1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "export.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "volumes.h" 39 #include "locking.h" 40 #include "backref.h" 41 #include "rcu-string.h" 42 #include "send.h" 43 #include "dev-replace.h" 44 #include "props.h" 45 #include "sysfs.h" 46 #include "qgroup.h" 47 #include "tree-log.h" 48 #include "compression.h" 49 #include "space-info.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "subpage.h" 53 #include "fs.h" 54 #include "accessors.h" 55 #include "extent-tree.h" 56 #include "root-tree.h" 57 #include "defrag.h" 58 #include "dir-item.h" 59 #include "uuid-tree.h" 60 #include "ioctl.h" 61 #include "file.h" 62 #include "scrub.h" 63 #include "super.h" 64 65 #ifdef CONFIG_64BIT 66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 67 * structures are incorrect, as the timespec structure from userspace 68 * is 4 bytes too small. We define these alternatives here to teach 69 * the kernel about the 32-bit struct packing. 70 */ 71 struct btrfs_ioctl_timespec_32 { 72 __u64 sec; 73 __u32 nsec; 74 } __attribute__ ((__packed__)); 75 76 struct btrfs_ioctl_received_subvol_args_32 { 77 char uuid[BTRFS_UUID_SIZE]; /* in */ 78 __u64 stransid; /* in */ 79 __u64 rtransid; /* out */ 80 struct btrfs_ioctl_timespec_32 stime; /* in */ 81 struct btrfs_ioctl_timespec_32 rtime; /* out */ 82 __u64 flags; /* in */ 83 __u64 reserved[16]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 87 struct btrfs_ioctl_received_subvol_args_32) 88 #endif 89 90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 91 struct btrfs_ioctl_send_args_32 { 92 __s64 send_fd; /* in */ 93 __u64 clone_sources_count; /* in */ 94 compat_uptr_t clone_sources; /* in */ 95 __u64 parent_root; /* in */ 96 __u64 flags; /* in */ 97 __u32 version; /* in */ 98 __u8 reserved[28]; /* in */ 99 } __attribute__ ((__packed__)); 100 101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 102 struct btrfs_ioctl_send_args_32) 103 104 struct btrfs_ioctl_encoded_io_args_32 { 105 compat_uptr_t iov; 106 compat_ulong_t iovcnt; 107 __s64 offset; 108 __u64 flags; 109 __u64 len; 110 __u64 unencoded_len; 111 __u64 unencoded_offset; 112 __u32 compression; 113 __u32 encryption; 114 __u8 reserved[64]; 115 }; 116 117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 118 struct btrfs_ioctl_encoded_io_args_32) 119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 120 struct btrfs_ioctl_encoded_io_args_32) 121 #endif 122 123 /* Mask out flags that are inappropriate for the given type of inode. */ 124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 125 unsigned int flags) 126 { 127 if (S_ISDIR(inode->i_mode)) 128 return flags; 129 else if (S_ISREG(inode->i_mode)) 130 return flags & ~FS_DIRSYNC_FL; 131 else 132 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 133 } 134 135 /* 136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 137 * ioctl. 138 */ 139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 140 { 141 unsigned int iflags = 0; 142 u32 flags = binode->flags; 143 u32 ro_flags = binode->ro_flags; 144 145 if (flags & BTRFS_INODE_SYNC) 146 iflags |= FS_SYNC_FL; 147 if (flags & BTRFS_INODE_IMMUTABLE) 148 iflags |= FS_IMMUTABLE_FL; 149 if (flags & BTRFS_INODE_APPEND) 150 iflags |= FS_APPEND_FL; 151 if (flags & BTRFS_INODE_NODUMP) 152 iflags |= FS_NODUMP_FL; 153 if (flags & BTRFS_INODE_NOATIME) 154 iflags |= FS_NOATIME_FL; 155 if (flags & BTRFS_INODE_DIRSYNC) 156 iflags |= FS_DIRSYNC_FL; 157 if (flags & BTRFS_INODE_NODATACOW) 158 iflags |= FS_NOCOW_FL; 159 if (ro_flags & BTRFS_INODE_RO_VERITY) 160 iflags |= FS_VERITY_FL; 161 162 if (flags & BTRFS_INODE_NOCOMPRESS) 163 iflags |= FS_NOCOMP_FL; 164 else if (flags & BTRFS_INODE_COMPRESS) 165 iflags |= FS_COMPR_FL; 166 167 return iflags; 168 } 169 170 /* 171 * Update inode->i_flags based on the btrfs internal flags. 172 */ 173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 174 { 175 struct btrfs_inode *binode = BTRFS_I(inode); 176 unsigned int new_fl = 0; 177 178 if (binode->flags & BTRFS_INODE_SYNC) 179 new_fl |= S_SYNC; 180 if (binode->flags & BTRFS_INODE_IMMUTABLE) 181 new_fl |= S_IMMUTABLE; 182 if (binode->flags & BTRFS_INODE_APPEND) 183 new_fl |= S_APPEND; 184 if (binode->flags & BTRFS_INODE_NOATIME) 185 new_fl |= S_NOATIME; 186 if (binode->flags & BTRFS_INODE_DIRSYNC) 187 new_fl |= S_DIRSYNC; 188 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 189 new_fl |= S_VERITY; 190 191 set_mask_bits(&inode->i_flags, 192 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 193 S_VERITY, new_fl); 194 } 195 196 /* 197 * Check if @flags are a supported and valid set of FS_*_FL flags and that 198 * the old and new flags are not conflicting 199 */ 200 static int check_fsflags(unsigned int old_flags, unsigned int flags) 201 { 202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 203 FS_NOATIME_FL | FS_NODUMP_FL | \ 204 FS_SYNC_FL | FS_DIRSYNC_FL | \ 205 FS_NOCOMP_FL | FS_COMPR_FL | 206 FS_NOCOW_FL)) 207 return -EOPNOTSUPP; 208 209 /* COMPR and NOCOMP on new/old are valid */ 210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 211 return -EINVAL; 212 213 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 214 return -EINVAL; 215 216 /* NOCOW and compression options are mutually exclusive */ 217 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 218 return -EINVAL; 219 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 220 return -EINVAL; 221 222 return 0; 223 } 224 225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 226 unsigned int flags) 227 { 228 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 229 return -EPERM; 230 231 return 0; 232 } 233 234 /* 235 * Set flags/xflags from the internal inode flags. The remaining items of 236 * fsxattr are zeroed. 237 */ 238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 239 { 240 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 241 242 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 243 return 0; 244 } 245 246 int btrfs_fileattr_set(struct mnt_idmap *idmap, 247 struct dentry *dentry, struct fileattr *fa) 248 { 249 struct inode *inode = d_inode(dentry); 250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 251 struct btrfs_inode *binode = BTRFS_I(inode); 252 struct btrfs_root *root = binode->root; 253 struct btrfs_trans_handle *trans; 254 unsigned int fsflags, old_fsflags; 255 int ret; 256 const char *comp = NULL; 257 u32 binode_flags; 258 259 if (btrfs_root_readonly(root)) 260 return -EROFS; 261 262 if (fileattr_has_fsx(fa)) 263 return -EOPNOTSUPP; 264 265 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 266 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 267 ret = check_fsflags(old_fsflags, fsflags); 268 if (ret) 269 return ret; 270 271 ret = check_fsflags_compatible(fs_info, fsflags); 272 if (ret) 273 return ret; 274 275 binode_flags = binode->flags; 276 if (fsflags & FS_SYNC_FL) 277 binode_flags |= BTRFS_INODE_SYNC; 278 else 279 binode_flags &= ~BTRFS_INODE_SYNC; 280 if (fsflags & FS_IMMUTABLE_FL) 281 binode_flags |= BTRFS_INODE_IMMUTABLE; 282 else 283 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 284 if (fsflags & FS_APPEND_FL) 285 binode_flags |= BTRFS_INODE_APPEND; 286 else 287 binode_flags &= ~BTRFS_INODE_APPEND; 288 if (fsflags & FS_NODUMP_FL) 289 binode_flags |= BTRFS_INODE_NODUMP; 290 else 291 binode_flags &= ~BTRFS_INODE_NODUMP; 292 if (fsflags & FS_NOATIME_FL) 293 binode_flags |= BTRFS_INODE_NOATIME; 294 else 295 binode_flags &= ~BTRFS_INODE_NOATIME; 296 297 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 298 if (!fa->flags_valid) { 299 /* 1 item for the inode */ 300 trans = btrfs_start_transaction(root, 1); 301 if (IS_ERR(trans)) 302 return PTR_ERR(trans); 303 goto update_flags; 304 } 305 306 if (fsflags & FS_DIRSYNC_FL) 307 binode_flags |= BTRFS_INODE_DIRSYNC; 308 else 309 binode_flags &= ~BTRFS_INODE_DIRSYNC; 310 if (fsflags & FS_NOCOW_FL) { 311 if (S_ISREG(inode->i_mode)) { 312 /* 313 * It's safe to turn csums off here, no extents exist. 314 * Otherwise we want the flag to reflect the real COW 315 * status of the file and will not set it. 316 */ 317 if (inode->i_size == 0) 318 binode_flags |= BTRFS_INODE_NODATACOW | 319 BTRFS_INODE_NODATASUM; 320 } else { 321 binode_flags |= BTRFS_INODE_NODATACOW; 322 } 323 } else { 324 /* 325 * Revert back under same assumptions as above 326 */ 327 if (S_ISREG(inode->i_mode)) { 328 if (inode->i_size == 0) 329 binode_flags &= ~(BTRFS_INODE_NODATACOW | 330 BTRFS_INODE_NODATASUM); 331 } else { 332 binode_flags &= ~BTRFS_INODE_NODATACOW; 333 } 334 } 335 336 /* 337 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 338 * flag may be changed automatically if compression code won't make 339 * things smaller. 340 */ 341 if (fsflags & FS_NOCOMP_FL) { 342 binode_flags &= ~BTRFS_INODE_COMPRESS; 343 binode_flags |= BTRFS_INODE_NOCOMPRESS; 344 } else if (fsflags & FS_COMPR_FL) { 345 346 if (IS_SWAPFILE(inode)) 347 return -ETXTBSY; 348 349 binode_flags |= BTRFS_INODE_COMPRESS; 350 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 351 352 comp = btrfs_compress_type2str(fs_info->compress_type); 353 if (!comp || comp[0] == 0) 354 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 355 } else { 356 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 357 } 358 359 /* 360 * 1 for inode item 361 * 2 for properties 362 */ 363 trans = btrfs_start_transaction(root, 3); 364 if (IS_ERR(trans)) 365 return PTR_ERR(trans); 366 367 if (comp) { 368 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 369 strlen(comp), 0); 370 if (ret) { 371 btrfs_abort_transaction(trans, ret); 372 goto out_end_trans; 373 } 374 } else { 375 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 376 0, 0); 377 if (ret && ret != -ENODATA) { 378 btrfs_abort_transaction(trans, ret); 379 goto out_end_trans; 380 } 381 } 382 383 update_flags: 384 binode->flags = binode_flags; 385 btrfs_sync_inode_flags_to_i_flags(inode); 386 inode_inc_iversion(inode); 387 inode_set_ctime_current(inode); 388 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 389 390 out_end_trans: 391 btrfs_end_transaction(trans); 392 return ret; 393 } 394 395 /* 396 * Start exclusive operation @type, return true on success 397 */ 398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 399 enum btrfs_exclusive_operation type) 400 { 401 bool ret = false; 402 403 spin_lock(&fs_info->super_lock); 404 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 405 fs_info->exclusive_operation = type; 406 ret = true; 407 } 408 spin_unlock(&fs_info->super_lock); 409 410 return ret; 411 } 412 413 /* 414 * Conditionally allow to enter the exclusive operation in case it's compatible 415 * with the running one. This must be paired with btrfs_exclop_start_unlock and 416 * btrfs_exclop_finish. 417 * 418 * Compatibility: 419 * - the same type is already running 420 * - when trying to add a device and balance has been paused 421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 422 * must check the condition first that would allow none -> @type 423 */ 424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 425 enum btrfs_exclusive_operation type) 426 { 427 spin_lock(&fs_info->super_lock); 428 if (fs_info->exclusive_operation == type || 429 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 430 type == BTRFS_EXCLOP_DEV_ADD)) 431 return true; 432 433 spin_unlock(&fs_info->super_lock); 434 return false; 435 } 436 437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 438 { 439 spin_unlock(&fs_info->super_lock); 440 } 441 442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 443 { 444 spin_lock(&fs_info->super_lock); 445 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 446 spin_unlock(&fs_info->super_lock); 447 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 448 } 449 450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 451 enum btrfs_exclusive_operation op) 452 { 453 switch (op) { 454 case BTRFS_EXCLOP_BALANCE_PAUSED: 455 spin_lock(&fs_info->super_lock); 456 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 457 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || 458 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE || 459 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 460 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 461 spin_unlock(&fs_info->super_lock); 462 break; 463 case BTRFS_EXCLOP_BALANCE: 464 spin_lock(&fs_info->super_lock); 465 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 466 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 467 spin_unlock(&fs_info->super_lock); 468 break; 469 default: 470 btrfs_warn(fs_info, 471 "invalid exclop balance operation %d requested", op); 472 } 473 } 474 475 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 476 { 477 return put_user(inode->i_generation, arg); 478 } 479 480 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 481 void __user *arg) 482 { 483 struct btrfs_device *device; 484 struct fstrim_range range; 485 u64 minlen = ULLONG_MAX; 486 u64 num_devices = 0; 487 int ret; 488 489 if (!capable(CAP_SYS_ADMIN)) 490 return -EPERM; 491 492 /* 493 * btrfs_trim_block_group() depends on space cache, which is not 494 * available in zoned filesystem. So, disallow fitrim on a zoned 495 * filesystem for now. 496 */ 497 if (btrfs_is_zoned(fs_info)) 498 return -EOPNOTSUPP; 499 500 /* 501 * If the fs is mounted with nologreplay, which requires it to be 502 * mounted in RO mode as well, we can not allow discard on free space 503 * inside block groups, because log trees refer to extents that are not 504 * pinned in a block group's free space cache (pinning the extents is 505 * precisely the first phase of replaying a log tree). 506 */ 507 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 508 return -EROFS; 509 510 rcu_read_lock(); 511 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 512 dev_list) { 513 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 514 continue; 515 num_devices++; 516 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 517 minlen); 518 } 519 rcu_read_unlock(); 520 521 if (!num_devices) 522 return -EOPNOTSUPP; 523 if (copy_from_user(&range, arg, sizeof(range))) 524 return -EFAULT; 525 526 /* 527 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 528 * block group is in the logical address space, which can be any 529 * sectorsize aligned bytenr in the range [0, U64_MAX]. 530 */ 531 if (range.len < fs_info->sectorsize) 532 return -EINVAL; 533 534 range.minlen = max(range.minlen, minlen); 535 ret = btrfs_trim_fs(fs_info, &range); 536 537 if (copy_to_user(arg, &range, sizeof(range))) 538 return -EFAULT; 539 540 return ret; 541 } 542 543 int __pure btrfs_is_empty_uuid(u8 *uuid) 544 { 545 int i; 546 547 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 548 if (uuid[i]) 549 return 0; 550 } 551 return 1; 552 } 553 554 /* 555 * Calculate the number of transaction items to reserve for creating a subvolume 556 * or snapshot, not including the inode, directory entries, or parent directory. 557 */ 558 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) 559 { 560 /* 561 * 1 to add root block 562 * 1 to add root item 563 * 1 to add root ref 564 * 1 to add root backref 565 * 1 to add UUID item 566 * 1 to add qgroup info 567 * 1 to add qgroup limit 568 * 569 * Ideally the last two would only be accounted if qgroups are enabled, 570 * but that can change between now and the time we would insert them. 571 */ 572 unsigned int num_items = 7; 573 574 if (inherit) { 575 /* 2 to add qgroup relations for each inherited qgroup */ 576 num_items += 2 * inherit->num_qgroups; 577 } 578 return num_items; 579 } 580 581 static noinline int create_subvol(struct mnt_idmap *idmap, 582 struct inode *dir, struct dentry *dentry, 583 struct btrfs_qgroup_inherit *inherit) 584 { 585 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 586 struct btrfs_trans_handle *trans; 587 struct btrfs_key key; 588 struct btrfs_root_item *root_item; 589 struct btrfs_inode_item *inode_item; 590 struct extent_buffer *leaf; 591 struct btrfs_root *root = BTRFS_I(dir)->root; 592 struct btrfs_root *new_root; 593 struct btrfs_block_rsv block_rsv; 594 struct timespec64 cur_time = current_time(dir); 595 struct btrfs_new_inode_args new_inode_args = { 596 .dir = dir, 597 .dentry = dentry, 598 .subvol = true, 599 }; 600 unsigned int trans_num_items; 601 int ret; 602 dev_t anon_dev; 603 u64 objectid; 604 u64 qgroup_reserved = 0; 605 606 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 607 if (!root_item) 608 return -ENOMEM; 609 610 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 611 if (ret) 612 goto out_root_item; 613 614 /* 615 * Don't create subvolume whose level is not zero. Or qgroup will be 616 * screwed up since it assumes subvolume qgroup's level to be 0. 617 */ 618 if (btrfs_qgroup_level(objectid)) { 619 ret = -ENOSPC; 620 goto out_root_item; 621 } 622 623 ret = get_anon_bdev(&anon_dev); 624 if (ret < 0) 625 goto out_root_item; 626 627 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir); 628 if (!new_inode_args.inode) { 629 ret = -ENOMEM; 630 goto out_anon_dev; 631 } 632 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 633 if (ret) 634 goto out_inode; 635 trans_num_items += create_subvol_num_items(inherit); 636 637 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 638 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 639 trans_num_items, false); 640 if (ret) 641 goto out_new_inode_args; 642 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 643 644 trans = btrfs_start_transaction(root, 0); 645 if (IS_ERR(trans)) { 646 ret = PTR_ERR(trans); 647 goto out_release_rsv; 648 } 649 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root); 650 if (ret) 651 goto out; 652 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 653 qgroup_reserved = 0; 654 trans->block_rsv = &block_rsv; 655 trans->bytes_reserved = block_rsv.size; 656 /* Tree log can't currently deal with an inode which is a new root. */ 657 btrfs_set_log_full_commit(trans); 658 659 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 660 if (ret) 661 goto out; 662 663 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 664 BTRFS_NESTING_NORMAL); 665 if (IS_ERR(leaf)) { 666 ret = PTR_ERR(leaf); 667 goto out; 668 } 669 670 btrfs_mark_buffer_dirty(trans, leaf); 671 672 inode_item = &root_item->inode; 673 btrfs_set_stack_inode_generation(inode_item, 1); 674 btrfs_set_stack_inode_size(inode_item, 3); 675 btrfs_set_stack_inode_nlink(inode_item, 1); 676 btrfs_set_stack_inode_nbytes(inode_item, 677 fs_info->nodesize); 678 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 679 680 btrfs_set_root_flags(root_item, 0); 681 btrfs_set_root_limit(root_item, 0); 682 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 683 684 btrfs_set_root_bytenr(root_item, leaf->start); 685 btrfs_set_root_generation(root_item, trans->transid); 686 btrfs_set_root_level(root_item, 0); 687 btrfs_set_root_refs(root_item, 1); 688 btrfs_set_root_used(root_item, leaf->len); 689 btrfs_set_root_last_snapshot(root_item, 0); 690 691 btrfs_set_root_generation_v2(root_item, 692 btrfs_root_generation(root_item)); 693 generate_random_guid(root_item->uuid); 694 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 695 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 696 root_item->ctime = root_item->otime; 697 btrfs_set_root_ctransid(root_item, trans->transid); 698 btrfs_set_root_otransid(root_item, trans->transid); 699 700 btrfs_tree_unlock(leaf); 701 702 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 703 704 key.objectid = objectid; 705 key.offset = 0; 706 key.type = BTRFS_ROOT_ITEM_KEY; 707 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 708 root_item); 709 if (ret) { 710 int ret2; 711 712 /* 713 * Since we don't abort the transaction in this case, free the 714 * tree block so that we don't leak space and leave the 715 * filesystem in an inconsistent state (an extent item in the 716 * extent tree with a backreference for a root that does not 717 * exists). 718 */ 719 btrfs_tree_lock(leaf); 720 btrfs_clear_buffer_dirty(trans, leaf); 721 btrfs_tree_unlock(leaf); 722 ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 723 if (ret2 < 0) 724 btrfs_abort_transaction(trans, ret2); 725 free_extent_buffer(leaf); 726 goto out; 727 } 728 729 free_extent_buffer(leaf); 730 leaf = NULL; 731 732 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev); 733 if (IS_ERR(new_root)) { 734 ret = PTR_ERR(new_root); 735 btrfs_abort_transaction(trans, ret); 736 goto out; 737 } 738 /* anon_dev is owned by new_root now. */ 739 anon_dev = 0; 740 BTRFS_I(new_inode_args.inode)->root = new_root; 741 /* ... and new_root is owned by new_inode_args.inode now. */ 742 743 ret = btrfs_record_root_in_trans(trans, new_root); 744 if (ret) { 745 btrfs_abort_transaction(trans, ret); 746 goto out; 747 } 748 749 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 750 BTRFS_UUID_KEY_SUBVOL, objectid); 751 if (ret) { 752 btrfs_abort_transaction(trans, ret); 753 goto out; 754 } 755 756 ret = btrfs_create_new_inode(trans, &new_inode_args); 757 if (ret) { 758 btrfs_abort_transaction(trans, ret); 759 goto out; 760 } 761 762 d_instantiate_new(dentry, new_inode_args.inode); 763 new_inode_args.inode = NULL; 764 765 out: 766 trans->block_rsv = NULL; 767 trans->bytes_reserved = 0; 768 btrfs_end_transaction(trans); 769 out_release_rsv: 770 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 771 if (qgroup_reserved) 772 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 773 out_new_inode_args: 774 btrfs_new_inode_args_destroy(&new_inode_args); 775 out_inode: 776 iput(new_inode_args.inode); 777 out_anon_dev: 778 if (anon_dev) 779 free_anon_bdev(anon_dev); 780 out_root_item: 781 kfree(root_item); 782 return ret; 783 } 784 785 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 786 struct dentry *dentry, bool readonly, 787 struct btrfs_qgroup_inherit *inherit) 788 { 789 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 790 struct inode *inode; 791 struct btrfs_pending_snapshot *pending_snapshot; 792 unsigned int trans_num_items; 793 struct btrfs_trans_handle *trans; 794 struct btrfs_block_rsv *block_rsv; 795 u64 qgroup_reserved = 0; 796 int ret; 797 798 /* We do not support snapshotting right now. */ 799 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 800 btrfs_warn(fs_info, 801 "extent tree v2 doesn't support snapshotting yet"); 802 return -EOPNOTSUPP; 803 } 804 805 if (btrfs_root_refs(&root->root_item) == 0) 806 return -ENOENT; 807 808 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 809 return -EINVAL; 810 811 if (atomic_read(&root->nr_swapfiles)) { 812 btrfs_warn(fs_info, 813 "cannot snapshot subvolume with active swapfile"); 814 return -ETXTBSY; 815 } 816 817 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 818 if (!pending_snapshot) 819 return -ENOMEM; 820 821 ret = get_anon_bdev(&pending_snapshot->anon_dev); 822 if (ret < 0) 823 goto free_pending; 824 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 825 GFP_KERNEL); 826 pending_snapshot->path = btrfs_alloc_path(); 827 if (!pending_snapshot->root_item || !pending_snapshot->path) { 828 ret = -ENOMEM; 829 goto free_pending; 830 } 831 832 block_rsv = &pending_snapshot->block_rsv; 833 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP); 834 /* 835 * 1 to add dir item 836 * 1 to add dir index 837 * 1 to update parent inode item 838 */ 839 trans_num_items = create_subvol_num_items(inherit) + 3; 840 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv, 841 trans_num_items, false); 842 if (ret) 843 goto free_pending; 844 qgroup_reserved = block_rsv->qgroup_rsv_reserved; 845 846 pending_snapshot->dentry = dentry; 847 pending_snapshot->root = root; 848 pending_snapshot->readonly = readonly; 849 pending_snapshot->dir = dir; 850 pending_snapshot->inherit = inherit; 851 852 trans = btrfs_start_transaction(root, 0); 853 if (IS_ERR(trans)) { 854 ret = PTR_ERR(trans); 855 goto fail; 856 } 857 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root); 858 if (ret) { 859 btrfs_end_transaction(trans); 860 goto fail; 861 } 862 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 863 qgroup_reserved = 0; 864 865 trans->pending_snapshot = pending_snapshot; 866 867 ret = btrfs_commit_transaction(trans); 868 if (ret) 869 goto fail; 870 871 ret = pending_snapshot->error; 872 if (ret) 873 goto fail; 874 875 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 876 if (ret) 877 goto fail; 878 879 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 880 if (IS_ERR(inode)) { 881 ret = PTR_ERR(inode); 882 goto fail; 883 } 884 885 d_instantiate(dentry, inode); 886 ret = 0; 887 pending_snapshot->anon_dev = 0; 888 fail: 889 /* Prevent double freeing of anon_dev */ 890 if (ret && pending_snapshot->snap) 891 pending_snapshot->snap->anon_dev = 0; 892 btrfs_put_root(pending_snapshot->snap); 893 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL); 894 if (qgroup_reserved) 895 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 896 free_pending: 897 if (pending_snapshot->anon_dev) 898 free_anon_bdev(pending_snapshot->anon_dev); 899 kfree(pending_snapshot->root_item); 900 btrfs_free_path(pending_snapshot->path); 901 kfree(pending_snapshot); 902 903 return ret; 904 } 905 906 /* copy of may_delete in fs/namei.c() 907 * Check whether we can remove a link victim from directory dir, check 908 * whether the type of victim is right. 909 * 1. We can't do it if dir is read-only (done in permission()) 910 * 2. We should have write and exec permissions on dir 911 * 3. We can't remove anything from append-only dir 912 * 4. We can't do anything with immutable dir (done in permission()) 913 * 5. If the sticky bit on dir is set we should either 914 * a. be owner of dir, or 915 * b. be owner of victim, or 916 * c. have CAP_FOWNER capability 917 * 6. If the victim is append-only or immutable we can't do anything with 918 * links pointing to it. 919 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 920 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 921 * 9. We can't remove a root or mountpoint. 922 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 923 * nfs_async_unlink(). 924 */ 925 926 static int btrfs_may_delete(struct mnt_idmap *idmap, 927 struct inode *dir, struct dentry *victim, int isdir) 928 { 929 int error; 930 931 if (d_really_is_negative(victim)) 932 return -ENOENT; 933 934 BUG_ON(d_inode(victim->d_parent) != dir); 935 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 936 937 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 938 if (error) 939 return error; 940 if (IS_APPEND(dir)) 941 return -EPERM; 942 if (check_sticky(idmap, dir, d_inode(victim)) || 943 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 944 IS_SWAPFILE(d_inode(victim))) 945 return -EPERM; 946 if (isdir) { 947 if (!d_is_dir(victim)) 948 return -ENOTDIR; 949 if (IS_ROOT(victim)) 950 return -EBUSY; 951 } else if (d_is_dir(victim)) 952 return -EISDIR; 953 if (IS_DEADDIR(dir)) 954 return -ENOENT; 955 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 956 return -EBUSY; 957 return 0; 958 } 959 960 /* copy of may_create in fs/namei.c() */ 961 static inline int btrfs_may_create(struct mnt_idmap *idmap, 962 struct inode *dir, struct dentry *child) 963 { 964 if (d_really_is_positive(child)) 965 return -EEXIST; 966 if (IS_DEADDIR(dir)) 967 return -ENOENT; 968 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 969 return -EOVERFLOW; 970 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 971 } 972 973 /* 974 * Create a new subvolume below @parent. This is largely modeled after 975 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 976 * inside this filesystem so it's quite a bit simpler. 977 */ 978 static noinline int btrfs_mksubvol(const struct path *parent, 979 struct mnt_idmap *idmap, 980 const char *name, int namelen, 981 struct btrfs_root *snap_src, 982 bool readonly, 983 struct btrfs_qgroup_inherit *inherit) 984 { 985 struct inode *dir = d_inode(parent->dentry); 986 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 987 struct dentry *dentry; 988 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen); 989 int error; 990 991 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 992 if (error == -EINTR) 993 return error; 994 995 dentry = lookup_one(idmap, name, parent->dentry, namelen); 996 error = PTR_ERR(dentry); 997 if (IS_ERR(dentry)) 998 goto out_unlock; 999 1000 error = btrfs_may_create(idmap, dir, dentry); 1001 if (error) 1002 goto out_dput; 1003 1004 /* 1005 * even if this name doesn't exist, we may get hash collisions. 1006 * check for them now when we can safely fail 1007 */ 1008 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 1009 dir->i_ino, &name_str); 1010 if (error) 1011 goto out_dput; 1012 1013 down_read(&fs_info->subvol_sem); 1014 1015 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 1016 goto out_up_read; 1017 1018 if (snap_src) 1019 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 1020 else 1021 error = create_subvol(idmap, dir, dentry, inherit); 1022 1023 if (!error) 1024 fsnotify_mkdir(dir, dentry); 1025 out_up_read: 1026 up_read(&fs_info->subvol_sem); 1027 out_dput: 1028 dput(dentry); 1029 out_unlock: 1030 btrfs_inode_unlock(BTRFS_I(dir), 0); 1031 return error; 1032 } 1033 1034 static noinline int btrfs_mksnapshot(const struct path *parent, 1035 struct mnt_idmap *idmap, 1036 const char *name, int namelen, 1037 struct btrfs_root *root, 1038 bool readonly, 1039 struct btrfs_qgroup_inherit *inherit) 1040 { 1041 int ret; 1042 bool snapshot_force_cow = false; 1043 1044 /* 1045 * Force new buffered writes to reserve space even when NOCOW is 1046 * possible. This is to avoid later writeback (running dealloc) to 1047 * fallback to COW mode and unexpectedly fail with ENOSPC. 1048 */ 1049 btrfs_drew_read_lock(&root->snapshot_lock); 1050 1051 ret = btrfs_start_delalloc_snapshot(root, false); 1052 if (ret) 1053 goto out; 1054 1055 /* 1056 * All previous writes have started writeback in NOCOW mode, so now 1057 * we force future writes to fallback to COW mode during snapshot 1058 * creation. 1059 */ 1060 atomic_inc(&root->snapshot_force_cow); 1061 snapshot_force_cow = true; 1062 1063 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1064 1065 ret = btrfs_mksubvol(parent, idmap, name, namelen, 1066 root, readonly, inherit); 1067 out: 1068 if (snapshot_force_cow) 1069 atomic_dec(&root->snapshot_force_cow); 1070 btrfs_drew_read_unlock(&root->snapshot_lock); 1071 return ret; 1072 } 1073 1074 /* 1075 * Try to start exclusive operation @type or cancel it if it's running. 1076 * 1077 * Return: 1078 * 0 - normal mode, newly claimed op started 1079 * >0 - normal mode, something else is running, 1080 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1081 * ECANCELED - cancel mode, successful cancel 1082 * ENOTCONN - cancel mode, operation not running anymore 1083 */ 1084 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1085 enum btrfs_exclusive_operation type, bool cancel) 1086 { 1087 if (!cancel) { 1088 /* Start normal op */ 1089 if (!btrfs_exclop_start(fs_info, type)) 1090 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1091 /* Exclusive operation is now claimed */ 1092 return 0; 1093 } 1094 1095 /* Cancel running op */ 1096 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1097 /* 1098 * This blocks any exclop finish from setting it to NONE, so we 1099 * request cancellation. Either it runs and we will wait for it, 1100 * or it has finished and no waiting will happen. 1101 */ 1102 atomic_inc(&fs_info->reloc_cancel_req); 1103 btrfs_exclop_start_unlock(fs_info); 1104 1105 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1106 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1107 TASK_INTERRUPTIBLE); 1108 1109 return -ECANCELED; 1110 } 1111 1112 /* Something else is running or none */ 1113 return -ENOTCONN; 1114 } 1115 1116 static noinline int btrfs_ioctl_resize(struct file *file, 1117 void __user *arg) 1118 { 1119 BTRFS_DEV_LOOKUP_ARGS(args); 1120 struct inode *inode = file_inode(file); 1121 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1122 u64 new_size; 1123 u64 old_size; 1124 u64 devid = 1; 1125 struct btrfs_root *root = BTRFS_I(inode)->root; 1126 struct btrfs_ioctl_vol_args *vol_args; 1127 struct btrfs_trans_handle *trans; 1128 struct btrfs_device *device = NULL; 1129 char *sizestr; 1130 char *retptr; 1131 char *devstr = NULL; 1132 int ret = 0; 1133 int mod = 0; 1134 bool cancel; 1135 1136 if (!capable(CAP_SYS_ADMIN)) 1137 return -EPERM; 1138 1139 ret = mnt_want_write_file(file); 1140 if (ret) 1141 return ret; 1142 1143 /* 1144 * Read the arguments before checking exclusivity to be able to 1145 * distinguish regular resize and cancel 1146 */ 1147 vol_args = memdup_user(arg, sizeof(*vol_args)); 1148 if (IS_ERR(vol_args)) { 1149 ret = PTR_ERR(vol_args); 1150 goto out_drop; 1151 } 1152 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1153 sizestr = vol_args->name; 1154 cancel = (strcmp("cancel", sizestr) == 0); 1155 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1156 if (ret) 1157 goto out_free; 1158 /* Exclusive operation is now claimed */ 1159 1160 devstr = strchr(sizestr, ':'); 1161 if (devstr) { 1162 sizestr = devstr + 1; 1163 *devstr = '\0'; 1164 devstr = vol_args->name; 1165 ret = kstrtoull(devstr, 10, &devid); 1166 if (ret) 1167 goto out_finish; 1168 if (!devid) { 1169 ret = -EINVAL; 1170 goto out_finish; 1171 } 1172 btrfs_info(fs_info, "resizing devid %llu", devid); 1173 } 1174 1175 args.devid = devid; 1176 device = btrfs_find_device(fs_info->fs_devices, &args); 1177 if (!device) { 1178 btrfs_info(fs_info, "resizer unable to find device %llu", 1179 devid); 1180 ret = -ENODEV; 1181 goto out_finish; 1182 } 1183 1184 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1185 btrfs_info(fs_info, 1186 "resizer unable to apply on readonly device %llu", 1187 devid); 1188 ret = -EPERM; 1189 goto out_finish; 1190 } 1191 1192 if (!strcmp(sizestr, "max")) 1193 new_size = bdev_nr_bytes(device->bdev); 1194 else { 1195 if (sizestr[0] == '-') { 1196 mod = -1; 1197 sizestr++; 1198 } else if (sizestr[0] == '+') { 1199 mod = 1; 1200 sizestr++; 1201 } 1202 new_size = memparse(sizestr, &retptr); 1203 if (*retptr != '\0' || new_size == 0) { 1204 ret = -EINVAL; 1205 goto out_finish; 1206 } 1207 } 1208 1209 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1210 ret = -EPERM; 1211 goto out_finish; 1212 } 1213 1214 old_size = btrfs_device_get_total_bytes(device); 1215 1216 if (mod < 0) { 1217 if (new_size > old_size) { 1218 ret = -EINVAL; 1219 goto out_finish; 1220 } 1221 new_size = old_size - new_size; 1222 } else if (mod > 0) { 1223 if (new_size > ULLONG_MAX - old_size) { 1224 ret = -ERANGE; 1225 goto out_finish; 1226 } 1227 new_size = old_size + new_size; 1228 } 1229 1230 if (new_size < SZ_256M) { 1231 ret = -EINVAL; 1232 goto out_finish; 1233 } 1234 if (new_size > bdev_nr_bytes(device->bdev)) { 1235 ret = -EFBIG; 1236 goto out_finish; 1237 } 1238 1239 new_size = round_down(new_size, fs_info->sectorsize); 1240 1241 if (new_size > old_size) { 1242 trans = btrfs_start_transaction(root, 0); 1243 if (IS_ERR(trans)) { 1244 ret = PTR_ERR(trans); 1245 goto out_finish; 1246 } 1247 ret = btrfs_grow_device(trans, device, new_size); 1248 btrfs_commit_transaction(trans); 1249 } else if (new_size < old_size) { 1250 ret = btrfs_shrink_device(device, new_size); 1251 } /* equal, nothing need to do */ 1252 1253 if (ret == 0 && new_size != old_size) 1254 btrfs_info_in_rcu(fs_info, 1255 "resize device %s (devid %llu) from %llu to %llu", 1256 btrfs_dev_name(device), device->devid, 1257 old_size, new_size); 1258 out_finish: 1259 btrfs_exclop_finish(fs_info); 1260 out_free: 1261 kfree(vol_args); 1262 out_drop: 1263 mnt_drop_write_file(file); 1264 return ret; 1265 } 1266 1267 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1268 struct mnt_idmap *idmap, 1269 const char *name, unsigned long fd, int subvol, 1270 bool readonly, 1271 struct btrfs_qgroup_inherit *inherit) 1272 { 1273 int namelen; 1274 int ret = 0; 1275 1276 if (!S_ISDIR(file_inode(file)->i_mode)) 1277 return -ENOTDIR; 1278 1279 ret = mnt_want_write_file(file); 1280 if (ret) 1281 goto out; 1282 1283 namelen = strlen(name); 1284 if (strchr(name, '/')) { 1285 ret = -EINVAL; 1286 goto out_drop_write; 1287 } 1288 1289 if (name[0] == '.' && 1290 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1291 ret = -EEXIST; 1292 goto out_drop_write; 1293 } 1294 1295 if (subvol) { 1296 ret = btrfs_mksubvol(&file->f_path, idmap, name, 1297 namelen, NULL, readonly, inherit); 1298 } else { 1299 struct fd src = fdget(fd); 1300 struct inode *src_inode; 1301 if (!src.file) { 1302 ret = -EINVAL; 1303 goto out_drop_write; 1304 } 1305 1306 src_inode = file_inode(src.file); 1307 if (src_inode->i_sb != file_inode(file)->i_sb) { 1308 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1309 "Snapshot src from another FS"); 1310 ret = -EXDEV; 1311 } else if (!inode_owner_or_capable(idmap, src_inode)) { 1312 /* 1313 * Subvolume creation is not restricted, but snapshots 1314 * are limited to own subvolumes only 1315 */ 1316 ret = -EPERM; 1317 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1318 /* 1319 * Snapshots must be made with the src_inode referring 1320 * to the subvolume inode, otherwise the permission 1321 * checking above is useless because we may have 1322 * permission on a lower directory but not the subvol 1323 * itself. 1324 */ 1325 ret = -EINVAL; 1326 } else { 1327 ret = btrfs_mksnapshot(&file->f_path, idmap, 1328 name, namelen, 1329 BTRFS_I(src_inode)->root, 1330 readonly, inherit); 1331 } 1332 fdput(src); 1333 } 1334 out_drop_write: 1335 mnt_drop_write_file(file); 1336 out: 1337 return ret; 1338 } 1339 1340 static noinline int btrfs_ioctl_snap_create(struct file *file, 1341 void __user *arg, int subvol) 1342 { 1343 struct btrfs_ioctl_vol_args *vol_args; 1344 int ret; 1345 1346 if (!S_ISDIR(file_inode(file)->i_mode)) 1347 return -ENOTDIR; 1348 1349 vol_args = memdup_user(arg, sizeof(*vol_args)); 1350 if (IS_ERR(vol_args)) 1351 return PTR_ERR(vol_args); 1352 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1353 1354 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1355 vol_args->name, vol_args->fd, subvol, 1356 false, NULL); 1357 1358 kfree(vol_args); 1359 return ret; 1360 } 1361 1362 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1363 void __user *arg, int subvol) 1364 { 1365 struct btrfs_ioctl_vol_args_v2 *vol_args; 1366 int ret; 1367 bool readonly = false; 1368 struct btrfs_qgroup_inherit *inherit = NULL; 1369 1370 if (!S_ISDIR(file_inode(file)->i_mode)) 1371 return -ENOTDIR; 1372 1373 vol_args = memdup_user(arg, sizeof(*vol_args)); 1374 if (IS_ERR(vol_args)) 1375 return PTR_ERR(vol_args); 1376 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1377 1378 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1379 ret = -EOPNOTSUPP; 1380 goto free_args; 1381 } 1382 1383 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1384 readonly = true; 1385 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1386 u64 nums; 1387 1388 if (vol_args->size < sizeof(*inherit) || 1389 vol_args->size > PAGE_SIZE) { 1390 ret = -EINVAL; 1391 goto free_args; 1392 } 1393 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1394 if (IS_ERR(inherit)) { 1395 ret = PTR_ERR(inherit); 1396 goto free_args; 1397 } 1398 1399 if (inherit->num_qgroups > PAGE_SIZE || 1400 inherit->num_ref_copies > PAGE_SIZE || 1401 inherit->num_excl_copies > PAGE_SIZE) { 1402 ret = -EINVAL; 1403 goto free_inherit; 1404 } 1405 1406 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1407 2 * inherit->num_excl_copies; 1408 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1409 ret = -EINVAL; 1410 goto free_inherit; 1411 } 1412 } 1413 1414 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1415 vol_args->name, vol_args->fd, subvol, 1416 readonly, inherit); 1417 if (ret) 1418 goto free_inherit; 1419 free_inherit: 1420 kfree(inherit); 1421 free_args: 1422 kfree(vol_args); 1423 return ret; 1424 } 1425 1426 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 1427 void __user *arg) 1428 { 1429 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1430 struct btrfs_root *root = BTRFS_I(inode)->root; 1431 int ret = 0; 1432 u64 flags = 0; 1433 1434 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1435 return -EINVAL; 1436 1437 down_read(&fs_info->subvol_sem); 1438 if (btrfs_root_readonly(root)) 1439 flags |= BTRFS_SUBVOL_RDONLY; 1440 up_read(&fs_info->subvol_sem); 1441 1442 if (copy_to_user(arg, &flags, sizeof(flags))) 1443 ret = -EFAULT; 1444 1445 return ret; 1446 } 1447 1448 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1449 void __user *arg) 1450 { 1451 struct inode *inode = file_inode(file); 1452 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1453 struct btrfs_root *root = BTRFS_I(inode)->root; 1454 struct btrfs_trans_handle *trans; 1455 u64 root_flags; 1456 u64 flags; 1457 int ret = 0; 1458 1459 if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) 1460 return -EPERM; 1461 1462 ret = mnt_want_write_file(file); 1463 if (ret) 1464 goto out; 1465 1466 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1467 ret = -EINVAL; 1468 goto out_drop_write; 1469 } 1470 1471 if (copy_from_user(&flags, arg, sizeof(flags))) { 1472 ret = -EFAULT; 1473 goto out_drop_write; 1474 } 1475 1476 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1477 ret = -EOPNOTSUPP; 1478 goto out_drop_write; 1479 } 1480 1481 down_write(&fs_info->subvol_sem); 1482 1483 /* nothing to do */ 1484 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1485 goto out_drop_sem; 1486 1487 root_flags = btrfs_root_flags(&root->root_item); 1488 if (flags & BTRFS_SUBVOL_RDONLY) { 1489 btrfs_set_root_flags(&root->root_item, 1490 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1491 } else { 1492 /* 1493 * Block RO -> RW transition if this subvolume is involved in 1494 * send 1495 */ 1496 spin_lock(&root->root_item_lock); 1497 if (root->send_in_progress == 0) { 1498 btrfs_set_root_flags(&root->root_item, 1499 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1500 spin_unlock(&root->root_item_lock); 1501 } else { 1502 spin_unlock(&root->root_item_lock); 1503 btrfs_warn(fs_info, 1504 "Attempt to set subvolume %llu read-write during send", 1505 root->root_key.objectid); 1506 ret = -EPERM; 1507 goto out_drop_sem; 1508 } 1509 } 1510 1511 trans = btrfs_start_transaction(root, 1); 1512 if (IS_ERR(trans)) { 1513 ret = PTR_ERR(trans); 1514 goto out_reset; 1515 } 1516 1517 ret = btrfs_update_root(trans, fs_info->tree_root, 1518 &root->root_key, &root->root_item); 1519 if (ret < 0) { 1520 btrfs_end_transaction(trans); 1521 goto out_reset; 1522 } 1523 1524 ret = btrfs_commit_transaction(trans); 1525 1526 out_reset: 1527 if (ret) 1528 btrfs_set_root_flags(&root->root_item, root_flags); 1529 out_drop_sem: 1530 up_write(&fs_info->subvol_sem); 1531 out_drop_write: 1532 mnt_drop_write_file(file); 1533 out: 1534 return ret; 1535 } 1536 1537 static noinline int key_in_sk(struct btrfs_key *key, 1538 struct btrfs_ioctl_search_key *sk) 1539 { 1540 struct btrfs_key test; 1541 int ret; 1542 1543 test.objectid = sk->min_objectid; 1544 test.type = sk->min_type; 1545 test.offset = sk->min_offset; 1546 1547 ret = btrfs_comp_cpu_keys(key, &test); 1548 if (ret < 0) 1549 return 0; 1550 1551 test.objectid = sk->max_objectid; 1552 test.type = sk->max_type; 1553 test.offset = sk->max_offset; 1554 1555 ret = btrfs_comp_cpu_keys(key, &test); 1556 if (ret > 0) 1557 return 0; 1558 return 1; 1559 } 1560 1561 static noinline int copy_to_sk(struct btrfs_path *path, 1562 struct btrfs_key *key, 1563 struct btrfs_ioctl_search_key *sk, 1564 u64 *buf_size, 1565 char __user *ubuf, 1566 unsigned long *sk_offset, 1567 int *num_found) 1568 { 1569 u64 found_transid; 1570 struct extent_buffer *leaf; 1571 struct btrfs_ioctl_search_header sh; 1572 struct btrfs_key test; 1573 unsigned long item_off; 1574 unsigned long item_len; 1575 int nritems; 1576 int i; 1577 int slot; 1578 int ret = 0; 1579 1580 leaf = path->nodes[0]; 1581 slot = path->slots[0]; 1582 nritems = btrfs_header_nritems(leaf); 1583 1584 if (btrfs_header_generation(leaf) > sk->max_transid) { 1585 i = nritems; 1586 goto advance_key; 1587 } 1588 found_transid = btrfs_header_generation(leaf); 1589 1590 for (i = slot; i < nritems; i++) { 1591 item_off = btrfs_item_ptr_offset(leaf, i); 1592 item_len = btrfs_item_size(leaf, i); 1593 1594 btrfs_item_key_to_cpu(leaf, key, i); 1595 if (!key_in_sk(key, sk)) 1596 continue; 1597 1598 if (sizeof(sh) + item_len > *buf_size) { 1599 if (*num_found) { 1600 ret = 1; 1601 goto out; 1602 } 1603 1604 /* 1605 * return one empty item back for v1, which does not 1606 * handle -EOVERFLOW 1607 */ 1608 1609 *buf_size = sizeof(sh) + item_len; 1610 item_len = 0; 1611 ret = -EOVERFLOW; 1612 } 1613 1614 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1615 ret = 1; 1616 goto out; 1617 } 1618 1619 sh.objectid = key->objectid; 1620 sh.offset = key->offset; 1621 sh.type = key->type; 1622 sh.len = item_len; 1623 sh.transid = found_transid; 1624 1625 /* 1626 * Copy search result header. If we fault then loop again so we 1627 * can fault in the pages and -EFAULT there if there's a 1628 * problem. Otherwise we'll fault and then copy the buffer in 1629 * properly this next time through 1630 */ 1631 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 1632 ret = 0; 1633 goto out; 1634 } 1635 1636 *sk_offset += sizeof(sh); 1637 1638 if (item_len) { 1639 char __user *up = ubuf + *sk_offset; 1640 /* 1641 * Copy the item, same behavior as above, but reset the 1642 * * sk_offset so we copy the full thing again. 1643 */ 1644 if (read_extent_buffer_to_user_nofault(leaf, up, 1645 item_off, item_len)) { 1646 ret = 0; 1647 *sk_offset -= sizeof(sh); 1648 goto out; 1649 } 1650 1651 *sk_offset += item_len; 1652 } 1653 (*num_found)++; 1654 1655 if (ret) /* -EOVERFLOW from above */ 1656 goto out; 1657 1658 if (*num_found >= sk->nr_items) { 1659 ret = 1; 1660 goto out; 1661 } 1662 } 1663 advance_key: 1664 ret = 0; 1665 test.objectid = sk->max_objectid; 1666 test.type = sk->max_type; 1667 test.offset = sk->max_offset; 1668 if (btrfs_comp_cpu_keys(key, &test) >= 0) 1669 ret = 1; 1670 else if (key->offset < (u64)-1) 1671 key->offset++; 1672 else if (key->type < (u8)-1) { 1673 key->offset = 0; 1674 key->type++; 1675 } else if (key->objectid < (u64)-1) { 1676 key->offset = 0; 1677 key->type = 0; 1678 key->objectid++; 1679 } else 1680 ret = 1; 1681 out: 1682 /* 1683 * 0: all items from this leaf copied, continue with next 1684 * 1: * more items can be copied, but unused buffer is too small 1685 * * all items were found 1686 * Either way, it will stops the loop which iterates to the next 1687 * leaf 1688 * -EOVERFLOW: item was to large for buffer 1689 * -EFAULT: could not copy extent buffer back to userspace 1690 */ 1691 return ret; 1692 } 1693 1694 static noinline int search_ioctl(struct inode *inode, 1695 struct btrfs_ioctl_search_key *sk, 1696 u64 *buf_size, 1697 char __user *ubuf) 1698 { 1699 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 1700 struct btrfs_root *root; 1701 struct btrfs_key key; 1702 struct btrfs_path *path; 1703 int ret; 1704 int num_found = 0; 1705 unsigned long sk_offset = 0; 1706 1707 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 1708 *buf_size = sizeof(struct btrfs_ioctl_search_header); 1709 return -EOVERFLOW; 1710 } 1711 1712 path = btrfs_alloc_path(); 1713 if (!path) 1714 return -ENOMEM; 1715 1716 if (sk->tree_id == 0) { 1717 /* search the root of the inode that was passed */ 1718 root = btrfs_grab_root(BTRFS_I(inode)->root); 1719 } else { 1720 root = btrfs_get_fs_root(info, sk->tree_id, true); 1721 if (IS_ERR(root)) { 1722 btrfs_free_path(path); 1723 return PTR_ERR(root); 1724 } 1725 } 1726 1727 key.objectid = sk->min_objectid; 1728 key.type = sk->min_type; 1729 key.offset = sk->min_offset; 1730 1731 while (1) { 1732 ret = -EFAULT; 1733 /* 1734 * Ensure that the whole user buffer is faulted in at sub-page 1735 * granularity, otherwise the loop may live-lock. 1736 */ 1737 if (fault_in_subpage_writeable(ubuf + sk_offset, 1738 *buf_size - sk_offset)) 1739 break; 1740 1741 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 1742 if (ret != 0) { 1743 if (ret > 0) 1744 ret = 0; 1745 goto err; 1746 } 1747 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 1748 &sk_offset, &num_found); 1749 btrfs_release_path(path); 1750 if (ret) 1751 break; 1752 1753 } 1754 if (ret > 0) 1755 ret = 0; 1756 err: 1757 sk->nr_items = num_found; 1758 btrfs_put_root(root); 1759 btrfs_free_path(path); 1760 return ret; 1761 } 1762 1763 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 1764 void __user *argp) 1765 { 1766 struct btrfs_ioctl_search_args __user *uargs = argp; 1767 struct btrfs_ioctl_search_key sk; 1768 int ret; 1769 u64 buf_size; 1770 1771 if (!capable(CAP_SYS_ADMIN)) 1772 return -EPERM; 1773 1774 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 1775 return -EFAULT; 1776 1777 buf_size = sizeof(uargs->buf); 1778 1779 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 1780 1781 /* 1782 * In the origin implementation an overflow is handled by returning a 1783 * search header with a len of zero, so reset ret. 1784 */ 1785 if (ret == -EOVERFLOW) 1786 ret = 0; 1787 1788 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 1789 ret = -EFAULT; 1790 return ret; 1791 } 1792 1793 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 1794 void __user *argp) 1795 { 1796 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 1797 struct btrfs_ioctl_search_args_v2 args; 1798 int ret; 1799 u64 buf_size; 1800 const u64 buf_limit = SZ_16M; 1801 1802 if (!capable(CAP_SYS_ADMIN)) 1803 return -EPERM; 1804 1805 /* copy search header and buffer size */ 1806 if (copy_from_user(&args, uarg, sizeof(args))) 1807 return -EFAULT; 1808 1809 buf_size = args.buf_size; 1810 1811 /* limit result size to 16MB */ 1812 if (buf_size > buf_limit) 1813 buf_size = buf_limit; 1814 1815 ret = search_ioctl(inode, &args.key, &buf_size, 1816 (char __user *)(&uarg->buf[0])); 1817 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 1818 ret = -EFAULT; 1819 else if (ret == -EOVERFLOW && 1820 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 1821 ret = -EFAULT; 1822 1823 return ret; 1824 } 1825 1826 /* 1827 * Search INODE_REFs to identify path name of 'dirid' directory 1828 * in a 'tree_id' tree. and sets path name to 'name'. 1829 */ 1830 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1831 u64 tree_id, u64 dirid, char *name) 1832 { 1833 struct btrfs_root *root; 1834 struct btrfs_key key; 1835 char *ptr; 1836 int ret = -1; 1837 int slot; 1838 int len; 1839 int total_len = 0; 1840 struct btrfs_inode_ref *iref; 1841 struct extent_buffer *l; 1842 struct btrfs_path *path; 1843 1844 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1845 name[0]='\0'; 1846 return 0; 1847 } 1848 1849 path = btrfs_alloc_path(); 1850 if (!path) 1851 return -ENOMEM; 1852 1853 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 1854 1855 root = btrfs_get_fs_root(info, tree_id, true); 1856 if (IS_ERR(root)) { 1857 ret = PTR_ERR(root); 1858 root = NULL; 1859 goto out; 1860 } 1861 1862 key.objectid = dirid; 1863 key.type = BTRFS_INODE_REF_KEY; 1864 key.offset = (u64)-1; 1865 1866 while (1) { 1867 ret = btrfs_search_backwards(root, &key, path); 1868 if (ret < 0) 1869 goto out; 1870 else if (ret > 0) { 1871 ret = -ENOENT; 1872 goto out; 1873 } 1874 1875 l = path->nodes[0]; 1876 slot = path->slots[0]; 1877 1878 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1879 len = btrfs_inode_ref_name_len(l, iref); 1880 ptr -= len + 1; 1881 total_len += len + 1; 1882 if (ptr < name) { 1883 ret = -ENAMETOOLONG; 1884 goto out; 1885 } 1886 1887 *(ptr + len) = '/'; 1888 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 1889 1890 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1891 break; 1892 1893 btrfs_release_path(path); 1894 key.objectid = key.offset; 1895 key.offset = (u64)-1; 1896 dirid = key.objectid; 1897 } 1898 memmove(name, ptr, total_len); 1899 name[total_len] = '\0'; 1900 ret = 0; 1901 out: 1902 btrfs_put_root(root); 1903 btrfs_free_path(path); 1904 return ret; 1905 } 1906 1907 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap, 1908 struct inode *inode, 1909 struct btrfs_ioctl_ino_lookup_user_args *args) 1910 { 1911 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1912 struct super_block *sb = inode->i_sb; 1913 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 1914 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 1915 u64 dirid = args->dirid; 1916 unsigned long item_off; 1917 unsigned long item_len; 1918 struct btrfs_inode_ref *iref; 1919 struct btrfs_root_ref *rref; 1920 struct btrfs_root *root = NULL; 1921 struct btrfs_path *path; 1922 struct btrfs_key key, key2; 1923 struct extent_buffer *leaf; 1924 struct inode *temp_inode; 1925 char *ptr; 1926 int slot; 1927 int len; 1928 int total_len = 0; 1929 int ret; 1930 1931 path = btrfs_alloc_path(); 1932 if (!path) 1933 return -ENOMEM; 1934 1935 /* 1936 * If the bottom subvolume does not exist directly under upper_limit, 1937 * construct the path in from the bottom up. 1938 */ 1939 if (dirid != upper_limit.objectid) { 1940 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 1941 1942 root = btrfs_get_fs_root(fs_info, treeid, true); 1943 if (IS_ERR(root)) { 1944 ret = PTR_ERR(root); 1945 goto out; 1946 } 1947 1948 key.objectid = dirid; 1949 key.type = BTRFS_INODE_REF_KEY; 1950 key.offset = (u64)-1; 1951 while (1) { 1952 ret = btrfs_search_backwards(root, &key, path); 1953 if (ret < 0) 1954 goto out_put; 1955 else if (ret > 0) { 1956 ret = -ENOENT; 1957 goto out_put; 1958 } 1959 1960 leaf = path->nodes[0]; 1961 slot = path->slots[0]; 1962 1963 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 1964 len = btrfs_inode_ref_name_len(leaf, iref); 1965 ptr -= len + 1; 1966 total_len += len + 1; 1967 if (ptr < args->path) { 1968 ret = -ENAMETOOLONG; 1969 goto out_put; 1970 } 1971 1972 *(ptr + len) = '/'; 1973 read_extent_buffer(leaf, ptr, 1974 (unsigned long)(iref + 1), len); 1975 1976 /* Check the read+exec permission of this directory */ 1977 ret = btrfs_previous_item(root, path, dirid, 1978 BTRFS_INODE_ITEM_KEY); 1979 if (ret < 0) { 1980 goto out_put; 1981 } else if (ret > 0) { 1982 ret = -ENOENT; 1983 goto out_put; 1984 } 1985 1986 leaf = path->nodes[0]; 1987 slot = path->slots[0]; 1988 btrfs_item_key_to_cpu(leaf, &key2, slot); 1989 if (key2.objectid != dirid) { 1990 ret = -ENOENT; 1991 goto out_put; 1992 } 1993 1994 /* 1995 * We don't need the path anymore, so release it and 1996 * avoid deadlocks and lockdep warnings in case 1997 * btrfs_iget() needs to lookup the inode from its root 1998 * btree and lock the same leaf. 1999 */ 2000 btrfs_release_path(path); 2001 temp_inode = btrfs_iget(sb, key2.objectid, root); 2002 if (IS_ERR(temp_inode)) { 2003 ret = PTR_ERR(temp_inode); 2004 goto out_put; 2005 } 2006 ret = inode_permission(idmap, temp_inode, 2007 MAY_READ | MAY_EXEC); 2008 iput(temp_inode); 2009 if (ret) { 2010 ret = -EACCES; 2011 goto out_put; 2012 } 2013 2014 if (key.offset == upper_limit.objectid) 2015 break; 2016 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2017 ret = -EACCES; 2018 goto out_put; 2019 } 2020 2021 key.objectid = key.offset; 2022 key.offset = (u64)-1; 2023 dirid = key.objectid; 2024 } 2025 2026 memmove(args->path, ptr, total_len); 2027 args->path[total_len] = '\0'; 2028 btrfs_put_root(root); 2029 root = NULL; 2030 btrfs_release_path(path); 2031 } 2032 2033 /* Get the bottom subvolume's name from ROOT_REF */ 2034 key.objectid = treeid; 2035 key.type = BTRFS_ROOT_REF_KEY; 2036 key.offset = args->treeid; 2037 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2038 if (ret < 0) { 2039 goto out; 2040 } else if (ret > 0) { 2041 ret = -ENOENT; 2042 goto out; 2043 } 2044 2045 leaf = path->nodes[0]; 2046 slot = path->slots[0]; 2047 btrfs_item_key_to_cpu(leaf, &key, slot); 2048 2049 item_off = btrfs_item_ptr_offset(leaf, slot); 2050 item_len = btrfs_item_size(leaf, slot); 2051 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2052 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2053 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2054 ret = -EINVAL; 2055 goto out; 2056 } 2057 2058 /* Copy subvolume's name */ 2059 item_off += sizeof(struct btrfs_root_ref); 2060 item_len -= sizeof(struct btrfs_root_ref); 2061 read_extent_buffer(leaf, args->name, item_off, item_len); 2062 args->name[item_len] = 0; 2063 2064 out_put: 2065 btrfs_put_root(root); 2066 out: 2067 btrfs_free_path(path); 2068 return ret; 2069 } 2070 2071 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 2072 void __user *argp) 2073 { 2074 struct btrfs_ioctl_ino_lookup_args *args; 2075 int ret = 0; 2076 2077 args = memdup_user(argp, sizeof(*args)); 2078 if (IS_ERR(args)) 2079 return PTR_ERR(args); 2080 2081 /* 2082 * Unprivileged query to obtain the containing subvolume root id. The 2083 * path is reset so it's consistent with btrfs_search_path_in_tree. 2084 */ 2085 if (args->treeid == 0) 2086 args->treeid = root->root_key.objectid; 2087 2088 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2089 args->name[0] = 0; 2090 goto out; 2091 } 2092 2093 if (!capable(CAP_SYS_ADMIN)) { 2094 ret = -EPERM; 2095 goto out; 2096 } 2097 2098 ret = btrfs_search_path_in_tree(root->fs_info, 2099 args->treeid, args->objectid, 2100 args->name); 2101 2102 out: 2103 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2104 ret = -EFAULT; 2105 2106 kfree(args); 2107 return ret; 2108 } 2109 2110 /* 2111 * Version of ino_lookup ioctl (unprivileged) 2112 * 2113 * The main differences from ino_lookup ioctl are: 2114 * 2115 * 1. Read + Exec permission will be checked using inode_permission() during 2116 * path construction. -EACCES will be returned in case of failure. 2117 * 2. Path construction will be stopped at the inode number which corresponds 2118 * to the fd with which this ioctl is called. If constructed path does not 2119 * exist under fd's inode, -EACCES will be returned. 2120 * 3. The name of bottom subvolume is also searched and filled. 2121 */ 2122 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2123 { 2124 struct btrfs_ioctl_ino_lookup_user_args *args; 2125 struct inode *inode; 2126 int ret; 2127 2128 args = memdup_user(argp, sizeof(*args)); 2129 if (IS_ERR(args)) 2130 return PTR_ERR(args); 2131 2132 inode = file_inode(file); 2133 2134 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2135 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2136 /* 2137 * The subvolume does not exist under fd with which this is 2138 * called 2139 */ 2140 kfree(args); 2141 return -EACCES; 2142 } 2143 2144 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args); 2145 2146 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2147 ret = -EFAULT; 2148 2149 kfree(args); 2150 return ret; 2151 } 2152 2153 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2154 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2155 { 2156 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2157 struct btrfs_fs_info *fs_info; 2158 struct btrfs_root *root; 2159 struct btrfs_path *path; 2160 struct btrfs_key key; 2161 struct btrfs_root_item *root_item; 2162 struct btrfs_root_ref *rref; 2163 struct extent_buffer *leaf; 2164 unsigned long item_off; 2165 unsigned long item_len; 2166 int slot; 2167 int ret = 0; 2168 2169 path = btrfs_alloc_path(); 2170 if (!path) 2171 return -ENOMEM; 2172 2173 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2174 if (!subvol_info) { 2175 btrfs_free_path(path); 2176 return -ENOMEM; 2177 } 2178 2179 fs_info = BTRFS_I(inode)->root->fs_info; 2180 2181 /* Get root_item of inode's subvolume */ 2182 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2183 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2184 if (IS_ERR(root)) { 2185 ret = PTR_ERR(root); 2186 goto out_free; 2187 } 2188 root_item = &root->root_item; 2189 2190 subvol_info->treeid = key.objectid; 2191 2192 subvol_info->generation = btrfs_root_generation(root_item); 2193 subvol_info->flags = btrfs_root_flags(root_item); 2194 2195 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2196 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2197 BTRFS_UUID_SIZE); 2198 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2199 BTRFS_UUID_SIZE); 2200 2201 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2202 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2203 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2204 2205 subvol_info->otransid = btrfs_root_otransid(root_item); 2206 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2207 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2208 2209 subvol_info->stransid = btrfs_root_stransid(root_item); 2210 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2211 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2212 2213 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2214 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2215 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2216 2217 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2218 /* Search root tree for ROOT_BACKREF of this subvolume */ 2219 key.type = BTRFS_ROOT_BACKREF_KEY; 2220 key.offset = 0; 2221 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2222 if (ret < 0) { 2223 goto out; 2224 } else if (path->slots[0] >= 2225 btrfs_header_nritems(path->nodes[0])) { 2226 ret = btrfs_next_leaf(fs_info->tree_root, path); 2227 if (ret < 0) { 2228 goto out; 2229 } else if (ret > 0) { 2230 ret = -EUCLEAN; 2231 goto out; 2232 } 2233 } 2234 2235 leaf = path->nodes[0]; 2236 slot = path->slots[0]; 2237 btrfs_item_key_to_cpu(leaf, &key, slot); 2238 if (key.objectid == subvol_info->treeid && 2239 key.type == BTRFS_ROOT_BACKREF_KEY) { 2240 subvol_info->parent_id = key.offset; 2241 2242 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2243 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2244 2245 item_off = btrfs_item_ptr_offset(leaf, slot) 2246 + sizeof(struct btrfs_root_ref); 2247 item_len = btrfs_item_size(leaf, slot) 2248 - sizeof(struct btrfs_root_ref); 2249 read_extent_buffer(leaf, subvol_info->name, 2250 item_off, item_len); 2251 } else { 2252 ret = -ENOENT; 2253 goto out; 2254 } 2255 } 2256 2257 btrfs_free_path(path); 2258 path = NULL; 2259 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2260 ret = -EFAULT; 2261 2262 out: 2263 btrfs_put_root(root); 2264 out_free: 2265 btrfs_free_path(path); 2266 kfree(subvol_info); 2267 return ret; 2268 } 2269 2270 /* 2271 * Return ROOT_REF information of the subvolume containing this inode 2272 * except the subvolume name. 2273 */ 2274 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 2275 void __user *argp) 2276 { 2277 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2278 struct btrfs_root_ref *rref; 2279 struct btrfs_path *path; 2280 struct btrfs_key key; 2281 struct extent_buffer *leaf; 2282 u64 objectid; 2283 int slot; 2284 int ret; 2285 u8 found; 2286 2287 path = btrfs_alloc_path(); 2288 if (!path) 2289 return -ENOMEM; 2290 2291 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2292 if (IS_ERR(rootrefs)) { 2293 btrfs_free_path(path); 2294 return PTR_ERR(rootrefs); 2295 } 2296 2297 objectid = root->root_key.objectid; 2298 key.objectid = objectid; 2299 key.type = BTRFS_ROOT_REF_KEY; 2300 key.offset = rootrefs->min_treeid; 2301 found = 0; 2302 2303 root = root->fs_info->tree_root; 2304 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2305 if (ret < 0) { 2306 goto out; 2307 } else if (path->slots[0] >= 2308 btrfs_header_nritems(path->nodes[0])) { 2309 ret = btrfs_next_leaf(root, path); 2310 if (ret < 0) { 2311 goto out; 2312 } else if (ret > 0) { 2313 ret = -EUCLEAN; 2314 goto out; 2315 } 2316 } 2317 while (1) { 2318 leaf = path->nodes[0]; 2319 slot = path->slots[0]; 2320 2321 btrfs_item_key_to_cpu(leaf, &key, slot); 2322 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2323 ret = 0; 2324 goto out; 2325 } 2326 2327 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2328 ret = -EOVERFLOW; 2329 goto out; 2330 } 2331 2332 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2333 rootrefs->rootref[found].treeid = key.offset; 2334 rootrefs->rootref[found].dirid = 2335 btrfs_root_ref_dirid(leaf, rref); 2336 found++; 2337 2338 ret = btrfs_next_item(root, path); 2339 if (ret < 0) { 2340 goto out; 2341 } else if (ret > 0) { 2342 ret = -EUCLEAN; 2343 goto out; 2344 } 2345 } 2346 2347 out: 2348 btrfs_free_path(path); 2349 2350 if (!ret || ret == -EOVERFLOW) { 2351 rootrefs->num_items = found; 2352 /* update min_treeid for next search */ 2353 if (found) 2354 rootrefs->min_treeid = 2355 rootrefs->rootref[found - 1].treeid + 1; 2356 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2357 ret = -EFAULT; 2358 } 2359 2360 kfree(rootrefs); 2361 2362 return ret; 2363 } 2364 2365 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2366 void __user *arg, 2367 bool destroy_v2) 2368 { 2369 struct dentry *parent = file->f_path.dentry; 2370 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2371 struct dentry *dentry; 2372 struct inode *dir = d_inode(parent); 2373 struct inode *inode; 2374 struct btrfs_root *root = BTRFS_I(dir)->root; 2375 struct btrfs_root *dest = NULL; 2376 struct btrfs_ioctl_vol_args *vol_args = NULL; 2377 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2378 struct mnt_idmap *idmap = file_mnt_idmap(file); 2379 char *subvol_name, *subvol_name_ptr = NULL; 2380 int subvol_namelen; 2381 int err = 0; 2382 bool destroy_parent = false; 2383 2384 /* We don't support snapshots with extent tree v2 yet. */ 2385 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2386 btrfs_err(fs_info, 2387 "extent tree v2 doesn't support snapshot deletion yet"); 2388 return -EOPNOTSUPP; 2389 } 2390 2391 if (destroy_v2) { 2392 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2393 if (IS_ERR(vol_args2)) 2394 return PTR_ERR(vol_args2); 2395 2396 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2397 err = -EOPNOTSUPP; 2398 goto out; 2399 } 2400 2401 /* 2402 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2403 * name, same as v1 currently does. 2404 */ 2405 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2406 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2407 subvol_name = vol_args2->name; 2408 2409 err = mnt_want_write_file(file); 2410 if (err) 2411 goto out; 2412 } else { 2413 struct inode *old_dir; 2414 2415 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2416 err = -EINVAL; 2417 goto out; 2418 } 2419 2420 err = mnt_want_write_file(file); 2421 if (err) 2422 goto out; 2423 2424 dentry = btrfs_get_dentry(fs_info->sb, 2425 BTRFS_FIRST_FREE_OBJECTID, 2426 vol_args2->subvolid, 0); 2427 if (IS_ERR(dentry)) { 2428 err = PTR_ERR(dentry); 2429 goto out_drop_write; 2430 } 2431 2432 /* 2433 * Change the default parent since the subvolume being 2434 * deleted can be outside of the current mount point. 2435 */ 2436 parent = btrfs_get_parent(dentry); 2437 2438 /* 2439 * At this point dentry->d_name can point to '/' if the 2440 * subvolume we want to destroy is outsite of the 2441 * current mount point, so we need to release the 2442 * current dentry and execute the lookup to return a new 2443 * one with ->d_name pointing to the 2444 * <mount point>/subvol_name. 2445 */ 2446 dput(dentry); 2447 if (IS_ERR(parent)) { 2448 err = PTR_ERR(parent); 2449 goto out_drop_write; 2450 } 2451 old_dir = dir; 2452 dir = d_inode(parent); 2453 2454 /* 2455 * If v2 was used with SPEC_BY_ID, a new parent was 2456 * allocated since the subvolume can be outside of the 2457 * current mount point. Later on we need to release this 2458 * new parent dentry. 2459 */ 2460 destroy_parent = true; 2461 2462 /* 2463 * On idmapped mounts, deletion via subvolid is 2464 * restricted to subvolumes that are immediate 2465 * ancestors of the inode referenced by the file 2466 * descriptor in the ioctl. Otherwise the idmapping 2467 * could potentially be abused to delete subvolumes 2468 * anywhere in the filesystem the user wouldn't be able 2469 * to delete without an idmapped mount. 2470 */ 2471 if (old_dir != dir && idmap != &nop_mnt_idmap) { 2472 err = -EOPNOTSUPP; 2473 goto free_parent; 2474 } 2475 2476 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2477 fs_info, vol_args2->subvolid); 2478 if (IS_ERR(subvol_name_ptr)) { 2479 err = PTR_ERR(subvol_name_ptr); 2480 goto free_parent; 2481 } 2482 /* subvol_name_ptr is already nul terminated */ 2483 subvol_name = (char *)kbasename(subvol_name_ptr); 2484 } 2485 } else { 2486 vol_args = memdup_user(arg, sizeof(*vol_args)); 2487 if (IS_ERR(vol_args)) 2488 return PTR_ERR(vol_args); 2489 2490 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2491 subvol_name = vol_args->name; 2492 2493 err = mnt_want_write_file(file); 2494 if (err) 2495 goto out; 2496 } 2497 2498 subvol_namelen = strlen(subvol_name); 2499 2500 if (strchr(subvol_name, '/') || 2501 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2502 err = -EINVAL; 2503 goto free_subvol_name; 2504 } 2505 2506 if (!S_ISDIR(dir->i_mode)) { 2507 err = -ENOTDIR; 2508 goto free_subvol_name; 2509 } 2510 2511 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2512 if (err == -EINTR) 2513 goto free_subvol_name; 2514 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen); 2515 if (IS_ERR(dentry)) { 2516 err = PTR_ERR(dentry); 2517 goto out_unlock_dir; 2518 } 2519 2520 if (d_really_is_negative(dentry)) { 2521 err = -ENOENT; 2522 goto out_dput; 2523 } 2524 2525 inode = d_inode(dentry); 2526 dest = BTRFS_I(inode)->root; 2527 if (!capable(CAP_SYS_ADMIN)) { 2528 /* 2529 * Regular user. Only allow this with a special mount 2530 * option, when the user has write+exec access to the 2531 * subvol root, and when rmdir(2) would have been 2532 * allowed. 2533 * 2534 * Note that this is _not_ check that the subvol is 2535 * empty or doesn't contain data that we wouldn't 2536 * otherwise be able to delete. 2537 * 2538 * Users who want to delete empty subvols should try 2539 * rmdir(2). 2540 */ 2541 err = -EPERM; 2542 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2543 goto out_dput; 2544 2545 /* 2546 * Do not allow deletion if the parent dir is the same 2547 * as the dir to be deleted. That means the ioctl 2548 * must be called on the dentry referencing the root 2549 * of the subvol, not a random directory contained 2550 * within it. 2551 */ 2552 err = -EINVAL; 2553 if (root == dest) 2554 goto out_dput; 2555 2556 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC); 2557 if (err) 2558 goto out_dput; 2559 } 2560 2561 /* check if subvolume may be deleted by a user */ 2562 err = btrfs_may_delete(idmap, dir, dentry, 1); 2563 if (err) 2564 goto out_dput; 2565 2566 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2567 err = -EINVAL; 2568 goto out_dput; 2569 } 2570 2571 btrfs_inode_lock(BTRFS_I(inode), 0); 2572 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry); 2573 btrfs_inode_unlock(BTRFS_I(inode), 0); 2574 if (!err) 2575 d_delete_notify(dir, dentry); 2576 2577 out_dput: 2578 dput(dentry); 2579 out_unlock_dir: 2580 btrfs_inode_unlock(BTRFS_I(dir), 0); 2581 free_subvol_name: 2582 kfree(subvol_name_ptr); 2583 free_parent: 2584 if (destroy_parent) 2585 dput(parent); 2586 out_drop_write: 2587 mnt_drop_write_file(file); 2588 out: 2589 kfree(vol_args2); 2590 kfree(vol_args); 2591 return err; 2592 } 2593 2594 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2595 { 2596 struct inode *inode = file_inode(file); 2597 struct btrfs_root *root = BTRFS_I(inode)->root; 2598 struct btrfs_ioctl_defrag_range_args range = {0}; 2599 int ret; 2600 2601 ret = mnt_want_write_file(file); 2602 if (ret) 2603 return ret; 2604 2605 if (btrfs_root_readonly(root)) { 2606 ret = -EROFS; 2607 goto out; 2608 } 2609 2610 switch (inode->i_mode & S_IFMT) { 2611 case S_IFDIR: 2612 if (!capable(CAP_SYS_ADMIN)) { 2613 ret = -EPERM; 2614 goto out; 2615 } 2616 ret = btrfs_defrag_root(root); 2617 break; 2618 case S_IFREG: 2619 /* 2620 * Note that this does not check the file descriptor for write 2621 * access. This prevents defragmenting executables that are 2622 * running and allows defrag on files open in read-only mode. 2623 */ 2624 if (!capable(CAP_SYS_ADMIN) && 2625 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) { 2626 ret = -EPERM; 2627 goto out; 2628 } 2629 2630 if (argp) { 2631 if (copy_from_user(&range, argp, sizeof(range))) { 2632 ret = -EFAULT; 2633 goto out; 2634 } 2635 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) { 2636 ret = -EOPNOTSUPP; 2637 goto out; 2638 } 2639 /* compression requires us to start the IO */ 2640 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2641 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 2642 range.extent_thresh = (u32)-1; 2643 } 2644 } else { 2645 /* the rest are all set to zero by kzalloc */ 2646 range.len = (u64)-1; 2647 } 2648 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 2649 &range, BTRFS_OLDEST_GENERATION, 0); 2650 if (ret > 0) 2651 ret = 0; 2652 break; 2653 default: 2654 ret = -EINVAL; 2655 } 2656 out: 2657 mnt_drop_write_file(file); 2658 return ret; 2659 } 2660 2661 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2662 { 2663 struct btrfs_ioctl_vol_args *vol_args; 2664 bool restore_op = false; 2665 int ret; 2666 2667 if (!capable(CAP_SYS_ADMIN)) 2668 return -EPERM; 2669 2670 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2671 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 2672 return -EINVAL; 2673 } 2674 2675 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 2676 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 2677 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2678 2679 /* 2680 * We can do the device add because we have a paused balanced, 2681 * change the exclusive op type and remember we should bring 2682 * back the paused balance 2683 */ 2684 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 2685 btrfs_exclop_start_unlock(fs_info); 2686 restore_op = true; 2687 } 2688 2689 vol_args = memdup_user(arg, sizeof(*vol_args)); 2690 if (IS_ERR(vol_args)) { 2691 ret = PTR_ERR(vol_args); 2692 goto out; 2693 } 2694 2695 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2696 ret = btrfs_init_new_device(fs_info, vol_args->name); 2697 2698 if (!ret) 2699 btrfs_info(fs_info, "disk added %s", vol_args->name); 2700 2701 kfree(vol_args); 2702 out: 2703 if (restore_op) 2704 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 2705 else 2706 btrfs_exclop_finish(fs_info); 2707 return ret; 2708 } 2709 2710 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2711 { 2712 BTRFS_DEV_LOOKUP_ARGS(args); 2713 struct inode *inode = file_inode(file); 2714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2715 struct btrfs_ioctl_vol_args_v2 *vol_args; 2716 struct block_device *bdev = NULL; 2717 void *holder; 2718 int ret; 2719 bool cancel = false; 2720 2721 if (!capable(CAP_SYS_ADMIN)) 2722 return -EPERM; 2723 2724 vol_args = memdup_user(arg, sizeof(*vol_args)); 2725 if (IS_ERR(vol_args)) 2726 return PTR_ERR(vol_args); 2727 2728 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 2729 ret = -EOPNOTSUPP; 2730 goto out; 2731 } 2732 2733 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2734 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2735 args.devid = vol_args->devid; 2736 } else if (!strcmp("cancel", vol_args->name)) { 2737 cancel = true; 2738 } else { 2739 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2740 if (ret) 2741 goto out; 2742 } 2743 2744 ret = mnt_want_write_file(file); 2745 if (ret) 2746 goto out; 2747 2748 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2749 cancel); 2750 if (ret) 2751 goto err_drop; 2752 2753 /* Exclusive operation is now claimed */ 2754 ret = btrfs_rm_device(fs_info, &args, &bdev, &holder); 2755 2756 btrfs_exclop_finish(fs_info); 2757 2758 if (!ret) { 2759 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2760 btrfs_info(fs_info, "device deleted: id %llu", 2761 vol_args->devid); 2762 else 2763 btrfs_info(fs_info, "device deleted: %s", 2764 vol_args->name); 2765 } 2766 err_drop: 2767 mnt_drop_write_file(file); 2768 if (bdev) 2769 blkdev_put(bdev, holder); 2770 out: 2771 btrfs_put_dev_args_from_path(&args); 2772 kfree(vol_args); 2773 return ret; 2774 } 2775 2776 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2777 { 2778 BTRFS_DEV_LOOKUP_ARGS(args); 2779 struct inode *inode = file_inode(file); 2780 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2781 struct btrfs_ioctl_vol_args *vol_args; 2782 struct block_device *bdev = NULL; 2783 void *holder; 2784 int ret; 2785 bool cancel = false; 2786 2787 if (!capable(CAP_SYS_ADMIN)) 2788 return -EPERM; 2789 2790 vol_args = memdup_user(arg, sizeof(*vol_args)); 2791 if (IS_ERR(vol_args)) 2792 return PTR_ERR(vol_args); 2793 2794 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2795 if (!strcmp("cancel", vol_args->name)) { 2796 cancel = true; 2797 } else { 2798 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2799 if (ret) 2800 goto out; 2801 } 2802 2803 ret = mnt_want_write_file(file); 2804 if (ret) 2805 goto out; 2806 2807 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2808 cancel); 2809 if (ret == 0) { 2810 ret = btrfs_rm_device(fs_info, &args, &bdev, &holder); 2811 if (!ret) 2812 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2813 btrfs_exclop_finish(fs_info); 2814 } 2815 2816 mnt_drop_write_file(file); 2817 if (bdev) 2818 blkdev_put(bdev, holder); 2819 out: 2820 btrfs_put_dev_args_from_path(&args); 2821 kfree(vol_args); 2822 return ret; 2823 } 2824 2825 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2826 void __user *arg) 2827 { 2828 struct btrfs_ioctl_fs_info_args *fi_args; 2829 struct btrfs_device *device; 2830 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2831 u64 flags_in; 2832 int ret = 0; 2833 2834 fi_args = memdup_user(arg, sizeof(*fi_args)); 2835 if (IS_ERR(fi_args)) 2836 return PTR_ERR(fi_args); 2837 2838 flags_in = fi_args->flags; 2839 memset(fi_args, 0, sizeof(*fi_args)); 2840 2841 rcu_read_lock(); 2842 fi_args->num_devices = fs_devices->num_devices; 2843 2844 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2845 if (device->devid > fi_args->max_id) 2846 fi_args->max_id = device->devid; 2847 } 2848 rcu_read_unlock(); 2849 2850 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 2851 fi_args->nodesize = fs_info->nodesize; 2852 fi_args->sectorsize = fs_info->sectorsize; 2853 fi_args->clone_alignment = fs_info->sectorsize; 2854 2855 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 2856 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 2857 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 2858 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 2859 } 2860 2861 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 2862 fi_args->generation = fs_info->generation; 2863 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 2864 } 2865 2866 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 2867 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 2868 sizeof(fi_args->metadata_uuid)); 2869 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 2870 } 2871 2872 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2873 ret = -EFAULT; 2874 2875 kfree(fi_args); 2876 return ret; 2877 } 2878 2879 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2880 void __user *arg) 2881 { 2882 BTRFS_DEV_LOOKUP_ARGS(args); 2883 struct btrfs_ioctl_dev_info_args *di_args; 2884 struct btrfs_device *dev; 2885 int ret = 0; 2886 2887 di_args = memdup_user(arg, sizeof(*di_args)); 2888 if (IS_ERR(di_args)) 2889 return PTR_ERR(di_args); 2890 2891 args.devid = di_args->devid; 2892 if (!btrfs_is_empty_uuid(di_args->uuid)) 2893 args.uuid = di_args->uuid; 2894 2895 rcu_read_lock(); 2896 dev = btrfs_find_device(fs_info->fs_devices, &args); 2897 if (!dev) { 2898 ret = -ENODEV; 2899 goto out; 2900 } 2901 2902 di_args->devid = dev->devid; 2903 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2904 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2905 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2906 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2907 if (dev->name) 2908 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path)); 2909 else 2910 di_args->path[0] = '\0'; 2911 2912 out: 2913 rcu_read_unlock(); 2914 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2915 ret = -EFAULT; 2916 2917 kfree(di_args); 2918 return ret; 2919 } 2920 2921 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2922 { 2923 struct inode *inode = file_inode(file); 2924 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2925 struct btrfs_root *root = BTRFS_I(inode)->root; 2926 struct btrfs_root *new_root; 2927 struct btrfs_dir_item *di; 2928 struct btrfs_trans_handle *trans; 2929 struct btrfs_path *path = NULL; 2930 struct btrfs_disk_key disk_key; 2931 struct fscrypt_str name = FSTR_INIT("default", 7); 2932 u64 objectid = 0; 2933 u64 dir_id; 2934 int ret; 2935 2936 if (!capable(CAP_SYS_ADMIN)) 2937 return -EPERM; 2938 2939 ret = mnt_want_write_file(file); 2940 if (ret) 2941 return ret; 2942 2943 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2944 ret = -EFAULT; 2945 goto out; 2946 } 2947 2948 if (!objectid) 2949 objectid = BTRFS_FS_TREE_OBJECTID; 2950 2951 new_root = btrfs_get_fs_root(fs_info, objectid, true); 2952 if (IS_ERR(new_root)) { 2953 ret = PTR_ERR(new_root); 2954 goto out; 2955 } 2956 if (!is_fstree(new_root->root_key.objectid)) { 2957 ret = -ENOENT; 2958 goto out_free; 2959 } 2960 2961 path = btrfs_alloc_path(); 2962 if (!path) { 2963 ret = -ENOMEM; 2964 goto out_free; 2965 } 2966 2967 trans = btrfs_start_transaction(root, 1); 2968 if (IS_ERR(trans)) { 2969 ret = PTR_ERR(trans); 2970 goto out_free; 2971 } 2972 2973 dir_id = btrfs_super_root_dir(fs_info->super_copy); 2974 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 2975 dir_id, &name, 1); 2976 if (IS_ERR_OR_NULL(di)) { 2977 btrfs_release_path(path); 2978 btrfs_end_transaction(trans); 2979 btrfs_err(fs_info, 2980 "Umm, you don't have the default diritem, this isn't going to work"); 2981 ret = -ENOENT; 2982 goto out_free; 2983 } 2984 2985 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2986 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2987 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 2988 btrfs_release_path(path); 2989 2990 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 2991 btrfs_end_transaction(trans); 2992 out_free: 2993 btrfs_put_root(new_root); 2994 btrfs_free_path(path); 2995 out: 2996 mnt_drop_write_file(file); 2997 return ret; 2998 } 2999 3000 static void get_block_group_info(struct list_head *groups_list, 3001 struct btrfs_ioctl_space_info *space) 3002 { 3003 struct btrfs_block_group *block_group; 3004 3005 space->total_bytes = 0; 3006 space->used_bytes = 0; 3007 space->flags = 0; 3008 list_for_each_entry(block_group, groups_list, list) { 3009 space->flags = block_group->flags; 3010 space->total_bytes += block_group->length; 3011 space->used_bytes += block_group->used; 3012 } 3013 } 3014 3015 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3016 void __user *arg) 3017 { 3018 struct btrfs_ioctl_space_args space_args = { 0 }; 3019 struct btrfs_ioctl_space_info space; 3020 struct btrfs_ioctl_space_info *dest; 3021 struct btrfs_ioctl_space_info *dest_orig; 3022 struct btrfs_ioctl_space_info __user *user_dest; 3023 struct btrfs_space_info *info; 3024 static const u64 types[] = { 3025 BTRFS_BLOCK_GROUP_DATA, 3026 BTRFS_BLOCK_GROUP_SYSTEM, 3027 BTRFS_BLOCK_GROUP_METADATA, 3028 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3029 }; 3030 int num_types = 4; 3031 int alloc_size; 3032 int ret = 0; 3033 u64 slot_count = 0; 3034 int i, c; 3035 3036 if (copy_from_user(&space_args, 3037 (struct btrfs_ioctl_space_args __user *)arg, 3038 sizeof(space_args))) 3039 return -EFAULT; 3040 3041 for (i = 0; i < num_types; i++) { 3042 struct btrfs_space_info *tmp; 3043 3044 info = NULL; 3045 list_for_each_entry(tmp, &fs_info->space_info, list) { 3046 if (tmp->flags == types[i]) { 3047 info = tmp; 3048 break; 3049 } 3050 } 3051 3052 if (!info) 3053 continue; 3054 3055 down_read(&info->groups_sem); 3056 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3057 if (!list_empty(&info->block_groups[c])) 3058 slot_count++; 3059 } 3060 up_read(&info->groups_sem); 3061 } 3062 3063 /* 3064 * Global block reserve, exported as a space_info 3065 */ 3066 slot_count++; 3067 3068 /* space_slots == 0 means they are asking for a count */ 3069 if (space_args.space_slots == 0) { 3070 space_args.total_spaces = slot_count; 3071 goto out; 3072 } 3073 3074 slot_count = min_t(u64, space_args.space_slots, slot_count); 3075 3076 alloc_size = sizeof(*dest) * slot_count; 3077 3078 /* we generally have at most 6 or so space infos, one for each raid 3079 * level. So, a whole page should be more than enough for everyone 3080 */ 3081 if (alloc_size > PAGE_SIZE) 3082 return -ENOMEM; 3083 3084 space_args.total_spaces = 0; 3085 dest = kmalloc(alloc_size, GFP_KERNEL); 3086 if (!dest) 3087 return -ENOMEM; 3088 dest_orig = dest; 3089 3090 /* now we have a buffer to copy into */ 3091 for (i = 0; i < num_types; i++) { 3092 struct btrfs_space_info *tmp; 3093 3094 if (!slot_count) 3095 break; 3096 3097 info = NULL; 3098 list_for_each_entry(tmp, &fs_info->space_info, list) { 3099 if (tmp->flags == types[i]) { 3100 info = tmp; 3101 break; 3102 } 3103 } 3104 3105 if (!info) 3106 continue; 3107 down_read(&info->groups_sem); 3108 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3109 if (!list_empty(&info->block_groups[c])) { 3110 get_block_group_info(&info->block_groups[c], 3111 &space); 3112 memcpy(dest, &space, sizeof(space)); 3113 dest++; 3114 space_args.total_spaces++; 3115 slot_count--; 3116 } 3117 if (!slot_count) 3118 break; 3119 } 3120 up_read(&info->groups_sem); 3121 } 3122 3123 /* 3124 * Add global block reserve 3125 */ 3126 if (slot_count) { 3127 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3128 3129 spin_lock(&block_rsv->lock); 3130 space.total_bytes = block_rsv->size; 3131 space.used_bytes = block_rsv->size - block_rsv->reserved; 3132 spin_unlock(&block_rsv->lock); 3133 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3134 memcpy(dest, &space, sizeof(space)); 3135 space_args.total_spaces++; 3136 } 3137 3138 user_dest = (struct btrfs_ioctl_space_info __user *) 3139 (arg + sizeof(struct btrfs_ioctl_space_args)); 3140 3141 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3142 ret = -EFAULT; 3143 3144 kfree(dest_orig); 3145 out: 3146 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3147 ret = -EFAULT; 3148 3149 return ret; 3150 } 3151 3152 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3153 void __user *argp) 3154 { 3155 struct btrfs_trans_handle *trans; 3156 u64 transid; 3157 3158 /* 3159 * Start orphan cleanup here for the given root in case it hasn't been 3160 * started already by other means. Errors are handled in the other 3161 * functions during transaction commit. 3162 */ 3163 btrfs_orphan_cleanup(root); 3164 3165 trans = btrfs_attach_transaction_barrier(root); 3166 if (IS_ERR(trans)) { 3167 if (PTR_ERR(trans) != -ENOENT) 3168 return PTR_ERR(trans); 3169 3170 /* No running transaction, don't bother */ 3171 transid = root->fs_info->last_trans_committed; 3172 goto out; 3173 } 3174 transid = trans->transid; 3175 btrfs_commit_transaction_async(trans); 3176 out: 3177 if (argp) 3178 if (copy_to_user(argp, &transid, sizeof(transid))) 3179 return -EFAULT; 3180 return 0; 3181 } 3182 3183 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3184 void __user *argp) 3185 { 3186 /* By default wait for the current transaction. */ 3187 u64 transid = 0; 3188 3189 if (argp) 3190 if (copy_from_user(&transid, argp, sizeof(transid))) 3191 return -EFAULT; 3192 3193 return btrfs_wait_for_commit(fs_info, transid); 3194 } 3195 3196 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3197 { 3198 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3199 struct btrfs_ioctl_scrub_args *sa; 3200 int ret; 3201 3202 if (!capable(CAP_SYS_ADMIN)) 3203 return -EPERM; 3204 3205 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3206 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 3207 return -EINVAL; 3208 } 3209 3210 sa = memdup_user(arg, sizeof(*sa)); 3211 if (IS_ERR(sa)) 3212 return PTR_ERR(sa); 3213 3214 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) { 3215 ret = -EOPNOTSUPP; 3216 goto out; 3217 } 3218 3219 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3220 ret = mnt_want_write_file(file); 3221 if (ret) 3222 goto out; 3223 } 3224 3225 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3226 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3227 0); 3228 3229 /* 3230 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3231 * error. This is important as it allows user space to know how much 3232 * progress scrub has done. For example, if scrub is canceled we get 3233 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3234 * space. Later user space can inspect the progress from the structure 3235 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3236 * previously (btrfs-progs does this). 3237 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3238 * then return -EFAULT to signal the structure was not copied or it may 3239 * be corrupt and unreliable due to a partial copy. 3240 */ 3241 if (copy_to_user(arg, sa, sizeof(*sa))) 3242 ret = -EFAULT; 3243 3244 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3245 mnt_drop_write_file(file); 3246 out: 3247 kfree(sa); 3248 return ret; 3249 } 3250 3251 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3252 { 3253 if (!capable(CAP_SYS_ADMIN)) 3254 return -EPERM; 3255 3256 return btrfs_scrub_cancel(fs_info); 3257 } 3258 3259 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3260 void __user *arg) 3261 { 3262 struct btrfs_ioctl_scrub_args *sa; 3263 int ret; 3264 3265 if (!capable(CAP_SYS_ADMIN)) 3266 return -EPERM; 3267 3268 sa = memdup_user(arg, sizeof(*sa)); 3269 if (IS_ERR(sa)) 3270 return PTR_ERR(sa); 3271 3272 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3273 3274 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3275 ret = -EFAULT; 3276 3277 kfree(sa); 3278 return ret; 3279 } 3280 3281 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3282 void __user *arg) 3283 { 3284 struct btrfs_ioctl_get_dev_stats *sa; 3285 int ret; 3286 3287 sa = memdup_user(arg, sizeof(*sa)); 3288 if (IS_ERR(sa)) 3289 return PTR_ERR(sa); 3290 3291 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3292 kfree(sa); 3293 return -EPERM; 3294 } 3295 3296 ret = btrfs_get_dev_stats(fs_info, sa); 3297 3298 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3299 ret = -EFAULT; 3300 3301 kfree(sa); 3302 return ret; 3303 } 3304 3305 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3306 void __user *arg) 3307 { 3308 struct btrfs_ioctl_dev_replace_args *p; 3309 int ret; 3310 3311 if (!capable(CAP_SYS_ADMIN)) 3312 return -EPERM; 3313 3314 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3315 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 3316 return -EINVAL; 3317 } 3318 3319 p = memdup_user(arg, sizeof(*p)); 3320 if (IS_ERR(p)) 3321 return PTR_ERR(p); 3322 3323 switch (p->cmd) { 3324 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3325 if (sb_rdonly(fs_info->sb)) { 3326 ret = -EROFS; 3327 goto out; 3328 } 3329 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3330 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3331 } else { 3332 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3333 btrfs_exclop_finish(fs_info); 3334 } 3335 break; 3336 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3337 btrfs_dev_replace_status(fs_info, p); 3338 ret = 0; 3339 break; 3340 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3341 p->result = btrfs_dev_replace_cancel(fs_info); 3342 ret = 0; 3343 break; 3344 default: 3345 ret = -EINVAL; 3346 break; 3347 } 3348 3349 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3350 ret = -EFAULT; 3351 out: 3352 kfree(p); 3353 return ret; 3354 } 3355 3356 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3357 { 3358 int ret = 0; 3359 int i; 3360 u64 rel_ptr; 3361 int size; 3362 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3363 struct inode_fs_paths *ipath = NULL; 3364 struct btrfs_path *path; 3365 3366 if (!capable(CAP_DAC_READ_SEARCH)) 3367 return -EPERM; 3368 3369 path = btrfs_alloc_path(); 3370 if (!path) { 3371 ret = -ENOMEM; 3372 goto out; 3373 } 3374 3375 ipa = memdup_user(arg, sizeof(*ipa)); 3376 if (IS_ERR(ipa)) { 3377 ret = PTR_ERR(ipa); 3378 ipa = NULL; 3379 goto out; 3380 } 3381 3382 size = min_t(u32, ipa->size, 4096); 3383 ipath = init_ipath(size, root, path); 3384 if (IS_ERR(ipath)) { 3385 ret = PTR_ERR(ipath); 3386 ipath = NULL; 3387 goto out; 3388 } 3389 3390 ret = paths_from_inode(ipa->inum, ipath); 3391 if (ret < 0) 3392 goto out; 3393 3394 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3395 rel_ptr = ipath->fspath->val[i] - 3396 (u64)(unsigned long)ipath->fspath->val; 3397 ipath->fspath->val[i] = rel_ptr; 3398 } 3399 3400 btrfs_free_path(path); 3401 path = NULL; 3402 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3403 ipath->fspath, size); 3404 if (ret) { 3405 ret = -EFAULT; 3406 goto out; 3407 } 3408 3409 out: 3410 btrfs_free_path(path); 3411 free_ipath(ipath); 3412 kfree(ipa); 3413 3414 return ret; 3415 } 3416 3417 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3418 void __user *arg, int version) 3419 { 3420 int ret = 0; 3421 int size; 3422 struct btrfs_ioctl_logical_ino_args *loi; 3423 struct btrfs_data_container *inodes = NULL; 3424 struct btrfs_path *path = NULL; 3425 bool ignore_offset; 3426 3427 if (!capable(CAP_SYS_ADMIN)) 3428 return -EPERM; 3429 3430 loi = memdup_user(arg, sizeof(*loi)); 3431 if (IS_ERR(loi)) 3432 return PTR_ERR(loi); 3433 3434 if (version == 1) { 3435 ignore_offset = false; 3436 size = min_t(u32, loi->size, SZ_64K); 3437 } else { 3438 /* All reserved bits must be 0 for now */ 3439 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3440 ret = -EINVAL; 3441 goto out_loi; 3442 } 3443 /* Only accept flags we have defined so far */ 3444 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3445 ret = -EINVAL; 3446 goto out_loi; 3447 } 3448 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3449 size = min_t(u32, loi->size, SZ_16M); 3450 } 3451 3452 inodes = init_data_container(size); 3453 if (IS_ERR(inodes)) { 3454 ret = PTR_ERR(inodes); 3455 goto out_loi; 3456 } 3457 3458 path = btrfs_alloc_path(); 3459 if (!path) { 3460 ret = -ENOMEM; 3461 goto out; 3462 } 3463 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3464 inodes, ignore_offset); 3465 btrfs_free_path(path); 3466 if (ret == -EINVAL) 3467 ret = -ENOENT; 3468 if (ret < 0) 3469 goto out; 3470 3471 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3472 size); 3473 if (ret) 3474 ret = -EFAULT; 3475 3476 out: 3477 kvfree(inodes); 3478 out_loi: 3479 kfree(loi); 3480 3481 return ret; 3482 } 3483 3484 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3485 struct btrfs_ioctl_balance_args *bargs) 3486 { 3487 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3488 3489 bargs->flags = bctl->flags; 3490 3491 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3492 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3493 if (atomic_read(&fs_info->balance_pause_req)) 3494 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3495 if (atomic_read(&fs_info->balance_cancel_req)) 3496 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3497 3498 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3499 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3500 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3501 3502 spin_lock(&fs_info->balance_lock); 3503 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3504 spin_unlock(&fs_info->balance_lock); 3505 } 3506 3507 /* 3508 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as 3509 * required. 3510 * 3511 * @fs_info: the filesystem 3512 * @excl_acquired: ptr to boolean value which is set to false in case balance 3513 * is being resumed 3514 * 3515 * Return 0 on success in which case both fs_info::balance is acquired as well 3516 * as exclusive ops are blocked. In case of failure return an error code. 3517 */ 3518 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) 3519 { 3520 int ret; 3521 3522 /* 3523 * Exclusive operation is locked. Three possibilities: 3524 * (1) some other op is running 3525 * (2) balance is running 3526 * (3) balance is paused -- special case (think resume) 3527 */ 3528 while (1) { 3529 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3530 *excl_acquired = true; 3531 mutex_lock(&fs_info->balance_mutex); 3532 return 0; 3533 } 3534 3535 mutex_lock(&fs_info->balance_mutex); 3536 if (fs_info->balance_ctl) { 3537 /* This is either (2) or (3) */ 3538 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3539 /* This is (2) */ 3540 ret = -EINPROGRESS; 3541 goto out_failure; 3542 3543 } else { 3544 mutex_unlock(&fs_info->balance_mutex); 3545 /* 3546 * Lock released to allow other waiters to 3547 * continue, we'll reexamine the status again. 3548 */ 3549 mutex_lock(&fs_info->balance_mutex); 3550 3551 if (fs_info->balance_ctl && 3552 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3553 /* This is (3) */ 3554 *excl_acquired = false; 3555 return 0; 3556 } 3557 } 3558 } else { 3559 /* This is (1) */ 3560 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3561 goto out_failure; 3562 } 3563 3564 mutex_unlock(&fs_info->balance_mutex); 3565 } 3566 3567 out_failure: 3568 mutex_unlock(&fs_info->balance_mutex); 3569 *excl_acquired = false; 3570 return ret; 3571 } 3572 3573 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3574 { 3575 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3576 struct btrfs_fs_info *fs_info = root->fs_info; 3577 struct btrfs_ioctl_balance_args *bargs; 3578 struct btrfs_balance_control *bctl; 3579 bool need_unlock = true; 3580 int ret; 3581 3582 if (!capable(CAP_SYS_ADMIN)) 3583 return -EPERM; 3584 3585 ret = mnt_want_write_file(file); 3586 if (ret) 3587 return ret; 3588 3589 bargs = memdup_user(arg, sizeof(*bargs)); 3590 if (IS_ERR(bargs)) { 3591 ret = PTR_ERR(bargs); 3592 bargs = NULL; 3593 goto out; 3594 } 3595 3596 ret = btrfs_try_lock_balance(fs_info, &need_unlock); 3597 if (ret) 3598 goto out; 3599 3600 lockdep_assert_held(&fs_info->balance_mutex); 3601 3602 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3603 if (!fs_info->balance_ctl) { 3604 ret = -ENOTCONN; 3605 goto out_unlock; 3606 } 3607 3608 bctl = fs_info->balance_ctl; 3609 spin_lock(&fs_info->balance_lock); 3610 bctl->flags |= BTRFS_BALANCE_RESUME; 3611 spin_unlock(&fs_info->balance_lock); 3612 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 3613 3614 goto do_balance; 3615 } 3616 3617 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3618 ret = -EINVAL; 3619 goto out_unlock; 3620 } 3621 3622 if (fs_info->balance_ctl) { 3623 ret = -EINPROGRESS; 3624 goto out_unlock; 3625 } 3626 3627 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3628 if (!bctl) { 3629 ret = -ENOMEM; 3630 goto out_unlock; 3631 } 3632 3633 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3634 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3635 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3636 3637 bctl->flags = bargs->flags; 3638 do_balance: 3639 /* 3640 * Ownership of bctl and exclusive operation goes to btrfs_balance. 3641 * bctl is freed in reset_balance_state, or, if restriper was paused 3642 * all the way until unmount, in free_fs_info. The flag should be 3643 * cleared after reset_balance_state. 3644 */ 3645 need_unlock = false; 3646 3647 ret = btrfs_balance(fs_info, bctl, bargs); 3648 bctl = NULL; 3649 3650 if (ret == 0 || ret == -ECANCELED) { 3651 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3652 ret = -EFAULT; 3653 } 3654 3655 kfree(bctl); 3656 out_unlock: 3657 mutex_unlock(&fs_info->balance_mutex); 3658 if (need_unlock) 3659 btrfs_exclop_finish(fs_info); 3660 out: 3661 mnt_drop_write_file(file); 3662 kfree(bargs); 3663 return ret; 3664 } 3665 3666 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 3667 { 3668 if (!capable(CAP_SYS_ADMIN)) 3669 return -EPERM; 3670 3671 switch (cmd) { 3672 case BTRFS_BALANCE_CTL_PAUSE: 3673 return btrfs_pause_balance(fs_info); 3674 case BTRFS_BALANCE_CTL_CANCEL: 3675 return btrfs_cancel_balance(fs_info); 3676 } 3677 3678 return -EINVAL; 3679 } 3680 3681 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 3682 void __user *arg) 3683 { 3684 struct btrfs_ioctl_balance_args *bargs; 3685 int ret = 0; 3686 3687 if (!capable(CAP_SYS_ADMIN)) 3688 return -EPERM; 3689 3690 mutex_lock(&fs_info->balance_mutex); 3691 if (!fs_info->balance_ctl) { 3692 ret = -ENOTCONN; 3693 goto out; 3694 } 3695 3696 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 3697 if (!bargs) { 3698 ret = -ENOMEM; 3699 goto out; 3700 } 3701 3702 btrfs_update_ioctl_balance_args(fs_info, bargs); 3703 3704 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3705 ret = -EFAULT; 3706 3707 kfree(bargs); 3708 out: 3709 mutex_unlock(&fs_info->balance_mutex); 3710 return ret; 3711 } 3712 3713 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3714 { 3715 struct inode *inode = file_inode(file); 3716 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3717 struct btrfs_ioctl_quota_ctl_args *sa; 3718 int ret; 3719 3720 if (!capable(CAP_SYS_ADMIN)) 3721 return -EPERM; 3722 3723 ret = mnt_want_write_file(file); 3724 if (ret) 3725 return ret; 3726 3727 sa = memdup_user(arg, sizeof(*sa)); 3728 if (IS_ERR(sa)) { 3729 ret = PTR_ERR(sa); 3730 goto drop_write; 3731 } 3732 3733 down_write(&fs_info->subvol_sem); 3734 3735 switch (sa->cmd) { 3736 case BTRFS_QUOTA_CTL_ENABLE: 3737 ret = btrfs_quota_enable(fs_info); 3738 break; 3739 case BTRFS_QUOTA_CTL_DISABLE: 3740 ret = btrfs_quota_disable(fs_info); 3741 break; 3742 default: 3743 ret = -EINVAL; 3744 break; 3745 } 3746 3747 kfree(sa); 3748 up_write(&fs_info->subvol_sem); 3749 drop_write: 3750 mnt_drop_write_file(file); 3751 return ret; 3752 } 3753 3754 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3755 { 3756 struct inode *inode = file_inode(file); 3757 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3758 struct btrfs_root *root = BTRFS_I(inode)->root; 3759 struct btrfs_ioctl_qgroup_assign_args *sa; 3760 struct btrfs_trans_handle *trans; 3761 int ret; 3762 int err; 3763 3764 if (!capable(CAP_SYS_ADMIN)) 3765 return -EPERM; 3766 3767 ret = mnt_want_write_file(file); 3768 if (ret) 3769 return ret; 3770 3771 sa = memdup_user(arg, sizeof(*sa)); 3772 if (IS_ERR(sa)) { 3773 ret = PTR_ERR(sa); 3774 goto drop_write; 3775 } 3776 3777 trans = btrfs_join_transaction(root); 3778 if (IS_ERR(trans)) { 3779 ret = PTR_ERR(trans); 3780 goto out; 3781 } 3782 3783 if (sa->assign) { 3784 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 3785 } else { 3786 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 3787 } 3788 3789 /* update qgroup status and info */ 3790 mutex_lock(&fs_info->qgroup_ioctl_lock); 3791 err = btrfs_run_qgroups(trans); 3792 mutex_unlock(&fs_info->qgroup_ioctl_lock); 3793 if (err < 0) 3794 btrfs_handle_fs_error(fs_info, err, 3795 "failed to update qgroup status and info"); 3796 err = btrfs_end_transaction(trans); 3797 if (err && !ret) 3798 ret = err; 3799 3800 out: 3801 kfree(sa); 3802 drop_write: 3803 mnt_drop_write_file(file); 3804 return ret; 3805 } 3806 3807 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3808 { 3809 struct inode *inode = file_inode(file); 3810 struct btrfs_root *root = BTRFS_I(inode)->root; 3811 struct btrfs_ioctl_qgroup_create_args *sa; 3812 struct btrfs_trans_handle *trans; 3813 int ret; 3814 int err; 3815 3816 if (!capable(CAP_SYS_ADMIN)) 3817 return -EPERM; 3818 3819 ret = mnt_want_write_file(file); 3820 if (ret) 3821 return ret; 3822 3823 sa = memdup_user(arg, sizeof(*sa)); 3824 if (IS_ERR(sa)) { 3825 ret = PTR_ERR(sa); 3826 goto drop_write; 3827 } 3828 3829 if (!sa->qgroupid) { 3830 ret = -EINVAL; 3831 goto out; 3832 } 3833 3834 if (sa->create && is_fstree(sa->qgroupid)) { 3835 ret = -EINVAL; 3836 goto out; 3837 } 3838 3839 trans = btrfs_join_transaction(root); 3840 if (IS_ERR(trans)) { 3841 ret = PTR_ERR(trans); 3842 goto out; 3843 } 3844 3845 if (sa->create) { 3846 ret = btrfs_create_qgroup(trans, sa->qgroupid); 3847 } else { 3848 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 3849 } 3850 3851 err = btrfs_end_transaction(trans); 3852 if (err && !ret) 3853 ret = err; 3854 3855 out: 3856 kfree(sa); 3857 drop_write: 3858 mnt_drop_write_file(file); 3859 return ret; 3860 } 3861 3862 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3863 { 3864 struct inode *inode = file_inode(file); 3865 struct btrfs_root *root = BTRFS_I(inode)->root; 3866 struct btrfs_ioctl_qgroup_limit_args *sa; 3867 struct btrfs_trans_handle *trans; 3868 int ret; 3869 int err; 3870 u64 qgroupid; 3871 3872 if (!capable(CAP_SYS_ADMIN)) 3873 return -EPERM; 3874 3875 ret = mnt_want_write_file(file); 3876 if (ret) 3877 return ret; 3878 3879 sa = memdup_user(arg, sizeof(*sa)); 3880 if (IS_ERR(sa)) { 3881 ret = PTR_ERR(sa); 3882 goto drop_write; 3883 } 3884 3885 trans = btrfs_join_transaction(root); 3886 if (IS_ERR(trans)) { 3887 ret = PTR_ERR(trans); 3888 goto out; 3889 } 3890 3891 qgroupid = sa->qgroupid; 3892 if (!qgroupid) { 3893 /* take the current subvol as qgroup */ 3894 qgroupid = root->root_key.objectid; 3895 } 3896 3897 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 3898 3899 err = btrfs_end_transaction(trans); 3900 if (err && !ret) 3901 ret = err; 3902 3903 out: 3904 kfree(sa); 3905 drop_write: 3906 mnt_drop_write_file(file); 3907 return ret; 3908 } 3909 3910 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 3911 { 3912 struct inode *inode = file_inode(file); 3913 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3914 struct btrfs_ioctl_quota_rescan_args *qsa; 3915 int ret; 3916 3917 if (!capable(CAP_SYS_ADMIN)) 3918 return -EPERM; 3919 3920 ret = mnt_want_write_file(file); 3921 if (ret) 3922 return ret; 3923 3924 qsa = memdup_user(arg, sizeof(*qsa)); 3925 if (IS_ERR(qsa)) { 3926 ret = PTR_ERR(qsa); 3927 goto drop_write; 3928 } 3929 3930 if (qsa->flags) { 3931 ret = -EINVAL; 3932 goto out; 3933 } 3934 3935 ret = btrfs_qgroup_rescan(fs_info); 3936 3937 out: 3938 kfree(qsa); 3939 drop_write: 3940 mnt_drop_write_file(file); 3941 return ret; 3942 } 3943 3944 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 3945 void __user *arg) 3946 { 3947 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 3948 3949 if (!capable(CAP_SYS_ADMIN)) 3950 return -EPERM; 3951 3952 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 3953 qsa.flags = 1; 3954 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 3955 } 3956 3957 if (copy_to_user(arg, &qsa, sizeof(qsa))) 3958 return -EFAULT; 3959 3960 return 0; 3961 } 3962 3963 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 3964 void __user *arg) 3965 { 3966 if (!capable(CAP_SYS_ADMIN)) 3967 return -EPERM; 3968 3969 return btrfs_qgroup_wait_for_completion(fs_info, true); 3970 } 3971 3972 static long _btrfs_ioctl_set_received_subvol(struct file *file, 3973 struct mnt_idmap *idmap, 3974 struct btrfs_ioctl_received_subvol_args *sa) 3975 { 3976 struct inode *inode = file_inode(file); 3977 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3978 struct btrfs_root *root = BTRFS_I(inode)->root; 3979 struct btrfs_root_item *root_item = &root->root_item; 3980 struct btrfs_trans_handle *trans; 3981 struct timespec64 ct = current_time(inode); 3982 int ret = 0; 3983 int received_uuid_changed; 3984 3985 if (!inode_owner_or_capable(idmap, inode)) 3986 return -EPERM; 3987 3988 ret = mnt_want_write_file(file); 3989 if (ret < 0) 3990 return ret; 3991 3992 down_write(&fs_info->subvol_sem); 3993 3994 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3995 ret = -EINVAL; 3996 goto out; 3997 } 3998 3999 if (btrfs_root_readonly(root)) { 4000 ret = -EROFS; 4001 goto out; 4002 } 4003 4004 /* 4005 * 1 - root item 4006 * 2 - uuid items (received uuid + subvol uuid) 4007 */ 4008 trans = btrfs_start_transaction(root, 3); 4009 if (IS_ERR(trans)) { 4010 ret = PTR_ERR(trans); 4011 trans = NULL; 4012 goto out; 4013 } 4014 4015 sa->rtransid = trans->transid; 4016 sa->rtime.sec = ct.tv_sec; 4017 sa->rtime.nsec = ct.tv_nsec; 4018 4019 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4020 BTRFS_UUID_SIZE); 4021 if (received_uuid_changed && 4022 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4023 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4024 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4025 root->root_key.objectid); 4026 if (ret && ret != -ENOENT) { 4027 btrfs_abort_transaction(trans, ret); 4028 btrfs_end_transaction(trans); 4029 goto out; 4030 } 4031 } 4032 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4033 btrfs_set_root_stransid(root_item, sa->stransid); 4034 btrfs_set_root_rtransid(root_item, sa->rtransid); 4035 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4036 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4037 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4038 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4039 4040 ret = btrfs_update_root(trans, fs_info->tree_root, 4041 &root->root_key, &root->root_item); 4042 if (ret < 0) { 4043 btrfs_end_transaction(trans); 4044 goto out; 4045 } 4046 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4047 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4048 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4049 root->root_key.objectid); 4050 if (ret < 0 && ret != -EEXIST) { 4051 btrfs_abort_transaction(trans, ret); 4052 btrfs_end_transaction(trans); 4053 goto out; 4054 } 4055 } 4056 ret = btrfs_commit_transaction(trans); 4057 out: 4058 up_write(&fs_info->subvol_sem); 4059 mnt_drop_write_file(file); 4060 return ret; 4061 } 4062 4063 #ifdef CONFIG_64BIT 4064 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4065 void __user *arg) 4066 { 4067 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4068 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4069 int ret = 0; 4070 4071 args32 = memdup_user(arg, sizeof(*args32)); 4072 if (IS_ERR(args32)) 4073 return PTR_ERR(args32); 4074 4075 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4076 if (!args64) { 4077 ret = -ENOMEM; 4078 goto out; 4079 } 4080 4081 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4082 args64->stransid = args32->stransid; 4083 args64->rtransid = args32->rtransid; 4084 args64->stime.sec = args32->stime.sec; 4085 args64->stime.nsec = args32->stime.nsec; 4086 args64->rtime.sec = args32->rtime.sec; 4087 args64->rtime.nsec = args32->rtime.nsec; 4088 args64->flags = args32->flags; 4089 4090 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64); 4091 if (ret) 4092 goto out; 4093 4094 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4095 args32->stransid = args64->stransid; 4096 args32->rtransid = args64->rtransid; 4097 args32->stime.sec = args64->stime.sec; 4098 args32->stime.nsec = args64->stime.nsec; 4099 args32->rtime.sec = args64->rtime.sec; 4100 args32->rtime.nsec = args64->rtime.nsec; 4101 args32->flags = args64->flags; 4102 4103 ret = copy_to_user(arg, args32, sizeof(*args32)); 4104 if (ret) 4105 ret = -EFAULT; 4106 4107 out: 4108 kfree(args32); 4109 kfree(args64); 4110 return ret; 4111 } 4112 #endif 4113 4114 static long btrfs_ioctl_set_received_subvol(struct file *file, 4115 void __user *arg) 4116 { 4117 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4118 int ret = 0; 4119 4120 sa = memdup_user(arg, sizeof(*sa)); 4121 if (IS_ERR(sa)) 4122 return PTR_ERR(sa); 4123 4124 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa); 4125 4126 if (ret) 4127 goto out; 4128 4129 ret = copy_to_user(arg, sa, sizeof(*sa)); 4130 if (ret) 4131 ret = -EFAULT; 4132 4133 out: 4134 kfree(sa); 4135 return ret; 4136 } 4137 4138 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4139 void __user *arg) 4140 { 4141 size_t len; 4142 int ret; 4143 char label[BTRFS_LABEL_SIZE]; 4144 4145 spin_lock(&fs_info->super_lock); 4146 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4147 spin_unlock(&fs_info->super_lock); 4148 4149 len = strnlen(label, BTRFS_LABEL_SIZE); 4150 4151 if (len == BTRFS_LABEL_SIZE) { 4152 btrfs_warn(fs_info, 4153 "label is too long, return the first %zu bytes", 4154 --len); 4155 } 4156 4157 ret = copy_to_user(arg, label, len); 4158 4159 return ret ? -EFAULT : 0; 4160 } 4161 4162 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4163 { 4164 struct inode *inode = file_inode(file); 4165 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4166 struct btrfs_root *root = BTRFS_I(inode)->root; 4167 struct btrfs_super_block *super_block = fs_info->super_copy; 4168 struct btrfs_trans_handle *trans; 4169 char label[BTRFS_LABEL_SIZE]; 4170 int ret; 4171 4172 if (!capable(CAP_SYS_ADMIN)) 4173 return -EPERM; 4174 4175 if (copy_from_user(label, arg, sizeof(label))) 4176 return -EFAULT; 4177 4178 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4179 btrfs_err(fs_info, 4180 "unable to set label with more than %d bytes", 4181 BTRFS_LABEL_SIZE - 1); 4182 return -EINVAL; 4183 } 4184 4185 ret = mnt_want_write_file(file); 4186 if (ret) 4187 return ret; 4188 4189 trans = btrfs_start_transaction(root, 0); 4190 if (IS_ERR(trans)) { 4191 ret = PTR_ERR(trans); 4192 goto out_unlock; 4193 } 4194 4195 spin_lock(&fs_info->super_lock); 4196 strcpy(super_block->label, label); 4197 spin_unlock(&fs_info->super_lock); 4198 ret = btrfs_commit_transaction(trans); 4199 4200 out_unlock: 4201 mnt_drop_write_file(file); 4202 return ret; 4203 } 4204 4205 #define INIT_FEATURE_FLAGS(suffix) \ 4206 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4207 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4208 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4209 4210 int btrfs_ioctl_get_supported_features(void __user *arg) 4211 { 4212 static const struct btrfs_ioctl_feature_flags features[3] = { 4213 INIT_FEATURE_FLAGS(SUPP), 4214 INIT_FEATURE_FLAGS(SAFE_SET), 4215 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4216 }; 4217 4218 if (copy_to_user(arg, &features, sizeof(features))) 4219 return -EFAULT; 4220 4221 return 0; 4222 } 4223 4224 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4225 void __user *arg) 4226 { 4227 struct btrfs_super_block *super_block = fs_info->super_copy; 4228 struct btrfs_ioctl_feature_flags features; 4229 4230 features.compat_flags = btrfs_super_compat_flags(super_block); 4231 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4232 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4233 4234 if (copy_to_user(arg, &features, sizeof(features))) 4235 return -EFAULT; 4236 4237 return 0; 4238 } 4239 4240 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4241 enum btrfs_feature_set set, 4242 u64 change_mask, u64 flags, u64 supported_flags, 4243 u64 safe_set, u64 safe_clear) 4244 { 4245 const char *type = btrfs_feature_set_name(set); 4246 char *names; 4247 u64 disallowed, unsupported; 4248 u64 set_mask = flags & change_mask; 4249 u64 clear_mask = ~flags & change_mask; 4250 4251 unsupported = set_mask & ~supported_flags; 4252 if (unsupported) { 4253 names = btrfs_printable_features(set, unsupported); 4254 if (names) { 4255 btrfs_warn(fs_info, 4256 "this kernel does not support the %s feature bit%s", 4257 names, strchr(names, ',') ? "s" : ""); 4258 kfree(names); 4259 } else 4260 btrfs_warn(fs_info, 4261 "this kernel does not support %s bits 0x%llx", 4262 type, unsupported); 4263 return -EOPNOTSUPP; 4264 } 4265 4266 disallowed = set_mask & ~safe_set; 4267 if (disallowed) { 4268 names = btrfs_printable_features(set, disallowed); 4269 if (names) { 4270 btrfs_warn(fs_info, 4271 "can't set the %s feature bit%s while mounted", 4272 names, strchr(names, ',') ? "s" : ""); 4273 kfree(names); 4274 } else 4275 btrfs_warn(fs_info, 4276 "can't set %s bits 0x%llx while mounted", 4277 type, disallowed); 4278 return -EPERM; 4279 } 4280 4281 disallowed = clear_mask & ~safe_clear; 4282 if (disallowed) { 4283 names = btrfs_printable_features(set, disallowed); 4284 if (names) { 4285 btrfs_warn(fs_info, 4286 "can't clear the %s feature bit%s while mounted", 4287 names, strchr(names, ',') ? "s" : ""); 4288 kfree(names); 4289 } else 4290 btrfs_warn(fs_info, 4291 "can't clear %s bits 0x%llx while mounted", 4292 type, disallowed); 4293 return -EPERM; 4294 } 4295 4296 return 0; 4297 } 4298 4299 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4300 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4301 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4302 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4303 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4304 4305 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4306 { 4307 struct inode *inode = file_inode(file); 4308 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4309 struct btrfs_root *root = BTRFS_I(inode)->root; 4310 struct btrfs_super_block *super_block = fs_info->super_copy; 4311 struct btrfs_ioctl_feature_flags flags[2]; 4312 struct btrfs_trans_handle *trans; 4313 u64 newflags; 4314 int ret; 4315 4316 if (!capable(CAP_SYS_ADMIN)) 4317 return -EPERM; 4318 4319 if (copy_from_user(flags, arg, sizeof(flags))) 4320 return -EFAULT; 4321 4322 /* Nothing to do */ 4323 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4324 !flags[0].incompat_flags) 4325 return 0; 4326 4327 ret = check_feature(fs_info, flags[0].compat_flags, 4328 flags[1].compat_flags, COMPAT); 4329 if (ret) 4330 return ret; 4331 4332 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4333 flags[1].compat_ro_flags, COMPAT_RO); 4334 if (ret) 4335 return ret; 4336 4337 ret = check_feature(fs_info, flags[0].incompat_flags, 4338 flags[1].incompat_flags, INCOMPAT); 4339 if (ret) 4340 return ret; 4341 4342 ret = mnt_want_write_file(file); 4343 if (ret) 4344 return ret; 4345 4346 trans = btrfs_start_transaction(root, 0); 4347 if (IS_ERR(trans)) { 4348 ret = PTR_ERR(trans); 4349 goto out_drop_write; 4350 } 4351 4352 spin_lock(&fs_info->super_lock); 4353 newflags = btrfs_super_compat_flags(super_block); 4354 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4355 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4356 btrfs_set_super_compat_flags(super_block, newflags); 4357 4358 newflags = btrfs_super_compat_ro_flags(super_block); 4359 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4360 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4361 btrfs_set_super_compat_ro_flags(super_block, newflags); 4362 4363 newflags = btrfs_super_incompat_flags(super_block); 4364 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4365 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4366 btrfs_set_super_incompat_flags(super_block, newflags); 4367 spin_unlock(&fs_info->super_lock); 4368 4369 ret = btrfs_commit_transaction(trans); 4370 out_drop_write: 4371 mnt_drop_write_file(file); 4372 4373 return ret; 4374 } 4375 4376 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat) 4377 { 4378 struct btrfs_ioctl_send_args *arg; 4379 int ret; 4380 4381 if (compat) { 4382 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4383 struct btrfs_ioctl_send_args_32 args32 = { 0 }; 4384 4385 ret = copy_from_user(&args32, argp, sizeof(args32)); 4386 if (ret) 4387 return -EFAULT; 4388 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4389 if (!arg) 4390 return -ENOMEM; 4391 arg->send_fd = args32.send_fd; 4392 arg->clone_sources_count = args32.clone_sources_count; 4393 arg->clone_sources = compat_ptr(args32.clone_sources); 4394 arg->parent_root = args32.parent_root; 4395 arg->flags = args32.flags; 4396 arg->version = args32.version; 4397 memcpy(arg->reserved, args32.reserved, 4398 sizeof(args32.reserved)); 4399 #else 4400 return -ENOTTY; 4401 #endif 4402 } else { 4403 arg = memdup_user(argp, sizeof(*arg)); 4404 if (IS_ERR(arg)) 4405 return PTR_ERR(arg); 4406 } 4407 ret = btrfs_ioctl_send(inode, arg); 4408 kfree(arg); 4409 return ret; 4410 } 4411 4412 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 4413 bool compat) 4414 { 4415 struct btrfs_ioctl_encoded_io_args args = { 0 }; 4416 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 4417 flags); 4418 size_t copy_end; 4419 struct iovec iovstack[UIO_FASTIOV]; 4420 struct iovec *iov = iovstack; 4421 struct iov_iter iter; 4422 loff_t pos; 4423 struct kiocb kiocb; 4424 ssize_t ret; 4425 4426 if (!capable(CAP_SYS_ADMIN)) { 4427 ret = -EPERM; 4428 goto out_acct; 4429 } 4430 4431 if (compat) { 4432 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4433 struct btrfs_ioctl_encoded_io_args_32 args32; 4434 4435 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 4436 flags); 4437 if (copy_from_user(&args32, argp, copy_end)) { 4438 ret = -EFAULT; 4439 goto out_acct; 4440 } 4441 args.iov = compat_ptr(args32.iov); 4442 args.iovcnt = args32.iovcnt; 4443 args.offset = args32.offset; 4444 args.flags = args32.flags; 4445 #else 4446 return -ENOTTY; 4447 #endif 4448 } else { 4449 copy_end = copy_end_kernel; 4450 if (copy_from_user(&args, argp, copy_end)) { 4451 ret = -EFAULT; 4452 goto out_acct; 4453 } 4454 } 4455 if (args.flags != 0) { 4456 ret = -EINVAL; 4457 goto out_acct; 4458 } 4459 4460 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4461 &iov, &iter); 4462 if (ret < 0) 4463 goto out_acct; 4464 4465 if (iov_iter_count(&iter) == 0) { 4466 ret = 0; 4467 goto out_iov; 4468 } 4469 pos = args.offset; 4470 ret = rw_verify_area(READ, file, &pos, args.len); 4471 if (ret < 0) 4472 goto out_iov; 4473 4474 init_sync_kiocb(&kiocb, file); 4475 kiocb.ki_pos = pos; 4476 4477 ret = btrfs_encoded_read(&kiocb, &iter, &args); 4478 if (ret >= 0) { 4479 fsnotify_access(file); 4480 if (copy_to_user(argp + copy_end, 4481 (char *)&args + copy_end_kernel, 4482 sizeof(args) - copy_end_kernel)) 4483 ret = -EFAULT; 4484 } 4485 4486 out_iov: 4487 kfree(iov); 4488 out_acct: 4489 if (ret > 0) 4490 add_rchar(current, ret); 4491 inc_syscr(current); 4492 return ret; 4493 } 4494 4495 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 4496 { 4497 struct btrfs_ioctl_encoded_io_args args; 4498 struct iovec iovstack[UIO_FASTIOV]; 4499 struct iovec *iov = iovstack; 4500 struct iov_iter iter; 4501 loff_t pos; 4502 struct kiocb kiocb; 4503 ssize_t ret; 4504 4505 if (!capable(CAP_SYS_ADMIN)) { 4506 ret = -EPERM; 4507 goto out_acct; 4508 } 4509 4510 if (!(file->f_mode & FMODE_WRITE)) { 4511 ret = -EBADF; 4512 goto out_acct; 4513 } 4514 4515 if (compat) { 4516 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4517 struct btrfs_ioctl_encoded_io_args_32 args32; 4518 4519 if (copy_from_user(&args32, argp, sizeof(args32))) { 4520 ret = -EFAULT; 4521 goto out_acct; 4522 } 4523 args.iov = compat_ptr(args32.iov); 4524 args.iovcnt = args32.iovcnt; 4525 args.offset = args32.offset; 4526 args.flags = args32.flags; 4527 args.len = args32.len; 4528 args.unencoded_len = args32.unencoded_len; 4529 args.unencoded_offset = args32.unencoded_offset; 4530 args.compression = args32.compression; 4531 args.encryption = args32.encryption; 4532 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 4533 #else 4534 return -ENOTTY; 4535 #endif 4536 } else { 4537 if (copy_from_user(&args, argp, sizeof(args))) { 4538 ret = -EFAULT; 4539 goto out_acct; 4540 } 4541 } 4542 4543 ret = -EINVAL; 4544 if (args.flags != 0) 4545 goto out_acct; 4546 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 4547 goto out_acct; 4548 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 4549 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 4550 goto out_acct; 4551 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 4552 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 4553 goto out_acct; 4554 if (args.unencoded_offset > args.unencoded_len) 4555 goto out_acct; 4556 if (args.len > args.unencoded_len - args.unencoded_offset) 4557 goto out_acct; 4558 4559 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4560 &iov, &iter); 4561 if (ret < 0) 4562 goto out_acct; 4563 4564 file_start_write(file); 4565 4566 if (iov_iter_count(&iter) == 0) { 4567 ret = 0; 4568 goto out_end_write; 4569 } 4570 pos = args.offset; 4571 ret = rw_verify_area(WRITE, file, &pos, args.len); 4572 if (ret < 0) 4573 goto out_end_write; 4574 4575 init_sync_kiocb(&kiocb, file); 4576 ret = kiocb_set_rw_flags(&kiocb, 0); 4577 if (ret) 4578 goto out_end_write; 4579 kiocb.ki_pos = pos; 4580 4581 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 4582 if (ret > 0) 4583 fsnotify_modify(file); 4584 4585 out_end_write: 4586 file_end_write(file); 4587 kfree(iov); 4588 out_acct: 4589 if (ret > 0) 4590 add_wchar(current, ret); 4591 inc_syscw(current); 4592 return ret; 4593 } 4594 4595 long btrfs_ioctl(struct file *file, unsigned int 4596 cmd, unsigned long arg) 4597 { 4598 struct inode *inode = file_inode(file); 4599 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4600 struct btrfs_root *root = BTRFS_I(inode)->root; 4601 void __user *argp = (void __user *)arg; 4602 4603 switch (cmd) { 4604 case FS_IOC_GETVERSION: 4605 return btrfs_ioctl_getversion(inode, argp); 4606 case FS_IOC_GETFSLABEL: 4607 return btrfs_ioctl_get_fslabel(fs_info, argp); 4608 case FS_IOC_SETFSLABEL: 4609 return btrfs_ioctl_set_fslabel(file, argp); 4610 case FITRIM: 4611 return btrfs_ioctl_fitrim(fs_info, argp); 4612 case BTRFS_IOC_SNAP_CREATE: 4613 return btrfs_ioctl_snap_create(file, argp, 0); 4614 case BTRFS_IOC_SNAP_CREATE_V2: 4615 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4616 case BTRFS_IOC_SUBVOL_CREATE: 4617 return btrfs_ioctl_snap_create(file, argp, 1); 4618 case BTRFS_IOC_SUBVOL_CREATE_V2: 4619 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4620 case BTRFS_IOC_SNAP_DESTROY: 4621 return btrfs_ioctl_snap_destroy(file, argp, false); 4622 case BTRFS_IOC_SNAP_DESTROY_V2: 4623 return btrfs_ioctl_snap_destroy(file, argp, true); 4624 case BTRFS_IOC_SUBVOL_GETFLAGS: 4625 return btrfs_ioctl_subvol_getflags(inode, argp); 4626 case BTRFS_IOC_SUBVOL_SETFLAGS: 4627 return btrfs_ioctl_subvol_setflags(file, argp); 4628 case BTRFS_IOC_DEFAULT_SUBVOL: 4629 return btrfs_ioctl_default_subvol(file, argp); 4630 case BTRFS_IOC_DEFRAG: 4631 return btrfs_ioctl_defrag(file, NULL); 4632 case BTRFS_IOC_DEFRAG_RANGE: 4633 return btrfs_ioctl_defrag(file, argp); 4634 case BTRFS_IOC_RESIZE: 4635 return btrfs_ioctl_resize(file, argp); 4636 case BTRFS_IOC_ADD_DEV: 4637 return btrfs_ioctl_add_dev(fs_info, argp); 4638 case BTRFS_IOC_RM_DEV: 4639 return btrfs_ioctl_rm_dev(file, argp); 4640 case BTRFS_IOC_RM_DEV_V2: 4641 return btrfs_ioctl_rm_dev_v2(file, argp); 4642 case BTRFS_IOC_FS_INFO: 4643 return btrfs_ioctl_fs_info(fs_info, argp); 4644 case BTRFS_IOC_DEV_INFO: 4645 return btrfs_ioctl_dev_info(fs_info, argp); 4646 case BTRFS_IOC_TREE_SEARCH: 4647 return btrfs_ioctl_tree_search(inode, argp); 4648 case BTRFS_IOC_TREE_SEARCH_V2: 4649 return btrfs_ioctl_tree_search_v2(inode, argp); 4650 case BTRFS_IOC_INO_LOOKUP: 4651 return btrfs_ioctl_ino_lookup(root, argp); 4652 case BTRFS_IOC_INO_PATHS: 4653 return btrfs_ioctl_ino_to_path(root, argp); 4654 case BTRFS_IOC_LOGICAL_INO: 4655 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4656 case BTRFS_IOC_LOGICAL_INO_V2: 4657 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4658 case BTRFS_IOC_SPACE_INFO: 4659 return btrfs_ioctl_space_info(fs_info, argp); 4660 case BTRFS_IOC_SYNC: { 4661 int ret; 4662 4663 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4664 if (ret) 4665 return ret; 4666 ret = btrfs_sync_fs(inode->i_sb, 1); 4667 /* 4668 * The transaction thread may want to do more work, 4669 * namely it pokes the cleaner kthread that will start 4670 * processing uncleaned subvols. 4671 */ 4672 wake_up_process(fs_info->transaction_kthread); 4673 return ret; 4674 } 4675 case BTRFS_IOC_START_SYNC: 4676 return btrfs_ioctl_start_sync(root, argp); 4677 case BTRFS_IOC_WAIT_SYNC: 4678 return btrfs_ioctl_wait_sync(fs_info, argp); 4679 case BTRFS_IOC_SCRUB: 4680 return btrfs_ioctl_scrub(file, argp); 4681 case BTRFS_IOC_SCRUB_CANCEL: 4682 return btrfs_ioctl_scrub_cancel(fs_info); 4683 case BTRFS_IOC_SCRUB_PROGRESS: 4684 return btrfs_ioctl_scrub_progress(fs_info, argp); 4685 case BTRFS_IOC_BALANCE_V2: 4686 return btrfs_ioctl_balance(file, argp); 4687 case BTRFS_IOC_BALANCE_CTL: 4688 return btrfs_ioctl_balance_ctl(fs_info, arg); 4689 case BTRFS_IOC_BALANCE_PROGRESS: 4690 return btrfs_ioctl_balance_progress(fs_info, argp); 4691 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4692 return btrfs_ioctl_set_received_subvol(file, argp); 4693 #ifdef CONFIG_64BIT 4694 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4695 return btrfs_ioctl_set_received_subvol_32(file, argp); 4696 #endif 4697 case BTRFS_IOC_SEND: 4698 return _btrfs_ioctl_send(inode, argp, false); 4699 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4700 case BTRFS_IOC_SEND_32: 4701 return _btrfs_ioctl_send(inode, argp, true); 4702 #endif 4703 case BTRFS_IOC_GET_DEV_STATS: 4704 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4705 case BTRFS_IOC_QUOTA_CTL: 4706 return btrfs_ioctl_quota_ctl(file, argp); 4707 case BTRFS_IOC_QGROUP_ASSIGN: 4708 return btrfs_ioctl_qgroup_assign(file, argp); 4709 case BTRFS_IOC_QGROUP_CREATE: 4710 return btrfs_ioctl_qgroup_create(file, argp); 4711 case BTRFS_IOC_QGROUP_LIMIT: 4712 return btrfs_ioctl_qgroup_limit(file, argp); 4713 case BTRFS_IOC_QUOTA_RESCAN: 4714 return btrfs_ioctl_quota_rescan(file, argp); 4715 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4716 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4717 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4718 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4719 case BTRFS_IOC_DEV_REPLACE: 4720 return btrfs_ioctl_dev_replace(fs_info, argp); 4721 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4722 return btrfs_ioctl_get_supported_features(argp); 4723 case BTRFS_IOC_GET_FEATURES: 4724 return btrfs_ioctl_get_features(fs_info, argp); 4725 case BTRFS_IOC_SET_FEATURES: 4726 return btrfs_ioctl_set_features(file, argp); 4727 case BTRFS_IOC_GET_SUBVOL_INFO: 4728 return btrfs_ioctl_get_subvol_info(inode, argp); 4729 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4730 return btrfs_ioctl_get_subvol_rootref(root, argp); 4731 case BTRFS_IOC_INO_LOOKUP_USER: 4732 return btrfs_ioctl_ino_lookup_user(file, argp); 4733 case FS_IOC_ENABLE_VERITY: 4734 return fsverity_ioctl_enable(file, (const void __user *)argp); 4735 case FS_IOC_MEASURE_VERITY: 4736 return fsverity_ioctl_measure(file, argp); 4737 case BTRFS_IOC_ENCODED_READ: 4738 return btrfs_ioctl_encoded_read(file, argp, false); 4739 case BTRFS_IOC_ENCODED_WRITE: 4740 return btrfs_ioctl_encoded_write(file, argp, false); 4741 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4742 case BTRFS_IOC_ENCODED_READ_32: 4743 return btrfs_ioctl_encoded_read(file, argp, true); 4744 case BTRFS_IOC_ENCODED_WRITE_32: 4745 return btrfs_ioctl_encoded_write(file, argp, true); 4746 #endif 4747 } 4748 4749 return -ENOTTY; 4750 } 4751 4752 #ifdef CONFIG_COMPAT 4753 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4754 { 4755 /* 4756 * These all access 32-bit values anyway so no further 4757 * handling is necessary. 4758 */ 4759 switch (cmd) { 4760 case FS_IOC32_GETVERSION: 4761 cmd = FS_IOC_GETVERSION; 4762 break; 4763 } 4764 4765 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4766 } 4767 #endif 4768