1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "export.h" 32 #include "transaction.h" 33 #include "btrfs_inode.h" 34 #include "print-tree.h" 35 #include "volumes.h" 36 #include "locking.h" 37 #include "inode-map.h" 38 #include "backref.h" 39 #include "rcu-string.h" 40 #include "send.h" 41 #include "dev-replace.h" 42 #include "props.h" 43 #include "sysfs.h" 44 #include "qgroup.h" 45 #include "tree-log.h" 46 #include "compression.h" 47 #include "space-info.h" 48 #include "delalloc-space.h" 49 #include "block-group.h" 50 51 #ifdef CONFIG_64BIT 52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 53 * structures are incorrect, as the timespec structure from userspace 54 * is 4 bytes too small. We define these alternatives here to teach 55 * the kernel about the 32-bit struct packing. 56 */ 57 struct btrfs_ioctl_timespec_32 { 58 __u64 sec; 59 __u32 nsec; 60 } __attribute__ ((__packed__)); 61 62 struct btrfs_ioctl_received_subvol_args_32 { 63 char uuid[BTRFS_UUID_SIZE]; /* in */ 64 __u64 stransid; /* in */ 65 __u64 rtransid; /* out */ 66 struct btrfs_ioctl_timespec_32 stime; /* in */ 67 struct btrfs_ioctl_timespec_32 rtime; /* out */ 68 __u64 flags; /* in */ 69 __u64 reserved[16]; /* in */ 70 } __attribute__ ((__packed__)); 71 72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 73 struct btrfs_ioctl_received_subvol_args_32) 74 #endif 75 76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 77 struct btrfs_ioctl_send_args_32 { 78 __s64 send_fd; /* in */ 79 __u64 clone_sources_count; /* in */ 80 compat_uptr_t clone_sources; /* in */ 81 __u64 parent_root; /* in */ 82 __u64 flags; /* in */ 83 __u64 reserved[4]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 87 struct btrfs_ioctl_send_args_32) 88 #endif 89 90 /* Mask out flags that are inappropriate for the given type of inode. */ 91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 92 unsigned int flags) 93 { 94 if (S_ISDIR(inode->i_mode)) 95 return flags; 96 else if (S_ISREG(inode->i_mode)) 97 return flags & ~FS_DIRSYNC_FL; 98 else 99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 100 } 101 102 /* 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 104 * ioctl. 105 */ 106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 107 { 108 unsigned int iflags = 0; 109 110 if (flags & BTRFS_INODE_SYNC) 111 iflags |= FS_SYNC_FL; 112 if (flags & BTRFS_INODE_IMMUTABLE) 113 iflags |= FS_IMMUTABLE_FL; 114 if (flags & BTRFS_INODE_APPEND) 115 iflags |= FS_APPEND_FL; 116 if (flags & BTRFS_INODE_NODUMP) 117 iflags |= FS_NODUMP_FL; 118 if (flags & BTRFS_INODE_NOATIME) 119 iflags |= FS_NOATIME_FL; 120 if (flags & BTRFS_INODE_DIRSYNC) 121 iflags |= FS_DIRSYNC_FL; 122 if (flags & BTRFS_INODE_NODATACOW) 123 iflags |= FS_NOCOW_FL; 124 125 if (flags & BTRFS_INODE_NOCOMPRESS) 126 iflags |= FS_NOCOMP_FL; 127 else if (flags & BTRFS_INODE_COMPRESS) 128 iflags |= FS_COMPR_FL; 129 130 return iflags; 131 } 132 133 /* 134 * Update inode->i_flags based on the btrfs internal flags. 135 */ 136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 137 { 138 struct btrfs_inode *binode = BTRFS_I(inode); 139 unsigned int new_fl = 0; 140 141 if (binode->flags & BTRFS_INODE_SYNC) 142 new_fl |= S_SYNC; 143 if (binode->flags & BTRFS_INODE_IMMUTABLE) 144 new_fl |= S_IMMUTABLE; 145 if (binode->flags & BTRFS_INODE_APPEND) 146 new_fl |= S_APPEND; 147 if (binode->flags & BTRFS_INODE_NOATIME) 148 new_fl |= S_NOATIME; 149 if (binode->flags & BTRFS_INODE_DIRSYNC) 150 new_fl |= S_DIRSYNC; 151 152 set_mask_bits(&inode->i_flags, 153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 154 new_fl); 155 } 156 157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 158 { 159 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 161 162 if (copy_to_user(arg, &flags, sizeof(flags))) 163 return -EFAULT; 164 return 0; 165 } 166 167 /* Check if @flags are a supported and valid set of FS_*_FL flags */ 168 static int check_fsflags(unsigned int flags) 169 { 170 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 171 FS_NOATIME_FL | FS_NODUMP_FL | \ 172 FS_SYNC_FL | FS_DIRSYNC_FL | \ 173 FS_NOCOMP_FL | FS_COMPR_FL | 174 FS_NOCOW_FL)) 175 return -EOPNOTSUPP; 176 177 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 178 return -EINVAL; 179 180 return 0; 181 } 182 183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 184 { 185 struct inode *inode = file_inode(file); 186 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 187 struct btrfs_inode *binode = BTRFS_I(inode); 188 struct btrfs_root *root = binode->root; 189 struct btrfs_trans_handle *trans; 190 unsigned int fsflags, old_fsflags; 191 int ret; 192 const char *comp = NULL; 193 u32 binode_flags = binode->flags; 194 195 if (!inode_owner_or_capable(inode)) 196 return -EPERM; 197 198 if (btrfs_root_readonly(root)) 199 return -EROFS; 200 201 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 202 return -EFAULT; 203 204 ret = check_fsflags(fsflags); 205 if (ret) 206 return ret; 207 208 ret = mnt_want_write_file(file); 209 if (ret) 210 return ret; 211 212 inode_lock(inode); 213 214 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 215 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 216 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 217 if (ret) 218 goto out_unlock; 219 220 if (fsflags & FS_SYNC_FL) 221 binode_flags |= BTRFS_INODE_SYNC; 222 else 223 binode_flags &= ~BTRFS_INODE_SYNC; 224 if (fsflags & FS_IMMUTABLE_FL) 225 binode_flags |= BTRFS_INODE_IMMUTABLE; 226 else 227 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 228 if (fsflags & FS_APPEND_FL) 229 binode_flags |= BTRFS_INODE_APPEND; 230 else 231 binode_flags &= ~BTRFS_INODE_APPEND; 232 if (fsflags & FS_NODUMP_FL) 233 binode_flags |= BTRFS_INODE_NODUMP; 234 else 235 binode_flags &= ~BTRFS_INODE_NODUMP; 236 if (fsflags & FS_NOATIME_FL) 237 binode_flags |= BTRFS_INODE_NOATIME; 238 else 239 binode_flags &= ~BTRFS_INODE_NOATIME; 240 if (fsflags & FS_DIRSYNC_FL) 241 binode_flags |= BTRFS_INODE_DIRSYNC; 242 else 243 binode_flags &= ~BTRFS_INODE_DIRSYNC; 244 if (fsflags & FS_NOCOW_FL) { 245 if (S_ISREG(inode->i_mode)) { 246 /* 247 * It's safe to turn csums off here, no extents exist. 248 * Otherwise we want the flag to reflect the real COW 249 * status of the file and will not set it. 250 */ 251 if (inode->i_size == 0) 252 binode_flags |= BTRFS_INODE_NODATACOW | 253 BTRFS_INODE_NODATASUM; 254 } else { 255 binode_flags |= BTRFS_INODE_NODATACOW; 256 } 257 } else { 258 /* 259 * Revert back under same assumptions as above 260 */ 261 if (S_ISREG(inode->i_mode)) { 262 if (inode->i_size == 0) 263 binode_flags &= ~(BTRFS_INODE_NODATACOW | 264 BTRFS_INODE_NODATASUM); 265 } else { 266 binode_flags &= ~BTRFS_INODE_NODATACOW; 267 } 268 } 269 270 /* 271 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 272 * flag may be changed automatically if compression code won't make 273 * things smaller. 274 */ 275 if (fsflags & FS_NOCOMP_FL) { 276 binode_flags &= ~BTRFS_INODE_COMPRESS; 277 binode_flags |= BTRFS_INODE_NOCOMPRESS; 278 } else if (fsflags & FS_COMPR_FL) { 279 280 if (IS_SWAPFILE(inode)) { 281 ret = -ETXTBSY; 282 goto out_unlock; 283 } 284 285 binode_flags |= BTRFS_INODE_COMPRESS; 286 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 287 288 comp = btrfs_compress_type2str(fs_info->compress_type); 289 if (!comp || comp[0] == 0) 290 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 291 } else { 292 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 293 } 294 295 /* 296 * 1 for inode item 297 * 2 for properties 298 */ 299 trans = btrfs_start_transaction(root, 3); 300 if (IS_ERR(trans)) { 301 ret = PTR_ERR(trans); 302 goto out_unlock; 303 } 304 305 if (comp) { 306 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 307 strlen(comp), 0); 308 if (ret) { 309 btrfs_abort_transaction(trans, ret); 310 goto out_end_trans; 311 } 312 } else { 313 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 314 0, 0); 315 if (ret && ret != -ENODATA) { 316 btrfs_abort_transaction(trans, ret); 317 goto out_end_trans; 318 } 319 } 320 321 binode->flags = binode_flags; 322 btrfs_sync_inode_flags_to_i_flags(inode); 323 inode_inc_iversion(inode); 324 inode->i_ctime = current_time(inode); 325 ret = btrfs_update_inode(trans, root, inode); 326 327 out_end_trans: 328 btrfs_end_transaction(trans); 329 out_unlock: 330 inode_unlock(inode); 331 mnt_drop_write_file(file); 332 return ret; 333 } 334 335 /* 336 * Translate btrfs internal inode flags to xflags as expected by the 337 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 338 * silently dropped. 339 */ 340 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 341 { 342 unsigned int xflags = 0; 343 344 if (flags & BTRFS_INODE_APPEND) 345 xflags |= FS_XFLAG_APPEND; 346 if (flags & BTRFS_INODE_IMMUTABLE) 347 xflags |= FS_XFLAG_IMMUTABLE; 348 if (flags & BTRFS_INODE_NOATIME) 349 xflags |= FS_XFLAG_NOATIME; 350 if (flags & BTRFS_INODE_NODUMP) 351 xflags |= FS_XFLAG_NODUMP; 352 if (flags & BTRFS_INODE_SYNC) 353 xflags |= FS_XFLAG_SYNC; 354 355 return xflags; 356 } 357 358 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 359 static int check_xflags(unsigned int flags) 360 { 361 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 362 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 363 return -EOPNOTSUPP; 364 return 0; 365 } 366 367 /* 368 * Set the xflags from the internal inode flags. The remaining items of fsxattr 369 * are zeroed. 370 */ 371 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 372 { 373 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 374 struct fsxattr fa; 375 376 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags)); 377 if (copy_to_user(arg, &fa, sizeof(fa))) 378 return -EFAULT; 379 380 return 0; 381 } 382 383 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 384 { 385 struct inode *inode = file_inode(file); 386 struct btrfs_inode *binode = BTRFS_I(inode); 387 struct btrfs_root *root = binode->root; 388 struct btrfs_trans_handle *trans; 389 struct fsxattr fa, old_fa; 390 unsigned old_flags; 391 unsigned old_i_flags; 392 int ret = 0; 393 394 if (!inode_owner_or_capable(inode)) 395 return -EPERM; 396 397 if (btrfs_root_readonly(root)) 398 return -EROFS; 399 400 if (copy_from_user(&fa, arg, sizeof(fa))) 401 return -EFAULT; 402 403 ret = check_xflags(fa.fsx_xflags); 404 if (ret) 405 return ret; 406 407 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 408 return -EOPNOTSUPP; 409 410 ret = mnt_want_write_file(file); 411 if (ret) 412 return ret; 413 414 inode_lock(inode); 415 416 old_flags = binode->flags; 417 old_i_flags = inode->i_flags; 418 419 simple_fill_fsxattr(&old_fa, 420 btrfs_inode_flags_to_xflags(binode->flags)); 421 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 422 if (ret) 423 goto out_unlock; 424 425 if (fa.fsx_xflags & FS_XFLAG_SYNC) 426 binode->flags |= BTRFS_INODE_SYNC; 427 else 428 binode->flags &= ~BTRFS_INODE_SYNC; 429 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 430 binode->flags |= BTRFS_INODE_IMMUTABLE; 431 else 432 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 433 if (fa.fsx_xflags & FS_XFLAG_APPEND) 434 binode->flags |= BTRFS_INODE_APPEND; 435 else 436 binode->flags &= ~BTRFS_INODE_APPEND; 437 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 438 binode->flags |= BTRFS_INODE_NODUMP; 439 else 440 binode->flags &= ~BTRFS_INODE_NODUMP; 441 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 442 binode->flags |= BTRFS_INODE_NOATIME; 443 else 444 binode->flags &= ~BTRFS_INODE_NOATIME; 445 446 /* 1 item for the inode */ 447 trans = btrfs_start_transaction(root, 1); 448 if (IS_ERR(trans)) { 449 ret = PTR_ERR(trans); 450 goto out_unlock; 451 } 452 453 btrfs_sync_inode_flags_to_i_flags(inode); 454 inode_inc_iversion(inode); 455 inode->i_ctime = current_time(inode); 456 ret = btrfs_update_inode(trans, root, inode); 457 458 btrfs_end_transaction(trans); 459 460 out_unlock: 461 if (ret) { 462 binode->flags = old_flags; 463 inode->i_flags = old_i_flags; 464 } 465 466 inode_unlock(inode); 467 mnt_drop_write_file(file); 468 469 return ret; 470 } 471 472 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 473 { 474 struct inode *inode = file_inode(file); 475 476 return put_user(inode->i_generation, arg); 477 } 478 479 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 480 void __user *arg) 481 { 482 struct btrfs_device *device; 483 struct request_queue *q; 484 struct fstrim_range range; 485 u64 minlen = ULLONG_MAX; 486 u64 num_devices = 0; 487 int ret; 488 489 if (!capable(CAP_SYS_ADMIN)) 490 return -EPERM; 491 492 /* 493 * If the fs is mounted with nologreplay, which requires it to be 494 * mounted in RO mode as well, we can not allow discard on free space 495 * inside block groups, because log trees refer to extents that are not 496 * pinned in a block group's free space cache (pinning the extents is 497 * precisely the first phase of replaying a log tree). 498 */ 499 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 500 return -EROFS; 501 502 rcu_read_lock(); 503 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 504 dev_list) { 505 if (!device->bdev) 506 continue; 507 q = bdev_get_queue(device->bdev); 508 if (blk_queue_discard(q)) { 509 num_devices++; 510 minlen = min_t(u64, q->limits.discard_granularity, 511 minlen); 512 } 513 } 514 rcu_read_unlock(); 515 516 if (!num_devices) 517 return -EOPNOTSUPP; 518 if (copy_from_user(&range, arg, sizeof(range))) 519 return -EFAULT; 520 521 /* 522 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 523 * block group is in the logical address space, which can be any 524 * sectorsize aligned bytenr in the range [0, U64_MAX]. 525 */ 526 if (range.len < fs_info->sb->s_blocksize) 527 return -EINVAL; 528 529 range.minlen = max(range.minlen, minlen); 530 ret = btrfs_trim_fs(fs_info, &range); 531 if (ret < 0) 532 return ret; 533 534 if (copy_to_user(arg, &range, sizeof(range))) 535 return -EFAULT; 536 537 return 0; 538 } 539 540 int __pure btrfs_is_empty_uuid(u8 *uuid) 541 { 542 int i; 543 544 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 545 if (uuid[i]) 546 return 0; 547 } 548 return 1; 549 } 550 551 static noinline int create_subvol(struct inode *dir, 552 struct dentry *dentry, 553 const char *name, int namelen, 554 struct btrfs_qgroup_inherit *inherit) 555 { 556 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 557 struct btrfs_trans_handle *trans; 558 struct btrfs_key key; 559 struct btrfs_root_item *root_item; 560 struct btrfs_inode_item *inode_item; 561 struct extent_buffer *leaf; 562 struct btrfs_root *root = BTRFS_I(dir)->root; 563 struct btrfs_root *new_root; 564 struct btrfs_block_rsv block_rsv; 565 struct timespec64 cur_time = current_time(dir); 566 struct inode *inode; 567 int ret; 568 int err; 569 u64 objectid; 570 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 571 u64 index = 0; 572 573 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 574 if (!root_item) 575 return -ENOMEM; 576 577 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 578 if (ret) 579 goto fail_free; 580 581 /* 582 * Don't create subvolume whose level is not zero. Or qgroup will be 583 * screwed up since it assumes subvolume qgroup's level to be 0. 584 */ 585 if (btrfs_qgroup_level(objectid)) { 586 ret = -ENOSPC; 587 goto fail_free; 588 } 589 590 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 591 /* 592 * The same as the snapshot creation, please see the comment 593 * of create_snapshot(). 594 */ 595 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 596 if (ret) 597 goto fail_free; 598 599 trans = btrfs_start_transaction(root, 0); 600 if (IS_ERR(trans)) { 601 ret = PTR_ERR(trans); 602 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 603 goto fail_free; 604 } 605 trans->block_rsv = &block_rsv; 606 trans->bytes_reserved = block_rsv.size; 607 608 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 609 if (ret) 610 goto fail; 611 612 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 613 if (IS_ERR(leaf)) { 614 ret = PTR_ERR(leaf); 615 goto fail; 616 } 617 618 btrfs_mark_buffer_dirty(leaf); 619 620 inode_item = &root_item->inode; 621 btrfs_set_stack_inode_generation(inode_item, 1); 622 btrfs_set_stack_inode_size(inode_item, 3); 623 btrfs_set_stack_inode_nlink(inode_item, 1); 624 btrfs_set_stack_inode_nbytes(inode_item, 625 fs_info->nodesize); 626 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 627 628 btrfs_set_root_flags(root_item, 0); 629 btrfs_set_root_limit(root_item, 0); 630 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 631 632 btrfs_set_root_bytenr(root_item, leaf->start); 633 btrfs_set_root_generation(root_item, trans->transid); 634 btrfs_set_root_level(root_item, 0); 635 btrfs_set_root_refs(root_item, 1); 636 btrfs_set_root_used(root_item, leaf->len); 637 btrfs_set_root_last_snapshot(root_item, 0); 638 639 btrfs_set_root_generation_v2(root_item, 640 btrfs_root_generation(root_item)); 641 generate_random_guid(root_item->uuid); 642 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 643 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 644 root_item->ctime = root_item->otime; 645 btrfs_set_root_ctransid(root_item, trans->transid); 646 btrfs_set_root_otransid(root_item, trans->transid); 647 648 btrfs_tree_unlock(leaf); 649 free_extent_buffer(leaf); 650 leaf = NULL; 651 652 btrfs_set_root_dirid(root_item, new_dirid); 653 654 key.objectid = objectid; 655 key.offset = 0; 656 key.type = BTRFS_ROOT_ITEM_KEY; 657 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 658 root_item); 659 if (ret) 660 goto fail; 661 662 key.offset = (u64)-1; 663 new_root = btrfs_get_fs_root(fs_info, objectid, true); 664 if (IS_ERR(new_root)) { 665 ret = PTR_ERR(new_root); 666 btrfs_abort_transaction(trans, ret); 667 goto fail; 668 } 669 670 btrfs_record_root_in_trans(trans, new_root); 671 672 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 673 btrfs_put_root(new_root); 674 if (ret) { 675 /* We potentially lose an unused inode item here */ 676 btrfs_abort_transaction(trans, ret); 677 goto fail; 678 } 679 680 mutex_lock(&new_root->objectid_mutex); 681 new_root->highest_objectid = new_dirid; 682 mutex_unlock(&new_root->objectid_mutex); 683 684 /* 685 * insert the directory item 686 */ 687 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 688 if (ret) { 689 btrfs_abort_transaction(trans, ret); 690 goto fail; 691 } 692 693 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 694 BTRFS_FT_DIR, index); 695 if (ret) { 696 btrfs_abort_transaction(trans, ret); 697 goto fail; 698 } 699 700 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 701 ret = btrfs_update_inode(trans, root, dir); 702 if (ret) { 703 btrfs_abort_transaction(trans, ret); 704 goto fail; 705 } 706 707 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 708 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 709 if (ret) { 710 btrfs_abort_transaction(trans, ret); 711 goto fail; 712 } 713 714 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 715 BTRFS_UUID_KEY_SUBVOL, objectid); 716 if (ret) 717 btrfs_abort_transaction(trans, ret); 718 719 fail: 720 kfree(root_item); 721 trans->block_rsv = NULL; 722 trans->bytes_reserved = 0; 723 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 724 725 err = btrfs_commit_transaction(trans); 726 if (err && !ret) 727 ret = err; 728 729 if (!ret) { 730 inode = btrfs_lookup_dentry(dir, dentry); 731 if (IS_ERR(inode)) 732 return PTR_ERR(inode); 733 d_instantiate(dentry, inode); 734 } 735 return ret; 736 737 fail_free: 738 kfree(root_item); 739 return ret; 740 } 741 742 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 743 struct dentry *dentry, bool readonly, 744 struct btrfs_qgroup_inherit *inherit) 745 { 746 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 747 struct inode *inode; 748 struct btrfs_pending_snapshot *pending_snapshot; 749 struct btrfs_trans_handle *trans; 750 int ret; 751 752 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 753 return -EINVAL; 754 755 if (atomic_read(&root->nr_swapfiles)) { 756 btrfs_warn(fs_info, 757 "cannot snapshot subvolume with active swapfile"); 758 return -ETXTBSY; 759 } 760 761 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 762 if (!pending_snapshot) 763 return -ENOMEM; 764 765 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 766 GFP_KERNEL); 767 pending_snapshot->path = btrfs_alloc_path(); 768 if (!pending_snapshot->root_item || !pending_snapshot->path) { 769 ret = -ENOMEM; 770 goto free_pending; 771 } 772 773 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 774 BTRFS_BLOCK_RSV_TEMP); 775 /* 776 * 1 - parent dir inode 777 * 2 - dir entries 778 * 1 - root item 779 * 2 - root ref/backref 780 * 1 - root of snapshot 781 * 1 - UUID item 782 */ 783 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 784 &pending_snapshot->block_rsv, 8, 785 false); 786 if (ret) 787 goto free_pending; 788 789 pending_snapshot->dentry = dentry; 790 pending_snapshot->root = root; 791 pending_snapshot->readonly = readonly; 792 pending_snapshot->dir = dir; 793 pending_snapshot->inherit = inherit; 794 795 trans = btrfs_start_transaction(root, 0); 796 if (IS_ERR(trans)) { 797 ret = PTR_ERR(trans); 798 goto fail; 799 } 800 801 spin_lock(&fs_info->trans_lock); 802 list_add(&pending_snapshot->list, 803 &trans->transaction->pending_snapshots); 804 spin_unlock(&fs_info->trans_lock); 805 806 ret = btrfs_commit_transaction(trans); 807 if (ret) 808 goto fail; 809 810 ret = pending_snapshot->error; 811 if (ret) 812 goto fail; 813 814 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 815 if (ret) 816 goto fail; 817 818 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 819 if (IS_ERR(inode)) { 820 ret = PTR_ERR(inode); 821 goto fail; 822 } 823 824 d_instantiate(dentry, inode); 825 ret = 0; 826 fail: 827 btrfs_put_root(pending_snapshot->snap); 828 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 829 free_pending: 830 kfree(pending_snapshot->root_item); 831 btrfs_free_path(pending_snapshot->path); 832 kfree(pending_snapshot); 833 834 return ret; 835 } 836 837 /* copy of may_delete in fs/namei.c() 838 * Check whether we can remove a link victim from directory dir, check 839 * whether the type of victim is right. 840 * 1. We can't do it if dir is read-only (done in permission()) 841 * 2. We should have write and exec permissions on dir 842 * 3. We can't remove anything from append-only dir 843 * 4. We can't do anything with immutable dir (done in permission()) 844 * 5. If the sticky bit on dir is set we should either 845 * a. be owner of dir, or 846 * b. be owner of victim, or 847 * c. have CAP_FOWNER capability 848 * 6. If the victim is append-only or immutable we can't do anything with 849 * links pointing to it. 850 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 851 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 852 * 9. We can't remove a root or mountpoint. 853 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 854 * nfs_async_unlink(). 855 */ 856 857 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 858 { 859 int error; 860 861 if (d_really_is_negative(victim)) 862 return -ENOENT; 863 864 BUG_ON(d_inode(victim->d_parent) != dir); 865 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 866 867 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 868 if (error) 869 return error; 870 if (IS_APPEND(dir)) 871 return -EPERM; 872 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 873 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 874 return -EPERM; 875 if (isdir) { 876 if (!d_is_dir(victim)) 877 return -ENOTDIR; 878 if (IS_ROOT(victim)) 879 return -EBUSY; 880 } else if (d_is_dir(victim)) 881 return -EISDIR; 882 if (IS_DEADDIR(dir)) 883 return -ENOENT; 884 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 885 return -EBUSY; 886 return 0; 887 } 888 889 /* copy of may_create in fs/namei.c() */ 890 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 891 { 892 if (d_really_is_positive(child)) 893 return -EEXIST; 894 if (IS_DEADDIR(dir)) 895 return -ENOENT; 896 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 897 } 898 899 /* 900 * Create a new subvolume below @parent. This is largely modeled after 901 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 902 * inside this filesystem so it's quite a bit simpler. 903 */ 904 static noinline int btrfs_mksubvol(const struct path *parent, 905 const char *name, int namelen, 906 struct btrfs_root *snap_src, 907 bool readonly, 908 struct btrfs_qgroup_inherit *inherit) 909 { 910 struct inode *dir = d_inode(parent->dentry); 911 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 912 struct dentry *dentry; 913 int error; 914 915 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 916 if (error == -EINTR) 917 return error; 918 919 dentry = lookup_one_len(name, parent->dentry, namelen); 920 error = PTR_ERR(dentry); 921 if (IS_ERR(dentry)) 922 goto out_unlock; 923 924 error = btrfs_may_create(dir, dentry); 925 if (error) 926 goto out_dput; 927 928 /* 929 * even if this name doesn't exist, we may get hash collisions. 930 * check for them now when we can safely fail 931 */ 932 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 933 dir->i_ino, name, 934 namelen); 935 if (error) 936 goto out_dput; 937 938 down_read(&fs_info->subvol_sem); 939 940 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 941 goto out_up_read; 942 943 if (snap_src) 944 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 945 else 946 error = create_subvol(dir, dentry, name, namelen, inherit); 947 948 if (!error) 949 fsnotify_mkdir(dir, dentry); 950 out_up_read: 951 up_read(&fs_info->subvol_sem); 952 out_dput: 953 dput(dentry); 954 out_unlock: 955 inode_unlock(dir); 956 return error; 957 } 958 959 static noinline int btrfs_mksnapshot(const struct path *parent, 960 const char *name, int namelen, 961 struct btrfs_root *root, 962 bool readonly, 963 struct btrfs_qgroup_inherit *inherit) 964 { 965 int ret; 966 bool snapshot_force_cow = false; 967 968 /* 969 * Force new buffered writes to reserve space even when NOCOW is 970 * possible. This is to avoid later writeback (running dealloc) to 971 * fallback to COW mode and unexpectedly fail with ENOSPC. 972 */ 973 btrfs_drew_read_lock(&root->snapshot_lock); 974 975 ret = btrfs_start_delalloc_snapshot(root); 976 if (ret) 977 goto out; 978 979 /* 980 * All previous writes have started writeback in NOCOW mode, so now 981 * we force future writes to fallback to COW mode during snapshot 982 * creation. 983 */ 984 atomic_inc(&root->snapshot_force_cow); 985 snapshot_force_cow = true; 986 987 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 988 989 ret = btrfs_mksubvol(parent, name, namelen, 990 root, readonly, inherit); 991 out: 992 if (snapshot_force_cow) 993 atomic_dec(&root->snapshot_force_cow); 994 btrfs_drew_read_unlock(&root->snapshot_lock); 995 return ret; 996 } 997 998 /* 999 * When we're defragging a range, we don't want to kick it off again 1000 * if it is really just waiting for delalloc to send it down. 1001 * If we find a nice big extent or delalloc range for the bytes in the 1002 * file you want to defrag, we return 0 to let you know to skip this 1003 * part of the file 1004 */ 1005 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1006 { 1007 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1008 struct extent_map *em = NULL; 1009 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1010 u64 end; 1011 1012 read_lock(&em_tree->lock); 1013 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1014 read_unlock(&em_tree->lock); 1015 1016 if (em) { 1017 end = extent_map_end(em); 1018 free_extent_map(em); 1019 if (end - offset > thresh) 1020 return 0; 1021 } 1022 /* if we already have a nice delalloc here, just stop */ 1023 thresh /= 2; 1024 end = count_range_bits(io_tree, &offset, offset + thresh, 1025 thresh, EXTENT_DELALLOC, 1); 1026 if (end >= thresh) 1027 return 0; 1028 return 1; 1029 } 1030 1031 /* 1032 * helper function to walk through a file and find extents 1033 * newer than a specific transid, and smaller than thresh. 1034 * 1035 * This is used by the defragging code to find new and small 1036 * extents 1037 */ 1038 static int find_new_extents(struct btrfs_root *root, 1039 struct inode *inode, u64 newer_than, 1040 u64 *off, u32 thresh) 1041 { 1042 struct btrfs_path *path; 1043 struct btrfs_key min_key; 1044 struct extent_buffer *leaf; 1045 struct btrfs_file_extent_item *extent; 1046 int type; 1047 int ret; 1048 u64 ino = btrfs_ino(BTRFS_I(inode)); 1049 1050 path = btrfs_alloc_path(); 1051 if (!path) 1052 return -ENOMEM; 1053 1054 min_key.objectid = ino; 1055 min_key.type = BTRFS_EXTENT_DATA_KEY; 1056 min_key.offset = *off; 1057 1058 while (1) { 1059 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1060 if (ret != 0) 1061 goto none; 1062 process_slot: 1063 if (min_key.objectid != ino) 1064 goto none; 1065 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1066 goto none; 1067 1068 leaf = path->nodes[0]; 1069 extent = btrfs_item_ptr(leaf, path->slots[0], 1070 struct btrfs_file_extent_item); 1071 1072 type = btrfs_file_extent_type(leaf, extent); 1073 if (type == BTRFS_FILE_EXTENT_REG && 1074 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1075 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1076 *off = min_key.offset; 1077 btrfs_free_path(path); 1078 return 0; 1079 } 1080 1081 path->slots[0]++; 1082 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1083 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1084 goto process_slot; 1085 } 1086 1087 if (min_key.offset == (u64)-1) 1088 goto none; 1089 1090 min_key.offset++; 1091 btrfs_release_path(path); 1092 } 1093 none: 1094 btrfs_free_path(path); 1095 return -ENOENT; 1096 } 1097 1098 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1099 { 1100 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1101 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1102 struct extent_map *em; 1103 u64 len = PAGE_SIZE; 1104 1105 /* 1106 * hopefully we have this extent in the tree already, try without 1107 * the full extent lock 1108 */ 1109 read_lock(&em_tree->lock); 1110 em = lookup_extent_mapping(em_tree, start, len); 1111 read_unlock(&em_tree->lock); 1112 1113 if (!em) { 1114 struct extent_state *cached = NULL; 1115 u64 end = start + len - 1; 1116 1117 /* get the big lock and read metadata off disk */ 1118 lock_extent_bits(io_tree, start, end, &cached); 1119 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 1120 unlock_extent_cached(io_tree, start, end, &cached); 1121 1122 if (IS_ERR(em)) 1123 return NULL; 1124 } 1125 1126 return em; 1127 } 1128 1129 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1130 { 1131 struct extent_map *next; 1132 bool ret = true; 1133 1134 /* this is the last extent */ 1135 if (em->start + em->len >= i_size_read(inode)) 1136 return false; 1137 1138 next = defrag_lookup_extent(inode, em->start + em->len); 1139 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1140 ret = false; 1141 else if ((em->block_start + em->block_len == next->block_start) && 1142 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1143 ret = false; 1144 1145 free_extent_map(next); 1146 return ret; 1147 } 1148 1149 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1150 u64 *last_len, u64 *skip, u64 *defrag_end, 1151 int compress) 1152 { 1153 struct extent_map *em; 1154 int ret = 1; 1155 bool next_mergeable = true; 1156 bool prev_mergeable = true; 1157 1158 /* 1159 * make sure that once we start defragging an extent, we keep on 1160 * defragging it 1161 */ 1162 if (start < *defrag_end) 1163 return 1; 1164 1165 *skip = 0; 1166 1167 em = defrag_lookup_extent(inode, start); 1168 if (!em) 1169 return 0; 1170 1171 /* this will cover holes, and inline extents */ 1172 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1173 ret = 0; 1174 goto out; 1175 } 1176 1177 if (!*defrag_end) 1178 prev_mergeable = false; 1179 1180 next_mergeable = defrag_check_next_extent(inode, em); 1181 /* 1182 * we hit a real extent, if it is big or the next extent is not a 1183 * real extent, don't bother defragging it 1184 */ 1185 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1186 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1187 ret = 0; 1188 out: 1189 /* 1190 * last_len ends up being a counter of how many bytes we've defragged. 1191 * every time we choose not to defrag an extent, we reset *last_len 1192 * so that the next tiny extent will force a defrag. 1193 * 1194 * The end result of this is that tiny extents before a single big 1195 * extent will force at least part of that big extent to be defragged. 1196 */ 1197 if (ret) { 1198 *defrag_end = extent_map_end(em); 1199 } else { 1200 *last_len = 0; 1201 *skip = extent_map_end(em); 1202 *defrag_end = 0; 1203 } 1204 1205 free_extent_map(em); 1206 return ret; 1207 } 1208 1209 /* 1210 * it doesn't do much good to defrag one or two pages 1211 * at a time. This pulls in a nice chunk of pages 1212 * to COW and defrag. 1213 * 1214 * It also makes sure the delalloc code has enough 1215 * dirty data to avoid making new small extents as part 1216 * of the defrag 1217 * 1218 * It's a good idea to start RA on this range 1219 * before calling this. 1220 */ 1221 static int cluster_pages_for_defrag(struct inode *inode, 1222 struct page **pages, 1223 unsigned long start_index, 1224 unsigned long num_pages) 1225 { 1226 unsigned long file_end; 1227 u64 isize = i_size_read(inode); 1228 u64 page_start; 1229 u64 page_end; 1230 u64 page_cnt; 1231 int ret; 1232 int i; 1233 int i_done; 1234 struct btrfs_ordered_extent *ordered; 1235 struct extent_state *cached_state = NULL; 1236 struct extent_io_tree *tree; 1237 struct extent_changeset *data_reserved = NULL; 1238 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1239 1240 file_end = (isize - 1) >> PAGE_SHIFT; 1241 if (!isize || start_index > file_end) 1242 return 0; 1243 1244 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1245 1246 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1247 start_index << PAGE_SHIFT, 1248 page_cnt << PAGE_SHIFT); 1249 if (ret) 1250 return ret; 1251 i_done = 0; 1252 tree = &BTRFS_I(inode)->io_tree; 1253 1254 /* step one, lock all the pages */ 1255 for (i = 0; i < page_cnt; i++) { 1256 struct page *page; 1257 again: 1258 page = find_or_create_page(inode->i_mapping, 1259 start_index + i, mask); 1260 if (!page) 1261 break; 1262 1263 page_start = page_offset(page); 1264 page_end = page_start + PAGE_SIZE - 1; 1265 while (1) { 1266 lock_extent_bits(tree, page_start, page_end, 1267 &cached_state); 1268 ordered = btrfs_lookup_ordered_extent(inode, 1269 page_start); 1270 unlock_extent_cached(tree, page_start, page_end, 1271 &cached_state); 1272 if (!ordered) 1273 break; 1274 1275 unlock_page(page); 1276 btrfs_start_ordered_extent(inode, ordered, 1); 1277 btrfs_put_ordered_extent(ordered); 1278 lock_page(page); 1279 /* 1280 * we unlocked the page above, so we need check if 1281 * it was released or not. 1282 */ 1283 if (page->mapping != inode->i_mapping) { 1284 unlock_page(page); 1285 put_page(page); 1286 goto again; 1287 } 1288 } 1289 1290 if (!PageUptodate(page)) { 1291 btrfs_readpage(NULL, page); 1292 lock_page(page); 1293 if (!PageUptodate(page)) { 1294 unlock_page(page); 1295 put_page(page); 1296 ret = -EIO; 1297 break; 1298 } 1299 } 1300 1301 if (page->mapping != inode->i_mapping) { 1302 unlock_page(page); 1303 put_page(page); 1304 goto again; 1305 } 1306 1307 pages[i] = page; 1308 i_done++; 1309 } 1310 if (!i_done || ret) 1311 goto out; 1312 1313 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1314 goto out; 1315 1316 /* 1317 * so now we have a nice long stream of locked 1318 * and up to date pages, lets wait on them 1319 */ 1320 for (i = 0; i < i_done; i++) 1321 wait_on_page_writeback(pages[i]); 1322 1323 page_start = page_offset(pages[0]); 1324 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1325 1326 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1327 page_start, page_end - 1, &cached_state); 1328 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1329 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1330 EXTENT_DEFRAG, 0, 0, &cached_state); 1331 1332 if (i_done != page_cnt) { 1333 spin_lock(&BTRFS_I(inode)->lock); 1334 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1335 spin_unlock(&BTRFS_I(inode)->lock); 1336 btrfs_delalloc_release_space(inode, data_reserved, 1337 start_index << PAGE_SHIFT, 1338 (page_cnt - i_done) << PAGE_SHIFT, true); 1339 } 1340 1341 1342 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1343 &cached_state); 1344 1345 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1346 page_start, page_end - 1, &cached_state); 1347 1348 for (i = 0; i < i_done; i++) { 1349 clear_page_dirty_for_io(pages[i]); 1350 ClearPageChecked(pages[i]); 1351 set_page_extent_mapped(pages[i]); 1352 set_page_dirty(pages[i]); 1353 unlock_page(pages[i]); 1354 put_page(pages[i]); 1355 } 1356 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1357 extent_changeset_free(data_reserved); 1358 return i_done; 1359 out: 1360 for (i = 0; i < i_done; i++) { 1361 unlock_page(pages[i]); 1362 put_page(pages[i]); 1363 } 1364 btrfs_delalloc_release_space(inode, data_reserved, 1365 start_index << PAGE_SHIFT, 1366 page_cnt << PAGE_SHIFT, true); 1367 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1368 extent_changeset_free(data_reserved); 1369 return ret; 1370 1371 } 1372 1373 int btrfs_defrag_file(struct inode *inode, struct file *file, 1374 struct btrfs_ioctl_defrag_range_args *range, 1375 u64 newer_than, unsigned long max_to_defrag) 1376 { 1377 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1378 struct btrfs_root *root = BTRFS_I(inode)->root; 1379 struct file_ra_state *ra = NULL; 1380 unsigned long last_index; 1381 u64 isize = i_size_read(inode); 1382 u64 last_len = 0; 1383 u64 skip = 0; 1384 u64 defrag_end = 0; 1385 u64 newer_off = range->start; 1386 unsigned long i; 1387 unsigned long ra_index = 0; 1388 int ret; 1389 int defrag_count = 0; 1390 int compress_type = BTRFS_COMPRESS_ZLIB; 1391 u32 extent_thresh = range->extent_thresh; 1392 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1393 unsigned long cluster = max_cluster; 1394 u64 new_align = ~((u64)SZ_128K - 1); 1395 struct page **pages = NULL; 1396 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1397 1398 if (isize == 0) 1399 return 0; 1400 1401 if (range->start >= isize) 1402 return -EINVAL; 1403 1404 if (do_compress) { 1405 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1406 return -EINVAL; 1407 if (range->compress_type) 1408 compress_type = range->compress_type; 1409 } 1410 1411 if (extent_thresh == 0) 1412 extent_thresh = SZ_256K; 1413 1414 /* 1415 * If we were not given a file, allocate a readahead context. As 1416 * readahead is just an optimization, defrag will work without it so 1417 * we don't error out. 1418 */ 1419 if (!file) { 1420 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1421 if (ra) 1422 file_ra_state_init(ra, inode->i_mapping); 1423 } else { 1424 ra = &file->f_ra; 1425 } 1426 1427 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1428 if (!pages) { 1429 ret = -ENOMEM; 1430 goto out_ra; 1431 } 1432 1433 /* find the last page to defrag */ 1434 if (range->start + range->len > range->start) { 1435 last_index = min_t(u64, isize - 1, 1436 range->start + range->len - 1) >> PAGE_SHIFT; 1437 } else { 1438 last_index = (isize - 1) >> PAGE_SHIFT; 1439 } 1440 1441 if (newer_than) { 1442 ret = find_new_extents(root, inode, newer_than, 1443 &newer_off, SZ_64K); 1444 if (!ret) { 1445 range->start = newer_off; 1446 /* 1447 * we always align our defrag to help keep 1448 * the extents in the file evenly spaced 1449 */ 1450 i = (newer_off & new_align) >> PAGE_SHIFT; 1451 } else 1452 goto out_ra; 1453 } else { 1454 i = range->start >> PAGE_SHIFT; 1455 } 1456 if (!max_to_defrag) 1457 max_to_defrag = last_index - i + 1; 1458 1459 /* 1460 * make writeback starts from i, so the defrag range can be 1461 * written sequentially. 1462 */ 1463 if (i < inode->i_mapping->writeback_index) 1464 inode->i_mapping->writeback_index = i; 1465 1466 while (i <= last_index && defrag_count < max_to_defrag && 1467 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1468 /* 1469 * make sure we stop running if someone unmounts 1470 * the FS 1471 */ 1472 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1473 break; 1474 1475 if (btrfs_defrag_cancelled(fs_info)) { 1476 btrfs_debug(fs_info, "defrag_file cancelled"); 1477 ret = -EAGAIN; 1478 break; 1479 } 1480 1481 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1482 extent_thresh, &last_len, &skip, 1483 &defrag_end, do_compress)){ 1484 unsigned long next; 1485 /* 1486 * the should_defrag function tells us how much to skip 1487 * bump our counter by the suggested amount 1488 */ 1489 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1490 i = max(i + 1, next); 1491 continue; 1492 } 1493 1494 if (!newer_than) { 1495 cluster = (PAGE_ALIGN(defrag_end) >> 1496 PAGE_SHIFT) - i; 1497 cluster = min(cluster, max_cluster); 1498 } else { 1499 cluster = max_cluster; 1500 } 1501 1502 if (i + cluster > ra_index) { 1503 ra_index = max(i, ra_index); 1504 if (ra) 1505 page_cache_sync_readahead(inode->i_mapping, ra, 1506 file, ra_index, cluster); 1507 ra_index += cluster; 1508 } 1509 1510 inode_lock(inode); 1511 if (IS_SWAPFILE(inode)) { 1512 ret = -ETXTBSY; 1513 } else { 1514 if (do_compress) 1515 BTRFS_I(inode)->defrag_compress = compress_type; 1516 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1517 } 1518 if (ret < 0) { 1519 inode_unlock(inode); 1520 goto out_ra; 1521 } 1522 1523 defrag_count += ret; 1524 balance_dirty_pages_ratelimited(inode->i_mapping); 1525 inode_unlock(inode); 1526 1527 if (newer_than) { 1528 if (newer_off == (u64)-1) 1529 break; 1530 1531 if (ret > 0) 1532 i += ret; 1533 1534 newer_off = max(newer_off + 1, 1535 (u64)i << PAGE_SHIFT); 1536 1537 ret = find_new_extents(root, inode, newer_than, 1538 &newer_off, SZ_64K); 1539 if (!ret) { 1540 range->start = newer_off; 1541 i = (newer_off & new_align) >> PAGE_SHIFT; 1542 } else { 1543 break; 1544 } 1545 } else { 1546 if (ret > 0) { 1547 i += ret; 1548 last_len += ret << PAGE_SHIFT; 1549 } else { 1550 i++; 1551 last_len = 0; 1552 } 1553 } 1554 } 1555 1556 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1557 filemap_flush(inode->i_mapping); 1558 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1559 &BTRFS_I(inode)->runtime_flags)) 1560 filemap_flush(inode->i_mapping); 1561 } 1562 1563 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1564 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1565 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1566 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1567 } 1568 1569 ret = defrag_count; 1570 1571 out_ra: 1572 if (do_compress) { 1573 inode_lock(inode); 1574 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1575 inode_unlock(inode); 1576 } 1577 if (!file) 1578 kfree(ra); 1579 kfree(pages); 1580 return ret; 1581 } 1582 1583 static noinline int btrfs_ioctl_resize(struct file *file, 1584 void __user *arg) 1585 { 1586 struct inode *inode = file_inode(file); 1587 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1588 u64 new_size; 1589 u64 old_size; 1590 u64 devid = 1; 1591 struct btrfs_root *root = BTRFS_I(inode)->root; 1592 struct btrfs_ioctl_vol_args *vol_args; 1593 struct btrfs_trans_handle *trans; 1594 struct btrfs_device *device = NULL; 1595 char *sizestr; 1596 char *retptr; 1597 char *devstr = NULL; 1598 int ret = 0; 1599 int mod = 0; 1600 1601 if (!capable(CAP_SYS_ADMIN)) 1602 return -EPERM; 1603 1604 ret = mnt_want_write_file(file); 1605 if (ret) 1606 return ret; 1607 1608 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1609 mnt_drop_write_file(file); 1610 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1611 } 1612 1613 vol_args = memdup_user(arg, sizeof(*vol_args)); 1614 if (IS_ERR(vol_args)) { 1615 ret = PTR_ERR(vol_args); 1616 goto out; 1617 } 1618 1619 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1620 1621 sizestr = vol_args->name; 1622 devstr = strchr(sizestr, ':'); 1623 if (devstr) { 1624 sizestr = devstr + 1; 1625 *devstr = '\0'; 1626 devstr = vol_args->name; 1627 ret = kstrtoull(devstr, 10, &devid); 1628 if (ret) 1629 goto out_free; 1630 if (!devid) { 1631 ret = -EINVAL; 1632 goto out_free; 1633 } 1634 btrfs_info(fs_info, "resizing devid %llu", devid); 1635 } 1636 1637 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 1638 if (!device) { 1639 btrfs_info(fs_info, "resizer unable to find device %llu", 1640 devid); 1641 ret = -ENODEV; 1642 goto out_free; 1643 } 1644 1645 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1646 btrfs_info(fs_info, 1647 "resizer unable to apply on readonly device %llu", 1648 devid); 1649 ret = -EPERM; 1650 goto out_free; 1651 } 1652 1653 if (!strcmp(sizestr, "max")) 1654 new_size = device->bdev->bd_inode->i_size; 1655 else { 1656 if (sizestr[0] == '-') { 1657 mod = -1; 1658 sizestr++; 1659 } else if (sizestr[0] == '+') { 1660 mod = 1; 1661 sizestr++; 1662 } 1663 new_size = memparse(sizestr, &retptr); 1664 if (*retptr != '\0' || new_size == 0) { 1665 ret = -EINVAL; 1666 goto out_free; 1667 } 1668 } 1669 1670 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1671 ret = -EPERM; 1672 goto out_free; 1673 } 1674 1675 old_size = btrfs_device_get_total_bytes(device); 1676 1677 if (mod < 0) { 1678 if (new_size > old_size) { 1679 ret = -EINVAL; 1680 goto out_free; 1681 } 1682 new_size = old_size - new_size; 1683 } else if (mod > 0) { 1684 if (new_size > ULLONG_MAX - old_size) { 1685 ret = -ERANGE; 1686 goto out_free; 1687 } 1688 new_size = old_size + new_size; 1689 } 1690 1691 if (new_size < SZ_256M) { 1692 ret = -EINVAL; 1693 goto out_free; 1694 } 1695 if (new_size > device->bdev->bd_inode->i_size) { 1696 ret = -EFBIG; 1697 goto out_free; 1698 } 1699 1700 new_size = round_down(new_size, fs_info->sectorsize); 1701 1702 if (new_size > old_size) { 1703 trans = btrfs_start_transaction(root, 0); 1704 if (IS_ERR(trans)) { 1705 ret = PTR_ERR(trans); 1706 goto out_free; 1707 } 1708 ret = btrfs_grow_device(trans, device, new_size); 1709 btrfs_commit_transaction(trans); 1710 } else if (new_size < old_size) { 1711 ret = btrfs_shrink_device(device, new_size); 1712 } /* equal, nothing need to do */ 1713 1714 if (ret == 0 && new_size != old_size) 1715 btrfs_info_in_rcu(fs_info, 1716 "resize device %s (devid %llu) from %llu to %llu", 1717 rcu_str_deref(device->name), device->devid, 1718 old_size, new_size); 1719 out_free: 1720 kfree(vol_args); 1721 out: 1722 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1723 mnt_drop_write_file(file); 1724 return ret; 1725 } 1726 1727 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1728 const char *name, unsigned long fd, int subvol, 1729 bool readonly, 1730 struct btrfs_qgroup_inherit *inherit) 1731 { 1732 int namelen; 1733 int ret = 0; 1734 1735 if (!S_ISDIR(file_inode(file)->i_mode)) 1736 return -ENOTDIR; 1737 1738 ret = mnt_want_write_file(file); 1739 if (ret) 1740 goto out; 1741 1742 namelen = strlen(name); 1743 if (strchr(name, '/')) { 1744 ret = -EINVAL; 1745 goto out_drop_write; 1746 } 1747 1748 if (name[0] == '.' && 1749 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1750 ret = -EEXIST; 1751 goto out_drop_write; 1752 } 1753 1754 if (subvol) { 1755 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1756 NULL, readonly, inherit); 1757 } else { 1758 struct fd src = fdget(fd); 1759 struct inode *src_inode; 1760 if (!src.file) { 1761 ret = -EINVAL; 1762 goto out_drop_write; 1763 } 1764 1765 src_inode = file_inode(src.file); 1766 if (src_inode->i_sb != file_inode(file)->i_sb) { 1767 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1768 "Snapshot src from another FS"); 1769 ret = -EXDEV; 1770 } else if (!inode_owner_or_capable(src_inode)) { 1771 /* 1772 * Subvolume creation is not restricted, but snapshots 1773 * are limited to own subvolumes only 1774 */ 1775 ret = -EPERM; 1776 } else { 1777 ret = btrfs_mksnapshot(&file->f_path, name, namelen, 1778 BTRFS_I(src_inode)->root, 1779 readonly, inherit); 1780 } 1781 fdput(src); 1782 } 1783 out_drop_write: 1784 mnt_drop_write_file(file); 1785 out: 1786 return ret; 1787 } 1788 1789 static noinline int btrfs_ioctl_snap_create(struct file *file, 1790 void __user *arg, int subvol) 1791 { 1792 struct btrfs_ioctl_vol_args *vol_args; 1793 int ret; 1794 1795 if (!S_ISDIR(file_inode(file)->i_mode)) 1796 return -ENOTDIR; 1797 1798 vol_args = memdup_user(arg, sizeof(*vol_args)); 1799 if (IS_ERR(vol_args)) 1800 return PTR_ERR(vol_args); 1801 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1802 1803 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1804 subvol, false, NULL); 1805 1806 kfree(vol_args); 1807 return ret; 1808 } 1809 1810 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1811 void __user *arg, int subvol) 1812 { 1813 struct btrfs_ioctl_vol_args_v2 *vol_args; 1814 int ret; 1815 bool readonly = false; 1816 struct btrfs_qgroup_inherit *inherit = NULL; 1817 1818 if (!S_ISDIR(file_inode(file)->i_mode)) 1819 return -ENOTDIR; 1820 1821 vol_args = memdup_user(arg, sizeof(*vol_args)); 1822 if (IS_ERR(vol_args)) 1823 return PTR_ERR(vol_args); 1824 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1825 1826 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1827 ret = -EOPNOTSUPP; 1828 goto free_args; 1829 } 1830 1831 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1832 readonly = true; 1833 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1834 if (vol_args->size > PAGE_SIZE) { 1835 ret = -EINVAL; 1836 goto free_args; 1837 } 1838 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1839 if (IS_ERR(inherit)) { 1840 ret = PTR_ERR(inherit); 1841 goto free_args; 1842 } 1843 } 1844 1845 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1846 subvol, readonly, inherit); 1847 if (ret) 1848 goto free_inherit; 1849 free_inherit: 1850 kfree(inherit); 1851 free_args: 1852 kfree(vol_args); 1853 return ret; 1854 } 1855 1856 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1857 void __user *arg) 1858 { 1859 struct inode *inode = file_inode(file); 1860 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1861 struct btrfs_root *root = BTRFS_I(inode)->root; 1862 int ret = 0; 1863 u64 flags = 0; 1864 1865 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1866 return -EINVAL; 1867 1868 down_read(&fs_info->subvol_sem); 1869 if (btrfs_root_readonly(root)) 1870 flags |= BTRFS_SUBVOL_RDONLY; 1871 up_read(&fs_info->subvol_sem); 1872 1873 if (copy_to_user(arg, &flags, sizeof(flags))) 1874 ret = -EFAULT; 1875 1876 return ret; 1877 } 1878 1879 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1880 void __user *arg) 1881 { 1882 struct inode *inode = file_inode(file); 1883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1884 struct btrfs_root *root = BTRFS_I(inode)->root; 1885 struct btrfs_trans_handle *trans; 1886 u64 root_flags; 1887 u64 flags; 1888 int ret = 0; 1889 1890 if (!inode_owner_or_capable(inode)) 1891 return -EPERM; 1892 1893 ret = mnt_want_write_file(file); 1894 if (ret) 1895 goto out; 1896 1897 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1898 ret = -EINVAL; 1899 goto out_drop_write; 1900 } 1901 1902 if (copy_from_user(&flags, arg, sizeof(flags))) { 1903 ret = -EFAULT; 1904 goto out_drop_write; 1905 } 1906 1907 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1908 ret = -EOPNOTSUPP; 1909 goto out_drop_write; 1910 } 1911 1912 down_write(&fs_info->subvol_sem); 1913 1914 /* nothing to do */ 1915 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1916 goto out_drop_sem; 1917 1918 root_flags = btrfs_root_flags(&root->root_item); 1919 if (flags & BTRFS_SUBVOL_RDONLY) { 1920 btrfs_set_root_flags(&root->root_item, 1921 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1922 } else { 1923 /* 1924 * Block RO -> RW transition if this subvolume is involved in 1925 * send 1926 */ 1927 spin_lock(&root->root_item_lock); 1928 if (root->send_in_progress == 0) { 1929 btrfs_set_root_flags(&root->root_item, 1930 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1931 spin_unlock(&root->root_item_lock); 1932 } else { 1933 spin_unlock(&root->root_item_lock); 1934 btrfs_warn(fs_info, 1935 "Attempt to set subvolume %llu read-write during send", 1936 root->root_key.objectid); 1937 ret = -EPERM; 1938 goto out_drop_sem; 1939 } 1940 } 1941 1942 trans = btrfs_start_transaction(root, 1); 1943 if (IS_ERR(trans)) { 1944 ret = PTR_ERR(trans); 1945 goto out_reset; 1946 } 1947 1948 ret = btrfs_update_root(trans, fs_info->tree_root, 1949 &root->root_key, &root->root_item); 1950 if (ret < 0) { 1951 btrfs_end_transaction(trans); 1952 goto out_reset; 1953 } 1954 1955 ret = btrfs_commit_transaction(trans); 1956 1957 out_reset: 1958 if (ret) 1959 btrfs_set_root_flags(&root->root_item, root_flags); 1960 out_drop_sem: 1961 up_write(&fs_info->subvol_sem); 1962 out_drop_write: 1963 mnt_drop_write_file(file); 1964 out: 1965 return ret; 1966 } 1967 1968 static noinline int key_in_sk(struct btrfs_key *key, 1969 struct btrfs_ioctl_search_key *sk) 1970 { 1971 struct btrfs_key test; 1972 int ret; 1973 1974 test.objectid = sk->min_objectid; 1975 test.type = sk->min_type; 1976 test.offset = sk->min_offset; 1977 1978 ret = btrfs_comp_cpu_keys(key, &test); 1979 if (ret < 0) 1980 return 0; 1981 1982 test.objectid = sk->max_objectid; 1983 test.type = sk->max_type; 1984 test.offset = sk->max_offset; 1985 1986 ret = btrfs_comp_cpu_keys(key, &test); 1987 if (ret > 0) 1988 return 0; 1989 return 1; 1990 } 1991 1992 static noinline int copy_to_sk(struct btrfs_path *path, 1993 struct btrfs_key *key, 1994 struct btrfs_ioctl_search_key *sk, 1995 size_t *buf_size, 1996 char __user *ubuf, 1997 unsigned long *sk_offset, 1998 int *num_found) 1999 { 2000 u64 found_transid; 2001 struct extent_buffer *leaf; 2002 struct btrfs_ioctl_search_header sh; 2003 struct btrfs_key test; 2004 unsigned long item_off; 2005 unsigned long item_len; 2006 int nritems; 2007 int i; 2008 int slot; 2009 int ret = 0; 2010 2011 leaf = path->nodes[0]; 2012 slot = path->slots[0]; 2013 nritems = btrfs_header_nritems(leaf); 2014 2015 if (btrfs_header_generation(leaf) > sk->max_transid) { 2016 i = nritems; 2017 goto advance_key; 2018 } 2019 found_transid = btrfs_header_generation(leaf); 2020 2021 for (i = slot; i < nritems; i++) { 2022 item_off = btrfs_item_ptr_offset(leaf, i); 2023 item_len = btrfs_item_size_nr(leaf, i); 2024 2025 btrfs_item_key_to_cpu(leaf, key, i); 2026 if (!key_in_sk(key, sk)) 2027 continue; 2028 2029 if (sizeof(sh) + item_len > *buf_size) { 2030 if (*num_found) { 2031 ret = 1; 2032 goto out; 2033 } 2034 2035 /* 2036 * return one empty item back for v1, which does not 2037 * handle -EOVERFLOW 2038 */ 2039 2040 *buf_size = sizeof(sh) + item_len; 2041 item_len = 0; 2042 ret = -EOVERFLOW; 2043 } 2044 2045 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2046 ret = 1; 2047 goto out; 2048 } 2049 2050 sh.objectid = key->objectid; 2051 sh.offset = key->offset; 2052 sh.type = key->type; 2053 sh.len = item_len; 2054 sh.transid = found_transid; 2055 2056 /* copy search result header */ 2057 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2058 ret = -EFAULT; 2059 goto out; 2060 } 2061 2062 *sk_offset += sizeof(sh); 2063 2064 if (item_len) { 2065 char __user *up = ubuf + *sk_offset; 2066 /* copy the item */ 2067 if (read_extent_buffer_to_user(leaf, up, 2068 item_off, item_len)) { 2069 ret = -EFAULT; 2070 goto out; 2071 } 2072 2073 *sk_offset += item_len; 2074 } 2075 (*num_found)++; 2076 2077 if (ret) /* -EOVERFLOW from above */ 2078 goto out; 2079 2080 if (*num_found >= sk->nr_items) { 2081 ret = 1; 2082 goto out; 2083 } 2084 } 2085 advance_key: 2086 ret = 0; 2087 test.objectid = sk->max_objectid; 2088 test.type = sk->max_type; 2089 test.offset = sk->max_offset; 2090 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2091 ret = 1; 2092 else if (key->offset < (u64)-1) 2093 key->offset++; 2094 else if (key->type < (u8)-1) { 2095 key->offset = 0; 2096 key->type++; 2097 } else if (key->objectid < (u64)-1) { 2098 key->offset = 0; 2099 key->type = 0; 2100 key->objectid++; 2101 } else 2102 ret = 1; 2103 out: 2104 /* 2105 * 0: all items from this leaf copied, continue with next 2106 * 1: * more items can be copied, but unused buffer is too small 2107 * * all items were found 2108 * Either way, it will stops the loop which iterates to the next 2109 * leaf 2110 * -EOVERFLOW: item was to large for buffer 2111 * -EFAULT: could not copy extent buffer back to userspace 2112 */ 2113 return ret; 2114 } 2115 2116 static noinline int search_ioctl(struct inode *inode, 2117 struct btrfs_ioctl_search_key *sk, 2118 size_t *buf_size, 2119 char __user *ubuf) 2120 { 2121 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2122 struct btrfs_root *root; 2123 struct btrfs_key key; 2124 struct btrfs_path *path; 2125 int ret; 2126 int num_found = 0; 2127 unsigned long sk_offset = 0; 2128 2129 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2130 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2131 return -EOVERFLOW; 2132 } 2133 2134 path = btrfs_alloc_path(); 2135 if (!path) 2136 return -ENOMEM; 2137 2138 if (sk->tree_id == 0) { 2139 /* search the root of the inode that was passed */ 2140 root = btrfs_grab_root(BTRFS_I(inode)->root); 2141 } else { 2142 root = btrfs_get_fs_root(info, sk->tree_id, true); 2143 if (IS_ERR(root)) { 2144 btrfs_free_path(path); 2145 return PTR_ERR(root); 2146 } 2147 } 2148 2149 key.objectid = sk->min_objectid; 2150 key.type = sk->min_type; 2151 key.offset = sk->min_offset; 2152 2153 while (1) { 2154 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2155 if (ret != 0) { 2156 if (ret > 0) 2157 ret = 0; 2158 goto err; 2159 } 2160 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2161 &sk_offset, &num_found); 2162 btrfs_release_path(path); 2163 if (ret) 2164 break; 2165 2166 } 2167 if (ret > 0) 2168 ret = 0; 2169 err: 2170 sk->nr_items = num_found; 2171 btrfs_put_root(root); 2172 btrfs_free_path(path); 2173 return ret; 2174 } 2175 2176 static noinline int btrfs_ioctl_tree_search(struct file *file, 2177 void __user *argp) 2178 { 2179 struct btrfs_ioctl_search_args __user *uargs; 2180 struct btrfs_ioctl_search_key sk; 2181 struct inode *inode; 2182 int ret; 2183 size_t buf_size; 2184 2185 if (!capable(CAP_SYS_ADMIN)) 2186 return -EPERM; 2187 2188 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2189 2190 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2191 return -EFAULT; 2192 2193 buf_size = sizeof(uargs->buf); 2194 2195 inode = file_inode(file); 2196 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2197 2198 /* 2199 * In the origin implementation an overflow is handled by returning a 2200 * search header with a len of zero, so reset ret. 2201 */ 2202 if (ret == -EOVERFLOW) 2203 ret = 0; 2204 2205 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2206 ret = -EFAULT; 2207 return ret; 2208 } 2209 2210 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2211 void __user *argp) 2212 { 2213 struct btrfs_ioctl_search_args_v2 __user *uarg; 2214 struct btrfs_ioctl_search_args_v2 args; 2215 struct inode *inode; 2216 int ret; 2217 size_t buf_size; 2218 const size_t buf_limit = SZ_16M; 2219 2220 if (!capable(CAP_SYS_ADMIN)) 2221 return -EPERM; 2222 2223 /* copy search header and buffer size */ 2224 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2225 if (copy_from_user(&args, uarg, sizeof(args))) 2226 return -EFAULT; 2227 2228 buf_size = args.buf_size; 2229 2230 /* limit result size to 16MB */ 2231 if (buf_size > buf_limit) 2232 buf_size = buf_limit; 2233 2234 inode = file_inode(file); 2235 ret = search_ioctl(inode, &args.key, &buf_size, 2236 (char __user *)(&uarg->buf[0])); 2237 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2238 ret = -EFAULT; 2239 else if (ret == -EOVERFLOW && 2240 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2241 ret = -EFAULT; 2242 2243 return ret; 2244 } 2245 2246 /* 2247 * Search INODE_REFs to identify path name of 'dirid' directory 2248 * in a 'tree_id' tree. and sets path name to 'name'. 2249 */ 2250 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2251 u64 tree_id, u64 dirid, char *name) 2252 { 2253 struct btrfs_root *root; 2254 struct btrfs_key key; 2255 char *ptr; 2256 int ret = -1; 2257 int slot; 2258 int len; 2259 int total_len = 0; 2260 struct btrfs_inode_ref *iref; 2261 struct extent_buffer *l; 2262 struct btrfs_path *path; 2263 2264 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2265 name[0]='\0'; 2266 return 0; 2267 } 2268 2269 path = btrfs_alloc_path(); 2270 if (!path) 2271 return -ENOMEM; 2272 2273 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2274 2275 root = btrfs_get_fs_root(info, tree_id, true); 2276 if (IS_ERR(root)) { 2277 ret = PTR_ERR(root); 2278 root = NULL; 2279 goto out; 2280 } 2281 2282 key.objectid = dirid; 2283 key.type = BTRFS_INODE_REF_KEY; 2284 key.offset = (u64)-1; 2285 2286 while (1) { 2287 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2288 if (ret < 0) 2289 goto out; 2290 else if (ret > 0) { 2291 ret = btrfs_previous_item(root, path, dirid, 2292 BTRFS_INODE_REF_KEY); 2293 if (ret < 0) 2294 goto out; 2295 else if (ret > 0) { 2296 ret = -ENOENT; 2297 goto out; 2298 } 2299 } 2300 2301 l = path->nodes[0]; 2302 slot = path->slots[0]; 2303 btrfs_item_key_to_cpu(l, &key, slot); 2304 2305 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2306 len = btrfs_inode_ref_name_len(l, iref); 2307 ptr -= len + 1; 2308 total_len += len + 1; 2309 if (ptr < name) { 2310 ret = -ENAMETOOLONG; 2311 goto out; 2312 } 2313 2314 *(ptr + len) = '/'; 2315 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2316 2317 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2318 break; 2319 2320 btrfs_release_path(path); 2321 key.objectid = key.offset; 2322 key.offset = (u64)-1; 2323 dirid = key.objectid; 2324 } 2325 memmove(name, ptr, total_len); 2326 name[total_len] = '\0'; 2327 ret = 0; 2328 out: 2329 btrfs_put_root(root); 2330 btrfs_free_path(path); 2331 return ret; 2332 } 2333 2334 static int btrfs_search_path_in_tree_user(struct inode *inode, 2335 struct btrfs_ioctl_ino_lookup_user_args *args) 2336 { 2337 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2338 struct super_block *sb = inode->i_sb; 2339 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2340 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2341 u64 dirid = args->dirid; 2342 unsigned long item_off; 2343 unsigned long item_len; 2344 struct btrfs_inode_ref *iref; 2345 struct btrfs_root_ref *rref; 2346 struct btrfs_root *root = NULL; 2347 struct btrfs_path *path; 2348 struct btrfs_key key, key2; 2349 struct extent_buffer *leaf; 2350 struct inode *temp_inode; 2351 char *ptr; 2352 int slot; 2353 int len; 2354 int total_len = 0; 2355 int ret; 2356 2357 path = btrfs_alloc_path(); 2358 if (!path) 2359 return -ENOMEM; 2360 2361 /* 2362 * If the bottom subvolume does not exist directly under upper_limit, 2363 * construct the path in from the bottom up. 2364 */ 2365 if (dirid != upper_limit.objectid) { 2366 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2367 2368 root = btrfs_get_fs_root(fs_info, treeid, true); 2369 if (IS_ERR(root)) { 2370 ret = PTR_ERR(root); 2371 goto out; 2372 } 2373 2374 key.objectid = dirid; 2375 key.type = BTRFS_INODE_REF_KEY; 2376 key.offset = (u64)-1; 2377 while (1) { 2378 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2379 if (ret < 0) { 2380 goto out_put; 2381 } else if (ret > 0) { 2382 ret = btrfs_previous_item(root, path, dirid, 2383 BTRFS_INODE_REF_KEY); 2384 if (ret < 0) { 2385 goto out_put; 2386 } else if (ret > 0) { 2387 ret = -ENOENT; 2388 goto out_put; 2389 } 2390 } 2391 2392 leaf = path->nodes[0]; 2393 slot = path->slots[0]; 2394 btrfs_item_key_to_cpu(leaf, &key, slot); 2395 2396 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2397 len = btrfs_inode_ref_name_len(leaf, iref); 2398 ptr -= len + 1; 2399 total_len += len + 1; 2400 if (ptr < args->path) { 2401 ret = -ENAMETOOLONG; 2402 goto out_put; 2403 } 2404 2405 *(ptr + len) = '/'; 2406 read_extent_buffer(leaf, ptr, 2407 (unsigned long)(iref + 1), len); 2408 2409 /* Check the read+exec permission of this directory */ 2410 ret = btrfs_previous_item(root, path, dirid, 2411 BTRFS_INODE_ITEM_KEY); 2412 if (ret < 0) { 2413 goto out_put; 2414 } else if (ret > 0) { 2415 ret = -ENOENT; 2416 goto out_put; 2417 } 2418 2419 leaf = path->nodes[0]; 2420 slot = path->slots[0]; 2421 btrfs_item_key_to_cpu(leaf, &key2, slot); 2422 if (key2.objectid != dirid) { 2423 ret = -ENOENT; 2424 goto out_put; 2425 } 2426 2427 temp_inode = btrfs_iget(sb, key2.objectid, root); 2428 if (IS_ERR(temp_inode)) { 2429 ret = PTR_ERR(temp_inode); 2430 goto out_put; 2431 } 2432 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2433 iput(temp_inode); 2434 if (ret) { 2435 ret = -EACCES; 2436 goto out_put; 2437 } 2438 2439 if (key.offset == upper_limit.objectid) 2440 break; 2441 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2442 ret = -EACCES; 2443 goto out_put; 2444 } 2445 2446 btrfs_release_path(path); 2447 key.objectid = key.offset; 2448 key.offset = (u64)-1; 2449 dirid = key.objectid; 2450 } 2451 2452 memmove(args->path, ptr, total_len); 2453 args->path[total_len] = '\0'; 2454 btrfs_put_root(root); 2455 root = NULL; 2456 btrfs_release_path(path); 2457 } 2458 2459 /* Get the bottom subvolume's name from ROOT_REF */ 2460 key.objectid = treeid; 2461 key.type = BTRFS_ROOT_REF_KEY; 2462 key.offset = args->treeid; 2463 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2464 if (ret < 0) { 2465 goto out; 2466 } else if (ret > 0) { 2467 ret = -ENOENT; 2468 goto out; 2469 } 2470 2471 leaf = path->nodes[0]; 2472 slot = path->slots[0]; 2473 btrfs_item_key_to_cpu(leaf, &key, slot); 2474 2475 item_off = btrfs_item_ptr_offset(leaf, slot); 2476 item_len = btrfs_item_size_nr(leaf, slot); 2477 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2478 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2479 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2480 ret = -EINVAL; 2481 goto out; 2482 } 2483 2484 /* Copy subvolume's name */ 2485 item_off += sizeof(struct btrfs_root_ref); 2486 item_len -= sizeof(struct btrfs_root_ref); 2487 read_extent_buffer(leaf, args->name, item_off, item_len); 2488 args->name[item_len] = 0; 2489 2490 out_put: 2491 btrfs_put_root(root); 2492 out: 2493 btrfs_free_path(path); 2494 return ret; 2495 } 2496 2497 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2498 void __user *argp) 2499 { 2500 struct btrfs_ioctl_ino_lookup_args *args; 2501 struct inode *inode; 2502 int ret = 0; 2503 2504 args = memdup_user(argp, sizeof(*args)); 2505 if (IS_ERR(args)) 2506 return PTR_ERR(args); 2507 2508 inode = file_inode(file); 2509 2510 /* 2511 * Unprivileged query to obtain the containing subvolume root id. The 2512 * path is reset so it's consistent with btrfs_search_path_in_tree. 2513 */ 2514 if (args->treeid == 0) 2515 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2516 2517 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2518 args->name[0] = 0; 2519 goto out; 2520 } 2521 2522 if (!capable(CAP_SYS_ADMIN)) { 2523 ret = -EPERM; 2524 goto out; 2525 } 2526 2527 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2528 args->treeid, args->objectid, 2529 args->name); 2530 2531 out: 2532 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2533 ret = -EFAULT; 2534 2535 kfree(args); 2536 return ret; 2537 } 2538 2539 /* 2540 * Version of ino_lookup ioctl (unprivileged) 2541 * 2542 * The main differences from ino_lookup ioctl are: 2543 * 2544 * 1. Read + Exec permission will be checked using inode_permission() during 2545 * path construction. -EACCES will be returned in case of failure. 2546 * 2. Path construction will be stopped at the inode number which corresponds 2547 * to the fd with which this ioctl is called. If constructed path does not 2548 * exist under fd's inode, -EACCES will be returned. 2549 * 3. The name of bottom subvolume is also searched and filled. 2550 */ 2551 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2552 { 2553 struct btrfs_ioctl_ino_lookup_user_args *args; 2554 struct inode *inode; 2555 int ret; 2556 2557 args = memdup_user(argp, sizeof(*args)); 2558 if (IS_ERR(args)) 2559 return PTR_ERR(args); 2560 2561 inode = file_inode(file); 2562 2563 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2564 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2565 /* 2566 * The subvolume does not exist under fd with which this is 2567 * called 2568 */ 2569 kfree(args); 2570 return -EACCES; 2571 } 2572 2573 ret = btrfs_search_path_in_tree_user(inode, args); 2574 2575 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2576 ret = -EFAULT; 2577 2578 kfree(args); 2579 return ret; 2580 } 2581 2582 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2583 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2584 { 2585 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2586 struct btrfs_fs_info *fs_info; 2587 struct btrfs_root *root; 2588 struct btrfs_path *path; 2589 struct btrfs_key key; 2590 struct btrfs_root_item *root_item; 2591 struct btrfs_root_ref *rref; 2592 struct extent_buffer *leaf; 2593 unsigned long item_off; 2594 unsigned long item_len; 2595 struct inode *inode; 2596 int slot; 2597 int ret = 0; 2598 2599 path = btrfs_alloc_path(); 2600 if (!path) 2601 return -ENOMEM; 2602 2603 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2604 if (!subvol_info) { 2605 btrfs_free_path(path); 2606 return -ENOMEM; 2607 } 2608 2609 inode = file_inode(file); 2610 fs_info = BTRFS_I(inode)->root->fs_info; 2611 2612 /* Get root_item of inode's subvolume */ 2613 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2614 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2615 if (IS_ERR(root)) { 2616 ret = PTR_ERR(root); 2617 goto out_free; 2618 } 2619 root_item = &root->root_item; 2620 2621 subvol_info->treeid = key.objectid; 2622 2623 subvol_info->generation = btrfs_root_generation(root_item); 2624 subvol_info->flags = btrfs_root_flags(root_item); 2625 2626 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2627 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2628 BTRFS_UUID_SIZE); 2629 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2630 BTRFS_UUID_SIZE); 2631 2632 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2633 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2634 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2635 2636 subvol_info->otransid = btrfs_root_otransid(root_item); 2637 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2638 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2639 2640 subvol_info->stransid = btrfs_root_stransid(root_item); 2641 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2642 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2643 2644 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2645 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2646 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2647 2648 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2649 /* Search root tree for ROOT_BACKREF of this subvolume */ 2650 key.type = BTRFS_ROOT_BACKREF_KEY; 2651 key.offset = 0; 2652 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2653 if (ret < 0) { 2654 goto out; 2655 } else if (path->slots[0] >= 2656 btrfs_header_nritems(path->nodes[0])) { 2657 ret = btrfs_next_leaf(fs_info->tree_root, path); 2658 if (ret < 0) { 2659 goto out; 2660 } else if (ret > 0) { 2661 ret = -EUCLEAN; 2662 goto out; 2663 } 2664 } 2665 2666 leaf = path->nodes[0]; 2667 slot = path->slots[0]; 2668 btrfs_item_key_to_cpu(leaf, &key, slot); 2669 if (key.objectid == subvol_info->treeid && 2670 key.type == BTRFS_ROOT_BACKREF_KEY) { 2671 subvol_info->parent_id = key.offset; 2672 2673 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2674 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2675 2676 item_off = btrfs_item_ptr_offset(leaf, slot) 2677 + sizeof(struct btrfs_root_ref); 2678 item_len = btrfs_item_size_nr(leaf, slot) 2679 - sizeof(struct btrfs_root_ref); 2680 read_extent_buffer(leaf, subvol_info->name, 2681 item_off, item_len); 2682 } else { 2683 ret = -ENOENT; 2684 goto out; 2685 } 2686 } 2687 2688 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2689 ret = -EFAULT; 2690 2691 out: 2692 btrfs_put_root(root); 2693 out_free: 2694 btrfs_free_path(path); 2695 kfree(subvol_info); 2696 return ret; 2697 } 2698 2699 /* 2700 * Return ROOT_REF information of the subvolume containing this inode 2701 * except the subvolume name. 2702 */ 2703 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2704 { 2705 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2706 struct btrfs_root_ref *rref; 2707 struct btrfs_root *root; 2708 struct btrfs_path *path; 2709 struct btrfs_key key; 2710 struct extent_buffer *leaf; 2711 struct inode *inode; 2712 u64 objectid; 2713 int slot; 2714 int ret; 2715 u8 found; 2716 2717 path = btrfs_alloc_path(); 2718 if (!path) 2719 return -ENOMEM; 2720 2721 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2722 if (IS_ERR(rootrefs)) { 2723 btrfs_free_path(path); 2724 return PTR_ERR(rootrefs); 2725 } 2726 2727 inode = file_inode(file); 2728 root = BTRFS_I(inode)->root->fs_info->tree_root; 2729 objectid = BTRFS_I(inode)->root->root_key.objectid; 2730 2731 key.objectid = objectid; 2732 key.type = BTRFS_ROOT_REF_KEY; 2733 key.offset = rootrefs->min_treeid; 2734 found = 0; 2735 2736 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2737 if (ret < 0) { 2738 goto out; 2739 } else if (path->slots[0] >= 2740 btrfs_header_nritems(path->nodes[0])) { 2741 ret = btrfs_next_leaf(root, path); 2742 if (ret < 0) { 2743 goto out; 2744 } else if (ret > 0) { 2745 ret = -EUCLEAN; 2746 goto out; 2747 } 2748 } 2749 while (1) { 2750 leaf = path->nodes[0]; 2751 slot = path->slots[0]; 2752 2753 btrfs_item_key_to_cpu(leaf, &key, slot); 2754 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2755 ret = 0; 2756 goto out; 2757 } 2758 2759 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2760 ret = -EOVERFLOW; 2761 goto out; 2762 } 2763 2764 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2765 rootrefs->rootref[found].treeid = key.offset; 2766 rootrefs->rootref[found].dirid = 2767 btrfs_root_ref_dirid(leaf, rref); 2768 found++; 2769 2770 ret = btrfs_next_item(root, path); 2771 if (ret < 0) { 2772 goto out; 2773 } else if (ret > 0) { 2774 ret = -EUCLEAN; 2775 goto out; 2776 } 2777 } 2778 2779 out: 2780 if (!ret || ret == -EOVERFLOW) { 2781 rootrefs->num_items = found; 2782 /* update min_treeid for next search */ 2783 if (found) 2784 rootrefs->min_treeid = 2785 rootrefs->rootref[found - 1].treeid + 1; 2786 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2787 ret = -EFAULT; 2788 } 2789 2790 kfree(rootrefs); 2791 btrfs_free_path(path); 2792 2793 return ret; 2794 } 2795 2796 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2797 void __user *arg, 2798 bool destroy_v2) 2799 { 2800 struct dentry *parent = file->f_path.dentry; 2801 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2802 struct dentry *dentry; 2803 struct inode *dir = d_inode(parent); 2804 struct inode *inode; 2805 struct btrfs_root *root = BTRFS_I(dir)->root; 2806 struct btrfs_root *dest = NULL; 2807 struct btrfs_ioctl_vol_args *vol_args = NULL; 2808 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2809 char *subvol_name, *subvol_name_ptr = NULL; 2810 int subvol_namelen; 2811 int err = 0; 2812 bool destroy_parent = false; 2813 2814 if (destroy_v2) { 2815 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2816 if (IS_ERR(vol_args2)) 2817 return PTR_ERR(vol_args2); 2818 2819 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2820 err = -EOPNOTSUPP; 2821 goto out; 2822 } 2823 2824 /* 2825 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2826 * name, same as v1 currently does. 2827 */ 2828 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2829 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2830 subvol_name = vol_args2->name; 2831 2832 err = mnt_want_write_file(file); 2833 if (err) 2834 goto out; 2835 } else { 2836 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2837 err = -EINVAL; 2838 goto out; 2839 } 2840 2841 err = mnt_want_write_file(file); 2842 if (err) 2843 goto out; 2844 2845 dentry = btrfs_get_dentry(fs_info->sb, 2846 BTRFS_FIRST_FREE_OBJECTID, 2847 vol_args2->subvolid, 0, 0); 2848 if (IS_ERR(dentry)) { 2849 err = PTR_ERR(dentry); 2850 goto out_drop_write; 2851 } 2852 2853 /* 2854 * Change the default parent since the subvolume being 2855 * deleted can be outside of the current mount point. 2856 */ 2857 parent = btrfs_get_parent(dentry); 2858 2859 /* 2860 * At this point dentry->d_name can point to '/' if the 2861 * subvolume we want to destroy is outsite of the 2862 * current mount point, so we need to release the 2863 * current dentry and execute the lookup to return a new 2864 * one with ->d_name pointing to the 2865 * <mount point>/subvol_name. 2866 */ 2867 dput(dentry); 2868 if (IS_ERR(parent)) { 2869 err = PTR_ERR(parent); 2870 goto out_drop_write; 2871 } 2872 dir = d_inode(parent); 2873 2874 /* 2875 * If v2 was used with SPEC_BY_ID, a new parent was 2876 * allocated since the subvolume can be outside of the 2877 * current mount point. Later on we need to release this 2878 * new parent dentry. 2879 */ 2880 destroy_parent = true; 2881 2882 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2883 fs_info, vol_args2->subvolid); 2884 if (IS_ERR(subvol_name_ptr)) { 2885 err = PTR_ERR(subvol_name_ptr); 2886 goto free_parent; 2887 } 2888 /* subvol_name_ptr is already NULL termined */ 2889 subvol_name = (char *)kbasename(subvol_name_ptr); 2890 } 2891 } else { 2892 vol_args = memdup_user(arg, sizeof(*vol_args)); 2893 if (IS_ERR(vol_args)) 2894 return PTR_ERR(vol_args); 2895 2896 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2897 subvol_name = vol_args->name; 2898 2899 err = mnt_want_write_file(file); 2900 if (err) 2901 goto out; 2902 } 2903 2904 subvol_namelen = strlen(subvol_name); 2905 2906 if (strchr(subvol_name, '/') || 2907 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2908 err = -EINVAL; 2909 goto free_subvol_name; 2910 } 2911 2912 if (!S_ISDIR(dir->i_mode)) { 2913 err = -ENOTDIR; 2914 goto free_subvol_name; 2915 } 2916 2917 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2918 if (err == -EINTR) 2919 goto free_subvol_name; 2920 dentry = lookup_one_len(subvol_name, parent, subvol_namelen); 2921 if (IS_ERR(dentry)) { 2922 err = PTR_ERR(dentry); 2923 goto out_unlock_dir; 2924 } 2925 2926 if (d_really_is_negative(dentry)) { 2927 err = -ENOENT; 2928 goto out_dput; 2929 } 2930 2931 inode = d_inode(dentry); 2932 dest = BTRFS_I(inode)->root; 2933 if (!capable(CAP_SYS_ADMIN)) { 2934 /* 2935 * Regular user. Only allow this with a special mount 2936 * option, when the user has write+exec access to the 2937 * subvol root, and when rmdir(2) would have been 2938 * allowed. 2939 * 2940 * Note that this is _not_ check that the subvol is 2941 * empty or doesn't contain data that we wouldn't 2942 * otherwise be able to delete. 2943 * 2944 * Users who want to delete empty subvols should try 2945 * rmdir(2). 2946 */ 2947 err = -EPERM; 2948 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2949 goto out_dput; 2950 2951 /* 2952 * Do not allow deletion if the parent dir is the same 2953 * as the dir to be deleted. That means the ioctl 2954 * must be called on the dentry referencing the root 2955 * of the subvol, not a random directory contained 2956 * within it. 2957 */ 2958 err = -EINVAL; 2959 if (root == dest) 2960 goto out_dput; 2961 2962 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2963 if (err) 2964 goto out_dput; 2965 } 2966 2967 /* check if subvolume may be deleted by a user */ 2968 err = btrfs_may_delete(dir, dentry, 1); 2969 if (err) 2970 goto out_dput; 2971 2972 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2973 err = -EINVAL; 2974 goto out_dput; 2975 } 2976 2977 inode_lock(inode); 2978 err = btrfs_delete_subvolume(dir, dentry); 2979 inode_unlock(inode); 2980 if (!err) { 2981 fsnotify_rmdir(dir, dentry); 2982 d_delete(dentry); 2983 } 2984 2985 out_dput: 2986 dput(dentry); 2987 out_unlock_dir: 2988 inode_unlock(dir); 2989 free_subvol_name: 2990 kfree(subvol_name_ptr); 2991 free_parent: 2992 if (destroy_parent) 2993 dput(parent); 2994 out_drop_write: 2995 mnt_drop_write_file(file); 2996 out: 2997 kfree(vol_args2); 2998 kfree(vol_args); 2999 return err; 3000 } 3001 3002 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3003 { 3004 struct inode *inode = file_inode(file); 3005 struct btrfs_root *root = BTRFS_I(inode)->root; 3006 struct btrfs_ioctl_defrag_range_args *range; 3007 int ret; 3008 3009 ret = mnt_want_write_file(file); 3010 if (ret) 3011 return ret; 3012 3013 if (btrfs_root_readonly(root)) { 3014 ret = -EROFS; 3015 goto out; 3016 } 3017 3018 switch (inode->i_mode & S_IFMT) { 3019 case S_IFDIR: 3020 if (!capable(CAP_SYS_ADMIN)) { 3021 ret = -EPERM; 3022 goto out; 3023 } 3024 ret = btrfs_defrag_root(root); 3025 break; 3026 case S_IFREG: 3027 /* 3028 * Note that this does not check the file descriptor for write 3029 * access. This prevents defragmenting executables that are 3030 * running and allows defrag on files open in read-only mode. 3031 */ 3032 if (!capable(CAP_SYS_ADMIN) && 3033 inode_permission(inode, MAY_WRITE)) { 3034 ret = -EPERM; 3035 goto out; 3036 } 3037 3038 range = kzalloc(sizeof(*range), GFP_KERNEL); 3039 if (!range) { 3040 ret = -ENOMEM; 3041 goto out; 3042 } 3043 3044 if (argp) { 3045 if (copy_from_user(range, argp, 3046 sizeof(*range))) { 3047 ret = -EFAULT; 3048 kfree(range); 3049 goto out; 3050 } 3051 /* compression requires us to start the IO */ 3052 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3053 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 3054 range->extent_thresh = (u32)-1; 3055 } 3056 } else { 3057 /* the rest are all set to zero by kzalloc */ 3058 range->len = (u64)-1; 3059 } 3060 ret = btrfs_defrag_file(file_inode(file), file, 3061 range, BTRFS_OLDEST_GENERATION, 0); 3062 if (ret > 0) 3063 ret = 0; 3064 kfree(range); 3065 break; 3066 default: 3067 ret = -EINVAL; 3068 } 3069 out: 3070 mnt_drop_write_file(file); 3071 return ret; 3072 } 3073 3074 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3075 { 3076 struct btrfs_ioctl_vol_args *vol_args; 3077 int ret; 3078 3079 if (!capable(CAP_SYS_ADMIN)) 3080 return -EPERM; 3081 3082 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 3083 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3084 3085 vol_args = memdup_user(arg, sizeof(*vol_args)); 3086 if (IS_ERR(vol_args)) { 3087 ret = PTR_ERR(vol_args); 3088 goto out; 3089 } 3090 3091 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3092 ret = btrfs_init_new_device(fs_info, vol_args->name); 3093 3094 if (!ret) 3095 btrfs_info(fs_info, "disk added %s", vol_args->name); 3096 3097 kfree(vol_args); 3098 out: 3099 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3100 return ret; 3101 } 3102 3103 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3104 { 3105 struct inode *inode = file_inode(file); 3106 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3107 struct btrfs_ioctl_vol_args_v2 *vol_args; 3108 int ret; 3109 3110 if (!capable(CAP_SYS_ADMIN)) 3111 return -EPERM; 3112 3113 ret = mnt_want_write_file(file); 3114 if (ret) 3115 return ret; 3116 3117 vol_args = memdup_user(arg, sizeof(*vol_args)); 3118 if (IS_ERR(vol_args)) { 3119 ret = PTR_ERR(vol_args); 3120 goto err_drop; 3121 } 3122 3123 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3124 ret = -EOPNOTSUPP; 3125 goto out; 3126 } 3127 3128 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3129 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3130 goto out; 3131 } 3132 3133 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3134 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3135 } else { 3136 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3137 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3138 } 3139 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3140 3141 if (!ret) { 3142 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3143 btrfs_info(fs_info, "device deleted: id %llu", 3144 vol_args->devid); 3145 else 3146 btrfs_info(fs_info, "device deleted: %s", 3147 vol_args->name); 3148 } 3149 out: 3150 kfree(vol_args); 3151 err_drop: 3152 mnt_drop_write_file(file); 3153 return ret; 3154 } 3155 3156 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3157 { 3158 struct inode *inode = file_inode(file); 3159 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3160 struct btrfs_ioctl_vol_args *vol_args; 3161 int ret; 3162 3163 if (!capable(CAP_SYS_ADMIN)) 3164 return -EPERM; 3165 3166 ret = mnt_want_write_file(file); 3167 if (ret) 3168 return ret; 3169 3170 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3171 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3172 goto out_drop_write; 3173 } 3174 3175 vol_args = memdup_user(arg, sizeof(*vol_args)); 3176 if (IS_ERR(vol_args)) { 3177 ret = PTR_ERR(vol_args); 3178 goto out; 3179 } 3180 3181 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3182 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3183 3184 if (!ret) 3185 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3186 kfree(vol_args); 3187 out: 3188 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3189 out_drop_write: 3190 mnt_drop_write_file(file); 3191 3192 return ret; 3193 } 3194 3195 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3196 void __user *arg) 3197 { 3198 struct btrfs_ioctl_fs_info_args *fi_args; 3199 struct btrfs_device *device; 3200 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3201 int ret = 0; 3202 3203 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 3204 if (!fi_args) 3205 return -ENOMEM; 3206 3207 rcu_read_lock(); 3208 fi_args->num_devices = fs_devices->num_devices; 3209 3210 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3211 if (device->devid > fi_args->max_id) 3212 fi_args->max_id = device->devid; 3213 } 3214 rcu_read_unlock(); 3215 3216 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3217 fi_args->nodesize = fs_info->nodesize; 3218 fi_args->sectorsize = fs_info->sectorsize; 3219 fi_args->clone_alignment = fs_info->sectorsize; 3220 3221 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3222 ret = -EFAULT; 3223 3224 kfree(fi_args); 3225 return ret; 3226 } 3227 3228 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3229 void __user *arg) 3230 { 3231 struct btrfs_ioctl_dev_info_args *di_args; 3232 struct btrfs_device *dev; 3233 int ret = 0; 3234 char *s_uuid = NULL; 3235 3236 di_args = memdup_user(arg, sizeof(*di_args)); 3237 if (IS_ERR(di_args)) 3238 return PTR_ERR(di_args); 3239 3240 if (!btrfs_is_empty_uuid(di_args->uuid)) 3241 s_uuid = di_args->uuid; 3242 3243 rcu_read_lock(); 3244 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3245 NULL, true); 3246 3247 if (!dev) { 3248 ret = -ENODEV; 3249 goto out; 3250 } 3251 3252 di_args->devid = dev->devid; 3253 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3254 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3255 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3256 if (dev->name) { 3257 strncpy(di_args->path, rcu_str_deref(dev->name), 3258 sizeof(di_args->path) - 1); 3259 di_args->path[sizeof(di_args->path) - 1] = 0; 3260 } else { 3261 di_args->path[0] = '\0'; 3262 } 3263 3264 out: 3265 rcu_read_unlock(); 3266 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3267 ret = -EFAULT; 3268 3269 kfree(di_args); 3270 return ret; 3271 } 3272 3273 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3274 { 3275 struct inode *inode = file_inode(file); 3276 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3277 struct btrfs_root *root = BTRFS_I(inode)->root; 3278 struct btrfs_root *new_root; 3279 struct btrfs_dir_item *di; 3280 struct btrfs_trans_handle *trans; 3281 struct btrfs_path *path = NULL; 3282 struct btrfs_disk_key disk_key; 3283 u64 objectid = 0; 3284 u64 dir_id; 3285 int ret; 3286 3287 if (!capable(CAP_SYS_ADMIN)) 3288 return -EPERM; 3289 3290 ret = mnt_want_write_file(file); 3291 if (ret) 3292 return ret; 3293 3294 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3295 ret = -EFAULT; 3296 goto out; 3297 } 3298 3299 if (!objectid) 3300 objectid = BTRFS_FS_TREE_OBJECTID; 3301 3302 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3303 if (IS_ERR(new_root)) { 3304 ret = PTR_ERR(new_root); 3305 goto out; 3306 } 3307 if (!is_fstree(new_root->root_key.objectid)) { 3308 ret = -ENOENT; 3309 goto out_free; 3310 } 3311 3312 path = btrfs_alloc_path(); 3313 if (!path) { 3314 ret = -ENOMEM; 3315 goto out_free; 3316 } 3317 path->leave_spinning = 1; 3318 3319 trans = btrfs_start_transaction(root, 1); 3320 if (IS_ERR(trans)) { 3321 ret = PTR_ERR(trans); 3322 goto out_free; 3323 } 3324 3325 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3326 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3327 dir_id, "default", 7, 1); 3328 if (IS_ERR_OR_NULL(di)) { 3329 btrfs_release_path(path); 3330 btrfs_end_transaction(trans); 3331 btrfs_err(fs_info, 3332 "Umm, you don't have the default diritem, this isn't going to work"); 3333 ret = -ENOENT; 3334 goto out_free; 3335 } 3336 3337 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3338 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3339 btrfs_mark_buffer_dirty(path->nodes[0]); 3340 btrfs_release_path(path); 3341 3342 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3343 btrfs_end_transaction(trans); 3344 out_free: 3345 btrfs_put_root(new_root); 3346 btrfs_free_path(path); 3347 out: 3348 mnt_drop_write_file(file); 3349 return ret; 3350 } 3351 3352 static void get_block_group_info(struct list_head *groups_list, 3353 struct btrfs_ioctl_space_info *space) 3354 { 3355 struct btrfs_block_group *block_group; 3356 3357 space->total_bytes = 0; 3358 space->used_bytes = 0; 3359 space->flags = 0; 3360 list_for_each_entry(block_group, groups_list, list) { 3361 space->flags = block_group->flags; 3362 space->total_bytes += block_group->length; 3363 space->used_bytes += block_group->used; 3364 } 3365 } 3366 3367 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3368 void __user *arg) 3369 { 3370 struct btrfs_ioctl_space_args space_args; 3371 struct btrfs_ioctl_space_info space; 3372 struct btrfs_ioctl_space_info *dest; 3373 struct btrfs_ioctl_space_info *dest_orig; 3374 struct btrfs_ioctl_space_info __user *user_dest; 3375 struct btrfs_space_info *info; 3376 static const u64 types[] = { 3377 BTRFS_BLOCK_GROUP_DATA, 3378 BTRFS_BLOCK_GROUP_SYSTEM, 3379 BTRFS_BLOCK_GROUP_METADATA, 3380 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3381 }; 3382 int num_types = 4; 3383 int alloc_size; 3384 int ret = 0; 3385 u64 slot_count = 0; 3386 int i, c; 3387 3388 if (copy_from_user(&space_args, 3389 (struct btrfs_ioctl_space_args __user *)arg, 3390 sizeof(space_args))) 3391 return -EFAULT; 3392 3393 for (i = 0; i < num_types; i++) { 3394 struct btrfs_space_info *tmp; 3395 3396 info = NULL; 3397 rcu_read_lock(); 3398 list_for_each_entry_rcu(tmp, &fs_info->space_info, 3399 list) { 3400 if (tmp->flags == types[i]) { 3401 info = tmp; 3402 break; 3403 } 3404 } 3405 rcu_read_unlock(); 3406 3407 if (!info) 3408 continue; 3409 3410 down_read(&info->groups_sem); 3411 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3412 if (!list_empty(&info->block_groups[c])) 3413 slot_count++; 3414 } 3415 up_read(&info->groups_sem); 3416 } 3417 3418 /* 3419 * Global block reserve, exported as a space_info 3420 */ 3421 slot_count++; 3422 3423 /* space_slots == 0 means they are asking for a count */ 3424 if (space_args.space_slots == 0) { 3425 space_args.total_spaces = slot_count; 3426 goto out; 3427 } 3428 3429 slot_count = min_t(u64, space_args.space_slots, slot_count); 3430 3431 alloc_size = sizeof(*dest) * slot_count; 3432 3433 /* we generally have at most 6 or so space infos, one for each raid 3434 * level. So, a whole page should be more than enough for everyone 3435 */ 3436 if (alloc_size > PAGE_SIZE) 3437 return -ENOMEM; 3438 3439 space_args.total_spaces = 0; 3440 dest = kmalloc(alloc_size, GFP_KERNEL); 3441 if (!dest) 3442 return -ENOMEM; 3443 dest_orig = dest; 3444 3445 /* now we have a buffer to copy into */ 3446 for (i = 0; i < num_types; i++) { 3447 struct btrfs_space_info *tmp; 3448 3449 if (!slot_count) 3450 break; 3451 3452 info = NULL; 3453 rcu_read_lock(); 3454 list_for_each_entry_rcu(tmp, &fs_info->space_info, 3455 list) { 3456 if (tmp->flags == types[i]) { 3457 info = tmp; 3458 break; 3459 } 3460 } 3461 rcu_read_unlock(); 3462 3463 if (!info) 3464 continue; 3465 down_read(&info->groups_sem); 3466 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3467 if (!list_empty(&info->block_groups[c])) { 3468 get_block_group_info(&info->block_groups[c], 3469 &space); 3470 memcpy(dest, &space, sizeof(space)); 3471 dest++; 3472 space_args.total_spaces++; 3473 slot_count--; 3474 } 3475 if (!slot_count) 3476 break; 3477 } 3478 up_read(&info->groups_sem); 3479 } 3480 3481 /* 3482 * Add global block reserve 3483 */ 3484 if (slot_count) { 3485 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3486 3487 spin_lock(&block_rsv->lock); 3488 space.total_bytes = block_rsv->size; 3489 space.used_bytes = block_rsv->size - block_rsv->reserved; 3490 spin_unlock(&block_rsv->lock); 3491 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3492 memcpy(dest, &space, sizeof(space)); 3493 space_args.total_spaces++; 3494 } 3495 3496 user_dest = (struct btrfs_ioctl_space_info __user *) 3497 (arg + sizeof(struct btrfs_ioctl_space_args)); 3498 3499 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3500 ret = -EFAULT; 3501 3502 kfree(dest_orig); 3503 out: 3504 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3505 ret = -EFAULT; 3506 3507 return ret; 3508 } 3509 3510 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3511 void __user *argp) 3512 { 3513 struct btrfs_trans_handle *trans; 3514 u64 transid; 3515 int ret; 3516 3517 trans = btrfs_attach_transaction_barrier(root); 3518 if (IS_ERR(trans)) { 3519 if (PTR_ERR(trans) != -ENOENT) 3520 return PTR_ERR(trans); 3521 3522 /* No running transaction, don't bother */ 3523 transid = root->fs_info->last_trans_committed; 3524 goto out; 3525 } 3526 transid = trans->transid; 3527 ret = btrfs_commit_transaction_async(trans, 0); 3528 if (ret) { 3529 btrfs_end_transaction(trans); 3530 return ret; 3531 } 3532 out: 3533 if (argp) 3534 if (copy_to_user(argp, &transid, sizeof(transid))) 3535 return -EFAULT; 3536 return 0; 3537 } 3538 3539 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3540 void __user *argp) 3541 { 3542 u64 transid; 3543 3544 if (argp) { 3545 if (copy_from_user(&transid, argp, sizeof(transid))) 3546 return -EFAULT; 3547 } else { 3548 transid = 0; /* current trans */ 3549 } 3550 return btrfs_wait_for_commit(fs_info, transid); 3551 } 3552 3553 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3554 { 3555 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3556 struct btrfs_ioctl_scrub_args *sa; 3557 int ret; 3558 3559 if (!capable(CAP_SYS_ADMIN)) 3560 return -EPERM; 3561 3562 sa = memdup_user(arg, sizeof(*sa)); 3563 if (IS_ERR(sa)) 3564 return PTR_ERR(sa); 3565 3566 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3567 ret = mnt_want_write_file(file); 3568 if (ret) 3569 goto out; 3570 } 3571 3572 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3573 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3574 0); 3575 3576 /* 3577 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3578 * error. This is important as it allows user space to know how much 3579 * progress scrub has done. For example, if scrub is canceled we get 3580 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3581 * space. Later user space can inspect the progress from the structure 3582 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3583 * previously (btrfs-progs does this). 3584 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3585 * then return -EFAULT to signal the structure was not copied or it may 3586 * be corrupt and unreliable due to a partial copy. 3587 */ 3588 if (copy_to_user(arg, sa, sizeof(*sa))) 3589 ret = -EFAULT; 3590 3591 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3592 mnt_drop_write_file(file); 3593 out: 3594 kfree(sa); 3595 return ret; 3596 } 3597 3598 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3599 { 3600 if (!capable(CAP_SYS_ADMIN)) 3601 return -EPERM; 3602 3603 return btrfs_scrub_cancel(fs_info); 3604 } 3605 3606 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3607 void __user *arg) 3608 { 3609 struct btrfs_ioctl_scrub_args *sa; 3610 int ret; 3611 3612 if (!capable(CAP_SYS_ADMIN)) 3613 return -EPERM; 3614 3615 sa = memdup_user(arg, sizeof(*sa)); 3616 if (IS_ERR(sa)) 3617 return PTR_ERR(sa); 3618 3619 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3620 3621 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3622 ret = -EFAULT; 3623 3624 kfree(sa); 3625 return ret; 3626 } 3627 3628 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3629 void __user *arg) 3630 { 3631 struct btrfs_ioctl_get_dev_stats *sa; 3632 int ret; 3633 3634 sa = memdup_user(arg, sizeof(*sa)); 3635 if (IS_ERR(sa)) 3636 return PTR_ERR(sa); 3637 3638 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3639 kfree(sa); 3640 return -EPERM; 3641 } 3642 3643 ret = btrfs_get_dev_stats(fs_info, sa); 3644 3645 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3646 ret = -EFAULT; 3647 3648 kfree(sa); 3649 return ret; 3650 } 3651 3652 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3653 void __user *arg) 3654 { 3655 struct btrfs_ioctl_dev_replace_args *p; 3656 int ret; 3657 3658 if (!capable(CAP_SYS_ADMIN)) 3659 return -EPERM; 3660 3661 p = memdup_user(arg, sizeof(*p)); 3662 if (IS_ERR(p)) 3663 return PTR_ERR(p); 3664 3665 switch (p->cmd) { 3666 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3667 if (sb_rdonly(fs_info->sb)) { 3668 ret = -EROFS; 3669 goto out; 3670 } 3671 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3672 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3673 } else { 3674 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3675 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3676 } 3677 break; 3678 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3679 btrfs_dev_replace_status(fs_info, p); 3680 ret = 0; 3681 break; 3682 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3683 p->result = btrfs_dev_replace_cancel(fs_info); 3684 ret = 0; 3685 break; 3686 default: 3687 ret = -EINVAL; 3688 break; 3689 } 3690 3691 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3692 ret = -EFAULT; 3693 out: 3694 kfree(p); 3695 return ret; 3696 } 3697 3698 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3699 { 3700 int ret = 0; 3701 int i; 3702 u64 rel_ptr; 3703 int size; 3704 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3705 struct inode_fs_paths *ipath = NULL; 3706 struct btrfs_path *path; 3707 3708 if (!capable(CAP_DAC_READ_SEARCH)) 3709 return -EPERM; 3710 3711 path = btrfs_alloc_path(); 3712 if (!path) { 3713 ret = -ENOMEM; 3714 goto out; 3715 } 3716 3717 ipa = memdup_user(arg, sizeof(*ipa)); 3718 if (IS_ERR(ipa)) { 3719 ret = PTR_ERR(ipa); 3720 ipa = NULL; 3721 goto out; 3722 } 3723 3724 size = min_t(u32, ipa->size, 4096); 3725 ipath = init_ipath(size, root, path); 3726 if (IS_ERR(ipath)) { 3727 ret = PTR_ERR(ipath); 3728 ipath = NULL; 3729 goto out; 3730 } 3731 3732 ret = paths_from_inode(ipa->inum, ipath); 3733 if (ret < 0) 3734 goto out; 3735 3736 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3737 rel_ptr = ipath->fspath->val[i] - 3738 (u64)(unsigned long)ipath->fspath->val; 3739 ipath->fspath->val[i] = rel_ptr; 3740 } 3741 3742 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3743 ipath->fspath, size); 3744 if (ret) { 3745 ret = -EFAULT; 3746 goto out; 3747 } 3748 3749 out: 3750 btrfs_free_path(path); 3751 free_ipath(ipath); 3752 kfree(ipa); 3753 3754 return ret; 3755 } 3756 3757 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3758 { 3759 struct btrfs_data_container *inodes = ctx; 3760 const size_t c = 3 * sizeof(u64); 3761 3762 if (inodes->bytes_left >= c) { 3763 inodes->bytes_left -= c; 3764 inodes->val[inodes->elem_cnt] = inum; 3765 inodes->val[inodes->elem_cnt + 1] = offset; 3766 inodes->val[inodes->elem_cnt + 2] = root; 3767 inodes->elem_cnt += 3; 3768 } else { 3769 inodes->bytes_missing += c - inodes->bytes_left; 3770 inodes->bytes_left = 0; 3771 inodes->elem_missed += 3; 3772 } 3773 3774 return 0; 3775 } 3776 3777 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3778 void __user *arg, int version) 3779 { 3780 int ret = 0; 3781 int size; 3782 struct btrfs_ioctl_logical_ino_args *loi; 3783 struct btrfs_data_container *inodes = NULL; 3784 struct btrfs_path *path = NULL; 3785 bool ignore_offset; 3786 3787 if (!capable(CAP_SYS_ADMIN)) 3788 return -EPERM; 3789 3790 loi = memdup_user(arg, sizeof(*loi)); 3791 if (IS_ERR(loi)) 3792 return PTR_ERR(loi); 3793 3794 if (version == 1) { 3795 ignore_offset = false; 3796 size = min_t(u32, loi->size, SZ_64K); 3797 } else { 3798 /* All reserved bits must be 0 for now */ 3799 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3800 ret = -EINVAL; 3801 goto out_loi; 3802 } 3803 /* Only accept flags we have defined so far */ 3804 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3805 ret = -EINVAL; 3806 goto out_loi; 3807 } 3808 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3809 size = min_t(u32, loi->size, SZ_16M); 3810 } 3811 3812 path = btrfs_alloc_path(); 3813 if (!path) { 3814 ret = -ENOMEM; 3815 goto out; 3816 } 3817 3818 inodes = init_data_container(size); 3819 if (IS_ERR(inodes)) { 3820 ret = PTR_ERR(inodes); 3821 inodes = NULL; 3822 goto out; 3823 } 3824 3825 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3826 build_ino_list, inodes, ignore_offset); 3827 if (ret == -EINVAL) 3828 ret = -ENOENT; 3829 if (ret < 0) 3830 goto out; 3831 3832 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3833 size); 3834 if (ret) 3835 ret = -EFAULT; 3836 3837 out: 3838 btrfs_free_path(path); 3839 kvfree(inodes); 3840 out_loi: 3841 kfree(loi); 3842 3843 return ret; 3844 } 3845 3846 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3847 struct btrfs_ioctl_balance_args *bargs) 3848 { 3849 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3850 3851 bargs->flags = bctl->flags; 3852 3853 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3854 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3855 if (atomic_read(&fs_info->balance_pause_req)) 3856 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3857 if (atomic_read(&fs_info->balance_cancel_req)) 3858 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3859 3860 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3861 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3862 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3863 3864 spin_lock(&fs_info->balance_lock); 3865 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3866 spin_unlock(&fs_info->balance_lock); 3867 } 3868 3869 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3870 { 3871 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3872 struct btrfs_fs_info *fs_info = root->fs_info; 3873 struct btrfs_ioctl_balance_args *bargs; 3874 struct btrfs_balance_control *bctl; 3875 bool need_unlock; /* for mut. excl. ops lock */ 3876 int ret; 3877 3878 if (!capable(CAP_SYS_ADMIN)) 3879 return -EPERM; 3880 3881 ret = mnt_want_write_file(file); 3882 if (ret) 3883 return ret; 3884 3885 again: 3886 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3887 mutex_lock(&fs_info->balance_mutex); 3888 need_unlock = true; 3889 goto locked; 3890 } 3891 3892 /* 3893 * mut. excl. ops lock is locked. Three possibilities: 3894 * (1) some other op is running 3895 * (2) balance is running 3896 * (3) balance is paused -- special case (think resume) 3897 */ 3898 mutex_lock(&fs_info->balance_mutex); 3899 if (fs_info->balance_ctl) { 3900 /* this is either (2) or (3) */ 3901 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3902 mutex_unlock(&fs_info->balance_mutex); 3903 /* 3904 * Lock released to allow other waiters to continue, 3905 * we'll reexamine the status again. 3906 */ 3907 mutex_lock(&fs_info->balance_mutex); 3908 3909 if (fs_info->balance_ctl && 3910 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3911 /* this is (3) */ 3912 need_unlock = false; 3913 goto locked; 3914 } 3915 3916 mutex_unlock(&fs_info->balance_mutex); 3917 goto again; 3918 } else { 3919 /* this is (2) */ 3920 mutex_unlock(&fs_info->balance_mutex); 3921 ret = -EINPROGRESS; 3922 goto out; 3923 } 3924 } else { 3925 /* this is (1) */ 3926 mutex_unlock(&fs_info->balance_mutex); 3927 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3928 goto out; 3929 } 3930 3931 locked: 3932 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 3933 3934 if (arg) { 3935 bargs = memdup_user(arg, sizeof(*bargs)); 3936 if (IS_ERR(bargs)) { 3937 ret = PTR_ERR(bargs); 3938 goto out_unlock; 3939 } 3940 3941 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3942 if (!fs_info->balance_ctl) { 3943 ret = -ENOTCONN; 3944 goto out_bargs; 3945 } 3946 3947 bctl = fs_info->balance_ctl; 3948 spin_lock(&fs_info->balance_lock); 3949 bctl->flags |= BTRFS_BALANCE_RESUME; 3950 spin_unlock(&fs_info->balance_lock); 3951 3952 goto do_balance; 3953 } 3954 } else { 3955 bargs = NULL; 3956 } 3957 3958 if (fs_info->balance_ctl) { 3959 ret = -EINPROGRESS; 3960 goto out_bargs; 3961 } 3962 3963 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3964 if (!bctl) { 3965 ret = -ENOMEM; 3966 goto out_bargs; 3967 } 3968 3969 if (arg) { 3970 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3971 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3972 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3973 3974 bctl->flags = bargs->flags; 3975 } else { 3976 /* balance everything - no filters */ 3977 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 3978 } 3979 3980 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3981 ret = -EINVAL; 3982 goto out_bctl; 3983 } 3984 3985 do_balance: 3986 /* 3987 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to 3988 * btrfs_balance. bctl is freed in reset_balance_state, or, if 3989 * restriper was paused all the way until unmount, in free_fs_info. 3990 * The flag should be cleared after reset_balance_state. 3991 */ 3992 need_unlock = false; 3993 3994 ret = btrfs_balance(fs_info, bctl, bargs); 3995 bctl = NULL; 3996 3997 if ((ret == 0 || ret == -ECANCELED) && arg) { 3998 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3999 ret = -EFAULT; 4000 } 4001 4002 out_bctl: 4003 kfree(bctl); 4004 out_bargs: 4005 kfree(bargs); 4006 out_unlock: 4007 mutex_unlock(&fs_info->balance_mutex); 4008 if (need_unlock) 4009 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4010 out: 4011 mnt_drop_write_file(file); 4012 return ret; 4013 } 4014 4015 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4016 { 4017 if (!capable(CAP_SYS_ADMIN)) 4018 return -EPERM; 4019 4020 switch (cmd) { 4021 case BTRFS_BALANCE_CTL_PAUSE: 4022 return btrfs_pause_balance(fs_info); 4023 case BTRFS_BALANCE_CTL_CANCEL: 4024 return btrfs_cancel_balance(fs_info); 4025 } 4026 4027 return -EINVAL; 4028 } 4029 4030 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4031 void __user *arg) 4032 { 4033 struct btrfs_ioctl_balance_args *bargs; 4034 int ret = 0; 4035 4036 if (!capable(CAP_SYS_ADMIN)) 4037 return -EPERM; 4038 4039 mutex_lock(&fs_info->balance_mutex); 4040 if (!fs_info->balance_ctl) { 4041 ret = -ENOTCONN; 4042 goto out; 4043 } 4044 4045 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4046 if (!bargs) { 4047 ret = -ENOMEM; 4048 goto out; 4049 } 4050 4051 btrfs_update_ioctl_balance_args(fs_info, bargs); 4052 4053 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4054 ret = -EFAULT; 4055 4056 kfree(bargs); 4057 out: 4058 mutex_unlock(&fs_info->balance_mutex); 4059 return ret; 4060 } 4061 4062 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4063 { 4064 struct inode *inode = file_inode(file); 4065 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4066 struct btrfs_ioctl_quota_ctl_args *sa; 4067 int ret; 4068 4069 if (!capable(CAP_SYS_ADMIN)) 4070 return -EPERM; 4071 4072 ret = mnt_want_write_file(file); 4073 if (ret) 4074 return ret; 4075 4076 sa = memdup_user(arg, sizeof(*sa)); 4077 if (IS_ERR(sa)) { 4078 ret = PTR_ERR(sa); 4079 goto drop_write; 4080 } 4081 4082 down_write(&fs_info->subvol_sem); 4083 4084 switch (sa->cmd) { 4085 case BTRFS_QUOTA_CTL_ENABLE: 4086 ret = btrfs_quota_enable(fs_info); 4087 break; 4088 case BTRFS_QUOTA_CTL_DISABLE: 4089 ret = btrfs_quota_disable(fs_info); 4090 break; 4091 default: 4092 ret = -EINVAL; 4093 break; 4094 } 4095 4096 kfree(sa); 4097 up_write(&fs_info->subvol_sem); 4098 drop_write: 4099 mnt_drop_write_file(file); 4100 return ret; 4101 } 4102 4103 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4104 { 4105 struct inode *inode = file_inode(file); 4106 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4107 struct btrfs_root *root = BTRFS_I(inode)->root; 4108 struct btrfs_ioctl_qgroup_assign_args *sa; 4109 struct btrfs_trans_handle *trans; 4110 int ret; 4111 int err; 4112 4113 if (!capable(CAP_SYS_ADMIN)) 4114 return -EPERM; 4115 4116 ret = mnt_want_write_file(file); 4117 if (ret) 4118 return ret; 4119 4120 sa = memdup_user(arg, sizeof(*sa)); 4121 if (IS_ERR(sa)) { 4122 ret = PTR_ERR(sa); 4123 goto drop_write; 4124 } 4125 4126 trans = btrfs_join_transaction(root); 4127 if (IS_ERR(trans)) { 4128 ret = PTR_ERR(trans); 4129 goto out; 4130 } 4131 4132 if (sa->assign) { 4133 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4134 } else { 4135 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4136 } 4137 4138 /* update qgroup status and info */ 4139 err = btrfs_run_qgroups(trans); 4140 if (err < 0) 4141 btrfs_handle_fs_error(fs_info, err, 4142 "failed to update qgroup status and info"); 4143 err = btrfs_end_transaction(trans); 4144 if (err && !ret) 4145 ret = err; 4146 4147 out: 4148 kfree(sa); 4149 drop_write: 4150 mnt_drop_write_file(file); 4151 return ret; 4152 } 4153 4154 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4155 { 4156 struct inode *inode = file_inode(file); 4157 struct btrfs_root *root = BTRFS_I(inode)->root; 4158 struct btrfs_ioctl_qgroup_create_args *sa; 4159 struct btrfs_trans_handle *trans; 4160 int ret; 4161 int err; 4162 4163 if (!capable(CAP_SYS_ADMIN)) 4164 return -EPERM; 4165 4166 ret = mnt_want_write_file(file); 4167 if (ret) 4168 return ret; 4169 4170 sa = memdup_user(arg, sizeof(*sa)); 4171 if (IS_ERR(sa)) { 4172 ret = PTR_ERR(sa); 4173 goto drop_write; 4174 } 4175 4176 if (!sa->qgroupid) { 4177 ret = -EINVAL; 4178 goto out; 4179 } 4180 4181 trans = btrfs_join_transaction(root); 4182 if (IS_ERR(trans)) { 4183 ret = PTR_ERR(trans); 4184 goto out; 4185 } 4186 4187 if (sa->create) { 4188 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4189 } else { 4190 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4191 } 4192 4193 err = btrfs_end_transaction(trans); 4194 if (err && !ret) 4195 ret = err; 4196 4197 out: 4198 kfree(sa); 4199 drop_write: 4200 mnt_drop_write_file(file); 4201 return ret; 4202 } 4203 4204 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4205 { 4206 struct inode *inode = file_inode(file); 4207 struct btrfs_root *root = BTRFS_I(inode)->root; 4208 struct btrfs_ioctl_qgroup_limit_args *sa; 4209 struct btrfs_trans_handle *trans; 4210 int ret; 4211 int err; 4212 u64 qgroupid; 4213 4214 if (!capable(CAP_SYS_ADMIN)) 4215 return -EPERM; 4216 4217 ret = mnt_want_write_file(file); 4218 if (ret) 4219 return ret; 4220 4221 sa = memdup_user(arg, sizeof(*sa)); 4222 if (IS_ERR(sa)) { 4223 ret = PTR_ERR(sa); 4224 goto drop_write; 4225 } 4226 4227 trans = btrfs_join_transaction(root); 4228 if (IS_ERR(trans)) { 4229 ret = PTR_ERR(trans); 4230 goto out; 4231 } 4232 4233 qgroupid = sa->qgroupid; 4234 if (!qgroupid) { 4235 /* take the current subvol as qgroup */ 4236 qgroupid = root->root_key.objectid; 4237 } 4238 4239 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4240 4241 err = btrfs_end_transaction(trans); 4242 if (err && !ret) 4243 ret = err; 4244 4245 out: 4246 kfree(sa); 4247 drop_write: 4248 mnt_drop_write_file(file); 4249 return ret; 4250 } 4251 4252 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4253 { 4254 struct inode *inode = file_inode(file); 4255 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4256 struct btrfs_ioctl_quota_rescan_args *qsa; 4257 int ret; 4258 4259 if (!capable(CAP_SYS_ADMIN)) 4260 return -EPERM; 4261 4262 ret = mnt_want_write_file(file); 4263 if (ret) 4264 return ret; 4265 4266 qsa = memdup_user(arg, sizeof(*qsa)); 4267 if (IS_ERR(qsa)) { 4268 ret = PTR_ERR(qsa); 4269 goto drop_write; 4270 } 4271 4272 if (qsa->flags) { 4273 ret = -EINVAL; 4274 goto out; 4275 } 4276 4277 ret = btrfs_qgroup_rescan(fs_info); 4278 4279 out: 4280 kfree(qsa); 4281 drop_write: 4282 mnt_drop_write_file(file); 4283 return ret; 4284 } 4285 4286 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4287 void __user *arg) 4288 { 4289 struct btrfs_ioctl_quota_rescan_args *qsa; 4290 int ret = 0; 4291 4292 if (!capable(CAP_SYS_ADMIN)) 4293 return -EPERM; 4294 4295 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4296 if (!qsa) 4297 return -ENOMEM; 4298 4299 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4300 qsa->flags = 1; 4301 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4302 } 4303 4304 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4305 ret = -EFAULT; 4306 4307 kfree(qsa); 4308 return ret; 4309 } 4310 4311 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4312 void __user *arg) 4313 { 4314 if (!capable(CAP_SYS_ADMIN)) 4315 return -EPERM; 4316 4317 return btrfs_qgroup_wait_for_completion(fs_info, true); 4318 } 4319 4320 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4321 struct btrfs_ioctl_received_subvol_args *sa) 4322 { 4323 struct inode *inode = file_inode(file); 4324 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4325 struct btrfs_root *root = BTRFS_I(inode)->root; 4326 struct btrfs_root_item *root_item = &root->root_item; 4327 struct btrfs_trans_handle *trans; 4328 struct timespec64 ct = current_time(inode); 4329 int ret = 0; 4330 int received_uuid_changed; 4331 4332 if (!inode_owner_or_capable(inode)) 4333 return -EPERM; 4334 4335 ret = mnt_want_write_file(file); 4336 if (ret < 0) 4337 return ret; 4338 4339 down_write(&fs_info->subvol_sem); 4340 4341 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4342 ret = -EINVAL; 4343 goto out; 4344 } 4345 4346 if (btrfs_root_readonly(root)) { 4347 ret = -EROFS; 4348 goto out; 4349 } 4350 4351 /* 4352 * 1 - root item 4353 * 2 - uuid items (received uuid + subvol uuid) 4354 */ 4355 trans = btrfs_start_transaction(root, 3); 4356 if (IS_ERR(trans)) { 4357 ret = PTR_ERR(trans); 4358 trans = NULL; 4359 goto out; 4360 } 4361 4362 sa->rtransid = trans->transid; 4363 sa->rtime.sec = ct.tv_sec; 4364 sa->rtime.nsec = ct.tv_nsec; 4365 4366 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4367 BTRFS_UUID_SIZE); 4368 if (received_uuid_changed && 4369 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4370 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4371 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4372 root->root_key.objectid); 4373 if (ret && ret != -ENOENT) { 4374 btrfs_abort_transaction(trans, ret); 4375 btrfs_end_transaction(trans); 4376 goto out; 4377 } 4378 } 4379 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4380 btrfs_set_root_stransid(root_item, sa->stransid); 4381 btrfs_set_root_rtransid(root_item, sa->rtransid); 4382 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4383 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4384 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4385 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4386 4387 ret = btrfs_update_root(trans, fs_info->tree_root, 4388 &root->root_key, &root->root_item); 4389 if (ret < 0) { 4390 btrfs_end_transaction(trans); 4391 goto out; 4392 } 4393 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4394 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4395 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4396 root->root_key.objectid); 4397 if (ret < 0 && ret != -EEXIST) { 4398 btrfs_abort_transaction(trans, ret); 4399 btrfs_end_transaction(trans); 4400 goto out; 4401 } 4402 } 4403 ret = btrfs_commit_transaction(trans); 4404 out: 4405 up_write(&fs_info->subvol_sem); 4406 mnt_drop_write_file(file); 4407 return ret; 4408 } 4409 4410 #ifdef CONFIG_64BIT 4411 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4412 void __user *arg) 4413 { 4414 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4415 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4416 int ret = 0; 4417 4418 args32 = memdup_user(arg, sizeof(*args32)); 4419 if (IS_ERR(args32)) 4420 return PTR_ERR(args32); 4421 4422 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4423 if (!args64) { 4424 ret = -ENOMEM; 4425 goto out; 4426 } 4427 4428 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4429 args64->stransid = args32->stransid; 4430 args64->rtransid = args32->rtransid; 4431 args64->stime.sec = args32->stime.sec; 4432 args64->stime.nsec = args32->stime.nsec; 4433 args64->rtime.sec = args32->rtime.sec; 4434 args64->rtime.nsec = args32->rtime.nsec; 4435 args64->flags = args32->flags; 4436 4437 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4438 if (ret) 4439 goto out; 4440 4441 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4442 args32->stransid = args64->stransid; 4443 args32->rtransid = args64->rtransid; 4444 args32->stime.sec = args64->stime.sec; 4445 args32->stime.nsec = args64->stime.nsec; 4446 args32->rtime.sec = args64->rtime.sec; 4447 args32->rtime.nsec = args64->rtime.nsec; 4448 args32->flags = args64->flags; 4449 4450 ret = copy_to_user(arg, args32, sizeof(*args32)); 4451 if (ret) 4452 ret = -EFAULT; 4453 4454 out: 4455 kfree(args32); 4456 kfree(args64); 4457 return ret; 4458 } 4459 #endif 4460 4461 static long btrfs_ioctl_set_received_subvol(struct file *file, 4462 void __user *arg) 4463 { 4464 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4465 int ret = 0; 4466 4467 sa = memdup_user(arg, sizeof(*sa)); 4468 if (IS_ERR(sa)) 4469 return PTR_ERR(sa); 4470 4471 ret = _btrfs_ioctl_set_received_subvol(file, sa); 4472 4473 if (ret) 4474 goto out; 4475 4476 ret = copy_to_user(arg, sa, sizeof(*sa)); 4477 if (ret) 4478 ret = -EFAULT; 4479 4480 out: 4481 kfree(sa); 4482 return ret; 4483 } 4484 4485 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4486 void __user *arg) 4487 { 4488 size_t len; 4489 int ret; 4490 char label[BTRFS_LABEL_SIZE]; 4491 4492 spin_lock(&fs_info->super_lock); 4493 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4494 spin_unlock(&fs_info->super_lock); 4495 4496 len = strnlen(label, BTRFS_LABEL_SIZE); 4497 4498 if (len == BTRFS_LABEL_SIZE) { 4499 btrfs_warn(fs_info, 4500 "label is too long, return the first %zu bytes", 4501 --len); 4502 } 4503 4504 ret = copy_to_user(arg, label, len); 4505 4506 return ret ? -EFAULT : 0; 4507 } 4508 4509 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4510 { 4511 struct inode *inode = file_inode(file); 4512 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4513 struct btrfs_root *root = BTRFS_I(inode)->root; 4514 struct btrfs_super_block *super_block = fs_info->super_copy; 4515 struct btrfs_trans_handle *trans; 4516 char label[BTRFS_LABEL_SIZE]; 4517 int ret; 4518 4519 if (!capable(CAP_SYS_ADMIN)) 4520 return -EPERM; 4521 4522 if (copy_from_user(label, arg, sizeof(label))) 4523 return -EFAULT; 4524 4525 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4526 btrfs_err(fs_info, 4527 "unable to set label with more than %d bytes", 4528 BTRFS_LABEL_SIZE - 1); 4529 return -EINVAL; 4530 } 4531 4532 ret = mnt_want_write_file(file); 4533 if (ret) 4534 return ret; 4535 4536 trans = btrfs_start_transaction(root, 0); 4537 if (IS_ERR(trans)) { 4538 ret = PTR_ERR(trans); 4539 goto out_unlock; 4540 } 4541 4542 spin_lock(&fs_info->super_lock); 4543 strcpy(super_block->label, label); 4544 spin_unlock(&fs_info->super_lock); 4545 ret = btrfs_commit_transaction(trans); 4546 4547 out_unlock: 4548 mnt_drop_write_file(file); 4549 return ret; 4550 } 4551 4552 #define INIT_FEATURE_FLAGS(suffix) \ 4553 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4554 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4555 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4556 4557 int btrfs_ioctl_get_supported_features(void __user *arg) 4558 { 4559 static const struct btrfs_ioctl_feature_flags features[3] = { 4560 INIT_FEATURE_FLAGS(SUPP), 4561 INIT_FEATURE_FLAGS(SAFE_SET), 4562 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4563 }; 4564 4565 if (copy_to_user(arg, &features, sizeof(features))) 4566 return -EFAULT; 4567 4568 return 0; 4569 } 4570 4571 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4572 void __user *arg) 4573 { 4574 struct btrfs_super_block *super_block = fs_info->super_copy; 4575 struct btrfs_ioctl_feature_flags features; 4576 4577 features.compat_flags = btrfs_super_compat_flags(super_block); 4578 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4579 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4580 4581 if (copy_to_user(arg, &features, sizeof(features))) 4582 return -EFAULT; 4583 4584 return 0; 4585 } 4586 4587 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4588 enum btrfs_feature_set set, 4589 u64 change_mask, u64 flags, u64 supported_flags, 4590 u64 safe_set, u64 safe_clear) 4591 { 4592 const char *type = btrfs_feature_set_name(set); 4593 char *names; 4594 u64 disallowed, unsupported; 4595 u64 set_mask = flags & change_mask; 4596 u64 clear_mask = ~flags & change_mask; 4597 4598 unsupported = set_mask & ~supported_flags; 4599 if (unsupported) { 4600 names = btrfs_printable_features(set, unsupported); 4601 if (names) { 4602 btrfs_warn(fs_info, 4603 "this kernel does not support the %s feature bit%s", 4604 names, strchr(names, ',') ? "s" : ""); 4605 kfree(names); 4606 } else 4607 btrfs_warn(fs_info, 4608 "this kernel does not support %s bits 0x%llx", 4609 type, unsupported); 4610 return -EOPNOTSUPP; 4611 } 4612 4613 disallowed = set_mask & ~safe_set; 4614 if (disallowed) { 4615 names = btrfs_printable_features(set, disallowed); 4616 if (names) { 4617 btrfs_warn(fs_info, 4618 "can't set the %s feature bit%s while mounted", 4619 names, strchr(names, ',') ? "s" : ""); 4620 kfree(names); 4621 } else 4622 btrfs_warn(fs_info, 4623 "can't set %s bits 0x%llx while mounted", 4624 type, disallowed); 4625 return -EPERM; 4626 } 4627 4628 disallowed = clear_mask & ~safe_clear; 4629 if (disallowed) { 4630 names = btrfs_printable_features(set, disallowed); 4631 if (names) { 4632 btrfs_warn(fs_info, 4633 "can't clear the %s feature bit%s while mounted", 4634 names, strchr(names, ',') ? "s" : ""); 4635 kfree(names); 4636 } else 4637 btrfs_warn(fs_info, 4638 "can't clear %s bits 0x%llx while mounted", 4639 type, disallowed); 4640 return -EPERM; 4641 } 4642 4643 return 0; 4644 } 4645 4646 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4647 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4648 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4649 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4650 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4651 4652 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4653 { 4654 struct inode *inode = file_inode(file); 4655 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4656 struct btrfs_root *root = BTRFS_I(inode)->root; 4657 struct btrfs_super_block *super_block = fs_info->super_copy; 4658 struct btrfs_ioctl_feature_flags flags[2]; 4659 struct btrfs_trans_handle *trans; 4660 u64 newflags; 4661 int ret; 4662 4663 if (!capable(CAP_SYS_ADMIN)) 4664 return -EPERM; 4665 4666 if (copy_from_user(flags, arg, sizeof(flags))) 4667 return -EFAULT; 4668 4669 /* Nothing to do */ 4670 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4671 !flags[0].incompat_flags) 4672 return 0; 4673 4674 ret = check_feature(fs_info, flags[0].compat_flags, 4675 flags[1].compat_flags, COMPAT); 4676 if (ret) 4677 return ret; 4678 4679 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4680 flags[1].compat_ro_flags, COMPAT_RO); 4681 if (ret) 4682 return ret; 4683 4684 ret = check_feature(fs_info, flags[0].incompat_flags, 4685 flags[1].incompat_flags, INCOMPAT); 4686 if (ret) 4687 return ret; 4688 4689 ret = mnt_want_write_file(file); 4690 if (ret) 4691 return ret; 4692 4693 trans = btrfs_start_transaction(root, 0); 4694 if (IS_ERR(trans)) { 4695 ret = PTR_ERR(trans); 4696 goto out_drop_write; 4697 } 4698 4699 spin_lock(&fs_info->super_lock); 4700 newflags = btrfs_super_compat_flags(super_block); 4701 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4702 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4703 btrfs_set_super_compat_flags(super_block, newflags); 4704 4705 newflags = btrfs_super_compat_ro_flags(super_block); 4706 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4707 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4708 btrfs_set_super_compat_ro_flags(super_block, newflags); 4709 4710 newflags = btrfs_super_incompat_flags(super_block); 4711 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4712 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4713 btrfs_set_super_incompat_flags(super_block, newflags); 4714 spin_unlock(&fs_info->super_lock); 4715 4716 ret = btrfs_commit_transaction(trans); 4717 out_drop_write: 4718 mnt_drop_write_file(file); 4719 4720 return ret; 4721 } 4722 4723 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4724 { 4725 struct btrfs_ioctl_send_args *arg; 4726 int ret; 4727 4728 if (compat) { 4729 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4730 struct btrfs_ioctl_send_args_32 args32; 4731 4732 ret = copy_from_user(&args32, argp, sizeof(args32)); 4733 if (ret) 4734 return -EFAULT; 4735 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4736 if (!arg) 4737 return -ENOMEM; 4738 arg->send_fd = args32.send_fd; 4739 arg->clone_sources_count = args32.clone_sources_count; 4740 arg->clone_sources = compat_ptr(args32.clone_sources); 4741 arg->parent_root = args32.parent_root; 4742 arg->flags = args32.flags; 4743 memcpy(arg->reserved, args32.reserved, 4744 sizeof(args32.reserved)); 4745 #else 4746 return -ENOTTY; 4747 #endif 4748 } else { 4749 arg = memdup_user(argp, sizeof(*arg)); 4750 if (IS_ERR(arg)) 4751 return PTR_ERR(arg); 4752 } 4753 ret = btrfs_ioctl_send(file, arg); 4754 kfree(arg); 4755 return ret; 4756 } 4757 4758 long btrfs_ioctl(struct file *file, unsigned int 4759 cmd, unsigned long arg) 4760 { 4761 struct inode *inode = file_inode(file); 4762 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4763 struct btrfs_root *root = BTRFS_I(inode)->root; 4764 void __user *argp = (void __user *)arg; 4765 4766 switch (cmd) { 4767 case FS_IOC_GETFLAGS: 4768 return btrfs_ioctl_getflags(file, argp); 4769 case FS_IOC_SETFLAGS: 4770 return btrfs_ioctl_setflags(file, argp); 4771 case FS_IOC_GETVERSION: 4772 return btrfs_ioctl_getversion(file, argp); 4773 case FS_IOC_GETFSLABEL: 4774 return btrfs_ioctl_get_fslabel(fs_info, argp); 4775 case FS_IOC_SETFSLABEL: 4776 return btrfs_ioctl_set_fslabel(file, argp); 4777 case FITRIM: 4778 return btrfs_ioctl_fitrim(fs_info, argp); 4779 case BTRFS_IOC_SNAP_CREATE: 4780 return btrfs_ioctl_snap_create(file, argp, 0); 4781 case BTRFS_IOC_SNAP_CREATE_V2: 4782 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4783 case BTRFS_IOC_SUBVOL_CREATE: 4784 return btrfs_ioctl_snap_create(file, argp, 1); 4785 case BTRFS_IOC_SUBVOL_CREATE_V2: 4786 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4787 case BTRFS_IOC_SNAP_DESTROY: 4788 return btrfs_ioctl_snap_destroy(file, argp, false); 4789 case BTRFS_IOC_SNAP_DESTROY_V2: 4790 return btrfs_ioctl_snap_destroy(file, argp, true); 4791 case BTRFS_IOC_SUBVOL_GETFLAGS: 4792 return btrfs_ioctl_subvol_getflags(file, argp); 4793 case BTRFS_IOC_SUBVOL_SETFLAGS: 4794 return btrfs_ioctl_subvol_setflags(file, argp); 4795 case BTRFS_IOC_DEFAULT_SUBVOL: 4796 return btrfs_ioctl_default_subvol(file, argp); 4797 case BTRFS_IOC_DEFRAG: 4798 return btrfs_ioctl_defrag(file, NULL); 4799 case BTRFS_IOC_DEFRAG_RANGE: 4800 return btrfs_ioctl_defrag(file, argp); 4801 case BTRFS_IOC_RESIZE: 4802 return btrfs_ioctl_resize(file, argp); 4803 case BTRFS_IOC_ADD_DEV: 4804 return btrfs_ioctl_add_dev(fs_info, argp); 4805 case BTRFS_IOC_RM_DEV: 4806 return btrfs_ioctl_rm_dev(file, argp); 4807 case BTRFS_IOC_RM_DEV_V2: 4808 return btrfs_ioctl_rm_dev_v2(file, argp); 4809 case BTRFS_IOC_FS_INFO: 4810 return btrfs_ioctl_fs_info(fs_info, argp); 4811 case BTRFS_IOC_DEV_INFO: 4812 return btrfs_ioctl_dev_info(fs_info, argp); 4813 case BTRFS_IOC_BALANCE: 4814 return btrfs_ioctl_balance(file, NULL); 4815 case BTRFS_IOC_TREE_SEARCH: 4816 return btrfs_ioctl_tree_search(file, argp); 4817 case BTRFS_IOC_TREE_SEARCH_V2: 4818 return btrfs_ioctl_tree_search_v2(file, argp); 4819 case BTRFS_IOC_INO_LOOKUP: 4820 return btrfs_ioctl_ino_lookup(file, argp); 4821 case BTRFS_IOC_INO_PATHS: 4822 return btrfs_ioctl_ino_to_path(root, argp); 4823 case BTRFS_IOC_LOGICAL_INO: 4824 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4825 case BTRFS_IOC_LOGICAL_INO_V2: 4826 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4827 case BTRFS_IOC_SPACE_INFO: 4828 return btrfs_ioctl_space_info(fs_info, argp); 4829 case BTRFS_IOC_SYNC: { 4830 int ret; 4831 4832 ret = btrfs_start_delalloc_roots(fs_info, -1); 4833 if (ret) 4834 return ret; 4835 ret = btrfs_sync_fs(inode->i_sb, 1); 4836 /* 4837 * The transaction thread may want to do more work, 4838 * namely it pokes the cleaner kthread that will start 4839 * processing uncleaned subvols. 4840 */ 4841 wake_up_process(fs_info->transaction_kthread); 4842 return ret; 4843 } 4844 case BTRFS_IOC_START_SYNC: 4845 return btrfs_ioctl_start_sync(root, argp); 4846 case BTRFS_IOC_WAIT_SYNC: 4847 return btrfs_ioctl_wait_sync(fs_info, argp); 4848 case BTRFS_IOC_SCRUB: 4849 return btrfs_ioctl_scrub(file, argp); 4850 case BTRFS_IOC_SCRUB_CANCEL: 4851 return btrfs_ioctl_scrub_cancel(fs_info); 4852 case BTRFS_IOC_SCRUB_PROGRESS: 4853 return btrfs_ioctl_scrub_progress(fs_info, argp); 4854 case BTRFS_IOC_BALANCE_V2: 4855 return btrfs_ioctl_balance(file, argp); 4856 case BTRFS_IOC_BALANCE_CTL: 4857 return btrfs_ioctl_balance_ctl(fs_info, arg); 4858 case BTRFS_IOC_BALANCE_PROGRESS: 4859 return btrfs_ioctl_balance_progress(fs_info, argp); 4860 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4861 return btrfs_ioctl_set_received_subvol(file, argp); 4862 #ifdef CONFIG_64BIT 4863 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4864 return btrfs_ioctl_set_received_subvol_32(file, argp); 4865 #endif 4866 case BTRFS_IOC_SEND: 4867 return _btrfs_ioctl_send(file, argp, false); 4868 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4869 case BTRFS_IOC_SEND_32: 4870 return _btrfs_ioctl_send(file, argp, true); 4871 #endif 4872 case BTRFS_IOC_GET_DEV_STATS: 4873 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4874 case BTRFS_IOC_QUOTA_CTL: 4875 return btrfs_ioctl_quota_ctl(file, argp); 4876 case BTRFS_IOC_QGROUP_ASSIGN: 4877 return btrfs_ioctl_qgroup_assign(file, argp); 4878 case BTRFS_IOC_QGROUP_CREATE: 4879 return btrfs_ioctl_qgroup_create(file, argp); 4880 case BTRFS_IOC_QGROUP_LIMIT: 4881 return btrfs_ioctl_qgroup_limit(file, argp); 4882 case BTRFS_IOC_QUOTA_RESCAN: 4883 return btrfs_ioctl_quota_rescan(file, argp); 4884 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4885 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4886 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4887 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4888 case BTRFS_IOC_DEV_REPLACE: 4889 return btrfs_ioctl_dev_replace(fs_info, argp); 4890 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4891 return btrfs_ioctl_get_supported_features(argp); 4892 case BTRFS_IOC_GET_FEATURES: 4893 return btrfs_ioctl_get_features(fs_info, argp); 4894 case BTRFS_IOC_SET_FEATURES: 4895 return btrfs_ioctl_set_features(file, argp); 4896 case FS_IOC_FSGETXATTR: 4897 return btrfs_ioctl_fsgetxattr(file, argp); 4898 case FS_IOC_FSSETXATTR: 4899 return btrfs_ioctl_fssetxattr(file, argp); 4900 case BTRFS_IOC_GET_SUBVOL_INFO: 4901 return btrfs_ioctl_get_subvol_info(file, argp); 4902 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4903 return btrfs_ioctl_get_subvol_rootref(file, argp); 4904 case BTRFS_IOC_INO_LOOKUP_USER: 4905 return btrfs_ioctl_ino_lookup_user(file, argp); 4906 } 4907 4908 return -ENOTTY; 4909 } 4910 4911 #ifdef CONFIG_COMPAT 4912 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4913 { 4914 /* 4915 * These all access 32-bit values anyway so no further 4916 * handling is necessary. 4917 */ 4918 switch (cmd) { 4919 case FS_IOC32_GETFLAGS: 4920 cmd = FS_IOC_GETFLAGS; 4921 break; 4922 case FS_IOC32_SETFLAGS: 4923 cmd = FS_IOC_SETFLAGS; 4924 break; 4925 case FS_IOC32_GETVERSION: 4926 cmd = FS_IOC_GETVERSION; 4927 break; 4928 } 4929 4930 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4931 } 4932 #endif 4933