xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 6486c0f44ed8e91073c1b08e83075e3832618ae5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "rcu-string.h"
42 #include "send.h"
43 #include "dev-replace.h"
44 #include "props.h"
45 #include "sysfs.h"
46 #include "qgroup.h"
47 #include "tree-log.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "subpage.h"
53 #include "fs.h"
54 #include "accessors.h"
55 #include "extent-tree.h"
56 #include "root-tree.h"
57 #include "defrag.h"
58 #include "dir-item.h"
59 #include "uuid-tree.h"
60 #include "ioctl.h"
61 #include "file.h"
62 #include "scrub.h"
63 #include "super.h"
64 
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67  * structures are incorrect, as the timespec structure from userspace
68  * is 4 bytes too small. We define these alternatives here to teach
69  * the kernel about the 32-bit struct packing.
70  */
71 struct btrfs_ioctl_timespec_32 {
72 	__u64 sec;
73 	__u32 nsec;
74 } __attribute__ ((__packed__));
75 
76 struct btrfs_ioctl_received_subvol_args_32 {
77 	char	uuid[BTRFS_UUID_SIZE];	/* in */
78 	__u64	stransid;		/* in */
79 	__u64	rtransid;		/* out */
80 	struct btrfs_ioctl_timespec_32 stime; /* in */
81 	struct btrfs_ioctl_timespec_32 rtime; /* out */
82 	__u64	flags;			/* in */
83 	__u64	reserved[16];		/* in */
84 } __attribute__ ((__packed__));
85 
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 				struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89 
90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91 struct btrfs_ioctl_send_args_32 {
92 	__s64 send_fd;			/* in */
93 	__u64 clone_sources_count;	/* in */
94 	compat_uptr_t clone_sources;	/* in */
95 	__u64 parent_root;		/* in */
96 	__u64 flags;			/* in */
97 	__u32 version;			/* in */
98 	__u8  reserved[28];		/* in */
99 } __attribute__ ((__packed__));
100 
101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
102 			       struct btrfs_ioctl_send_args_32)
103 
104 struct btrfs_ioctl_encoded_io_args_32 {
105 	compat_uptr_t iov;
106 	compat_ulong_t iovcnt;
107 	__s64 offset;
108 	__u64 flags;
109 	__u64 len;
110 	__u64 unencoded_len;
111 	__u64 unencoded_offset;
112 	__u32 compression;
113 	__u32 encryption;
114 	__u8 reserved[64];
115 };
116 
117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
118 				       struct btrfs_ioctl_encoded_io_args_32)
119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
120 					struct btrfs_ioctl_encoded_io_args_32)
121 #endif
122 
123 /* Mask out flags that are inappropriate for the given type of inode. */
124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
125 		unsigned int flags)
126 {
127 	if (S_ISDIR(inode->i_mode))
128 		return flags;
129 	else if (S_ISREG(inode->i_mode))
130 		return flags & ~FS_DIRSYNC_FL;
131 	else
132 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
133 }
134 
135 /*
136  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
137  * ioctl.
138  */
139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
140 {
141 	unsigned int iflags = 0;
142 	u32 flags = binode->flags;
143 	u32 ro_flags = binode->ro_flags;
144 
145 	if (flags & BTRFS_INODE_SYNC)
146 		iflags |= FS_SYNC_FL;
147 	if (flags & BTRFS_INODE_IMMUTABLE)
148 		iflags |= FS_IMMUTABLE_FL;
149 	if (flags & BTRFS_INODE_APPEND)
150 		iflags |= FS_APPEND_FL;
151 	if (flags & BTRFS_INODE_NODUMP)
152 		iflags |= FS_NODUMP_FL;
153 	if (flags & BTRFS_INODE_NOATIME)
154 		iflags |= FS_NOATIME_FL;
155 	if (flags & BTRFS_INODE_DIRSYNC)
156 		iflags |= FS_DIRSYNC_FL;
157 	if (flags & BTRFS_INODE_NODATACOW)
158 		iflags |= FS_NOCOW_FL;
159 	if (ro_flags & BTRFS_INODE_RO_VERITY)
160 		iflags |= FS_VERITY_FL;
161 
162 	if (flags & BTRFS_INODE_NOCOMPRESS)
163 		iflags |= FS_NOCOMP_FL;
164 	else if (flags & BTRFS_INODE_COMPRESS)
165 		iflags |= FS_COMPR_FL;
166 
167 	return iflags;
168 }
169 
170 /*
171  * Update inode->i_flags based on the btrfs internal flags.
172  */
173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
174 {
175 	struct btrfs_inode *binode = BTRFS_I(inode);
176 	unsigned int new_fl = 0;
177 
178 	if (binode->flags & BTRFS_INODE_SYNC)
179 		new_fl |= S_SYNC;
180 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
181 		new_fl |= S_IMMUTABLE;
182 	if (binode->flags & BTRFS_INODE_APPEND)
183 		new_fl |= S_APPEND;
184 	if (binode->flags & BTRFS_INODE_NOATIME)
185 		new_fl |= S_NOATIME;
186 	if (binode->flags & BTRFS_INODE_DIRSYNC)
187 		new_fl |= S_DIRSYNC;
188 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
189 		new_fl |= S_VERITY;
190 
191 	set_mask_bits(&inode->i_flags,
192 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
193 		      S_VERITY, new_fl);
194 }
195 
196 /*
197  * Check if @flags are a supported and valid set of FS_*_FL flags and that
198  * the old and new flags are not conflicting
199  */
200 static int check_fsflags(unsigned int old_flags, unsigned int flags)
201 {
202 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 		      FS_NOATIME_FL | FS_NODUMP_FL | \
204 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
205 		      FS_NOCOMP_FL | FS_COMPR_FL |
206 		      FS_NOCOW_FL))
207 		return -EOPNOTSUPP;
208 
209 	/* COMPR and NOCOMP on new/old are valid */
210 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 		return -EINVAL;
212 
213 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
214 		return -EINVAL;
215 
216 	/* NOCOW and compression options are mutually exclusive */
217 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
218 		return -EINVAL;
219 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
220 		return -EINVAL;
221 
222 	return 0;
223 }
224 
225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
226 				    unsigned int flags)
227 {
228 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
229 		return -EPERM;
230 
231 	return 0;
232 }
233 
234 /*
235  * Set flags/xflags from the internal inode flags. The remaining items of
236  * fsxattr are zeroed.
237  */
238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
239 {
240 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
241 
242 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
243 	return 0;
244 }
245 
246 int btrfs_fileattr_set(struct mnt_idmap *idmap,
247 		       struct dentry *dentry, struct fileattr *fa)
248 {
249 	struct inode *inode = d_inode(dentry);
250 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
251 	struct btrfs_inode *binode = BTRFS_I(inode);
252 	struct btrfs_root *root = binode->root;
253 	struct btrfs_trans_handle *trans;
254 	unsigned int fsflags, old_fsflags;
255 	int ret;
256 	const char *comp = NULL;
257 	u32 binode_flags;
258 
259 	if (btrfs_root_readonly(root))
260 		return -EROFS;
261 
262 	if (fileattr_has_fsx(fa))
263 		return -EOPNOTSUPP;
264 
265 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
266 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
267 	ret = check_fsflags(old_fsflags, fsflags);
268 	if (ret)
269 		return ret;
270 
271 	ret = check_fsflags_compatible(fs_info, fsflags);
272 	if (ret)
273 		return ret;
274 
275 	binode_flags = binode->flags;
276 	if (fsflags & FS_SYNC_FL)
277 		binode_flags |= BTRFS_INODE_SYNC;
278 	else
279 		binode_flags &= ~BTRFS_INODE_SYNC;
280 	if (fsflags & FS_IMMUTABLE_FL)
281 		binode_flags |= BTRFS_INODE_IMMUTABLE;
282 	else
283 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
284 	if (fsflags & FS_APPEND_FL)
285 		binode_flags |= BTRFS_INODE_APPEND;
286 	else
287 		binode_flags &= ~BTRFS_INODE_APPEND;
288 	if (fsflags & FS_NODUMP_FL)
289 		binode_flags |= BTRFS_INODE_NODUMP;
290 	else
291 		binode_flags &= ~BTRFS_INODE_NODUMP;
292 	if (fsflags & FS_NOATIME_FL)
293 		binode_flags |= BTRFS_INODE_NOATIME;
294 	else
295 		binode_flags &= ~BTRFS_INODE_NOATIME;
296 
297 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
298 	if (!fa->flags_valid) {
299 		/* 1 item for the inode */
300 		trans = btrfs_start_transaction(root, 1);
301 		if (IS_ERR(trans))
302 			return PTR_ERR(trans);
303 		goto update_flags;
304 	}
305 
306 	if (fsflags & FS_DIRSYNC_FL)
307 		binode_flags |= BTRFS_INODE_DIRSYNC;
308 	else
309 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
310 	if (fsflags & FS_NOCOW_FL) {
311 		if (S_ISREG(inode->i_mode)) {
312 			/*
313 			 * It's safe to turn csums off here, no extents exist.
314 			 * Otherwise we want the flag to reflect the real COW
315 			 * status of the file and will not set it.
316 			 */
317 			if (inode->i_size == 0)
318 				binode_flags |= BTRFS_INODE_NODATACOW |
319 						BTRFS_INODE_NODATASUM;
320 		} else {
321 			binode_flags |= BTRFS_INODE_NODATACOW;
322 		}
323 	} else {
324 		/*
325 		 * Revert back under same assumptions as above
326 		 */
327 		if (S_ISREG(inode->i_mode)) {
328 			if (inode->i_size == 0)
329 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
330 						  BTRFS_INODE_NODATASUM);
331 		} else {
332 			binode_flags &= ~BTRFS_INODE_NODATACOW;
333 		}
334 	}
335 
336 	/*
337 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
338 	 * flag may be changed automatically if compression code won't make
339 	 * things smaller.
340 	 */
341 	if (fsflags & FS_NOCOMP_FL) {
342 		binode_flags &= ~BTRFS_INODE_COMPRESS;
343 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
344 	} else if (fsflags & FS_COMPR_FL) {
345 
346 		if (IS_SWAPFILE(inode))
347 			return -ETXTBSY;
348 
349 		binode_flags |= BTRFS_INODE_COMPRESS;
350 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
351 
352 		comp = btrfs_compress_type2str(fs_info->compress_type);
353 		if (!comp || comp[0] == 0)
354 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
355 	} else {
356 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
357 	}
358 
359 	/*
360 	 * 1 for inode item
361 	 * 2 for properties
362 	 */
363 	trans = btrfs_start_transaction(root, 3);
364 	if (IS_ERR(trans))
365 		return PTR_ERR(trans);
366 
367 	if (comp) {
368 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
369 				     strlen(comp), 0);
370 		if (ret) {
371 			btrfs_abort_transaction(trans, ret);
372 			goto out_end_trans;
373 		}
374 	} else {
375 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
376 				     0, 0);
377 		if (ret && ret != -ENODATA) {
378 			btrfs_abort_transaction(trans, ret);
379 			goto out_end_trans;
380 		}
381 	}
382 
383 update_flags:
384 	binode->flags = binode_flags;
385 	btrfs_sync_inode_flags_to_i_flags(inode);
386 	inode_inc_iversion(inode);
387 	inode->i_ctime = current_time(inode);
388 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
389 
390  out_end_trans:
391 	btrfs_end_transaction(trans);
392 	return ret;
393 }
394 
395 /*
396  * Start exclusive operation @type, return true on success
397  */
398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
399 			enum btrfs_exclusive_operation type)
400 {
401 	bool ret = false;
402 
403 	spin_lock(&fs_info->super_lock);
404 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
405 		fs_info->exclusive_operation = type;
406 		ret = true;
407 	}
408 	spin_unlock(&fs_info->super_lock);
409 
410 	return ret;
411 }
412 
413 /*
414  * Conditionally allow to enter the exclusive operation in case it's compatible
415  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
416  * btrfs_exclop_finish.
417  *
418  * Compatibility:
419  * - the same type is already running
420  * - when trying to add a device and balance has been paused
421  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
422  *   must check the condition first that would allow none -> @type
423  */
424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
425 				 enum btrfs_exclusive_operation type)
426 {
427 	spin_lock(&fs_info->super_lock);
428 	if (fs_info->exclusive_operation == type ||
429 	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
430 	     type == BTRFS_EXCLOP_DEV_ADD))
431 		return true;
432 
433 	spin_unlock(&fs_info->super_lock);
434 	return false;
435 }
436 
437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
438 {
439 	spin_unlock(&fs_info->super_lock);
440 }
441 
442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
443 {
444 	spin_lock(&fs_info->super_lock);
445 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
446 	spin_unlock(&fs_info->super_lock);
447 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
448 }
449 
450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
451 			  enum btrfs_exclusive_operation op)
452 {
453 	switch (op) {
454 	case BTRFS_EXCLOP_BALANCE_PAUSED:
455 		spin_lock(&fs_info->super_lock);
456 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
457 		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
458 		       fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
459 		       fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
460 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
461 		spin_unlock(&fs_info->super_lock);
462 		break;
463 	case BTRFS_EXCLOP_BALANCE:
464 		spin_lock(&fs_info->super_lock);
465 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
466 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
467 		spin_unlock(&fs_info->super_lock);
468 		break;
469 	default:
470 		btrfs_warn(fs_info,
471 			"invalid exclop balance operation %d requested", op);
472 	}
473 }
474 
475 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
476 {
477 	return put_user(inode->i_generation, arg);
478 }
479 
480 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
481 					void __user *arg)
482 {
483 	struct btrfs_device *device;
484 	struct fstrim_range range;
485 	u64 minlen = ULLONG_MAX;
486 	u64 num_devices = 0;
487 	int ret;
488 
489 	if (!capable(CAP_SYS_ADMIN))
490 		return -EPERM;
491 
492 	/*
493 	 * btrfs_trim_block_group() depends on space cache, which is not
494 	 * available in zoned filesystem. So, disallow fitrim on a zoned
495 	 * filesystem for now.
496 	 */
497 	if (btrfs_is_zoned(fs_info))
498 		return -EOPNOTSUPP;
499 
500 	/*
501 	 * If the fs is mounted with nologreplay, which requires it to be
502 	 * mounted in RO mode as well, we can not allow discard on free space
503 	 * inside block groups, because log trees refer to extents that are not
504 	 * pinned in a block group's free space cache (pinning the extents is
505 	 * precisely the first phase of replaying a log tree).
506 	 */
507 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
508 		return -EROFS;
509 
510 	rcu_read_lock();
511 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
512 				dev_list) {
513 		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
514 			continue;
515 		num_devices++;
516 		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
517 				    minlen);
518 	}
519 	rcu_read_unlock();
520 
521 	if (!num_devices)
522 		return -EOPNOTSUPP;
523 	if (copy_from_user(&range, arg, sizeof(range)))
524 		return -EFAULT;
525 
526 	/*
527 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
528 	 * block group is in the logical address space, which can be any
529 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
530 	 */
531 	if (range.len < fs_info->sb->s_blocksize)
532 		return -EINVAL;
533 
534 	range.minlen = max(range.minlen, minlen);
535 	ret = btrfs_trim_fs(fs_info, &range);
536 	if (ret < 0)
537 		return ret;
538 
539 	if (copy_to_user(arg, &range, sizeof(range)))
540 		return -EFAULT;
541 
542 	return 0;
543 }
544 
545 int __pure btrfs_is_empty_uuid(u8 *uuid)
546 {
547 	int i;
548 
549 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
550 		if (uuid[i])
551 			return 0;
552 	}
553 	return 1;
554 }
555 
556 /*
557  * Calculate the number of transaction items to reserve for creating a subvolume
558  * or snapshot, not including the inode, directory entries, or parent directory.
559  */
560 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
561 {
562 	/*
563 	 * 1 to add root block
564 	 * 1 to add root item
565 	 * 1 to add root ref
566 	 * 1 to add root backref
567 	 * 1 to add UUID item
568 	 * 1 to add qgroup info
569 	 * 1 to add qgroup limit
570 	 *
571 	 * Ideally the last two would only be accounted if qgroups are enabled,
572 	 * but that can change between now and the time we would insert them.
573 	 */
574 	unsigned int num_items = 7;
575 
576 	if (inherit) {
577 		/* 2 to add qgroup relations for each inherited qgroup */
578 		num_items += 2 * inherit->num_qgroups;
579 	}
580 	return num_items;
581 }
582 
583 static noinline int create_subvol(struct mnt_idmap *idmap,
584 				  struct inode *dir, struct dentry *dentry,
585 				  struct btrfs_qgroup_inherit *inherit)
586 {
587 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
588 	struct btrfs_trans_handle *trans;
589 	struct btrfs_key key;
590 	struct btrfs_root_item *root_item;
591 	struct btrfs_inode_item *inode_item;
592 	struct extent_buffer *leaf;
593 	struct btrfs_root *root = BTRFS_I(dir)->root;
594 	struct btrfs_root *new_root;
595 	struct btrfs_block_rsv block_rsv;
596 	struct timespec64 cur_time = current_time(dir);
597 	struct btrfs_new_inode_args new_inode_args = {
598 		.dir = dir,
599 		.dentry = dentry,
600 		.subvol = true,
601 	};
602 	unsigned int trans_num_items;
603 	int ret;
604 	dev_t anon_dev;
605 	u64 objectid;
606 
607 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
608 	if (!root_item)
609 		return -ENOMEM;
610 
611 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
612 	if (ret)
613 		goto out_root_item;
614 
615 	/*
616 	 * Don't create subvolume whose level is not zero. Or qgroup will be
617 	 * screwed up since it assumes subvolume qgroup's level to be 0.
618 	 */
619 	if (btrfs_qgroup_level(objectid)) {
620 		ret = -ENOSPC;
621 		goto out_root_item;
622 	}
623 
624 	ret = get_anon_bdev(&anon_dev);
625 	if (ret < 0)
626 		goto out_root_item;
627 
628 	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
629 	if (!new_inode_args.inode) {
630 		ret = -ENOMEM;
631 		goto out_anon_dev;
632 	}
633 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
634 	if (ret)
635 		goto out_inode;
636 	trans_num_items += create_subvol_num_items(inherit);
637 
638 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
639 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
640 					       trans_num_items, false);
641 	if (ret)
642 		goto out_new_inode_args;
643 
644 	trans = btrfs_start_transaction(root, 0);
645 	if (IS_ERR(trans)) {
646 		ret = PTR_ERR(trans);
647 		btrfs_subvolume_release_metadata(root, &block_rsv);
648 		goto out_new_inode_args;
649 	}
650 	trans->block_rsv = &block_rsv;
651 	trans->bytes_reserved = block_rsv.size;
652 	/* Tree log can't currently deal with an inode which is a new root. */
653 	btrfs_set_log_full_commit(trans);
654 
655 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
656 	if (ret)
657 		goto out;
658 
659 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
660 				      BTRFS_NESTING_NORMAL);
661 	if (IS_ERR(leaf)) {
662 		ret = PTR_ERR(leaf);
663 		goto out;
664 	}
665 
666 	btrfs_mark_buffer_dirty(leaf);
667 
668 	inode_item = &root_item->inode;
669 	btrfs_set_stack_inode_generation(inode_item, 1);
670 	btrfs_set_stack_inode_size(inode_item, 3);
671 	btrfs_set_stack_inode_nlink(inode_item, 1);
672 	btrfs_set_stack_inode_nbytes(inode_item,
673 				     fs_info->nodesize);
674 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
675 
676 	btrfs_set_root_flags(root_item, 0);
677 	btrfs_set_root_limit(root_item, 0);
678 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
679 
680 	btrfs_set_root_bytenr(root_item, leaf->start);
681 	btrfs_set_root_generation(root_item, trans->transid);
682 	btrfs_set_root_level(root_item, 0);
683 	btrfs_set_root_refs(root_item, 1);
684 	btrfs_set_root_used(root_item, leaf->len);
685 	btrfs_set_root_last_snapshot(root_item, 0);
686 
687 	btrfs_set_root_generation_v2(root_item,
688 			btrfs_root_generation(root_item));
689 	generate_random_guid(root_item->uuid);
690 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
691 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
692 	root_item->ctime = root_item->otime;
693 	btrfs_set_root_ctransid(root_item, trans->transid);
694 	btrfs_set_root_otransid(root_item, trans->transid);
695 
696 	btrfs_tree_unlock(leaf);
697 
698 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
699 
700 	key.objectid = objectid;
701 	key.offset = 0;
702 	key.type = BTRFS_ROOT_ITEM_KEY;
703 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
704 				root_item);
705 	if (ret) {
706 		/*
707 		 * Since we don't abort the transaction in this case, free the
708 		 * tree block so that we don't leak space and leave the
709 		 * filesystem in an inconsistent state (an extent item in the
710 		 * extent tree with a backreference for a root that does not
711 		 * exists).
712 		 */
713 		btrfs_tree_lock(leaf);
714 		btrfs_clear_buffer_dirty(trans, leaf);
715 		btrfs_tree_unlock(leaf);
716 		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
717 		free_extent_buffer(leaf);
718 		goto out;
719 	}
720 
721 	free_extent_buffer(leaf);
722 	leaf = NULL;
723 
724 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
725 	if (IS_ERR(new_root)) {
726 		ret = PTR_ERR(new_root);
727 		btrfs_abort_transaction(trans, ret);
728 		goto out;
729 	}
730 	/* anon_dev is owned by new_root now. */
731 	anon_dev = 0;
732 	BTRFS_I(new_inode_args.inode)->root = new_root;
733 	/* ... and new_root is owned by new_inode_args.inode now. */
734 
735 	ret = btrfs_record_root_in_trans(trans, new_root);
736 	if (ret) {
737 		btrfs_abort_transaction(trans, ret);
738 		goto out;
739 	}
740 
741 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
742 				  BTRFS_UUID_KEY_SUBVOL, objectid);
743 	if (ret) {
744 		btrfs_abort_transaction(trans, ret);
745 		goto out;
746 	}
747 
748 	ret = btrfs_create_new_inode(trans, &new_inode_args);
749 	if (ret) {
750 		btrfs_abort_transaction(trans, ret);
751 		goto out;
752 	}
753 
754 	d_instantiate_new(dentry, new_inode_args.inode);
755 	new_inode_args.inode = NULL;
756 
757 out:
758 	trans->block_rsv = NULL;
759 	trans->bytes_reserved = 0;
760 	btrfs_subvolume_release_metadata(root, &block_rsv);
761 
762 	btrfs_end_transaction(trans);
763 out_new_inode_args:
764 	btrfs_new_inode_args_destroy(&new_inode_args);
765 out_inode:
766 	iput(new_inode_args.inode);
767 out_anon_dev:
768 	if (anon_dev)
769 		free_anon_bdev(anon_dev);
770 out_root_item:
771 	kfree(root_item);
772 	return ret;
773 }
774 
775 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
776 			   struct dentry *dentry, bool readonly,
777 			   struct btrfs_qgroup_inherit *inherit)
778 {
779 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
780 	struct inode *inode;
781 	struct btrfs_pending_snapshot *pending_snapshot;
782 	unsigned int trans_num_items;
783 	struct btrfs_trans_handle *trans;
784 	int ret;
785 
786 	/* We do not support snapshotting right now. */
787 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
788 		btrfs_warn(fs_info,
789 			   "extent tree v2 doesn't support snapshotting yet");
790 		return -EOPNOTSUPP;
791 	}
792 
793 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
794 		return -EINVAL;
795 
796 	if (atomic_read(&root->nr_swapfiles)) {
797 		btrfs_warn(fs_info,
798 			   "cannot snapshot subvolume with active swapfile");
799 		return -ETXTBSY;
800 	}
801 
802 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
803 	if (!pending_snapshot)
804 		return -ENOMEM;
805 
806 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
807 	if (ret < 0)
808 		goto free_pending;
809 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
810 			GFP_KERNEL);
811 	pending_snapshot->path = btrfs_alloc_path();
812 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
813 		ret = -ENOMEM;
814 		goto free_pending;
815 	}
816 
817 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
818 			     BTRFS_BLOCK_RSV_TEMP);
819 	/*
820 	 * 1 to add dir item
821 	 * 1 to add dir index
822 	 * 1 to update parent inode item
823 	 */
824 	trans_num_items = create_subvol_num_items(inherit) + 3;
825 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
826 					       &pending_snapshot->block_rsv,
827 					       trans_num_items, false);
828 	if (ret)
829 		goto free_pending;
830 
831 	pending_snapshot->dentry = dentry;
832 	pending_snapshot->root = root;
833 	pending_snapshot->readonly = readonly;
834 	pending_snapshot->dir = dir;
835 	pending_snapshot->inherit = inherit;
836 
837 	trans = btrfs_start_transaction(root, 0);
838 	if (IS_ERR(trans)) {
839 		ret = PTR_ERR(trans);
840 		goto fail;
841 	}
842 
843 	trans->pending_snapshot = pending_snapshot;
844 
845 	ret = btrfs_commit_transaction(trans);
846 	if (ret)
847 		goto fail;
848 
849 	ret = pending_snapshot->error;
850 	if (ret)
851 		goto fail;
852 
853 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
854 	if (ret)
855 		goto fail;
856 
857 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
858 	if (IS_ERR(inode)) {
859 		ret = PTR_ERR(inode);
860 		goto fail;
861 	}
862 
863 	d_instantiate(dentry, inode);
864 	ret = 0;
865 	pending_snapshot->anon_dev = 0;
866 fail:
867 	/* Prevent double freeing of anon_dev */
868 	if (ret && pending_snapshot->snap)
869 		pending_snapshot->snap->anon_dev = 0;
870 	btrfs_put_root(pending_snapshot->snap);
871 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
872 free_pending:
873 	if (pending_snapshot->anon_dev)
874 		free_anon_bdev(pending_snapshot->anon_dev);
875 	kfree(pending_snapshot->root_item);
876 	btrfs_free_path(pending_snapshot->path);
877 	kfree(pending_snapshot);
878 
879 	return ret;
880 }
881 
882 /*  copy of may_delete in fs/namei.c()
883  *	Check whether we can remove a link victim from directory dir, check
884  *  whether the type of victim is right.
885  *  1. We can't do it if dir is read-only (done in permission())
886  *  2. We should have write and exec permissions on dir
887  *  3. We can't remove anything from append-only dir
888  *  4. We can't do anything with immutable dir (done in permission())
889  *  5. If the sticky bit on dir is set we should either
890  *	a. be owner of dir, or
891  *	b. be owner of victim, or
892  *	c. have CAP_FOWNER capability
893  *  6. If the victim is append-only or immutable we can't do anything with
894  *     links pointing to it.
895  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
896  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
897  *  9. We can't remove a root or mountpoint.
898  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
899  *     nfs_async_unlink().
900  */
901 
902 static int btrfs_may_delete(struct mnt_idmap *idmap,
903 			    struct inode *dir, struct dentry *victim, int isdir)
904 {
905 	int error;
906 
907 	if (d_really_is_negative(victim))
908 		return -ENOENT;
909 
910 	BUG_ON(d_inode(victim->d_parent) != dir);
911 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
912 
913 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
914 	if (error)
915 		return error;
916 	if (IS_APPEND(dir))
917 		return -EPERM;
918 	if (check_sticky(idmap, dir, d_inode(victim)) ||
919 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
920 	    IS_SWAPFILE(d_inode(victim)))
921 		return -EPERM;
922 	if (isdir) {
923 		if (!d_is_dir(victim))
924 			return -ENOTDIR;
925 		if (IS_ROOT(victim))
926 			return -EBUSY;
927 	} else if (d_is_dir(victim))
928 		return -EISDIR;
929 	if (IS_DEADDIR(dir))
930 		return -ENOENT;
931 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
932 		return -EBUSY;
933 	return 0;
934 }
935 
936 /* copy of may_create in fs/namei.c() */
937 static inline int btrfs_may_create(struct mnt_idmap *idmap,
938 				   struct inode *dir, struct dentry *child)
939 {
940 	if (d_really_is_positive(child))
941 		return -EEXIST;
942 	if (IS_DEADDIR(dir))
943 		return -ENOENT;
944 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
945 		return -EOVERFLOW;
946 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
947 }
948 
949 /*
950  * Create a new subvolume below @parent.  This is largely modeled after
951  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
952  * inside this filesystem so it's quite a bit simpler.
953  */
954 static noinline int btrfs_mksubvol(const struct path *parent,
955 				   struct mnt_idmap *idmap,
956 				   const char *name, int namelen,
957 				   struct btrfs_root *snap_src,
958 				   bool readonly,
959 				   struct btrfs_qgroup_inherit *inherit)
960 {
961 	struct inode *dir = d_inode(parent->dentry);
962 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
963 	struct dentry *dentry;
964 	struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
965 	int error;
966 
967 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
968 	if (error == -EINTR)
969 		return error;
970 
971 	dentry = lookup_one(idmap, name, parent->dentry, namelen);
972 	error = PTR_ERR(dentry);
973 	if (IS_ERR(dentry))
974 		goto out_unlock;
975 
976 	error = btrfs_may_create(idmap, dir, dentry);
977 	if (error)
978 		goto out_dput;
979 
980 	/*
981 	 * even if this name doesn't exist, we may get hash collisions.
982 	 * check for them now when we can safely fail
983 	 */
984 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
985 					       dir->i_ino, &name_str);
986 	if (error)
987 		goto out_dput;
988 
989 	down_read(&fs_info->subvol_sem);
990 
991 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
992 		goto out_up_read;
993 
994 	if (snap_src)
995 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
996 	else
997 		error = create_subvol(idmap, dir, dentry, inherit);
998 
999 	if (!error)
1000 		fsnotify_mkdir(dir, dentry);
1001 out_up_read:
1002 	up_read(&fs_info->subvol_sem);
1003 out_dput:
1004 	dput(dentry);
1005 out_unlock:
1006 	btrfs_inode_unlock(BTRFS_I(dir), 0);
1007 	return error;
1008 }
1009 
1010 static noinline int btrfs_mksnapshot(const struct path *parent,
1011 				   struct mnt_idmap *idmap,
1012 				   const char *name, int namelen,
1013 				   struct btrfs_root *root,
1014 				   bool readonly,
1015 				   struct btrfs_qgroup_inherit *inherit)
1016 {
1017 	int ret;
1018 	bool snapshot_force_cow = false;
1019 
1020 	/*
1021 	 * Force new buffered writes to reserve space even when NOCOW is
1022 	 * possible. This is to avoid later writeback (running dealloc) to
1023 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1024 	 */
1025 	btrfs_drew_read_lock(&root->snapshot_lock);
1026 
1027 	ret = btrfs_start_delalloc_snapshot(root, false);
1028 	if (ret)
1029 		goto out;
1030 
1031 	/*
1032 	 * All previous writes have started writeback in NOCOW mode, so now
1033 	 * we force future writes to fallback to COW mode during snapshot
1034 	 * creation.
1035 	 */
1036 	atomic_inc(&root->snapshot_force_cow);
1037 	snapshot_force_cow = true;
1038 
1039 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1040 
1041 	ret = btrfs_mksubvol(parent, idmap, name, namelen,
1042 			     root, readonly, inherit);
1043 out:
1044 	if (snapshot_force_cow)
1045 		atomic_dec(&root->snapshot_force_cow);
1046 	btrfs_drew_read_unlock(&root->snapshot_lock);
1047 	return ret;
1048 }
1049 
1050 /*
1051  * Try to start exclusive operation @type or cancel it if it's running.
1052  *
1053  * Return:
1054  *   0        - normal mode, newly claimed op started
1055  *  >0        - normal mode, something else is running,
1056  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1057  * ECANCELED  - cancel mode, successful cancel
1058  * ENOTCONN   - cancel mode, operation not running anymore
1059  */
1060 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1061 			enum btrfs_exclusive_operation type, bool cancel)
1062 {
1063 	if (!cancel) {
1064 		/* Start normal op */
1065 		if (!btrfs_exclop_start(fs_info, type))
1066 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1067 		/* Exclusive operation is now claimed */
1068 		return 0;
1069 	}
1070 
1071 	/* Cancel running op */
1072 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1073 		/*
1074 		 * This blocks any exclop finish from setting it to NONE, so we
1075 		 * request cancellation. Either it runs and we will wait for it,
1076 		 * or it has finished and no waiting will happen.
1077 		 */
1078 		atomic_inc(&fs_info->reloc_cancel_req);
1079 		btrfs_exclop_start_unlock(fs_info);
1080 
1081 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1082 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1083 				    TASK_INTERRUPTIBLE);
1084 
1085 		return -ECANCELED;
1086 	}
1087 
1088 	/* Something else is running or none */
1089 	return -ENOTCONN;
1090 }
1091 
1092 static noinline int btrfs_ioctl_resize(struct file *file,
1093 					void __user *arg)
1094 {
1095 	BTRFS_DEV_LOOKUP_ARGS(args);
1096 	struct inode *inode = file_inode(file);
1097 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1098 	u64 new_size;
1099 	u64 old_size;
1100 	u64 devid = 1;
1101 	struct btrfs_root *root = BTRFS_I(inode)->root;
1102 	struct btrfs_ioctl_vol_args *vol_args;
1103 	struct btrfs_trans_handle *trans;
1104 	struct btrfs_device *device = NULL;
1105 	char *sizestr;
1106 	char *retptr;
1107 	char *devstr = NULL;
1108 	int ret = 0;
1109 	int mod = 0;
1110 	bool cancel;
1111 
1112 	if (!capable(CAP_SYS_ADMIN))
1113 		return -EPERM;
1114 
1115 	ret = mnt_want_write_file(file);
1116 	if (ret)
1117 		return ret;
1118 
1119 	/*
1120 	 * Read the arguments before checking exclusivity to be able to
1121 	 * distinguish regular resize and cancel
1122 	 */
1123 	vol_args = memdup_user(arg, sizeof(*vol_args));
1124 	if (IS_ERR(vol_args)) {
1125 		ret = PTR_ERR(vol_args);
1126 		goto out_drop;
1127 	}
1128 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1129 	sizestr = vol_args->name;
1130 	cancel = (strcmp("cancel", sizestr) == 0);
1131 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1132 	if (ret)
1133 		goto out_free;
1134 	/* Exclusive operation is now claimed */
1135 
1136 	devstr = strchr(sizestr, ':');
1137 	if (devstr) {
1138 		sizestr = devstr + 1;
1139 		*devstr = '\0';
1140 		devstr = vol_args->name;
1141 		ret = kstrtoull(devstr, 10, &devid);
1142 		if (ret)
1143 			goto out_finish;
1144 		if (!devid) {
1145 			ret = -EINVAL;
1146 			goto out_finish;
1147 		}
1148 		btrfs_info(fs_info, "resizing devid %llu", devid);
1149 	}
1150 
1151 	args.devid = devid;
1152 	device = btrfs_find_device(fs_info->fs_devices, &args);
1153 	if (!device) {
1154 		btrfs_info(fs_info, "resizer unable to find device %llu",
1155 			   devid);
1156 		ret = -ENODEV;
1157 		goto out_finish;
1158 	}
1159 
1160 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1161 		btrfs_info(fs_info,
1162 			   "resizer unable to apply on readonly device %llu",
1163 		       devid);
1164 		ret = -EPERM;
1165 		goto out_finish;
1166 	}
1167 
1168 	if (!strcmp(sizestr, "max"))
1169 		new_size = bdev_nr_bytes(device->bdev);
1170 	else {
1171 		if (sizestr[0] == '-') {
1172 			mod = -1;
1173 			sizestr++;
1174 		} else if (sizestr[0] == '+') {
1175 			mod = 1;
1176 			sizestr++;
1177 		}
1178 		new_size = memparse(sizestr, &retptr);
1179 		if (*retptr != '\0' || new_size == 0) {
1180 			ret = -EINVAL;
1181 			goto out_finish;
1182 		}
1183 	}
1184 
1185 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1186 		ret = -EPERM;
1187 		goto out_finish;
1188 	}
1189 
1190 	old_size = btrfs_device_get_total_bytes(device);
1191 
1192 	if (mod < 0) {
1193 		if (new_size > old_size) {
1194 			ret = -EINVAL;
1195 			goto out_finish;
1196 		}
1197 		new_size = old_size - new_size;
1198 	} else if (mod > 0) {
1199 		if (new_size > ULLONG_MAX - old_size) {
1200 			ret = -ERANGE;
1201 			goto out_finish;
1202 		}
1203 		new_size = old_size + new_size;
1204 	}
1205 
1206 	if (new_size < SZ_256M) {
1207 		ret = -EINVAL;
1208 		goto out_finish;
1209 	}
1210 	if (new_size > bdev_nr_bytes(device->bdev)) {
1211 		ret = -EFBIG;
1212 		goto out_finish;
1213 	}
1214 
1215 	new_size = round_down(new_size, fs_info->sectorsize);
1216 
1217 	if (new_size > old_size) {
1218 		trans = btrfs_start_transaction(root, 0);
1219 		if (IS_ERR(trans)) {
1220 			ret = PTR_ERR(trans);
1221 			goto out_finish;
1222 		}
1223 		ret = btrfs_grow_device(trans, device, new_size);
1224 		btrfs_commit_transaction(trans);
1225 	} else if (new_size < old_size) {
1226 		ret = btrfs_shrink_device(device, new_size);
1227 	} /* equal, nothing need to do */
1228 
1229 	if (ret == 0 && new_size != old_size)
1230 		btrfs_info_in_rcu(fs_info,
1231 			"resize device %s (devid %llu) from %llu to %llu",
1232 			btrfs_dev_name(device), device->devid,
1233 			old_size, new_size);
1234 out_finish:
1235 	btrfs_exclop_finish(fs_info);
1236 out_free:
1237 	kfree(vol_args);
1238 out_drop:
1239 	mnt_drop_write_file(file);
1240 	return ret;
1241 }
1242 
1243 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1244 				struct mnt_idmap *idmap,
1245 				const char *name, unsigned long fd, int subvol,
1246 				bool readonly,
1247 				struct btrfs_qgroup_inherit *inherit)
1248 {
1249 	int namelen;
1250 	int ret = 0;
1251 
1252 	if (!S_ISDIR(file_inode(file)->i_mode))
1253 		return -ENOTDIR;
1254 
1255 	ret = mnt_want_write_file(file);
1256 	if (ret)
1257 		goto out;
1258 
1259 	namelen = strlen(name);
1260 	if (strchr(name, '/')) {
1261 		ret = -EINVAL;
1262 		goto out_drop_write;
1263 	}
1264 
1265 	if (name[0] == '.' &&
1266 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1267 		ret = -EEXIST;
1268 		goto out_drop_write;
1269 	}
1270 
1271 	if (subvol) {
1272 		ret = btrfs_mksubvol(&file->f_path, idmap, name,
1273 				     namelen, NULL, readonly, inherit);
1274 	} else {
1275 		struct fd src = fdget(fd);
1276 		struct inode *src_inode;
1277 		if (!src.file) {
1278 			ret = -EINVAL;
1279 			goto out_drop_write;
1280 		}
1281 
1282 		src_inode = file_inode(src.file);
1283 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1284 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1285 				   "Snapshot src from another FS");
1286 			ret = -EXDEV;
1287 		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1288 			/*
1289 			 * Subvolume creation is not restricted, but snapshots
1290 			 * are limited to own subvolumes only
1291 			 */
1292 			ret = -EPERM;
1293 		} else {
1294 			ret = btrfs_mksnapshot(&file->f_path, idmap,
1295 					       name, namelen,
1296 					       BTRFS_I(src_inode)->root,
1297 					       readonly, inherit);
1298 		}
1299 		fdput(src);
1300 	}
1301 out_drop_write:
1302 	mnt_drop_write_file(file);
1303 out:
1304 	return ret;
1305 }
1306 
1307 static noinline int btrfs_ioctl_snap_create(struct file *file,
1308 					    void __user *arg, int subvol)
1309 {
1310 	struct btrfs_ioctl_vol_args *vol_args;
1311 	int ret;
1312 
1313 	if (!S_ISDIR(file_inode(file)->i_mode))
1314 		return -ENOTDIR;
1315 
1316 	vol_args = memdup_user(arg, sizeof(*vol_args));
1317 	if (IS_ERR(vol_args))
1318 		return PTR_ERR(vol_args);
1319 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1320 
1321 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1322 					vol_args->name, vol_args->fd, subvol,
1323 					false, NULL);
1324 
1325 	kfree(vol_args);
1326 	return ret;
1327 }
1328 
1329 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1330 					       void __user *arg, int subvol)
1331 {
1332 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1333 	int ret;
1334 	bool readonly = false;
1335 	struct btrfs_qgroup_inherit *inherit = NULL;
1336 
1337 	if (!S_ISDIR(file_inode(file)->i_mode))
1338 		return -ENOTDIR;
1339 
1340 	vol_args = memdup_user(arg, sizeof(*vol_args));
1341 	if (IS_ERR(vol_args))
1342 		return PTR_ERR(vol_args);
1343 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1344 
1345 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1346 		ret = -EOPNOTSUPP;
1347 		goto free_args;
1348 	}
1349 
1350 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1351 		readonly = true;
1352 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1353 		u64 nums;
1354 
1355 		if (vol_args->size < sizeof(*inherit) ||
1356 		    vol_args->size > PAGE_SIZE) {
1357 			ret = -EINVAL;
1358 			goto free_args;
1359 		}
1360 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1361 		if (IS_ERR(inherit)) {
1362 			ret = PTR_ERR(inherit);
1363 			goto free_args;
1364 		}
1365 
1366 		if (inherit->num_qgroups > PAGE_SIZE ||
1367 		    inherit->num_ref_copies > PAGE_SIZE ||
1368 		    inherit->num_excl_copies > PAGE_SIZE) {
1369 			ret = -EINVAL;
1370 			goto free_inherit;
1371 		}
1372 
1373 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1374 		       2 * inherit->num_excl_copies;
1375 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1376 			ret = -EINVAL;
1377 			goto free_inherit;
1378 		}
1379 	}
1380 
1381 	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1382 					vol_args->name, vol_args->fd, subvol,
1383 					readonly, inherit);
1384 	if (ret)
1385 		goto free_inherit;
1386 free_inherit:
1387 	kfree(inherit);
1388 free_args:
1389 	kfree(vol_args);
1390 	return ret;
1391 }
1392 
1393 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1394 						void __user *arg)
1395 {
1396 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1397 	struct btrfs_root *root = BTRFS_I(inode)->root;
1398 	int ret = 0;
1399 	u64 flags = 0;
1400 
1401 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1402 		return -EINVAL;
1403 
1404 	down_read(&fs_info->subvol_sem);
1405 	if (btrfs_root_readonly(root))
1406 		flags |= BTRFS_SUBVOL_RDONLY;
1407 	up_read(&fs_info->subvol_sem);
1408 
1409 	if (copy_to_user(arg, &flags, sizeof(flags)))
1410 		ret = -EFAULT;
1411 
1412 	return ret;
1413 }
1414 
1415 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1416 					      void __user *arg)
1417 {
1418 	struct inode *inode = file_inode(file);
1419 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1420 	struct btrfs_root *root = BTRFS_I(inode)->root;
1421 	struct btrfs_trans_handle *trans;
1422 	u64 root_flags;
1423 	u64 flags;
1424 	int ret = 0;
1425 
1426 	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1427 		return -EPERM;
1428 
1429 	ret = mnt_want_write_file(file);
1430 	if (ret)
1431 		goto out;
1432 
1433 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1434 		ret = -EINVAL;
1435 		goto out_drop_write;
1436 	}
1437 
1438 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1439 		ret = -EFAULT;
1440 		goto out_drop_write;
1441 	}
1442 
1443 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1444 		ret = -EOPNOTSUPP;
1445 		goto out_drop_write;
1446 	}
1447 
1448 	down_write(&fs_info->subvol_sem);
1449 
1450 	/* nothing to do */
1451 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1452 		goto out_drop_sem;
1453 
1454 	root_flags = btrfs_root_flags(&root->root_item);
1455 	if (flags & BTRFS_SUBVOL_RDONLY) {
1456 		btrfs_set_root_flags(&root->root_item,
1457 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1458 	} else {
1459 		/*
1460 		 * Block RO -> RW transition if this subvolume is involved in
1461 		 * send
1462 		 */
1463 		spin_lock(&root->root_item_lock);
1464 		if (root->send_in_progress == 0) {
1465 			btrfs_set_root_flags(&root->root_item,
1466 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1467 			spin_unlock(&root->root_item_lock);
1468 		} else {
1469 			spin_unlock(&root->root_item_lock);
1470 			btrfs_warn(fs_info,
1471 				   "Attempt to set subvolume %llu read-write during send",
1472 				   root->root_key.objectid);
1473 			ret = -EPERM;
1474 			goto out_drop_sem;
1475 		}
1476 	}
1477 
1478 	trans = btrfs_start_transaction(root, 1);
1479 	if (IS_ERR(trans)) {
1480 		ret = PTR_ERR(trans);
1481 		goto out_reset;
1482 	}
1483 
1484 	ret = btrfs_update_root(trans, fs_info->tree_root,
1485 				&root->root_key, &root->root_item);
1486 	if (ret < 0) {
1487 		btrfs_end_transaction(trans);
1488 		goto out_reset;
1489 	}
1490 
1491 	ret = btrfs_commit_transaction(trans);
1492 
1493 out_reset:
1494 	if (ret)
1495 		btrfs_set_root_flags(&root->root_item, root_flags);
1496 out_drop_sem:
1497 	up_write(&fs_info->subvol_sem);
1498 out_drop_write:
1499 	mnt_drop_write_file(file);
1500 out:
1501 	return ret;
1502 }
1503 
1504 static noinline int key_in_sk(struct btrfs_key *key,
1505 			      struct btrfs_ioctl_search_key *sk)
1506 {
1507 	struct btrfs_key test;
1508 	int ret;
1509 
1510 	test.objectid = sk->min_objectid;
1511 	test.type = sk->min_type;
1512 	test.offset = sk->min_offset;
1513 
1514 	ret = btrfs_comp_cpu_keys(key, &test);
1515 	if (ret < 0)
1516 		return 0;
1517 
1518 	test.objectid = sk->max_objectid;
1519 	test.type = sk->max_type;
1520 	test.offset = sk->max_offset;
1521 
1522 	ret = btrfs_comp_cpu_keys(key, &test);
1523 	if (ret > 0)
1524 		return 0;
1525 	return 1;
1526 }
1527 
1528 static noinline int copy_to_sk(struct btrfs_path *path,
1529 			       struct btrfs_key *key,
1530 			       struct btrfs_ioctl_search_key *sk,
1531 			       size_t *buf_size,
1532 			       char __user *ubuf,
1533 			       unsigned long *sk_offset,
1534 			       int *num_found)
1535 {
1536 	u64 found_transid;
1537 	struct extent_buffer *leaf;
1538 	struct btrfs_ioctl_search_header sh;
1539 	struct btrfs_key test;
1540 	unsigned long item_off;
1541 	unsigned long item_len;
1542 	int nritems;
1543 	int i;
1544 	int slot;
1545 	int ret = 0;
1546 
1547 	leaf = path->nodes[0];
1548 	slot = path->slots[0];
1549 	nritems = btrfs_header_nritems(leaf);
1550 
1551 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1552 		i = nritems;
1553 		goto advance_key;
1554 	}
1555 	found_transid = btrfs_header_generation(leaf);
1556 
1557 	for (i = slot; i < nritems; i++) {
1558 		item_off = btrfs_item_ptr_offset(leaf, i);
1559 		item_len = btrfs_item_size(leaf, i);
1560 
1561 		btrfs_item_key_to_cpu(leaf, key, i);
1562 		if (!key_in_sk(key, sk))
1563 			continue;
1564 
1565 		if (sizeof(sh) + item_len > *buf_size) {
1566 			if (*num_found) {
1567 				ret = 1;
1568 				goto out;
1569 			}
1570 
1571 			/*
1572 			 * return one empty item back for v1, which does not
1573 			 * handle -EOVERFLOW
1574 			 */
1575 
1576 			*buf_size = sizeof(sh) + item_len;
1577 			item_len = 0;
1578 			ret = -EOVERFLOW;
1579 		}
1580 
1581 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1582 			ret = 1;
1583 			goto out;
1584 		}
1585 
1586 		sh.objectid = key->objectid;
1587 		sh.offset = key->offset;
1588 		sh.type = key->type;
1589 		sh.len = item_len;
1590 		sh.transid = found_transid;
1591 
1592 		/*
1593 		 * Copy search result header. If we fault then loop again so we
1594 		 * can fault in the pages and -EFAULT there if there's a
1595 		 * problem. Otherwise we'll fault and then copy the buffer in
1596 		 * properly this next time through
1597 		 */
1598 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1599 			ret = 0;
1600 			goto out;
1601 		}
1602 
1603 		*sk_offset += sizeof(sh);
1604 
1605 		if (item_len) {
1606 			char __user *up = ubuf + *sk_offset;
1607 			/*
1608 			 * Copy the item, same behavior as above, but reset the
1609 			 * * sk_offset so we copy the full thing again.
1610 			 */
1611 			if (read_extent_buffer_to_user_nofault(leaf, up,
1612 						item_off, item_len)) {
1613 				ret = 0;
1614 				*sk_offset -= sizeof(sh);
1615 				goto out;
1616 			}
1617 
1618 			*sk_offset += item_len;
1619 		}
1620 		(*num_found)++;
1621 
1622 		if (ret) /* -EOVERFLOW from above */
1623 			goto out;
1624 
1625 		if (*num_found >= sk->nr_items) {
1626 			ret = 1;
1627 			goto out;
1628 		}
1629 	}
1630 advance_key:
1631 	ret = 0;
1632 	test.objectid = sk->max_objectid;
1633 	test.type = sk->max_type;
1634 	test.offset = sk->max_offset;
1635 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1636 		ret = 1;
1637 	else if (key->offset < (u64)-1)
1638 		key->offset++;
1639 	else if (key->type < (u8)-1) {
1640 		key->offset = 0;
1641 		key->type++;
1642 	} else if (key->objectid < (u64)-1) {
1643 		key->offset = 0;
1644 		key->type = 0;
1645 		key->objectid++;
1646 	} else
1647 		ret = 1;
1648 out:
1649 	/*
1650 	 *  0: all items from this leaf copied, continue with next
1651 	 *  1: * more items can be copied, but unused buffer is too small
1652 	 *     * all items were found
1653 	 *     Either way, it will stops the loop which iterates to the next
1654 	 *     leaf
1655 	 *  -EOVERFLOW: item was to large for buffer
1656 	 *  -EFAULT: could not copy extent buffer back to userspace
1657 	 */
1658 	return ret;
1659 }
1660 
1661 static noinline int search_ioctl(struct inode *inode,
1662 				 struct btrfs_ioctl_search_key *sk,
1663 				 size_t *buf_size,
1664 				 char __user *ubuf)
1665 {
1666 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
1667 	struct btrfs_root *root;
1668 	struct btrfs_key key;
1669 	struct btrfs_path *path;
1670 	int ret;
1671 	int num_found = 0;
1672 	unsigned long sk_offset = 0;
1673 
1674 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1675 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1676 		return -EOVERFLOW;
1677 	}
1678 
1679 	path = btrfs_alloc_path();
1680 	if (!path)
1681 		return -ENOMEM;
1682 
1683 	if (sk->tree_id == 0) {
1684 		/* search the root of the inode that was passed */
1685 		root = btrfs_grab_root(BTRFS_I(inode)->root);
1686 	} else {
1687 		root = btrfs_get_fs_root(info, sk->tree_id, true);
1688 		if (IS_ERR(root)) {
1689 			btrfs_free_path(path);
1690 			return PTR_ERR(root);
1691 		}
1692 	}
1693 
1694 	key.objectid = sk->min_objectid;
1695 	key.type = sk->min_type;
1696 	key.offset = sk->min_offset;
1697 
1698 	while (1) {
1699 		ret = -EFAULT;
1700 		/*
1701 		 * Ensure that the whole user buffer is faulted in at sub-page
1702 		 * granularity, otherwise the loop may live-lock.
1703 		 */
1704 		if (fault_in_subpage_writeable(ubuf + sk_offset,
1705 					       *buf_size - sk_offset))
1706 			break;
1707 
1708 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1709 		if (ret != 0) {
1710 			if (ret > 0)
1711 				ret = 0;
1712 			goto err;
1713 		}
1714 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1715 				 &sk_offset, &num_found);
1716 		btrfs_release_path(path);
1717 		if (ret)
1718 			break;
1719 
1720 	}
1721 	if (ret > 0)
1722 		ret = 0;
1723 err:
1724 	sk->nr_items = num_found;
1725 	btrfs_put_root(root);
1726 	btrfs_free_path(path);
1727 	return ret;
1728 }
1729 
1730 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1731 					    void __user *argp)
1732 {
1733 	struct btrfs_ioctl_search_args __user *uargs = argp;
1734 	struct btrfs_ioctl_search_key sk;
1735 	int ret;
1736 	size_t buf_size;
1737 
1738 	if (!capable(CAP_SYS_ADMIN))
1739 		return -EPERM;
1740 
1741 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1742 		return -EFAULT;
1743 
1744 	buf_size = sizeof(uargs->buf);
1745 
1746 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1747 
1748 	/*
1749 	 * In the origin implementation an overflow is handled by returning a
1750 	 * search header with a len of zero, so reset ret.
1751 	 */
1752 	if (ret == -EOVERFLOW)
1753 		ret = 0;
1754 
1755 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1756 		ret = -EFAULT;
1757 	return ret;
1758 }
1759 
1760 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1761 					       void __user *argp)
1762 {
1763 	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1764 	struct btrfs_ioctl_search_args_v2 args;
1765 	int ret;
1766 	size_t buf_size;
1767 	const size_t buf_limit = SZ_16M;
1768 
1769 	if (!capable(CAP_SYS_ADMIN))
1770 		return -EPERM;
1771 
1772 	/* copy search header and buffer size */
1773 	if (copy_from_user(&args, uarg, sizeof(args)))
1774 		return -EFAULT;
1775 
1776 	buf_size = args.buf_size;
1777 
1778 	/* limit result size to 16MB */
1779 	if (buf_size > buf_limit)
1780 		buf_size = buf_limit;
1781 
1782 	ret = search_ioctl(inode, &args.key, &buf_size,
1783 			   (char __user *)(&uarg->buf[0]));
1784 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1785 		ret = -EFAULT;
1786 	else if (ret == -EOVERFLOW &&
1787 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1788 		ret = -EFAULT;
1789 
1790 	return ret;
1791 }
1792 
1793 /*
1794  * Search INODE_REFs to identify path name of 'dirid' directory
1795  * in a 'tree_id' tree. and sets path name to 'name'.
1796  */
1797 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1798 				u64 tree_id, u64 dirid, char *name)
1799 {
1800 	struct btrfs_root *root;
1801 	struct btrfs_key key;
1802 	char *ptr;
1803 	int ret = -1;
1804 	int slot;
1805 	int len;
1806 	int total_len = 0;
1807 	struct btrfs_inode_ref *iref;
1808 	struct extent_buffer *l;
1809 	struct btrfs_path *path;
1810 
1811 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1812 		name[0]='\0';
1813 		return 0;
1814 	}
1815 
1816 	path = btrfs_alloc_path();
1817 	if (!path)
1818 		return -ENOMEM;
1819 
1820 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1821 
1822 	root = btrfs_get_fs_root(info, tree_id, true);
1823 	if (IS_ERR(root)) {
1824 		ret = PTR_ERR(root);
1825 		root = NULL;
1826 		goto out;
1827 	}
1828 
1829 	key.objectid = dirid;
1830 	key.type = BTRFS_INODE_REF_KEY;
1831 	key.offset = (u64)-1;
1832 
1833 	while (1) {
1834 		ret = btrfs_search_backwards(root, &key, path);
1835 		if (ret < 0)
1836 			goto out;
1837 		else if (ret > 0) {
1838 			ret = -ENOENT;
1839 			goto out;
1840 		}
1841 
1842 		l = path->nodes[0];
1843 		slot = path->slots[0];
1844 
1845 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1846 		len = btrfs_inode_ref_name_len(l, iref);
1847 		ptr -= len + 1;
1848 		total_len += len + 1;
1849 		if (ptr < name) {
1850 			ret = -ENAMETOOLONG;
1851 			goto out;
1852 		}
1853 
1854 		*(ptr + len) = '/';
1855 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1856 
1857 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1858 			break;
1859 
1860 		btrfs_release_path(path);
1861 		key.objectid = key.offset;
1862 		key.offset = (u64)-1;
1863 		dirid = key.objectid;
1864 	}
1865 	memmove(name, ptr, total_len);
1866 	name[total_len] = '\0';
1867 	ret = 0;
1868 out:
1869 	btrfs_put_root(root);
1870 	btrfs_free_path(path);
1871 	return ret;
1872 }
1873 
1874 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1875 				struct inode *inode,
1876 				struct btrfs_ioctl_ino_lookup_user_args *args)
1877 {
1878 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1879 	struct super_block *sb = inode->i_sb;
1880 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1881 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1882 	u64 dirid = args->dirid;
1883 	unsigned long item_off;
1884 	unsigned long item_len;
1885 	struct btrfs_inode_ref *iref;
1886 	struct btrfs_root_ref *rref;
1887 	struct btrfs_root *root = NULL;
1888 	struct btrfs_path *path;
1889 	struct btrfs_key key, key2;
1890 	struct extent_buffer *leaf;
1891 	struct inode *temp_inode;
1892 	char *ptr;
1893 	int slot;
1894 	int len;
1895 	int total_len = 0;
1896 	int ret;
1897 
1898 	path = btrfs_alloc_path();
1899 	if (!path)
1900 		return -ENOMEM;
1901 
1902 	/*
1903 	 * If the bottom subvolume does not exist directly under upper_limit,
1904 	 * construct the path in from the bottom up.
1905 	 */
1906 	if (dirid != upper_limit.objectid) {
1907 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1908 
1909 		root = btrfs_get_fs_root(fs_info, treeid, true);
1910 		if (IS_ERR(root)) {
1911 			ret = PTR_ERR(root);
1912 			goto out;
1913 		}
1914 
1915 		key.objectid = dirid;
1916 		key.type = BTRFS_INODE_REF_KEY;
1917 		key.offset = (u64)-1;
1918 		while (1) {
1919 			ret = btrfs_search_backwards(root, &key, path);
1920 			if (ret < 0)
1921 				goto out_put;
1922 			else if (ret > 0) {
1923 				ret = -ENOENT;
1924 				goto out_put;
1925 			}
1926 
1927 			leaf = path->nodes[0];
1928 			slot = path->slots[0];
1929 
1930 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1931 			len = btrfs_inode_ref_name_len(leaf, iref);
1932 			ptr -= len + 1;
1933 			total_len += len + 1;
1934 			if (ptr < args->path) {
1935 				ret = -ENAMETOOLONG;
1936 				goto out_put;
1937 			}
1938 
1939 			*(ptr + len) = '/';
1940 			read_extent_buffer(leaf, ptr,
1941 					(unsigned long)(iref + 1), len);
1942 
1943 			/* Check the read+exec permission of this directory */
1944 			ret = btrfs_previous_item(root, path, dirid,
1945 						  BTRFS_INODE_ITEM_KEY);
1946 			if (ret < 0) {
1947 				goto out_put;
1948 			} else if (ret > 0) {
1949 				ret = -ENOENT;
1950 				goto out_put;
1951 			}
1952 
1953 			leaf = path->nodes[0];
1954 			slot = path->slots[0];
1955 			btrfs_item_key_to_cpu(leaf, &key2, slot);
1956 			if (key2.objectid != dirid) {
1957 				ret = -ENOENT;
1958 				goto out_put;
1959 			}
1960 
1961 			temp_inode = btrfs_iget(sb, key2.objectid, root);
1962 			if (IS_ERR(temp_inode)) {
1963 				ret = PTR_ERR(temp_inode);
1964 				goto out_put;
1965 			}
1966 			ret = inode_permission(idmap, temp_inode,
1967 					       MAY_READ | MAY_EXEC);
1968 			iput(temp_inode);
1969 			if (ret) {
1970 				ret = -EACCES;
1971 				goto out_put;
1972 			}
1973 
1974 			if (key.offset == upper_limit.objectid)
1975 				break;
1976 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1977 				ret = -EACCES;
1978 				goto out_put;
1979 			}
1980 
1981 			btrfs_release_path(path);
1982 			key.objectid = key.offset;
1983 			key.offset = (u64)-1;
1984 			dirid = key.objectid;
1985 		}
1986 
1987 		memmove(args->path, ptr, total_len);
1988 		args->path[total_len] = '\0';
1989 		btrfs_put_root(root);
1990 		root = NULL;
1991 		btrfs_release_path(path);
1992 	}
1993 
1994 	/* Get the bottom subvolume's name from ROOT_REF */
1995 	key.objectid = treeid;
1996 	key.type = BTRFS_ROOT_REF_KEY;
1997 	key.offset = args->treeid;
1998 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1999 	if (ret < 0) {
2000 		goto out;
2001 	} else if (ret > 0) {
2002 		ret = -ENOENT;
2003 		goto out;
2004 	}
2005 
2006 	leaf = path->nodes[0];
2007 	slot = path->slots[0];
2008 	btrfs_item_key_to_cpu(leaf, &key, slot);
2009 
2010 	item_off = btrfs_item_ptr_offset(leaf, slot);
2011 	item_len = btrfs_item_size(leaf, slot);
2012 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2013 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2014 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2015 		ret = -EINVAL;
2016 		goto out;
2017 	}
2018 
2019 	/* Copy subvolume's name */
2020 	item_off += sizeof(struct btrfs_root_ref);
2021 	item_len -= sizeof(struct btrfs_root_ref);
2022 	read_extent_buffer(leaf, args->name, item_off, item_len);
2023 	args->name[item_len] = 0;
2024 
2025 out_put:
2026 	btrfs_put_root(root);
2027 out:
2028 	btrfs_free_path(path);
2029 	return ret;
2030 }
2031 
2032 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2033 					   void __user *argp)
2034 {
2035 	struct btrfs_ioctl_ino_lookup_args *args;
2036 	int ret = 0;
2037 
2038 	args = memdup_user(argp, sizeof(*args));
2039 	if (IS_ERR(args))
2040 		return PTR_ERR(args);
2041 
2042 	/*
2043 	 * Unprivileged query to obtain the containing subvolume root id. The
2044 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2045 	 */
2046 	if (args->treeid == 0)
2047 		args->treeid = root->root_key.objectid;
2048 
2049 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2050 		args->name[0] = 0;
2051 		goto out;
2052 	}
2053 
2054 	if (!capable(CAP_SYS_ADMIN)) {
2055 		ret = -EPERM;
2056 		goto out;
2057 	}
2058 
2059 	ret = btrfs_search_path_in_tree(root->fs_info,
2060 					args->treeid, args->objectid,
2061 					args->name);
2062 
2063 out:
2064 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2065 		ret = -EFAULT;
2066 
2067 	kfree(args);
2068 	return ret;
2069 }
2070 
2071 /*
2072  * Version of ino_lookup ioctl (unprivileged)
2073  *
2074  * The main differences from ino_lookup ioctl are:
2075  *
2076  *   1. Read + Exec permission will be checked using inode_permission() during
2077  *      path construction. -EACCES will be returned in case of failure.
2078  *   2. Path construction will be stopped at the inode number which corresponds
2079  *      to the fd with which this ioctl is called. If constructed path does not
2080  *      exist under fd's inode, -EACCES will be returned.
2081  *   3. The name of bottom subvolume is also searched and filled.
2082  */
2083 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2084 {
2085 	struct btrfs_ioctl_ino_lookup_user_args *args;
2086 	struct inode *inode;
2087 	int ret;
2088 
2089 	args = memdup_user(argp, sizeof(*args));
2090 	if (IS_ERR(args))
2091 		return PTR_ERR(args);
2092 
2093 	inode = file_inode(file);
2094 
2095 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2096 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2097 		/*
2098 		 * The subvolume does not exist under fd with which this is
2099 		 * called
2100 		 */
2101 		kfree(args);
2102 		return -EACCES;
2103 	}
2104 
2105 	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2106 
2107 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2108 		ret = -EFAULT;
2109 
2110 	kfree(args);
2111 	return ret;
2112 }
2113 
2114 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2115 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2116 {
2117 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2118 	struct btrfs_fs_info *fs_info;
2119 	struct btrfs_root *root;
2120 	struct btrfs_path *path;
2121 	struct btrfs_key key;
2122 	struct btrfs_root_item *root_item;
2123 	struct btrfs_root_ref *rref;
2124 	struct extent_buffer *leaf;
2125 	unsigned long item_off;
2126 	unsigned long item_len;
2127 	int slot;
2128 	int ret = 0;
2129 
2130 	path = btrfs_alloc_path();
2131 	if (!path)
2132 		return -ENOMEM;
2133 
2134 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2135 	if (!subvol_info) {
2136 		btrfs_free_path(path);
2137 		return -ENOMEM;
2138 	}
2139 
2140 	fs_info = BTRFS_I(inode)->root->fs_info;
2141 
2142 	/* Get root_item of inode's subvolume */
2143 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2144 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2145 	if (IS_ERR(root)) {
2146 		ret = PTR_ERR(root);
2147 		goto out_free;
2148 	}
2149 	root_item = &root->root_item;
2150 
2151 	subvol_info->treeid = key.objectid;
2152 
2153 	subvol_info->generation = btrfs_root_generation(root_item);
2154 	subvol_info->flags = btrfs_root_flags(root_item);
2155 
2156 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2157 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2158 						    BTRFS_UUID_SIZE);
2159 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2160 						    BTRFS_UUID_SIZE);
2161 
2162 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2163 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2164 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2165 
2166 	subvol_info->otransid = btrfs_root_otransid(root_item);
2167 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2168 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2169 
2170 	subvol_info->stransid = btrfs_root_stransid(root_item);
2171 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2172 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2173 
2174 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2175 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2176 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2177 
2178 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2179 		/* Search root tree for ROOT_BACKREF of this subvolume */
2180 		key.type = BTRFS_ROOT_BACKREF_KEY;
2181 		key.offset = 0;
2182 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2183 		if (ret < 0) {
2184 			goto out;
2185 		} else if (path->slots[0] >=
2186 			   btrfs_header_nritems(path->nodes[0])) {
2187 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2188 			if (ret < 0) {
2189 				goto out;
2190 			} else if (ret > 0) {
2191 				ret = -EUCLEAN;
2192 				goto out;
2193 			}
2194 		}
2195 
2196 		leaf = path->nodes[0];
2197 		slot = path->slots[0];
2198 		btrfs_item_key_to_cpu(leaf, &key, slot);
2199 		if (key.objectid == subvol_info->treeid &&
2200 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2201 			subvol_info->parent_id = key.offset;
2202 
2203 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2204 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2205 
2206 			item_off = btrfs_item_ptr_offset(leaf, slot)
2207 					+ sizeof(struct btrfs_root_ref);
2208 			item_len = btrfs_item_size(leaf, slot)
2209 					- sizeof(struct btrfs_root_ref);
2210 			read_extent_buffer(leaf, subvol_info->name,
2211 					   item_off, item_len);
2212 		} else {
2213 			ret = -ENOENT;
2214 			goto out;
2215 		}
2216 	}
2217 
2218 	btrfs_free_path(path);
2219 	path = NULL;
2220 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2221 		ret = -EFAULT;
2222 
2223 out:
2224 	btrfs_put_root(root);
2225 out_free:
2226 	btrfs_free_path(path);
2227 	kfree(subvol_info);
2228 	return ret;
2229 }
2230 
2231 /*
2232  * Return ROOT_REF information of the subvolume containing this inode
2233  * except the subvolume name.
2234  */
2235 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2236 					  void __user *argp)
2237 {
2238 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2239 	struct btrfs_root_ref *rref;
2240 	struct btrfs_path *path;
2241 	struct btrfs_key key;
2242 	struct extent_buffer *leaf;
2243 	u64 objectid;
2244 	int slot;
2245 	int ret;
2246 	u8 found;
2247 
2248 	path = btrfs_alloc_path();
2249 	if (!path)
2250 		return -ENOMEM;
2251 
2252 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2253 	if (IS_ERR(rootrefs)) {
2254 		btrfs_free_path(path);
2255 		return PTR_ERR(rootrefs);
2256 	}
2257 
2258 	objectid = root->root_key.objectid;
2259 	key.objectid = objectid;
2260 	key.type = BTRFS_ROOT_REF_KEY;
2261 	key.offset = rootrefs->min_treeid;
2262 	found = 0;
2263 
2264 	root = root->fs_info->tree_root;
2265 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2266 	if (ret < 0) {
2267 		goto out;
2268 	} else if (path->slots[0] >=
2269 		   btrfs_header_nritems(path->nodes[0])) {
2270 		ret = btrfs_next_leaf(root, path);
2271 		if (ret < 0) {
2272 			goto out;
2273 		} else if (ret > 0) {
2274 			ret = -EUCLEAN;
2275 			goto out;
2276 		}
2277 	}
2278 	while (1) {
2279 		leaf = path->nodes[0];
2280 		slot = path->slots[0];
2281 
2282 		btrfs_item_key_to_cpu(leaf, &key, slot);
2283 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2284 			ret = 0;
2285 			goto out;
2286 		}
2287 
2288 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2289 			ret = -EOVERFLOW;
2290 			goto out;
2291 		}
2292 
2293 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2294 		rootrefs->rootref[found].treeid = key.offset;
2295 		rootrefs->rootref[found].dirid =
2296 				  btrfs_root_ref_dirid(leaf, rref);
2297 		found++;
2298 
2299 		ret = btrfs_next_item(root, path);
2300 		if (ret < 0) {
2301 			goto out;
2302 		} else if (ret > 0) {
2303 			ret = -EUCLEAN;
2304 			goto out;
2305 		}
2306 	}
2307 
2308 out:
2309 	btrfs_free_path(path);
2310 
2311 	if (!ret || ret == -EOVERFLOW) {
2312 		rootrefs->num_items = found;
2313 		/* update min_treeid for next search */
2314 		if (found)
2315 			rootrefs->min_treeid =
2316 				rootrefs->rootref[found - 1].treeid + 1;
2317 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2318 			ret = -EFAULT;
2319 	}
2320 
2321 	kfree(rootrefs);
2322 
2323 	return ret;
2324 }
2325 
2326 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2327 					     void __user *arg,
2328 					     bool destroy_v2)
2329 {
2330 	struct dentry *parent = file->f_path.dentry;
2331 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2332 	struct dentry *dentry;
2333 	struct inode *dir = d_inode(parent);
2334 	struct inode *inode;
2335 	struct btrfs_root *root = BTRFS_I(dir)->root;
2336 	struct btrfs_root *dest = NULL;
2337 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2338 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2339 	struct mnt_idmap *idmap = file_mnt_idmap(file);
2340 	char *subvol_name, *subvol_name_ptr = NULL;
2341 	int subvol_namelen;
2342 	int err = 0;
2343 	bool destroy_parent = false;
2344 
2345 	/* We don't support snapshots with extent tree v2 yet. */
2346 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2347 		btrfs_err(fs_info,
2348 			  "extent tree v2 doesn't support snapshot deletion yet");
2349 		return -EOPNOTSUPP;
2350 	}
2351 
2352 	if (destroy_v2) {
2353 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2354 		if (IS_ERR(vol_args2))
2355 			return PTR_ERR(vol_args2);
2356 
2357 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2358 			err = -EOPNOTSUPP;
2359 			goto out;
2360 		}
2361 
2362 		/*
2363 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2364 		 * name, same as v1 currently does.
2365 		 */
2366 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2367 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2368 			subvol_name = vol_args2->name;
2369 
2370 			err = mnt_want_write_file(file);
2371 			if (err)
2372 				goto out;
2373 		} else {
2374 			struct inode *old_dir;
2375 
2376 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2377 				err = -EINVAL;
2378 				goto out;
2379 			}
2380 
2381 			err = mnt_want_write_file(file);
2382 			if (err)
2383 				goto out;
2384 
2385 			dentry = btrfs_get_dentry(fs_info->sb,
2386 					BTRFS_FIRST_FREE_OBJECTID,
2387 					vol_args2->subvolid, 0);
2388 			if (IS_ERR(dentry)) {
2389 				err = PTR_ERR(dentry);
2390 				goto out_drop_write;
2391 			}
2392 
2393 			/*
2394 			 * Change the default parent since the subvolume being
2395 			 * deleted can be outside of the current mount point.
2396 			 */
2397 			parent = btrfs_get_parent(dentry);
2398 
2399 			/*
2400 			 * At this point dentry->d_name can point to '/' if the
2401 			 * subvolume we want to destroy is outsite of the
2402 			 * current mount point, so we need to release the
2403 			 * current dentry and execute the lookup to return a new
2404 			 * one with ->d_name pointing to the
2405 			 * <mount point>/subvol_name.
2406 			 */
2407 			dput(dentry);
2408 			if (IS_ERR(parent)) {
2409 				err = PTR_ERR(parent);
2410 				goto out_drop_write;
2411 			}
2412 			old_dir = dir;
2413 			dir = d_inode(parent);
2414 
2415 			/*
2416 			 * If v2 was used with SPEC_BY_ID, a new parent was
2417 			 * allocated since the subvolume can be outside of the
2418 			 * current mount point. Later on we need to release this
2419 			 * new parent dentry.
2420 			 */
2421 			destroy_parent = true;
2422 
2423 			/*
2424 			 * On idmapped mounts, deletion via subvolid is
2425 			 * restricted to subvolumes that are immediate
2426 			 * ancestors of the inode referenced by the file
2427 			 * descriptor in the ioctl. Otherwise the idmapping
2428 			 * could potentially be abused to delete subvolumes
2429 			 * anywhere in the filesystem the user wouldn't be able
2430 			 * to delete without an idmapped mount.
2431 			 */
2432 			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2433 				err = -EOPNOTSUPP;
2434 				goto free_parent;
2435 			}
2436 
2437 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2438 						fs_info, vol_args2->subvolid);
2439 			if (IS_ERR(subvol_name_ptr)) {
2440 				err = PTR_ERR(subvol_name_ptr);
2441 				goto free_parent;
2442 			}
2443 			/* subvol_name_ptr is already nul terminated */
2444 			subvol_name = (char *)kbasename(subvol_name_ptr);
2445 		}
2446 	} else {
2447 		vol_args = memdup_user(arg, sizeof(*vol_args));
2448 		if (IS_ERR(vol_args))
2449 			return PTR_ERR(vol_args);
2450 
2451 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2452 		subvol_name = vol_args->name;
2453 
2454 		err = mnt_want_write_file(file);
2455 		if (err)
2456 			goto out;
2457 	}
2458 
2459 	subvol_namelen = strlen(subvol_name);
2460 
2461 	if (strchr(subvol_name, '/') ||
2462 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2463 		err = -EINVAL;
2464 		goto free_subvol_name;
2465 	}
2466 
2467 	if (!S_ISDIR(dir->i_mode)) {
2468 		err = -ENOTDIR;
2469 		goto free_subvol_name;
2470 	}
2471 
2472 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2473 	if (err == -EINTR)
2474 		goto free_subvol_name;
2475 	dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2476 	if (IS_ERR(dentry)) {
2477 		err = PTR_ERR(dentry);
2478 		goto out_unlock_dir;
2479 	}
2480 
2481 	if (d_really_is_negative(dentry)) {
2482 		err = -ENOENT;
2483 		goto out_dput;
2484 	}
2485 
2486 	inode = d_inode(dentry);
2487 	dest = BTRFS_I(inode)->root;
2488 	if (!capable(CAP_SYS_ADMIN)) {
2489 		/*
2490 		 * Regular user.  Only allow this with a special mount
2491 		 * option, when the user has write+exec access to the
2492 		 * subvol root, and when rmdir(2) would have been
2493 		 * allowed.
2494 		 *
2495 		 * Note that this is _not_ check that the subvol is
2496 		 * empty or doesn't contain data that we wouldn't
2497 		 * otherwise be able to delete.
2498 		 *
2499 		 * Users who want to delete empty subvols should try
2500 		 * rmdir(2).
2501 		 */
2502 		err = -EPERM;
2503 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2504 			goto out_dput;
2505 
2506 		/*
2507 		 * Do not allow deletion if the parent dir is the same
2508 		 * as the dir to be deleted.  That means the ioctl
2509 		 * must be called on the dentry referencing the root
2510 		 * of the subvol, not a random directory contained
2511 		 * within it.
2512 		 */
2513 		err = -EINVAL;
2514 		if (root == dest)
2515 			goto out_dput;
2516 
2517 		err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2518 		if (err)
2519 			goto out_dput;
2520 	}
2521 
2522 	/* check if subvolume may be deleted by a user */
2523 	err = btrfs_may_delete(idmap, dir, dentry, 1);
2524 	if (err)
2525 		goto out_dput;
2526 
2527 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2528 		err = -EINVAL;
2529 		goto out_dput;
2530 	}
2531 
2532 	btrfs_inode_lock(BTRFS_I(inode), 0);
2533 	err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2534 	btrfs_inode_unlock(BTRFS_I(inode), 0);
2535 	if (!err)
2536 		d_delete_notify(dir, dentry);
2537 
2538 out_dput:
2539 	dput(dentry);
2540 out_unlock_dir:
2541 	btrfs_inode_unlock(BTRFS_I(dir), 0);
2542 free_subvol_name:
2543 	kfree(subvol_name_ptr);
2544 free_parent:
2545 	if (destroy_parent)
2546 		dput(parent);
2547 out_drop_write:
2548 	mnt_drop_write_file(file);
2549 out:
2550 	kfree(vol_args2);
2551 	kfree(vol_args);
2552 	return err;
2553 }
2554 
2555 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2556 {
2557 	struct inode *inode = file_inode(file);
2558 	struct btrfs_root *root = BTRFS_I(inode)->root;
2559 	struct btrfs_ioctl_defrag_range_args range = {0};
2560 	int ret;
2561 
2562 	ret = mnt_want_write_file(file);
2563 	if (ret)
2564 		return ret;
2565 
2566 	if (btrfs_root_readonly(root)) {
2567 		ret = -EROFS;
2568 		goto out;
2569 	}
2570 
2571 	switch (inode->i_mode & S_IFMT) {
2572 	case S_IFDIR:
2573 		if (!capable(CAP_SYS_ADMIN)) {
2574 			ret = -EPERM;
2575 			goto out;
2576 		}
2577 		ret = btrfs_defrag_root(root);
2578 		break;
2579 	case S_IFREG:
2580 		/*
2581 		 * Note that this does not check the file descriptor for write
2582 		 * access. This prevents defragmenting executables that are
2583 		 * running and allows defrag on files open in read-only mode.
2584 		 */
2585 		if (!capable(CAP_SYS_ADMIN) &&
2586 		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2587 			ret = -EPERM;
2588 			goto out;
2589 		}
2590 
2591 		if (argp) {
2592 			if (copy_from_user(&range, argp, sizeof(range))) {
2593 				ret = -EFAULT;
2594 				goto out;
2595 			}
2596 			/* compression requires us to start the IO */
2597 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2598 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2599 				range.extent_thresh = (u32)-1;
2600 			}
2601 		} else {
2602 			/* the rest are all set to zero by kzalloc */
2603 			range.len = (u64)-1;
2604 		}
2605 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2606 					&range, BTRFS_OLDEST_GENERATION, 0);
2607 		if (ret > 0)
2608 			ret = 0;
2609 		break;
2610 	default:
2611 		ret = -EINVAL;
2612 	}
2613 out:
2614 	mnt_drop_write_file(file);
2615 	return ret;
2616 }
2617 
2618 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2619 {
2620 	struct btrfs_ioctl_vol_args *vol_args;
2621 	bool restore_op = false;
2622 	int ret;
2623 
2624 	if (!capable(CAP_SYS_ADMIN))
2625 		return -EPERM;
2626 
2627 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2628 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2629 		return -EINVAL;
2630 	}
2631 
2632 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2633 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2634 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2635 
2636 		/*
2637 		 * We can do the device add because we have a paused balanced,
2638 		 * change the exclusive op type and remember we should bring
2639 		 * back the paused balance
2640 		 */
2641 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2642 		btrfs_exclop_start_unlock(fs_info);
2643 		restore_op = true;
2644 	}
2645 
2646 	vol_args = memdup_user(arg, sizeof(*vol_args));
2647 	if (IS_ERR(vol_args)) {
2648 		ret = PTR_ERR(vol_args);
2649 		goto out;
2650 	}
2651 
2652 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2653 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2654 
2655 	if (!ret)
2656 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2657 
2658 	kfree(vol_args);
2659 out:
2660 	if (restore_op)
2661 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2662 	else
2663 		btrfs_exclop_finish(fs_info);
2664 	return ret;
2665 }
2666 
2667 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2668 {
2669 	BTRFS_DEV_LOOKUP_ARGS(args);
2670 	struct inode *inode = file_inode(file);
2671 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2672 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2673 	struct block_device *bdev = NULL;
2674 	void *holder;
2675 	int ret;
2676 	bool cancel = false;
2677 
2678 	if (!capable(CAP_SYS_ADMIN))
2679 		return -EPERM;
2680 
2681 	vol_args = memdup_user(arg, sizeof(*vol_args));
2682 	if (IS_ERR(vol_args))
2683 		return PTR_ERR(vol_args);
2684 
2685 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2686 		ret = -EOPNOTSUPP;
2687 		goto out;
2688 	}
2689 
2690 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2691 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2692 		args.devid = vol_args->devid;
2693 	} else if (!strcmp("cancel", vol_args->name)) {
2694 		cancel = true;
2695 	} else {
2696 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2697 		if (ret)
2698 			goto out;
2699 	}
2700 
2701 	ret = mnt_want_write_file(file);
2702 	if (ret)
2703 		goto out;
2704 
2705 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2706 					   cancel);
2707 	if (ret)
2708 		goto err_drop;
2709 
2710 	/* Exclusive operation is now claimed */
2711 	ret = btrfs_rm_device(fs_info, &args, &bdev, &holder);
2712 
2713 	btrfs_exclop_finish(fs_info);
2714 
2715 	if (!ret) {
2716 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2717 			btrfs_info(fs_info, "device deleted: id %llu",
2718 					vol_args->devid);
2719 		else
2720 			btrfs_info(fs_info, "device deleted: %s",
2721 					vol_args->name);
2722 	}
2723 err_drop:
2724 	mnt_drop_write_file(file);
2725 	if (bdev)
2726 		blkdev_put(bdev, holder);
2727 out:
2728 	btrfs_put_dev_args_from_path(&args);
2729 	kfree(vol_args);
2730 	return ret;
2731 }
2732 
2733 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2734 {
2735 	BTRFS_DEV_LOOKUP_ARGS(args);
2736 	struct inode *inode = file_inode(file);
2737 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2738 	struct btrfs_ioctl_vol_args *vol_args;
2739 	struct block_device *bdev = NULL;
2740 	void *holder;
2741 	int ret;
2742 	bool cancel = false;
2743 
2744 	if (!capable(CAP_SYS_ADMIN))
2745 		return -EPERM;
2746 
2747 	vol_args = memdup_user(arg, sizeof(*vol_args));
2748 	if (IS_ERR(vol_args))
2749 		return PTR_ERR(vol_args);
2750 
2751 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2752 	if (!strcmp("cancel", vol_args->name)) {
2753 		cancel = true;
2754 	} else {
2755 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2756 		if (ret)
2757 			goto out;
2758 	}
2759 
2760 	ret = mnt_want_write_file(file);
2761 	if (ret)
2762 		goto out;
2763 
2764 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2765 					   cancel);
2766 	if (ret == 0) {
2767 		ret = btrfs_rm_device(fs_info, &args, &bdev, &holder);
2768 		if (!ret)
2769 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2770 		btrfs_exclop_finish(fs_info);
2771 	}
2772 
2773 	mnt_drop_write_file(file);
2774 	if (bdev)
2775 		blkdev_put(bdev, holder);
2776 out:
2777 	btrfs_put_dev_args_from_path(&args);
2778 	kfree(vol_args);
2779 	return ret;
2780 }
2781 
2782 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2783 				void __user *arg)
2784 {
2785 	struct btrfs_ioctl_fs_info_args *fi_args;
2786 	struct btrfs_device *device;
2787 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2788 	u64 flags_in;
2789 	int ret = 0;
2790 
2791 	fi_args = memdup_user(arg, sizeof(*fi_args));
2792 	if (IS_ERR(fi_args))
2793 		return PTR_ERR(fi_args);
2794 
2795 	flags_in = fi_args->flags;
2796 	memset(fi_args, 0, sizeof(*fi_args));
2797 
2798 	rcu_read_lock();
2799 	fi_args->num_devices = fs_devices->num_devices;
2800 
2801 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2802 		if (device->devid > fi_args->max_id)
2803 			fi_args->max_id = device->devid;
2804 	}
2805 	rcu_read_unlock();
2806 
2807 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2808 	fi_args->nodesize = fs_info->nodesize;
2809 	fi_args->sectorsize = fs_info->sectorsize;
2810 	fi_args->clone_alignment = fs_info->sectorsize;
2811 
2812 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2813 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2814 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2815 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2816 	}
2817 
2818 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2819 		fi_args->generation = fs_info->generation;
2820 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2821 	}
2822 
2823 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2824 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2825 		       sizeof(fi_args->metadata_uuid));
2826 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2827 	}
2828 
2829 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2830 		ret = -EFAULT;
2831 
2832 	kfree(fi_args);
2833 	return ret;
2834 }
2835 
2836 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2837 				 void __user *arg)
2838 {
2839 	BTRFS_DEV_LOOKUP_ARGS(args);
2840 	struct btrfs_ioctl_dev_info_args *di_args;
2841 	struct btrfs_device *dev;
2842 	int ret = 0;
2843 
2844 	di_args = memdup_user(arg, sizeof(*di_args));
2845 	if (IS_ERR(di_args))
2846 		return PTR_ERR(di_args);
2847 
2848 	args.devid = di_args->devid;
2849 	if (!btrfs_is_empty_uuid(di_args->uuid))
2850 		args.uuid = di_args->uuid;
2851 
2852 	rcu_read_lock();
2853 	dev = btrfs_find_device(fs_info->fs_devices, &args);
2854 	if (!dev) {
2855 		ret = -ENODEV;
2856 		goto out;
2857 	}
2858 
2859 	di_args->devid = dev->devid;
2860 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2861 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2862 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2863 	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2864 	if (dev->name)
2865 		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2866 	else
2867 		di_args->path[0] = '\0';
2868 
2869 out:
2870 	rcu_read_unlock();
2871 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2872 		ret = -EFAULT;
2873 
2874 	kfree(di_args);
2875 	return ret;
2876 }
2877 
2878 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2879 {
2880 	struct inode *inode = file_inode(file);
2881 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2882 	struct btrfs_root *root = BTRFS_I(inode)->root;
2883 	struct btrfs_root *new_root;
2884 	struct btrfs_dir_item *di;
2885 	struct btrfs_trans_handle *trans;
2886 	struct btrfs_path *path = NULL;
2887 	struct btrfs_disk_key disk_key;
2888 	struct fscrypt_str name = FSTR_INIT("default", 7);
2889 	u64 objectid = 0;
2890 	u64 dir_id;
2891 	int ret;
2892 
2893 	if (!capable(CAP_SYS_ADMIN))
2894 		return -EPERM;
2895 
2896 	ret = mnt_want_write_file(file);
2897 	if (ret)
2898 		return ret;
2899 
2900 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2901 		ret = -EFAULT;
2902 		goto out;
2903 	}
2904 
2905 	if (!objectid)
2906 		objectid = BTRFS_FS_TREE_OBJECTID;
2907 
2908 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2909 	if (IS_ERR(new_root)) {
2910 		ret = PTR_ERR(new_root);
2911 		goto out;
2912 	}
2913 	if (!is_fstree(new_root->root_key.objectid)) {
2914 		ret = -ENOENT;
2915 		goto out_free;
2916 	}
2917 
2918 	path = btrfs_alloc_path();
2919 	if (!path) {
2920 		ret = -ENOMEM;
2921 		goto out_free;
2922 	}
2923 
2924 	trans = btrfs_start_transaction(root, 1);
2925 	if (IS_ERR(trans)) {
2926 		ret = PTR_ERR(trans);
2927 		goto out_free;
2928 	}
2929 
2930 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
2931 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2932 				   dir_id, &name, 1);
2933 	if (IS_ERR_OR_NULL(di)) {
2934 		btrfs_release_path(path);
2935 		btrfs_end_transaction(trans);
2936 		btrfs_err(fs_info,
2937 			  "Umm, you don't have the default diritem, this isn't going to work");
2938 		ret = -ENOENT;
2939 		goto out_free;
2940 	}
2941 
2942 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2943 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2944 	btrfs_mark_buffer_dirty(path->nodes[0]);
2945 	btrfs_release_path(path);
2946 
2947 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2948 	btrfs_end_transaction(trans);
2949 out_free:
2950 	btrfs_put_root(new_root);
2951 	btrfs_free_path(path);
2952 out:
2953 	mnt_drop_write_file(file);
2954 	return ret;
2955 }
2956 
2957 static void get_block_group_info(struct list_head *groups_list,
2958 				 struct btrfs_ioctl_space_info *space)
2959 {
2960 	struct btrfs_block_group *block_group;
2961 
2962 	space->total_bytes = 0;
2963 	space->used_bytes = 0;
2964 	space->flags = 0;
2965 	list_for_each_entry(block_group, groups_list, list) {
2966 		space->flags = block_group->flags;
2967 		space->total_bytes += block_group->length;
2968 		space->used_bytes += block_group->used;
2969 	}
2970 }
2971 
2972 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2973 				   void __user *arg)
2974 {
2975 	struct btrfs_ioctl_space_args space_args;
2976 	struct btrfs_ioctl_space_info space;
2977 	struct btrfs_ioctl_space_info *dest;
2978 	struct btrfs_ioctl_space_info *dest_orig;
2979 	struct btrfs_ioctl_space_info __user *user_dest;
2980 	struct btrfs_space_info *info;
2981 	static const u64 types[] = {
2982 		BTRFS_BLOCK_GROUP_DATA,
2983 		BTRFS_BLOCK_GROUP_SYSTEM,
2984 		BTRFS_BLOCK_GROUP_METADATA,
2985 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2986 	};
2987 	int num_types = 4;
2988 	int alloc_size;
2989 	int ret = 0;
2990 	u64 slot_count = 0;
2991 	int i, c;
2992 
2993 	if (copy_from_user(&space_args,
2994 			   (struct btrfs_ioctl_space_args __user *)arg,
2995 			   sizeof(space_args)))
2996 		return -EFAULT;
2997 
2998 	for (i = 0; i < num_types; i++) {
2999 		struct btrfs_space_info *tmp;
3000 
3001 		info = NULL;
3002 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3003 			if (tmp->flags == types[i]) {
3004 				info = tmp;
3005 				break;
3006 			}
3007 		}
3008 
3009 		if (!info)
3010 			continue;
3011 
3012 		down_read(&info->groups_sem);
3013 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3014 			if (!list_empty(&info->block_groups[c]))
3015 				slot_count++;
3016 		}
3017 		up_read(&info->groups_sem);
3018 	}
3019 
3020 	/*
3021 	 * Global block reserve, exported as a space_info
3022 	 */
3023 	slot_count++;
3024 
3025 	/* space_slots == 0 means they are asking for a count */
3026 	if (space_args.space_slots == 0) {
3027 		space_args.total_spaces = slot_count;
3028 		goto out;
3029 	}
3030 
3031 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3032 
3033 	alloc_size = sizeof(*dest) * slot_count;
3034 
3035 	/* we generally have at most 6 or so space infos, one for each raid
3036 	 * level.  So, a whole page should be more than enough for everyone
3037 	 */
3038 	if (alloc_size > PAGE_SIZE)
3039 		return -ENOMEM;
3040 
3041 	space_args.total_spaces = 0;
3042 	dest = kmalloc(alloc_size, GFP_KERNEL);
3043 	if (!dest)
3044 		return -ENOMEM;
3045 	dest_orig = dest;
3046 
3047 	/* now we have a buffer to copy into */
3048 	for (i = 0; i < num_types; i++) {
3049 		struct btrfs_space_info *tmp;
3050 
3051 		if (!slot_count)
3052 			break;
3053 
3054 		info = NULL;
3055 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3056 			if (tmp->flags == types[i]) {
3057 				info = tmp;
3058 				break;
3059 			}
3060 		}
3061 
3062 		if (!info)
3063 			continue;
3064 		down_read(&info->groups_sem);
3065 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3066 			if (!list_empty(&info->block_groups[c])) {
3067 				get_block_group_info(&info->block_groups[c],
3068 						     &space);
3069 				memcpy(dest, &space, sizeof(space));
3070 				dest++;
3071 				space_args.total_spaces++;
3072 				slot_count--;
3073 			}
3074 			if (!slot_count)
3075 				break;
3076 		}
3077 		up_read(&info->groups_sem);
3078 	}
3079 
3080 	/*
3081 	 * Add global block reserve
3082 	 */
3083 	if (slot_count) {
3084 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3085 
3086 		spin_lock(&block_rsv->lock);
3087 		space.total_bytes = block_rsv->size;
3088 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3089 		spin_unlock(&block_rsv->lock);
3090 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3091 		memcpy(dest, &space, sizeof(space));
3092 		space_args.total_spaces++;
3093 	}
3094 
3095 	user_dest = (struct btrfs_ioctl_space_info __user *)
3096 		(arg + sizeof(struct btrfs_ioctl_space_args));
3097 
3098 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3099 		ret = -EFAULT;
3100 
3101 	kfree(dest_orig);
3102 out:
3103 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3104 		ret = -EFAULT;
3105 
3106 	return ret;
3107 }
3108 
3109 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3110 					    void __user *argp)
3111 {
3112 	struct btrfs_trans_handle *trans;
3113 	u64 transid;
3114 
3115 	/*
3116 	 * Start orphan cleanup here for the given root in case it hasn't been
3117 	 * started already by other means. Errors are handled in the other
3118 	 * functions during transaction commit.
3119 	 */
3120 	btrfs_orphan_cleanup(root);
3121 
3122 	trans = btrfs_attach_transaction_barrier(root);
3123 	if (IS_ERR(trans)) {
3124 		if (PTR_ERR(trans) != -ENOENT)
3125 			return PTR_ERR(trans);
3126 
3127 		/* No running transaction, don't bother */
3128 		transid = root->fs_info->last_trans_committed;
3129 		goto out;
3130 	}
3131 	transid = trans->transid;
3132 	btrfs_commit_transaction_async(trans);
3133 out:
3134 	if (argp)
3135 		if (copy_to_user(argp, &transid, sizeof(transid)))
3136 			return -EFAULT;
3137 	return 0;
3138 }
3139 
3140 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3141 					   void __user *argp)
3142 {
3143 	/* By default wait for the current transaction. */
3144 	u64 transid = 0;
3145 
3146 	if (argp)
3147 		if (copy_from_user(&transid, argp, sizeof(transid)))
3148 			return -EFAULT;
3149 
3150 	return btrfs_wait_for_commit(fs_info, transid);
3151 }
3152 
3153 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3154 {
3155 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3156 	struct btrfs_ioctl_scrub_args *sa;
3157 	int ret;
3158 
3159 	if (!capable(CAP_SYS_ADMIN))
3160 		return -EPERM;
3161 
3162 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3163 		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3164 		return -EINVAL;
3165 	}
3166 
3167 	sa = memdup_user(arg, sizeof(*sa));
3168 	if (IS_ERR(sa))
3169 		return PTR_ERR(sa);
3170 
3171 	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3172 		ret = -EOPNOTSUPP;
3173 		goto out;
3174 	}
3175 
3176 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3177 		ret = mnt_want_write_file(file);
3178 		if (ret)
3179 			goto out;
3180 	}
3181 
3182 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3183 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3184 			      0);
3185 
3186 	/*
3187 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3188 	 * error. This is important as it allows user space to know how much
3189 	 * progress scrub has done. For example, if scrub is canceled we get
3190 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3191 	 * space. Later user space can inspect the progress from the structure
3192 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3193 	 * previously (btrfs-progs does this).
3194 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3195 	 * then return -EFAULT to signal the structure was not copied or it may
3196 	 * be corrupt and unreliable due to a partial copy.
3197 	 */
3198 	if (copy_to_user(arg, sa, sizeof(*sa)))
3199 		ret = -EFAULT;
3200 
3201 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3202 		mnt_drop_write_file(file);
3203 out:
3204 	kfree(sa);
3205 	return ret;
3206 }
3207 
3208 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3209 {
3210 	if (!capable(CAP_SYS_ADMIN))
3211 		return -EPERM;
3212 
3213 	return btrfs_scrub_cancel(fs_info);
3214 }
3215 
3216 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3217 				       void __user *arg)
3218 {
3219 	struct btrfs_ioctl_scrub_args *sa;
3220 	int ret;
3221 
3222 	if (!capable(CAP_SYS_ADMIN))
3223 		return -EPERM;
3224 
3225 	sa = memdup_user(arg, sizeof(*sa));
3226 	if (IS_ERR(sa))
3227 		return PTR_ERR(sa);
3228 
3229 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3230 
3231 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3232 		ret = -EFAULT;
3233 
3234 	kfree(sa);
3235 	return ret;
3236 }
3237 
3238 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3239 				      void __user *arg)
3240 {
3241 	struct btrfs_ioctl_get_dev_stats *sa;
3242 	int ret;
3243 
3244 	sa = memdup_user(arg, sizeof(*sa));
3245 	if (IS_ERR(sa))
3246 		return PTR_ERR(sa);
3247 
3248 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3249 		kfree(sa);
3250 		return -EPERM;
3251 	}
3252 
3253 	ret = btrfs_get_dev_stats(fs_info, sa);
3254 
3255 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3256 		ret = -EFAULT;
3257 
3258 	kfree(sa);
3259 	return ret;
3260 }
3261 
3262 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3263 				    void __user *arg)
3264 {
3265 	struct btrfs_ioctl_dev_replace_args *p;
3266 	int ret;
3267 
3268 	if (!capable(CAP_SYS_ADMIN))
3269 		return -EPERM;
3270 
3271 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3272 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3273 		return -EINVAL;
3274 	}
3275 
3276 	p = memdup_user(arg, sizeof(*p));
3277 	if (IS_ERR(p))
3278 		return PTR_ERR(p);
3279 
3280 	switch (p->cmd) {
3281 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3282 		if (sb_rdonly(fs_info->sb)) {
3283 			ret = -EROFS;
3284 			goto out;
3285 		}
3286 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3287 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3288 		} else {
3289 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3290 			btrfs_exclop_finish(fs_info);
3291 		}
3292 		break;
3293 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3294 		btrfs_dev_replace_status(fs_info, p);
3295 		ret = 0;
3296 		break;
3297 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3298 		p->result = btrfs_dev_replace_cancel(fs_info);
3299 		ret = 0;
3300 		break;
3301 	default:
3302 		ret = -EINVAL;
3303 		break;
3304 	}
3305 
3306 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3307 		ret = -EFAULT;
3308 out:
3309 	kfree(p);
3310 	return ret;
3311 }
3312 
3313 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3314 {
3315 	int ret = 0;
3316 	int i;
3317 	u64 rel_ptr;
3318 	int size;
3319 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3320 	struct inode_fs_paths *ipath = NULL;
3321 	struct btrfs_path *path;
3322 
3323 	if (!capable(CAP_DAC_READ_SEARCH))
3324 		return -EPERM;
3325 
3326 	path = btrfs_alloc_path();
3327 	if (!path) {
3328 		ret = -ENOMEM;
3329 		goto out;
3330 	}
3331 
3332 	ipa = memdup_user(arg, sizeof(*ipa));
3333 	if (IS_ERR(ipa)) {
3334 		ret = PTR_ERR(ipa);
3335 		ipa = NULL;
3336 		goto out;
3337 	}
3338 
3339 	size = min_t(u32, ipa->size, 4096);
3340 	ipath = init_ipath(size, root, path);
3341 	if (IS_ERR(ipath)) {
3342 		ret = PTR_ERR(ipath);
3343 		ipath = NULL;
3344 		goto out;
3345 	}
3346 
3347 	ret = paths_from_inode(ipa->inum, ipath);
3348 	if (ret < 0)
3349 		goto out;
3350 
3351 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3352 		rel_ptr = ipath->fspath->val[i] -
3353 			  (u64)(unsigned long)ipath->fspath->val;
3354 		ipath->fspath->val[i] = rel_ptr;
3355 	}
3356 
3357 	btrfs_free_path(path);
3358 	path = NULL;
3359 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3360 			   ipath->fspath, size);
3361 	if (ret) {
3362 		ret = -EFAULT;
3363 		goto out;
3364 	}
3365 
3366 out:
3367 	btrfs_free_path(path);
3368 	free_ipath(ipath);
3369 	kfree(ipa);
3370 
3371 	return ret;
3372 }
3373 
3374 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3375 					void __user *arg, int version)
3376 {
3377 	int ret = 0;
3378 	int size;
3379 	struct btrfs_ioctl_logical_ino_args *loi;
3380 	struct btrfs_data_container *inodes = NULL;
3381 	struct btrfs_path *path = NULL;
3382 	bool ignore_offset;
3383 
3384 	if (!capable(CAP_SYS_ADMIN))
3385 		return -EPERM;
3386 
3387 	loi = memdup_user(arg, sizeof(*loi));
3388 	if (IS_ERR(loi))
3389 		return PTR_ERR(loi);
3390 
3391 	if (version == 1) {
3392 		ignore_offset = false;
3393 		size = min_t(u32, loi->size, SZ_64K);
3394 	} else {
3395 		/* All reserved bits must be 0 for now */
3396 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3397 			ret = -EINVAL;
3398 			goto out_loi;
3399 		}
3400 		/* Only accept flags we have defined so far */
3401 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3402 			ret = -EINVAL;
3403 			goto out_loi;
3404 		}
3405 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3406 		size = min_t(u32, loi->size, SZ_16M);
3407 	}
3408 
3409 	inodes = init_data_container(size);
3410 	if (IS_ERR(inodes)) {
3411 		ret = PTR_ERR(inodes);
3412 		goto out_loi;
3413 	}
3414 
3415 	path = btrfs_alloc_path();
3416 	if (!path) {
3417 		ret = -ENOMEM;
3418 		goto out;
3419 	}
3420 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3421 					  inodes, ignore_offset);
3422 	btrfs_free_path(path);
3423 	if (ret == -EINVAL)
3424 		ret = -ENOENT;
3425 	if (ret < 0)
3426 		goto out;
3427 
3428 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3429 			   size);
3430 	if (ret)
3431 		ret = -EFAULT;
3432 
3433 out:
3434 	kvfree(inodes);
3435 out_loi:
3436 	kfree(loi);
3437 
3438 	return ret;
3439 }
3440 
3441 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3442 			       struct btrfs_ioctl_balance_args *bargs)
3443 {
3444 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3445 
3446 	bargs->flags = bctl->flags;
3447 
3448 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3449 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3450 	if (atomic_read(&fs_info->balance_pause_req))
3451 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3452 	if (atomic_read(&fs_info->balance_cancel_req))
3453 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3454 
3455 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3456 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3457 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3458 
3459 	spin_lock(&fs_info->balance_lock);
3460 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3461 	spin_unlock(&fs_info->balance_lock);
3462 }
3463 
3464 /*
3465  * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3466  * required.
3467  *
3468  * @fs_info:       the filesystem
3469  * @excl_acquired: ptr to boolean value which is set to false in case balance
3470  *                 is being resumed
3471  *
3472  * Return 0 on success in which case both fs_info::balance is acquired as well
3473  * as exclusive ops are blocked. In case of failure return an error code.
3474  */
3475 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3476 {
3477 	int ret;
3478 
3479 	/*
3480 	 * Exclusive operation is locked. Three possibilities:
3481 	 *   (1) some other op is running
3482 	 *   (2) balance is running
3483 	 *   (3) balance is paused -- special case (think resume)
3484 	 */
3485 	while (1) {
3486 		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3487 			*excl_acquired = true;
3488 			mutex_lock(&fs_info->balance_mutex);
3489 			return 0;
3490 		}
3491 
3492 		mutex_lock(&fs_info->balance_mutex);
3493 		if (fs_info->balance_ctl) {
3494 			/* This is either (2) or (3) */
3495 			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3496 				/* This is (2) */
3497 				ret = -EINPROGRESS;
3498 				goto out_failure;
3499 
3500 			} else {
3501 				mutex_unlock(&fs_info->balance_mutex);
3502 				/*
3503 				 * Lock released to allow other waiters to
3504 				 * continue, we'll reexamine the status again.
3505 				 */
3506 				mutex_lock(&fs_info->balance_mutex);
3507 
3508 				if (fs_info->balance_ctl &&
3509 				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3510 					/* This is (3) */
3511 					*excl_acquired = false;
3512 					return 0;
3513 				}
3514 			}
3515 		} else {
3516 			/* This is (1) */
3517 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3518 			goto out_failure;
3519 		}
3520 
3521 		mutex_unlock(&fs_info->balance_mutex);
3522 	}
3523 
3524 out_failure:
3525 	mutex_unlock(&fs_info->balance_mutex);
3526 	*excl_acquired = false;
3527 	return ret;
3528 }
3529 
3530 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3531 {
3532 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3533 	struct btrfs_fs_info *fs_info = root->fs_info;
3534 	struct btrfs_ioctl_balance_args *bargs;
3535 	struct btrfs_balance_control *bctl;
3536 	bool need_unlock = true;
3537 	int ret;
3538 
3539 	if (!capable(CAP_SYS_ADMIN))
3540 		return -EPERM;
3541 
3542 	ret = mnt_want_write_file(file);
3543 	if (ret)
3544 		return ret;
3545 
3546 	bargs = memdup_user(arg, sizeof(*bargs));
3547 	if (IS_ERR(bargs)) {
3548 		ret = PTR_ERR(bargs);
3549 		bargs = NULL;
3550 		goto out;
3551 	}
3552 
3553 	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3554 	if (ret)
3555 		goto out;
3556 
3557 	lockdep_assert_held(&fs_info->balance_mutex);
3558 
3559 	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3560 		if (!fs_info->balance_ctl) {
3561 			ret = -ENOTCONN;
3562 			goto out_unlock;
3563 		}
3564 
3565 		bctl = fs_info->balance_ctl;
3566 		spin_lock(&fs_info->balance_lock);
3567 		bctl->flags |= BTRFS_BALANCE_RESUME;
3568 		spin_unlock(&fs_info->balance_lock);
3569 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3570 
3571 		goto do_balance;
3572 	}
3573 
3574 	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3575 		ret = -EINVAL;
3576 		goto out_unlock;
3577 	}
3578 
3579 	if (fs_info->balance_ctl) {
3580 		ret = -EINPROGRESS;
3581 		goto out_unlock;
3582 	}
3583 
3584 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3585 	if (!bctl) {
3586 		ret = -ENOMEM;
3587 		goto out_unlock;
3588 	}
3589 
3590 	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3591 	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3592 	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3593 
3594 	bctl->flags = bargs->flags;
3595 do_balance:
3596 	/*
3597 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3598 	 * bctl is freed in reset_balance_state, or, if restriper was paused
3599 	 * all the way until unmount, in free_fs_info.  The flag should be
3600 	 * cleared after reset_balance_state.
3601 	 */
3602 	need_unlock = false;
3603 
3604 	ret = btrfs_balance(fs_info, bctl, bargs);
3605 	bctl = NULL;
3606 
3607 	if (ret == 0 || ret == -ECANCELED) {
3608 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3609 			ret = -EFAULT;
3610 	}
3611 
3612 	kfree(bctl);
3613 out_unlock:
3614 	mutex_unlock(&fs_info->balance_mutex);
3615 	if (need_unlock)
3616 		btrfs_exclop_finish(fs_info);
3617 out:
3618 	mnt_drop_write_file(file);
3619 	kfree(bargs);
3620 	return ret;
3621 }
3622 
3623 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3624 {
3625 	if (!capable(CAP_SYS_ADMIN))
3626 		return -EPERM;
3627 
3628 	switch (cmd) {
3629 	case BTRFS_BALANCE_CTL_PAUSE:
3630 		return btrfs_pause_balance(fs_info);
3631 	case BTRFS_BALANCE_CTL_CANCEL:
3632 		return btrfs_cancel_balance(fs_info);
3633 	}
3634 
3635 	return -EINVAL;
3636 }
3637 
3638 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3639 					 void __user *arg)
3640 {
3641 	struct btrfs_ioctl_balance_args *bargs;
3642 	int ret = 0;
3643 
3644 	if (!capable(CAP_SYS_ADMIN))
3645 		return -EPERM;
3646 
3647 	mutex_lock(&fs_info->balance_mutex);
3648 	if (!fs_info->balance_ctl) {
3649 		ret = -ENOTCONN;
3650 		goto out;
3651 	}
3652 
3653 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3654 	if (!bargs) {
3655 		ret = -ENOMEM;
3656 		goto out;
3657 	}
3658 
3659 	btrfs_update_ioctl_balance_args(fs_info, bargs);
3660 
3661 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3662 		ret = -EFAULT;
3663 
3664 	kfree(bargs);
3665 out:
3666 	mutex_unlock(&fs_info->balance_mutex);
3667 	return ret;
3668 }
3669 
3670 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3671 {
3672 	struct inode *inode = file_inode(file);
3673 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3674 	struct btrfs_ioctl_quota_ctl_args *sa;
3675 	int ret;
3676 
3677 	if (!capable(CAP_SYS_ADMIN))
3678 		return -EPERM;
3679 
3680 	ret = mnt_want_write_file(file);
3681 	if (ret)
3682 		return ret;
3683 
3684 	sa = memdup_user(arg, sizeof(*sa));
3685 	if (IS_ERR(sa)) {
3686 		ret = PTR_ERR(sa);
3687 		goto drop_write;
3688 	}
3689 
3690 	down_write(&fs_info->subvol_sem);
3691 
3692 	switch (sa->cmd) {
3693 	case BTRFS_QUOTA_CTL_ENABLE:
3694 		ret = btrfs_quota_enable(fs_info);
3695 		break;
3696 	case BTRFS_QUOTA_CTL_DISABLE:
3697 		ret = btrfs_quota_disable(fs_info);
3698 		break;
3699 	default:
3700 		ret = -EINVAL;
3701 		break;
3702 	}
3703 
3704 	kfree(sa);
3705 	up_write(&fs_info->subvol_sem);
3706 drop_write:
3707 	mnt_drop_write_file(file);
3708 	return ret;
3709 }
3710 
3711 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3712 {
3713 	struct inode *inode = file_inode(file);
3714 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3715 	struct btrfs_root *root = BTRFS_I(inode)->root;
3716 	struct btrfs_ioctl_qgroup_assign_args *sa;
3717 	struct btrfs_trans_handle *trans;
3718 	int ret;
3719 	int err;
3720 
3721 	if (!capable(CAP_SYS_ADMIN))
3722 		return -EPERM;
3723 
3724 	ret = mnt_want_write_file(file);
3725 	if (ret)
3726 		return ret;
3727 
3728 	sa = memdup_user(arg, sizeof(*sa));
3729 	if (IS_ERR(sa)) {
3730 		ret = PTR_ERR(sa);
3731 		goto drop_write;
3732 	}
3733 
3734 	trans = btrfs_join_transaction(root);
3735 	if (IS_ERR(trans)) {
3736 		ret = PTR_ERR(trans);
3737 		goto out;
3738 	}
3739 
3740 	if (sa->assign) {
3741 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3742 	} else {
3743 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3744 	}
3745 
3746 	/* update qgroup status and info */
3747 	mutex_lock(&fs_info->qgroup_ioctl_lock);
3748 	err = btrfs_run_qgroups(trans);
3749 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3750 	if (err < 0)
3751 		btrfs_handle_fs_error(fs_info, err,
3752 				      "failed to update qgroup status and info");
3753 	err = btrfs_end_transaction(trans);
3754 	if (err && !ret)
3755 		ret = err;
3756 
3757 out:
3758 	kfree(sa);
3759 drop_write:
3760 	mnt_drop_write_file(file);
3761 	return ret;
3762 }
3763 
3764 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3765 {
3766 	struct inode *inode = file_inode(file);
3767 	struct btrfs_root *root = BTRFS_I(inode)->root;
3768 	struct btrfs_ioctl_qgroup_create_args *sa;
3769 	struct btrfs_trans_handle *trans;
3770 	int ret;
3771 	int err;
3772 
3773 	if (!capable(CAP_SYS_ADMIN))
3774 		return -EPERM;
3775 
3776 	ret = mnt_want_write_file(file);
3777 	if (ret)
3778 		return ret;
3779 
3780 	sa = memdup_user(arg, sizeof(*sa));
3781 	if (IS_ERR(sa)) {
3782 		ret = PTR_ERR(sa);
3783 		goto drop_write;
3784 	}
3785 
3786 	if (!sa->qgroupid) {
3787 		ret = -EINVAL;
3788 		goto out;
3789 	}
3790 
3791 	trans = btrfs_join_transaction(root);
3792 	if (IS_ERR(trans)) {
3793 		ret = PTR_ERR(trans);
3794 		goto out;
3795 	}
3796 
3797 	if (sa->create) {
3798 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3799 	} else {
3800 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3801 	}
3802 
3803 	err = btrfs_end_transaction(trans);
3804 	if (err && !ret)
3805 		ret = err;
3806 
3807 out:
3808 	kfree(sa);
3809 drop_write:
3810 	mnt_drop_write_file(file);
3811 	return ret;
3812 }
3813 
3814 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3815 {
3816 	struct inode *inode = file_inode(file);
3817 	struct btrfs_root *root = BTRFS_I(inode)->root;
3818 	struct btrfs_ioctl_qgroup_limit_args *sa;
3819 	struct btrfs_trans_handle *trans;
3820 	int ret;
3821 	int err;
3822 	u64 qgroupid;
3823 
3824 	if (!capable(CAP_SYS_ADMIN))
3825 		return -EPERM;
3826 
3827 	ret = mnt_want_write_file(file);
3828 	if (ret)
3829 		return ret;
3830 
3831 	sa = memdup_user(arg, sizeof(*sa));
3832 	if (IS_ERR(sa)) {
3833 		ret = PTR_ERR(sa);
3834 		goto drop_write;
3835 	}
3836 
3837 	trans = btrfs_join_transaction(root);
3838 	if (IS_ERR(trans)) {
3839 		ret = PTR_ERR(trans);
3840 		goto out;
3841 	}
3842 
3843 	qgroupid = sa->qgroupid;
3844 	if (!qgroupid) {
3845 		/* take the current subvol as qgroup */
3846 		qgroupid = root->root_key.objectid;
3847 	}
3848 
3849 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3850 
3851 	err = btrfs_end_transaction(trans);
3852 	if (err && !ret)
3853 		ret = err;
3854 
3855 out:
3856 	kfree(sa);
3857 drop_write:
3858 	mnt_drop_write_file(file);
3859 	return ret;
3860 }
3861 
3862 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3863 {
3864 	struct inode *inode = file_inode(file);
3865 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3866 	struct btrfs_ioctl_quota_rescan_args *qsa;
3867 	int ret;
3868 
3869 	if (!capable(CAP_SYS_ADMIN))
3870 		return -EPERM;
3871 
3872 	ret = mnt_want_write_file(file);
3873 	if (ret)
3874 		return ret;
3875 
3876 	qsa = memdup_user(arg, sizeof(*qsa));
3877 	if (IS_ERR(qsa)) {
3878 		ret = PTR_ERR(qsa);
3879 		goto drop_write;
3880 	}
3881 
3882 	if (qsa->flags) {
3883 		ret = -EINVAL;
3884 		goto out;
3885 	}
3886 
3887 	ret = btrfs_qgroup_rescan(fs_info);
3888 
3889 out:
3890 	kfree(qsa);
3891 drop_write:
3892 	mnt_drop_write_file(file);
3893 	return ret;
3894 }
3895 
3896 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3897 						void __user *arg)
3898 {
3899 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
3900 
3901 	if (!capable(CAP_SYS_ADMIN))
3902 		return -EPERM;
3903 
3904 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3905 		qsa.flags = 1;
3906 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3907 	}
3908 
3909 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
3910 		return -EFAULT;
3911 
3912 	return 0;
3913 }
3914 
3915 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3916 						void __user *arg)
3917 {
3918 	if (!capable(CAP_SYS_ADMIN))
3919 		return -EPERM;
3920 
3921 	return btrfs_qgroup_wait_for_completion(fs_info, true);
3922 }
3923 
3924 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3925 					    struct mnt_idmap *idmap,
3926 					    struct btrfs_ioctl_received_subvol_args *sa)
3927 {
3928 	struct inode *inode = file_inode(file);
3929 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3930 	struct btrfs_root *root = BTRFS_I(inode)->root;
3931 	struct btrfs_root_item *root_item = &root->root_item;
3932 	struct btrfs_trans_handle *trans;
3933 	struct timespec64 ct = current_time(inode);
3934 	int ret = 0;
3935 	int received_uuid_changed;
3936 
3937 	if (!inode_owner_or_capable(idmap, inode))
3938 		return -EPERM;
3939 
3940 	ret = mnt_want_write_file(file);
3941 	if (ret < 0)
3942 		return ret;
3943 
3944 	down_write(&fs_info->subvol_sem);
3945 
3946 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3947 		ret = -EINVAL;
3948 		goto out;
3949 	}
3950 
3951 	if (btrfs_root_readonly(root)) {
3952 		ret = -EROFS;
3953 		goto out;
3954 	}
3955 
3956 	/*
3957 	 * 1 - root item
3958 	 * 2 - uuid items (received uuid + subvol uuid)
3959 	 */
3960 	trans = btrfs_start_transaction(root, 3);
3961 	if (IS_ERR(trans)) {
3962 		ret = PTR_ERR(trans);
3963 		trans = NULL;
3964 		goto out;
3965 	}
3966 
3967 	sa->rtransid = trans->transid;
3968 	sa->rtime.sec = ct.tv_sec;
3969 	sa->rtime.nsec = ct.tv_nsec;
3970 
3971 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
3972 				       BTRFS_UUID_SIZE);
3973 	if (received_uuid_changed &&
3974 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
3975 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
3976 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3977 					  root->root_key.objectid);
3978 		if (ret && ret != -ENOENT) {
3979 		        btrfs_abort_transaction(trans, ret);
3980 		        btrfs_end_transaction(trans);
3981 		        goto out;
3982 		}
3983 	}
3984 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3985 	btrfs_set_root_stransid(root_item, sa->stransid);
3986 	btrfs_set_root_rtransid(root_item, sa->rtransid);
3987 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
3988 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
3989 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
3990 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
3991 
3992 	ret = btrfs_update_root(trans, fs_info->tree_root,
3993 				&root->root_key, &root->root_item);
3994 	if (ret < 0) {
3995 		btrfs_end_transaction(trans);
3996 		goto out;
3997 	}
3998 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
3999 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4000 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4001 					  root->root_key.objectid);
4002 		if (ret < 0 && ret != -EEXIST) {
4003 			btrfs_abort_transaction(trans, ret);
4004 			btrfs_end_transaction(trans);
4005 			goto out;
4006 		}
4007 	}
4008 	ret = btrfs_commit_transaction(trans);
4009 out:
4010 	up_write(&fs_info->subvol_sem);
4011 	mnt_drop_write_file(file);
4012 	return ret;
4013 }
4014 
4015 #ifdef CONFIG_64BIT
4016 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4017 						void __user *arg)
4018 {
4019 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4020 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4021 	int ret = 0;
4022 
4023 	args32 = memdup_user(arg, sizeof(*args32));
4024 	if (IS_ERR(args32))
4025 		return PTR_ERR(args32);
4026 
4027 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4028 	if (!args64) {
4029 		ret = -ENOMEM;
4030 		goto out;
4031 	}
4032 
4033 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4034 	args64->stransid = args32->stransid;
4035 	args64->rtransid = args32->rtransid;
4036 	args64->stime.sec = args32->stime.sec;
4037 	args64->stime.nsec = args32->stime.nsec;
4038 	args64->rtime.sec = args32->rtime.sec;
4039 	args64->rtime.nsec = args32->rtime.nsec;
4040 	args64->flags = args32->flags;
4041 
4042 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4043 	if (ret)
4044 		goto out;
4045 
4046 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4047 	args32->stransid = args64->stransid;
4048 	args32->rtransid = args64->rtransid;
4049 	args32->stime.sec = args64->stime.sec;
4050 	args32->stime.nsec = args64->stime.nsec;
4051 	args32->rtime.sec = args64->rtime.sec;
4052 	args32->rtime.nsec = args64->rtime.nsec;
4053 	args32->flags = args64->flags;
4054 
4055 	ret = copy_to_user(arg, args32, sizeof(*args32));
4056 	if (ret)
4057 		ret = -EFAULT;
4058 
4059 out:
4060 	kfree(args32);
4061 	kfree(args64);
4062 	return ret;
4063 }
4064 #endif
4065 
4066 static long btrfs_ioctl_set_received_subvol(struct file *file,
4067 					    void __user *arg)
4068 {
4069 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4070 	int ret = 0;
4071 
4072 	sa = memdup_user(arg, sizeof(*sa));
4073 	if (IS_ERR(sa))
4074 		return PTR_ERR(sa);
4075 
4076 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4077 
4078 	if (ret)
4079 		goto out;
4080 
4081 	ret = copy_to_user(arg, sa, sizeof(*sa));
4082 	if (ret)
4083 		ret = -EFAULT;
4084 
4085 out:
4086 	kfree(sa);
4087 	return ret;
4088 }
4089 
4090 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4091 					void __user *arg)
4092 {
4093 	size_t len;
4094 	int ret;
4095 	char label[BTRFS_LABEL_SIZE];
4096 
4097 	spin_lock(&fs_info->super_lock);
4098 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4099 	spin_unlock(&fs_info->super_lock);
4100 
4101 	len = strnlen(label, BTRFS_LABEL_SIZE);
4102 
4103 	if (len == BTRFS_LABEL_SIZE) {
4104 		btrfs_warn(fs_info,
4105 			   "label is too long, return the first %zu bytes",
4106 			   --len);
4107 	}
4108 
4109 	ret = copy_to_user(arg, label, len);
4110 
4111 	return ret ? -EFAULT : 0;
4112 }
4113 
4114 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4115 {
4116 	struct inode *inode = file_inode(file);
4117 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4118 	struct btrfs_root *root = BTRFS_I(inode)->root;
4119 	struct btrfs_super_block *super_block = fs_info->super_copy;
4120 	struct btrfs_trans_handle *trans;
4121 	char label[BTRFS_LABEL_SIZE];
4122 	int ret;
4123 
4124 	if (!capable(CAP_SYS_ADMIN))
4125 		return -EPERM;
4126 
4127 	if (copy_from_user(label, arg, sizeof(label)))
4128 		return -EFAULT;
4129 
4130 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4131 		btrfs_err(fs_info,
4132 			  "unable to set label with more than %d bytes",
4133 			  BTRFS_LABEL_SIZE - 1);
4134 		return -EINVAL;
4135 	}
4136 
4137 	ret = mnt_want_write_file(file);
4138 	if (ret)
4139 		return ret;
4140 
4141 	trans = btrfs_start_transaction(root, 0);
4142 	if (IS_ERR(trans)) {
4143 		ret = PTR_ERR(trans);
4144 		goto out_unlock;
4145 	}
4146 
4147 	spin_lock(&fs_info->super_lock);
4148 	strcpy(super_block->label, label);
4149 	spin_unlock(&fs_info->super_lock);
4150 	ret = btrfs_commit_transaction(trans);
4151 
4152 out_unlock:
4153 	mnt_drop_write_file(file);
4154 	return ret;
4155 }
4156 
4157 #define INIT_FEATURE_FLAGS(suffix) \
4158 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4159 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4160 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4161 
4162 int btrfs_ioctl_get_supported_features(void __user *arg)
4163 {
4164 	static const struct btrfs_ioctl_feature_flags features[3] = {
4165 		INIT_FEATURE_FLAGS(SUPP),
4166 		INIT_FEATURE_FLAGS(SAFE_SET),
4167 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4168 	};
4169 
4170 	if (copy_to_user(arg, &features, sizeof(features)))
4171 		return -EFAULT;
4172 
4173 	return 0;
4174 }
4175 
4176 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4177 					void __user *arg)
4178 {
4179 	struct btrfs_super_block *super_block = fs_info->super_copy;
4180 	struct btrfs_ioctl_feature_flags features;
4181 
4182 	features.compat_flags = btrfs_super_compat_flags(super_block);
4183 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4184 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4185 
4186 	if (copy_to_user(arg, &features, sizeof(features)))
4187 		return -EFAULT;
4188 
4189 	return 0;
4190 }
4191 
4192 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4193 			      enum btrfs_feature_set set,
4194 			      u64 change_mask, u64 flags, u64 supported_flags,
4195 			      u64 safe_set, u64 safe_clear)
4196 {
4197 	const char *type = btrfs_feature_set_name(set);
4198 	char *names;
4199 	u64 disallowed, unsupported;
4200 	u64 set_mask = flags & change_mask;
4201 	u64 clear_mask = ~flags & change_mask;
4202 
4203 	unsupported = set_mask & ~supported_flags;
4204 	if (unsupported) {
4205 		names = btrfs_printable_features(set, unsupported);
4206 		if (names) {
4207 			btrfs_warn(fs_info,
4208 				   "this kernel does not support the %s feature bit%s",
4209 				   names, strchr(names, ',') ? "s" : "");
4210 			kfree(names);
4211 		} else
4212 			btrfs_warn(fs_info,
4213 				   "this kernel does not support %s bits 0x%llx",
4214 				   type, unsupported);
4215 		return -EOPNOTSUPP;
4216 	}
4217 
4218 	disallowed = set_mask & ~safe_set;
4219 	if (disallowed) {
4220 		names = btrfs_printable_features(set, disallowed);
4221 		if (names) {
4222 			btrfs_warn(fs_info,
4223 				   "can't set the %s feature bit%s while mounted",
4224 				   names, strchr(names, ',') ? "s" : "");
4225 			kfree(names);
4226 		} else
4227 			btrfs_warn(fs_info,
4228 				   "can't set %s bits 0x%llx while mounted",
4229 				   type, disallowed);
4230 		return -EPERM;
4231 	}
4232 
4233 	disallowed = clear_mask & ~safe_clear;
4234 	if (disallowed) {
4235 		names = btrfs_printable_features(set, disallowed);
4236 		if (names) {
4237 			btrfs_warn(fs_info,
4238 				   "can't clear the %s feature bit%s while mounted",
4239 				   names, strchr(names, ',') ? "s" : "");
4240 			kfree(names);
4241 		} else
4242 			btrfs_warn(fs_info,
4243 				   "can't clear %s bits 0x%llx while mounted",
4244 				   type, disallowed);
4245 		return -EPERM;
4246 	}
4247 
4248 	return 0;
4249 }
4250 
4251 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4252 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4253 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4254 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4255 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4256 
4257 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4258 {
4259 	struct inode *inode = file_inode(file);
4260 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4261 	struct btrfs_root *root = BTRFS_I(inode)->root;
4262 	struct btrfs_super_block *super_block = fs_info->super_copy;
4263 	struct btrfs_ioctl_feature_flags flags[2];
4264 	struct btrfs_trans_handle *trans;
4265 	u64 newflags;
4266 	int ret;
4267 
4268 	if (!capable(CAP_SYS_ADMIN))
4269 		return -EPERM;
4270 
4271 	if (copy_from_user(flags, arg, sizeof(flags)))
4272 		return -EFAULT;
4273 
4274 	/* Nothing to do */
4275 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4276 	    !flags[0].incompat_flags)
4277 		return 0;
4278 
4279 	ret = check_feature(fs_info, flags[0].compat_flags,
4280 			    flags[1].compat_flags, COMPAT);
4281 	if (ret)
4282 		return ret;
4283 
4284 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4285 			    flags[1].compat_ro_flags, COMPAT_RO);
4286 	if (ret)
4287 		return ret;
4288 
4289 	ret = check_feature(fs_info, flags[0].incompat_flags,
4290 			    flags[1].incompat_flags, INCOMPAT);
4291 	if (ret)
4292 		return ret;
4293 
4294 	ret = mnt_want_write_file(file);
4295 	if (ret)
4296 		return ret;
4297 
4298 	trans = btrfs_start_transaction(root, 0);
4299 	if (IS_ERR(trans)) {
4300 		ret = PTR_ERR(trans);
4301 		goto out_drop_write;
4302 	}
4303 
4304 	spin_lock(&fs_info->super_lock);
4305 	newflags = btrfs_super_compat_flags(super_block);
4306 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4307 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4308 	btrfs_set_super_compat_flags(super_block, newflags);
4309 
4310 	newflags = btrfs_super_compat_ro_flags(super_block);
4311 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4312 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4313 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4314 
4315 	newflags = btrfs_super_incompat_flags(super_block);
4316 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4317 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4318 	btrfs_set_super_incompat_flags(super_block, newflags);
4319 	spin_unlock(&fs_info->super_lock);
4320 
4321 	ret = btrfs_commit_transaction(trans);
4322 out_drop_write:
4323 	mnt_drop_write_file(file);
4324 
4325 	return ret;
4326 }
4327 
4328 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4329 {
4330 	struct btrfs_ioctl_send_args *arg;
4331 	int ret;
4332 
4333 	if (compat) {
4334 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4335 		struct btrfs_ioctl_send_args_32 args32;
4336 
4337 		ret = copy_from_user(&args32, argp, sizeof(args32));
4338 		if (ret)
4339 			return -EFAULT;
4340 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4341 		if (!arg)
4342 			return -ENOMEM;
4343 		arg->send_fd = args32.send_fd;
4344 		arg->clone_sources_count = args32.clone_sources_count;
4345 		arg->clone_sources = compat_ptr(args32.clone_sources);
4346 		arg->parent_root = args32.parent_root;
4347 		arg->flags = args32.flags;
4348 		memcpy(arg->reserved, args32.reserved,
4349 		       sizeof(args32.reserved));
4350 #else
4351 		return -ENOTTY;
4352 #endif
4353 	} else {
4354 		arg = memdup_user(argp, sizeof(*arg));
4355 		if (IS_ERR(arg))
4356 			return PTR_ERR(arg);
4357 	}
4358 	ret = btrfs_ioctl_send(inode, arg);
4359 	kfree(arg);
4360 	return ret;
4361 }
4362 
4363 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4364 				    bool compat)
4365 {
4366 	struct btrfs_ioctl_encoded_io_args args = { 0 };
4367 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4368 					     flags);
4369 	size_t copy_end;
4370 	struct iovec iovstack[UIO_FASTIOV];
4371 	struct iovec *iov = iovstack;
4372 	struct iov_iter iter;
4373 	loff_t pos;
4374 	struct kiocb kiocb;
4375 	ssize_t ret;
4376 
4377 	if (!capable(CAP_SYS_ADMIN)) {
4378 		ret = -EPERM;
4379 		goto out_acct;
4380 	}
4381 
4382 	if (compat) {
4383 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4384 		struct btrfs_ioctl_encoded_io_args_32 args32;
4385 
4386 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4387 				       flags);
4388 		if (copy_from_user(&args32, argp, copy_end)) {
4389 			ret = -EFAULT;
4390 			goto out_acct;
4391 		}
4392 		args.iov = compat_ptr(args32.iov);
4393 		args.iovcnt = args32.iovcnt;
4394 		args.offset = args32.offset;
4395 		args.flags = args32.flags;
4396 #else
4397 		return -ENOTTY;
4398 #endif
4399 	} else {
4400 		copy_end = copy_end_kernel;
4401 		if (copy_from_user(&args, argp, copy_end)) {
4402 			ret = -EFAULT;
4403 			goto out_acct;
4404 		}
4405 	}
4406 	if (args.flags != 0) {
4407 		ret = -EINVAL;
4408 		goto out_acct;
4409 	}
4410 
4411 	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4412 			   &iov, &iter);
4413 	if (ret < 0)
4414 		goto out_acct;
4415 
4416 	if (iov_iter_count(&iter) == 0) {
4417 		ret = 0;
4418 		goto out_iov;
4419 	}
4420 	pos = args.offset;
4421 	ret = rw_verify_area(READ, file, &pos, args.len);
4422 	if (ret < 0)
4423 		goto out_iov;
4424 
4425 	init_sync_kiocb(&kiocb, file);
4426 	kiocb.ki_pos = pos;
4427 
4428 	ret = btrfs_encoded_read(&kiocb, &iter, &args);
4429 	if (ret >= 0) {
4430 		fsnotify_access(file);
4431 		if (copy_to_user(argp + copy_end,
4432 				 (char *)&args + copy_end_kernel,
4433 				 sizeof(args) - copy_end_kernel))
4434 			ret = -EFAULT;
4435 	}
4436 
4437 out_iov:
4438 	kfree(iov);
4439 out_acct:
4440 	if (ret > 0)
4441 		add_rchar(current, ret);
4442 	inc_syscr(current);
4443 	return ret;
4444 }
4445 
4446 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4447 {
4448 	struct btrfs_ioctl_encoded_io_args args;
4449 	struct iovec iovstack[UIO_FASTIOV];
4450 	struct iovec *iov = iovstack;
4451 	struct iov_iter iter;
4452 	loff_t pos;
4453 	struct kiocb kiocb;
4454 	ssize_t ret;
4455 
4456 	if (!capable(CAP_SYS_ADMIN)) {
4457 		ret = -EPERM;
4458 		goto out_acct;
4459 	}
4460 
4461 	if (!(file->f_mode & FMODE_WRITE)) {
4462 		ret = -EBADF;
4463 		goto out_acct;
4464 	}
4465 
4466 	if (compat) {
4467 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4468 		struct btrfs_ioctl_encoded_io_args_32 args32;
4469 
4470 		if (copy_from_user(&args32, argp, sizeof(args32))) {
4471 			ret = -EFAULT;
4472 			goto out_acct;
4473 		}
4474 		args.iov = compat_ptr(args32.iov);
4475 		args.iovcnt = args32.iovcnt;
4476 		args.offset = args32.offset;
4477 		args.flags = args32.flags;
4478 		args.len = args32.len;
4479 		args.unencoded_len = args32.unencoded_len;
4480 		args.unencoded_offset = args32.unencoded_offset;
4481 		args.compression = args32.compression;
4482 		args.encryption = args32.encryption;
4483 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4484 #else
4485 		return -ENOTTY;
4486 #endif
4487 	} else {
4488 		if (copy_from_user(&args, argp, sizeof(args))) {
4489 			ret = -EFAULT;
4490 			goto out_acct;
4491 		}
4492 	}
4493 
4494 	ret = -EINVAL;
4495 	if (args.flags != 0)
4496 		goto out_acct;
4497 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4498 		goto out_acct;
4499 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4500 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4501 		goto out_acct;
4502 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4503 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4504 		goto out_acct;
4505 	if (args.unencoded_offset > args.unencoded_len)
4506 		goto out_acct;
4507 	if (args.len > args.unencoded_len - args.unencoded_offset)
4508 		goto out_acct;
4509 
4510 	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4511 			   &iov, &iter);
4512 	if (ret < 0)
4513 		goto out_acct;
4514 
4515 	file_start_write(file);
4516 
4517 	if (iov_iter_count(&iter) == 0) {
4518 		ret = 0;
4519 		goto out_end_write;
4520 	}
4521 	pos = args.offset;
4522 	ret = rw_verify_area(WRITE, file, &pos, args.len);
4523 	if (ret < 0)
4524 		goto out_end_write;
4525 
4526 	init_sync_kiocb(&kiocb, file);
4527 	ret = kiocb_set_rw_flags(&kiocb, 0);
4528 	if (ret)
4529 		goto out_end_write;
4530 	kiocb.ki_pos = pos;
4531 
4532 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4533 	if (ret > 0)
4534 		fsnotify_modify(file);
4535 
4536 out_end_write:
4537 	file_end_write(file);
4538 	kfree(iov);
4539 out_acct:
4540 	if (ret > 0)
4541 		add_wchar(current, ret);
4542 	inc_syscw(current);
4543 	return ret;
4544 }
4545 
4546 long btrfs_ioctl(struct file *file, unsigned int
4547 		cmd, unsigned long arg)
4548 {
4549 	struct inode *inode = file_inode(file);
4550 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4551 	struct btrfs_root *root = BTRFS_I(inode)->root;
4552 	void __user *argp = (void __user *)arg;
4553 
4554 	switch (cmd) {
4555 	case FS_IOC_GETVERSION:
4556 		return btrfs_ioctl_getversion(inode, argp);
4557 	case FS_IOC_GETFSLABEL:
4558 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4559 	case FS_IOC_SETFSLABEL:
4560 		return btrfs_ioctl_set_fslabel(file, argp);
4561 	case FITRIM:
4562 		return btrfs_ioctl_fitrim(fs_info, argp);
4563 	case BTRFS_IOC_SNAP_CREATE:
4564 		return btrfs_ioctl_snap_create(file, argp, 0);
4565 	case BTRFS_IOC_SNAP_CREATE_V2:
4566 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4567 	case BTRFS_IOC_SUBVOL_CREATE:
4568 		return btrfs_ioctl_snap_create(file, argp, 1);
4569 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4570 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4571 	case BTRFS_IOC_SNAP_DESTROY:
4572 		return btrfs_ioctl_snap_destroy(file, argp, false);
4573 	case BTRFS_IOC_SNAP_DESTROY_V2:
4574 		return btrfs_ioctl_snap_destroy(file, argp, true);
4575 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4576 		return btrfs_ioctl_subvol_getflags(inode, argp);
4577 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4578 		return btrfs_ioctl_subvol_setflags(file, argp);
4579 	case BTRFS_IOC_DEFAULT_SUBVOL:
4580 		return btrfs_ioctl_default_subvol(file, argp);
4581 	case BTRFS_IOC_DEFRAG:
4582 		return btrfs_ioctl_defrag(file, NULL);
4583 	case BTRFS_IOC_DEFRAG_RANGE:
4584 		return btrfs_ioctl_defrag(file, argp);
4585 	case BTRFS_IOC_RESIZE:
4586 		return btrfs_ioctl_resize(file, argp);
4587 	case BTRFS_IOC_ADD_DEV:
4588 		return btrfs_ioctl_add_dev(fs_info, argp);
4589 	case BTRFS_IOC_RM_DEV:
4590 		return btrfs_ioctl_rm_dev(file, argp);
4591 	case BTRFS_IOC_RM_DEV_V2:
4592 		return btrfs_ioctl_rm_dev_v2(file, argp);
4593 	case BTRFS_IOC_FS_INFO:
4594 		return btrfs_ioctl_fs_info(fs_info, argp);
4595 	case BTRFS_IOC_DEV_INFO:
4596 		return btrfs_ioctl_dev_info(fs_info, argp);
4597 	case BTRFS_IOC_TREE_SEARCH:
4598 		return btrfs_ioctl_tree_search(inode, argp);
4599 	case BTRFS_IOC_TREE_SEARCH_V2:
4600 		return btrfs_ioctl_tree_search_v2(inode, argp);
4601 	case BTRFS_IOC_INO_LOOKUP:
4602 		return btrfs_ioctl_ino_lookup(root, argp);
4603 	case BTRFS_IOC_INO_PATHS:
4604 		return btrfs_ioctl_ino_to_path(root, argp);
4605 	case BTRFS_IOC_LOGICAL_INO:
4606 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4607 	case BTRFS_IOC_LOGICAL_INO_V2:
4608 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4609 	case BTRFS_IOC_SPACE_INFO:
4610 		return btrfs_ioctl_space_info(fs_info, argp);
4611 	case BTRFS_IOC_SYNC: {
4612 		int ret;
4613 
4614 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4615 		if (ret)
4616 			return ret;
4617 		ret = btrfs_sync_fs(inode->i_sb, 1);
4618 		/*
4619 		 * The transaction thread may want to do more work,
4620 		 * namely it pokes the cleaner kthread that will start
4621 		 * processing uncleaned subvols.
4622 		 */
4623 		wake_up_process(fs_info->transaction_kthread);
4624 		return ret;
4625 	}
4626 	case BTRFS_IOC_START_SYNC:
4627 		return btrfs_ioctl_start_sync(root, argp);
4628 	case BTRFS_IOC_WAIT_SYNC:
4629 		return btrfs_ioctl_wait_sync(fs_info, argp);
4630 	case BTRFS_IOC_SCRUB:
4631 		return btrfs_ioctl_scrub(file, argp);
4632 	case BTRFS_IOC_SCRUB_CANCEL:
4633 		return btrfs_ioctl_scrub_cancel(fs_info);
4634 	case BTRFS_IOC_SCRUB_PROGRESS:
4635 		return btrfs_ioctl_scrub_progress(fs_info, argp);
4636 	case BTRFS_IOC_BALANCE_V2:
4637 		return btrfs_ioctl_balance(file, argp);
4638 	case BTRFS_IOC_BALANCE_CTL:
4639 		return btrfs_ioctl_balance_ctl(fs_info, arg);
4640 	case BTRFS_IOC_BALANCE_PROGRESS:
4641 		return btrfs_ioctl_balance_progress(fs_info, argp);
4642 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4643 		return btrfs_ioctl_set_received_subvol(file, argp);
4644 #ifdef CONFIG_64BIT
4645 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4646 		return btrfs_ioctl_set_received_subvol_32(file, argp);
4647 #endif
4648 	case BTRFS_IOC_SEND:
4649 		return _btrfs_ioctl_send(inode, argp, false);
4650 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4651 	case BTRFS_IOC_SEND_32:
4652 		return _btrfs_ioctl_send(inode, argp, true);
4653 #endif
4654 	case BTRFS_IOC_GET_DEV_STATS:
4655 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4656 	case BTRFS_IOC_QUOTA_CTL:
4657 		return btrfs_ioctl_quota_ctl(file, argp);
4658 	case BTRFS_IOC_QGROUP_ASSIGN:
4659 		return btrfs_ioctl_qgroup_assign(file, argp);
4660 	case BTRFS_IOC_QGROUP_CREATE:
4661 		return btrfs_ioctl_qgroup_create(file, argp);
4662 	case BTRFS_IOC_QGROUP_LIMIT:
4663 		return btrfs_ioctl_qgroup_limit(file, argp);
4664 	case BTRFS_IOC_QUOTA_RESCAN:
4665 		return btrfs_ioctl_quota_rescan(file, argp);
4666 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4667 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4668 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4669 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4670 	case BTRFS_IOC_DEV_REPLACE:
4671 		return btrfs_ioctl_dev_replace(fs_info, argp);
4672 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4673 		return btrfs_ioctl_get_supported_features(argp);
4674 	case BTRFS_IOC_GET_FEATURES:
4675 		return btrfs_ioctl_get_features(fs_info, argp);
4676 	case BTRFS_IOC_SET_FEATURES:
4677 		return btrfs_ioctl_set_features(file, argp);
4678 	case BTRFS_IOC_GET_SUBVOL_INFO:
4679 		return btrfs_ioctl_get_subvol_info(inode, argp);
4680 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4681 		return btrfs_ioctl_get_subvol_rootref(root, argp);
4682 	case BTRFS_IOC_INO_LOOKUP_USER:
4683 		return btrfs_ioctl_ino_lookup_user(file, argp);
4684 	case FS_IOC_ENABLE_VERITY:
4685 		return fsverity_ioctl_enable(file, (const void __user *)argp);
4686 	case FS_IOC_MEASURE_VERITY:
4687 		return fsverity_ioctl_measure(file, argp);
4688 	case BTRFS_IOC_ENCODED_READ:
4689 		return btrfs_ioctl_encoded_read(file, argp, false);
4690 	case BTRFS_IOC_ENCODED_WRITE:
4691 		return btrfs_ioctl_encoded_write(file, argp, false);
4692 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4693 	case BTRFS_IOC_ENCODED_READ_32:
4694 		return btrfs_ioctl_encoded_read(file, argp, true);
4695 	case BTRFS_IOC_ENCODED_WRITE_32:
4696 		return btrfs_ioctl_encoded_write(file, argp, true);
4697 #endif
4698 	}
4699 
4700 	return -ENOTTY;
4701 }
4702 
4703 #ifdef CONFIG_COMPAT
4704 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4705 {
4706 	/*
4707 	 * These all access 32-bit values anyway so no further
4708 	 * handling is necessary.
4709 	 */
4710 	switch (cmd) {
4711 	case FS_IOC32_GETVERSION:
4712 		cmd = FS_IOC_GETVERSION;
4713 		break;
4714 	}
4715 
4716 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4717 }
4718 #endif
4719