutex_unlock(&fs_devices->device_list_mutex);
2718 
2719 	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2720 	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2721 	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2722 
2723 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2724 		ret = -EFAULT;
2725 
2726 	kfree(fi_args);
2727 	return ret;
2728 }
2729 
2730 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2731 {
2732 	struct btrfs_ioctl_dev_info_args *di_args;
2733 	struct btrfs_device *dev;
2734 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2735 	int ret = 0;
2736 	char *s_uuid = NULL;
2737 
2738 	di_args = memdup_user(arg, sizeof(*di_args));
2739 	if (IS_ERR(di_args))
2740 		return PTR_ERR(di_args);
2741 
2742 	if (!btrfs_is_empty_uuid(di_args->uuid))
2743 		s_uuid = di_args->uuid;
2744 
2745 	mutex_lock(&fs_devices->device_list_mutex);
2746 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2747 
2748 	if (!dev) {
2749 		ret = -ENODEV;
2750 		goto out;
2751 	}
2752 
2753 	di_args->devid = dev->devid;
2754 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2755 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2756 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2757 	if (dev->name) {
2758 		struct rcu_string *name;
2759 
2760 		rcu_read_lock();
2761 		name = rcu_dereference(dev->name);
2762 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2763 		rcu_read_unlock();
2764 		di_args->path[sizeof(di_args->path) - 1] = 0;
2765 	} else {
2766 		di_args->path[0] = '\0';
2767 	}
2768 
2769 out:
2770 	mutex_unlock(&fs_devices->device_list_mutex);
2771 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2772 		ret = -EFAULT;
2773 
2774 	kfree(di_args);
2775 	return ret;
2776 }
2777 
2778 static struct page *extent_same_get_page(struct inode *inode, u64 off)
2779 {
2780 	struct page *page;
2781 	pgoff_t index;
2782 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2783 
2784 	index = off >> PAGE_CACHE_SHIFT;
2785 
2786 	page = grab_cache_page(inode->i_mapping, index);
2787 	if (!page)
2788 		return NULL;
2789 
2790 	if (!PageUptodate(page)) {
2791 		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2792 						 0))
2793 			return NULL;
2794 		lock_page(page);
2795 		if (!PageUptodate(page)) {
2796 			unlock_page(page);
2797 			page_cache_release(page);
2798 			return NULL;
2799 		}
2800 	}
2801 	unlock_page(page);
2802 
2803 	return page;
2804 }
2805 
2806 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2807 {
2808 	/* do any pending delalloc/csum calc on src, one way or
2809 	   another, and lock file content */
2810 	while (1) {
2811 		struct btrfs_ordered_extent *ordered;
2812 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2813 		ordered = btrfs_lookup_first_ordered_extent(inode,
2814 							    off + len - 1);
2815 		if ((!ordered ||
2816 		     ordered->file_offset + ordered->len <= off ||
2817 		     ordered->file_offset >= off + len) &&
2818 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2819 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2820 			if (ordered)
2821 				btrfs_put_ordered_extent(ordered);
2822 			break;
2823 		}
2824 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2825 		if (ordered)
2826 			btrfs_put_ordered_extent(ordered);
2827 		btrfs_wait_ordered_range(inode, off, len);
2828 	}
2829 }
2830 
2831 static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2832 				struct inode *inode2, u64 loff2, u64 len)
2833 {
2834 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2835 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2836 
2837 	mutex_unlock(&inode1->i_mutex);
2838 	mutex_unlock(&inode2->i_mutex);
2839 }
2840 
2841 static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2842 			      struct inode *inode2, u64 loff2, u64 len)
2843 {
2844 	if (inode1 < inode2) {
2845 		swap(inode1, inode2);
2846 		swap(loff1, loff2);
2847 	}
2848 
2849 	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2850 	lock_extent_range(inode1, loff1, len);
2851 	if (inode1 != inode2) {
2852 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2853 		lock_extent_range(inode2, loff2, len);
2854 	}
2855 }
2856 
2857 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2858 			  u64 dst_loff, u64 len)
2859 {
2860 	int ret = 0;
2861 	struct page *src_page, *dst_page;
2862 	unsigned int cmp_len = PAGE_CACHE_SIZE;
2863 	void *addr, *dst_addr;
2864 
2865 	while (len) {
2866 		if (len < PAGE_CACHE_SIZE)
2867 			cmp_len = len;
2868 
2869 		src_page = extent_same_get_page(src, loff);
2870 		if (!src_page)
2871 			return -EINVAL;
2872 		dst_page = extent_same_get_page(dst, dst_loff);
2873 		if (!dst_page) {
2874 			page_cache_release(src_page);
2875 			return -EINVAL;
2876 		}
2877 		addr = kmap_atomic(src_page);
2878 		dst_addr = kmap_atomic(dst_page);
2879 
2880 		flush_dcache_page(src_page);
2881 		flush_dcache_page(dst_page);
2882 
2883 		if (memcmp(addr, dst_addr, cmp_len))
2884 			ret = BTRFS_SAME_DATA_DIFFERS;
2885 
2886 		kunmap_atomic(addr);
2887 		kunmap_atomic(dst_addr);
2888 		page_cache_release(src_page);
2889 		page_cache_release(dst_page);
2890 
2891 		if (ret)
2892 			break;
2893 
2894 		loff += cmp_len;
2895 		dst_loff += cmp_len;
2896 		len -= cmp_len;
2897 	}
2898 
2899 	return ret;
2900 }
2901 
2902 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2903 {
2904 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2905 
2906 	if (off + len > inode->i_size || off + len < off)
2907 		return -EINVAL;
2908 	/* Check that we are block aligned - btrfs_clone() requires this */
2909 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2910 		return -EINVAL;
2911 
2912 	return 0;
2913 }
2914 
2915 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2916 			     struct inode *dst, u64 dst_loff)
2917 {
2918 	int ret;
2919 
2920 	/*
2921 	 * btrfs_clone() can't handle extents in the same file
2922 	 * yet. Once that works, we can drop this check and replace it
2923 	 * with a check for the same inode, but overlapping extents.
2924 	 */
2925 	if (src == dst)
2926 		return -EINVAL;
2927 
2928 	btrfs_double_lock(src, loff, dst, dst_loff, len);
2929 
2930 	ret = extent_same_check_offsets(src, loff, len);
2931 	if (ret)
2932 		goto out_unlock;
2933 
2934 	ret = extent_same_check_offsets(dst, dst_loff, len);
2935 	if (ret)
2936 		goto out_unlock;
2937 
2938 	/* don't make the dst file partly checksummed */
2939 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2940 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2941 		ret = -EINVAL;
2942 		goto out_unlock;
2943 	}
2944 
2945 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2946 	if (ret == 0)
2947 		ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2948 
2949 out_unlock:
2950 	btrfs_double_unlock(src, loff, dst, dst_loff, len);
2951 
2952 	return ret;
2953 }
2954 
2955 #define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
2956 
2957 static long btrfs_ioctl_file_extent_same(struct file *file,
2958 			struct btrfs_ioctl_same_args __user *argp)
2959 {
2960 	struct btrfs_ioctl_same_args *same;
2961 	struct btrfs_ioctl_same_extent_info *info;
2962 	struct inode *src = file_inode(file);
2963 	u64 off;
2964 	u64 len;
2965 	int i;
2966 	int ret;
2967 	unsigned long size;
2968 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2969 	bool is_admin = capable(CAP_SYS_ADMIN);
2970 	u16 count;
2971 
2972 	if (!(file->f_mode & FMODE_READ))
2973 		return -EINVAL;
2974 
2975 	ret = mnt_want_write_file(file);
2976 	if (ret)
2977 		return ret;
2978 
2979 	if (get_user(count, &argp->dest_count)) {
2980 		ret = -EFAULT;
2981 		goto out;
2982 	}
2983 
2984 	size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
2985 
2986 	same = memdup_user(argp, size);
2987 
2988 	if (IS_ERR(same)) {
2989 		ret = PTR_ERR(same);
2990 		goto out;
2991 	}
2992 
2993 	off = same->logical_offset;
2994 	len = same->length;
2995 
2996 	/*
2997 	 * Limit the total length we will dedupe for each operation.
2998 	 * This is intended to bound the total time spent in this
2999 	 * ioctl to something sane.
3000 	 */
3001 	if (len > BTRFS_MAX_DEDUPE_LEN)
3002 		len = BTRFS_MAX_DEDUPE_LEN;
3003 
3004 	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
3005 		/*
3006 		 * Btrfs does not support blocksize < page_size. As a
3007 		 * result, btrfs_cmp_data() won't correctly handle
3008 		 * this situation without an update.
3009 		 */
3010 		ret = -EINVAL;
3011 		goto out;
3012 	}
3013 
3014 	ret = -EISDIR;
3015 	if (S_ISDIR(src->i_mode))
3016 		goto out;
3017 
3018 	ret = -EACCES;
3019 	if (!S_ISREG(src->i_mode))
3020 		goto out;
3021 
3022 	/* pre-format output fields to sane values */
3023 	for (i = 0; i < count; i++) {
3024 		same->info[i].bytes_deduped = 0ULL;
3025 		same->info[i].status = 0;
3026 	}
3027 
3028 	for (i = 0, info = same->info; i < count; i++, info++) {
3029 		struct inode *dst;
3030 		struct fd dst_file = fdget(info->fd);
3031 		if (!dst_file.file) {
3032 			info->status = -EBADF;
3033 			continue;
3034 		}
3035 		dst = file_inode(dst_file.file);
3036 
3037 		if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
3038 			info->status = -EINVAL;
3039 		} else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
3040 			info->status = -EXDEV;
3041 		} else if (S_ISDIR(dst->i_mode)) {
3042 			info->status = -EISDIR;
3043 		} else if (!S_ISREG(dst->i_mode)) {
3044 			info->status = -EACCES;
3045 		} else {
3046 			info->status = btrfs_extent_same(src, off, len, dst,
3047 							info->logical_offset);
3048 			if (info->status == 0)
3049 				info->bytes_deduped += len;
3050 		}
3051 		fdput(dst_file);
3052 	}
3053 
3054 	ret = copy_to_user(argp, same, size);
3055 	if (ret)
3056 		ret = -EFAULT;
3057 
3058 out:
3059 	mnt_drop_write_file(file);
3060 	return ret;
3061 }
3062 
3063 /* Helper to check and see if this root currently has a ref on the given disk
3064  * bytenr.  If it does then we need to update the quota for this root.  This
3065  * doesn't do anything if quotas aren't enabled.
3066  */
3067 static int check_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3068 		     u64 disko)
3069 {
3070 	struct seq_list tree_mod_seq_elem = {};
3071 	struct ulist *roots;
3072 	struct ulist_iterator uiter;
3073 	struct ulist_node *root_node = NULL;
3074 	int ret;
3075 
3076 	if (!root->fs_info->quota_enabled)
3077 		return 1;
3078 
3079 	btrfs_get_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3080 	ret = btrfs_find_all_roots(trans, root->fs_info, disko,
3081 				   tree_mod_seq_elem.seq, &roots);
3082 	if (ret < 0)
3083 		goto out;
3084 	ret = 0;
3085 	ULIST_ITER_INIT(&uiter);
3086 	while ((root_node = ulist_next(roots, &uiter))) {
3087 		if (root_node->val == root->objectid) {
3088 			ret = 1;
3089 			break;
3090 		}
3091 	}
3092 	ulist_free(roots);
3093 out:
3094 	btrfs_put_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3095 	return ret;
3096 }
3097 
3098 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3099 				     struct inode *inode,
3100 				     u64 endoff,
3101 				     const u64 destoff,
3102 				     const u64 olen)
3103 {
3104 	struct btrfs_root *root = BTRFS_I(inode)->root;
3105 	int ret;
3106 
3107 	inode_inc_iversion(inode);
3108 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3109 	/*
3110 	 * We round up to the block size at eof when determining which
3111 	 * extents to clone above, but shouldn't round up the file size.
3112 	 */
3113 	if (endoff > destoff + olen)
3114 		endoff = destoff + olen;
3115 	if (endoff > inode->i_size)
3116 		btrfs_i_size_write(inode, endoff);
3117 
3118 	ret = btrfs_update_inode(trans, root, inode);
3119 	if (ret) {
3120 		btrfs_abort_transaction(trans, root, ret);
3121 		btrfs_end_transaction(trans, root);
3122 		goto out;
3123 	}
3124 	ret = btrfs_end_transaction(trans, root);
3125 out:
3126 	return ret;
3127 }
3128 
3129 static void clone_update_extent_map(struct inode *inode,
3130 				    const struct btrfs_trans_handle *trans,
3131 				    const struct btrfs_path *path,
3132 				    const u64 hole_offset,
3133 				    const u64 hole_len)
3134 {
3135 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3136 	struct extent_map *em;
3137 	int ret;
3138 
3139 	em = alloc_extent_map();
3140 	if (!em) {
3141 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3142 			&BTRFS_I(inode)->runtime_flags);
3143 		return;
3144 	}
3145 
3146 	if (path) {
3147 		struct btrfs_file_extent_item *fi;
3148 
3149 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3150 				    struct btrfs_file_extent_item);
3151 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3152 		em->generation = -1;
3153 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3154 		    BTRFS_FILE_EXTENT_INLINE)
3155 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3156 				&BTRFS_I(inode)->runtime_flags);
3157 	} else {
3158 		em->start = hole_offset;
3159 		em->len = hole_len;
3160 		em->ram_bytes = em->len;
3161 		em->orig_start = hole_offset;
3162 		em->block_start = EXTENT_MAP_HOLE;
3163 		em->block_len = 0;
3164 		em->orig_block_len = 0;
3165 		em->compress_type = BTRFS_COMPRESS_NONE;
3166 		em->generation = trans->transid;
3167 	}
3168 
3169 	while (1) {
3170 		write_lock(&em_tree->lock);
3171 		ret = add_extent_mapping(em_tree, em, 1);
3172 		write_unlock(&em_tree->lock);
3173 		if (ret != -EEXIST) {
3174 			free_extent_map(em);
3175 			break;
3176 		}
3177 		btrfs_drop_extent_cache(inode, em->start,
3178 					em->start + em->len - 1, 0);
3179 	}
3180 
3181 	if (ret)
3182 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3183 			&BTRFS_I(inode)->runtime_flags);
3184 }
3185 
3186 /**
3187  * btrfs_clone() - clone a range from inode file to another
3188  *
3189  * @src: Inode to clone from
3190  * @inode: Inode to clone to
3191  * @off: Offset within source to start clone from
3192  * @olen: Original length, passed by user, of range to clone
3193  * @olen_aligned: Block-aligned value of olen, extent_same uses
3194  *               identical values here
3195  * @destoff: Offset within @inode to start clone
3196  */
3197 static int btrfs_clone(struct inode *src, struct inode *inode,
3198 		       const u64 off, const u64 olen, const u64 olen_aligned,
3199 		       const u64 destoff)
3200 {
3201 	struct btrfs_root *root = BTRFS_I(inode)->root;
3202 	struct btrfs_path *path = NULL;
3203 	struct extent_buffer *leaf;
3204 	struct btrfs_trans_handle *trans;
3205 	char *buf = NULL;
3206 	struct btrfs_key key;
3207 	u32 nritems;
3208 	int slot;
3209 	int ret;
3210 	int no_quota;
3211 	const u64 len = olen_aligned;
3212 	u64 last_disko = 0;
3213 	u64 last_dest_end = destoff;
3214 
3215 	ret = -ENOMEM;
3216 	buf = vmalloc(root->nodesize);
3217 	if (!buf)
3218 		return ret;
3219 
3220 	path = btrfs_alloc_path();
3221 	if (!path) {
3222 		vfree(buf);
3223 		return ret;
3224 	}
3225 
3226 	path->reada = 2;
3227 	/* clone data */
3228 	key.objectid = btrfs_ino(src);
3229 	key.type = BTRFS_EXTENT_DATA_KEY;
3230 	key.offset = off;
3231 
3232 	while (1) {
3233 		/*
3234 		 * note the key will change type as we walk through the
3235 		 * tree.
3236 		 */
3237 		path->leave_spinning = 1;
3238 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3239 				0, 0);
3240 		if (ret < 0)
3241 			goto out;
3242 		/*
3243 		 * First search, if no extent item that starts at offset off was
3244 		 * found but the previous item is an extent item, it's possible
3245 		 * it might overlap our target range, therefore process it.
3246 		 */
3247 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3248 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3249 					      path->slots[0] - 1);
3250 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3251 				path->slots[0]--;
3252 		}
3253 
3254 		nritems = btrfs_header_nritems(path->nodes[0]);
3255 process_slot:
3256 		no_quota = 1;
3257 		if (path->slots[0] >= nritems) {
3258 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3259 			if (ret < 0)
3260 				goto out;
3261 			if (ret > 0)
3262 				break;
3263 			nritems = btrfs_header_nritems(path->nodes[0]);
3264 		}
3265 		leaf = path->nodes[0];
3266 		slot = path->slots[0];
3267 
3268 		btrfs_item_key_to_cpu(leaf, &key, slot);
3269 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3270 		    key.objectid != btrfs_ino(src))
3271 			break;
3272 
3273 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3274 			struct btrfs_file_extent_item *extent;
3275 			int type;
3276 			u32 size;
3277 			struct btrfs_key new_key;
3278 			u64 disko = 0, diskl = 0;
3279 			u64 datao = 0, datal = 0;
3280 			u8 comp;
3281 			u64 drop_start;
3282 
3283 			extent = btrfs_item_ptr(leaf, slot,
3284 						struct btrfs_file_extent_item);
3285 			comp = btrfs_file_extent_compression(leaf, extent);
3286 			type = btrfs_file_extent_type(leaf, extent);
3287 			if (type == BTRFS_FILE_EXTENT_REG ||
3288 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3289 				disko = btrfs_file_extent_disk_bytenr(leaf,
3290 								      extent);
3291 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3292 								 extent);
3293 				datao = btrfs_file_extent_offset(leaf, extent);
3294 				datal = btrfs_file_extent_num_bytes(leaf,
3295 								    extent);
3296 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3297 				/* take upper bound, may be compressed */
3298 				datal = btrfs_file_extent_ram_bytes(leaf,
3299 								    extent);
3300 			}
3301 
3302 			/*
3303 			 * The first search might have left us at an extent
3304 			 * item that ends before our target range's start, can
3305 			 * happen if we have holes and NO_HOLES feature enabled.
3306 			 */
3307 			if (key.offset + datal <= off) {
3308 				path->slots[0]++;
3309 				goto process_slot;
3310 			} else if (key.offset >= off + len) {
3311 				break;
3312 			}
3313 
3314 			size = btrfs_item_size_nr(leaf, slot);
3315 			read_extent_buffer(leaf, buf,
3316 					   btrfs_item_ptr_offset(leaf, slot),
3317 					   size);
3318 
3319 			btrfs_release_path(path);
3320 			path->leave_spinning = 0;
3321 
3322 			memcpy(&new_key, &key, sizeof(new_key));
3323 			new_key.objectid = btrfs_ino(inode);
3324 			if (off <= key.offset)
3325 				new_key.offset = key.offset + destoff - off;
3326 			else
3327 				new_key.offset = destoff;
3328 
3329 			/*
3330 			 * Deal with a hole that doesn't have an extent item
3331 			 * that represents it (NO_HOLES feature enabled).
3332 			 * This hole is either in the middle of the cloning
3333 			 * range or at the beginning (fully overlaps it or
3334 			 * partially overlaps it).
3335 			 */
3336 			if (new_key.offset != last_dest_end)
3337 				drop_start = last_dest_end;
3338 			else
3339 				drop_start = new_key.offset;
3340 
3341 			/*
3342 			 * 1 - adjusting old extent (we may have to split it)
3343 			 * 1 - add new extent
3344 			 * 1 - inode update
3345 			 */
3346 			trans = btrfs_start_transaction(root, 3);
3347 			if (IS_ERR(trans)) {
3348 				ret = PTR_ERR(trans);
3349 				goto out;
3350 			}
3351 
3352 			if (type == BTRFS_FILE_EXTENT_REG ||
3353 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3354 				/*
3355 				 *    a  | --- range to clone ---|  b
3356 				 * | ------------- extent ------------- |
3357 				 */
3358 
3359 				/* subtract range b */
3360 				if (key.offset + datal > off + len)
3361 					datal = off + len - key.offset;
3362 
3363 				/* subtract range a */
3364 				if (off > key.offset) {
3365 					datao += off - key.offset;
3366 					datal -= off - key.offset;
3367 				}
3368 
3369 				ret = btrfs_drop_extents(trans, root, inode,
3370 							 drop_start,
3371 							 new_key.offset + datal,
3372 							 1);
3373 				if (ret) {
3374 					if (ret != -EOPNOTSUPP)
3375 						btrfs_abort_transaction(trans,
3376 								root, ret);
3377 					btrfs_end_transaction(trans, root);
3378 					goto out;
3379 				}
3380 
3381 				ret = btrfs_insert_empty_item(trans, root, path,
3382 							      &new_key, size);
3383 				if (ret) {
3384 					btrfs_abort_transaction(trans, root,
3385 								ret);
3386 					btrfs_end_transaction(trans, root);
3387 					goto out;
3388 				}
3389 
3390 				leaf = path->nodes[0];
3391 				slot = path->slots[0];
3392 				write_extent_buffer(leaf, buf,
3393 					    btrfs_item_ptr_offset(leaf, slot),
3394 					    size);
3395 
3396 				extent = btrfs_item_ptr(leaf, slot,
3397 						struct btrfs_file_extent_item);
3398 
3399 				/* disko == 0 means it's a hole */
3400 				if (!disko)
3401 					datao = 0;
3402 
3403 				btrfs_set_file_extent_offset(leaf, extent,
3404 							     datao);
3405 				btrfs_set_file_extent_num_bytes(leaf, extent,
3406 								datal);
3407 
3408 				/*
3409 				 * We need to look up the roots that point at
3410 				 * this bytenr and see if the new root does.  If
3411 				 * it does not we need to make sure we update
3412 				 * quotas appropriately.
3413 				 */
3414 				if (disko && root != BTRFS_I(src)->root &&
3415 				    disko != last_disko) {
3416 					no_quota = check_ref(trans, root,
3417 							     disko);
3418 					if (no_quota < 0) {
3419 						btrfs_abort_transaction(trans,
3420 									root,
3421 									ret);
3422 						btrfs_end_transaction(trans,
3423 								      root);
3424 						ret = no_quota;
3425 						goto out;
3426 					}
3427 				}
3428 
3429 				if (disko) {
3430 					inode_add_bytes(inode, datal);
3431 					ret = btrfs_inc_extent_ref(trans, root,
3432 							disko, diskl, 0,
3433 							root->root_key.objectid,
3434 							btrfs_ino(inode),
3435 							new_key.offset - datao,
3436 							no_quota);
3437 					if (ret) {
3438 						btrfs_abort_transaction(trans,
3439 									root,
3440 									ret);
3441 						btrfs_end_transaction(trans,
3442 								      root);
3443 						goto out;
3444 
3445 					}
3446 				}
3447 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3448 				u64 skip = 0;
3449 				u64 trim = 0;
3450 				u64 aligned_end = 0;
3451 
3452 				if (off > key.offset) {
3453 					skip = off - key.offset;
3454 					new_key.offset += skip;
3455 				}
3456 
3457 				if (key.offset + datal > off + len)
3458 					trim = key.offset + datal - (off + len);
3459 
3460 				if (comp && (skip || trim)) {
3461 					ret = -EINVAL;
3462 					btrfs_end_transaction(trans, root);
3463 					goto out;
3464 				}
3465 				size -= skip + trim;
3466 				datal -= skip + trim;
3467 
3468 				aligned_end = ALIGN(new_key.offset + datal,
3469 						    root->sectorsize);
3470 				ret = btrfs_drop_extents(trans, root, inode,
3471 							 drop_start,
3472 							 aligned_end,
3473 							 1);
3474 				if (ret) {
3475 					if (ret != -EOPNOTSUPP)
3476 						btrfs_abort_transaction(trans,
3477 							root, ret);
3478 					btrfs_end_transaction(trans, root);
3479 					goto out;
3480 				}
3481 
3482 				ret = btrfs_insert_empty_item(trans, root, path,
3483 							      &new_key, size);
3484 				if (ret) {
3485 					btrfs_abort_transaction(trans, root,
3486 								ret);
3487 					btrfs_end_transaction(trans, root);
3488 					goto out;
3489 				}
3490 
3491 				if (skip) {
3492 					u32 start =
3493 					  btrfs_file_extent_calc_inline_size(0);
3494 					memmove(buf+start, buf+start+skip,
3495 						datal);
3496 				}
3497 
3498 				leaf = path->nodes[0];
3499 				slot = path->slots[0];
3500 				write_extent_buffer(leaf, buf,
3501 					    btrfs_item_ptr_offset(leaf, slot),
3502 					    size);
3503 				inode_add_bytes(inode, datal);
3504 			}
3505 
3506 			/* If we have an implicit hole (NO_HOLES feature). */
3507 			if (drop_start < new_key.offset)
3508 				clone_update_extent_map(inode, trans,
3509 						NULL, drop_start,
3510 						new_key.offset - drop_start);
3511 
3512 			clone_update_extent_map(inode, trans, path, 0, 0);
3513 
3514 			btrfs_mark_buffer_dirty(leaf);
3515 			btrfs_release_path(path);
3516 
3517 			last_dest_end = ALIGN(new_key.offset + datal,
3518 					      root->sectorsize);
3519 			ret = clone_finish_inode_update(trans, inode,
3520 							last_dest_end,
3521 							destoff, olen);
3522 			if (ret)
3523 				goto out;
3524 			if (new_key.offset + datal >= destoff + len)
3525 				break;
3526 		}
3527 		btrfs_release_path(path);
3528 		key.offset++;
3529 	}
3530 	ret = 0;
3531 
3532 	if (last_dest_end < destoff + len) {
3533 		/*
3534 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3535 		 * fully or partially overlaps our cloning range at its end.
3536 		 */
3537 		btrfs_release_path(path);
3538 
3539 		/*
3540 		 * 1 - remove extent(s)
3541 		 * 1 - inode update
3542 		 */
3543 		trans = btrfs_start_transaction(root, 2);
3544 		if (IS_ERR(trans)) {
3545 			ret = PTR_ERR(trans);
3546 			goto out;
3547 		}
3548 		ret = btrfs_drop_extents(trans, root, inode,
3549 					 last_dest_end, destoff + len, 1);
3550 		if (ret) {
3551 			if (ret != -EOPNOTSUPP)
3552 				btrfs_abort_transaction(trans, root, ret);
3553 			btrfs_end_transaction(trans, root);
3554 			goto out;
3555 		}
3556 		clone_update_extent_map(inode, trans, NULL, last_dest_end,
3557 					destoff + len - last_dest_end);
3558 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3559 						destoff, olen);
3560 	}
3561 
3562 out:
3563 	btrfs_free_path(path);
3564 	vfree(buf);
3565 	return ret;
3566 }
3567 
3568 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3569 				       u64 off, u64 olen, u64 destoff)
3570 {
3571 	struct inode *inode = file_inode(file);
3572 	struct btrfs_root *root = BTRFS_I(inode)->root;
3573 	struct fd src_file;
3574 	struct inode *src;
3575 	int ret;
3576 	u64 len = olen;
3577 	u64 bs = root->fs_info->sb->s_blocksize;
3578 	int same_inode = 0;
3579 
3580 	/*
3581 	 * TODO:
3582 	 * - split compressed inline extents.  annoying: we need to
3583 	 *   decompress into destination's address_space (the file offset
3584 	 *   may change, so source mapping won't do), then recompress (or
3585 	 *   otherwise reinsert) a subrange.
3586 	 *
3587 	 * - split destination inode's inline extents.  The inline extents can
3588 	 *   be either compressed or non-compressed.
3589 	 */
3590 
3591 	/* the destination must be opened for writing */
3592 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3593 		return -EINVAL;
3594 
3595 	if (btrfs_root_readonly(root))
3596 		return -EROFS;
3597 
3598 	ret = mnt_want_write_file(file);
3599 	if (ret)
3600 		return ret;
3601 
3602 	src_file = fdget(srcfd);
3603 	if (!src_file.file) {
3604 		ret = -EBADF;
3605 		goto out_drop_write;
3606 	}
3607 
3608 	ret = -EXDEV;
3609 	if (src_file.file->f_path.mnt != file->f_path.mnt)
3610 		goto out_fput;
3611 
3612 	src = file_inode(src_file.file);
3613 
3614 	ret = -EINVAL;
3615 	if (src == inode)
3616 		same_inode = 1;
3617 
3618 	/* the src must be open for reading */
3619 	if (!(src_file.file->f_mode & FMODE_READ))
3620 		goto out_fput;
3621 
3622 	/* don't make the dst file partly checksummed */
3623 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3624 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3625 		goto out_fput;
3626 
3627 	ret = -EISDIR;
3628 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3629 		goto out_fput;
3630 
3631 	ret = -EXDEV;
3632 	if (src->i_sb != inode->i_sb)
3633 		goto out_fput;
3634 
3635 	if (!same_inode) {
3636 		if (inode < src) {
3637 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3638 			mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3639 		} else {
3640 			mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3641 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3642 		}
3643 	} else {
3644 		mutex_lock(&src->i_mutex);
3645 	}
3646 
3647 	/* determine range to clone */
3648 	ret = -EINVAL;
3649 	if (off + len > src->i_size || off + len < off)
3650 		goto out_unlock;
3651 	if (len == 0)
3652 		olen = len = src->i_size - off;
3653 	/* if we extend to eof, continue to block boundary */
3654 	if (off + len == src->i_size)
3655 		len = ALIGN(src->i_size, bs) - off;
3656 
3657 	/* verify the end result is block aligned */
3658 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3659 	    !IS_ALIGNED(destoff, bs))
3660 		goto out_unlock;
3661 
3662 	/* verify if ranges are overlapped within the same file */
3663 	if (same_inode) {
3664 		if (destoff + len > off && destoff < off + len)
3665 			goto out_unlock;
3666 	}
3667 
3668 	if (destoff > inode->i_size) {
3669 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3670 		if (ret)
3671 			goto out_unlock;
3672 	}
3673 
3674 	/*
3675 	 * Lock the target range too. Right after we replace the file extent
3676 	 * items in the fs tree (which now point to the cloned data), we might
3677 	 * have a worker replace them with extent items relative to a write
3678 	 * operation that was issued before this clone operation (i.e. confront
3679 	 * with inode.c:btrfs_finish_ordered_io).
3680 	 */
3681 	if (same_inode) {
3682 		u64 lock_start = min_t(u64, off, destoff);
3683 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3684 
3685 		lock_extent_range(src, lock_start, lock_len);
3686 	} else {
3687 		lock_extent_range(src, off, len);
3688 		lock_extent_range(inode, destoff, len);
3689 	}
3690 
3691 	ret = btrfs_clone(src, inode, off, olen, len, destoff);
3692 
3693 	if (same_inode) {
3694 		u64 lock_start = min_t(u64, off, destoff);
3695 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3696 
3697 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3698 	} else {
3699 		unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3700 		unlock_extent(&BTRFS_I(inode)->io_tree, destoff,
3701 			      destoff + len - 1);
3702 	}
3703 	/*
3704 	 * Truncate page cache pages so that future reads will see the cloned
3705 	 * data immediately and not the previous data.
3706 	 */
3707 	truncate_inode_pages_range(&inode->i_data, destoff,
3708 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3709 out_unlock:
3710 	if (!same_inode) {
3711 		if (inode < src) {
3712 			mutex_unlock(&src->i_mutex);
3713 			mutex_unlock(&inode->i_mutex);
3714 		} else {
3715 			mutex_unlock(&inode->i_mutex);
3716 			mutex_unlock(&src->i_mutex);
3717 		}
3718 	} else {
3719 		mutex_unlock(&src->i_mutex);
3720 	}
3721 out_fput:
3722 	fdput(src_file);
3723 out_drop_write:
3724 	mnt_drop_write_file(file);
3725 	return ret;
3726 }
3727 
3728 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3729 {
3730 	struct btrfs_ioctl_clone_range_args args;
3731 
3732 	if (copy_from_user(&args, argp, sizeof(args)))
3733 		return -EFAULT;
3734 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3735 				 args.src_length, args.dest_offset);
3736 }
3737 
3738 /*
3739  * there are many ways the trans_start and trans_end ioctls can lead
3740  * to deadlocks.  They should only be used by applications that
3741  * basically own the machine, and have a very in depth understanding
3742  * of all the possible deadlocks and enospc problems.
3743  */
3744 static long btrfs_ioctl_trans_start(struct file *file)
3745 {
3746 	struct inode *inode = file_inode(file);
3747 	struct btrfs_root *root = BTRFS_I(inode)->root;
3748 	struct btrfs_trans_handle *trans;
3749 	int ret;
3750 
3751 	ret = -EPERM;
3752 	if (!capable(CAP_SYS_ADMIN))
3753 		goto out;
3754 
3755 	ret = -EINPROGRESS;
3756 	if (file->private_data)
3757 		goto out;
3758 
3759 	ret = -EROFS;
3760 	if (btrfs_root_readonly(root))
3761 		goto out;
3762 
3763 	ret = mnt_want_write_file(file);
3764 	if (ret)
3765 		goto out;
3766 
3767 	atomic_inc(&root->fs_info->open_ioctl_trans);
3768 
3769 	ret = -ENOMEM;
3770 	trans = btrfs_start_ioctl_transaction(root);
3771 	if (IS_ERR(trans))
3772 		goto out_drop;
3773 
3774 	file->private_data = trans;
3775 	return 0;
3776 
3777 out_drop:
3778 	atomic_dec(&root->fs_info->open_ioctl_trans);
3779 	mnt_drop_write_file(file);
3780 out:
3781 	return ret;
3782 }
3783 
3784 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3785 {
3786 	struct inode *inode = file_inode(file);
3787 	struct btrfs_root *root = BTRFS_I(inode)->root;
3788 	struct btrfs_root *new_root;
3789 	struct btrfs_dir_item *di;
3790 	struct btrfs_trans_handle *trans;
3791 	struct btrfs_path *path;
3792 	struct btrfs_key location;
3793 	struct btrfs_disk_key disk_key;
3794 	u64 objectid = 0;
3795 	u64 dir_id;
3796 	int ret;
3797 
3798 	if (!capable(CAP_SYS_ADMIN))
3799 		return -EPERM;
3800 
3801 	ret = mnt_want_write_file(file);
3802 	if (ret)
3803 		return ret;
3804 
3805 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3806 		ret = -EFAULT;
3807 		goto out;
3808 	}
3809 
3810 	if (!objectid)
3811 		objectid = BTRFS_FS_TREE_OBJECTID;
3812 
3813 	location.objectid = objectid;
3814 	location.type = BTRFS_ROOT_ITEM_KEY;
3815 	location.offset = (u64)-1;
3816 
3817 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3818 	if (IS_ERR(new_root)) {
3819 		ret = PTR_ERR(new_root);
3820 		goto out;
3821 	}
3822 
3823 	path = btrfs_alloc_path();
3824 	if (!path) {
3825 		ret = -ENOMEM;
3826 		goto out;
3827 	}
3828 	path->leave_spinning = 1;
3829 
3830 	trans = btrfs_start_transaction(root, 1);
3831 	if (IS_ERR(trans)) {
3832 		btrfs_free_path(path);
3833 		ret = PTR_ERR(trans);
3834 		goto out;
3835 	}
3836 
3837 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3838 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3839 				   dir_id, "default", 7, 1);
3840 	if (IS_ERR_OR_NULL(di)) {
3841 		btrfs_free_path(path);
3842 		btrfs_end_transaction(trans, root);
3843 		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3844 			   "item, this isn't going to work");
3845 		ret = -ENOENT;
3846 		goto out;
3847 	}
3848 
3849 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3850 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3851 	btrfs_mark_buffer_dirty(path->nodes[0]);
3852 	btrfs_free_path(path);
3853 
3854 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3855 	btrfs_end_transaction(trans, root);
3856 out:
3857 	mnt_drop_write_file(file);
3858 	return ret;
3859 }
3860 
3861 void btrfs_get_block_group_info(struct list_head *groups_list,
3862 				struct btrfs_ioctl_space_info *space)
3863 {
3864 	struct btrfs_block_group_cache *block_group;
3865 
3866 	space->total_bytes = 0;
3867 	space->used_bytes = 0;
3868 	space->flags = 0;
3869 	list_for_each_entry(block_group, groups_list, list) {
3870 		space->flags = block_group->flags;
3871 		space->total_bytes += block_group->key.offset;
3872 		space->used_bytes +=
3873 			btrfs_block_group_used(&block_group->item);
3874 	}
3875 }
3876 
3877 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3878 {
3879 	struct btrfs_ioctl_space_args space_args;
3880 	struct btrfs_ioctl_space_info space;
3881 	struct btrfs_ioctl_space_info *dest;
3882 	struct btrfs_ioctl_space_info *dest_orig;
3883 	struct btrfs_ioctl_space_info __user *user_dest;
3884 	struct btrfs_space_info *info;
3885 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3886 		       BTRFS_BLOCK_GROUP_SYSTEM,
3887 		       BTRFS_BLOCK_GROUP_METADATA,
3888 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3889 	int num_types = 4;
3890 	int alloc_size;
3891 	int ret = 0;
3892 	u64 slot_count = 0;
3893 	int i, c;
3894 
3895 	if (copy_from_user(&space_args,
3896 			   (struct btrfs_ioctl_space_args __user *)arg,
3897 			   sizeof(space_args)))
3898 		return -EFAULT;
3899 
3900 	for (i = 0; i < num_types; i++) {
3901 		struct btrfs_space_info *tmp;
3902 
3903 		info = NULL;
3904 		rcu_read_lock();
3905 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3906 					list) {
3907 			if (tmp->flags == types[i]) {
3908 				info = tmp;
3909 				break;
3910 			}
3911 		}
3912 		rcu_read_unlock();
3913 
3914 		if (!info)
3915 			continue;
3916 
3917 		down_read(&info->groups_sem);
3918 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3919 			if (!list_empty(&info->block_groups[c]))
3920 				slot_count++;
3921 		}
3922 		up_read(&info->groups_sem);
3923 	}
3924 
3925 	/*
3926 	 * Global block reserve, exported as a space_info
3927 	 */
3928 	slot_count++;
3929 
3930 	/* space_slots == 0 means they are asking for a count */
3931 	if (space_args.space_slots == 0) {
3932 		space_args.total_spaces = slot_count;
3933 		goto out;
3934 	}
3935 
3936 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3937 
3938 	alloc_size = sizeof(*dest) * slot_count;
3939 
3940 	/* we generally have at most 6 or so space infos, one for each raid
3941 	 * level.  So, a whole page should be more than enough for everyone
3942 	 */
3943 	if (alloc_size > PAGE_CACHE_SIZE)
3944 		return -ENOMEM;
3945 
3946 	space_args.total_spaces = 0;
3947 	dest = kmalloc(alloc_size, GFP_NOFS);
3948 	if (!dest)
3949 		return -ENOMEM;
3950 	dest_orig = dest;
3951 
3952 	/* now we have a buffer to copy into */
3953 	for (i = 0; i < num_types; i++) {
3954 		struct btrfs_space_info *tmp;
3955 
3956 		if (!slot_count)
3957 			break;
3958 
3959 		info = NULL;
3960 		rcu_read_lock();
3961 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3962 					list) {
3963 			if (tmp->flags == types[i]) {
3964 				info = tmp;
3965 				break;
3966 			}
3967 		}
3968 		rcu_read_unlock();
3969 
3970 		if (!info)
3971 			continue;
3972 		down_read(&info->groups_sem);
3973 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3974 			if (!list_empty(&info->block_groups[c])) {
3975 				btrfs_get_block_group_info(
3976 					&info->block_groups[c], &space);
3977 				memcpy(dest, &space, sizeof(space));
3978 				dest++;
3979 				space_args.total_spaces++;
3980 				slot_count--;
3981 			}
3982 			if (!slot_count)
3983 				break;
3984 		}
3985 		up_read(&info->groups_sem);
3986 	}
3987 
3988 	/*
3989 	 * Add global block reserve
3990 	 */
3991 	if (slot_count) {
3992 		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
3993 
3994 		spin_lock(&block_rsv->lock);
3995 		space.total_bytes = block_rsv->size;
3996 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3997 		spin_unlock(&block_rsv->lock);
3998 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3999 		memcpy(dest, &space, sizeof(space));
4000 		space_args.total_spaces++;
4001 	}
4002 
4003 	user_dest = (struct btrfs_ioctl_space_info __user *)
4004 		(arg + sizeof(struct btrfs_ioctl_space_args));
4005 
4006 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4007 		ret = -EFAULT;
4008 
4009 	kfree(dest_orig);
4010 out:
4011 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4012 		ret = -EFAULT;
4013 
4014 	return ret;
4015 }
4016 
4017 /*
4018  * there are many ways the trans_start and trans_end ioctls can lead
4019  * to deadlocks.  They should only be used by applications that
4020  * basically own the machine, and have a very in depth understanding
4021  * of all the possible deadlocks and enospc problems.
4022  */
4023 long btrfs_ioctl_trans_end(struct file *file)
4024 {
4025 	struct inode *inode = file_inode(file);
4026 	struct btrfs_root *root = BTRFS_I(inode)->root;
4027 	struct btrfs_trans_handle *trans;
4028 
4029 	trans = file->private_data;
4030 	if (!trans)
4031 		return -EINVAL;
4032 	file->private_data = NULL;
4033 
4034 	btrfs_end_transaction(trans, root);
4035 
4036 	atomic_dec(&root->fs_info->open_ioctl_trans);
4037 
4038 	mnt_drop_write_file(file);
4039 	return 0;
4040 }
4041 
4042 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4043 					    void __user *argp)
4044 {
4045 	struct btrfs_trans_handle *trans;
4046 	u64 transid;
4047 	int ret;
4048 
4049 	trans = btrfs_attach_transaction_barrier(root);
4050 	if (IS_ERR(trans)) {
4051 		if (PTR_ERR(trans) != -ENOENT)
4052 			return PTR_ERR(trans);
4053 
4054 		/* No running transaction, don't bother */
4055 		transid = root->fs_info->last_trans_committed;
4056 		goto out;
4057 	}
4058 	transid = trans->transid;
4059 	ret = btrfs_commit_transaction_async(trans, root, 0);
4060 	if (ret) {
4061 		btrfs_end_transaction(trans, root);
4062 		return ret;
4063 	}
4064 out:
4065 	if (argp)
4066 		if (copy_to_user(argp, &transid, sizeof(transid)))
4067 			return -EFAULT;
4068 	return 0;
4069 }
4070 
4071 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4072 					   void __user *argp)
4073 {
4074 	u64 transid;
4075 
4076 	if (argp) {
4077 		if (copy_from_user(&transid, argp, sizeof(transid)))
4078 			return -EFAULT;
4079 	} else {
4080 		transid = 0;  /* current trans */
4081 	}
4082 	return btrfs_wait_for_commit(root, transid);
4083 }
4084 
4085 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4086 {
4087 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4088 	struct btrfs_ioctl_scrub_args *sa;
4089 	int ret;
4090 
4091 	if (!capable(CAP_SYS_ADMIN))
4092 		return -EPERM;
4093 
4094 	sa = memdup_user(arg, sizeof(*sa));
4095 	if (IS_ERR(sa))
4096 		return PTR_ERR(sa);
4097 
4098 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4099 		ret = mnt_want_write_file(file);
4100 		if (ret)
4101 			goto out;
4102 	}
4103 
4104 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4105 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4106 			      0);
4107 
4108 	if (copy_to_user(arg, sa, sizeof(*sa)))
4109 		ret = -EFAULT;
4110 
4111 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4112 		mnt_drop_write_file(file);
4113 out:
4114 	kfree(sa);
4115 	return ret;
4116 }
4117 
4118 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4119 {
4120 	if (!capable(CAP_SYS_ADMIN))
4121 		return -EPERM;
4122 
4123 	return btrfs_scrub_cancel(root->fs_info);
4124 }
4125 
4126 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4127 				       void __user *arg)
4128 {
4129 	struct btrfs_ioctl_scrub_args *sa;
4130 	int ret;
4131 
4132 	if (!capable(CAP_SYS_ADMIN))
4133 		return -EPERM;
4134 
4135 	sa = memdup_user(arg, sizeof(*sa));
4136 	if (IS_ERR(sa))
4137 		return PTR_ERR(sa);
4138 
4139 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4140 
4141 	if (copy_to_user(arg, sa, sizeof(*sa)))
4142 		ret = -EFAULT;
4143 
4144 	kfree(sa);
4145 	return ret;
4146 }
4147 
4148 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4149 				      void __user *arg)
4150 {
4151 	struct btrfs_ioctl_get_dev_stats *sa;
4152 	int ret;
4153 
4154 	sa = memdup_user(arg, sizeof(*sa));
4155 	if (IS_ERR(sa))
4156 		return PTR_ERR(sa);
4157 
4158 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4159 		kfree(sa);
4160 		return -EPERM;
4161 	}
4162 
4163 	ret = btrfs_get_dev_stats(root, sa);
4164 
4165 	if (copy_to_user(arg, sa, sizeof(*sa)))
4166 		ret = -EFAULT;
4167 
4168 	kfree(sa);
4169 	return ret;
4170 }
4171 
4172 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4173 {
4174 	struct btrfs_ioctl_dev_replace_args *p;
4175 	int ret;
4176 
4177 	if (!capable(CAP_SYS_ADMIN))
4178 		return -EPERM;
4179 
4180 	p = memdup_user(arg, sizeof(*p));
4181 	if (IS_ERR(p))
4182 		return PTR_ERR(p);
4183 
4184 	switch (p->cmd) {
4185 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4186 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4187 			ret = -EROFS;
4188 			goto out;
4189 		}
4190 		if (atomic_xchg(
4191 			&root->fs_info->mutually_exclusive_operation_running,
4192 			1)) {
4193 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4194 		} else {
4195 			ret = btrfs_dev_replace_start(root, p);
4196 			atomic_set(
4197 			 &root->fs_info->mutually_exclusive_operation_running,
4198 			 0);
4199 		}
4200 		break;
4201 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4202 		btrfs_dev_replace_status(root->fs_info, p);
4203 		ret = 0;
4204 		break;
4205 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4206 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
4207 		break;
4208 	default:
4209 		ret = -EINVAL;
4210 		break;
4211 	}
4212 
4213 	if (copy_to_user(arg, p, sizeof(*p)))
4214 		ret = -EFAULT;
4215 out:
4216 	kfree(p);
4217 	return ret;
4218 }
4219 
4220 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4221 {
4222 	int ret = 0;
4223 	int i;
4224 	u64 rel_ptr;
4225 	int size;
4226 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4227 	struct inode_fs_paths *ipath = NULL;
4228 	struct btrfs_path *path;
4229 
4230 	if (!capable(CAP_DAC_READ_SEARCH))
4231 		return -EPERM;
4232 
4233 	path = btrfs_alloc_path();
4234 	if (!path) {
4235 		ret = -ENOMEM;
4236 		goto out;
4237 	}
4238 
4239 	ipa = memdup_user(arg, sizeof(*ipa));
4240 	if (IS_ERR(ipa)) {
4241 		ret = PTR_ERR(ipa);
4242 		ipa = NULL;
4243 		goto out;
4244 	}
4245 
4246 	size = min_t(u32, ipa->size, 4096);
4247 	ipath = init_ipath(size, root, path);
4248 	if (IS_ERR(ipath)) {
4249 		ret = PTR_ERR(ipath);
4250 		ipath = NULL;
4251 		goto out;
4252 	}
4253 
4254 	ret = paths_from_inode(ipa->inum, ipath);
4255 	if (ret < 0)
4256 		goto out;
4257 
4258 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4259 		rel_ptr = ipath->fspath->val[i] -
4260 			  (u64)(unsigned long)ipath->fspath->val;
4261 		ipath->fspath->val[i] = rel_ptr;
4262 	}
4263 
4264 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4265 			   (void *)(unsigned long)ipath->fspath, size);
4266 	if (ret) {
4267 		ret = -EFAULT;
4268 		goto out;
4269 	}
4270 
4271 out:
4272 	btrfs_free_path(path);
4273 	free_ipath(ipath);
4274 	kfree(ipa);
4275 
4276 	return ret;
4277 }
4278 
4279 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4280 {
4281 	struct btrfs_data_container *inodes = ctx;
4282 	const size_t c = 3 * sizeof(u64);
4283 
4284 	if (inodes->bytes_left >= c) {
4285 		inodes->bytes_left -= c;
4286 		inodes->val[inodes->elem_cnt] = inum;
4287 		inodes->val[inodes->elem_cnt + 1] = offset;
4288 		inodes->val[inodes->elem_cnt + 2] = root;
4289 		inodes->elem_cnt += 3;
4290 	} else {
4291 		inodes->bytes_missing += c - inodes->bytes_left;
4292 		inodes->bytes_left = 0;
4293 		inodes->elem_missed += 3;
4294 	}
4295 
4296 	return 0;
4297 }
4298 
4299 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4300 					void __user *arg)
4301 {
4302 	int ret = 0;
4303 	int size;
4304 	struct btrfs_ioctl_logical_ino_args *loi;
4305 	struct btrfs_data_container *inodes = NULL;
4306 	struct btrfs_path *path = NULL;
4307 
4308 	if (!capable(CAP_SYS_ADMIN))
4309 		return -EPERM;
4310 
4311 	loi = memdup_user(arg, sizeof(*loi));
4312 	if (IS_ERR(loi)) {
4313 		ret = PTR_ERR(loi);
4314 		loi = NULL;
4315 		goto out;
4316 	}
4317 
4318 	path = btrfs_alloc_path();
4319 	if (!path) {
4320 		ret = -ENOMEM;
4321 		goto out;
4322 	}
4323 
4324 	size = min_t(u32, loi->size, 64 * 1024);
4325 	inodes = init_data_container(size);
4326 	if (IS_ERR(inodes)) {
4327 		ret = PTR_ERR(inodes);
4328 		inodes = NULL;
4329 		goto out;
4330 	}
4331 
4332 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4333 					  build_ino_list, inodes);
4334 	if (ret == -EINVAL)
4335 		ret = -ENOENT;
4336 	if (ret < 0)
4337 		goto out;
4338 
4339 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4340 			   (void *)(unsigned long)inodes, size);
4341 	if (ret)
4342 		ret = -EFAULT;
4343 
4344 out:
4345 	btrfs_free_path(path);
4346 	vfree(inodes);
4347 	kfree(loi);
4348 
4349 	return ret;
4350 }
4351 
4352 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4353 			       struct btrfs_ioctl_balance_args *bargs)
4354 {
4355 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4356 
4357 	bargs->flags = bctl->flags;
4358 
4359 	if (atomic_read(&fs_info->balance_running))
4360 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4361 	if (atomic_read(&fs_info->balance_pause_req))
4362 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4363 	if (atomic_read(&fs_info->balance_cancel_req))
4364 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4365 
4366 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4367 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4368 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4369 
4370 	if (lock) {
4371 		spin_lock(&fs_info->balance_lock);
4372 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4373 		spin_unlock(&fs_info->balance_lock);
4374 	} else {
4375 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4376 	}
4377 }
4378 
4379 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4380 {
4381 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4382 	struct btrfs_fs_info *fs_info = root->fs_info;
4383 	struct btrfs_ioctl_balance_args *bargs;
4384 	struct btrfs_balance_control *bctl;
4385 	bool need_unlock; /* for mut. excl. ops lock */
4386 	int ret;
4387 
4388 	if (!capable(CAP_SYS_ADMIN))
4389 		return -EPERM;
4390 
4391 	ret = mnt_want_write_file(file);
4392 	if (ret)
4393 		return ret;
4394 
4395 again:
4396 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4397 		mutex_lock(&fs_info->volume_mutex);
4398 		mutex_lock(&fs_info->balance_mutex);
4399 		need_unlock = true;
4400 		goto locked;
4401 	}
4402 
4403 	/*
4404 	 * mut. excl. ops lock is locked.  Three possibilites:
4405 	 *   (1) some other op is running
4406 	 *   (2) balance is running
4407 	 *   (3) balance is paused -- special case (think resume)
4408 	 */
4409 	mutex_lock(&fs_info->balance_mutex);
4410 	if (fs_info->balance_ctl) {
4411 		/* this is either (2) or (3) */
4412 		if (!atomic_read(&fs_info->balance_running)) {
4413 			mutex_unlock(&fs_info->balance_mutex);
4414 			if (!mutex_trylock(&fs_info->volume_mutex))
4415 				goto again;
4416 			mutex_lock(&fs_info->balance_mutex);
4417 
4418 			if (fs_info->balance_ctl &&
4419 			    !atomic_read(&fs_info->balance_running)) {
4420 				/* this is (3) */
4421 				need_unlock = false;
4422 				goto locked;
4423 			}
4424 
4425 			mutex_unlock(&fs_info->balance_mutex);
4426 			mutex_unlock(&fs_info->volume_mutex);
4427 			goto again;
4428 		} else {
4429 			/* this is (2) */
4430 			mutex_unlock(&fs_info->balance_mutex);
4431 			ret = -EINPROGRESS;
4432 			goto out;
4433 		}
4434 	} else {
4435 		/* this is (1) */
4436 		mutex_unlock(&fs_info->balance_mutex);
4437 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4438 		goto out;
4439 	}
4440 
4441 locked:
4442 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4443 
4444 	if (arg) {
4445 		bargs = memdup_user(arg, sizeof(*bargs));
4446 		if (IS_ERR(bargs)) {
4447 			ret = PTR_ERR(bargs);
4448 			goto out_unlock;
4449 		}
4450 
4451 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4452 			if (!fs_info->balance_ctl) {
4453 				ret = -ENOTCONN;
4454 				goto out_bargs;
4455 			}
4456 
4457 			bctl = fs_info->balance_ctl;
4458 			spin_lock(&fs_info->balance_lock);
4459 			bctl->flags |= BTRFS_BALANCE_RESUME;
4460 			spin_unlock(&fs_info->balance_lock);
4461 
4462 			goto do_balance;
4463 		}
4464 	} else {
4465 		bargs = NULL;
4466 	}
4467 
4468 	if (fs_info->balance_ctl) {
4469 		ret = -EINPROGRESS;
4470 		goto out_bargs;
4471 	}
4472 
4473 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4474 	if (!bctl) {
4475 		ret = -ENOMEM;
4476 		goto out_bargs;
4477 	}
4478 
4479 	bctl->fs_info = fs_info;
4480 	if (arg) {
4481 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4482 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4483 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4484 
4485 		bctl->flags = bargs->flags;
4486 	} else {
4487 		/* balance everything - no filters */
4488 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4489 	}
4490 
4491 do_balance:
4492 	/*
4493 	 * Ownership of bctl and mutually_exclusive_operation_running
4494 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4495 	 * or, if restriper was paused all the way until unmount, in
4496 	 * free_fs_info.  mutually_exclusive_operation_running is
4497 	 * cleared in __cancel_balance.
4498 	 */
4499 	need_unlock = false;
4500 
4501 	ret = btrfs_balance(bctl, bargs);
4502 
4503 	if (arg) {
4504 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4505 			ret = -EFAULT;
4506 	}
4507 
4508 out_bargs:
4509 	kfree(bargs);
4510 out_unlock:
4511 	mutex_unlock(&fs_info->balance_mutex);
4512 	mutex_unlock(&fs_info->volume_mutex);
4513 	if (need_unlock)
4514 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4515 out:
4516 	mnt_drop_write_file(file);
4517 	return ret;
4518 }
4519 
4520 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4521 {
4522 	if (!capable(CAP_SYS_ADMIN))
4523 		return -EPERM;
4524 
4525 	switch (cmd) {
4526 	case BTRFS_BALANCE_CTL_PAUSE:
4527 		return btrfs_pause_balance(root->fs_info);
4528 	case BTRFS_BALANCE_CTL_CANCEL:
4529 		return btrfs_cancel_balance(root->fs_info);
4530 	}
4531 
4532 	return -EINVAL;
4533 }
4534 
4535 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4536 					 void __user *arg)
4537 {
4538 	struct btrfs_fs_info *fs_info = root->fs_info;
4539 	struct btrfs_ioctl_balance_args *bargs;
4540 	int ret = 0;
4541 
4542 	if (!capable(CAP_SYS_ADMIN))
4543 		return -EPERM;
4544 
4545 	mutex_lock(&fs_info->balance_mutex);
4546 	if (!fs_info->balance_ctl) {
4547 		ret = -ENOTCONN;
4548 		goto out;
4549 	}
4550 
4551 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4552 	if (!bargs) {
4553 		ret = -ENOMEM;
4554 		goto out;
4555 	}
4556 
4557 	update_ioctl_balance_args(fs_info, 1, bargs);
4558 
4559 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4560 		ret = -EFAULT;
4561 
4562 	kfree(bargs);
4563 out:
4564 	mutex_unlock(&fs_info->balance_mutex);
4565 	return ret;
4566 }
4567 
4568 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4569 {
4570 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4571 	struct btrfs_ioctl_quota_ctl_args *sa;
4572 	struct btrfs_trans_handle *trans = NULL;
4573 	int ret;
4574 	int err;
4575 
4576 	if (!capable(CAP_SYS_ADMIN))
4577 		return -EPERM;
4578 
4579 	ret = mnt_want_write_file(file);
4580 	if (ret)
4581 		return ret;
4582 
4583 	sa = memdup_user(arg, sizeof(*sa));
4584 	if (IS_ERR(sa)) {
4585 		ret = PTR_ERR(sa);
4586 		goto drop_write;
4587 	}
4588 
4589 	down_write(&root->fs_info->subvol_sem);
4590 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4591 	if (IS_ERR(trans)) {
4592 		ret = PTR_ERR(trans);
4593 		goto out;
4594 	}
4595 
4596 	switch (sa->cmd) {
4597 	case BTRFS_QUOTA_CTL_ENABLE:
4598 		ret = btrfs_quota_enable(trans, root->fs_info);
4599 		break;
4600 	case BTRFS_QUOTA_CTL_DISABLE:
4601 		ret = btrfs_quota_disable(trans, root->fs_info);
4602 		break;
4603 	default:
4604 		ret = -EINVAL;
4605 		break;
4606 	}
4607 
4608 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4609 	if (err && !ret)
4610 		ret = err;
4611 out:
4612 	kfree(sa);
4613 	up_write(&root->fs_info->subvol_sem);
4614 drop_write:
4615 	mnt_drop_write_file(file);
4616 	return ret;
4617 }
4618 
4619 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4620 {
4621 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4622 	struct btrfs_ioctl_qgroup_assign_args *sa;
4623 	struct btrfs_trans_handle *trans;
4624 	int ret;
4625 	int err;
4626 
4627 	if (!capable(CAP_SYS_ADMIN))
4628 		return -EPERM;
4629 
4630 	ret = mnt_want_write_file(file);
4631 	if (ret)
4632 		return ret;
4633 
4634 	sa = memdup_user(arg, sizeof(*sa));
4635 	if (IS_ERR(sa)) {
4636 		ret = PTR_ERR(sa);
4637 		goto drop_write;
4638 	}
4639 
4640 	trans = btrfs_join_transaction(root);
4641 	if (IS_ERR(trans)) {
4642 		ret = PTR_ERR(trans);
4643 		goto out;
4644 	}
4645 
4646 	/* FIXME: check if the IDs really exist */
4647 	if (sa->assign) {
4648 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4649 						sa->src, sa->dst);
4650 	} else {
4651 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4652 						sa->src, sa->dst);
4653 	}
4654 
4655 	err = btrfs_end_transaction(trans, root);
4656 	if (err && !ret)
4657 		ret = err;
4658 
4659 out:
4660 	kfree(sa);
4661 drop_write:
4662 	mnt_drop_write_file(file);
4663 	return ret;
4664 }
4665 
4666 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4667 {
4668 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4669 	struct btrfs_ioctl_qgroup_create_args *sa;
4670 	struct btrfs_trans_handle *trans;
4671 	int ret;
4672 	int err;
4673 
4674 	if (!capable(CAP_SYS_ADMIN))
4675 		return -EPERM;
4676 
4677 	ret = mnt_want_write_file(file);
4678 	if (ret)
4679 		return ret;
4680 
4681 	sa = memdup_user(arg, sizeof(*sa));
4682 	if (IS_ERR(sa)) {
4683 		ret = PTR_ERR(sa);
4684 		goto drop_write;
4685 	}
4686 
4687 	if (!sa->qgroupid) {
4688 		ret = -EINVAL;
4689 		goto out;
4690 	}
4691 
4692 	trans = btrfs_join_transaction(root);
4693 	if (IS_ERR(trans)) {
4694 		ret = PTR_ERR(trans);
4695 		goto out;
4696 	}
4697 
4698 	/* FIXME: check if the IDs really exist */
4699 	if (sa->create) {
4700 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
4701 					  NULL);
4702 	} else {
4703 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4704 	}
4705 
4706 	err = btrfs_end_transaction(trans, root);
4707 	if (err && !ret)
4708 		ret = err;
4709 
4710 out:
4711 	kfree(sa);
4712 drop_write:
4713 	mnt_drop_write_file(file);
4714 	return ret;
4715 }
4716 
4717 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4718 {
4719 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4720 	struct btrfs_ioctl_qgroup_limit_args *sa;
4721 	struct btrfs_trans_handle *trans;
4722 	int ret;
4723 	int err;
4724 	u64 qgroupid;
4725 
4726 	if (!capable(CAP_SYS_ADMIN))
4727 		return -EPERM;
4728 
4729 	ret = mnt_want_write_file(file);
4730 	if (ret)
4731 		return ret;
4732 
4733 	sa = memdup_user(arg, sizeof(*sa));
4734 	if (IS_ERR(sa)) {
4735 		ret = PTR_ERR(sa);
4736 		goto drop_write;
4737 	}
4738 
4739 	trans = btrfs_join_transaction(root);
4740 	if (IS_ERR(trans)) {
4741 		ret = PTR_ERR(trans);
4742 		goto out;
4743 	}
4744 
4745 	qgroupid = sa->qgroupid;
4746 	if (!qgroupid) {
4747 		/* take the current subvol as qgroup */
4748 		qgroupid = root->root_key.objectid;
4749 	}
4750 
4751 	/* FIXME: check if the IDs really exist */
4752 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4753 
4754 	err = btrfs_end_transaction(trans, root);
4755 	if (err && !ret)
4756 		ret = err;
4757 
4758 out:
4759 	kfree(sa);
4760 drop_write:
4761 	mnt_drop_write_file(file);
4762 	return ret;
4763 }
4764 
4765 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4766 {
4767 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4768 	struct btrfs_ioctl_quota_rescan_args *qsa;
4769 	int ret;
4770 
4771 	if (!capable(CAP_SYS_ADMIN))
4772 		return -EPERM;
4773 
4774 	ret = mnt_want_write_file(file);
4775 	if (ret)
4776 		return ret;
4777 
4778 	qsa = memdup_user(arg, sizeof(*qsa));
4779 	if (IS_ERR(qsa)) {
4780 		ret = PTR_ERR(qsa);
4781 		goto drop_write;
4782 	}
4783 
4784 	if (qsa->flags) {
4785 		ret = -EINVAL;
4786 		goto out;
4787 	}
4788 
4789 	ret = btrfs_qgroup_rescan(root->fs_info);
4790 
4791 out:
4792 	kfree(qsa);
4793 drop_write:
4794 	mnt_drop_write_file(file);
4795 	return ret;
4796 }
4797 
4798 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4799 {
4800 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4801 	struct btrfs_ioctl_quota_rescan_args *qsa;
4802 	int ret = 0;
4803 
4804 	if (!capable(CAP_SYS_ADMIN))
4805 		return -EPERM;
4806 
4807 	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4808 	if (!qsa)
4809 		return -ENOMEM;
4810 
4811 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4812 		qsa->flags = 1;
4813 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4814 	}
4815 
4816 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4817 		ret = -EFAULT;
4818 
4819 	kfree(qsa);
4820 	return ret;
4821 }
4822 
4823 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4824 {
4825 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4826 
4827 	if (!capable(CAP_SYS_ADMIN))
4828 		return -EPERM;
4829 
4830 	return btrfs_qgroup_wait_for_completion(root->fs_info);
4831 }
4832 
4833 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4834 					    struct btrfs_ioctl_received_subvol_args *sa)
4835 {
4836 	struct inode *inode = file_inode(file);
4837 	struct btrfs_root *root = BTRFS_I(inode)->root;
4838 	struct btrfs_root_item *root_item = &root->root_item;
4839 	struct btrfs_trans_handle *trans;
4840 	struct timespec ct = CURRENT_TIME;
4841 	int ret = 0;
4842 	int received_uuid_changed;
4843 
4844 	if (!inode_owner_or_capable(inode))
4845 		return -EPERM;
4846 
4847 	ret = mnt_want_write_file(file);
4848 	if (ret < 0)
4849 		return ret;
4850 
4851 	down_write(&root->fs_info->subvol_sem);
4852 
4853 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4854 		ret = -EINVAL;
4855 		goto out;
4856 	}
4857 
4858 	if (btrfs_root_readonly(root)) {
4859 		ret = -EROFS;
4860 		goto out;
4861 	}
4862 
4863 	/*
4864 	 * 1 - root item
4865 	 * 2 - uuid items (received uuid + subvol uuid)
4866 	 */
4867 	trans = btrfs_start_transaction(root, 3);
4868 	if (IS_ERR(trans)) {
4869 		ret = PTR_ERR(trans);
4870 		trans = NULL;
4871 		goto out;
4872 	}
4873 
4874 	sa->rtransid = trans->transid;
4875 	sa->rtime.sec = ct.tv_sec;
4876 	sa->rtime.nsec = ct.tv_nsec;
4877 
4878 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4879 				       BTRFS_UUID_SIZE);
4880 	if (received_uuid_changed &&
4881 	    !btrfs_is_empty_uuid(root_item->received_uuid))
4882 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4883 				    root_item->received_uuid,
4884 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4885 				    root->root_key.objectid);
4886 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4887 	btrfs_set_root_stransid(root_item, sa->stransid);
4888 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4889 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4890 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4891 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4892 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4893 
4894 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4895 				&root->root_key, &root->root_item);
4896 	if (ret < 0) {
4897 		btrfs_end_transaction(trans, root);
4898 		goto out;
4899 	}
4900 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4901 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4902 					  sa->uuid,
4903 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4904 					  root->root_key.objectid);
4905 		if (ret < 0 && ret != -EEXIST) {
4906 			btrfs_abort_transaction(trans, root, ret);
4907 			goto out;
4908 		}
4909 	}
4910 	ret = btrfs_commit_transaction(trans, root);
4911 	if (ret < 0) {
4912 		btrfs_abort_transaction(trans, root, ret);
4913 		goto out;
4914 	}
4915 
4916 out:
4917 	up_write(&root->fs_info->subvol_sem);
4918 	mnt_drop_write_file(file);
4919 	return ret;
4920 }
4921 
4922 #ifdef CONFIG_64BIT
4923 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4924 						void __user *arg)
4925 {
4926 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4927 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4928 	int ret = 0;
4929 
4930 	args32 = memdup_user(arg, sizeof(*args32));
4931 	if (IS_ERR(args32)) {
4932 		ret = PTR_ERR(args32);
4933 		args32 = NULL;
4934 		goto out;
4935 	}
4936 
4937 	args64 = kmalloc(sizeof(*args64), GFP_NOFS);
4938 	if (!args64) {
4939 		ret = -ENOMEM;
4940 		goto out;
4941 	}
4942 
4943 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4944 	args64->stransid = args32->stransid;
4945 	args64->rtransid = args32->rtransid;
4946 	args64->stime.sec = args32->stime.sec;
4947 	args64->stime.nsec = args32->stime.nsec;
4948 	args64->rtime.sec = args32->rtime.sec;
4949 	args64->rtime.nsec = args32->rtime.nsec;
4950 	args64->flags = args32->flags;
4951 
4952 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4953 	if (ret)
4954 		goto out;
4955 
4956 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4957 	args32->stransid = args64->stransid;
4958 	args32->rtransid = args64->rtransid;
4959 	args32->stime.sec = args64->stime.sec;
4960 	args32->stime.nsec = args64->stime.nsec;
4961 	args32->rtime.sec = args64->rtime.sec;
4962 	args32->rtime.nsec = args64->rtime.nsec;
4963 	args32->flags = args64->flags;
4964 
4965 	ret = copy_to_user(arg, args32, sizeof(*args32));
4966 	if (ret)
4967 		ret = -EFAULT;
4968 
4969 out:
4970 	kfree(args32);
4971 	kfree(args64);
4972 	return ret;
4973 }
4974 #endif
4975 
4976 static long btrfs_ioctl_set_received_subvol(struct file *file,
4977 					    void __user *arg)
4978 {
4979 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4980 	int ret = 0;
4981 
4982 	sa = memdup_user(arg, sizeof(*sa));
4983 	if (IS_ERR(sa)) {
4984 		ret = PTR_ERR(sa);
4985 		sa = NULL;
4986 		goto out;
4987 	}
4988 
4989 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4990 
4991 	if (ret)
4992 		goto out;
4993 
4994 	ret = copy_to_user(arg, sa, sizeof(*sa));
4995 	if (ret)
4996 		ret = -EFAULT;
4997 
4998 out:
4999 	kfree(sa);
5000 	return ret;
5001 }
5002 
5003 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5004 {
5005 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5006 	size_t len;
5007 	int ret;
5008 	char label[BTRFS_LABEL_SIZE];
5009 
5010 	spin_lock(&root->fs_info->super_lock);
5011 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5012 	spin_unlock(&root->fs_info->super_lock);
5013 
5014 	len = strnlen(label, BTRFS_LABEL_SIZE);
5015 
5016 	if (len == BTRFS_LABEL_SIZE) {
5017 		btrfs_warn(root->fs_info,
5018 			"label is too long, return the first %zu bytes", --len);
5019 	}
5020 
5021 	ret = copy_to_user(arg, label, len);
5022 
5023 	return ret ? -EFAULT : 0;
5024 }
5025 
5026 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5027 {
5028 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5029 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5030 	struct btrfs_trans_handle *trans;
5031 	char label[BTRFS_LABEL_SIZE];
5032 	int ret;
5033 
5034 	if (!capable(CAP_SYS_ADMIN))
5035 		return -EPERM;
5036 
5037 	if (copy_from_user(label, arg, sizeof(label)))
5038 		return -EFAULT;
5039 
5040 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5041 		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5042 		       BTRFS_LABEL_SIZE - 1);
5043 		return -EINVAL;
5044 	}
5045 
5046 	ret = mnt_want_write_file(file);
5047 	if (ret)
5048 		return ret;
5049 
5050 	trans = btrfs_start_transaction(root, 0);
5051 	if (IS_ERR(trans)) {
5052 		ret = PTR_ERR(trans);
5053 		goto out_unlock;
5054 	}
5055 
5056 	spin_lock(&root->fs_info->super_lock);
5057 	strcpy(super_block->label, label);
5058 	spin_unlock(&root->fs_info->super_lock);
5059 	ret = btrfs_commit_transaction(trans, root);
5060 
5061 out_unlock:
5062 	mnt_drop_write_file(file);
5063 	return ret;
5064 }
5065 
5066 #define INIT_FEATURE_FLAGS(suffix) \
5067 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5068 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5069 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5070 
5071 static int btrfs_ioctl_get_supported_features(struct file *file,
5072 					      void __user *arg)
5073 {
5074 	static struct btrfs_ioctl_feature_flags features[3] = {
5075 		INIT_FEATURE_FLAGS(SUPP),
5076 		INIT_FEATURE_FLAGS(SAFE_SET),
5077 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5078 	};
5079 
5080 	if (copy_to_user(arg, &features, sizeof(features)))
5081 		return -EFAULT;
5082 
5083 	return 0;
5084 }
5085 
5086 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5087 {
5088 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5089 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5090 	struct btrfs_ioctl_feature_flags features;
5091 
5092 	features.compat_flags = btrfs_super_compat_flags(super_block);
5093 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5094 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5095 
5096 	if (copy_to_user(arg, &features, sizeof(features)))
5097 		return -EFAULT;
5098 
5099 	return 0;
5100 }
5101 
5102 static int check_feature_bits(struct btrfs_root *root,
5103 			      enum btrfs_feature_set set,
5104 			      u64 change_mask, u64 flags, u64 supported_flags,
5105 			      u64 safe_set, u64 safe_clear)
5106 {
5107 	const char *type = btrfs_feature_set_names[set];
5108 	char *names;
5109 	u64 disallowed, unsupported;
5110 	u64 set_mask = flags & change_mask;
5111 	u64 clear_mask = ~flags & change_mask;
5112 
5113 	unsupported = set_mask & ~supported_flags;
5114 	if (unsupported) {
5115 		names = btrfs_printable_features(set, unsupported);
5116 		if (names) {
5117 			btrfs_warn(root->fs_info,
5118 			   "this kernel does not support the %s feature bit%s",
5119 			   names, strchr(names, ',') ? "s" : "");
5120 			kfree(names);
5121 		} else
5122 			btrfs_warn(root->fs_info,
5123 			   "this kernel does not support %s bits 0x%llx",
5124 			   type, unsupported);
5125 		return -EOPNOTSUPP;
5126 	}
5127 
5128 	disallowed = set_mask & ~safe_set;
5129 	if (disallowed) {
5130 		names = btrfs_printable_features(set, disallowed);
5131 		if (names) {
5132 			btrfs_warn(root->fs_info,
5133 			   "can't set the %s feature bit%s while mounted",
5134 			   names, strchr(names, ',') ? "s" : "");
5135 			kfree(names);
5136 		} else
5137 			btrfs_warn(root->fs_info,
5138 			   "can't set %s bits 0x%llx while mounted",
5139 			   type, disallowed);
5140 		return -EPERM;
5141 	}
5142 
5143 	disallowed = clear_mask & ~safe_clear;
5144 	if (disallowed) {
5145 		names = btrfs_printable_features(set, disallowed);
5146 		if (names) {
5147 			btrfs_warn(root->fs_info,
5148 			   "can't clear the %s feature bit%s while mounted",
5149 			   names, strchr(names, ',') ? "s" : "");
5150 			kfree(names);
5151 		} else
5152 			btrfs_warn(root->fs_info,
5153 			   "can't clear %s bits 0x%llx while mounted",
5154 			   type, disallowed);
5155 		return -EPERM;
5156 	}
5157 
5158 	return 0;
5159 }
5160 
5161 #define check_feature(root, change_mask, flags, mask_base)	\
5162 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5163 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5164 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5165 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5166 
5167 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5168 {
5169 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5170 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5171 	struct btrfs_ioctl_feature_flags flags[2];
5172 	struct btrfs_trans_handle *trans;
5173 	u64 newflags;
5174 	int ret;
5175 
5176 	if (!capable(CAP_SYS_ADMIN))
5177 		return -EPERM;
5178 
5179 	if (copy_from_user(flags, arg, sizeof(flags)))
5180 		return -EFAULT;
5181 
5182 	/* Nothing to do */
5183 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5184 	    !flags[0].incompat_flags)
5185 		return 0;
5186 
5187 	ret = check_feature(root, flags[0].compat_flags,
5188 			    flags[1].compat_flags, COMPAT);
5189 	if (ret)
5190 		return ret;
5191 
5192 	ret = check_feature(root, flags[0].compat_ro_flags,
5193 			    flags[1].compat_ro_flags, COMPAT_RO);
5194 	if (ret)
5195 		return ret;
5196 
5197 	ret = check_feature(root, flags[0].incompat_flags,
5198 			    flags[1].incompat_flags, INCOMPAT);
5199 	if (ret)
5200 		return ret;
5201 
5202 	trans = btrfs_start_transaction(root, 0);
5203 	if (IS_ERR(trans))
5204 		return PTR_ERR(trans);
5205 
5206 	spin_lock(&root->fs_info->super_lock);
5207 	newflags = btrfs_super_compat_flags(super_block);
5208 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5209 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5210 	btrfs_set_super_compat_flags(super_block, newflags);
5211 
5212 	newflags = btrfs_super_compat_ro_flags(super_block);
5213 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5214 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5215 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5216 
5217 	newflags = btrfs_super_incompat_flags(super_block);
5218 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5219 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5220 	btrfs_set_super_incompat_flags(super_block, newflags);
5221 	spin_unlock(&root->fs_info->super_lock);
5222 
5223 	return btrfs_commit_transaction(trans, root);
5224 }
5225 
5226 long btrfs_ioctl(struct file *file, unsigned int
5227 		cmd, unsigned long arg)
5228 {
5229 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5230 	void __user *argp = (void __user *)arg;
5231 
5232 	switch (cmd) {
5233 	case FS_IOC_GETFLAGS:
5234 		return btrfs_ioctl_getflags(file, argp);
5235 	case FS_IOC_SETFLAGS:
5236 		return btrfs_ioctl_setflags(file, argp);
5237 	case FS_IOC_GETVERSION:
5238 		return btrfs_ioctl_getversion(file, argp);
5239 	case FITRIM:
5240 		return btrfs_ioctl_fitrim(file, argp);
5241 	case BTRFS_IOC_SNAP_CREATE:
5242 		return btrfs_ioctl_snap_create(file, argp, 0);
5243 	case BTRFS_IOC_SNAP_CREATE_V2:
5244 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5245 	case BTRFS_IOC_SUBVOL_CREATE:
5246 		return btrfs_ioctl_snap_create(file, argp, 1);
5247 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5248 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5249 	case BTRFS_IOC_SNAP_DESTROY:
5250 		return btrfs_ioctl_snap_destroy(file, argp);
5251 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5252 		return btrfs_ioctl_subvol_getflags(file, argp);
5253 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5254 		return btrfs_ioctl_subvol_setflags(file, argp);
5255 	case BTRFS_IOC_DEFAULT_SUBVOL:
5256 		return btrfs_ioctl_default_subvol(file, argp);
5257 	case BTRFS_IOC_DEFRAG:
5258 		return btrfs_ioctl_defrag(file, NULL);
5259 	case BTRFS_IOC_DEFRAG_RANGE:
5260 		return btrfs_ioctl_defrag(file, argp);
5261 	case BTRFS_IOC_RESIZE:
5262 		return btrfs_ioctl_resize(file, argp);
5263 	case BTRFS_IOC_ADD_DEV:
5264 		return btrfs_ioctl_add_dev(root, argp);
5265 	case BTRFS_IOC_RM_DEV:
5266 		return btrfs_ioctl_rm_dev(file, argp);
5267 	case BTRFS_IOC_FS_INFO:
5268 		return btrfs_ioctl_fs_info(root, argp);
5269 	case BTRFS_IOC_DEV_INFO:
5270 		return btrfs_ioctl_dev_info(root, argp);
5271 	case BTRFS_IOC_BALANCE:
5272 		return btrfs_ioctl_balance(file, NULL);
5273 	case BTRFS_IOC_CLONE:
5274 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
5275 	case BTRFS_IOC_CLONE_RANGE:
5276 		return btrfs_ioctl_clone_range(file, argp);
5277 	case BTRFS_IOC_TRANS_START:
5278 		return btrfs_ioctl_trans_start(file);
5279 	case BTRFS_IOC_TRANS_END:
5280 		return btrfs_ioctl_trans_end(file);
5281 	case BTRFS_IOC_TREE_SEARCH:
5282 		return btrfs_ioctl_tree_search(file, argp);
5283 	case BTRFS_IOC_TREE_SEARCH_V2:
5284 		return btrfs_ioctl_tree_search_v2(file, argp);
5285 	case BTRFS_IOC_INO_LOOKUP:
5286 		return btrfs_ioctl_ino_lookup(file, argp);
5287 	case BTRFS_IOC_INO_PATHS:
5288 		return btrfs_ioctl_ino_to_path(root, argp);
5289 	case BTRFS_IOC_LOGICAL_INO:
5290 		return btrfs_ioctl_logical_to_ino(root, argp);
5291 	case BTRFS_IOC_SPACE_INFO:
5292 		return btrfs_ioctl_space_info(root, argp);
5293 	case BTRFS_IOC_SYNC: {
5294 		int ret;
5295 
5296 		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5297 		if (ret)
5298 			return ret;
5299 		ret = btrfs_sync_fs(file->f_dentry->d_sb, 1);
5300 		/*
5301 		 * The transaction thread may want to do more work,
5302 		 * namely it pokes the cleaner ktread that will start
5303 		 * processing uncleaned subvols.
5304 		 */
5305 		wake_up_process(root->fs_info->transaction_kthread);
5306 		return ret;
5307 	}
5308 	case BTRFS_IOC_START_SYNC:
5309 		return btrfs_ioctl_start_sync(root, argp);
5310 	case BTRFS_IOC_WAIT_SYNC:
5311 		return btrfs_ioctl_wait_sync(root, argp);
5312 	case BTRFS_IOC_SCRUB:
5313 		return btrfs_ioctl_scrub(file, argp);
5314 	case BTRFS_IOC_SCRUB_CANCEL:
5315 		return btrfs_ioctl_scrub_cancel(root, argp);
5316 	case BTRFS_IOC_SCRUB_PROGRESS:
5317 		return btrfs_ioctl_scrub_progress(root, argp);
5318 	case BTRFS_IOC_BALANCE_V2:
5319 		return btrfs_ioctl_balance(file, argp);
5320 	case BTRFS_IOC_BALANCE_CTL:
5321 		return btrfs_ioctl_balance_ctl(root, arg);
5322 	case BTRFS_IOC_BALANCE_PROGRESS:
5323 		return btrfs_ioctl_balance_progress(root, argp);
5324 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5325 		return btrfs_ioctl_set_received_subvol(file, argp);
5326 #ifdef CONFIG_64BIT
5327 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5328 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5329 #endif
5330 	case BTRFS_IOC_SEND:
5331 		return btrfs_ioctl_send(file, argp);
5332 	case BTRFS_IOC_GET_DEV_STATS:
5333 		return btrfs_ioctl_get_dev_stats(root, argp);
5334 	case BTRFS_IOC_QUOTA_CTL:
5335 		return btrfs_ioctl_quota_ctl(file, argp);
5336 	case BTRFS_IOC_QGROUP_ASSIGN:
5337 		return btrfs_ioctl_qgroup_assign(file, argp);
5338 	case BTRFS_IOC_QGROUP_CREATE:
5339 		return btrfs_ioctl_qgroup_create(file, argp);
5340 	case BTRFS_IOC_QGROUP_LIMIT:
5341 		return btrfs_ioctl_qgroup_limit(file, argp);
5342 	case BTRFS_IOC_QUOTA_RESCAN:
5343 		return btrfs_ioctl_quota_rescan(file, argp);
5344 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5345 		return btrfs_ioctl_quota_rescan_status(file, argp);
5346 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5347 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5348 	case BTRFS_IOC_DEV_REPLACE:
5349 		return btrfs_ioctl_dev_replace(root, argp);
5350 	case BTRFS_IOC_GET_FSLABEL:
5351 		return btrfs_ioctl_get_fslabel(file, argp);
5352 	case BTRFS_IOC_SET_FSLABEL:
5353 		return btrfs_ioctl_set_fslabel(file, argp);
5354 	case BTRFS_IOC_FILE_EXTENT_SAME:
5355 		return btrfs_ioctl_file_extent_same(file, argp);
5356 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5357 		return btrfs_ioctl_get_supported_features(file, argp);
5358 	case BTRFS_IOC_GET_FEATURES:
5359 		return btrfs_ioctl_get_features(file, argp);
5360 	case BTRFS_IOC_SET_FEATURES:
5361 		return btrfs_ioctl_set_features(file, argp);
5362 	}
5363 
5364 	return -ENOTTY;
5365 }
5366