xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 66127f0d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "rcu-string.h"
42 #include "send.h"
43 #include "dev-replace.h"
44 #include "props.h"
45 #include "sysfs.h"
46 #include "qgroup.h"
47 #include "tree-log.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "subpage.h"
53 #include "fs.h"
54 #include "accessors.h"
55 #include "extent-tree.h"
56 #include "root-tree.h"
57 #include "defrag.h"
58 #include "dir-item.h"
59 #include "uuid-tree.h"
60 #include "ioctl.h"
61 #include "file.h"
62 #include "scrub.h"
63 #include "super.h"
64 
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67  * structures are incorrect, as the timespec structure from userspace
68  * is 4 bytes too small. We define these alternatives here to teach
69  * the kernel about the 32-bit struct packing.
70  */
71 struct btrfs_ioctl_timespec_32 {
72 	__u64 sec;
73 	__u32 nsec;
74 } __attribute__ ((__packed__));
75 
76 struct btrfs_ioctl_received_subvol_args_32 {
77 	char	uuid[BTRFS_UUID_SIZE];	/* in */
78 	__u64	stransid;		/* in */
79 	__u64	rtransid;		/* out */
80 	struct btrfs_ioctl_timespec_32 stime; /* in */
81 	struct btrfs_ioctl_timespec_32 rtime; /* out */
82 	__u64	flags;			/* in */
83 	__u64	reserved[16];		/* in */
84 } __attribute__ ((__packed__));
85 
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 				struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89 
90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91 struct btrfs_ioctl_send_args_32 {
92 	__s64 send_fd;			/* in */
93 	__u64 clone_sources_count;	/* in */
94 	compat_uptr_t clone_sources;	/* in */
95 	__u64 parent_root;		/* in */
96 	__u64 flags;			/* in */
97 	__u32 version;			/* in */
98 	__u8  reserved[28];		/* in */
99 } __attribute__ ((__packed__));
100 
101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
102 			       struct btrfs_ioctl_send_args_32)
103 
104 struct btrfs_ioctl_encoded_io_args_32 {
105 	compat_uptr_t iov;
106 	compat_ulong_t iovcnt;
107 	__s64 offset;
108 	__u64 flags;
109 	__u64 len;
110 	__u64 unencoded_len;
111 	__u64 unencoded_offset;
112 	__u32 compression;
113 	__u32 encryption;
114 	__u8 reserved[64];
115 };
116 
117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
118 				       struct btrfs_ioctl_encoded_io_args_32)
119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
120 					struct btrfs_ioctl_encoded_io_args_32)
121 #endif
122 
123 /* Mask out flags that are inappropriate for the given type of inode. */
124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
125 		unsigned int flags)
126 {
127 	if (S_ISDIR(inode->i_mode))
128 		return flags;
129 	else if (S_ISREG(inode->i_mode))
130 		return flags & ~FS_DIRSYNC_FL;
131 	else
132 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
133 }
134 
135 /*
136  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
137  * ioctl.
138  */
139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
140 {
141 	unsigned int iflags = 0;
142 	u32 flags = binode->flags;
143 	u32 ro_flags = binode->ro_flags;
144 
145 	if (flags & BTRFS_INODE_SYNC)
146 		iflags |= FS_SYNC_FL;
147 	if (flags & BTRFS_INODE_IMMUTABLE)
148 		iflags |= FS_IMMUTABLE_FL;
149 	if (flags & BTRFS_INODE_APPEND)
150 		iflags |= FS_APPEND_FL;
151 	if (flags & BTRFS_INODE_NODUMP)
152 		iflags |= FS_NODUMP_FL;
153 	if (flags & BTRFS_INODE_NOATIME)
154 		iflags |= FS_NOATIME_FL;
155 	if (flags & BTRFS_INODE_DIRSYNC)
156 		iflags |= FS_DIRSYNC_FL;
157 	if (flags & BTRFS_INODE_NODATACOW)
158 		iflags |= FS_NOCOW_FL;
159 	if (ro_flags & BTRFS_INODE_RO_VERITY)
160 		iflags |= FS_VERITY_FL;
161 
162 	if (flags & BTRFS_INODE_NOCOMPRESS)
163 		iflags |= FS_NOCOMP_FL;
164 	else if (flags & BTRFS_INODE_COMPRESS)
165 		iflags |= FS_COMPR_FL;
166 
167 	return iflags;
168 }
169 
170 /*
171  * Update inode->i_flags based on the btrfs internal flags.
172  */
173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
174 {
175 	struct btrfs_inode *binode = BTRFS_I(inode);
176 	unsigned int new_fl = 0;
177 
178 	if (binode->flags & BTRFS_INODE_SYNC)
179 		new_fl |= S_SYNC;
180 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
181 		new_fl |= S_IMMUTABLE;
182 	if (binode->flags & BTRFS_INODE_APPEND)
183 		new_fl |= S_APPEND;
184 	if (binode->flags & BTRFS_INODE_NOATIME)
185 		new_fl |= S_NOATIME;
186 	if (binode->flags & BTRFS_INODE_DIRSYNC)
187 		new_fl |= S_DIRSYNC;
188 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
189 		new_fl |= S_VERITY;
190 
191 	set_mask_bits(&inode->i_flags,
192 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
193 		      S_VERITY, new_fl);
194 }
195 
196 /*
197  * Check if @flags are a supported and valid set of FS_*_FL flags and that
198  * the old and new flags are not conflicting
199  */
200 static int check_fsflags(unsigned int old_flags, unsigned int flags)
201 {
202 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 		      FS_NOATIME_FL | FS_NODUMP_FL | \
204 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
205 		      FS_NOCOMP_FL | FS_COMPR_FL |
206 		      FS_NOCOW_FL))
207 		return -EOPNOTSUPP;
208 
209 	/* COMPR and NOCOMP on new/old are valid */
210 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 		return -EINVAL;
212 
213 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
214 		return -EINVAL;
215 
216 	/* NOCOW and compression options are mutually exclusive */
217 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
218 		return -EINVAL;
219 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
220 		return -EINVAL;
221 
222 	return 0;
223 }
224 
225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
226 				    unsigned int flags)
227 {
228 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
229 		return -EPERM;
230 
231 	return 0;
232 }
233 
234 /*
235  * Set flags/xflags from the internal inode flags. The remaining items of
236  * fsxattr are zeroed.
237  */
238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
239 {
240 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
241 
242 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
243 	return 0;
244 }
245 
246 int btrfs_fileattr_set(struct mnt_idmap *idmap,
247 		       struct dentry *dentry, struct fileattr *fa)
248 {
249 	struct inode *inode = d_inode(dentry);
250 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
251 	struct btrfs_inode *binode = BTRFS_I(inode);
252 	struct btrfs_root *root = binode->root;
253 	struct btrfs_trans_handle *trans;
254 	unsigned int fsflags, old_fsflags;
255 	int ret;
256 	const char *comp = NULL;
257 	u32 binode_flags;
258 
259 	if (btrfs_root_readonly(root))
260 		return -EROFS;
261 
262 	if (fileattr_has_fsx(fa))
263 		return -EOPNOTSUPP;
264 
265 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
266 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
267 	ret = check_fsflags(old_fsflags, fsflags);
268 	if (ret)
269 		return ret;
270 
271 	ret = check_fsflags_compatible(fs_info, fsflags);
272 	if (ret)
273 		return ret;
274 
275 	binode_flags = binode->flags;
276 	if (fsflags & FS_SYNC_FL)
277 		binode_flags |= BTRFS_INODE_SYNC;
278 	else
279 		binode_flags &= ~BTRFS_INODE_SYNC;
280 	if (fsflags & FS_IMMUTABLE_FL)
281 		binode_flags |= BTRFS_INODE_IMMUTABLE;
282 	else
283 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
284 	if (fsflags & FS_APPEND_FL)
285 		binode_flags |= BTRFS_INODE_APPEND;
286 	else
287 		binode_flags &= ~BTRFS_INODE_APPEND;
288 	if (fsflags & FS_NODUMP_FL)
289 		binode_flags |= BTRFS_INODE_NODUMP;
290 	else
291 		binode_flags &= ~BTRFS_INODE_NODUMP;
292 	if (fsflags & FS_NOATIME_FL)
293 		binode_flags |= BTRFS_INODE_NOATIME;
294 	else
295 		binode_flags &= ~BTRFS_INODE_NOATIME;
296 
297 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
298 	if (!fa->flags_valid) {
299 		/* 1 item for the inode */
300 		trans = btrfs_start_transaction(root, 1);
301 		if (IS_ERR(trans))
302 			return PTR_ERR(trans);
303 		goto update_flags;
304 	}
305 
306 	if (fsflags & FS_DIRSYNC_FL)
307 		binode_flags |= BTRFS_INODE_DIRSYNC;
308 	else
309 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
310 	if (fsflags & FS_NOCOW_FL) {
311 		if (S_ISREG(inode->i_mode)) {
312 			/*
313 			 * It's safe to turn csums off here, no extents exist.
314 			 * Otherwise we want the flag to reflect the real COW
315 			 * status of the file and will not set it.
316 			 */
317 			if (inode->i_size == 0)
318 				binode_flags |= BTRFS_INODE_NODATACOW |
319 						BTRFS_INODE_NODATASUM;
320 		} else {
321 			binode_flags |= BTRFS_INODE_NODATACOW;
322 		}
323 	} else {
324 		/*
325 		 * Revert back under same assumptions as above
326 		 */
327 		if (S_ISREG(inode->i_mode)) {
328 			if (inode->i_size == 0)
329 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
330 						  BTRFS_INODE_NODATASUM);
331 		} else {
332 			binode_flags &= ~BTRFS_INODE_NODATACOW;
333 		}
334 	}
335 
336 	/*
337 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
338 	 * flag may be changed automatically if compression code won't make
339 	 * things smaller.
340 	 */
341 	if (fsflags & FS_NOCOMP_FL) {
342 		binode_flags &= ~BTRFS_INODE_COMPRESS;
343 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
344 	} else if (fsflags & FS_COMPR_FL) {
345 
346 		if (IS_SWAPFILE(inode))
347 			return -ETXTBSY;
348 
349 		binode_flags |= BTRFS_INODE_COMPRESS;
350 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
351 
352 		comp = btrfs_compress_type2str(fs_info->compress_type);
353 		if (!comp || comp[0] == 0)
354 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
355 	} else {
356 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
357 	}
358 
359 	/*
360 	 * 1 for inode item
361 	 * 2 for properties
362 	 */
363 	trans = btrfs_start_transaction(root, 3);
364 	if (IS_ERR(trans))
365 		return PTR_ERR(trans);
366 
367 	if (comp) {
368 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
369 				     strlen(comp), 0);
370 		if (ret) {
371 			btrfs_abort_transaction(trans, ret);
372 			goto out_end_trans;
373 		}
374 	} else {
375 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
376 				     0, 0);
377 		if (ret && ret != -ENODATA) {
378 			btrfs_abort_transaction(trans, ret);
379 			goto out_end_trans;
380 		}
381 	}
382 
383 update_flags:
384 	binode->flags = binode_flags;
385 	btrfs_sync_inode_flags_to_i_flags(inode);
386 	inode_inc_iversion(inode);
387 	inode_set_ctime_current(inode);
388 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
389 
390  out_end_trans:
391 	btrfs_end_transaction(trans);
392 	return ret;
393 }
394 
395 /*
396  * Start exclusive operation @type, return true on success
397  */
398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
399 			enum btrfs_exclusive_operation type)
400 {
401 	bool ret = false;
402 
403 	spin_lock(&fs_info->super_lock);
404 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
405 		fs_info->exclusive_operation = type;
406 		ret = true;
407 	}
408 	spin_unlock(&fs_info->super_lock);
409 
410 	return ret;
411 }
412 
413 /*
414  * Conditionally allow to enter the exclusive operation in case it's compatible
415  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
416  * btrfs_exclop_finish.
417  *
418  * Compatibility:
419  * - the same type is already running
420  * - when trying to add a device and balance has been paused
421  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
422  *   must check the condition first that would allow none -> @type
423  */
424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
425 				 enum btrfs_exclusive_operation type)
426 {
427 	spin_lock(&fs_info->super_lock);
428 	if (fs_info->exclusive_operation == type ||
429 	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
430 	     type == BTRFS_EXCLOP_DEV_ADD))
431 		return true;
432 
433 	spin_unlock(&fs_info->super_lock);
434 	return false;
435 }
436 
437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
438 {
439 	spin_unlock(&fs_info->super_lock);
440 }
441 
442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
443 {
444 	spin_lock(&fs_info->super_lock);
445 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
446 	spin_unlock(&fs_info->super_lock);
447 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
448 }
449 
450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
451 			  enum btrfs_exclusive_operation op)
452 {
453 	switch (op) {
454 	case BTRFS_EXCLOP_BALANCE_PAUSED:
455 		spin_lock(&fs_info->super_lock);
456 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
457 		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
458 		       fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
459 		       fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
460 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
461 		spin_unlock(&fs_info->super_lock);
462 		break;
463 	case BTRFS_EXCLOP_BALANCE:
464 		spin_lock(&fs_info->super_lock);
465 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
466 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
467 		spin_unlock(&fs_info->super_lock);
468 		break;
469 	default:
470 		btrfs_warn(fs_info,
471 			"invalid exclop balance operation %d requested", op);
472 	}
473 }
474 
475 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
476 {
477 	return put_user(inode->i_generation, arg);
478 }
479 
480 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
481 					void __user *arg)
482 {
483 	struct btrfs_device *device;
484 	struct fstrim_range range;
485 	u64 minlen = ULLONG_MAX;
486 	u64 num_devices = 0;
487 	int ret;
488 
489 	if (!capable(CAP_SYS_ADMIN))
490 		return -EPERM;
491 
492 	/*
493 	 * btrfs_trim_block_group() depends on space cache, which is not
494 	 * available in zoned filesystem. So, disallow fitrim on a zoned
495 	 * filesystem for now.
496 	 */
497 	if (btrfs_is_zoned(fs_info))
498 		return -EOPNOTSUPP;
499 
500 	/*
501 	 * If the fs is mounted with nologreplay, which requires it to be
502 	 * mounted in RO mode as well, we can not allow discard on free space
503 	 * inside block groups, because log trees refer to extents that are not
504 	 * pinned in a block group's free space cache (pinning the extents is
505 	 * precisely the first phase of replaying a log tree).
506 	 */
507 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
508 		return -EROFS;
509 
510 	rcu_read_lock();
511 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
512 				dev_list) {
513 		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
514 			continue;
515 		num_devices++;
516 		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
517 				    minlen);
518 	}
519 	rcu_read_unlock();
520 
521 	if (!num_devices)
522 		return -EOPNOTSUPP;
523 	if (copy_from_user(&range, arg, sizeof(range)))
524 		return -EFAULT;
525 
526 	/*
527 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
528 	 * block group is in the logical address space, which can be any
529 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
530 	 */
531 	if (range.len < fs_info->sectorsize)
532 		return -EINVAL;
533 
534 	range.minlen = max(range.minlen, minlen);
535 	ret = btrfs_trim_fs(fs_info, &range);
536 
537 	if (copy_to_user(arg, &range, sizeof(range)))
538 		return -EFAULT;
539 
540 	return ret;
541 }
542 
543 int __pure btrfs_is_empty_uuid(u8 *uuid)
544 {
545 	int i;
546 
547 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
548 		if (uuid[i])
549 			return 0;
550 	}
551 	return 1;
552 }
553 
554 /*
555  * Calculate the number of transaction items to reserve for creating a subvolume
556  * or snapshot, not including the inode, directory entries, or parent directory.
557  */
558 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
559 {
560 	/*
561 	 * 1 to add root block
562 	 * 1 to add root item
563 	 * 1 to add root ref
564 	 * 1 to add root backref
565 	 * 1 to add UUID item
566 	 * 1 to add qgroup info
567 	 * 1 to add qgroup limit
568 	 *
569 	 * Ideally the last two would only be accounted if qgroups are enabled,
570 	 * but that can change between now and the time we would insert them.
571 	 */
572 	unsigned int num_items = 7;
573 
574 	if (inherit) {
575 		/* 2 to add qgroup relations for each inherited qgroup */
576 		num_items += 2 * inherit->num_qgroups;
577 	}
578 	return num_items;
579 }
580 
581 static noinline int create_subvol(struct mnt_idmap *idmap,
582 				  struct inode *dir, struct dentry *dentry,
583 				  struct btrfs_qgroup_inherit *inherit)
584 {
585 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
586 	struct btrfs_trans_handle *trans;
587 	struct btrfs_key key;
588 	struct btrfs_root_item *root_item;
589 	struct btrfs_inode_item *inode_item;
590 	struct extent_buffer *leaf;
591 	struct btrfs_root *root = BTRFS_I(dir)->root;
592 	struct btrfs_root *new_root;
593 	struct btrfs_block_rsv block_rsv;
594 	struct timespec64 cur_time = current_time(dir);
595 	struct btrfs_new_inode_args new_inode_args = {
596 		.dir = dir,
597 		.dentry = dentry,
598 		.subvol = true,
599 	};
600 	unsigned int trans_num_items;
601 	int ret;
602 	dev_t anon_dev;
603 	u64 objectid;
604 	u64 qgroup_reserved = 0;
605 
606 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
607 	if (!root_item)
608 		return -ENOMEM;
609 
610 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
611 	if (ret)
612 		goto out_root_item;
613 
614 	/*
615 	 * Don't create subvolume whose level is not zero. Or qgroup will be
616 	 * screwed up since it assumes subvolume qgroup's level to be 0.
617 	 */
618 	if (btrfs_qgroup_level(objectid)) {
619 		ret = -ENOSPC;
620 		goto out_root_item;
621 	}
622 
623 	ret = get_anon_bdev(&anon_dev);
624 	if (ret < 0)
625 		goto out_root_item;
626 
627 	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
628 	if (!new_inode_args.inode) {
629 		ret = -ENOMEM;
630 		goto out_anon_dev;
631 	}
632 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
633 	if (ret)
634 		goto out_inode;
635 	trans_num_items += create_subvol_num_items(inherit);
636 
637 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
638 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
639 					       trans_num_items, false);
640 	if (ret)
641 		goto out_new_inode_args;
642 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
643 
644 	trans = btrfs_start_transaction(root, 0);
645 	if (IS_ERR(trans)) {
646 		ret = PTR_ERR(trans);
647 		goto out_release_rsv;
648 	}
649 	ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
650 	if (ret)
651 		goto out;
652 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
653 	qgroup_reserved = 0;
654 	trans->block_rsv = &block_rsv;
655 	trans->bytes_reserved = block_rsv.size;
656 	/* Tree log can't currently deal with an inode which is a new root. */
657 	btrfs_set_log_full_commit(trans);
658 
659 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
660 	if (ret)
661 		goto out;
662 
663 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
664 				      BTRFS_NESTING_NORMAL);
665 	if (IS_ERR(leaf)) {
666 		ret = PTR_ERR(leaf);
667 		goto out;
668 	}
669 
670 	btrfs_mark_buffer_dirty(trans, leaf);
671 
672 	inode_item = &root_item->inode;
673 	btrfs_set_stack_inode_generation(inode_item, 1);
674 	btrfs_set_stack_inode_size(inode_item, 3);
675 	btrfs_set_stack_inode_nlink(inode_item, 1);
676 	btrfs_set_stack_inode_nbytes(inode_item,
677 				     fs_info->nodesize);
678 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
679 
680 	btrfs_set_root_flags(root_item, 0);
681 	btrfs_set_root_limit(root_item, 0);
682 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
683 
684 	btrfs_set_root_bytenr(root_item, leaf->start);
685 	btrfs_set_root_generation(root_item, trans->transid);
686 	btrfs_set_root_level(root_item, 0);
687 	btrfs_set_root_refs(root_item, 1);
688 	btrfs_set_root_used(root_item, leaf->len);
689 	btrfs_set_root_last_snapshot(root_item, 0);
690 
691 	btrfs_set_root_generation_v2(root_item,
692 			btrfs_root_generation(root_item));
693 	generate_random_guid(root_item->uuid);
694 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
695 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
696 	root_item->ctime = root_item->otime;
697 	btrfs_set_root_ctransid(root_item, trans->transid);
698 	btrfs_set_root_otransid(root_item, trans->transid);
699 
700 	btrfs_tree_unlock(leaf);
701 
702 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
703 
704 	key.objectid = objectid;
705 	key.offset = 0;
706 	key.type = BTRFS_ROOT_ITEM_KEY;
707 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
708 				root_item);
709 	if (ret) {
710 		int ret2;
711 
712 		/*
713 		 * Since we don't abort the transaction in this case, free the
714 		 * tree block so that we don't leak space and leave the
715 		 * filesystem in an inconsistent state (an extent item in the
716 		 * extent tree with a backreference for a root that does not
717 		 * exists).
718 		 */
719 		btrfs_tree_lock(leaf);
720 		btrfs_clear_buffer_dirty(trans, leaf);
721 		btrfs_tree_unlock(leaf);
722 		ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
723 		if (ret2 < 0)
724 			btrfs_abort_transaction(trans, ret2);
725 		free_extent_buffer(leaf);
726 		goto out;
727 	}
728 
729 	free_extent_buffer(leaf);
730 	leaf = NULL;
731 
732 	new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
733 	if (IS_ERR(new_root)) {
734 		ret = PTR_ERR(new_root);
735 		btrfs_abort_transaction(trans, ret);
736 		goto out;
737 	}
738 	/* anon_dev is owned by new_root now. */
739 	anon_dev = 0;
740 	BTRFS_I(new_inode_args.inode)->root = new_root;
741 	/* ... and new_root is owned by new_inode_args.inode now. */
742 
743 	ret = btrfs_record_root_in_trans(trans, new_root);
744 	if (ret) {
745 		btrfs_abort_transaction(trans, ret);
746 		goto out;
747 	}
748 
749 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
750 				  BTRFS_UUID_KEY_SUBVOL, objectid);
751 	if (ret) {
752 		btrfs_abort_transaction(trans, ret);
753 		goto out;
754 	}
755 
756 	ret = btrfs_create_new_inode(trans, &new_inode_args);
757 	if (ret) {
758 		btrfs_abort_transaction(trans, ret);
759 		goto out;
760 	}
761 
762 	d_instantiate_new(dentry, new_inode_args.inode);
763 	new_inode_args.inode = NULL;
764 
765 out:
766 	trans->block_rsv = NULL;
767 	trans->bytes_reserved = 0;
768 	btrfs_end_transaction(trans);
769 out_release_rsv:
770 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
771 	if (qgroup_reserved)
772 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
773 out_new_inode_args:
774 	btrfs_new_inode_args_destroy(&new_inode_args);
775 out_inode:
776 	iput(new_inode_args.inode);
777 out_anon_dev:
778 	if (anon_dev)
779 		free_anon_bdev(anon_dev);
780 out_root_item:
781 	kfree(root_item);
782 	return ret;
783 }
784 
785 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
786 			   struct dentry *dentry, bool readonly,
787 			   struct btrfs_qgroup_inherit *inherit)
788 {
789 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
790 	struct inode *inode;
791 	struct btrfs_pending_snapshot *pending_snapshot;
792 	unsigned int trans_num_items;
793 	struct btrfs_trans_handle *trans;
794 	struct btrfs_block_rsv *block_rsv;
795 	u64 qgroup_reserved = 0;
796 	int ret;
797 
798 	/* We do not support snapshotting right now. */
799 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
800 		btrfs_warn(fs_info,
801 			   "extent tree v2 doesn't support snapshotting yet");
802 		return -EOPNOTSUPP;
803 	}
804 
805 	if (btrfs_root_refs(&root->root_item) == 0)
806 		return -ENOENT;
807 
808 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
809 		return -EINVAL;
810 
811 	if (atomic_read(&root->nr_swapfiles)) {
812 		btrfs_warn(fs_info,
813 			   "cannot snapshot subvolume with active swapfile");
814 		return -ETXTBSY;
815 	}
816 
817 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
818 	if (!pending_snapshot)
819 		return -ENOMEM;
820 
821 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
822 	if (ret < 0)
823 		goto free_pending;
824 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
825 			GFP_KERNEL);
826 	pending_snapshot->path = btrfs_alloc_path();
827 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
828 		ret = -ENOMEM;
829 		goto free_pending;
830 	}
831 
832 	block_rsv = &pending_snapshot->block_rsv;
833 	btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
834 	/*
835 	 * 1 to add dir item
836 	 * 1 to add dir index
837 	 * 1 to update parent inode item
838 	 */
839 	trans_num_items = create_subvol_num_items(inherit) + 3;
840 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
841 					       trans_num_items, false);
842 	if (ret)
843 		goto free_pending;
844 	qgroup_reserved = block_rsv->qgroup_rsv_reserved;
845 
846 	pending_snapshot->dentry = dentry;
847 	pending_snapshot->root = root;
848 	pending_snapshot->readonly = readonly;
849 	pending_snapshot->dir = dir;
850 	pending_snapshot->inherit = inherit;
851 
852 	trans = btrfs_start_transaction(root, 0);
853 	if (IS_ERR(trans)) {
854 		ret = PTR_ERR(trans);
855 		goto fail;
856 	}
857 	ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
858 	if (ret) {
859 		btrfs_end_transaction(trans);
860 		goto fail;
861 	}
862 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
863 	qgroup_reserved = 0;
864 
865 	trans->pending_snapshot = pending_snapshot;
866 
867 	ret = btrfs_commit_transaction(trans);
868 	if (ret)
869 		goto fail;
870 
871 	ret = pending_snapshot->error;
872 	if (ret)
873 		goto fail;
874 
875 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
876 	if (ret)
877 		goto fail;
878 
879 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
880 	if (IS_ERR(inode)) {
881 		ret = PTR_ERR(inode);
882 		goto fail;
883 	}
884 
885 	d_instantiate(dentry, inode);
886 	ret = 0;
887 	pending_snapshot->anon_dev = 0;
888 fail:
889 	/* Prevent double freeing of anon_dev */
890 	if (ret && pending_snapshot->snap)
891 		pending_snapshot->snap->anon_dev = 0;
892 	btrfs_put_root(pending_snapshot->snap);
893 	btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
894 	if (qgroup_reserved)
895 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
896 free_pending:
897 	if (pending_snapshot->anon_dev)
898 		free_anon_bdev(pending_snapshot->anon_dev);
899 	kfree(pending_snapshot->root_item);
900 	btrfs_free_path(pending_snapshot->path);
901 	kfree(pending_snapshot);
902 
903 	return ret;
904 }
905 
906 /*  copy of may_delete in fs/namei.c()
907  *	Check whether we can remove a link victim from directory dir, check
908  *  whether the type of victim is right.
909  *  1. We can't do it if dir is read-only (done in permission())
910  *  2. We should have write and exec permissions on dir
911  *  3. We can't remove anything from append-only dir
912  *  4. We can't do anything with immutable dir (done in permission())
913  *  5. If the sticky bit on dir is set we should either
914  *	a. be owner of dir, or
915  *	b. be owner of victim, or
916  *	c. have CAP_FOWNER capability
917  *  6. If the victim is append-only or immutable we can't do anything with
918  *     links pointing to it.
919  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
920  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
921  *  9. We can't remove a root or mountpoint.
922  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
923  *     nfs_async_unlink().
924  */
925 
926 static int btrfs_may_delete(struct mnt_idmap *idmap,
927 			    struct inode *dir, struct dentry *victim, int isdir)
928 {
929 	int error;
930 
931 	if (d_really_is_negative(victim))
932 		return -ENOENT;
933 
934 	BUG_ON(d_inode(victim->d_parent) != dir);
935 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
936 
937 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
938 	if (error)
939 		return error;
940 	if (IS_APPEND(dir))
941 		return -EPERM;
942 	if (check_sticky(idmap, dir, d_inode(victim)) ||
943 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
944 	    IS_SWAPFILE(d_inode(victim)))
945 		return -EPERM;
946 	if (isdir) {
947 		if (!d_is_dir(victim))
948 			return -ENOTDIR;
949 		if (IS_ROOT(victim))
950 			return -EBUSY;
951 	} else if (d_is_dir(victim))
952 		return -EISDIR;
953 	if (IS_DEADDIR(dir))
954 		return -ENOENT;
955 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
956 		return -EBUSY;
957 	return 0;
958 }
959 
960 /* copy of may_create in fs/namei.c() */
961 static inline int btrfs_may_create(struct mnt_idmap *idmap,
962 				   struct inode *dir, struct dentry *child)
963 {
964 	if (d_really_is_positive(child))
965 		return -EEXIST;
966 	if (IS_DEADDIR(dir))
967 		return -ENOENT;
968 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
969 		return -EOVERFLOW;
970 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
971 }
972 
973 /*
974  * Create a new subvolume below @parent.  This is largely modeled after
975  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
976  * inside this filesystem so it's quite a bit simpler.
977  */
978 static noinline int btrfs_mksubvol(const struct path *parent,
979 				   struct mnt_idmap *idmap,
980 				   const char *name, int namelen,
981 				   struct btrfs_root *snap_src,
982 				   bool readonly,
983 				   struct btrfs_qgroup_inherit *inherit)
984 {
985 	struct inode *dir = d_inode(parent->dentry);
986 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
987 	struct dentry *dentry;
988 	struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
989 	int error;
990 
991 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
992 	if (error == -EINTR)
993 		return error;
994 
995 	dentry = lookup_one(idmap, name, parent->dentry, namelen);
996 	error = PTR_ERR(dentry);
997 	if (IS_ERR(dentry))
998 		goto out_unlock;
999 
1000 	error = btrfs_may_create(idmap, dir, dentry);
1001 	if (error)
1002 		goto out_dput;
1003 
1004 	/*
1005 	 * even if this name doesn't exist, we may get hash collisions.
1006 	 * check for them now when we can safely fail
1007 	 */
1008 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1009 					       dir->i_ino, &name_str);
1010 	if (error)
1011 		goto out_dput;
1012 
1013 	down_read(&fs_info->subvol_sem);
1014 
1015 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1016 		goto out_up_read;
1017 
1018 	if (snap_src)
1019 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1020 	else
1021 		error = create_subvol(idmap, dir, dentry, inherit);
1022 
1023 	if (!error)
1024 		fsnotify_mkdir(dir, dentry);
1025 out_up_read:
1026 	up_read(&fs_info->subvol_sem);
1027 out_dput:
1028 	dput(dentry);
1029 out_unlock:
1030 	btrfs_inode_unlock(BTRFS_I(dir), 0);
1031 	return error;
1032 }
1033 
1034 static noinline int btrfs_mksnapshot(const struct path *parent,
1035 				   struct mnt_idmap *idmap,
1036 				   const char *name, int namelen,
1037 				   struct btrfs_root *root,
1038 				   bool readonly,
1039 				   struct btrfs_qgroup_inherit *inherit)
1040 {
1041 	int ret;
1042 	bool snapshot_force_cow = false;
1043 
1044 	/*
1045 	 * Force new buffered writes to reserve space even when NOCOW is
1046 	 * possible. This is to avoid later writeback (running dealloc) to
1047 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1048 	 */
1049 	btrfs_drew_read_lock(&root->snapshot_lock);
1050 
1051 	ret = btrfs_start_delalloc_snapshot(root, false);
1052 	if (ret)
1053 		goto out;
1054 
1055 	/*
1056 	 * All previous writes have started writeback in NOCOW mode, so now
1057 	 * we force future writes to fallback to COW mode during snapshot
1058 	 * creation.
1059 	 */
1060 	atomic_inc(&root->snapshot_force_cow);
1061 	snapshot_force_cow = true;
1062 
1063 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1064 
1065 	ret = btrfs_mksubvol(parent, idmap, name, namelen,
1066 			     root, readonly, inherit);
1067 out:
1068 	if (snapshot_force_cow)
1069 		atomic_dec(&root->snapshot_force_cow);
1070 	btrfs_drew_read_unlock(&root->snapshot_lock);
1071 	return ret;
1072 }
1073 
1074 /*
1075  * Try to start exclusive operation @type or cancel it if it's running.
1076  *
1077  * Return:
1078  *   0        - normal mode, newly claimed op started
1079  *  >0        - normal mode, something else is running,
1080  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1081  * ECANCELED  - cancel mode, successful cancel
1082  * ENOTCONN   - cancel mode, operation not running anymore
1083  */
1084 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1085 			enum btrfs_exclusive_operation type, bool cancel)
1086 {
1087 	if (!cancel) {
1088 		/* Start normal op */
1089 		if (!btrfs_exclop_start(fs_info, type))
1090 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1091 		/* Exclusive operation is now claimed */
1092 		return 0;
1093 	}
1094 
1095 	/* Cancel running op */
1096 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1097 		/*
1098 		 * This blocks any exclop finish from setting it to NONE, so we
1099 		 * request cancellation. Either it runs and we will wait for it,
1100 		 * or it has finished and no waiting will happen.
1101 		 */
1102 		atomic_inc(&fs_info->reloc_cancel_req);
1103 		btrfs_exclop_start_unlock(fs_info);
1104 
1105 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1106 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1107 				    TASK_INTERRUPTIBLE);
1108 
1109 		return -ECANCELED;
1110 	}
1111 
1112 	/* Something else is running or none */
1113 	return -ENOTCONN;
1114 }
1115 
1116 static noinline int btrfs_ioctl_resize(struct file *file,
1117 					void __user *arg)
1118 {
1119 	BTRFS_DEV_LOOKUP_ARGS(args);
1120 	struct inode *inode = file_inode(file);
1121 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1122 	u64 new_size;
1123 	u64 old_size;
1124 	u64 devid = 1;
1125 	struct btrfs_root *root = BTRFS_I(inode)->root;
1126 	struct btrfs_ioctl_vol_args *vol_args;
1127 	struct btrfs_trans_handle *trans;
1128 	struct btrfs_device *device = NULL;
1129 	char *sizestr;
1130 	char *retptr;
1131 	char *devstr = NULL;
1132 	int ret = 0;
1133 	int mod = 0;
1134 	bool cancel;
1135 
1136 	if (!capable(CAP_SYS_ADMIN))
1137 		return -EPERM;
1138 
1139 	ret = mnt_want_write_file(file);
1140 	if (ret)
1141 		return ret;
1142 
1143 	/*
1144 	 * Read the arguments before checking exclusivity to be able to
1145 	 * distinguish regular resize and cancel
1146 	 */
1147 	vol_args = memdup_user(arg, sizeof(*vol_args));
1148 	if (IS_ERR(vol_args)) {
1149 		ret = PTR_ERR(vol_args);
1150 		goto out_drop;
1151 	}
1152 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1153 	sizestr = vol_args->name;
1154 	cancel = (strcmp("cancel", sizestr) == 0);
1155 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1156 	if (ret)
1157 		goto out_free;
1158 	/* Exclusive operation is now claimed */
1159 
1160 	devstr = strchr(sizestr, ':');
1161 	if (devstr) {
1162 		sizestr = devstr + 1;
1163 		*devstr = '\0';
1164 		devstr = vol_args->name;
1165 		ret = kstrtoull(devstr, 10, &devid);
1166 		if (ret)
1167 			goto out_finish;
1168 		if (!devid) {
1169 			ret = -EINVAL;
1170 			goto out_finish;
1171 		}
1172 		btrfs_info(fs_info, "resizing devid %llu", devid);
1173 	}
1174 
1175 	args.devid = devid;
1176 	device = btrfs_find_device(fs_info->fs_devices, &args);
1177 	if (!device) {
1178 		btrfs_info(fs_info, "resizer unable to find device %llu",
1179 			   devid);
1180 		ret = -ENODEV;
1181 		goto out_finish;
1182 	}
1183 
1184 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1185 		btrfs_info(fs_info,
1186 			   "resizer unable to apply on readonly device %llu",
1187 		       devid);
1188 		ret = -EPERM;
1189 		goto out_finish;
1190 	}
1191 
1192 	if (!strcmp(sizestr, "max"))
1193 		new_size = bdev_nr_bytes(device->bdev);
1194 	else {
1195 		if (sizestr[0] == '-') {
1196 			mod = -1;
1197 			sizestr++;
1198 		} else if (sizestr[0] == '+') {
1199 			mod = 1;
1200 			sizestr++;
1201 		}
1202 		new_size = memparse(sizestr, &retptr);
1203 		if (*retptr != '\0' || new_size == 0) {
1204 			ret = -EINVAL;
1205 			goto out_finish;
1206 		}
1207 	}
1208 
1209 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1210 		ret = -EPERM;
1211 		goto out_finish;
1212 	}
1213 
1214 	old_size = btrfs_device_get_total_bytes(device);
1215 
1216 	if (mod < 0) {
1217 		if (new_size > old_size) {
1218 			ret = -EINVAL;
1219 			goto out_finish;
1220 		}
1221 		new_size = old_size - new_size;
1222 	} else if (mod > 0) {
1223 		if (new_size > ULLONG_MAX - old_size) {
1224 			ret = -ERANGE;
1225 			goto out_finish;
1226 		}
1227 		new_size = old_size + new_size;
1228 	}
1229 
1230 	if (new_size < SZ_256M) {
1231 		ret = -EINVAL;
1232 		goto out_finish;
1233 	}
1234 	if (new_size > bdev_nr_bytes(device->bdev)) {
1235 		ret = -EFBIG;
1236 		goto out_finish;
1237 	}
1238 
1239 	new_size = round_down(new_size, fs_info->sectorsize);
1240 
1241 	if (new_size > old_size) {
1242 		trans = btrfs_start_transaction(root, 0);
1243 		if (IS_ERR(trans)) {
1244 			ret = PTR_ERR(trans);
1245 			goto out_finish;
1246 		}
1247 		ret = btrfs_grow_device(trans, device, new_size);
1248 		btrfs_commit_transaction(trans);
1249 	} else if (new_size < old_size) {
1250 		ret = btrfs_shrink_device(device, new_size);
1251 	} /* equal, nothing need to do */
1252 
1253 	if (ret == 0 && new_size != old_size)
1254 		btrfs_info_in_rcu(fs_info,
1255 			"resize device %s (devid %llu) from %llu to %llu",
1256 			btrfs_dev_name(device), device->devid,
1257 			old_size, new_size);
1258 out_finish:
1259 	btrfs_exclop_finish(fs_info);
1260 out_free:
1261 	kfree(vol_args);
1262 out_drop:
1263 	mnt_drop_write_file(file);
1264 	return ret;
1265 }
1266 
1267 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1268 				struct mnt_idmap *idmap,
1269 				const char *name, unsigned long fd, int subvol,
1270 				bool readonly,
1271 				struct btrfs_qgroup_inherit *inherit)
1272 {
1273 	int namelen;
1274 	int ret = 0;
1275 
1276 	if (!S_ISDIR(file_inode(file)->i_mode))
1277 		return -ENOTDIR;
1278 
1279 	ret = mnt_want_write_file(file);
1280 	if (ret)
1281 		goto out;
1282 
1283 	namelen = strlen(name);
1284 	if (strchr(name, '/')) {
1285 		ret = -EINVAL;
1286 		goto out_drop_write;
1287 	}
1288 
1289 	if (name[0] == '.' &&
1290 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1291 		ret = -EEXIST;
1292 		goto out_drop_write;
1293 	}
1294 
1295 	if (subvol) {
1296 		ret = btrfs_mksubvol(&file->f_path, idmap, name,
1297 				     namelen, NULL, readonly, inherit);
1298 	} else {
1299 		struct fd src = fdget(fd);
1300 		struct inode *src_inode;
1301 		if (!src.file) {
1302 			ret = -EINVAL;
1303 			goto out_drop_write;
1304 		}
1305 
1306 		src_inode = file_inode(src.file);
1307 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1308 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1309 				   "Snapshot src from another FS");
1310 			ret = -EXDEV;
1311 		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1312 			/*
1313 			 * Subvolume creation is not restricted, but snapshots
1314 			 * are limited to own subvolumes only
1315 			 */
1316 			ret = -EPERM;
1317 		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1318 			/*
1319 			 * Snapshots must be made with the src_inode referring
1320 			 * to the subvolume inode, otherwise the permission
1321 			 * checking above is useless because we may have
1322 			 * permission on a lower directory but not the subvol
1323 			 * itself.
1324 			 */
1325 			ret = -EINVAL;
1326 		} else {
1327 			ret = btrfs_mksnapshot(&file->f_path, idmap,
1328 					       name, namelen,
1329 					       BTRFS_I(src_inode)->root,
1330 					       readonly, inherit);
1331 		}
1332 		fdput(src);
1333 	}
1334 out_drop_write:
1335 	mnt_drop_write_file(file);
1336 out:
1337 	return ret;
1338 }
1339 
1340 static noinline int btrfs_ioctl_snap_create(struct file *file,
1341 					    void __user *arg, int subvol)
1342 {
1343 	struct btrfs_ioctl_vol_args *vol_args;
1344 	int ret;
1345 
1346 	if (!S_ISDIR(file_inode(file)->i_mode))
1347 		return -ENOTDIR;
1348 
1349 	vol_args = memdup_user(arg, sizeof(*vol_args));
1350 	if (IS_ERR(vol_args))
1351 		return PTR_ERR(vol_args);
1352 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1353 
1354 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1355 					vol_args->name, vol_args->fd, subvol,
1356 					false, NULL);
1357 
1358 	kfree(vol_args);
1359 	return ret;
1360 }
1361 
1362 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1363 					       void __user *arg, int subvol)
1364 {
1365 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1366 	int ret;
1367 	bool readonly = false;
1368 	struct btrfs_qgroup_inherit *inherit = NULL;
1369 
1370 	if (!S_ISDIR(file_inode(file)->i_mode))
1371 		return -ENOTDIR;
1372 
1373 	vol_args = memdup_user(arg, sizeof(*vol_args));
1374 	if (IS_ERR(vol_args))
1375 		return PTR_ERR(vol_args);
1376 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1377 
1378 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1379 		ret = -EOPNOTSUPP;
1380 		goto free_args;
1381 	}
1382 
1383 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1384 		readonly = true;
1385 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1386 		u64 nums;
1387 
1388 		if (vol_args->size < sizeof(*inherit) ||
1389 		    vol_args->size > PAGE_SIZE) {
1390 			ret = -EINVAL;
1391 			goto free_args;
1392 		}
1393 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1394 		if (IS_ERR(inherit)) {
1395 			ret = PTR_ERR(inherit);
1396 			goto free_args;
1397 		}
1398 
1399 		if (inherit->num_qgroups > PAGE_SIZE ||
1400 		    inherit->num_ref_copies > PAGE_SIZE ||
1401 		    inherit->num_excl_copies > PAGE_SIZE) {
1402 			ret = -EINVAL;
1403 			goto free_inherit;
1404 		}
1405 
1406 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1407 		       2 * inherit->num_excl_copies;
1408 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1409 			ret = -EINVAL;
1410 			goto free_inherit;
1411 		}
1412 	}
1413 
1414 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1415 					vol_args->name, vol_args->fd, subvol,
1416 					readonly, inherit);
1417 	if (ret)
1418 		goto free_inherit;
1419 free_inherit:
1420 	kfree(inherit);
1421 free_args:
1422 	kfree(vol_args);
1423 	return ret;
1424 }
1425 
1426 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1427 						void __user *arg)
1428 {
1429 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1430 	struct btrfs_root *root = BTRFS_I(inode)->root;
1431 	int ret = 0;
1432 	u64 flags = 0;
1433 
1434 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1435 		return -EINVAL;
1436 
1437 	down_read(&fs_info->subvol_sem);
1438 	if (btrfs_root_readonly(root))
1439 		flags |= BTRFS_SUBVOL_RDONLY;
1440 	up_read(&fs_info->subvol_sem);
1441 
1442 	if (copy_to_user(arg, &flags, sizeof(flags)))
1443 		ret = -EFAULT;
1444 
1445 	return ret;
1446 }
1447 
1448 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1449 					      void __user *arg)
1450 {
1451 	struct inode *inode = file_inode(file);
1452 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1453 	struct btrfs_root *root = BTRFS_I(inode)->root;
1454 	struct btrfs_trans_handle *trans;
1455 	u64 root_flags;
1456 	u64 flags;
1457 	int ret = 0;
1458 
1459 	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1460 		return -EPERM;
1461 
1462 	ret = mnt_want_write_file(file);
1463 	if (ret)
1464 		goto out;
1465 
1466 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1467 		ret = -EINVAL;
1468 		goto out_drop_write;
1469 	}
1470 
1471 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1472 		ret = -EFAULT;
1473 		goto out_drop_write;
1474 	}
1475 
1476 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1477 		ret = -EOPNOTSUPP;
1478 		goto out_drop_write;
1479 	}
1480 
1481 	down_write(&fs_info->subvol_sem);
1482 
1483 	/* nothing to do */
1484 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1485 		goto out_drop_sem;
1486 
1487 	root_flags = btrfs_root_flags(&root->root_item);
1488 	if (flags & BTRFS_SUBVOL_RDONLY) {
1489 		btrfs_set_root_flags(&root->root_item,
1490 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1491 	} else {
1492 		/*
1493 		 * Block RO -> RW transition if this subvolume is involved in
1494 		 * send
1495 		 */
1496 		spin_lock(&root->root_item_lock);
1497 		if (root->send_in_progress == 0) {
1498 			btrfs_set_root_flags(&root->root_item,
1499 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1500 			spin_unlock(&root->root_item_lock);
1501 		} else {
1502 			spin_unlock(&root->root_item_lock);
1503 			btrfs_warn(fs_info,
1504 				   "Attempt to set subvolume %llu read-write during send",
1505 				   root->root_key.objectid);
1506 			ret = -EPERM;
1507 			goto out_drop_sem;
1508 		}
1509 	}
1510 
1511 	trans = btrfs_start_transaction(root, 1);
1512 	if (IS_ERR(trans)) {
1513 		ret = PTR_ERR(trans);
1514 		goto out_reset;
1515 	}
1516 
1517 	ret = btrfs_update_root(trans, fs_info->tree_root,
1518 				&root->root_key, &root->root_item);
1519 	if (ret < 0) {
1520 		btrfs_end_transaction(trans);
1521 		goto out_reset;
1522 	}
1523 
1524 	ret = btrfs_commit_transaction(trans);
1525 
1526 out_reset:
1527 	if (ret)
1528 		btrfs_set_root_flags(&root->root_item, root_flags);
1529 out_drop_sem:
1530 	up_write(&fs_info->subvol_sem);
1531 out_drop_write:
1532 	mnt_drop_write_file(file);
1533 out:
1534 	return ret;
1535 }
1536 
1537 static noinline int key_in_sk(struct btrfs_key *key,
1538 			      struct btrfs_ioctl_search_key *sk)
1539 {
1540 	struct btrfs_key test;
1541 	int ret;
1542 
1543 	test.objectid = sk->min_objectid;
1544 	test.type = sk->min_type;
1545 	test.offset = sk->min_offset;
1546 
1547 	ret = btrfs_comp_cpu_keys(key, &test);
1548 	if (ret < 0)
1549 		return 0;
1550 
1551 	test.objectid = sk->max_objectid;
1552 	test.type = sk->max_type;
1553 	test.offset = sk->max_offset;
1554 
1555 	ret = btrfs_comp_cpu_keys(key, &test);
1556 	if (ret > 0)
1557 		return 0;
1558 	return 1;
1559 }
1560 
1561 static noinline int copy_to_sk(struct btrfs_path *path,
1562 			       struct btrfs_key *key,
1563 			       struct btrfs_ioctl_search_key *sk,
1564 			       u64 *buf_size,
1565 			       char __user *ubuf,
1566 			       unsigned long *sk_offset,
1567 			       int *num_found)
1568 {
1569 	u64 found_transid;
1570 	struct extent_buffer *leaf;
1571 	struct btrfs_ioctl_search_header sh;
1572 	struct btrfs_key test;
1573 	unsigned long item_off;
1574 	unsigned long item_len;
1575 	int nritems;
1576 	int i;
1577 	int slot;
1578 	int ret = 0;
1579 
1580 	leaf = path->nodes[0];
1581 	slot = path->slots[0];
1582 	nritems = btrfs_header_nritems(leaf);
1583 
1584 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1585 		i = nritems;
1586 		goto advance_key;
1587 	}
1588 	found_transid = btrfs_header_generation(leaf);
1589 
1590 	for (i = slot; i < nritems; i++) {
1591 		item_off = btrfs_item_ptr_offset(leaf, i);
1592 		item_len = btrfs_item_size(leaf, i);
1593 
1594 		btrfs_item_key_to_cpu(leaf, key, i);
1595 		if (!key_in_sk(key, sk))
1596 			continue;
1597 
1598 		if (sizeof(sh) + item_len > *buf_size) {
1599 			if (*num_found) {
1600 				ret = 1;
1601 				goto out;
1602 			}
1603 
1604 			/*
1605 			 * return one empty item back for v1, which does not
1606 			 * handle -EOVERFLOW
1607 			 */
1608 
1609 			*buf_size = sizeof(sh) + item_len;
1610 			item_len = 0;
1611 			ret = -EOVERFLOW;
1612 		}
1613 
1614 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1615 			ret = 1;
1616 			goto out;
1617 		}
1618 
1619 		sh.objectid = key->objectid;
1620 		sh.offset = key->offset;
1621 		sh.type = key->type;
1622 		sh.len = item_len;
1623 		sh.transid = found_transid;
1624 
1625 		/*
1626 		 * Copy search result header. If we fault then loop again so we
1627 		 * can fault in the pages and -EFAULT there if there's a
1628 		 * problem. Otherwise we'll fault and then copy the buffer in
1629 		 * properly this next time through
1630 		 */
1631 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1632 			ret = 0;
1633 			goto out;
1634 		}
1635 
1636 		*sk_offset += sizeof(sh);
1637 
1638 		if (item_len) {
1639 			char __user *up = ubuf + *sk_offset;
1640 			/*
1641 			 * Copy the item, same behavior as above, but reset the
1642 			 * * sk_offset so we copy the full thing again.
1643 			 */
1644 			if (read_extent_buffer_to_user_nofault(leaf, up,
1645 						item_off, item_len)) {
1646 				ret = 0;
1647 				*sk_offset -= sizeof(sh);
1648 				goto out;
1649 			}
1650 
1651 			*sk_offset += item_len;
1652 		}
1653 		(*num_found)++;
1654 
1655 		if (ret) /* -EOVERFLOW from above */
1656 			goto out;
1657 
1658 		if (*num_found >= sk->nr_items) {
1659 			ret = 1;
1660 			goto out;
1661 		}
1662 	}
1663 advance_key:
1664 	ret = 0;
1665 	test.objectid = sk->max_objectid;
1666 	test.type = sk->max_type;
1667 	test.offset = sk->max_offset;
1668 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1669 		ret = 1;
1670 	else if (key->offset < (u64)-1)
1671 		key->offset++;
1672 	else if (key->type < (u8)-1) {
1673 		key->offset = 0;
1674 		key->type++;
1675 	} else if (key->objectid < (u64)-1) {
1676 		key->offset = 0;
1677 		key->type = 0;
1678 		key->objectid++;
1679 	} else
1680 		ret = 1;
1681 out:
1682 	/*
1683 	 *  0: all items from this leaf copied, continue with next
1684 	 *  1: * more items can be copied, but unused buffer is too small
1685 	 *     * all items were found
1686 	 *     Either way, it will stops the loop which iterates to the next
1687 	 *     leaf
1688 	 *  -EOVERFLOW: item was to large for buffer
1689 	 *  -EFAULT: could not copy extent buffer back to userspace
1690 	 */
1691 	return ret;
1692 }
1693 
1694 static noinline int search_ioctl(struct inode *inode,
1695 				 struct btrfs_ioctl_search_key *sk,
1696 				 u64 *buf_size,
1697 				 char __user *ubuf)
1698 {
1699 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
1700 	struct btrfs_root *root;
1701 	struct btrfs_key key;
1702 	struct btrfs_path *path;
1703 	int ret;
1704 	int num_found = 0;
1705 	unsigned long sk_offset = 0;
1706 
1707 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1708 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1709 		return -EOVERFLOW;
1710 	}
1711 
1712 	path = btrfs_alloc_path();
1713 	if (!path)
1714 		return -ENOMEM;
1715 
1716 	if (sk->tree_id == 0) {
1717 		/* search the root of the inode that was passed */
1718 		root = btrfs_grab_root(BTRFS_I(inode)->root);
1719 	} else {
1720 		root = btrfs_get_fs_root(info, sk->tree_id, true);
1721 		if (IS_ERR(root)) {
1722 			btrfs_free_path(path);
1723 			return PTR_ERR(root);
1724 		}
1725 	}
1726 
1727 	key.objectid = sk->min_objectid;
1728 	key.type = sk->min_type;
1729 	key.offset = sk->min_offset;
1730 
1731 	while (1) {
1732 		ret = -EFAULT;
1733 		/*
1734 		 * Ensure that the whole user buffer is faulted in at sub-page
1735 		 * granularity, otherwise the loop may live-lock.
1736 		 */
1737 		if (fault_in_subpage_writeable(ubuf + sk_offset,
1738 					       *buf_size - sk_offset))
1739 			break;
1740 
1741 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1742 		if (ret != 0) {
1743 			if (ret > 0)
1744 				ret = 0;
1745 			goto err;
1746 		}
1747 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1748 				 &sk_offset, &num_found);
1749 		btrfs_release_path(path);
1750 		if (ret)
1751 			break;
1752 
1753 	}
1754 	if (ret > 0)
1755 		ret = 0;
1756 err:
1757 	sk->nr_items = num_found;
1758 	btrfs_put_root(root);
1759 	btrfs_free_path(path);
1760 	return ret;
1761 }
1762 
1763 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1764 					    void __user *argp)
1765 {
1766 	struct btrfs_ioctl_search_args __user *uargs = argp;
1767 	struct btrfs_ioctl_search_key sk;
1768 	int ret;
1769 	u64 buf_size;
1770 
1771 	if (!capable(CAP_SYS_ADMIN))
1772 		return -EPERM;
1773 
1774 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1775 		return -EFAULT;
1776 
1777 	buf_size = sizeof(uargs->buf);
1778 
1779 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1780 
1781 	/*
1782 	 * In the origin implementation an overflow is handled by returning a
1783 	 * search header with a len of zero, so reset ret.
1784 	 */
1785 	if (ret == -EOVERFLOW)
1786 		ret = 0;
1787 
1788 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1789 		ret = -EFAULT;
1790 	return ret;
1791 }
1792 
1793 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1794 					       void __user *argp)
1795 {
1796 	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1797 	struct btrfs_ioctl_search_args_v2 args;
1798 	int ret;
1799 	u64 buf_size;
1800 	const u64 buf_limit = SZ_16M;
1801 
1802 	if (!capable(CAP_SYS_ADMIN))
1803 		return -EPERM;
1804 
1805 	/* copy search header and buffer size */
1806 	if (copy_from_user(&args, uarg, sizeof(args)))
1807 		return -EFAULT;
1808 
1809 	buf_size = args.buf_size;
1810 
1811 	/* limit result size to 16MB */
1812 	if (buf_size > buf_limit)
1813 		buf_size = buf_limit;
1814 
1815 	ret = search_ioctl(inode, &args.key, &buf_size,
1816 			   (char __user *)(&uarg->buf[0]));
1817 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1818 		ret = -EFAULT;
1819 	else if (ret == -EOVERFLOW &&
1820 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1821 		ret = -EFAULT;
1822 
1823 	return ret;
1824 }
1825 
1826 /*
1827  * Search INODE_REFs to identify path name of 'dirid' directory
1828  * in a 'tree_id' tree. and sets path name to 'name'.
1829  */
1830 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1831 				u64 tree_id, u64 dirid, char *name)
1832 {
1833 	struct btrfs_root *root;
1834 	struct btrfs_key key;
1835 	char *ptr;
1836 	int ret = -1;
1837 	int slot;
1838 	int len;
1839 	int total_len = 0;
1840 	struct btrfs_inode_ref *iref;
1841 	struct extent_buffer *l;
1842 	struct btrfs_path *path;
1843 
1844 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1845 		name[0]='\0';
1846 		return 0;
1847 	}
1848 
1849 	path = btrfs_alloc_path();
1850 	if (!path)
1851 		return -ENOMEM;
1852 
1853 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1854 
1855 	root = btrfs_get_fs_root(info, tree_id, true);
1856 	if (IS_ERR(root)) {
1857 		ret = PTR_ERR(root);
1858 		root = NULL;
1859 		goto out;
1860 	}
1861 
1862 	key.objectid = dirid;
1863 	key.type = BTRFS_INODE_REF_KEY;
1864 	key.offset = (u64)-1;
1865 
1866 	while (1) {
1867 		ret = btrfs_search_backwards(root, &key, path);
1868 		if (ret < 0)
1869 			goto out;
1870 		else if (ret > 0) {
1871 			ret = -ENOENT;
1872 			goto out;
1873 		}
1874 
1875 		l = path->nodes[0];
1876 		slot = path->slots[0];
1877 
1878 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1879 		len = btrfs_inode_ref_name_len(l, iref);
1880 		ptr -= len + 1;
1881 		total_len += len + 1;
1882 		if (ptr < name) {
1883 			ret = -ENAMETOOLONG;
1884 			goto out;
1885 		}
1886 
1887 		*(ptr + len) = '/';
1888 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1889 
1890 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1891 			break;
1892 
1893 		btrfs_release_path(path);
1894 		key.objectid = key.offset;
1895 		key.offset = (u64)-1;
1896 		dirid = key.objectid;
1897 	}
1898 	memmove(name, ptr, total_len);
1899 	name[total_len] = '\0';
1900 	ret = 0;
1901 out:
1902 	btrfs_put_root(root);
1903 	btrfs_free_path(path);
1904 	return ret;
1905 }
1906 
1907 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1908 				struct inode *inode,
1909 				struct btrfs_ioctl_ino_lookup_user_args *args)
1910 {
1911 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1912 	struct super_block *sb = inode->i_sb;
1913 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1914 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1915 	u64 dirid = args->dirid;
1916 	unsigned long item_off;
1917 	unsigned long item_len;
1918 	struct btrfs_inode_ref *iref;
1919 	struct btrfs_root_ref *rref;
1920 	struct btrfs_root *root = NULL;
1921 	struct btrfs_path *path;
1922 	struct btrfs_key key, key2;
1923 	struct extent_buffer *leaf;
1924 	struct inode *temp_inode;
1925 	char *ptr;
1926 	int slot;
1927 	int len;
1928 	int total_len = 0;
1929 	int ret;
1930 
1931 	path = btrfs_alloc_path();
1932 	if (!path)
1933 		return -ENOMEM;
1934 
1935 	/*
1936 	 * If the bottom subvolume does not exist directly under upper_limit,
1937 	 * construct the path in from the bottom up.
1938 	 */
1939 	if (dirid != upper_limit.objectid) {
1940 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1941 
1942 		root = btrfs_get_fs_root(fs_info, treeid, true);
1943 		if (IS_ERR(root)) {
1944 			ret = PTR_ERR(root);
1945 			goto out;
1946 		}
1947 
1948 		key.objectid = dirid;
1949 		key.type = BTRFS_INODE_REF_KEY;
1950 		key.offset = (u64)-1;
1951 		while (1) {
1952 			ret = btrfs_search_backwards(root, &key, path);
1953 			if (ret < 0)
1954 				goto out_put;
1955 			else if (ret > 0) {
1956 				ret = -ENOENT;
1957 				goto out_put;
1958 			}
1959 
1960 			leaf = path->nodes[0];
1961 			slot = path->slots[0];
1962 
1963 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1964 			len = btrfs_inode_ref_name_len(leaf, iref);
1965 			ptr -= len + 1;
1966 			total_len += len + 1;
1967 			if (ptr < args->path) {
1968 				ret = -ENAMETOOLONG;
1969 				goto out_put;
1970 			}
1971 
1972 			*(ptr + len) = '/';
1973 			read_extent_buffer(leaf, ptr,
1974 					(unsigned long)(iref + 1), len);
1975 
1976 			/* Check the read+exec permission of this directory */
1977 			ret = btrfs_previous_item(root, path, dirid,
1978 						  BTRFS_INODE_ITEM_KEY);
1979 			if (ret < 0) {
1980 				goto out_put;
1981 			} else if (ret > 0) {
1982 				ret = -ENOENT;
1983 				goto out_put;
1984 			}
1985 
1986 			leaf = path->nodes[0];
1987 			slot = path->slots[0];
1988 			btrfs_item_key_to_cpu(leaf, &key2, slot);
1989 			if (key2.objectid != dirid) {
1990 				ret = -ENOENT;
1991 				goto out_put;
1992 			}
1993 
1994 			/*
1995 			 * We don't need the path anymore, so release it and
1996 			 * avoid deadlocks and lockdep warnings in case
1997 			 * btrfs_iget() needs to lookup the inode from its root
1998 			 * btree and lock the same leaf.
1999 			 */
2000 			btrfs_release_path(path);
2001 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2002 			if (IS_ERR(temp_inode)) {
2003 				ret = PTR_ERR(temp_inode);
2004 				goto out_put;
2005 			}
2006 			ret = inode_permission(idmap, temp_inode,
2007 					       MAY_READ | MAY_EXEC);
2008 			iput(temp_inode);
2009 			if (ret) {
2010 				ret = -EACCES;
2011 				goto out_put;
2012 			}
2013 
2014 			if (key.offset == upper_limit.objectid)
2015 				break;
2016 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2017 				ret = -EACCES;
2018 				goto out_put;
2019 			}
2020 
2021 			key.objectid = key.offset;
2022 			key.offset = (u64)-1;
2023 			dirid = key.objectid;
2024 		}
2025 
2026 		memmove(args->path, ptr, total_len);
2027 		args->path[total_len] = '\0';
2028 		btrfs_put_root(root);
2029 		root = NULL;
2030 		btrfs_release_path(path);
2031 	}
2032 
2033 	/* Get the bottom subvolume's name from ROOT_REF */
2034 	key.objectid = treeid;
2035 	key.type = BTRFS_ROOT_REF_KEY;
2036 	key.offset = args->treeid;
2037 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2038 	if (ret < 0) {
2039 		goto out;
2040 	} else if (ret > 0) {
2041 		ret = -ENOENT;
2042 		goto out;
2043 	}
2044 
2045 	leaf = path->nodes[0];
2046 	slot = path->slots[0];
2047 	btrfs_item_key_to_cpu(leaf, &key, slot);
2048 
2049 	item_off = btrfs_item_ptr_offset(leaf, slot);
2050 	item_len = btrfs_item_size(leaf, slot);
2051 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2052 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2053 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2054 		ret = -EINVAL;
2055 		goto out;
2056 	}
2057 
2058 	/* Copy subvolume's name */
2059 	item_off += sizeof(struct btrfs_root_ref);
2060 	item_len -= sizeof(struct btrfs_root_ref);
2061 	read_extent_buffer(leaf, args->name, item_off, item_len);
2062 	args->name[item_len] = 0;
2063 
2064 out_put:
2065 	btrfs_put_root(root);
2066 out:
2067 	btrfs_free_path(path);
2068 	return ret;
2069 }
2070 
2071 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2072 					   void __user *argp)
2073 {
2074 	struct btrfs_ioctl_ino_lookup_args *args;
2075 	int ret = 0;
2076 
2077 	args = memdup_user(argp, sizeof(*args));
2078 	if (IS_ERR(args))
2079 		return PTR_ERR(args);
2080 
2081 	/*
2082 	 * Unprivileged query to obtain the containing subvolume root id. The
2083 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2084 	 */
2085 	if (args->treeid == 0)
2086 		args->treeid = root->root_key.objectid;
2087 
2088 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2089 		args->name[0] = 0;
2090 		goto out;
2091 	}
2092 
2093 	if (!capable(CAP_SYS_ADMIN)) {
2094 		ret = -EPERM;
2095 		goto out;
2096 	}
2097 
2098 	ret = btrfs_search_path_in_tree(root->fs_info,
2099 					args->treeid, args->objectid,
2100 					args->name);
2101 
2102 out:
2103 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2104 		ret = -EFAULT;
2105 
2106 	kfree(args);
2107 	return ret;
2108 }
2109 
2110 /*
2111  * Version of ino_lookup ioctl (unprivileged)
2112  *
2113  * The main differences from ino_lookup ioctl are:
2114  *
2115  *   1. Read + Exec permission will be checked using inode_permission() during
2116  *      path construction. -EACCES will be returned in case of failure.
2117  *   2. Path construction will be stopped at the inode number which corresponds
2118  *      to the fd with which this ioctl is called. If constructed path does not
2119  *      exist under fd's inode, -EACCES will be returned.
2120  *   3. The name of bottom subvolume is also searched and filled.
2121  */
2122 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2123 {
2124 	struct btrfs_ioctl_ino_lookup_user_args *args;
2125 	struct inode *inode;
2126 	int ret;
2127 
2128 	args = memdup_user(argp, sizeof(*args));
2129 	if (IS_ERR(args))
2130 		return PTR_ERR(args);
2131 
2132 	inode = file_inode(file);
2133 
2134 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2135 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2136 		/*
2137 		 * The subvolume does not exist under fd with which this is
2138 		 * called
2139 		 */
2140 		kfree(args);
2141 		return -EACCES;
2142 	}
2143 
2144 	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2145 
2146 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2147 		ret = -EFAULT;
2148 
2149 	kfree(args);
2150 	return ret;
2151 }
2152 
2153 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2154 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2155 {
2156 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2157 	struct btrfs_fs_info *fs_info;
2158 	struct btrfs_root *root;
2159 	struct btrfs_path *path;
2160 	struct btrfs_key key;
2161 	struct btrfs_root_item *root_item;
2162 	struct btrfs_root_ref *rref;
2163 	struct extent_buffer *leaf;
2164 	unsigned long item_off;
2165 	unsigned long item_len;
2166 	int slot;
2167 	int ret = 0;
2168 
2169 	path = btrfs_alloc_path();
2170 	if (!path)
2171 		return -ENOMEM;
2172 
2173 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2174 	if (!subvol_info) {
2175 		btrfs_free_path(path);
2176 		return -ENOMEM;
2177 	}
2178 
2179 	fs_info = BTRFS_I(inode)->root->fs_info;
2180 
2181 	/* Get root_item of inode's subvolume */
2182 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2183 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2184 	if (IS_ERR(root)) {
2185 		ret = PTR_ERR(root);
2186 		goto out_free;
2187 	}
2188 	root_item = &root->root_item;
2189 
2190 	subvol_info->treeid = key.objectid;
2191 
2192 	subvol_info->generation = btrfs_root_generation(root_item);
2193 	subvol_info->flags = btrfs_root_flags(root_item);
2194 
2195 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2196 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2197 						    BTRFS_UUID_SIZE);
2198 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2199 						    BTRFS_UUID_SIZE);
2200 
2201 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2202 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2203 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2204 
2205 	subvol_info->otransid = btrfs_root_otransid(root_item);
2206 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2207 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2208 
2209 	subvol_info->stransid = btrfs_root_stransid(root_item);
2210 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2211 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2212 
2213 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2214 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2215 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2216 
2217 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2218 		/* Search root tree for ROOT_BACKREF of this subvolume */
2219 		key.type = BTRFS_ROOT_BACKREF_KEY;
2220 		key.offset = 0;
2221 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2222 		if (ret < 0) {
2223 			goto out;
2224 		} else if (path->slots[0] >=
2225 			   btrfs_header_nritems(path->nodes[0])) {
2226 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2227 			if (ret < 0) {
2228 				goto out;
2229 			} else if (ret > 0) {
2230 				ret = -EUCLEAN;
2231 				goto out;
2232 			}
2233 		}
2234 
2235 		leaf = path->nodes[0];
2236 		slot = path->slots[0];
2237 		btrfs_item_key_to_cpu(leaf, &key, slot);
2238 		if (key.objectid == subvol_info->treeid &&
2239 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2240 			subvol_info->parent_id = key.offset;
2241 
2242 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2243 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2244 
2245 			item_off = btrfs_item_ptr_offset(leaf, slot)
2246 					+ sizeof(struct btrfs_root_ref);
2247 			item_len = btrfs_item_size(leaf, slot)
2248 					- sizeof(struct btrfs_root_ref);
2249 			read_extent_buffer(leaf, subvol_info->name,
2250 					   item_off, item_len);
2251 		} else {
2252 			ret = -ENOENT;
2253 			goto out;
2254 		}
2255 	}
2256 
2257 	btrfs_free_path(path);
2258 	path = NULL;
2259 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2260 		ret = -EFAULT;
2261 
2262 out:
2263 	btrfs_put_root(root);
2264 out_free:
2265 	btrfs_free_path(path);
2266 	kfree(subvol_info);
2267 	return ret;
2268 }
2269 
2270 /*
2271  * Return ROOT_REF information of the subvolume containing this inode
2272  * except the subvolume name.
2273  */
2274 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2275 					  void __user *argp)
2276 {
2277 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2278 	struct btrfs_root_ref *rref;
2279 	struct btrfs_path *path;
2280 	struct btrfs_key key;
2281 	struct extent_buffer *leaf;
2282 	u64 objectid;
2283 	int slot;
2284 	int ret;
2285 	u8 found;
2286 
2287 	path = btrfs_alloc_path();
2288 	if (!path)
2289 		return -ENOMEM;
2290 
2291 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2292 	if (IS_ERR(rootrefs)) {
2293 		btrfs_free_path(path);
2294 		return PTR_ERR(rootrefs);
2295 	}
2296 
2297 	objectid = root->root_key.objectid;
2298 	key.objectid = objectid;
2299 	key.type = BTRFS_ROOT_REF_KEY;
2300 	key.offset = rootrefs->min_treeid;
2301 	found = 0;
2302 
2303 	root = root->fs_info->tree_root;
2304 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2305 	if (ret < 0) {
2306 		goto out;
2307 	} else if (path->slots[0] >=
2308 		   btrfs_header_nritems(path->nodes[0])) {
2309 		ret = btrfs_next_leaf(root, path);
2310 		if (ret < 0) {
2311 			goto out;
2312 		} else if (ret > 0) {
2313 			ret = -EUCLEAN;
2314 			goto out;
2315 		}
2316 	}
2317 	while (1) {
2318 		leaf = path->nodes[0];
2319 		slot = path->slots[0];
2320 
2321 		btrfs_item_key_to_cpu(leaf, &key, slot);
2322 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2323 			ret = 0;
2324 			goto out;
2325 		}
2326 
2327 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2328 			ret = -EOVERFLOW;
2329 			goto out;
2330 		}
2331 
2332 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2333 		rootrefs->rootref[found].treeid = key.offset;
2334 		rootrefs->rootref[found].dirid =
2335 				  btrfs_root_ref_dirid(leaf, rref);
2336 		found++;
2337 
2338 		ret = btrfs_next_item(root, path);
2339 		if (ret < 0) {
2340 			goto out;
2341 		} else if (ret > 0) {
2342 			ret = -EUCLEAN;
2343 			goto out;
2344 		}
2345 	}
2346 
2347 out:
2348 	btrfs_free_path(path);
2349 
2350 	if (!ret || ret == -EOVERFLOW) {
2351 		rootrefs->num_items = found;
2352 		/* update min_treeid for next search */
2353 		if (found)
2354 			rootrefs->min_treeid =
2355 				rootrefs->rootref[found - 1].treeid + 1;
2356 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2357 			ret = -EFAULT;
2358 	}
2359 
2360 	kfree(rootrefs);
2361 
2362 	return ret;
2363 }
2364 
2365 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2366 					     void __user *arg,
2367 					     bool destroy_v2)
2368 {
2369 	struct dentry *parent = file->f_path.dentry;
2370 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2371 	struct dentry *dentry;
2372 	struct inode *dir = d_inode(parent);
2373 	struct inode *inode;
2374 	struct btrfs_root *root = BTRFS_I(dir)->root;
2375 	struct btrfs_root *dest = NULL;
2376 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2377 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2378 	struct mnt_idmap *idmap = file_mnt_idmap(file);
2379 	char *subvol_name, *subvol_name_ptr = NULL;
2380 	int subvol_namelen;
2381 	int err = 0;
2382 	bool destroy_parent = false;
2383 
2384 	/* We don't support snapshots with extent tree v2 yet. */
2385 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2386 		btrfs_err(fs_info,
2387 			  "extent tree v2 doesn't support snapshot deletion yet");
2388 		return -EOPNOTSUPP;
2389 	}
2390 
2391 	if (destroy_v2) {
2392 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2393 		if (IS_ERR(vol_args2))
2394 			return PTR_ERR(vol_args2);
2395 
2396 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2397 			err = -EOPNOTSUPP;
2398 			goto out;
2399 		}
2400 
2401 		/*
2402 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2403 		 * name, same as v1 currently does.
2404 		 */
2405 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2406 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2407 			subvol_name = vol_args2->name;
2408 
2409 			err = mnt_want_write_file(file);
2410 			if (err)
2411 				goto out;
2412 		} else {
2413 			struct inode *old_dir;
2414 
2415 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2416 				err = -EINVAL;
2417 				goto out;
2418 			}
2419 
2420 			err = mnt_want_write_file(file);
2421 			if (err)
2422 				goto out;
2423 
2424 			dentry = btrfs_get_dentry(fs_info->sb,
2425 					BTRFS_FIRST_FREE_OBJECTID,
2426 					vol_args2->subvolid, 0);
2427 			if (IS_ERR(dentry)) {
2428 				err = PTR_ERR(dentry);
2429 				goto out_drop_write;
2430 			}
2431 
2432 			/*
2433 			 * Change the default parent since the subvolume being
2434 			 * deleted can be outside of the current mount point.
2435 			 */
2436 			parent = btrfs_get_parent(dentry);
2437 
2438 			/*
2439 			 * At this point dentry->d_name can point to '/' if the
2440 			 * subvolume we want to destroy is outsite of the
2441 			 * current mount point, so we need to release the
2442 			 * current dentry and execute the lookup to return a new
2443 			 * one with ->d_name pointing to the
2444 			 * <mount point>/subvol_name.
2445 			 */
2446 			dput(dentry);
2447 			if (IS_ERR(parent)) {
2448 				err = PTR_ERR(parent);
2449 				goto out_drop_write;
2450 			}
2451 			old_dir = dir;
2452 			dir = d_inode(parent);
2453 
2454 			/*
2455 			 * If v2 was used with SPEC_BY_ID, a new parent was
2456 			 * allocated since the subvolume can be outside of the
2457 			 * current mount point. Later on we need to release this
2458 			 * new parent dentry.
2459 			 */
2460 			destroy_parent = true;
2461 
2462 			/*
2463 			 * On idmapped mounts, deletion via subvolid is
2464 			 * restricted to subvolumes that are immediate
2465 			 * ancestors of the inode referenced by the file
2466 			 * descriptor in the ioctl. Otherwise the idmapping
2467 			 * could potentially be abused to delete subvolumes
2468 			 * anywhere in the filesystem the user wouldn't be able
2469 			 * to delete without an idmapped mount.
2470 			 */
2471 			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2472 				err = -EOPNOTSUPP;
2473 				goto free_parent;
2474 			}
2475 
2476 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2477 						fs_info, vol_args2->subvolid);
2478 			if (IS_ERR(subvol_name_ptr)) {
2479 				err = PTR_ERR(subvol_name_ptr);
2480 				goto free_parent;
2481 			}
2482 			/* subvol_name_ptr is already nul terminated */
2483 			subvol_name = (char *)kbasename(subvol_name_ptr);
2484 		}
2485 	} else {
2486 		vol_args = memdup_user(arg, sizeof(*vol_args));
2487 		if (IS_ERR(vol_args))
2488 			return PTR_ERR(vol_args);
2489 
2490 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2491 		subvol_name = vol_args->name;
2492 
2493 		err = mnt_want_write_file(file);
2494 		if (err)
2495 			goto out;
2496 	}
2497 
2498 	subvol_namelen = strlen(subvol_name);
2499 
2500 	if (strchr(subvol_name, '/') ||
2501 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2502 		err = -EINVAL;
2503 		goto free_subvol_name;
2504 	}
2505 
2506 	if (!S_ISDIR(dir->i_mode)) {
2507 		err = -ENOTDIR;
2508 		goto free_subvol_name;
2509 	}
2510 
2511 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2512 	if (err == -EINTR)
2513 		goto free_subvol_name;
2514 	dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2515 	if (IS_ERR(dentry)) {
2516 		err = PTR_ERR(dentry);
2517 		goto out_unlock_dir;
2518 	}
2519 
2520 	if (d_really_is_negative(dentry)) {
2521 		err = -ENOENT;
2522 		goto out_dput;
2523 	}
2524 
2525 	inode = d_inode(dentry);
2526 	dest = BTRFS_I(inode)->root;
2527 	if (!capable(CAP_SYS_ADMIN)) {
2528 		/*
2529 		 * Regular user.  Only allow this with a special mount
2530 		 * option, when the user has write+exec access to the
2531 		 * subvol root, and when rmdir(2) would have been
2532 		 * allowed.
2533 		 *
2534 		 * Note that this is _not_ check that the subvol is
2535 		 * empty or doesn't contain data that we wouldn't
2536 		 * otherwise be able to delete.
2537 		 *
2538 		 * Users who want to delete empty subvols should try
2539 		 * rmdir(2).
2540 		 */
2541 		err = -EPERM;
2542 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2543 			goto out_dput;
2544 
2545 		/*
2546 		 * Do not allow deletion if the parent dir is the same
2547 		 * as the dir to be deleted.  That means the ioctl
2548 		 * must be called on the dentry referencing the root
2549 		 * of the subvol, not a random directory contained
2550 		 * within it.
2551 		 */
2552 		err = -EINVAL;
2553 		if (root == dest)
2554 			goto out_dput;
2555 
2556 		err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2557 		if (err)
2558 			goto out_dput;
2559 	}
2560 
2561 	/* check if subvolume may be deleted by a user */
2562 	err = btrfs_may_delete(idmap, dir, dentry, 1);
2563 	if (err)
2564 		goto out_dput;
2565 
2566 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2567 		err = -EINVAL;
2568 		goto out_dput;
2569 	}
2570 
2571 	btrfs_inode_lock(BTRFS_I(inode), 0);
2572 	err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2573 	btrfs_inode_unlock(BTRFS_I(inode), 0);
2574 	if (!err)
2575 		d_delete_notify(dir, dentry);
2576 
2577 out_dput:
2578 	dput(dentry);
2579 out_unlock_dir:
2580 	btrfs_inode_unlock(BTRFS_I(dir), 0);
2581 free_subvol_name:
2582 	kfree(subvol_name_ptr);
2583 free_parent:
2584 	if (destroy_parent)
2585 		dput(parent);
2586 out_drop_write:
2587 	mnt_drop_write_file(file);
2588 out:
2589 	kfree(vol_args2);
2590 	kfree(vol_args);
2591 	return err;
2592 }
2593 
2594 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2595 {
2596 	struct inode *inode = file_inode(file);
2597 	struct btrfs_root *root = BTRFS_I(inode)->root;
2598 	struct btrfs_ioctl_defrag_range_args range = {0};
2599 	int ret;
2600 
2601 	ret = mnt_want_write_file(file);
2602 	if (ret)
2603 		return ret;
2604 
2605 	if (btrfs_root_readonly(root)) {
2606 		ret = -EROFS;
2607 		goto out;
2608 	}
2609 
2610 	switch (inode->i_mode & S_IFMT) {
2611 	case S_IFDIR:
2612 		if (!capable(CAP_SYS_ADMIN)) {
2613 			ret = -EPERM;
2614 			goto out;
2615 		}
2616 		ret = btrfs_defrag_root(root);
2617 		break;
2618 	case S_IFREG:
2619 		/*
2620 		 * Note that this does not check the file descriptor for write
2621 		 * access. This prevents defragmenting executables that are
2622 		 * running and allows defrag on files open in read-only mode.
2623 		 */
2624 		if (!capable(CAP_SYS_ADMIN) &&
2625 		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2626 			ret = -EPERM;
2627 			goto out;
2628 		}
2629 
2630 		if (argp) {
2631 			if (copy_from_user(&range, argp, sizeof(range))) {
2632 				ret = -EFAULT;
2633 				goto out;
2634 			}
2635 			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2636 				ret = -EOPNOTSUPP;
2637 				goto out;
2638 			}
2639 			/* compression requires us to start the IO */
2640 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2641 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2642 				range.extent_thresh = (u32)-1;
2643 			}
2644 		} else {
2645 			/* the rest are all set to zero by kzalloc */
2646 			range.len = (u64)-1;
2647 		}
2648 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2649 					&range, BTRFS_OLDEST_GENERATION, 0);
2650 		if (ret > 0)
2651 			ret = 0;
2652 		break;
2653 	default:
2654 		ret = -EINVAL;
2655 	}
2656 out:
2657 	mnt_drop_write_file(file);
2658 	return ret;
2659 }
2660 
2661 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2662 {
2663 	struct btrfs_ioctl_vol_args *vol_args;
2664 	bool restore_op = false;
2665 	int ret;
2666 
2667 	if (!capable(CAP_SYS_ADMIN))
2668 		return -EPERM;
2669 
2670 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2671 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2672 		return -EINVAL;
2673 	}
2674 
2675 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2676 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2677 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2678 
2679 		/*
2680 		 * We can do the device add because we have a paused balanced,
2681 		 * change the exclusive op type and remember we should bring
2682 		 * back the paused balance
2683 		 */
2684 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2685 		btrfs_exclop_start_unlock(fs_info);
2686 		restore_op = true;
2687 	}
2688 
2689 	vol_args = memdup_user(arg, sizeof(*vol_args));
2690 	if (IS_ERR(vol_args)) {
2691 		ret = PTR_ERR(vol_args);
2692 		goto out;
2693 	}
2694 
2695 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2696 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2697 
2698 	if (!ret)
2699 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2700 
2701 	kfree(vol_args);
2702 out:
2703 	if (restore_op)
2704 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2705 	else
2706 		btrfs_exclop_finish(fs_info);
2707 	return ret;
2708 }
2709 
2710 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2711 {
2712 	BTRFS_DEV_LOOKUP_ARGS(args);
2713 	struct inode *inode = file_inode(file);
2714 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2715 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2716 	struct block_device *bdev = NULL;
2717 	void *holder;
2718 	int ret;
2719 	bool cancel = false;
2720 
2721 	if (!capable(CAP_SYS_ADMIN))
2722 		return -EPERM;
2723 
2724 	vol_args = memdup_user(arg, sizeof(*vol_args));
2725 	if (IS_ERR(vol_args))
2726 		return PTR_ERR(vol_args);
2727 
2728 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2729 		ret = -EOPNOTSUPP;
2730 		goto out;
2731 	}
2732 
2733 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2734 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2735 		args.devid = vol_args->devid;
2736 	} else if (!strcmp("cancel", vol_args->name)) {
2737 		cancel = true;
2738 	} else {
2739 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2740 		if (ret)
2741 			goto out;
2742 	}
2743 
2744 	ret = mnt_want_write_file(file);
2745 	if (ret)
2746 		goto out;
2747 
2748 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2749 					   cancel);
2750 	if (ret)
2751 		goto err_drop;
2752 
2753 	/* Exclusive operation is now claimed */
2754 	ret = btrfs_rm_device(fs_info, &args, &bdev, &holder);
2755 
2756 	btrfs_exclop_finish(fs_info);
2757 
2758 	if (!ret) {
2759 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2760 			btrfs_info(fs_info, "device deleted: id %llu",
2761 					vol_args->devid);
2762 		else
2763 			btrfs_info(fs_info, "device deleted: %s",
2764 					vol_args->name);
2765 	}
2766 err_drop:
2767 	mnt_drop_write_file(file);
2768 	if (bdev)
2769 		blkdev_put(bdev, holder);
2770 out:
2771 	btrfs_put_dev_args_from_path(&args);
2772 	kfree(vol_args);
2773 	return ret;
2774 }
2775 
2776 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2777 {
2778 	BTRFS_DEV_LOOKUP_ARGS(args);
2779 	struct inode *inode = file_inode(file);
2780 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2781 	struct btrfs_ioctl_vol_args *vol_args;
2782 	struct block_device *bdev = NULL;
2783 	void *holder;
2784 	int ret;
2785 	bool cancel = false;
2786 
2787 	if (!capable(CAP_SYS_ADMIN))
2788 		return -EPERM;
2789 
2790 	vol_args = memdup_user(arg, sizeof(*vol_args));
2791 	if (IS_ERR(vol_args))
2792 		return PTR_ERR(vol_args);
2793 
2794 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2795 	if (!strcmp("cancel", vol_args->name)) {
2796 		cancel = true;
2797 	} else {
2798 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2799 		if (ret)
2800 			goto out;
2801 	}
2802 
2803 	ret = mnt_want_write_file(file);
2804 	if (ret)
2805 		goto out;
2806 
2807 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2808 					   cancel);
2809 	if (ret == 0) {
2810 		ret = btrfs_rm_device(fs_info, &args, &bdev, &holder);
2811 		if (!ret)
2812 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2813 		btrfs_exclop_finish(fs_info);
2814 	}
2815 
2816 	mnt_drop_write_file(file);
2817 	if (bdev)
2818 		blkdev_put(bdev, holder);
2819 out:
2820 	btrfs_put_dev_args_from_path(&args);
2821 	kfree(vol_args);
2822 	return ret;
2823 }
2824 
2825 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2826 				void __user *arg)
2827 {
2828 	struct btrfs_ioctl_fs_info_args *fi_args;
2829 	struct btrfs_device *device;
2830 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2831 	u64 flags_in;
2832 	int ret = 0;
2833 
2834 	fi_args = memdup_user(arg, sizeof(*fi_args));
2835 	if (IS_ERR(fi_args))
2836 		return PTR_ERR(fi_args);
2837 
2838 	flags_in = fi_args->flags;
2839 	memset(fi_args, 0, sizeof(*fi_args));
2840 
2841 	rcu_read_lock();
2842 	fi_args->num_devices = fs_devices->num_devices;
2843 
2844 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2845 		if (device->devid > fi_args->max_id)
2846 			fi_args->max_id = device->devid;
2847 	}
2848 	rcu_read_unlock();
2849 
2850 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2851 	fi_args->nodesize = fs_info->nodesize;
2852 	fi_args->sectorsize = fs_info->sectorsize;
2853 	fi_args->clone_alignment = fs_info->sectorsize;
2854 
2855 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2856 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2857 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2858 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2859 	}
2860 
2861 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2862 		fi_args->generation = fs_info->generation;
2863 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2864 	}
2865 
2866 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2867 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2868 		       sizeof(fi_args->metadata_uuid));
2869 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2870 	}
2871 
2872 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2873 		ret = -EFAULT;
2874 
2875 	kfree(fi_args);
2876 	return ret;
2877 }
2878 
2879 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2880 				 void __user *arg)
2881 {
2882 	BTRFS_DEV_LOOKUP_ARGS(args);
2883 	struct btrfs_ioctl_dev_info_args *di_args;
2884 	struct btrfs_device *dev;
2885 	int ret = 0;
2886 
2887 	di_args = memdup_user(arg, sizeof(*di_args));
2888 	if (IS_ERR(di_args))
2889 		return PTR_ERR(di_args);
2890 
2891 	args.devid = di_args->devid;
2892 	if (!btrfs_is_empty_uuid(di_args->uuid))
2893 		args.uuid = di_args->uuid;
2894 
2895 	rcu_read_lock();
2896 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2897 	if (!dev) {
2898 		ret = -ENODEV;
2899 		goto out;
2900 	}
2901 
2902 	di_args->devid = dev->devid;
2903 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2904 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2905 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2906 	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2907 	if (dev->name)
2908 		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2909 	else
2910 		di_args->path[0] = '\0';
2911 
2912 out:
2913 	rcu_read_unlock();
2914 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2915 		ret = -EFAULT;
2916 
2917 	kfree(di_args);
2918 	return ret;
2919 }
2920 
2921 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2922 {
2923 	struct inode *inode = file_inode(file);
2924 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2925 	struct btrfs_root *root = BTRFS_I(inode)->root;
2926 	struct btrfs_root *new_root;
2927 	struct btrfs_dir_item *di;
2928 	struct btrfs_trans_handle *trans;
2929 	struct btrfs_path *path = NULL;
2930 	struct btrfs_disk_key disk_key;
2931 	struct fscrypt_str name = FSTR_INIT("default", 7);
2932 	u64 objectid = 0;
2933 	u64 dir_id;
2934 	int ret;
2935 
2936 	if (!capable(CAP_SYS_ADMIN))
2937 		return -EPERM;
2938 
2939 	ret = mnt_want_write_file(file);
2940 	if (ret)
2941 		return ret;
2942 
2943 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2944 		ret = -EFAULT;
2945 		goto out;
2946 	}
2947 
2948 	if (!objectid)
2949 		objectid = BTRFS_FS_TREE_OBJECTID;
2950 
2951 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2952 	if (IS_ERR(new_root)) {
2953 		ret = PTR_ERR(new_root);
2954 		goto out;
2955 	}
2956 	if (!is_fstree(new_root->root_key.objectid)) {
2957 		ret = -ENOENT;
2958 		goto out_free;
2959 	}
2960 
2961 	path = btrfs_alloc_path();
2962 	if (!path) {
2963 		ret = -ENOMEM;
2964 		goto out_free;
2965 	}
2966 
2967 	trans = btrfs_start_transaction(root, 1);
2968 	if (IS_ERR(trans)) {
2969 		ret = PTR_ERR(trans);
2970 		goto out_free;
2971 	}
2972 
2973 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2974 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2975 				   dir_id, &name, 1);
2976 	if (IS_ERR_OR_NULL(di)) {
2977 		btrfs_release_path(path);
2978 		btrfs_end_transaction(trans);
2979 		btrfs_err(fs_info,
2980 			  "Umm, you don't have the default diritem, this isn't going to work");
2981 		ret = -ENOENT;
2982 		goto out_free;
2983 	}
2984 
2985 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2986 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2987 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
2988 	btrfs_release_path(path);
2989 
2990 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2991 	btrfs_end_transaction(trans);
2992 out_free:
2993 	btrfs_put_root(new_root);
2994 	btrfs_free_path(path);
2995 out:
2996 	mnt_drop_write_file(file);
2997 	return ret;
2998 }
2999 
3000 static void get_block_group_info(struct list_head *groups_list,
3001 				 struct btrfs_ioctl_space_info *space)
3002 {
3003 	struct btrfs_block_group *block_group;
3004 
3005 	space->total_bytes = 0;
3006 	space->used_bytes = 0;
3007 	space->flags = 0;
3008 	list_for_each_entry(block_group, groups_list, list) {
3009 		space->flags = block_group->flags;
3010 		space->total_bytes += block_group->length;
3011 		space->used_bytes += block_group->used;
3012 	}
3013 }
3014 
3015 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3016 				   void __user *arg)
3017 {
3018 	struct btrfs_ioctl_space_args space_args = { 0 };
3019 	struct btrfs_ioctl_space_info space;
3020 	struct btrfs_ioctl_space_info *dest;
3021 	struct btrfs_ioctl_space_info *dest_orig;
3022 	struct btrfs_ioctl_space_info __user *user_dest;
3023 	struct btrfs_space_info *info;
3024 	static const u64 types[] = {
3025 		BTRFS_BLOCK_GROUP_DATA,
3026 		BTRFS_BLOCK_GROUP_SYSTEM,
3027 		BTRFS_BLOCK_GROUP_METADATA,
3028 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3029 	};
3030 	int num_types = 4;
3031 	int alloc_size;
3032 	int ret = 0;
3033 	u64 slot_count = 0;
3034 	int i, c;
3035 
3036 	if (copy_from_user(&space_args,
3037 			   (struct btrfs_ioctl_space_args __user *)arg,
3038 			   sizeof(space_args)))
3039 		return -EFAULT;
3040 
3041 	for (i = 0; i < num_types; i++) {
3042 		struct btrfs_space_info *tmp;
3043 
3044 		info = NULL;
3045 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3046 			if (tmp->flags == types[i]) {
3047 				info = tmp;
3048 				break;
3049 			}
3050 		}
3051 
3052 		if (!info)
3053 			continue;
3054 
3055 		down_read(&info->groups_sem);
3056 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3057 			if (!list_empty(&info->block_groups[c]))
3058 				slot_count++;
3059 		}
3060 		up_read(&info->groups_sem);
3061 	}
3062 
3063 	/*
3064 	 * Global block reserve, exported as a space_info
3065 	 */
3066 	slot_count++;
3067 
3068 	/* space_slots == 0 means they are asking for a count */
3069 	if (space_args.space_slots == 0) {
3070 		space_args.total_spaces = slot_count;
3071 		goto out;
3072 	}
3073 
3074 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3075 
3076 	alloc_size = sizeof(*dest) * slot_count;
3077 
3078 	/* we generally have at most 6 or so space infos, one for each raid
3079 	 * level.  So, a whole page should be more than enough for everyone
3080 	 */
3081 	if (alloc_size > PAGE_SIZE)
3082 		return -ENOMEM;
3083 
3084 	space_args.total_spaces = 0;
3085 	dest = kmalloc(alloc_size, GFP_KERNEL);
3086 	if (!dest)
3087 		return -ENOMEM;
3088 	dest_orig = dest;
3089 
3090 	/* now we have a buffer to copy into */
3091 	for (i = 0; i < num_types; i++) {
3092 		struct btrfs_space_info *tmp;
3093 
3094 		if (!slot_count)
3095 			break;
3096 
3097 		info = NULL;
3098 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3099 			if (tmp->flags == types[i]) {
3100 				info = tmp;
3101 				break;
3102 			}
3103 		}
3104 
3105 		if (!info)
3106 			continue;
3107 		down_read(&info->groups_sem);
3108 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3109 			if (!list_empty(&info->block_groups[c])) {
3110 				get_block_group_info(&info->block_groups[c],
3111 						     &space);
3112 				memcpy(dest, &space, sizeof(space));
3113 				dest++;
3114 				space_args.total_spaces++;
3115 				slot_count--;
3116 			}
3117 			if (!slot_count)
3118 				break;
3119 		}
3120 		up_read(&info->groups_sem);
3121 	}
3122 
3123 	/*
3124 	 * Add global block reserve
3125 	 */
3126 	if (slot_count) {
3127 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3128 
3129 		spin_lock(&block_rsv->lock);
3130 		space.total_bytes = block_rsv->size;
3131 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3132 		spin_unlock(&block_rsv->lock);
3133 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3134 		memcpy(dest, &space, sizeof(space));
3135 		space_args.total_spaces++;
3136 	}
3137 
3138 	user_dest = (struct btrfs_ioctl_space_info __user *)
3139 		(arg + sizeof(struct btrfs_ioctl_space_args));
3140 
3141 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3142 		ret = -EFAULT;
3143 
3144 	kfree(dest_orig);
3145 out:
3146 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3147 		ret = -EFAULT;
3148 
3149 	return ret;
3150 }
3151 
3152 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3153 					    void __user *argp)
3154 {
3155 	struct btrfs_trans_handle *trans;
3156 	u64 transid;
3157 
3158 	/*
3159 	 * Start orphan cleanup here for the given root in case it hasn't been
3160 	 * started already by other means. Errors are handled in the other
3161 	 * functions during transaction commit.
3162 	 */
3163 	btrfs_orphan_cleanup(root);
3164 
3165 	trans = btrfs_attach_transaction_barrier(root);
3166 	if (IS_ERR(trans)) {
3167 		if (PTR_ERR(trans) != -ENOENT)
3168 			return PTR_ERR(trans);
3169 
3170 		/* No running transaction, don't bother */
3171 		transid = root->fs_info->last_trans_committed;
3172 		goto out;
3173 	}
3174 	transid = trans->transid;
3175 	btrfs_commit_transaction_async(trans);
3176 out:
3177 	if (argp)
3178 		if (copy_to_user(argp, &transid, sizeof(transid)))
3179 			return -EFAULT;
3180 	return 0;
3181 }
3182 
3183 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3184 					   void __user *argp)
3185 {
3186 	/* By default wait for the current transaction. */
3187 	u64 transid = 0;
3188 
3189 	if (argp)
3190 		if (copy_from_user(&transid, argp, sizeof(transid)))
3191 			return -EFAULT;
3192 
3193 	return btrfs_wait_for_commit(fs_info, transid);
3194 }
3195 
3196 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3197 {
3198 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3199 	struct btrfs_ioctl_scrub_args *sa;
3200 	int ret;
3201 
3202 	if (!capable(CAP_SYS_ADMIN))
3203 		return -EPERM;
3204 
3205 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3206 		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3207 		return -EINVAL;
3208 	}
3209 
3210 	sa = memdup_user(arg, sizeof(*sa));
3211 	if (IS_ERR(sa))
3212 		return PTR_ERR(sa);
3213 
3214 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3215 		ret = -EOPNOTSUPP;
3216 		goto out;
3217 	}
3218 
3219 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3220 		ret = mnt_want_write_file(file);
3221 		if (ret)
3222 			goto out;
3223 	}
3224 
3225 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3226 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3227 			      0);
3228 
3229 	/*
3230 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3231 	 * error. This is important as it allows user space to know how much
3232 	 * progress scrub has done. For example, if scrub is canceled we get
3233 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3234 	 * space. Later user space can inspect the progress from the structure
3235 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3236 	 * previously (btrfs-progs does this).
3237 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3238 	 * then return -EFAULT to signal the structure was not copied or it may
3239 	 * be corrupt and unreliable due to a partial copy.
3240 	 */
3241 	if (copy_to_user(arg, sa, sizeof(*sa)))
3242 		ret = -EFAULT;
3243 
3244 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3245 		mnt_drop_write_file(file);
3246 out:
3247 	kfree(sa);
3248 	return ret;
3249 }
3250 
3251 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3252 {
3253 	if (!capable(CAP_SYS_ADMIN))
3254 		return -EPERM;
3255 
3256 	return btrfs_scrub_cancel(fs_info);
3257 }
3258 
3259 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3260 				       void __user *arg)
3261 {
3262 	struct btrfs_ioctl_scrub_args *sa;
3263 	int ret;
3264 
3265 	if (!capable(CAP_SYS_ADMIN))
3266 		return -EPERM;
3267 
3268 	sa = memdup_user(arg, sizeof(*sa));
3269 	if (IS_ERR(sa))
3270 		return PTR_ERR(sa);
3271 
3272 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3273 
3274 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3275 		ret = -EFAULT;
3276 
3277 	kfree(sa);
3278 	return ret;
3279 }
3280 
3281 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3282 				      void __user *arg)
3283 {
3284 	struct btrfs_ioctl_get_dev_stats *sa;
3285 	int ret;
3286 
3287 	sa = memdup_user(arg, sizeof(*sa));
3288 	if (IS_ERR(sa))
3289 		return PTR_ERR(sa);
3290 
3291 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3292 		kfree(sa);
3293 		return -EPERM;
3294 	}
3295 
3296 	ret = btrfs_get_dev_stats(fs_info, sa);
3297 
3298 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3299 		ret = -EFAULT;
3300 
3301 	kfree(sa);
3302 	return ret;
3303 }
3304 
3305 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3306 				    void __user *arg)
3307 {
3308 	struct btrfs_ioctl_dev_replace_args *p;
3309 	int ret;
3310 
3311 	if (!capable(CAP_SYS_ADMIN))
3312 		return -EPERM;
3313 
3314 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3315 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3316 		return -EINVAL;
3317 	}
3318 
3319 	p = memdup_user(arg, sizeof(*p));
3320 	if (IS_ERR(p))
3321 		return PTR_ERR(p);
3322 
3323 	switch (p->cmd) {
3324 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3325 		if (sb_rdonly(fs_info->sb)) {
3326 			ret = -EROFS;
3327 			goto out;
3328 		}
3329 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3330 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3331 		} else {
3332 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3333 			btrfs_exclop_finish(fs_info);
3334 		}
3335 		break;
3336 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3337 		btrfs_dev_replace_status(fs_info, p);
3338 		ret = 0;
3339 		break;
3340 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3341 		p->result = btrfs_dev_replace_cancel(fs_info);
3342 		ret = 0;
3343 		break;
3344 	default:
3345 		ret = -EINVAL;
3346 		break;
3347 	}
3348 
3349 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3350 		ret = -EFAULT;
3351 out:
3352 	kfree(p);
3353 	return ret;
3354 }
3355 
3356 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3357 {
3358 	int ret = 0;
3359 	int i;
3360 	u64 rel_ptr;
3361 	int size;
3362 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3363 	struct inode_fs_paths *ipath = NULL;
3364 	struct btrfs_path *path;
3365 
3366 	if (!capable(CAP_DAC_READ_SEARCH))
3367 		return -EPERM;
3368 
3369 	path = btrfs_alloc_path();
3370 	if (!path) {
3371 		ret = -ENOMEM;
3372 		goto out;
3373 	}
3374 
3375 	ipa = memdup_user(arg, sizeof(*ipa));
3376 	if (IS_ERR(ipa)) {
3377 		ret = PTR_ERR(ipa);
3378 		ipa = NULL;
3379 		goto out;
3380 	}
3381 
3382 	size = min_t(u32, ipa->size, 4096);
3383 	ipath = init_ipath(size, root, path);
3384 	if (IS_ERR(ipath)) {
3385 		ret = PTR_ERR(ipath);
3386 		ipath = NULL;
3387 		goto out;
3388 	}
3389 
3390 	ret = paths_from_inode(ipa->inum, ipath);
3391 	if (ret < 0)
3392 		goto out;
3393 
3394 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3395 		rel_ptr = ipath->fspath->val[i] -
3396 			  (u64)(unsigned long)ipath->fspath->val;
3397 		ipath->fspath->val[i] = rel_ptr;
3398 	}
3399 
3400 	btrfs_free_path(path);
3401 	path = NULL;
3402 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3403 			   ipath->fspath, size);
3404 	if (ret) {
3405 		ret = -EFAULT;
3406 		goto out;
3407 	}
3408 
3409 out:
3410 	btrfs_free_path(path);
3411 	free_ipath(ipath);
3412 	kfree(ipa);
3413 
3414 	return ret;
3415 }
3416 
3417 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3418 					void __user *arg, int version)
3419 {
3420 	int ret = 0;
3421 	int size;
3422 	struct btrfs_ioctl_logical_ino_args *loi;
3423 	struct btrfs_data_container *inodes = NULL;
3424 	struct btrfs_path *path = NULL;
3425 	bool ignore_offset;
3426 
3427 	if (!capable(CAP_SYS_ADMIN))
3428 		return -EPERM;
3429 
3430 	loi = memdup_user(arg, sizeof(*loi));
3431 	if (IS_ERR(loi))
3432 		return PTR_ERR(loi);
3433 
3434 	if (version == 1) {
3435 		ignore_offset = false;
3436 		size = min_t(u32, loi->size, SZ_64K);
3437 	} else {
3438 		/* All reserved bits must be 0 for now */
3439 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3440 			ret = -EINVAL;
3441 			goto out_loi;
3442 		}
3443 		/* Only accept flags we have defined so far */
3444 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3445 			ret = -EINVAL;
3446 			goto out_loi;
3447 		}
3448 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3449 		size = min_t(u32, loi->size, SZ_16M);
3450 	}
3451 
3452 	inodes = init_data_container(size);
3453 	if (IS_ERR(inodes)) {
3454 		ret = PTR_ERR(inodes);
3455 		goto out_loi;
3456 	}
3457 
3458 	path = btrfs_alloc_path();
3459 	if (!path) {
3460 		ret = -ENOMEM;
3461 		goto out;
3462 	}
3463 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3464 					  inodes, ignore_offset);
3465 	btrfs_free_path(path);
3466 	if (ret == -EINVAL)
3467 		ret = -ENOENT;
3468 	if (ret < 0)
3469 		goto out;
3470 
3471 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3472 			   size);
3473 	if (ret)
3474 		ret = -EFAULT;
3475 
3476 out:
3477 	kvfree(inodes);
3478 out_loi:
3479 	kfree(loi);
3480 
3481 	return ret;
3482 }
3483 
3484 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3485 			       struct btrfs_ioctl_balance_args *bargs)
3486 {
3487 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3488 
3489 	bargs->flags = bctl->flags;
3490 
3491 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3492 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3493 	if (atomic_read(&fs_info->balance_pause_req))
3494 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3495 	if (atomic_read(&fs_info->balance_cancel_req))
3496 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3497 
3498 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3499 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3500 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3501 
3502 	spin_lock(&fs_info->balance_lock);
3503 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3504 	spin_unlock(&fs_info->balance_lock);
3505 }
3506 
3507 /*
3508  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3509  * required.
3510  *
3511  * @fs_info:       the filesystem
3512  * @excl_acquired: ptr to boolean value which is set to false in case balance
3513  *                 is being resumed
3514  *
3515  * Return 0 on success in which case both fs_info::balance is acquired as well
3516  * as exclusive ops are blocked. In case of failure return an error code.
3517  */
3518 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3519 {
3520 	int ret;
3521 
3522 	/*
3523 	 * Exclusive operation is locked. Three possibilities:
3524 	 *   (1) some other op is running
3525 	 *   (2) balance is running
3526 	 *   (3) balance is paused -- special case (think resume)
3527 	 */
3528 	while (1) {
3529 		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3530 			*excl_acquired = true;
3531 			mutex_lock(&fs_info->balance_mutex);
3532 			return 0;
3533 		}
3534 
3535 		mutex_lock(&fs_info->balance_mutex);
3536 		if (fs_info->balance_ctl) {
3537 			/* This is either (2) or (3) */
3538 			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3539 				/* This is (2) */
3540 				ret = -EINPROGRESS;
3541 				goto out_failure;
3542 
3543 			} else {
3544 				mutex_unlock(&fs_info->balance_mutex);
3545 				/*
3546 				 * Lock released to allow other waiters to
3547 				 * continue, we'll reexamine the status again.
3548 				 */
3549 				mutex_lock(&fs_info->balance_mutex);
3550 
3551 				if (fs_info->balance_ctl &&
3552 				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3553 					/* This is (3) */
3554 					*excl_acquired = false;
3555 					return 0;
3556 				}
3557 			}
3558 		} else {
3559 			/* This is (1) */
3560 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3561 			goto out_failure;
3562 		}
3563 
3564 		mutex_unlock(&fs_info->balance_mutex);
3565 	}
3566 
3567 out_failure:
3568 	mutex_unlock(&fs_info->balance_mutex);
3569 	*excl_acquired = false;
3570 	return ret;
3571 }
3572 
3573 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3574 {
3575 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3576 	struct btrfs_fs_info *fs_info = root->fs_info;
3577 	struct btrfs_ioctl_balance_args *bargs;
3578 	struct btrfs_balance_control *bctl;
3579 	bool need_unlock = true;
3580 	int ret;
3581 
3582 	if (!capable(CAP_SYS_ADMIN))
3583 		return -EPERM;
3584 
3585 	ret = mnt_want_write_file(file);
3586 	if (ret)
3587 		return ret;
3588 
3589 	bargs = memdup_user(arg, sizeof(*bargs));
3590 	if (IS_ERR(bargs)) {
3591 		ret = PTR_ERR(bargs);
3592 		bargs = NULL;
3593 		goto out;
3594 	}
3595 
3596 	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3597 	if (ret)
3598 		goto out;
3599 
3600 	lockdep_assert_held(&fs_info->balance_mutex);
3601 
3602 	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3603 		if (!fs_info->balance_ctl) {
3604 			ret = -ENOTCONN;
3605 			goto out_unlock;
3606 		}
3607 
3608 		bctl = fs_info->balance_ctl;
3609 		spin_lock(&fs_info->balance_lock);
3610 		bctl->flags |= BTRFS_BALANCE_RESUME;
3611 		spin_unlock(&fs_info->balance_lock);
3612 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3613 
3614 		goto do_balance;
3615 	}
3616 
3617 	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3618 		ret = -EINVAL;
3619 		goto out_unlock;
3620 	}
3621 
3622 	if (fs_info->balance_ctl) {
3623 		ret = -EINPROGRESS;
3624 		goto out_unlock;
3625 	}
3626 
3627 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3628 	if (!bctl) {
3629 		ret = -ENOMEM;
3630 		goto out_unlock;
3631 	}
3632 
3633 	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3634 	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3635 	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3636 
3637 	bctl->flags = bargs->flags;
3638 do_balance:
3639 	/*
3640 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3641 	 * bctl is freed in reset_balance_state, or, if restriper was paused
3642 	 * all the way until unmount, in free_fs_info.  The flag should be
3643 	 * cleared after reset_balance_state.
3644 	 */
3645 	need_unlock = false;
3646 
3647 	ret = btrfs_balance(fs_info, bctl, bargs);
3648 	bctl = NULL;
3649 
3650 	if (ret == 0 || ret == -ECANCELED) {
3651 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3652 			ret = -EFAULT;
3653 	}
3654 
3655 	kfree(bctl);
3656 out_unlock:
3657 	mutex_unlock(&fs_info->balance_mutex);
3658 	if (need_unlock)
3659 		btrfs_exclop_finish(fs_info);
3660 out:
3661 	mnt_drop_write_file(file);
3662 	kfree(bargs);
3663 	return ret;
3664 }
3665 
3666 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3667 {
3668 	if (!capable(CAP_SYS_ADMIN))
3669 		return -EPERM;
3670 
3671 	switch (cmd) {
3672 	case BTRFS_BALANCE_CTL_PAUSE:
3673 		return btrfs_pause_balance(fs_info);
3674 	case BTRFS_BALANCE_CTL_CANCEL:
3675 		return btrfs_cancel_balance(fs_info);
3676 	}
3677 
3678 	return -EINVAL;
3679 }
3680 
3681 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3682 					 void __user *arg)
3683 {
3684 	struct btrfs_ioctl_balance_args *bargs;
3685 	int ret = 0;
3686 
3687 	if (!capable(CAP_SYS_ADMIN))
3688 		return -EPERM;
3689 
3690 	mutex_lock(&fs_info->balance_mutex);
3691 	if (!fs_info->balance_ctl) {
3692 		ret = -ENOTCONN;
3693 		goto out;
3694 	}
3695 
3696 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3697 	if (!bargs) {
3698 		ret = -ENOMEM;
3699 		goto out;
3700 	}
3701 
3702 	btrfs_update_ioctl_balance_args(fs_info, bargs);
3703 
3704 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3705 		ret = -EFAULT;
3706 
3707 	kfree(bargs);
3708 out:
3709 	mutex_unlock(&fs_info->balance_mutex);
3710 	return ret;
3711 }
3712 
3713 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3714 {
3715 	struct inode *inode = file_inode(file);
3716 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3717 	struct btrfs_ioctl_quota_ctl_args *sa;
3718 	int ret;
3719 
3720 	if (!capable(CAP_SYS_ADMIN))
3721 		return -EPERM;
3722 
3723 	ret = mnt_want_write_file(file);
3724 	if (ret)
3725 		return ret;
3726 
3727 	sa = memdup_user(arg, sizeof(*sa));
3728 	if (IS_ERR(sa)) {
3729 		ret = PTR_ERR(sa);
3730 		goto drop_write;
3731 	}
3732 
3733 	down_write(&fs_info->subvol_sem);
3734 
3735 	switch (sa->cmd) {
3736 	case BTRFS_QUOTA_CTL_ENABLE:
3737 		ret = btrfs_quota_enable(fs_info);
3738 		break;
3739 	case BTRFS_QUOTA_CTL_DISABLE:
3740 		ret = btrfs_quota_disable(fs_info);
3741 		break;
3742 	default:
3743 		ret = -EINVAL;
3744 		break;
3745 	}
3746 
3747 	kfree(sa);
3748 	up_write(&fs_info->subvol_sem);
3749 drop_write:
3750 	mnt_drop_write_file(file);
3751 	return ret;
3752 }
3753 
3754 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3755 {
3756 	struct inode *inode = file_inode(file);
3757 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3758 	struct btrfs_root *root = BTRFS_I(inode)->root;
3759 	struct btrfs_ioctl_qgroup_assign_args *sa;
3760 	struct btrfs_trans_handle *trans;
3761 	int ret;
3762 	int err;
3763 
3764 	if (!capable(CAP_SYS_ADMIN))
3765 		return -EPERM;
3766 
3767 	ret = mnt_want_write_file(file);
3768 	if (ret)
3769 		return ret;
3770 
3771 	sa = memdup_user(arg, sizeof(*sa));
3772 	if (IS_ERR(sa)) {
3773 		ret = PTR_ERR(sa);
3774 		goto drop_write;
3775 	}
3776 
3777 	trans = btrfs_join_transaction(root);
3778 	if (IS_ERR(trans)) {
3779 		ret = PTR_ERR(trans);
3780 		goto out;
3781 	}
3782 
3783 	if (sa->assign) {
3784 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3785 	} else {
3786 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3787 	}
3788 
3789 	/* update qgroup status and info */
3790 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3791 	err = btrfs_run_qgroups(trans);
3792 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3793 	if (err < 0)
3794 		btrfs_handle_fs_error(fs_info, err,
3795 				      "failed to update qgroup status and info");
3796 	err = btrfs_end_transaction(trans);
3797 	if (err && !ret)
3798 		ret = err;
3799 
3800 out:
3801 	kfree(sa);
3802 drop_write:
3803 	mnt_drop_write_file(file);
3804 	return ret;
3805 }
3806 
3807 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3808 {
3809 	struct inode *inode = file_inode(file);
3810 	struct btrfs_root *root = BTRFS_I(inode)->root;
3811 	struct btrfs_ioctl_qgroup_create_args *sa;
3812 	struct btrfs_trans_handle *trans;
3813 	int ret;
3814 	int err;
3815 
3816 	if (!capable(CAP_SYS_ADMIN))
3817 		return -EPERM;
3818 
3819 	ret = mnt_want_write_file(file);
3820 	if (ret)
3821 		return ret;
3822 
3823 	sa = memdup_user(arg, sizeof(*sa));
3824 	if (IS_ERR(sa)) {
3825 		ret = PTR_ERR(sa);
3826 		goto drop_write;
3827 	}
3828 
3829 	if (!sa->qgroupid) {
3830 		ret = -EINVAL;
3831 		goto out;
3832 	}
3833 
3834 	if (sa->create && is_fstree(sa->qgroupid)) {
3835 		ret = -EINVAL;
3836 		goto out;
3837 	}
3838 
3839 	trans = btrfs_join_transaction(root);
3840 	if (IS_ERR(trans)) {
3841 		ret = PTR_ERR(trans);
3842 		goto out;
3843 	}
3844 
3845 	if (sa->create) {
3846 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3847 	} else {
3848 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3849 	}
3850 
3851 	err = btrfs_end_transaction(trans);
3852 	if (err && !ret)
3853 		ret = err;
3854 
3855 out:
3856 	kfree(sa);
3857 drop_write:
3858 	mnt_drop_write_file(file);
3859 	return ret;
3860 }
3861 
3862 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3863 {
3864 	struct inode *inode = file_inode(file);
3865 	struct btrfs_root *root = BTRFS_I(inode)->root;
3866 	struct btrfs_ioctl_qgroup_limit_args *sa;
3867 	struct btrfs_trans_handle *trans;
3868 	int ret;
3869 	int err;
3870 	u64 qgroupid;
3871 
3872 	if (!capable(CAP_SYS_ADMIN))
3873 		return -EPERM;
3874 
3875 	ret = mnt_want_write_file(file);
3876 	if (ret)
3877 		return ret;
3878 
3879 	sa = memdup_user(arg, sizeof(*sa));
3880 	if (IS_ERR(sa)) {
3881 		ret = PTR_ERR(sa);
3882 		goto drop_write;
3883 	}
3884 
3885 	trans = btrfs_join_transaction(root);
3886 	if (IS_ERR(trans)) {
3887 		ret = PTR_ERR(trans);
3888 		goto out;
3889 	}
3890 
3891 	qgroupid = sa->qgroupid;
3892 	if (!qgroupid) {
3893 		/* take the current subvol as qgroup */
3894 		qgroupid = root->root_key.objectid;
3895 	}
3896 
3897 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3898 
3899 	err = btrfs_end_transaction(trans);
3900 	if (err && !ret)
3901 		ret = err;
3902 
3903 out:
3904 	kfree(sa);
3905 drop_write:
3906 	mnt_drop_write_file(file);
3907 	return ret;
3908 }
3909 
3910 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3911 {
3912 	struct inode *inode = file_inode(file);
3913 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3914 	struct btrfs_ioctl_quota_rescan_args *qsa;
3915 	int ret;
3916 
3917 	if (!capable(CAP_SYS_ADMIN))
3918 		return -EPERM;
3919 
3920 	ret = mnt_want_write_file(file);
3921 	if (ret)
3922 		return ret;
3923 
3924 	qsa = memdup_user(arg, sizeof(*qsa));
3925 	if (IS_ERR(qsa)) {
3926 		ret = PTR_ERR(qsa);
3927 		goto drop_write;
3928 	}
3929 
3930 	if (qsa->flags) {
3931 		ret = -EINVAL;
3932 		goto out;
3933 	}
3934 
3935 	ret = btrfs_qgroup_rescan(fs_info);
3936 
3937 out:
3938 	kfree(qsa);
3939 drop_write:
3940 	mnt_drop_write_file(file);
3941 	return ret;
3942 }
3943 
3944 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3945 						void __user *arg)
3946 {
3947 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
3948 
3949 	if (!capable(CAP_SYS_ADMIN))
3950 		return -EPERM;
3951 
3952 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3953 		qsa.flags = 1;
3954 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3955 	}
3956 
3957 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
3958 		return -EFAULT;
3959 
3960 	return 0;
3961 }
3962 
3963 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3964 						void __user *arg)
3965 {
3966 	if (!capable(CAP_SYS_ADMIN))
3967 		return -EPERM;
3968 
3969 	return btrfs_qgroup_wait_for_completion(fs_info, true);
3970 }
3971 
3972 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3973 					    struct mnt_idmap *idmap,
3974 					    struct btrfs_ioctl_received_subvol_args *sa)
3975 {
3976 	struct inode *inode = file_inode(file);
3977 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3978 	struct btrfs_root *root = BTRFS_I(inode)->root;
3979 	struct btrfs_root_item *root_item = &root->root_item;
3980 	struct btrfs_trans_handle *trans;
3981 	struct timespec64 ct = current_time(inode);
3982 	int ret = 0;
3983 	int received_uuid_changed;
3984 
3985 	if (!inode_owner_or_capable(idmap, inode))
3986 		return -EPERM;
3987 
3988 	ret = mnt_want_write_file(file);
3989 	if (ret < 0)
3990 		return ret;
3991 
3992 	down_write(&fs_info->subvol_sem);
3993 
3994 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3995 		ret = -EINVAL;
3996 		goto out;
3997 	}
3998 
3999 	if (btrfs_root_readonly(root)) {
4000 		ret = -EROFS;
4001 		goto out;
4002 	}
4003 
4004 	/*
4005 	 * 1 - root item
4006 	 * 2 - uuid items (received uuid + subvol uuid)
4007 	 */
4008 	trans = btrfs_start_transaction(root, 3);
4009 	if (IS_ERR(trans)) {
4010 		ret = PTR_ERR(trans);
4011 		trans = NULL;
4012 		goto out;
4013 	}
4014 
4015 	sa->rtransid = trans->transid;
4016 	sa->rtime.sec = ct.tv_sec;
4017 	sa->rtime.nsec = ct.tv_nsec;
4018 
4019 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4020 				       BTRFS_UUID_SIZE);
4021 	if (received_uuid_changed &&
4022 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4023 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4024 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4025 					  root->root_key.objectid);
4026 		if (ret && ret != -ENOENT) {
4027 		        btrfs_abort_transaction(trans, ret);
4028 		        btrfs_end_transaction(trans);
4029 		        goto out;
4030 		}
4031 	}
4032 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4033 	btrfs_set_root_stransid(root_item, sa->stransid);
4034 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4035 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4036 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4037 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4038 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4039 
4040 	ret = btrfs_update_root(trans, fs_info->tree_root,
4041 				&root->root_key, &root->root_item);
4042 	if (ret < 0) {
4043 		btrfs_end_transaction(trans);
4044 		goto out;
4045 	}
4046 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4047 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4048 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4049 					  root->root_key.objectid);
4050 		if (ret < 0 && ret != -EEXIST) {
4051 			btrfs_abort_transaction(trans, ret);
4052 			btrfs_end_transaction(trans);
4053 			goto out;
4054 		}
4055 	}
4056 	ret = btrfs_commit_transaction(trans);
4057 out:
4058 	up_write(&fs_info->subvol_sem);
4059 	mnt_drop_write_file(file);
4060 	return ret;
4061 }
4062 
4063 #ifdef CONFIG_64BIT
4064 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4065 						void __user *arg)
4066 {
4067 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4068 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4069 	int ret = 0;
4070 
4071 	args32 = memdup_user(arg, sizeof(*args32));
4072 	if (IS_ERR(args32))
4073 		return PTR_ERR(args32);
4074 
4075 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4076 	if (!args64) {
4077 		ret = -ENOMEM;
4078 		goto out;
4079 	}
4080 
4081 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4082 	args64->stransid = args32->stransid;
4083 	args64->rtransid = args32->rtransid;
4084 	args64->stime.sec = args32->stime.sec;
4085 	args64->stime.nsec = args32->stime.nsec;
4086 	args64->rtime.sec = args32->rtime.sec;
4087 	args64->rtime.nsec = args32->rtime.nsec;
4088 	args64->flags = args32->flags;
4089 
4090 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4091 	if (ret)
4092 		goto out;
4093 
4094 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4095 	args32->stransid = args64->stransid;
4096 	args32->rtransid = args64->rtransid;
4097 	args32->stime.sec = args64->stime.sec;
4098 	args32->stime.nsec = args64->stime.nsec;
4099 	args32->rtime.sec = args64->rtime.sec;
4100 	args32->rtime.nsec = args64->rtime.nsec;
4101 	args32->flags = args64->flags;
4102 
4103 	ret = copy_to_user(arg, args32, sizeof(*args32));
4104 	if (ret)
4105 		ret = -EFAULT;
4106 
4107 out:
4108 	kfree(args32);
4109 	kfree(args64);
4110 	return ret;
4111 }
4112 #endif
4113 
4114 static long btrfs_ioctl_set_received_subvol(struct file *file,
4115 					    void __user *arg)
4116 {
4117 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4118 	int ret = 0;
4119 
4120 	sa = memdup_user(arg, sizeof(*sa));
4121 	if (IS_ERR(sa))
4122 		return PTR_ERR(sa);
4123 
4124 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4125 
4126 	if (ret)
4127 		goto out;
4128 
4129 	ret = copy_to_user(arg, sa, sizeof(*sa));
4130 	if (ret)
4131 		ret = -EFAULT;
4132 
4133 out:
4134 	kfree(sa);
4135 	return ret;
4136 }
4137 
4138 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4139 					void __user *arg)
4140 {
4141 	size_t len;
4142 	int ret;
4143 	char label[BTRFS_LABEL_SIZE];
4144 
4145 	spin_lock(&fs_info->super_lock);
4146 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4147 	spin_unlock(&fs_info->super_lock);
4148 
4149 	len = strnlen(label, BTRFS_LABEL_SIZE);
4150 
4151 	if (len == BTRFS_LABEL_SIZE) {
4152 		btrfs_warn(fs_info,
4153 			   "label is too long, return the first %zu bytes",
4154 			   --len);
4155 	}
4156 
4157 	ret = copy_to_user(arg, label, len);
4158 
4159 	return ret ? -EFAULT : 0;
4160 }
4161 
4162 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4163 {
4164 	struct inode *inode = file_inode(file);
4165 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4166 	struct btrfs_root *root = BTRFS_I(inode)->root;
4167 	struct btrfs_super_block *super_block = fs_info->super_copy;
4168 	struct btrfs_trans_handle *trans;
4169 	char label[BTRFS_LABEL_SIZE];
4170 	int ret;
4171 
4172 	if (!capable(CAP_SYS_ADMIN))
4173 		return -EPERM;
4174 
4175 	if (copy_from_user(label, arg, sizeof(label)))
4176 		return -EFAULT;
4177 
4178 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4179 		btrfs_err(fs_info,
4180 			  "unable to set label with more than %d bytes",
4181 			  BTRFS_LABEL_SIZE - 1);
4182 		return -EINVAL;
4183 	}
4184 
4185 	ret = mnt_want_write_file(file);
4186 	if (ret)
4187 		return ret;
4188 
4189 	trans = btrfs_start_transaction(root, 0);
4190 	if (IS_ERR(trans)) {
4191 		ret = PTR_ERR(trans);
4192 		goto out_unlock;
4193 	}
4194 
4195 	spin_lock(&fs_info->super_lock);
4196 	strcpy(super_block->label, label);
4197 	spin_unlock(&fs_info->super_lock);
4198 	ret = btrfs_commit_transaction(trans);
4199 
4200 out_unlock:
4201 	mnt_drop_write_file(file);
4202 	return ret;
4203 }
4204 
4205 #define INIT_FEATURE_FLAGS(suffix) \
4206 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4207 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4208 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4209 
4210 int btrfs_ioctl_get_supported_features(void __user *arg)
4211 {
4212 	static const struct btrfs_ioctl_feature_flags features[3] = {
4213 		INIT_FEATURE_FLAGS(SUPP),
4214 		INIT_FEATURE_FLAGS(SAFE_SET),
4215 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4216 	};
4217 
4218 	if (copy_to_user(arg, &features, sizeof(features)))
4219 		return -EFAULT;
4220 
4221 	return 0;
4222 }
4223 
4224 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4225 					void __user *arg)
4226 {
4227 	struct btrfs_super_block *super_block = fs_info->super_copy;
4228 	struct btrfs_ioctl_feature_flags features;
4229 
4230 	features.compat_flags = btrfs_super_compat_flags(super_block);
4231 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4232 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4233 
4234 	if (copy_to_user(arg, &features, sizeof(features)))
4235 		return -EFAULT;
4236 
4237 	return 0;
4238 }
4239 
4240 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4241 			      enum btrfs_feature_set set,
4242 			      u64 change_mask, u64 flags, u64 supported_flags,
4243 			      u64 safe_set, u64 safe_clear)
4244 {
4245 	const char *type = btrfs_feature_set_name(set);
4246 	char *names;
4247 	u64 disallowed, unsupported;
4248 	u64 set_mask = flags & change_mask;
4249 	u64 clear_mask = ~flags & change_mask;
4250 
4251 	unsupported = set_mask & ~supported_flags;
4252 	if (unsupported) {
4253 		names = btrfs_printable_features(set, unsupported);
4254 		if (names) {
4255 			btrfs_warn(fs_info,
4256 				   "this kernel does not support the %s feature bit%s",
4257 				   names, strchr(names, ',') ? "s" : "");
4258 			kfree(names);
4259 		} else
4260 			btrfs_warn(fs_info,
4261 				   "this kernel does not support %s bits 0x%llx",
4262 				   type, unsupported);
4263 		return -EOPNOTSUPP;
4264 	}
4265 
4266 	disallowed = set_mask & ~safe_set;
4267 	if (disallowed) {
4268 		names = btrfs_printable_features(set, disallowed);
4269 		if (names) {
4270 			btrfs_warn(fs_info,
4271 				   "can't set the %s feature bit%s while mounted",
4272 				   names, strchr(names, ',') ? "s" : "");
4273 			kfree(names);
4274 		} else
4275 			btrfs_warn(fs_info,
4276 				   "can't set %s bits 0x%llx while mounted",
4277 				   type, disallowed);
4278 		return -EPERM;
4279 	}
4280 
4281 	disallowed = clear_mask & ~safe_clear;
4282 	if (disallowed) {
4283 		names = btrfs_printable_features(set, disallowed);
4284 		if (names) {
4285 			btrfs_warn(fs_info,
4286 				   "can't clear the %s feature bit%s while mounted",
4287 				   names, strchr(names, ',') ? "s" : "");
4288 			kfree(names);
4289 		} else
4290 			btrfs_warn(fs_info,
4291 				   "can't clear %s bits 0x%llx while mounted",
4292 				   type, disallowed);
4293 		return -EPERM;
4294 	}
4295 
4296 	return 0;
4297 }
4298 
4299 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4300 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4301 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4302 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4303 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4304 
4305 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4306 {
4307 	struct inode *inode = file_inode(file);
4308 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4309 	struct btrfs_root *root = BTRFS_I(inode)->root;
4310 	struct btrfs_super_block *super_block = fs_info->super_copy;
4311 	struct btrfs_ioctl_feature_flags flags[2];
4312 	struct btrfs_trans_handle *trans;
4313 	u64 newflags;
4314 	int ret;
4315 
4316 	if (!capable(CAP_SYS_ADMIN))
4317 		return -EPERM;
4318 
4319 	if (copy_from_user(flags, arg, sizeof(flags)))
4320 		return -EFAULT;
4321 
4322 	/* Nothing to do */
4323 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4324 	    !flags[0].incompat_flags)
4325 		return 0;
4326 
4327 	ret = check_feature(fs_info, flags[0].compat_flags,
4328 			    flags[1].compat_flags, COMPAT);
4329 	if (ret)
4330 		return ret;
4331 
4332 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4333 			    flags[1].compat_ro_flags, COMPAT_RO);
4334 	if (ret)
4335 		return ret;
4336 
4337 	ret = check_feature(fs_info, flags[0].incompat_flags,
4338 			    flags[1].incompat_flags, INCOMPAT);
4339 	if (ret)
4340 		return ret;
4341 
4342 	ret = mnt_want_write_file(file);
4343 	if (ret)
4344 		return ret;
4345 
4346 	trans = btrfs_start_transaction(root, 0);
4347 	if (IS_ERR(trans)) {
4348 		ret = PTR_ERR(trans);
4349 		goto out_drop_write;
4350 	}
4351 
4352 	spin_lock(&fs_info->super_lock);
4353 	newflags = btrfs_super_compat_flags(super_block);
4354 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4355 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4356 	btrfs_set_super_compat_flags(super_block, newflags);
4357 
4358 	newflags = btrfs_super_compat_ro_flags(super_block);
4359 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4360 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4361 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4362 
4363 	newflags = btrfs_super_incompat_flags(super_block);
4364 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4365 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4366 	btrfs_set_super_incompat_flags(super_block, newflags);
4367 	spin_unlock(&fs_info->super_lock);
4368 
4369 	ret = btrfs_commit_transaction(trans);
4370 out_drop_write:
4371 	mnt_drop_write_file(file);
4372 
4373 	return ret;
4374 }
4375 
4376 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4377 {
4378 	struct btrfs_ioctl_send_args *arg;
4379 	int ret;
4380 
4381 	if (compat) {
4382 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4383 		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4384 
4385 		ret = copy_from_user(&args32, argp, sizeof(args32));
4386 		if (ret)
4387 			return -EFAULT;
4388 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4389 		if (!arg)
4390 			return -ENOMEM;
4391 		arg->send_fd = args32.send_fd;
4392 		arg->clone_sources_count = args32.clone_sources_count;
4393 		arg->clone_sources = compat_ptr(args32.clone_sources);
4394 		arg->parent_root = args32.parent_root;
4395 		arg->flags = args32.flags;
4396 		arg->version = args32.version;
4397 		memcpy(arg->reserved, args32.reserved,
4398 		       sizeof(args32.reserved));
4399 #else
4400 		return -ENOTTY;
4401 #endif
4402 	} else {
4403 		arg = memdup_user(argp, sizeof(*arg));
4404 		if (IS_ERR(arg))
4405 			return PTR_ERR(arg);
4406 	}
4407 	ret = btrfs_ioctl_send(inode, arg);
4408 	kfree(arg);
4409 	return ret;
4410 }
4411 
4412 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4413 				    bool compat)
4414 {
4415 	struct btrfs_ioctl_encoded_io_args args = { 0 };
4416 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4417 					     flags);
4418 	size_t copy_end;
4419 	struct iovec iovstack[UIO_FASTIOV];
4420 	struct iovec *iov = iovstack;
4421 	struct iov_iter iter;
4422 	loff_t pos;
4423 	struct kiocb kiocb;
4424 	ssize_t ret;
4425 
4426 	if (!capable(CAP_SYS_ADMIN)) {
4427 		ret = -EPERM;
4428 		goto out_acct;
4429 	}
4430 
4431 	if (compat) {
4432 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4433 		struct btrfs_ioctl_encoded_io_args_32 args32;
4434 
4435 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4436 				       flags);
4437 		if (copy_from_user(&args32, argp, copy_end)) {
4438 			ret = -EFAULT;
4439 			goto out_acct;
4440 		}
4441 		args.iov = compat_ptr(args32.iov);
4442 		args.iovcnt = args32.iovcnt;
4443 		args.offset = args32.offset;
4444 		args.flags = args32.flags;
4445 #else
4446 		return -ENOTTY;
4447 #endif
4448 	} else {
4449 		copy_end = copy_end_kernel;
4450 		if (copy_from_user(&args, argp, copy_end)) {
4451 			ret = -EFAULT;
4452 			goto out_acct;
4453 		}
4454 	}
4455 	if (args.flags != 0) {
4456 		ret = -EINVAL;
4457 		goto out_acct;
4458 	}
4459 
4460 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4461 			   &iov, &iter);
4462 	if (ret < 0)
4463 		goto out_acct;
4464 
4465 	if (iov_iter_count(&iter) == 0) {
4466 		ret = 0;
4467 		goto out_iov;
4468 	}
4469 	pos = args.offset;
4470 	ret = rw_verify_area(READ, file, &pos, args.len);
4471 	if (ret < 0)
4472 		goto out_iov;
4473 
4474 	init_sync_kiocb(&kiocb, file);
4475 	kiocb.ki_pos = pos;
4476 
4477 	ret = btrfs_encoded_read(&kiocb, &iter, &args);
4478 	if (ret >= 0) {
4479 		fsnotify_access(file);
4480 		if (copy_to_user(argp + copy_end,
4481 				 (char *)&args + copy_end_kernel,
4482 				 sizeof(args) - copy_end_kernel))
4483 			ret = -EFAULT;
4484 	}
4485 
4486 out_iov:
4487 	kfree(iov);
4488 out_acct:
4489 	if (ret > 0)
4490 		add_rchar(current, ret);
4491 	inc_syscr(current);
4492 	return ret;
4493 }
4494 
4495 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4496 {
4497 	struct btrfs_ioctl_encoded_io_args args;
4498 	struct iovec iovstack[UIO_FASTIOV];
4499 	struct iovec *iov = iovstack;
4500 	struct iov_iter iter;
4501 	loff_t pos;
4502 	struct kiocb kiocb;
4503 	ssize_t ret;
4504 
4505 	if (!capable(CAP_SYS_ADMIN)) {
4506 		ret = -EPERM;
4507 		goto out_acct;
4508 	}
4509 
4510 	if (!(file->f_mode & FMODE_WRITE)) {
4511 		ret = -EBADF;
4512 		goto out_acct;
4513 	}
4514 
4515 	if (compat) {
4516 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4517 		struct btrfs_ioctl_encoded_io_args_32 args32;
4518 
4519 		if (copy_from_user(&args32, argp, sizeof(args32))) {
4520 			ret = -EFAULT;
4521 			goto out_acct;
4522 		}
4523 		args.iov = compat_ptr(args32.iov);
4524 		args.iovcnt = args32.iovcnt;
4525 		args.offset = args32.offset;
4526 		args.flags = args32.flags;
4527 		args.len = args32.len;
4528 		args.unencoded_len = args32.unencoded_len;
4529 		args.unencoded_offset = args32.unencoded_offset;
4530 		args.compression = args32.compression;
4531 		args.encryption = args32.encryption;
4532 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4533 #else
4534 		return -ENOTTY;
4535 #endif
4536 	} else {
4537 		if (copy_from_user(&args, argp, sizeof(args))) {
4538 			ret = -EFAULT;
4539 			goto out_acct;
4540 		}
4541 	}
4542 
4543 	ret = -EINVAL;
4544 	if (args.flags != 0)
4545 		goto out_acct;
4546 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4547 		goto out_acct;
4548 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4549 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4550 		goto out_acct;
4551 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4552 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4553 		goto out_acct;
4554 	if (args.unencoded_offset > args.unencoded_len)
4555 		goto out_acct;
4556 	if (args.len > args.unencoded_len - args.unencoded_offset)
4557 		goto out_acct;
4558 
4559 	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4560 			   &iov, &iter);
4561 	if (ret < 0)
4562 		goto out_acct;
4563 
4564 	file_start_write(file);
4565 
4566 	if (iov_iter_count(&iter) == 0) {
4567 		ret = 0;
4568 		goto out_end_write;
4569 	}
4570 	pos = args.offset;
4571 	ret = rw_verify_area(WRITE, file, &pos, args.len);
4572 	if (ret < 0)
4573 		goto out_end_write;
4574 
4575 	init_sync_kiocb(&kiocb, file);
4576 	ret = kiocb_set_rw_flags(&kiocb, 0);
4577 	if (ret)
4578 		goto out_end_write;
4579 	kiocb.ki_pos = pos;
4580 
4581 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4582 	if (ret > 0)
4583 		fsnotify_modify(file);
4584 
4585 out_end_write:
4586 	file_end_write(file);
4587 	kfree(iov);
4588 out_acct:
4589 	if (ret > 0)
4590 		add_wchar(current, ret);
4591 	inc_syscw(current);
4592 	return ret;
4593 }
4594 
4595 long btrfs_ioctl(struct file *file, unsigned int
4596 		cmd, unsigned long arg)
4597 {
4598 	struct inode *inode = file_inode(file);
4599 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4600 	struct btrfs_root *root = BTRFS_I(inode)->root;
4601 	void __user *argp = (void __user *)arg;
4602 
4603 	switch (cmd) {
4604 	case FS_IOC_GETVERSION:
4605 		return btrfs_ioctl_getversion(inode, argp);
4606 	case FS_IOC_GETFSLABEL:
4607 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4608 	case FS_IOC_SETFSLABEL:
4609 		return btrfs_ioctl_set_fslabel(file, argp);
4610 	case FITRIM:
4611 		return btrfs_ioctl_fitrim(fs_info, argp);
4612 	case BTRFS_IOC_SNAP_CREATE:
4613 		return btrfs_ioctl_snap_create(file, argp, 0);
4614 	case BTRFS_IOC_SNAP_CREATE_V2:
4615 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4616 	case BTRFS_IOC_SUBVOL_CREATE:
4617 		return btrfs_ioctl_snap_create(file, argp, 1);
4618 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4619 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4620 	case BTRFS_IOC_SNAP_DESTROY:
4621 		return btrfs_ioctl_snap_destroy(file, argp, false);
4622 	case BTRFS_IOC_SNAP_DESTROY_V2:
4623 		return btrfs_ioctl_snap_destroy(file, argp, true);
4624 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4625 		return btrfs_ioctl_subvol_getflags(inode, argp);
4626 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4627 		return btrfs_ioctl_subvol_setflags(file, argp);
4628 	case BTRFS_IOC_DEFAULT_SUBVOL:
4629 		return btrfs_ioctl_default_subvol(file, argp);
4630 	case BTRFS_IOC_DEFRAG:
4631 		return btrfs_ioctl_defrag(file, NULL);
4632 	case BTRFS_IOC_DEFRAG_RANGE:
4633 		return btrfs_ioctl_defrag(file, argp);
4634 	case BTRFS_IOC_RESIZE:
4635 		return btrfs_ioctl_resize(file, argp);
4636 	case BTRFS_IOC_ADD_DEV:
4637 		return btrfs_ioctl_add_dev(fs_info, argp);
4638 	case BTRFS_IOC_RM_DEV:
4639 		return btrfs_ioctl_rm_dev(file, argp);
4640 	case BTRFS_IOC_RM_DEV_V2:
4641 		return btrfs_ioctl_rm_dev_v2(file, argp);
4642 	case BTRFS_IOC_FS_INFO:
4643 		return btrfs_ioctl_fs_info(fs_info, argp);
4644 	case BTRFS_IOC_DEV_INFO:
4645 		return btrfs_ioctl_dev_info(fs_info, argp);
4646 	case BTRFS_IOC_TREE_SEARCH:
4647 		return btrfs_ioctl_tree_search(inode, argp);
4648 	case BTRFS_IOC_TREE_SEARCH_V2:
4649 		return btrfs_ioctl_tree_search_v2(inode, argp);
4650 	case BTRFS_IOC_INO_LOOKUP:
4651 		return btrfs_ioctl_ino_lookup(root, argp);
4652 	case BTRFS_IOC_INO_PATHS:
4653 		return btrfs_ioctl_ino_to_path(root, argp);
4654 	case BTRFS_IOC_LOGICAL_INO:
4655 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4656 	case BTRFS_IOC_LOGICAL_INO_V2:
4657 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4658 	case BTRFS_IOC_SPACE_INFO:
4659 		return btrfs_ioctl_space_info(fs_info, argp);
4660 	case BTRFS_IOC_SYNC: {
4661 		int ret;
4662 
4663 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4664 		if (ret)
4665 			return ret;
4666 		ret = btrfs_sync_fs(inode->i_sb, 1);
4667 		/*
4668 		 * The transaction thread may want to do more work,
4669 		 * namely it pokes the cleaner kthread that will start
4670 		 * processing uncleaned subvols.
4671 		 */
4672 		wake_up_process(fs_info->transaction_kthread);
4673 		return ret;
4674 	}
4675 	case BTRFS_IOC_START_SYNC:
4676 		return btrfs_ioctl_start_sync(root, argp);
4677 	case BTRFS_IOC_WAIT_SYNC:
4678 		return btrfs_ioctl_wait_sync(fs_info, argp);
4679 	case BTRFS_IOC_SCRUB:
4680 		return btrfs_ioctl_scrub(file, argp);
4681 	case BTRFS_IOC_SCRUB_CANCEL:
4682 		return btrfs_ioctl_scrub_cancel(fs_info);
4683 	case BTRFS_IOC_SCRUB_PROGRESS:
4684 		return btrfs_ioctl_scrub_progress(fs_info, argp);
4685 	case BTRFS_IOC_BALANCE_V2:
4686 		return btrfs_ioctl_balance(file, argp);
4687 	case BTRFS_IOC_BALANCE_CTL:
4688 		return btrfs_ioctl_balance_ctl(fs_info, arg);
4689 	case BTRFS_IOC_BALANCE_PROGRESS:
4690 		return btrfs_ioctl_balance_progress(fs_info, argp);
4691 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4692 		return btrfs_ioctl_set_received_subvol(file, argp);
4693 #ifdef CONFIG_64BIT
4694 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4695 		return btrfs_ioctl_set_received_subvol_32(file, argp);
4696 #endif
4697 	case BTRFS_IOC_SEND:
4698 		return _btrfs_ioctl_send(inode, argp, false);
4699 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4700 	case BTRFS_IOC_SEND_32:
4701 		return _btrfs_ioctl_send(inode, argp, true);
4702 #endif
4703 	case BTRFS_IOC_GET_DEV_STATS:
4704 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4705 	case BTRFS_IOC_QUOTA_CTL:
4706 		return btrfs_ioctl_quota_ctl(file, argp);
4707 	case BTRFS_IOC_QGROUP_ASSIGN:
4708 		return btrfs_ioctl_qgroup_assign(file, argp);
4709 	case BTRFS_IOC_QGROUP_CREATE:
4710 		return btrfs_ioctl_qgroup_create(file, argp);
4711 	case BTRFS_IOC_QGROUP_LIMIT:
4712 		return btrfs_ioctl_qgroup_limit(file, argp);
4713 	case BTRFS_IOC_QUOTA_RESCAN:
4714 		return btrfs_ioctl_quota_rescan(file, argp);
4715 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4716 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4717 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4718 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4719 	case BTRFS_IOC_DEV_REPLACE:
4720 		return btrfs_ioctl_dev_replace(fs_info, argp);
4721 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4722 		return btrfs_ioctl_get_supported_features(argp);
4723 	case BTRFS_IOC_GET_FEATURES:
4724 		return btrfs_ioctl_get_features(fs_info, argp);
4725 	case BTRFS_IOC_SET_FEATURES:
4726 		return btrfs_ioctl_set_features(file, argp);
4727 	case BTRFS_IOC_GET_SUBVOL_INFO:
4728 		return btrfs_ioctl_get_subvol_info(inode, argp);
4729 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4730 		return btrfs_ioctl_get_subvol_rootref(root, argp);
4731 	case BTRFS_IOC_INO_LOOKUP_USER:
4732 		return btrfs_ioctl_ino_lookup_user(file, argp);
4733 	case FS_IOC_ENABLE_VERITY:
4734 		return fsverity_ioctl_enable(file, (const void __user *)argp);
4735 	case FS_IOC_MEASURE_VERITY:
4736 		return fsverity_ioctl_measure(file, argp);
4737 	case BTRFS_IOC_ENCODED_READ:
4738 		return btrfs_ioctl_encoded_read(file, argp, false);
4739 	case BTRFS_IOC_ENCODED_WRITE:
4740 		return btrfs_ioctl_encoded_write(file, argp, false);
4741 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4742 	case BTRFS_IOC_ENCODED_READ_32:
4743 		return btrfs_ioctl_encoded_read(file, argp, true);
4744 	case BTRFS_IOC_ENCODED_WRITE_32:
4745 		return btrfs_ioctl_encoded_write(file, argp, true);
4746 #endif
4747 	}
4748 
4749 	return -ENOTTY;
4750 }
4751 
4752 #ifdef CONFIG_COMPAT
4753 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4754 {
4755 	/*
4756 	 * These all access 32-bit values anyway so no further
4757 	 * handling is necessary.
4758 	 */
4759 	switch (cmd) {
4760 	case FS_IOC32_GETVERSION:
4761 		cmd = FS_IOC_GETVERSION;
4762 		break;
4763 	}
4764 
4765 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4766 }
4767 #endif
4768