1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include "ctree.h" 31 #include "disk-io.h" 32 #include "export.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "locking.h" 38 #include "backref.h" 39 #include "rcu-string.h" 40 #include "send.h" 41 #include "dev-replace.h" 42 #include "props.h" 43 #include "sysfs.h" 44 #include "qgroup.h" 45 #include "tree-log.h" 46 #include "compression.h" 47 #include "space-info.h" 48 #include "delalloc-space.h" 49 #include "block-group.h" 50 51 #ifdef CONFIG_64BIT 52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 53 * structures are incorrect, as the timespec structure from userspace 54 * is 4 bytes too small. We define these alternatives here to teach 55 * the kernel about the 32-bit struct packing. 56 */ 57 struct btrfs_ioctl_timespec_32 { 58 __u64 sec; 59 __u32 nsec; 60 } __attribute__ ((__packed__)); 61 62 struct btrfs_ioctl_received_subvol_args_32 { 63 char uuid[BTRFS_UUID_SIZE]; /* in */ 64 __u64 stransid; /* in */ 65 __u64 rtransid; /* out */ 66 struct btrfs_ioctl_timespec_32 stime; /* in */ 67 struct btrfs_ioctl_timespec_32 rtime; /* out */ 68 __u64 flags; /* in */ 69 __u64 reserved[16]; /* in */ 70 } __attribute__ ((__packed__)); 71 72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 73 struct btrfs_ioctl_received_subvol_args_32) 74 #endif 75 76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 77 struct btrfs_ioctl_send_args_32 { 78 __s64 send_fd; /* in */ 79 __u64 clone_sources_count; /* in */ 80 compat_uptr_t clone_sources; /* in */ 81 __u64 parent_root; /* in */ 82 __u64 flags; /* in */ 83 __u64 reserved[4]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 87 struct btrfs_ioctl_send_args_32) 88 #endif 89 90 /* Mask out flags that are inappropriate for the given type of inode. */ 91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 92 unsigned int flags) 93 { 94 if (S_ISDIR(inode->i_mode)) 95 return flags; 96 else if (S_ISREG(inode->i_mode)) 97 return flags & ~FS_DIRSYNC_FL; 98 else 99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 100 } 101 102 /* 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 104 * ioctl. 105 */ 106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 107 { 108 unsigned int iflags = 0; 109 110 if (flags & BTRFS_INODE_SYNC) 111 iflags |= FS_SYNC_FL; 112 if (flags & BTRFS_INODE_IMMUTABLE) 113 iflags |= FS_IMMUTABLE_FL; 114 if (flags & BTRFS_INODE_APPEND) 115 iflags |= FS_APPEND_FL; 116 if (flags & BTRFS_INODE_NODUMP) 117 iflags |= FS_NODUMP_FL; 118 if (flags & BTRFS_INODE_NOATIME) 119 iflags |= FS_NOATIME_FL; 120 if (flags & BTRFS_INODE_DIRSYNC) 121 iflags |= FS_DIRSYNC_FL; 122 if (flags & BTRFS_INODE_NODATACOW) 123 iflags |= FS_NOCOW_FL; 124 125 if (flags & BTRFS_INODE_NOCOMPRESS) 126 iflags |= FS_NOCOMP_FL; 127 else if (flags & BTRFS_INODE_COMPRESS) 128 iflags |= FS_COMPR_FL; 129 130 return iflags; 131 } 132 133 /* 134 * Update inode->i_flags based on the btrfs internal flags. 135 */ 136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 137 { 138 struct btrfs_inode *binode = BTRFS_I(inode); 139 unsigned int new_fl = 0; 140 141 if (binode->flags & BTRFS_INODE_SYNC) 142 new_fl |= S_SYNC; 143 if (binode->flags & BTRFS_INODE_IMMUTABLE) 144 new_fl |= S_IMMUTABLE; 145 if (binode->flags & BTRFS_INODE_APPEND) 146 new_fl |= S_APPEND; 147 if (binode->flags & BTRFS_INODE_NOATIME) 148 new_fl |= S_NOATIME; 149 if (binode->flags & BTRFS_INODE_DIRSYNC) 150 new_fl |= S_DIRSYNC; 151 152 set_mask_bits(&inode->i_flags, 153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 154 new_fl); 155 } 156 157 /* 158 * Check if @flags are a supported and valid set of FS_*_FL flags and that 159 * the old and new flags are not conflicting 160 */ 161 static int check_fsflags(unsigned int old_flags, unsigned int flags) 162 { 163 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 164 FS_NOATIME_FL | FS_NODUMP_FL | \ 165 FS_SYNC_FL | FS_DIRSYNC_FL | \ 166 FS_NOCOMP_FL | FS_COMPR_FL | 167 FS_NOCOW_FL)) 168 return -EOPNOTSUPP; 169 170 /* COMPR and NOCOMP on new/old are valid */ 171 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 172 return -EINVAL; 173 174 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 175 return -EINVAL; 176 177 /* NOCOW and compression options are mutually exclusive */ 178 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 179 return -EINVAL; 180 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 181 return -EINVAL; 182 183 return 0; 184 } 185 186 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 187 unsigned int flags) 188 { 189 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 190 return -EPERM; 191 192 return 0; 193 } 194 195 /* 196 * Set flags/xflags from the internal inode flags. The remaining items of 197 * fsxattr are zeroed. 198 */ 199 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 200 { 201 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 202 203 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode->flags)); 204 return 0; 205 } 206 207 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 208 struct dentry *dentry, struct fileattr *fa) 209 { 210 struct inode *inode = d_inode(dentry); 211 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 212 struct btrfs_inode *binode = BTRFS_I(inode); 213 struct btrfs_root *root = binode->root; 214 struct btrfs_trans_handle *trans; 215 unsigned int fsflags, old_fsflags; 216 int ret; 217 const char *comp = NULL; 218 u32 binode_flags; 219 220 if (btrfs_root_readonly(root)) 221 return -EROFS; 222 223 if (fileattr_has_fsx(fa)) 224 return -EOPNOTSUPP; 225 226 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 227 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 228 ret = check_fsflags(old_fsflags, fsflags); 229 if (ret) 230 return ret; 231 232 ret = check_fsflags_compatible(fs_info, fsflags); 233 if (ret) 234 return ret; 235 236 binode_flags = binode->flags; 237 if (fsflags & FS_SYNC_FL) 238 binode_flags |= BTRFS_INODE_SYNC; 239 else 240 binode_flags &= ~BTRFS_INODE_SYNC; 241 if (fsflags & FS_IMMUTABLE_FL) 242 binode_flags |= BTRFS_INODE_IMMUTABLE; 243 else 244 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 245 if (fsflags & FS_APPEND_FL) 246 binode_flags |= BTRFS_INODE_APPEND; 247 else 248 binode_flags &= ~BTRFS_INODE_APPEND; 249 if (fsflags & FS_NODUMP_FL) 250 binode_flags |= BTRFS_INODE_NODUMP; 251 else 252 binode_flags &= ~BTRFS_INODE_NODUMP; 253 if (fsflags & FS_NOATIME_FL) 254 binode_flags |= BTRFS_INODE_NOATIME; 255 else 256 binode_flags &= ~BTRFS_INODE_NOATIME; 257 258 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 259 if (!fa->flags_valid) { 260 /* 1 item for the inode */ 261 trans = btrfs_start_transaction(root, 1); 262 if (IS_ERR(trans)) 263 return PTR_ERR(trans); 264 goto update_flags; 265 } 266 267 if (fsflags & FS_DIRSYNC_FL) 268 binode_flags |= BTRFS_INODE_DIRSYNC; 269 else 270 binode_flags &= ~BTRFS_INODE_DIRSYNC; 271 if (fsflags & FS_NOCOW_FL) { 272 if (S_ISREG(inode->i_mode)) { 273 /* 274 * It's safe to turn csums off here, no extents exist. 275 * Otherwise we want the flag to reflect the real COW 276 * status of the file and will not set it. 277 */ 278 if (inode->i_size == 0) 279 binode_flags |= BTRFS_INODE_NODATACOW | 280 BTRFS_INODE_NODATASUM; 281 } else { 282 binode_flags |= BTRFS_INODE_NODATACOW; 283 } 284 } else { 285 /* 286 * Revert back under same assumptions as above 287 */ 288 if (S_ISREG(inode->i_mode)) { 289 if (inode->i_size == 0) 290 binode_flags &= ~(BTRFS_INODE_NODATACOW | 291 BTRFS_INODE_NODATASUM); 292 } else { 293 binode_flags &= ~BTRFS_INODE_NODATACOW; 294 } 295 } 296 297 /* 298 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 299 * flag may be changed automatically if compression code won't make 300 * things smaller. 301 */ 302 if (fsflags & FS_NOCOMP_FL) { 303 binode_flags &= ~BTRFS_INODE_COMPRESS; 304 binode_flags |= BTRFS_INODE_NOCOMPRESS; 305 } else if (fsflags & FS_COMPR_FL) { 306 307 if (IS_SWAPFILE(inode)) 308 return -ETXTBSY; 309 310 binode_flags |= BTRFS_INODE_COMPRESS; 311 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 312 313 comp = btrfs_compress_type2str(fs_info->compress_type); 314 if (!comp || comp[0] == 0) 315 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 316 } else { 317 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 318 } 319 320 /* 321 * 1 for inode item 322 * 2 for properties 323 */ 324 trans = btrfs_start_transaction(root, 3); 325 if (IS_ERR(trans)) 326 return PTR_ERR(trans); 327 328 if (comp) { 329 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 330 strlen(comp), 0); 331 if (ret) { 332 btrfs_abort_transaction(trans, ret); 333 goto out_end_trans; 334 } 335 } else { 336 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 337 0, 0); 338 if (ret && ret != -ENODATA) { 339 btrfs_abort_transaction(trans, ret); 340 goto out_end_trans; 341 } 342 } 343 344 update_flags: 345 binode->flags = binode_flags; 346 btrfs_sync_inode_flags_to_i_flags(inode); 347 inode_inc_iversion(inode); 348 inode->i_ctime = current_time(inode); 349 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 350 351 out_end_trans: 352 btrfs_end_transaction(trans); 353 return ret; 354 } 355 356 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 357 enum btrfs_exclusive_operation type) 358 { 359 return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type); 360 } 361 362 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 363 { 364 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 365 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 366 } 367 368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 369 { 370 struct inode *inode = file_inode(file); 371 372 return put_user(inode->i_generation, arg); 373 } 374 375 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 376 void __user *arg) 377 { 378 struct btrfs_device *device; 379 struct request_queue *q; 380 struct fstrim_range range; 381 u64 minlen = ULLONG_MAX; 382 u64 num_devices = 0; 383 int ret; 384 385 if (!capable(CAP_SYS_ADMIN)) 386 return -EPERM; 387 388 /* 389 * btrfs_trim_block_group() depends on space cache, which is not 390 * available in zoned filesystem. So, disallow fitrim on a zoned 391 * filesystem for now. 392 */ 393 if (btrfs_is_zoned(fs_info)) 394 return -EOPNOTSUPP; 395 396 /* 397 * If the fs is mounted with nologreplay, which requires it to be 398 * mounted in RO mode as well, we can not allow discard on free space 399 * inside block groups, because log trees refer to extents that are not 400 * pinned in a block group's free space cache (pinning the extents is 401 * precisely the first phase of replaying a log tree). 402 */ 403 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 404 return -EROFS; 405 406 rcu_read_lock(); 407 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 408 dev_list) { 409 if (!device->bdev) 410 continue; 411 q = bdev_get_queue(device->bdev); 412 if (blk_queue_discard(q)) { 413 num_devices++; 414 minlen = min_t(u64, q->limits.discard_granularity, 415 minlen); 416 } 417 } 418 rcu_read_unlock(); 419 420 if (!num_devices) 421 return -EOPNOTSUPP; 422 if (copy_from_user(&range, arg, sizeof(range))) 423 return -EFAULT; 424 425 /* 426 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 427 * block group is in the logical address space, which can be any 428 * sectorsize aligned bytenr in the range [0, U64_MAX]. 429 */ 430 if (range.len < fs_info->sb->s_blocksize) 431 return -EINVAL; 432 433 range.minlen = max(range.minlen, minlen); 434 ret = btrfs_trim_fs(fs_info, &range); 435 if (ret < 0) 436 return ret; 437 438 if (copy_to_user(arg, &range, sizeof(range))) 439 return -EFAULT; 440 441 return 0; 442 } 443 444 int __pure btrfs_is_empty_uuid(u8 *uuid) 445 { 446 int i; 447 448 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 449 if (uuid[i]) 450 return 0; 451 } 452 return 1; 453 } 454 455 static noinline int create_subvol(struct inode *dir, 456 struct dentry *dentry, 457 const char *name, int namelen, 458 struct btrfs_qgroup_inherit *inherit) 459 { 460 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 461 struct btrfs_trans_handle *trans; 462 struct btrfs_key key; 463 struct btrfs_root_item *root_item; 464 struct btrfs_inode_item *inode_item; 465 struct extent_buffer *leaf; 466 struct btrfs_root *root = BTRFS_I(dir)->root; 467 struct btrfs_root *new_root; 468 struct btrfs_block_rsv block_rsv; 469 struct timespec64 cur_time = current_time(dir); 470 struct inode *inode; 471 int ret; 472 int err; 473 dev_t anon_dev = 0; 474 u64 objectid; 475 u64 index = 0; 476 477 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 478 if (!root_item) 479 return -ENOMEM; 480 481 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 482 if (ret) 483 goto fail_free; 484 485 ret = get_anon_bdev(&anon_dev); 486 if (ret < 0) 487 goto fail_free; 488 489 /* 490 * Don't create subvolume whose level is not zero. Or qgroup will be 491 * screwed up since it assumes subvolume qgroup's level to be 0. 492 */ 493 if (btrfs_qgroup_level(objectid)) { 494 ret = -ENOSPC; 495 goto fail_free; 496 } 497 498 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 499 /* 500 * The same as the snapshot creation, please see the comment 501 * of create_snapshot(). 502 */ 503 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 504 if (ret) 505 goto fail_free; 506 507 trans = btrfs_start_transaction(root, 0); 508 if (IS_ERR(trans)) { 509 ret = PTR_ERR(trans); 510 btrfs_subvolume_release_metadata(root, &block_rsv); 511 goto fail_free; 512 } 513 trans->block_rsv = &block_rsv; 514 trans->bytes_reserved = block_rsv.size; 515 516 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 517 if (ret) 518 goto fail; 519 520 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 521 BTRFS_NESTING_NORMAL); 522 if (IS_ERR(leaf)) { 523 ret = PTR_ERR(leaf); 524 goto fail; 525 } 526 527 btrfs_mark_buffer_dirty(leaf); 528 529 inode_item = &root_item->inode; 530 btrfs_set_stack_inode_generation(inode_item, 1); 531 btrfs_set_stack_inode_size(inode_item, 3); 532 btrfs_set_stack_inode_nlink(inode_item, 1); 533 btrfs_set_stack_inode_nbytes(inode_item, 534 fs_info->nodesize); 535 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 536 537 btrfs_set_root_flags(root_item, 0); 538 btrfs_set_root_limit(root_item, 0); 539 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 540 541 btrfs_set_root_bytenr(root_item, leaf->start); 542 btrfs_set_root_generation(root_item, trans->transid); 543 btrfs_set_root_level(root_item, 0); 544 btrfs_set_root_refs(root_item, 1); 545 btrfs_set_root_used(root_item, leaf->len); 546 btrfs_set_root_last_snapshot(root_item, 0); 547 548 btrfs_set_root_generation_v2(root_item, 549 btrfs_root_generation(root_item)); 550 generate_random_guid(root_item->uuid); 551 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 552 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 553 root_item->ctime = root_item->otime; 554 btrfs_set_root_ctransid(root_item, trans->transid); 555 btrfs_set_root_otransid(root_item, trans->transid); 556 557 btrfs_tree_unlock(leaf); 558 559 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 560 561 key.objectid = objectid; 562 key.offset = 0; 563 key.type = BTRFS_ROOT_ITEM_KEY; 564 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 565 root_item); 566 if (ret) { 567 /* 568 * Since we don't abort the transaction in this case, free the 569 * tree block so that we don't leak space and leave the 570 * filesystem in an inconsistent state (an extent item in the 571 * extent tree without backreferences). Also no need to have 572 * the tree block locked since it is not in any tree at this 573 * point, so no other task can find it and use it. 574 */ 575 btrfs_free_tree_block(trans, root, leaf, 0, 1); 576 free_extent_buffer(leaf); 577 goto fail; 578 } 579 580 free_extent_buffer(leaf); 581 leaf = NULL; 582 583 key.offset = (u64)-1; 584 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 585 if (IS_ERR(new_root)) { 586 free_anon_bdev(anon_dev); 587 ret = PTR_ERR(new_root); 588 btrfs_abort_transaction(trans, ret); 589 goto fail; 590 } 591 /* Freeing will be done in btrfs_put_root() of new_root */ 592 anon_dev = 0; 593 594 ret = btrfs_record_root_in_trans(trans, new_root); 595 if (ret) { 596 btrfs_put_root(new_root); 597 btrfs_abort_transaction(trans, ret); 598 goto fail; 599 } 600 601 ret = btrfs_create_subvol_root(trans, new_root, root); 602 btrfs_put_root(new_root); 603 if (ret) { 604 /* We potentially lose an unused inode item here */ 605 btrfs_abort_transaction(trans, ret); 606 goto fail; 607 } 608 609 /* 610 * insert the directory item 611 */ 612 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 613 if (ret) { 614 btrfs_abort_transaction(trans, ret); 615 goto fail; 616 } 617 618 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 619 BTRFS_FT_DIR, index); 620 if (ret) { 621 btrfs_abort_transaction(trans, ret); 622 goto fail; 623 } 624 625 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 626 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 627 if (ret) { 628 btrfs_abort_transaction(trans, ret); 629 goto fail; 630 } 631 632 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 633 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 634 if (ret) { 635 btrfs_abort_transaction(trans, ret); 636 goto fail; 637 } 638 639 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 640 BTRFS_UUID_KEY_SUBVOL, objectid); 641 if (ret) 642 btrfs_abort_transaction(trans, ret); 643 644 fail: 645 kfree(root_item); 646 trans->block_rsv = NULL; 647 trans->bytes_reserved = 0; 648 btrfs_subvolume_release_metadata(root, &block_rsv); 649 650 err = btrfs_commit_transaction(trans); 651 if (err && !ret) 652 ret = err; 653 654 if (!ret) { 655 inode = btrfs_lookup_dentry(dir, dentry); 656 if (IS_ERR(inode)) 657 return PTR_ERR(inode); 658 d_instantiate(dentry, inode); 659 } 660 return ret; 661 662 fail_free: 663 if (anon_dev) 664 free_anon_bdev(anon_dev); 665 kfree(root_item); 666 return ret; 667 } 668 669 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 670 struct dentry *dentry, bool readonly, 671 struct btrfs_qgroup_inherit *inherit) 672 { 673 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 674 struct inode *inode; 675 struct btrfs_pending_snapshot *pending_snapshot; 676 struct btrfs_trans_handle *trans; 677 int ret; 678 679 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 680 return -EINVAL; 681 682 if (atomic_read(&root->nr_swapfiles)) { 683 btrfs_warn(fs_info, 684 "cannot snapshot subvolume with active swapfile"); 685 return -ETXTBSY; 686 } 687 688 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 689 if (!pending_snapshot) 690 return -ENOMEM; 691 692 ret = get_anon_bdev(&pending_snapshot->anon_dev); 693 if (ret < 0) 694 goto free_pending; 695 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 696 GFP_KERNEL); 697 pending_snapshot->path = btrfs_alloc_path(); 698 if (!pending_snapshot->root_item || !pending_snapshot->path) { 699 ret = -ENOMEM; 700 goto free_pending; 701 } 702 703 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 704 BTRFS_BLOCK_RSV_TEMP); 705 /* 706 * 1 - parent dir inode 707 * 2 - dir entries 708 * 1 - root item 709 * 2 - root ref/backref 710 * 1 - root of snapshot 711 * 1 - UUID item 712 */ 713 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 714 &pending_snapshot->block_rsv, 8, 715 false); 716 if (ret) 717 goto free_pending; 718 719 pending_snapshot->dentry = dentry; 720 pending_snapshot->root = root; 721 pending_snapshot->readonly = readonly; 722 pending_snapshot->dir = dir; 723 pending_snapshot->inherit = inherit; 724 725 trans = btrfs_start_transaction(root, 0); 726 if (IS_ERR(trans)) { 727 ret = PTR_ERR(trans); 728 goto fail; 729 } 730 731 spin_lock(&fs_info->trans_lock); 732 list_add(&pending_snapshot->list, 733 &trans->transaction->pending_snapshots); 734 spin_unlock(&fs_info->trans_lock); 735 736 ret = btrfs_commit_transaction(trans); 737 if (ret) 738 goto fail; 739 740 ret = pending_snapshot->error; 741 if (ret) 742 goto fail; 743 744 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 745 if (ret) 746 goto fail; 747 748 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 749 if (IS_ERR(inode)) { 750 ret = PTR_ERR(inode); 751 goto fail; 752 } 753 754 d_instantiate(dentry, inode); 755 ret = 0; 756 pending_snapshot->anon_dev = 0; 757 fail: 758 /* Prevent double freeing of anon_dev */ 759 if (ret && pending_snapshot->snap) 760 pending_snapshot->snap->anon_dev = 0; 761 btrfs_put_root(pending_snapshot->snap); 762 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 763 free_pending: 764 if (pending_snapshot->anon_dev) 765 free_anon_bdev(pending_snapshot->anon_dev); 766 kfree(pending_snapshot->root_item); 767 btrfs_free_path(pending_snapshot->path); 768 kfree(pending_snapshot); 769 770 return ret; 771 } 772 773 /* copy of may_delete in fs/namei.c() 774 * Check whether we can remove a link victim from directory dir, check 775 * whether the type of victim is right. 776 * 1. We can't do it if dir is read-only (done in permission()) 777 * 2. We should have write and exec permissions on dir 778 * 3. We can't remove anything from append-only dir 779 * 4. We can't do anything with immutable dir (done in permission()) 780 * 5. If the sticky bit on dir is set we should either 781 * a. be owner of dir, or 782 * b. be owner of victim, or 783 * c. have CAP_FOWNER capability 784 * 6. If the victim is append-only or immutable we can't do anything with 785 * links pointing to it. 786 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 787 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 788 * 9. We can't remove a root or mountpoint. 789 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 790 * nfs_async_unlink(). 791 */ 792 793 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 794 { 795 int error; 796 797 if (d_really_is_negative(victim)) 798 return -ENOENT; 799 800 BUG_ON(d_inode(victim->d_parent) != dir); 801 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 802 803 error = inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC); 804 if (error) 805 return error; 806 if (IS_APPEND(dir)) 807 return -EPERM; 808 if (check_sticky(&init_user_ns, dir, d_inode(victim)) || 809 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 810 IS_SWAPFILE(d_inode(victim))) 811 return -EPERM; 812 if (isdir) { 813 if (!d_is_dir(victim)) 814 return -ENOTDIR; 815 if (IS_ROOT(victim)) 816 return -EBUSY; 817 } else if (d_is_dir(victim)) 818 return -EISDIR; 819 if (IS_DEADDIR(dir)) 820 return -ENOENT; 821 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 822 return -EBUSY; 823 return 0; 824 } 825 826 /* copy of may_create in fs/namei.c() */ 827 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 828 { 829 if (d_really_is_positive(child)) 830 return -EEXIST; 831 if (IS_DEADDIR(dir)) 832 return -ENOENT; 833 return inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC); 834 } 835 836 /* 837 * Create a new subvolume below @parent. This is largely modeled after 838 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 839 * inside this filesystem so it's quite a bit simpler. 840 */ 841 static noinline int btrfs_mksubvol(const struct path *parent, 842 const char *name, int namelen, 843 struct btrfs_root *snap_src, 844 bool readonly, 845 struct btrfs_qgroup_inherit *inherit) 846 { 847 struct inode *dir = d_inode(parent->dentry); 848 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 849 struct dentry *dentry; 850 int error; 851 852 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 853 if (error == -EINTR) 854 return error; 855 856 dentry = lookup_one_len(name, parent->dentry, namelen); 857 error = PTR_ERR(dentry); 858 if (IS_ERR(dentry)) 859 goto out_unlock; 860 861 error = btrfs_may_create(dir, dentry); 862 if (error) 863 goto out_dput; 864 865 /* 866 * even if this name doesn't exist, we may get hash collisions. 867 * check for them now when we can safely fail 868 */ 869 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 870 dir->i_ino, name, 871 namelen); 872 if (error) 873 goto out_dput; 874 875 down_read(&fs_info->subvol_sem); 876 877 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 878 goto out_up_read; 879 880 if (snap_src) 881 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 882 else 883 error = create_subvol(dir, dentry, name, namelen, inherit); 884 885 if (!error) 886 fsnotify_mkdir(dir, dentry); 887 out_up_read: 888 up_read(&fs_info->subvol_sem); 889 out_dput: 890 dput(dentry); 891 out_unlock: 892 btrfs_inode_unlock(dir, 0); 893 return error; 894 } 895 896 static noinline int btrfs_mksnapshot(const struct path *parent, 897 const char *name, int namelen, 898 struct btrfs_root *root, 899 bool readonly, 900 struct btrfs_qgroup_inherit *inherit) 901 { 902 int ret; 903 bool snapshot_force_cow = false; 904 905 /* 906 * Force new buffered writes to reserve space even when NOCOW is 907 * possible. This is to avoid later writeback (running dealloc) to 908 * fallback to COW mode and unexpectedly fail with ENOSPC. 909 */ 910 btrfs_drew_read_lock(&root->snapshot_lock); 911 912 ret = btrfs_start_delalloc_snapshot(root, false); 913 if (ret) 914 goto out; 915 916 /* 917 * All previous writes have started writeback in NOCOW mode, so now 918 * we force future writes to fallback to COW mode during snapshot 919 * creation. 920 */ 921 atomic_inc(&root->snapshot_force_cow); 922 snapshot_force_cow = true; 923 924 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 925 926 ret = btrfs_mksubvol(parent, name, namelen, 927 root, readonly, inherit); 928 out: 929 if (snapshot_force_cow) 930 atomic_dec(&root->snapshot_force_cow); 931 btrfs_drew_read_unlock(&root->snapshot_lock); 932 return ret; 933 } 934 935 /* 936 * When we're defragging a range, we don't want to kick it off again 937 * if it is really just waiting for delalloc to send it down. 938 * If we find a nice big extent or delalloc range for the bytes in the 939 * file you want to defrag, we return 0 to let you know to skip this 940 * part of the file 941 */ 942 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 943 { 944 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 945 struct extent_map *em = NULL; 946 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 947 u64 end; 948 949 read_lock(&em_tree->lock); 950 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 951 read_unlock(&em_tree->lock); 952 953 if (em) { 954 end = extent_map_end(em); 955 free_extent_map(em); 956 if (end - offset > thresh) 957 return 0; 958 } 959 /* if we already have a nice delalloc here, just stop */ 960 thresh /= 2; 961 end = count_range_bits(io_tree, &offset, offset + thresh, 962 thresh, EXTENT_DELALLOC, 1); 963 if (end >= thresh) 964 return 0; 965 return 1; 966 } 967 968 /* 969 * helper function to walk through a file and find extents 970 * newer than a specific transid, and smaller than thresh. 971 * 972 * This is used by the defragging code to find new and small 973 * extents 974 */ 975 static int find_new_extents(struct btrfs_root *root, 976 struct inode *inode, u64 newer_than, 977 u64 *off, u32 thresh) 978 { 979 struct btrfs_path *path; 980 struct btrfs_key min_key; 981 struct extent_buffer *leaf; 982 struct btrfs_file_extent_item *extent; 983 int type; 984 int ret; 985 u64 ino = btrfs_ino(BTRFS_I(inode)); 986 987 path = btrfs_alloc_path(); 988 if (!path) 989 return -ENOMEM; 990 991 min_key.objectid = ino; 992 min_key.type = BTRFS_EXTENT_DATA_KEY; 993 min_key.offset = *off; 994 995 while (1) { 996 ret = btrfs_search_forward(root, &min_key, path, newer_than); 997 if (ret != 0) 998 goto none; 999 process_slot: 1000 if (min_key.objectid != ino) 1001 goto none; 1002 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1003 goto none; 1004 1005 leaf = path->nodes[0]; 1006 extent = btrfs_item_ptr(leaf, path->slots[0], 1007 struct btrfs_file_extent_item); 1008 1009 type = btrfs_file_extent_type(leaf, extent); 1010 if (type == BTRFS_FILE_EXTENT_REG && 1011 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1012 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1013 *off = min_key.offset; 1014 btrfs_free_path(path); 1015 return 0; 1016 } 1017 1018 path->slots[0]++; 1019 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1020 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1021 goto process_slot; 1022 } 1023 1024 if (min_key.offset == (u64)-1) 1025 goto none; 1026 1027 min_key.offset++; 1028 btrfs_release_path(path); 1029 } 1030 none: 1031 btrfs_free_path(path); 1032 return -ENOENT; 1033 } 1034 1035 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1036 { 1037 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1038 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1039 struct extent_map *em; 1040 u64 len = PAGE_SIZE; 1041 1042 /* 1043 * hopefully we have this extent in the tree already, try without 1044 * the full extent lock 1045 */ 1046 read_lock(&em_tree->lock); 1047 em = lookup_extent_mapping(em_tree, start, len); 1048 read_unlock(&em_tree->lock); 1049 1050 if (!em) { 1051 struct extent_state *cached = NULL; 1052 u64 end = start + len - 1; 1053 1054 /* get the big lock and read metadata off disk */ 1055 lock_extent_bits(io_tree, start, end, &cached); 1056 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 1057 unlock_extent_cached(io_tree, start, end, &cached); 1058 1059 if (IS_ERR(em)) 1060 return NULL; 1061 } 1062 1063 return em; 1064 } 1065 1066 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1067 { 1068 struct extent_map *next; 1069 bool ret = true; 1070 1071 /* this is the last extent */ 1072 if (em->start + em->len >= i_size_read(inode)) 1073 return false; 1074 1075 next = defrag_lookup_extent(inode, em->start + em->len); 1076 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1077 ret = false; 1078 else if ((em->block_start + em->block_len == next->block_start) && 1079 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1080 ret = false; 1081 1082 free_extent_map(next); 1083 return ret; 1084 } 1085 1086 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1087 u64 *last_len, u64 *skip, u64 *defrag_end, 1088 int compress) 1089 { 1090 struct extent_map *em; 1091 int ret = 1; 1092 bool next_mergeable = true; 1093 bool prev_mergeable = true; 1094 1095 /* 1096 * make sure that once we start defragging an extent, we keep on 1097 * defragging it 1098 */ 1099 if (start < *defrag_end) 1100 return 1; 1101 1102 *skip = 0; 1103 1104 em = defrag_lookup_extent(inode, start); 1105 if (!em) 1106 return 0; 1107 1108 /* this will cover holes, and inline extents */ 1109 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1110 ret = 0; 1111 goto out; 1112 } 1113 1114 if (!*defrag_end) 1115 prev_mergeable = false; 1116 1117 next_mergeable = defrag_check_next_extent(inode, em); 1118 /* 1119 * we hit a real extent, if it is big or the next extent is not a 1120 * real extent, don't bother defragging it 1121 */ 1122 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1123 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1124 ret = 0; 1125 out: 1126 /* 1127 * last_len ends up being a counter of how many bytes we've defragged. 1128 * every time we choose not to defrag an extent, we reset *last_len 1129 * so that the next tiny extent will force a defrag. 1130 * 1131 * The end result of this is that tiny extents before a single big 1132 * extent will force at least part of that big extent to be defragged. 1133 */ 1134 if (ret) { 1135 *defrag_end = extent_map_end(em); 1136 } else { 1137 *last_len = 0; 1138 *skip = extent_map_end(em); 1139 *defrag_end = 0; 1140 } 1141 1142 free_extent_map(em); 1143 return ret; 1144 } 1145 1146 /* 1147 * it doesn't do much good to defrag one or two pages 1148 * at a time. This pulls in a nice chunk of pages 1149 * to COW and defrag. 1150 * 1151 * It also makes sure the delalloc code has enough 1152 * dirty data to avoid making new small extents as part 1153 * of the defrag 1154 * 1155 * It's a good idea to start RA on this range 1156 * before calling this. 1157 */ 1158 static int cluster_pages_for_defrag(struct inode *inode, 1159 struct page **pages, 1160 unsigned long start_index, 1161 unsigned long num_pages) 1162 { 1163 unsigned long file_end; 1164 u64 isize = i_size_read(inode); 1165 u64 page_start; 1166 u64 page_end; 1167 u64 page_cnt; 1168 u64 start = (u64)start_index << PAGE_SHIFT; 1169 u64 search_start; 1170 int ret; 1171 int i; 1172 int i_done; 1173 struct btrfs_ordered_extent *ordered; 1174 struct extent_state *cached_state = NULL; 1175 struct extent_io_tree *tree; 1176 struct extent_changeset *data_reserved = NULL; 1177 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1178 1179 file_end = (isize - 1) >> PAGE_SHIFT; 1180 if (!isize || start_index > file_end) 1181 return 0; 1182 1183 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1184 1185 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1186 start, page_cnt << PAGE_SHIFT); 1187 if (ret) 1188 return ret; 1189 i_done = 0; 1190 tree = &BTRFS_I(inode)->io_tree; 1191 1192 /* step one, lock all the pages */ 1193 for (i = 0; i < page_cnt; i++) { 1194 struct page *page; 1195 again: 1196 page = find_or_create_page(inode->i_mapping, 1197 start_index + i, mask); 1198 if (!page) 1199 break; 1200 1201 ret = set_page_extent_mapped(page); 1202 if (ret < 0) { 1203 unlock_page(page); 1204 put_page(page); 1205 break; 1206 } 1207 1208 page_start = page_offset(page); 1209 page_end = page_start + PAGE_SIZE - 1; 1210 while (1) { 1211 lock_extent_bits(tree, page_start, page_end, 1212 &cached_state); 1213 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), 1214 page_start); 1215 unlock_extent_cached(tree, page_start, page_end, 1216 &cached_state); 1217 if (!ordered) 1218 break; 1219 1220 unlock_page(page); 1221 btrfs_start_ordered_extent(ordered, 1); 1222 btrfs_put_ordered_extent(ordered); 1223 lock_page(page); 1224 /* 1225 * we unlocked the page above, so we need check if 1226 * it was released or not. 1227 */ 1228 if (page->mapping != inode->i_mapping) { 1229 unlock_page(page); 1230 put_page(page); 1231 goto again; 1232 } 1233 } 1234 1235 if (!PageUptodate(page)) { 1236 btrfs_readpage(NULL, page); 1237 lock_page(page); 1238 if (!PageUptodate(page)) { 1239 unlock_page(page); 1240 put_page(page); 1241 ret = -EIO; 1242 break; 1243 } 1244 } 1245 1246 if (page->mapping != inode->i_mapping) { 1247 unlock_page(page); 1248 put_page(page); 1249 goto again; 1250 } 1251 1252 pages[i] = page; 1253 i_done++; 1254 } 1255 if (!i_done || ret) 1256 goto out; 1257 1258 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1259 goto out; 1260 1261 /* 1262 * so now we have a nice long stream of locked 1263 * and up to date pages, lets wait on them 1264 */ 1265 for (i = 0; i < i_done; i++) 1266 wait_on_page_writeback(pages[i]); 1267 1268 page_start = page_offset(pages[0]); 1269 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1270 1271 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1272 page_start, page_end - 1, &cached_state); 1273 1274 /* 1275 * When defragmenting we skip ranges that have holes or inline extents, 1276 * (check should_defrag_range()), to avoid unnecessary IO and wasting 1277 * space. At btrfs_defrag_file(), we check if a range should be defragged 1278 * before locking the inode and then, if it should, we trigger a sync 1279 * page cache readahead - we lock the inode only after that to avoid 1280 * blocking for too long other tasks that possibly want to operate on 1281 * other file ranges. But before we were able to get the inode lock, 1282 * some other task may have punched a hole in the range, or we may have 1283 * now an inline extent, in which case we should not defrag. So check 1284 * for that here, where we have the inode and the range locked, and bail 1285 * out if that happened. 1286 */ 1287 search_start = page_start; 1288 while (search_start < page_end) { 1289 struct extent_map *em; 1290 1291 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start, 1292 page_end - search_start); 1293 if (IS_ERR(em)) { 1294 ret = PTR_ERR(em); 1295 goto out_unlock_range; 1296 } 1297 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1298 free_extent_map(em); 1299 /* Ok, 0 means we did not defrag anything */ 1300 ret = 0; 1301 goto out_unlock_range; 1302 } 1303 search_start = extent_map_end(em); 1304 free_extent_map(em); 1305 } 1306 1307 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1308 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1309 EXTENT_DEFRAG, 0, 0, &cached_state); 1310 1311 if (i_done != page_cnt) { 1312 spin_lock(&BTRFS_I(inode)->lock); 1313 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1314 spin_unlock(&BTRFS_I(inode)->lock); 1315 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1316 start, (page_cnt - i_done) << PAGE_SHIFT, true); 1317 } 1318 1319 1320 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1321 &cached_state); 1322 1323 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1324 page_start, page_end - 1, &cached_state); 1325 1326 for (i = 0; i < i_done; i++) { 1327 clear_page_dirty_for_io(pages[i]); 1328 ClearPageChecked(pages[i]); 1329 set_page_dirty(pages[i]); 1330 unlock_page(pages[i]); 1331 put_page(pages[i]); 1332 } 1333 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1334 extent_changeset_free(data_reserved); 1335 return i_done; 1336 1337 out_unlock_range: 1338 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1339 page_start, page_end - 1, &cached_state); 1340 out: 1341 for (i = 0; i < i_done; i++) { 1342 unlock_page(pages[i]); 1343 put_page(pages[i]); 1344 } 1345 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1346 start, page_cnt << PAGE_SHIFT, true); 1347 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1348 extent_changeset_free(data_reserved); 1349 return ret; 1350 1351 } 1352 1353 int btrfs_defrag_file(struct inode *inode, struct file *file, 1354 struct btrfs_ioctl_defrag_range_args *range, 1355 u64 newer_than, unsigned long max_to_defrag) 1356 { 1357 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1358 struct btrfs_root *root = BTRFS_I(inode)->root; 1359 struct file_ra_state *ra = NULL; 1360 unsigned long last_index; 1361 u64 isize = i_size_read(inode); 1362 u64 last_len = 0; 1363 u64 skip = 0; 1364 u64 defrag_end = 0; 1365 u64 newer_off = range->start; 1366 unsigned long i; 1367 unsigned long ra_index = 0; 1368 int ret; 1369 int defrag_count = 0; 1370 int compress_type = BTRFS_COMPRESS_ZLIB; 1371 u32 extent_thresh = range->extent_thresh; 1372 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1373 unsigned long cluster = max_cluster; 1374 u64 new_align = ~((u64)SZ_128K - 1); 1375 struct page **pages = NULL; 1376 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1377 1378 if (isize == 0) 1379 return 0; 1380 1381 if (range->start >= isize) 1382 return -EINVAL; 1383 1384 if (do_compress) { 1385 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1386 return -EINVAL; 1387 if (range->compress_type) 1388 compress_type = range->compress_type; 1389 } 1390 1391 if (extent_thresh == 0) 1392 extent_thresh = SZ_256K; 1393 1394 /* 1395 * If we were not given a file, allocate a readahead context. As 1396 * readahead is just an optimization, defrag will work without it so 1397 * we don't error out. 1398 */ 1399 if (!file) { 1400 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1401 if (ra) 1402 file_ra_state_init(ra, inode->i_mapping); 1403 } else { 1404 ra = &file->f_ra; 1405 } 1406 1407 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1408 if (!pages) { 1409 ret = -ENOMEM; 1410 goto out_ra; 1411 } 1412 1413 /* find the last page to defrag */ 1414 if (range->start + range->len > range->start) { 1415 last_index = min_t(u64, isize - 1, 1416 range->start + range->len - 1) >> PAGE_SHIFT; 1417 } else { 1418 last_index = (isize - 1) >> PAGE_SHIFT; 1419 } 1420 1421 if (newer_than) { 1422 ret = find_new_extents(root, inode, newer_than, 1423 &newer_off, SZ_64K); 1424 if (!ret) { 1425 range->start = newer_off; 1426 /* 1427 * we always align our defrag to help keep 1428 * the extents in the file evenly spaced 1429 */ 1430 i = (newer_off & new_align) >> PAGE_SHIFT; 1431 } else 1432 goto out_ra; 1433 } else { 1434 i = range->start >> PAGE_SHIFT; 1435 } 1436 if (!max_to_defrag) 1437 max_to_defrag = last_index - i + 1; 1438 1439 /* 1440 * make writeback starts from i, so the defrag range can be 1441 * written sequentially. 1442 */ 1443 if (i < inode->i_mapping->writeback_index) 1444 inode->i_mapping->writeback_index = i; 1445 1446 while (i <= last_index && defrag_count < max_to_defrag && 1447 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1448 /* 1449 * make sure we stop running if someone unmounts 1450 * the FS 1451 */ 1452 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1453 break; 1454 1455 if (btrfs_defrag_cancelled(fs_info)) { 1456 btrfs_debug(fs_info, "defrag_file cancelled"); 1457 ret = -EAGAIN; 1458 break; 1459 } 1460 1461 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1462 extent_thresh, &last_len, &skip, 1463 &defrag_end, do_compress)){ 1464 unsigned long next; 1465 /* 1466 * the should_defrag function tells us how much to skip 1467 * bump our counter by the suggested amount 1468 */ 1469 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1470 i = max(i + 1, next); 1471 continue; 1472 } 1473 1474 if (!newer_than) { 1475 cluster = (PAGE_ALIGN(defrag_end) >> 1476 PAGE_SHIFT) - i; 1477 cluster = min(cluster, max_cluster); 1478 } else { 1479 cluster = max_cluster; 1480 } 1481 1482 if (i + cluster > ra_index) { 1483 ra_index = max(i, ra_index); 1484 if (ra) 1485 page_cache_sync_readahead(inode->i_mapping, ra, 1486 file, ra_index, cluster); 1487 ra_index += cluster; 1488 } 1489 1490 btrfs_inode_lock(inode, 0); 1491 if (IS_SWAPFILE(inode)) { 1492 ret = -ETXTBSY; 1493 } else { 1494 if (do_compress) 1495 BTRFS_I(inode)->defrag_compress = compress_type; 1496 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1497 } 1498 if (ret < 0) { 1499 btrfs_inode_unlock(inode, 0); 1500 goto out_ra; 1501 } 1502 1503 defrag_count += ret; 1504 balance_dirty_pages_ratelimited(inode->i_mapping); 1505 btrfs_inode_unlock(inode, 0); 1506 1507 if (newer_than) { 1508 if (newer_off == (u64)-1) 1509 break; 1510 1511 if (ret > 0) 1512 i += ret; 1513 1514 newer_off = max(newer_off + 1, 1515 (u64)i << PAGE_SHIFT); 1516 1517 ret = find_new_extents(root, inode, newer_than, 1518 &newer_off, SZ_64K); 1519 if (!ret) { 1520 range->start = newer_off; 1521 i = (newer_off & new_align) >> PAGE_SHIFT; 1522 } else { 1523 break; 1524 } 1525 } else { 1526 if (ret > 0) { 1527 i += ret; 1528 last_len += ret << PAGE_SHIFT; 1529 } else { 1530 i++; 1531 last_len = 0; 1532 } 1533 } 1534 } 1535 1536 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1537 filemap_flush(inode->i_mapping); 1538 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1539 &BTRFS_I(inode)->runtime_flags)) 1540 filemap_flush(inode->i_mapping); 1541 } 1542 1543 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1544 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1545 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1546 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1547 } 1548 1549 ret = defrag_count; 1550 1551 out_ra: 1552 if (do_compress) { 1553 btrfs_inode_lock(inode, 0); 1554 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1555 btrfs_inode_unlock(inode, 0); 1556 } 1557 if (!file) 1558 kfree(ra); 1559 kfree(pages); 1560 return ret; 1561 } 1562 1563 static noinline int btrfs_ioctl_resize(struct file *file, 1564 void __user *arg) 1565 { 1566 struct inode *inode = file_inode(file); 1567 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1568 u64 new_size; 1569 u64 old_size; 1570 u64 devid = 1; 1571 struct btrfs_root *root = BTRFS_I(inode)->root; 1572 struct btrfs_ioctl_vol_args *vol_args; 1573 struct btrfs_trans_handle *trans; 1574 struct btrfs_device *device = NULL; 1575 char *sizestr; 1576 char *retptr; 1577 char *devstr = NULL; 1578 int ret = 0; 1579 int mod = 0; 1580 1581 if (!capable(CAP_SYS_ADMIN)) 1582 return -EPERM; 1583 1584 ret = mnt_want_write_file(file); 1585 if (ret) 1586 return ret; 1587 1588 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) { 1589 mnt_drop_write_file(file); 1590 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1591 } 1592 1593 vol_args = memdup_user(arg, sizeof(*vol_args)); 1594 if (IS_ERR(vol_args)) { 1595 ret = PTR_ERR(vol_args); 1596 goto out; 1597 } 1598 1599 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1600 1601 sizestr = vol_args->name; 1602 devstr = strchr(sizestr, ':'); 1603 if (devstr) { 1604 sizestr = devstr + 1; 1605 *devstr = '\0'; 1606 devstr = vol_args->name; 1607 ret = kstrtoull(devstr, 10, &devid); 1608 if (ret) 1609 goto out_free; 1610 if (!devid) { 1611 ret = -EINVAL; 1612 goto out_free; 1613 } 1614 btrfs_info(fs_info, "resizing devid %llu", devid); 1615 } 1616 1617 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); 1618 if (!device) { 1619 btrfs_info(fs_info, "resizer unable to find device %llu", 1620 devid); 1621 ret = -ENODEV; 1622 goto out_free; 1623 } 1624 1625 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1626 btrfs_info(fs_info, 1627 "resizer unable to apply on readonly device %llu", 1628 devid); 1629 ret = -EPERM; 1630 goto out_free; 1631 } 1632 1633 if (!strcmp(sizestr, "max")) 1634 new_size = device->bdev->bd_inode->i_size; 1635 else { 1636 if (sizestr[0] == '-') { 1637 mod = -1; 1638 sizestr++; 1639 } else if (sizestr[0] == '+') { 1640 mod = 1; 1641 sizestr++; 1642 } 1643 new_size = memparse(sizestr, &retptr); 1644 if (*retptr != '\0' || new_size == 0) { 1645 ret = -EINVAL; 1646 goto out_free; 1647 } 1648 } 1649 1650 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1651 ret = -EPERM; 1652 goto out_free; 1653 } 1654 1655 old_size = btrfs_device_get_total_bytes(device); 1656 1657 if (mod < 0) { 1658 if (new_size > old_size) { 1659 ret = -EINVAL; 1660 goto out_free; 1661 } 1662 new_size = old_size - new_size; 1663 } else if (mod > 0) { 1664 if (new_size > ULLONG_MAX - old_size) { 1665 ret = -ERANGE; 1666 goto out_free; 1667 } 1668 new_size = old_size + new_size; 1669 } 1670 1671 if (new_size < SZ_256M) { 1672 ret = -EINVAL; 1673 goto out_free; 1674 } 1675 if (new_size > device->bdev->bd_inode->i_size) { 1676 ret = -EFBIG; 1677 goto out_free; 1678 } 1679 1680 new_size = round_down(new_size, fs_info->sectorsize); 1681 1682 if (new_size > old_size) { 1683 trans = btrfs_start_transaction(root, 0); 1684 if (IS_ERR(trans)) { 1685 ret = PTR_ERR(trans); 1686 goto out_free; 1687 } 1688 ret = btrfs_grow_device(trans, device, new_size); 1689 btrfs_commit_transaction(trans); 1690 } else if (new_size < old_size) { 1691 ret = btrfs_shrink_device(device, new_size); 1692 } /* equal, nothing need to do */ 1693 1694 if (ret == 0 && new_size != old_size) 1695 btrfs_info_in_rcu(fs_info, 1696 "resize device %s (devid %llu) from %llu to %llu", 1697 rcu_str_deref(device->name), device->devid, 1698 old_size, new_size); 1699 out_free: 1700 kfree(vol_args); 1701 out: 1702 btrfs_exclop_finish(fs_info); 1703 mnt_drop_write_file(file); 1704 return ret; 1705 } 1706 1707 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1708 const char *name, unsigned long fd, int subvol, 1709 bool readonly, 1710 struct btrfs_qgroup_inherit *inherit) 1711 { 1712 int namelen; 1713 int ret = 0; 1714 1715 if (!S_ISDIR(file_inode(file)->i_mode)) 1716 return -ENOTDIR; 1717 1718 ret = mnt_want_write_file(file); 1719 if (ret) 1720 goto out; 1721 1722 namelen = strlen(name); 1723 if (strchr(name, '/')) { 1724 ret = -EINVAL; 1725 goto out_drop_write; 1726 } 1727 1728 if (name[0] == '.' && 1729 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1730 ret = -EEXIST; 1731 goto out_drop_write; 1732 } 1733 1734 if (subvol) { 1735 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1736 NULL, readonly, inherit); 1737 } else { 1738 struct fd src = fdget(fd); 1739 struct inode *src_inode; 1740 if (!src.file) { 1741 ret = -EINVAL; 1742 goto out_drop_write; 1743 } 1744 1745 src_inode = file_inode(src.file); 1746 if (src_inode->i_sb != file_inode(file)->i_sb) { 1747 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1748 "Snapshot src from another FS"); 1749 ret = -EXDEV; 1750 } else if (!inode_owner_or_capable(&init_user_ns, src_inode)) { 1751 /* 1752 * Subvolume creation is not restricted, but snapshots 1753 * are limited to own subvolumes only 1754 */ 1755 ret = -EPERM; 1756 } else { 1757 ret = btrfs_mksnapshot(&file->f_path, name, namelen, 1758 BTRFS_I(src_inode)->root, 1759 readonly, inherit); 1760 } 1761 fdput(src); 1762 } 1763 out_drop_write: 1764 mnt_drop_write_file(file); 1765 out: 1766 return ret; 1767 } 1768 1769 static noinline int btrfs_ioctl_snap_create(struct file *file, 1770 void __user *arg, int subvol) 1771 { 1772 struct btrfs_ioctl_vol_args *vol_args; 1773 int ret; 1774 1775 if (!S_ISDIR(file_inode(file)->i_mode)) 1776 return -ENOTDIR; 1777 1778 vol_args = memdup_user(arg, sizeof(*vol_args)); 1779 if (IS_ERR(vol_args)) 1780 return PTR_ERR(vol_args); 1781 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1782 1783 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1784 subvol, false, NULL); 1785 1786 kfree(vol_args); 1787 return ret; 1788 } 1789 1790 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1791 void __user *arg, int subvol) 1792 { 1793 struct btrfs_ioctl_vol_args_v2 *vol_args; 1794 int ret; 1795 bool readonly = false; 1796 struct btrfs_qgroup_inherit *inherit = NULL; 1797 1798 if (!S_ISDIR(file_inode(file)->i_mode)) 1799 return -ENOTDIR; 1800 1801 vol_args = memdup_user(arg, sizeof(*vol_args)); 1802 if (IS_ERR(vol_args)) 1803 return PTR_ERR(vol_args); 1804 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1805 1806 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1807 ret = -EOPNOTSUPP; 1808 goto free_args; 1809 } 1810 1811 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1812 readonly = true; 1813 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1814 u64 nums; 1815 1816 if (vol_args->size < sizeof(*inherit) || 1817 vol_args->size > PAGE_SIZE) { 1818 ret = -EINVAL; 1819 goto free_args; 1820 } 1821 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1822 if (IS_ERR(inherit)) { 1823 ret = PTR_ERR(inherit); 1824 goto free_args; 1825 } 1826 1827 if (inherit->num_qgroups > PAGE_SIZE || 1828 inherit->num_ref_copies > PAGE_SIZE || 1829 inherit->num_excl_copies > PAGE_SIZE) { 1830 ret = -EINVAL; 1831 goto free_inherit; 1832 } 1833 1834 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1835 2 * inherit->num_excl_copies; 1836 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1837 ret = -EINVAL; 1838 goto free_inherit; 1839 } 1840 } 1841 1842 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1843 subvol, readonly, inherit); 1844 if (ret) 1845 goto free_inherit; 1846 free_inherit: 1847 kfree(inherit); 1848 free_args: 1849 kfree(vol_args); 1850 return ret; 1851 } 1852 1853 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1854 void __user *arg) 1855 { 1856 struct inode *inode = file_inode(file); 1857 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1858 struct btrfs_root *root = BTRFS_I(inode)->root; 1859 int ret = 0; 1860 u64 flags = 0; 1861 1862 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1863 return -EINVAL; 1864 1865 down_read(&fs_info->subvol_sem); 1866 if (btrfs_root_readonly(root)) 1867 flags |= BTRFS_SUBVOL_RDONLY; 1868 up_read(&fs_info->subvol_sem); 1869 1870 if (copy_to_user(arg, &flags, sizeof(flags))) 1871 ret = -EFAULT; 1872 1873 return ret; 1874 } 1875 1876 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1877 void __user *arg) 1878 { 1879 struct inode *inode = file_inode(file); 1880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1881 struct btrfs_root *root = BTRFS_I(inode)->root; 1882 struct btrfs_trans_handle *trans; 1883 u64 root_flags; 1884 u64 flags; 1885 int ret = 0; 1886 1887 if (!inode_owner_or_capable(&init_user_ns, inode)) 1888 return -EPERM; 1889 1890 ret = mnt_want_write_file(file); 1891 if (ret) 1892 goto out; 1893 1894 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1895 ret = -EINVAL; 1896 goto out_drop_write; 1897 } 1898 1899 if (copy_from_user(&flags, arg, sizeof(flags))) { 1900 ret = -EFAULT; 1901 goto out_drop_write; 1902 } 1903 1904 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1905 ret = -EOPNOTSUPP; 1906 goto out_drop_write; 1907 } 1908 1909 down_write(&fs_info->subvol_sem); 1910 1911 /* nothing to do */ 1912 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1913 goto out_drop_sem; 1914 1915 root_flags = btrfs_root_flags(&root->root_item); 1916 if (flags & BTRFS_SUBVOL_RDONLY) { 1917 btrfs_set_root_flags(&root->root_item, 1918 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1919 } else { 1920 /* 1921 * Block RO -> RW transition if this subvolume is involved in 1922 * send 1923 */ 1924 spin_lock(&root->root_item_lock); 1925 if (root->send_in_progress == 0) { 1926 btrfs_set_root_flags(&root->root_item, 1927 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1928 spin_unlock(&root->root_item_lock); 1929 } else { 1930 spin_unlock(&root->root_item_lock); 1931 btrfs_warn(fs_info, 1932 "Attempt to set subvolume %llu read-write during send", 1933 root->root_key.objectid); 1934 ret = -EPERM; 1935 goto out_drop_sem; 1936 } 1937 } 1938 1939 trans = btrfs_start_transaction(root, 1); 1940 if (IS_ERR(trans)) { 1941 ret = PTR_ERR(trans); 1942 goto out_reset; 1943 } 1944 1945 ret = btrfs_update_root(trans, fs_info->tree_root, 1946 &root->root_key, &root->root_item); 1947 if (ret < 0) { 1948 btrfs_end_transaction(trans); 1949 goto out_reset; 1950 } 1951 1952 ret = btrfs_commit_transaction(trans); 1953 1954 out_reset: 1955 if (ret) 1956 btrfs_set_root_flags(&root->root_item, root_flags); 1957 out_drop_sem: 1958 up_write(&fs_info->subvol_sem); 1959 out_drop_write: 1960 mnt_drop_write_file(file); 1961 out: 1962 return ret; 1963 } 1964 1965 static noinline int key_in_sk(struct btrfs_key *key, 1966 struct btrfs_ioctl_search_key *sk) 1967 { 1968 struct btrfs_key test; 1969 int ret; 1970 1971 test.objectid = sk->min_objectid; 1972 test.type = sk->min_type; 1973 test.offset = sk->min_offset; 1974 1975 ret = btrfs_comp_cpu_keys(key, &test); 1976 if (ret < 0) 1977 return 0; 1978 1979 test.objectid = sk->max_objectid; 1980 test.type = sk->max_type; 1981 test.offset = sk->max_offset; 1982 1983 ret = btrfs_comp_cpu_keys(key, &test); 1984 if (ret > 0) 1985 return 0; 1986 return 1; 1987 } 1988 1989 static noinline int copy_to_sk(struct btrfs_path *path, 1990 struct btrfs_key *key, 1991 struct btrfs_ioctl_search_key *sk, 1992 size_t *buf_size, 1993 char __user *ubuf, 1994 unsigned long *sk_offset, 1995 int *num_found) 1996 { 1997 u64 found_transid; 1998 struct extent_buffer *leaf; 1999 struct btrfs_ioctl_search_header sh; 2000 struct btrfs_key test; 2001 unsigned long item_off; 2002 unsigned long item_len; 2003 int nritems; 2004 int i; 2005 int slot; 2006 int ret = 0; 2007 2008 leaf = path->nodes[0]; 2009 slot = path->slots[0]; 2010 nritems = btrfs_header_nritems(leaf); 2011 2012 if (btrfs_header_generation(leaf) > sk->max_transid) { 2013 i = nritems; 2014 goto advance_key; 2015 } 2016 found_transid = btrfs_header_generation(leaf); 2017 2018 for (i = slot; i < nritems; i++) { 2019 item_off = btrfs_item_ptr_offset(leaf, i); 2020 item_len = btrfs_item_size_nr(leaf, i); 2021 2022 btrfs_item_key_to_cpu(leaf, key, i); 2023 if (!key_in_sk(key, sk)) 2024 continue; 2025 2026 if (sizeof(sh) + item_len > *buf_size) { 2027 if (*num_found) { 2028 ret = 1; 2029 goto out; 2030 } 2031 2032 /* 2033 * return one empty item back for v1, which does not 2034 * handle -EOVERFLOW 2035 */ 2036 2037 *buf_size = sizeof(sh) + item_len; 2038 item_len = 0; 2039 ret = -EOVERFLOW; 2040 } 2041 2042 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2043 ret = 1; 2044 goto out; 2045 } 2046 2047 sh.objectid = key->objectid; 2048 sh.offset = key->offset; 2049 sh.type = key->type; 2050 sh.len = item_len; 2051 sh.transid = found_transid; 2052 2053 /* 2054 * Copy search result header. If we fault then loop again so we 2055 * can fault in the pages and -EFAULT there if there's a 2056 * problem. Otherwise we'll fault and then copy the buffer in 2057 * properly this next time through 2058 */ 2059 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2060 ret = 0; 2061 goto out; 2062 } 2063 2064 *sk_offset += sizeof(sh); 2065 2066 if (item_len) { 2067 char __user *up = ubuf + *sk_offset; 2068 /* 2069 * Copy the item, same behavior as above, but reset the 2070 * * sk_offset so we copy the full thing again. 2071 */ 2072 if (read_extent_buffer_to_user_nofault(leaf, up, 2073 item_off, item_len)) { 2074 ret = 0; 2075 *sk_offset -= sizeof(sh); 2076 goto out; 2077 } 2078 2079 *sk_offset += item_len; 2080 } 2081 (*num_found)++; 2082 2083 if (ret) /* -EOVERFLOW from above */ 2084 goto out; 2085 2086 if (*num_found >= sk->nr_items) { 2087 ret = 1; 2088 goto out; 2089 } 2090 } 2091 advance_key: 2092 ret = 0; 2093 test.objectid = sk->max_objectid; 2094 test.type = sk->max_type; 2095 test.offset = sk->max_offset; 2096 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2097 ret = 1; 2098 else if (key->offset < (u64)-1) 2099 key->offset++; 2100 else if (key->type < (u8)-1) { 2101 key->offset = 0; 2102 key->type++; 2103 } else if (key->objectid < (u64)-1) { 2104 key->offset = 0; 2105 key->type = 0; 2106 key->objectid++; 2107 } else 2108 ret = 1; 2109 out: 2110 /* 2111 * 0: all items from this leaf copied, continue with next 2112 * 1: * more items can be copied, but unused buffer is too small 2113 * * all items were found 2114 * Either way, it will stops the loop which iterates to the next 2115 * leaf 2116 * -EOVERFLOW: item was to large for buffer 2117 * -EFAULT: could not copy extent buffer back to userspace 2118 */ 2119 return ret; 2120 } 2121 2122 static noinline int search_ioctl(struct inode *inode, 2123 struct btrfs_ioctl_search_key *sk, 2124 size_t *buf_size, 2125 char __user *ubuf) 2126 { 2127 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2128 struct btrfs_root *root; 2129 struct btrfs_key key; 2130 struct btrfs_path *path; 2131 int ret; 2132 int num_found = 0; 2133 unsigned long sk_offset = 0; 2134 2135 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2136 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2137 return -EOVERFLOW; 2138 } 2139 2140 path = btrfs_alloc_path(); 2141 if (!path) 2142 return -ENOMEM; 2143 2144 if (sk->tree_id == 0) { 2145 /* search the root of the inode that was passed */ 2146 root = btrfs_grab_root(BTRFS_I(inode)->root); 2147 } else { 2148 root = btrfs_get_fs_root(info, sk->tree_id, true); 2149 if (IS_ERR(root)) { 2150 btrfs_free_path(path); 2151 return PTR_ERR(root); 2152 } 2153 } 2154 2155 key.objectid = sk->min_objectid; 2156 key.type = sk->min_type; 2157 key.offset = sk->min_offset; 2158 2159 while (1) { 2160 ret = fault_in_pages_writeable(ubuf + sk_offset, 2161 *buf_size - sk_offset); 2162 if (ret) 2163 break; 2164 2165 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2166 if (ret != 0) { 2167 if (ret > 0) 2168 ret = 0; 2169 goto err; 2170 } 2171 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2172 &sk_offset, &num_found); 2173 btrfs_release_path(path); 2174 if (ret) 2175 break; 2176 2177 } 2178 if (ret > 0) 2179 ret = 0; 2180 err: 2181 sk->nr_items = num_found; 2182 btrfs_put_root(root); 2183 btrfs_free_path(path); 2184 return ret; 2185 } 2186 2187 static noinline int btrfs_ioctl_tree_search(struct file *file, 2188 void __user *argp) 2189 { 2190 struct btrfs_ioctl_search_args __user *uargs; 2191 struct btrfs_ioctl_search_key sk; 2192 struct inode *inode; 2193 int ret; 2194 size_t buf_size; 2195 2196 if (!capable(CAP_SYS_ADMIN)) 2197 return -EPERM; 2198 2199 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2200 2201 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2202 return -EFAULT; 2203 2204 buf_size = sizeof(uargs->buf); 2205 2206 inode = file_inode(file); 2207 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2208 2209 /* 2210 * In the origin implementation an overflow is handled by returning a 2211 * search header with a len of zero, so reset ret. 2212 */ 2213 if (ret == -EOVERFLOW) 2214 ret = 0; 2215 2216 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2217 ret = -EFAULT; 2218 return ret; 2219 } 2220 2221 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2222 void __user *argp) 2223 { 2224 struct btrfs_ioctl_search_args_v2 __user *uarg; 2225 struct btrfs_ioctl_search_args_v2 args; 2226 struct inode *inode; 2227 int ret; 2228 size_t buf_size; 2229 const size_t buf_limit = SZ_16M; 2230 2231 if (!capable(CAP_SYS_ADMIN)) 2232 return -EPERM; 2233 2234 /* copy search header and buffer size */ 2235 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2236 if (copy_from_user(&args, uarg, sizeof(args))) 2237 return -EFAULT; 2238 2239 buf_size = args.buf_size; 2240 2241 /* limit result size to 16MB */ 2242 if (buf_size > buf_limit) 2243 buf_size = buf_limit; 2244 2245 inode = file_inode(file); 2246 ret = search_ioctl(inode, &args.key, &buf_size, 2247 (char __user *)(&uarg->buf[0])); 2248 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2249 ret = -EFAULT; 2250 else if (ret == -EOVERFLOW && 2251 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2252 ret = -EFAULT; 2253 2254 return ret; 2255 } 2256 2257 /* 2258 * Search INODE_REFs to identify path name of 'dirid' directory 2259 * in a 'tree_id' tree. and sets path name to 'name'. 2260 */ 2261 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2262 u64 tree_id, u64 dirid, char *name) 2263 { 2264 struct btrfs_root *root; 2265 struct btrfs_key key; 2266 char *ptr; 2267 int ret = -1; 2268 int slot; 2269 int len; 2270 int total_len = 0; 2271 struct btrfs_inode_ref *iref; 2272 struct extent_buffer *l; 2273 struct btrfs_path *path; 2274 2275 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2276 name[0]='\0'; 2277 return 0; 2278 } 2279 2280 path = btrfs_alloc_path(); 2281 if (!path) 2282 return -ENOMEM; 2283 2284 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2285 2286 root = btrfs_get_fs_root(info, tree_id, true); 2287 if (IS_ERR(root)) { 2288 ret = PTR_ERR(root); 2289 root = NULL; 2290 goto out; 2291 } 2292 2293 key.objectid = dirid; 2294 key.type = BTRFS_INODE_REF_KEY; 2295 key.offset = (u64)-1; 2296 2297 while (1) { 2298 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2299 if (ret < 0) 2300 goto out; 2301 else if (ret > 0) { 2302 ret = btrfs_previous_item(root, path, dirid, 2303 BTRFS_INODE_REF_KEY); 2304 if (ret < 0) 2305 goto out; 2306 else if (ret > 0) { 2307 ret = -ENOENT; 2308 goto out; 2309 } 2310 } 2311 2312 l = path->nodes[0]; 2313 slot = path->slots[0]; 2314 btrfs_item_key_to_cpu(l, &key, slot); 2315 2316 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2317 len = btrfs_inode_ref_name_len(l, iref); 2318 ptr -= len + 1; 2319 total_len += len + 1; 2320 if (ptr < name) { 2321 ret = -ENAMETOOLONG; 2322 goto out; 2323 } 2324 2325 *(ptr + len) = '/'; 2326 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2327 2328 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2329 break; 2330 2331 btrfs_release_path(path); 2332 key.objectid = key.offset; 2333 key.offset = (u64)-1; 2334 dirid = key.objectid; 2335 } 2336 memmove(name, ptr, total_len); 2337 name[total_len] = '\0'; 2338 ret = 0; 2339 out: 2340 btrfs_put_root(root); 2341 btrfs_free_path(path); 2342 return ret; 2343 } 2344 2345 static int btrfs_search_path_in_tree_user(struct inode *inode, 2346 struct btrfs_ioctl_ino_lookup_user_args *args) 2347 { 2348 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2349 struct super_block *sb = inode->i_sb; 2350 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2351 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2352 u64 dirid = args->dirid; 2353 unsigned long item_off; 2354 unsigned long item_len; 2355 struct btrfs_inode_ref *iref; 2356 struct btrfs_root_ref *rref; 2357 struct btrfs_root *root = NULL; 2358 struct btrfs_path *path; 2359 struct btrfs_key key, key2; 2360 struct extent_buffer *leaf; 2361 struct inode *temp_inode; 2362 char *ptr; 2363 int slot; 2364 int len; 2365 int total_len = 0; 2366 int ret; 2367 2368 path = btrfs_alloc_path(); 2369 if (!path) 2370 return -ENOMEM; 2371 2372 /* 2373 * If the bottom subvolume does not exist directly under upper_limit, 2374 * construct the path in from the bottom up. 2375 */ 2376 if (dirid != upper_limit.objectid) { 2377 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2378 2379 root = btrfs_get_fs_root(fs_info, treeid, true); 2380 if (IS_ERR(root)) { 2381 ret = PTR_ERR(root); 2382 goto out; 2383 } 2384 2385 key.objectid = dirid; 2386 key.type = BTRFS_INODE_REF_KEY; 2387 key.offset = (u64)-1; 2388 while (1) { 2389 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2390 if (ret < 0) { 2391 goto out_put; 2392 } else if (ret > 0) { 2393 ret = btrfs_previous_item(root, path, dirid, 2394 BTRFS_INODE_REF_KEY); 2395 if (ret < 0) { 2396 goto out_put; 2397 } else if (ret > 0) { 2398 ret = -ENOENT; 2399 goto out_put; 2400 } 2401 } 2402 2403 leaf = path->nodes[0]; 2404 slot = path->slots[0]; 2405 btrfs_item_key_to_cpu(leaf, &key, slot); 2406 2407 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2408 len = btrfs_inode_ref_name_len(leaf, iref); 2409 ptr -= len + 1; 2410 total_len += len + 1; 2411 if (ptr < args->path) { 2412 ret = -ENAMETOOLONG; 2413 goto out_put; 2414 } 2415 2416 *(ptr + len) = '/'; 2417 read_extent_buffer(leaf, ptr, 2418 (unsigned long)(iref + 1), len); 2419 2420 /* Check the read+exec permission of this directory */ 2421 ret = btrfs_previous_item(root, path, dirid, 2422 BTRFS_INODE_ITEM_KEY); 2423 if (ret < 0) { 2424 goto out_put; 2425 } else if (ret > 0) { 2426 ret = -ENOENT; 2427 goto out_put; 2428 } 2429 2430 leaf = path->nodes[0]; 2431 slot = path->slots[0]; 2432 btrfs_item_key_to_cpu(leaf, &key2, slot); 2433 if (key2.objectid != dirid) { 2434 ret = -ENOENT; 2435 goto out_put; 2436 } 2437 2438 temp_inode = btrfs_iget(sb, key2.objectid, root); 2439 if (IS_ERR(temp_inode)) { 2440 ret = PTR_ERR(temp_inode); 2441 goto out_put; 2442 } 2443 ret = inode_permission(&init_user_ns, temp_inode, 2444 MAY_READ | MAY_EXEC); 2445 iput(temp_inode); 2446 if (ret) { 2447 ret = -EACCES; 2448 goto out_put; 2449 } 2450 2451 if (key.offset == upper_limit.objectid) 2452 break; 2453 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2454 ret = -EACCES; 2455 goto out_put; 2456 } 2457 2458 btrfs_release_path(path); 2459 key.objectid = key.offset; 2460 key.offset = (u64)-1; 2461 dirid = key.objectid; 2462 } 2463 2464 memmove(args->path, ptr, total_len); 2465 args->path[total_len] = '\0'; 2466 btrfs_put_root(root); 2467 root = NULL; 2468 btrfs_release_path(path); 2469 } 2470 2471 /* Get the bottom subvolume's name from ROOT_REF */ 2472 key.objectid = treeid; 2473 key.type = BTRFS_ROOT_REF_KEY; 2474 key.offset = args->treeid; 2475 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2476 if (ret < 0) { 2477 goto out; 2478 } else if (ret > 0) { 2479 ret = -ENOENT; 2480 goto out; 2481 } 2482 2483 leaf = path->nodes[0]; 2484 slot = path->slots[0]; 2485 btrfs_item_key_to_cpu(leaf, &key, slot); 2486 2487 item_off = btrfs_item_ptr_offset(leaf, slot); 2488 item_len = btrfs_item_size_nr(leaf, slot); 2489 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2490 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2491 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2492 ret = -EINVAL; 2493 goto out; 2494 } 2495 2496 /* Copy subvolume's name */ 2497 item_off += sizeof(struct btrfs_root_ref); 2498 item_len -= sizeof(struct btrfs_root_ref); 2499 read_extent_buffer(leaf, args->name, item_off, item_len); 2500 args->name[item_len] = 0; 2501 2502 out_put: 2503 btrfs_put_root(root); 2504 out: 2505 btrfs_free_path(path); 2506 return ret; 2507 } 2508 2509 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2510 void __user *argp) 2511 { 2512 struct btrfs_ioctl_ino_lookup_args *args; 2513 struct inode *inode; 2514 int ret = 0; 2515 2516 args = memdup_user(argp, sizeof(*args)); 2517 if (IS_ERR(args)) 2518 return PTR_ERR(args); 2519 2520 inode = file_inode(file); 2521 2522 /* 2523 * Unprivileged query to obtain the containing subvolume root id. The 2524 * path is reset so it's consistent with btrfs_search_path_in_tree. 2525 */ 2526 if (args->treeid == 0) 2527 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2528 2529 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2530 args->name[0] = 0; 2531 goto out; 2532 } 2533 2534 if (!capable(CAP_SYS_ADMIN)) { 2535 ret = -EPERM; 2536 goto out; 2537 } 2538 2539 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2540 args->treeid, args->objectid, 2541 args->name); 2542 2543 out: 2544 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2545 ret = -EFAULT; 2546 2547 kfree(args); 2548 return ret; 2549 } 2550 2551 /* 2552 * Version of ino_lookup ioctl (unprivileged) 2553 * 2554 * The main differences from ino_lookup ioctl are: 2555 * 2556 * 1. Read + Exec permission will be checked using inode_permission() during 2557 * path construction. -EACCES will be returned in case of failure. 2558 * 2. Path construction will be stopped at the inode number which corresponds 2559 * to the fd with which this ioctl is called. If constructed path does not 2560 * exist under fd's inode, -EACCES will be returned. 2561 * 3. The name of bottom subvolume is also searched and filled. 2562 */ 2563 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2564 { 2565 struct btrfs_ioctl_ino_lookup_user_args *args; 2566 struct inode *inode; 2567 int ret; 2568 2569 args = memdup_user(argp, sizeof(*args)); 2570 if (IS_ERR(args)) 2571 return PTR_ERR(args); 2572 2573 inode = file_inode(file); 2574 2575 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2576 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2577 /* 2578 * The subvolume does not exist under fd with which this is 2579 * called 2580 */ 2581 kfree(args); 2582 return -EACCES; 2583 } 2584 2585 ret = btrfs_search_path_in_tree_user(inode, args); 2586 2587 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2588 ret = -EFAULT; 2589 2590 kfree(args); 2591 return ret; 2592 } 2593 2594 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2595 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2596 { 2597 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2598 struct btrfs_fs_info *fs_info; 2599 struct btrfs_root *root; 2600 struct btrfs_path *path; 2601 struct btrfs_key key; 2602 struct btrfs_root_item *root_item; 2603 struct btrfs_root_ref *rref; 2604 struct extent_buffer *leaf; 2605 unsigned long item_off; 2606 unsigned long item_len; 2607 struct inode *inode; 2608 int slot; 2609 int ret = 0; 2610 2611 path = btrfs_alloc_path(); 2612 if (!path) 2613 return -ENOMEM; 2614 2615 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2616 if (!subvol_info) { 2617 btrfs_free_path(path); 2618 return -ENOMEM; 2619 } 2620 2621 inode = file_inode(file); 2622 fs_info = BTRFS_I(inode)->root->fs_info; 2623 2624 /* Get root_item of inode's subvolume */ 2625 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2626 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2627 if (IS_ERR(root)) { 2628 ret = PTR_ERR(root); 2629 goto out_free; 2630 } 2631 root_item = &root->root_item; 2632 2633 subvol_info->treeid = key.objectid; 2634 2635 subvol_info->generation = btrfs_root_generation(root_item); 2636 subvol_info->flags = btrfs_root_flags(root_item); 2637 2638 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2639 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2640 BTRFS_UUID_SIZE); 2641 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2642 BTRFS_UUID_SIZE); 2643 2644 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2645 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2646 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2647 2648 subvol_info->otransid = btrfs_root_otransid(root_item); 2649 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2650 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2651 2652 subvol_info->stransid = btrfs_root_stransid(root_item); 2653 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2654 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2655 2656 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2657 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2658 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2659 2660 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2661 /* Search root tree for ROOT_BACKREF of this subvolume */ 2662 key.type = BTRFS_ROOT_BACKREF_KEY; 2663 key.offset = 0; 2664 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2665 if (ret < 0) { 2666 goto out; 2667 } else if (path->slots[0] >= 2668 btrfs_header_nritems(path->nodes[0])) { 2669 ret = btrfs_next_leaf(fs_info->tree_root, path); 2670 if (ret < 0) { 2671 goto out; 2672 } else if (ret > 0) { 2673 ret = -EUCLEAN; 2674 goto out; 2675 } 2676 } 2677 2678 leaf = path->nodes[0]; 2679 slot = path->slots[0]; 2680 btrfs_item_key_to_cpu(leaf, &key, slot); 2681 if (key.objectid == subvol_info->treeid && 2682 key.type == BTRFS_ROOT_BACKREF_KEY) { 2683 subvol_info->parent_id = key.offset; 2684 2685 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2686 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2687 2688 item_off = btrfs_item_ptr_offset(leaf, slot) 2689 + sizeof(struct btrfs_root_ref); 2690 item_len = btrfs_item_size_nr(leaf, slot) 2691 - sizeof(struct btrfs_root_ref); 2692 read_extent_buffer(leaf, subvol_info->name, 2693 item_off, item_len); 2694 } else { 2695 ret = -ENOENT; 2696 goto out; 2697 } 2698 } 2699 2700 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2701 ret = -EFAULT; 2702 2703 out: 2704 btrfs_put_root(root); 2705 out_free: 2706 btrfs_free_path(path); 2707 kfree(subvol_info); 2708 return ret; 2709 } 2710 2711 /* 2712 * Return ROOT_REF information of the subvolume containing this inode 2713 * except the subvolume name. 2714 */ 2715 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2716 { 2717 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2718 struct btrfs_root_ref *rref; 2719 struct btrfs_root *root; 2720 struct btrfs_path *path; 2721 struct btrfs_key key; 2722 struct extent_buffer *leaf; 2723 struct inode *inode; 2724 u64 objectid; 2725 int slot; 2726 int ret; 2727 u8 found; 2728 2729 path = btrfs_alloc_path(); 2730 if (!path) 2731 return -ENOMEM; 2732 2733 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2734 if (IS_ERR(rootrefs)) { 2735 btrfs_free_path(path); 2736 return PTR_ERR(rootrefs); 2737 } 2738 2739 inode = file_inode(file); 2740 root = BTRFS_I(inode)->root->fs_info->tree_root; 2741 objectid = BTRFS_I(inode)->root->root_key.objectid; 2742 2743 key.objectid = objectid; 2744 key.type = BTRFS_ROOT_REF_KEY; 2745 key.offset = rootrefs->min_treeid; 2746 found = 0; 2747 2748 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2749 if (ret < 0) { 2750 goto out; 2751 } else if (path->slots[0] >= 2752 btrfs_header_nritems(path->nodes[0])) { 2753 ret = btrfs_next_leaf(root, path); 2754 if (ret < 0) { 2755 goto out; 2756 } else if (ret > 0) { 2757 ret = -EUCLEAN; 2758 goto out; 2759 } 2760 } 2761 while (1) { 2762 leaf = path->nodes[0]; 2763 slot = path->slots[0]; 2764 2765 btrfs_item_key_to_cpu(leaf, &key, slot); 2766 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2767 ret = 0; 2768 goto out; 2769 } 2770 2771 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2772 ret = -EOVERFLOW; 2773 goto out; 2774 } 2775 2776 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2777 rootrefs->rootref[found].treeid = key.offset; 2778 rootrefs->rootref[found].dirid = 2779 btrfs_root_ref_dirid(leaf, rref); 2780 found++; 2781 2782 ret = btrfs_next_item(root, path); 2783 if (ret < 0) { 2784 goto out; 2785 } else if (ret > 0) { 2786 ret = -EUCLEAN; 2787 goto out; 2788 } 2789 } 2790 2791 out: 2792 if (!ret || ret == -EOVERFLOW) { 2793 rootrefs->num_items = found; 2794 /* update min_treeid for next search */ 2795 if (found) 2796 rootrefs->min_treeid = 2797 rootrefs->rootref[found - 1].treeid + 1; 2798 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2799 ret = -EFAULT; 2800 } 2801 2802 kfree(rootrefs); 2803 btrfs_free_path(path); 2804 2805 return ret; 2806 } 2807 2808 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2809 void __user *arg, 2810 bool destroy_v2) 2811 { 2812 struct dentry *parent = file->f_path.dentry; 2813 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2814 struct dentry *dentry; 2815 struct inode *dir = d_inode(parent); 2816 struct inode *inode; 2817 struct btrfs_root *root = BTRFS_I(dir)->root; 2818 struct btrfs_root *dest = NULL; 2819 struct btrfs_ioctl_vol_args *vol_args = NULL; 2820 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2821 char *subvol_name, *subvol_name_ptr = NULL; 2822 int subvol_namelen; 2823 int err = 0; 2824 bool destroy_parent = false; 2825 2826 if (destroy_v2) { 2827 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2828 if (IS_ERR(vol_args2)) 2829 return PTR_ERR(vol_args2); 2830 2831 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2832 err = -EOPNOTSUPP; 2833 goto out; 2834 } 2835 2836 /* 2837 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2838 * name, same as v1 currently does. 2839 */ 2840 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2841 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2842 subvol_name = vol_args2->name; 2843 2844 err = mnt_want_write_file(file); 2845 if (err) 2846 goto out; 2847 } else { 2848 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2849 err = -EINVAL; 2850 goto out; 2851 } 2852 2853 err = mnt_want_write_file(file); 2854 if (err) 2855 goto out; 2856 2857 dentry = btrfs_get_dentry(fs_info->sb, 2858 BTRFS_FIRST_FREE_OBJECTID, 2859 vol_args2->subvolid, 0, 0); 2860 if (IS_ERR(dentry)) { 2861 err = PTR_ERR(dentry); 2862 goto out_drop_write; 2863 } 2864 2865 /* 2866 * Change the default parent since the subvolume being 2867 * deleted can be outside of the current mount point. 2868 */ 2869 parent = btrfs_get_parent(dentry); 2870 2871 /* 2872 * At this point dentry->d_name can point to '/' if the 2873 * subvolume we want to destroy is outsite of the 2874 * current mount point, so we need to release the 2875 * current dentry and execute the lookup to return a new 2876 * one with ->d_name pointing to the 2877 * <mount point>/subvol_name. 2878 */ 2879 dput(dentry); 2880 if (IS_ERR(parent)) { 2881 err = PTR_ERR(parent); 2882 goto out_drop_write; 2883 } 2884 dir = d_inode(parent); 2885 2886 /* 2887 * If v2 was used with SPEC_BY_ID, a new parent was 2888 * allocated since the subvolume can be outside of the 2889 * current mount point. Later on we need to release this 2890 * new parent dentry. 2891 */ 2892 destroy_parent = true; 2893 2894 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2895 fs_info, vol_args2->subvolid); 2896 if (IS_ERR(subvol_name_ptr)) { 2897 err = PTR_ERR(subvol_name_ptr); 2898 goto free_parent; 2899 } 2900 /* subvol_name_ptr is already NULL termined */ 2901 subvol_name = (char *)kbasename(subvol_name_ptr); 2902 } 2903 } else { 2904 vol_args = memdup_user(arg, sizeof(*vol_args)); 2905 if (IS_ERR(vol_args)) 2906 return PTR_ERR(vol_args); 2907 2908 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2909 subvol_name = vol_args->name; 2910 2911 err = mnt_want_write_file(file); 2912 if (err) 2913 goto out; 2914 } 2915 2916 subvol_namelen = strlen(subvol_name); 2917 2918 if (strchr(subvol_name, '/') || 2919 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2920 err = -EINVAL; 2921 goto free_subvol_name; 2922 } 2923 2924 if (!S_ISDIR(dir->i_mode)) { 2925 err = -ENOTDIR; 2926 goto free_subvol_name; 2927 } 2928 2929 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2930 if (err == -EINTR) 2931 goto free_subvol_name; 2932 dentry = lookup_one_len(subvol_name, parent, subvol_namelen); 2933 if (IS_ERR(dentry)) { 2934 err = PTR_ERR(dentry); 2935 goto out_unlock_dir; 2936 } 2937 2938 if (d_really_is_negative(dentry)) { 2939 err = -ENOENT; 2940 goto out_dput; 2941 } 2942 2943 inode = d_inode(dentry); 2944 dest = BTRFS_I(inode)->root; 2945 if (!capable(CAP_SYS_ADMIN)) { 2946 /* 2947 * Regular user. Only allow this with a special mount 2948 * option, when the user has write+exec access to the 2949 * subvol root, and when rmdir(2) would have been 2950 * allowed. 2951 * 2952 * Note that this is _not_ check that the subvol is 2953 * empty or doesn't contain data that we wouldn't 2954 * otherwise be able to delete. 2955 * 2956 * Users who want to delete empty subvols should try 2957 * rmdir(2). 2958 */ 2959 err = -EPERM; 2960 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2961 goto out_dput; 2962 2963 /* 2964 * Do not allow deletion if the parent dir is the same 2965 * as the dir to be deleted. That means the ioctl 2966 * must be called on the dentry referencing the root 2967 * of the subvol, not a random directory contained 2968 * within it. 2969 */ 2970 err = -EINVAL; 2971 if (root == dest) 2972 goto out_dput; 2973 2974 err = inode_permission(&init_user_ns, inode, 2975 MAY_WRITE | MAY_EXEC); 2976 if (err) 2977 goto out_dput; 2978 } 2979 2980 /* check if subvolume may be deleted by a user */ 2981 err = btrfs_may_delete(dir, dentry, 1); 2982 if (err) 2983 goto out_dput; 2984 2985 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2986 err = -EINVAL; 2987 goto out_dput; 2988 } 2989 2990 btrfs_inode_lock(inode, 0); 2991 err = btrfs_delete_subvolume(dir, dentry); 2992 btrfs_inode_unlock(inode, 0); 2993 if (!err) { 2994 fsnotify_rmdir(dir, dentry); 2995 d_delete(dentry); 2996 } 2997 2998 out_dput: 2999 dput(dentry); 3000 out_unlock_dir: 3001 btrfs_inode_unlock(dir, 0); 3002 free_subvol_name: 3003 kfree(subvol_name_ptr); 3004 free_parent: 3005 if (destroy_parent) 3006 dput(parent); 3007 out_drop_write: 3008 mnt_drop_write_file(file); 3009 out: 3010 kfree(vol_args2); 3011 kfree(vol_args); 3012 return err; 3013 } 3014 3015 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3016 { 3017 struct inode *inode = file_inode(file); 3018 struct btrfs_root *root = BTRFS_I(inode)->root; 3019 struct btrfs_ioctl_defrag_range_args *range; 3020 int ret; 3021 3022 ret = mnt_want_write_file(file); 3023 if (ret) 3024 return ret; 3025 3026 if (btrfs_root_readonly(root)) { 3027 ret = -EROFS; 3028 goto out; 3029 } 3030 3031 switch (inode->i_mode & S_IFMT) { 3032 case S_IFDIR: 3033 if (!capable(CAP_SYS_ADMIN)) { 3034 ret = -EPERM; 3035 goto out; 3036 } 3037 ret = btrfs_defrag_root(root); 3038 break; 3039 case S_IFREG: 3040 /* 3041 * Note that this does not check the file descriptor for write 3042 * access. This prevents defragmenting executables that are 3043 * running and allows defrag on files open in read-only mode. 3044 */ 3045 if (!capable(CAP_SYS_ADMIN) && 3046 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3047 ret = -EPERM; 3048 goto out; 3049 } 3050 3051 range = kzalloc(sizeof(*range), GFP_KERNEL); 3052 if (!range) { 3053 ret = -ENOMEM; 3054 goto out; 3055 } 3056 3057 if (argp) { 3058 if (copy_from_user(range, argp, 3059 sizeof(*range))) { 3060 ret = -EFAULT; 3061 kfree(range); 3062 goto out; 3063 } 3064 /* compression requires us to start the IO */ 3065 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3066 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 3067 range->extent_thresh = (u32)-1; 3068 } 3069 } else { 3070 /* the rest are all set to zero by kzalloc */ 3071 range->len = (u64)-1; 3072 } 3073 ret = btrfs_defrag_file(file_inode(file), file, 3074 range, BTRFS_OLDEST_GENERATION, 0); 3075 if (ret > 0) 3076 ret = 0; 3077 kfree(range); 3078 break; 3079 default: 3080 ret = -EINVAL; 3081 } 3082 out: 3083 mnt_drop_write_file(file); 3084 return ret; 3085 } 3086 3087 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3088 { 3089 struct btrfs_ioctl_vol_args *vol_args; 3090 int ret; 3091 3092 if (!capable(CAP_SYS_ADMIN)) 3093 return -EPERM; 3094 3095 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3096 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3097 3098 vol_args = memdup_user(arg, sizeof(*vol_args)); 3099 if (IS_ERR(vol_args)) { 3100 ret = PTR_ERR(vol_args); 3101 goto out; 3102 } 3103 3104 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3105 ret = btrfs_init_new_device(fs_info, vol_args->name); 3106 3107 if (!ret) 3108 btrfs_info(fs_info, "disk added %s", vol_args->name); 3109 3110 kfree(vol_args); 3111 out: 3112 btrfs_exclop_finish(fs_info); 3113 return ret; 3114 } 3115 3116 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3117 { 3118 struct inode *inode = file_inode(file); 3119 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3120 struct btrfs_ioctl_vol_args_v2 *vol_args; 3121 int ret; 3122 3123 if (!capable(CAP_SYS_ADMIN)) 3124 return -EPERM; 3125 3126 ret = mnt_want_write_file(file); 3127 if (ret) 3128 return ret; 3129 3130 vol_args = memdup_user(arg, sizeof(*vol_args)); 3131 if (IS_ERR(vol_args)) { 3132 ret = PTR_ERR(vol_args); 3133 goto err_drop; 3134 } 3135 3136 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3137 ret = -EOPNOTSUPP; 3138 goto out; 3139 } 3140 3141 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3142 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3143 goto out; 3144 } 3145 3146 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3147 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3148 } else { 3149 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3150 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3151 } 3152 btrfs_exclop_finish(fs_info); 3153 3154 if (!ret) { 3155 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3156 btrfs_info(fs_info, "device deleted: id %llu", 3157 vol_args->devid); 3158 else 3159 btrfs_info(fs_info, "device deleted: %s", 3160 vol_args->name); 3161 } 3162 out: 3163 kfree(vol_args); 3164 err_drop: 3165 mnt_drop_write_file(file); 3166 return ret; 3167 } 3168 3169 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3170 { 3171 struct inode *inode = file_inode(file); 3172 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3173 struct btrfs_ioctl_vol_args *vol_args; 3174 int ret; 3175 3176 if (!capable(CAP_SYS_ADMIN)) 3177 return -EPERM; 3178 3179 ret = mnt_want_write_file(file); 3180 if (ret) 3181 return ret; 3182 3183 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3184 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3185 goto out_drop_write; 3186 } 3187 3188 vol_args = memdup_user(arg, sizeof(*vol_args)); 3189 if (IS_ERR(vol_args)) { 3190 ret = PTR_ERR(vol_args); 3191 goto out; 3192 } 3193 3194 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3195 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3196 3197 if (!ret) 3198 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3199 kfree(vol_args); 3200 out: 3201 btrfs_exclop_finish(fs_info); 3202 out_drop_write: 3203 mnt_drop_write_file(file); 3204 3205 return ret; 3206 } 3207 3208 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3209 void __user *arg) 3210 { 3211 struct btrfs_ioctl_fs_info_args *fi_args; 3212 struct btrfs_device *device; 3213 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3214 u64 flags_in; 3215 int ret = 0; 3216 3217 fi_args = memdup_user(arg, sizeof(*fi_args)); 3218 if (IS_ERR(fi_args)) 3219 return PTR_ERR(fi_args); 3220 3221 flags_in = fi_args->flags; 3222 memset(fi_args, 0, sizeof(*fi_args)); 3223 3224 rcu_read_lock(); 3225 fi_args->num_devices = fs_devices->num_devices; 3226 3227 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3228 if (device->devid > fi_args->max_id) 3229 fi_args->max_id = device->devid; 3230 } 3231 rcu_read_unlock(); 3232 3233 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3234 fi_args->nodesize = fs_info->nodesize; 3235 fi_args->sectorsize = fs_info->sectorsize; 3236 fi_args->clone_alignment = fs_info->sectorsize; 3237 3238 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3239 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3240 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3241 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3242 } 3243 3244 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3245 fi_args->generation = fs_info->generation; 3246 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3247 } 3248 3249 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3250 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3251 sizeof(fi_args->metadata_uuid)); 3252 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3253 } 3254 3255 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3256 ret = -EFAULT; 3257 3258 kfree(fi_args); 3259 return ret; 3260 } 3261 3262 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3263 void __user *arg) 3264 { 3265 struct btrfs_ioctl_dev_info_args *di_args; 3266 struct btrfs_device *dev; 3267 int ret = 0; 3268 char *s_uuid = NULL; 3269 3270 di_args = memdup_user(arg, sizeof(*di_args)); 3271 if (IS_ERR(di_args)) 3272 return PTR_ERR(di_args); 3273 3274 if (!btrfs_is_empty_uuid(di_args->uuid)) 3275 s_uuid = di_args->uuid; 3276 3277 rcu_read_lock(); 3278 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3279 NULL); 3280 3281 if (!dev) { 3282 ret = -ENODEV; 3283 goto out; 3284 } 3285 3286 di_args->devid = dev->devid; 3287 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3288 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3289 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3290 if (dev->name) { 3291 strncpy(di_args->path, rcu_str_deref(dev->name), 3292 sizeof(di_args->path) - 1); 3293 di_args->path[sizeof(di_args->path) - 1] = 0; 3294 } else { 3295 di_args->path[0] = '\0'; 3296 } 3297 3298 out: 3299 rcu_read_unlock(); 3300 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3301 ret = -EFAULT; 3302 3303 kfree(di_args); 3304 return ret; 3305 } 3306 3307 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3308 { 3309 struct inode *inode = file_inode(file); 3310 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3311 struct btrfs_root *root = BTRFS_I(inode)->root; 3312 struct btrfs_root *new_root; 3313 struct btrfs_dir_item *di; 3314 struct btrfs_trans_handle *trans; 3315 struct btrfs_path *path = NULL; 3316 struct btrfs_disk_key disk_key; 3317 u64 objectid = 0; 3318 u64 dir_id; 3319 int ret; 3320 3321 if (!capable(CAP_SYS_ADMIN)) 3322 return -EPERM; 3323 3324 ret = mnt_want_write_file(file); 3325 if (ret) 3326 return ret; 3327 3328 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3329 ret = -EFAULT; 3330 goto out; 3331 } 3332 3333 if (!objectid) 3334 objectid = BTRFS_FS_TREE_OBJECTID; 3335 3336 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3337 if (IS_ERR(new_root)) { 3338 ret = PTR_ERR(new_root); 3339 goto out; 3340 } 3341 if (!is_fstree(new_root->root_key.objectid)) { 3342 ret = -ENOENT; 3343 goto out_free; 3344 } 3345 3346 path = btrfs_alloc_path(); 3347 if (!path) { 3348 ret = -ENOMEM; 3349 goto out_free; 3350 } 3351 3352 trans = btrfs_start_transaction(root, 1); 3353 if (IS_ERR(trans)) { 3354 ret = PTR_ERR(trans); 3355 goto out_free; 3356 } 3357 3358 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3359 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3360 dir_id, "default", 7, 1); 3361 if (IS_ERR_OR_NULL(di)) { 3362 btrfs_release_path(path); 3363 btrfs_end_transaction(trans); 3364 btrfs_err(fs_info, 3365 "Umm, you don't have the default diritem, this isn't going to work"); 3366 ret = -ENOENT; 3367 goto out_free; 3368 } 3369 3370 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3371 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3372 btrfs_mark_buffer_dirty(path->nodes[0]); 3373 btrfs_release_path(path); 3374 3375 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3376 btrfs_end_transaction(trans); 3377 out_free: 3378 btrfs_put_root(new_root); 3379 btrfs_free_path(path); 3380 out: 3381 mnt_drop_write_file(file); 3382 return ret; 3383 } 3384 3385 static void get_block_group_info(struct list_head *groups_list, 3386 struct btrfs_ioctl_space_info *space) 3387 { 3388 struct btrfs_block_group *block_group; 3389 3390 space->total_bytes = 0; 3391 space->used_bytes = 0; 3392 space->flags = 0; 3393 list_for_each_entry(block_group, groups_list, list) { 3394 space->flags = block_group->flags; 3395 space->total_bytes += block_group->length; 3396 space->used_bytes += block_group->used; 3397 } 3398 } 3399 3400 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3401 void __user *arg) 3402 { 3403 struct btrfs_ioctl_space_args space_args; 3404 struct btrfs_ioctl_space_info space; 3405 struct btrfs_ioctl_space_info *dest; 3406 struct btrfs_ioctl_space_info *dest_orig; 3407 struct btrfs_ioctl_space_info __user *user_dest; 3408 struct btrfs_space_info *info; 3409 static const u64 types[] = { 3410 BTRFS_BLOCK_GROUP_DATA, 3411 BTRFS_BLOCK_GROUP_SYSTEM, 3412 BTRFS_BLOCK_GROUP_METADATA, 3413 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3414 }; 3415 int num_types = 4; 3416 int alloc_size; 3417 int ret = 0; 3418 u64 slot_count = 0; 3419 int i, c; 3420 3421 if (copy_from_user(&space_args, 3422 (struct btrfs_ioctl_space_args __user *)arg, 3423 sizeof(space_args))) 3424 return -EFAULT; 3425 3426 for (i = 0; i < num_types; i++) { 3427 struct btrfs_space_info *tmp; 3428 3429 info = NULL; 3430 list_for_each_entry(tmp, &fs_info->space_info, list) { 3431 if (tmp->flags == types[i]) { 3432 info = tmp; 3433 break; 3434 } 3435 } 3436 3437 if (!info) 3438 continue; 3439 3440 down_read(&info->groups_sem); 3441 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3442 if (!list_empty(&info->block_groups[c])) 3443 slot_count++; 3444 } 3445 up_read(&info->groups_sem); 3446 } 3447 3448 /* 3449 * Global block reserve, exported as a space_info 3450 */ 3451 slot_count++; 3452 3453 /* space_slots == 0 means they are asking for a count */ 3454 if (space_args.space_slots == 0) { 3455 space_args.total_spaces = slot_count; 3456 goto out; 3457 } 3458 3459 slot_count = min_t(u64, space_args.space_slots, slot_count); 3460 3461 alloc_size = sizeof(*dest) * slot_count; 3462 3463 /* we generally have at most 6 or so space infos, one for each raid 3464 * level. So, a whole page should be more than enough for everyone 3465 */ 3466 if (alloc_size > PAGE_SIZE) 3467 return -ENOMEM; 3468 3469 space_args.total_spaces = 0; 3470 dest = kmalloc(alloc_size, GFP_KERNEL); 3471 if (!dest) 3472 return -ENOMEM; 3473 dest_orig = dest; 3474 3475 /* now we have a buffer to copy into */ 3476 for (i = 0; i < num_types; i++) { 3477 struct btrfs_space_info *tmp; 3478 3479 if (!slot_count) 3480 break; 3481 3482 info = NULL; 3483 list_for_each_entry(tmp, &fs_info->space_info, list) { 3484 if (tmp->flags == types[i]) { 3485 info = tmp; 3486 break; 3487 } 3488 } 3489 3490 if (!info) 3491 continue; 3492 down_read(&info->groups_sem); 3493 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3494 if (!list_empty(&info->block_groups[c])) { 3495 get_block_group_info(&info->block_groups[c], 3496 &space); 3497 memcpy(dest, &space, sizeof(space)); 3498 dest++; 3499 space_args.total_spaces++; 3500 slot_count--; 3501 } 3502 if (!slot_count) 3503 break; 3504 } 3505 up_read(&info->groups_sem); 3506 } 3507 3508 /* 3509 * Add global block reserve 3510 */ 3511 if (slot_count) { 3512 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3513 3514 spin_lock(&block_rsv->lock); 3515 space.total_bytes = block_rsv->size; 3516 space.used_bytes = block_rsv->size - block_rsv->reserved; 3517 spin_unlock(&block_rsv->lock); 3518 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3519 memcpy(dest, &space, sizeof(space)); 3520 space_args.total_spaces++; 3521 } 3522 3523 user_dest = (struct btrfs_ioctl_space_info __user *) 3524 (arg + sizeof(struct btrfs_ioctl_space_args)); 3525 3526 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3527 ret = -EFAULT; 3528 3529 kfree(dest_orig); 3530 out: 3531 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3532 ret = -EFAULT; 3533 3534 return ret; 3535 } 3536 3537 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3538 void __user *argp) 3539 { 3540 struct btrfs_trans_handle *trans; 3541 u64 transid; 3542 int ret; 3543 3544 trans = btrfs_attach_transaction_barrier(root); 3545 if (IS_ERR(trans)) { 3546 if (PTR_ERR(trans) != -ENOENT) 3547 return PTR_ERR(trans); 3548 3549 /* No running transaction, don't bother */ 3550 transid = root->fs_info->last_trans_committed; 3551 goto out; 3552 } 3553 transid = trans->transid; 3554 ret = btrfs_commit_transaction_async(trans, 0); 3555 if (ret) { 3556 btrfs_end_transaction(trans); 3557 return ret; 3558 } 3559 out: 3560 if (argp) 3561 if (copy_to_user(argp, &transid, sizeof(transid))) 3562 return -EFAULT; 3563 return 0; 3564 } 3565 3566 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3567 void __user *argp) 3568 { 3569 u64 transid; 3570 3571 if (argp) { 3572 if (copy_from_user(&transid, argp, sizeof(transid))) 3573 return -EFAULT; 3574 } else { 3575 transid = 0; /* current trans */ 3576 } 3577 return btrfs_wait_for_commit(fs_info, transid); 3578 } 3579 3580 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3581 { 3582 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3583 struct btrfs_ioctl_scrub_args *sa; 3584 int ret; 3585 3586 if (!capable(CAP_SYS_ADMIN)) 3587 return -EPERM; 3588 3589 sa = memdup_user(arg, sizeof(*sa)); 3590 if (IS_ERR(sa)) 3591 return PTR_ERR(sa); 3592 3593 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3594 ret = mnt_want_write_file(file); 3595 if (ret) 3596 goto out; 3597 } 3598 3599 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3600 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3601 0); 3602 3603 /* 3604 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3605 * error. This is important as it allows user space to know how much 3606 * progress scrub has done. For example, if scrub is canceled we get 3607 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3608 * space. Later user space can inspect the progress from the structure 3609 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3610 * previously (btrfs-progs does this). 3611 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3612 * then return -EFAULT to signal the structure was not copied or it may 3613 * be corrupt and unreliable due to a partial copy. 3614 */ 3615 if (copy_to_user(arg, sa, sizeof(*sa))) 3616 ret = -EFAULT; 3617 3618 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3619 mnt_drop_write_file(file); 3620 out: 3621 kfree(sa); 3622 return ret; 3623 } 3624 3625 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3626 { 3627 if (!capable(CAP_SYS_ADMIN)) 3628 return -EPERM; 3629 3630 return btrfs_scrub_cancel(fs_info); 3631 } 3632 3633 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3634 void __user *arg) 3635 { 3636 struct btrfs_ioctl_scrub_args *sa; 3637 int ret; 3638 3639 if (!capable(CAP_SYS_ADMIN)) 3640 return -EPERM; 3641 3642 sa = memdup_user(arg, sizeof(*sa)); 3643 if (IS_ERR(sa)) 3644 return PTR_ERR(sa); 3645 3646 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3647 3648 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3649 ret = -EFAULT; 3650 3651 kfree(sa); 3652 return ret; 3653 } 3654 3655 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3656 void __user *arg) 3657 { 3658 struct btrfs_ioctl_get_dev_stats *sa; 3659 int ret; 3660 3661 sa = memdup_user(arg, sizeof(*sa)); 3662 if (IS_ERR(sa)) 3663 return PTR_ERR(sa); 3664 3665 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3666 kfree(sa); 3667 return -EPERM; 3668 } 3669 3670 ret = btrfs_get_dev_stats(fs_info, sa); 3671 3672 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3673 ret = -EFAULT; 3674 3675 kfree(sa); 3676 return ret; 3677 } 3678 3679 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3680 void __user *arg) 3681 { 3682 struct btrfs_ioctl_dev_replace_args *p; 3683 int ret; 3684 3685 if (!capable(CAP_SYS_ADMIN)) 3686 return -EPERM; 3687 3688 p = memdup_user(arg, sizeof(*p)); 3689 if (IS_ERR(p)) 3690 return PTR_ERR(p); 3691 3692 switch (p->cmd) { 3693 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3694 if (sb_rdonly(fs_info->sb)) { 3695 ret = -EROFS; 3696 goto out; 3697 } 3698 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3699 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3700 } else { 3701 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3702 btrfs_exclop_finish(fs_info); 3703 } 3704 break; 3705 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3706 btrfs_dev_replace_status(fs_info, p); 3707 ret = 0; 3708 break; 3709 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3710 p->result = btrfs_dev_replace_cancel(fs_info); 3711 ret = 0; 3712 break; 3713 default: 3714 ret = -EINVAL; 3715 break; 3716 } 3717 3718 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3719 ret = -EFAULT; 3720 out: 3721 kfree(p); 3722 return ret; 3723 } 3724 3725 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3726 { 3727 int ret = 0; 3728 int i; 3729 u64 rel_ptr; 3730 int size; 3731 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3732 struct inode_fs_paths *ipath = NULL; 3733 struct btrfs_path *path; 3734 3735 if (!capable(CAP_DAC_READ_SEARCH)) 3736 return -EPERM; 3737 3738 path = btrfs_alloc_path(); 3739 if (!path) { 3740 ret = -ENOMEM; 3741 goto out; 3742 } 3743 3744 ipa = memdup_user(arg, sizeof(*ipa)); 3745 if (IS_ERR(ipa)) { 3746 ret = PTR_ERR(ipa); 3747 ipa = NULL; 3748 goto out; 3749 } 3750 3751 size = min_t(u32, ipa->size, 4096); 3752 ipath = init_ipath(size, root, path); 3753 if (IS_ERR(ipath)) { 3754 ret = PTR_ERR(ipath); 3755 ipath = NULL; 3756 goto out; 3757 } 3758 3759 ret = paths_from_inode(ipa->inum, ipath); 3760 if (ret < 0) 3761 goto out; 3762 3763 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3764 rel_ptr = ipath->fspath->val[i] - 3765 (u64)(unsigned long)ipath->fspath->val; 3766 ipath->fspath->val[i] = rel_ptr; 3767 } 3768 3769 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3770 ipath->fspath, size); 3771 if (ret) { 3772 ret = -EFAULT; 3773 goto out; 3774 } 3775 3776 out: 3777 btrfs_free_path(path); 3778 free_ipath(ipath); 3779 kfree(ipa); 3780 3781 return ret; 3782 } 3783 3784 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3785 { 3786 struct btrfs_data_container *inodes = ctx; 3787 const size_t c = 3 * sizeof(u64); 3788 3789 if (inodes->bytes_left >= c) { 3790 inodes->bytes_left -= c; 3791 inodes->val[inodes->elem_cnt] = inum; 3792 inodes->val[inodes->elem_cnt + 1] = offset; 3793 inodes->val[inodes->elem_cnt + 2] = root; 3794 inodes->elem_cnt += 3; 3795 } else { 3796 inodes->bytes_missing += c - inodes->bytes_left; 3797 inodes->bytes_left = 0; 3798 inodes->elem_missed += 3; 3799 } 3800 3801 return 0; 3802 } 3803 3804 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3805 void __user *arg, int version) 3806 { 3807 int ret = 0; 3808 int size; 3809 struct btrfs_ioctl_logical_ino_args *loi; 3810 struct btrfs_data_container *inodes = NULL; 3811 struct btrfs_path *path = NULL; 3812 bool ignore_offset; 3813 3814 if (!capable(CAP_SYS_ADMIN)) 3815 return -EPERM; 3816 3817 loi = memdup_user(arg, sizeof(*loi)); 3818 if (IS_ERR(loi)) 3819 return PTR_ERR(loi); 3820 3821 if (version == 1) { 3822 ignore_offset = false; 3823 size = min_t(u32, loi->size, SZ_64K); 3824 } else { 3825 /* All reserved bits must be 0 for now */ 3826 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3827 ret = -EINVAL; 3828 goto out_loi; 3829 } 3830 /* Only accept flags we have defined so far */ 3831 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3832 ret = -EINVAL; 3833 goto out_loi; 3834 } 3835 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3836 size = min_t(u32, loi->size, SZ_16M); 3837 } 3838 3839 path = btrfs_alloc_path(); 3840 if (!path) { 3841 ret = -ENOMEM; 3842 goto out; 3843 } 3844 3845 inodes = init_data_container(size); 3846 if (IS_ERR(inodes)) { 3847 ret = PTR_ERR(inodes); 3848 inodes = NULL; 3849 goto out; 3850 } 3851 3852 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3853 build_ino_list, inodes, ignore_offset); 3854 if (ret == -EINVAL) 3855 ret = -ENOENT; 3856 if (ret < 0) 3857 goto out; 3858 3859 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3860 size); 3861 if (ret) 3862 ret = -EFAULT; 3863 3864 out: 3865 btrfs_free_path(path); 3866 kvfree(inodes); 3867 out_loi: 3868 kfree(loi); 3869 3870 return ret; 3871 } 3872 3873 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3874 struct btrfs_ioctl_balance_args *bargs) 3875 { 3876 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3877 3878 bargs->flags = bctl->flags; 3879 3880 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3881 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3882 if (atomic_read(&fs_info->balance_pause_req)) 3883 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3884 if (atomic_read(&fs_info->balance_cancel_req)) 3885 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3886 3887 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3888 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3889 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3890 3891 spin_lock(&fs_info->balance_lock); 3892 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3893 spin_unlock(&fs_info->balance_lock); 3894 } 3895 3896 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3897 { 3898 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3899 struct btrfs_fs_info *fs_info = root->fs_info; 3900 struct btrfs_ioctl_balance_args *bargs; 3901 struct btrfs_balance_control *bctl; 3902 bool need_unlock; /* for mut. excl. ops lock */ 3903 int ret; 3904 3905 if (!capable(CAP_SYS_ADMIN)) 3906 return -EPERM; 3907 3908 ret = mnt_want_write_file(file); 3909 if (ret) 3910 return ret; 3911 3912 again: 3913 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3914 mutex_lock(&fs_info->balance_mutex); 3915 need_unlock = true; 3916 goto locked; 3917 } 3918 3919 /* 3920 * mut. excl. ops lock is locked. Three possibilities: 3921 * (1) some other op is running 3922 * (2) balance is running 3923 * (3) balance is paused -- special case (think resume) 3924 */ 3925 mutex_lock(&fs_info->balance_mutex); 3926 if (fs_info->balance_ctl) { 3927 /* this is either (2) or (3) */ 3928 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3929 mutex_unlock(&fs_info->balance_mutex); 3930 /* 3931 * Lock released to allow other waiters to continue, 3932 * we'll reexamine the status again. 3933 */ 3934 mutex_lock(&fs_info->balance_mutex); 3935 3936 if (fs_info->balance_ctl && 3937 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3938 /* this is (3) */ 3939 need_unlock = false; 3940 goto locked; 3941 } 3942 3943 mutex_unlock(&fs_info->balance_mutex); 3944 goto again; 3945 } else { 3946 /* this is (2) */ 3947 mutex_unlock(&fs_info->balance_mutex); 3948 ret = -EINPROGRESS; 3949 goto out; 3950 } 3951 } else { 3952 /* this is (1) */ 3953 mutex_unlock(&fs_info->balance_mutex); 3954 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3955 goto out; 3956 } 3957 3958 locked: 3959 3960 if (arg) { 3961 bargs = memdup_user(arg, sizeof(*bargs)); 3962 if (IS_ERR(bargs)) { 3963 ret = PTR_ERR(bargs); 3964 goto out_unlock; 3965 } 3966 3967 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3968 if (!fs_info->balance_ctl) { 3969 ret = -ENOTCONN; 3970 goto out_bargs; 3971 } 3972 3973 bctl = fs_info->balance_ctl; 3974 spin_lock(&fs_info->balance_lock); 3975 bctl->flags |= BTRFS_BALANCE_RESUME; 3976 spin_unlock(&fs_info->balance_lock); 3977 3978 goto do_balance; 3979 } 3980 } else { 3981 bargs = NULL; 3982 } 3983 3984 if (fs_info->balance_ctl) { 3985 ret = -EINPROGRESS; 3986 goto out_bargs; 3987 } 3988 3989 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3990 if (!bctl) { 3991 ret = -ENOMEM; 3992 goto out_bargs; 3993 } 3994 3995 if (arg) { 3996 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3997 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3998 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3999 4000 bctl->flags = bargs->flags; 4001 } else { 4002 /* balance everything - no filters */ 4003 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4004 } 4005 4006 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4007 ret = -EINVAL; 4008 goto out_bctl; 4009 } 4010 4011 do_balance: 4012 /* 4013 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4014 * bctl is freed in reset_balance_state, or, if restriper was paused 4015 * all the way until unmount, in free_fs_info. The flag should be 4016 * cleared after reset_balance_state. 4017 */ 4018 need_unlock = false; 4019 4020 ret = btrfs_balance(fs_info, bctl, bargs); 4021 bctl = NULL; 4022 4023 if ((ret == 0 || ret == -ECANCELED) && arg) { 4024 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4025 ret = -EFAULT; 4026 } 4027 4028 out_bctl: 4029 kfree(bctl); 4030 out_bargs: 4031 kfree(bargs); 4032 out_unlock: 4033 mutex_unlock(&fs_info->balance_mutex); 4034 if (need_unlock) 4035 btrfs_exclop_finish(fs_info); 4036 out: 4037 mnt_drop_write_file(file); 4038 return ret; 4039 } 4040 4041 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4042 { 4043 if (!capable(CAP_SYS_ADMIN)) 4044 return -EPERM; 4045 4046 switch (cmd) { 4047 case BTRFS_BALANCE_CTL_PAUSE: 4048 return btrfs_pause_balance(fs_info); 4049 case BTRFS_BALANCE_CTL_CANCEL: 4050 return btrfs_cancel_balance(fs_info); 4051 } 4052 4053 return -EINVAL; 4054 } 4055 4056 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4057 void __user *arg) 4058 { 4059 struct btrfs_ioctl_balance_args *bargs; 4060 int ret = 0; 4061 4062 if (!capable(CAP_SYS_ADMIN)) 4063 return -EPERM; 4064 4065 mutex_lock(&fs_info->balance_mutex); 4066 if (!fs_info->balance_ctl) { 4067 ret = -ENOTCONN; 4068 goto out; 4069 } 4070 4071 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4072 if (!bargs) { 4073 ret = -ENOMEM; 4074 goto out; 4075 } 4076 4077 btrfs_update_ioctl_balance_args(fs_info, bargs); 4078 4079 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4080 ret = -EFAULT; 4081 4082 kfree(bargs); 4083 out: 4084 mutex_unlock(&fs_info->balance_mutex); 4085 return ret; 4086 } 4087 4088 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4089 { 4090 struct inode *inode = file_inode(file); 4091 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4092 struct btrfs_ioctl_quota_ctl_args *sa; 4093 int ret; 4094 4095 if (!capable(CAP_SYS_ADMIN)) 4096 return -EPERM; 4097 4098 ret = mnt_want_write_file(file); 4099 if (ret) 4100 return ret; 4101 4102 sa = memdup_user(arg, sizeof(*sa)); 4103 if (IS_ERR(sa)) { 4104 ret = PTR_ERR(sa); 4105 goto drop_write; 4106 } 4107 4108 down_write(&fs_info->subvol_sem); 4109 4110 switch (sa->cmd) { 4111 case BTRFS_QUOTA_CTL_ENABLE: 4112 ret = btrfs_quota_enable(fs_info); 4113 break; 4114 case BTRFS_QUOTA_CTL_DISABLE: 4115 ret = btrfs_quota_disable(fs_info); 4116 break; 4117 default: 4118 ret = -EINVAL; 4119 break; 4120 } 4121 4122 kfree(sa); 4123 up_write(&fs_info->subvol_sem); 4124 drop_write: 4125 mnt_drop_write_file(file); 4126 return ret; 4127 } 4128 4129 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4130 { 4131 struct inode *inode = file_inode(file); 4132 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4133 struct btrfs_root *root = BTRFS_I(inode)->root; 4134 struct btrfs_ioctl_qgroup_assign_args *sa; 4135 struct btrfs_trans_handle *trans; 4136 int ret; 4137 int err; 4138 4139 if (!capable(CAP_SYS_ADMIN)) 4140 return -EPERM; 4141 4142 ret = mnt_want_write_file(file); 4143 if (ret) 4144 return ret; 4145 4146 sa = memdup_user(arg, sizeof(*sa)); 4147 if (IS_ERR(sa)) { 4148 ret = PTR_ERR(sa); 4149 goto drop_write; 4150 } 4151 4152 trans = btrfs_join_transaction(root); 4153 if (IS_ERR(trans)) { 4154 ret = PTR_ERR(trans); 4155 goto out; 4156 } 4157 4158 if (sa->assign) { 4159 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4160 } else { 4161 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4162 } 4163 4164 /* update qgroup status and info */ 4165 err = btrfs_run_qgroups(trans); 4166 if (err < 0) 4167 btrfs_handle_fs_error(fs_info, err, 4168 "failed to update qgroup status and info"); 4169 err = btrfs_end_transaction(trans); 4170 if (err && !ret) 4171 ret = err; 4172 4173 out: 4174 kfree(sa); 4175 drop_write: 4176 mnt_drop_write_file(file); 4177 return ret; 4178 } 4179 4180 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4181 { 4182 struct inode *inode = file_inode(file); 4183 struct btrfs_root *root = BTRFS_I(inode)->root; 4184 struct btrfs_ioctl_qgroup_create_args *sa; 4185 struct btrfs_trans_handle *trans; 4186 int ret; 4187 int err; 4188 4189 if (!capable(CAP_SYS_ADMIN)) 4190 return -EPERM; 4191 4192 ret = mnt_want_write_file(file); 4193 if (ret) 4194 return ret; 4195 4196 sa = memdup_user(arg, sizeof(*sa)); 4197 if (IS_ERR(sa)) { 4198 ret = PTR_ERR(sa); 4199 goto drop_write; 4200 } 4201 4202 if (!sa->qgroupid) { 4203 ret = -EINVAL; 4204 goto out; 4205 } 4206 4207 trans = btrfs_join_transaction(root); 4208 if (IS_ERR(trans)) { 4209 ret = PTR_ERR(trans); 4210 goto out; 4211 } 4212 4213 if (sa->create) { 4214 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4215 } else { 4216 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4217 } 4218 4219 err = btrfs_end_transaction(trans); 4220 if (err && !ret) 4221 ret = err; 4222 4223 out: 4224 kfree(sa); 4225 drop_write: 4226 mnt_drop_write_file(file); 4227 return ret; 4228 } 4229 4230 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4231 { 4232 struct inode *inode = file_inode(file); 4233 struct btrfs_root *root = BTRFS_I(inode)->root; 4234 struct btrfs_ioctl_qgroup_limit_args *sa; 4235 struct btrfs_trans_handle *trans; 4236 int ret; 4237 int err; 4238 u64 qgroupid; 4239 4240 if (!capable(CAP_SYS_ADMIN)) 4241 return -EPERM; 4242 4243 ret = mnt_want_write_file(file); 4244 if (ret) 4245 return ret; 4246 4247 sa = memdup_user(arg, sizeof(*sa)); 4248 if (IS_ERR(sa)) { 4249 ret = PTR_ERR(sa); 4250 goto drop_write; 4251 } 4252 4253 trans = btrfs_join_transaction(root); 4254 if (IS_ERR(trans)) { 4255 ret = PTR_ERR(trans); 4256 goto out; 4257 } 4258 4259 qgroupid = sa->qgroupid; 4260 if (!qgroupid) { 4261 /* take the current subvol as qgroup */ 4262 qgroupid = root->root_key.objectid; 4263 } 4264 4265 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4266 4267 err = btrfs_end_transaction(trans); 4268 if (err && !ret) 4269 ret = err; 4270 4271 out: 4272 kfree(sa); 4273 drop_write: 4274 mnt_drop_write_file(file); 4275 return ret; 4276 } 4277 4278 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4279 { 4280 struct inode *inode = file_inode(file); 4281 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4282 struct btrfs_ioctl_quota_rescan_args *qsa; 4283 int ret; 4284 4285 if (!capable(CAP_SYS_ADMIN)) 4286 return -EPERM; 4287 4288 ret = mnt_want_write_file(file); 4289 if (ret) 4290 return ret; 4291 4292 qsa = memdup_user(arg, sizeof(*qsa)); 4293 if (IS_ERR(qsa)) { 4294 ret = PTR_ERR(qsa); 4295 goto drop_write; 4296 } 4297 4298 if (qsa->flags) { 4299 ret = -EINVAL; 4300 goto out; 4301 } 4302 4303 ret = btrfs_qgroup_rescan(fs_info); 4304 4305 out: 4306 kfree(qsa); 4307 drop_write: 4308 mnt_drop_write_file(file); 4309 return ret; 4310 } 4311 4312 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4313 void __user *arg) 4314 { 4315 struct btrfs_ioctl_quota_rescan_args *qsa; 4316 int ret = 0; 4317 4318 if (!capable(CAP_SYS_ADMIN)) 4319 return -EPERM; 4320 4321 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4322 if (!qsa) 4323 return -ENOMEM; 4324 4325 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4326 qsa->flags = 1; 4327 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4328 } 4329 4330 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4331 ret = -EFAULT; 4332 4333 kfree(qsa); 4334 return ret; 4335 } 4336 4337 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4338 void __user *arg) 4339 { 4340 if (!capable(CAP_SYS_ADMIN)) 4341 return -EPERM; 4342 4343 return btrfs_qgroup_wait_for_completion(fs_info, true); 4344 } 4345 4346 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4347 struct btrfs_ioctl_received_subvol_args *sa) 4348 { 4349 struct inode *inode = file_inode(file); 4350 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4351 struct btrfs_root *root = BTRFS_I(inode)->root; 4352 struct btrfs_root_item *root_item = &root->root_item; 4353 struct btrfs_trans_handle *trans; 4354 struct timespec64 ct = current_time(inode); 4355 int ret = 0; 4356 int received_uuid_changed; 4357 4358 if (!inode_owner_or_capable(&init_user_ns, inode)) 4359 return -EPERM; 4360 4361 ret = mnt_want_write_file(file); 4362 if (ret < 0) 4363 return ret; 4364 4365 down_write(&fs_info->subvol_sem); 4366 4367 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4368 ret = -EINVAL; 4369 goto out; 4370 } 4371 4372 if (btrfs_root_readonly(root)) { 4373 ret = -EROFS; 4374 goto out; 4375 } 4376 4377 /* 4378 * 1 - root item 4379 * 2 - uuid items (received uuid + subvol uuid) 4380 */ 4381 trans = btrfs_start_transaction(root, 3); 4382 if (IS_ERR(trans)) { 4383 ret = PTR_ERR(trans); 4384 trans = NULL; 4385 goto out; 4386 } 4387 4388 sa->rtransid = trans->transid; 4389 sa->rtime.sec = ct.tv_sec; 4390 sa->rtime.nsec = ct.tv_nsec; 4391 4392 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4393 BTRFS_UUID_SIZE); 4394 if (received_uuid_changed && 4395 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4396 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4397 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4398 root->root_key.objectid); 4399 if (ret && ret != -ENOENT) { 4400 btrfs_abort_transaction(trans, ret); 4401 btrfs_end_transaction(trans); 4402 goto out; 4403 } 4404 } 4405 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4406 btrfs_set_root_stransid(root_item, sa->stransid); 4407 btrfs_set_root_rtransid(root_item, sa->rtransid); 4408 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4409 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4410 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4411 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4412 4413 ret = btrfs_update_root(trans, fs_info->tree_root, 4414 &root->root_key, &root->root_item); 4415 if (ret < 0) { 4416 btrfs_end_transaction(trans); 4417 goto out; 4418 } 4419 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4420 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4421 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4422 root->root_key.objectid); 4423 if (ret < 0 && ret != -EEXIST) { 4424 btrfs_abort_transaction(trans, ret); 4425 btrfs_end_transaction(trans); 4426 goto out; 4427 } 4428 } 4429 ret = btrfs_commit_transaction(trans); 4430 out: 4431 up_write(&fs_info->subvol_sem); 4432 mnt_drop_write_file(file); 4433 return ret; 4434 } 4435 4436 #ifdef CONFIG_64BIT 4437 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4438 void __user *arg) 4439 { 4440 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4441 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4442 int ret = 0; 4443 4444 args32 = memdup_user(arg, sizeof(*args32)); 4445 if (IS_ERR(args32)) 4446 return PTR_ERR(args32); 4447 4448 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4449 if (!args64) { 4450 ret = -ENOMEM; 4451 goto out; 4452 } 4453 4454 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4455 args64->stransid = args32->stransid; 4456 args64->rtransid = args32->rtransid; 4457 args64->stime.sec = args32->stime.sec; 4458 args64->stime.nsec = args32->stime.nsec; 4459 args64->rtime.sec = args32->rtime.sec; 4460 args64->rtime.nsec = args32->rtime.nsec; 4461 args64->flags = args32->flags; 4462 4463 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4464 if (ret) 4465 goto out; 4466 4467 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4468 args32->stransid = args64->stransid; 4469 args32->rtransid = args64->rtransid; 4470 args32->stime.sec = args64->stime.sec; 4471 args32->stime.nsec = args64->stime.nsec; 4472 args32->rtime.sec = args64->rtime.sec; 4473 args32->rtime.nsec = args64->rtime.nsec; 4474 args32->flags = args64->flags; 4475 4476 ret = copy_to_user(arg, args32, sizeof(*args32)); 4477 if (ret) 4478 ret = -EFAULT; 4479 4480 out: 4481 kfree(args32); 4482 kfree(args64); 4483 return ret; 4484 } 4485 #endif 4486 4487 static long btrfs_ioctl_set_received_subvol(struct file *file, 4488 void __user *arg) 4489 { 4490 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4491 int ret = 0; 4492 4493 sa = memdup_user(arg, sizeof(*sa)); 4494 if (IS_ERR(sa)) 4495 return PTR_ERR(sa); 4496 4497 ret = _btrfs_ioctl_set_received_subvol(file, sa); 4498 4499 if (ret) 4500 goto out; 4501 4502 ret = copy_to_user(arg, sa, sizeof(*sa)); 4503 if (ret) 4504 ret = -EFAULT; 4505 4506 out: 4507 kfree(sa); 4508 return ret; 4509 } 4510 4511 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4512 void __user *arg) 4513 { 4514 size_t len; 4515 int ret; 4516 char label[BTRFS_LABEL_SIZE]; 4517 4518 spin_lock(&fs_info->super_lock); 4519 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4520 spin_unlock(&fs_info->super_lock); 4521 4522 len = strnlen(label, BTRFS_LABEL_SIZE); 4523 4524 if (len == BTRFS_LABEL_SIZE) { 4525 btrfs_warn(fs_info, 4526 "label is too long, return the first %zu bytes", 4527 --len); 4528 } 4529 4530 ret = copy_to_user(arg, label, len); 4531 4532 return ret ? -EFAULT : 0; 4533 } 4534 4535 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4536 { 4537 struct inode *inode = file_inode(file); 4538 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4539 struct btrfs_root *root = BTRFS_I(inode)->root; 4540 struct btrfs_super_block *super_block = fs_info->super_copy; 4541 struct btrfs_trans_handle *trans; 4542 char label[BTRFS_LABEL_SIZE]; 4543 int ret; 4544 4545 if (!capable(CAP_SYS_ADMIN)) 4546 return -EPERM; 4547 4548 if (copy_from_user(label, arg, sizeof(label))) 4549 return -EFAULT; 4550 4551 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4552 btrfs_err(fs_info, 4553 "unable to set label with more than %d bytes", 4554 BTRFS_LABEL_SIZE - 1); 4555 return -EINVAL; 4556 } 4557 4558 ret = mnt_want_write_file(file); 4559 if (ret) 4560 return ret; 4561 4562 trans = btrfs_start_transaction(root, 0); 4563 if (IS_ERR(trans)) { 4564 ret = PTR_ERR(trans); 4565 goto out_unlock; 4566 } 4567 4568 spin_lock(&fs_info->super_lock); 4569 strcpy(super_block->label, label); 4570 spin_unlock(&fs_info->super_lock); 4571 ret = btrfs_commit_transaction(trans); 4572 4573 out_unlock: 4574 mnt_drop_write_file(file); 4575 return ret; 4576 } 4577 4578 #define INIT_FEATURE_FLAGS(suffix) \ 4579 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4580 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4581 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4582 4583 int btrfs_ioctl_get_supported_features(void __user *arg) 4584 { 4585 static const struct btrfs_ioctl_feature_flags features[3] = { 4586 INIT_FEATURE_FLAGS(SUPP), 4587 INIT_FEATURE_FLAGS(SAFE_SET), 4588 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4589 }; 4590 4591 if (copy_to_user(arg, &features, sizeof(features))) 4592 return -EFAULT; 4593 4594 return 0; 4595 } 4596 4597 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4598 void __user *arg) 4599 { 4600 struct btrfs_super_block *super_block = fs_info->super_copy; 4601 struct btrfs_ioctl_feature_flags features; 4602 4603 features.compat_flags = btrfs_super_compat_flags(super_block); 4604 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4605 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4606 4607 if (copy_to_user(arg, &features, sizeof(features))) 4608 return -EFAULT; 4609 4610 return 0; 4611 } 4612 4613 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4614 enum btrfs_feature_set set, 4615 u64 change_mask, u64 flags, u64 supported_flags, 4616 u64 safe_set, u64 safe_clear) 4617 { 4618 const char *type = btrfs_feature_set_name(set); 4619 char *names; 4620 u64 disallowed, unsupported; 4621 u64 set_mask = flags & change_mask; 4622 u64 clear_mask = ~flags & change_mask; 4623 4624 unsupported = set_mask & ~supported_flags; 4625 if (unsupported) { 4626 names = btrfs_printable_features(set, unsupported); 4627 if (names) { 4628 btrfs_warn(fs_info, 4629 "this kernel does not support the %s feature bit%s", 4630 names, strchr(names, ',') ? "s" : ""); 4631 kfree(names); 4632 } else 4633 btrfs_warn(fs_info, 4634 "this kernel does not support %s bits 0x%llx", 4635 type, unsupported); 4636 return -EOPNOTSUPP; 4637 } 4638 4639 disallowed = set_mask & ~safe_set; 4640 if (disallowed) { 4641 names = btrfs_printable_features(set, disallowed); 4642 if (names) { 4643 btrfs_warn(fs_info, 4644 "can't set the %s feature bit%s while mounted", 4645 names, strchr(names, ',') ? "s" : ""); 4646 kfree(names); 4647 } else 4648 btrfs_warn(fs_info, 4649 "can't set %s bits 0x%llx while mounted", 4650 type, disallowed); 4651 return -EPERM; 4652 } 4653 4654 disallowed = clear_mask & ~safe_clear; 4655 if (disallowed) { 4656 names = btrfs_printable_features(set, disallowed); 4657 if (names) { 4658 btrfs_warn(fs_info, 4659 "can't clear the %s feature bit%s while mounted", 4660 names, strchr(names, ',') ? "s" : ""); 4661 kfree(names); 4662 } else 4663 btrfs_warn(fs_info, 4664 "can't clear %s bits 0x%llx while mounted", 4665 type, disallowed); 4666 return -EPERM; 4667 } 4668 4669 return 0; 4670 } 4671 4672 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4673 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4674 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4675 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4676 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4677 4678 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4679 { 4680 struct inode *inode = file_inode(file); 4681 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4682 struct btrfs_root *root = BTRFS_I(inode)->root; 4683 struct btrfs_super_block *super_block = fs_info->super_copy; 4684 struct btrfs_ioctl_feature_flags flags[2]; 4685 struct btrfs_trans_handle *trans; 4686 u64 newflags; 4687 int ret; 4688 4689 if (!capable(CAP_SYS_ADMIN)) 4690 return -EPERM; 4691 4692 if (copy_from_user(flags, arg, sizeof(flags))) 4693 return -EFAULT; 4694 4695 /* Nothing to do */ 4696 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4697 !flags[0].incompat_flags) 4698 return 0; 4699 4700 ret = check_feature(fs_info, flags[0].compat_flags, 4701 flags[1].compat_flags, COMPAT); 4702 if (ret) 4703 return ret; 4704 4705 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4706 flags[1].compat_ro_flags, COMPAT_RO); 4707 if (ret) 4708 return ret; 4709 4710 ret = check_feature(fs_info, flags[0].incompat_flags, 4711 flags[1].incompat_flags, INCOMPAT); 4712 if (ret) 4713 return ret; 4714 4715 ret = mnt_want_write_file(file); 4716 if (ret) 4717 return ret; 4718 4719 trans = btrfs_start_transaction(root, 0); 4720 if (IS_ERR(trans)) { 4721 ret = PTR_ERR(trans); 4722 goto out_drop_write; 4723 } 4724 4725 spin_lock(&fs_info->super_lock); 4726 newflags = btrfs_super_compat_flags(super_block); 4727 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4728 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4729 btrfs_set_super_compat_flags(super_block, newflags); 4730 4731 newflags = btrfs_super_compat_ro_flags(super_block); 4732 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4733 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4734 btrfs_set_super_compat_ro_flags(super_block, newflags); 4735 4736 newflags = btrfs_super_incompat_flags(super_block); 4737 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4738 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4739 btrfs_set_super_incompat_flags(super_block, newflags); 4740 spin_unlock(&fs_info->super_lock); 4741 4742 ret = btrfs_commit_transaction(trans); 4743 out_drop_write: 4744 mnt_drop_write_file(file); 4745 4746 return ret; 4747 } 4748 4749 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4750 { 4751 struct btrfs_ioctl_send_args *arg; 4752 int ret; 4753 4754 if (compat) { 4755 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4756 struct btrfs_ioctl_send_args_32 args32; 4757 4758 ret = copy_from_user(&args32, argp, sizeof(args32)); 4759 if (ret) 4760 return -EFAULT; 4761 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4762 if (!arg) 4763 return -ENOMEM; 4764 arg->send_fd = args32.send_fd; 4765 arg->clone_sources_count = args32.clone_sources_count; 4766 arg->clone_sources = compat_ptr(args32.clone_sources); 4767 arg->parent_root = args32.parent_root; 4768 arg->flags = args32.flags; 4769 memcpy(arg->reserved, args32.reserved, 4770 sizeof(args32.reserved)); 4771 #else 4772 return -ENOTTY; 4773 #endif 4774 } else { 4775 arg = memdup_user(argp, sizeof(*arg)); 4776 if (IS_ERR(arg)) 4777 return PTR_ERR(arg); 4778 } 4779 ret = btrfs_ioctl_send(file, arg); 4780 kfree(arg); 4781 return ret; 4782 } 4783 4784 long btrfs_ioctl(struct file *file, unsigned int 4785 cmd, unsigned long arg) 4786 { 4787 struct inode *inode = file_inode(file); 4788 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4789 struct btrfs_root *root = BTRFS_I(inode)->root; 4790 void __user *argp = (void __user *)arg; 4791 4792 switch (cmd) { 4793 case FS_IOC_GETVERSION: 4794 return btrfs_ioctl_getversion(file, argp); 4795 case FS_IOC_GETFSLABEL: 4796 return btrfs_ioctl_get_fslabel(fs_info, argp); 4797 case FS_IOC_SETFSLABEL: 4798 return btrfs_ioctl_set_fslabel(file, argp); 4799 case FITRIM: 4800 return btrfs_ioctl_fitrim(fs_info, argp); 4801 case BTRFS_IOC_SNAP_CREATE: 4802 return btrfs_ioctl_snap_create(file, argp, 0); 4803 case BTRFS_IOC_SNAP_CREATE_V2: 4804 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4805 case BTRFS_IOC_SUBVOL_CREATE: 4806 return btrfs_ioctl_snap_create(file, argp, 1); 4807 case BTRFS_IOC_SUBVOL_CREATE_V2: 4808 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4809 case BTRFS_IOC_SNAP_DESTROY: 4810 return btrfs_ioctl_snap_destroy(file, argp, false); 4811 case BTRFS_IOC_SNAP_DESTROY_V2: 4812 return btrfs_ioctl_snap_destroy(file, argp, true); 4813 case BTRFS_IOC_SUBVOL_GETFLAGS: 4814 return btrfs_ioctl_subvol_getflags(file, argp); 4815 case BTRFS_IOC_SUBVOL_SETFLAGS: 4816 return btrfs_ioctl_subvol_setflags(file, argp); 4817 case BTRFS_IOC_DEFAULT_SUBVOL: 4818 return btrfs_ioctl_default_subvol(file, argp); 4819 case BTRFS_IOC_DEFRAG: 4820 return btrfs_ioctl_defrag(file, NULL); 4821 case BTRFS_IOC_DEFRAG_RANGE: 4822 return btrfs_ioctl_defrag(file, argp); 4823 case BTRFS_IOC_RESIZE: 4824 return btrfs_ioctl_resize(file, argp); 4825 case BTRFS_IOC_ADD_DEV: 4826 return btrfs_ioctl_add_dev(fs_info, argp); 4827 case BTRFS_IOC_RM_DEV: 4828 return btrfs_ioctl_rm_dev(file, argp); 4829 case BTRFS_IOC_RM_DEV_V2: 4830 return btrfs_ioctl_rm_dev_v2(file, argp); 4831 case BTRFS_IOC_FS_INFO: 4832 return btrfs_ioctl_fs_info(fs_info, argp); 4833 case BTRFS_IOC_DEV_INFO: 4834 return btrfs_ioctl_dev_info(fs_info, argp); 4835 case BTRFS_IOC_BALANCE: 4836 return btrfs_ioctl_balance(file, NULL); 4837 case BTRFS_IOC_TREE_SEARCH: 4838 return btrfs_ioctl_tree_search(file, argp); 4839 case BTRFS_IOC_TREE_SEARCH_V2: 4840 return btrfs_ioctl_tree_search_v2(file, argp); 4841 case BTRFS_IOC_INO_LOOKUP: 4842 return btrfs_ioctl_ino_lookup(file, argp); 4843 case BTRFS_IOC_INO_PATHS: 4844 return btrfs_ioctl_ino_to_path(root, argp); 4845 case BTRFS_IOC_LOGICAL_INO: 4846 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4847 case BTRFS_IOC_LOGICAL_INO_V2: 4848 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4849 case BTRFS_IOC_SPACE_INFO: 4850 return btrfs_ioctl_space_info(fs_info, argp); 4851 case BTRFS_IOC_SYNC: { 4852 int ret; 4853 4854 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4855 if (ret) 4856 return ret; 4857 ret = btrfs_sync_fs(inode->i_sb, 1); 4858 /* 4859 * The transaction thread may want to do more work, 4860 * namely it pokes the cleaner kthread that will start 4861 * processing uncleaned subvols. 4862 */ 4863 wake_up_process(fs_info->transaction_kthread); 4864 return ret; 4865 } 4866 case BTRFS_IOC_START_SYNC: 4867 return btrfs_ioctl_start_sync(root, argp); 4868 case BTRFS_IOC_WAIT_SYNC: 4869 return btrfs_ioctl_wait_sync(fs_info, argp); 4870 case BTRFS_IOC_SCRUB: 4871 return btrfs_ioctl_scrub(file, argp); 4872 case BTRFS_IOC_SCRUB_CANCEL: 4873 return btrfs_ioctl_scrub_cancel(fs_info); 4874 case BTRFS_IOC_SCRUB_PROGRESS: 4875 return btrfs_ioctl_scrub_progress(fs_info, argp); 4876 case BTRFS_IOC_BALANCE_V2: 4877 return btrfs_ioctl_balance(file, argp); 4878 case BTRFS_IOC_BALANCE_CTL: 4879 return btrfs_ioctl_balance_ctl(fs_info, arg); 4880 case BTRFS_IOC_BALANCE_PROGRESS: 4881 return btrfs_ioctl_balance_progress(fs_info, argp); 4882 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4883 return btrfs_ioctl_set_received_subvol(file, argp); 4884 #ifdef CONFIG_64BIT 4885 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4886 return btrfs_ioctl_set_received_subvol_32(file, argp); 4887 #endif 4888 case BTRFS_IOC_SEND: 4889 return _btrfs_ioctl_send(file, argp, false); 4890 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4891 case BTRFS_IOC_SEND_32: 4892 return _btrfs_ioctl_send(file, argp, true); 4893 #endif 4894 case BTRFS_IOC_GET_DEV_STATS: 4895 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4896 case BTRFS_IOC_QUOTA_CTL: 4897 return btrfs_ioctl_quota_ctl(file, argp); 4898 case BTRFS_IOC_QGROUP_ASSIGN: 4899 return btrfs_ioctl_qgroup_assign(file, argp); 4900 case BTRFS_IOC_QGROUP_CREATE: 4901 return btrfs_ioctl_qgroup_create(file, argp); 4902 case BTRFS_IOC_QGROUP_LIMIT: 4903 return btrfs_ioctl_qgroup_limit(file, argp); 4904 case BTRFS_IOC_QUOTA_RESCAN: 4905 return btrfs_ioctl_quota_rescan(file, argp); 4906 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4907 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4908 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4909 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4910 case BTRFS_IOC_DEV_REPLACE: 4911 return btrfs_ioctl_dev_replace(fs_info, argp); 4912 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4913 return btrfs_ioctl_get_supported_features(argp); 4914 case BTRFS_IOC_GET_FEATURES: 4915 return btrfs_ioctl_get_features(fs_info, argp); 4916 case BTRFS_IOC_SET_FEATURES: 4917 return btrfs_ioctl_set_features(file, argp); 4918 case BTRFS_IOC_GET_SUBVOL_INFO: 4919 return btrfs_ioctl_get_subvol_info(file, argp); 4920 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4921 return btrfs_ioctl_get_subvol_rootref(file, argp); 4922 case BTRFS_IOC_INO_LOOKUP_USER: 4923 return btrfs_ioctl_ino_lookup_user(file, argp); 4924 } 4925 4926 return -ENOTTY; 4927 } 4928 4929 #ifdef CONFIG_COMPAT 4930 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4931 { 4932 /* 4933 * These all access 32-bit values anyway so no further 4934 * handling is necessary. 4935 */ 4936 switch (cmd) { 4937 case FS_IOC32_GETVERSION: 4938 cmd = FS_IOC_GETVERSION; 4939 break; 4940 } 4941 4942 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4943 } 4944 #endif 4945