xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 5ed132db5ad4f58156ae9d28219396b6f764a9cb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "export.h"
32 #include "transaction.h"
33 #include "btrfs_inode.h"
34 #include "print-tree.h"
35 #include "volumes.h"
36 #include "locking.h"
37 #include "inode-map.h"
38 #include "backref.h"
39 #include "rcu-string.h"
40 #include "send.h"
41 #include "dev-replace.h"
42 #include "props.h"
43 #include "sysfs.h"
44 #include "qgroup.h"
45 #include "tree-log.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "delalloc-space.h"
49 #include "block-group.h"
50 
51 #ifdef CONFIG_64BIT
52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
53  * structures are incorrect, as the timespec structure from userspace
54  * is 4 bytes too small. We define these alternatives here to teach
55  * the kernel about the 32-bit struct packing.
56  */
57 struct btrfs_ioctl_timespec_32 {
58 	__u64 sec;
59 	__u32 nsec;
60 } __attribute__ ((__packed__));
61 
62 struct btrfs_ioctl_received_subvol_args_32 {
63 	char	uuid[BTRFS_UUID_SIZE];	/* in */
64 	__u64	stransid;		/* in */
65 	__u64	rtransid;		/* out */
66 	struct btrfs_ioctl_timespec_32 stime; /* in */
67 	struct btrfs_ioctl_timespec_32 rtime; /* out */
68 	__u64	flags;			/* in */
69 	__u64	reserved[16];		/* in */
70 } __attribute__ ((__packed__));
71 
72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
73 				struct btrfs_ioctl_received_subvol_args_32)
74 #endif
75 
76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
77 struct btrfs_ioctl_send_args_32 {
78 	__s64 send_fd;			/* in */
79 	__u64 clone_sources_count;	/* in */
80 	compat_uptr_t clone_sources;	/* in */
81 	__u64 parent_root;		/* in */
82 	__u64 flags;			/* in */
83 	__u64 reserved[4];		/* in */
84 } __attribute__ ((__packed__));
85 
86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
87 			       struct btrfs_ioctl_send_args_32)
88 #endif
89 
90 /* Mask out flags that are inappropriate for the given type of inode. */
91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 		unsigned int flags)
93 {
94 	if (S_ISDIR(inode->i_mode))
95 		return flags;
96 	else if (S_ISREG(inode->i_mode))
97 		return flags & ~FS_DIRSYNC_FL;
98 	else
99 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100 }
101 
102 /*
103  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104  * ioctl.
105  */
106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if (flags & BTRFS_INODE_NOCOMPRESS)
126 		iflags |= FS_NOCOMP_FL;
127 	else if (flags & BTRFS_INODE_COMPRESS)
128 		iflags |= FS_COMPR_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
137 {
138 	struct btrfs_inode *binode = BTRFS_I(inode);
139 	unsigned int new_fl = 0;
140 
141 	if (binode->flags & BTRFS_INODE_SYNC)
142 		new_fl |= S_SYNC;
143 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 		new_fl |= S_IMMUTABLE;
145 	if (binode->flags & BTRFS_INODE_APPEND)
146 		new_fl |= S_APPEND;
147 	if (binode->flags & BTRFS_INODE_NOATIME)
148 		new_fl |= S_NOATIME;
149 	if (binode->flags & BTRFS_INODE_DIRSYNC)
150 		new_fl |= S_DIRSYNC;
151 
152 	set_mask_bits(&inode->i_flags,
153 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 		      new_fl);
155 }
156 
157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
158 {
159 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
160 	unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
161 
162 	if (copy_to_user(arg, &flags, sizeof(flags)))
163 		return -EFAULT;
164 	return 0;
165 }
166 
167 /*
168  * Check if @flags are a supported and valid set of FS_*_FL flags and that
169  * the old and new flags are not conflicting
170  */
171 static int check_fsflags(unsigned int old_flags, unsigned int flags)
172 {
173 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
174 		      FS_NOATIME_FL | FS_NODUMP_FL | \
175 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
176 		      FS_NOCOMP_FL | FS_COMPR_FL |
177 		      FS_NOCOW_FL))
178 		return -EOPNOTSUPP;
179 
180 	/* COMPR and NOCOMP on new/old are valid */
181 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
182 		return -EINVAL;
183 
184 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
185 		return -EINVAL;
186 
187 	/* NOCOW and compression options are mutually exclusive */
188 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
189 		return -EINVAL;
190 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
191 		return -EINVAL;
192 
193 	return 0;
194 }
195 
196 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
197 {
198 	struct inode *inode = file_inode(file);
199 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
200 	struct btrfs_inode *binode = BTRFS_I(inode);
201 	struct btrfs_root *root = binode->root;
202 	struct btrfs_trans_handle *trans;
203 	unsigned int fsflags, old_fsflags;
204 	int ret;
205 	const char *comp = NULL;
206 	u32 binode_flags;
207 
208 	if (!inode_owner_or_capable(inode))
209 		return -EPERM;
210 
211 	if (btrfs_root_readonly(root))
212 		return -EROFS;
213 
214 	if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
215 		return -EFAULT;
216 
217 	ret = mnt_want_write_file(file);
218 	if (ret)
219 		return ret;
220 
221 	inode_lock(inode);
222 	fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
223 	old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
224 
225 	ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
226 	if (ret)
227 		goto out_unlock;
228 
229 	ret = check_fsflags(old_fsflags, fsflags);
230 	if (ret)
231 		goto out_unlock;
232 
233 	binode_flags = binode->flags;
234 	if (fsflags & FS_SYNC_FL)
235 		binode_flags |= BTRFS_INODE_SYNC;
236 	else
237 		binode_flags &= ~BTRFS_INODE_SYNC;
238 	if (fsflags & FS_IMMUTABLE_FL)
239 		binode_flags |= BTRFS_INODE_IMMUTABLE;
240 	else
241 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
242 	if (fsflags & FS_APPEND_FL)
243 		binode_flags |= BTRFS_INODE_APPEND;
244 	else
245 		binode_flags &= ~BTRFS_INODE_APPEND;
246 	if (fsflags & FS_NODUMP_FL)
247 		binode_flags |= BTRFS_INODE_NODUMP;
248 	else
249 		binode_flags &= ~BTRFS_INODE_NODUMP;
250 	if (fsflags & FS_NOATIME_FL)
251 		binode_flags |= BTRFS_INODE_NOATIME;
252 	else
253 		binode_flags &= ~BTRFS_INODE_NOATIME;
254 	if (fsflags & FS_DIRSYNC_FL)
255 		binode_flags |= BTRFS_INODE_DIRSYNC;
256 	else
257 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
258 	if (fsflags & FS_NOCOW_FL) {
259 		if (S_ISREG(inode->i_mode)) {
260 			/*
261 			 * It's safe to turn csums off here, no extents exist.
262 			 * Otherwise we want the flag to reflect the real COW
263 			 * status of the file and will not set it.
264 			 */
265 			if (inode->i_size == 0)
266 				binode_flags |= BTRFS_INODE_NODATACOW |
267 						BTRFS_INODE_NODATASUM;
268 		} else {
269 			binode_flags |= BTRFS_INODE_NODATACOW;
270 		}
271 	} else {
272 		/*
273 		 * Revert back under same assumptions as above
274 		 */
275 		if (S_ISREG(inode->i_mode)) {
276 			if (inode->i_size == 0)
277 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
278 						  BTRFS_INODE_NODATASUM);
279 		} else {
280 			binode_flags &= ~BTRFS_INODE_NODATACOW;
281 		}
282 	}
283 
284 	/*
285 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
286 	 * flag may be changed automatically if compression code won't make
287 	 * things smaller.
288 	 */
289 	if (fsflags & FS_NOCOMP_FL) {
290 		binode_flags &= ~BTRFS_INODE_COMPRESS;
291 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
292 	} else if (fsflags & FS_COMPR_FL) {
293 
294 		if (IS_SWAPFILE(inode)) {
295 			ret = -ETXTBSY;
296 			goto out_unlock;
297 		}
298 
299 		binode_flags |= BTRFS_INODE_COMPRESS;
300 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
301 
302 		comp = btrfs_compress_type2str(fs_info->compress_type);
303 		if (!comp || comp[0] == 0)
304 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
305 	} else {
306 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
307 	}
308 
309 	/*
310 	 * 1 for inode item
311 	 * 2 for properties
312 	 */
313 	trans = btrfs_start_transaction(root, 3);
314 	if (IS_ERR(trans)) {
315 		ret = PTR_ERR(trans);
316 		goto out_unlock;
317 	}
318 
319 	if (comp) {
320 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
321 				     strlen(comp), 0);
322 		if (ret) {
323 			btrfs_abort_transaction(trans, ret);
324 			goto out_end_trans;
325 		}
326 	} else {
327 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
328 				     0, 0);
329 		if (ret && ret != -ENODATA) {
330 			btrfs_abort_transaction(trans, ret);
331 			goto out_end_trans;
332 		}
333 	}
334 
335 	binode->flags = binode_flags;
336 	btrfs_sync_inode_flags_to_i_flags(inode);
337 	inode_inc_iversion(inode);
338 	inode->i_ctime = current_time(inode);
339 	ret = btrfs_update_inode(trans, root, inode);
340 
341  out_end_trans:
342 	btrfs_end_transaction(trans);
343  out_unlock:
344 	inode_unlock(inode);
345 	mnt_drop_write_file(file);
346 	return ret;
347 }
348 
349 /*
350  * Translate btrfs internal inode flags to xflags as expected by the
351  * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
352  * silently dropped.
353  */
354 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
355 {
356 	unsigned int xflags = 0;
357 
358 	if (flags & BTRFS_INODE_APPEND)
359 		xflags |= FS_XFLAG_APPEND;
360 	if (flags & BTRFS_INODE_IMMUTABLE)
361 		xflags |= FS_XFLAG_IMMUTABLE;
362 	if (flags & BTRFS_INODE_NOATIME)
363 		xflags |= FS_XFLAG_NOATIME;
364 	if (flags & BTRFS_INODE_NODUMP)
365 		xflags |= FS_XFLAG_NODUMP;
366 	if (flags & BTRFS_INODE_SYNC)
367 		xflags |= FS_XFLAG_SYNC;
368 
369 	return xflags;
370 }
371 
372 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
373 static int check_xflags(unsigned int flags)
374 {
375 	if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
376 		      FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
377 		return -EOPNOTSUPP;
378 	return 0;
379 }
380 
381 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
382 			enum btrfs_exclusive_operation type)
383 {
384 	return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type);
385 }
386 
387 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
388 {
389 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
390 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
391 }
392 
393 /*
394  * Set the xflags from the internal inode flags. The remaining items of fsxattr
395  * are zeroed.
396  */
397 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
398 {
399 	struct btrfs_inode *binode = BTRFS_I(file_inode(file));
400 	struct fsxattr fa;
401 
402 	simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
403 	if (copy_to_user(arg, &fa, sizeof(fa)))
404 		return -EFAULT;
405 
406 	return 0;
407 }
408 
409 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
410 {
411 	struct inode *inode = file_inode(file);
412 	struct btrfs_inode *binode = BTRFS_I(inode);
413 	struct btrfs_root *root = binode->root;
414 	struct btrfs_trans_handle *trans;
415 	struct fsxattr fa, old_fa;
416 	unsigned old_flags;
417 	unsigned old_i_flags;
418 	int ret = 0;
419 
420 	if (!inode_owner_or_capable(inode))
421 		return -EPERM;
422 
423 	if (btrfs_root_readonly(root))
424 		return -EROFS;
425 
426 	if (copy_from_user(&fa, arg, sizeof(fa)))
427 		return -EFAULT;
428 
429 	ret = check_xflags(fa.fsx_xflags);
430 	if (ret)
431 		return ret;
432 
433 	if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
434 		return -EOPNOTSUPP;
435 
436 	ret = mnt_want_write_file(file);
437 	if (ret)
438 		return ret;
439 
440 	inode_lock(inode);
441 
442 	old_flags = binode->flags;
443 	old_i_flags = inode->i_flags;
444 
445 	simple_fill_fsxattr(&old_fa,
446 			    btrfs_inode_flags_to_xflags(binode->flags));
447 	ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
448 	if (ret)
449 		goto out_unlock;
450 
451 	if (fa.fsx_xflags & FS_XFLAG_SYNC)
452 		binode->flags |= BTRFS_INODE_SYNC;
453 	else
454 		binode->flags &= ~BTRFS_INODE_SYNC;
455 	if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
456 		binode->flags |= BTRFS_INODE_IMMUTABLE;
457 	else
458 		binode->flags &= ~BTRFS_INODE_IMMUTABLE;
459 	if (fa.fsx_xflags & FS_XFLAG_APPEND)
460 		binode->flags |= BTRFS_INODE_APPEND;
461 	else
462 		binode->flags &= ~BTRFS_INODE_APPEND;
463 	if (fa.fsx_xflags & FS_XFLAG_NODUMP)
464 		binode->flags |= BTRFS_INODE_NODUMP;
465 	else
466 		binode->flags &= ~BTRFS_INODE_NODUMP;
467 	if (fa.fsx_xflags & FS_XFLAG_NOATIME)
468 		binode->flags |= BTRFS_INODE_NOATIME;
469 	else
470 		binode->flags &= ~BTRFS_INODE_NOATIME;
471 
472 	/* 1 item for the inode */
473 	trans = btrfs_start_transaction(root, 1);
474 	if (IS_ERR(trans)) {
475 		ret = PTR_ERR(trans);
476 		goto out_unlock;
477 	}
478 
479 	btrfs_sync_inode_flags_to_i_flags(inode);
480 	inode_inc_iversion(inode);
481 	inode->i_ctime = current_time(inode);
482 	ret = btrfs_update_inode(trans, root, inode);
483 
484 	btrfs_end_transaction(trans);
485 
486 out_unlock:
487 	if (ret) {
488 		binode->flags = old_flags;
489 		inode->i_flags = old_i_flags;
490 	}
491 
492 	inode_unlock(inode);
493 	mnt_drop_write_file(file);
494 
495 	return ret;
496 }
497 
498 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
499 {
500 	struct inode *inode = file_inode(file);
501 
502 	return put_user(inode->i_generation, arg);
503 }
504 
505 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
506 					void __user *arg)
507 {
508 	struct btrfs_device *device;
509 	struct request_queue *q;
510 	struct fstrim_range range;
511 	u64 minlen = ULLONG_MAX;
512 	u64 num_devices = 0;
513 	int ret;
514 
515 	if (!capable(CAP_SYS_ADMIN))
516 		return -EPERM;
517 
518 	/*
519 	 * If the fs is mounted with nologreplay, which requires it to be
520 	 * mounted in RO mode as well, we can not allow discard on free space
521 	 * inside block groups, because log trees refer to extents that are not
522 	 * pinned in a block group's free space cache (pinning the extents is
523 	 * precisely the first phase of replaying a log tree).
524 	 */
525 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
526 		return -EROFS;
527 
528 	rcu_read_lock();
529 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
530 				dev_list) {
531 		if (!device->bdev)
532 			continue;
533 		q = bdev_get_queue(device->bdev);
534 		if (blk_queue_discard(q)) {
535 			num_devices++;
536 			minlen = min_t(u64, q->limits.discard_granularity,
537 				     minlen);
538 		}
539 	}
540 	rcu_read_unlock();
541 
542 	if (!num_devices)
543 		return -EOPNOTSUPP;
544 	if (copy_from_user(&range, arg, sizeof(range)))
545 		return -EFAULT;
546 
547 	/*
548 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
549 	 * block group is in the logical address space, which can be any
550 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
551 	 */
552 	if (range.len < fs_info->sb->s_blocksize)
553 		return -EINVAL;
554 
555 	range.minlen = max(range.minlen, minlen);
556 	ret = btrfs_trim_fs(fs_info, &range);
557 	if (ret < 0)
558 		return ret;
559 
560 	if (copy_to_user(arg, &range, sizeof(range)))
561 		return -EFAULT;
562 
563 	return 0;
564 }
565 
566 int __pure btrfs_is_empty_uuid(u8 *uuid)
567 {
568 	int i;
569 
570 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
571 		if (uuid[i])
572 			return 0;
573 	}
574 	return 1;
575 }
576 
577 static noinline int create_subvol(struct inode *dir,
578 				  struct dentry *dentry,
579 				  const char *name, int namelen,
580 				  struct btrfs_qgroup_inherit *inherit)
581 {
582 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
583 	struct btrfs_trans_handle *trans;
584 	struct btrfs_key key;
585 	struct btrfs_root_item *root_item;
586 	struct btrfs_inode_item *inode_item;
587 	struct extent_buffer *leaf;
588 	struct btrfs_root *root = BTRFS_I(dir)->root;
589 	struct btrfs_root *new_root;
590 	struct btrfs_block_rsv block_rsv;
591 	struct timespec64 cur_time = current_time(dir);
592 	struct inode *inode;
593 	int ret;
594 	int err;
595 	dev_t anon_dev = 0;
596 	u64 objectid;
597 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
598 	u64 index = 0;
599 
600 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
601 	if (!root_item)
602 		return -ENOMEM;
603 
604 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
605 	if (ret)
606 		goto fail_free;
607 
608 	ret = get_anon_bdev(&anon_dev);
609 	if (ret < 0)
610 		goto fail_free;
611 
612 	/*
613 	 * Don't create subvolume whose level is not zero. Or qgroup will be
614 	 * screwed up since it assumes subvolume qgroup's level to be 0.
615 	 */
616 	if (btrfs_qgroup_level(objectid)) {
617 		ret = -ENOSPC;
618 		goto fail_free;
619 	}
620 
621 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
622 	/*
623 	 * The same as the snapshot creation, please see the comment
624 	 * of create_snapshot().
625 	 */
626 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
627 	if (ret)
628 		goto fail_free;
629 
630 	trans = btrfs_start_transaction(root, 0);
631 	if (IS_ERR(trans)) {
632 		ret = PTR_ERR(trans);
633 		btrfs_subvolume_release_metadata(root, &block_rsv);
634 		goto fail_free;
635 	}
636 	trans->block_rsv = &block_rsv;
637 	trans->bytes_reserved = block_rsv.size;
638 
639 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
640 	if (ret)
641 		goto fail;
642 
643 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
644 				      BTRFS_NESTING_NORMAL);
645 	if (IS_ERR(leaf)) {
646 		ret = PTR_ERR(leaf);
647 		goto fail;
648 	}
649 
650 	btrfs_mark_buffer_dirty(leaf);
651 
652 	inode_item = &root_item->inode;
653 	btrfs_set_stack_inode_generation(inode_item, 1);
654 	btrfs_set_stack_inode_size(inode_item, 3);
655 	btrfs_set_stack_inode_nlink(inode_item, 1);
656 	btrfs_set_stack_inode_nbytes(inode_item,
657 				     fs_info->nodesize);
658 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
659 
660 	btrfs_set_root_flags(root_item, 0);
661 	btrfs_set_root_limit(root_item, 0);
662 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
663 
664 	btrfs_set_root_bytenr(root_item, leaf->start);
665 	btrfs_set_root_generation(root_item, trans->transid);
666 	btrfs_set_root_level(root_item, 0);
667 	btrfs_set_root_refs(root_item, 1);
668 	btrfs_set_root_used(root_item, leaf->len);
669 	btrfs_set_root_last_snapshot(root_item, 0);
670 
671 	btrfs_set_root_generation_v2(root_item,
672 			btrfs_root_generation(root_item));
673 	generate_random_guid(root_item->uuid);
674 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
675 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
676 	root_item->ctime = root_item->otime;
677 	btrfs_set_root_ctransid(root_item, trans->transid);
678 	btrfs_set_root_otransid(root_item, trans->transid);
679 
680 	btrfs_tree_unlock(leaf);
681 	free_extent_buffer(leaf);
682 	leaf = NULL;
683 
684 	btrfs_set_root_dirid(root_item, new_dirid);
685 
686 	key.objectid = objectid;
687 	key.offset = 0;
688 	key.type = BTRFS_ROOT_ITEM_KEY;
689 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
690 				root_item);
691 	if (ret)
692 		goto fail;
693 
694 	key.offset = (u64)-1;
695 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
696 	if (IS_ERR(new_root)) {
697 		free_anon_bdev(anon_dev);
698 		ret = PTR_ERR(new_root);
699 		btrfs_abort_transaction(trans, ret);
700 		goto fail;
701 	}
702 	/* Freeing will be done in btrfs_put_root() of new_root */
703 	anon_dev = 0;
704 
705 	btrfs_record_root_in_trans(trans, new_root);
706 
707 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
708 	btrfs_put_root(new_root);
709 	if (ret) {
710 		/* We potentially lose an unused inode item here */
711 		btrfs_abort_transaction(trans, ret);
712 		goto fail;
713 	}
714 
715 	mutex_lock(&new_root->objectid_mutex);
716 	new_root->highest_objectid = new_dirid;
717 	mutex_unlock(&new_root->objectid_mutex);
718 
719 	/*
720 	 * insert the directory item
721 	 */
722 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
723 	if (ret) {
724 		btrfs_abort_transaction(trans, ret);
725 		goto fail;
726 	}
727 
728 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
729 				    BTRFS_FT_DIR, index);
730 	if (ret) {
731 		btrfs_abort_transaction(trans, ret);
732 		goto fail;
733 	}
734 
735 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
736 	ret = btrfs_update_inode(trans, root, dir);
737 	if (ret) {
738 		btrfs_abort_transaction(trans, ret);
739 		goto fail;
740 	}
741 
742 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
743 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
744 	if (ret) {
745 		btrfs_abort_transaction(trans, ret);
746 		goto fail;
747 	}
748 
749 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
750 				  BTRFS_UUID_KEY_SUBVOL, objectid);
751 	if (ret)
752 		btrfs_abort_transaction(trans, ret);
753 
754 fail:
755 	kfree(root_item);
756 	trans->block_rsv = NULL;
757 	trans->bytes_reserved = 0;
758 	btrfs_subvolume_release_metadata(root, &block_rsv);
759 
760 	err = btrfs_commit_transaction(trans);
761 	if (err && !ret)
762 		ret = err;
763 
764 	if (!ret) {
765 		inode = btrfs_lookup_dentry(dir, dentry);
766 		if (IS_ERR(inode))
767 			return PTR_ERR(inode);
768 		d_instantiate(dentry, inode);
769 	}
770 	return ret;
771 
772 fail_free:
773 	if (anon_dev)
774 		free_anon_bdev(anon_dev);
775 	kfree(root_item);
776 	return ret;
777 }
778 
779 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
780 			   struct dentry *dentry, bool readonly,
781 			   struct btrfs_qgroup_inherit *inherit)
782 {
783 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
784 	struct inode *inode;
785 	struct btrfs_pending_snapshot *pending_snapshot;
786 	struct btrfs_trans_handle *trans;
787 	int ret;
788 
789 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
790 		return -EINVAL;
791 
792 	if (atomic_read(&root->nr_swapfiles)) {
793 		btrfs_warn(fs_info,
794 			   "cannot snapshot subvolume with active swapfile");
795 		return -ETXTBSY;
796 	}
797 
798 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
799 	if (!pending_snapshot)
800 		return -ENOMEM;
801 
802 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
803 	if (ret < 0)
804 		goto free_pending;
805 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
806 			GFP_KERNEL);
807 	pending_snapshot->path = btrfs_alloc_path();
808 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
809 		ret = -ENOMEM;
810 		goto free_pending;
811 	}
812 
813 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
814 			     BTRFS_BLOCK_RSV_TEMP);
815 	/*
816 	 * 1 - parent dir inode
817 	 * 2 - dir entries
818 	 * 1 - root item
819 	 * 2 - root ref/backref
820 	 * 1 - root of snapshot
821 	 * 1 - UUID item
822 	 */
823 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
824 					&pending_snapshot->block_rsv, 8,
825 					false);
826 	if (ret)
827 		goto free_pending;
828 
829 	pending_snapshot->dentry = dentry;
830 	pending_snapshot->root = root;
831 	pending_snapshot->readonly = readonly;
832 	pending_snapshot->dir = dir;
833 	pending_snapshot->inherit = inherit;
834 
835 	trans = btrfs_start_transaction(root, 0);
836 	if (IS_ERR(trans)) {
837 		ret = PTR_ERR(trans);
838 		goto fail;
839 	}
840 
841 	spin_lock(&fs_info->trans_lock);
842 	list_add(&pending_snapshot->list,
843 		 &trans->transaction->pending_snapshots);
844 	spin_unlock(&fs_info->trans_lock);
845 
846 	ret = btrfs_commit_transaction(trans);
847 	if (ret)
848 		goto fail;
849 
850 	ret = pending_snapshot->error;
851 	if (ret)
852 		goto fail;
853 
854 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
855 	if (ret)
856 		goto fail;
857 
858 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
859 	if (IS_ERR(inode)) {
860 		ret = PTR_ERR(inode);
861 		goto fail;
862 	}
863 
864 	d_instantiate(dentry, inode);
865 	ret = 0;
866 	pending_snapshot->anon_dev = 0;
867 fail:
868 	/* Prevent double freeing of anon_dev */
869 	if (ret && pending_snapshot->snap)
870 		pending_snapshot->snap->anon_dev = 0;
871 	btrfs_put_root(pending_snapshot->snap);
872 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
873 free_pending:
874 	if (pending_snapshot->anon_dev)
875 		free_anon_bdev(pending_snapshot->anon_dev);
876 	kfree(pending_snapshot->root_item);
877 	btrfs_free_path(pending_snapshot->path);
878 	kfree(pending_snapshot);
879 
880 	return ret;
881 }
882 
883 /*  copy of may_delete in fs/namei.c()
884  *	Check whether we can remove a link victim from directory dir, check
885  *  whether the type of victim is right.
886  *  1. We can't do it if dir is read-only (done in permission())
887  *  2. We should have write and exec permissions on dir
888  *  3. We can't remove anything from append-only dir
889  *  4. We can't do anything with immutable dir (done in permission())
890  *  5. If the sticky bit on dir is set we should either
891  *	a. be owner of dir, or
892  *	b. be owner of victim, or
893  *	c. have CAP_FOWNER capability
894  *  6. If the victim is append-only or immutable we can't do anything with
895  *     links pointing to it.
896  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
897  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
898  *  9. We can't remove a root or mountpoint.
899  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
900  *     nfs_async_unlink().
901  */
902 
903 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
904 {
905 	int error;
906 
907 	if (d_really_is_negative(victim))
908 		return -ENOENT;
909 
910 	BUG_ON(d_inode(victim->d_parent) != dir);
911 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
912 
913 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
914 	if (error)
915 		return error;
916 	if (IS_APPEND(dir))
917 		return -EPERM;
918 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
919 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
920 		return -EPERM;
921 	if (isdir) {
922 		if (!d_is_dir(victim))
923 			return -ENOTDIR;
924 		if (IS_ROOT(victim))
925 			return -EBUSY;
926 	} else if (d_is_dir(victim))
927 		return -EISDIR;
928 	if (IS_DEADDIR(dir))
929 		return -ENOENT;
930 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
931 		return -EBUSY;
932 	return 0;
933 }
934 
935 /* copy of may_create in fs/namei.c() */
936 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
937 {
938 	if (d_really_is_positive(child))
939 		return -EEXIST;
940 	if (IS_DEADDIR(dir))
941 		return -ENOENT;
942 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
943 }
944 
945 /*
946  * Create a new subvolume below @parent.  This is largely modeled after
947  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
948  * inside this filesystem so it's quite a bit simpler.
949  */
950 static noinline int btrfs_mksubvol(const struct path *parent,
951 				   const char *name, int namelen,
952 				   struct btrfs_root *snap_src,
953 				   bool readonly,
954 				   struct btrfs_qgroup_inherit *inherit)
955 {
956 	struct inode *dir = d_inode(parent->dentry);
957 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
958 	struct dentry *dentry;
959 	int error;
960 
961 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
962 	if (error == -EINTR)
963 		return error;
964 
965 	dentry = lookup_one_len(name, parent->dentry, namelen);
966 	error = PTR_ERR(dentry);
967 	if (IS_ERR(dentry))
968 		goto out_unlock;
969 
970 	error = btrfs_may_create(dir, dentry);
971 	if (error)
972 		goto out_dput;
973 
974 	/*
975 	 * even if this name doesn't exist, we may get hash collisions.
976 	 * check for them now when we can safely fail
977 	 */
978 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
979 					       dir->i_ino, name,
980 					       namelen);
981 	if (error)
982 		goto out_dput;
983 
984 	down_read(&fs_info->subvol_sem);
985 
986 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
987 		goto out_up_read;
988 
989 	if (snap_src)
990 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
991 	else
992 		error = create_subvol(dir, dentry, name, namelen, inherit);
993 
994 	if (!error)
995 		fsnotify_mkdir(dir, dentry);
996 out_up_read:
997 	up_read(&fs_info->subvol_sem);
998 out_dput:
999 	dput(dentry);
1000 out_unlock:
1001 	inode_unlock(dir);
1002 	return error;
1003 }
1004 
1005 static noinline int btrfs_mksnapshot(const struct path *parent,
1006 				   const char *name, int namelen,
1007 				   struct btrfs_root *root,
1008 				   bool readonly,
1009 				   struct btrfs_qgroup_inherit *inherit)
1010 {
1011 	int ret;
1012 	bool snapshot_force_cow = false;
1013 
1014 	/*
1015 	 * Force new buffered writes to reserve space even when NOCOW is
1016 	 * possible. This is to avoid later writeback (running dealloc) to
1017 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1018 	 */
1019 	btrfs_drew_read_lock(&root->snapshot_lock);
1020 
1021 	ret = btrfs_start_delalloc_snapshot(root);
1022 	if (ret)
1023 		goto out;
1024 
1025 	/*
1026 	 * All previous writes have started writeback in NOCOW mode, so now
1027 	 * we force future writes to fallback to COW mode during snapshot
1028 	 * creation.
1029 	 */
1030 	atomic_inc(&root->snapshot_force_cow);
1031 	snapshot_force_cow = true;
1032 
1033 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1034 
1035 	ret = btrfs_mksubvol(parent, name, namelen,
1036 			     root, readonly, inherit);
1037 out:
1038 	if (snapshot_force_cow)
1039 		atomic_dec(&root->snapshot_force_cow);
1040 	btrfs_drew_read_unlock(&root->snapshot_lock);
1041 	return ret;
1042 }
1043 
1044 /*
1045  * When we're defragging a range, we don't want to kick it off again
1046  * if it is really just waiting for delalloc to send it down.
1047  * If we find a nice big extent or delalloc range for the bytes in the
1048  * file you want to defrag, we return 0 to let you know to skip this
1049  * part of the file
1050  */
1051 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1052 {
1053 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1054 	struct extent_map *em = NULL;
1055 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1056 	u64 end;
1057 
1058 	read_lock(&em_tree->lock);
1059 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1060 	read_unlock(&em_tree->lock);
1061 
1062 	if (em) {
1063 		end = extent_map_end(em);
1064 		free_extent_map(em);
1065 		if (end - offset > thresh)
1066 			return 0;
1067 	}
1068 	/* if we already have a nice delalloc here, just stop */
1069 	thresh /= 2;
1070 	end = count_range_bits(io_tree, &offset, offset + thresh,
1071 			       thresh, EXTENT_DELALLOC, 1);
1072 	if (end >= thresh)
1073 		return 0;
1074 	return 1;
1075 }
1076 
1077 /*
1078  * helper function to walk through a file and find extents
1079  * newer than a specific transid, and smaller than thresh.
1080  *
1081  * This is used by the defragging code to find new and small
1082  * extents
1083  */
1084 static int find_new_extents(struct btrfs_root *root,
1085 			    struct inode *inode, u64 newer_than,
1086 			    u64 *off, u32 thresh)
1087 {
1088 	struct btrfs_path *path;
1089 	struct btrfs_key min_key;
1090 	struct extent_buffer *leaf;
1091 	struct btrfs_file_extent_item *extent;
1092 	int type;
1093 	int ret;
1094 	u64 ino = btrfs_ino(BTRFS_I(inode));
1095 
1096 	path = btrfs_alloc_path();
1097 	if (!path)
1098 		return -ENOMEM;
1099 
1100 	min_key.objectid = ino;
1101 	min_key.type = BTRFS_EXTENT_DATA_KEY;
1102 	min_key.offset = *off;
1103 
1104 	while (1) {
1105 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1106 		if (ret != 0)
1107 			goto none;
1108 process_slot:
1109 		if (min_key.objectid != ino)
1110 			goto none;
1111 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1112 			goto none;
1113 
1114 		leaf = path->nodes[0];
1115 		extent = btrfs_item_ptr(leaf, path->slots[0],
1116 					struct btrfs_file_extent_item);
1117 
1118 		type = btrfs_file_extent_type(leaf, extent);
1119 		if (type == BTRFS_FILE_EXTENT_REG &&
1120 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1121 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1122 			*off = min_key.offset;
1123 			btrfs_free_path(path);
1124 			return 0;
1125 		}
1126 
1127 		path->slots[0]++;
1128 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1129 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1130 			goto process_slot;
1131 		}
1132 
1133 		if (min_key.offset == (u64)-1)
1134 			goto none;
1135 
1136 		min_key.offset++;
1137 		btrfs_release_path(path);
1138 	}
1139 none:
1140 	btrfs_free_path(path);
1141 	return -ENOENT;
1142 }
1143 
1144 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1145 {
1146 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1147 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1148 	struct extent_map *em;
1149 	u64 len = PAGE_SIZE;
1150 
1151 	/*
1152 	 * hopefully we have this extent in the tree already, try without
1153 	 * the full extent lock
1154 	 */
1155 	read_lock(&em_tree->lock);
1156 	em = lookup_extent_mapping(em_tree, start, len);
1157 	read_unlock(&em_tree->lock);
1158 
1159 	if (!em) {
1160 		struct extent_state *cached = NULL;
1161 		u64 end = start + len - 1;
1162 
1163 		/* get the big lock and read metadata off disk */
1164 		lock_extent_bits(io_tree, start, end, &cached);
1165 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1166 		unlock_extent_cached(io_tree, start, end, &cached);
1167 
1168 		if (IS_ERR(em))
1169 			return NULL;
1170 	}
1171 
1172 	return em;
1173 }
1174 
1175 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1176 {
1177 	struct extent_map *next;
1178 	bool ret = true;
1179 
1180 	/* this is the last extent */
1181 	if (em->start + em->len >= i_size_read(inode))
1182 		return false;
1183 
1184 	next = defrag_lookup_extent(inode, em->start + em->len);
1185 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1186 		ret = false;
1187 	else if ((em->block_start + em->block_len == next->block_start) &&
1188 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1189 		ret = false;
1190 
1191 	free_extent_map(next);
1192 	return ret;
1193 }
1194 
1195 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1196 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1197 			       int compress)
1198 {
1199 	struct extent_map *em;
1200 	int ret = 1;
1201 	bool next_mergeable = true;
1202 	bool prev_mergeable = true;
1203 
1204 	/*
1205 	 * make sure that once we start defragging an extent, we keep on
1206 	 * defragging it
1207 	 */
1208 	if (start < *defrag_end)
1209 		return 1;
1210 
1211 	*skip = 0;
1212 
1213 	em = defrag_lookup_extent(inode, start);
1214 	if (!em)
1215 		return 0;
1216 
1217 	/* this will cover holes, and inline extents */
1218 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1219 		ret = 0;
1220 		goto out;
1221 	}
1222 
1223 	if (!*defrag_end)
1224 		prev_mergeable = false;
1225 
1226 	next_mergeable = defrag_check_next_extent(inode, em);
1227 	/*
1228 	 * we hit a real extent, if it is big or the next extent is not a
1229 	 * real extent, don't bother defragging it
1230 	 */
1231 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1232 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1233 		ret = 0;
1234 out:
1235 	/*
1236 	 * last_len ends up being a counter of how many bytes we've defragged.
1237 	 * every time we choose not to defrag an extent, we reset *last_len
1238 	 * so that the next tiny extent will force a defrag.
1239 	 *
1240 	 * The end result of this is that tiny extents before a single big
1241 	 * extent will force at least part of that big extent to be defragged.
1242 	 */
1243 	if (ret) {
1244 		*defrag_end = extent_map_end(em);
1245 	} else {
1246 		*last_len = 0;
1247 		*skip = extent_map_end(em);
1248 		*defrag_end = 0;
1249 	}
1250 
1251 	free_extent_map(em);
1252 	return ret;
1253 }
1254 
1255 /*
1256  * it doesn't do much good to defrag one or two pages
1257  * at a time.  This pulls in a nice chunk of pages
1258  * to COW and defrag.
1259  *
1260  * It also makes sure the delalloc code has enough
1261  * dirty data to avoid making new small extents as part
1262  * of the defrag
1263  *
1264  * It's a good idea to start RA on this range
1265  * before calling this.
1266  */
1267 static int cluster_pages_for_defrag(struct inode *inode,
1268 				    struct page **pages,
1269 				    unsigned long start_index,
1270 				    unsigned long num_pages)
1271 {
1272 	unsigned long file_end;
1273 	u64 isize = i_size_read(inode);
1274 	u64 page_start;
1275 	u64 page_end;
1276 	u64 page_cnt;
1277 	int ret;
1278 	int i;
1279 	int i_done;
1280 	struct btrfs_ordered_extent *ordered;
1281 	struct extent_state *cached_state = NULL;
1282 	struct extent_io_tree *tree;
1283 	struct extent_changeset *data_reserved = NULL;
1284 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1285 
1286 	file_end = (isize - 1) >> PAGE_SHIFT;
1287 	if (!isize || start_index > file_end)
1288 		return 0;
1289 
1290 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1291 
1292 	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1293 			start_index << PAGE_SHIFT,
1294 			page_cnt << PAGE_SHIFT);
1295 	if (ret)
1296 		return ret;
1297 	i_done = 0;
1298 	tree = &BTRFS_I(inode)->io_tree;
1299 
1300 	/* step one, lock all the pages */
1301 	for (i = 0; i < page_cnt; i++) {
1302 		struct page *page;
1303 again:
1304 		page = find_or_create_page(inode->i_mapping,
1305 					   start_index + i, mask);
1306 		if (!page)
1307 			break;
1308 
1309 		page_start = page_offset(page);
1310 		page_end = page_start + PAGE_SIZE - 1;
1311 		while (1) {
1312 			lock_extent_bits(tree, page_start, page_end,
1313 					 &cached_state);
1314 			ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1315 							      page_start);
1316 			unlock_extent_cached(tree, page_start, page_end,
1317 					     &cached_state);
1318 			if (!ordered)
1319 				break;
1320 
1321 			unlock_page(page);
1322 			btrfs_start_ordered_extent(ordered, 1);
1323 			btrfs_put_ordered_extent(ordered);
1324 			lock_page(page);
1325 			/*
1326 			 * we unlocked the page above, so we need check if
1327 			 * it was released or not.
1328 			 */
1329 			if (page->mapping != inode->i_mapping) {
1330 				unlock_page(page);
1331 				put_page(page);
1332 				goto again;
1333 			}
1334 		}
1335 
1336 		if (!PageUptodate(page)) {
1337 			btrfs_readpage(NULL, page);
1338 			lock_page(page);
1339 			if (!PageUptodate(page)) {
1340 				unlock_page(page);
1341 				put_page(page);
1342 				ret = -EIO;
1343 				break;
1344 			}
1345 		}
1346 
1347 		if (page->mapping != inode->i_mapping) {
1348 			unlock_page(page);
1349 			put_page(page);
1350 			goto again;
1351 		}
1352 
1353 		pages[i] = page;
1354 		i_done++;
1355 	}
1356 	if (!i_done || ret)
1357 		goto out;
1358 
1359 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1360 		goto out;
1361 
1362 	/*
1363 	 * so now we have a nice long stream of locked
1364 	 * and up to date pages, lets wait on them
1365 	 */
1366 	for (i = 0; i < i_done; i++)
1367 		wait_on_page_writeback(pages[i]);
1368 
1369 	page_start = page_offset(pages[0]);
1370 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1371 
1372 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1373 			 page_start, page_end - 1, &cached_state);
1374 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1375 			  page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1376 			  EXTENT_DEFRAG, 0, 0, &cached_state);
1377 
1378 	if (i_done != page_cnt) {
1379 		spin_lock(&BTRFS_I(inode)->lock);
1380 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1381 		spin_unlock(&BTRFS_I(inode)->lock);
1382 		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1383 				start_index << PAGE_SHIFT,
1384 				(page_cnt - i_done) << PAGE_SHIFT, true);
1385 	}
1386 
1387 
1388 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1389 			  &cached_state);
1390 
1391 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1392 			     page_start, page_end - 1, &cached_state);
1393 
1394 	for (i = 0; i < i_done; i++) {
1395 		clear_page_dirty_for_io(pages[i]);
1396 		ClearPageChecked(pages[i]);
1397 		set_page_extent_mapped(pages[i]);
1398 		set_page_dirty(pages[i]);
1399 		unlock_page(pages[i]);
1400 		put_page(pages[i]);
1401 	}
1402 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1403 	extent_changeset_free(data_reserved);
1404 	return i_done;
1405 out:
1406 	for (i = 0; i < i_done; i++) {
1407 		unlock_page(pages[i]);
1408 		put_page(pages[i]);
1409 	}
1410 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1411 			start_index << PAGE_SHIFT,
1412 			page_cnt << PAGE_SHIFT, true);
1413 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1414 	extent_changeset_free(data_reserved);
1415 	return ret;
1416 
1417 }
1418 
1419 int btrfs_defrag_file(struct inode *inode, struct file *file,
1420 		      struct btrfs_ioctl_defrag_range_args *range,
1421 		      u64 newer_than, unsigned long max_to_defrag)
1422 {
1423 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1424 	struct btrfs_root *root = BTRFS_I(inode)->root;
1425 	struct file_ra_state *ra = NULL;
1426 	unsigned long last_index;
1427 	u64 isize = i_size_read(inode);
1428 	u64 last_len = 0;
1429 	u64 skip = 0;
1430 	u64 defrag_end = 0;
1431 	u64 newer_off = range->start;
1432 	unsigned long i;
1433 	unsigned long ra_index = 0;
1434 	int ret;
1435 	int defrag_count = 0;
1436 	int compress_type = BTRFS_COMPRESS_ZLIB;
1437 	u32 extent_thresh = range->extent_thresh;
1438 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1439 	unsigned long cluster = max_cluster;
1440 	u64 new_align = ~((u64)SZ_128K - 1);
1441 	struct page **pages = NULL;
1442 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1443 
1444 	if (isize == 0)
1445 		return 0;
1446 
1447 	if (range->start >= isize)
1448 		return -EINVAL;
1449 
1450 	if (do_compress) {
1451 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1452 			return -EINVAL;
1453 		if (range->compress_type)
1454 			compress_type = range->compress_type;
1455 	}
1456 
1457 	if (extent_thresh == 0)
1458 		extent_thresh = SZ_256K;
1459 
1460 	/*
1461 	 * If we were not given a file, allocate a readahead context. As
1462 	 * readahead is just an optimization, defrag will work without it so
1463 	 * we don't error out.
1464 	 */
1465 	if (!file) {
1466 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1467 		if (ra)
1468 			file_ra_state_init(ra, inode->i_mapping);
1469 	} else {
1470 		ra = &file->f_ra;
1471 	}
1472 
1473 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1474 	if (!pages) {
1475 		ret = -ENOMEM;
1476 		goto out_ra;
1477 	}
1478 
1479 	/* find the last page to defrag */
1480 	if (range->start + range->len > range->start) {
1481 		last_index = min_t(u64, isize - 1,
1482 			 range->start + range->len - 1) >> PAGE_SHIFT;
1483 	} else {
1484 		last_index = (isize - 1) >> PAGE_SHIFT;
1485 	}
1486 
1487 	if (newer_than) {
1488 		ret = find_new_extents(root, inode, newer_than,
1489 				       &newer_off, SZ_64K);
1490 		if (!ret) {
1491 			range->start = newer_off;
1492 			/*
1493 			 * we always align our defrag to help keep
1494 			 * the extents in the file evenly spaced
1495 			 */
1496 			i = (newer_off & new_align) >> PAGE_SHIFT;
1497 		} else
1498 			goto out_ra;
1499 	} else {
1500 		i = range->start >> PAGE_SHIFT;
1501 	}
1502 	if (!max_to_defrag)
1503 		max_to_defrag = last_index - i + 1;
1504 
1505 	/*
1506 	 * make writeback starts from i, so the defrag range can be
1507 	 * written sequentially.
1508 	 */
1509 	if (i < inode->i_mapping->writeback_index)
1510 		inode->i_mapping->writeback_index = i;
1511 
1512 	while (i <= last_index && defrag_count < max_to_defrag &&
1513 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1514 		/*
1515 		 * make sure we stop running if someone unmounts
1516 		 * the FS
1517 		 */
1518 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1519 			break;
1520 
1521 		if (btrfs_defrag_cancelled(fs_info)) {
1522 			btrfs_debug(fs_info, "defrag_file cancelled");
1523 			ret = -EAGAIN;
1524 			break;
1525 		}
1526 
1527 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1528 					 extent_thresh, &last_len, &skip,
1529 					 &defrag_end, do_compress)){
1530 			unsigned long next;
1531 			/*
1532 			 * the should_defrag function tells us how much to skip
1533 			 * bump our counter by the suggested amount
1534 			 */
1535 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1536 			i = max(i + 1, next);
1537 			continue;
1538 		}
1539 
1540 		if (!newer_than) {
1541 			cluster = (PAGE_ALIGN(defrag_end) >>
1542 				   PAGE_SHIFT) - i;
1543 			cluster = min(cluster, max_cluster);
1544 		} else {
1545 			cluster = max_cluster;
1546 		}
1547 
1548 		if (i + cluster > ra_index) {
1549 			ra_index = max(i, ra_index);
1550 			if (ra)
1551 				page_cache_sync_readahead(inode->i_mapping, ra,
1552 						file, ra_index, cluster);
1553 			ra_index += cluster;
1554 		}
1555 
1556 		inode_lock(inode);
1557 		if (IS_SWAPFILE(inode)) {
1558 			ret = -ETXTBSY;
1559 		} else {
1560 			if (do_compress)
1561 				BTRFS_I(inode)->defrag_compress = compress_type;
1562 			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1563 		}
1564 		if (ret < 0) {
1565 			inode_unlock(inode);
1566 			goto out_ra;
1567 		}
1568 
1569 		defrag_count += ret;
1570 		balance_dirty_pages_ratelimited(inode->i_mapping);
1571 		inode_unlock(inode);
1572 
1573 		if (newer_than) {
1574 			if (newer_off == (u64)-1)
1575 				break;
1576 
1577 			if (ret > 0)
1578 				i += ret;
1579 
1580 			newer_off = max(newer_off + 1,
1581 					(u64)i << PAGE_SHIFT);
1582 
1583 			ret = find_new_extents(root, inode, newer_than,
1584 					       &newer_off, SZ_64K);
1585 			if (!ret) {
1586 				range->start = newer_off;
1587 				i = (newer_off & new_align) >> PAGE_SHIFT;
1588 			} else {
1589 				break;
1590 			}
1591 		} else {
1592 			if (ret > 0) {
1593 				i += ret;
1594 				last_len += ret << PAGE_SHIFT;
1595 			} else {
1596 				i++;
1597 				last_len = 0;
1598 			}
1599 		}
1600 	}
1601 
1602 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1603 		filemap_flush(inode->i_mapping);
1604 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1605 			     &BTRFS_I(inode)->runtime_flags))
1606 			filemap_flush(inode->i_mapping);
1607 	}
1608 
1609 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1610 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1611 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1612 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1613 	}
1614 
1615 	ret = defrag_count;
1616 
1617 out_ra:
1618 	if (do_compress) {
1619 		inode_lock(inode);
1620 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1621 		inode_unlock(inode);
1622 	}
1623 	if (!file)
1624 		kfree(ra);
1625 	kfree(pages);
1626 	return ret;
1627 }
1628 
1629 static noinline int btrfs_ioctl_resize(struct file *file,
1630 					void __user *arg)
1631 {
1632 	struct inode *inode = file_inode(file);
1633 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1634 	u64 new_size;
1635 	u64 old_size;
1636 	u64 devid = 1;
1637 	struct btrfs_root *root = BTRFS_I(inode)->root;
1638 	struct btrfs_ioctl_vol_args *vol_args;
1639 	struct btrfs_trans_handle *trans;
1640 	struct btrfs_device *device = NULL;
1641 	char *sizestr;
1642 	char *retptr;
1643 	char *devstr = NULL;
1644 	int ret = 0;
1645 	int mod = 0;
1646 
1647 	if (!capable(CAP_SYS_ADMIN))
1648 		return -EPERM;
1649 
1650 	ret = mnt_want_write_file(file);
1651 	if (ret)
1652 		return ret;
1653 
1654 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) {
1655 		mnt_drop_write_file(file);
1656 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1657 	}
1658 
1659 	vol_args = memdup_user(arg, sizeof(*vol_args));
1660 	if (IS_ERR(vol_args)) {
1661 		ret = PTR_ERR(vol_args);
1662 		goto out;
1663 	}
1664 
1665 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1666 
1667 	sizestr = vol_args->name;
1668 	devstr = strchr(sizestr, ':');
1669 	if (devstr) {
1670 		sizestr = devstr + 1;
1671 		*devstr = '\0';
1672 		devstr = vol_args->name;
1673 		ret = kstrtoull(devstr, 10, &devid);
1674 		if (ret)
1675 			goto out_free;
1676 		if (!devid) {
1677 			ret = -EINVAL;
1678 			goto out_free;
1679 		}
1680 		btrfs_info(fs_info, "resizing devid %llu", devid);
1681 	}
1682 
1683 	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1684 	if (!device) {
1685 		btrfs_info(fs_info, "resizer unable to find device %llu",
1686 			   devid);
1687 		ret = -ENODEV;
1688 		goto out_free;
1689 	}
1690 
1691 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1692 		btrfs_info(fs_info,
1693 			   "resizer unable to apply on readonly device %llu",
1694 		       devid);
1695 		ret = -EPERM;
1696 		goto out_free;
1697 	}
1698 
1699 	if (!strcmp(sizestr, "max"))
1700 		new_size = device->bdev->bd_inode->i_size;
1701 	else {
1702 		if (sizestr[0] == '-') {
1703 			mod = -1;
1704 			sizestr++;
1705 		} else if (sizestr[0] == '+') {
1706 			mod = 1;
1707 			sizestr++;
1708 		}
1709 		new_size = memparse(sizestr, &retptr);
1710 		if (*retptr != '\0' || new_size == 0) {
1711 			ret = -EINVAL;
1712 			goto out_free;
1713 		}
1714 	}
1715 
1716 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1717 		ret = -EPERM;
1718 		goto out_free;
1719 	}
1720 
1721 	old_size = btrfs_device_get_total_bytes(device);
1722 
1723 	if (mod < 0) {
1724 		if (new_size > old_size) {
1725 			ret = -EINVAL;
1726 			goto out_free;
1727 		}
1728 		new_size = old_size - new_size;
1729 	} else if (mod > 0) {
1730 		if (new_size > ULLONG_MAX - old_size) {
1731 			ret = -ERANGE;
1732 			goto out_free;
1733 		}
1734 		new_size = old_size + new_size;
1735 	}
1736 
1737 	if (new_size < SZ_256M) {
1738 		ret = -EINVAL;
1739 		goto out_free;
1740 	}
1741 	if (new_size > device->bdev->bd_inode->i_size) {
1742 		ret = -EFBIG;
1743 		goto out_free;
1744 	}
1745 
1746 	new_size = round_down(new_size, fs_info->sectorsize);
1747 
1748 	if (new_size > old_size) {
1749 		trans = btrfs_start_transaction(root, 0);
1750 		if (IS_ERR(trans)) {
1751 			ret = PTR_ERR(trans);
1752 			goto out_free;
1753 		}
1754 		ret = btrfs_grow_device(trans, device, new_size);
1755 		btrfs_commit_transaction(trans);
1756 	} else if (new_size < old_size) {
1757 		ret = btrfs_shrink_device(device, new_size);
1758 	} /* equal, nothing need to do */
1759 
1760 	if (ret == 0 && new_size != old_size)
1761 		btrfs_info_in_rcu(fs_info,
1762 			"resize device %s (devid %llu) from %llu to %llu",
1763 			rcu_str_deref(device->name), device->devid,
1764 			old_size, new_size);
1765 out_free:
1766 	kfree(vol_args);
1767 out:
1768 	btrfs_exclop_finish(fs_info);
1769 	mnt_drop_write_file(file);
1770 	return ret;
1771 }
1772 
1773 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1774 				const char *name, unsigned long fd, int subvol,
1775 				bool readonly,
1776 				struct btrfs_qgroup_inherit *inherit)
1777 {
1778 	int namelen;
1779 	int ret = 0;
1780 
1781 	if (!S_ISDIR(file_inode(file)->i_mode))
1782 		return -ENOTDIR;
1783 
1784 	ret = mnt_want_write_file(file);
1785 	if (ret)
1786 		goto out;
1787 
1788 	namelen = strlen(name);
1789 	if (strchr(name, '/')) {
1790 		ret = -EINVAL;
1791 		goto out_drop_write;
1792 	}
1793 
1794 	if (name[0] == '.' &&
1795 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1796 		ret = -EEXIST;
1797 		goto out_drop_write;
1798 	}
1799 
1800 	if (subvol) {
1801 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1802 				     NULL, readonly, inherit);
1803 	} else {
1804 		struct fd src = fdget(fd);
1805 		struct inode *src_inode;
1806 		if (!src.file) {
1807 			ret = -EINVAL;
1808 			goto out_drop_write;
1809 		}
1810 
1811 		src_inode = file_inode(src.file);
1812 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1813 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1814 				   "Snapshot src from another FS");
1815 			ret = -EXDEV;
1816 		} else if (!inode_owner_or_capable(src_inode)) {
1817 			/*
1818 			 * Subvolume creation is not restricted, but snapshots
1819 			 * are limited to own subvolumes only
1820 			 */
1821 			ret = -EPERM;
1822 		} else {
1823 			ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1824 					     BTRFS_I(src_inode)->root,
1825 					     readonly, inherit);
1826 		}
1827 		fdput(src);
1828 	}
1829 out_drop_write:
1830 	mnt_drop_write_file(file);
1831 out:
1832 	return ret;
1833 }
1834 
1835 static noinline int btrfs_ioctl_snap_create(struct file *file,
1836 					    void __user *arg, int subvol)
1837 {
1838 	struct btrfs_ioctl_vol_args *vol_args;
1839 	int ret;
1840 
1841 	if (!S_ISDIR(file_inode(file)->i_mode))
1842 		return -ENOTDIR;
1843 
1844 	vol_args = memdup_user(arg, sizeof(*vol_args));
1845 	if (IS_ERR(vol_args))
1846 		return PTR_ERR(vol_args);
1847 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1848 
1849 	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1850 					subvol, false, NULL);
1851 
1852 	kfree(vol_args);
1853 	return ret;
1854 }
1855 
1856 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1857 					       void __user *arg, int subvol)
1858 {
1859 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1860 	int ret;
1861 	bool readonly = false;
1862 	struct btrfs_qgroup_inherit *inherit = NULL;
1863 
1864 	if (!S_ISDIR(file_inode(file)->i_mode))
1865 		return -ENOTDIR;
1866 
1867 	vol_args = memdup_user(arg, sizeof(*vol_args));
1868 	if (IS_ERR(vol_args))
1869 		return PTR_ERR(vol_args);
1870 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1871 
1872 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1873 		ret = -EOPNOTSUPP;
1874 		goto free_args;
1875 	}
1876 
1877 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1878 		readonly = true;
1879 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1880 		if (vol_args->size > PAGE_SIZE) {
1881 			ret = -EINVAL;
1882 			goto free_args;
1883 		}
1884 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1885 		if (IS_ERR(inherit)) {
1886 			ret = PTR_ERR(inherit);
1887 			goto free_args;
1888 		}
1889 	}
1890 
1891 	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1892 					subvol, readonly, inherit);
1893 	if (ret)
1894 		goto free_inherit;
1895 free_inherit:
1896 	kfree(inherit);
1897 free_args:
1898 	kfree(vol_args);
1899 	return ret;
1900 }
1901 
1902 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1903 						void __user *arg)
1904 {
1905 	struct inode *inode = file_inode(file);
1906 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1907 	struct btrfs_root *root = BTRFS_I(inode)->root;
1908 	int ret = 0;
1909 	u64 flags = 0;
1910 
1911 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1912 		return -EINVAL;
1913 
1914 	down_read(&fs_info->subvol_sem);
1915 	if (btrfs_root_readonly(root))
1916 		flags |= BTRFS_SUBVOL_RDONLY;
1917 	up_read(&fs_info->subvol_sem);
1918 
1919 	if (copy_to_user(arg, &flags, sizeof(flags)))
1920 		ret = -EFAULT;
1921 
1922 	return ret;
1923 }
1924 
1925 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1926 					      void __user *arg)
1927 {
1928 	struct inode *inode = file_inode(file);
1929 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1930 	struct btrfs_root *root = BTRFS_I(inode)->root;
1931 	struct btrfs_trans_handle *trans;
1932 	u64 root_flags;
1933 	u64 flags;
1934 	int ret = 0;
1935 
1936 	if (!inode_owner_or_capable(inode))
1937 		return -EPERM;
1938 
1939 	ret = mnt_want_write_file(file);
1940 	if (ret)
1941 		goto out;
1942 
1943 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1944 		ret = -EINVAL;
1945 		goto out_drop_write;
1946 	}
1947 
1948 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1949 		ret = -EFAULT;
1950 		goto out_drop_write;
1951 	}
1952 
1953 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1954 		ret = -EOPNOTSUPP;
1955 		goto out_drop_write;
1956 	}
1957 
1958 	down_write(&fs_info->subvol_sem);
1959 
1960 	/* nothing to do */
1961 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1962 		goto out_drop_sem;
1963 
1964 	root_flags = btrfs_root_flags(&root->root_item);
1965 	if (flags & BTRFS_SUBVOL_RDONLY) {
1966 		btrfs_set_root_flags(&root->root_item,
1967 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1968 	} else {
1969 		/*
1970 		 * Block RO -> RW transition if this subvolume is involved in
1971 		 * send
1972 		 */
1973 		spin_lock(&root->root_item_lock);
1974 		if (root->send_in_progress == 0) {
1975 			btrfs_set_root_flags(&root->root_item,
1976 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1977 			spin_unlock(&root->root_item_lock);
1978 		} else {
1979 			spin_unlock(&root->root_item_lock);
1980 			btrfs_warn(fs_info,
1981 				   "Attempt to set subvolume %llu read-write during send",
1982 				   root->root_key.objectid);
1983 			ret = -EPERM;
1984 			goto out_drop_sem;
1985 		}
1986 	}
1987 
1988 	trans = btrfs_start_transaction(root, 1);
1989 	if (IS_ERR(trans)) {
1990 		ret = PTR_ERR(trans);
1991 		goto out_reset;
1992 	}
1993 
1994 	ret = btrfs_update_root(trans, fs_info->tree_root,
1995 				&root->root_key, &root->root_item);
1996 	if (ret < 0) {
1997 		btrfs_end_transaction(trans);
1998 		goto out_reset;
1999 	}
2000 
2001 	ret = btrfs_commit_transaction(trans);
2002 
2003 out_reset:
2004 	if (ret)
2005 		btrfs_set_root_flags(&root->root_item, root_flags);
2006 out_drop_sem:
2007 	up_write(&fs_info->subvol_sem);
2008 out_drop_write:
2009 	mnt_drop_write_file(file);
2010 out:
2011 	return ret;
2012 }
2013 
2014 static noinline int key_in_sk(struct btrfs_key *key,
2015 			      struct btrfs_ioctl_search_key *sk)
2016 {
2017 	struct btrfs_key test;
2018 	int ret;
2019 
2020 	test.objectid = sk->min_objectid;
2021 	test.type = sk->min_type;
2022 	test.offset = sk->min_offset;
2023 
2024 	ret = btrfs_comp_cpu_keys(key, &test);
2025 	if (ret < 0)
2026 		return 0;
2027 
2028 	test.objectid = sk->max_objectid;
2029 	test.type = sk->max_type;
2030 	test.offset = sk->max_offset;
2031 
2032 	ret = btrfs_comp_cpu_keys(key, &test);
2033 	if (ret > 0)
2034 		return 0;
2035 	return 1;
2036 }
2037 
2038 static noinline int copy_to_sk(struct btrfs_path *path,
2039 			       struct btrfs_key *key,
2040 			       struct btrfs_ioctl_search_key *sk,
2041 			       size_t *buf_size,
2042 			       char __user *ubuf,
2043 			       unsigned long *sk_offset,
2044 			       int *num_found)
2045 {
2046 	u64 found_transid;
2047 	struct extent_buffer *leaf;
2048 	struct btrfs_ioctl_search_header sh;
2049 	struct btrfs_key test;
2050 	unsigned long item_off;
2051 	unsigned long item_len;
2052 	int nritems;
2053 	int i;
2054 	int slot;
2055 	int ret = 0;
2056 
2057 	leaf = path->nodes[0];
2058 	slot = path->slots[0];
2059 	nritems = btrfs_header_nritems(leaf);
2060 
2061 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2062 		i = nritems;
2063 		goto advance_key;
2064 	}
2065 	found_transid = btrfs_header_generation(leaf);
2066 
2067 	for (i = slot; i < nritems; i++) {
2068 		item_off = btrfs_item_ptr_offset(leaf, i);
2069 		item_len = btrfs_item_size_nr(leaf, i);
2070 
2071 		btrfs_item_key_to_cpu(leaf, key, i);
2072 		if (!key_in_sk(key, sk))
2073 			continue;
2074 
2075 		if (sizeof(sh) + item_len > *buf_size) {
2076 			if (*num_found) {
2077 				ret = 1;
2078 				goto out;
2079 			}
2080 
2081 			/*
2082 			 * return one empty item back for v1, which does not
2083 			 * handle -EOVERFLOW
2084 			 */
2085 
2086 			*buf_size = sizeof(sh) + item_len;
2087 			item_len = 0;
2088 			ret = -EOVERFLOW;
2089 		}
2090 
2091 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2092 			ret = 1;
2093 			goto out;
2094 		}
2095 
2096 		sh.objectid = key->objectid;
2097 		sh.offset = key->offset;
2098 		sh.type = key->type;
2099 		sh.len = item_len;
2100 		sh.transid = found_transid;
2101 
2102 		/*
2103 		 * Copy search result header. If we fault then loop again so we
2104 		 * can fault in the pages and -EFAULT there if there's a
2105 		 * problem. Otherwise we'll fault and then copy the buffer in
2106 		 * properly this next time through
2107 		 */
2108 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2109 			ret = 0;
2110 			goto out;
2111 		}
2112 
2113 		*sk_offset += sizeof(sh);
2114 
2115 		if (item_len) {
2116 			char __user *up = ubuf + *sk_offset;
2117 			/*
2118 			 * Copy the item, same behavior as above, but reset the
2119 			 * * sk_offset so we copy the full thing again.
2120 			 */
2121 			if (read_extent_buffer_to_user_nofault(leaf, up,
2122 						item_off, item_len)) {
2123 				ret = 0;
2124 				*sk_offset -= sizeof(sh);
2125 				goto out;
2126 			}
2127 
2128 			*sk_offset += item_len;
2129 		}
2130 		(*num_found)++;
2131 
2132 		if (ret) /* -EOVERFLOW from above */
2133 			goto out;
2134 
2135 		if (*num_found >= sk->nr_items) {
2136 			ret = 1;
2137 			goto out;
2138 		}
2139 	}
2140 advance_key:
2141 	ret = 0;
2142 	test.objectid = sk->max_objectid;
2143 	test.type = sk->max_type;
2144 	test.offset = sk->max_offset;
2145 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2146 		ret = 1;
2147 	else if (key->offset < (u64)-1)
2148 		key->offset++;
2149 	else if (key->type < (u8)-1) {
2150 		key->offset = 0;
2151 		key->type++;
2152 	} else if (key->objectid < (u64)-1) {
2153 		key->offset = 0;
2154 		key->type = 0;
2155 		key->objectid++;
2156 	} else
2157 		ret = 1;
2158 out:
2159 	/*
2160 	 *  0: all items from this leaf copied, continue with next
2161 	 *  1: * more items can be copied, but unused buffer is too small
2162 	 *     * all items were found
2163 	 *     Either way, it will stops the loop which iterates to the next
2164 	 *     leaf
2165 	 *  -EOVERFLOW: item was to large for buffer
2166 	 *  -EFAULT: could not copy extent buffer back to userspace
2167 	 */
2168 	return ret;
2169 }
2170 
2171 static noinline int search_ioctl(struct inode *inode,
2172 				 struct btrfs_ioctl_search_key *sk,
2173 				 size_t *buf_size,
2174 				 char __user *ubuf)
2175 {
2176 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2177 	struct btrfs_root *root;
2178 	struct btrfs_key key;
2179 	struct btrfs_path *path;
2180 	int ret;
2181 	int num_found = 0;
2182 	unsigned long sk_offset = 0;
2183 
2184 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2185 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2186 		return -EOVERFLOW;
2187 	}
2188 
2189 	path = btrfs_alloc_path();
2190 	if (!path)
2191 		return -ENOMEM;
2192 
2193 	if (sk->tree_id == 0) {
2194 		/* search the root of the inode that was passed */
2195 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2196 	} else {
2197 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2198 		if (IS_ERR(root)) {
2199 			btrfs_free_path(path);
2200 			return PTR_ERR(root);
2201 		}
2202 	}
2203 
2204 	key.objectid = sk->min_objectid;
2205 	key.type = sk->min_type;
2206 	key.offset = sk->min_offset;
2207 
2208 	while (1) {
2209 		ret = fault_in_pages_writeable(ubuf + sk_offset,
2210 					       *buf_size - sk_offset);
2211 		if (ret)
2212 			break;
2213 
2214 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2215 		if (ret != 0) {
2216 			if (ret > 0)
2217 				ret = 0;
2218 			goto err;
2219 		}
2220 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2221 				 &sk_offset, &num_found);
2222 		btrfs_release_path(path);
2223 		if (ret)
2224 			break;
2225 
2226 	}
2227 	if (ret > 0)
2228 		ret = 0;
2229 err:
2230 	sk->nr_items = num_found;
2231 	btrfs_put_root(root);
2232 	btrfs_free_path(path);
2233 	return ret;
2234 }
2235 
2236 static noinline int btrfs_ioctl_tree_search(struct file *file,
2237 					   void __user *argp)
2238 {
2239 	struct btrfs_ioctl_search_args __user *uargs;
2240 	struct btrfs_ioctl_search_key sk;
2241 	struct inode *inode;
2242 	int ret;
2243 	size_t buf_size;
2244 
2245 	if (!capable(CAP_SYS_ADMIN))
2246 		return -EPERM;
2247 
2248 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2249 
2250 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2251 		return -EFAULT;
2252 
2253 	buf_size = sizeof(uargs->buf);
2254 
2255 	inode = file_inode(file);
2256 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2257 
2258 	/*
2259 	 * In the origin implementation an overflow is handled by returning a
2260 	 * search header with a len of zero, so reset ret.
2261 	 */
2262 	if (ret == -EOVERFLOW)
2263 		ret = 0;
2264 
2265 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2266 		ret = -EFAULT;
2267 	return ret;
2268 }
2269 
2270 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2271 					       void __user *argp)
2272 {
2273 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2274 	struct btrfs_ioctl_search_args_v2 args;
2275 	struct inode *inode;
2276 	int ret;
2277 	size_t buf_size;
2278 	const size_t buf_limit = SZ_16M;
2279 
2280 	if (!capable(CAP_SYS_ADMIN))
2281 		return -EPERM;
2282 
2283 	/* copy search header and buffer size */
2284 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2285 	if (copy_from_user(&args, uarg, sizeof(args)))
2286 		return -EFAULT;
2287 
2288 	buf_size = args.buf_size;
2289 
2290 	/* limit result size to 16MB */
2291 	if (buf_size > buf_limit)
2292 		buf_size = buf_limit;
2293 
2294 	inode = file_inode(file);
2295 	ret = search_ioctl(inode, &args.key, &buf_size,
2296 			   (char __user *)(&uarg->buf[0]));
2297 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2298 		ret = -EFAULT;
2299 	else if (ret == -EOVERFLOW &&
2300 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2301 		ret = -EFAULT;
2302 
2303 	return ret;
2304 }
2305 
2306 /*
2307  * Search INODE_REFs to identify path name of 'dirid' directory
2308  * in a 'tree_id' tree. and sets path name to 'name'.
2309  */
2310 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2311 				u64 tree_id, u64 dirid, char *name)
2312 {
2313 	struct btrfs_root *root;
2314 	struct btrfs_key key;
2315 	char *ptr;
2316 	int ret = -1;
2317 	int slot;
2318 	int len;
2319 	int total_len = 0;
2320 	struct btrfs_inode_ref *iref;
2321 	struct extent_buffer *l;
2322 	struct btrfs_path *path;
2323 
2324 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2325 		name[0]='\0';
2326 		return 0;
2327 	}
2328 
2329 	path = btrfs_alloc_path();
2330 	if (!path)
2331 		return -ENOMEM;
2332 
2333 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2334 
2335 	root = btrfs_get_fs_root(info, tree_id, true);
2336 	if (IS_ERR(root)) {
2337 		ret = PTR_ERR(root);
2338 		root = NULL;
2339 		goto out;
2340 	}
2341 
2342 	key.objectid = dirid;
2343 	key.type = BTRFS_INODE_REF_KEY;
2344 	key.offset = (u64)-1;
2345 
2346 	while (1) {
2347 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2348 		if (ret < 0)
2349 			goto out;
2350 		else if (ret > 0) {
2351 			ret = btrfs_previous_item(root, path, dirid,
2352 						  BTRFS_INODE_REF_KEY);
2353 			if (ret < 0)
2354 				goto out;
2355 			else if (ret > 0) {
2356 				ret = -ENOENT;
2357 				goto out;
2358 			}
2359 		}
2360 
2361 		l = path->nodes[0];
2362 		slot = path->slots[0];
2363 		btrfs_item_key_to_cpu(l, &key, slot);
2364 
2365 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2366 		len = btrfs_inode_ref_name_len(l, iref);
2367 		ptr -= len + 1;
2368 		total_len += len + 1;
2369 		if (ptr < name) {
2370 			ret = -ENAMETOOLONG;
2371 			goto out;
2372 		}
2373 
2374 		*(ptr + len) = '/';
2375 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2376 
2377 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2378 			break;
2379 
2380 		btrfs_release_path(path);
2381 		key.objectid = key.offset;
2382 		key.offset = (u64)-1;
2383 		dirid = key.objectid;
2384 	}
2385 	memmove(name, ptr, total_len);
2386 	name[total_len] = '\0';
2387 	ret = 0;
2388 out:
2389 	btrfs_put_root(root);
2390 	btrfs_free_path(path);
2391 	return ret;
2392 }
2393 
2394 static int btrfs_search_path_in_tree_user(struct inode *inode,
2395 				struct btrfs_ioctl_ino_lookup_user_args *args)
2396 {
2397 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2398 	struct super_block *sb = inode->i_sb;
2399 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2400 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2401 	u64 dirid = args->dirid;
2402 	unsigned long item_off;
2403 	unsigned long item_len;
2404 	struct btrfs_inode_ref *iref;
2405 	struct btrfs_root_ref *rref;
2406 	struct btrfs_root *root = NULL;
2407 	struct btrfs_path *path;
2408 	struct btrfs_key key, key2;
2409 	struct extent_buffer *leaf;
2410 	struct inode *temp_inode;
2411 	char *ptr;
2412 	int slot;
2413 	int len;
2414 	int total_len = 0;
2415 	int ret;
2416 
2417 	path = btrfs_alloc_path();
2418 	if (!path)
2419 		return -ENOMEM;
2420 
2421 	/*
2422 	 * If the bottom subvolume does not exist directly under upper_limit,
2423 	 * construct the path in from the bottom up.
2424 	 */
2425 	if (dirid != upper_limit.objectid) {
2426 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2427 
2428 		root = btrfs_get_fs_root(fs_info, treeid, true);
2429 		if (IS_ERR(root)) {
2430 			ret = PTR_ERR(root);
2431 			goto out;
2432 		}
2433 
2434 		key.objectid = dirid;
2435 		key.type = BTRFS_INODE_REF_KEY;
2436 		key.offset = (u64)-1;
2437 		while (1) {
2438 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2439 			if (ret < 0) {
2440 				goto out_put;
2441 			} else if (ret > 0) {
2442 				ret = btrfs_previous_item(root, path, dirid,
2443 							  BTRFS_INODE_REF_KEY);
2444 				if (ret < 0) {
2445 					goto out_put;
2446 				} else if (ret > 0) {
2447 					ret = -ENOENT;
2448 					goto out_put;
2449 				}
2450 			}
2451 
2452 			leaf = path->nodes[0];
2453 			slot = path->slots[0];
2454 			btrfs_item_key_to_cpu(leaf, &key, slot);
2455 
2456 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2457 			len = btrfs_inode_ref_name_len(leaf, iref);
2458 			ptr -= len + 1;
2459 			total_len += len + 1;
2460 			if (ptr < args->path) {
2461 				ret = -ENAMETOOLONG;
2462 				goto out_put;
2463 			}
2464 
2465 			*(ptr + len) = '/';
2466 			read_extent_buffer(leaf, ptr,
2467 					(unsigned long)(iref + 1), len);
2468 
2469 			/* Check the read+exec permission of this directory */
2470 			ret = btrfs_previous_item(root, path, dirid,
2471 						  BTRFS_INODE_ITEM_KEY);
2472 			if (ret < 0) {
2473 				goto out_put;
2474 			} else if (ret > 0) {
2475 				ret = -ENOENT;
2476 				goto out_put;
2477 			}
2478 
2479 			leaf = path->nodes[0];
2480 			slot = path->slots[0];
2481 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2482 			if (key2.objectid != dirid) {
2483 				ret = -ENOENT;
2484 				goto out_put;
2485 			}
2486 
2487 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2488 			if (IS_ERR(temp_inode)) {
2489 				ret = PTR_ERR(temp_inode);
2490 				goto out_put;
2491 			}
2492 			ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2493 			iput(temp_inode);
2494 			if (ret) {
2495 				ret = -EACCES;
2496 				goto out_put;
2497 			}
2498 
2499 			if (key.offset == upper_limit.objectid)
2500 				break;
2501 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2502 				ret = -EACCES;
2503 				goto out_put;
2504 			}
2505 
2506 			btrfs_release_path(path);
2507 			key.objectid = key.offset;
2508 			key.offset = (u64)-1;
2509 			dirid = key.objectid;
2510 		}
2511 
2512 		memmove(args->path, ptr, total_len);
2513 		args->path[total_len] = '\0';
2514 		btrfs_put_root(root);
2515 		root = NULL;
2516 		btrfs_release_path(path);
2517 	}
2518 
2519 	/* Get the bottom subvolume's name from ROOT_REF */
2520 	key.objectid = treeid;
2521 	key.type = BTRFS_ROOT_REF_KEY;
2522 	key.offset = args->treeid;
2523 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2524 	if (ret < 0) {
2525 		goto out;
2526 	} else if (ret > 0) {
2527 		ret = -ENOENT;
2528 		goto out;
2529 	}
2530 
2531 	leaf = path->nodes[0];
2532 	slot = path->slots[0];
2533 	btrfs_item_key_to_cpu(leaf, &key, slot);
2534 
2535 	item_off = btrfs_item_ptr_offset(leaf, slot);
2536 	item_len = btrfs_item_size_nr(leaf, slot);
2537 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2538 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2539 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2540 		ret = -EINVAL;
2541 		goto out;
2542 	}
2543 
2544 	/* Copy subvolume's name */
2545 	item_off += sizeof(struct btrfs_root_ref);
2546 	item_len -= sizeof(struct btrfs_root_ref);
2547 	read_extent_buffer(leaf, args->name, item_off, item_len);
2548 	args->name[item_len] = 0;
2549 
2550 out_put:
2551 	btrfs_put_root(root);
2552 out:
2553 	btrfs_free_path(path);
2554 	return ret;
2555 }
2556 
2557 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2558 					   void __user *argp)
2559 {
2560 	struct btrfs_ioctl_ino_lookup_args *args;
2561 	struct inode *inode;
2562 	int ret = 0;
2563 
2564 	args = memdup_user(argp, sizeof(*args));
2565 	if (IS_ERR(args))
2566 		return PTR_ERR(args);
2567 
2568 	inode = file_inode(file);
2569 
2570 	/*
2571 	 * Unprivileged query to obtain the containing subvolume root id. The
2572 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2573 	 */
2574 	if (args->treeid == 0)
2575 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2576 
2577 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2578 		args->name[0] = 0;
2579 		goto out;
2580 	}
2581 
2582 	if (!capable(CAP_SYS_ADMIN)) {
2583 		ret = -EPERM;
2584 		goto out;
2585 	}
2586 
2587 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2588 					args->treeid, args->objectid,
2589 					args->name);
2590 
2591 out:
2592 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2593 		ret = -EFAULT;
2594 
2595 	kfree(args);
2596 	return ret;
2597 }
2598 
2599 /*
2600  * Version of ino_lookup ioctl (unprivileged)
2601  *
2602  * The main differences from ino_lookup ioctl are:
2603  *
2604  *   1. Read + Exec permission will be checked using inode_permission() during
2605  *      path construction. -EACCES will be returned in case of failure.
2606  *   2. Path construction will be stopped at the inode number which corresponds
2607  *      to the fd with which this ioctl is called. If constructed path does not
2608  *      exist under fd's inode, -EACCES will be returned.
2609  *   3. The name of bottom subvolume is also searched and filled.
2610  */
2611 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2612 {
2613 	struct btrfs_ioctl_ino_lookup_user_args *args;
2614 	struct inode *inode;
2615 	int ret;
2616 
2617 	args = memdup_user(argp, sizeof(*args));
2618 	if (IS_ERR(args))
2619 		return PTR_ERR(args);
2620 
2621 	inode = file_inode(file);
2622 
2623 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2624 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2625 		/*
2626 		 * The subvolume does not exist under fd with which this is
2627 		 * called
2628 		 */
2629 		kfree(args);
2630 		return -EACCES;
2631 	}
2632 
2633 	ret = btrfs_search_path_in_tree_user(inode, args);
2634 
2635 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2636 		ret = -EFAULT;
2637 
2638 	kfree(args);
2639 	return ret;
2640 }
2641 
2642 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2643 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2644 {
2645 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2646 	struct btrfs_fs_info *fs_info;
2647 	struct btrfs_root *root;
2648 	struct btrfs_path *path;
2649 	struct btrfs_key key;
2650 	struct btrfs_root_item *root_item;
2651 	struct btrfs_root_ref *rref;
2652 	struct extent_buffer *leaf;
2653 	unsigned long item_off;
2654 	unsigned long item_len;
2655 	struct inode *inode;
2656 	int slot;
2657 	int ret = 0;
2658 
2659 	path = btrfs_alloc_path();
2660 	if (!path)
2661 		return -ENOMEM;
2662 
2663 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2664 	if (!subvol_info) {
2665 		btrfs_free_path(path);
2666 		return -ENOMEM;
2667 	}
2668 
2669 	inode = file_inode(file);
2670 	fs_info = BTRFS_I(inode)->root->fs_info;
2671 
2672 	/* Get root_item of inode's subvolume */
2673 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2674 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2675 	if (IS_ERR(root)) {
2676 		ret = PTR_ERR(root);
2677 		goto out_free;
2678 	}
2679 	root_item = &root->root_item;
2680 
2681 	subvol_info->treeid = key.objectid;
2682 
2683 	subvol_info->generation = btrfs_root_generation(root_item);
2684 	subvol_info->flags = btrfs_root_flags(root_item);
2685 
2686 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2687 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2688 						    BTRFS_UUID_SIZE);
2689 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2690 						    BTRFS_UUID_SIZE);
2691 
2692 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2693 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2694 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2695 
2696 	subvol_info->otransid = btrfs_root_otransid(root_item);
2697 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2698 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2699 
2700 	subvol_info->stransid = btrfs_root_stransid(root_item);
2701 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2702 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2703 
2704 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2705 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2706 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2707 
2708 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2709 		/* Search root tree for ROOT_BACKREF of this subvolume */
2710 		key.type = BTRFS_ROOT_BACKREF_KEY;
2711 		key.offset = 0;
2712 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2713 		if (ret < 0) {
2714 			goto out;
2715 		} else if (path->slots[0] >=
2716 			   btrfs_header_nritems(path->nodes[0])) {
2717 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2718 			if (ret < 0) {
2719 				goto out;
2720 			} else if (ret > 0) {
2721 				ret = -EUCLEAN;
2722 				goto out;
2723 			}
2724 		}
2725 
2726 		leaf = path->nodes[0];
2727 		slot = path->slots[0];
2728 		btrfs_item_key_to_cpu(leaf, &key, slot);
2729 		if (key.objectid == subvol_info->treeid &&
2730 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2731 			subvol_info->parent_id = key.offset;
2732 
2733 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2734 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2735 
2736 			item_off = btrfs_item_ptr_offset(leaf, slot)
2737 					+ sizeof(struct btrfs_root_ref);
2738 			item_len = btrfs_item_size_nr(leaf, slot)
2739 					- sizeof(struct btrfs_root_ref);
2740 			read_extent_buffer(leaf, subvol_info->name,
2741 					   item_off, item_len);
2742 		} else {
2743 			ret = -ENOENT;
2744 			goto out;
2745 		}
2746 	}
2747 
2748 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2749 		ret = -EFAULT;
2750 
2751 out:
2752 	btrfs_put_root(root);
2753 out_free:
2754 	btrfs_free_path(path);
2755 	kfree(subvol_info);
2756 	return ret;
2757 }
2758 
2759 /*
2760  * Return ROOT_REF information of the subvolume containing this inode
2761  * except the subvolume name.
2762  */
2763 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2764 {
2765 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2766 	struct btrfs_root_ref *rref;
2767 	struct btrfs_root *root;
2768 	struct btrfs_path *path;
2769 	struct btrfs_key key;
2770 	struct extent_buffer *leaf;
2771 	struct inode *inode;
2772 	u64 objectid;
2773 	int slot;
2774 	int ret;
2775 	u8 found;
2776 
2777 	path = btrfs_alloc_path();
2778 	if (!path)
2779 		return -ENOMEM;
2780 
2781 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2782 	if (IS_ERR(rootrefs)) {
2783 		btrfs_free_path(path);
2784 		return PTR_ERR(rootrefs);
2785 	}
2786 
2787 	inode = file_inode(file);
2788 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2789 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2790 
2791 	key.objectid = objectid;
2792 	key.type = BTRFS_ROOT_REF_KEY;
2793 	key.offset = rootrefs->min_treeid;
2794 	found = 0;
2795 
2796 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2797 	if (ret < 0) {
2798 		goto out;
2799 	} else if (path->slots[0] >=
2800 		   btrfs_header_nritems(path->nodes[0])) {
2801 		ret = btrfs_next_leaf(root, path);
2802 		if (ret < 0) {
2803 			goto out;
2804 		} else if (ret > 0) {
2805 			ret = -EUCLEAN;
2806 			goto out;
2807 		}
2808 	}
2809 	while (1) {
2810 		leaf = path->nodes[0];
2811 		slot = path->slots[0];
2812 
2813 		btrfs_item_key_to_cpu(leaf, &key, slot);
2814 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2815 			ret = 0;
2816 			goto out;
2817 		}
2818 
2819 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2820 			ret = -EOVERFLOW;
2821 			goto out;
2822 		}
2823 
2824 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2825 		rootrefs->rootref[found].treeid = key.offset;
2826 		rootrefs->rootref[found].dirid =
2827 				  btrfs_root_ref_dirid(leaf, rref);
2828 		found++;
2829 
2830 		ret = btrfs_next_item(root, path);
2831 		if (ret < 0) {
2832 			goto out;
2833 		} else if (ret > 0) {
2834 			ret = -EUCLEAN;
2835 			goto out;
2836 		}
2837 	}
2838 
2839 out:
2840 	if (!ret || ret == -EOVERFLOW) {
2841 		rootrefs->num_items = found;
2842 		/* update min_treeid for next search */
2843 		if (found)
2844 			rootrefs->min_treeid =
2845 				rootrefs->rootref[found - 1].treeid + 1;
2846 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2847 			ret = -EFAULT;
2848 	}
2849 
2850 	kfree(rootrefs);
2851 	btrfs_free_path(path);
2852 
2853 	return ret;
2854 }
2855 
2856 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2857 					     void __user *arg,
2858 					     bool destroy_v2)
2859 {
2860 	struct dentry *parent = file->f_path.dentry;
2861 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2862 	struct dentry *dentry;
2863 	struct inode *dir = d_inode(parent);
2864 	struct inode *inode;
2865 	struct btrfs_root *root = BTRFS_I(dir)->root;
2866 	struct btrfs_root *dest = NULL;
2867 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2868 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2869 	char *subvol_name, *subvol_name_ptr = NULL;
2870 	int subvol_namelen;
2871 	int err = 0;
2872 	bool destroy_parent = false;
2873 
2874 	if (destroy_v2) {
2875 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2876 		if (IS_ERR(vol_args2))
2877 			return PTR_ERR(vol_args2);
2878 
2879 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2880 			err = -EOPNOTSUPP;
2881 			goto out;
2882 		}
2883 
2884 		/*
2885 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2886 		 * name, same as v1 currently does.
2887 		 */
2888 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2889 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2890 			subvol_name = vol_args2->name;
2891 
2892 			err = mnt_want_write_file(file);
2893 			if (err)
2894 				goto out;
2895 		} else {
2896 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2897 				err = -EINVAL;
2898 				goto out;
2899 			}
2900 
2901 			err = mnt_want_write_file(file);
2902 			if (err)
2903 				goto out;
2904 
2905 			dentry = btrfs_get_dentry(fs_info->sb,
2906 					BTRFS_FIRST_FREE_OBJECTID,
2907 					vol_args2->subvolid, 0, 0);
2908 			if (IS_ERR(dentry)) {
2909 				err = PTR_ERR(dentry);
2910 				goto out_drop_write;
2911 			}
2912 
2913 			/*
2914 			 * Change the default parent since the subvolume being
2915 			 * deleted can be outside of the current mount point.
2916 			 */
2917 			parent = btrfs_get_parent(dentry);
2918 
2919 			/*
2920 			 * At this point dentry->d_name can point to '/' if the
2921 			 * subvolume we want to destroy is outsite of the
2922 			 * current mount point, so we need to release the
2923 			 * current dentry and execute the lookup to return a new
2924 			 * one with ->d_name pointing to the
2925 			 * <mount point>/subvol_name.
2926 			 */
2927 			dput(dentry);
2928 			if (IS_ERR(parent)) {
2929 				err = PTR_ERR(parent);
2930 				goto out_drop_write;
2931 			}
2932 			dir = d_inode(parent);
2933 
2934 			/*
2935 			 * If v2 was used with SPEC_BY_ID, a new parent was
2936 			 * allocated since the subvolume can be outside of the
2937 			 * current mount point. Later on we need to release this
2938 			 * new parent dentry.
2939 			 */
2940 			destroy_parent = true;
2941 
2942 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2943 						fs_info, vol_args2->subvolid);
2944 			if (IS_ERR(subvol_name_ptr)) {
2945 				err = PTR_ERR(subvol_name_ptr);
2946 				goto free_parent;
2947 			}
2948 			/* subvol_name_ptr is already NULL termined */
2949 			subvol_name = (char *)kbasename(subvol_name_ptr);
2950 		}
2951 	} else {
2952 		vol_args = memdup_user(arg, sizeof(*vol_args));
2953 		if (IS_ERR(vol_args))
2954 			return PTR_ERR(vol_args);
2955 
2956 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2957 		subvol_name = vol_args->name;
2958 
2959 		err = mnt_want_write_file(file);
2960 		if (err)
2961 			goto out;
2962 	}
2963 
2964 	subvol_namelen = strlen(subvol_name);
2965 
2966 	if (strchr(subvol_name, '/') ||
2967 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2968 		err = -EINVAL;
2969 		goto free_subvol_name;
2970 	}
2971 
2972 	if (!S_ISDIR(dir->i_mode)) {
2973 		err = -ENOTDIR;
2974 		goto free_subvol_name;
2975 	}
2976 
2977 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2978 	if (err == -EINTR)
2979 		goto free_subvol_name;
2980 	dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
2981 	if (IS_ERR(dentry)) {
2982 		err = PTR_ERR(dentry);
2983 		goto out_unlock_dir;
2984 	}
2985 
2986 	if (d_really_is_negative(dentry)) {
2987 		err = -ENOENT;
2988 		goto out_dput;
2989 	}
2990 
2991 	inode = d_inode(dentry);
2992 	dest = BTRFS_I(inode)->root;
2993 	if (!capable(CAP_SYS_ADMIN)) {
2994 		/*
2995 		 * Regular user.  Only allow this with a special mount
2996 		 * option, when the user has write+exec access to the
2997 		 * subvol root, and when rmdir(2) would have been
2998 		 * allowed.
2999 		 *
3000 		 * Note that this is _not_ check that the subvol is
3001 		 * empty or doesn't contain data that we wouldn't
3002 		 * otherwise be able to delete.
3003 		 *
3004 		 * Users who want to delete empty subvols should try
3005 		 * rmdir(2).
3006 		 */
3007 		err = -EPERM;
3008 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3009 			goto out_dput;
3010 
3011 		/*
3012 		 * Do not allow deletion if the parent dir is the same
3013 		 * as the dir to be deleted.  That means the ioctl
3014 		 * must be called on the dentry referencing the root
3015 		 * of the subvol, not a random directory contained
3016 		 * within it.
3017 		 */
3018 		err = -EINVAL;
3019 		if (root == dest)
3020 			goto out_dput;
3021 
3022 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
3023 		if (err)
3024 			goto out_dput;
3025 	}
3026 
3027 	/* check if subvolume may be deleted by a user */
3028 	err = btrfs_may_delete(dir, dentry, 1);
3029 	if (err)
3030 		goto out_dput;
3031 
3032 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3033 		err = -EINVAL;
3034 		goto out_dput;
3035 	}
3036 
3037 	inode_lock(inode);
3038 	err = btrfs_delete_subvolume(dir, dentry);
3039 	inode_unlock(inode);
3040 	if (!err) {
3041 		fsnotify_rmdir(dir, dentry);
3042 		d_delete(dentry);
3043 	}
3044 
3045 out_dput:
3046 	dput(dentry);
3047 out_unlock_dir:
3048 	inode_unlock(dir);
3049 free_subvol_name:
3050 	kfree(subvol_name_ptr);
3051 free_parent:
3052 	if (destroy_parent)
3053 		dput(parent);
3054 out_drop_write:
3055 	mnt_drop_write_file(file);
3056 out:
3057 	kfree(vol_args2);
3058 	kfree(vol_args);
3059 	return err;
3060 }
3061 
3062 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3063 {
3064 	struct inode *inode = file_inode(file);
3065 	struct btrfs_root *root = BTRFS_I(inode)->root;
3066 	struct btrfs_ioctl_defrag_range_args *range;
3067 	int ret;
3068 
3069 	ret = mnt_want_write_file(file);
3070 	if (ret)
3071 		return ret;
3072 
3073 	if (btrfs_root_readonly(root)) {
3074 		ret = -EROFS;
3075 		goto out;
3076 	}
3077 
3078 	switch (inode->i_mode & S_IFMT) {
3079 	case S_IFDIR:
3080 		if (!capable(CAP_SYS_ADMIN)) {
3081 			ret = -EPERM;
3082 			goto out;
3083 		}
3084 		ret = btrfs_defrag_root(root);
3085 		break;
3086 	case S_IFREG:
3087 		/*
3088 		 * Note that this does not check the file descriptor for write
3089 		 * access. This prevents defragmenting executables that are
3090 		 * running and allows defrag on files open in read-only mode.
3091 		 */
3092 		if (!capable(CAP_SYS_ADMIN) &&
3093 		    inode_permission(inode, MAY_WRITE)) {
3094 			ret = -EPERM;
3095 			goto out;
3096 		}
3097 
3098 		range = kzalloc(sizeof(*range), GFP_KERNEL);
3099 		if (!range) {
3100 			ret = -ENOMEM;
3101 			goto out;
3102 		}
3103 
3104 		if (argp) {
3105 			if (copy_from_user(range, argp,
3106 					   sizeof(*range))) {
3107 				ret = -EFAULT;
3108 				kfree(range);
3109 				goto out;
3110 			}
3111 			/* compression requires us to start the IO */
3112 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3113 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3114 				range->extent_thresh = (u32)-1;
3115 			}
3116 		} else {
3117 			/* the rest are all set to zero by kzalloc */
3118 			range->len = (u64)-1;
3119 		}
3120 		ret = btrfs_defrag_file(file_inode(file), file,
3121 					range, BTRFS_OLDEST_GENERATION, 0);
3122 		if (ret > 0)
3123 			ret = 0;
3124 		kfree(range);
3125 		break;
3126 	default:
3127 		ret = -EINVAL;
3128 	}
3129 out:
3130 	mnt_drop_write_file(file);
3131 	return ret;
3132 }
3133 
3134 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3135 {
3136 	struct btrfs_ioctl_vol_args *vol_args;
3137 	int ret;
3138 
3139 	if (!capable(CAP_SYS_ADMIN))
3140 		return -EPERM;
3141 
3142 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3143 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3144 
3145 	vol_args = memdup_user(arg, sizeof(*vol_args));
3146 	if (IS_ERR(vol_args)) {
3147 		ret = PTR_ERR(vol_args);
3148 		goto out;
3149 	}
3150 
3151 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3152 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3153 
3154 	if (!ret)
3155 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3156 
3157 	kfree(vol_args);
3158 out:
3159 	btrfs_exclop_finish(fs_info);
3160 	return ret;
3161 }
3162 
3163 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3164 {
3165 	struct inode *inode = file_inode(file);
3166 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3167 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3168 	int ret;
3169 
3170 	if (!capable(CAP_SYS_ADMIN))
3171 		return -EPERM;
3172 
3173 	ret = mnt_want_write_file(file);
3174 	if (ret)
3175 		return ret;
3176 
3177 	vol_args = memdup_user(arg, sizeof(*vol_args));
3178 	if (IS_ERR(vol_args)) {
3179 		ret = PTR_ERR(vol_args);
3180 		goto err_drop;
3181 	}
3182 
3183 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3184 		ret = -EOPNOTSUPP;
3185 		goto out;
3186 	}
3187 
3188 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3189 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3190 		goto out;
3191 	}
3192 
3193 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3194 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3195 	} else {
3196 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3197 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3198 	}
3199 	btrfs_exclop_finish(fs_info);
3200 
3201 	if (!ret) {
3202 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3203 			btrfs_info(fs_info, "device deleted: id %llu",
3204 					vol_args->devid);
3205 		else
3206 			btrfs_info(fs_info, "device deleted: %s",
3207 					vol_args->name);
3208 	}
3209 out:
3210 	kfree(vol_args);
3211 err_drop:
3212 	mnt_drop_write_file(file);
3213 	return ret;
3214 }
3215 
3216 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3217 {
3218 	struct inode *inode = file_inode(file);
3219 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3220 	struct btrfs_ioctl_vol_args *vol_args;
3221 	int ret;
3222 
3223 	if (!capable(CAP_SYS_ADMIN))
3224 		return -EPERM;
3225 
3226 	ret = mnt_want_write_file(file);
3227 	if (ret)
3228 		return ret;
3229 
3230 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3231 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3232 		goto out_drop_write;
3233 	}
3234 
3235 	vol_args = memdup_user(arg, sizeof(*vol_args));
3236 	if (IS_ERR(vol_args)) {
3237 		ret = PTR_ERR(vol_args);
3238 		goto out;
3239 	}
3240 
3241 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3242 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3243 
3244 	if (!ret)
3245 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3246 	kfree(vol_args);
3247 out:
3248 	btrfs_exclop_finish(fs_info);
3249 out_drop_write:
3250 	mnt_drop_write_file(file);
3251 
3252 	return ret;
3253 }
3254 
3255 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3256 				void __user *arg)
3257 {
3258 	struct btrfs_ioctl_fs_info_args *fi_args;
3259 	struct btrfs_device *device;
3260 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3261 	u64 flags_in;
3262 	int ret = 0;
3263 
3264 	fi_args = memdup_user(arg, sizeof(*fi_args));
3265 	if (IS_ERR(fi_args))
3266 		return PTR_ERR(fi_args);
3267 
3268 	flags_in = fi_args->flags;
3269 	memset(fi_args, 0, sizeof(*fi_args));
3270 
3271 	rcu_read_lock();
3272 	fi_args->num_devices = fs_devices->num_devices;
3273 
3274 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3275 		if (device->devid > fi_args->max_id)
3276 			fi_args->max_id = device->devid;
3277 	}
3278 	rcu_read_unlock();
3279 
3280 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3281 	fi_args->nodesize = fs_info->nodesize;
3282 	fi_args->sectorsize = fs_info->sectorsize;
3283 	fi_args->clone_alignment = fs_info->sectorsize;
3284 
3285 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3286 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3287 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3288 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3289 	}
3290 
3291 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3292 		fi_args->generation = fs_info->generation;
3293 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3294 	}
3295 
3296 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3297 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3298 		       sizeof(fi_args->metadata_uuid));
3299 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3300 	}
3301 
3302 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3303 		ret = -EFAULT;
3304 
3305 	kfree(fi_args);
3306 	return ret;
3307 }
3308 
3309 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3310 				 void __user *arg)
3311 {
3312 	struct btrfs_ioctl_dev_info_args *di_args;
3313 	struct btrfs_device *dev;
3314 	int ret = 0;
3315 	char *s_uuid = NULL;
3316 
3317 	di_args = memdup_user(arg, sizeof(*di_args));
3318 	if (IS_ERR(di_args))
3319 		return PTR_ERR(di_args);
3320 
3321 	if (!btrfs_is_empty_uuid(di_args->uuid))
3322 		s_uuid = di_args->uuid;
3323 
3324 	rcu_read_lock();
3325 	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3326 				NULL, true);
3327 
3328 	if (!dev) {
3329 		ret = -ENODEV;
3330 		goto out;
3331 	}
3332 
3333 	di_args->devid = dev->devid;
3334 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3335 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3336 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3337 	if (dev->name) {
3338 		strncpy(di_args->path, rcu_str_deref(dev->name),
3339 				sizeof(di_args->path) - 1);
3340 		di_args->path[sizeof(di_args->path) - 1] = 0;
3341 	} else {
3342 		di_args->path[0] = '\0';
3343 	}
3344 
3345 out:
3346 	rcu_read_unlock();
3347 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3348 		ret = -EFAULT;
3349 
3350 	kfree(di_args);
3351 	return ret;
3352 }
3353 
3354 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3355 {
3356 	struct inode *inode = file_inode(file);
3357 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3358 	struct btrfs_root *root = BTRFS_I(inode)->root;
3359 	struct btrfs_root *new_root;
3360 	struct btrfs_dir_item *di;
3361 	struct btrfs_trans_handle *trans;
3362 	struct btrfs_path *path = NULL;
3363 	struct btrfs_disk_key disk_key;
3364 	u64 objectid = 0;
3365 	u64 dir_id;
3366 	int ret;
3367 
3368 	if (!capable(CAP_SYS_ADMIN))
3369 		return -EPERM;
3370 
3371 	ret = mnt_want_write_file(file);
3372 	if (ret)
3373 		return ret;
3374 
3375 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3376 		ret = -EFAULT;
3377 		goto out;
3378 	}
3379 
3380 	if (!objectid)
3381 		objectid = BTRFS_FS_TREE_OBJECTID;
3382 
3383 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3384 	if (IS_ERR(new_root)) {
3385 		ret = PTR_ERR(new_root);
3386 		goto out;
3387 	}
3388 	if (!is_fstree(new_root->root_key.objectid)) {
3389 		ret = -ENOENT;
3390 		goto out_free;
3391 	}
3392 
3393 	path = btrfs_alloc_path();
3394 	if (!path) {
3395 		ret = -ENOMEM;
3396 		goto out_free;
3397 	}
3398 	path->leave_spinning = 1;
3399 
3400 	trans = btrfs_start_transaction(root, 1);
3401 	if (IS_ERR(trans)) {
3402 		ret = PTR_ERR(trans);
3403 		goto out_free;
3404 	}
3405 
3406 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3407 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3408 				   dir_id, "default", 7, 1);
3409 	if (IS_ERR_OR_NULL(di)) {
3410 		btrfs_release_path(path);
3411 		btrfs_end_transaction(trans);
3412 		btrfs_err(fs_info,
3413 			  "Umm, you don't have the default diritem, this isn't going to work");
3414 		ret = -ENOENT;
3415 		goto out_free;
3416 	}
3417 
3418 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3419 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3420 	btrfs_mark_buffer_dirty(path->nodes[0]);
3421 	btrfs_release_path(path);
3422 
3423 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3424 	btrfs_end_transaction(trans);
3425 out_free:
3426 	btrfs_put_root(new_root);
3427 	btrfs_free_path(path);
3428 out:
3429 	mnt_drop_write_file(file);
3430 	return ret;
3431 }
3432 
3433 static void get_block_group_info(struct list_head *groups_list,
3434 				 struct btrfs_ioctl_space_info *space)
3435 {
3436 	struct btrfs_block_group *block_group;
3437 
3438 	space->total_bytes = 0;
3439 	space->used_bytes = 0;
3440 	space->flags = 0;
3441 	list_for_each_entry(block_group, groups_list, list) {
3442 		space->flags = block_group->flags;
3443 		space->total_bytes += block_group->length;
3444 		space->used_bytes += block_group->used;
3445 	}
3446 }
3447 
3448 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3449 				   void __user *arg)
3450 {
3451 	struct btrfs_ioctl_space_args space_args;
3452 	struct btrfs_ioctl_space_info space;
3453 	struct btrfs_ioctl_space_info *dest;
3454 	struct btrfs_ioctl_space_info *dest_orig;
3455 	struct btrfs_ioctl_space_info __user *user_dest;
3456 	struct btrfs_space_info *info;
3457 	static const u64 types[] = {
3458 		BTRFS_BLOCK_GROUP_DATA,
3459 		BTRFS_BLOCK_GROUP_SYSTEM,
3460 		BTRFS_BLOCK_GROUP_METADATA,
3461 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3462 	};
3463 	int num_types = 4;
3464 	int alloc_size;
3465 	int ret = 0;
3466 	u64 slot_count = 0;
3467 	int i, c;
3468 
3469 	if (copy_from_user(&space_args,
3470 			   (struct btrfs_ioctl_space_args __user *)arg,
3471 			   sizeof(space_args)))
3472 		return -EFAULT;
3473 
3474 	for (i = 0; i < num_types; i++) {
3475 		struct btrfs_space_info *tmp;
3476 
3477 		info = NULL;
3478 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3479 			if (tmp->flags == types[i]) {
3480 				info = tmp;
3481 				break;
3482 			}
3483 		}
3484 
3485 		if (!info)
3486 			continue;
3487 
3488 		down_read(&info->groups_sem);
3489 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3490 			if (!list_empty(&info->block_groups[c]))
3491 				slot_count++;
3492 		}
3493 		up_read(&info->groups_sem);
3494 	}
3495 
3496 	/*
3497 	 * Global block reserve, exported as a space_info
3498 	 */
3499 	slot_count++;
3500 
3501 	/* space_slots == 0 means they are asking for a count */
3502 	if (space_args.space_slots == 0) {
3503 		space_args.total_spaces = slot_count;
3504 		goto out;
3505 	}
3506 
3507 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3508 
3509 	alloc_size = sizeof(*dest) * slot_count;
3510 
3511 	/* we generally have at most 6 or so space infos, one for each raid
3512 	 * level.  So, a whole page should be more than enough for everyone
3513 	 */
3514 	if (alloc_size > PAGE_SIZE)
3515 		return -ENOMEM;
3516 
3517 	space_args.total_spaces = 0;
3518 	dest = kmalloc(alloc_size, GFP_KERNEL);
3519 	if (!dest)
3520 		return -ENOMEM;
3521 	dest_orig = dest;
3522 
3523 	/* now we have a buffer to copy into */
3524 	for (i = 0; i < num_types; i++) {
3525 		struct btrfs_space_info *tmp;
3526 
3527 		if (!slot_count)
3528 			break;
3529 
3530 		info = NULL;
3531 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3532 			if (tmp->flags == types[i]) {
3533 				info = tmp;
3534 				break;
3535 			}
3536 		}
3537 
3538 		if (!info)
3539 			continue;
3540 		down_read(&info->groups_sem);
3541 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3542 			if (!list_empty(&info->block_groups[c])) {
3543 				get_block_group_info(&info->block_groups[c],
3544 						     &space);
3545 				memcpy(dest, &space, sizeof(space));
3546 				dest++;
3547 				space_args.total_spaces++;
3548 				slot_count--;
3549 			}
3550 			if (!slot_count)
3551 				break;
3552 		}
3553 		up_read(&info->groups_sem);
3554 	}
3555 
3556 	/*
3557 	 * Add global block reserve
3558 	 */
3559 	if (slot_count) {
3560 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3561 
3562 		spin_lock(&block_rsv->lock);
3563 		space.total_bytes = block_rsv->size;
3564 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3565 		spin_unlock(&block_rsv->lock);
3566 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3567 		memcpy(dest, &space, sizeof(space));
3568 		space_args.total_spaces++;
3569 	}
3570 
3571 	user_dest = (struct btrfs_ioctl_space_info __user *)
3572 		(arg + sizeof(struct btrfs_ioctl_space_args));
3573 
3574 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3575 		ret = -EFAULT;
3576 
3577 	kfree(dest_orig);
3578 out:
3579 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3580 		ret = -EFAULT;
3581 
3582 	return ret;
3583 }
3584 
3585 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3586 					    void __user *argp)
3587 {
3588 	struct btrfs_trans_handle *trans;
3589 	u64 transid;
3590 	int ret;
3591 
3592 	trans = btrfs_attach_transaction_barrier(root);
3593 	if (IS_ERR(trans)) {
3594 		if (PTR_ERR(trans) != -ENOENT)
3595 			return PTR_ERR(trans);
3596 
3597 		/* No running transaction, don't bother */
3598 		transid = root->fs_info->last_trans_committed;
3599 		goto out;
3600 	}
3601 	transid = trans->transid;
3602 	ret = btrfs_commit_transaction_async(trans, 0);
3603 	if (ret) {
3604 		btrfs_end_transaction(trans);
3605 		return ret;
3606 	}
3607 out:
3608 	if (argp)
3609 		if (copy_to_user(argp, &transid, sizeof(transid)))
3610 			return -EFAULT;
3611 	return 0;
3612 }
3613 
3614 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3615 					   void __user *argp)
3616 {
3617 	u64 transid;
3618 
3619 	if (argp) {
3620 		if (copy_from_user(&transid, argp, sizeof(transid)))
3621 			return -EFAULT;
3622 	} else {
3623 		transid = 0;  /* current trans */
3624 	}
3625 	return btrfs_wait_for_commit(fs_info, transid);
3626 }
3627 
3628 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3629 {
3630 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3631 	struct btrfs_ioctl_scrub_args *sa;
3632 	int ret;
3633 
3634 	if (!capable(CAP_SYS_ADMIN))
3635 		return -EPERM;
3636 
3637 	sa = memdup_user(arg, sizeof(*sa));
3638 	if (IS_ERR(sa))
3639 		return PTR_ERR(sa);
3640 
3641 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3642 		ret = mnt_want_write_file(file);
3643 		if (ret)
3644 			goto out;
3645 	}
3646 
3647 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3648 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3649 			      0);
3650 
3651 	/*
3652 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3653 	 * error. This is important as it allows user space to know how much
3654 	 * progress scrub has done. For example, if scrub is canceled we get
3655 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3656 	 * space. Later user space can inspect the progress from the structure
3657 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3658 	 * previously (btrfs-progs does this).
3659 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3660 	 * then return -EFAULT to signal the structure was not copied or it may
3661 	 * be corrupt and unreliable due to a partial copy.
3662 	 */
3663 	if (copy_to_user(arg, sa, sizeof(*sa)))
3664 		ret = -EFAULT;
3665 
3666 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3667 		mnt_drop_write_file(file);
3668 out:
3669 	kfree(sa);
3670 	return ret;
3671 }
3672 
3673 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3674 {
3675 	if (!capable(CAP_SYS_ADMIN))
3676 		return -EPERM;
3677 
3678 	return btrfs_scrub_cancel(fs_info);
3679 }
3680 
3681 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3682 				       void __user *arg)
3683 {
3684 	struct btrfs_ioctl_scrub_args *sa;
3685 	int ret;
3686 
3687 	if (!capable(CAP_SYS_ADMIN))
3688 		return -EPERM;
3689 
3690 	sa = memdup_user(arg, sizeof(*sa));
3691 	if (IS_ERR(sa))
3692 		return PTR_ERR(sa);
3693 
3694 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3695 
3696 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3697 		ret = -EFAULT;
3698 
3699 	kfree(sa);
3700 	return ret;
3701 }
3702 
3703 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3704 				      void __user *arg)
3705 {
3706 	struct btrfs_ioctl_get_dev_stats *sa;
3707 	int ret;
3708 
3709 	sa = memdup_user(arg, sizeof(*sa));
3710 	if (IS_ERR(sa))
3711 		return PTR_ERR(sa);
3712 
3713 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3714 		kfree(sa);
3715 		return -EPERM;
3716 	}
3717 
3718 	ret = btrfs_get_dev_stats(fs_info, sa);
3719 
3720 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3721 		ret = -EFAULT;
3722 
3723 	kfree(sa);
3724 	return ret;
3725 }
3726 
3727 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3728 				    void __user *arg)
3729 {
3730 	struct btrfs_ioctl_dev_replace_args *p;
3731 	int ret;
3732 
3733 	if (!capable(CAP_SYS_ADMIN))
3734 		return -EPERM;
3735 
3736 	p = memdup_user(arg, sizeof(*p));
3737 	if (IS_ERR(p))
3738 		return PTR_ERR(p);
3739 
3740 	switch (p->cmd) {
3741 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3742 		if (sb_rdonly(fs_info->sb)) {
3743 			ret = -EROFS;
3744 			goto out;
3745 		}
3746 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3747 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3748 		} else {
3749 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3750 			btrfs_exclop_finish(fs_info);
3751 		}
3752 		break;
3753 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3754 		btrfs_dev_replace_status(fs_info, p);
3755 		ret = 0;
3756 		break;
3757 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3758 		p->result = btrfs_dev_replace_cancel(fs_info);
3759 		ret = 0;
3760 		break;
3761 	default:
3762 		ret = -EINVAL;
3763 		break;
3764 	}
3765 
3766 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3767 		ret = -EFAULT;
3768 out:
3769 	kfree(p);
3770 	return ret;
3771 }
3772 
3773 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3774 {
3775 	int ret = 0;
3776 	int i;
3777 	u64 rel_ptr;
3778 	int size;
3779 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3780 	struct inode_fs_paths *ipath = NULL;
3781 	struct btrfs_path *path;
3782 
3783 	if (!capable(CAP_DAC_READ_SEARCH))
3784 		return -EPERM;
3785 
3786 	path = btrfs_alloc_path();
3787 	if (!path) {
3788 		ret = -ENOMEM;
3789 		goto out;
3790 	}
3791 
3792 	ipa = memdup_user(arg, sizeof(*ipa));
3793 	if (IS_ERR(ipa)) {
3794 		ret = PTR_ERR(ipa);
3795 		ipa = NULL;
3796 		goto out;
3797 	}
3798 
3799 	size = min_t(u32, ipa->size, 4096);
3800 	ipath = init_ipath(size, root, path);
3801 	if (IS_ERR(ipath)) {
3802 		ret = PTR_ERR(ipath);
3803 		ipath = NULL;
3804 		goto out;
3805 	}
3806 
3807 	ret = paths_from_inode(ipa->inum, ipath);
3808 	if (ret < 0)
3809 		goto out;
3810 
3811 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3812 		rel_ptr = ipath->fspath->val[i] -
3813 			  (u64)(unsigned long)ipath->fspath->val;
3814 		ipath->fspath->val[i] = rel_ptr;
3815 	}
3816 
3817 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3818 			   ipath->fspath, size);
3819 	if (ret) {
3820 		ret = -EFAULT;
3821 		goto out;
3822 	}
3823 
3824 out:
3825 	btrfs_free_path(path);
3826 	free_ipath(ipath);
3827 	kfree(ipa);
3828 
3829 	return ret;
3830 }
3831 
3832 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3833 {
3834 	struct btrfs_data_container *inodes = ctx;
3835 	const size_t c = 3 * sizeof(u64);
3836 
3837 	if (inodes->bytes_left >= c) {
3838 		inodes->bytes_left -= c;
3839 		inodes->val[inodes->elem_cnt] = inum;
3840 		inodes->val[inodes->elem_cnt + 1] = offset;
3841 		inodes->val[inodes->elem_cnt + 2] = root;
3842 		inodes->elem_cnt += 3;
3843 	} else {
3844 		inodes->bytes_missing += c - inodes->bytes_left;
3845 		inodes->bytes_left = 0;
3846 		inodes->elem_missed += 3;
3847 	}
3848 
3849 	return 0;
3850 }
3851 
3852 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3853 					void __user *arg, int version)
3854 {
3855 	int ret = 0;
3856 	int size;
3857 	struct btrfs_ioctl_logical_ino_args *loi;
3858 	struct btrfs_data_container *inodes = NULL;
3859 	struct btrfs_path *path = NULL;
3860 	bool ignore_offset;
3861 
3862 	if (!capable(CAP_SYS_ADMIN))
3863 		return -EPERM;
3864 
3865 	loi = memdup_user(arg, sizeof(*loi));
3866 	if (IS_ERR(loi))
3867 		return PTR_ERR(loi);
3868 
3869 	if (version == 1) {
3870 		ignore_offset = false;
3871 		size = min_t(u32, loi->size, SZ_64K);
3872 	} else {
3873 		/* All reserved bits must be 0 for now */
3874 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3875 			ret = -EINVAL;
3876 			goto out_loi;
3877 		}
3878 		/* Only accept flags we have defined so far */
3879 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3880 			ret = -EINVAL;
3881 			goto out_loi;
3882 		}
3883 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3884 		size = min_t(u32, loi->size, SZ_16M);
3885 	}
3886 
3887 	path = btrfs_alloc_path();
3888 	if (!path) {
3889 		ret = -ENOMEM;
3890 		goto out;
3891 	}
3892 
3893 	inodes = init_data_container(size);
3894 	if (IS_ERR(inodes)) {
3895 		ret = PTR_ERR(inodes);
3896 		inodes = NULL;
3897 		goto out;
3898 	}
3899 
3900 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3901 					  build_ino_list, inodes, ignore_offset);
3902 	if (ret == -EINVAL)
3903 		ret = -ENOENT;
3904 	if (ret < 0)
3905 		goto out;
3906 
3907 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3908 			   size);
3909 	if (ret)
3910 		ret = -EFAULT;
3911 
3912 out:
3913 	btrfs_free_path(path);
3914 	kvfree(inodes);
3915 out_loi:
3916 	kfree(loi);
3917 
3918 	return ret;
3919 }
3920 
3921 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3922 			       struct btrfs_ioctl_balance_args *bargs)
3923 {
3924 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3925 
3926 	bargs->flags = bctl->flags;
3927 
3928 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3929 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3930 	if (atomic_read(&fs_info->balance_pause_req))
3931 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3932 	if (atomic_read(&fs_info->balance_cancel_req))
3933 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3934 
3935 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3936 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3937 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3938 
3939 	spin_lock(&fs_info->balance_lock);
3940 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3941 	spin_unlock(&fs_info->balance_lock);
3942 }
3943 
3944 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3945 {
3946 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3947 	struct btrfs_fs_info *fs_info = root->fs_info;
3948 	struct btrfs_ioctl_balance_args *bargs;
3949 	struct btrfs_balance_control *bctl;
3950 	bool need_unlock; /* for mut. excl. ops lock */
3951 	int ret;
3952 
3953 	if (!capable(CAP_SYS_ADMIN))
3954 		return -EPERM;
3955 
3956 	ret = mnt_want_write_file(file);
3957 	if (ret)
3958 		return ret;
3959 
3960 again:
3961 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3962 		mutex_lock(&fs_info->balance_mutex);
3963 		need_unlock = true;
3964 		goto locked;
3965 	}
3966 
3967 	/*
3968 	 * mut. excl. ops lock is locked.  Three possibilities:
3969 	 *   (1) some other op is running
3970 	 *   (2) balance is running
3971 	 *   (3) balance is paused -- special case (think resume)
3972 	 */
3973 	mutex_lock(&fs_info->balance_mutex);
3974 	if (fs_info->balance_ctl) {
3975 		/* this is either (2) or (3) */
3976 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3977 			mutex_unlock(&fs_info->balance_mutex);
3978 			/*
3979 			 * Lock released to allow other waiters to continue,
3980 			 * we'll reexamine the status again.
3981 			 */
3982 			mutex_lock(&fs_info->balance_mutex);
3983 
3984 			if (fs_info->balance_ctl &&
3985 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3986 				/* this is (3) */
3987 				need_unlock = false;
3988 				goto locked;
3989 			}
3990 
3991 			mutex_unlock(&fs_info->balance_mutex);
3992 			goto again;
3993 		} else {
3994 			/* this is (2) */
3995 			mutex_unlock(&fs_info->balance_mutex);
3996 			ret = -EINPROGRESS;
3997 			goto out;
3998 		}
3999 	} else {
4000 		/* this is (1) */
4001 		mutex_unlock(&fs_info->balance_mutex);
4002 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4003 		goto out;
4004 	}
4005 
4006 locked:
4007 
4008 	if (arg) {
4009 		bargs = memdup_user(arg, sizeof(*bargs));
4010 		if (IS_ERR(bargs)) {
4011 			ret = PTR_ERR(bargs);
4012 			goto out_unlock;
4013 		}
4014 
4015 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4016 			if (!fs_info->balance_ctl) {
4017 				ret = -ENOTCONN;
4018 				goto out_bargs;
4019 			}
4020 
4021 			bctl = fs_info->balance_ctl;
4022 			spin_lock(&fs_info->balance_lock);
4023 			bctl->flags |= BTRFS_BALANCE_RESUME;
4024 			spin_unlock(&fs_info->balance_lock);
4025 
4026 			goto do_balance;
4027 		}
4028 	} else {
4029 		bargs = NULL;
4030 	}
4031 
4032 	if (fs_info->balance_ctl) {
4033 		ret = -EINPROGRESS;
4034 		goto out_bargs;
4035 	}
4036 
4037 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4038 	if (!bctl) {
4039 		ret = -ENOMEM;
4040 		goto out_bargs;
4041 	}
4042 
4043 	if (arg) {
4044 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4045 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4046 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4047 
4048 		bctl->flags = bargs->flags;
4049 	} else {
4050 		/* balance everything - no filters */
4051 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4052 	}
4053 
4054 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4055 		ret = -EINVAL;
4056 		goto out_bctl;
4057 	}
4058 
4059 do_balance:
4060 	/*
4061 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4062 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4063 	 * all the way until unmount, in free_fs_info.  The flag should be
4064 	 * cleared after reset_balance_state.
4065 	 */
4066 	need_unlock = false;
4067 
4068 	ret = btrfs_balance(fs_info, bctl, bargs);
4069 	bctl = NULL;
4070 
4071 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4072 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4073 			ret = -EFAULT;
4074 	}
4075 
4076 out_bctl:
4077 	kfree(bctl);
4078 out_bargs:
4079 	kfree(bargs);
4080 out_unlock:
4081 	mutex_unlock(&fs_info->balance_mutex);
4082 	if (need_unlock)
4083 		btrfs_exclop_finish(fs_info);
4084 out:
4085 	mnt_drop_write_file(file);
4086 	return ret;
4087 }
4088 
4089 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4090 {
4091 	if (!capable(CAP_SYS_ADMIN))
4092 		return -EPERM;
4093 
4094 	switch (cmd) {
4095 	case BTRFS_BALANCE_CTL_PAUSE:
4096 		return btrfs_pause_balance(fs_info);
4097 	case BTRFS_BALANCE_CTL_CANCEL:
4098 		return btrfs_cancel_balance(fs_info);
4099 	}
4100 
4101 	return -EINVAL;
4102 }
4103 
4104 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4105 					 void __user *arg)
4106 {
4107 	struct btrfs_ioctl_balance_args *bargs;
4108 	int ret = 0;
4109 
4110 	if (!capable(CAP_SYS_ADMIN))
4111 		return -EPERM;
4112 
4113 	mutex_lock(&fs_info->balance_mutex);
4114 	if (!fs_info->balance_ctl) {
4115 		ret = -ENOTCONN;
4116 		goto out;
4117 	}
4118 
4119 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4120 	if (!bargs) {
4121 		ret = -ENOMEM;
4122 		goto out;
4123 	}
4124 
4125 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4126 
4127 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4128 		ret = -EFAULT;
4129 
4130 	kfree(bargs);
4131 out:
4132 	mutex_unlock(&fs_info->balance_mutex);
4133 	return ret;
4134 }
4135 
4136 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4137 {
4138 	struct inode *inode = file_inode(file);
4139 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4140 	struct btrfs_ioctl_quota_ctl_args *sa;
4141 	int ret;
4142 
4143 	if (!capable(CAP_SYS_ADMIN))
4144 		return -EPERM;
4145 
4146 	ret = mnt_want_write_file(file);
4147 	if (ret)
4148 		return ret;
4149 
4150 	sa = memdup_user(arg, sizeof(*sa));
4151 	if (IS_ERR(sa)) {
4152 		ret = PTR_ERR(sa);
4153 		goto drop_write;
4154 	}
4155 
4156 	down_write(&fs_info->subvol_sem);
4157 
4158 	switch (sa->cmd) {
4159 	case BTRFS_QUOTA_CTL_ENABLE:
4160 		ret = btrfs_quota_enable(fs_info);
4161 		break;
4162 	case BTRFS_QUOTA_CTL_DISABLE:
4163 		ret = btrfs_quota_disable(fs_info);
4164 		break;
4165 	default:
4166 		ret = -EINVAL;
4167 		break;
4168 	}
4169 
4170 	kfree(sa);
4171 	up_write(&fs_info->subvol_sem);
4172 drop_write:
4173 	mnt_drop_write_file(file);
4174 	return ret;
4175 }
4176 
4177 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4178 {
4179 	struct inode *inode = file_inode(file);
4180 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4181 	struct btrfs_root *root = BTRFS_I(inode)->root;
4182 	struct btrfs_ioctl_qgroup_assign_args *sa;
4183 	struct btrfs_trans_handle *trans;
4184 	int ret;
4185 	int err;
4186 
4187 	if (!capable(CAP_SYS_ADMIN))
4188 		return -EPERM;
4189 
4190 	ret = mnt_want_write_file(file);
4191 	if (ret)
4192 		return ret;
4193 
4194 	sa = memdup_user(arg, sizeof(*sa));
4195 	if (IS_ERR(sa)) {
4196 		ret = PTR_ERR(sa);
4197 		goto drop_write;
4198 	}
4199 
4200 	trans = btrfs_join_transaction(root);
4201 	if (IS_ERR(trans)) {
4202 		ret = PTR_ERR(trans);
4203 		goto out;
4204 	}
4205 
4206 	if (sa->assign) {
4207 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4208 	} else {
4209 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4210 	}
4211 
4212 	/* update qgroup status and info */
4213 	err = btrfs_run_qgroups(trans);
4214 	if (err < 0)
4215 		btrfs_handle_fs_error(fs_info, err,
4216 				      "failed to update qgroup status and info");
4217 	err = btrfs_end_transaction(trans);
4218 	if (err && !ret)
4219 		ret = err;
4220 
4221 out:
4222 	kfree(sa);
4223 drop_write:
4224 	mnt_drop_write_file(file);
4225 	return ret;
4226 }
4227 
4228 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4229 {
4230 	struct inode *inode = file_inode(file);
4231 	struct btrfs_root *root = BTRFS_I(inode)->root;
4232 	struct btrfs_ioctl_qgroup_create_args *sa;
4233 	struct btrfs_trans_handle *trans;
4234 	int ret;
4235 	int err;
4236 
4237 	if (!capable(CAP_SYS_ADMIN))
4238 		return -EPERM;
4239 
4240 	ret = mnt_want_write_file(file);
4241 	if (ret)
4242 		return ret;
4243 
4244 	sa = memdup_user(arg, sizeof(*sa));
4245 	if (IS_ERR(sa)) {
4246 		ret = PTR_ERR(sa);
4247 		goto drop_write;
4248 	}
4249 
4250 	if (!sa->qgroupid) {
4251 		ret = -EINVAL;
4252 		goto out;
4253 	}
4254 
4255 	trans = btrfs_join_transaction(root);
4256 	if (IS_ERR(trans)) {
4257 		ret = PTR_ERR(trans);
4258 		goto out;
4259 	}
4260 
4261 	if (sa->create) {
4262 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4263 	} else {
4264 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4265 	}
4266 
4267 	err = btrfs_end_transaction(trans);
4268 	if (err && !ret)
4269 		ret = err;
4270 
4271 out:
4272 	kfree(sa);
4273 drop_write:
4274 	mnt_drop_write_file(file);
4275 	return ret;
4276 }
4277 
4278 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4279 {
4280 	struct inode *inode = file_inode(file);
4281 	struct btrfs_root *root = BTRFS_I(inode)->root;
4282 	struct btrfs_ioctl_qgroup_limit_args *sa;
4283 	struct btrfs_trans_handle *trans;
4284 	int ret;
4285 	int err;
4286 	u64 qgroupid;
4287 
4288 	if (!capable(CAP_SYS_ADMIN))
4289 		return -EPERM;
4290 
4291 	ret = mnt_want_write_file(file);
4292 	if (ret)
4293 		return ret;
4294 
4295 	sa = memdup_user(arg, sizeof(*sa));
4296 	if (IS_ERR(sa)) {
4297 		ret = PTR_ERR(sa);
4298 		goto drop_write;
4299 	}
4300 
4301 	trans = btrfs_join_transaction(root);
4302 	if (IS_ERR(trans)) {
4303 		ret = PTR_ERR(trans);
4304 		goto out;
4305 	}
4306 
4307 	qgroupid = sa->qgroupid;
4308 	if (!qgroupid) {
4309 		/* take the current subvol as qgroup */
4310 		qgroupid = root->root_key.objectid;
4311 	}
4312 
4313 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4314 
4315 	err = btrfs_end_transaction(trans);
4316 	if (err && !ret)
4317 		ret = err;
4318 
4319 out:
4320 	kfree(sa);
4321 drop_write:
4322 	mnt_drop_write_file(file);
4323 	return ret;
4324 }
4325 
4326 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4327 {
4328 	struct inode *inode = file_inode(file);
4329 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4330 	struct btrfs_ioctl_quota_rescan_args *qsa;
4331 	int ret;
4332 
4333 	if (!capable(CAP_SYS_ADMIN))
4334 		return -EPERM;
4335 
4336 	ret = mnt_want_write_file(file);
4337 	if (ret)
4338 		return ret;
4339 
4340 	qsa = memdup_user(arg, sizeof(*qsa));
4341 	if (IS_ERR(qsa)) {
4342 		ret = PTR_ERR(qsa);
4343 		goto drop_write;
4344 	}
4345 
4346 	if (qsa->flags) {
4347 		ret = -EINVAL;
4348 		goto out;
4349 	}
4350 
4351 	ret = btrfs_qgroup_rescan(fs_info);
4352 
4353 out:
4354 	kfree(qsa);
4355 drop_write:
4356 	mnt_drop_write_file(file);
4357 	return ret;
4358 }
4359 
4360 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4361 						void __user *arg)
4362 {
4363 	struct btrfs_ioctl_quota_rescan_args *qsa;
4364 	int ret = 0;
4365 
4366 	if (!capable(CAP_SYS_ADMIN))
4367 		return -EPERM;
4368 
4369 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4370 	if (!qsa)
4371 		return -ENOMEM;
4372 
4373 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4374 		qsa->flags = 1;
4375 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4376 	}
4377 
4378 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4379 		ret = -EFAULT;
4380 
4381 	kfree(qsa);
4382 	return ret;
4383 }
4384 
4385 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4386 						void __user *arg)
4387 {
4388 	if (!capable(CAP_SYS_ADMIN))
4389 		return -EPERM;
4390 
4391 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4392 }
4393 
4394 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4395 					    struct btrfs_ioctl_received_subvol_args *sa)
4396 {
4397 	struct inode *inode = file_inode(file);
4398 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4399 	struct btrfs_root *root = BTRFS_I(inode)->root;
4400 	struct btrfs_root_item *root_item = &root->root_item;
4401 	struct btrfs_trans_handle *trans;
4402 	struct timespec64 ct = current_time(inode);
4403 	int ret = 0;
4404 	int received_uuid_changed;
4405 
4406 	if (!inode_owner_or_capable(inode))
4407 		return -EPERM;
4408 
4409 	ret = mnt_want_write_file(file);
4410 	if (ret < 0)
4411 		return ret;
4412 
4413 	down_write(&fs_info->subvol_sem);
4414 
4415 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4416 		ret = -EINVAL;
4417 		goto out;
4418 	}
4419 
4420 	if (btrfs_root_readonly(root)) {
4421 		ret = -EROFS;
4422 		goto out;
4423 	}
4424 
4425 	/*
4426 	 * 1 - root item
4427 	 * 2 - uuid items (received uuid + subvol uuid)
4428 	 */
4429 	trans = btrfs_start_transaction(root, 3);
4430 	if (IS_ERR(trans)) {
4431 		ret = PTR_ERR(trans);
4432 		trans = NULL;
4433 		goto out;
4434 	}
4435 
4436 	sa->rtransid = trans->transid;
4437 	sa->rtime.sec = ct.tv_sec;
4438 	sa->rtime.nsec = ct.tv_nsec;
4439 
4440 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4441 				       BTRFS_UUID_SIZE);
4442 	if (received_uuid_changed &&
4443 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4444 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4445 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4446 					  root->root_key.objectid);
4447 		if (ret && ret != -ENOENT) {
4448 		        btrfs_abort_transaction(trans, ret);
4449 		        btrfs_end_transaction(trans);
4450 		        goto out;
4451 		}
4452 	}
4453 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4454 	btrfs_set_root_stransid(root_item, sa->stransid);
4455 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4456 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4457 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4458 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4459 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4460 
4461 	ret = btrfs_update_root(trans, fs_info->tree_root,
4462 				&root->root_key, &root->root_item);
4463 	if (ret < 0) {
4464 		btrfs_end_transaction(trans);
4465 		goto out;
4466 	}
4467 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4468 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4469 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4470 					  root->root_key.objectid);
4471 		if (ret < 0 && ret != -EEXIST) {
4472 			btrfs_abort_transaction(trans, ret);
4473 			btrfs_end_transaction(trans);
4474 			goto out;
4475 		}
4476 	}
4477 	ret = btrfs_commit_transaction(trans);
4478 out:
4479 	up_write(&fs_info->subvol_sem);
4480 	mnt_drop_write_file(file);
4481 	return ret;
4482 }
4483 
4484 #ifdef CONFIG_64BIT
4485 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4486 						void __user *arg)
4487 {
4488 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4489 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4490 	int ret = 0;
4491 
4492 	args32 = memdup_user(arg, sizeof(*args32));
4493 	if (IS_ERR(args32))
4494 		return PTR_ERR(args32);
4495 
4496 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4497 	if (!args64) {
4498 		ret = -ENOMEM;
4499 		goto out;
4500 	}
4501 
4502 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4503 	args64->stransid = args32->stransid;
4504 	args64->rtransid = args32->rtransid;
4505 	args64->stime.sec = args32->stime.sec;
4506 	args64->stime.nsec = args32->stime.nsec;
4507 	args64->rtime.sec = args32->rtime.sec;
4508 	args64->rtime.nsec = args32->rtime.nsec;
4509 	args64->flags = args32->flags;
4510 
4511 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4512 	if (ret)
4513 		goto out;
4514 
4515 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4516 	args32->stransid = args64->stransid;
4517 	args32->rtransid = args64->rtransid;
4518 	args32->stime.sec = args64->stime.sec;
4519 	args32->stime.nsec = args64->stime.nsec;
4520 	args32->rtime.sec = args64->rtime.sec;
4521 	args32->rtime.nsec = args64->rtime.nsec;
4522 	args32->flags = args64->flags;
4523 
4524 	ret = copy_to_user(arg, args32, sizeof(*args32));
4525 	if (ret)
4526 		ret = -EFAULT;
4527 
4528 out:
4529 	kfree(args32);
4530 	kfree(args64);
4531 	return ret;
4532 }
4533 #endif
4534 
4535 static long btrfs_ioctl_set_received_subvol(struct file *file,
4536 					    void __user *arg)
4537 {
4538 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4539 	int ret = 0;
4540 
4541 	sa = memdup_user(arg, sizeof(*sa));
4542 	if (IS_ERR(sa))
4543 		return PTR_ERR(sa);
4544 
4545 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4546 
4547 	if (ret)
4548 		goto out;
4549 
4550 	ret = copy_to_user(arg, sa, sizeof(*sa));
4551 	if (ret)
4552 		ret = -EFAULT;
4553 
4554 out:
4555 	kfree(sa);
4556 	return ret;
4557 }
4558 
4559 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4560 					void __user *arg)
4561 {
4562 	size_t len;
4563 	int ret;
4564 	char label[BTRFS_LABEL_SIZE];
4565 
4566 	spin_lock(&fs_info->super_lock);
4567 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4568 	spin_unlock(&fs_info->super_lock);
4569 
4570 	len = strnlen(label, BTRFS_LABEL_SIZE);
4571 
4572 	if (len == BTRFS_LABEL_SIZE) {
4573 		btrfs_warn(fs_info,
4574 			   "label is too long, return the first %zu bytes",
4575 			   --len);
4576 	}
4577 
4578 	ret = copy_to_user(arg, label, len);
4579 
4580 	return ret ? -EFAULT : 0;
4581 }
4582 
4583 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4584 {
4585 	struct inode *inode = file_inode(file);
4586 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4587 	struct btrfs_root *root = BTRFS_I(inode)->root;
4588 	struct btrfs_super_block *super_block = fs_info->super_copy;
4589 	struct btrfs_trans_handle *trans;
4590 	char label[BTRFS_LABEL_SIZE];
4591 	int ret;
4592 
4593 	if (!capable(CAP_SYS_ADMIN))
4594 		return -EPERM;
4595 
4596 	if (copy_from_user(label, arg, sizeof(label)))
4597 		return -EFAULT;
4598 
4599 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4600 		btrfs_err(fs_info,
4601 			  "unable to set label with more than %d bytes",
4602 			  BTRFS_LABEL_SIZE - 1);
4603 		return -EINVAL;
4604 	}
4605 
4606 	ret = mnt_want_write_file(file);
4607 	if (ret)
4608 		return ret;
4609 
4610 	trans = btrfs_start_transaction(root, 0);
4611 	if (IS_ERR(trans)) {
4612 		ret = PTR_ERR(trans);
4613 		goto out_unlock;
4614 	}
4615 
4616 	spin_lock(&fs_info->super_lock);
4617 	strcpy(super_block->label, label);
4618 	spin_unlock(&fs_info->super_lock);
4619 	ret = btrfs_commit_transaction(trans);
4620 
4621 out_unlock:
4622 	mnt_drop_write_file(file);
4623 	return ret;
4624 }
4625 
4626 #define INIT_FEATURE_FLAGS(suffix) \
4627 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4628 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4629 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4630 
4631 int btrfs_ioctl_get_supported_features(void __user *arg)
4632 {
4633 	static const struct btrfs_ioctl_feature_flags features[3] = {
4634 		INIT_FEATURE_FLAGS(SUPP),
4635 		INIT_FEATURE_FLAGS(SAFE_SET),
4636 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4637 	};
4638 
4639 	if (copy_to_user(arg, &features, sizeof(features)))
4640 		return -EFAULT;
4641 
4642 	return 0;
4643 }
4644 
4645 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4646 					void __user *arg)
4647 {
4648 	struct btrfs_super_block *super_block = fs_info->super_copy;
4649 	struct btrfs_ioctl_feature_flags features;
4650 
4651 	features.compat_flags = btrfs_super_compat_flags(super_block);
4652 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4653 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4654 
4655 	if (copy_to_user(arg, &features, sizeof(features)))
4656 		return -EFAULT;
4657 
4658 	return 0;
4659 }
4660 
4661 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4662 			      enum btrfs_feature_set set,
4663 			      u64 change_mask, u64 flags, u64 supported_flags,
4664 			      u64 safe_set, u64 safe_clear)
4665 {
4666 	const char *type = btrfs_feature_set_name(set);
4667 	char *names;
4668 	u64 disallowed, unsupported;
4669 	u64 set_mask = flags & change_mask;
4670 	u64 clear_mask = ~flags & change_mask;
4671 
4672 	unsupported = set_mask & ~supported_flags;
4673 	if (unsupported) {
4674 		names = btrfs_printable_features(set, unsupported);
4675 		if (names) {
4676 			btrfs_warn(fs_info,
4677 				   "this kernel does not support the %s feature bit%s",
4678 				   names, strchr(names, ',') ? "s" : "");
4679 			kfree(names);
4680 		} else
4681 			btrfs_warn(fs_info,
4682 				   "this kernel does not support %s bits 0x%llx",
4683 				   type, unsupported);
4684 		return -EOPNOTSUPP;
4685 	}
4686 
4687 	disallowed = set_mask & ~safe_set;
4688 	if (disallowed) {
4689 		names = btrfs_printable_features(set, disallowed);
4690 		if (names) {
4691 			btrfs_warn(fs_info,
4692 				   "can't set the %s feature bit%s while mounted",
4693 				   names, strchr(names, ',') ? "s" : "");
4694 			kfree(names);
4695 		} else
4696 			btrfs_warn(fs_info,
4697 				   "can't set %s bits 0x%llx while mounted",
4698 				   type, disallowed);
4699 		return -EPERM;
4700 	}
4701 
4702 	disallowed = clear_mask & ~safe_clear;
4703 	if (disallowed) {
4704 		names = btrfs_printable_features(set, disallowed);
4705 		if (names) {
4706 			btrfs_warn(fs_info,
4707 				   "can't clear the %s feature bit%s while mounted",
4708 				   names, strchr(names, ',') ? "s" : "");
4709 			kfree(names);
4710 		} else
4711 			btrfs_warn(fs_info,
4712 				   "can't clear %s bits 0x%llx while mounted",
4713 				   type, disallowed);
4714 		return -EPERM;
4715 	}
4716 
4717 	return 0;
4718 }
4719 
4720 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4721 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4722 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4723 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4724 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4725 
4726 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4727 {
4728 	struct inode *inode = file_inode(file);
4729 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4730 	struct btrfs_root *root = BTRFS_I(inode)->root;
4731 	struct btrfs_super_block *super_block = fs_info->super_copy;
4732 	struct btrfs_ioctl_feature_flags flags[2];
4733 	struct btrfs_trans_handle *trans;
4734 	u64 newflags;
4735 	int ret;
4736 
4737 	if (!capable(CAP_SYS_ADMIN))
4738 		return -EPERM;
4739 
4740 	if (copy_from_user(flags, arg, sizeof(flags)))
4741 		return -EFAULT;
4742 
4743 	/* Nothing to do */
4744 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4745 	    !flags[0].incompat_flags)
4746 		return 0;
4747 
4748 	ret = check_feature(fs_info, flags[0].compat_flags,
4749 			    flags[1].compat_flags, COMPAT);
4750 	if (ret)
4751 		return ret;
4752 
4753 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4754 			    flags[1].compat_ro_flags, COMPAT_RO);
4755 	if (ret)
4756 		return ret;
4757 
4758 	ret = check_feature(fs_info, flags[0].incompat_flags,
4759 			    flags[1].incompat_flags, INCOMPAT);
4760 	if (ret)
4761 		return ret;
4762 
4763 	ret = mnt_want_write_file(file);
4764 	if (ret)
4765 		return ret;
4766 
4767 	trans = btrfs_start_transaction(root, 0);
4768 	if (IS_ERR(trans)) {
4769 		ret = PTR_ERR(trans);
4770 		goto out_drop_write;
4771 	}
4772 
4773 	spin_lock(&fs_info->super_lock);
4774 	newflags = btrfs_super_compat_flags(super_block);
4775 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4776 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4777 	btrfs_set_super_compat_flags(super_block, newflags);
4778 
4779 	newflags = btrfs_super_compat_ro_flags(super_block);
4780 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4781 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4782 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4783 
4784 	newflags = btrfs_super_incompat_flags(super_block);
4785 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4786 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4787 	btrfs_set_super_incompat_flags(super_block, newflags);
4788 	spin_unlock(&fs_info->super_lock);
4789 
4790 	ret = btrfs_commit_transaction(trans);
4791 out_drop_write:
4792 	mnt_drop_write_file(file);
4793 
4794 	return ret;
4795 }
4796 
4797 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4798 {
4799 	struct btrfs_ioctl_send_args *arg;
4800 	int ret;
4801 
4802 	if (compat) {
4803 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4804 		struct btrfs_ioctl_send_args_32 args32;
4805 
4806 		ret = copy_from_user(&args32, argp, sizeof(args32));
4807 		if (ret)
4808 			return -EFAULT;
4809 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4810 		if (!arg)
4811 			return -ENOMEM;
4812 		arg->send_fd = args32.send_fd;
4813 		arg->clone_sources_count = args32.clone_sources_count;
4814 		arg->clone_sources = compat_ptr(args32.clone_sources);
4815 		arg->parent_root = args32.parent_root;
4816 		arg->flags = args32.flags;
4817 		memcpy(arg->reserved, args32.reserved,
4818 		       sizeof(args32.reserved));
4819 #else
4820 		return -ENOTTY;
4821 #endif
4822 	} else {
4823 		arg = memdup_user(argp, sizeof(*arg));
4824 		if (IS_ERR(arg))
4825 			return PTR_ERR(arg);
4826 	}
4827 	ret = btrfs_ioctl_send(file, arg);
4828 	kfree(arg);
4829 	return ret;
4830 }
4831 
4832 long btrfs_ioctl(struct file *file, unsigned int
4833 		cmd, unsigned long arg)
4834 {
4835 	struct inode *inode = file_inode(file);
4836 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4837 	struct btrfs_root *root = BTRFS_I(inode)->root;
4838 	void __user *argp = (void __user *)arg;
4839 
4840 	switch (cmd) {
4841 	case FS_IOC_GETFLAGS:
4842 		return btrfs_ioctl_getflags(file, argp);
4843 	case FS_IOC_SETFLAGS:
4844 		return btrfs_ioctl_setflags(file, argp);
4845 	case FS_IOC_GETVERSION:
4846 		return btrfs_ioctl_getversion(file, argp);
4847 	case FS_IOC_GETFSLABEL:
4848 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4849 	case FS_IOC_SETFSLABEL:
4850 		return btrfs_ioctl_set_fslabel(file, argp);
4851 	case FITRIM:
4852 		return btrfs_ioctl_fitrim(fs_info, argp);
4853 	case BTRFS_IOC_SNAP_CREATE:
4854 		return btrfs_ioctl_snap_create(file, argp, 0);
4855 	case BTRFS_IOC_SNAP_CREATE_V2:
4856 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4857 	case BTRFS_IOC_SUBVOL_CREATE:
4858 		return btrfs_ioctl_snap_create(file, argp, 1);
4859 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4860 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4861 	case BTRFS_IOC_SNAP_DESTROY:
4862 		return btrfs_ioctl_snap_destroy(file, argp, false);
4863 	case BTRFS_IOC_SNAP_DESTROY_V2:
4864 		return btrfs_ioctl_snap_destroy(file, argp, true);
4865 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4866 		return btrfs_ioctl_subvol_getflags(file, argp);
4867 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4868 		return btrfs_ioctl_subvol_setflags(file, argp);
4869 	case BTRFS_IOC_DEFAULT_SUBVOL:
4870 		return btrfs_ioctl_default_subvol(file, argp);
4871 	case BTRFS_IOC_DEFRAG:
4872 		return btrfs_ioctl_defrag(file, NULL);
4873 	case BTRFS_IOC_DEFRAG_RANGE:
4874 		return btrfs_ioctl_defrag(file, argp);
4875 	case BTRFS_IOC_RESIZE:
4876 		return btrfs_ioctl_resize(file, argp);
4877 	case BTRFS_IOC_ADD_DEV:
4878 		return btrfs_ioctl_add_dev(fs_info, argp);
4879 	case BTRFS_IOC_RM_DEV:
4880 		return btrfs_ioctl_rm_dev(file, argp);
4881 	case BTRFS_IOC_RM_DEV_V2:
4882 		return btrfs_ioctl_rm_dev_v2(file, argp);
4883 	case BTRFS_IOC_FS_INFO:
4884 		return btrfs_ioctl_fs_info(fs_info, argp);
4885 	case BTRFS_IOC_DEV_INFO:
4886 		return btrfs_ioctl_dev_info(fs_info, argp);
4887 	case BTRFS_IOC_BALANCE:
4888 		return btrfs_ioctl_balance(file, NULL);
4889 	case BTRFS_IOC_TREE_SEARCH:
4890 		return btrfs_ioctl_tree_search(file, argp);
4891 	case BTRFS_IOC_TREE_SEARCH_V2:
4892 		return btrfs_ioctl_tree_search_v2(file, argp);
4893 	case BTRFS_IOC_INO_LOOKUP:
4894 		return btrfs_ioctl_ino_lookup(file, argp);
4895 	case BTRFS_IOC_INO_PATHS:
4896 		return btrfs_ioctl_ino_to_path(root, argp);
4897 	case BTRFS_IOC_LOGICAL_INO:
4898 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4899 	case BTRFS_IOC_LOGICAL_INO_V2:
4900 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4901 	case BTRFS_IOC_SPACE_INFO:
4902 		return btrfs_ioctl_space_info(fs_info, argp);
4903 	case BTRFS_IOC_SYNC: {
4904 		int ret;
4905 
4906 		ret = btrfs_start_delalloc_roots(fs_info, U64_MAX);
4907 		if (ret)
4908 			return ret;
4909 		ret = btrfs_sync_fs(inode->i_sb, 1);
4910 		/*
4911 		 * The transaction thread may want to do more work,
4912 		 * namely it pokes the cleaner kthread that will start
4913 		 * processing uncleaned subvols.
4914 		 */
4915 		wake_up_process(fs_info->transaction_kthread);
4916 		return ret;
4917 	}
4918 	case BTRFS_IOC_START_SYNC:
4919 		return btrfs_ioctl_start_sync(root, argp);
4920 	case BTRFS_IOC_WAIT_SYNC:
4921 		return btrfs_ioctl_wait_sync(fs_info, argp);
4922 	case BTRFS_IOC_SCRUB:
4923 		return btrfs_ioctl_scrub(file, argp);
4924 	case BTRFS_IOC_SCRUB_CANCEL:
4925 		return btrfs_ioctl_scrub_cancel(fs_info);
4926 	case BTRFS_IOC_SCRUB_PROGRESS:
4927 		return btrfs_ioctl_scrub_progress(fs_info, argp);
4928 	case BTRFS_IOC_BALANCE_V2:
4929 		return btrfs_ioctl_balance(file, argp);
4930 	case BTRFS_IOC_BALANCE_CTL:
4931 		return btrfs_ioctl_balance_ctl(fs_info, arg);
4932 	case BTRFS_IOC_BALANCE_PROGRESS:
4933 		return btrfs_ioctl_balance_progress(fs_info, argp);
4934 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4935 		return btrfs_ioctl_set_received_subvol(file, argp);
4936 #ifdef CONFIG_64BIT
4937 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4938 		return btrfs_ioctl_set_received_subvol_32(file, argp);
4939 #endif
4940 	case BTRFS_IOC_SEND:
4941 		return _btrfs_ioctl_send(file, argp, false);
4942 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4943 	case BTRFS_IOC_SEND_32:
4944 		return _btrfs_ioctl_send(file, argp, true);
4945 #endif
4946 	case BTRFS_IOC_GET_DEV_STATS:
4947 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4948 	case BTRFS_IOC_QUOTA_CTL:
4949 		return btrfs_ioctl_quota_ctl(file, argp);
4950 	case BTRFS_IOC_QGROUP_ASSIGN:
4951 		return btrfs_ioctl_qgroup_assign(file, argp);
4952 	case BTRFS_IOC_QGROUP_CREATE:
4953 		return btrfs_ioctl_qgroup_create(file, argp);
4954 	case BTRFS_IOC_QGROUP_LIMIT:
4955 		return btrfs_ioctl_qgroup_limit(file, argp);
4956 	case BTRFS_IOC_QUOTA_RESCAN:
4957 		return btrfs_ioctl_quota_rescan(file, argp);
4958 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4959 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4960 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4961 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4962 	case BTRFS_IOC_DEV_REPLACE:
4963 		return btrfs_ioctl_dev_replace(fs_info, argp);
4964 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4965 		return btrfs_ioctl_get_supported_features(argp);
4966 	case BTRFS_IOC_GET_FEATURES:
4967 		return btrfs_ioctl_get_features(fs_info, argp);
4968 	case BTRFS_IOC_SET_FEATURES:
4969 		return btrfs_ioctl_set_features(file, argp);
4970 	case FS_IOC_FSGETXATTR:
4971 		return btrfs_ioctl_fsgetxattr(file, argp);
4972 	case FS_IOC_FSSETXATTR:
4973 		return btrfs_ioctl_fssetxattr(file, argp);
4974 	case BTRFS_IOC_GET_SUBVOL_INFO:
4975 		return btrfs_ioctl_get_subvol_info(file, argp);
4976 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4977 		return btrfs_ioctl_get_subvol_rootref(file, argp);
4978 	case BTRFS_IOC_INO_LOOKUP_USER:
4979 		return btrfs_ioctl_ino_lookup_user(file, argp);
4980 	}
4981 
4982 	return -ENOTTY;
4983 }
4984 
4985 #ifdef CONFIG_COMPAT
4986 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4987 {
4988 	/*
4989 	 * These all access 32-bit values anyway so no further
4990 	 * handling is necessary.
4991 	 */
4992 	switch (cmd) {
4993 	case FS_IOC32_GETFLAGS:
4994 		cmd = FS_IOC_GETFLAGS;
4995 		break;
4996 	case FS_IOC32_SETFLAGS:
4997 		cmd = FS_IOC_SETFLAGS;
4998 		break;
4999 	case FS_IOC32_GETVERSION:
5000 		cmd = FS_IOC_GETVERSION;
5001 		break;
5002 	}
5003 
5004 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5005 }
5006 #endif
5007