1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include <linux/btrfs.h> 46 #include <linux/uaccess.h> 47 #include "compat.h" 48 #include "ctree.h" 49 #include "disk-io.h" 50 #include "transaction.h" 51 #include "btrfs_inode.h" 52 #include "print-tree.h" 53 #include "volumes.h" 54 #include "locking.h" 55 #include "inode-map.h" 56 #include "backref.h" 57 #include "rcu-string.h" 58 #include "send.h" 59 #include "dev-replace.h" 60 61 static int btrfs_clone(struct inode *src, struct inode *inode, 62 u64 off, u64 olen, u64 olen_aligned, u64 destoff); 63 64 /* Mask out flags that are inappropriate for the given type of inode. */ 65 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 66 { 67 if (S_ISDIR(mode)) 68 return flags; 69 else if (S_ISREG(mode)) 70 return flags & ~FS_DIRSYNC_FL; 71 else 72 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 73 } 74 75 /* 76 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 77 */ 78 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 79 { 80 unsigned int iflags = 0; 81 82 if (flags & BTRFS_INODE_SYNC) 83 iflags |= FS_SYNC_FL; 84 if (flags & BTRFS_INODE_IMMUTABLE) 85 iflags |= FS_IMMUTABLE_FL; 86 if (flags & BTRFS_INODE_APPEND) 87 iflags |= FS_APPEND_FL; 88 if (flags & BTRFS_INODE_NODUMP) 89 iflags |= FS_NODUMP_FL; 90 if (flags & BTRFS_INODE_NOATIME) 91 iflags |= FS_NOATIME_FL; 92 if (flags & BTRFS_INODE_DIRSYNC) 93 iflags |= FS_DIRSYNC_FL; 94 if (flags & BTRFS_INODE_NODATACOW) 95 iflags |= FS_NOCOW_FL; 96 97 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 98 iflags |= FS_COMPR_FL; 99 else if (flags & BTRFS_INODE_NOCOMPRESS) 100 iflags |= FS_NOCOMP_FL; 101 102 return iflags; 103 } 104 105 /* 106 * Update inode->i_flags based on the btrfs internal flags. 107 */ 108 void btrfs_update_iflags(struct inode *inode) 109 { 110 struct btrfs_inode *ip = BTRFS_I(inode); 111 112 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 113 114 if (ip->flags & BTRFS_INODE_SYNC) 115 inode->i_flags |= S_SYNC; 116 if (ip->flags & BTRFS_INODE_IMMUTABLE) 117 inode->i_flags |= S_IMMUTABLE; 118 if (ip->flags & BTRFS_INODE_APPEND) 119 inode->i_flags |= S_APPEND; 120 if (ip->flags & BTRFS_INODE_NOATIME) 121 inode->i_flags |= S_NOATIME; 122 if (ip->flags & BTRFS_INODE_DIRSYNC) 123 inode->i_flags |= S_DIRSYNC; 124 } 125 126 /* 127 * Inherit flags from the parent inode. 128 * 129 * Currently only the compression flags and the cow flags are inherited. 130 */ 131 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 132 { 133 unsigned int flags; 134 135 if (!dir) 136 return; 137 138 flags = BTRFS_I(dir)->flags; 139 140 if (flags & BTRFS_INODE_NOCOMPRESS) { 141 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 142 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 143 } else if (flags & BTRFS_INODE_COMPRESS) { 144 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 145 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 146 } 147 148 if (flags & BTRFS_INODE_NODATACOW) { 149 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 150 if (S_ISREG(inode->i_mode)) 151 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 152 } 153 154 btrfs_update_iflags(inode); 155 } 156 157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 158 { 159 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 160 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 161 162 if (copy_to_user(arg, &flags, sizeof(flags))) 163 return -EFAULT; 164 return 0; 165 } 166 167 static int check_flags(unsigned int flags) 168 { 169 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 170 FS_NOATIME_FL | FS_NODUMP_FL | \ 171 FS_SYNC_FL | FS_DIRSYNC_FL | \ 172 FS_NOCOMP_FL | FS_COMPR_FL | 173 FS_NOCOW_FL)) 174 return -EOPNOTSUPP; 175 176 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 177 return -EINVAL; 178 179 return 0; 180 } 181 182 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 183 { 184 struct inode *inode = file_inode(file); 185 struct btrfs_inode *ip = BTRFS_I(inode); 186 struct btrfs_root *root = ip->root; 187 struct btrfs_trans_handle *trans; 188 unsigned int flags, oldflags; 189 int ret; 190 u64 ip_oldflags; 191 unsigned int i_oldflags; 192 umode_t mode; 193 194 if (btrfs_root_readonly(root)) 195 return -EROFS; 196 197 if (copy_from_user(&flags, arg, sizeof(flags))) 198 return -EFAULT; 199 200 ret = check_flags(flags); 201 if (ret) 202 return ret; 203 204 if (!inode_owner_or_capable(inode)) 205 return -EACCES; 206 207 ret = mnt_want_write_file(file); 208 if (ret) 209 return ret; 210 211 mutex_lock(&inode->i_mutex); 212 213 ip_oldflags = ip->flags; 214 i_oldflags = inode->i_flags; 215 mode = inode->i_mode; 216 217 flags = btrfs_mask_flags(inode->i_mode, flags); 218 oldflags = btrfs_flags_to_ioctl(ip->flags); 219 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 220 if (!capable(CAP_LINUX_IMMUTABLE)) { 221 ret = -EPERM; 222 goto out_unlock; 223 } 224 } 225 226 if (flags & FS_SYNC_FL) 227 ip->flags |= BTRFS_INODE_SYNC; 228 else 229 ip->flags &= ~BTRFS_INODE_SYNC; 230 if (flags & FS_IMMUTABLE_FL) 231 ip->flags |= BTRFS_INODE_IMMUTABLE; 232 else 233 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 234 if (flags & FS_APPEND_FL) 235 ip->flags |= BTRFS_INODE_APPEND; 236 else 237 ip->flags &= ~BTRFS_INODE_APPEND; 238 if (flags & FS_NODUMP_FL) 239 ip->flags |= BTRFS_INODE_NODUMP; 240 else 241 ip->flags &= ~BTRFS_INODE_NODUMP; 242 if (flags & FS_NOATIME_FL) 243 ip->flags |= BTRFS_INODE_NOATIME; 244 else 245 ip->flags &= ~BTRFS_INODE_NOATIME; 246 if (flags & FS_DIRSYNC_FL) 247 ip->flags |= BTRFS_INODE_DIRSYNC; 248 else 249 ip->flags &= ~BTRFS_INODE_DIRSYNC; 250 if (flags & FS_NOCOW_FL) { 251 if (S_ISREG(mode)) { 252 /* 253 * It's safe to turn csums off here, no extents exist. 254 * Otherwise we want the flag to reflect the real COW 255 * status of the file and will not set it. 256 */ 257 if (inode->i_size == 0) 258 ip->flags |= BTRFS_INODE_NODATACOW 259 | BTRFS_INODE_NODATASUM; 260 } else { 261 ip->flags |= BTRFS_INODE_NODATACOW; 262 } 263 } else { 264 /* 265 * Revert back under same assuptions as above 266 */ 267 if (S_ISREG(mode)) { 268 if (inode->i_size == 0) 269 ip->flags &= ~(BTRFS_INODE_NODATACOW 270 | BTRFS_INODE_NODATASUM); 271 } else { 272 ip->flags &= ~BTRFS_INODE_NODATACOW; 273 } 274 } 275 276 /* 277 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 278 * flag may be changed automatically if compression code won't make 279 * things smaller. 280 */ 281 if (flags & FS_NOCOMP_FL) { 282 ip->flags &= ~BTRFS_INODE_COMPRESS; 283 ip->flags |= BTRFS_INODE_NOCOMPRESS; 284 } else if (flags & FS_COMPR_FL) { 285 ip->flags |= BTRFS_INODE_COMPRESS; 286 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 287 } else { 288 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 289 } 290 291 trans = btrfs_start_transaction(root, 1); 292 if (IS_ERR(trans)) { 293 ret = PTR_ERR(trans); 294 goto out_drop; 295 } 296 297 btrfs_update_iflags(inode); 298 inode_inc_iversion(inode); 299 inode->i_ctime = CURRENT_TIME; 300 ret = btrfs_update_inode(trans, root, inode); 301 302 btrfs_end_transaction(trans, root); 303 out_drop: 304 if (ret) { 305 ip->flags = ip_oldflags; 306 inode->i_flags = i_oldflags; 307 } 308 309 out_unlock: 310 mutex_unlock(&inode->i_mutex); 311 mnt_drop_write_file(file); 312 return ret; 313 } 314 315 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 316 { 317 struct inode *inode = file_inode(file); 318 319 return put_user(inode->i_generation, arg); 320 } 321 322 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 323 { 324 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb); 325 struct btrfs_device *device; 326 struct request_queue *q; 327 struct fstrim_range range; 328 u64 minlen = ULLONG_MAX; 329 u64 num_devices = 0; 330 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 331 int ret; 332 333 if (!capable(CAP_SYS_ADMIN)) 334 return -EPERM; 335 336 rcu_read_lock(); 337 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 338 dev_list) { 339 if (!device->bdev) 340 continue; 341 q = bdev_get_queue(device->bdev); 342 if (blk_queue_discard(q)) { 343 num_devices++; 344 minlen = min((u64)q->limits.discard_granularity, 345 minlen); 346 } 347 } 348 rcu_read_unlock(); 349 350 if (!num_devices) 351 return -EOPNOTSUPP; 352 if (copy_from_user(&range, arg, sizeof(range))) 353 return -EFAULT; 354 if (range.start > total_bytes || 355 range.len < fs_info->sb->s_blocksize) 356 return -EINVAL; 357 358 range.len = min(range.len, total_bytes - range.start); 359 range.minlen = max(range.minlen, minlen); 360 ret = btrfs_trim_fs(fs_info->tree_root, &range); 361 if (ret < 0) 362 return ret; 363 364 if (copy_to_user(arg, &range, sizeof(range))) 365 return -EFAULT; 366 367 return 0; 368 } 369 370 int btrfs_is_empty_uuid(u8 *uuid) 371 { 372 static char empty_uuid[BTRFS_UUID_SIZE] = {0}; 373 374 return !memcmp(uuid, empty_uuid, BTRFS_UUID_SIZE); 375 } 376 377 static noinline int create_subvol(struct inode *dir, 378 struct dentry *dentry, 379 char *name, int namelen, 380 u64 *async_transid, 381 struct btrfs_qgroup_inherit *inherit) 382 { 383 struct btrfs_trans_handle *trans; 384 struct btrfs_key key; 385 struct btrfs_root_item root_item; 386 struct btrfs_inode_item *inode_item; 387 struct extent_buffer *leaf; 388 struct btrfs_root *root = BTRFS_I(dir)->root; 389 struct btrfs_root *new_root; 390 struct btrfs_block_rsv block_rsv; 391 struct timespec cur_time = CURRENT_TIME; 392 int ret; 393 int err; 394 u64 objectid; 395 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 396 u64 index = 0; 397 u64 qgroup_reserved; 398 uuid_le new_uuid; 399 400 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 401 if (ret) 402 return ret; 403 404 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 405 /* 406 * The same as the snapshot creation, please see the comment 407 * of create_snapshot(). 408 */ 409 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 410 8, &qgroup_reserved, false); 411 if (ret) 412 return ret; 413 414 trans = btrfs_start_transaction(root, 0); 415 if (IS_ERR(trans)) { 416 ret = PTR_ERR(trans); 417 goto out; 418 } 419 trans->block_rsv = &block_rsv; 420 trans->bytes_reserved = block_rsv.size; 421 422 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit); 423 if (ret) 424 goto fail; 425 426 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 427 0, objectid, NULL, 0, 0, 0); 428 if (IS_ERR(leaf)) { 429 ret = PTR_ERR(leaf); 430 goto fail; 431 } 432 433 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 434 btrfs_set_header_bytenr(leaf, leaf->start); 435 btrfs_set_header_generation(leaf, trans->transid); 436 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 437 btrfs_set_header_owner(leaf, objectid); 438 439 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(leaf), 440 BTRFS_FSID_SIZE); 441 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 442 btrfs_header_chunk_tree_uuid(leaf), 443 BTRFS_UUID_SIZE); 444 btrfs_mark_buffer_dirty(leaf); 445 446 memset(&root_item, 0, sizeof(root_item)); 447 448 inode_item = &root_item.inode; 449 btrfs_set_stack_inode_generation(inode_item, 1); 450 btrfs_set_stack_inode_size(inode_item, 3); 451 btrfs_set_stack_inode_nlink(inode_item, 1); 452 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize); 453 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 454 455 btrfs_set_root_flags(&root_item, 0); 456 btrfs_set_root_limit(&root_item, 0); 457 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 458 459 btrfs_set_root_bytenr(&root_item, leaf->start); 460 btrfs_set_root_generation(&root_item, trans->transid); 461 btrfs_set_root_level(&root_item, 0); 462 btrfs_set_root_refs(&root_item, 1); 463 btrfs_set_root_used(&root_item, leaf->len); 464 btrfs_set_root_last_snapshot(&root_item, 0); 465 466 btrfs_set_root_generation_v2(&root_item, 467 btrfs_root_generation(&root_item)); 468 uuid_le_gen(&new_uuid); 469 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE); 470 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec); 471 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec); 472 root_item.ctime = root_item.otime; 473 btrfs_set_root_ctransid(&root_item, trans->transid); 474 btrfs_set_root_otransid(&root_item, trans->transid); 475 476 btrfs_tree_unlock(leaf); 477 free_extent_buffer(leaf); 478 leaf = NULL; 479 480 btrfs_set_root_dirid(&root_item, new_dirid); 481 482 key.objectid = objectid; 483 key.offset = 0; 484 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 485 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 486 &root_item); 487 if (ret) 488 goto fail; 489 490 key.offset = (u64)-1; 491 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 492 if (IS_ERR(new_root)) { 493 btrfs_abort_transaction(trans, root, PTR_ERR(new_root)); 494 ret = PTR_ERR(new_root); 495 goto fail; 496 } 497 498 btrfs_record_root_in_trans(trans, new_root); 499 500 ret = btrfs_create_subvol_root(trans, new_root, new_dirid); 501 if (ret) { 502 /* We potentially lose an unused inode item here */ 503 btrfs_abort_transaction(trans, root, ret); 504 goto fail; 505 } 506 507 /* 508 * insert the directory item 509 */ 510 ret = btrfs_set_inode_index(dir, &index); 511 if (ret) { 512 btrfs_abort_transaction(trans, root, ret); 513 goto fail; 514 } 515 516 ret = btrfs_insert_dir_item(trans, root, 517 name, namelen, dir, &key, 518 BTRFS_FT_DIR, index); 519 if (ret) { 520 btrfs_abort_transaction(trans, root, ret); 521 goto fail; 522 } 523 524 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 525 ret = btrfs_update_inode(trans, root, dir); 526 BUG_ON(ret); 527 528 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 529 objectid, root->root_key.objectid, 530 btrfs_ino(dir), index, name, namelen); 531 BUG_ON(ret); 532 533 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 534 root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 535 objectid); 536 if (ret) 537 btrfs_abort_transaction(trans, root, ret); 538 539 fail: 540 trans->block_rsv = NULL; 541 trans->bytes_reserved = 0; 542 if (async_transid) { 543 *async_transid = trans->transid; 544 err = btrfs_commit_transaction_async(trans, root, 1); 545 if (err) 546 err = btrfs_commit_transaction(trans, root); 547 } else { 548 err = btrfs_commit_transaction(trans, root); 549 } 550 if (err && !ret) 551 ret = err; 552 553 if (!ret) 554 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry)); 555 out: 556 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 557 return ret; 558 } 559 560 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 561 struct dentry *dentry, char *name, int namelen, 562 u64 *async_transid, bool readonly, 563 struct btrfs_qgroup_inherit *inherit) 564 { 565 struct inode *inode; 566 struct btrfs_pending_snapshot *pending_snapshot; 567 struct btrfs_trans_handle *trans; 568 int ret; 569 570 if (!root->ref_cows) 571 return -EINVAL; 572 573 ret = btrfs_start_delalloc_inodes(root, 0); 574 if (ret) 575 return ret; 576 577 btrfs_wait_ordered_extents(root); 578 579 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 580 if (!pending_snapshot) 581 return -ENOMEM; 582 583 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 584 BTRFS_BLOCK_RSV_TEMP); 585 /* 586 * 1 - parent dir inode 587 * 2 - dir entries 588 * 1 - root item 589 * 2 - root ref/backref 590 * 1 - root of snapshot 591 * 1 - UUID item 592 */ 593 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 594 &pending_snapshot->block_rsv, 8, 595 &pending_snapshot->qgroup_reserved, 596 false); 597 if (ret) 598 goto out; 599 600 pending_snapshot->dentry = dentry; 601 pending_snapshot->root = root; 602 pending_snapshot->readonly = readonly; 603 pending_snapshot->dir = dir; 604 pending_snapshot->inherit = inherit; 605 606 trans = btrfs_start_transaction(root, 0); 607 if (IS_ERR(trans)) { 608 ret = PTR_ERR(trans); 609 goto fail; 610 } 611 612 spin_lock(&root->fs_info->trans_lock); 613 list_add(&pending_snapshot->list, 614 &trans->transaction->pending_snapshots); 615 spin_unlock(&root->fs_info->trans_lock); 616 if (async_transid) { 617 *async_transid = trans->transid; 618 ret = btrfs_commit_transaction_async(trans, 619 root->fs_info->extent_root, 1); 620 if (ret) 621 ret = btrfs_commit_transaction(trans, root); 622 } else { 623 ret = btrfs_commit_transaction(trans, 624 root->fs_info->extent_root); 625 } 626 if (ret) 627 goto fail; 628 629 ret = pending_snapshot->error; 630 if (ret) 631 goto fail; 632 633 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 634 if (ret) 635 goto fail; 636 637 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry); 638 if (IS_ERR(inode)) { 639 ret = PTR_ERR(inode); 640 goto fail; 641 } 642 BUG_ON(!inode); 643 d_instantiate(dentry, inode); 644 ret = 0; 645 fail: 646 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root, 647 &pending_snapshot->block_rsv, 648 pending_snapshot->qgroup_reserved); 649 out: 650 kfree(pending_snapshot); 651 return ret; 652 } 653 654 /* copy of check_sticky in fs/namei.c() 655 * It's inline, so penalty for filesystems that don't use sticky bit is 656 * minimal. 657 */ 658 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode) 659 { 660 kuid_t fsuid = current_fsuid(); 661 662 if (!(dir->i_mode & S_ISVTX)) 663 return 0; 664 if (uid_eq(inode->i_uid, fsuid)) 665 return 0; 666 if (uid_eq(dir->i_uid, fsuid)) 667 return 0; 668 return !capable(CAP_FOWNER); 669 } 670 671 /* copy of may_delete in fs/namei.c() 672 * Check whether we can remove a link victim from directory dir, check 673 * whether the type of victim is right. 674 * 1. We can't do it if dir is read-only (done in permission()) 675 * 2. We should have write and exec permissions on dir 676 * 3. We can't remove anything from append-only dir 677 * 4. We can't do anything with immutable dir (done in permission()) 678 * 5. If the sticky bit on dir is set we should either 679 * a. be owner of dir, or 680 * b. be owner of victim, or 681 * c. have CAP_FOWNER capability 682 * 6. If the victim is append-only or immutable we can't do antyhing with 683 * links pointing to it. 684 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 685 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 686 * 9. We can't remove a root or mountpoint. 687 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 688 * nfs_async_unlink(). 689 */ 690 691 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir) 692 { 693 int error; 694 695 if (!victim->d_inode) 696 return -ENOENT; 697 698 BUG_ON(victim->d_parent->d_inode != dir); 699 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 700 701 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 702 if (error) 703 return error; 704 if (IS_APPEND(dir)) 705 return -EPERM; 706 if (btrfs_check_sticky(dir, victim->d_inode)|| 707 IS_APPEND(victim->d_inode)|| 708 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 709 return -EPERM; 710 if (isdir) { 711 if (!S_ISDIR(victim->d_inode->i_mode)) 712 return -ENOTDIR; 713 if (IS_ROOT(victim)) 714 return -EBUSY; 715 } else if (S_ISDIR(victim->d_inode->i_mode)) 716 return -EISDIR; 717 if (IS_DEADDIR(dir)) 718 return -ENOENT; 719 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 720 return -EBUSY; 721 return 0; 722 } 723 724 /* copy of may_create in fs/namei.c() */ 725 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 726 { 727 if (child->d_inode) 728 return -EEXIST; 729 if (IS_DEADDIR(dir)) 730 return -ENOENT; 731 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 732 } 733 734 /* 735 * Create a new subvolume below @parent. This is largely modeled after 736 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 737 * inside this filesystem so it's quite a bit simpler. 738 */ 739 static noinline int btrfs_mksubvol(struct path *parent, 740 char *name, int namelen, 741 struct btrfs_root *snap_src, 742 u64 *async_transid, bool readonly, 743 struct btrfs_qgroup_inherit *inherit) 744 { 745 struct inode *dir = parent->dentry->d_inode; 746 struct dentry *dentry; 747 int error; 748 749 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 750 if (error == -EINTR) 751 return error; 752 753 dentry = lookup_one_len(name, parent->dentry, namelen); 754 error = PTR_ERR(dentry); 755 if (IS_ERR(dentry)) 756 goto out_unlock; 757 758 error = -EEXIST; 759 if (dentry->d_inode) 760 goto out_dput; 761 762 error = btrfs_may_create(dir, dentry); 763 if (error) 764 goto out_dput; 765 766 /* 767 * even if this name doesn't exist, we may get hash collisions. 768 * check for them now when we can safely fail 769 */ 770 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 771 dir->i_ino, name, 772 namelen); 773 if (error) 774 goto out_dput; 775 776 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 777 778 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 779 goto out_up_read; 780 781 if (snap_src) { 782 error = create_snapshot(snap_src, dir, dentry, name, namelen, 783 async_transid, readonly, inherit); 784 } else { 785 error = create_subvol(dir, dentry, name, namelen, 786 async_transid, inherit); 787 } 788 if (!error) 789 fsnotify_mkdir(dir, dentry); 790 out_up_read: 791 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 792 out_dput: 793 dput(dentry); 794 out_unlock: 795 mutex_unlock(&dir->i_mutex); 796 return error; 797 } 798 799 /* 800 * When we're defragging a range, we don't want to kick it off again 801 * if it is really just waiting for delalloc to send it down. 802 * If we find a nice big extent or delalloc range for the bytes in the 803 * file you want to defrag, we return 0 to let you know to skip this 804 * part of the file 805 */ 806 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh) 807 { 808 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 809 struct extent_map *em = NULL; 810 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 811 u64 end; 812 813 read_lock(&em_tree->lock); 814 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 815 read_unlock(&em_tree->lock); 816 817 if (em) { 818 end = extent_map_end(em); 819 free_extent_map(em); 820 if (end - offset > thresh) 821 return 0; 822 } 823 /* if we already have a nice delalloc here, just stop */ 824 thresh /= 2; 825 end = count_range_bits(io_tree, &offset, offset + thresh, 826 thresh, EXTENT_DELALLOC, 1); 827 if (end >= thresh) 828 return 0; 829 return 1; 830 } 831 832 /* 833 * helper function to walk through a file and find extents 834 * newer than a specific transid, and smaller than thresh. 835 * 836 * This is used by the defragging code to find new and small 837 * extents 838 */ 839 static int find_new_extents(struct btrfs_root *root, 840 struct inode *inode, u64 newer_than, 841 u64 *off, int thresh) 842 { 843 struct btrfs_path *path; 844 struct btrfs_key min_key; 845 struct btrfs_key max_key; 846 struct extent_buffer *leaf; 847 struct btrfs_file_extent_item *extent; 848 int type; 849 int ret; 850 u64 ino = btrfs_ino(inode); 851 852 path = btrfs_alloc_path(); 853 if (!path) 854 return -ENOMEM; 855 856 min_key.objectid = ino; 857 min_key.type = BTRFS_EXTENT_DATA_KEY; 858 min_key.offset = *off; 859 860 max_key.objectid = ino; 861 max_key.type = (u8)-1; 862 max_key.offset = (u64)-1; 863 864 path->keep_locks = 1; 865 866 while(1) { 867 ret = btrfs_search_forward(root, &min_key, &max_key, 868 path, newer_than); 869 if (ret != 0) 870 goto none; 871 if (min_key.objectid != ino) 872 goto none; 873 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 874 goto none; 875 876 leaf = path->nodes[0]; 877 extent = btrfs_item_ptr(leaf, path->slots[0], 878 struct btrfs_file_extent_item); 879 880 type = btrfs_file_extent_type(leaf, extent); 881 if (type == BTRFS_FILE_EXTENT_REG && 882 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 883 check_defrag_in_cache(inode, min_key.offset, thresh)) { 884 *off = min_key.offset; 885 btrfs_free_path(path); 886 return 0; 887 } 888 889 if (min_key.offset == (u64)-1) 890 goto none; 891 892 min_key.offset++; 893 btrfs_release_path(path); 894 } 895 none: 896 btrfs_free_path(path); 897 return -ENOENT; 898 } 899 900 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 901 { 902 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 903 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 904 struct extent_map *em; 905 u64 len = PAGE_CACHE_SIZE; 906 907 /* 908 * hopefully we have this extent in the tree already, try without 909 * the full extent lock 910 */ 911 read_lock(&em_tree->lock); 912 em = lookup_extent_mapping(em_tree, start, len); 913 read_unlock(&em_tree->lock); 914 915 if (!em) { 916 /* get the big lock and read metadata off disk */ 917 lock_extent(io_tree, start, start + len - 1); 918 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 919 unlock_extent(io_tree, start, start + len - 1); 920 921 if (IS_ERR(em)) 922 return NULL; 923 } 924 925 return em; 926 } 927 928 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 929 { 930 struct extent_map *next; 931 bool ret = true; 932 933 /* this is the last extent */ 934 if (em->start + em->len >= i_size_read(inode)) 935 return false; 936 937 next = defrag_lookup_extent(inode, em->start + em->len); 938 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 939 ret = false; 940 941 free_extent_map(next); 942 return ret; 943 } 944 945 static int should_defrag_range(struct inode *inode, u64 start, int thresh, 946 u64 *last_len, u64 *skip, u64 *defrag_end, 947 int compress) 948 { 949 struct extent_map *em; 950 int ret = 1; 951 bool next_mergeable = true; 952 953 /* 954 * make sure that once we start defragging an extent, we keep on 955 * defragging it 956 */ 957 if (start < *defrag_end) 958 return 1; 959 960 *skip = 0; 961 962 em = defrag_lookup_extent(inode, start); 963 if (!em) 964 return 0; 965 966 /* this will cover holes, and inline extents */ 967 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 968 ret = 0; 969 goto out; 970 } 971 972 next_mergeable = defrag_check_next_extent(inode, em); 973 974 /* 975 * we hit a real extent, if it is big or the next extent is not a 976 * real extent, don't bother defragging it 977 */ 978 if (!compress && (*last_len == 0 || *last_len >= thresh) && 979 (em->len >= thresh || !next_mergeable)) 980 ret = 0; 981 out: 982 /* 983 * last_len ends up being a counter of how many bytes we've defragged. 984 * every time we choose not to defrag an extent, we reset *last_len 985 * so that the next tiny extent will force a defrag. 986 * 987 * The end result of this is that tiny extents before a single big 988 * extent will force at least part of that big extent to be defragged. 989 */ 990 if (ret) { 991 *defrag_end = extent_map_end(em); 992 } else { 993 *last_len = 0; 994 *skip = extent_map_end(em); 995 *defrag_end = 0; 996 } 997 998 free_extent_map(em); 999 return ret; 1000 } 1001 1002 /* 1003 * it doesn't do much good to defrag one or two pages 1004 * at a time. This pulls in a nice chunk of pages 1005 * to COW and defrag. 1006 * 1007 * It also makes sure the delalloc code has enough 1008 * dirty data to avoid making new small extents as part 1009 * of the defrag 1010 * 1011 * It's a good idea to start RA on this range 1012 * before calling this. 1013 */ 1014 static int cluster_pages_for_defrag(struct inode *inode, 1015 struct page **pages, 1016 unsigned long start_index, 1017 int num_pages) 1018 { 1019 unsigned long file_end; 1020 u64 isize = i_size_read(inode); 1021 u64 page_start; 1022 u64 page_end; 1023 u64 page_cnt; 1024 int ret; 1025 int i; 1026 int i_done; 1027 struct btrfs_ordered_extent *ordered; 1028 struct extent_state *cached_state = NULL; 1029 struct extent_io_tree *tree; 1030 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1031 1032 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 1033 if (!isize || start_index > file_end) 1034 return 0; 1035 1036 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1037 1038 ret = btrfs_delalloc_reserve_space(inode, 1039 page_cnt << PAGE_CACHE_SHIFT); 1040 if (ret) 1041 return ret; 1042 i_done = 0; 1043 tree = &BTRFS_I(inode)->io_tree; 1044 1045 /* step one, lock all the pages */ 1046 for (i = 0; i < page_cnt; i++) { 1047 struct page *page; 1048 again: 1049 page = find_or_create_page(inode->i_mapping, 1050 start_index + i, mask); 1051 if (!page) 1052 break; 1053 1054 page_start = page_offset(page); 1055 page_end = page_start + PAGE_CACHE_SIZE - 1; 1056 while (1) { 1057 lock_extent(tree, page_start, page_end); 1058 ordered = btrfs_lookup_ordered_extent(inode, 1059 page_start); 1060 unlock_extent(tree, page_start, page_end); 1061 if (!ordered) 1062 break; 1063 1064 unlock_page(page); 1065 btrfs_start_ordered_extent(inode, ordered, 1); 1066 btrfs_put_ordered_extent(ordered); 1067 lock_page(page); 1068 /* 1069 * we unlocked the page above, so we need check if 1070 * it was released or not. 1071 */ 1072 if (page->mapping != inode->i_mapping) { 1073 unlock_page(page); 1074 page_cache_release(page); 1075 goto again; 1076 } 1077 } 1078 1079 if (!PageUptodate(page)) { 1080 btrfs_readpage(NULL, page); 1081 lock_page(page); 1082 if (!PageUptodate(page)) { 1083 unlock_page(page); 1084 page_cache_release(page); 1085 ret = -EIO; 1086 break; 1087 } 1088 } 1089 1090 if (page->mapping != inode->i_mapping) { 1091 unlock_page(page); 1092 page_cache_release(page); 1093 goto again; 1094 } 1095 1096 pages[i] = page; 1097 i_done++; 1098 } 1099 if (!i_done || ret) 1100 goto out; 1101 1102 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1103 goto out; 1104 1105 /* 1106 * so now we have a nice long stream of locked 1107 * and up to date pages, lets wait on them 1108 */ 1109 for (i = 0; i < i_done; i++) 1110 wait_on_page_writeback(pages[i]); 1111 1112 page_start = page_offset(pages[0]); 1113 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 1114 1115 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1116 page_start, page_end - 1, 0, &cached_state); 1117 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1118 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1119 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1120 &cached_state, GFP_NOFS); 1121 1122 if (i_done != page_cnt) { 1123 spin_lock(&BTRFS_I(inode)->lock); 1124 BTRFS_I(inode)->outstanding_extents++; 1125 spin_unlock(&BTRFS_I(inode)->lock); 1126 btrfs_delalloc_release_space(inode, 1127 (page_cnt - i_done) << PAGE_CACHE_SHIFT); 1128 } 1129 1130 1131 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1132 &cached_state, GFP_NOFS); 1133 1134 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1135 page_start, page_end - 1, &cached_state, 1136 GFP_NOFS); 1137 1138 for (i = 0; i < i_done; i++) { 1139 clear_page_dirty_for_io(pages[i]); 1140 ClearPageChecked(pages[i]); 1141 set_page_extent_mapped(pages[i]); 1142 set_page_dirty(pages[i]); 1143 unlock_page(pages[i]); 1144 page_cache_release(pages[i]); 1145 } 1146 return i_done; 1147 out: 1148 for (i = 0; i < i_done; i++) { 1149 unlock_page(pages[i]); 1150 page_cache_release(pages[i]); 1151 } 1152 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT); 1153 return ret; 1154 1155 } 1156 1157 int btrfs_defrag_file(struct inode *inode, struct file *file, 1158 struct btrfs_ioctl_defrag_range_args *range, 1159 u64 newer_than, unsigned long max_to_defrag) 1160 { 1161 struct btrfs_root *root = BTRFS_I(inode)->root; 1162 struct file_ra_state *ra = NULL; 1163 unsigned long last_index; 1164 u64 isize = i_size_read(inode); 1165 u64 last_len = 0; 1166 u64 skip = 0; 1167 u64 defrag_end = 0; 1168 u64 newer_off = range->start; 1169 unsigned long i; 1170 unsigned long ra_index = 0; 1171 int ret; 1172 int defrag_count = 0; 1173 int compress_type = BTRFS_COMPRESS_ZLIB; 1174 int extent_thresh = range->extent_thresh; 1175 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 1176 int cluster = max_cluster; 1177 u64 new_align = ~((u64)128 * 1024 - 1); 1178 struct page **pages = NULL; 1179 1180 if (isize == 0) 1181 return 0; 1182 1183 if (range->start >= isize) 1184 return -EINVAL; 1185 1186 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1187 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1188 return -EINVAL; 1189 if (range->compress_type) 1190 compress_type = range->compress_type; 1191 } 1192 1193 if (extent_thresh == 0) 1194 extent_thresh = 256 * 1024; 1195 1196 /* 1197 * if we were not given a file, allocate a readahead 1198 * context 1199 */ 1200 if (!file) { 1201 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1202 if (!ra) 1203 return -ENOMEM; 1204 file_ra_state_init(ra, inode->i_mapping); 1205 } else { 1206 ra = &file->f_ra; 1207 } 1208 1209 pages = kmalloc(sizeof(struct page *) * max_cluster, 1210 GFP_NOFS); 1211 if (!pages) { 1212 ret = -ENOMEM; 1213 goto out_ra; 1214 } 1215 1216 /* find the last page to defrag */ 1217 if (range->start + range->len > range->start) { 1218 last_index = min_t(u64, isize - 1, 1219 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1220 } else { 1221 last_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1222 } 1223 1224 if (newer_than) { 1225 ret = find_new_extents(root, inode, newer_than, 1226 &newer_off, 64 * 1024); 1227 if (!ret) { 1228 range->start = newer_off; 1229 /* 1230 * we always align our defrag to help keep 1231 * the extents in the file evenly spaced 1232 */ 1233 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1234 } else 1235 goto out_ra; 1236 } else { 1237 i = range->start >> PAGE_CACHE_SHIFT; 1238 } 1239 if (!max_to_defrag) 1240 max_to_defrag = last_index + 1; 1241 1242 /* 1243 * make writeback starts from i, so the defrag range can be 1244 * written sequentially. 1245 */ 1246 if (i < inode->i_mapping->writeback_index) 1247 inode->i_mapping->writeback_index = i; 1248 1249 while (i <= last_index && defrag_count < max_to_defrag && 1250 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> 1251 PAGE_CACHE_SHIFT)) { 1252 /* 1253 * make sure we stop running if someone unmounts 1254 * the FS 1255 */ 1256 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1257 break; 1258 1259 if (btrfs_defrag_cancelled(root->fs_info)) { 1260 printk(KERN_DEBUG "btrfs: defrag_file cancelled\n"); 1261 ret = -EAGAIN; 1262 break; 1263 } 1264 1265 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1266 extent_thresh, &last_len, &skip, 1267 &defrag_end, range->flags & 1268 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1269 unsigned long next; 1270 /* 1271 * the should_defrag function tells us how much to skip 1272 * bump our counter by the suggested amount 1273 */ 1274 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1275 i = max(i + 1, next); 1276 continue; 1277 } 1278 1279 if (!newer_than) { 1280 cluster = (PAGE_CACHE_ALIGN(defrag_end) >> 1281 PAGE_CACHE_SHIFT) - i; 1282 cluster = min(cluster, max_cluster); 1283 } else { 1284 cluster = max_cluster; 1285 } 1286 1287 if (i + cluster > ra_index) { 1288 ra_index = max(i, ra_index); 1289 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1290 cluster); 1291 ra_index += max_cluster; 1292 } 1293 1294 mutex_lock(&inode->i_mutex); 1295 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1296 BTRFS_I(inode)->force_compress = compress_type; 1297 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1298 if (ret < 0) { 1299 mutex_unlock(&inode->i_mutex); 1300 goto out_ra; 1301 } 1302 1303 defrag_count += ret; 1304 balance_dirty_pages_ratelimited(inode->i_mapping); 1305 mutex_unlock(&inode->i_mutex); 1306 1307 if (newer_than) { 1308 if (newer_off == (u64)-1) 1309 break; 1310 1311 if (ret > 0) 1312 i += ret; 1313 1314 newer_off = max(newer_off + 1, 1315 (u64)i << PAGE_CACHE_SHIFT); 1316 1317 ret = find_new_extents(root, inode, 1318 newer_than, &newer_off, 1319 64 * 1024); 1320 if (!ret) { 1321 range->start = newer_off; 1322 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1323 } else { 1324 break; 1325 } 1326 } else { 1327 if (ret > 0) { 1328 i += ret; 1329 last_len += ret << PAGE_CACHE_SHIFT; 1330 } else { 1331 i++; 1332 last_len = 0; 1333 } 1334 } 1335 } 1336 1337 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) 1338 filemap_flush(inode->i_mapping); 1339 1340 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1341 /* the filemap_flush will queue IO into the worker threads, but 1342 * we have to make sure the IO is actually started and that 1343 * ordered extents get created before we return 1344 */ 1345 atomic_inc(&root->fs_info->async_submit_draining); 1346 while (atomic_read(&root->fs_info->nr_async_submits) || 1347 atomic_read(&root->fs_info->async_delalloc_pages)) { 1348 wait_event(root->fs_info->async_submit_wait, 1349 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1350 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1351 } 1352 atomic_dec(&root->fs_info->async_submit_draining); 1353 } 1354 1355 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1356 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1357 } 1358 1359 ret = defrag_count; 1360 1361 out_ra: 1362 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1363 mutex_lock(&inode->i_mutex); 1364 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1365 mutex_unlock(&inode->i_mutex); 1366 } 1367 if (!file) 1368 kfree(ra); 1369 kfree(pages); 1370 return ret; 1371 } 1372 1373 static noinline int btrfs_ioctl_resize(struct file *file, 1374 void __user *arg) 1375 { 1376 u64 new_size; 1377 u64 old_size; 1378 u64 devid = 1; 1379 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 1380 struct btrfs_ioctl_vol_args *vol_args; 1381 struct btrfs_trans_handle *trans; 1382 struct btrfs_device *device = NULL; 1383 char *sizestr; 1384 char *devstr = NULL; 1385 int ret = 0; 1386 int mod = 0; 1387 1388 if (!capable(CAP_SYS_ADMIN)) 1389 return -EPERM; 1390 1391 ret = mnt_want_write_file(file); 1392 if (ret) 1393 return ret; 1394 1395 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 1396 1)) { 1397 mnt_drop_write_file(file); 1398 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1399 } 1400 1401 mutex_lock(&root->fs_info->volume_mutex); 1402 vol_args = memdup_user(arg, sizeof(*vol_args)); 1403 if (IS_ERR(vol_args)) { 1404 ret = PTR_ERR(vol_args); 1405 goto out; 1406 } 1407 1408 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1409 1410 sizestr = vol_args->name; 1411 devstr = strchr(sizestr, ':'); 1412 if (devstr) { 1413 char *end; 1414 sizestr = devstr + 1; 1415 *devstr = '\0'; 1416 devstr = vol_args->name; 1417 devid = simple_strtoull(devstr, &end, 10); 1418 if (!devid) { 1419 ret = -EINVAL; 1420 goto out_free; 1421 } 1422 printk(KERN_INFO "btrfs: resizing devid %llu\n", devid); 1423 } 1424 1425 device = btrfs_find_device(root->fs_info, devid, NULL, NULL); 1426 if (!device) { 1427 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n", 1428 devid); 1429 ret = -ENODEV; 1430 goto out_free; 1431 } 1432 1433 if (!device->writeable) { 1434 printk(KERN_INFO "btrfs: resizer unable to apply on " 1435 "readonly device %llu\n", 1436 devid); 1437 ret = -EPERM; 1438 goto out_free; 1439 } 1440 1441 if (!strcmp(sizestr, "max")) 1442 new_size = device->bdev->bd_inode->i_size; 1443 else { 1444 if (sizestr[0] == '-') { 1445 mod = -1; 1446 sizestr++; 1447 } else if (sizestr[0] == '+') { 1448 mod = 1; 1449 sizestr++; 1450 } 1451 new_size = memparse(sizestr, NULL); 1452 if (new_size == 0) { 1453 ret = -EINVAL; 1454 goto out_free; 1455 } 1456 } 1457 1458 if (device->is_tgtdev_for_dev_replace) { 1459 ret = -EPERM; 1460 goto out_free; 1461 } 1462 1463 old_size = device->total_bytes; 1464 1465 if (mod < 0) { 1466 if (new_size > old_size) { 1467 ret = -EINVAL; 1468 goto out_free; 1469 } 1470 new_size = old_size - new_size; 1471 } else if (mod > 0) { 1472 new_size = old_size + new_size; 1473 } 1474 1475 if (new_size < 256 * 1024 * 1024) { 1476 ret = -EINVAL; 1477 goto out_free; 1478 } 1479 if (new_size > device->bdev->bd_inode->i_size) { 1480 ret = -EFBIG; 1481 goto out_free; 1482 } 1483 1484 do_div(new_size, root->sectorsize); 1485 new_size *= root->sectorsize; 1486 1487 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n", 1488 rcu_str_deref(device->name), new_size); 1489 1490 if (new_size > old_size) { 1491 trans = btrfs_start_transaction(root, 0); 1492 if (IS_ERR(trans)) { 1493 ret = PTR_ERR(trans); 1494 goto out_free; 1495 } 1496 ret = btrfs_grow_device(trans, device, new_size); 1497 btrfs_commit_transaction(trans, root); 1498 } else if (new_size < old_size) { 1499 ret = btrfs_shrink_device(device, new_size); 1500 } /* equal, nothing need to do */ 1501 1502 out_free: 1503 kfree(vol_args); 1504 out: 1505 mutex_unlock(&root->fs_info->volume_mutex); 1506 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 1507 mnt_drop_write_file(file); 1508 return ret; 1509 } 1510 1511 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1512 char *name, unsigned long fd, int subvol, 1513 u64 *transid, bool readonly, 1514 struct btrfs_qgroup_inherit *inherit) 1515 { 1516 int namelen; 1517 int ret = 0; 1518 1519 ret = mnt_want_write_file(file); 1520 if (ret) 1521 goto out; 1522 1523 namelen = strlen(name); 1524 if (strchr(name, '/')) { 1525 ret = -EINVAL; 1526 goto out_drop_write; 1527 } 1528 1529 if (name[0] == '.' && 1530 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1531 ret = -EEXIST; 1532 goto out_drop_write; 1533 } 1534 1535 if (subvol) { 1536 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1537 NULL, transid, readonly, inherit); 1538 } else { 1539 struct fd src = fdget(fd); 1540 struct inode *src_inode; 1541 if (!src.file) { 1542 ret = -EINVAL; 1543 goto out_drop_write; 1544 } 1545 1546 src_inode = file_inode(src.file); 1547 if (src_inode->i_sb != file_inode(file)->i_sb) { 1548 printk(KERN_INFO "btrfs: Snapshot src from " 1549 "another FS\n"); 1550 ret = -EINVAL; 1551 } else { 1552 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1553 BTRFS_I(src_inode)->root, 1554 transid, readonly, inherit); 1555 } 1556 fdput(src); 1557 } 1558 out_drop_write: 1559 mnt_drop_write_file(file); 1560 out: 1561 return ret; 1562 } 1563 1564 static noinline int btrfs_ioctl_snap_create(struct file *file, 1565 void __user *arg, int subvol) 1566 { 1567 struct btrfs_ioctl_vol_args *vol_args; 1568 int ret; 1569 1570 vol_args = memdup_user(arg, sizeof(*vol_args)); 1571 if (IS_ERR(vol_args)) 1572 return PTR_ERR(vol_args); 1573 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1574 1575 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1576 vol_args->fd, subvol, 1577 NULL, false, NULL); 1578 1579 kfree(vol_args); 1580 return ret; 1581 } 1582 1583 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1584 void __user *arg, int subvol) 1585 { 1586 struct btrfs_ioctl_vol_args_v2 *vol_args; 1587 int ret; 1588 u64 transid = 0; 1589 u64 *ptr = NULL; 1590 bool readonly = false; 1591 struct btrfs_qgroup_inherit *inherit = NULL; 1592 1593 vol_args = memdup_user(arg, sizeof(*vol_args)); 1594 if (IS_ERR(vol_args)) 1595 return PTR_ERR(vol_args); 1596 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1597 1598 if (vol_args->flags & 1599 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1600 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1601 ret = -EOPNOTSUPP; 1602 goto out; 1603 } 1604 1605 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1606 ptr = &transid; 1607 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1608 readonly = true; 1609 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1610 if (vol_args->size > PAGE_CACHE_SIZE) { 1611 ret = -EINVAL; 1612 goto out; 1613 } 1614 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1615 if (IS_ERR(inherit)) { 1616 ret = PTR_ERR(inherit); 1617 goto out; 1618 } 1619 } 1620 1621 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1622 vol_args->fd, subvol, ptr, 1623 readonly, inherit); 1624 1625 if (ret == 0 && ptr && 1626 copy_to_user(arg + 1627 offsetof(struct btrfs_ioctl_vol_args_v2, 1628 transid), ptr, sizeof(*ptr))) 1629 ret = -EFAULT; 1630 out: 1631 kfree(vol_args); 1632 kfree(inherit); 1633 return ret; 1634 } 1635 1636 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1637 void __user *arg) 1638 { 1639 struct inode *inode = file_inode(file); 1640 struct btrfs_root *root = BTRFS_I(inode)->root; 1641 int ret = 0; 1642 u64 flags = 0; 1643 1644 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1645 return -EINVAL; 1646 1647 down_read(&root->fs_info->subvol_sem); 1648 if (btrfs_root_readonly(root)) 1649 flags |= BTRFS_SUBVOL_RDONLY; 1650 up_read(&root->fs_info->subvol_sem); 1651 1652 if (copy_to_user(arg, &flags, sizeof(flags))) 1653 ret = -EFAULT; 1654 1655 return ret; 1656 } 1657 1658 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1659 void __user *arg) 1660 { 1661 struct inode *inode = file_inode(file); 1662 struct btrfs_root *root = BTRFS_I(inode)->root; 1663 struct btrfs_trans_handle *trans; 1664 u64 root_flags; 1665 u64 flags; 1666 int ret = 0; 1667 1668 ret = mnt_want_write_file(file); 1669 if (ret) 1670 goto out; 1671 1672 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1673 ret = -EINVAL; 1674 goto out_drop_write; 1675 } 1676 1677 if (copy_from_user(&flags, arg, sizeof(flags))) { 1678 ret = -EFAULT; 1679 goto out_drop_write; 1680 } 1681 1682 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1683 ret = -EINVAL; 1684 goto out_drop_write; 1685 } 1686 1687 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1688 ret = -EOPNOTSUPP; 1689 goto out_drop_write; 1690 } 1691 1692 if (!inode_owner_or_capable(inode)) { 1693 ret = -EACCES; 1694 goto out_drop_write; 1695 } 1696 1697 down_write(&root->fs_info->subvol_sem); 1698 1699 /* nothing to do */ 1700 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1701 goto out_drop_sem; 1702 1703 root_flags = btrfs_root_flags(&root->root_item); 1704 if (flags & BTRFS_SUBVOL_RDONLY) 1705 btrfs_set_root_flags(&root->root_item, 1706 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1707 else 1708 btrfs_set_root_flags(&root->root_item, 1709 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1710 1711 trans = btrfs_start_transaction(root, 1); 1712 if (IS_ERR(trans)) { 1713 ret = PTR_ERR(trans); 1714 goto out_reset; 1715 } 1716 1717 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1718 &root->root_key, &root->root_item); 1719 1720 btrfs_commit_transaction(trans, root); 1721 out_reset: 1722 if (ret) 1723 btrfs_set_root_flags(&root->root_item, root_flags); 1724 out_drop_sem: 1725 up_write(&root->fs_info->subvol_sem); 1726 out_drop_write: 1727 mnt_drop_write_file(file); 1728 out: 1729 return ret; 1730 } 1731 1732 /* 1733 * helper to check if the subvolume references other subvolumes 1734 */ 1735 static noinline int may_destroy_subvol(struct btrfs_root *root) 1736 { 1737 struct btrfs_path *path; 1738 struct btrfs_dir_item *di; 1739 struct btrfs_key key; 1740 u64 dir_id; 1741 int ret; 1742 1743 path = btrfs_alloc_path(); 1744 if (!path) 1745 return -ENOMEM; 1746 1747 /* Make sure this root isn't set as the default subvol */ 1748 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 1749 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path, 1750 dir_id, "default", 7, 0); 1751 if (di && !IS_ERR(di)) { 1752 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1753 if (key.objectid == root->root_key.objectid) { 1754 ret = -ENOTEMPTY; 1755 goto out; 1756 } 1757 btrfs_release_path(path); 1758 } 1759 1760 key.objectid = root->root_key.objectid; 1761 key.type = BTRFS_ROOT_REF_KEY; 1762 key.offset = (u64)-1; 1763 1764 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1765 &key, path, 0, 0); 1766 if (ret < 0) 1767 goto out; 1768 BUG_ON(ret == 0); 1769 1770 ret = 0; 1771 if (path->slots[0] > 0) { 1772 path->slots[0]--; 1773 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1774 if (key.objectid == root->root_key.objectid && 1775 key.type == BTRFS_ROOT_REF_KEY) 1776 ret = -ENOTEMPTY; 1777 } 1778 out: 1779 btrfs_free_path(path); 1780 return ret; 1781 } 1782 1783 static noinline int key_in_sk(struct btrfs_key *key, 1784 struct btrfs_ioctl_search_key *sk) 1785 { 1786 struct btrfs_key test; 1787 int ret; 1788 1789 test.objectid = sk->min_objectid; 1790 test.type = sk->min_type; 1791 test.offset = sk->min_offset; 1792 1793 ret = btrfs_comp_cpu_keys(key, &test); 1794 if (ret < 0) 1795 return 0; 1796 1797 test.objectid = sk->max_objectid; 1798 test.type = sk->max_type; 1799 test.offset = sk->max_offset; 1800 1801 ret = btrfs_comp_cpu_keys(key, &test); 1802 if (ret > 0) 1803 return 0; 1804 return 1; 1805 } 1806 1807 static noinline int copy_to_sk(struct btrfs_root *root, 1808 struct btrfs_path *path, 1809 struct btrfs_key *key, 1810 struct btrfs_ioctl_search_key *sk, 1811 char *buf, 1812 unsigned long *sk_offset, 1813 int *num_found) 1814 { 1815 u64 found_transid; 1816 struct extent_buffer *leaf; 1817 struct btrfs_ioctl_search_header sh; 1818 unsigned long item_off; 1819 unsigned long item_len; 1820 int nritems; 1821 int i; 1822 int slot; 1823 int ret = 0; 1824 1825 leaf = path->nodes[0]; 1826 slot = path->slots[0]; 1827 nritems = btrfs_header_nritems(leaf); 1828 1829 if (btrfs_header_generation(leaf) > sk->max_transid) { 1830 i = nritems; 1831 goto advance_key; 1832 } 1833 found_transid = btrfs_header_generation(leaf); 1834 1835 for (i = slot; i < nritems; i++) { 1836 item_off = btrfs_item_ptr_offset(leaf, i); 1837 item_len = btrfs_item_size_nr(leaf, i); 1838 1839 btrfs_item_key_to_cpu(leaf, key, i); 1840 if (!key_in_sk(key, sk)) 1841 continue; 1842 1843 if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE) 1844 item_len = 0; 1845 1846 if (sizeof(sh) + item_len + *sk_offset > 1847 BTRFS_SEARCH_ARGS_BUFSIZE) { 1848 ret = 1; 1849 goto overflow; 1850 } 1851 1852 sh.objectid = key->objectid; 1853 sh.offset = key->offset; 1854 sh.type = key->type; 1855 sh.len = item_len; 1856 sh.transid = found_transid; 1857 1858 /* copy search result header */ 1859 memcpy(buf + *sk_offset, &sh, sizeof(sh)); 1860 *sk_offset += sizeof(sh); 1861 1862 if (item_len) { 1863 char *p = buf + *sk_offset; 1864 /* copy the item */ 1865 read_extent_buffer(leaf, p, 1866 item_off, item_len); 1867 *sk_offset += item_len; 1868 } 1869 (*num_found)++; 1870 1871 if (*num_found >= sk->nr_items) 1872 break; 1873 } 1874 advance_key: 1875 ret = 0; 1876 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 1877 key->offset++; 1878 else if (key->type < (u8)-1 && key->type < sk->max_type) { 1879 key->offset = 0; 1880 key->type++; 1881 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 1882 key->offset = 0; 1883 key->type = 0; 1884 key->objectid++; 1885 } else 1886 ret = 1; 1887 overflow: 1888 return ret; 1889 } 1890 1891 static noinline int search_ioctl(struct inode *inode, 1892 struct btrfs_ioctl_search_args *args) 1893 { 1894 struct btrfs_root *root; 1895 struct btrfs_key key; 1896 struct btrfs_key max_key; 1897 struct btrfs_path *path; 1898 struct btrfs_ioctl_search_key *sk = &args->key; 1899 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 1900 int ret; 1901 int num_found = 0; 1902 unsigned long sk_offset = 0; 1903 1904 path = btrfs_alloc_path(); 1905 if (!path) 1906 return -ENOMEM; 1907 1908 if (sk->tree_id == 0) { 1909 /* search the root of the inode that was passed */ 1910 root = BTRFS_I(inode)->root; 1911 } else { 1912 key.objectid = sk->tree_id; 1913 key.type = BTRFS_ROOT_ITEM_KEY; 1914 key.offset = (u64)-1; 1915 root = btrfs_read_fs_root_no_name(info, &key); 1916 if (IS_ERR(root)) { 1917 printk(KERN_ERR "could not find root %llu\n", 1918 sk->tree_id); 1919 btrfs_free_path(path); 1920 return -ENOENT; 1921 } 1922 } 1923 1924 key.objectid = sk->min_objectid; 1925 key.type = sk->min_type; 1926 key.offset = sk->min_offset; 1927 1928 max_key.objectid = sk->max_objectid; 1929 max_key.type = sk->max_type; 1930 max_key.offset = sk->max_offset; 1931 1932 path->keep_locks = 1; 1933 1934 while(1) { 1935 ret = btrfs_search_forward(root, &key, &max_key, path, 1936 sk->min_transid); 1937 if (ret != 0) { 1938 if (ret > 0) 1939 ret = 0; 1940 goto err; 1941 } 1942 ret = copy_to_sk(root, path, &key, sk, args->buf, 1943 &sk_offset, &num_found); 1944 btrfs_release_path(path); 1945 if (ret || num_found >= sk->nr_items) 1946 break; 1947 1948 } 1949 ret = 0; 1950 err: 1951 sk->nr_items = num_found; 1952 btrfs_free_path(path); 1953 return ret; 1954 } 1955 1956 static noinline int btrfs_ioctl_tree_search(struct file *file, 1957 void __user *argp) 1958 { 1959 struct btrfs_ioctl_search_args *args; 1960 struct inode *inode; 1961 int ret; 1962 1963 if (!capable(CAP_SYS_ADMIN)) 1964 return -EPERM; 1965 1966 args = memdup_user(argp, sizeof(*args)); 1967 if (IS_ERR(args)) 1968 return PTR_ERR(args); 1969 1970 inode = file_inode(file); 1971 ret = search_ioctl(inode, args); 1972 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1973 ret = -EFAULT; 1974 kfree(args); 1975 return ret; 1976 } 1977 1978 /* 1979 * Search INODE_REFs to identify path name of 'dirid' directory 1980 * in a 'tree_id' tree. and sets path name to 'name'. 1981 */ 1982 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1983 u64 tree_id, u64 dirid, char *name) 1984 { 1985 struct btrfs_root *root; 1986 struct btrfs_key key; 1987 char *ptr; 1988 int ret = -1; 1989 int slot; 1990 int len; 1991 int total_len = 0; 1992 struct btrfs_inode_ref *iref; 1993 struct extent_buffer *l; 1994 struct btrfs_path *path; 1995 1996 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1997 name[0]='\0'; 1998 return 0; 1999 } 2000 2001 path = btrfs_alloc_path(); 2002 if (!path) 2003 return -ENOMEM; 2004 2005 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2006 2007 key.objectid = tree_id; 2008 key.type = BTRFS_ROOT_ITEM_KEY; 2009 key.offset = (u64)-1; 2010 root = btrfs_read_fs_root_no_name(info, &key); 2011 if (IS_ERR(root)) { 2012 printk(KERN_ERR "could not find root %llu\n", tree_id); 2013 ret = -ENOENT; 2014 goto out; 2015 } 2016 2017 key.objectid = dirid; 2018 key.type = BTRFS_INODE_REF_KEY; 2019 key.offset = (u64)-1; 2020 2021 while(1) { 2022 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2023 if (ret < 0) 2024 goto out; 2025 else if (ret > 0) { 2026 ret = btrfs_previous_item(root, path, dirid, 2027 BTRFS_INODE_REF_KEY); 2028 if (ret < 0) 2029 goto out; 2030 else if (ret > 0) { 2031 ret = -ENOENT; 2032 goto out; 2033 } 2034 } 2035 2036 l = path->nodes[0]; 2037 slot = path->slots[0]; 2038 btrfs_item_key_to_cpu(l, &key, slot); 2039 2040 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2041 len = btrfs_inode_ref_name_len(l, iref); 2042 ptr -= len + 1; 2043 total_len += len + 1; 2044 if (ptr < name) { 2045 ret = -ENAMETOOLONG; 2046 goto out; 2047 } 2048 2049 *(ptr + len) = '/'; 2050 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len); 2051 2052 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2053 break; 2054 2055 btrfs_release_path(path); 2056 key.objectid = key.offset; 2057 key.offset = (u64)-1; 2058 dirid = key.objectid; 2059 } 2060 memmove(name, ptr, total_len); 2061 name[total_len]='\0'; 2062 ret = 0; 2063 out: 2064 btrfs_free_path(path); 2065 return ret; 2066 } 2067 2068 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2069 void __user *argp) 2070 { 2071 struct btrfs_ioctl_ino_lookup_args *args; 2072 struct inode *inode; 2073 int ret; 2074 2075 if (!capable(CAP_SYS_ADMIN)) 2076 return -EPERM; 2077 2078 args = memdup_user(argp, sizeof(*args)); 2079 if (IS_ERR(args)) 2080 return PTR_ERR(args); 2081 2082 inode = file_inode(file); 2083 2084 if (args->treeid == 0) 2085 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2086 2087 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2088 args->treeid, args->objectid, 2089 args->name); 2090 2091 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2092 ret = -EFAULT; 2093 2094 kfree(args); 2095 return ret; 2096 } 2097 2098 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2099 void __user *arg) 2100 { 2101 struct dentry *parent = fdentry(file); 2102 struct dentry *dentry; 2103 struct inode *dir = parent->d_inode; 2104 struct inode *inode; 2105 struct btrfs_root *root = BTRFS_I(dir)->root; 2106 struct btrfs_root *dest = NULL; 2107 struct btrfs_ioctl_vol_args *vol_args; 2108 struct btrfs_trans_handle *trans; 2109 struct btrfs_block_rsv block_rsv; 2110 u64 qgroup_reserved; 2111 int namelen; 2112 int ret; 2113 int err = 0; 2114 2115 vol_args = memdup_user(arg, sizeof(*vol_args)); 2116 if (IS_ERR(vol_args)) 2117 return PTR_ERR(vol_args); 2118 2119 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2120 namelen = strlen(vol_args->name); 2121 if (strchr(vol_args->name, '/') || 2122 strncmp(vol_args->name, "..", namelen) == 0) { 2123 err = -EINVAL; 2124 goto out; 2125 } 2126 2127 err = mnt_want_write_file(file); 2128 if (err) 2129 goto out; 2130 2131 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 2132 if (err == -EINTR) 2133 goto out; 2134 dentry = lookup_one_len(vol_args->name, parent, namelen); 2135 if (IS_ERR(dentry)) { 2136 err = PTR_ERR(dentry); 2137 goto out_unlock_dir; 2138 } 2139 2140 if (!dentry->d_inode) { 2141 err = -ENOENT; 2142 goto out_dput; 2143 } 2144 2145 inode = dentry->d_inode; 2146 dest = BTRFS_I(inode)->root; 2147 if (!capable(CAP_SYS_ADMIN)){ 2148 /* 2149 * Regular user. Only allow this with a special mount 2150 * option, when the user has write+exec access to the 2151 * subvol root, and when rmdir(2) would have been 2152 * allowed. 2153 * 2154 * Note that this is _not_ check that the subvol is 2155 * empty or doesn't contain data that we wouldn't 2156 * otherwise be able to delete. 2157 * 2158 * Users who want to delete empty subvols should try 2159 * rmdir(2). 2160 */ 2161 err = -EPERM; 2162 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 2163 goto out_dput; 2164 2165 /* 2166 * Do not allow deletion if the parent dir is the same 2167 * as the dir to be deleted. That means the ioctl 2168 * must be called on the dentry referencing the root 2169 * of the subvol, not a random directory contained 2170 * within it. 2171 */ 2172 err = -EINVAL; 2173 if (root == dest) 2174 goto out_dput; 2175 2176 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2177 if (err) 2178 goto out_dput; 2179 } 2180 2181 /* check if subvolume may be deleted by a user */ 2182 err = btrfs_may_delete(dir, dentry, 1); 2183 if (err) 2184 goto out_dput; 2185 2186 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2187 err = -EINVAL; 2188 goto out_dput; 2189 } 2190 2191 mutex_lock(&inode->i_mutex); 2192 err = d_invalidate(dentry); 2193 if (err) 2194 goto out_unlock; 2195 2196 down_write(&root->fs_info->subvol_sem); 2197 2198 err = may_destroy_subvol(dest); 2199 if (err) 2200 goto out_up_write; 2201 2202 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2203 /* 2204 * One for dir inode, two for dir entries, two for root 2205 * ref/backref. 2206 */ 2207 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2208 5, &qgroup_reserved, true); 2209 if (err) 2210 goto out_up_write; 2211 2212 trans = btrfs_start_transaction(root, 0); 2213 if (IS_ERR(trans)) { 2214 err = PTR_ERR(trans); 2215 goto out_release; 2216 } 2217 trans->block_rsv = &block_rsv; 2218 trans->bytes_reserved = block_rsv.size; 2219 2220 ret = btrfs_unlink_subvol(trans, root, dir, 2221 dest->root_key.objectid, 2222 dentry->d_name.name, 2223 dentry->d_name.len); 2224 if (ret) { 2225 err = ret; 2226 btrfs_abort_transaction(trans, root, ret); 2227 goto out_end_trans; 2228 } 2229 2230 btrfs_record_root_in_trans(trans, dest); 2231 2232 memset(&dest->root_item.drop_progress, 0, 2233 sizeof(dest->root_item.drop_progress)); 2234 dest->root_item.drop_level = 0; 2235 btrfs_set_root_refs(&dest->root_item, 0); 2236 2237 if (!xchg(&dest->orphan_item_inserted, 1)) { 2238 ret = btrfs_insert_orphan_item(trans, 2239 root->fs_info->tree_root, 2240 dest->root_key.objectid); 2241 if (ret) { 2242 btrfs_abort_transaction(trans, root, ret); 2243 err = ret; 2244 goto out_end_trans; 2245 } 2246 } 2247 2248 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2249 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 2250 dest->root_key.objectid); 2251 if (ret && ret != -ENOENT) { 2252 btrfs_abort_transaction(trans, root, ret); 2253 err = ret; 2254 goto out_end_trans; 2255 } 2256 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2257 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2258 dest->root_item.received_uuid, 2259 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2260 dest->root_key.objectid); 2261 if (ret && ret != -ENOENT) { 2262 btrfs_abort_transaction(trans, root, ret); 2263 err = ret; 2264 goto out_end_trans; 2265 } 2266 } 2267 2268 out_end_trans: 2269 trans->block_rsv = NULL; 2270 trans->bytes_reserved = 0; 2271 ret = btrfs_end_transaction(trans, root); 2272 if (ret && !err) 2273 err = ret; 2274 inode->i_flags |= S_DEAD; 2275 out_release: 2276 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 2277 out_up_write: 2278 up_write(&root->fs_info->subvol_sem); 2279 out_unlock: 2280 mutex_unlock(&inode->i_mutex); 2281 if (!err) { 2282 shrink_dcache_sb(root->fs_info->sb); 2283 btrfs_invalidate_inodes(dest); 2284 d_delete(dentry); 2285 2286 /* the last ref */ 2287 if (dest->cache_inode) { 2288 iput(dest->cache_inode); 2289 dest->cache_inode = NULL; 2290 } 2291 } 2292 out_dput: 2293 dput(dentry); 2294 out_unlock_dir: 2295 mutex_unlock(&dir->i_mutex); 2296 mnt_drop_write_file(file); 2297 out: 2298 kfree(vol_args); 2299 return err; 2300 } 2301 2302 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2303 { 2304 struct inode *inode = file_inode(file); 2305 struct btrfs_root *root = BTRFS_I(inode)->root; 2306 struct btrfs_ioctl_defrag_range_args *range; 2307 int ret; 2308 2309 ret = mnt_want_write_file(file); 2310 if (ret) 2311 return ret; 2312 2313 if (btrfs_root_readonly(root)) { 2314 ret = -EROFS; 2315 goto out; 2316 } 2317 2318 switch (inode->i_mode & S_IFMT) { 2319 case S_IFDIR: 2320 if (!capable(CAP_SYS_ADMIN)) { 2321 ret = -EPERM; 2322 goto out; 2323 } 2324 ret = btrfs_defrag_root(root); 2325 if (ret) 2326 goto out; 2327 ret = btrfs_defrag_root(root->fs_info->extent_root); 2328 break; 2329 case S_IFREG: 2330 if (!(file->f_mode & FMODE_WRITE)) { 2331 ret = -EINVAL; 2332 goto out; 2333 } 2334 2335 range = kzalloc(sizeof(*range), GFP_KERNEL); 2336 if (!range) { 2337 ret = -ENOMEM; 2338 goto out; 2339 } 2340 2341 if (argp) { 2342 if (copy_from_user(range, argp, 2343 sizeof(*range))) { 2344 ret = -EFAULT; 2345 kfree(range); 2346 goto out; 2347 } 2348 /* compression requires us to start the IO */ 2349 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2350 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2351 range->extent_thresh = (u32)-1; 2352 } 2353 } else { 2354 /* the rest are all set to zero by kzalloc */ 2355 range->len = (u64)-1; 2356 } 2357 ret = btrfs_defrag_file(file_inode(file), file, 2358 range, 0, 0); 2359 if (ret > 0) 2360 ret = 0; 2361 kfree(range); 2362 break; 2363 default: 2364 ret = -EINVAL; 2365 } 2366 out: 2367 mnt_drop_write_file(file); 2368 return ret; 2369 } 2370 2371 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2372 { 2373 struct btrfs_ioctl_vol_args *vol_args; 2374 int ret; 2375 2376 if (!capable(CAP_SYS_ADMIN)) 2377 return -EPERM; 2378 2379 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2380 1)) { 2381 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2382 } 2383 2384 mutex_lock(&root->fs_info->volume_mutex); 2385 vol_args = memdup_user(arg, sizeof(*vol_args)); 2386 if (IS_ERR(vol_args)) { 2387 ret = PTR_ERR(vol_args); 2388 goto out; 2389 } 2390 2391 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2392 ret = btrfs_init_new_device(root, vol_args->name); 2393 2394 kfree(vol_args); 2395 out: 2396 mutex_unlock(&root->fs_info->volume_mutex); 2397 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2398 return ret; 2399 } 2400 2401 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2402 { 2403 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2404 struct btrfs_ioctl_vol_args *vol_args; 2405 int ret; 2406 2407 if (!capable(CAP_SYS_ADMIN)) 2408 return -EPERM; 2409 2410 ret = mnt_want_write_file(file); 2411 if (ret) 2412 return ret; 2413 2414 vol_args = memdup_user(arg, sizeof(*vol_args)); 2415 if (IS_ERR(vol_args)) { 2416 ret = PTR_ERR(vol_args); 2417 goto out; 2418 } 2419 2420 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2421 2422 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2423 1)) { 2424 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2425 goto out; 2426 } 2427 2428 mutex_lock(&root->fs_info->volume_mutex); 2429 ret = btrfs_rm_device(root, vol_args->name); 2430 mutex_unlock(&root->fs_info->volume_mutex); 2431 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2432 2433 out: 2434 kfree(vol_args); 2435 mnt_drop_write_file(file); 2436 return ret; 2437 } 2438 2439 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2440 { 2441 struct btrfs_ioctl_fs_info_args *fi_args; 2442 struct btrfs_device *device; 2443 struct btrfs_device *next; 2444 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2445 int ret = 0; 2446 2447 if (!capable(CAP_SYS_ADMIN)) 2448 return -EPERM; 2449 2450 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2451 if (!fi_args) 2452 return -ENOMEM; 2453 2454 mutex_lock(&fs_devices->device_list_mutex); 2455 fi_args->num_devices = fs_devices->num_devices; 2456 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2457 2458 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 2459 if (device->devid > fi_args->max_id) 2460 fi_args->max_id = device->devid; 2461 } 2462 mutex_unlock(&fs_devices->device_list_mutex); 2463 2464 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2465 ret = -EFAULT; 2466 2467 kfree(fi_args); 2468 return ret; 2469 } 2470 2471 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2472 { 2473 struct btrfs_ioctl_dev_info_args *di_args; 2474 struct btrfs_device *dev; 2475 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2476 int ret = 0; 2477 char *s_uuid = NULL; 2478 2479 if (!capable(CAP_SYS_ADMIN)) 2480 return -EPERM; 2481 2482 di_args = memdup_user(arg, sizeof(*di_args)); 2483 if (IS_ERR(di_args)) 2484 return PTR_ERR(di_args); 2485 2486 if (!btrfs_is_empty_uuid(di_args->uuid)) 2487 s_uuid = di_args->uuid; 2488 2489 mutex_lock(&fs_devices->device_list_mutex); 2490 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL); 2491 2492 if (!dev) { 2493 ret = -ENODEV; 2494 goto out; 2495 } 2496 2497 di_args->devid = dev->devid; 2498 di_args->bytes_used = dev->bytes_used; 2499 di_args->total_bytes = dev->total_bytes; 2500 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2501 if (dev->name) { 2502 struct rcu_string *name; 2503 2504 rcu_read_lock(); 2505 name = rcu_dereference(dev->name); 2506 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2507 rcu_read_unlock(); 2508 di_args->path[sizeof(di_args->path) - 1] = 0; 2509 } else { 2510 di_args->path[0] = '\0'; 2511 } 2512 2513 out: 2514 mutex_unlock(&fs_devices->device_list_mutex); 2515 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2516 ret = -EFAULT; 2517 2518 kfree(di_args); 2519 return ret; 2520 } 2521 2522 static struct page *extent_same_get_page(struct inode *inode, u64 off) 2523 { 2524 struct page *page; 2525 pgoff_t index; 2526 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2527 2528 index = off >> PAGE_CACHE_SHIFT; 2529 2530 page = grab_cache_page(inode->i_mapping, index); 2531 if (!page) 2532 return NULL; 2533 2534 if (!PageUptodate(page)) { 2535 if (extent_read_full_page_nolock(tree, page, btrfs_get_extent, 2536 0)) 2537 return NULL; 2538 lock_page(page); 2539 if (!PageUptodate(page)) { 2540 unlock_page(page); 2541 page_cache_release(page); 2542 return NULL; 2543 } 2544 } 2545 unlock_page(page); 2546 2547 return page; 2548 } 2549 2550 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len) 2551 { 2552 /* do any pending delalloc/csum calc on src, one way or 2553 another, and lock file content */ 2554 while (1) { 2555 struct btrfs_ordered_extent *ordered; 2556 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2557 ordered = btrfs_lookup_first_ordered_extent(inode, 2558 off + len - 1); 2559 if (!ordered && 2560 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2561 off + len - 1, EXTENT_DELALLOC, 0, NULL)) 2562 break; 2563 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2564 if (ordered) 2565 btrfs_put_ordered_extent(ordered); 2566 btrfs_wait_ordered_range(inode, off, len); 2567 } 2568 } 2569 2570 static void btrfs_double_unlock(struct inode *inode1, u64 loff1, 2571 struct inode *inode2, u64 loff2, u64 len) 2572 { 2573 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2574 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2575 2576 mutex_unlock(&inode1->i_mutex); 2577 mutex_unlock(&inode2->i_mutex); 2578 } 2579 2580 static void btrfs_double_lock(struct inode *inode1, u64 loff1, 2581 struct inode *inode2, u64 loff2, u64 len) 2582 { 2583 if (inode1 < inode2) { 2584 swap(inode1, inode2); 2585 swap(loff1, loff2); 2586 } 2587 2588 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 2589 lock_extent_range(inode1, loff1, len); 2590 if (inode1 != inode2) { 2591 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 2592 lock_extent_range(inode2, loff2, len); 2593 } 2594 } 2595 2596 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst, 2597 u64 dst_loff, u64 len) 2598 { 2599 int ret = 0; 2600 struct page *src_page, *dst_page; 2601 unsigned int cmp_len = PAGE_CACHE_SIZE; 2602 void *addr, *dst_addr; 2603 2604 while (len) { 2605 if (len < PAGE_CACHE_SIZE) 2606 cmp_len = len; 2607 2608 src_page = extent_same_get_page(src, loff); 2609 if (!src_page) 2610 return -EINVAL; 2611 dst_page = extent_same_get_page(dst, dst_loff); 2612 if (!dst_page) { 2613 page_cache_release(src_page); 2614 return -EINVAL; 2615 } 2616 addr = kmap_atomic(src_page); 2617 dst_addr = kmap_atomic(dst_page); 2618 2619 flush_dcache_page(src_page); 2620 flush_dcache_page(dst_page); 2621 2622 if (memcmp(addr, dst_addr, cmp_len)) 2623 ret = BTRFS_SAME_DATA_DIFFERS; 2624 2625 kunmap_atomic(addr); 2626 kunmap_atomic(dst_addr); 2627 page_cache_release(src_page); 2628 page_cache_release(dst_page); 2629 2630 if (ret) 2631 break; 2632 2633 loff += cmp_len; 2634 dst_loff += cmp_len; 2635 len -= cmp_len; 2636 } 2637 2638 return ret; 2639 } 2640 2641 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len) 2642 { 2643 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 2644 2645 if (off + len > inode->i_size || off + len < off) 2646 return -EINVAL; 2647 /* Check that we are block aligned - btrfs_clone() requires this */ 2648 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 2649 return -EINVAL; 2650 2651 return 0; 2652 } 2653 2654 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len, 2655 struct inode *dst, u64 dst_loff) 2656 { 2657 int ret; 2658 2659 /* 2660 * btrfs_clone() can't handle extents in the same file 2661 * yet. Once that works, we can drop this check and replace it 2662 * with a check for the same inode, but overlapping extents. 2663 */ 2664 if (src == dst) 2665 return -EINVAL; 2666 2667 btrfs_double_lock(src, loff, dst, dst_loff, len); 2668 2669 ret = extent_same_check_offsets(src, loff, len); 2670 if (ret) 2671 goto out_unlock; 2672 2673 ret = extent_same_check_offsets(dst, dst_loff, len); 2674 if (ret) 2675 goto out_unlock; 2676 2677 /* don't make the dst file partly checksummed */ 2678 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 2679 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 2680 ret = -EINVAL; 2681 goto out_unlock; 2682 } 2683 2684 ret = btrfs_cmp_data(src, loff, dst, dst_loff, len); 2685 if (ret == 0) 2686 ret = btrfs_clone(src, dst, loff, len, len, dst_loff); 2687 2688 out_unlock: 2689 btrfs_double_unlock(src, loff, dst, dst_loff, len); 2690 2691 return ret; 2692 } 2693 2694 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024) 2695 2696 static long btrfs_ioctl_file_extent_same(struct file *file, 2697 void __user *argp) 2698 { 2699 struct btrfs_ioctl_same_args tmp; 2700 struct btrfs_ioctl_same_args *same; 2701 struct btrfs_ioctl_same_extent_info *info; 2702 struct inode *src = file->f_dentry->d_inode; 2703 struct file *dst_file = NULL; 2704 struct inode *dst; 2705 u64 off; 2706 u64 len; 2707 int i; 2708 int ret; 2709 unsigned long size; 2710 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 2711 bool is_admin = capable(CAP_SYS_ADMIN); 2712 2713 if (!(file->f_mode & FMODE_READ)) 2714 return -EINVAL; 2715 2716 ret = mnt_want_write_file(file); 2717 if (ret) 2718 return ret; 2719 2720 if (copy_from_user(&tmp, 2721 (struct btrfs_ioctl_same_args __user *)argp, 2722 sizeof(tmp))) { 2723 ret = -EFAULT; 2724 goto out; 2725 } 2726 2727 size = sizeof(tmp) + 2728 tmp.dest_count * sizeof(struct btrfs_ioctl_same_extent_info); 2729 2730 same = kmalloc(size, GFP_NOFS); 2731 if (!same) { 2732 ret = -EFAULT; 2733 goto out; 2734 } 2735 2736 if (copy_from_user(same, 2737 (struct btrfs_ioctl_same_args __user *)argp, size)) { 2738 ret = -EFAULT; 2739 goto out; 2740 } 2741 2742 off = same->logical_offset; 2743 len = same->length; 2744 2745 /* 2746 * Limit the total length we will dedupe for each operation. 2747 * This is intended to bound the total time spent in this 2748 * ioctl to something sane. 2749 */ 2750 if (len > BTRFS_MAX_DEDUPE_LEN) 2751 len = BTRFS_MAX_DEDUPE_LEN; 2752 2753 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) { 2754 /* 2755 * Btrfs does not support blocksize < page_size. As a 2756 * result, btrfs_cmp_data() won't correctly handle 2757 * this situation without an update. 2758 */ 2759 ret = -EINVAL; 2760 goto out; 2761 } 2762 2763 ret = -EISDIR; 2764 if (S_ISDIR(src->i_mode)) 2765 goto out; 2766 2767 ret = -EACCES; 2768 if (!S_ISREG(src->i_mode)) 2769 goto out; 2770 2771 /* pre-format output fields to sane values */ 2772 for (i = 0; i < same->dest_count; i++) { 2773 same->info[i].bytes_deduped = 0ULL; 2774 same->info[i].status = 0; 2775 } 2776 2777 ret = 0; 2778 for (i = 0; i < same->dest_count; i++) { 2779 info = &same->info[i]; 2780 2781 dst_file = fget(info->fd); 2782 if (!dst_file) { 2783 info->status = -EBADF; 2784 goto next; 2785 } 2786 2787 if (!(is_admin || (dst_file->f_mode & FMODE_WRITE))) { 2788 info->status = -EINVAL; 2789 goto next; 2790 } 2791 2792 info->status = -EXDEV; 2793 if (file->f_path.mnt != dst_file->f_path.mnt) 2794 goto next; 2795 2796 dst = dst_file->f_dentry->d_inode; 2797 if (src->i_sb != dst->i_sb) 2798 goto next; 2799 2800 if (S_ISDIR(dst->i_mode)) { 2801 info->status = -EISDIR; 2802 goto next; 2803 } 2804 2805 if (!S_ISREG(dst->i_mode)) { 2806 info->status = -EACCES; 2807 goto next; 2808 } 2809 2810 info->status = btrfs_extent_same(src, off, len, dst, 2811 info->logical_offset); 2812 if (info->status == 0) 2813 info->bytes_deduped += len; 2814 2815 next: 2816 if (dst_file) 2817 fput(dst_file); 2818 } 2819 2820 ret = copy_to_user(argp, same, size); 2821 if (ret) 2822 ret = -EFAULT; 2823 2824 out: 2825 mnt_drop_write_file(file); 2826 return ret; 2827 } 2828 2829 /** 2830 * btrfs_clone() - clone a range from inode file to another 2831 * 2832 * @src: Inode to clone from 2833 * @inode: Inode to clone to 2834 * @off: Offset within source to start clone from 2835 * @olen: Original length, passed by user, of range to clone 2836 * @olen_aligned: Block-aligned value of olen, extent_same uses 2837 * identical values here 2838 * @destoff: Offset within @inode to start clone 2839 */ 2840 static int btrfs_clone(struct inode *src, struct inode *inode, 2841 u64 off, u64 olen, u64 olen_aligned, u64 destoff) 2842 { 2843 struct btrfs_root *root = BTRFS_I(inode)->root; 2844 struct btrfs_path *path = NULL; 2845 struct extent_buffer *leaf; 2846 struct btrfs_trans_handle *trans; 2847 char *buf = NULL; 2848 struct btrfs_key key; 2849 u32 nritems; 2850 int slot; 2851 int ret; 2852 u64 len = olen_aligned; 2853 2854 ret = -ENOMEM; 2855 buf = vmalloc(btrfs_level_size(root, 0)); 2856 if (!buf) 2857 return ret; 2858 2859 path = btrfs_alloc_path(); 2860 if (!path) { 2861 vfree(buf); 2862 return ret; 2863 } 2864 2865 path->reada = 2; 2866 /* clone data */ 2867 key.objectid = btrfs_ino(src); 2868 key.type = BTRFS_EXTENT_DATA_KEY; 2869 key.offset = 0; 2870 2871 while (1) { 2872 /* 2873 * note the key will change type as we walk through the 2874 * tree. 2875 */ 2876 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 2877 0, 0); 2878 if (ret < 0) 2879 goto out; 2880 2881 nritems = btrfs_header_nritems(path->nodes[0]); 2882 if (path->slots[0] >= nritems) { 2883 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 2884 if (ret < 0) 2885 goto out; 2886 if (ret > 0) 2887 break; 2888 nritems = btrfs_header_nritems(path->nodes[0]); 2889 } 2890 leaf = path->nodes[0]; 2891 slot = path->slots[0]; 2892 2893 btrfs_item_key_to_cpu(leaf, &key, slot); 2894 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || 2895 key.objectid != btrfs_ino(src)) 2896 break; 2897 2898 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { 2899 struct btrfs_file_extent_item *extent; 2900 int type; 2901 u32 size; 2902 struct btrfs_key new_key; 2903 u64 disko = 0, diskl = 0; 2904 u64 datao = 0, datal = 0; 2905 u8 comp; 2906 u64 endoff; 2907 2908 size = btrfs_item_size_nr(leaf, slot); 2909 read_extent_buffer(leaf, buf, 2910 btrfs_item_ptr_offset(leaf, slot), 2911 size); 2912 2913 extent = btrfs_item_ptr(leaf, slot, 2914 struct btrfs_file_extent_item); 2915 comp = btrfs_file_extent_compression(leaf, extent); 2916 type = btrfs_file_extent_type(leaf, extent); 2917 if (type == BTRFS_FILE_EXTENT_REG || 2918 type == BTRFS_FILE_EXTENT_PREALLOC) { 2919 disko = btrfs_file_extent_disk_bytenr(leaf, 2920 extent); 2921 diskl = btrfs_file_extent_disk_num_bytes(leaf, 2922 extent); 2923 datao = btrfs_file_extent_offset(leaf, extent); 2924 datal = btrfs_file_extent_num_bytes(leaf, 2925 extent); 2926 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2927 /* take upper bound, may be compressed */ 2928 datal = btrfs_file_extent_ram_bytes(leaf, 2929 extent); 2930 } 2931 btrfs_release_path(path); 2932 2933 if (key.offset + datal <= off || 2934 key.offset >= off + len - 1) 2935 goto next; 2936 2937 memcpy(&new_key, &key, sizeof(new_key)); 2938 new_key.objectid = btrfs_ino(inode); 2939 if (off <= key.offset) 2940 new_key.offset = key.offset + destoff - off; 2941 else 2942 new_key.offset = destoff; 2943 2944 /* 2945 * 1 - adjusting old extent (we may have to split it) 2946 * 1 - add new extent 2947 * 1 - inode update 2948 */ 2949 trans = btrfs_start_transaction(root, 3); 2950 if (IS_ERR(trans)) { 2951 ret = PTR_ERR(trans); 2952 goto out; 2953 } 2954 2955 if (type == BTRFS_FILE_EXTENT_REG || 2956 type == BTRFS_FILE_EXTENT_PREALLOC) { 2957 /* 2958 * a | --- range to clone ---| b 2959 * | ------------- extent ------------- | 2960 */ 2961 2962 /* substract range b */ 2963 if (key.offset + datal > off + len) 2964 datal = off + len - key.offset; 2965 2966 /* substract range a */ 2967 if (off > key.offset) { 2968 datao += off - key.offset; 2969 datal -= off - key.offset; 2970 } 2971 2972 ret = btrfs_drop_extents(trans, root, inode, 2973 new_key.offset, 2974 new_key.offset + datal, 2975 1); 2976 if (ret) { 2977 btrfs_abort_transaction(trans, root, 2978 ret); 2979 btrfs_end_transaction(trans, root); 2980 goto out; 2981 } 2982 2983 ret = btrfs_insert_empty_item(trans, root, path, 2984 &new_key, size); 2985 if (ret) { 2986 btrfs_abort_transaction(trans, root, 2987 ret); 2988 btrfs_end_transaction(trans, root); 2989 goto out; 2990 } 2991 2992 leaf = path->nodes[0]; 2993 slot = path->slots[0]; 2994 write_extent_buffer(leaf, buf, 2995 btrfs_item_ptr_offset(leaf, slot), 2996 size); 2997 2998 extent = btrfs_item_ptr(leaf, slot, 2999 struct btrfs_file_extent_item); 3000 3001 /* disko == 0 means it's a hole */ 3002 if (!disko) 3003 datao = 0; 3004 3005 btrfs_set_file_extent_offset(leaf, extent, 3006 datao); 3007 btrfs_set_file_extent_num_bytes(leaf, extent, 3008 datal); 3009 if (disko) { 3010 inode_add_bytes(inode, datal); 3011 ret = btrfs_inc_extent_ref(trans, root, 3012 disko, diskl, 0, 3013 root->root_key.objectid, 3014 btrfs_ino(inode), 3015 new_key.offset - datao, 3016 0); 3017 if (ret) { 3018 btrfs_abort_transaction(trans, 3019 root, 3020 ret); 3021 btrfs_end_transaction(trans, 3022 root); 3023 goto out; 3024 3025 } 3026 } 3027 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3028 u64 skip = 0; 3029 u64 trim = 0; 3030 if (off > key.offset) { 3031 skip = off - key.offset; 3032 new_key.offset += skip; 3033 } 3034 3035 if (key.offset + datal > off + len) 3036 trim = key.offset + datal - (off + len); 3037 3038 if (comp && (skip || trim)) { 3039 ret = -EINVAL; 3040 btrfs_end_transaction(trans, root); 3041 goto out; 3042 } 3043 size -= skip + trim; 3044 datal -= skip + trim; 3045 3046 ret = btrfs_drop_extents(trans, root, inode, 3047 new_key.offset, 3048 new_key.offset + datal, 3049 1); 3050 if (ret) { 3051 btrfs_abort_transaction(trans, root, 3052 ret); 3053 btrfs_end_transaction(trans, root); 3054 goto out; 3055 } 3056 3057 ret = btrfs_insert_empty_item(trans, root, path, 3058 &new_key, size); 3059 if (ret) { 3060 btrfs_abort_transaction(trans, root, 3061 ret); 3062 btrfs_end_transaction(trans, root); 3063 goto out; 3064 } 3065 3066 if (skip) { 3067 u32 start = 3068 btrfs_file_extent_calc_inline_size(0); 3069 memmove(buf+start, buf+start+skip, 3070 datal); 3071 } 3072 3073 leaf = path->nodes[0]; 3074 slot = path->slots[0]; 3075 write_extent_buffer(leaf, buf, 3076 btrfs_item_ptr_offset(leaf, slot), 3077 size); 3078 inode_add_bytes(inode, datal); 3079 } 3080 3081 btrfs_mark_buffer_dirty(leaf); 3082 btrfs_release_path(path); 3083 3084 inode_inc_iversion(inode); 3085 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3086 3087 /* 3088 * we round up to the block size at eof when 3089 * determining which extents to clone above, 3090 * but shouldn't round up the file size 3091 */ 3092 endoff = new_key.offset + datal; 3093 if (endoff > destoff+olen) 3094 endoff = destoff+olen; 3095 if (endoff > inode->i_size) 3096 btrfs_i_size_write(inode, endoff); 3097 3098 ret = btrfs_update_inode(trans, root, inode); 3099 if (ret) { 3100 btrfs_abort_transaction(trans, root, ret); 3101 btrfs_end_transaction(trans, root); 3102 goto out; 3103 } 3104 ret = btrfs_end_transaction(trans, root); 3105 } 3106 next: 3107 btrfs_release_path(path); 3108 key.offset++; 3109 } 3110 ret = 0; 3111 3112 out: 3113 btrfs_release_path(path); 3114 btrfs_free_path(path); 3115 vfree(buf); 3116 return ret; 3117 } 3118 3119 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 3120 u64 off, u64 olen, u64 destoff) 3121 { 3122 struct inode *inode = fdentry(file)->d_inode; 3123 struct btrfs_root *root = BTRFS_I(inode)->root; 3124 struct fd src_file; 3125 struct inode *src; 3126 int ret; 3127 u64 len = olen; 3128 u64 bs = root->fs_info->sb->s_blocksize; 3129 int same_inode = 0; 3130 3131 /* 3132 * TODO: 3133 * - split compressed inline extents. annoying: we need to 3134 * decompress into destination's address_space (the file offset 3135 * may change, so source mapping won't do), then recompress (or 3136 * otherwise reinsert) a subrange. 3137 * - allow ranges within the same file to be cloned (provided 3138 * they don't overlap)? 3139 */ 3140 3141 /* the destination must be opened for writing */ 3142 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 3143 return -EINVAL; 3144 3145 if (btrfs_root_readonly(root)) 3146 return -EROFS; 3147 3148 ret = mnt_want_write_file(file); 3149 if (ret) 3150 return ret; 3151 3152 src_file = fdget(srcfd); 3153 if (!src_file.file) { 3154 ret = -EBADF; 3155 goto out_drop_write; 3156 } 3157 3158 ret = -EXDEV; 3159 if (src_file.file->f_path.mnt != file->f_path.mnt) 3160 goto out_fput; 3161 3162 src = file_inode(src_file.file); 3163 3164 ret = -EINVAL; 3165 if (src == inode) 3166 same_inode = 1; 3167 3168 /* the src must be open for reading */ 3169 if (!(src_file.file->f_mode & FMODE_READ)) 3170 goto out_fput; 3171 3172 /* don't make the dst file partly checksummed */ 3173 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3174 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3175 goto out_fput; 3176 3177 ret = -EISDIR; 3178 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3179 goto out_fput; 3180 3181 ret = -EXDEV; 3182 if (src->i_sb != inode->i_sb) 3183 goto out_fput; 3184 3185 if (!same_inode) { 3186 if (inode < src) { 3187 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 3188 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 3189 } else { 3190 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 3191 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 3192 } 3193 } else { 3194 mutex_lock(&src->i_mutex); 3195 } 3196 3197 /* determine range to clone */ 3198 ret = -EINVAL; 3199 if (off + len > src->i_size || off + len < off) 3200 goto out_unlock; 3201 if (len == 0) 3202 olen = len = src->i_size - off; 3203 /* if we extend to eof, continue to block boundary */ 3204 if (off + len == src->i_size) 3205 len = ALIGN(src->i_size, bs) - off; 3206 3207 /* verify the end result is block aligned */ 3208 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3209 !IS_ALIGNED(destoff, bs)) 3210 goto out_unlock; 3211 3212 /* verify if ranges are overlapped within the same file */ 3213 if (same_inode) { 3214 if (destoff + len > off && destoff < off + len) 3215 goto out_unlock; 3216 } 3217 3218 if (destoff > inode->i_size) { 3219 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3220 if (ret) 3221 goto out_unlock; 3222 } 3223 3224 /* truncate page cache pages from target inode range */ 3225 truncate_inode_pages_range(&inode->i_data, destoff, 3226 PAGE_CACHE_ALIGN(destoff + len) - 1); 3227 3228 lock_extent_range(src, off, len); 3229 3230 ret = btrfs_clone(src, inode, off, olen, len, destoff); 3231 3232 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 3233 out_unlock: 3234 mutex_unlock(&src->i_mutex); 3235 if (!same_inode) 3236 mutex_unlock(&inode->i_mutex); 3237 out_fput: 3238 fdput(src_file); 3239 out_drop_write: 3240 mnt_drop_write_file(file); 3241 return ret; 3242 } 3243 3244 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 3245 { 3246 struct btrfs_ioctl_clone_range_args args; 3247 3248 if (copy_from_user(&args, argp, sizeof(args))) 3249 return -EFAULT; 3250 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 3251 args.src_length, args.dest_offset); 3252 } 3253 3254 /* 3255 * there are many ways the trans_start and trans_end ioctls can lead 3256 * to deadlocks. They should only be used by applications that 3257 * basically own the machine, and have a very in depth understanding 3258 * of all the possible deadlocks and enospc problems. 3259 */ 3260 static long btrfs_ioctl_trans_start(struct file *file) 3261 { 3262 struct inode *inode = file_inode(file); 3263 struct btrfs_root *root = BTRFS_I(inode)->root; 3264 struct btrfs_trans_handle *trans; 3265 int ret; 3266 3267 ret = -EPERM; 3268 if (!capable(CAP_SYS_ADMIN)) 3269 goto out; 3270 3271 ret = -EINPROGRESS; 3272 if (file->private_data) 3273 goto out; 3274 3275 ret = -EROFS; 3276 if (btrfs_root_readonly(root)) 3277 goto out; 3278 3279 ret = mnt_want_write_file(file); 3280 if (ret) 3281 goto out; 3282 3283 atomic_inc(&root->fs_info->open_ioctl_trans); 3284 3285 ret = -ENOMEM; 3286 trans = btrfs_start_ioctl_transaction(root); 3287 if (IS_ERR(trans)) 3288 goto out_drop; 3289 3290 file->private_data = trans; 3291 return 0; 3292 3293 out_drop: 3294 atomic_dec(&root->fs_info->open_ioctl_trans); 3295 mnt_drop_write_file(file); 3296 out: 3297 return ret; 3298 } 3299 3300 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3301 { 3302 struct inode *inode = file_inode(file); 3303 struct btrfs_root *root = BTRFS_I(inode)->root; 3304 struct btrfs_root *new_root; 3305 struct btrfs_dir_item *di; 3306 struct btrfs_trans_handle *trans; 3307 struct btrfs_path *path; 3308 struct btrfs_key location; 3309 struct btrfs_disk_key disk_key; 3310 u64 objectid = 0; 3311 u64 dir_id; 3312 int ret; 3313 3314 if (!capable(CAP_SYS_ADMIN)) 3315 return -EPERM; 3316 3317 ret = mnt_want_write_file(file); 3318 if (ret) 3319 return ret; 3320 3321 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3322 ret = -EFAULT; 3323 goto out; 3324 } 3325 3326 if (!objectid) 3327 objectid = BTRFS_FS_TREE_OBJECTID; 3328 3329 location.objectid = objectid; 3330 location.type = BTRFS_ROOT_ITEM_KEY; 3331 location.offset = (u64)-1; 3332 3333 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 3334 if (IS_ERR(new_root)) { 3335 ret = PTR_ERR(new_root); 3336 goto out; 3337 } 3338 3339 path = btrfs_alloc_path(); 3340 if (!path) { 3341 ret = -ENOMEM; 3342 goto out; 3343 } 3344 path->leave_spinning = 1; 3345 3346 trans = btrfs_start_transaction(root, 1); 3347 if (IS_ERR(trans)) { 3348 btrfs_free_path(path); 3349 ret = PTR_ERR(trans); 3350 goto out; 3351 } 3352 3353 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 3354 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 3355 dir_id, "default", 7, 1); 3356 if (IS_ERR_OR_NULL(di)) { 3357 btrfs_free_path(path); 3358 btrfs_end_transaction(trans, root); 3359 printk(KERN_ERR "Umm, you don't have the default dir item, " 3360 "this isn't going to work\n"); 3361 ret = -ENOENT; 3362 goto out; 3363 } 3364 3365 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3366 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3367 btrfs_mark_buffer_dirty(path->nodes[0]); 3368 btrfs_free_path(path); 3369 3370 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 3371 btrfs_end_transaction(trans, root); 3372 out: 3373 mnt_drop_write_file(file); 3374 return ret; 3375 } 3376 3377 void btrfs_get_block_group_info(struct list_head *groups_list, 3378 struct btrfs_ioctl_space_info *space) 3379 { 3380 struct btrfs_block_group_cache *block_group; 3381 3382 space->total_bytes = 0; 3383 space->used_bytes = 0; 3384 space->flags = 0; 3385 list_for_each_entry(block_group, groups_list, list) { 3386 space->flags = block_group->flags; 3387 space->total_bytes += block_group->key.offset; 3388 space->used_bytes += 3389 btrfs_block_group_used(&block_group->item); 3390 } 3391 } 3392 3393 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 3394 { 3395 struct btrfs_ioctl_space_args space_args; 3396 struct btrfs_ioctl_space_info space; 3397 struct btrfs_ioctl_space_info *dest; 3398 struct btrfs_ioctl_space_info *dest_orig; 3399 struct btrfs_ioctl_space_info __user *user_dest; 3400 struct btrfs_space_info *info; 3401 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3402 BTRFS_BLOCK_GROUP_SYSTEM, 3403 BTRFS_BLOCK_GROUP_METADATA, 3404 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3405 int num_types = 4; 3406 int alloc_size; 3407 int ret = 0; 3408 u64 slot_count = 0; 3409 int i, c; 3410 3411 if (copy_from_user(&space_args, 3412 (struct btrfs_ioctl_space_args __user *)arg, 3413 sizeof(space_args))) 3414 return -EFAULT; 3415 3416 for (i = 0; i < num_types; i++) { 3417 struct btrfs_space_info *tmp; 3418 3419 info = NULL; 3420 rcu_read_lock(); 3421 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 3422 list) { 3423 if (tmp->flags == types[i]) { 3424 info = tmp; 3425 break; 3426 } 3427 } 3428 rcu_read_unlock(); 3429 3430 if (!info) 3431 continue; 3432 3433 down_read(&info->groups_sem); 3434 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3435 if (!list_empty(&info->block_groups[c])) 3436 slot_count++; 3437 } 3438 up_read(&info->groups_sem); 3439 } 3440 3441 /* space_slots == 0 means they are asking for a count */ 3442 if (space_args.space_slots == 0) { 3443 space_args.total_spaces = slot_count; 3444 goto out; 3445 } 3446 3447 slot_count = min_t(u64, space_args.space_slots, slot_count); 3448 3449 alloc_size = sizeof(*dest) * slot_count; 3450 3451 /* we generally have at most 6 or so space infos, one for each raid 3452 * level. So, a whole page should be more than enough for everyone 3453 */ 3454 if (alloc_size > PAGE_CACHE_SIZE) 3455 return -ENOMEM; 3456 3457 space_args.total_spaces = 0; 3458 dest = kmalloc(alloc_size, GFP_NOFS); 3459 if (!dest) 3460 return -ENOMEM; 3461 dest_orig = dest; 3462 3463 /* now we have a buffer to copy into */ 3464 for (i = 0; i < num_types; i++) { 3465 struct btrfs_space_info *tmp; 3466 3467 if (!slot_count) 3468 break; 3469 3470 info = NULL; 3471 rcu_read_lock(); 3472 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 3473 list) { 3474 if (tmp->flags == types[i]) { 3475 info = tmp; 3476 break; 3477 } 3478 } 3479 rcu_read_unlock(); 3480 3481 if (!info) 3482 continue; 3483 down_read(&info->groups_sem); 3484 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3485 if (!list_empty(&info->block_groups[c])) { 3486 btrfs_get_block_group_info( 3487 &info->block_groups[c], &space); 3488 memcpy(dest, &space, sizeof(space)); 3489 dest++; 3490 space_args.total_spaces++; 3491 slot_count--; 3492 } 3493 if (!slot_count) 3494 break; 3495 } 3496 up_read(&info->groups_sem); 3497 } 3498 3499 user_dest = (struct btrfs_ioctl_space_info __user *) 3500 (arg + sizeof(struct btrfs_ioctl_space_args)); 3501 3502 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3503 ret = -EFAULT; 3504 3505 kfree(dest_orig); 3506 out: 3507 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3508 ret = -EFAULT; 3509 3510 return ret; 3511 } 3512 3513 /* 3514 * there are many ways the trans_start and trans_end ioctls can lead 3515 * to deadlocks. They should only be used by applications that 3516 * basically own the machine, and have a very in depth understanding 3517 * of all the possible deadlocks and enospc problems. 3518 */ 3519 long btrfs_ioctl_trans_end(struct file *file) 3520 { 3521 struct inode *inode = file_inode(file); 3522 struct btrfs_root *root = BTRFS_I(inode)->root; 3523 struct btrfs_trans_handle *trans; 3524 3525 trans = file->private_data; 3526 if (!trans) 3527 return -EINVAL; 3528 file->private_data = NULL; 3529 3530 btrfs_end_transaction(trans, root); 3531 3532 atomic_dec(&root->fs_info->open_ioctl_trans); 3533 3534 mnt_drop_write_file(file); 3535 return 0; 3536 } 3537 3538 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3539 void __user *argp) 3540 { 3541 struct btrfs_trans_handle *trans; 3542 u64 transid; 3543 int ret; 3544 3545 trans = btrfs_attach_transaction_barrier(root); 3546 if (IS_ERR(trans)) { 3547 if (PTR_ERR(trans) != -ENOENT) 3548 return PTR_ERR(trans); 3549 3550 /* No running transaction, don't bother */ 3551 transid = root->fs_info->last_trans_committed; 3552 goto out; 3553 } 3554 transid = trans->transid; 3555 ret = btrfs_commit_transaction_async(trans, root, 0); 3556 if (ret) { 3557 btrfs_end_transaction(trans, root); 3558 return ret; 3559 } 3560 out: 3561 if (argp) 3562 if (copy_to_user(argp, &transid, sizeof(transid))) 3563 return -EFAULT; 3564 return 0; 3565 } 3566 3567 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root, 3568 void __user *argp) 3569 { 3570 u64 transid; 3571 3572 if (argp) { 3573 if (copy_from_user(&transid, argp, sizeof(transid))) 3574 return -EFAULT; 3575 } else { 3576 transid = 0; /* current trans */ 3577 } 3578 return btrfs_wait_for_commit(root, transid); 3579 } 3580 3581 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3582 { 3583 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3584 struct btrfs_ioctl_scrub_args *sa; 3585 int ret; 3586 3587 if (!capable(CAP_SYS_ADMIN)) 3588 return -EPERM; 3589 3590 sa = memdup_user(arg, sizeof(*sa)); 3591 if (IS_ERR(sa)) 3592 return PTR_ERR(sa); 3593 3594 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3595 ret = mnt_want_write_file(file); 3596 if (ret) 3597 goto out; 3598 } 3599 3600 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end, 3601 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3602 0); 3603 3604 if (copy_to_user(arg, sa, sizeof(*sa))) 3605 ret = -EFAULT; 3606 3607 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3608 mnt_drop_write_file(file); 3609 out: 3610 kfree(sa); 3611 return ret; 3612 } 3613 3614 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 3615 { 3616 if (!capable(CAP_SYS_ADMIN)) 3617 return -EPERM; 3618 3619 return btrfs_scrub_cancel(root->fs_info); 3620 } 3621 3622 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 3623 void __user *arg) 3624 { 3625 struct btrfs_ioctl_scrub_args *sa; 3626 int ret; 3627 3628 if (!capable(CAP_SYS_ADMIN)) 3629 return -EPERM; 3630 3631 sa = memdup_user(arg, sizeof(*sa)); 3632 if (IS_ERR(sa)) 3633 return PTR_ERR(sa); 3634 3635 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 3636 3637 if (copy_to_user(arg, sa, sizeof(*sa))) 3638 ret = -EFAULT; 3639 3640 kfree(sa); 3641 return ret; 3642 } 3643 3644 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 3645 void __user *arg) 3646 { 3647 struct btrfs_ioctl_get_dev_stats *sa; 3648 int ret; 3649 3650 sa = memdup_user(arg, sizeof(*sa)); 3651 if (IS_ERR(sa)) 3652 return PTR_ERR(sa); 3653 3654 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3655 kfree(sa); 3656 return -EPERM; 3657 } 3658 3659 ret = btrfs_get_dev_stats(root, sa); 3660 3661 if (copy_to_user(arg, sa, sizeof(*sa))) 3662 ret = -EFAULT; 3663 3664 kfree(sa); 3665 return ret; 3666 } 3667 3668 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg) 3669 { 3670 struct btrfs_ioctl_dev_replace_args *p; 3671 int ret; 3672 3673 if (!capable(CAP_SYS_ADMIN)) 3674 return -EPERM; 3675 3676 p = memdup_user(arg, sizeof(*p)); 3677 if (IS_ERR(p)) 3678 return PTR_ERR(p); 3679 3680 switch (p->cmd) { 3681 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3682 if (root->fs_info->sb->s_flags & MS_RDONLY) 3683 return -EROFS; 3684 3685 if (atomic_xchg( 3686 &root->fs_info->mutually_exclusive_operation_running, 3687 1)) { 3688 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3689 } else { 3690 ret = btrfs_dev_replace_start(root, p); 3691 atomic_set( 3692 &root->fs_info->mutually_exclusive_operation_running, 3693 0); 3694 } 3695 break; 3696 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3697 btrfs_dev_replace_status(root->fs_info, p); 3698 ret = 0; 3699 break; 3700 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3701 ret = btrfs_dev_replace_cancel(root->fs_info, p); 3702 break; 3703 default: 3704 ret = -EINVAL; 3705 break; 3706 } 3707 3708 if (copy_to_user(arg, p, sizeof(*p))) 3709 ret = -EFAULT; 3710 3711 kfree(p); 3712 return ret; 3713 } 3714 3715 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3716 { 3717 int ret = 0; 3718 int i; 3719 u64 rel_ptr; 3720 int size; 3721 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3722 struct inode_fs_paths *ipath = NULL; 3723 struct btrfs_path *path; 3724 3725 if (!capable(CAP_DAC_READ_SEARCH)) 3726 return -EPERM; 3727 3728 path = btrfs_alloc_path(); 3729 if (!path) { 3730 ret = -ENOMEM; 3731 goto out; 3732 } 3733 3734 ipa = memdup_user(arg, sizeof(*ipa)); 3735 if (IS_ERR(ipa)) { 3736 ret = PTR_ERR(ipa); 3737 ipa = NULL; 3738 goto out; 3739 } 3740 3741 size = min_t(u32, ipa->size, 4096); 3742 ipath = init_ipath(size, root, path); 3743 if (IS_ERR(ipath)) { 3744 ret = PTR_ERR(ipath); 3745 ipath = NULL; 3746 goto out; 3747 } 3748 3749 ret = paths_from_inode(ipa->inum, ipath); 3750 if (ret < 0) 3751 goto out; 3752 3753 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3754 rel_ptr = ipath->fspath->val[i] - 3755 (u64)(unsigned long)ipath->fspath->val; 3756 ipath->fspath->val[i] = rel_ptr; 3757 } 3758 3759 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 3760 (void *)(unsigned long)ipath->fspath, size); 3761 if (ret) { 3762 ret = -EFAULT; 3763 goto out; 3764 } 3765 3766 out: 3767 btrfs_free_path(path); 3768 free_ipath(ipath); 3769 kfree(ipa); 3770 3771 return ret; 3772 } 3773 3774 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3775 { 3776 struct btrfs_data_container *inodes = ctx; 3777 const size_t c = 3 * sizeof(u64); 3778 3779 if (inodes->bytes_left >= c) { 3780 inodes->bytes_left -= c; 3781 inodes->val[inodes->elem_cnt] = inum; 3782 inodes->val[inodes->elem_cnt + 1] = offset; 3783 inodes->val[inodes->elem_cnt + 2] = root; 3784 inodes->elem_cnt += 3; 3785 } else { 3786 inodes->bytes_missing += c - inodes->bytes_left; 3787 inodes->bytes_left = 0; 3788 inodes->elem_missed += 3; 3789 } 3790 3791 return 0; 3792 } 3793 3794 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 3795 void __user *arg) 3796 { 3797 int ret = 0; 3798 int size; 3799 struct btrfs_ioctl_logical_ino_args *loi; 3800 struct btrfs_data_container *inodes = NULL; 3801 struct btrfs_path *path = NULL; 3802 3803 if (!capable(CAP_SYS_ADMIN)) 3804 return -EPERM; 3805 3806 loi = memdup_user(arg, sizeof(*loi)); 3807 if (IS_ERR(loi)) { 3808 ret = PTR_ERR(loi); 3809 loi = NULL; 3810 goto out; 3811 } 3812 3813 path = btrfs_alloc_path(); 3814 if (!path) { 3815 ret = -ENOMEM; 3816 goto out; 3817 } 3818 3819 size = min_t(u32, loi->size, 64 * 1024); 3820 inodes = init_data_container(size); 3821 if (IS_ERR(inodes)) { 3822 ret = PTR_ERR(inodes); 3823 inodes = NULL; 3824 goto out; 3825 } 3826 3827 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 3828 build_ino_list, inodes); 3829 if (ret == -EINVAL) 3830 ret = -ENOENT; 3831 if (ret < 0) 3832 goto out; 3833 3834 ret = copy_to_user((void *)(unsigned long)loi->inodes, 3835 (void *)(unsigned long)inodes, size); 3836 if (ret) 3837 ret = -EFAULT; 3838 3839 out: 3840 btrfs_free_path(path); 3841 vfree(inodes); 3842 kfree(loi); 3843 3844 return ret; 3845 } 3846 3847 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 3848 struct btrfs_ioctl_balance_args *bargs) 3849 { 3850 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3851 3852 bargs->flags = bctl->flags; 3853 3854 if (atomic_read(&fs_info->balance_running)) 3855 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3856 if (atomic_read(&fs_info->balance_pause_req)) 3857 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3858 if (atomic_read(&fs_info->balance_cancel_req)) 3859 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3860 3861 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3862 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3863 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3864 3865 if (lock) { 3866 spin_lock(&fs_info->balance_lock); 3867 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3868 spin_unlock(&fs_info->balance_lock); 3869 } else { 3870 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3871 } 3872 } 3873 3874 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3875 { 3876 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3877 struct btrfs_fs_info *fs_info = root->fs_info; 3878 struct btrfs_ioctl_balance_args *bargs; 3879 struct btrfs_balance_control *bctl; 3880 bool need_unlock; /* for mut. excl. ops lock */ 3881 int ret; 3882 3883 if (!capable(CAP_SYS_ADMIN)) 3884 return -EPERM; 3885 3886 ret = mnt_want_write_file(file); 3887 if (ret) 3888 return ret; 3889 3890 again: 3891 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 3892 mutex_lock(&fs_info->volume_mutex); 3893 mutex_lock(&fs_info->balance_mutex); 3894 need_unlock = true; 3895 goto locked; 3896 } 3897 3898 /* 3899 * mut. excl. ops lock is locked. Three possibilites: 3900 * (1) some other op is running 3901 * (2) balance is running 3902 * (3) balance is paused -- special case (think resume) 3903 */ 3904 mutex_lock(&fs_info->balance_mutex); 3905 if (fs_info->balance_ctl) { 3906 /* this is either (2) or (3) */ 3907 if (!atomic_read(&fs_info->balance_running)) { 3908 mutex_unlock(&fs_info->balance_mutex); 3909 if (!mutex_trylock(&fs_info->volume_mutex)) 3910 goto again; 3911 mutex_lock(&fs_info->balance_mutex); 3912 3913 if (fs_info->balance_ctl && 3914 !atomic_read(&fs_info->balance_running)) { 3915 /* this is (3) */ 3916 need_unlock = false; 3917 goto locked; 3918 } 3919 3920 mutex_unlock(&fs_info->balance_mutex); 3921 mutex_unlock(&fs_info->volume_mutex); 3922 goto again; 3923 } else { 3924 /* this is (2) */ 3925 mutex_unlock(&fs_info->balance_mutex); 3926 ret = -EINPROGRESS; 3927 goto out; 3928 } 3929 } else { 3930 /* this is (1) */ 3931 mutex_unlock(&fs_info->balance_mutex); 3932 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3933 goto out; 3934 } 3935 3936 locked: 3937 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 3938 3939 if (arg) { 3940 bargs = memdup_user(arg, sizeof(*bargs)); 3941 if (IS_ERR(bargs)) { 3942 ret = PTR_ERR(bargs); 3943 goto out_unlock; 3944 } 3945 3946 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3947 if (!fs_info->balance_ctl) { 3948 ret = -ENOTCONN; 3949 goto out_bargs; 3950 } 3951 3952 bctl = fs_info->balance_ctl; 3953 spin_lock(&fs_info->balance_lock); 3954 bctl->flags |= BTRFS_BALANCE_RESUME; 3955 spin_unlock(&fs_info->balance_lock); 3956 3957 goto do_balance; 3958 } 3959 } else { 3960 bargs = NULL; 3961 } 3962 3963 if (fs_info->balance_ctl) { 3964 ret = -EINPROGRESS; 3965 goto out_bargs; 3966 } 3967 3968 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3969 if (!bctl) { 3970 ret = -ENOMEM; 3971 goto out_bargs; 3972 } 3973 3974 bctl->fs_info = fs_info; 3975 if (arg) { 3976 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3977 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3978 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3979 3980 bctl->flags = bargs->flags; 3981 } else { 3982 /* balance everything - no filters */ 3983 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 3984 } 3985 3986 do_balance: 3987 /* 3988 * Ownership of bctl and mutually_exclusive_operation_running 3989 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 3990 * or, if restriper was paused all the way until unmount, in 3991 * free_fs_info. mutually_exclusive_operation_running is 3992 * cleared in __cancel_balance. 3993 */ 3994 need_unlock = false; 3995 3996 ret = btrfs_balance(bctl, bargs); 3997 3998 if (arg) { 3999 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4000 ret = -EFAULT; 4001 } 4002 4003 out_bargs: 4004 kfree(bargs); 4005 out_unlock: 4006 mutex_unlock(&fs_info->balance_mutex); 4007 mutex_unlock(&fs_info->volume_mutex); 4008 if (need_unlock) 4009 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 4010 out: 4011 mnt_drop_write_file(file); 4012 return ret; 4013 } 4014 4015 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 4016 { 4017 if (!capable(CAP_SYS_ADMIN)) 4018 return -EPERM; 4019 4020 switch (cmd) { 4021 case BTRFS_BALANCE_CTL_PAUSE: 4022 return btrfs_pause_balance(root->fs_info); 4023 case BTRFS_BALANCE_CTL_CANCEL: 4024 return btrfs_cancel_balance(root->fs_info); 4025 } 4026 4027 return -EINVAL; 4028 } 4029 4030 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 4031 void __user *arg) 4032 { 4033 struct btrfs_fs_info *fs_info = root->fs_info; 4034 struct btrfs_ioctl_balance_args *bargs; 4035 int ret = 0; 4036 4037 if (!capable(CAP_SYS_ADMIN)) 4038 return -EPERM; 4039 4040 mutex_lock(&fs_info->balance_mutex); 4041 if (!fs_info->balance_ctl) { 4042 ret = -ENOTCONN; 4043 goto out; 4044 } 4045 4046 bargs = kzalloc(sizeof(*bargs), GFP_NOFS); 4047 if (!bargs) { 4048 ret = -ENOMEM; 4049 goto out; 4050 } 4051 4052 update_ioctl_balance_args(fs_info, 1, bargs); 4053 4054 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4055 ret = -EFAULT; 4056 4057 kfree(bargs); 4058 out: 4059 mutex_unlock(&fs_info->balance_mutex); 4060 return ret; 4061 } 4062 4063 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4064 { 4065 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4066 struct btrfs_ioctl_quota_ctl_args *sa; 4067 struct btrfs_trans_handle *trans = NULL; 4068 int ret; 4069 int err; 4070 4071 if (!capable(CAP_SYS_ADMIN)) 4072 return -EPERM; 4073 4074 ret = mnt_want_write_file(file); 4075 if (ret) 4076 return ret; 4077 4078 sa = memdup_user(arg, sizeof(*sa)); 4079 if (IS_ERR(sa)) { 4080 ret = PTR_ERR(sa); 4081 goto drop_write; 4082 } 4083 4084 down_write(&root->fs_info->subvol_sem); 4085 trans = btrfs_start_transaction(root->fs_info->tree_root, 2); 4086 if (IS_ERR(trans)) { 4087 ret = PTR_ERR(trans); 4088 goto out; 4089 } 4090 4091 switch (sa->cmd) { 4092 case BTRFS_QUOTA_CTL_ENABLE: 4093 ret = btrfs_quota_enable(trans, root->fs_info); 4094 break; 4095 case BTRFS_QUOTA_CTL_DISABLE: 4096 ret = btrfs_quota_disable(trans, root->fs_info); 4097 break; 4098 default: 4099 ret = -EINVAL; 4100 break; 4101 } 4102 4103 err = btrfs_commit_transaction(trans, root->fs_info->tree_root); 4104 if (err && !ret) 4105 ret = err; 4106 out: 4107 kfree(sa); 4108 up_write(&root->fs_info->subvol_sem); 4109 drop_write: 4110 mnt_drop_write_file(file); 4111 return ret; 4112 } 4113 4114 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4115 { 4116 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4117 struct btrfs_ioctl_qgroup_assign_args *sa; 4118 struct btrfs_trans_handle *trans; 4119 int ret; 4120 int err; 4121 4122 if (!capable(CAP_SYS_ADMIN)) 4123 return -EPERM; 4124 4125 ret = mnt_want_write_file(file); 4126 if (ret) 4127 return ret; 4128 4129 sa = memdup_user(arg, sizeof(*sa)); 4130 if (IS_ERR(sa)) { 4131 ret = PTR_ERR(sa); 4132 goto drop_write; 4133 } 4134 4135 trans = btrfs_join_transaction(root); 4136 if (IS_ERR(trans)) { 4137 ret = PTR_ERR(trans); 4138 goto out; 4139 } 4140 4141 /* FIXME: check if the IDs really exist */ 4142 if (sa->assign) { 4143 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 4144 sa->src, sa->dst); 4145 } else { 4146 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 4147 sa->src, sa->dst); 4148 } 4149 4150 err = btrfs_end_transaction(trans, root); 4151 if (err && !ret) 4152 ret = err; 4153 4154 out: 4155 kfree(sa); 4156 drop_write: 4157 mnt_drop_write_file(file); 4158 return ret; 4159 } 4160 4161 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4162 { 4163 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4164 struct btrfs_ioctl_qgroup_create_args *sa; 4165 struct btrfs_trans_handle *trans; 4166 int ret; 4167 int err; 4168 4169 if (!capable(CAP_SYS_ADMIN)) 4170 return -EPERM; 4171 4172 ret = mnt_want_write_file(file); 4173 if (ret) 4174 return ret; 4175 4176 sa = memdup_user(arg, sizeof(*sa)); 4177 if (IS_ERR(sa)) { 4178 ret = PTR_ERR(sa); 4179 goto drop_write; 4180 } 4181 4182 if (!sa->qgroupid) { 4183 ret = -EINVAL; 4184 goto out; 4185 } 4186 4187 trans = btrfs_join_transaction(root); 4188 if (IS_ERR(trans)) { 4189 ret = PTR_ERR(trans); 4190 goto out; 4191 } 4192 4193 /* FIXME: check if the IDs really exist */ 4194 if (sa->create) { 4195 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid, 4196 NULL); 4197 } else { 4198 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 4199 } 4200 4201 err = btrfs_end_transaction(trans, root); 4202 if (err && !ret) 4203 ret = err; 4204 4205 out: 4206 kfree(sa); 4207 drop_write: 4208 mnt_drop_write_file(file); 4209 return ret; 4210 } 4211 4212 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4213 { 4214 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4215 struct btrfs_ioctl_qgroup_limit_args *sa; 4216 struct btrfs_trans_handle *trans; 4217 int ret; 4218 int err; 4219 u64 qgroupid; 4220 4221 if (!capable(CAP_SYS_ADMIN)) 4222 return -EPERM; 4223 4224 ret = mnt_want_write_file(file); 4225 if (ret) 4226 return ret; 4227 4228 sa = memdup_user(arg, sizeof(*sa)); 4229 if (IS_ERR(sa)) { 4230 ret = PTR_ERR(sa); 4231 goto drop_write; 4232 } 4233 4234 trans = btrfs_join_transaction(root); 4235 if (IS_ERR(trans)) { 4236 ret = PTR_ERR(trans); 4237 goto out; 4238 } 4239 4240 qgroupid = sa->qgroupid; 4241 if (!qgroupid) { 4242 /* take the current subvol as qgroup */ 4243 qgroupid = root->root_key.objectid; 4244 } 4245 4246 /* FIXME: check if the IDs really exist */ 4247 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 4248 4249 err = btrfs_end_transaction(trans, root); 4250 if (err && !ret) 4251 ret = err; 4252 4253 out: 4254 kfree(sa); 4255 drop_write: 4256 mnt_drop_write_file(file); 4257 return ret; 4258 } 4259 4260 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4261 { 4262 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4263 struct btrfs_ioctl_quota_rescan_args *qsa; 4264 int ret; 4265 4266 if (!capable(CAP_SYS_ADMIN)) 4267 return -EPERM; 4268 4269 ret = mnt_want_write_file(file); 4270 if (ret) 4271 return ret; 4272 4273 qsa = memdup_user(arg, sizeof(*qsa)); 4274 if (IS_ERR(qsa)) { 4275 ret = PTR_ERR(qsa); 4276 goto drop_write; 4277 } 4278 4279 if (qsa->flags) { 4280 ret = -EINVAL; 4281 goto out; 4282 } 4283 4284 ret = btrfs_qgroup_rescan(root->fs_info); 4285 4286 out: 4287 kfree(qsa); 4288 drop_write: 4289 mnt_drop_write_file(file); 4290 return ret; 4291 } 4292 4293 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 4294 { 4295 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4296 struct btrfs_ioctl_quota_rescan_args *qsa; 4297 int ret = 0; 4298 4299 if (!capable(CAP_SYS_ADMIN)) 4300 return -EPERM; 4301 4302 qsa = kzalloc(sizeof(*qsa), GFP_NOFS); 4303 if (!qsa) 4304 return -ENOMEM; 4305 4306 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4307 qsa->flags = 1; 4308 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid; 4309 } 4310 4311 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4312 ret = -EFAULT; 4313 4314 kfree(qsa); 4315 return ret; 4316 } 4317 4318 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 4319 { 4320 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 4321 4322 if (!capable(CAP_SYS_ADMIN)) 4323 return -EPERM; 4324 4325 return btrfs_qgroup_wait_for_completion(root->fs_info); 4326 } 4327 4328 static long btrfs_ioctl_set_received_subvol(struct file *file, 4329 void __user *arg) 4330 { 4331 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4332 struct inode *inode = file_inode(file); 4333 struct btrfs_root *root = BTRFS_I(inode)->root; 4334 struct btrfs_root_item *root_item = &root->root_item; 4335 struct btrfs_trans_handle *trans; 4336 struct timespec ct = CURRENT_TIME; 4337 int ret = 0; 4338 int received_uuid_changed; 4339 4340 ret = mnt_want_write_file(file); 4341 if (ret < 0) 4342 return ret; 4343 4344 down_write(&root->fs_info->subvol_sem); 4345 4346 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 4347 ret = -EINVAL; 4348 goto out; 4349 } 4350 4351 if (btrfs_root_readonly(root)) { 4352 ret = -EROFS; 4353 goto out; 4354 } 4355 4356 if (!inode_owner_or_capable(inode)) { 4357 ret = -EACCES; 4358 goto out; 4359 } 4360 4361 sa = memdup_user(arg, sizeof(*sa)); 4362 if (IS_ERR(sa)) { 4363 ret = PTR_ERR(sa); 4364 sa = NULL; 4365 goto out; 4366 } 4367 4368 /* 4369 * 1 - root item 4370 * 2 - uuid items (received uuid + subvol uuid) 4371 */ 4372 trans = btrfs_start_transaction(root, 3); 4373 if (IS_ERR(trans)) { 4374 ret = PTR_ERR(trans); 4375 trans = NULL; 4376 goto out; 4377 } 4378 4379 sa->rtransid = trans->transid; 4380 sa->rtime.sec = ct.tv_sec; 4381 sa->rtime.nsec = ct.tv_nsec; 4382 4383 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4384 BTRFS_UUID_SIZE); 4385 if (received_uuid_changed && 4386 !btrfs_is_empty_uuid(root_item->received_uuid)) 4387 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 4388 root_item->received_uuid, 4389 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4390 root->root_key.objectid); 4391 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4392 btrfs_set_root_stransid(root_item, sa->stransid); 4393 btrfs_set_root_rtransid(root_item, sa->rtransid); 4394 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4395 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4396 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4397 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4398 4399 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4400 &root->root_key, &root->root_item); 4401 if (ret < 0) { 4402 btrfs_end_transaction(trans, root); 4403 goto out; 4404 } 4405 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4406 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 4407 sa->uuid, 4408 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4409 root->root_key.objectid); 4410 if (ret < 0 && ret != -EEXIST) { 4411 btrfs_abort_transaction(trans, root, ret); 4412 goto out; 4413 } 4414 } 4415 ret = btrfs_commit_transaction(trans, root); 4416 if (ret < 0) { 4417 btrfs_abort_transaction(trans, root, ret); 4418 goto out; 4419 } 4420 4421 ret = copy_to_user(arg, sa, sizeof(*sa)); 4422 if (ret) 4423 ret = -EFAULT; 4424 4425 out: 4426 kfree(sa); 4427 up_write(&root->fs_info->subvol_sem); 4428 mnt_drop_write_file(file); 4429 return ret; 4430 } 4431 4432 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 4433 { 4434 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4435 size_t len; 4436 int ret; 4437 char label[BTRFS_LABEL_SIZE]; 4438 4439 spin_lock(&root->fs_info->super_lock); 4440 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4441 spin_unlock(&root->fs_info->super_lock); 4442 4443 len = strnlen(label, BTRFS_LABEL_SIZE); 4444 4445 if (len == BTRFS_LABEL_SIZE) { 4446 pr_warn("btrfs: label is too long, return the first %zu bytes\n", 4447 --len); 4448 } 4449 4450 ret = copy_to_user(arg, label, len); 4451 4452 return ret ? -EFAULT : 0; 4453 } 4454 4455 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4456 { 4457 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4458 struct btrfs_super_block *super_block = root->fs_info->super_copy; 4459 struct btrfs_trans_handle *trans; 4460 char label[BTRFS_LABEL_SIZE]; 4461 int ret; 4462 4463 if (!capable(CAP_SYS_ADMIN)) 4464 return -EPERM; 4465 4466 if (copy_from_user(label, arg, sizeof(label))) 4467 return -EFAULT; 4468 4469 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4470 pr_err("btrfs: unable to set label with more than %d bytes\n", 4471 BTRFS_LABEL_SIZE - 1); 4472 return -EINVAL; 4473 } 4474 4475 ret = mnt_want_write_file(file); 4476 if (ret) 4477 return ret; 4478 4479 trans = btrfs_start_transaction(root, 0); 4480 if (IS_ERR(trans)) { 4481 ret = PTR_ERR(trans); 4482 goto out_unlock; 4483 } 4484 4485 spin_lock(&root->fs_info->super_lock); 4486 strcpy(super_block->label, label); 4487 spin_unlock(&root->fs_info->super_lock); 4488 ret = btrfs_end_transaction(trans, root); 4489 4490 out_unlock: 4491 mnt_drop_write_file(file); 4492 return ret; 4493 } 4494 4495 long btrfs_ioctl(struct file *file, unsigned int 4496 cmd, unsigned long arg) 4497 { 4498 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4499 void __user *argp = (void __user *)arg; 4500 4501 switch (cmd) { 4502 case FS_IOC_GETFLAGS: 4503 return btrfs_ioctl_getflags(file, argp); 4504 case FS_IOC_SETFLAGS: 4505 return btrfs_ioctl_setflags(file, argp); 4506 case FS_IOC_GETVERSION: 4507 return btrfs_ioctl_getversion(file, argp); 4508 case FITRIM: 4509 return btrfs_ioctl_fitrim(file, argp); 4510 case BTRFS_IOC_SNAP_CREATE: 4511 return btrfs_ioctl_snap_create(file, argp, 0); 4512 case BTRFS_IOC_SNAP_CREATE_V2: 4513 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4514 case BTRFS_IOC_SUBVOL_CREATE: 4515 return btrfs_ioctl_snap_create(file, argp, 1); 4516 case BTRFS_IOC_SUBVOL_CREATE_V2: 4517 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4518 case BTRFS_IOC_SNAP_DESTROY: 4519 return btrfs_ioctl_snap_destroy(file, argp); 4520 case BTRFS_IOC_SUBVOL_GETFLAGS: 4521 return btrfs_ioctl_subvol_getflags(file, argp); 4522 case BTRFS_IOC_SUBVOL_SETFLAGS: 4523 return btrfs_ioctl_subvol_setflags(file, argp); 4524 case BTRFS_IOC_DEFAULT_SUBVOL: 4525 return btrfs_ioctl_default_subvol(file, argp); 4526 case BTRFS_IOC_DEFRAG: 4527 return btrfs_ioctl_defrag(file, NULL); 4528 case BTRFS_IOC_DEFRAG_RANGE: 4529 return btrfs_ioctl_defrag(file, argp); 4530 case BTRFS_IOC_RESIZE: 4531 return btrfs_ioctl_resize(file, argp); 4532 case BTRFS_IOC_ADD_DEV: 4533 return btrfs_ioctl_add_dev(root, argp); 4534 case BTRFS_IOC_RM_DEV: 4535 return btrfs_ioctl_rm_dev(file, argp); 4536 case BTRFS_IOC_FS_INFO: 4537 return btrfs_ioctl_fs_info(root, argp); 4538 case BTRFS_IOC_DEV_INFO: 4539 return btrfs_ioctl_dev_info(root, argp); 4540 case BTRFS_IOC_BALANCE: 4541 return btrfs_ioctl_balance(file, NULL); 4542 case BTRFS_IOC_CLONE: 4543 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 4544 case BTRFS_IOC_CLONE_RANGE: 4545 return btrfs_ioctl_clone_range(file, argp); 4546 case BTRFS_IOC_TRANS_START: 4547 return btrfs_ioctl_trans_start(file); 4548 case BTRFS_IOC_TRANS_END: 4549 return btrfs_ioctl_trans_end(file); 4550 case BTRFS_IOC_TREE_SEARCH: 4551 return btrfs_ioctl_tree_search(file, argp); 4552 case BTRFS_IOC_INO_LOOKUP: 4553 return btrfs_ioctl_ino_lookup(file, argp); 4554 case BTRFS_IOC_INO_PATHS: 4555 return btrfs_ioctl_ino_to_path(root, argp); 4556 case BTRFS_IOC_LOGICAL_INO: 4557 return btrfs_ioctl_logical_to_ino(root, argp); 4558 case BTRFS_IOC_SPACE_INFO: 4559 return btrfs_ioctl_space_info(root, argp); 4560 case BTRFS_IOC_SYNC: 4561 btrfs_sync_fs(file->f_dentry->d_sb, 1); 4562 return 0; 4563 case BTRFS_IOC_START_SYNC: 4564 return btrfs_ioctl_start_sync(root, argp); 4565 case BTRFS_IOC_WAIT_SYNC: 4566 return btrfs_ioctl_wait_sync(root, argp); 4567 case BTRFS_IOC_SCRUB: 4568 return btrfs_ioctl_scrub(file, argp); 4569 case BTRFS_IOC_SCRUB_CANCEL: 4570 return btrfs_ioctl_scrub_cancel(root, argp); 4571 case BTRFS_IOC_SCRUB_PROGRESS: 4572 return btrfs_ioctl_scrub_progress(root, argp); 4573 case BTRFS_IOC_BALANCE_V2: 4574 return btrfs_ioctl_balance(file, argp); 4575 case BTRFS_IOC_BALANCE_CTL: 4576 return btrfs_ioctl_balance_ctl(root, arg); 4577 case BTRFS_IOC_BALANCE_PROGRESS: 4578 return btrfs_ioctl_balance_progress(root, argp); 4579 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4580 return btrfs_ioctl_set_received_subvol(file, argp); 4581 case BTRFS_IOC_SEND: 4582 return btrfs_ioctl_send(file, argp); 4583 case BTRFS_IOC_GET_DEV_STATS: 4584 return btrfs_ioctl_get_dev_stats(root, argp); 4585 case BTRFS_IOC_QUOTA_CTL: 4586 return btrfs_ioctl_quota_ctl(file, argp); 4587 case BTRFS_IOC_QGROUP_ASSIGN: 4588 return btrfs_ioctl_qgroup_assign(file, argp); 4589 case BTRFS_IOC_QGROUP_CREATE: 4590 return btrfs_ioctl_qgroup_create(file, argp); 4591 case BTRFS_IOC_QGROUP_LIMIT: 4592 return btrfs_ioctl_qgroup_limit(file, argp); 4593 case BTRFS_IOC_QUOTA_RESCAN: 4594 return btrfs_ioctl_quota_rescan(file, argp); 4595 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4596 return btrfs_ioctl_quota_rescan_status(file, argp); 4597 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4598 return btrfs_ioctl_quota_rescan_wait(file, argp); 4599 case BTRFS_IOC_DEV_REPLACE: 4600 return btrfs_ioctl_dev_replace(root, argp); 4601 case BTRFS_IOC_GET_FSLABEL: 4602 return btrfs_ioctl_get_fslabel(file, argp); 4603 case BTRFS_IOC_SET_FSLABEL: 4604 return btrfs_ioctl_set_fslabel(file, argp); 4605 case BTRFS_IOC_FILE_EXTENT_SAME: 4606 return btrfs_ioctl_file_extent_same(file, argp); 4607 } 4608 4609 return -ENOTTY; 4610 } 4611